
www.allitebooks.com

http://www.allitebooks.org

O’Reilly Media, Inc. 3/23/2012

2

The Dime Tour

“Scripting and system programming are symbiotic. Used together, they produce

programming environments of exceptional power.” - John Ousterhout, creator of Tcl

PowerShell provides rapid turnaround during development for a number of reasons. It

eliminates compile time, it’s an interpreter and makes development more flexible by

allowing programming during application runtime, and it sits on top of powerful

components, the .NET framework, connecting them together.

If you want to write PowerShell scripts you need to learn the PowerShell syntax and its

building blocks, like Cmdlets, Functions and how to tap into PowerShell’s ecosystem,

including the .Net framework, third party DLLs and DLLs you create.

There’s a lot to cover, even in the dime tour, so here goes.

The Object Pipeline

These 63 characters are what hooked me when I saw my first PowerShell demo.

The Game Changer

Get-Process | Where {$_.Handles -gt 750} | Sort PM -Descending

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

------- ------ ----- ----- ----- ------ -- -----------

 965 43 173992 107044 602 157.34 2460 MetroTwit

 784 21 88196 83588 290 19.84 5776 chrome

 952 44 39456 20100 287 29.27 2612 explorer

 784 34 34268 2836 109 4.56 3712 SearchIndexer

 1158 28 18868 14048 150 6.21 956 svchost

 779 14 3784 3900 36 4.46 580 lsass

They convey key concepts in PowerShell’s value proposition, maximizing effort and

reducing time. Here are the highlights.

 1

www.allitebooks.com

http://www.allitebooks.org

O’Reilly Media, Inc. 3/23/2012

• Using cmdlets to compose solutions, Get-Process, Where, Sort

• Piping .NET objects, not just text

• Eliminating parsing and praying. No need to count spaces, tabs and other whitespace

to pull out the Handles value and then converting it to numeric for the comparison

• Working with .NET properties directly, $_.Handles in the Where and PM in the
Sort

• Less brittle. If someone adds properties to the output of Get-Process, my code is not

affected. I am working with an object-oriented pipeline.

Automation References

When you create a Console Application Project in Visual Studio, the wizard adds these

using statements for you:

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

In a PowerShell session, created by launching the console or ISE (Integrated Scripting

Environment). PowerShell does more work for you. By default, there is a lot available to

you in a single PowerShell session. I’ll cover how to import DLLs that are not included

later using the Add-Type Cmdlet or the .Net framework directly using

[Reflection.Assembly]::Load*.

When you load up ISE, you’ll have access to more DLLs because ISE is a WPF

application and namespaces like the PresenationCore, PresentationFramework and

WndowsBase. This is a PowerShell snippet I used to print out what DLLs are reference.

[System.AppDomain]::CurrentDomain.GetAssemblies() |

 Where {$_.location} |

 ForEach { Split-Path -Leaf $_.location } |

 Sort

Results

Microsoft.CSharp.dll

Microsoft.Management.Infrastructure.dll

Microsoft.PowerShell.Commands.Management.dll

Microsoft.PowerShell.Commands.Utility.dll

Microsoft.PowerShell.ConsoleHost.dll

Microsoft.PowerShell.Security.dll

mscorlib.dll

System.Configuration.Install.dll

System.Core.dll

System.Data.dll

System.DirectoryServices.dll

System.dll

System.Dynamic.dll

System.Management.Automation.dll

System.Management.dll

System.Numerics.dll

System.Transactions.dll

System.Xml.dll

 2

www.allitebooks.com

http://www.allitebooks.org

O’Reilly Media, Inc. 3/23/2012

PowerShell does this automatically for you so you are ready to go when you launch the

console or editor.

Semicolons

They are optional. I don’t use them in my scripts, too much noise and typing. They are

perfectly legal though and coming from C#, it is hard to lose that muscle memory of

adding semicolons.

PS C:\> $s = "Hello";

PS C:\> $s += " World"; $s += "!";

PS C:\> $s;

Hello World!

I do use them on the command line when I have multiple statements.

PS C:\> clear; dir *.cs

The good news is if you copy paste C# code, tweak it and forget the semicolon, the

PowerShell code will still run.

Use them if you like, I prefer less typing and I go without.

Return Statements

They are optional too. I briefly ran a PowerShell Script Club in New York City. James

Brundage, of Start-Automating, created the idea of the script club while he was on the

PowerShell team and ramping up other groups in Microsoft. One of the Scripting Club

rules is, write only the script you need, no more.

While this is correct.

function SayHello ($p) {

 return "Hello $p"

}

SayHello World

This is preferred.

function SayHello ($p) {

 "Hello $p"

}

SayHello World

There will be plenty of times when you do return in a function because it short circuits

the execution of the script at that point.

Remember, when using a dynamic language like PowerShell it is ceremony vs. essence.

Prefer essence.

Datatypes

Optional too. In the following example, $a = “Hello” is the same as var a =

“Hello”; in C#. Each environment recognizes the variable as a String.

$a = "Hello"

 3

www.allitebooks.com

http://start-automating.com/
http://www.allitebooks.org

O’Reilly Media, Inc. 3/23/2012

$a # Prints Hello

$a = 1

$a += 1

$a # Prints 2

$a = 1,2,3,”a” # Create an array of different types

[int]$a = "Hello" # Error: Cannot convert value "Hello" to type "System.Int32".

PowerShell reduces your typing by not requiring you to explicitly define the type of

variables, essence v. ceremony. This is a significant time saver and great when you are

trying to plow through some quick prototypes on your own. When you need to take it to a

more formal level, for example, sharing you script with someone else or putting your

script into production. Typing of your variables is at your fingertips. Passing a string to

either parameter causes throws an error, which can be caught.

function Do-PrecisionCalculation {

 param (

 [Double]$Latitude,

 [Double]$Longitude

)

 [Math]::Sin($Latitude) * [Math]::Sin($Longitude)

}

Exception handling

PowerShell supports try/catch/finally, that should feel familiar to .Net developers.

PowerShell Version 1 introduced the trap statement that still works; I prefer

try/catch/finally.

Trap

Break

trap {"trapped: $($error[0])"; break}

1/0

"done"

Results

trapped: Attempted to divide by zero.

Attempted to divide by zero.

At line:3 char:1

+ 1/0

+ ~~~

 + CategoryInfo : NotSpecified: (:) [],

ParentContainsErrorRecordException

 + FullyQualifiedErrorId : RuntimeException

Continue

trap {"trapped: $($error[0])"; continue}

1/0

"done"

 4

www.allitebooks.com

http://www.allitebooks.org

O’Reilly Media, Inc. 3/23/2012

Results

trapped: Attempted to divide by zero.

done

Try/Catch/Finally

try {

 1/0

 "Hello World"

} catch {

 "Error caught: $($error[0])"

} finally {

 "Finally, Hello World"

}

Results

Error caught: Attempted to divide by zero.

Finally, Hello World

Quoting Rules

One key item I want to dial in on here is that the back tick ` is the escape not the

backslash \. Note: The backslash is still the escape character for Regular Expressions and

PowerShell does support .NET RegEx’s.

"A string"

A string

"A string with 'Quotes'"

A string with 'Quotes'

"A string with `"Escaped Quotes`""

A string with "Escaped Quotes"

$s = "PowerShell"

"A string with a variable: $s"

A string with a variable: PowerShell

"A string with a quoted variable: '$s'"

A string with a quoted variable: 'PowerShell'

'Variables are not replaced inside single quotes: $s'

Variables are not replaced inside single quotes: $s

PowerShell Subexpressions in String

Expandable strings can also include arbitrary expressions by using the

subexpression notation. A subexpression is a fragment of PowerShell

script code that’s replaced by the value resulting from the evaluation of

that code. Here are examples of subexpression expansion in strings.

Bruce Payette - Designer of the PowerShell Language

$process = (Get-Process)[0]

 5

www.allitebooks.com

http://www.allitebooks.org

O’Reilly Media, Inc. 3/23/2012

$process.PM # Prints 31793152

"$process.PM" # System.Diagnostics.Process (AddInProcess32).PM

"$($process.PM)" # Prints 31793152

Your mileage will vary; the PM property will have a different value on your system. The

key here is, if you do not wrap $process.PM in a subexpression $(…) you’ll get a

result you’d never expect.

Here-Strings

Here-Strings are a way to specify blocks of string literals. It preserves the line breaks and

other whitespace, including indentation, in the text. It also allows variable substitution

and command substitution inside the string. Here-Strings also follow the quoting rules

already outlined

Great Code Generation Techniques

This is a block of string literals, in it; I show how single and double quotes can be

printed. Plus, I embed a variable $name that gets expanded. Note: I set $name outside

of the Here-String to World.

$name = "World"

$HereString = @"

This is a here-string

It can contain multiple lines

"Quotes don't need to be escaped"

Plus, you can include variables 'Hello $name'

"@

Here-String Output

This is a here-string

It can contain multiple lines

"Quotes don't need to be escaped"

Plus, you can include variables 'Hello World'

C# Code

Here-String make code generation easy and more readable. I can copy a snippet of C#,

drop it into the Here-String, drop in some variables for substitution and I’m off to the

races.

$methodName = "Test"

$code = @"

public void $methodName()

{

 System.Console.WriteLine("This is from the $methodName method.");

}

"@

$code

Results

public void Test()

{

 System.Console.WriteLine("This is from the Test method.");

 6

www.allitebooks.com

http://www.allitebooks.org

O’Reilly Media, Inc. 3/23/2012

}

Script Blocks, Closures and Lambdas

A closure (also lexical closure, function closure, function value or functional value) is a

function together with a referencing environment for the non-local variables of that

function. A closure allows a function to access variables outside its typical scope. The &

is the function call operator.

$n = "PowerShell"

$closure = {"Hello $n"}

& $closure

Hello PowerShell

A scriptblock can have a name, this is called a function.

function Add5 ($num) {

 $num + 5

}

Add5 5

10

Or it can be a function without a name.

$add5 = {param($num) $num + 5}

& $add5 5 # The call operator works with parameters too!

10

Scriptblocks, Dynamic Languages and Design Patterns

This example demonstrates one way to apply the strategy design pattern. Because

PowerShell is a dynamic language, far less structure is needed to get the job done. I want

to employ two strategies, both are doing multiplication. One uses the multiplication

operator while the other does multiple additions. I could have named each scriptblock,

thereby creating a function, function CalcByMult($n,$m) {} and function
CalcByManyAdds($n,$m) {}

$sampleData is a multi-dimensional array

$sampleData = @(

 ,(3,4,12)

 ,(5,-5,-25)

)

$strategies is an array of scriptblocks

$strategies =

{param($n,$m) $n*$m},

{

 param($n,$m)

 1..$n | ForEach {$result = 0} { $result += $m } {$result}

}

ForEach($dataset in $sampleData) {

 ForEach($strategy in $strategies) {

 & $strategy $dataset[0] $dataset[1]

 }

}

 7

www.allitebooks.com

http://www.allitebooks.org

O’Reilly Media, Inc. 3/23/2012

The nested ForEach loops first loops through the sample data and then through each of

the strategies. On the first pass, & $strategy $Dataset[0] $Dataset[1]

expands to and runs & {param($n,$m) $n*$m} 3 4. This produces the result

12. Next time though the inner loop, I’ll have the same parameters but the strategy will

change to calculating the result doing multiple adds.

Arrays

A PowerShell array is your .NET System.Array. Plus, PowerShell makes interacting with

them simpler. You can still work with arrays in the traditional way through subscripts,

but there is more.

It is dead simple to create arrays in PowerShell, separate the items with commas and if

they text, wrap them in quotes.

$animals = "cat", "dog", "bat"

$animals.GetType()

IsPublic IsSerial Name BaseType

-------- -------- ---- --------

True True Object[] System.Array

$animals

cat

dog

bat

Creating an Empty Array

As simple as it is to create an array with items it is equally simple to create an empty

array using @(). This is a special form of subexpression.

$animals = @()

$animals.Count

0

Adding an Array Item

I can easily add elements to an array using += operator.

$animals = "cat", "dog", "bat"

$animals += "bird"

$animals

cat

dog

bat

bird

Retrieving an Element

Accessing a specific array element can be done in a familiar way using subscripts.

$animals = "cat", "dog", "bat"

$animals[1]

dog

 8

www.allitebooks.com

http://www.allitebooks.org

O’Reilly Media, Inc. 3/23/2012

Array Slicing

Array slicing is an operation that extracts certain elements form an array and returns them

as an array. I can print out the first two elements using the PowerShell Range notation,

0..1 or I can print out the last element of the array using -1.

$animals = "cat", "dog", "bat"

$animals[0..1]

cat

dog

$animals[-1] # Get the last element

bat

Finding Array Elements

You can use PowerShell comparison operators with arrays too. Here I am searching the

array for elements –ne (not equal) to cat.

$animals = "cat", "dog", "bat"

$animals -ne 'cat'

dog

bat

I use the –like operator and get wild cards.

$animals = "cat", "dog", "bat"

$animals -like '*a*'

cat

bat

Reversing an Array

Using the static method Reverse from the Array class, I can invert the elements and then

print them. Another example of the seamlessness of PowerShell and the .NET

framework.

$animals = "cat", "dog", "bat"

[array]::Reverse($animals)

$animals

Prints

bat

dog

cat

Parenthesis and Commas

Coming from C# to PowerShell, parenthesis requires a little extra cognitive effort. They

show up where you expect them, around and between parameters to a function.

function Test ($p, $x) {

 "This is the value of p $p and the value of x $x"

}

If you use them when you call the function Test, you get unexpected results.

 9

www.allitebooks.com

http://www.allitebooks.org

O’Reilly Media, Inc. 3/23/2012

Test (1, 2)

This is the value of p 1 2 and the value of x

The previous example gave results we didn’t want. Here is how you do it to get the

results you’d expect.

Test 1 2

This is the value of p 1 and the value of x 2

Calling Test with (1, 2) actually passes the number 1 and 2 as an array to the parameter

$p and then PowerShell unrolls that it the string is printed.

This takes practice but don’t worry, it is absolutely worth the investment.

Hash tables

A hash table or hash map is a data structure that lets you map keys (e.g., a person's

name), to their associated values (e.g., their telephone number). A hash table implements

an associative array.

Creating an Empty Hash Table

The @{} creates an empty hash table, similar to the @() used to create the empty array.

$h = @{}

$h.Count

0

$h.GetType()

IsPublic IsSerial Name BaseType

-------- -------- ---- --------

True True Hashtable System.Object

Adding a Hash Table Item

Once I have an empty hash table I can map keys and values to them. With PowerShell, I

can use either the traditional approach or dot notation.

$h = @{}

$h[“Item0”] = 0 # More ceremony

$h.Item1 = 1 # Notice, dot notation

$h.Item2 = 2

$h # Prints the Hash table

Name Value

---- -----

Item1 1

Item0 0

Item2 2

Initializing a Hash Table with Items

Here I create a hash table and two keys with values. Then, using dot notation I print out

the value of the key named Item1.

$h = @{Item1=1;Item2=2}

$h.Item1 # dot notation and no casting

1

 10

O’Reilly Media, Inc. 3/23/2012

Concatenating Hash Tables

The addition operator also works on hash tables. Strings and Arrays will work with

addition operator also.

$h1 = @{a=1;b=2}

$h2 = @{c=3;d=4}

$h1+$h2

Prints

Name Value

---- -----

d 4

c 3

b 2

a 1

Get-Member CmdLet

Gets the members (properties and methods) of objects, there I ran Get-Help Get-

Member for you. This is reflection at the command line. As a developer it is one of the

key cmdlets I use regularly. I get all of the right information about an object right there;

it’s type, plus all the methods, properties, events and more. When working with a script,

this is very handy I can just add an $obj | Get-Member in the script and inspect all

these details about an object I am working with.

1.0 | Get-Member

 TypeName: System.Double

Name MemberType Definition

---- ---------- ----------

CompareTo Method int CompareTo(System.Object value)

Equals Method bool Equals(System.Object obj), bo

GetHashCode Method int GetHashCode()

GetType Method type GetType()

GetTypeCode Method System.TypeCode GetTypeCode()

ToBoolean Method bool ToBoolean(System.IFormatProvi

ToByte Method byte ToByte(System.IFormatProvider

ToChar Method char ToChar(System.IFormatProvider

ToDateTime Method System.DateTime ToDateTime(System.

ToDecimal Method decimal ToDecimal(System.IFormatPr

ToDouble Method double ToDouble(System.IFormatProv

ToInt16 Method System.Int16 ToInt16(System.IForma

ToInt32 Method int ToInt32(System.IFormatProvider

ToInt64 Method long ToInt64(System.IFormatProvide

ToSByte Method System.SByte ToSByte(System.IForma

ToSingle Method float ToSingle(System.IFormatProvi

ToString Method string ToString(), string ToString

ToType Method System.Object ToType(type conversi

ToUInt16 Method System.UInt16 ToUInt16(System.IFor

ToUInt32 Method System.UInt32 ToUInt32(System.IFor

ToUInt64 Method System.UInt64 ToUInt64(System.IFor

 11

O’Reilly Media, Inc. 3/23/2012

Filtering with Get-Member

Notice it tells you the type there at the top. I used a double as an example, if I used a

reference type, I would see properties, events and more. With Get-Member you can

filter on MemberType too.

New-Object Net.Webclient | Get-Member -MemberType Property

 TypeName: System.Net.WebClient

Name MemberType Definition

---- ---------- ----------

BaseAddress Property System.String BaseAddress {get;set;}

CachePolicy Property System.Net.Cache.RequestCachePolicy

Container Property System.ComponentModel.IContainer

Credentials Property System.Net.ICredentials Credentials

Encoding Property System.Text.Encoding Encoding {get;set;}

Headers Property System.Net.WebHeaderCollection Headers

IsBusy Property System.Boolean IsBusy {get;}

Proxy Property System.Net.IWebProxy Proxy {get;set;}

QueryString Property System.Collections.Specialized.NameVal

ResponseHeaders Property System.Net.WebHeaderCollection ResponseHea

Site Property System.ComponentModel.ISite Site {get;set;}

UseDefaultCredentials Property System.Boolean UseDefaultCredentials {get;se

Using Get-Member with Collections

Here is some PowerShell magic that is useful and sometimes not what you want.

$range = 1..10

$range | Get-Member

Piping the $range to Get-Member, PowerShell prints out the details about the different

elements in the array, not the collection itself. In this case, since I used the range operator

1..10 all the elements are int32, so I get the details about the type Int32.

 TypeName: System.Int32

Name MemberType Definition

---- ---------- ----------

ToBoolean Method bool ToBoolean(System.IFormatProvider provid

ToByte Method byte ToByte(System.IFormatProvider provider)

ToChar Method char ToChar(System.IFormatProvider provider)

ToDateTime Method System.DateTime ToDateTime(System.IFormatPro

ToDecimal Method decimal ToDecimal(System.IFormatProvider pro

ToDouble Method double ToDouble(System.IFormatProvider provi

If the $range were heterogeneous, Get-Member would return the details for each

type. To be more accurate, the PowerShell Object Flow Engine would do that. I won’t be

discussing the flow engine though.

What if I wanted to get the details on $range though? Simple, use the –InputObject

on the Get-Member cmdlet.

$range = 1..10

Get-Member -InputObject $range

Here is an edited version of what is returned about the collection $range.

 12

O’Reilly Media, Inc. 3/23/2012

 TypeName: System.Object[]

Name MemberType Definition

---- ---------- ----------

Count AliasProperty Count = Length

Add Method int Add(System.Object value)

Clear Method System.Void Clear()

GetEnumerator Method System.Collections.IEnumerato

GetLowerBound Method int GetLowerBound(int dimensi

IndexOf Method int IndexOf(System.Object val

Initialize Method System.Void Initialize()

Insert Method System.Void Insert(int index,

IsReadOnly Property bool IsReadOnly {get;}

IsSynchronized Property bool IsSynchronized {get;}

Length Property int Length {get;}

Looking into PowerShell cmdlets deeper you’ll often find options where piping or

passing parameters, while a different mindset, yield the results that you want. This speaks

to the cognitive shift of PowerShell and is worth the time you invest.

Inject a GUI into the PowerShell Command Line

Let’s say I get too much output at the command line from Get-Member. No problem,

let’s pipe to a GUI using Out-GridView. Out-GridView comes with PowerShell,

ready to go out of the box see Figure 2-1.

New-Object Net.Webclient | Get-Member | Out-GridView

Figure 2-1. Injecting a GUI

I recommend playing with Out-GridView. It has a Filter, which subsets the list as you

type. In version 3 it has a –PassThru parameter that lets you select items and they get

passed down the pipeline when you click Ok.

 13

O’Reilly Media, Inc. 3/23/2012

Out-GridView saves time and effort when debugging. In a multi-line script, I can add

a line where I pipe a variable containing an array of objects to it, run the script and this

window pops up. Great way to inspect what happened.

New-Object CmdLet

New-Object creates an instance of a Microsoft .NET Framework object. I’ll “new” up

a COM object, Internet Explorer, and then I’ll new up a native PowerShell object,

PSObject, and add properties to it. I’ll show the streamlined PowerShell V3 syntax.

Finally I’ll work with a .NET framework object

Launching Internet Explorer

Here in 3 lines of PowerShell I can create a COM object, call a method on it and set a

property. I don’t know how many lines are needed to get this done in C#. Remember the

ProgID? This is how we used to interact with COM objects; Here I am using the ProgID

InternetExplorer.Application, then I’m navigating to the Google page and the making IE

visible. If you’ve got a ProgID, PowerShell can make short work of it.

$ie = New-Object -ComObject InternetExplorer.Application

$ie.Navigate2("http://www.google.com")

$ie.Visible = $true

Creating a New PowerShell Object

PSObject is the PowerShell Object. It is the root of the synthetic type system in

PowerShell. So here I am creating a new one and adding two properties to it Name and

Age. Plus, I am setting values to them.

$obj = New-Object PSObject -Property @{

 Name = "John"

 Age = 10

}

$obj.GetType()

IsPublic IsSerial Name BaseType

-------- -------- ---- --------

True False PSCustomObject System.Object

$obj

Age Name

--- ----

 10 John

PowerShell V3 is More Pithy

Version 3 of PowerShell comes with a ton of new things. Here, I am getting the same

results as the previous example, but in less typing. Less typing, more results is what

PowerShell is all about.

[PSCustomObject] @{

 Name = "John"

 Age = 10

}

Name Age

---- ---

 14

O’Reilly Media, Inc. 3/23/2012

John 10

Using the .Net Framework

I can also instantiate .NET framework components. This is a primary use case as a .NET

developer. I use this to instantiate the components I write and deliver as DLLs.

$wc = New-Object Net.WebClient

[xml]$resp = $wc.DownloadString("http://feeds.feedburner.com/DevelopmentInABlink")

$resp.rss.channel.item| ForEach {$_.Title}

NumPy 1.5 Beginnerâ€™s Guide

Design Patterns in Dynamic Languagesâ€“PowerShell

Analyze your C# Source files using PowerShell and the Get-RoslynInfo Cmdlet

Using PowerShell in Roslynâ€™s C# Interactive Window

PowerShell â€“ Handling CSV and JSON

My Philly .Net PowerShell Code Camp Presentation

PowerShell for .Net Developersâ€“A Survey

My New York City PowerShell Code Camp Presentation

PowerShell vNext â€“ Web Service Entities

Reading RSS Feedsâ€“Even easier in PowerShell V3

Add-Member

Here I used Add-Member to extend the .Net string object and added Reverse, which

reverses the letters in the string. I created a new ScriptProperty (Add-Member can

add other types like NoteProperty) and in the scriptblock, I referenced object and its

properties using the $this variable.

$s = "Hello World" |

 Add-Member -PassThru ScriptProperty Reverse {$this[$this.Length..0] -join ""}

$s

Hello World

$s.Reverse

dlroW olleH

Add-Type

Adds a Microsoft .NET Framework type (a class) to a Windows PowerShell session.

Add-Type has a few parameters; TypeDefinition lets me compile C# code on the

fly. It also supports VB.NET. I’ll also show the Path parameter too, that lets me load a

DLL into a PowerShell session.

Compiling C# On The Fly

You should recognize the text Inside the Here-String, the stuff between the @””@.

That is a C# MyMathClass class with a single method Add. I am passing the Here-

String to the –TypeDefinition parameter and the Add-Type cmdlet with compile it on the

fly, in memory, into the current PowerShell session. If I am running a script, it is

compiles the code just for the life of that script.

Add-Type -TypeDefinition @"

public class MyMathClass {

 public int Add(int n1, int n2) {

 15

O’Reilly Media, Inc. 3/23/2012

 return n1 + n2;

 }

}

"@

Newing Up The Class

After compiling it, I want to use it so I use the New-Object. This is equivalent to var

obj = new MyMathClass();. From there I print out the objects type and then use

Get-Member to get the details of the object I am working with.

$obj = New-Object MyMathClass

$obj.GetType()

IsPublic IsSerial Name BaseType

-------- -------- ---- --------

True False MyMathClass System.Object

$obj | Get-Member

 TypeName: MyMathClass

Name MemberType Definition

---- ---------- ----------

Add Method int Add(int n1, int n2)

Equals Method bool Equals(System.Object obj)

GetHashCode Method int GetHashCode()

GetType Method type GetType()

ToString Method string ToString()

Calling the Add Method On MyMathClass

Let’s exercise the newly minted code by adding the numbers 1 to 5 to themselves and

printing them out. It’s important to note here, I am not telling PowerShell how to print or

loop. I don’t check for the end of the stream, or end of file. It just works.

1..5 | ForEach {$obj.Add($_,$_)}

2

4

6

8

10

Wait, I Don’t Have the Source

What if I didn’t give you the C# source code? No problem. Use the –Path parameter and

let Add-Type do the rest.

Add-Type -Path C:\Temp\MyMathClass.dll

This is similar to adding a reference to a project and then a using statement. You can

apply the previous PowerShell statements for the same results.

I could also have used the .Net framework to get the job done.

[Reflection.Assembly]::LoadFile("C:\Temp\MyMathClass.dll")

Check out my blog post for more detail How To Load .NET Assemblies In A PowerShell

Session

 16

http://www.dougfinke.com/blog/index.php/2010/08/29/how-to-load-net-assemblies-in-a-powershell-session/
http://www.dougfinke.com/blog/index.php/2010/08/29/how-to-load-net-assemblies-in-a-powershell-session/

O’Reilly Media, Inc. 3/23/2012

What the %? And other aliases

PowerShell has an aliasing system allowing you to create or change an alias for a cmdlet

or for a command element, such as a function, a script, a file, or other executable.

So, % is aliased to ForEach and ? aliased to Where. These two PowerShell lines are

equivalent, finding the even numbers, multiplying them by 2 and printing them.

1..10 | ? {$_ % 2 -eq 0} | % {$_*2}

1..10 | Where {$_ % 2 -eq 0} | ForEach {$_*2}

4

8

12

16

20

In my PowerShell profile, $PROFILE, I alias vs to the Visual Studio executable. So

whenever I need to launch it, I type vs and press enter.

Set-Alias vs

 "C:\Program Files\Microsoft Visual Studio 10.0\Common7\ide\devenv.exe"

Modules

PowerShell modules are fundamental to organizing your scripts. You can place your

scripts in sub folders and from the module you can recursively find them all and dot

source them into a PowerShell session. It’s a fantastic way to speed development. You

can just drop a script into a directory below your module (has a psm1 extension) do a

Import-Module –Force <module name> and you’re ready to rock.

Here is a list of Modules on my box. They are probably different than yours because I

have PowerShell V3 CTP2 installed on Windows 7.

Get-Module -ListAvailable | Select Name

AppLocker

BitsTransfer

CimCmdlets

Microsoft.PowerShell.Core

Microsoft.PowerShell.Diagnostics

Microsoft.PowerShell.Host

Microsoft.PowerShell.Management

Microsoft.PowerShell.Security

Microsoft.PowerShell.Utility

Microsoft.WSMan.Management

PSDiagnostics

PSScheduledJob

PSWorkflow

TroubleshootingPack

Modules are your friend. Learn them, love them, and use them. It is how Microsoft teams

deliver their PowerShell functionality. Once you grow beyond a few scripts that interact,

it is the preferred packaging mechanism.

Let’s say I have this script stored in a PowerShell file in my scripts directory,

C:\Scripts\MyCountScript.ps1.

 17

O’Reilly Media, Inc. 3/23/2012

 18

$count = 0

function Add-OneTocount { $count += 1 }

function Get-Count { $count }

I can source this script by putting a dot ‘.’ and the fully qualified script file name. “.

C:\Scripts\MyCountScript.ps1”. Dot sourcing with load and run the script,

variables become global as do functions. This is good news and bad news. The good

news is, it lets me rapidly iterate and problem solve. The bad news is, if I deliver this as is

to a colleague or client and they have a script they dot source and it uses $count, we’ll

have a collision.

Modules helps with scoping and that is just the beginning of what modules do, remember,

this is the dime tour. I will illustrate quickly how to ramp up easily on modules. I can

rename my script to C:\Scripts\MyCountScript.psm1, note, I only changed

ps1 to psm1. Now I need to “load” it and I cannot dot source it so I’ll use Import-

Module.

Import-Module C:\Scripts\MyCountScript.psm1

That’s it! Now $count is not visible outside of the module and we are safe.

There’s a lot more to modules, again. Learn them, love them, and use them.

Summary

Ok, that’s the end of the tour. We did a nice swim across the surface, dipped under for a

couple of feet and a bit of a deep dive. PowerShell V2 had a couple hundred cmdlets,

PowerShell V3 over four hundred, Windows Server 8 delivers over 2300 cmdlets. That’s

a lot of good stuff. Plus, it doesn’t include PowerShell remoting, background jobs,

Windows Workflow, idiomatic aspects, best practices, tips and tricks and much, much

more.

I started the chapter with a quote from John Ousterhout, creator of Tcl, “Scripting and

system programming are symbiotic. Used together, they produce programming

environments of exceptional power.”

PowerShell is a distributed automation platform, it is as interactive and composable as

BASH/KSH (UNIX Shells), it is as programmatic as Perl/Python/Ruby, it is production

ready, and it ships with Windows 7 and soon Windows 8.

It requires your investment. The good news is you can become very productive very

quickly, just learning some basics. When you’re ready, you develop your PowerShell

skills more and you’ll benefit by using it to support your development process, deliver

more powerful products, make your product more manageable, deliver faster and better

functionality and enable System Integrators and End-Users generate custom solutions

based on your product.

Want to know how? I invite you to read on.

O’Reilly Media, Inc. 3/23/2012

3

Getting Started

Installing PowerShell

Installing PowerShell is as simple as installing any other application. Even better, it

comes installed with Windows 7, Windows Server 2008 R2, Windows 8 and Windows

Server 8. PowerShell is also available for previous versions Windows XP, 2003 and

Vista.

As I mention, PowerShell v3 comes installed with Windows 8, (as I am writing this there

is a CTP2 release for Windows 7. You download PowerShell v3 CTP2 from HERE).

New cmdlets and language features are abundant in this more robust version; all designed

to make you more productive and lower the barrier of entry to using PowerShell.

If you are running an older Microsoft Windows OS, I encourage you to update that, too,

however, no worries though, PowerShell v2 can run on these boxes. You can get that

version HERE. Make sure to download the right PowerShell for your OS and

architecture.

While there is no PowerShell version for UNIX, Linux or Mac,
Microsoft did license the PowerShell Language under the Community
Promise. We’ll see if any developers pick up from here and implement
PowerShell on non-Windows boxes.

Checking the PowerShell Version

Depending on your Windows OS, you can navigate to PowerShell in many ways First,
get to the command prompt and type in:

PS C:\> $PSVersionTable

Name Value

---- -----

WSManStackVersion 3.0

PSCompatibleVersions {1.0, 2.0, 3.0}

 1

www.allitebooks.com

http://www.microsoft.com/download/en/details.aspx?id=27548
http://support.microsoft.com/kb/968929
http://blogs.msdn.com/b/powershell/archive/2011/04/16/powershell-language-now-licensed-under-the-community-promise.aspx
http://blogs.msdn.com/b/powershell/archive/2011/04/16/powershell-language-now-licensed-under-the-community-promise.aspx
http://www.allitebooks.org

O’Reilly Media, Inc. 3/23/2012

SerializationVersion 1.1.0.1

BuildVersion 6.2.8158.0

PSVersion 3.0

CLRVersion 4.0.30319.239

PSRemotingProtocolVersion 2.103

This gives you lots of good information about the PowerShell version running on your

box. Including what version of .NET you are going against, noted as CLRVersion in

PowerShell. I’m running PowerShell v3 CTP3. I can run PowerShell in version 2 mode,

if possible you should too.

Figure 3-1. Using the –version parameter

Here is what I get when I look at the $PSVersionTable variable. Notice I only have

two compatible versions and am using .NET 2.0, CLRVersion. When PowerShell v2 was
delivered, only .NET 2.0 was released. PowerShell v3 works with .NET Framework 4.0.

PS C:\> $PSVersionTable

Name Value

---- -----

CLRVersion 2.0.50727.5448

BuildVersion 6.1.7601.17514

PSVersion 2.0

WSManStackVersion 2.0

PSCompatibleVersions {1.0, 2.0}

SerializationVersion 1.1.0.1

PSRemotingProtocolVersion 2.1

Interactivity, the key to PowerShell

The prompt is up so let’s work the PowerShell REPL. A REPL is a Read, Eval, Print,
Loop. This means that when you type some PowerShell command and press enter, those
commands are read, evaluated, results are printed (or errors) and the console loops back
and waits to do it again. Let’s try it.

PS C:\> 2 + 2 * 3

8

 2

O’Reilly Media, Inc. 3/23/2012

PS C:\>

So, PowerShell is just a big calculator? Not exactly. If you try that in a DOS prompt,

what happens? You get an error. Notice, the result is printed and we get the prompt back,

ready to complete your next request.

Now type in the “Hello World” quoted string. Press Enter and you get back the same

thing you typed, without the quotes. PowerShell evaluated that for you, it shows the E in

REPL. Also, we didn’t have to explicitly specify that we wanted it to be printed.

PowerShell just “knew” to do that. These are great time-saving aspects of PowerShell;

not to mention, they cut down on keystrokes too.

PS C:\> "Hello World"

Hello World

Let’s tap into the .NET Framework now. Type in:

PS C:\> [System.Math]::Pow(2, 3)

8

What you’ve done is input the System.Math namespace and called the static method

Pow(). Get used to the syntax; you’ll be using it again and again. Square brackets ‘[]’

around the fully qualified type name and two colons ‘::’ indicate I’m calling the static

method. This is the syntax the PowerShell team has decided on.

Let’s create a variable, set it to a string and then inspect its type. You may be familiar

with the GetType() method from C#.

PS C:\> $a = "Hello"

PS C:\> $a.GetType()

IsPublic IsSerial Name BaseType

-------- -------- ---- --------

True True String System.Object

Set the variable $a to a string, and you’ll see that in fact, it is by using the GetType()

method. This is very handy when running/debugging PowerShell scripts. You can slap a

GetType() on a variable and find out exactly what type it is. Now, how to run a

PowerShell script?

Running a PowerShell Script

Setting the Execution Policy

The execution policy is part of the security strategy of Windows PowerShell. It

determines whether you can load configuration files (including your Windows

PowerShell profile) and run scripts, and it determines which scripts, if any, must be

digitally signed before they will run.

When PowerShell is installed, the execution policy is set to Restricted. This means,

PowerShell will not load configuration files or run scripts. Even though you are restricted
from using scripts, interactive commands can still be run. If you’re new to PowerShell,
better safe than sorry.

Once you are more comfortable with using PowerShell and scripts written by others, you
can ease the restriction.

 3

O’Reilly Media, Inc. 3/23/2012

Finding PowerShell Information Online from the Command Line

You change the policy by using the Set-ExecutionPolicy

cmdlet. You can find more information about the Set-

ExecutionPolicy cmdlet by typing the following.

Get-Help Set-ExecutionPolicy -Online

The cool part, the –Online parameter will launch the browser and

navigate to the cmdlet web page.

RemoteSigned Is Good for You

There are a few options you can use with the –ExecutionPolicy parameter found on

the Set-ExecutionPolicy cmdlet. Many users set the execution policy to

RemoteSigned which means that all scripts and configuration files downloaded from the

Internet must be signed by a trusted publisher. This “protects” you so if you download a

script or get one in an email and you try to run it, PowerShell will prompt and warn you

before letting you continue. As you gain experience, you could choose the

UnRestricted setting. Setting the execution policy to UnRestricted comes with

risks which means you can launch scripts that could disable or destroy information on

your system.

I run in UnRestricted mode but have been working with PowerShell for a few years.

I’m comfortable with what scripts I am about to run based on knowing the authors and

where I have downloaded the scripts from.

PS C:\> Set-ExecutionPolicy Unrestricted

Here’s an example of why RemoteSigned is a good idea. Ed Wilson, Microsoft

employee and author of PowerShell books produces the content for “Hey, Scripting

Guy!” blog and is the driving force behind the Windows PowerShell Scripting Games. Ed

invited me to be a judge at the games. I downloaded one of the entries for review and

then ran it. The creator of the script had unintentionally added some WMI code that

disabled the Ethernet card. I ran the script and then spent the next hour trying to figure

out why I couldn’t connect to the Internet and how to re-enable the card.

If had the RemoteSigned execution policy set, it would have prompted me that I was

running a script I had downloaded and I may have chosen not to run it. This is especially

handy if you end up with a folder with scripts from mixed sources.

Running Scripts with Execution Policy Set to Restricted

Let’s run the test script again with the policy set to Restricted.

PS C:\> .\test.ps1

File C:\test.ps1 cannot be loaded because the execution

of scripts is disabled on this system. For more information,

see about_Execution_Policies at

http://go.microsoft.com/fwlink/?LinkID=135170.

At line:1 char:1

 4

http://blogs.technet.com/b/heyscriptingguy/
http://blogs.technet.com/b/heyscriptingguy/
http://blogs.technet.com/b/heyscriptingguy/archive/2012/02/04/the-2012-windows-powershell-scripting-games-all-links-on-one-page.aspx

O’Reilly Media, Inc. 3/23/2012

+ .\test.ps1

+ ~~~~~~~~~~

 + CategoryInfo : NotSpecified: (:) [], PSSecurityException

 + FullyQualifiedErrorId : UnauthorizedAccess

You can set the execution policy to one of several settings so you don’t get this message

and can run the script. You’ll need to do a little research to figure out what setting is most

appropriate for you. You need to run the console as administrator in order to effect the

Set-ExecutionPolicy changes because it is a setting in the Registry.

Here are all the possible options for the -ExecutionPolicy parameter on the Set-

ExcutionPolicy cmdlet.

Restricted Does not load configuration files or run scripts. "Restricted" is the
default execution policy

AllSigned Requires that all scripts and configuration files be signed by a trusted
publisher, including scripts that you write on the local computer.

RemoteSigned Requires that all scripts and configuration files downloaded from the
Internet be signed by a trusted publisher.

Unrestricted Loads all configuration files and runs all scripts. If you run an unsigned
script that was downloaded from the Internet, you are prompted for
permission before it runs.

Bypass Nothing is blocked and there are no warnings or prompts.

Undefined Removes the currently assigned execution policy from the current
scope. This parameter will not remove an execution policy that is set in
a Group Policy scope.

Now we’re set to run a script

Let’s try a simple script. The script test.ps1 contains the quoted string “Hello World”.

PS C:\> Get-Content .\test.ps1

"Hello World"

PS C:\> .\test.ps1

Hello World

In order to run a PowerShell script, you’ll need to place “.\” before the name of the

script thereby noting it is in the current directory. You can provide the full path to the
script. Scripts can be specified by full path or relative path.

Again, notice that there is no compilation step, you just execute and go. Even though
there is no compilation step and PowerShell is a dynamic language, it is based on .NET
which proves to be beneficial in many ways.

PowerShell works within the .NET Framework and as such we can perform reflection at

the command line using Get-Member, (see more on this topic in Chapter 4). As well as

use the GetType() method to see the underlying .NET type of object you are

manipulating. Reflection is the process by which you can observe (do type introspection)

and modify its own structure and behavior at runtime. Here we just did some observing.

 5

O’Reilly Media, Inc. 3/23/2012

PowerShell ISE

ISE (pronounced ice) is free and is available as soon as you install PowerShell, or are

using Microsoft operating systems like Windows 7 or Windows 8 that has PowerShell

already installed.

Windows PowerShell Integrated Scripting Environment (ISE) is a graphical host

application for Windows PowerShell. Windows PowerShell ISE lets you run commands,

and write, edit, run, test, and debug scripts in an environment that displays syntax in

colors and that supports Unicode.

Windows PowerShell ISE is designed for users at all levels of proficiency. Beginners will

appreciate the syntax colors and the context-sensitive Help. Multiline editing makes it

easy to try the examples that you copy from the Help topics and from other sources.

Advanced users will appreciate the availability of multiple execution environments, the

built-in debugger, and the extensibility of the Windows PowerShell ISE object model.

Other PowerShell Editors

PowerShell does have a few free editors specifically tailored for use with it. There are a
number of other editors which support the editing of many different programming
languages and typically the PowerShell community has stepped up in delivering
extensions for syntax highlighting, build tools and more.

PowerGUI is an extensible graphical administrative console for managing systems based
on Windows PowerShell. These include Windows OS (XP, 2003, Vista), Exchange 2007,
Operations Manager 2007 and other new systems from Microsoft. The tool allows you to
use the rich capabilities of Windows PowerShell in a familiar and intuitive GUI console.
PowerGUI can be downloaded here: http://powergui.org/downloads.jspa

PowerShell Analyzer is an integrated development environment that focuses on the
leveraging PowerShell as a dynamic language. It’s goal is simply to allow users to be as
productive as possible in sculpting, running, interpreting results and refactoring
everything from the “one-liners” PowerShell is famous for, to fully fledged production
quality scripts. PowerShell Analyzer can be downloaded here:
http://www.powershellanalyzer.com/

Professional PowerShell Script Editor (PowerSE). PowerSE is an advanced IDE
Console, plus it has all the features you come to expect from a professional editor. It
supports color syntax highlighting, IntelliSense (PowerShell, WMI, and .NET), tab
completion, context sensitive help system and much more. PowerSE can be downloaded
here: http://powerwf.com/products/powerse.aspx

PrimalScript: The Integrated Scripting Environment for PowerShell. It doesn't matter
what your niche is - system, database or network administrator, web developer or end-
user developer; you probably need to work with multiple technologies, languages and file
formats at the same time. Take charge of your script development regardless of what
language you use and combine PrimalScript's powerful editing and packaging abilities
with your scripting skills. PrimalScript can be downloaded here:
http://www.sapien.com/software/primalscript

PowerShell Plus: Learn PowerShell fast using the Interactive Learning Center. Run
PowerShell commands with the powerful interactive console. Debug PowerShell 10X

 6

http://powergui.org/index.jspa
http://powergui.org/downloads.jspa
http://www.powershellanalyzer.com/
http://www.powershellanalyzer.com/
http://powerwf.com/products/powerse.aspx
http://powerwf.com/products/powerse.aspx
http://www.sapien.com/software/primalscript

O’Reilly Media, Inc. 3/23/2012

faster with the advanced script editor. Execute scripts remotely using customized
configurations. Access hundreds of pre-loaded scripts in the QuickClick library. Search
and download thousands of community scripts. Enable team collaboration using Source
Control integration. PowerShell Plus can be downloaded here:
http://www.idera.com/PowerShell/powershell-plus/

There are other editors out there that have powerful capabilities and are highly
customizable to your needs.

Vim: stands for 'Vi Improved' (vi is a “Visual Editor”). Vim is an advanced text editor
that seeks to provide the power of the de-facto Unix editor 'Vi', with a more complete
feature set. Vim can be downloaded here: http://www.vim.org/index.php. Plus, default
syntax coloring for Windows PowerShell can be downloaded here:
http://www.vim.org/scripts/script.php?script_id=1327

Notepad++: is a free (as in "free speech" and also as in "free beer") source code editor
and Notepad replacement that supports several languages. Notepad++ can be downloaded
here: http://notepad-plus-plus.org/

This is a sampling of what is available to use to editing of PowerShell scripts, running
and debugging. Each has options out of the box and different levels of customizability.

Experiment and enjoy!

PowerShell and Visual Studio

Visual Studio is used to develop console and graphical user interface applications along
with Windows Forms applications, web sites, web applications, and web services in both
native code together with managed code for all platforms supported by Microsoft
Windows, Windows Mobile, Windows CE and .NET Framework.

Since you can embed PowerShell in a C# application, see Chapter 5 “Add a PowerShell
Command Line to Your GUI”, both Microsoft and PowerShell MVPs have written
PowerShell consoles that work directly in and with Visual Studio.

NuGet is a free, open source developer-focused package management system for the

.NET platform intent on simplifying the process of incorporating third-party libraries into

a .NET application during development. NuGet also comes with a PowerShell console

that runs inside Visual Studio. NuGet can be downloaded here:

http://nuget.codeplex.com/

StudioShell is written and maintained by Jim Christopher, PowerShell MVP, here on
CodePlex. If you’ve ever implemented a Visual Studio extension, such as an add-in or a
package, you know how convoluted this space has become. You have to become an
expert in your tooling if you want to change it. StudioShell changes this landscape by
exposing many of Visual Studio’s extensibility points in a simple and consistent way. It
makes the Visual Studio IDE interactive and discoverable.

The PowerShell Community

PowerShell has a thriving community; there are open source projects and script

repositories, forums and even a PowerShell Magazine. If you are thinking of where to get

started, have a question or wondering if someone else has already created it. These are

 7

http://www.idera.com/PowerShell/powershell-plus/
http://www.vim.org/index.php
http://www.vim.org/scripts/script.php?script_id=1327
http://notepad-plus-plus.org/
http://nuget.codeplex.com/
http://nuget.codeplex.com/
http://studioshell.codeplex.com/
http://studioshell.codeplex.com/
http://www.powershellmagazine.com/

O’Reilly Media, Inc. 3/23/2012

the places to check. Plus, you can get a look at some advanced usages of PowerShell and

contribute solutions based on these that are already there.

Many of us are on the forums, answering questions on StackOverflow (Search

[powershell])and involved on Twitter (#powershell).

CodePlex- Search CodePlex for PowerShell, and you will find that there are over 450
open source projects and it is growing. Everything from tools that bring features from the
UNIX world to Azure management cmdlets, testing frameworks, SQL Server integration
scripts, Facebook and Twitter integration and so much more.

PoShCode.org - The PowerShell Code Repository is maintained by another PowerShell
MVP, Joel “Jaykul” Bennett.

PowershellCommunity.org is a community-run and vendor-sponsored organization that
provides evangelism for all things PowerShell through news, forums, user group
outreach, script repository, and other resources.

PowerShell Magazine - I am a co-founder and editor of the PowerShell Magazine, along
with four other great guys and PowerShell MVPs, Ravikanth Chaganti, Aleksandar
Nikolić, Shay Levy, and Steven Murawski.

Check out the site, submit an article and just enjoy the targeted PowerShell content from
some of the best scripters in the community.

The Future of PowerShell on Window 8

PowerShell was released as a separate download more than six years ago. Jeffrey Snover,
a creator of PowerShell, wrote the Monad Manifesto in 2002 (Monad was the code name
for PowerShell). Then, PowerShell debuted as part of the Windows 7 operating system in
2009. A few hundred million copies of Windows 7 have been licensed which means,
there are a few hundred million copies of PowerShell out there installed and ready to go.

This year, 2012, Windows 8 will be delivered and with it PowerShell v3. In addition,
Windows Server 8 will also be released. PowerShell v3 has numerous enhancements
across the entire product, shipping with hundreds more PowerShell cmdlets for the client,
and in the Windows Server 8 case over 2000 cmdlets.

Plus, Microsoft is not the only company delivering PowerShell-enabled software.
VMWare, Cisco, Intel, Citrix and SPLUNK are now doing this-just to name a few.

Summary

We’ve barely covered the basics here. There is an entire ocean of PowerShell waiting and
that doesn’t include third-party PowerShell systems, community delivered scripts or the
internal Microsoft teams outfitting their products.

You can say PowerShell is about 10 years old, maybe older, since its inception stemming
from the Monad Manifesto. The team that developed PowerShell drew inspiration from
systems developed over 30+ years ago in DEC and IBM. And PowerShell is as
programmable as Perl, Python and Ruby and takes it cues from UNIX shells.

The community is thriving, which is a fundamental component to any new language and
approach. Microsoft has over 50 PowerShell MVPs worldwide, providing feedback to

 8

http://www.codeplex.com/site/search?query=powershell&ac=3
http://poshcode.org/
http://powershellcommunity.org/
http://www.powershellmagazine.com/
http://blogs.msdn.com/b/powershell/archive/2007/03/19/monad-manifesto-the-origin-of-windows-powershell.aspx

O’Reilly Media, Inc. 3/23/2012

 9

the Microsoft PowerShell team as well as the other teams who are developing cmdlets
and surfacing their APIs for easy consumption in PowerShell.

PowerShell is a distributed automation platform and is surfaced as a command line,
scripting language and API. Think, embedding PowerShell in your C# app and check out
the chapter on “Add a PowerShell Command Line to Your GUI”.

Jeffrey Snover says, “If you’re planning on working with Microsoft systems for the next
year, invest some time with PowerShell, it’ll make your life simpler.”

O’Reilly Media, Inc. 3/23/2012

4

Accelerating Delivery

In this chapter I’m going to work through different types of text extraction and

manipulation. This can play into creating code generators which take over the task of

writing repetitive infrastructure code, eliminating grunt work. PowerShell’s ability to

work in this way, reading text, XML, reading DLL metadata, enables productivity and

consistency while driving up the quality of the deliverable.

Being able to rip through numerous source code files looking for text in a specific context

and extracting key information is super useful, primarily I can locate key information

quickly. Plus, because I can generate a .NET object with properties, I can easily pipe the

results and do more work easily.

• Export the results to a CSV and do analysis on them with Excel

• Catalog strings for use by QA/QC

• Create lists of classes, methods and functions

Scanning for const definitions

These examples read C# files looking for strings containing the word const, extracting the

variable name and value. Scanning for strings across files can be applied in many ways

like, searching SQL files, PowerShell scripts, JavaScript files, HTML files and more.

Once the information is extracted you can again use it in many ways, for example,

catalog string for internationalization, code analysis, create indexes of classes methods

and functions, locate global variables. The list goes on and on.

public const int Name = "Dog";

const double Freezing = 32;

This first reader will look for const definitions in C# files, like the one above and

produce the following output.

FileName Name Value

-------- ---- -----

test1.cs Name "Dog"

test1.cs Freezing 32

 1

O’Reilly Media, Inc. 3/23/2012

I will show two versions of the code. The first will read a single file and the second will

search a directory for all C# files and process them. Both examples are nearly identical,

differing only in how I work with the Select-String cmdlet.

Reading a Single C# File

This is an example of a single C# file, test.cs. It has three const variables defined. Two

scoped at the class level and one at the method level.

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace ConsoleApplication1

{

 class Program

 {

 public const string Test = "test";

 public const int TestX = 1;

 static void Main(string[] args)

 {

 const double PI = 3.14;

 }

 }

}

Next up, I show the PowerShell script to scan and extract the const pattern.

Using Select-String

It’s import to note, I am doing pattern matching here, not parsing. If one of these lines of

code is in a comment, this reader will find it because it cannot tell if it is a comment or

“real” line of code.

The reader will find these const definitions and then output them in this format. This is

an array of PowerShell objects each having three properties, FileName, Name, and

Value.

$regex = "\s+const\s+\w+\s+(?<name>.*)\s+=\s+(?<value>.*);"

Select-String $regex .\test.cs |

 ForEach {

 $fileName = $_.Path

 ForEach($match in $_.Matches) {

 New-Object PSObject -Property @{

 FileName = $fileName

 Name = $match.Groups["name"].Value

 Value = $match.Groups["value"].Value

 }

 }

 }

The Result

FileName Name Value

-------- ---- -----

test.cs Test "test"

 2

www.allitebooks.com

http://www.allitebooks.org

O’Reilly Media, Inc. 3/23/2012

test.cs TestX 1

test.cs PI 3.14

Select-String finds text in files or strings. For UNIX folks, this is equivalent to

grep. In this example, I am using a Regular Expression with the named groups, “name”

and “value”. Select-String can also find text using the –SimpleMatch keyword,

meaning Select-String will not interpret the pattern as a regular expression statement.

So, the parameters I am passing are the pattern and file name. If there are matches found,

they are piped to a ForEach. I capture the $fileName from the property $_.Path

($_ is the current item in the pipeline) and then pipe the matches ($_.Matches) to

another ForEach. In it I create a new PSObject on the fly with three properties,

FileName, Name and Value. Where did Name and Value come from? They came

from the named groups in the regular expression

I extracted data and created a custom output type using Select-String and New-

Object PSObject. I can rip through any text based file searching for information and

then present it as a .NET object with properties. I could have even piped this data to

Export-Csv .\MyFile.CSV, which converts it to comma separated values, save it

to a file and then I could do an Invoke-Item .\MyFile.CSV opening it in Excel, parsed

and ready to go.

Reading C# Files in a Directory

In this example, I use Select-String again. The difference is I am doing a dir for

files ending in .cs and then piping them to Select-String. From there, the process is

the same as before.

$regex = "\s+const\s+\w+\s+(?<name>.*)\s+=\s+(?<value>.*);"

dir *.cs | Select-String $regex |

 ForEach {

 $fileName = $_.Path

 ForEach($match in $_.Matches) {

 New-Object PSObject -Property @{

 FileName = $fileName

 Name = $match.Groups["name"].Value

 Value = $match.Groups["value"].Value

 }

 }

 }

Result of Reading and Extracting Info from Multiple C# Files

FileName Name Value

-------- ---- -----

test.cs Test "test"

test.cs TestX 1

test.cs PI 3.14

test1.cs Color "Red"

test1.cs Name "Dog"

test1.cs Freezing 32

PowerShell simplifies the process of traversing directories while searching for patterns in

the text. Then taking those results and transforming them into objects with properties. I

 3

O’Reilly Media, Inc. 3/23/2012

could further pipe these results to other PowerShell built-in cmdlets or my own functions

to do all kinds of work for me.

Consider refactoring this script so you can vary either the RegEx or files you want to

search for but keep the same type of output.

This is a two foot dive into what you can do using PowerShell’s Select-String, regular

expressions and creating objects with properties. There is an entire ocean of possibility

this technique can applied to with text files. Once the strings have been extracted and are

in the form of a list of PowerShell objects, you can generate a wide variety of output,

including, HTML documentation, other programmatic elements and much more.

A Template Engine

A template engine is software that is designed to process templates and content

information to produce output documents. Writing a simple template engine in

PowerShell is straightforward. This approach lets me write many different types of

templates in text and then leverage PowerShell to dynamically generate the file’s content

based on variables or more complex logic.

The Engine

function Invoke-Template {

 param(

 [string]$Path,

 [Scriptblock]$ScriptBlock

)

 function Get-Template {

 param($TemplateFileName)

 $content = [IO.File]::ReadAllText(

 (Join-Path $Path $TemplateFileName))

 Invoke-Expression "@`"`r`n$content`r`n`"@"

 }

 & $ScriptBlock

}

Template engines typically include features common to most high-level programming

languages, with an emphasis on features for processing plain text.

Such features include:

• Variables and Functions

• Text replacement

• File inclusion

• Conditional evaluation and loops

Additionally, because we are using PowerShell to accomplish this, we get all of these

benefits plus we can use all of PowerShell’s features, cmdlets and more.

The parameter $ScriptBlock is the script block I’ll pass in a later example. In order

to execute it I use the & (call operator). Invoke-Template supports a “keyword”,

Get-Template. I define this keyword simply by creating a function names Get-

 4

O’Reilly Media, Inc. 3/23/2012

Template. Here I nest that function inside the Invoke-Template function. Get-

Template take one parameter, $TemplateFileName.

In essence, this DSL has three moving parts. The execution of the script block, which

calls Get-Template, the reading of the contents of that file, using the .NET

Framework’s System.IO.File.ReadAllText static method and finally using

PowerShell’s Invoke-Expression to evaluate the content just read as though it were

a here-string.

I want to draw your attention to how Invoke-Template takes a -ScriptBlock as

a second parameter. Practically speaking, Invoke-Template is an internal DSL

(domain specific language). So I have the entire PowerShell ecosystem available to me

and I can get really creative inside this script block calling cmdlets, getting templates and

doing code generation. This opens the door for lots of automation possibilities, saving me

time, effort and reducing defects in my deliverables.

A Single Variable

Let’s use the template engine in a simple example. I set up this template in a file called

TestHtml.htm in the subdirectory etc.

<h1>Hello $name</h1>

I use an HTML tag plus PowerShell syntax to define the variable for replacement,

$name. Here are contents of the TestHtml.htm. Note, this is the verbose version. I

explicitly specifying the parameter names –Path, -ScriptBlock, -

TemplateName.

dot-source it

. .\Invoke-Template.ps1

Invoke-Template –Path "$pwd\etc" –ScriptBlock {

 $name = "World"

 Get-Template –TemplateFileName TestHtml.htm

}

Here’s the terse approach, letting PowerShell bind the parameters.

dot-source it

. .\Invoke-Template.ps1

Invoke-Template "$pwd\etc" {

 $name = "World"

 Get-Template TestHtml.htm

}

Results

<h1>Hello World</h1>

While the intent of code is clearer using named parameters. I prefer less typing and

typically write my code as terse as possible. Both versions are possible because of the

magic behind PowerShell’s parameter binding.

 5

O’Reilly Media, Inc. 3/23/2012

Multiple Variables

Expanding on the theme of variable replacement I’ll replace two variables. The template

is a blend of C# and PowerShell variables, after the variable replacement, it’ll be a C#

property.

public $type $name {get; set;}

And now, the script.

Invoke-Template "$pwd\etc" {

 $type = "string"

 $name = "FirstName"

 Get-Template properties.txt

}

Results

public string FirstName {get; set;}

Invoke-Template stitches the variables and template together and I think it is

important to extrapolate here. You can have any number of Invoke-Template calls

in a single script, each pointing to a different file path for its set of templates. Plus, the

code inside the script block can be far more involved in setting up numerous variables

and calling Get-Template multiple times, pulling in any number of templates.

Calling Multiple Templates

Here I want to create both public and private C# variable. I do this by calling different

templates. I am demoing multiple templates. I want to create two properties, a string

FirstName and a DateTime Date. For the Date property though I want a get and

a private set. I create a file in the etc directory called privateSet.txt and

stub what I want to generate.

This is the contents of Test-MultipleVariableTemplate.ps1.

dot-source it

. .\Invoke-Template.ps1

Invoke-Template "$pwd\etc" {

 $type = "string"

 $name = "FirstName"

 Get-Template properties.txt

 $type = "DateTime"

 $name = "Date"

 Get-Template privateSet.txt

}

Results

This is incredibly useful; for example, I can write PowerShell code that reads the schema

of a SQL table grabs the column names, datatypes and generates an entire C# class that

maps my table to an object. Yes there are tools that do this but just a few lines of

PowerShell enable these key processes and give you control of the entire workflow.

 6

O’Reilly Media, Inc. 3/23/2012

Plus, most off the shelf products are not always able to let us have fine grain control over

the acquisition, process and output of the results. There are always exceptions.

public string FirstName {get; set;}

public DateTime Date {get; private set;}

This is just a small sampling of what is possible to do with Invoke-Template. It’s a very

powerful way to organize simple text replacement and get a lot done. Let’s move on to

some more involved scripts.

Complex Logic

In this example, I’m using the built-in Import-Csv cmdlet to read a CSV file (comma-

separated value file).

Type, Name

string, LastName

int, Age

Here, piping the contents of the CSV to the ForEach, setting the appropriate variables and

finally calling the template properties.txt.

Invoke-Template "$pwd\etc" {

 Import-Csv $pwd\properties.csv | ForEach {

 $type = $_.Type

 $name = $_.Name

 Get-Template properties.txt

 }

}

Results

public string LastName {get; set;}

public int Age {get; set;}

The template is the same as the previous example and the PowerShell script to make this

happen is nearly identical. The main difference being the input is from a CSV file.

I can continue to add properties to the CSV file; rerun the script and code generate as

many C# properties as is needed. With a little creativity, I can see this as a first step in

code generating an entire C# class, ready for compilation.

UML Style Syntax

I want to show how flexible PowerShell is. I created a file containing properties in UML

syntax and then use the built-in PowerShell cmdlet Import-Csv to read the file and

convert it to an array of PowerShell objects each having the properties Name and Type.

By default, Import-Csv reads the first line and uses it to name the properties. I

override that by specifying Name and Type in –Header property. Plus I override the

default delimiter “,” using –Delimiter property to “:”.

LastName : string

FirstName : string

Age : int

City : string

State : string

Zip : int

 7

O’Reilly Media, Inc. 3/23/2012

. .\Invoke-Template.ps1

Invoke-Template "$pwd\etc" {

 Import-Csv -Path .\Uml.txt -Header "Name","Type" -Delimiter ":" |

 ForEach {

 $name = $_.Name

 $type = $_.Type

 Get-Template properties.txt

 }

}

Results

public string LastName {get; set;}

public string FirstName {get; set;}

public int Age {get; set;}

public string City {get; set;}

public string State {get; set;}

public int Zip {get; set;}

With a little imagination you can work up a number interesting useful formats that make

it simple to represent information and then transform it into many other types of output.

Reading XML

PowerShell is not limited to reading CSV files, so I have options. As a developer, XML

is typical part of my daily diet. I’ll play off the previous example of generating C#

properties; this time using XML drives the input to the process.

<properties>

 <property>

 <type>string</type>

 <name>City</name>

 </property>

 <property>

 <type>string</type>

 <name>State</name>

 </property>

 <property>

 <type>string</type>

 <name>Zip</name>

 </property>

</properties>

Let’s read the XML, convert it.

Invoke-Template "$pwd\etc" {

 ([xml](Get-Content .\Properties.xml)).properties.property |

 ForEach {

 $type = $_.type

 $name = $_.name

 Get-Template properties.txt

 }

}

 8

O’Reilly Media, Inc. 3/23/2012

This is the same script as the Complex Logic version, instead of reading from a comma

separated value file with Import-Csv, I read the file using Get-Content, applying

the PowerShell [xml] accelerator and dot notate over the nodes.

Results

public string City {get; set;}

public string State {get; set;}

public string Zip {get; set;}

There it is, the transformation of XML data into C# properties. The separation of the text

being replaced from the PowerShell that processes the input really highlights the essence

part of using PowerShell. A handful of script to process and transform information into

C#, very readable and maintainable.

Bonus Round

I now will invoke all three scripts one after the other. The PowerShell engine takes care

of handling the output from all of them. I am bringing together information from three

disparate sources.

.\Test-MultipleVariableTemplate.ps1

.\Test-ComplexLogicTemplate.ps1

.\Test-ReadXMLTemplate.ps1

Results

I can easily pipe this to Set-Content Person.cs and I am well on my way to

generating code that compiles.

public string FirstName {get; set;}

public string LastName {get; set;}

public int Age {get; set;}

public string City {get; set;}

public string State {get; set;}

public string Zip {get; set;}

Using this and PowerShell I have tremendous reach. I can pull information from

numerous sources; a database, Excel, a web service, a web page, just to name a few. Plus,

you can call Get-Template multiple times in the same script each pointing to different

templates and produce a number of different outputs.

Generating PowerShell Functions from C# Methods

I’m going to compile a C# class, MyMath, on the fly, using the built-in Add-Type

cmdlet. Note: Add-Type also lets me load either a DLL or C# source file. Now I have

a new type, MyMath, loaded in my PowerShell session. I can use the methods on the

.NET Framework’s System.Type class like, GetMethods() on this type to get info.

$code = @"

 public class MyMath

 {

 public int MyAdd(int n1, int n2) { return n1 + n2; }

 public int MySubtract(int n1, int n2) { return n1 - n2; }

 public int MyMultiply(int n1, int n2) { return n1 * n2; }

 public int MyDivide(int n1, int n2) { return n1 / n2; }

 public void MyTest() {System.Console.WriteLine("Test");}

 9

O’Reilly Media, Inc. 3/23/2012

 }

"@

Add-Type -TypeDefinition $code

Here I take the output of GetMethods() and display it in a GUI using Out-

GridView.

[MyMath].GetMethods() | Where {$_.Name -like "My*"} | Out-GridView

Figure 4-1. Inject a GUI in your pipeline – Showing Methods on a C#

object

PowerShell is based on .NET so here I tap into the framework and use GetMethods()

on the type MyMath. First, I’ll create the variable $code to hold my C# class and its

methods. Then, Add-Type will compile the code in the current PowerShell session.

Lastly, I use brackets [] around the name of my class MyMath, indicating to PowerShell

it is a type and then I can call GetMethods().I use this approach a lot when working

will C# code/DLLs at the command line. I have used the “long form” of the code in the

script example for clarity. When I do this at the command line I like the pithy version

better, saving time, effort and keystrokes.

In PowerShell version 3, it gets simpler. Cleaner, less noise, fewer keystrokes and more

essence. Here the Where syntax loses the curly braces, and the $_.

[MyMath].GetMethods() | Where Name -like "My*" | Out-GridView

Get Parameters

I’ll take that last line of PowerShell, from the previous example, pipe it to the ForEach,

calling the .NET GetParameters() method. Then I’ll pipe it to Out-GridView

and get a nice summary of parameter information on MyMath code implementation.

[MyMath].GetMethods() | Where {$_.Name -like "My*"} |

 ForEach {

 $_.GetParameters()

 } | Out-GridView

 10

O’Reilly Media, Inc. 3/23/2012

Figure 4-2. Showing C# Parameters from Method Signatures

Pulling It All Together

If I wanted, I could type this by hand. This gives me full access to MyMath in

PowerShell. PowerShell is an automation platform; I’m a lazy coder so I’ll write a script

to make it happen.

$MyMath = New-Object MyMath

function Invoke-MyAdd ($n1, $n2) {$MyMath.MyAdd($n1, $n2)}

function Invoke-MySubtract ($n1, $n2) {$MyMath.MySubtract($n1, $n2)}

function Invoke-MyMultiply ($n1, $n2) {$MyMath.MyMultiply($n1, $n2)}

function Invoke-MyDivide ($n1, $n2) {$MyMath.MyDivide($n1, $n2)}

function Invoke-MyTest () {$MyMath.MyTest()}

Wrapping MyMath in PowerShell functions is a gateway to many capabilities. For

example, I can interact with MyMath at the command line, in scripts, write tests and pipe

results to the rest of the PowerShell ecosystem. PowerShell enables me to compose code

in ways I cannot in a system language like C#. In this simple example I let PowerShell

handle parameters through parameter binding so I can focus less on mechanics and more

on problem solving.

Invoke-MyAdd 1 3

1..10 |

 ForEach {Invoke-MyAdd $_ $_} |

 ForEach {Invoke-MyMultiply $_ $_}

I’ve shown PowerShell code that can get the methods and parameters for an object which

is loaded into a PowerShell session. The next script will combine these and using a Here-

String, will create the PowerShell functions that fully wrap MyMath signatures in a

PowerShell way.

One line gets a bit funky. In the Get-Parameter function I have “`$$($_.Name)”.

This is needed in order to generate the $n1. I use the PowerShell escape character `

before the first $, otherwise PowerShell will interpret that as $$. That is a PowerShell

automatic variable, which contains the last token in the last line received. The

$($_.Name) is a subexpression, and is a simple rule to memorize when you want to

expand variables in strings.

function Get-Parameter ($target) {

 ($target.GetParameters() |

 ForEach {

 "`$$($_.Name)"

 }

 11

O’Reilly Media, Inc. 3/23/2012

) -join ", "

}

@"

`$MyMath = New-Object MyMath

$([MyMath].GetMethods() | Where {$_.Name -like "My*"} | ForEach {

 $params = Get-Parameter $_

@"

function Invoke-$($_.Name) ($params) {`$MyMath.$($_.Name)($($params))}

"@

})

"@

Result

function Invoke-MyAdd ($n1, $n2) {$MyMath.MyAdd($n1, $n2)}

function Invoke-MySubtract ($n1, $n2) {$MyMath.MySubtract($n1, $n2)}

function Invoke-MyMultiply ($n1, $n2) {$MyMath.MyMultiply($n1, $n2)}

function Invoke-MyDivide ($n1, $n2) {$MyMath.MyDivide($n1, $n2)}

function Invoke-MyTest () {$MyMath.MyTest()}

Generating PowerShell wrappers is a scalable approach. Compare this to manually

transforming the C# method signatures to PowerShell functions. Plus, if my C# code is

still changing, I have a single script solution to wrapping my C# functions and make them

PowerShell ready. Again, this saves time, effort and I’ll have fewer finger errors.

This example is for illustration. With some additional thought and work, I can make it

generic by parameterizing the final snippet.

I can:

• Add a $Type parameter, which lets me pass in any type for inspection

• Add a Where filter parameter, to be used in when the methods are piped from
GetMethods

• Add a variable name parameter, so I don’t have to hard code $MyMath

A final thought, the text manipulation tools that PowerShell brings table are invaluable in

doing many types of transforms. In the next sections you’ll see a few more ways. These

ideas are not new. PowerShell’s deep integration to Windows and the .NET Framework

are what make it possible for developers to optimize their efforts.

Calling PowerShell Functions from C#

Next, I’m going to compile more C# and then create a custom object rather than a

PSModuleInfo object using New-Module and the –AsCustomObject property.

I’ll create a single PowerShell function called test and store it the variable $module

so I can pass it to the constructor in the C# class. Finally, I’ll call the C#

InvokeTestMethod. InvokeTestMethod looks up the PowerShell test function

in the module that was passed in the constructor. If it is found, Invoke is called, all the

ducks line up, and it prints “Hello World”.

 12

www.allitebooks.com

http://www.allitebooks.org

O’Reilly Media, Inc. 3/23/2012

This next example using Add-Type will work if you’re using

PowerShell v3.

If you are using PowerShell v2 and have not added

powershell.exe.config to point to .NET 4.0, see Appendix A

“How to run PowerShell with .NET 4.0”.

If you’re not sure what version of the .NET runtime you’re session is

using, type $PSVersionTable and look for the CLRVersion

entry.

Add-Type @"

using System.Management.Automation;

public class InvokePSModuleMethod

{

 PSObject module;

 public InvokePSModuleMethod(PSObject module)

 {

 this.module = module;

 }

 public void InvokeTestMethod()

 {

 var method = module.Methods["test"];

 if(method != null) method.Invoke();

 }

}

"@

$module = New-Module -AsCustomObject {

 function test { "Hello World" | Out-Host }

}

(New-Object InvokePSModuleMethod $module).InvokeTestMethod()

That’s a long trek to get Hello World printed. I could have just type “Hello World” at the

command line. There’s a method to the madness.

In the next section, I will use these pieces to create a visitor that uses PowerShell v3’s

new access to the AST (Abstract Syntax Tree). I will read PowerShell source code and

extract information by parsing it, not just scanning for text patterns.

A hat tip to Jason Shirk, one of the of the PowerShell teams language experts, who shared

the technique.

Override C# Methods with PowerShell Functions

Ok, I’ve shown you how to pull out the metadata from compiled C# code and generate

PowerShell functions to wrap them. This is extremely useful when exploring a new .NET

DLL. I can quickly extract key information about the component and start kicking the

tires right from the command line. Plus, because the .NET component is wrapped in

PowerShell functions, I seamlessly plug into the PowerShell ecosystem, further

optimizing my time and effort. For example, if the component returns arrays of objects, I

 13

O’Reilly Media, Inc. 3/23/2012

can use the Where, Group and Measure cmdlets to filter and summarize information

rapidly.

Moving on to overriding C# base class methods with PowerShell functions.

The next example extracts metadata from a .NET DLL, generates C# methods overriding

the base class methods and creates a constructor that takes a PowerShell module.

Each of the C# methods doing the override uses the technique in the previous to look up

the method in PowerShell module and call it with the correct parameters.

I’m using the AST capabilities of PowerShell v3 to demonstrate this technique of

extracting method signatures from C# and then injecting a PowerShell Module to provide

a way to override the implementation, and this is valid for PowerShell v2 and can be

applied to .NET solutions employing inheritance.

The Breakdown

I’m going to break this script down into a few sections; the metadata extraction of the

PowerShell v3 AstVisitor methods, subsequent C# code generation putting the

PowerShell “hooks” in place and the creation of the PowerShell custom object using

New-Module. This will have a PowerShell function called VisitFunction and

mirrors the method I override in the base class AstVisitor. This PowerShell function

will be called each time a function is found in our source script. VisitFunction takes

$ast as a parameter and it contains all the information about the function that has been

matched in our source script. I’ll be pulling out only the name and line number where it

was matched.

Looking for PowerShell Functions

In this source script I want to find where all the functions are defined.

function test1 {"Say Hello"}

1..10 | % {$_}

function test2 {"Say Goodbye"}

1..10 | % {$_}

function test3 {"Another function"}

#function test4 {"This is a comment"}

I can see three functions named test1, test2, test3 and they are on lines 1, 3 and 5.

The last function, test4, is a comment. I included it for two reasons. First, if I was

scanning the file using Select-String and pattern matching on function, this would

show up in the results and it would be misleading. Second, using the AST approach,

test4 will be recognized as a comment and not include in the results when searching

for functions.

While it is easy to scan a file visually, if I’m looking at a large script with many

functions, I’d like an automated way to know what and where my functions are. Plus, if I

can extract this information programmatically, the potential is there to automate many

other activities.

Extracting Metadata and Generating C#

public override AstVisitAction $FunctionName($ParameterName ast)

{

 var method = module.Methods["$FunctionName"];

 if (method != null)

 14

O’Reilly Media, Inc. 3/23/2012

 {

 method.Invoke(ast);

 }

 return AstVisitAction.Continue;

}

I’m going to generate something a little more complex, leveraging the Invoke-

Template I built before. The goal is to create a C# class that has all of the override

methods found in

System.Management.Automation.Language.AstVisitor. This is

equivalent to being in Visual Studio, inheriting from AstVisitor, overriding each

method and then providing an implementation.

The implementation I want to provide, for each overridden method, is a lookup for that

function name in the module/custom object passed from PowerShell. If one is found, I’ll

invoke it and pass it the AST for the declaration being visited.

[System.Management.Automation.Language.AstVisitor].GetMethods() |

 Where { $_.Name -like 'Visit*' } |

 ForEach {

 $functionName = $_.Name

 $parameterName = $_.GetParameters()[0].ParameterType.Name

 Get-Template AstVisitAction.txt

 }

This is the template that gets it done, the file is named AstVisitAction.txt.

Now for the PowerShell code snippet that’ll figure out the FunctionName,

ParameterName and invoke the template that does the code generation.

The GetMethods() method returns a list of methods on the Type

System.Management.Automation.Language.AstVisitor. I’m filtering the

list of methods to only the ones whose names begin with Visit* Where { $_.Name -

like 'Visit*' }. In the ForEach I grab the name of the function $_.Name and

the name of the parameter type being passed to it,

$_.GetParameters()[0].ParameterType.Name.

using System;

using System.Management.Automation;

using System.Management.Automation.Language;

public class CommandMatcher : AstVisitor

{

 PSObject module;

 public CommandMatcher(PSObject module)

 {

 this.module = module;

 }

 $methodOverrides

}

The template sets up references, a constructor and backing store for the module being

passed in. The key piece is the $methodOverrides variable. This will contain all the

text generated from the previous template, AstVisitAction.txt.

. .\Invoke-Template.ps1

 15

O’Reilly Media, Inc. 3/23/2012

Invoke-Template $pwd\etc {

 $methodOverrides = Invoke-Template $pwd\etc {

 [System.Management.Automation.Language.AstVisitor].GetMethods() |

 Where { $_.Name -like 'Visit*' } |

 ForEach {

 $functionName = $_.Name

 $parameterName = $_.GetParameters()[0].ParameterType.Name

 Get-Template AstVisitAction.txt

 }

 }

 Get-Template CommandMatcher.txt

}

This is the completed script that generates a C# class ready for compilation. This class

handles visiting any PowerShell source, calling out to a PowerShell function to handle

the node that is visited. I’ll show that next.

Fortunately, it’s not necessary to understand the recursive descent parser mechanism.

Fundamental is the metadata extraction and code generation which is the glide path to

using the Add-Type and compiling useful code on the fly in the current context.

The PowerShell Module

Now that I have code generated all of the overrides for the base class AstVisitor. I

want to create a PowerShell module to pass to it that will be called back on every time a

PowerShell function definition is detected.

$m = New-Module -AsCustomObject {

 $script:FunctionList = @()

 function VisitFunctionDefinition ($ast) {

 $script:FunctionList += New-Object PSObject -Property @{

 Kind = "Function"

 Name = $ast.Name

 StartLineNumber = $ast.Extent.StartLineNumber

 }

 }

 function GetFunctionList {$script:FunctionList}

}

I store this in the variable $m, I’ll pass it to the constructor later.

I added a helper function GetFunctionList which returns the script scoped variable.

FunctionList is initialized to an empty array to start and is populated in

VisitFunctionDefinition.

Each time a function declaration is matched, the PowerShell function

VisitFunctionDefinition is invoked. I then emit a PowerShell object with three

parameters, Kind, Name, and StartLineNumber. I hard code Kind, for simplicity,

and get the other two values from the data passed in the $ast variable.

 16

O’Reilly Media, Inc. 3/23/2012

Testing it all

I’ll create a reusable helper function that takes a PowerShell script and returns the AST

(Abstract Syntax Tree) that can be “visited”; I’ll call it Get-Ast. Next, I’ll “new” up the

CommandMatcher I built in C# during code generation phase and pass in $m which

contains my PowerShell module with the function I want to get invoked. The variable

$ast contains the AST of the script passed in the Here-String. The variable $ast is

a System.Management.Automation.Language.ScriptBlockAst and the

method I want to invoke is Visit(). I will pass $matcher, which is my custom

visitor, to it. Finally, I will call $m.GetFunctionList() displaying the details about

the functions that were found.

function Get-Ast

{

 param([string]$script)

 [System.Management.Automation.Language.Parser]::ParseInput(

 $script,

 [ref]$null,

 [ref]$null

)

}

$matcher = New-Object CommandMatcher $m

$ast = Get-Ast @'

function test {"Say Hello"}

1..10 | % {$_}

function test1 {"Say Goodbye"}

1..10 | % {$_}

function test2 {"Another function"}

'@

$ast.Visit($matcher)

$m.GetFunctionList()

Results

This correctly finds the three functions in my test script. Displaying the name of the

function and the line it is on.

Name StartLineNumber Kind

---- --------------- ----

test 1 Function

test1 3 Function

test2 5 Function

You can easily rework this to process a single script or an entire directory of scripts. In

addition, a filename can be added as a property, thus enabling filtering of function names

and filenames. This way I can semantically scan any number of PowerShell scripts for a

particular function name and quickly locate the file and line number where it lives.

Plus, I can add more functions to the PowerShell module to match on parameters,

variable expressions and more. From there, I’d create a new PSObject with the

properties I wanted and I have a list of key information about my scripts that I could

programmatically act on.

 17

O’Reilly Media, Inc. 3/23/2012

 18

Using PowerShell’s System.Management.Automation.Language library like

this is one application of what it can do. There is a lot to explore here that is beyond the

scope of this book. If you’re familiar with the tool ReSharper from JetBrains and its

ability to refactor C# code, that is the potential of

System.Management.Automation.Language. For example, being able to

rename part of a PowerShell function name and ripple that change through an entire

script accurately. Another example, is extracting a section of PowerShell code as a

function, naming it, adding it to the script and replacing where it came from with the new

function name. Doing static analysis along the lines of a lint tool, PSLint.

This doesn’t come for free. You need to learn the ins and outs of this library. These

would be great open source tools for PowerShell as well as opportunities to learn deeper

parts of what this platform offers.

Summary

In this chapter I showed several ways to use PowerShell to work with information,

transform it and position it for consumption elsewhere. The information was stored in C#

files, text files and it was even extracted directly from compiled DLLs. These ideas can

also be extended to SQL Server schemas, XML, JSON and even Microsoft Excel.

PowerShell easily integrates with all of this because it is based on .NET.

As a developer, I reuse and expand on these approaches for every project I work on. I

actively seek out patterns in the workflow and automate them. This has numerous

benefits. Code generation has been around as long as software languages have been.

PowerShell’s deep integration to the .NET platform and its object pipeline optimizes the

development effort. Being able to crack open a DLL, inspect methods, and parameters all

from within a subexpression in a Here-String and then compile it on the fly all in a

page of code enables me, and other developers, to iterate through ideas at an (even more)

rapid pace.

Finally, being able to extend C# solutions by invoking PowerShell, and here is the key,

without having to touch the original C# code, is huge. Scripting languages are sometimes

referred to as glue languages or system integration languages. PowerShell, being based

on .NET, takes this to a new level.

http://en.wikipedia.org/wiki/Lint_(software)

O’Reilly Media, Inc. 3/23/2012

5

Add PowerShell to Your GUI

PowerShell Empowers Others to Customize

Roy Osherove points out that “adding scripting support to your application is one of the

most valuable things you can do for your client, letting them add value to your software,

and keep it current over time with little or no overhead from the developers”

After adding PowerShell to an application, developers, end-users, testers and system

integrators are able to customize the application's logic to better match their specific

needs. This approach is an efficient use of resources, with developers focusing their

efforts on core functionality while allowing others most familiar with their domain

knowledge to easily and independently customize it to meet their needs. Using

PowerShell in this way, there is no need to distribute the application source code for other

developers to extend the application. As a result, you do not need to support multiple

versions of the application.

Adding PowerShell to an application not only speeds the development of software, there

are common areas of customization for applications which may include modification to

match particular businesses processes, automation of repetitive tasks, the addition of

unique features and access to internal and remote data.

Embedding PowerShell in your C# Application

PowerShell is surfaced as a command line application (the console), a scripting language

and an API. Here I’ll show you the API and how simple it is to create the PowerShell

engine, call some cmdlets and print out the results.

You'll need to add a reference to PowerShell. To do so, open the

project file as a text file and add the following line into the

<ItemGroup> section:

<Reference Include="System.Management.Automation" />

 1

http://osherove.com/blog/2004/2/17/make-your-net-application-support-scripting-a-practical-appr.html

O’Reilly Media, Inc. 3/23/2012

I’ve setup two C# extension methods ExecutePS() and WritePS().

ExecutePS() extends strings and WritePS() extends List<PSObject>. The

strings are the PowerShell commands and the List<PSObject> are the results of

invoking those commands.

By default, the ExecutePS() method prints the results to the console. If you pass false

to ExecutePS() it returns a list of PSObjects. PowerShell version 3 takes a

dependency on the Dynamic Language Runtime (DLR) and PSObject implement

IDynamicObject. This lets me do a foreach over the results and take advantage of

late binding to get at the ProcessName.

The foreach block requires PowerShell v3 installed. If you only have

PowerShell v2, comment out the foreach block and the example will

run cleanly.

using System;

using System.Collections.Generic;

using System.Linq;

using System.Management.Automation;

class Program

{

 private static void Main()

 {

 var script = "Get-Process | Where {$_.Handles -gt 400}";

 // Let the extension method

 // print out the results

 script.ExecutePS();

 // In PowerShell v3, PSObject

 // implements IDynamicObject

 foreach (dynamic item in

 script.ExecutePS(writeToConsole: false))

 {

 Console.WriteLine(item.ProcessName);

 }

 }

}

public static class PSExtensions

{

 public static List<PSObject> ExecutePS(

 this string script, bool writeToConsole = true)

 {

 var powerShell = PowerShell

 .Create()

 .AddScript(script);

 if (writeToConsole)

 {

 powerShell.AddCommand("Out-String");

 powerShell

 .Invoke<PSObject>()

 2

http://dlr.codeplex.com/

O’Reilly Media, Inc. 3/23/2012

 .ToList()

 .WritePS();

 }

 // Lets the caller act on the returned collection

 // of PowerShell objects

 return powerShell

 .Invoke<PSObject>()

 .ToList();

 }

 public static void WritePS(this List<PSObject> psResults)

 {

 psResults.ForEach(i => Console.WriteLine(i));

 }

}

The script variable contains the PowerShell commands. The ExecutePS() method

creates the PowerShell engine and then adds the commands with the AddScript()

method. I use the AddCommand() method to append the Out-String cmdlet to

whatever is specified in the script variable. This tells PowerShell to covert the objects

returned to their string representations. PowerShell will execute all of this after I call the

Invoke() method.

The Invoke() method returns an array of PowerShell PSObjects. Just as

System.Object is the root of the type system in .NET, PSObject is the root of the

synthetic type system in PowerShell.

The WritePS() method extends List<PSObject> by looping through the results

and printing it to the console.

This example shows how easy it is to include the PowerShell engine your application.

You can use all of the PowerShell cmdlets with this approach including external scripts

and modules developed by you, others in the community, third parties or Microsoft.

I do not include any error management, profile loading, or REPL console here. If you

want to see one in action plus how to load your applications objects into the PowerShell

run space, read on and see what you can do with the Beaver Music application.

The Beaver Music application is a WPF GUI application and I layer a simple WPF

PowerShell console into it. It is a command line in my WPF GUI, capable of working

with all the objects in my app including the MEF container and more.

The good news, it’s included with the book and can be easily hooked into any of your

GUI apps too.

Beaver Music Application

The reference application for this chapter is a very simple music album management

system. It supports create, read, update and delete (CRUD) of albums. Beaver Music has

the functionality you’d expect, a couple of dialogs for adding and changing album

information and you can delete albums. What I want to focus on is the PowerShell

Console button. It is a WPF application that has the PowerShell engine embedded in it.

PowerShell, a distributed automation platform, is surfaced as console, scripting language

and an API. The custom PowerShell Console uses this surfaced API in conjunction with

 3

O’Reilly Media, Inc. 3/23/2012

the Beaver Music Application so it can be scripted and automated. Similar to the way

Microsoft Excel can be automated with the embedded Visual Basic for Application

scripting language

Figure 5-1. The Beaver Music App

PowerShell Console

After clicking on the “PowerShell Console” button you’ll see Figure 5-2.

Figure 5-2. PowerShell Console

In addition, each time the console is launched, I inject variables which are instances of

the running components. For example, the top pane is a WPF textbox (Windows

 4

www.allitebooks.com

http://www.allitebooks.org

O’Reilly Media, Inc. 3/23/2012

Presentation Foundation (or WPF) is a computer-software graphical subsystem for

rendering user interfaces in Windows-based applications.). I added textbox reference into

the PowerShell runspace, setting it to the variable name $ScriptPane. If I want to

change the background color of the $ScriptPane I can type

$ScriptPane.Background = "Cyan", press F5 and it will change background

color of the textbox, at runtime.

The top pane is where you type in PowerShell commands or scripts, then either click Run

or press F5 to execute it. The bottom pane will show the results. It’s a full fledge

PowerShell engine. So you can type any valid PowerShell, you can even type invalid

PowerShell and you’ll see the errors in the bottom pane. The BeaverMusic PowerShell

Console is custom and does not have the all the niceties found in the Microsoft

PowerShell console or in the Integrated Scripting Environment (ISE).

The source to this application is included so feel free to enhance it or build your own. If

you do, it'd be great if you posted it to a social coding platform like Github so others

could use it, change it and benefit from it too.

What makes it custom? You should be able to embed this console in any WPF

application. The console is a WPF component layered on top of a PowerShell engine.

Plus, it supports a profile, type notepad $profile and press F5. You can store

PowerShell functions here and they will be available each time you run the application.

Also, custom variables will be added through both the profile and the C# code which are

not available in other PowerShell consoles like the command line and PowerShell ISE

(Integrated Script Environment).

I’ve also injected live instances of the main BeaverMusic application. For example, the

WPF application has an Album Repository. The repository is the in-memory data store

for holding all the albums. I’ve done this using the AddVariable() method.

PSConfig.AddVariable("AlbumRepository", _albumRepository);

This means I can get to the live instance of _albumRepository from the PowerShell

variable $AlbumRepository. Since this is a PowerShell console, I can inspect the

methods on that variable using Get-Member, see Figure 5-3.

Figure 5-3. Inspecting the methods on AlbumRepository

 5

O’Reilly Media, Inc. 3/23/2012

Foundational Functions

The live objects of the Beaver Music application are added the PowerShell Engine. Now

I can write PowerShell functions that take advantage of them. I’ve created five of them,

and they follow the PowerShell naming standards of Verb-Noun. You can find the

PowerShell approved verbs by typing Get-Verb at the command prompt. The ones I

create are Add-Album, Clear-Album, Get-Album, New-Album and Remove-

Album. They support the CRD of the CRUD model nicely; I did not implement an

Update function PowerShell.

I want to highlight that on three of the five functions I have decorated the parameters with

either ValueFromPipelineByPropertyName or ValueFromPipeline. These two attributes

really make PowerShell sing when piping objects between functions.

New-Album

function New-Album {

 param(

 [Parameter(ValueFromPipelineByPropertyName=$true)]

 [string]$Name,

 [Parameter(ValueFromPipelineByPropertyName=$true)]

 [string]$Artist

)

 Process {

 $album = New-Object BeaverMusic.Album

 $album.Name = $Name

 $album.Artist = $Artist

 $album

 }

}

This is the New-Album function. For each its parameters I attribute them with

ValueFromPipelineByPropertyName which indicates that the parameter can

take values from a property of the incoming pipeline object that has the same name as

this parameter.

New-Album takes two parameters, a Name and Artist, and returns a BeaverMusic.Album

object with those properties set, see Figure 5-4. The next example leverages the pipeline

and the ValueFromPipelineByPropertyName.

 6

O’Reilly Media, Inc. 3/23/2012

Figure 5-4. New-Album in Action

Add-Album

function Add-Album {

 param(

 [Parameter(ValueFromPipeline=$true)]

 $album

)

 Process {

 $AlbumRepository.SaveAlbum($album) | Out-Null

 }

}

ValueFromPipeline indicates whether the parameter can take values from incoming

pipeline objects. I need to specify a Process block which indicates it will execute

once for each $album that is passed from the pipeline. An added benefit is I can also use

traditional parameter passing.

ForEach($Album in $AlbumList) {

 Add-Album $Album

}

This assumes $AlbumList contains an array of PowerShell objects that have been set

up using the New-Album function. These objects will have two properties, Name and

Artist.

Next up, I’ll show a different and far simpler syntax that fully leverages PowerShell’s

parameter binding mechanism that is enabled with the ValueFromPipeline and

Process block approach.

Import-Csv

I have all of PowerShell available to me and I don’t want to build up my list of albums by

hand. Instead, I’ll store a list of them (or download one) in a CSV fileError! Reference

source not found..

Artist,Name

"Michael Jackson","Thriller"

 7

O’Reilly Media, Inc. 3/23/2012

"AC/DC","Back in Black"

"Pink Floyd","The Dark Side of the Moon"

"Whitney Houston / Various artists","The Bodyguard"

"Meat Loaf","Bat Out of Hell"

"Eagles","Their Greatest Hits"

"Various artists","Dirty Dancing"

"Backstreet Boys","Millennium"

"Bee Gees / Various artists","Saturday Night Fever"

"Fleetwood Mac","Rumours"

"Shania Twain","Come On Over"

"Led Zeppelin","Led Zeppelin IV"

"Alanis Morissette","Jagged Little Pill"

"The Beatles","Sgt. Pepper's Lonely Hearts Club Band"

"Celine Dion","Falling into You"

"Mariah Carey","Music Box"

"Michael Jackson","Dangerous"

"Celine Dion","Let's Talk About Love"

"Bee Gees","Spirits Having Flown"

"Bruce Springsteen","Born in the U.S.A."

"Dire Straits","Brothers in Arms"

"James Horner","Titanic"

"Madonna","The Immaculate Collection"

"Michael Jackson","Bad"

"Pink Floyd","The Wall"

"Nirvana","Nevermind"

I use the PowerShell cmdlet Import-Csv to read the file. This cmdlet creates an array

of objects each having an artist and name property. These property names are decided

from the first line of the file, see Figure 5-5.

 8

O’Reilly Media, Inc. 3/23/2012

Figure 5-5. Import-Csv from albums.csv

Next, I’ll pipe this to New-Album. Here is the parameter binding at work, remember we

set that up using ValueFromPipeline and Process block. The Import-Csv is

transformed into album objects with the correct properties set. Finally, I pipe the results

to Add-Album so they are stored in the Album Repository and ultimately displayed in the

Beaver Music main window, see Figure 5-6.

Import-Csv .\albums.csv | New-Album | Add-Album

 9

O’Reilly Media, Inc. 3/23/2012

Figure 5-6. Importing and adding albums to the repository

Notice, I do not have to handle looping, end of files or parameter passing. This is very

different approach to programming coming from C# and I can’t stress enough how much

time and effort this saves. In less than 50 characters, I’m exercising (testing) several code

paths in my application. With a few more characters, I’ll be clearing and filtering the list

of albums and even pulling data from the Internet to create lists albums.

Get-Album and Clear-Album

I wrapped the previous 50 characters in function and called it Import-Default. I’m

now exercising a chunk of my app with 15 characters. I type that in and add Get-

Album. Get-Album reads all the albums currently in the repository, Figure 5-8.

 10

O’Reilly Media, Inc. 3/23/2012

Figure 5-7. These commands update the GUI and the Results pane

Figure 5-8. Importing and retrieving albums

Manage Applications better with PowerShell

Now I’m interacting with live data in a live environment in my application. If I run this

script again, pressing F5, I will now have duplicate records, so I’ll add the Clear-

Album at the top so I can work with an empty repository each time.

 11

O’Reilly Media, Inc. 3/23/2012

Let’s use some more built in PowerShell. I know there are 26 songs in my CSV file, let’s

make sure that after pushing all that data through the multiple code paths, I in fact end up

with that number of albums in the repository, Figure 5-9.

So I clear the repository, import the defaults, retrieve all the albums and count them with

the PowerShell cmdlet Measure (which is an alias to Measure), and sure

enough, it is the correct count.

Figure 5-9. Counting the albums

One more tweak and I it reads like a unit test Figure 5-10.

Figure 5-10. Asserting the number of albums added

Import Albums from the Web

Information is stored in many formats as well as many locations. When I am testing the

Beaver Music application I like to flow lots of different data through it. This exercises

different aspects and lets me handle data they I may not expect. Often is the case that the

Web has ready-made data sources I can tap into. Perhaps I’d need to scrub the data a bit,

deleting unwanted details, combing others and then emitting PowerShell objects with

properties so I can let it play into the pipeline. So I took the albums.csv and made it

available from my website. I’ll create a new function Get-AlbumFromWeb, and then

pipe it just the way I did before, first to New-Album then Add-Album, and bingo I get

 12

O’Reilly Media, Inc. 3/23/2012

the same number of albums. This time, I reached out over the Internet, got my data, and

displayed it all from within the same PowerShell console, Figure 5-11.

Figure 5-11. Importing the albums from a Web Site

Function Get-AlbumFromWeb

function Get-AlbumFromWeb {

 $wc=New-Object Net.WebClient

 $url="http://dougfinke.com/PowerShellForDevelopers/albums.csv"

 $wc.DownloadString($url) |

 ConvertFrom-Csv

}

Interacting with the web is not native in PowerShell v2 (it is in v3); so I reach into the

.NET Framework and create a new Net.WebClient and use the

DownloadString() method. I’m pulling down the contents of a CSV file so I can

pipe it to ConvertFrom-Csv (another built-in PowerShell cmdlet) and now the data is

ready to be piped to my functions that load it into the music repository.

PowerShell v3

I’ve got PowerShell v3 CTP2 installed, so I can replace my function Get-

AlbumFromWeb with this new one in v3, Invoke-RestMethod, to get the same

result with fewer lines of code, Figure 5-12.

 13

O’Reilly Media, Inc. 3/23/2012

Figure 5-12. PowerShell v3 Invoke-RestMethod

Out-GridView

Import-Default

Get-Album | Out-GridView

Out-GridView is a great tool that debuted in PowerShell v2. Bottom line, it is a

separate interactive window that supports filtering, sorting and in PowerShell v3 you can

use the –PassThru parameter so you can select items and have the passed through to

the pipeline. I use it in the custom PowerShell Console to great effect.

Figure 5-13. Dumping live data to Out-GridView

Export-ToExcel

Getting data into Excel is extremely helpful for analysis. Plus, then I have access to

PivotTables, charting and more. PowerShell doesn’t have anything out the box for

working with Excel, not to worry. Transforming data is another sweet spot for

PowerShell.

function Export-ToExcel {

 param(

 $fileName = "$pwd\BeaverMusic.csv"

 14

www.allitebooks.com

http://www.allitebooks.org

O’Reilly Media, Inc. 3/23/2012

)

 Get-Album |

 Export-Csv -NoTypeInformation $fileName

 Invoke-Item $fileName

}

The Export-ToExcel function uses one of the foundation functions, Get-Album, it

gets all the albums in the repository and then pipes it to Export-Csv, another built-in

PowerShell cmdlet. Export-Csv takes an array of objects and saves it to a file, in a

comma separated file format. It gets the names for the data columns from the names of

the properties on the object. In the last line of the script I call Invoke-Item (yet

another built-in PowerShell cmdlet), passing it the file name used in the export.

Invoke-Item performs the default action on the specified item; in this case the default

action associated with CSV files opens it in Excel, Figure 5-14.

Just a note, I regularly use the Export-Csv/Invoke-Item in both the console and ISE. I

find it invaluable way to work with data.

Import-Default

Export-Excel

Figure 5-14. Dumping live data to Excel

Interacting with MEF

MEF is Microsoft’s Managed Extensibility Framework; it’s a composition layer for .NET

that improves the flexibility, maintainability and testability of applications. The principle

purpose of MEF is extensibility; to serve as a 'plug-in' framework for when the developer

of the application and the developer of the plug-in are different and have no particular

knowledge of each other beyond a published interface library.

Another problem space MEF addresses that's different from the usual IoC suspects, and

one of MEFs strengths, is [extension] discovery. It has a lot of, well, extensible discovery

mechanisms that operate on metadata you can associate with extensions.

 15

O’Reilly Media, Inc. 3/23/2012

$MEFHelper.GetMEFCatalog.Parts | Select DisplayName

$Contract = "BeaverMusic.UI.Shell.AlbumListViewModel"

$MEFHelper.GetExport($Contract).NewAlbumCommand.Execute($null)

I’ve injected a C# instance of MEFHelper and tied it to the PowerShell variable

MEFHelper. MEFHelper is a C# instance which has a few methods,for example, the

GetExport() takes a contractName and has this implementation.

return ExportProvider.GetExport<object>(contractName).Value;

Using this and the other methods, I can discover what MEF Parts are in the catalog, then

retrieve a live instance from the MEF catalog and act on it. Here I’m looking for the

Album List View Model; from there I know I can get at the command that launches the

new album dialog window, Figure 5-15.

This opens doors to providing an extensive automatable infrastructure for an application.

Plus, being mindful of the development of the static components will enable them to

seamlessly work in PowerShell.

I find developing my .NET components with an eye towards PowerShell integration

actually helps me create a better designed infrastructure.

Figure 5-15. Returning MEF Catalog Parts

Discover the Executable Commands

So I want to find all of the commands I can execute on the AlbumListViewModel.

Using a combination of the $MEFHelper and PowerShell’s Get-Member, I can find

all the properties whose name ends in Command using the wildcard *Command. This is

how I found the NewAlbumCommand in the previous example in the live running

application. Calling the Execute() method then brought up the dialog window where I

could enter album details.

$MEFHelper.GetExport('BeaverMusic.UI.Shell.AlbumListViewModel') |

 Get-Member -MemberType Property -Name *Command

 TypeName: BeaverMusic.UI.Shell.AlbumListViewModel

Name MemberType

---- ----------

 16

O’Reilly Media, Inc. 3/23/2012

DeleteAlbumCommand Property

EditAlbumCommand Property

NewAlbumCommand Property

PowerShellConsoleCommand Property

The discovery and application doesn’t end here. I could go further and call methods and

properties on the dialog to set default information, wrapping that in a PowerShell

function is in essence creating a macro for that part of the system. Providing this for end

users can really open up productivity.

Show-NewAlbumDialog

I want to wrap all that in a function which handles the contract name and the MEF

interaction. Plus, it is the start of a little vocabulary for my application, Figure 5-16.

function Show-NewAlbumDialog {

 $contractName = "BeaverMusic.UI.Shell.AlbumListViewModel"

 $MEFHelper.GetExport($contractName).NewAlbumCommand.Execute($null)

}

Figure 5-16. Using Show-NewAlbumDialog

Performance Counters

I’ve only scratched the surface of PowerShell’s reach. In this example, I’ll tap into the

Windows performance counters using Get-PrivateBytes, which wraps Get-

Counter (a built-in PowerShell cmdlet), showing the amount of memory the

application is using before and after I retrieve music information from Yahoo using YQL

in the query.

"Private Bytes before loading albums from Yahoo $(Get-PrivateBytes)"

Clear-Album

Get-YahooMusic | New-Album | Add-Album

"Private Bytes after loading albums from Yahoo $(Get-PrivateBytes)"

 17

O’Reilly Media, Inc. 3/23/2012

Results
Get-YahooMusic | New-Album | Add-Album

"Private Bytes after loading albums from Yahoo $(Get-PrivateBytes)"

Private Bytes before loading albums from Yahoo 93548544

Private Bytes after loading albums from Yahoo 95088640

It’s not a far leap from here to exercising code paths in your application and gathering

metrics about memory, CPU, disk activity and more.

I’ve added the code for Get-PrivateBytes and Get-YahooMusic for reading

convenience.

Get-PrivateBytes
function Get-PrivateBytes {

 $counterName="\Process($(Get-CurrentProcessName))\Private Bytes"

 (Get-Counter $counterName).CounterSamples |

 Select -Expand CookedValue

}

Get-Counter comes with PowerShell and it is able to retrieve performance counter

data, the same that you’d see in PerfMon. I grab the CounterSamples property and

then expand the CookedValue property. This is an extremely useful way to execute

different code paths of your application and then measuring it.

Get-YahooMusic

Get-YahooMusic uses the WebClient in the .NET Framework so I can download a

string via the Yahoo API using their YQL to query music data. It is returned as XML, no

problem for PowerShell, and I transform that result into an array of objects with the

correct properties, Artist and Name and then pipe it directly into the application.

function Get-YahooMusic {

 $wc = New-Object Net.WebClient

 $url = "http://query.yahooapis.com/v1/public/yql?q=select * from

music.release.popular"

 [xml]$xml = $wc.DownloadString($url)

 $xml.query.results.Release |

 ForEach {

 New-Object PSObject -Property @{

 Artist=$_.artist.name

 Name=$_.Title

 }

 }

}

Once you get going with this approach, it is really powerful the reach you have for data

acquisition. No C# needed!

Get-YahooMusic | New-Album | Add-Album

 18

O’Reilly Media, Inc. 3/23/2012

Figure 5-17. Get-YahooMusic Results

From here I can go wild with the Yahoo interface. I can easily add parameters to the

function to be pass to the YQL to subset the data. Plus, I can quickly set up other

functions that use different YQL to retrieve other types of music details.

Wiring a TextBox to Execute PowerShell Code

I’ve included the Chinook sample XML music file along with two PowerShell function

Get-ChinookData and Import-BearverMusic. You can find the Chinook

Database on CodePlex. Run Get-ChinookData and it will pull the information from

the XML file and display it as albums in the console. You can also filter the data by artist

name. The filtering uses a match, so you don’t need to be exact. Piping this to the

Import-BeaverMusic function will clear the albums in the main window list view

and add the new albums, Figure 5-18.

Here is the function Get-ChinookData. It uses the PowerShell XML accelerator to

create an XmlDocument from the contents of the file ChinookData.xml. Rather than

using the built-in Get-Content cmdlet I use the ReadAllLines() method on the

IO.File namespace. This is a faster way to read a file.

Also, I cache the data by checking for the global variable $global:ChinookData. In

the last line of the script I filter the data by artist using the Where cmdlet. Note, if

$artist is not specified, all of data is returned.

 19

http://chinookdatabase.codeplex.com/

O’Reilly Media, Inc. 3/23/2012

function Get-ChinookData ($artist) {

 if(!$global:ChinookData) {

 [xml]$global:ChinookData =

 [IO.File]::ReadAllLines("$pwd\ChinookData.xml")

 }

 if(!$global:artists) {

 $global:artists = @{}

 $global:ChinookData.ChinookDataSet.Artist |

 Foreach {

 $artists.($_.ArtistId)= $_.Name

 }

 }

 $(ForEach($item in $global:ChinookData.ChinookDataSet.Album) {

 New-Album $item.Title $artists.($item.ArtistId)

 }) | Where {$_.Artist -match $artist}

}

Here I’m looking for any artist with the word Kiss in it.

Get-ChinookData Kiss | Import-BeaverMusic

Figure 5-18. Using Get-ChinookData to import albums

Do it in the PreviewKeyDown

Once I’ve written PowerShell scripts and tested them like this, it’d be a shame if I could

only use them at the console. I could really reduce the test matrix by not having to re-

implement reading the XML and adding the albums to the repository in C# code. Plus I

could save a lot of time reusing those PowerShell functions directly in the application.

private void Artist_PreviewKeyDown(

 object sender, System.Windows.Input.KeyEventArgs e)

{

 if (e.Key == Key.Enter)

 {

 var script = "Get-ChinookData "

 20

O’Reilly Media, Inc. 3/23/2012

 + Artist.Text + " | Import-BeaverMusic";

 script.ExecutePS();

 e.Handled = true;

 }

}

This is a bit of C# code that reacts to keystrokes in the textbox that sits in the PowerShell

Console. When the enter key is pressed, I construct PowerShell command as a string.

var script = "Get-ChinookData "

 + Artist.Text + " | Import-BeaverMusic";

Figure 5-19. Executing PowerShell from a WPF Textbox

After entering Metallica, and pressing enter, the script variable look like this.

"Get-ChinookData Metallica | Import-BeaverMusic"

This line of C# code calls the extension method ExecutePS() and the results are as if

you typed it all in the PowerShell Console and the main window is updated with the

results.

script.ExecutePS();

 21

O’Reilly Media, Inc. 3/23/2012

Figure 5-20. Results - Executing PowerShell from a WPF Textbox

This is a fantastic and simple way to expose PowerShell functionality in your .NET

application. There is so much more that can be done here. I’ll leave it to the reader for

now.

Running Script and Debugging the C#

Here’s a neat trick. Open the BeaverMusic.sln, navigate to the BeaverMusic Project

and edit the AlbumRepository.cs. Set a breakpoint in the GetAlbums() method.

Run the application, launch the PowerShell console type Get-Album in the script pane

and press F5.

You’ll hit the break after running the script and be in the live running application. You’ll

be able to step through the C# code, inspect variables and view the call stack just as you

would expect. That is too cool!

This is very powerful. You can create scripts that quickly put the application into a

reproducible state and then debug it. When bugs are reported, you can potentially email

PowerShell scripts around that repro the bugs; this is much more reliable than reading

bug reports.

 22

O’Reilly Media, Inc. 3/23/2012

Figure 5-21. Debugging in the Beaver Music App

How do I get the PowerShell Console in My App?

PSConsole _console;

public void LaunchPowerShellConsole()

{

 PSConfig.AddVariable("AlbumRepository", _albumRepository);

 PSConfig.Profile = "BeaverMusicProfile.ps1";

 _console = new PSConsole();

 _console.Closing +=

 new System.ComponentModel.CancelEventHandler(

 (w, e) => _console = null

);

 _console.Show();

}

It’s pretty easy. First, download the code. You can add this method to your app. Then

either remove or customize the PSConfig.AddVariable and

PSConfig.Profile statements.

PSConfig.Profile

Use this to define the name of the PowerShell script that will be stored $profile. The

console looks to see if this file exists and evaluates the script content in the context of the

session.

PSConfig.AddVariable

PSConfig.AddVariable("AlbumRepository", _albumRepository);

That’s how I inject the object model of my application into the PowerShell session. I use

_albumRepository which is the instantiated object and I am tying it to the

PowerShell variable name $AlbumRepository. In the launched console, I can access

it with $AlbumRepository. Earlier in the chapter, Figure 5-3, I showed how you can

inspect the methods of this object at run time. You can inject any kind and any number of

 23

O’Reilly Media, Inc. 3/23/2012

variables into the PowerShell session using the AddVariable() method. Plus, you can

name them whatever you’d like and once inside the PowerShell console you can access

them by prefixing the name with a $.

The PowerShell Console Code

I’m not going to do a narrative on the code that supports the PowerShell console and its

configuration. It’s about 125 lines, a couple pages of code. I’m including here as a

reference.

PS.cs

namespace EmbeddedPSConsole

{

 public static class PS

 {

 public static string ExecutePS(this string script)

 {

 var sb = new

 StringBuilder(string.Format("> {0}\r", script));

 powerShell.AddScript(script);

 powerShell.AddCommand("Out-String");

 powerShell.AddParameter("Width", 133);

 try

 {

 var results = powerShell.Invoke();

 if (powerShell.Streams.Error.Count > 0)

 {

 foreach (var err in powerShell.Streams.Error)

 {

 AddErrorInfo(sb, err);

 }

 powerShell.Streams.Error.Clear();

 }

 else

 {

 foreach (var item in results)

 {

 sb.Append(item);

 }

 }

 }

 catch (System.Exception ex)

 {

 sb.Append(ex.Message);

 }

 powerShell.Commands.Clear();

 return sb.ToString();

 }

 static PowerShell _powerShell;

 static PowerShell powerShell

 {

 24

www.allitebooks.com

http://www.allitebooks.org

O’Reilly Media, Inc. 3/23/2012

 get

 {

 if (_powerShell == null)

 {

 _powerShell = PowerShell.Create();

 powerShell.Runspace = PSConfig.GetPSConfig;

 if (!string.IsNullOrEmpty(PSConfig.Profile) &&

File.Exists(PSConfig.Profile))

 {

 var script =

 File.ReadAllText(PSConfig.Profile);

 _powerShell.AddScript(script);

 _powerShell.Invoke();

 powerShell.Commands.Clear();

 }

 }

 return _powerShell;

 }

 }

 private static void AddErrorInfo(StringBuilder sb,

 ErrorRecord err)

 {

 sb.Append(err.ToString());

 sb.AppendFormat("\r\n +{0}",

 err.InvocationInfo.PositionMessage);

 sb.AppendFormat("\r\n + CategoryInfo :{0}",

 err.CategoryInfo);

 sb.AppendFormat("\r\n + FullyQualifiedErrorId :{0}",

 err.FullyQualifiedErrorId.ToString());

 sb.AppendLine();

 }

 }

}

PSConfig.cs

namespace EmbeddedPSConsole

{

 public class PSConfig

 {

 private static string _profile;

 private static Runspace _rs;

 public static Runspace GetPSConfig { get { return rs; } }

 public static string Profile

 {

 get

 {

 return _profile;

 }

 set

 {

 _profile = value;

 25

O’Reilly Media, Inc. 3/23/2012

 AddVariable("profile",

System.IO.Path.Combine(Environment.CurrentDirectory, _profile));

 PS.ExecutePS("$a='Executes so the profile is loaded.'");

 }

 }

 private static Runspace rs

 {

 get

 {

 if (_rs == null)

 {

 _rs = RunspaceFactory.CreateRunspace();

 _rs.ThreadOptions =

 PSThreadOptions.UseCurrentThread;

 _rs.Open();

 return _rs;

 }

 return _rs;

 }

 }

 public static void AddVariable(string name, object value)

 {

 rs.SessionStateProxy.SetVariable(name, value);

 }

 }

}

Parting Thoughts

• How would you implement coloring each row of music by a specific artist, via

script?

• Find

Summary

So that’s the walkthrough of the Beaver Music application. Surfacing the internals of you

application provides numerous benefits to you, your team and your client. And because

PowerShell is based on .NET, this approach is virtually seamless.

Providing a scripting language for an application is not a new idea. Perhaps you’ve hear

of Visual Basic for Applications? This is built into most Microsoft Applications. In

Microsoft Excel for example, you can record activities and then save the VBA scripts for

later.

Companies like Autodesk, world leader in 3D design software, also offered VBA as an

embedded scripting language for their product.

In the gaming industry, Lua is the scripting language used by World of Warcraft for

Interface Customization.

Why is PowerShell preferred over say VBA, IronPython or IronRuby? These are

excellent choices for their dynamic capabilities for example and PowerShell is as

programmable.

 26

http://en.wikipedia.org/wiki/Visual_Basic_for_Applications
http://usa.autodesk.com/
http://www.lua.org/
http://www.wowwiki.com/Lua

O’Reilly Media, Inc. 3/23/2012

 27

PowerShell is tuned differently. A simple example being, Get-ChildItem | Sort

LastWriteTime –Descending | Select FullName. Mirroring this in the other languages is a

a challenge, extending it as simply as it can be done in PowerShell, difficult at best.

Plus PowerShell provides common functions like

sorting/filtering/grouping/formatting/outputting and more. In addition to PowerShell’s

growing integration with the rest of the Windows Platform, as PowerShell grows, so does

your application.

O’Reilly Media, Inc. 3/23/2012

6

PowerShell and the Internet

PowerShell interacts really well with the Web, being able to access files, XML, JSON ,

web services and more, directly from the Internet. PowerShell does not have cUrl or

GNU Wget type support out of the box, but because PowerShell is an amazing glue

language that is deeply integrated with the .NET Framework, this is one place where

PowerShell capabilities really shines, in connecting a set of powerful underlying

components. Plus, PowerShell v3 makes this easier using the cmdlets Invoke-

WebRequest, Invoke-RestMethod, ConvertTo-Json and ConvertFrom-Json.

It’s interesting to note, even though PowerShell was envisioned over a decade ago and v2

was delivered in 2009, PowerShell is able to keep pace with daily development needs.

Taking advantage of something like JSON (JavaScript Object Notation), a lightweight

data-interchange format, over the web using is easy using .NET libraries designed to

parse this format and presenting it in a way consumable by PowerShell.

In this chapter I’ll show code that will let you pull down different formatted information

from websites. The amount of public information available is enormous. Contributed by

individuals, companies and governments creating huge datasets and giving us potential

insight into a myriad of things and is easily accessible via PowerShell.

Net.WebClient

One cool PowerShell demo I like to give is to show how to pull down the details of a

blog’s RSS feed, in three lines of code.

$url = "http://feeds.feedburner.com/DevelopmentInABlink"

$feed = (New-Object Net.WebClient).DownloadString($url)

([xml]$feed).rss.channel.item | Select title, pubDate

This simple code gives us the following:

title pubDate

----- -------

Using PowerShell to solve Project Euler: Problem 1 Sun, 08 Jan

PowerShell and IEnumerable<T> Sat, 24 Dec

 1

http://en.wikipedia.org/wiki/CURL
http://www.gnu.org/software/wget/
http://www.json.org/
http://en.wikipedia.org/wiki/Blog
http://en.wikipedia.org/wiki/RSS

O’Reilly Media, Inc. 3/23/2012

PowerShell, Windows Azure and Node.js Sat, 17 Dec

How to find the second to last Friday in December - Usin... Sat, 17 Dec

PowerShell - Using the New York Times Semantic Web APIs Sun, 04 Dec

My First PowerShell V3 ISE Add-on Sun, 04 Dec

Use PowerShell V3 to Find Out About Your Twitter Followers Thu, 24 Nov

Using the Net.WebClient class from the .NET Framework, the

DownloadString() method retrieves the RSS as a string. Next, using the PowerShell

XML accelerator, [xml], the data in the $feed variable is transformed into an

XmlDocument and I dot notate over it to get to the item details. Piping this to Select, I

pull out just the Title and PubDate.

Wrap that code in a PowerShell Function

Good PowerShell script discipline is to wrap snippets like these in functions. It helps

organize your code and makes them composable.

function Get-WebData {

 param([string]$Url, [Switch]$Raw)

 $wc = New-Object Net.WebClient

 $feed = $wc.DownloadString($Url)

 if($Raw) { return $feed }

 [xml]$feed

}

Get-WebData takes two parameters the $Url, which is the resource on the site you’re

hitting and $Raw. If you don’t specify $Raw, Get-WebData tries to accelerate the

string returned from the as an XmlDocument.

$url = "http://feeds.feedburner.com/DevelopmentInABlink"

(Get-WebData $url).rss.channel.item |

 select title, pubDate

This code is a simplified version from unlike the one from the beginning of this chapter.

PowerShell v3 adds a number of new functions. Later in this chapter, under the heading

"Invoke-RestMethod" we’ll see one of the new functions the PowerShell team added that

obsoletes a function like Get-WebData and has more capability.

Reading CSV formatted data from the Web

Retrieving the contents of a file containing data in the CSV format requires the –Raw

parameter on the Get-WebData function.

$url = "http://dougfinke.com/PowerShellForDevelopers/albums.csv"

(Get-WebData $url -Raw) | ConvertFrom-Csv

Results

Artist Name

------ ----

Michael Jackson Thriller

AC/DC Back in Black

Pink Floyd The Dark Side of the Moon

Whitney Houston / Various artists The Bodyguard

 2

O’Reilly Media, Inc. 3/23/2012

Meat Loaf Bat Out of Hell

Eagles Their Greatest Hits

Various artists Dirty Dancing

Backstreet Boys Millennium

The results can then be piped to the PowerShell Cmdlet ConvertFrom-Csv which

transforms that data into an array of PowerShell objects with properties.

Reading XML formatted data from the Web

Retrieving the contents of a file containing XML is easy using the Get-WebData

function.

$url = "http://dougfinke.com/PowerShellForDevelopers/albums.xml"

(Get-WebData $url).albums.album

I dot notate through nodes in the results transforms that data into an array of PowerShell

objects with properties.

The Structure of XML data

Here is a snippet of the Xml I’ll read. Notice the structure. Now map it to the dot notation

I used in the PowerShell script. I can loop through all the data simply using

albums.album.

<albums>

 <album>

 <artist>Michael Jackson</artist>

 <name>Thriller</name>

 </album>

 <album>

 <artist>AC/DC</artist>

 <name>Back in Black</name>

 </album>

<albums>

Results

Here is the transformed Xml into PowerShell objects.

Artist Name

------ ----

Michael Jackson Thriller

AC/DC Back in Black

US Government Data Sources

Here I’m hitting the US Consumer Product Safety Commission site and pulling down

product recall information stored in an Xml format.

$url = "http://www.cpsc.gov/cpscpub/prerel/prerel.xml"

(Get-WebData $url).rss.channel.item

Data acquisition couldn’t be easier.

title : Uni-O Industries Recalls O-Grill Portable Gas Grills

description : The regulator on the grill can leak gas which can ignite

pubDate : Tue, 03 Jan 2012 16:00:00 GMT

link : http://www.cpsc.gov/cpscpub/prerel/prhtml12/12077.html

 3

O’Reilly Media, Inc. 3/23/2012

The US Government has an entire index of publicly available data accessible through

both web services and XML. Google around for other free public resources, if you can

think of it, someone has put it on the internet.

Invoke-RestMethod

$url = "http://dougfinke.com/PowerShellForDevelopers/albums.csv"

Invoke-RestMethod $url | ConvertFrom-Csv

Invoke-RestMethod is a new PowerShell v3 cmdlet. It simplifies how you can work

with the web. Invoke-RestMethod is available to you without having to dot source

other scripts or importing a module. That means, you can deliver a script to another user

who has PowerShell v3 installed and you’re good to go. Using Get-WebData, you

need to either deliver the extra script file or copy or paste that code into scripts you

distribute. Plus, you then own the Get-WebData function, testing, enhancing and

upgrading.

But wait, there’s more. In the next two sections, I take advantage of Invoke-

RestMethod’s –ReturnType parameter which defaults to Detect.

Detecting XML

Invoke-RestMethod does a lot for us. Like the (New-Object

Net.WebClient).DownloadString(), it retrieves the content file. Then it goes a

step further, auto detecting that it is Xml and returns an XmlDocument. The –

ReturnType takes three values, Detect, Xml and Json.

$url = "http://dougfinke.com/PowerShellForDevelopers/albums.xml"

(Invoke-RestMethod $url).albums.album

If you know the type of data you’re going after, you can short-circuit the detection

process.

Detecting JSON

Let’s retrieve the same album data, except it’s stored in JSON format. This is the same

approach as retrieving the Xml data. This time through, Invoke-RestMethod detects the

JSON format and automatically converts the JSON into an array of objects of type

PSCustomObject with the properties Artist and Name.

$url = "http://dougfinke.com/PowerShellForDevelopers/albums.js"

Invoke-RestMethod $url

Here a sample of the returned data. This output will be identical whether the XML or

JSON format is returned. Thinking it through, this means I can meld the same data across

multiple web sites with different formats and produced a uniform output. Pretty

powerful!

Artist Name

------ ----

Michael Jackson Thriller

AC/DC Back in Black

Pink Floyd The Dark Side of the Moon

Whitney Houston / Various artists The Bodyguard

Meat Loaf Bat Out of Hell

Eagles Their Greatest Hits

Various artists Dirty Dancing

 4

http://www.usgovxml.com/

O’Reilly Media, Inc. 3/23/2012

Backstreet Boys Millennium

Bee Gees / Various artists Saturday Night Fever

Fleetwood Mac Rumours

Shania Twain Come On Over

I’ve walked through some of the key building blocks for interacting with the data on the

web. These data interchange formats are universal. What follows are more interesting

applications of the same approach.

PowerShell and the NYT Semantic Web API

With the New York Times Semantic API, you get access to the long list of people,

places, organizations and other locations, entities and descriptors that make up the

controlled vocabulary used as metadata by The New York Times (sometimes referred to

as Times Tags and used for Times Topics pages).

Get-SemanticNYT "Obama" |

 Get-SemanticNYTArticles |

 Where links |

 Select -ExpandProperty article_list |

 Select -ExpandProperty results |

 Select date, title, url |

 Out-GridView

This script only works in PowerShell v3. I am retrieving the information in JSON format

from using the semantic APIs and Invoke-RestMethod.

Reading the New York Times – Part 1

function Get-SemanticNYT {

 param($query = "obama")

 $uri = "http://api.nytimes.com/svc/semantic/v2/"+

 "concept/search.json?query=$query&api-key=$apiKey"

 (Invoke-RestMethod $uri).results

}

 5

http://developer.nytimes.com/docs/The_Semantic_API
http://www.nytimes.com/pages/topics/

O’Reilly Media, Inc. 3/23/2012

Reading the New York Times – Part 2

function Get-SemanticNYTArticles {

 param(

 [Parameter(ValueFromPipelineByPropertyName=$true)]

 $concept_name,

 [Parameter(ValueFromPipelineByPropertyName=$true)]

 $concept_type

)

 Process {

 $uri = "http://api.nytimes.com/svc/semantic/v2/" +

 "concept/name/$concept_type/$concept_name.json?&" +

 "fields=all&api-key=$apiKey"

 (Invoke-RestMethod $uri).results

 }

}

The two PowerShell v3 functions used, Get-SemanticNYT and Get-

SemanticNYTArticles, are simple wrappers used to construct NYT Urls correctly.

These are passed to the Invoke-RestMethod Cmdlet that does the heavy lifting of

connecting to the site, pulling down the JSON and transforming it to PowerShell arrays.

Get-SemanticNYTArticles makes use of

ValueFromPipelineByPropertyName and the Process Block.

ValueFromPipelineByPropertyName indicates that the parameter can take

values from a property of the incoming pipeline object that has the same name as this

parameter. This means there is a property called concept_name and concept_type

emitted from the Get-SemanticNYT function. When I pipe Get-SemanticNYT to

Get-SemanticNYTArticles I leverage PowerShell’s parameter binding

mechanism. This is one of the essence enabling features of PowerShell. Each item from

Get-SemanticNYT is automatically passed through the pipeline, and the properties

concept_name and concept_type are bound to the same-named parameters in

Get-SemanticNYTArticles .

The Process Block handles iterating over the data piped, doing the move next and

checking for end of stream. This frees me up to create solutions and worry less about the

mechanics of passing parameters properly.

Summary

In less than three quarters of a page of PowerShell v3 code I’m querying the New York

Times web based articles via their Semantic API, handling a Web REST interaction,

transforming JSON to PowerShell (.NET) objects and finally displaying it in a WPF GUI.

Powerful components a developer can easily add to their toolbox.

Stock WebService

There are many sites available that provide stock quotes. This means I need to navigate to

the page, type in the symbol press enter and the read the information. What if I want to

check several symbols? What if I check stocks every few minutes? Maybe I want to save

the stock information details? Even better, I want to do some quick calculations on the

 6

O’Reilly Media, Inc. 3/23/2012

fly. I’m going to use a Web Service to get this done. Web services are typically

application programming interfaces (API) or Web APIs that are accessed via Hypertext

Transfer Protocol (HTTP) and executed on a remote system hosting the requested

services. Web services tend to fall into one of two camps: big Web services and RESTful

Web services.

function Get-Quote {

 param(

 [Parameter(ValueFromPipeline=$true)]

 [string[]]$symbol,

 [Switch]$Raw

)

 Begin {

 $url = "http://www.webservicex.net/stockquote.asmx?wsdl"

 $proxy = New-WebServiceProxy $url

 }

 Process {

 $result = $ proxy.GetQuote($symbol)

 if($Raw) { return $result }

 [xml]$result

 }

}

"IBM", "AAPL", "GM", "GE", "MSFT", "GOOG" |

 Get-Quote |

 ForEach {$_.StockQuotes.Stock} |

 Format-Table

In this example I am easily retrieveing data for several stock symbols in a single call.

The New-WebServiceProxy, inside the Begin Block executes only the first time

through the function, creates a Web service proxy object that lets you use and manage the

Web service in Windows PowerShell.

Then in the Process Block, executed for each item in the pipeline, the

GetQuote() method is called, passing in the $symbol. GetQuote returns and Xml

data source, so using the [xml] accelerator, an XmlDocument is returned for each

symbol that is located.

Dig a little deeper

New-WebServiceProxy creates a Web service proxy object that lets you use and

manage the Web service in Windows PowerShell. It goes out, reads the WSDL (Web

Service Definition Language) and on the fly generates/compiles an object that represents

all the methods and parameters that you can access for that service.

I used the GetQuote() method and it takes a symbol, a string. For example IBM, and

returns an Xml string containing lots of good information about that stock symbol.

Here is the shape of the Xml returned by GetQuote() method is a Stock node inside

a StockQuotes node.

 7

O’Reilly Media, Inc. 3/23/2012

<StockQuotes>

 <Stock>

 <Symbol>IBM</Symbol>

 <Last>193.35</Last>

 <Date>2/7/2012</Date>

 <Time>4:01pm</Time>

 <Change>+0.53</Change>

 <Open>192.45</Open>

 <High>194.14</High>

 <Low>191.97</Low>

 <Volume>3432953</Volume>

 <MktCap>224.3B</MktCap>

 <PreviousClose>192.82</PreviousClose>

 <PercentageChange>+0.27%</PercentageChange>

 <AnnRange>151.71 - 194.90</AnnRange>

 <Earns>13.06</Earns>

 <P-E>14.76</P-E>

 <Name>International Bus</Name>

 </Stock>

</StockQuotes>

Then pipe the Xml to ForEach to pull out the actual data from

$_.StockQuotes.Stock.

Symbol Last Date Time Change Open

------ ---- ---- ---- ------ ----

IBM 180.52 1/19/2012 4:02pm -0.55 181.79

AAPL 427.75 1/19/2012 4:00pm -1.36 430.03

GM 24.82 1/19/2012 4:00pm +0.31 24.65

GE 19.15 1/19/2012 4:00pm +0.13 19.03

MSFT 28.12 1/19/2012 4:00pm -0.11 28.15

GOOG 639.57 1/19/2012 4:00pm +6.66 640.97

Being able to get a proxy to a web service in a single line of PowerShell enables many

scenarios. For example, quick integration testing, here you could easily query stock

symbols with known values and test for to see if they are correct. Don’t forget, once the

data is pulled from the web service and in the pipeline you can pipe it or transform it to

another data format and save it to disk for use in other ways.

Invoke-WebRequest – Another PowerShell Cmdlet

This Cmdlet is another workhorse for integrating the web into PowerShell. It lets you

grab web pages and, for example, through the AllElements property you can search for

HTML Elements with a certain class name.

Again Invoke-WebRequest is available out of the box with PowerShell v3. That

means you can write scripts that mash up, scrape and do significant text manipulation of

any of your favorite web sites. This means capturing and scrubbing data is a simple

operation.

Next up I present a couple scripts using this technique to query Google and Bing about

the status of a flight. What is really cool is how few lines of code is needed to get this

done. Thinking it through, the composability of PowerShell can really light the way for

useful interesting applications.

One key addition to PowerShell v3 is the workflow keyword. Underneath it is using

Microsoft Workflow 4.0. In addition, the ForEach sprouts a new parameter in this

 8

O’Reilly Media, Inc. 3/23/2012

context, -Parallel. Gluing together Parallel workflow and easy web integration

makes for a powerful mix of data acquisition.

PowerShell & Google

I want to find out the flight status for Delta Air Lines flight 269, I surf to Google and type

“flight status for dl 269”.

function Get-FlightStatus {

 param($query="dl269")

 $url = "https://www.google.com/search?q=flight status for $query"

 $result = Invoke-WebRequest $url

 $result.AllElements |

 Where Class -eq "obcontainer" |

 Select -ExpandProperty innerText

}

Get-FlightStatus

 Here I type Get-FlightStatus at a command line and scrape the Google Page using

Invoke-WebRequest. I truncated these results for readability.

Flight Status for Delta Air Lines 269

On-timearrives in 25 minutes

DepartureJFK8:04am(was 8:05am)Terminal 3

New YorkJan 20Gate 3

Updated 3 minutes ago by flightstats.com – Details

The key to scraping pages this way is to find an element that can be as close to uniquely

identified as possible. By navigating to the page you want to scrape and doing a “view

source” you can look at the resulting HTML and figure out if that is possible. Looking at

the results from Google, I saw that the “Flight Results” were in a div with a class

name obcontainer. That translates Where Class –eq “obcontainer”.

The Target HTML

Using Invoke-WebRequest with the Where cmdlet makes quick work of scraping web

sites. Here is the HTML I searched to find a class name equal to obscontainer.

 9

O’Reilly Media, Inc. 3/23/2012

<div class="obcontainer" style="padding-bottom:5px;">

 <div>

 <div>

 <table style="width:34.24em;border-top:0"

 <tr>

 <td >Flight Status for Delta Air Lines 269</td>

 </tr>

 </table>

 </div>

 <div>

 <table >

 <tr>

 <td>Updated 3 minutes ago by flightstats.com - <a href=

 class=" fl">Details</td>

 </tr>

 </table>

 </div>

 </div>

</div>

So, you retrieve the web page with Invoke-WebRequest, filter AllElements by the “key”

you are looking for, select the innerText and you’re done.

Not all web pages will be this simple but it is worth a few minutes of investment to

potentially unlock a data mining opportunity.

PowerShell & Bing

function Get-FlightStatus {

 param($query="dl269")

 $url = "http://bing.com?q=flight status for $query"

 $result = Invoke-WebRequest $url

 $result.AllElements |

 Where Class -eq "ans" |

 Select -First 1 -ExpandProperty innerText

}

This book is about a Microsoft technology so here is the same query in Bing. The two

differences are the “key” to filter on in the Where Cmdlet and you need to do use –First 1

parameter in the Select because Bing returns several answers and the first one is what we

want.

Flight status for Delta 269

Landed early · Jan 20, 2012

From: New York (JFK) 08:04 AM (was 08:05 AM) · gate 3, terminal 3 · map

To: Atlanta (ATL) 10:33 AM (was 10:45 AM) · gate C51, terminal N · map

Other flight segments · TLV-JFK

Data provided by Bing Travel · Source: www.flightstats.com, 2 minutes ago

Overall a very clean and simple approach for querying search engines and pulling out just

the details you need.

The good news is, it is not limited to just query engines. It is any public data on web.

 10

O’Reilly Media, Inc. 3/23/2012

PowerShell & the Twitter API

. .\Get-WebData.ps1

$result = Get-WebData "http://search.twitter.com/search.rss?q=PowerShell"

$result.rss.channel.item |

 Select title, author

Twitter is an information network and communication mechanism that produces more

than 200 million tweets a day. The Twitter platform offers access to that data, through

their APIs. Each API represents a facet of Twitter, and allows developers to build upon

and extend their applications in new and creative ways.

Tapping into the Twitter search API and searching for one of my favorite topics,

PowerShell and leveraging the Get-Webdata function I presented earlier, I easily

extract the title and author of the tweets containing the word PowerShell.

title author

----- ------

I heart #Powershell. What else ... awanderingmind@twitter.com (Jo...

I hate you people. No, not you.... billinkc@twitter.com (Bill Fel...

#PowerShell Mailbox name not al... ihunger@twitter.com (Jim Hofer)

nothing like writing #PowerShel... Josh_Atwell@twitter.com (Josh ...

#PowerShell Granting permission... ihunger@twitter.com (Jim Hofer)

NewPost:: PowerShell, Active Se... jbmurphy@twitter.com (Jeffrey ...

Configure Git in PowerShell So ... JohnBubriski@twitter.com (John...

Article #5 of 7 for Hey Scripti... proxb@twitter.com (Boe Prox)

Get Powershell to wait for an S... stackfeed@twitter.com (StackOv...

RT @PowerShellGroup: UK PowerSh... OliverZofic@twitter.com (Olive...

GPP Registry Item Level Targeti... AGoodies@twitter.com (A Goodies)

wadehel is windows powershell m... pimapimapima@twitter.com (Adri...

RT @PowerShellGroup: UK PowerSh... ScriptingGuys@twitter.com (MSF...

RT @toenuff: Revert the #power... ScriptingGuys@twitter.com (MSF...

The future of Exchange administ... alexandair@twitter.com (Aleksa...

The resulting Xml returned by the Twitter search API is far richer than these two fields. It

contains a link to the image the author uses, the date it was tweeted, a link to the original

tweet and more. Plus, this is only the search API. Twitter supports much more, check out

my blog post Use PowerShell V3 to Find Out About Your Twitter Followers.

Many web sites support similar APIs and I strongly encourage you investigating

PowerShell as a way to rapidly tap into them, opening opportunities to quickly mine data

from a single source or across many others.

PowerShell v3 ups the game further by natively supporting Cmdlets like Invoke-

WebRequest and Invoke-RestMethod that let me concentrate on the essence of

data interaction across heterogeneous data stores on the web.

Unlike ceremonial versions of web interaction, where I need to handle requests,

responses, data conversions and more. Using Invoke-RestMethod, I pass a Url and

if it is Xml or JSON on the other end, I don’t even know it. I’m simply working with an

array of objects with properties, piping them to other PowerShell Cmdlets for sorting,

grouping, slicing, dicing or using the intermediate results to do lookups through other

APIs or on completely different sites.

 11

http://www.dougfinke.com/blog/index.php/2011/11/23/use-powershell-v3-to-find-out-about-your-twitter-followers/

O’Reilly Media, Inc. 3/23/2012

 12

Summary

We’ve covered a lot in this chapter. We saw how easy it is to user PowerShell and the

Internet, pulling down the contents of files, in three different formats CSV, XML and

JSON. Then, we converted them on the fly to .NET (PowerShell) Objects and did some

analysis on files. Finally, we pulled down entire web pages and filtering out key details

based on HTML Tag names.

Now, you have to check out the next chapter. I’m going to expand on the Twitter code

and introduce you to WPF programming using only PowerShell, that’s right no XAML,

no C#. See you there.

	Cover
	Chapter 2. The Dime Tour
	The Object Pipeline
	The Game Changer

	Automation References
	Semicolons
	Return Statements
	Datatypes
	Exception handling
	Trap
	Break
	Results
	Continue
	Results

	Try/Catch/Finally
	Results

	Quoting Rules
	PowerShell Subexpressions in String

	Here-Strings
	Great Code Generation Techniques
	Here-String Output
	C# Code
	Results

	Script Blocks, Closures and Lambdas
	Scriptblocks, Dynamic Languages and Design Patterns

	Arrays
	Creating an Empty Array
	Adding an Array Item
	Retrieving an Element
	Array Slicing
	Finding Array Elements
	Reversing an Array

	Parenthesis and Commas
	Hash tables
	Creating an Empty Hash Table
	Adding a Hash Table Item
	Initializing a Hash Table with Items
	Concatenating Hash Tables

	Get-Member CmdLet
	Filtering with Get-Member
	Using Get-Member with Collections
	Inject a GUI into the PowerShell Command Line

	New-Object CmdLet
	Launching Internet Explorer
	Creating a New PowerShell Object
	PowerShell V3 is More Pithy
	Using the .Net Framework

	Add-Member
	Add-Type
	Compiling C# On The Fly
	Newing Up The Class
	Calling the Add Method On MyMathClass
	Wait, I Don’t Have the Source

	What the %? And other aliases
	Modules
	Summary

	Chapter 3. Getting Started
	Installing PowerShell
	Checking the PowerShell Version

	Interactivity, the key to PowerShell
	Running a PowerShell Script
	Setting the Execution Policy
	RemoteSigned Is Good for You
	Running Scripts with Execution Policy Set to Restricted

	Now we’re set to run a script

	PowerShell ISE
	Other PowerShell Editors
	PowerShell and Visual Studio
	The PowerShell Community
	The Future of PowerShell on Window 8
	Summary

	Chapter 4. Accelerating Delivery
	Scanning for const definitions
	Reading a Single C# File
	Using Select-String
	The Result
	Reading C# Files in a Directory
	Result of Reading and Extracting Info from Multiple C# Files

	A Template Engine
	The Engine
	A Single Variable
	Results

	Multiple Variables
	Results

	Calling Multiple Templates
	Results

	Complex Logic
	Results

	UML Style Syntax
	Results
	Reading XML
	Results
	Bonus Round
	Results

	Generating PowerShell Functions from C# Methods
	Get Parameters
	Pulling It All Together
	Result

	Calling PowerShell Functions from C#
	Override C# Methods with PowerShell Functions
	The Breakdown
	Looking for PowerShell Functions
	Extracting Metadata and Generating C#
	The PowerShell Module
	Testing it all
	Results

	Summary

	Chapter 5. Add PowerShell to Your GUI
	PowerShell Empowers Others to Customize
	Embedding PowerShell in your C# Application
	Beaver Music Application
	PowerShell Console
	Foundational Functions
	New-Album
	Add-Album
	Import-Csv
	Get-Album and Clear-Album

	Manage Applications better with PowerShell
	Import Albums from the Web
	Function Get-AlbumFromWeb
	PowerShell v3
	Out-GridView
	Export-ToExcel
	Interacting with MEF
	Discover the Executable Commands
	Show-NewAlbumDialog

	Performance Counters
	Results
	Get-PrivateBytes
	Get-YahooMusic

	Wiring a TextBox to Execute PowerShell Code
	Do it in the PreviewKeyDown

	Running Script and Debugging the C#
	How do I get the PowerShell Console in My App?
	PSConfig.Profile
	PSConfig.AddVariable

	The PowerShell Console Code
	PS.cs
	PSConfig.cs

	Parting Thoughts
	Summary

	Chapter 6. PowerShell and the Internet
	Net.WebClient
	Wrap that code in a PowerShell Function
	Reading CSV formatted data from the Web
	Results

	Reading XML formatted data from the Web
	The Structure of XML data
	Results

	US Government Data Sources

	Invoke-RestMethod
	Detecting XML
	Detecting JSON

	PowerShell and the NYT Semantic Web API
	Reading the New York Times – Part 1
	Reading the New York Times – Part 2
	Summary

	Stock WebService
	Dig a little deeper

	Invoke-WebRequest – Another PowerShell Cmdlet
	PowerShell & Google
	The Target HTML

	PowerShell & Bing

	PowerShell & the Twitter API
	Summary

