Learn by doing: less theory, more results

jQuery 1.4

Animation Techniques

Quickly master all of jQuery’s animation methods and build
a toolkit of ready-to-use animations using jQuery 1.4

Foreword by J6rn Zaefferer
JjQuery Ul development lead, plugin author, and QUnit maintainer

Beginner’s Guide

Dan Wellman [] open source

community experience disfilled

PUBLISHING

ww.allitebooks.co

http://www.allitebooks.org

jQuery 1.4 Animation Techniques

Beginner’s Guitde

Quickly master all of jQuery's animation methods and build
a toolkit of ready-to-use animations using jQuery 1.4

Dan Wellman

open source

community experience distilled

PUBLISHING

BIRMINGHAM - MUMBAI

[vww allitebooks.cond

http://www.allitebooks.org

jQuery 1.4 Animation Technigues
Beginner's Guide

Copyright © 2011 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2011
Production Reference: 1140311

Published by Packt Publishing Ltd.
32 Lincoln Road

Olton

Birmingham, B27 6PA, UK.

ISBN 978-1-849513-30-2
www . packtpub.com

Cover Image by Filippo (Filosartietiscali.it)

[vww allitebooks.cond

http://www.allitebooks.org

Author

Dan Wellman

Reviewers

Shaiful Islam
Ben Nadel

Cyril Pierron

Acquisition Editor
Sarah Cullington

Development Editor

Roger D'souza

Technical Editor

Conrad Sardinha

Indexer

Hemangini Bari

Editorial Team Leader

Akshara Aware

Project Team Leader

Priya Mukherji

Project Coordinator
Sneha Harkut

Proofreader

Aaron Nash

Production Coordinator

Melwyn D'sa

Cover Work

Melwyn D'sa

[vww allitebooks.cond

http://www.allitebooks.org

Since the first jQuery homepage in 2006, an interactive example introduced visitors to jQuery
with a single line of code, and a button to run that code. When clicked, it added a class to a
hidden paragraph, and animated that paragraph to become visible.

Today, in late 2010, the API documentation has 15 methods listed in the Effects category.
These provide built-in animations for fading and sliding, as well as various ways to create
custom animations. When combined with color and class animations and custom easings
that jQuery Ul provides, there are even more ways to create animations.

A good rule of thumb for using animations is to use slides when showing elements within
the pageflow, and fades for overlays, like a tooltip. But that's just a rule of thumb, and with
all the tools available there's a lot more opportunity to improve interactions, as well as
messing them up.

With that in mind, a full book on animations starts to make a lot of sense. It makes even
more sense when also taking into account upcoming technologies which aren't bound to
jQuery directly, like CSS3 animations or animated canvas drawings.

As a tech reviewer I've worked with Dan on his jQuery Ul 1.6 and jQuery Ul 1.7 books. At the
time the jQuery Ul team was still figuring out the scope and exact direction of the project,
including several direction changes at the time when Dan was writing the first book. Despite
these challenges Dan did a great job providing documentation and extensive examples on
how to use and combine the widgets and interactions jQuery Ul provides.

With this book Dan brings his experience in writing on jQuery topics to teach you when
and how to use animations to create better user experiences. | hope it serves you well.

Jorn Zaefferer

jQuery Ul development lead, plugin author, and QUnit maintainer

[vww allitebooks.cond

http://www.allitebooks.org

Dan Wellman is an author and web developer based on the South coast of the UK. By day
he works alongside some of the most talented people he has had the pleasure of calling
colleagues, for a small, yet accomplished digital agency called Design Haus. By night he
writes books and tutorials on a range of frontend topics. He is hopelessly addicted to jQuery.
His life is enriched by four wonderful children, a beautiful wife, and a close circle of family
and friends. This is his fifth book.

I would like to thank the hugely supportive and patient editorial team at
Packt, without whom this book would not exist. | would also like to thank
the reviewers, especially Ben Nadel and Cyril Pierron, who put aside

their own personal projects and dedicated countless hours to ensuring

the book's technical accuracy. I'd also like to say a big Hey! to some of

my closest friends, in no particular order; Andrew Herman, Steev Bishop,
Aaron Matheson, Eamon O'Donoghue, James Zabiela, Mike Woodford, and
John Adams.

[vww allitebooks.cond

http://www.allitebooks.org

Shaiful Islam completed his graduation in Computer Science and Engineering (CSE) from
IIUC (International Islamic University Chittagong), and loves web development and PHP.

He is a Software Engineer, with three years of experience in web development and a

keen lover of web technology. He also loves CSS, JQuery, Codelgniter, Cakephp, and Zend
Framework, which showed him the way to develop his career in web development and the
programming field.

His motto is: Work through best approach, commitment, skill, and keep smiling.

Currently he is working for "bGlobal Sourcing LLC" as a Software Engineer.

I would like to thank all of my friends, colleagues, and those senior
brothers who reviewed this type of book before and from whom | got
inspiration. Special thanks to everyone at Packt Publishing.

Ben Nadel is the chief software engineer at Epicenter Consulting, a Manhattan-based web
application development firm specializing in innovative custom software that transforms
the way its clients do business. He is also an Adobe Community Professional as well as an
Adobe Certified Professional in Advanced ColdFusion. In his spare time, he blogs extensively
about all aspects of obsessively thorough web application development at http://www.
bennadel . com/.

[vww allitebooks.cond

http://www.allitebooks.org

Cyril Pierron is an engineer, a web addict, tech savvy, and life curious. He started
programming at age 8, and has been working in telecommunications for the past 12 years.
He is married and a father of a lovely baby girl.

| would actually like to thank Twitter which gave me the opportunity to see
Packt Publishing message when they were looking for reviewers. Obviously
thanks to the Packt Publishing team for giving me the chance to work on
one of their titles. Lots of thanks to Dan Wellman who | actually followed
on Twitter previously to realizing | was reviewing one of his books. This is
an amazing piece that draws inspiration and Dan is the most cheerful,
open minded, and supportive person. Finally thanks to my wife who
showed quite some patience and support when | kept working on this
book after hours.

[vww allitebooks.cond

http://www.allitebooks.org

Support files, eBooks, discount offers and more

You might want to visit www . PacktPub. com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www . PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www . PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

@ PACKT! 5"

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?

¢ Fully searchable across every book published by Packt
¢ Copy and paste, print and bookmark content

¢ Ondemand and accessible via web browser

Free Access for Packt account holders

If you have an account with Packt at www . PacktPub . com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

[vww allitebooks.cond

http://www.allitebooks.org

vww allitebooks.conl

http://www.allitebooks.org

For Pat Spacagna, the greatest mother-in-law I could have wished for. You are fondly
remembered, but sorely missed. May you rest in peace always.

Tahle of Contents

Preface 1
Chapter 1: Introduction 7
Animation on the Web 7
The power of animated Uls 8
When to use animations 9
When not to use animations 10
Animation checklist 10
Animating with jQuery 10
The template file 11
Creating a project folder 13

A basic animation example 13
Time for action — creating an animated loader 14
Summary 17
Chapter 2: Fading Animations 19
Fading animations 20
Configuring the animations with arguments 20
jQuery's Unified Animation API 21
Enhancing simple CSS hover states with fadeln 22
Time for action — adding the underlying markup and styling 23
Time for action — scripting the animation 25
Fading elements out 27
Time for action — creating the dialog 29
Fading PNGs in IE 31
Using fadeToggle() for convenient state-checking logic 33
Time for action — showing and hiding with fadeToggle() 34
Greater opacity control with fadeTo() 36
Animating to partial opacity 37
Time for action — creating the example page 38

Table of Contents

Time for action — adding the behavior
Fading table-rows in Internet Explorer
Time for action — fading table-rows in IE
Showing and hiding
Flyout submenus with jQuery's show/hide logic
Time for action — animations with show/hide
Animated toggling
Time for action — replacing show and hide with toggle
Summary

Chapter 3: Managing Animations

39
43
43
46
47
49
52
52
53

55

Working with the queue
Viewing the queue
Time for action - viewing the queue
Adding a function to the queue
Time for action — adding a single function to the queue
Using a callback function to keep the queue moving
Time for action — keeping the queue running
Replacing the queue
Time for action — replacing the queue
Ensuring custom queues iterate correctly
Time for action — dequeueing functions
Stopping an animation
Time for action — preventing animation build-up using the stop method
Delaying queue execution
Clearing the queue
Useful properties of the jQuery object
Globally disabling animations
Changing the default frame rate
Summary

56
57
57
61
61
62
62
63
63
65
66
66
68
69
69
70
70
70
71

73

Chapter 4: Sliding Animations
Sliding elements into view
Time for action — creating a slide-down login form
Sliding elements out of view
Time for action - sliding elements up
Toggling the slide
Time for action — using slideToggle
Easing
Time for action — adding easing
Using an object literal to add easing
Time for action — using the alternative argument format

74
75
79
80
83
83
89
90
91
91

Table of Contents

The flicker effect 92
Time for action — avoiding the flicker effect 92
Time for action — fixing the flicker 97
Summary 29
Chapter 5: Custom Animations 101
The animate method 102
Per-property easing 102
An alternative syntax for animate() 103
Animating an element's position 103
Time for action — creating an animated content viewer 104
Time for action — initializing variables and prepping the widget 106
Time for action — defining a post-animation callback 107
Time for action — adding event handlers for the Ul elements 109
Skinning the widget 111
Time for action — adding a new skin 111
Time for action — creating the underlying page and basic styling 114
Time for action — defining the full and small sizes of the images 115
Time for action — creating the overlay images 116
Time for action — creating the overlay wrappers 116
Time for action — maintaining the overlay positions 119
Creating a jQuery animation plugin 121
Time for action — creating a test page and adding some styling 122
Creating the plugin 124
Time for action — adding a license and defining configurable options 124
Time for action — adding our plugin method to the jQuery namespace 125
Time for action — creating the Ul 127
Time for action — creating the transition overlay 129
Time for action — defining the transitions 130
Using the plugin 132
Summary 135
Chapter 6: Extended Animations with jQuery Ul 137
Obtaining and setting up jQuery Ul 138
A new template file 139
The new effects added by jQuery Ul 139
Using the effect API 140
The bounce effect 141
Configuration options 141
Time for action — using the bounce effect 141
The highlight effect 143

Configuration options 143

Table of Contents

Time for action — highlighting elements
The pulsate effect
Configuration options
Time for action — making an element pulsate
The shake effect
Configuration options
Time for action — shaking an element
The size effect
Configuration options
Time for action — resizing elements

The transfer effect
Configuration options

Time for action — transferring the outline of one element to another

Using effects with show and hide logic
The blind effect

Configuration options
Time for action — using the blind effect
The clip effect

Configuration options
Time for action — clipping an element in and out
The drop effect

Configuration options
Time for action — using the effect

The explode effect
Configuration options

Time for action — exploding an element
The fold effect

Configuration options
Time for action — folding an element away
The puff effect

Configuration options
Time for action — making an element disappear in a puff

The slide effect
Configuration options

Time for action — sliding elements in and out of view

The scale effect
Configuration options

Time for action — scaling an element

Easing functions

Time for action — adding easing to effects
Color animations

Time for action — animating between colors
Class transitions

143

145
145

145

147
147

147

149
149

150

152
152

152
155

155
156

156

157
157

158

159
160

160

162
162

163

164
164

164

166
166

166

168
168

168

170
170

170
173
174
174
174
176

Table of Contents

Time for action — transitioning between classes 176
Summary 178
Chapter 7: Full Page Animations 179
Animated page scroll 179
Time for action — creating the page that will scroll and its styling 180
Time for action — animating the scroll 183
The illusion of depth with parallax 186
A little help from the new cssHooks functionality 186
Time for action — creating the stage and adding the styling 187
Time for action — animating the background position 188
Animated single-page navigation 190
Time for action — creating individual pages and adding the styles 190
Time for action — adding the scroll navigation 193
Stop-motion animation 201
Imagery 201
Technique 201
Time for action — adding the markup and styling 202
Time for action — creating the frames and running the animation 202
Summary 205
Chapter 8: Other Popular Animations 207
Proximity animations 207
Time for action — creating and styling the page 208
Time for action — prepping the page for sliding functionality 210
Time for action — animating the scroller 213
Time for action — adding the mouse events 214
Time for action — adding keyboard events 215
Animated page headers 217
Time for action — creating an animated header 218
Marquee text 219
Time for action — creating and styling the underlying page 220
Time for action — retrieving and processing the post list 222
Time for action — animating the post links 227
Summary 229
Chapter 9: CSS3 Animations 231
CSS3 2D transforms 231
Understanding the matrix 232
Translate 233
Scale 234
Skew 236
Rotation 237

Working with transforms 238
vl

Table of Contents

jQuery and transforms 238
Internet Explorer transforms 239
CSS3 3D transforms 241
Animated rotation with jQuery and CSS3 242
Time for action — animating an element's rotation 242
Problems with IE 246
Animated skewing 247
Time for action — creating the underlying markup 248
and basic styling 248
Time for action — initializing the widget 250
Time for action — animating an element's skew 254
Time for action — skewing an element from left to right 259
Time for action — wiring up the controls 262
Summary 263
Chapter 10: Canvas Animations 265
The canvas API 266
The canvas element 266
Context methods 267
Native shapes 267
Paths 268
Images and patterns 269
Text 270
Transformation methods 271
Pixel manipulation 271
Drawing to the canvas 272
Time for action — drawing to the canvas 272
Canvas, IE, and the alternatives 277
APl methods that simply do not work 277
Time for action — making our code compatible with IE 278
Animating the canvas 281
Time for action — creating an animation on the canvas 282
Time for action — animating the white crosses 284
Time for action — animating the red crosses 286
Creating a canvas game 290
Time for action — creating the initial page 290
Time for action — the initial script 292
Time for action — adding the aliens to the page 293
Time for action — moving the aliens 294
Time for action — adding handlers to control the ship 297

Summary 301

Table of Contents

Pop Quiz Answers 303
Chapter 1 303
Basic animation with jQuery 303
Chapter 2 303
Using fadeln 303
Using fadeOut 303
Using fadeToggle() 304
Using fadeTo 304
Using show and hide 304
Chapter 3 304
Viewing the queue 304
Adding new items to the array 304
Keeping the queue running 305
Replacing the queue 305
Stopping an animation 305
Chapter 4 305
Sliding elements down 305
Sliding elements up 305
Using slideToggle 306
Using easing 306
Fixing the flicker 306
Chapter 5 306
Creating an animated content-viewer 306
Creating expanding images 306
Creating a plugin 307
Chapter 6 307
Using the effect API 307
Using show/hide logic 307
Easing, color, and class animations 307
Chapter 7 307
Animating page scroll 307
Implementing the parallax effect 308
Creating a single-page website 308
Implementing stop-motion animation with jQuery 308
Chapter 8 308
Implementing proximity animations 308
Creating a marquee scroller 308
Chapter 9 309
Implementing CSS3 rotation 309
Using the matrix 309
Chapter 10 309

[vww allitebooks.cond

http://www.allitebooks.org

Drawing to the canvas
Supporting IE

Animating the canvas
Creating canvas-based games

Index

309
309
310
310

311

jQuery is a cross-browser JavaScript library designed to simplify the client-side scripting of
HTML, and is the most popular JavaScript library in use today. Using the features offered by
jQuery, developers are able to create dynamic web pages. This book will act as a resource for
you to create animation and advanced special effects in your web applications, by following
the easy-to-understand steps mentioned in it.

jQuery 1.4 Animation Techniques: Beginner's Guide will allow you to master animation in
jQuery to produce slick and attractive interfaces that respond to your visitors' interactions.
You will learn everything you need to know about creating engaging and effective web
page animations using jQuery. The book uses many examples and explains how to create
animations using an easy, step-by-step, beginner's guide approach.

This book provides various examples that gradually build up the reader's knowledge and
practical experience in using the jQuery API to create stunning animations. The book starts
off by explaining how animations make your user interface interactive and attractive.

It explains the various methods used to make the element being animated appear or
disappear. It provides a set of steps to create simple animations and show fading animations.

You can later learn how to make complex animations by chaining different effects
together as well as how to halt a currently running application. You will find out how
to slide your animation elements and learn to create custom animations that can be
complex and specialized.

You will find out how to obtain and set up the jQuery Ul—the official user interface library
for jQuery. This book will tell you how to animate a page's background image, and will teach
you how to make images scroll in a certain direction and at a certain speed depending on the
movement of the mouse pointer.

Preface

Chapter 1, Introduction covers the basics including downloading jQuery and setting up a
development area, a brief history of animation on the Web, when and where not to use
animation, how animation can enhance an interface, and the animation methods exposed
by jQuery. A basic example of animation is also covered.

Chapter 2, Fading Animations looks at the fading family of animation methods including
fading elements in and out, fade toggling, triggering animations with show (), hide (),
and toggle (), and fading an element to a specific opacity.

Chapter 3, Managing Animations covers the animation queue and the methods jQuery
provides for managing it. We see how to clear the queue, how to add functions to it, and
how to clear it. We see how to add a delay between queued items and how to prevent
animations building up in the queue when they are not required.

Chapter 4, Sliding Animations looks at jQuery's sliding animation and covers how to slide
elements in an out of view and how to toggle the slide based on their current state. We also
look at how CSS positioning can affect animations and how to avoid a common pitfall when
using these methods in a drop-down menu.

Chapter 5, Custom Animations focuses on the animate () method, which jQuery provides
for us as a means of creating custom animations not already predefined. This extremely
powerful method allows us to animate almost any CSS-style property to easily create
complex and attractive animations.

Chapter 6, Extended Animations with jQuery Ul looks at the additional effects added by
jQuery Ul, the official Ul library built on top of jQuery. We look at each of the 14 new
effects as well as covering the easing functions built into the library.

Chapter 7, Full Page Animations looks at animations that form the main focus of the page.
Techniques we cover include animating page scroll, creating a parallax effect, and creating
basic stop-motion animations.

Chapter 8, Other Popular Animations looks at some common types of animations found on
the web including proximity animations triggered by the mouse pointer, animated headers,
and a modern-day equivalent to the marquee element.

Chapter 9, CSS3 Animations covers how we can use CSS3 to create attractive animations
driven by the latest CSS transforms and how jQuery can be used to make the process easier,
including the latest cssHooks functionality.

Chapter 10, Canvas Animations looks at the HTML5 canvas element and shows how it
can be used to create stunning animations without the use of Flash or other proprietary
technologies. The book closes with an in-depth example teaching how to create an
interactive game using nothing but HTML and JavaScript.

[2]

Preface

What you need for this hook

To get the most out of this book you should have some knowledge of frontend development,
preferably including JavaScript. Experience with jQuery is also preferable, but is not essential
as all techniques used in the book are discussed in full.

You should have a computer capable of running the latest browsers and preferably an Internet
connection. A code editing development software package will be of help, but again is not
essential provided you have a text editor of some description.

This book is written for web designers and frontend developers who already have good
knowledge of HTML and CSS, and some experience with jQuery. If you want to learn how to
animate the user interface of your web applications with jQuery, then this book is for you.

In this book, you will find several headings appearing frequently.

To give clear instructions of how to complete a procedure or task, we use:

Time for action - heading

1. Actionl
2. Action?2
3. Action3

Instructions often need some extra explanation so that they make sense, so they are
followed with:

What just happened?

This heading explains the working of tasks or instructions that you have just completed.

You will also find some other learning aids in the book, including:

These are short multiple choice questions intended to help you test your own understanding.

[31]

Preface

These set practical challenges and give you ideas for experimenting with what you
have learned.

You will also find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "The fadeIn () and fadeOut () methods perform
the least complex animations available via jQuery".

A block of code is set as follows:

$ ("#fader") .fadeOut (function() {
console.log (s (this) .queue()) ;
}) .fadeIn() .fadeOut () .fadeIn() ;

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

subMenuParent .mouseenter (function() {
$(this) .find ("ul") .toggle ("fast") ;

b;

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "In this case, we clear the
whole canvas, removing the space ship and any surviving aliens, and print the text GAME
OVER! to the center of the canvas".

Warnings or important notes appear in a box like this.

Q Tips and tricks appear like this.

[4]

Preface

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to
develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbackepacktpub. com,
and mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in
the SUGGEST A TITLE form on www . packtpub . com or e-mail suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

You can download the example code files for all Packt books you have purchased from your
account at http://www.PacktPub. com. If you purchased this book elsewhere, you can
visit http://www.PacktPub.com/support and register to have the files e-mailed directly
to you.

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you

find any errata, please report them by visiting http: //www.packtpub.com/support,
selecting your book, clicking on the errata submission form link, and entering the details
of your errata. Once your errata are verified, your submission will be accepted and the
errata will be uploaded on our website, or added to any list of existing errata, under the
Errata section of that title. Any existing errata can be viewed by selecting your title from
http://www.packtpub.com/support.

[5]

Preface

Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyrightepacktpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

[6]

Welcome to the jQuery 1.4 Animation Techniques: Beginner's Guide book. Over
the course of the book we'll look at each and every method that produces or
controls animations available in the jQuery JavaScript library. We'll see how
the methods are used, the arguments they are able to accept, and the different
behavior they produce. We'll also look at how to use a range of accompanying
resources including selected jQuery plugins and the jQuery Ul library.

In this introductory chapter, we'll look at the following topics:

A brief history of animation on the Web
Why animating your Uls is important
Animation methods provided by jQuery

The template file used by each of the examples

* 6 & o o

A basic animation example

In 1989 Compuserve released GIF89A, an enhanced version of the popular GIF image format
which allowed a sequence of frames to be stored as a single image and played by supporting
software.

The GIF format was already popular on what passed for the Internet in those days
(remember, the World Wide Web didn't even exist until 1991) due to its small file size,
lossless compression, and wide support. The enhanced version, which allowed animations
that anyone could create themselves provided they had supporting software, quickly became
popular also.

Introduction

In addition to animated GIFs, browser vendors added support for proprietary HTML elements
that handled animation natively, such as the <blink> and <marquee> elements, which
added different animated effects to text.

Neither of these elements was particularly attractive or successful and the W3C, as well as
leading industry accessibility and usability experts, advised against their use in most cases.
Different browsers at the time supported one or the other of these elements but not both.
Both elements were added by their respective vendors as part of the original browser wars.

In the late 1990s, popular browsers added support for a technique known as Dynamic HTML
(DHTML), which allowed scripting languages to modify the contents of a page after the

page had loaded. DHTML wasn't any single technology, but rather a collection of techniques
(JavaScript, CSS, the DOM, and so on) that worked together to enable a basic level of
interactivity and/or animation.

In fact, DHTML made it possible to create quite advanced animations, but restrictions in
the early implementations of the required technologies, as well as hugely varying browser
support, made DHTML tricky at best.

This era also saw the release and rise of Flash (and Shockwave, a competing technology that
was eventually subsumed by Macromedia), a vector and raster graphics format that allowed
audio and video streaming, frame-by-frame animation, and a host of other features. Flash
quickly became popular and at the time of writing is still the number one format for
web-based video, browser-based gaming, and advertising.

Gradual standardization of the DOM across (most) browsers, as well as the rise of JavaScript
libraries such as jQuery, which abstracted away the differences that remained between
browsers, have opened up animation to a much wider range of people than ever before.
The term DHTML isn't often used these days because of its connotations with poor support
between browsers, but the underlying principles and techniques that drive many interactive
and animated sites remain similar.

Today, in addition to the animations made plausible and accessible by JavaScript libraries

we have much newer, much more exciting possibilities with CSS3 and native HTML elements
such as the <canvas> element, which provides complete pixel-level control over an area

of the page. We'll be looking at some CSS3 animation techniques, as well as the <canvas>
element in more detail towards the end of the book. Flash-based animation is on the decline
for the first time this century, and new technologies are poised on the horizon.

The power of animated Uls

Modern operating systems use animations constantly to engage their users and to create a
more compelling computing experience. Used in the right way, animations provide assistance
to the users of the system, to lead and guide them through different tasks, provide context
or feedback, and reinforce positive actions.

Chapter 1

A good example of this is the way that applications are minimized in Windows 7, or OSX—the
application appears to squish down into the icon on the taskbar/dock, which shows the user
where to go when they want to return to the application. It's the simple details like this that
can be the most effective.

Good animations can lend an air of sleek professionalism to an interface and make

it appear more advanced or more modern. Apple's iPhone (or iPad) is a perfect
example—the seamless use of subtle animations and transitions within the operating
system and its applications allow the user to connect with the device in a profoundly
satisfying and immersive way. Anything that appears or disappears is faded smoothly

in or out, and menus and content panels slide in or out from the top or the sides. Sudden
events can unsettle or distract users, but a well-timed animation can help to make them
aware that something is happening or something is about to happen.

Be warned however—badly executed, clumsy, or overly pointless animations can do the
opposite, making your interface appear basic, poorly designed, or inferior. No animation
can be better than poor animation. Even if your application works perfectly, superfluous
animations can leave your users feeling frustrated and cause them to forgo your application
or website.

Desktop computers and a rapidly growing number of mobile and hand-held devices are
easily powerful enough to handle quite complex animations, and with integrated hardware
acceleration and more refined CSS3 and HTML5 making its way into the latest browsers, the
possibilities of what can be achieved on the Web are increasing exponentially.

Animations can make a great impression and enhance the user experience in the

following situations:

When showing or hiding windows, pop ups, and content panels

When something is moved to a different area of the window or page

When something has changed state on the page as a result of the action of the user

When something is transitioning between different states

* 6 & o o

To lead the user to a specific call to action or bring their attention
to something important

[vww allitebooks.cond

http://www.allitebooks.org

Introduction

When not to use animations

Too many animations or animations in unnecessary places can be damaging. Try and avoid
animations, or at least give them serious consideration, in the following situations:
When an action needs to be repeated very frequently by the user

Where the capabilities of the devices known to use the system are likely to be
incapable of displaying the animation adequately

¢ On time-sensitive actions or processes
Bear in mind that these are guidelines only, not laws which must be obeyed at all costs, and

they are certainly not definitive. There are few situations where animations should never,
ever be used and few situations where they must always be used.

Use your judgment to determine whether an animation is suitable for your application or
page and its intended audience. If possible, give your users the chance to enable or disable
animations based on their own personal preferences.

Animation checklist

Before implementing an animation in our pages or applications, consider the following
checklist of questions:

Is the animation appropriate for your target users?

Is the animation practical?

Does the animation add value or enhance the user experience?

* & o o

Will the animation run at appropriate speeds on the devices that are most likely to
be used?

If you can answer yes to all of the above, the animation will probably be a positive feature. If
you answered no to any of these questions, you probably need to stop and think about what
you are trying to achieve by adding the animation, and whether or not it could be better
achieved in some other manner.

jQuery provides a range of animation methods natively, without the use of additional effects
libraries or plugins. There are however, many plugins contributed from the online community,
including jQuery Ul, the official Ul library for jQuery, which extend jQuery's animation
capabilities. Natively, jQuery provides methods that add sliding and fading behavior with
minimal configuration, and which work cross-browser. It also exposes methods related to
managing the animation queue, and provides a means for creating custom animations that

[101

Chapter 1

work on almost all numerical CSS styles. Over the course of this book, we'll look at every
animation method that the library contains in detail. These methods are listed below:
animate ()

clearQueue ()

delay ()

dequeue ()

fadelIn()

fadeout ()

fadeTo ()

fadeToggle ()

hide ()

queue ()

show ()

slideDown ()

slideToggle ()

slideUp ()

stop ()

L 2R 2R SRR 2R 2R 2ER R 2R R R R R R R R 2

toggle ()

Allin all, it gives us a powerful and robust environment to easily add almost any type
of animation that we can conceive.

Animation is also a popular theme for plugins, with many available plugins that bring
different types of animations to our fingertips, for instant implementation with minimal
configuration. We'll look at several plugins later in the book.

The template file

Each of the example files we'll create throughout the course of this book will rely on a
common set of elements. Rather than repeatedly showing these same elements in every
single code section and example in the book, I'll show you them just once now:

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<titles></title>
<link rel="stylesheet" href="css/.css">
<!--[if lte IE 8]>

nl

Introduction

<script src=
http://htmlsshiv.googlecode.com/svn/trunk/html5.js"></script>
<! [endif]-->
</head>
<body>
<script src="js/jquery.js"></script>
<scripts
(function ($) {

}) (jQuery) ;
</script>
</body>
</html>

Downloading the example code

from your account at http: //www.PacktPub. com. If you purchased this
book elsewhere, you can visit ht tp: / /www . Packt Pub . com/support and
register to have the files e-mailed directly to you.

é'Q You can download the example code files for all Packt books you have purchased

Save a copy of this file now and call it template.html. This is the base file that we'll use
for every single example, so when we start working through the examples and | say "add

the following markup to the <body> of the template file", | mean insert it directly between
the opening <body> tag and the first <script> tag in the template file, as shown above.
Whenever we add any JavaScript to the template file, it will be added within the anonymous
function in the second <script> tag.

Let's just take a look at what the template file contains. We start out with the HTML5
doctype declaration as we'll be using plenty of HTML5 elements in our examples. We also set
the lang attribute of the <html > element to en, and <meta> tag with its charset attribute
to ut £ - 8, neither of which are strictly required but are nevertheless best practice.

Next comes an empty <title> element, to which we can add the name of each example,
and a <1ink> element with an incomplete href, ready for us to add the name of the
stylesheet that each example will use.

Because current versions (prior to version 9) of Internet Explorer don't support any HTML5
elements, we need to use Remy Sharp's html5shiv script to make this browser use them
correctly. We can link to the online version of this file for convenience using a conditional
comment that targets all versions of IE lower than version 9. Feel free to download html5.
js and store it locally if you plan on playing with the examples in IE while disconnected from
the Internet.

121

Chapter 1

To get the most out of the examples throughout the book, it would probably be wise to
upgrade to the latest stable release versions of the most common browsers, which at the
time of writing are Firefox 3.6.13, Chrome 9.0, Safari 5.03, and Opera 11, although expect
these to change quite rapidly.

At the time of writing, Internet Explorer 9 is available in beta release and is scheduled to
go to full release at some point in early 2011. IE9 does support a lot of HTML5 and CSS3,
so using the htm15shiv file may not be required.

The <body> of the page is empty except for some <script> tags. We'll obviously use
jQuery in every example, so the first tag links to that. The current version of jQuery is 1.5
at the time of writing (but like the browser versions, this is likely to change pretty quickly!).

In the second <scripts> tag we have an empty function, into which all of the example
JavaScript code we write will go. We pass the jQuery object into our anonymous function
and alias it to the $ character. Although not strictly necessary (except in the example where
we create a jQuery plugin), this is another good habit to get into.

So that's the template file that we'll be referring to and using in the code examples
throughout the book. Let's also take a moment to look at the folder structure that the
example files use. Create a project folder and call it jquery-animation or similar. Within
this, create three new folders and call them css, img, and js.

The HTML pages we create will go into the jquery-animation folder alongside the
subfolders. All of the CSS files we create will go into the css folder and all of the images that
we use in the examples will go into the img folder. The jQuery library and any additional script
files we use or create will go into the js folder. This is also the directory structure you'll find if
you download and unpack the accompanying code archive containing all of the examples.

Let's look at a basic example of the kind of animation that can help reassure our visitors that
something is happening. If the user performs an action, and the results are not displayed
immediately, feedback that their action is in the process of being executed is a helpful use
of animation. This is what we will end up with at the end of the example:

&) jQuery Loading Animation - ... [H[=] E3 I

J jQuery Loading Animation | |—

[
SR X

1131

Introduction

In the previous screenshot we can see the loading indicator centered beneath the trigger
<buttons. It features three separate loading bars which sequentially light up to show that
something is happening. Each bar is styled slightly differently.

Time for action - creating an animated loader

In this example we'll create a simple animated loading indicator that we can start when
a particular process is initiated, and stop once the process has completed.

1. Open up the template file that we just looked at and add the following <button>
to the <body> of the page (this should go before the <script > elements):

<button id="go">Initiate the action</buttonx>

2. Next, in the empty function in the second <script> element at the bottom of the
page, add the following code:

var loader = $("<divs</div>", {
id: "loader"
}) .css("display", "none"),
bar = $("") .css("opacity", 0.2),
loadingInterval = null;

for (var x = 0; x < 3; x++) {
bar.clone() .addClass ("bar-" + x) .appendTo (loader) ;

}

loader.insertAfter ("#go") ;

function runLoader () ({
var firstBar = loader.children(":first"),
secondBar = loader.children() .eq(1),
thirdBar = loader.children(":last");

firstBar.fadeTo("fast", 1, function(){
firstBar.fadeTo("fast", 0.2, function() {
secondBar.fadeTo ("fast", 1, function() {
secondBar.fadeTo ("fast", 0.2, function() {

thirdBar.fadeTo("fast", 1, function() {
thirdBar.fadeTo ("fast", 0.2);

(14l

Chapter 1

}i

$ ("#go") .toggle (function () {
loader.show() ;

loadingInterval = setInterval (function() ({
runLoader () ; }, 1200);
}, function() {

loader.hide() ;
clearInterval (loadingInterval) ;

3N

3. Save thefile as 1oading.html in the main project folder (jquery-animation).
Finally, we'll need to add a few basic styles to the example. Create a new file in your
text editor and add to it the following code:

#loader { margin:10px 0 0 36px; }

#loader span {
display:block; width:6px; float:left; margin-right:6px;
border:1px solid #336633; position:relative;
background-color:#ccffcc;

}

#loader .bar-0 { height:15px; bottom:-20px; }

#loader .bar-1 { height:25px; bottom:-10px; }

#loader .bar-2 { height:35px; margin-right:0; }

4. Save this file in the css folder as loading. css.

What just happened?

The <button> hardcoded onto the page is used to show and hide the loading animation.
This is done purely for the purpose of this example. In an actual implementation, we'd show
the loading animation at the start of a load operation, when new content was being added
to the page for example, and then hide it again once the operation was complete.

The first thing we do inside the outer function is set some variables. We create a new <div>
element as a container for the loader, using an object literal as the second argument to the

$ () (jQuery ()) method to give it an id of 1oader. We then set its style to display:none
with jQuery's css () method so that it is not immediately visible.

We also create a new element, which will be used as a template to create the

three individual loading bars. We set its opacity to 0.2 (20% opaque), also using the css ()
method. jQuery normalizes this style for us so that it works correctly in Internet Explorer. The
last variable, loadingInterval will be used to store the id of an interval so that we can
clear the interval when we need to. We set this to nul1 initially as the interval has not yet
been set.

151

Introduction

Once our variables have been defined and initialized, we then execute a short for loop, with
just three iterations. Within this loop we clone the span element we created, give it a class
name for styling purposes, and then append it to the container. Once the three loading bars
have been added to the container, we insert the container after the <buttons.

Next we define a function called runLoader. This is the function that will be repeatedly
called by the interval. The function doesn't run until the button is clicked. Within this
function we cache the selector for each of the three individual bars and then run a series
of nested functions.

We first increase the first loading bar to full opacity using the fadeTo () jQuery animation
method. This method takes a string indicating the speed of the animation as its first
argument, the opacity that the element should be faded to as its second argument, and a
callback function as the third argument. The callback function is executed as soon as the
animation ends.

In the callback function, we then fade the first loading bar back to its original opacity of 0.2.
We supply another callback function to this method call, and within this callback function
we animate the second loading bar to full opacity, and then back to its original opacity. The
process is repeated for the third loading bar.

Finally, we use the jQuery toggle () method to add two functions which will be executed
alternately each time the <buttons is clicked. In the first function, we show the loader
and then set the interval that repeatedly calls the runLoader () function. In the second
function, we hide the loader and clear the interval.

1. Thinking about what we discussed earlier regarding when and when not to use
animations, when would be an appropriate time to use this animation?

a. When there is a browser-intensive operation taking place

b. When there is a delay between something being requested from the server
and the request returning from the server, but where the processing required
by the browser is minimal

c. Asan alternative to a Flash animation

d. When animated GIF images are not supported

2. What arguments are used with jQuery's fadeTo () method?
a. Aninteger representing the ending opacity

b. An object containing configuration options for the animation

1161

Chapter 1

c. Astring or integer representing the speed or duration of the animation as
the first argument, the ending opacity of the target element, and optionally
a callback function to be executed when the animation ends

d. No arguments are required

I mentioned that we could use the loading animation when making requests and waiting for
a response. Try using it with jQuery's AJAX methods, showing the loader just before making
the request, and hiding it again once the response has been processed. The JSONP example,
which retrieves images of cats, on the jQuery website (at http://api.jquery.com/
jQuery.getJSON/) makes a great test case, although depending on the speed of your
connection, the loader may not be visible for very long.

In this introductory chapter, we looked at a brief history of animation on the Web including
how it began, early HTML elements and browser support, the rise of Flash, and the direction
it's heading in the not too distant future.

We also looked at how animations can be used in a user interface to enhance the user
experience. We saw some guidelines as to when animation should and shouldn't be used
and looked at some of the things we should consider when implementing animations.

We closed the chapter with a basic example looking at a loading animation. In this example,
we used the fadeTo () jQuery method to change the opacity of elements on the page, and
a simple interval to "play" the animation. We didn't cover the method in full detail, but we
saw one example of how it can be used. We'll look at this method in more detail in the next
chapter, which covers all of the fading animations provided by jQuery.

[l

In this chapter we'll be looking at the most basic types of jQuery animations, in
which the element being animated gradually appears or disappears. There are
several jQuery methods that deal with fading and we'll look at each of them in
turn throughout the chapter. These methods are:

fadeIn()
fadeOut ()
fadeTo ()
fadeToggle ()
show ()
hide ()

toggle ()

In this chapter, we will learn:

L 4

How to create simple animations with the fadeIn (), fadeOut (), and
fadeToggle () methods

How to control the ending opacity value of the animation with the
fadeTo () method
How to create fading animations with the show () and hide () methods

How to simplify our code with the toggle () methods

[vww allitebooks.cond

http://www.allitebooks.org

Fading Animations

The fadeIn () and fadeOut () methods perform the least complex animations available
via jQuery. They simply adjust the opacity of selected elements to either show or hide the
element, and can be used with no additional configuration. The fadeToggle () method
is almost as simple, but does provide some basic logic to check the selected element's
current state.

Elements that are hidden with display:none will be set to their correct display type,
(either display:block for block-level elements or display:inline for inline elements)
where possible at the start of a fadeIn () animation.

An element's natural display type is used wherever possible, so hidden <11 > elements are
setto display:list-item, and hidden <td> elements are set to display:table-cell.
IE however, has been known to have issues fading <tr> elements. In IE8 (and lower) for
example, the <tr> is shown immediately when the fadeIn () method is used, even with a
large duration.

Elements that are set to display:block (or are set to another display type but
nevertheless visible on the page) will be set to display:none at the end of a fadeOut ()
animation. Elements will switch between their visible and non-visible states when the
fadeToggle () method is used.

Elements that are to be shown using the fadeIn () method must be initially hidden with
display:none; while elements that are hidden with visibility:hidden; for example,
will remain hidden at the end of the animation.

In their simplest forms, these methods can be used without any additional configuration.
We can simply call the methods on any collection of selected elements without using
any arguments:

jQuery (elements) . fadeIn () ;
jQuery (elements) . fadeout () ;
jquery (elements) . fadeToggle () ;

When no arguments are provided, the animations will have the default duration of 400
milliseconds and the default easing of swing.

With arguments, the fading methods may take the following form, (square brackets denote
optional arguments):

jQuery (elements) . fadelIn ([duration], [easingl, I[callbackl) ;
jQuery (elements) . fadeout ([duration], [easing], [callbackl) ;
jQuery (elements) . fadeToggle ([duration] , [easing], I[callback) ;

[201

Chapter 2

We can control the duration of the animation using the duration argument to specify either
an integer in milliseconds or one of the strings slow or fast, which are shortcuts for
durations of 600 or 200 milliseconds, respectively.

We can also supply 0 as the duration argument, which will effectively disable the animation.
It's unlikely that we'd need to do this as it would be more efficient to not use an animation at
all, but it is useful to know. | should point out that the fade will still occur; it will just happen
over a duration of 0 milliseconds.

M The duration argument relates to the length of time the animation takes to run,
Q not the speed of the animation. Therefore, a higher value will mean a slower,
longer animation and not a faster, shorter animation.

The easing argument can be changed from its default value of swing to 1inear, which
causes the animation to progress at the same speed throughout the animation. The default,
swing, causes the animation to start slowly, speed up slightly, and then slow down towards
the end of the animation.

The number of easing types can be greatly increased using plugins. We'll look
A at the extra easing types added by jQuery Ul later in the book.

We may supply a callback function (either a function reference or an anonymous function,

with the latter being more common-place). This callback function will be executed after the
animation ends for each element in the selection, so it may be triggered more than once if
more than a single element is being animated.

In addition to the fading methods looked at in this chapter, it is worth noting at this stage
that any of the animation methods exposed by jQuery can accept the strings slow or fast
as the value of the duration argument, and they will always equate to durations of 600 or
200 milliseconds, respectively.

Any other strings that are supplied will be ignored and will cause the animation to take its
default duration of 400 milliseconds (as if no duration argument had been supplied). Any
integer, representing an actual length of time in milliseconds, can also be supplied.

Additionally, all jQuery animation methods can have easing configured, and all can accept a
callback function as an argument. Each of the animation methods work and are used in the
same way; it is just the effect which differs. This makes using the methods easy and intuitive.

21

Fading Animations

A useful point to note is that the arguments do not need to all be provided when only

the callback function is required. If we don't need to set the duration or easing arguments,
we can just supply the callback function and jQuery will still execute it at the end of

the animation.

It is standard practice to add hover-states for the items in a navigation menu using CSS, but
with jQuery we can progressively enhance simple CSS hover states into full-on animations
that give a much more attractive and professional effect when hovered.

In this example, we will see how to:

¢ Disable standard CSS hovers when JavaScript is enabled
¢ Add the additional HTML markup required for the animations
¢ Implement attractive fadeIn () animations triggered by hovering

We'll end up with a navigation menu in which the hover-states are animated into view
instead of being shown instantly, as shown in the following screenshot:

Diuery fadeln) MosllaFrciox —— WEM||
J. || iQuery fadelIn() | - F
Home Articles Code Demos Portfolio
’ﬁ [= |Done ’7@ ¥Slow E’@ 4
(©juery fadeln) MosiloFeclox ______________ MBEIH|
| 1ouery fadeIn() [= |-
Home{b Articles Code Demos Portfolio
[[[oone ¥ R (WD
() query fodein() MozllaFreiox _______________________MER]||
J. || iQuery fadelIn() | = F
Home{b Articles Code Demos Portfolio
5 [[oone ¥ R [#]D
(©jquery fadeln) MosllaFretox —— MEH||
J' || iQuery fadeIn() | - F
Home{b Articles Code Demos Portfolio
53 [[omne (¥ R [®]D

[22]

Chapter 2

The previous screenshot shows how the hover-state is applied to one of the menu items
over a short period of time, instead of instantly, as it would normally be with pure CSS,
The animation proceeds from top to bottom in the previous picture.

Time for action - adding the underlying markup and styling

To begin with, we need to create the elements that will be used by the example and the
styling to set their visual appearance.

1. Add the following underlying markup for our navigation menu to the template file
we created in Chapter 1, Introduction:

<navs
<ul class="purecss">
Home
<a href="#" title="Articles"sArticles</1li>
Code</1li>
Demos</1li>
<li class="last">
Portfolio
</1li>
</uls>
</navs>

2. Save the page in the jquery-animation directory as fadeIn.html.

3. We'll also need to link to a custom stylesheet for this example. Add the following
code to the <head> of the page:

<link rel="stylesheet" href="css/fadeIn.css">

4. Next we should create the stylesheet we just linked to. In a new file, add the
following code:

body { text-align:center; }

nav {
display:inline-block;
font:normal 18px "Nimbus Sans L", "Helvetica Neue", "Franklin
Gothic Medium", Sans-serif; border:2px solid #aaa; -moz-border-
radius:7px; -webkit-border-radius:7px; border-radius:7px;

}

nav ul { list-style-type:none; padding:0; margin:0; }

nav 1i { float:left; border-right:2px solid #aaa; }

nav a {
display:block; padding:10px 20px; position:relative; color:#333;

[231

Fading Animations

text-decoration:none; background-color:feee;
border:1px solid #fff;

}

nav span {
display:none; width:100%; height:33px; padding-top:10px;
position:absolute; top:0; left:0; background-color:#ccc;

}

nav .purecss a:hover { background-color:#ccc; }

nav li.first a {
-moz-border-radius:7px 0 0 7px;
-webkit-border-top-left-radius:7px;
-webkit-border-bottom-left-radius: 7px;
border-radius:7px 0 0 7px;

}

nav li.first span
-moz-border-radius:7px 0 0 7px;
-webkit-border-top-left-radius:7px;
-webkit-border-bottom-left-radius: 7px;
border-radius:7px 0 0 7px;

}

nav li.last { border-right:none; }

nav li.last a {
-moz-border-radius:0 7px 7px 0;
-webkit-border-top-right-radius: 7px;
-webkit-border-bottom-right-radius:7px;
border-radius:0 7px 7px 0;

}

nav li.last span {
-moz-border-radius:0 7px 7px 0;
-webkit-border-top-right-radius: 7px;
-webkit-border-bottom-right-radius:7px;
border-radius:0 7px 7px 0;

}

5. saverthis file as fadeIn.css in the css folder within our project folder.

What just happened?

We use the HTML5 <nav> element as the logical container for our navigation menu. The
menu itself is created from a simple unordered list, where each link is made from an anchor
element within a list item. This is the simple, semantic structure that will be rendered by
default. Additional enhancements will be made in our script.

[24]

Chapter 2

Most of the styles we used in this example are purely for the layout and appearance of this
example and can be changed to suit your implementational requirements. What's important
is that the hover states for the navigation links are provided using the class name pure-css
attached to the outer <uls element.

We do use a CSS3 style in this example, which some readers may not be familiar with. We'll
be looking at CSS3 in much more detail towards the end of the book but, we'll cover this one
for the benefit of those that have not used it before.

The CSS3 style we used was the border-radius style, which gives the element rounded
corners in supporting browsers. Few browsers currently support the true border-radius
CSS3 style property (at the time of writing, only Opera supports this style property natively),
but Firefox and Webkit-based browsers do support it with their vendor-prefixes, -moz- and
-webkit- respectively.

Internet Explorer 8 and below do not support the border-radius style property, or any
variant of it, and these browsers do not provide their own vendor-prefixes to use. However,
the menu itself and the example code, still work perfectly in these browsers. The only
difference is, they have square corners and not rounded ones.

If this is acceptable, then everything is fine, and you have super-simple rounded corners
without the additional HTTP request(s) and payload that images would require in supporting
browsers. If rounded corners are critical to your application or interface, we can always
provide these to IE using conditional comments.

Time for action - scripting the animation

Now we just need to add the script that will animate our simple navigation menu.

1. Add the following code within the anonymous function at the bottom of
the <body>:

var ul = $("nav ul");
ul.removeClass ("purecss") ;

ul.find("a") .each (function () {

var a = $(this);

a.append ("" + a.text() + "");
I3
ul.find("a") .hover (function() {

$(this) .find ("span") .fadeIn("slow") ;
}, function() {
$(this) .find ("span") .hide () ;

13N

1251

Fading Animations

What just happened?

The first thing we did was cache a reference to the located inside our <nav> element.
We'll be referencing it several times so it is more efficient to only select it from the DOM a
single time. For performance reasons, it is generally best to minimize the number of DOM
operations that are carried out.

We then remove the purecss class from the element so that our standard CSS hover states
are no longer effective. We use JavaScript to do this so the basic hovers still work if JavaScript
is disabled in the browser.

Next we insert a new element into each of the anchors. We'll perform the
animation on each of these elements so that anchors themselves remain clickable
and functional. As the elements are styled to fit exactly within their parent <a>
elements, we also add the text from the anchor into the <spans.

Finally, we use jQuery's hover () method to attach mouseover and mouseout event
handlers to the <a> elements. This method accepts two functions; the first is executed on
mouseover, the second on mouseout.

In the first function, we select the inside the <a> that was hovered on and call

the fadeIn () method specifying the slow string. In the second function, we simply hide
the again. When we run the page in a browser, we find that the hover states are
activated when we hover over the list items. It's a great effect, and one | use frequently
when building clients' sites. In this example, we have a potential issue in that the link text
is duplicated in the elements that are added to each link. It would be trivial to hide
the link text when the <spans is made visible, which we could do using a callback function
supplied as an argument to the fadeIn () method.

Pop quiz-using fadeln

1. Which strings can be passed into the method as the first argument?
The strings short or 1ong, which refer to the duration of the animation

b. The strings 1ow or high, which refer to the opacity that the element
is faded to

c. The strings slow or fast, which refer to the duration of the animation

d A hexadecimal string specifying the background-color of the element

1261

Chapter 2

2. What else can be passed into the method?

a. A string specifying the easing function to use for the animation, and a callback
function to be executed once the animation ends

b. An object containing additional configuration options
An array containing additional configuration options

d. A callback function to be executed at the start of an animation and a callback
function to be executed at the end of the animation

In this example, we used the fadeIn () method to show the hidden elements on
mouseover, but hide the element straight away on mouseout. Have a go at extending the
example so that the elements are faded out on mouseout instead of being hidden straight
away using the fadeOut () method.

Fading elements out

The fadeOut () method is syntactically identical to fadeIn () in that it accepts the same
arguments and adjusts the opacity of the selected element, except that with the fadeout ()
method, the target element is hidden instead of being shown. Let's look at this method in
action with a brief example.

When elements need to be removed from the page, using a subtle fade out can be much
more effective than just removing the element in question. We may have an overlay of some
description, like a dialog box for example, on the page which can be closed by the visitor.
Instead of having it disappear instantly, we can animate its disappearance smoothly.

In this example, we'll look at the following aspects of using fadeOut () :

¢ Hiding an element with the fadeout () method
¢ Using a numerical argument to control the duration

¢ Running additional code once the animation completes

[21]

Fading Animations

This is how our dialog will disappear from the page:

@ jQuery fadeOut() M= eS|
< + | fie:/f/Cjapa & | | Qr Google »

A dialog box of some description

Lorem ipsum dolor sit amet, consectetur
adipisicing elit, sed do eiusmod tempor incididunt
ut labore et dolore magna aliqua. Ut enim ad
minim veniam, quis nostrud exercitation ullamco
lahoris nisi ut aliquip ex ea commodo consequat.

il

@ jQuery fadeout{) I[=] A ||
] + | file:///Cjapa & | | Q- Google »

A dialog box of some description

Lorem ipsum dolor sit amet, consectetur
adipisicing elit, sed do eiusmod tempor incididunt
ut labore et dolore magna aliqua. Ut enim ad
minim veniam, quis nostrud exercitation ullamco
laborig nisi ut aliguip ex ea commodo consequat.

@ jQuery fadeOut() PI=1ES | |
-1 + @ fie:f/Ci/apa & | | Qr Google »

In the previous screenshot, we see the dialog gradually fading from view once the <button>
has been clicked. The animation proceeds from top to bottom in the previous image.

[281

Chapter 2

Time for action - creating the dialoy

We'll start again by creating the underlying markup that the dialog is built with and add any
necessary styling.

1.

First, add the following code to the <body> in a fresh copy of the template file:
<div id="dialog">

<header>A dialog box of some description</headers

Lorem ipsum etc, etc.

<footers<button>0Ok</button></footers>

</div>

We'll also need to link to a stylesheet in the <heads> of the page:

<link rel="stylesheet" href="css/fadeOut.css">

Save this page as fadeOut .html in the main project folder. The code for the
stylesheet is as follows:

#dialog {
background-color:#fff; width:300px; padding:10px;
font:normal 14px "Nimbus Sans L", "Helvetica Neue", "Franklin

Gothic Medium", Sans-serif;

border:1px solid #aaa; -moz-border-radius:7px;
-webkit-border-radius:7px; border-radius:7px;
-moz-box-shadow:2px 2px 5px #000;
-webkit-box-shadow:2px 2px 5px #000;
box-shadow:2px 2px 5px #000;

}

#dialog:after {
content:""; height:0; display:block; clear:both;
visibility:hidden;

}

#dialog header ({
display:block; padding-bottom:5px; margin-bottom:10px;
font-weight:bold; font-size:16px; border-bottom:1lpx solid #aaa;

}

#dialog footer ({
display:block; padding-top:10px; margin-top:10px;
border-top:1lpx solid #aaa;

}

#dialog button { float:right; }

1291

[vww allitebooks.cond

http://www.allitebooks.org

Fading Animations

4. Save this in the css folder as fadeout . css. To perform the fadeoOut () animation,
we'll need just a tiny bit of JavaScript. Inside the anonymous function in the second
<scripts> element at the bottom of the <body>, add the following code:

$ ("#overlay button") .click (function() {
$ ("#overlay") .fadeOut (500, function() {

S (this) .remove () ;
1
13N

What just happened?

In our code, we attach a click handler to the <buttons> using jQuery's click () helper
method. The anonymous function we specify as an argument is executed whenever

the button is clicked. Within this function we select the dialog using its id and call the
fadeOut () method on it using a numerical argument of 500 milliseconds instead of one
of the acceptable strings.

We also specify a callback function as the second argument to the fadeOut () method.
As there is only a single element in the selection (the element with an id of overlay),
this function will be executed only once. Inside this callback function, the this keyword
is set to the current element, so we can easily manipulate it from within the callback.

All the function does is remove the dialog from the DOM. This behavior would be
appropriate when the element to be removed was a one-time-only dialog that would either
not be shown again during the current session, or would be generated again from scratch by
the system when required.

We'll see the dialog when we load the page. In a proper implementation, it would probably
be centered in the viewport and be absolutely positioned so that it appears to float above
the page (additionally the CSS3 shadow that we used would reinforce this impression).

It would also more than likely be modal, so the underlying page would be obscured, or
otherwise shielded from interaction, until the dialog is closed.

To avoid unnecessary cluttering of the example however, our dialog is alone on an empty
page. Clicking the <button> will cause the dialog to fade away and then be removed from
the page.

The animation is fairly quick and less jarring than instantaneous removal of the dialog,
but | should point out that fading animations can often annoy users if they are too frequent,
take too long to complete, or are felt to be completely unnecessary.

Chapter 2

For example, the application may generate a large number of dialogs during any single
session and if the user has to repeatedly wait half a second every time they close a dialog,
they may perceive that the animation is wasting their time or otherwise acting as a barrier
to their interaction.

| believe it is best to pass control of whether the animation is used or not back to the visitor,
and provide an option to disable the animation if the system is going to be generating them
on a regular basis. This way, users will be able to remove the effect if they do feel that it is

a barrier.

Pop quiz - using fadeOut

1. What happens if the integer 0 is supplied as the value of the duration argument?
a. The animation occurs instantly
b. The animation runs at the default speed of 400 milliseconds
¢. Animations with jQuery are disabled globally
d. Ascript error is thrown
2. How can we access the element that was animated within a supplied
callback function?
a. The callback function is passed a reference to the element that was animated
b. By reselecting it from the DOM
c. Using the jQuery property animatedElement

d. Using the this keyword (optionally wrapped in jQuery functionality
($ (this))

A popular implementation that makes use of fade-out animations is a "grow!" style
messaging system where feedback is provided in the form of messages that pop up in the
viewport before fading away; why not create your own growl style messaging system that
utilizes the fadeOut () method.

In the previous examples, we've looked at fading in and out using CSS background colors to
illustrate the effect. We could easily extend it to include background images instead, which
generally work just as well, if not better, with this effect.

[311

Fading Animations

One thing to watch out for when using background images in conjunction with fading
animations however is that problems can be encountered with the display of the images
when the animations are viewed in Microsoft's Internet Explorer.

It is known as the black-border problem and causes a black aura to be displayed around the
image when a PNG with alpha-transparency (semi-opacity) is used as the background image.
It really only affects IE8 as there are work-arounds that can be used to fix the issue in both
IE7 and IE6.

Here's a screenshot of the problem:

,f_" TE Black Border Problem - Windows Internet Explo... [H[x] E3

@a - Ié‘ C:\apachesite\jquery- ‘l 2| K B

i.f Favorites (& [E Black Border Problem | |

/e computer | Protected Mode: Off LS

The previous screenshot shows a fadeout () animation in progress. The jagged black border
around the logo is the issue we face in IE and is caused by Microsoft's proprietary filter
properties, which jQuery uses to set the opacity (and produce the fade) in IE.

There are several different fixes for this issue including:

¢ Fading the container of the element instead of the element directly

¢ Giving the container, or the element that is faded, a background color

Whichever solution works best will depend on the situation at hand. An alternative solution,
but which only fixes the issue in both IE6 and IE7, involves using the DD _BelatedPng.js
library, to display alpha-transparent PNGs using VML. Unfortunately this doesn't work in IES,
so sometimes a combination of fixes may be required.

[321

Chapter 2

The following screenshot shows an image in IE8 fading out correctly:

/2 IE Black Border Problem - Windows Internet E... =] B3

— s,

|g, C:'»,apadﬁesite'n,jquery-j 4[| X

7 Favorites {€ IE Black Border Problem | |

jB« Computer | Protected Mode: OFf [+ = [H100% - 4

We can see in the previous screenshot that there are no black borders around the
image while it is fading out in IE8. In this example, | put the PNG into a container, set the
background-color of the container to white, and faded out the container.

Using fadeToggle(] for convenient state-checking logic

The fadeToggle () method exposed by jQuery will either fade an element in, or fade it out
depending on the current state of the element. Elements that are visible will be faded out,
while elements that are hidden will be faded in.

When elements are faded out with fadeToggle (), they will automatically be set to
display:none at the end of the animation so that the element doesn't affect the layout
of the page.

Fading Animations

Time for action - showing and hiding with fadeToggle()

As before, we first create the HTML markup and CSS styling required by the example.

1. Open up anew copy of the template file and add the following code to the <body >
of the page:

<form>
<label for="name">Enter your name:
<input id="name" name="name" type="text">

Your name. You know, the thing that people
call you by</spans>
</label>
</form>

2. Save this page as fadeToggle .html. Next we need to add a few styles. In a new
page in your text editor, add the following code:

form { width:280px; margin:100px auto; position:relative; }
input { margin-left:5px; }
#help {
display:block; width:16px; height:16px; margin-top:3px;
float:right; cursor:pointer;
background:url (../img/help.png) no-repeat;

}

#helpText {
display:none; width:100px; height:75px; padding:12px 18px;
position:absolute; left:115px; top:-90px;
font:normal 12px "Nimbus Sans L", "Helvetica Neue",
"Franklin Gothic Medium", Sans-serif;
background:url (../img/bubble.png) no-repeat;

}

3. Save this file as fadeToggle. css in the css folder. Finally, let's add the script
that will make the example work. Within the anonymous function in the second
<script> element, add the following code:
$ ("#help") .click (function()

S ("#helpText") . fadeToggle () ;

3N

What just happened?

On the page we have a simple <form> containing a label, an <input>, and a couple of
<spans>elements. The first is used as an icon, while the second contains
help text to prompt the user for the value the <input > expects.

341

Chapter 2

The CSS is used mostly to lay out the example page, and to give the elements their
required sizing and background images. The most important rule is setting the help text to

display:none, although this isn't actually critical like when using the fadeIn () method

as the fadeToggle () method will work on both visible and hidden elements.

In the script we simply call the fadeToggle () method on the second each time the
first <spans is clicked. The page will alternately show and hide the help text on each click of
the help icon.

With this method, the natural display style of elements is not maintained. When our
helpText is shown, it will have its display set to block, as opposed to a
element's natural display type inline. In this example, this actually helps us—if the
 were set to its natural inline display, our widths and padding would not work
correctly. But it is something we need to be aware of when using the method.

Here's how the page should look after clicking the icon the first time:

[iQuery fadeToggleQ

< C M O file:///C:/apachesitefiquery-anim: Ty R

Enter your name: @

[iQuery fadeToadl=()

L C N @ fie:/y/C:/apachesite/jquery-anim: 57

Enter your name: @

[iQuery fadeToagl=()

€ C M O fie:///C:fapachesitefiquery-anim: 55 W

Your name. You
kmow, the thing that
people call you by

Enter your name:

Fading Animations

In the previous screenshot, we see our help text gradually fading into view. Once the icon is
clicked a second time, the animation will be shown in reverse, with the element going from
full opacity to full transparency.

Pop quiz - using fadeTogyle(

1. Why should we use caution when using fadeToggle () ?

a. Because elements still affect the flow of the page once they have been
faded out

b. Because of the black border problem in Internet Explorer

c. Because the natural display style of an element is not always maintained,
so inline elements will be set to display:block when they are faded in

d. Because the method does not check the current state of the element it is
called on

Have a go hero - extending fadeTogyle()

In this example we faded an element that has an alpha-transparent PNG as its background
image. This means that the page will suffer from the black border problem in all current
versions of |IE. Have a go at using one of the fixes described earlier in the chapter to fix
the problem.

Greater opacity control with fadeTo()

With the fadeTo () method we can use the same arguments as before, but we can also
control the final opacity of the element that is being animated. This is very useful for
situations where we don't want to fade an element all the way in or out.

Unlike the fadeIn () or fadeOut () methods, the fadeTo () method must be supplied
with both a duration and an ending opacity at least. The duration argument accepts the
same values as with the fadeIn (), fadeToggle (), and fadeOut () methods.

The ending opacity is provided as the second argument and should be a decimal number
between the integers 0 and 1, which represents the percentage of opacity, with 0 being fully
transparent, and 1 being fully opaque. 50% opacity is therefore specified as 0. 5.

If easing is required, this should be provided as the third argument and can take the strings
swing (the default) or 1inear, like the other methods we have looked at so far. A callback
function to be executed for each selected element may also be supplied.

Chapter 2

The fadeTo () method is used in the following way:

jQuery (elements) .fadeTo (duration, ending-opacity, [easing],
[callback]) ;

Animating to partial opacity
In this example we have a table in which certain rows can be removed. When one of the
rows is selected for removal by the user, we can animate the row to partial opacity while
requesting confirmation of the removal. In this section we will cover the following topics:
¢ The required arguments of the fadeTo () method
¢ Setting a specific ending opacity

¢ A work-around for fading table-rows in IE

Once a table row has been faded, it will appear like this:

) jQuery fadeTo() - Mozilla Firefox

File Edit Wiew History Delidous Bookmarks Tools Help

.3:'. c .4 ﬁ' E Il_,|ﬁle:,.WC:fapamesitequuery—animaﬁorﬁ:? * I'.'.."lGoogle P
Ejmervfadﬂn{} [=] |T

Private Messages

Recieved Subject

Re: tomorrow

Re: tomorrow

Yesterday Re: tomorrow

Yesterday Re: tomorrow

Really delete? Cancel

| file:///C: fapachesite fiquery-animation ffading ffadeTo. hitml# Wl E ¥Slow ,ﬁ v

The middle row of the table shown in the previous screenshot has been faded
to 50 % opacity.

[311

Fading Animations

Time for action - creating the example page

This example requires significantly more HTML than before, although we still add this, as well
as the styling first.

1. Begin by adding the following example markup to our template file:

<div id="messageList">
<header>Private Messages</header>

<table summary="This table lists the personal messages you
have received"s>

<tr><th class="rec">Recieved</th><th class="sub">Subject</th><th
class="from">From</th><th class="del">Delete</th></tr> <tr><td
class="rec">Today</td><td class="sub">Re: tomorrow</td><td
class="from">Bob</td><td class="del"><a href="#" title="Delete
Message">x</td></tr>
<tr><td class="rec">Today</td><td class="sub">Re:
tomorrow</td><td class="from">Bill</td><td class="del">
x</td></tr>

<tr><td class="rec">Today</td><td class="sub">Re:
tomorrow</td><td class="from"></td><td class="del">
x</td></tr>

<tr><td class="rec">Yesterday</td><td class="sub">Re:
tomorrow</td><td class="from"></td><td class="del">
x</td></tr>

<tr><td class="rec">Yesterday</td><td class="sub">Re:
tomorrow</td><td class="from"></td><td class="del">
x</td></tr>
</table>
</div>

2. Save this page as fadeTo. html in the main project folder.

3. To create the stylesheet for this example, add the following code in a new file in
your text editor:

#messagelList {
width:540px; padding:10px 20px; margin:auto;
font:normal 14px "Nimbus Sans L", "Helvetica Neue", "Franklin

Gothic Medium", Sans-serif;

background-color:#666; border:1px solid #aaa;
-moz-border-radius:7px; -webkit-border-radius:7px;
border-radius: 7px;

}

#messagelist header ({
color:#eee; padding-left:10px; font-size:20px;

Chapter 2

#messageList table {
border-collapse:collapse; margin:10px 0; background-color:#666;

}

#messageList th, #messageList td {
width:100px; padding:10px; color:#eee; text-align:left;
border-bottom:1px solid #eee;

}

#messageList td { background-color:#ccc; color:#000; }

#messageList th.sub { width:220px; }

#messagelList th.del { text-align:right; }

#messageList table a {
padding:0 7px 2px; float:right; background-color:#ea3c37;
color:#fff; text-align:center; text-decoration:none;
border:1px solid #990000; -moz-border-radius:5px;
-webkit-border-radius:5px; border-radius:5px;

}

.confirm { color:#eee; font-size:16px; }

.confirm button { margin:0 10px; }

.confirm a { font-size:12px; color:#ffcaca; }

4. Save this as fadeTo.css in the css folder.

What just happened?

The underlying HTML is relatively simple; we have an outer containing <divs within which
reside a HTML5 <header> element and a <table>. Each row of the <table> corresponds
to a received message. Don't forget to link to the fadeTo. css file in the <head> of the new
page, as we have in previous examples.

As with previous examples, the CSS we use for this example is purely arbitrary and is used
simply to make the example presentable. We use the CSS3 rounded corner style property
again, to give a nice effect to the widget. Once again, these styles won't work in IE, but the
worst that will happen is that it will have square corners.

Time for action - adding the hehavior

Finally we can add the script that will make it all work. In the empty function at the bottom
of the <body> element, add the following:

var messagelist = document.getElementById("messagelList"),
messages = $("table", messagelist),
confirmDiv = $("<div></divs", {
"class": "confirm",
text: "Really delete?"

[vww allitebooks.cond

http://www.allitebooks.org

Fading Animations

1

remove = $("<button></button>", {
id: "delete",
text: "Yesg"

}) .appendTo (confirmDiv) ,

cancel = $("<a>", {
href: "#",
id: "cancel",
text: "Cancel",

title: "Cancel"
}) .appendTo (confirmDiv) ,

deleteRow = function(e)
e.preventDefault () ;
$(this) .closest ("tr") .fadeTo (400, 0.5, function() {

$(this) .addClass ("pre-delete") ;
confirmDiv.clone () .insertAfter (messages) ;
messages.find("a") .unbind () ;
3N
Vi

messages.find("a") .click (deleteRow) ;

$("#delete, #cancel").live("click", function(e)
e.preventDefault () ;

if (this.id === "delete") ({
messages.find (".pre-delete") .fadeTo (400, 0, function() {
$(this) .remove () ;
3N
} else {
messages.find (".pre-delete") .removeClass ("
pre-delete") .fadeTo (400, 1, function() {
var el = $(this);
if (el.css("filter")) {
el [0] .style.removeAttribute ("filtexr") ;;

3N
}

$(".confirm", messagelist) .remove() ;

messages.find("a") .click (deleteRow) ;

3N

[401

Chapter 2

What just happened?

Our script is a little longer than those in previous examples, but still relatively simple; let's
step through what happens. First we get a reference to the outer container for our message
widget. We get the element using the standard JavaScript document .getElementById ()
function. We can use this DOM node as a context for jQuery methods to make selecting
elements from the DOM faster. Selecting elements by class name is not very efficient

(even with jQuery), so being able to pass in a DOM node to a jQuery selector to tell jQuery
where to begin for searching for the element makes our queries much faster than searching
through the entire document each time we want to get an element using its class name.

We also store a reference to the <table> element as we'll need to refer to this element
throughout the script. Instead of creating a new jQuery object and selecting the element
each time we need to manipulate it, we create a single jQuery object representing the
element (notice how we use our messageList variable as a context for the selection)
and store it in a variable for use as many times as we require with no additional overhead.

Next we create a series of new elements for use later in the script. We create a container
<divs> and give it some attributes including a class name and some text. Note that the
word class is surrounded with quotation marks to prevent Internet Explorer throwing
script errors.

We also create a new <buttons> element and a new <a> element and give both of these
some attributes too. The new button and anchor elements are appended to the new
container. These elements are not added to the page however, they are kept in memory
for use later on in the script.

Next we add an inline function stored in the deleteRow variable, which is used to handle
clicks on the delete icons in each row of the <table>. Within this function we first use the
preventDefault () JavaScript method to prevent the delete link being "followed" by the
browser and jumping back to the top of the page. We then select the closest parent <tr>
element and call the fadeTo () method specifying a duration of 400 milliseconds

(the default) and an ending opacity of 0. 5.

We also supply a callback function that is executed when the animation ends. We use this
function to add a class name to the row so that we can easily refer to it later on. We then
create a copy of the container element (including the child elements we added to it) that we
created at the start of the script using jQuery's clone () method. Copying these elements
from memory is much more efficient than creating them from scratch each time the function
is executed. The copy of the container is then inserted into the widget after the <tables.

To prevent other messages being selected for deletion (and a build-up of confirmation
messages), we unbind the click handler from the delete links in each row. We don't need

to select the links from the DOM at this point. We use the messages variable (containing a
reference to the <table>) and jQuery's £ind () method to select the links without needing
to create a new jQuery object.

(a1l

Fading Animations

Next we pass a reference to the deleteRow function that we just defined to jQuery's
click () event-helper method. We don't provide the deleteRow function itself as an
argument to the click () method this time, as it is easier and less repetitive to pass the
function reference to the methods instead of defining it several times.

We then add a click handling function to the <buttons> and the <a> elements that exist
in the confirmation panel and are inserted each time a delete icon is clicked. We use the
live () method here so that we don't have to rebind to each handler whenever one of
these elements are created.

Whether the <button> or the Cancel link is clicked, we first check the id of the clicked
element (accessible via the this keyword) to determine which element was clicked.
Because all we are checking is the id of the element, we don't need to wrap the this
keyword in jQuery functionality (3 ()).If the id is delete, we know the button was clicked
and can proceed with fading out the <tr> so that it is completely transparent, and then
removing it from the page altogether using a callback function supplied as an argument to
the fadeTo () method.

If the id is cancel, we know that the <a> element was clicked. In this case, we stop the
browser from following the link with preventDefault (), remove the pre-delete class
name from the <tr>, and then fade it back to full opacity.

We also use a callback function for this method too. Within it we check whether the element
that was faded contains a £ilter style property, and if it does, we remove the filter
attribute from the element. This fixes the issue with aliased text in IE which affects elements
after they have been faded.

This is all we need to make our fadeTo () example work as intended in most browsers.
Whenever one of the delete icons is clicked, the corresponding row is animated to 50%
opacity and the confirmation is then displayed.

This requires the action be confirmed or canceled. When the Cancel link is clicked, the row
is animated back to full opacity. When the delete <buttons is clicked, the row is animated
all the way to full transparency and then removed from the page.

Pon yuiz - using fadeTo

1. Which arguments must be provided when using the fadeTo () method?
a. The duration and easing arguments
b. The ending opacity
c. A callback function

d. The duration and ending opacity

[42]

Chapter 2

2. What format can these arguments take?

Q

They must be strings

c

They must be arrays or objects
They may be either strings or integers

d. They must be functions that return the value in string format

Have a go hero - doing more with fadeTo

A great application of the fadeTo () method is when it is combined with a modal

overlay. Often when a pop-up dialog is displayed, the underlying page is screened with

a semi-transparent PNG. Instead of using an image why not obscure the underlying page by
fading an element that covers the entire visible area of the page to semi-transparency instead.

If we run the previous example in any current version of IE (8 or below), we see that the
example fails. Fading <tr> elements in IE simply does not work. However, all is not lost,
with just a few tweaks and minor changes to the code we can get the example working
in IE as well.

Time for action - fading table-rows in IE

This time we'll change the script slightly so that it works as intended in Internet Explorer.

1. Change the contents of the last <script> element in the fadeTo . html file that
we created in the last example so that it appears like this (new or changed code is
shown in bold):

var messagelist = document.getElementById("messagelList"),
messages = $("table", messagelist),

confirmDiv = $("<divs</divs", {
"class": "confirm",
text: "Really delete?"
1
remove = $("<buttons</button>", ({
id: "delete",
text: "Yeg"
}) .appendTo (confirmDiv) ,
cancel = $("<a>", {
href: "$",
id: "cancel",

[431

Fading Animations

text: "Cancel",
title: "Cancel"
}) .appendTo (confirmDiv) ,

deleteRow = function(e) {

var selector = (window.ActiveXObject) ? $(this).closest("tr").
children () $(this) .closest("tr");

selector.fadeTo (400, 0.5, function() {
$(this) .addClass ("pre-delete") ;

if (1$(".confirm") .length) {
confirmDiv.clone () .insertAfter (messages) ;

}

messages.find("a") .unbind () ;

3N
i

messages.find("a") .click (deleteRow) ;

$("#delete, #cancel").live("click", function(e)

if (this.id === "delete") {

messages.find (".pre-delete") .fadeTo (400, 0, function()

S (this) .remove () ;

if (window.ActiveXObject) {
messages.find ("tr") .each(function() {

var row = $(this);

if (lrow.children() .length) {

row.remove () ;

}
DE
}
1
} else {

e.preventDefault () ;
messages.find(".pre-delete") .removeClass ("pre-

delete") .fadeTo (400, 1, function() {

(441

Chapter 2

var el = $(this);
if (el.css("filter")) {
el.css("filter", "");
}
13N
}
$(".confirm", messagelist) .remove() ;
messages.find("a") .click (deleteRow) ;

3N

2. Save the new file as fadeToIE.html in the main project folder.

What just happened?

Let's look at what changed in the new version of this example. The first difference is that in
the deleteRow function, we store a reference to the element that we are going to fade in a
variable called selector (storing jQuery objects in a variable like this is commonly known
as caching a selector).

We check for the presence of the ActiveXObject on the window object. This object will
only exist in IE and so is a useful thing to check for if we are looking to target just IE. If the
object is found, we select the <td> elements within the target row instead of the row itself.
If the object is not found, we select the <tr> itself (as we did in the previous example).

The other changes are in the click handler for the delete and cancel elements. All we do is
check for the ActivexObject again and if found, check each <tr> element to find which
one is empty. One of the rows will be empty because it is the <td> elements that get
removed in IE. The empty row is then removed.

We have also added a callback function to the animation when the Cancel link is clicked.
When IE animates the <td> elements to half opacity, the clearType effect that IE uses for
font-smoothing is removed. This is a consequence of the filter being applied, which is
how jQuery sets the opacity in IE.

Within the new callback function, we check for the presence of the £ilter attribute,
and if it is found, we set to an empty string to disable it. The text will then return to its
anti-aliased state.

451

Fading Animations

When we run the new version of the file in IE we should find now that it works as expected
in all current versions. Even though we are fading the individual cells in IE instead of the
rows, visually it is the same. Because of the conditional checking we do, this version of the
example should continue to work in other browsers such as Firefox, Chrome, or Safari

as well.

/2 jQuery fadeTo() - Windows Internet Explorer [_ (O] x| I
6@.‘ = |g, ﬁle:,.’L."C:Iapamesihequuery—anirrj !."_?- | ?(Iﬁ Google P: '.5
.7 Favorites @ iQuery fadeTa() | |J M- - [= - Page~ Safety~ Tools- @~ »

Private Messages

Recieved Subject

Today Re: tomorrow
Today Re: tomorrow
Yesterday Re: tomorrow

Yesterday Re: tomorrow

Really delete? Cancel

R e e e [Va - [®Riw0w -

As we can see in the previous screenshot, the fades are now working in IE. However, IE still
doesn't like fading the <td> elements. It displays a border between the From and Delete
columns, even though these cells do not have a border style set on them. IE8 also loses
borders when the element is faded back to full opacity. This is not a problem in IE7, and
can be fixed in IE8 by removing the background-color from the <td> elements.

By default, jQuery's show (), hide (), and toggle () methods show or hide the selected
element by manipulating its display style property. This is an instantaneous effect and
does not constitute an animation.

[461

Chapter 2

Usually these methods do not take any arguments, but we can trigger an animation by
supplying an additional argument which represents either the duration, or the easing of the
animation. We can also add a callback function in keeping with the animation methods we
have looked at so far.

The methods can take the following format:

jQuery (elements) . show (duration, [easing]l, I[callbackl) ;
jQuery (elements) .hide (duration, [easingl, I[callback]) ;

These animations are a step-up in complexity from simple fading because instead of just
animating the opacity of the selected elements, the width and height of the element are
animated too. Syntactically, the methods are very similar however.

This means that the selected elements will grow in size as they appear, or shrink as they
disappear. We have little direct control over this however, and can set only the duration
or easing of the animations.

The direction in which the selected element will grow or shrink can be manipulated
indirectly via CSS however. If the selected element is positioned using its 1eft and top
style properties, the animation will proceed from the top-left corner, growing to the right
and down. If it is positioned using its right and bottom style properties, it will grow up
and to the left instead.

When an animation is not proceeding in the way in which you expect, it is always worth
ruling out any interference from CSS. Styles can affect how an element is animated, so if

you aren't getting errors in the JavaScript console, always check that the CSS isn't the cause
of unexpected behavior. | have lost count of the hours spent checking and rechecking scripts,
only to find that a tiny tweak to the CSS fixes the problem entirely.

Like the fadeIn () method, elements that are to be animated using the show () method
should initially be hidden with display:none. Elements being shown will be set to
display:block, or whatever other display mode is acceptable for the element in question.

Flyout submenus with jQuery's show/hide logic

Let's take a look at a basic example of the show () and hide () methods in action. We'll
create a simple vertical navigation menu which features fly-out submenus that are animated
in and out of view. We'll look at the following aspects of these methods:

¢ How to trigger an animation using the show () or hide () methods

[a11

Fading Animations

Our fly-out menu will be displayed like this:

jQuery show() and hide() - Opera [_To]=]
File Edit View Bookmarks Widgets Tools Help
jg JQuery show() and hideQ UT| =
4 | 5| (9 D M| E fle/ocalhost/C:/apac
& Top Level
3
]
[+]
(L] Top Level
+
Top Level »
L e $s-@ - @ view (100%) ~
JQuery show() and hide() - Opera = ES | |

Fle Edit View Bockmarks Widgets ook Help

fomm e s

-« P | D || M || E fle:ffocahost/c:/apac

]
8 Top Level
4
=]
e el 2nd Level Lin
W
(U
jloniters] 2nd Level Lin
+
L e s-@ - @ view (100%) ~
JQuery show() and hide() - Opera M= ES| |

Fle Edt Vew Bookmarks idgets Took Help

| Elsuery showg anchigeg < [4 &

In the previous screenshot, we see the submenu fade in as well as grow outwards as the
mouse pointer hovers over a top-level menu item. As before, the animation proceeds from

- P |2 || #||E fe/focahost/c:/apac ¥
]
@ Top Level
3
]
e Lz 2nd Level Link
W |
(U
+ jlealtevct 2nd Level Link
WA 2nd Level Link

[o $-8 -

@, view (100%) ~

the top to the bottom in the screenshot.

[481

Chapter 2

Time for action — animations with show/hide

It's always easiest to add any required HTML and basic CSS first, before adding any behavior
with JavaScript, and this example is no exception.

1. Add the following markup to the <body> of the template file:
<nav>

Top Level
Top Level »

<a href="4#"
Link</1li>
<a href="4#"
Link</1li>
<a href="4#"
Link</1li>
</uls>
</1li>

title="2nd Level Link">2nd Level
title="2nd Level Link">2nd Level

title="2nd Level Link">2nd Level

Top Level

<li class="last">Top Level
»

<a href="4#"
Link</1li>
<a href="4#"
Link</1li>
<a href="4#"
Link</1li>

</uls>

</1li>
</uls>
</navs>

title="2nd Level Link">2nd Level
title="2nd Level Link">2nd Level

title="2nd Level Link">2nd Level

Save this file as showHide . html. The following CSS should go into a new file:

nav {

font:normal 18px "Nimbus Sans L",

"Helvetica Neue", "Lucida Sans
Unicode", Sans-serif;

}
nav a {
display:block; padding:20px 30px;

text-decoration:none;
background-color:#ddd;

color:#333; border:1px solid #fff;

}

nav a:hover { background-color:#333; color:#ddd; }

1491

[vww allitebooks.cond

http://www.allitebooks.org

Fading Animations

nav ul {
padding:0; float:left; list-style-type:none;
border:1px solid #666;

}

nav ul 1li { position:relative; border-bottom:1lpx solid #666; }

nav ul li.last { border-bottom:none; }

nav ul ul {
display:none; position:absolute; top:10px; left:150px;
z-index:999; -moz-border-radius-bottomleft:7px;
-moz-border-radius-bottomright:7px;
-webkit-border-bottom-left-radius: 7px;
-webkit-border-bottom-right-radius:7px;
border-bottom-left-radius:7px; border-bottom-left-radius:7px;
-moz-box-shadow: 0px 4px 10px #666;
-webkit-box-shadow:0px 4px 10px #666;
box-shadow:0px 4px 10px #666;

}

nav ul ul 1i a { white-space:pre; }

nav ul ul li:last-child a {
-moz-border-radius-bottomleft: 7px;
-moz-border-radius-bottomright:7px;
-webkit-border-bottom-left-radius: 7px;
-webkit-border-bottom-right-radius:7px;
border-bottom-left-radius:7px; border-bottom-left-radius:7px;

3. Save thisin the css folder as showHide . css and don't forget to link to it in the
<heads> of the page.

4. Finally, we need to add the jQuery methods that will show and hide our submenus
when appropriate. Add the following code to the anonymous function at the bottom
of the <body>:

var subMenuParent = $("nav ul ul") .parent () ;

subMenuParent .mouseenter (function () {
$(this) .find ("ul") .show("fast") ;

1) i

subMenuParent .mouseleave (function () {
$(this) .find("ul") .hide ("fast") ;

3N
[501

Chapter 2

What just happened?

The simple markup for this example consists of the <nav> container element and a series of
nested unordered lists.

As | mentioned, the way in which the selected element grows when it is acted upon by the
show () method is dictated by the CSS positioning that it uses. In this case, we'd like the
menu to grow down and to the right, so we position the submenus using their top and 1left
properties. The submenus are also hidden initially with display:none; asis required for
an element to be shown with the show () method.

In the script, we first select each of the nested elements and then navigate up to their
respective parent <1i> elements. We then use the mouseleave () and mouseenter ()
event helper method to attach the events. This is so that only list items containing submenus
will have the listeners attached.

In the anonymous functions supplied to these listeners, we navigate down to the nested
 and call the show () or hide () method as appropriate, triggering an animation by
supplying the string fast.

When we run this page in a browser, we should find that hovering the mouse pointer over
one of the list items that contain a submenu cause the submenu to be animated into full size
and opacity.

1. Which argument should be provided to trigger animations when using the show ()
or hide () methods?

a. A callback function
b. An object containing the duration and easing for the animation

c. Aninteger or string specifying the duration of the animation, and/or a string
specifying the easing

d. An array containing the duration and easing for the animation

2. How is the direction of growth in the animated element controlled?
a. By its CSS positioning properties
b. By setting a property of the jQuery object

c. By passing an object containing values for left and top properties into
the method

d. It cannot be controlled

[51]

Fading Animations

Animated toggling

jQuery provides a toggle () method, which can be used in several different ways depending
on which arguments are passed to it. Normally it is used to execute two or more functions
alternately, but like the show () or hide () methods, it can be used to create animations
when a duration or easing is supplied as an argument.

When animations are required from the toggle () method, we should simply supply a
duration and/or an easing argument, which may take the same numerical or string based
format as the other animation methods we have looked at so far.

The same rules about CSS positioning also apply to the toggle () method, so the direction
of animation is easy to customize. The duration argument may be of string or integer types,
and a callback function may be provided if required. The easing argument should be in
string format.

The toggle () method works in a similar way to the fadeToggle () method that we looked
at earlier in the chapter. It contains logic that checks the current state of the element and
either shows, or hides the element based on this.

The method should be seen merely as a convenient short-cut that may be beneficial in some
basic situations. From a performance perspective, the show () and hide () methods are
marginally more efficient as there is no internal check on the current visibility of the element
being animated. It is effectively a combination of the show () and hide () methods.

Time for action - replacing show and hide with toggle

In this example, we'll change our showHide . html page so that the submenus are displayed
(or hidden) with toggle () instead of using show () and hide ().

1. Allthat needs to change is the script:

subMenuParent .mouseenter (function () {
$ (this) . find ("ul") .toggle ("fast") ;

1) i

subMenuParent .mouseleave (function () {
$ (this) . find ("ul") .toggle ("fast");

13N

521

Chapter 2

2. Save the changes as toggle.html.

3. We should find when we run the page that it works in the same way as it did using
the show () and hide () methods. In this example, using the toggle () method
has done nothing for us; we haven't reduced our own code at all.

4. Insome applications, if we were using the click event to either show or hide an
element for example, we would be able to reduce the complexity of our event
handlers and rely on toggle () to do it for us.

Why not change the last two examples so that the vertical <nav> menu uses click events
instead of hover events. You'll get to see when toggle () can be used to simplify your code.

Summary

In this chapter, we looked at some of jQuery's most basic animation methods. The fade class
of methods are the simplest animation methods found in jQuery, animating nothing except
the opacity of the selected element(s).

The show (), hide (), and toggle () methods can also be used to perform animations but
alter the dimensions of the element as well as its opacity. All of these methods are simple to
use and require few or no additional configuration in order to run.

We looked at the following methods in this chapter:

fadeIn()
fadeOut ()
fadeTo ()
fadeToggle ()
show ()

hide ()

® 6 & ¢ 0 0o o

toggle ()

Fading Animations

We also covered the following points:

*

The fade methods work by altering the opacity and display properties of the
selected elements. All methods may accept an optional duration argument in string
or integer format except for the fadeTo () method, with which the argument is
mandatory.

Transparent PNGs in |IE can end up with unsightly black borders when they are faded
in or out with jQuery, but there are ways to avoid the issue in all current versions of
IE. We also saw that fading table elements can cause problems in IE.

By default, the show (), hide (), and toggle () methods occur instantaneously.
However, they can all be used to create animations by supplying a duration and/
or easing argument(s).The duration argument may take integers representing
milliseconds, or the strings s1ow or fast which correspond to durations of 600
or 200 milliseconds.

All animations have a default easing of swing, although we can change this to
linear for an animation that proceeds at a uniform pace.

CSS can have a huge impact on how animations proceed, as we saw when we looked
at how to control the direction that the selected elements grow or shrink when
using show () orhide ().

One thing to note with all of the fading animations is that it can cause issues with
clearType text in IE; clearType is disabled when the animation runs so any text in the
element being animated becomes aliased. There are several different work-arounds for this
issue which involve removing the £ilter attribute once the animation has run.

Now that we've covered the most basic types of jQuery animations and got an idea about
how they run, we can move on to look at the animation queue and the methods we have at
our disposal for managing it.

[541

Like most of the methods that jQuery makes available to us, the effect,
or animation, methods can be chained together in sequence, like this:

jQuery (elements) .fadeIn() .slideDown ()

When several animation methods, such as fadeIn (), and so on, are chained
together and called on the same element or collection of elements, they are
placed into a queue to be executed one after the other in series rather than

all executing simultaneously in parallel. The standard animation queue created
for an animated element is called £x, although custom queues can easily

be created.

jQuery gives us several methods that make working with and manipulating an element's £x
gueue extremely easy. These methods include:

L 4

* & & o

clearQueue ()
delay ()
dequeue ()
queue ()

stop ()

The techniques that we'll learn in this chapter include:

* & o o

Viewing the items in an element's queue
Counting the items in an element's queue
Preventing queued effects from executing

Delaying the start of the next effect in the queue

Managing Animations

Replacing the existing queue with a new queue
Calling the next function in a custom queue
Stopping the current effect without executing the rest of the queue

Globally disabling all animations

* 6 6 o o

Changing the frame rate of animations globally

The jQuery object itself also contains several properties that can be useful when working
with animations. These include:

¢ jQuery.fx.off

¢ jQuery.fx.interval

The queue is not restricted to storing animation methods; other methods can

also be added to the queue. We will only be looking at the queue () method
’ from an animation perspective here.

When several effects are chained together, the first effect is begun straight away. The
remaining effects are stored as functions in an array in the element's £x queue. As the
effects are stored in an array, we can call standard JavaScript array methods on it to
manipulate it, and examine its properties to find out additional information about it.

We can determine how many functions are in the queue by looking at the 1ength property
of the array, or we can call standard functions such as push (), pop (), or reverse () on

it to perform various operations on the items (functions) in the array. It is unlikely that this
would be required in most normal situations however.

An important point to note about the queue is that the first effect method called on an

element does not get stored in the queue, so the length of the queue at the start of
the operation will always be one less than the total number of effect methods called on
the element.

The queue executes on a first-in-first-out basis, with the last function stored in the queue
executing last. The default £x queue for an animated element will run automatically

and each function contained within it will be called automatically by jQuery. The string
inprogress is used as the first item in the default £x queue as a flag indicating that the
queue is currently being run.

1561

Chapter 3

A custom queue that we create ourselves will not run automatically and we must ensure
that each item in the queue is executed one after the other. jQuery provides several ways of
doing this including the dequeue () method, which executes the next function in the queue,
and a callback function that we can pass into functions in the queue. We'll look at both of
these techniques later in the chapter.

To view the queue we simply call the queue () method; no arguments are required but we
can optionally supply the queue name if it differs from the default £x. When the method

is called, it returns an array containing the remaining functions in the queue. The queue ()
method may be used in the following form:

jQuery (elements) .queue ([queue name], [new gqueue], [callback]) ;

In addition to the name of the queue, we can also supply either a new queue, or a single
callback function. The new queue, if supplied, should take the form of an array of functions.
The new queue will replace the existing queue entirely. Passing an empty array to the
queue () method will clear the queue. A callback passed to the queue () method will be
added to the end of the queue and executed last after the functions originally in the queue.

A common use of the queue () method is to look at the 1ength property of the returned
array to determine how many functions are left to run; but if we need to, we can also look at
each function individually by calling the toString () JavaScript function on any item in the
array (except for item 0 which will simply display the string inprogress).

Most functions in the returned array are function literals, however, the "next" item in the
gueue is not available via the queue () method. The contents of item 0 in the default £x
queue will always be the string inprogress as this is the animation currently being run.

Time for action - viewing the queue

Let's look at a basic example of the use of the queue () method and the type of results we
can expect to obtain.

1. Inthe <heads> of our template file add the following code:

<style>
#fader { width:100px; height:100px; background-color:#000; }
</style>

[571

Managing Animations

2. Finally, in the anonymous function at the bottom of the second <script> element,
add the following code:

$("#fader") . fadeOut (function() {
console.log (s (this) .queue()) ;
}) .fadeIn() .fadeOut () .fadelIn() ;

3. Save the page as queue . html.

What just happened?

Typically, we'd use an external stylesheet for any styling, but for a single selector and three
rules, it seems pointless creating a separate file. In the script we have four effects chained
together to form a simple animation in which our <divs> element is simply faded out and
back in twice. We provide a callback function as an argument to the first of our effect
methods, within which we call the queue () method.

You'll need to use a browser that has a console for this example, such as Firefox. Here's what
the output looks like in Firebug:

¥ jQuery queue() - Mozilla Firefox |_ (O] x|
File Edit View History Delicous Bookmarks Tools Help

"¢ X o w ol
J. __ 1Query queue() |_| F

2%
"N | consolev | HTML (SS Script DOM Net

,3| Clear Persist Prcﬁlel JQuerify

["inprogress", function(), function()]

>3

a
[Done [[vsow 0.8 W

In the previous screenshot, we can see that the array making up the queue has been output
to the console for us to view. There are three items left in the queue when the method is
called. The first item in the array is the string inprogress. The remaining two items are the
queued methods that have not yet run.

Chapter 3

If we wish to see how many functions are left in the queue (including the one that is in
progress), we could change the console. log line to this:

console.log($ (this) .queue () .length) ;

This code would show the following output in Firebug's console:

@| Clear Persist Proﬁle| jQuerify
3

x>

a
| Done | %" | vsow 0.003 [

This time our console shows numerically how many items are left in the queue, as shown
in the previous screenshot.

We can use other array methods on the queue if we wish (although this would rarely be
useful), such as push () or pop () to add or remove items for example. We can also get a

single item from the queue if we wish, by adding square braces and an index number after
the call to queue () :

console.log($ (this) .queue () [1]) ;

@ | Clear Persist Profile | jQuerify
function()
e o Q
[Done (4 W Ysow 0087 M

As shown above, this time the value of the second item is output to the console. As |

mentioned earlier, we can see the actual contents of the function using the toString ()
JavaScript function:

console.log($ (this) .queue () [1].toString) ;

[591

Managing Animations

Running this code produces the following output:

¥} jQuery queue() - Mozilla Firefox [_ O] I

File Edit View History Delidous Bookmarks Tools Help

- c 72y I__|ﬁle:m’C:fapad'nesitequuery-animah'onfmanagir i dRd I-.'—|'E:-.:-;§ pe L3l
J __| 1Query queue()} | *+ | F
e R CE | H Console~ | HTML (S5 Scri.. DOM H s Uy
@ | Clear Persist Profile | Al Errors Warnings Info Debug Info | jQuerify
function () {
var j = c.extend({}, e}, i, o = this_nodeType == 1 && ci(this).is(":hidden™), k = this;
for (i imn a) {
wvar n = i_replace(ia, ja);
if (i I=m) {
a[n] = a[i];
delete alil;
i=n;
i
if {a[i] == "hide" && o || ali] == "show" && lo) {
return j.complete.call{this);
Iy
if ({i == "height" || i == "width") && this_style) {
j.display = c.cssi{this, "display"):
j-overflow = this.style_overflow;
I
if {c.isArray{alil)) {
{j.specialEasing = j.gpecialEasing || {})[i] = al[il[ll:
alil = alill0l:
}
E
if {j.overflow != null) {
thig_style._overflow = "hidden";
i
j.-curknim = c.extend({{}, a);
c.eachla, function (r, u) {var z = new (c.fx)(k, j, rl;if (Rb.test{u)) {z[u =—
"toggle™ ? o ? "show" : "hide" : ulia);} else {var C = Bb.exec{u), B = z.curi{true) || 0;if
(C) {u = parseFloat(C[Z]);var E = C[3] || "px";if (E != "px™) {k.stylelr]l = (u [| 1) +
E;B=({u |l 1) / z.cur{true) * B;k.stylelr] =B + E;} (Cr11) {u = (C[1] == "—=" 2 -1 :
1) * u + B;lz.custom(B, u, E);} else {z.custom(B, u, "™):7}}1})7

return true;

}

The code shown in the previous screenshot won't make much sense to the casual observer
as it's been minified, but it's the contents of jQuery's fadeout () method.

Pon yuiz - viewing the queue

1. What is the easiest way of determining the number of functions in the queue?
a. Usingthe length () method
b. Using the length property

o

Counting them in Firebug

d. By looking at the effectsLeftToRun property of the animated element's
fx queue

Chapter 3

2. What does the queue () method return?
a. Afunction
b. AJSON object
c. Anarray

d. The number of effects left to run

Appending a new function to the end of the queue is a trivial matter and we don't even need
to use a new method. We just need to pass the new function, or a function reference, to the
queue () method as an argument.

When we pass a single function into the queue () method and we are working with the
default £x queue, jQuery will automatically call the function for us using the dequeue ()
method. We haven't looked at the dequeue () method yet, but we will cover this a little
later in the chapter.

Time for action - adding a single function to the queue

Let's see how easy it is to add a new function to the end of the queue.

1. Update the script in queue . html so that it appears as follows:
$("#fader") . fadeOut (function()

$ (this) .queue (function() {
$ (this) .css ("backgroundColor", "green");

1
}) .fadeIn() .fadeOut () .fadelIn() ;

2. Save the new file as queueAdd. html.

What just happened?

By supplying a callback function as the optional second argument to the queue () method,
we add the function to the end of the animation queue. When we run the code in a browser
the animation should proceed as normal; then once the effects have run, the <div> will
turn green.

We don't need to supply the name of the queue unless it differs from the default £x queue.
In this simple example, we just change the background-color of the target element, but
in reality a function of any complexity can be appended to the queue.

611

Managing Animations

jQuery handles calling this function for us when we add it to the default £x queue. When
working with custom queues we will need to dequeue the function manually using the
dequeue () method, which we'll look at shortly.

1. What s the easiest method of adding a new function to the queue?
a. Supplying a callback to the queue () method
b. Using the JavaScript push () function
c. Using the add () method
d. Usingthe jQuery. fx.queue property

Using a callback function to keep the queue moving

In the last example, the function that we added to the queue was added as the last function
in the queue, so ensuring that the queue kept running was not necessary. Sometimes
however we may need to add several functions to the end of the queue, and will therefore
need to execute the additional functions ourselves.

Time for action - keeping the gueue running

1. Changethe <scripts> element at the bottom of the queueAdd . html so that it
appears as follows (new code is shown in bold):

$("#fader") . fadeOut (function()

$ (this) .queue (function (next) {
$ (this) .css ("backgroundColor", "green");
next () ;

}) . fadeOut () ;

}) .fadeIn() .fadeOut () .fadeln() ;

2. Save this file as queueInsert . html.

What just happened?

This time we have chained an extra call to the fadeout () method to the end of the

queue () method inside the callback function for the first fadeout () method. We still
pass an anonymous function to the queue () method, but this time we supply an argument
to this function as well.

[621

Chapter 3

The argument we supply to the function passed into the queue () method is called next.
jQuery will treat whatever we pass in as a function and all we have to do is call this function
from within the callback function and that will make sure the next function in the queue

is executed.

The function we pass into the callback function passed to the queue () method doesn't have
to be identified as next, it can be any accepted function name. In this example, we call the
next function after setting the background-color of the <div> to green.

This will cause the extra fadeout () method to be executed last, so when we run this
example in a browser, we should find that the green <div> disappears at the end.

Pop quiz - keeping the queue running

1. What can we use to call the next function in the queue when inserting a callback
function into the queue using the queue () method?

a. A Boolean value of true passed into the callback function as an argument

b. A string containing the word next

A function
d. Aninteger of -1
Replacing the queue

Sometimes adding a single function to the end of the queue may not be enough—we
may wish to replace the queue entirely. This behavior is also managed entirely by the
queue () method.

Time for action - replacing the queue

1. We'll update the queue.html file once again for this example. We'll need another
style rule in the <style> element in the <head> of the page:
#fader span {
display:none; width:100%; height:100%; position:absolute;
left:0;
top:0;

}

2. We should also add position:relative; tothe #fader selector.

Managing Animations

3. Now change the script at the bottom of the page to this:

<scripts>
(function (%) {

function changeColor (element, newColor)

$ ("") .css ("backgroundColor",
newColor) .appendTo (element) .fadeIn (500, function()

element .dequeue () ;

3N
}

var fader = s ("#fader");

var newQ = [
function() { changeColor (fader, "yellow") },
function() { changeColor (fader, "orange") },
function() { changeColor (fader, "green") },
function() { changeColor (fader, "red") },
function() { changeColor (fader, "blue") },
function() { changeColor (fader, "purple") }

1i
$ ("#fader") .fadeOut (function() {

//replace queue
$ (this) .queue (newQ) ;

}) .fadeIn() .fadeOut () .fadeln() ;

}) (jQuery) ;
</script>

4. Save the file as queueReplace.html.

What just happened?

First we define a single function which accepts two arguments. The first is a jQuery object
referring to the animated element and the second is a new color.

We then create a new element, set its background-color to the color passed into
the function, append it to the element passed in to the function, and then fade it into view.

[6a1

Chapter 3

We pass a callback function into the fadeIn () method used with the new <spans. In this
function, we just call the dequeue () method. This is required for the next function in the
queue to be executed; if we don't do this, only the first function in our custom queue will
be executed.

Next we define our replacement queue, after first caching a selector for the #fader
element. The new queue is defined as an array where each item consists of an anonymous
function which in turn invokes our colorChange () function, passing in the cached selector
and a CSS color name.

Finally, we call an effect method on the target element and queue up some additional
effects as we did before. This time when we call the queue () method, we supply our
custom queue, which replaces the default £x queue created by the chained fade methods.

When we run the page in a browser, we see that the first effect is applied, and then our
queue of custom colorChange functions is called. The two fade effects that would have
been in the default £x queue originally are not executed.

Pon yuiz - replacing the queue

1. What do we need to pass to the queue () method in order to replace the queue?
a. A string containing a function reference
b. The dequeue () method
c. Anarray
d. ABoolean
2. What is an easy way of clearing the default £x queue, other than using the
clearQueue () method?
a. Passing the string clear to the queue () method
b. Passing the integer 0 to the queue () method
c. Passing the Boolean false to the queue () method

d. Passing an empty array to the queue () method

When we create custom queues, the chained methods are not automatically called for us.
This is something we need to do manually and is handled using the dequeue () method as
we saw in the previous example.

Managing Animations

When called, it will remove the next function in the queue and execute it. It's a simple
method, with few arguments, and is used in a very specific manner. The method may take a
single optional argument which is the name of the queue to execute the next function from:

jQuery (elements) .dequeue ([queue name]l) ;

The queue name is only required if we are working with a queue other than the default £x
queue. We didn't need to provide the name of the queue in the previous example in the last
section because we replaced the animated element's default £x queue. The dequeue ()
method has the same effect as calling the next () function that we used to keep the queue
moving in the queueInsert.html example from the last section.

Time for action — dequeueing functions

Let's change the queueInsert.html page so that it uses the dequeue () method instead
of the next () function to keep the queue moving.

1. Change the code in queueAdd.html so that it appears as follows:
$("#fader") . fadeOut (function()

$ (this) .queue (function() {
$ (this) .css ("backgroundColor", "green") .dequeue() ;
}) . fadeOut () ;

}) .fadeIn() .fadeOut () .fadeln() ;

2. Save this version as dequeue . html.

What just happened?

This time we do not need to pass anything into the callback function passed to the

queue () method. We simply chain the dequeue () method to the <div> after setting its
background-color to green. This has the same effect as before and the green <div> will
fade out at the end of the animation.

The stop () method can be used to stop an effect that is currently running on the selected
element. In its simplest form, we may call the method without supplying any additional
arguments, but if necessary we can supply up to two Boolean arguments. The method takes
the following format:

jQuery (elements) .stop ([clear queuel , [jump toend]) ;

Chapter 3

The first argument clears the element's queue and the second forces the final state of the
effect to be applied.

The stop () method behaves differently depending on whether there are any additional
effects in the £x queue.

When the method is called and there are no functions in the queue, any effects that are
currently running on the selected element(s) will simply stop and the element will remain in
whatever state it reached during the animation.

If there are several functions in the queue however, the current animation will be stopped
in whatever state it is in at the time, but then the remaining functions in the queue will
be executed.

Take the following code for example:

S ("#fader") .fadeOut (5000) .fadeIn () .fadeOut () .fadelIn() ;

$("#stop") .click (function()
$S("#fader") .stop () ;

I3F;

If the stop element is clicked while the first effect is running, the fader element will flicker as
the remaining effects are applied one after the other.

To prevent the queued functions being executed, we can supply true as the value of the first
argument. To force the element into its final state, we can also supply true as the value of
the second argument. Both arguments default to false.

The stop () method can be really useful for preventing animation build-up. If an animation
is triggered by clicking a button for example and the button is clicked repeatedly, the
animation can run multiple times. Usually this behavior is undesirable and can be prevented
using the stop () method.

To see the differences between each variation of the stop () method, see
s the stopTest . html file in the accompanying code download for this book.

611

Managing Animations

Time for action - preventing animation build-up using

the stop method

In Chapter 2, Fading Animations, we used the fadeIn () method to enhance CSS hover
states, but we didn't hide the hover state using fadeOut (). The reason for this is because
the animations can quickly build up. If the mouse pointer is moved on and off one of the
links repeatedly, the hover state will continue to fade in and out even after the mouse
pointer moves away.

Fortunately, we can use the stop () method to prevent this from happening. In this section,
we'll add fadeout () effects to the navigation menu example from Chapter 2, Fading
Animations and use the stop () method to prevent an effect build-up.

1. InfadeIn.html, change the hover () method so that it appears as follows:

ul.find("a") .hover (function() {
S(this).find("span").stop(true, true).fadeln("slow");
}, function() {
S(this).find("span").stop(true, true).fadeOut("slow");
13N

2. Savethisfile as stop.html.

What just happened?

By calling the stop () method directly before applying the fadeIn () effect, we ensure that
a build-up of effects does not occur and spoil the hover states. In order for the effects to work
correctly, we supply true as the values of both the clear queue and jump to end arguments.

Pop quiz - stopping an animation

1. What does the first argument that can be passed to the stop () method determine?
a. Whether or not the method should return false
b. Whether or not the element should be removed from the page
¢. Whether or not the queue should be cleared
d. Whether or not the queue should be replaced

2. What does the second argument control?
a. Whether or not the queue is cleared
b. Whether or not the method returns the queue as an array
c. Whether the element should be removed from the page
d. Whether the element should be set to its final state

Chapter 3

As of jQuery 1.4 we can choose to delay the execution of the next function in the queue
using the delay () method. We need to supply the duration as an argument to the method
to tell it how long the delay before the next effect starts should be, and we can optionally
supply the name of the queue to delay as an argument as well. The method is used in

this format:

jQuery (elements) .delay (duration, [queue name]) ;

The duration argument may be supplied as an integer representing the length of the duration
in milliseconds, just like the effect methods we've covered so far, or it may be one of the
strings slow or fast which correspond to the standard values. If no duration is provided,
the queue will not be delayed, and if a string other than slow or fast is provided, the delay
will be the default duration of 400 milliseconds.

The queue does not need to be directly manipulated in order to set a delay. All we need
to do is chain the method between our animation methods, so an animation that fades an
element in and out several times that required a delay could be constructed like this:

S("#fader") .fadeOut () .delay (2000) .fadeIn () .fadeOut () .fadeIn() ;

Note that the delay () method is only supposed to be used with methods or functions in a
queue, just like the stop () method, and cannot (and is not meant to) replace JavaScript's
setTimeout () function.

. Plugins
s
‘Q There are several great plugins that make working with both the

setTimeout () and setInterval () native JavaScript functions
quicker and easier. Just search the plugin repository for setTimeout.

As well as viewing the queue and manipulating its contents, we can also remove all of the
functions from it entirely. jQuery provides the clearQueue () method allowing us to easily
clear all functions in the specified element's queue.

Like dequeue (), this is a simple method that takes just a single optional argument:
jQuery(e/ementS) .clearQueue ([queue name]) ;

This method is generally used with non-animation-based queues, when using the stop ()
method is not possible, and so will not be discussed further.

Managing Animations

% Passing an empty array to the queue () method will also
S clear the queue.

The jQuery object contains a couple of properties that we can set which can be useful when
creating animations. The jQuery (or $) object contains an £x property, which itself contains
two properties related to animations which we can manipulate.

This £x object is not to be confused with the £x queues that are created by default for any
element that has more than one animation method called on it in a chain. These individual
£x queues do not contain the same properties that the jQuery £x property contains.

One property of £x that we can set is the of £ property. This property contains a Boolean
that is set to false by default, but which we can set to true to globally disable all
animations on a page. The property is set using the following syntax:

jQuery.fx.off = true;

That's all we do need to do. If this is set at any point in our script, all elements that have
animation methods attached to them will be set to their final state, as if the animation
had already completed.

The other property of jQuery's £x that we can set is the interval property. This property
accepts an integer and specifies the number of milliseconds between each frame of the
animation. By default, it is set to 13, so an animation will have a frame-rate of about 76
frames per second.

To set this property, we just supply a different integer:
jQuery.fx.interval = 28

Setting the property to 28 like this would make the animation run at about 35 frames per
second, making animations run almost half as smoothly.

Note that animations will still run over the same duration of time (whether that is the default
400 milliseconds, or another value set with the duration argument of an animation method)
regardless of what this property is set to. However, an interval value that is lower, and
therefore has a higher number of frames per second, will make animations appear smoother.

701

Chapter 3

Also note that the lower we set the interval property, the more intensive animations will
be. While the latest browsers will cope with these increased demands satisfactorily, older or
slower browsers will struggle.

There must be no animations running when this property is set for it to take effect. Any
animations that are running must be stopped.

While manipulating an element's £x queue directly may not often be required, when we
do need to work with it, jQuery makes the process easy and transparent. With a collection
of methods at our disposal, we can have full control over how the queue behaves. In this
chapter, we looked at the following methods:

L 2
*
L 2
*
L 2

clearQueue ()
delay ()
dequeue ()
queue ()

stop ()

We also looked at the following properties of the jQuery object:

L 2
*

jQuery.fx.off

jQuery.fx.interval

In this chapter we found that:

L 4

The contents of the queue and the number of items in the queue can be easily
obtained using the array that's returned by the queue () method. We can also
use standard JavaScript array methods, such as push () or pop (), to interact
with the array.

We can supply different arguments to the queue () method which make adding
a single function to the queue, or replacing the queue entirely, a trivial matter.

When working with custom queues, or when adding more than a single new
function to the default £x queue, we will need to ensure that the queue keeps
running and executing the remaining functions. We can do this using either the
dequeue () method, or a function passed into a callback function.

The stop () method will halt the currently-running animation and can be made
to clear the queue and force the element into its final state if necessary using
additional arguments.

The delay () method allows us to add an interval, or delay, in between
gqueued animations.

ni

Managing Animations

¢ The clearQueue () method is not designed to work with animations, when using
the stop () method and clearQueue argument is more appropriate.

¢ We can globally disable all animations on a page by setting the of £ property of
jQuery's £x property to true.

¢ We can change the global frame rate of animations using the interval property
of jQuery's £x property.

Now that we've mastered the animation queue, we'll move back to looking at some more
of jQuery's built-in effect methods. In the next chapter, we'll look at the sliding group of
methods including s1ideDown (), s1ideUp (), and slideToggle ().

121

Another type of effect that is built into jQuery is the slide effect. Elements can
be made to slide vertically so that they appear to open or close depending on
their current state. There are three methods related to sliding that are exposed
by jQuery:

slideDown ()
slideUp ()
slideToggle ()

How each of these methods works will be explored thoroughly over the course
of this chapter.

Some of the skills we'll learn include:

Showing hidden elements with s1ideDown ()

Hiding visible elements with s1ideUp ()

How an element's CSS styling can influence sliding animations
How we can save code with s1ideToggle ()

How to add easing effects to sliding animations

* 6 ¢ 6 o o

How to deal with a common usability issue with sliding animations triggered by
hover events

You should note that the sliding methods all work with the display style property of the
selected element(s), and are used to either show or hide the element in question by sliding
it open or closed.

Sliding Animations

When an element is hidden from view using display:none; we can easily show the
element using the s1ideDown () method. This method may take the following form:

jQuery (elements) .slideDown ([duration], [easing]l I[callbackl) ;

The optional duration argument may take either integer or string formats just like the
animation methods we have already looked at, and the default duration of 400 milliseconds
will be used when no duration argument is supplied.

As before, an easing function may also be supplied as the second argument, and a callback
function, if supplied, will be executed once for each selected element once the animation
has completed.

The slideDown () method works by changing an element's display property from none
to block in the same way that fade animations do. If an element requires a different display
mode, such as inline-block for example, this will need to be set using the optional
callback function, or by using a nested element within the element that has s1ideDown ()
called on it.

As well as the display property, the method also adjusts the target element's height
property to gradually reveal the hidden element. The height of the target element is
calculated by jQuery, so things that affect this, such as padding or margin, can affect how
the animation displays as it runs.

Sliding an element that does have padding or margin applied to it can cause the animation
to run unusually, with the elements inside the animated element also appearing to move.
Padding or margin can also cause animations to be choppy or uneven when being run.

Elements that do not have fixed widths can also cause problems when animated with
slideDown (), s1lideUp (), or slideToggle (). This can also cause a small jump at the
end of a slide animation in some browsers.

If margin or padding is required, or if a fixed width is not possible, it is advisable to use a
wrapper element in conjunction with the target element to run the animation on, or to give
the required padding or margin. All of the sliding methods return the original jQuery object
and so are perfectly safe for chaining. Additionally, the sliding effects will be stored in the
selected element's £x queue when several are chained to a single element.

nl

Chapter 4

Time for action - creating a slide-town login form

In this example we'll see how easy it is to implement a login form that slides open when a
link is clicked. It's common practice to include a login link at the top of a page, but usually
the whole login form isn't shown. Instead, clicking the link will reveal an inline form that is

hidden by default. The following screenshot shows how the page will appear with the login
form open:

Username: |

Password: |

Remember me: [

in

1. To begin with, add the following code to the <body> of our template file:

<headers>

Already registered?
<lis>
Login
<form>
<fieldset>
<legend>Login Form</legend>

<label for="username'"s>Username:<input
name="username" id="username"></label>

<label for="password"sPassword:<input
name="password" id="password"
type="password"></label>

<input name="remember" id="remember"
type="checkbox"><label for="remember">Remember
me:</label>

<button type="submit">Login</button>

</fieldset>
</form>
</1li>

</header>

17151

Sliding Animations

2.
3.

Save the file as s1ideDown.html in the main project folder.

Next let's add the CSS for this example. In a new file in your text editor, add the
following code:

header {

}

display:block;
font-family:Verdana, Arial, Helvetica, sans-serif;

header ul ({

}

margin:0; position:relative; float:right; list-style-type:none;

font-size:11px;

header ul 1i { float:left; margin-top:10px; }
header ul 1i a {

}

display:block; margin:-13px 0 0 10px; padding:1llpx 18px;
-moz-border-radius:5px; -webkit-border-radius:5px;
border-radius:5px; font-size:14px; color:#000;

header ul 1i a:hover, header ul 1i a:focus, header ul 1i a.on {
padding:3px 10px; border:8px solid #666; background-color:#fff;

}

text-decoration:none;

header ul 1i a.on {

}

border-bottom:0; padding-bottom:10px;

-moz-border-radius-bottomright:0; -moz-border-radius-
bottomleft:0;

-webkit-border-bottom-right-radius:0;

-webkit-border-bottom-left-radius:0; border-bottom-right-
radius:0;

border-bottom-right-radius:0; position:relative; z-index:10;

outline:0;

header form {

}

display:none; width:260px; border:8px solid #666;
-moz-border-radius:px; -moz-border-radius-topright:0;
-webkit-border-radius:5px; -webkit-border-top-right-radius:0;
border-radius:5px; border-top-right-radius:0;
position:absolute; right:0; top:27px; z-index:5;

header fieldset { margin:0; padding:20px 10px 10px; border:0; }
header legend { display:none; }

header form label { display:block; float:right; font-size:1l4px;
header form label:first-child { margin-bottom:10px; }

}

1761

Chapter 4

header form input
display:block; width:148px; margin:-2px 0 10px 8px; float:right;

}

header form input#remember { width:auto; margin:3px 0 0 10px; }
header form button (
margin:10px -1lpx 0 0; float:right; clear:right;

}

Save this stylesheet in the css folder as s1ideDown.css.

Finally we should add the script that will enable the slide effect. Within the
anonymous function in the second <script> element, add the following code:

$("#login") .click (function(e) {
e.preventDefault () ;

$(this) .addClass ("on") .next () .slideDown () ;

I3F;

When we run the page now, we should see that the hidden form slides open when
the login link is clicked:

¥) jQuery slideDown() - Moxilla Firefox [_[O]x]
| [iquery slideDown() [+ [-

Already registered? ! Login I

[[~ [fesiica. | [Ravson | |@

¥) jQuery slideDown() - Mozilla Firefox = | |
| [iquery siideDown() [= [-

Already registered? Login

Username: I
Password: |

RARa i

[[[feica. [@S | |@ ,
e — T
| | #Query slideDown(} + [~

Already registered? l Login

Username: |
Password: |

Remember me: [~

Login

[0 S~ [fedica. [+ [son M@ 4

Im

Sliding Animations

The previous picture shows the menu as it opens. The animation proceeds from top to
bottom. Because the s1ideDown () effect is only applied to elements that are hidden,
clicking the link while the menu is open will not cause the menu to reopen.

What just happened?

We have a relatively straight-forward collection of elements here. The HTML5 <header>
element is the natural container for our login elements. The form is part of a simple
unordered-list along with a link that will open the form.

Note that the link that will be used to open the login form has its href attribute set to
a page that contains the login form. This is a simple fallback so that if the visitors have
JavaScript disabled, they can still login even if they don't get to see the slide down form.

A lot of the styling is purely presentational and does not affect how the form functions.
Similarly, a lot of it is standard positional stuff. What's important is that the form is initially
hidden from view with display:none, and that the form is positioned using its top
style property.

We attach a click-handler to the login link, which automatically receives the event object
(e) as an argument. We use this object to cancel the default behavior of the browser. This
prevents the page from jumping to the top when the link is clicked, or following the href
of the link provided in case JavaScript is disabled. The preventDefault () function, which
jQuery normalizes to work in IE as well as standard-compliant browsers, handles this for us.

We then add the class name on to the link so that our :hover styles are persisted when
the pointer moves off the link and the form is still open. We then move to the next element
after the link, our hidden login form, and call the s1ideDown () method on it with no
additional arguments.

Position is important

The position of an element that has s1ideDown () applied to it is very
M important. The animation will not run correctly if the element uses absolute
Q positioning in conjunction with its bot tom style property to position itself by.

In this situation, the element will appear to slide up from the bottom, instead
of sliding down as intended. We do not see this behavior with relatively
positioned elements however.

7181

Chapter 4

1. What should be applied to an element before it has the s1ideDown () method
called on it?

a. visibility:hidden;
b. height:0;
c. display:none;

d. position:static;

2. What style does an element that has been shown with s1ideDown () end up with?
a. display:block;
b. wvisibility:visible;
c. position:absolute;

d. height:100%;

In our basic example, once the form has been opened it then stays open until the page is
reloaded. Add some additional code that fades the login form away after a specified length
of time in case it is not interacted with.

Sliding elements out of view

The s1ideUp () method works in exactly the same way as s1ideDown (), except that it
hides the target element instead of showing it. The s1ideUp () method accepts the same
arguments as slideDown () and can be affected by CSS in the same way, so padding
and margin should be taken into account and caution is advised when using absolute
positioning. The original value of an element's display property however, is not a factor
when using s1ideUp ().

The method's pattern of usage is as follows:

jQuery (elements) .slideUp ([duration], [easing]l, [callback]) ;

17191

Sliding Animations

Time for action - sliding elements up

Let's build on the previous example so that the form slides back up out of view if a cancel
link is clicked. We can add this link to the underlying markup for the page:

1. InslideDown.html, change the form so that it appears as follows
(new code is highlighted):
<fieldset>
<legend>Login Form</legends>

<label for="username">Username:<input name="username"
id="username"></label>

<label for="password">Password:<input name="password"
id="password" type="password"></label>
<input name="remember" id="remember" type="checkbox"><label
for="remember">Remember me:</label>
Cancel
<button type="submit"s>Login</buttons>
</fieldset>

2. Save the new file as s1ideUp.html.

3. We'll also need some more styles in order to stop our new link from picking up
the styling of the login link. At the end of the s1ideDown. css stylesheet, add
the following new selectors and rules:

header ul 1i a#cancel {
margin:0; padding:0; position:absolute; bottom:14px; left:10px;
font-size:11px; color:#993333;

}

header ul 1i a#cancel:hover, header ul 1li a#cancel:focus {
border:none; text-decoration:underline; color:#££0000;

4. Save the updated file in the css folder as s1ideUp. css, and update the <1ink>
in the <head> of s1ideUp.html to point to the new stylesheet.

5. Toadd the new behavior, update the <script > at the bottom of the page so that it
includes the following new code:

$ ("#cancel") .click (function(e) {
e.preventDefault () ;

$(this) .closest ("form") .slideUp (function()

Chapter 4

$(this) .prev () .removeClass ("on") ;

3N
3N

This code should appear within the outer anonymous function, but after the click handler for
the login link. Now we can close the form while it is opened by clicking the new cancel link.
When this event occurs, we should see the reverse of the opening animation:

@ jQuery slideup() M=l
- + | file///Clap & | | Q- Google »

Already registered?

Username: |

Password: |

Remember me: [~

Login |

@ jQuery slideup() M=l
« + |8 filey///Cfap & | | Qr Google »

Already registered?

Username: |

password: |

@ jQuery slideup() M=l
« + @ file///Ciap & | | Q- Google »

Already registered? Ii“l

The animation still proceeds from top to bottom, but this time the form ends up hidden
when the Cancel link is clicked.

811

Sliding Animations

What just happened?

We added a new click-handler in much the same way as we did before, including cancelling
the default behavior of the browser using the event object (e). In this example, we don't
particularly need to do this because the login form is at the very top of the page, so the
visitor won't have scrolled down the page at all and there won't be a jump to the top of the
page when either the Login or Cancel links are clicked. However, | have included it here as it
is good practice.

We then find the closest parent of the link that is a <form> and call the s1ideUp () method
on it. This time we also supply a callback function, which is used to remove the on class from
the Login link.

You should notice that the Cancel link does not behave like the other elements in the form
while the form is sliding open or closed. The link is visible all the time and moves with the
bottom of the form as it grows or shrinks (depending on whether the form is opening or
closing). The reason for this is simple—it's because the Cancel link is positioned absolutely.

We've specifically added the CSS that causes the Cancel link to behave in this way, even
though it is generally undesirable, as a reminder that CSS can often cause issues when
combined with animations.

1. What is the only requirement for an element to have the s1ideUp () method called
onit?

a. Itshould besettovisibility:visible;
b. It should contain a wrapper element
c. It should have a minimum height of 100 pixels

d. Itshould be an element with a display type that naturally renders it visible
on the page

Have a go at fixing the Cancel link so that it is only visible while the form is fully open.
The change is simple and requires just a few tweaks to the CSS.

1821

Chapter 4

Toggyling the slide

The final slide method is s1ideToggle (), which provides rudimentary state-checking in
order to determine whether the element should be hidden with s1ideUp () or shown with
slideDown (), and then applies the relevant effect. Like the toggle () method that we
looked at earlier, the built-in state checking mechanism is provided as a simple convenience,
but there may be situations where we need to provide our own logic.

The slideToggle () method may accept the same arguments as the other slide methods,
or an object that makes use of easing. For reference, the usage pattern is as follows:

jQuery (elements) .slideToggle ([duration], [easingl, [callbackl) ;

Time for action - using slideTogyie

On the checkout pages of e-commerce sites, it's customary to show the products that are
in the visitor's basket so that they know exactly what they're buying. Typically the checkout
page (or pages) will be quite long due to the amount of information the visitor will need to
enter, especially if it is their first visit to the site.

The page can often end up requesting names, e-mail addresses, and other contact
information, payment methods, and more. Hence, it can be useful to hide the contents
of the basket and just show a summary, but to allow the basket to be expanded to show
the full details of their purchase.

The following screenshot shows how the basket will appear once it has been opened:

[© jouery sideTogsied _moataFrelox__________________BBEK
| [jquery siideToggle() B B
Basket Summa y Hide basket contents

Oty Description Price | Total

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua.

3 Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore. £7 | £21

5 Day standard shipping | £10

VAT | £10
6 ltems [£61
L S]] | file:///C: fapachesite figuery-animation/sliding/slideToggle. html wt |—E YSlow E A g

Sliding Animations

Once the basket area has been expanded, the contents are displayed in full.

1. Let's make a start by creating the underlying HTML. Add the following code to the
template file:

<div id="basket">
<h2>Basket Summary</h2>
<a id="basketToggle" href="#" title="Display basket
contents">Show basket contents
<div id="contents">
<table>
<tr><th class="qgty">Qty</th><th
class="desc">Description</th><th
class="subtotal">Price</th><th
class="total">Total</th></tr>

<tr><td class="qgty">2</td><td class="desc"></td><td
class="subtotal">£10</td><td class="total">£20</td></tr>

<tr><td class="qgty">1l</td><td class="desc"></td><td
class="subtotal">£5</td><td class="total">£5</td></tr>

<tr><td class="qgty">3</td><td class="desc"></td><td
class="subtotal">£7</td><td class="total">£21</td></tr>

<tr class="summary"><td colspan="3" class="subtotal">5 Day
standard shipping</td><td class="total">£10</td></tr>

<tr class="summary vat"s><td colspan="3"
class="subtotal">VAT</td><td class="total">£10</td></tr>

</table>
</divs>
<table>
<tr id="total"><td class="subtotal">6 Items</td><td
class="total">£66</td></tr>
</table>
</divs>

2. Save this page as s1ideToggle.html.

3. Now let's add some basic styling to tidy up and improve the appearance of our
example page. In a new file in your text editor, add the following code:

#basket {
width:860px; margin:auto; position:relative;
border:1px solid #000; -moz-border-radius:7px;
-webkit-border-radius:7px; border-radius:7px;
background-color:#000;

font:normal 14px "Nimbus Sans L", "Helvetica Neue", "Franklin
Gothic Medium", Sans-serif;

[8a1

Chapter 4

}
h2
margin:0; padding:7px 0 7px 1l4px; -moz-border-radius:7px;
-webkit-border-radius:7px; border-radius:7px; color:#fff;
background-image: -moz-linear-gradient (0% 22px 90deg, #222,
#999) ;
background-image: -webkit-gradient (linear, 0% 0%, 0% 50%,
from(#999), to(#222));
}

#basketToggle
position:absolute; right:14px; top:10px; color:#ccc;

}

#basketToggle:hover { color:#fff; }

#basketToggle:active { color:#ddd; }

#basketToggle:focus { outline:none; color:#ddd; }

table {
width:860px; margin:auto; border-collapse:collapse;
border-spacing:0;

}

td, th { padding:20px 10px; border:1lpx solid #000; }

th { border-top:none; }

#contents { display:none; }

#contents table { background-color:#fff; }

.summary td, th
background-color:#ccc;
background-image: -moz-linear-gradient (0% 40% 90deg, #ccc, #fff);
background-image: -webkit-gradient (linear, 0% 0%, % 40%,

from(#££f£f), to(#ccc));

.qty, .desc { width:50px; text-align:left; }
.gqty, #total .subtotal { border-left:none; }
.subtotal, .total { width:112px; }
.subtotal { text-align:right; border-left:0; }
.total { text-align:left; border-right:none; }
.vat .subtotal, .vat .total { border-bottom:none; }
#total .subtotal, #total .total { border-bottom:none; }
#total td { color:#fff; border:1px solid #fff; }
#total .total { border-right:none; font-weight:bold; }
.summary .subtotal, #total .subtotal, .desc { width:auto; }
#total .subtotal, #total .total {
-moz-border-radius:0 0 7px 7px;
-webkit-border-radius-bottom-left: 7px;
-webkit-border-radius-bottom-right:7px; border-radius:0 0 7px
TPX;
background-image: -moz-linear-gradient (0% 70% 90deg, #222, #999);
background-image: -webkit-gradient (linear, 0% 0%, 0% 70%,
from(#999), to(#222));

Sliding Animations

4. Save thisin the css folder as s1ideToggle.css and link to the file from the
<head> of the page we just created.

5. For the final part of the example we can add the script that will toggle the visibility
of the contents table. Add the following code to the bottom of the HTML page:

var toggler = $("#basketToggle"),
basketArea = $("#contents"),
newText = ["", "basket", "contents"];

toggler.click (function (e) {
e.preventDefault () ;
if (!basketArea.is(":animated")) ({

basketArea.slideToggle ("slow", function()
toggler.text (function (i, text) ({

if (basketArea.is(":visible")) ({
newText [0] = "Hide";

} else {
newText [0] = "Show";

}

toggler.text (newText.join (" ")) ;

6. Run the page in your browser now. You should find that you can open or close
the contents section of the basket area by clicking the link in the top-right of the
container. The basket area should expand like this:

Chapter 4

) jQuery slideToggle() - Mozilla Firefox [- O[]

J' " jQuery slideToggle() ’_‘ F

Basket Summary Show basket contents

6 lems

[[~ [fesiic: : htmiz [[Rvson [[0,
) j0uery slideToggle() - Mozila Firefoxx __________________________mEH| !El}:{

| | iQuery siideTogole() ﬁ B

Basket Summary

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor

2 £10 | £20
incididunt ut labore et dolore magna aliqua.
Gliems | £61
[[[fesiic: p— i himi# [[Rvson W[5
| iuery siideTogle() - MozillaFrefox ——_______________________m=H||

J jQuery slideToggle()

Basket Summary Hide basket contents

2 Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor £10 | £20
incididunt ut labore et dolore magna aliqua
3 Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore. £7 | £21
5 Day standard shipping | £10
VAT | £10
Gliems | £61
[[[fesiic = i [+ [vsion [[y

The previous screenshots shows the animation in a top-down format with the start of the
animation at the top and the animation nearing the end at the bottom. As we're using the
slideToggle () method, it is equally valid when running backwards too.

1811

Sliding Animations

What just happened?

The underlying structures we've placed on the page are pretty straight-forward. To
summarize, we basically have two tables, one of which is wrapped in a <div>, and an outer
container for the whole collection of elements. The table that is wrapped will be hidden
when the basket is collapsed. We also have a link at the top of the container which will show
or hide the basket contents.

Our JavaScript code is divided into two main sections. In the first section, we cache some
jQuery selectors that we'll use a couple of times in the code to save from selecting them one
at a time, each time they are required.

We also define a function that we can call whenever we need to change the value of the
toggling link. The function sets the text of the link using an anonymous function which
returns the new text to add. This is passed to the index of the element in the collection on
which the text () method was called as the first argument and the second is the original
text of the element. We don't need the first argument but we must specify it in order to
access the second argument.

The second part of the code is the click handler for the toggle link. It checks that the

<div> containing the first <tables is not already being animated and if not, it calls the
slideToggle () method, which will either slide the basket open or closed depending on its
current state. We use the callback function to update the text of the link once the animation
is complete.

The: animated filter

filter is a quick and easy alternative to the stop () method in the previous
example in that it only applied the animation if the element was not already
animated and therefore prevented a build-up of animations.

Have a go hero - doing more with slideToggle

Have a go at reworking the code so that it uses the sl1ideDown () and s1ideUp () methods
instead of the s1ideToggle (). It won't make the code any more efficient, but you should
get to see roughly how much code the s1ideToggle () method can save you.

é‘Q Checking whether an element is already being animated using the :animated

Chapter 4

Pon quiz - using slideToggle

1. What does the s1ideToggle () method return?
Nothing

a
b. The value true when the animation ends

o

The original jQuery object for chaining purposes

e

A string indicating whether the element is visible or not

2. What arguments can the s1ideToggle () method accept?
The duration and a callback function, or an object

a
b. An array containing items specifying the duration, easing and a callback

o

A collection of strings

o

A jQuery object containing the selected element

We discussed easing very briefly in Chapter 2, Fading Animations when we saw that each
fading method could have an easing type set by passing an argument into the animation
method being used. The sliding animations are the same and can also accept an easing type
as an argument. Let's take a moment to familiarize ourselves with what easing is exactly and
how it can be used with jQuery animations.

Easing is a technique where the speed and/or the direction of animation are changed while
the animation is running. Easing can make the animation start off slow and gradually speed
up, start up fast and gradually slow down, and a whole host of other effects.

jQuery has two modes of easing built in: 1inear easing and swing easing, with swing
being the default for all types of animations. Sometimes using linear easing can help make
a continuous animation run smoother, but the difference between swing and linear s
subtle at best.

There are many more types of easing than the two exposed by jQuery. The jquery.
easing.1.3.7js plugin, written by George McGinley Smith, adapts Robert Penner's original
easing equations so that they can be used with jQuery, and makes 30 new types of easing
available to us.

The easing plugin changes the default easing type from
s swing to easeOutQuad.

Sliding Animations

The new types of easing added by the plugin are listed in the following table:

easeInQuad easeOutQuad EaseInOutQuad
easelInCubic easeOutCubic easeInOutCubic
easelnQuart easeOutQuart easeInOutQuart
easeInQuint easeOutQuint easeInOutQuint
easelnSine easeOutSine easeInOutSine
easelInkExpo easeOutExpo easeInOutExpo
easeInCirc easeOutCirc easeInOutCirc
easeInElastic easeOutElastic easeInOutElastic
easeInBack easeOutBack easeInOutBack
easelInBounce easeOutBounce easeInOutBounce

Time for action - adding easing

The easeOutBounce easing type adds a particularly attractive effect when used with
slideDown () animations.

sl The easing plugin can be obtained from http://gsgd.co.uk/sandbox/

<:l jquery/easing/jquery.easing.1l.3.Jjs. A copy of this file is
included with the companion download for this book.

In this example, we'll add some easing to our example file.

1. Change the call to the slideDown () method in s1ideUp.html so that it appears
as follows:

$(this) .addClass ("on") .next () .slideDown (400, "easeOutBounce") ;

2. Save the changed file as s1ideEasing.html. Don't forget to add a new
<scripts> reference to the easing plugin directly after the jQuery reference
to avoid a script error.

What just happened?

We supply the name of the easing type we'd like to use as a string. It is the second argument,
so to use it we must also supply the first argument. As we don't actually need to change the
duration we just supply the default value of 400 milliseconds.

When the login form drops down now, it will appear to bounce a little at the end of the
animation. Suddenly our example has physics—the form appears to literally drop down as
if pulled upon by gravity and doesn't just stop when it hits its full height, it bounces a little,
giving a much more aesthetically pleasing effect.

Chapter 4

Easing is a great effect that can be added with the addition of an 8 KB plugin (3.51 KB when
minified and with the license moved to an external file) and a very minor tweak to our code.
Using it is simple, but its effects can be enormous, transforming a monotonous or otherwise
boring animation into one filled with impact and interest.

Using an ohject literal to add easing

We can also change the format of the arguments we pass into the predefined animation
methods in order to use easing. Prior to the easing argument being added to the animation
methods (fadeIn (), slideDown (), and so on) in version 1.4.3 of jQuery, this was the de-
facto means of using easing with animation methods.

Instead of providing string or numerical arguments (or a callback function), we can provide
an object literal where each key refers to the duration, the easing type, and optionally a
callback to call when the animation is complete. The usage then becomes as follows:

jQuery (elements) .slideDown ({
duration: [duration],
easing: [easing],
complete: [callback]

13N

Time for action — using the alternative argument format

This time we'll use the alternative syntax for supplying an easing function.

1. Change the call to the s1ideDown () method in slideEasing.html so that it
appears as follows:

$(this) .addClass ("on") .next () .slideDown ({
easing: "easeOutBounce"

3N

2. Save this version of the file as s1ideEasingObject .html.

What just happened?

By supplying an object literal as the first argument to the s1ideDown () method, we are
able to make use of the easing types provided by the plugin in an alternative syntax. In this
example, we omit the duration and complete keys of the object and supply only the
name of the easing type as a string.

91l

Sliding Animations

Try out some of the other easing methods that are available via the easing plugin in this,
and some of our earlier examples. We'll be using easing where appropriate throughout the
remainder of the book, but other than a cursory explanation these won't be focused on in
any great detail.

1. How many easing types does the easing plugin add?

a. 20
b. 30

17
d. 48

2. What can we pass into an effect method in the alternative format for using easing?

a. An object with optional keys specifying the duration, easing type, and a
function to call on complete

b. A string specifying the easing type

c. Anarray where the first item is the duration, the second is the easing type
and the third is a function to call on complete

d. Aninteger specifying the duration of easing

The flicker effect

Sometimes, using slideDown () and s1ideUp () animations on the same elements that
are triggered when the visitor hovers over an element, such as with a navigation menu for
example, can have an impact on the usability of a site. It's important to be aware of what the
issue is and how it can be resolved.

Time for action - avoiding the flicker effect

Let's put together a couple of examples so that we can see which situations can cause the
problem to arise.

1. Openupthe fadeIn.html file from Chapter 2, and update the <navs element so
that it appears as follows (new code shown in bold):

<navs
<ul class="purecss">

1921

Chapter 4

<1li class="first">Home

Articles
<div class="subnav">
<ul class="left">
<h2>JavaScript</h2></1i>
JS Article
1</1li>
JS Article
2</1li>
<li class="last">JS
Article 3

<ul class="right">
<h2>jQuery</h2></1i>
jQuery Article
1
jQuery Article
2</1li>
<li class="last"><a href="#" title="jQuery Article
3">jQuery Article 3

</div>
</1li>
Code</1li>

Demos
<ul class="subnav">
<li class="first">The
first demo
Another demo
<li class="last">The
third demo

</1li>
<1li class="last"><a href="#"
title="Portfolio"s>Portfolio

</navs>

Sliding Animations

2.

Save the new file as s1ideFlicker.html. We'll also need a new stylesheet for this
example (in addition to fadeIn.css, which should already be linked to from the
original file). In a new file in your text editor, add the following code:

nav 1li { position:relative; }
.subnav {
display:none; width:100%; margin-left:-2px; border:2px solid
#aaa;
border-top:none; -moz-border-radius:0 0 7px 7px;
-webkit-border-bottom-left-radius: 7px;
-webkit-border-bottom-right-radius:7px; border-radius:0 0 7px
TPX;
position:absolute; text-align:left;

}

div.subnav { width:244%; }

{ float:left; }

.subnav 1i { float:none; border-right:none; }

.subnav 1i a { border-bottom:none; font-size:1l4px; }

.subnav 1i a:hover { background-color:#ccc; }

.subnav li.first a {
border-top:none; -moz-border-radius:0;
-webkit-border-bottom-left-radius:0;
-webkit-border-top-left-radius:0; border-radius:0;

}

.subnav li.last a {
border-bottom:1px solid #fff; -moz-border-radius:0 0 7px 7px;
-webkit-border-top-right-radius:0;
-webkit-border-bottom-left-radius: 7px;
-webkit-border-bottom-right-radius:7px; border-radius:0 0 7px

TPX;

}

.subnav .left 1i a { border-right:none; }
.subnav .left li.last a {
-moz-border-radius:0 0 0 7px;

.subnav ul

-webkit-border-bottom-right-radius:0; border-radius:0 0 0 7px;
}
.subnav .right li.last a {
-moz-border-radius:0 0 7px 0; -webkit-border-bottom-left-
radius:0;
border-radius:0 0 7px 0;
}
.subnav 1i h2 {
margin:0; padding:5px 0; font-size:12px; font-weight:normal;
text-indent:20px; background-color:feee;

[9a1

Chapter 4

3. Savethisfile as slideFlicker.css, and add a link to the file from the <head> of
slideFlicker.html (directly after the link to fadeIn.css).

4. Finally, update the second <script> element at the bottom of slideFlicker.
html so that it appears as follows (new code shown in bold):

var ul = $("nav ul");
ul.removeClass ("purecss") ;

ul.find("a") .each (function () {
if (!$(this) .closest(".subnav").length) {

var a = $(this);
a.append ("" + a.text() + "");
}
P
ul.find("a") .hover (function() {

$(this) .find ("span") .fadeIn("slow") ;
}, function() {
$(this) .find ("span") .hide () ;

3N

$ (".subnav", ul) .parent () .mouseenter (function/() {
$(this) .find (".subnav") .stop(true, true).slideDown ("fast");

DE

$ (".subnav", ul) .parent () .mouseleave (function/() {
$ (this) .find (".subnav") .stop(true, true).slideUp("fast");

DE

What just happened?

All we've done to the underlying HTML is added a couple of submenus to two of the top level
list items in the <nav>. One of the submenus is a split menu made up of two elements
inside a <divs, the other is a single menu built from a standard <uls>.

We've also added some new styling, mostly to carry on the theme from the original example.
Some of the CSS is used to override previous rules set in the original stylesheet. Mostly the
styling is purely for aesthetics, and we use a lot of CSS3 rounded-corner styling, which will
not be apparent in all browsers.

Sliding Animations

For the animations to work as intended, the submenus should initially be hidden from view
with display:none. For the flicker effect to occur, the submenus should be wider than the
parent <1i> that they are contained within. We've made one of our submenus wider, and
the other one the same width so that we can easily see the difference.

In the <script>, we've added a simple check when the fading elements are added
to the page so that the fade effect isn't applied to the submenus (it could easily be adapted
to work, but we're looking at a different effect in this particular example).

Following this we attach mouseenter and mouseleave effect handlers to the parents of
any elements with the class subnav. In these handlers, we simply find the subnav within
the element that triggered the event and either show or hide it with a slide effect. The

stop () method is used to prevent animation build-up, as described in the previous chapter.

Take a look at the page in a browser and note the difference between the two submenus:

jQuery slideDown() with flicker effect - Opera [_ (O I
- | B jQuery slideDown() wit... |\| = | E
L < | | || B Lol | localhost(C:fa ¥
Home Articles Code Demos Portfolio
JavaScript jQuery
J5 Article 1 jQuery Article 1
J5 Article 2 jQuery Article 2
J5 Article 3 jQuery Article 3
jQuery slideDown() with flicker effect - Opera HE=E I
-J [E jQuery slideDown(wit... X (| 4 | &
L] ’ o || # || B Local |localhost/C:fa ¥
Home Articles Code Demos Portfolio
The first
demo
Another
demo
The third
demo

Chapter 4

In the previous screenshot, we see both submenus in their expanded, visible states.

The flicker problem arises in part because of the visitor's perception of where the submenu
actually is. It is quite clear with the thin submenu where the boundaries of the menu are.
The visitor will most likely move their mouse pointer straight down into the submenu when
it appears on the page.

With the wider submenu, the visitor may not be quite as sure where they need to move their
mouse in order to enter the submenu. Instead of moving straight down from the Articles
top-level item into the submenu, they may instead move their mouse pointer diagonally
down and to the right, thinking that they can enter the second list of links that way.

It is this behavior that produces the flicker effect; try it out yourself—move the mouse
pointer diagonally down and to the right when entering the wide submenu. The submenu
should flicker on and off wildly.

Time for action - fixing the flicker

In this section we'll see how to prevent the flicker from spoiling the animation.

1. Fixing the problem is relatively easy. Simply update the JavaScript so that it appears
as follows (new code again shown in bold):

var ul = $("nav ul"),
timer = null;

ul.removeClass ("purecss") ;
ul.find("a") .each (function () {
if (!$(this) .closest (".subnav").length) {

var a = $(this);
a.append ("" + a.text() + "");
}
I3
ul.find("a") .hover (function() {

$(this) .find ("span") .fadeIn("slow") ;
}, function() {
$(this) .find ("span") .hide () ;

13N

S (".subnav", ul) .parent () .mouseenter (function () {
clearTimeout (timer) ;
$(this) .find (".subnav") .stop (true, true).slideDown ("fast");

13N

1971

Sliding Animations

function closeIt(el) {
el.stop(true, true).slideUp("fast");

}

S (".subnav", ul) .parent () .mouseleave (function () {
var el = $(this) .find(".subnav");
timer = setTimeout (function() { closeIt(el); }, 100);

3N

2. Save this new file as slideFlickerFixed.html.

What just happened?

First of all, we initialize a new variable at the top of our code. The t imer variable will be
used to store a timeout ID in so that it can be accessed and cleared from within a function.
We initially set it to null as there is no other appropriate data type for it to temporarily
hold. In our mousenter event handling function, we first clear the timeout using the ID
held in our timer variable. The variable may or may not be populated when the handler
executes. It is clearing this t imeOut which is what prevents the flicker effect from occurring.

After our mouseenter handler we define a new function, closeIt (), which accepts a
single argument. The argument will be set to the submenu currently open. The function
simply calls the same code from before which closes the submenu by sliding it up.

In our mouseleave handler function, we store the currently open submenu in a variable
and then use a standard JavaScript setTimeout () function to call the closelIt () function
after a short delay of 100 milliseconds.

We need to use an anonymous function within the setTimeout () function to call our
closelIt () function, so that we can pass in the cached submenu element that the function
requires as an argument.

Adding this slight delay with setTimeout () fixes the flicker effect entirely. The delay is
too short to cause a noticeable delay when the visitor actually moves off of the submenu
intentionally. If they accidently move the pointer over the corner of the next top-level link
when going diagonally down and to the right to reach the second list of links, when they
move back into the submenu it will clear the timeout and the submenu will not close,

or flicker.

Chapter 4

1. Why was it necessary to use a an anonymous function when calling the
setTimeout () function in the previous example?

a. ltis the only format accepted by setTimeout ()
b. It executes faster

c. Inorder to pass in an argument

d. Forfun

Usability king Jakob Nielsen advises that a short-delay between the visitor hovering over a
navigation menu item and the submenu being displayed, to ensure that the visitor actually
wants to see the submenu, should be implemented in common interfaces. Not everyone
will agree with this, and there is a danger of the menu feeling unresponsive if the delay is
too long.

Update the f1ickerFixed.html file so that there is a short delay before a submenu is
shown after its parent menu item is hovered on.

The article which mentions the timing of displaying submenus can be found]

[athttp://www.useit.com/alertbox/mega-dropdown-menus.
’ html.

Summary

The sliding family of methods that we looked at over the course of the chapter are the last
of jQuery's built-in, predefined animation methods. The methods we looked at in this
chapter were:

¢ slideDown()

¢ slideUp()

¢ slideToggle()

We saw that these methods are very similar in how they are used to the other built-in jQuery
effect methods, allowing us to specify the same arguments. All that differs is the actual
effect. The techniques we learned in this chapter included:

¢ Showing elements that are hidden using s1ideDown ()

¢ Hiding visible elements with s1ideUp ()

¢ Toggling the visibility of elements with slideToggle ()

Sliding Animations

Adding easing to jQuery's built-in effects
Using the :animated filter to test whether an element is currently being animated

Fixing a common flickering issue with slide-down submenus

* & o o

How CSS affects sliding elements

We looked at how each of the sliding methods can be used, and also covered easing and
how we can easily add these subtle but effective methods to enhance or otherwise improve
how the effects appear when they run. The easing types require the inclusion of an external
plugin in order to function.

In the next chapter we'll move on to look at the animate () method, which allows us
to create custom animations which can animate almost any numerical style property
of an element.

[100]

The predefined effects that we have looked at throughout the book so far
are very good at what they do, but they are there to cater for very specific
requirements and will sometimes not be enough when more complex
animations are needed.

In these situations we can use jQuery's animate () method, which allows us to
define custom animations with ease that can be as complex and as specialized
as the task at hand requires, and this is what we'll be looking at over the course
of this chapter.

Subjects that we'll cover throughout the course of this chapter will include:

* 6 6 o o

Creating custom animations with the animate () method
Passing arguments to the method

Animating an element's dimensions

Animating an element's position

Creating a jQuery animation plugin

Custom Animations

The animate method

All custom animations with jQuery are driven with the animate () method. Despite the
ability to animate almost any style property that has a numeric value, the method is simple
to use and takes just a few arguments. The method may be used in the following way:

jQuery (elements) .animate (properties to animate,
[duration],
[easing],
[callback]

);

The first argument should take the form of an object where each property of the object is a
style that we'd like to animate, very similar to how we would use jQuery's css () method.

As | mentioned before, this can be any CSS style that takes a purely numerical argument
(with the exception of colors, although with the jQuery Ul library we can animate colors as
well. See Chapter 6, Extended Animations with jQuery Ul for more information on jQuery Ul).
Background positions cannot be animated by jQuery natively, but it is quite easy to animate
this property manually; see Chapter 7, Full Page Animations for more information on

this technique.

The duration, easing, and callback arguments take the same formats as those that we used
with the fading and sliding methods earlier in the book and are used in exactly the same way.

Per-property easing

As of the 1.4 version of jQuery, we can apply different types of easing to each style property
we are animating when using the animate () method. So if we are animating both the
width and height of an element for example, we can use 1inear easing for the width
animation, and swing easing for the height animation. This applies to the standard easing
functions built into jQuery, or any of the easing functions added with the easing plugin that
we looked at in Chapter 4, Sliding Animations.

To supply easing types to the animate () method on a per-property basis, we need to
provide an array as the value of the property we are animating. This can be done using the
following syntax:

jQuery (elements) .animate ({
property: [value, easingType]

1)

11021

Chapter 5

An alternative syntax for animate()

Instead of using the duration, easing, and callback arguments individually, we may
alternatively pass a configuration object to the animate () method containing the
following configuration options:

duration

easing

complete

step

* & 6 0 o

queue

¢ specialEasing

The first three options are the same as the arguments would be if we passed them into the
method in the standard way. The last three are interesting however, in that we do not have
access to them in any other way.

The step option allows us to specify a callback function that will be executed on each step
of the animation. The queue option accepts a Boolean that controls whether the animation
is executed immediately or placed into the selected element's queue. The specialEasing
option allows us to specify an easing function for each individual style property that is being
animated, giving us easing on a per-property basis using the alternative syntax.

The pattern for this second method of usage is as follows:

jQuery (elements) .animate (properties to animate, [configuration
optionsl]) ;

Like most (but not all) jQuery methods, the animate () method returns a jQuery object so
that additional methods can be chained to it. Like the other effect methods, multiple calls

to animate () on the same element will result in an animation queue being created for the
element. If we want to animate two different style properties at the same time, we can pass all
required properties within the object passed to the animate () method as the first argument.

Animating an element’s position

The animate () method is able to animate changes made to any CSS style property that
has a numeric value, with the exception of colors and background-positions. In this
example, we'll create a content viewer that shows different panels of content by sliding
them in and out of view using the animate () method.

This type of widget is commonly used on portfolio or showcase sites and is an attractive way
to show a lot of content without cluttering a single page. In this example, we'll be animating
the element's position.

[1031

Custom Animations

Time for action - creating an animated content viewer

We'll start again by adding the underlying markup and styling.

1. The underlying markup for the content viewer should be as follows:

<div id="slider">
<div id="viewer"s>

<img id="image4" src="img/commodorel28.jpg" alt="Commodore
128">
<img id="image5" src="img/spectrum.jpg" alt="Sinclair ZX
Spectrum +2">
</div>
<ul id="ui">
<1li class="hidden" id="prev">

«
Image
l</1li>

Image 2</lis
Image 3
Image 4
Image 5
<1li class="hidden" id="next">
»
</uls>
</div>

2. Savethefile as animate-position.html.

3. Next we should create the base CSS. By that | mean that we should add the CSS
which is essential for the content-viewer to function as intended, as opposed to
styling that gives the widget a theme or skin. It's good practice to separate out
the styling in this way when creating plugins so that the widget is compatible with
jQuery Ul's Themeroller theming mechanism.

4. Inanew file in your text editor add the following code:

#slider { width:500px; position:relative; }

#viewer {
width:400px; height:300px; margin:auto; position:relative;
overflow:hidden;

}

#slider ul ({

(1041

Chapter 5

width:295px; margin:0 auto; padding:0; list-style-type:none;
}
#slider ul:after {
content:"."; visibility:hidden; display:block; height:0;
clear:both;

}
#slider 1i { margin-right:10px; float:left; }
#prev, #next { position:absolute; top:175px; }
#prev { left:20px; }
#next { position:absolute; right:10px; }
.hidden { display:none; }
#slide ({

width:2000px; height:300px; position:absolute; top:0; left:0;
}
#slide img { float:left; }
#title { margin:0; text-align:center; }

5. save thisin the css folder as animate-position.css, and don't forget to link
to the new stylesheet from the <heads> of our page. Run the page in your browser
now, before we get into the scripting, so that you can see how the widget behaves
without the accompanying script. You should find that any image can be viewed by
clicking its corresponding link using only CSS, and this will work in any browser. The
previous and next arrows are hidden with our CSS because these will simply not
work with JS turned off and the image titles are not displayed, but the widget's core
functionality is still fully accessible.

What just happened?

The underlying HTML in this example is very straightforward. We have an outer container for
the content-viewer as a whole, then within this we have a container for our content panels
(simple images in this example) and a navigation structure to allow the different panels to
be viewed.

Some of the elements we've added style rules for in our CSS file aren't hardcoded into the
underlying markup, but will be created as necessary when needed. Doing it this way ensures
that the content-viewer is still usable even when the visitor has JavaScript disabled.

One important point to note is that the #s1ide wrapper element that we create and wrap
around the images has a height equal to a single image and a width equal to the sum of
all image widths. The #viewer element on the other hand has both a width and a height
equal to a single image so that only one image is visible at any one time.

With JavaScript disabled, the images will appear to stack up on top of each other, but once
the #s1ide wrapper element has been created the images are set to float in order to stack
up horizontally.

[1051

Custom Animations

We'll use easing in this example, so be sure to link to the easing plugin directly after the
jQuery reference at the end of the <body>:

<script src="js/jquery.easing.l.3.js"></script>

Time for action - initializing variables and prepping the widget

First we need to prepare the underlying markup and store some element selectors:

S ("#viewer") .wrapInner ("<div id=\"slide\"></div>");

var container = $("#slider"),
prev = container.find ("#prev"),
prevChild = prev.find("a"),

next = container.find("#next") .removeClass ("hidden"),
nextChild = next.find("a"),

slide = container.find("#slide"),

key = "imagel",

details = {
imagel:
position: 0, title: slide.children() .eq(0) .attr("alt")
b
image2:
position: -400, title: slide.children() .eq(1l) .attr("alt")
b
image3:
position: -800, title: slide.children() .eq(2) .attr("alt")
b
image4:
position: -1200, title: slide.children() .eq(3) .attr("alt")
b
image5:
position: -1600, title: slide.children() .eq(4) .attr("alt")
}
}i

$("<h2sm, |

id: "title",

text: details[key] .title
}) .prependTo ("#slider") ;

[1061]

Chapter 5

What just happened?

To start with, we first wrap all of the images inside the #viewer <divs> in a new container.
We'll be using this container to animate the movement of the panels. We give this new
container an id attribute so that we can easily select it from the DOM when required.

This is the element that we will be animating later in the example.

Next we cache the selectors for some of the elements that we'll need to manipulate
frequently. We create a single jQuery object pointing to the outer #s1ider container and
then select all of the elements we want to cache, such as the previous and next arrows, using
the jQuery £ind () method.

A key variable is also initialized which will be used to keep track of the panel currently being
displayed. Finally, we create a details object that contains information about each image
in the content viewer. We can store the 1eft position in pixels that the s1ide container
must be animated to in order to show any given panel, and we can also store the title of
each content panel.

The title of each panel is read from the alt attribute of each image, but if we were using
other elements, we could select the title attribute, or use jQuery's data method to set and
retrieve the title of the content.

The <h2> element used for the title is created and inserted into the content-viewer with JS
because there is no way for us to change it without using JS. Therefore when visitors have JS
disabled, the title is useless and is better off not being shown at all.

The last thing we do in the first section of code is to remove the hidden class name from the
next button so that it is displayed.

The previous link (by this | mean the link that allows the visitor to move to the previous
image in the sequence) is not shown initially because the first content panel is always the
panel that is visible when the page loads, so there are no previous panels to move to.

Time for action - defining a post-animation callback

Next we need a function that we can execute each time an animation ends:

function postAnim(dir)
var keyMatch = parselnt (key.match(/\d+$/));
(parseInt (slide.css("left")) < 0) ? prev.show() : prev.hide();

(parselnt (slide.css("left")) === -1600) ? next.hide()
next.show () ;

11071

Custom Animations

if (dir) {
var titleKey = (dir === "back") ? keyMatch - 1 : keyMatch + 1;
key = "image" + titleKey;

}

container.find ("#title") .text (details[key] .title);

container.find(".active") .removeClass ("active") ;
container.find("al[href=#" + key + "]").addClass("active");
Vi
What just happened?

In this second section of code, we define a function that we'll call after an animation ends.
This is used for some housekeeping to do various things that may need doing repeatedly,
so it is more efficient to bundle them up into a single function instead of defining them
separately within event handlers. This is the postAnim () function and it may accept a
single parameter which refers to the direction that the slider has moved in.

The first thing we do in this function is use the regular expression /\d+$/ with JavaScript's
match () function to parse the panel number from the end of the string saved in the key
variable which we initialized in the first section of code, and which will always refer to the
currently visible panel.

Our postAnim () function may be called either when a panel is selected using the numeric
links, or when the previous/next links are used. However, when the previous/next links are
used we need the key to know which panel is currently being displayed in order to move to
the next or previous panel.

We then check whether the first panel is currently being displayed by checking the 1eft
CSS style property of the #s1ide element. If the #s1ide element is at 0, we know the first
panel is visible so we hide the previous link. If the 1eft property is less than 0, we show
the previous link. We do a similar test to check whether the last panel is visible, and if so,
we hide the next link. The previous and next links will only be shown if they are

currently hidden.

We then check whether the dir (direction) argument has been supplied to the function. If
it has, we have to work out which panel is now being displayed by reading the keyMatch
variable that we created earlier and then either subtracting 1 from it if the dir argument is
equal to back, or adding 1 to it if not.

The result is saved back to the key variable, which is then used to update the <h2> title
element. The title text for the current panel is obtained from our details object using the
key variable. Lastly we add the class name active to the numeric link corresponding to the
visible panel.

[108]

Chapter 5

Although not essential, this is something we will want to use when we come to add a skin to
the widget. We select the right link using an attribute selector that matches the href of the
current link. Note that we don't create any new jQuery objects in this function; we use our
cached container object and the £ind () method to obtain the elements we require.

Time for action - adding event handiers for the Ul elements

Now that the slider has been created, we can add the event handlers that will drive the
functionality:

$("#ui 1i a") .not (prevChild) .not (nextChild) .click (function (e) {
e.preventDefault () ;

key = $(this) .attr("href") .split ("#") [1];

slide.animate ({
left: details[key] .position
}, "slow", "easeOutBack", postAnim) ;

3N

nextChild.add (prevChild) .click (function(e)
e.preventDefault () ;

var arrow = $(this) .parent() ;

if (!slide.is(":animated"))
slide.animate ({

left: (arrow.attr("id") === "prev") ? "+=400" : "-=400"
}, "slow", "easeOutBack", function () {
(arrow.attr ("id") === "prev") ? postAnim("back")

postAnim ("forward")

What just happened?

The first handler is bound to the main links used to display the different panels, excluding the
previous and next links with the jQuery not () method. We first stop the browser following
the link with the preventDefault () method.

We then update the key variable with the panel that is being displayed by extracting the
panel name from the link's href attribute. We use JavaScript's split () method to obtain
just the panel id and not the # symbol.

(1091

Custom Animations

Finally, we animate the slide element by setting its 1eft CSS style property to the value
extracted from the details object. We use the key variable to access the value of the
position property.

As part of the animation, we configure the duration as s1ow and the easing as easeOutBack,
and specify our postAnim function as the callback function to execute when the animation
ends.

Finally, we need to add a click handler for the previous/next links used to navigate to the
next or previous image. These two links can both share a single click handler. We can select
both of these two links using our cached selectors from earlier, along with jQuery's add ()
method to add them both to a single jQuery object in order to attach the handler functions
to both links.

We again stop the browser from following the link using preventDefault (). We then
cache a reference to the parent of the link that was clicked, using the arrow variable, so that
we can easily refer to it later on in the function. This is needed because within the callback
function for the animate () method, the $ (this) keyword will be scoped to the #slide
element instead of the link that was clicked.

We then check that the #s1ide element is not already being animated using the :animated
filter. This check is important because it prevents the viewer breaking if one of the links is
clicked repeatedly.

If it is not already being animated, we perform the animation and move the slide element
either 400 pixels (the width of a single content panel) backwards or forwards. We can check
which arrow was clicked by looking at the id attribute of the element referenced by the
arrow variable.

We specify the same duration and easing values as before in the animation method, but
instead of passing a reference to the postaAnim function as the callback parameter we pass
an anonymous function instead. Within this anonymous function, we determine which link
was clicked and then call the postAnim function with the appropriate argument. Remember,
this is necessary to obtain the correct key for the details object because neither the
previous nor the next links have href attributes pointing to an image.

Try the page out in a browser at this point and you should find that an image can be viewed
by clicking on any of the links, including the previous and next links. This is how the widget
should appear at this stage:

(1101

Chapter 5

¥ jQuery animate() Position - Mozilla Firefox |_ O] x| .
File Edit View History Delidous Bookmarks Tools Help
- 7 il O Jsesmee 75 -] [B-[cooa P | Fa €I
J‘ | iQuery animate() Position | - F
Amstrad CPC 472

Image 1 Image2 Image3 [mage4 [mage 5

,ﬁ| Done ,?lﬁ ¥Slow E 4

The previous screenshot shows the widget in its un-skinned state, with only the CSS required
for it to function included.

'There's more than one way to skin a cat' was once proclaimed, and this applies to widgets as
well as cats. Lastly, let's add some custom styling to the widget to see how easy it is to make
the widget attractive as well as functional.

Time for action - adding a new skin

At the bottom of the animate-position.css file, add the following code:

a { outline:0 none; }
#slider {
border:1px solid #999; -moz-border-radius:8px;
-webkit-border-radius:8px; border-radius:8px;
background-color:#ededed; -moz-box-shadow:0px 2px 7px #aaa;
-webkit-box-shadow:0px 2px 7px #aaa; box-shadow:0px 2px 7px #aaa;
}
#title, #slider ul { margin-top:10px; margin-bottom:12px; }
#title {
font:normal 22px "Nimbus Sans L", "Helvetica Neue", "Franklin
Gothic Medium", Sans-serif;

[l

Custom Animations

color:#444;
!
#viewer { border:1px solid #999; background-color:#fff; }
#slider ul { width:120px; }
#slider ul 1i a {
display:block; width:10px; height:10px; text-indent:-5000px;
text-decoration:none; border:2px solid #666;
-moz-border-radius:17px; -webkit-border-radius:17px;
border-radius:17px; background-color:#fff; text-align:center;
!
#slider #prev, #slider #next { margin:0; text-align:center; }
#slider #prev { left:10px; }
#slider #prev a, #slider #next a {
display:block; height:28px; width:28px; line-height:22px;
text-indent:0; border:1px solid #666; -moz-border-radius:17px;
-webkit-border-radius:17px; border-radius:17px;
background-color:#fff;

}

#prev a, #next a { font:bold 40px "Trebuchet MS"; color:#666; }
#slider ul 1i a.active { background-color:#F93; }

What just happened?

With this code we style all of the visual aspects of the widget without interfering with
anything that controls how it works. We give it some nice rounded corners and add a
drop-shadow to the widget, turn the numeric links into little clickable icons, and style
the previous and next links. Colors and fonts are also set in this section as they too are
obviously highly dependent on the theme.

These styles add a basic, neutral theme to the widget, as shown in the following screenshot:

D jQuery animate() Position

& C % ¥ fie:///C:/apachesite/iquery-animationfani B | [G~ S~

Amstrad CPC 472

@o000O0

[n2]

Chapter 5

The styles we used to create the theme are purely arbitrary and simply for the purpose of
the example. They can be changed to whatever we need in any given implementation to suit
other elements on the page, or the overall theme of the site.

Pop quiz - creating an animated content-viewer

1. What arguments may the animate () method be passed?

a.

An array where the array items are the element to animate, the duration, the
easing, and a callback function

The first argument is an object containing the style properties to animate,
optionally followed by the duration, an easing type, and a callback function

An object where each property refers to the style properties to animate, the
duration, easing, and a callback function

A function which must return the style properties to animate, the duration,
easing, and a callback function

2. What does the animate () method return?

a. An array containing the style properties that were animated
b.

c.
d.

A array containing the elements that were animated
A jQuery object for chaining purposes

A Boolean indicating whether the animation completed successfully

In our animated content viewer, we had a fixed number of images and a hardcoded
navigation structure to access them. Extend the content viewer so that it will work with an
indeterminate number of images. To do this, you will need to complete the following tasks:

¢ Determine the number of images in the content viewer at run time and set the
width of the #s1ide wrapper element based on the number of images

Build the navigation links dynamically based on the number of images

Create the details object dynamically based on the number of images and set the
correct 1eft properties to show each image

131

Custom Animations

Animating an element's size

As | mentioned at the start of the chapter, almost any style property that contains a purely
numeric value may be animated with the animate () method.

We looked at animating an element's position by manipulating its 1eft style property, so
let's move on to look at animating an element's size by manipulating its height and width
style properties.

In this example, we'll create image wrappers that can be used to display larger versions of
any images on the page by manipulating the element's size.

Time for action - creating the underlying page and hasic styling

First, we'll create the underlying page on which the example will run.

1. Add the following HTML to the <body> of our template file:

<article>
<hl>The Article Title</hl>
<p><img id="imagel-thumb" class="expander" alt="An ASCII Zebra"
src="img/ascii.gif" width="150" height="100">Lorem ipsum
dolor...</p>
<p><img id="image2-thumb" class="expander" alt="An ASCII Zebra"
src="img/ascii2.gif" width="100" height="100">Lorem ipsum
dolor...</p>
</articles>

2. Save the example page as animate-size.html. We'll keep the styling light in this
example; in a new file in your text editor, add the following code:

article {
display:block; width:800px; margin:auto; z-index:0;
font:normal 18px "Nimbus Sans L", "Helvetica Neue", "Franklin
Gothic Medium", sans-serif;
}

article p {
margin:0 0 20px; width:800px; font:15px Verdana, sans-serif;
line-height:20px;
}
article p #image2-thumb { float:right; margin:6px 0 0 30px; }
img.expander { margin:6épx 30px 1lpx 0; float:left; }
.expander-wrapper { position:absolute; z-index:999; }
.expander-wrapper img {
cursor:pointer; margin:0; position:absolute;
}

.expander-wrapper .expanded { z-index:9999; }

3. Save this file as animate-size.css in the css folder.

(14l

Chapter 5

What just happened?

The HTML could be any simple blog post consisting of some text and a couple of images. The
points to note are that each image is given an id attribute so that it can be easily referenced,
and that each image is actually the full-sized version of the image, scaled down with width
and height attributes.

The styles used are purely to lay out the example; very little of the code is actually required
to make the example work. The expander-wrapper styles are needed to position the
overlaid images correctly, but other than that the styling is purely arbitrary.

We're floating the second image to the right. Again this isn't strictly necessary; it's used just
to make the example a little more interesting.

Time for action — defining the full and small sizes of the images

First we need to specify the full and small sizes of each image:

var dims = {

imagel:
small: { width: 150, height: 100 },
big: { width: 600, height: 400 }

b

image2: {
small: { width: 100, height: 100 },
big: { width: 400, height: 400 }

}
b
webkit = (S ("body") .css("-webkit-appearance") !== "" && $("body").
css ("-webkit-appearance") !== undefined) ? true : false;
What just happened?

We create an object which itself contains properties matching each image's filename.
Each property contains another nested object which has small and big properties and
the relevant integers as values. This is a convenient way to store structured information
that can easily be accessed at different points in our script.

We also create a variable called webkit. There is a slight bug in how images floated to the
right are treated in Webkit-based browsers such as Safari or Chrome. This variable will hold
a Boolean that will indicate whether Webkit is in use.

A test is performed which tries to read the -webkit-appearance CSS property. In Webkit
browsers, the test will return none as the property is not set, but other browsers will either
return an empty string or the value undefined.

(1151

Custom Animations

Time for action - creating the overlay images

Next we should create an almost exact copy of each image on the page to use as an overlay:

$(".expander") .each (function (i)

var expander = $(this),

coords = expander.offset(),
copy = $("", {
id: expander.attr("id") .split("-") [0],

src: expander.attr("src"),
width: expander.width(),
height: expander.height ()

1)

What just happened?

In this part of the <scripts>, we select each image on the page and process them using
jQuery's each () method. We set some variables, caching a reference to the current image
and storing its coordinates on the page relative to the document using the jQuery of fset ()
method.

We then create a new image for each existing image on the page, giving it an id attribute
that pairs it with the image it is overlaying, the src of the original image, and the width and
height of the original image. We use the JavaScript split () function to remove the part
of the string that says thumb when we set the id of the new image.

Note that the previous code does not represent an entire snippet of fully-functional code.
The outer function passed to the each () method has not yet been closed as we need to
add some additional code after these variables.

Time for action - creating the overlay wrappers

We now need to create the wrappers for each of the overlay images (note that this code is
still within the each () method and so will be executed for each of the images that have the
expanded class hame):

$("<divs</divs", |

"class": "expander-wrapper",
css: |
top: coords.top,
left: (webkit === true && expander.css("float") === "right") ?
(coords.left + expander.width()) : coords.left,
direction: (expander.css("float") === "right") ? "rtl"
llltrll

(1161

Chapter 5

b

html: copy,

width: expander.width(),
height: expander.height (),
click: function() {

var img = $(this).find("img"),
id = img.attr("id");

if (!img.hasClass ("expanded")) ({
img.addClass ("expanded") .animate ({
width: dims[id] .big.width,
height: dims[id] .big.height
b A
queue: false
1
} else {
img.animate ({
width: dims[id] .small.width,
height: dims[id] .small.height
b o
queue: false,
complete: function() ({
$ (this) .removeClass ("expanded") ;

3N
}

}) .appendTo ("body") ;

What just happened?

In this section of code, we create the wrapper element for the new image. We give it a new
class name so that it can be positioned correctly.

. Quoting the class property
AY

~ We need to use quotes around the property name class so that it works
correctly in Internet Explorer. If we fail to quote it, IE will throw a script error

stating that it expected an identifier, string, or number.

We set the position of the wrapper element using the css property in conjunction with the
coordinates we obtained from the of fset () method earlier.

1111

Custom Animations

When setting the 1eft position of the wrapper element, we need to check our webkit
variable to see if Safari is in use. If this variable is set to true, and if the image is floated
to the right, we position the overlay according to the cords . left value in addition to the
width of the original image. If the webkit variable is false, or if the original image is
floated 1eft, we just set the 1eft position of the wrapper to the value stored in
coords.left.

We also need to set the direction property of any images that are floated right. We check
the float style property and set the direction to rt1 if the image is floated right, or 1tr
if not. This is done using JavaScript's ternary conditional.

This check is done so that the wrapper expands from right-to-left when the image is floated
right. If we didn't set this, the wrapper would open up from left-to-right, which could make
the full-sized image overflow the viewport or the content container resulting in scroll bars.

We add the new image to the wrapper by passing a reference to it into the jQuery html ()
method, and set the width of the wrapper to the width of the original (and new) image.
This is necessary for the overlay to be positioned correctly over any images that are
floated right.

Next we add a click handler to the wrapper. Within the anonymous function passed as
the value of the c1ick () method, we first cache a reference to the image within the
wrapper that was clicked, and get the id of the image for convenience. Remember, the
id of the overlay image will be the same as the original image it is covering minus the
text string - thumb.

We then check whether the image has the class name expanded. If it doesn't, we add

the class name and then animate the image to its full size using the second format of the
animate () method. We pass two objects into the method as arguments; the first contains
the CSS properties we wish to animate, in this case the width and height of the image.

The correct width and height to increase the image to are retrieved from the dims object
using the id of the image that was clicked as the key. In the second object passed to the
animate () method, we set the queue property to false. This has the same effect as using
the stop () method directly before the animate () method and ensures that nothing bad
happens if the overlay wrapper is repeatedly clicked.

(1181

Chapter 5

If the image already has the class name expanded, we animate the image back to its small
size. Again we use the two-object format of the animate () method, supplying false as
the value of the queue property, and removing the class name expanded in an anonymous
callback function passed to the complete property. Once the wrapper has been created, we
append it to the <body> of the page.

At this point the code we've written will work as intended—clicking an image will result in
the expanded version being animated to its full size. However, if the page is resized at all,
the overlays will no longer be overlaying their images.

Time for action — maintaining the overlay positions

Because the overlays are positioned absolutely, we need to prevent them from becoming
misaligned if the window is resized:

$ (window) .resize (function()
$ ("div.expander-wrapper") .each (function (i) ({
var newCoords = $("#image" + (i + 1) + "-thumb").offset();

$(this) .css ({
top: newCoords.top,
left: newCoords.left

What just happened?

All we need to do is make sure the overlay images stay directly on top of the original images
when the page resizes, which we can achieve by binding a handler for the resize event to the
window object. In the handler function, we just get the new coordinates of the underlying
image, and set the top and 1eft properties of the wrapper accordingly. Note that we don't
animate the repositioning of the overlays.

(19l

Custom Animations

Save the file and preview it in your browser. We should find that we can click on either image
and it will expand to show a full-sized version of the image, with the first image expanding to
the right, and the second expanding to the left:

é jQuery animate() Size - Windows Internet Explorer [_ O] =] .
G "
Q._ | ® |g C:\apachesitejquery-animation\animate\animate-size. html j F4| 2K I‘. Google -

) . - =
f Faverites @& iQuery animate() Size ‘ | 5-8 - (= - Page - Safety - Tools- -

The Article Title

}J;E-Jﬂéjggnagéaﬂgc}Haeg:gw 1372 1~pm~ MR s=cd do eiusmod tempor
e #)d S, JMNGOagzaau,_ " i i
PP BN T T PN R M Pl el il inimn veniam, quis nostrud
suadlx - ikXOAZ d#Bc#kdAF JF I8 38k 4I]l]aI.II]I]HHHHH‘3HHE|U]]Ga3'?9*(4UX‘|’"“‘ b consequat. Duis aute
Y7 ';aq[:t‘ 'UC]ou(4#P<PTUF j@ 11]UdONOPAP jU~-U0_JF 1z & _ "”I"g(olore eu fugiat nulla
=UO#L 10K, jdY 3YZIR-05uk - . i#aOVdPHU~SA8F | -dT2~3~" "¥) ™\ g
L TNAYNZF, Y/ J0F 1C =17 13VUhdPolRECRRF jPNZSaYiuc 2, sunt in culpa qui officia
ﬂP‘*JI]P JdP‘aP“'a@“'JP\dFdTdﬂde*}':‘adFIZIdEFJHF e Y\P\dT J\ z?l.
Y " o GUT sqUPgd~ gdP * iF j2d,j[=#Rj0¢ ' 7oK 1P =cl#F 3UF DFB GY'IK' (P
Jde~d j#F il~g#P JY,jP1{UEJUF]C~<¢ U(dK?IISI)LIFIi.I.Il]t dE 1L }r‘]i/azz\
GHE 30P~ GME i#C~ jFgP @30 . JHNIE <+ 19k U#{4C4EQs3#F JHF .dE 4EJ{N<r<_ incidid
Y",jd@“‘IdH"il]P",j“‘,jUE]“‘lJE:]IL'?"! Udl IHAJOd###A#as90k dP U:IL7gN 5z incididunt
~#Y ' jo#~gOHEgE : JHN]Z4E=98# (N2 | JK#k <THH1#U7772" YOPz j3P" §f 3E 1/L'1g" htion
J#(-Jﬂﬂ(.d#(ar uo ""lJG =T_a3040%d9C3D08k =uxl"14i0C" -UL 4F1TL<g?0gr
@~ jaH#@ ' J#P~dH™ [HO{ '4C*~U9e 14K0P9 ' 7F dedUt 1 dHO{y_J8L Ir1X 4rl%
YExHTdHF -U#F S#KLUstroUghl <OULg#ble509k 385001 _<g '~3Uk Ir1#K “CI1{42%"'~ ur sint
qdP ' J0¢ 18F:JOE 30¢u30Ak=CIKJOH~aedHUU JU#esT! ITIi98G=JN0k 9g{dk?V
‘l'#l]ﬂllﬂud‘lZH]]ne]le Jell{-r st
/' J8F JB0(: P00#00#9A?Him=0#% £ <(3]1[1%
*III]K']l][HeL]k]P}UﬂPSgSlUI]I]Ha VYHO#KOS | ﬁc]IJL LI,L(]
10#r7 18t ==JU0_J0UxLD#Ear i UO#0#00nXU ! Y#?8AZ3AE98k X 1 (k2=
100¢ ' I##gl 9#[4#e]UOQEJUK=I9eYY99%#hsxi IN?UOz90Z0L] 3* £x=

10#[=c! 14##b = 10E T#DU#HSUOF S <?H 11 3a00M00A=0?HA/HL1G<V41™
JU0b- - "HOOL# T3k ?4#000C 1D0Ce L : gol#s0#s0##S5s ?HO 7 #rHrCY Tx
388D -~ QUsero#0(Sesa (U0RIE3P 3. I880@Y I 7HO##02cHb363h 131
L1880L=" 38#A. #85z904508L 1L ' 6dHMHVPH 1 DUOTYHBE | YH4(9=zVVK
1D0#EH ~ 'Hid<?000290 1 #8r40F ?{dUTh ;aGan30i | YV)sVsTgaaar
##a_==704#b Yi##x?308L4#F=5 .~ jd##HVY ugO0AggqOQUUOOHN_

|Done ’_’_’_ ’_ ’_ ’_LL Computer | Protected Mode: Off 4T | H100% - 4

In the previous screenshot we see the first image as it expands to its full size.

Pop quiz - creating expanding images

1. In this example, we used a different format for the arguments passed to the
animate () method, what format did the arguments take?

a. Two arrays where the first array contains selectors for the elements to animate,
and the second contains the duration, easing, and specialEasing strings,
and a callback function

b. A single object containing the style properties to animate, duration, easing, and
specialEasing strings, and step and complete callback functions

c. A function which must return the style properties to animate, the duration and
easing strings, and a callback function

1201

Chapter 5

d. Two objects where the first object contains the style properties to animate, and
the second object contains the duration, easing and specialEasing strings, a
Boolean indicating whether to queue repeated animate () calls, and the step
and complete callback functions

2. What is the keyword this scoped to in an animation's callback function?
a. The element that was animated
b. The current window
c. The container of the element that was animated

d. The event object

Have a go hero - doing away with the hardcoded dims object

In the previous example, we hardcoded an image into the top of our script that was used

to tell the animate () method what size the image should be animated to. While this was
fine for the purpose of the example, it doesn't really scale well as a long-term solution as we
would have to remember to set this every time we used the script (or otherwise ensure our
images are always a fixed size).

The problem is that we have no way to programmatically get both the full size and thumb
size from a single image. The good news is that any data that can be stored in a JavaScript
object can also be passed across a network for consumption as a JSON object. Extend this
example so that when the page loads, it passes the src attributes of the images on the
page to the server, which returns a JSON object containing the small and large image sizes.
An image manipulation library, like GD or ImageMagick, for PHP, or the System.Drawing.
Image type in .Net, will be your friend here.

Creating a jQuery animation plugin

Plugins are an excellent way of packaging up functionality into an easy to deploy and share
module of code that serves a specific purpose. jQuery provides the fn.extend () method
precisely for this purpose, making it easy to create powerful and effective plugins that can be
easily distributed and used.

There are a few guidelines that should be adhered to when creating jQuery plugins; these
are as follows:

¢ New methods, which are called like other jQuery methods, for example
$ (elements) .newMethod () should be attached to the £n object, and new
functions, which are used by the plugin, for example $.myFunction (), should be
attached to the jQuery object

[1211

Custom Animations

L 4

New methods and functions should always end in a semi-colon (;) to preserve
functionality when the plugin is compressed

Inside methods, the this keyword always refers to the current selection of
elements, and methods should always return this to preserve chaining

Always attach new methods and functions to the jQuery object as opposed to the $
alias, unless using an anonymous function with an aliased $ object

In this section, we'll create a plugin which can be used to create advanced transition effects
when showing a series of images. The finished widget will be similar in some respects to the
image viewer we created earlier, but will not animate the images themselves. Instead, it will
apply transition effects between showing them.

Time for action - creating a test page and adding some styling

Once again we'll create the example page and basic styling first and add the script last.

1.

2.
3.

4.

The underlying HTML for this example is very light. All we need in the <body> of our
template file are the following elements:

<div id="frame">
<img class="visible" src="img/F-35 Lightning.jpg" alt="F-35
Lightning">

<img src="img/B-2_ Spirit.jpg" alt="B-2 Spirit"s
<img src="img/SR-71 Blackbird.jpg" alt="SR-71 Blackbird"s

</divs>

Save this page as advanced-transitions.html.

Like the markup, the CSS we rely on for a plugin should also be as minimal as
possible. Luckily not much CSS is required for our small collection of elements.

Add the following code to a new file in your text editor:

#frame { position:relative; width:520px; height:400px; z-index:0;
}
#frame img { position:absolute; top:0; left:0; z-index:1; }
#frame img.visible { z-index:2; }
#frame a {
display:block; width:50%; height:100%; position:absolute; top:0;
z-index:10; color:transparent;
background-image:url (transparent.gif); filter:alpha/(
opacity = 0);

11221

Chapter 5

text-align:center; text-decoration:none;
font:90px "Palatino Linotype", "Book Antiqua", Palatino, serif;
line-height:400%;
}
#frame a:hover ({
color:#fff; text-shadow:0 0 5px #000; filter:alpha (
opacity = 100) ;
filter: Shadow(Color=#000, Direction=0) ;
}
#frame a:focus { outline:none; }
#prev { left:0; }
#next { right:0; }
#overlay ({
width:100%; height:100%; position:absolute; left:0; top:0;
z-index:3;
}

#overlay div { position:absolute; }

5. Save thisin the css folder as advanced-transitions.css.

What just happened?

All we have on the underlying page are the images we wish to transition between within
a container. It's best to keep the markup requirements for plugins as simple as possible so
that they are easy for others to use and don't place undue restrictions on the elements or
structure they want to use.

The images are positioned absolutely within the container using CSS so that they stack up on
top of one another, and we set our visible class on the first element to ensure one image
is above the rest in the stack.

Most of the styling goes towards the previous and next anchors, which we'll create with
the plugin. These are set so that each one will take up exactly half of the container and are
positioned to appear side-by-side. We set the z-index of these links so that they appear
above all of the images. The font-size is ramped up considerably, and an excessive
line-height means we don't need to middle-align the text with padding.

In most browsers, we simply set the color of the anchors to transparent, which hides
them. Then we set the color to white in the hover state. This won't work too well in IE
however, so instead we set the link initially to transparent with the Microsoft opacity
filter and then set it to fully opaque in the hover, which serves the same purpose.

11231

Custom Animations

Another IE-specific fix

| IE also presents us with another problem in that the clickable area of our links
& will only extend the height of the text within them because of their absolute
positioning. We can overcome this by setting a reference to a background-image.

The best part is that the image doesn't even need to exist for the fix to work (so
you'll find no corresponding transparent .gif filein the book's companion
code bundle). The fix has no detrimental effects on normal browsers.

Now let's create the plugin itself. Unlike most of the other example code we've looked at, the
code for our plugin will go into its own separate file.

Time for action - adding a license and defining

In a new file create the following outer structure for the plugin:

/*

Plugin name jQuery plugin version 1.0
Copyright (c) date copyright holder
License(s)

*/

; (function ($) {
$.tranzify = {

defaults:
transitionWidth: 40,
transitionHeight: "100%",
containerID: "overlay",
transitionType: "venetian",
prevID: '"prev",
nextID: "next",
visibleClass: "visible"

}

Vi

}) (jQuery) ;

[124]

Chapter 5

What just happened?

All plugins should contain information on the plugin name and version number, the copyright
owner (usually the author of the code) and the terms, or links to the terms, of the license or
licenses it is released under.

The plugin is encapsulated within an anonymous function so that its variables are protected
from other code which may be in use on the page it is deployed on, and has a semicolon
placed before it to ensure it remains a discrete block of code after potential minification, and
in case it is used with other, less scrupulously written code than our own.

We also alias the $ character for safe use within our function, to ensure it is not hijacked
by any other libraries running on the page and to preserve the functionality of jQuery's
noConflict () method.

It is good practice to make plugins as configurable as possible so that end users can adjust it
to suit their own requirements. To facilitate this, we should provide a set of default values for
any configurable options. When deciding what to make configurable, a good rule of thumb is
to hardcode nothing other than pure logic into the plugin. Hence, IDs, class names, anything
like that, should be made configurable.

The defaults we set for the plugin are stored in an object that is itself stored as a property
of the jQuery object that is passed into the function. The property added to the jQuery
object is called tranzify, the name of our plugin, and will be used to store the properties,
functions, and methods we create so that all of our code is within a single namespace.

Our default properties are contained in a separate object called defaults within the
tranzify object. We set the width and height of the transition elements, the id of the
container that gets created, the default transition, the ids for the previous and next links,
and the class name we give to the currently-showing image.

As | mentioned, it's best not to hardcode any id values or class names into a plugin if possible.
The person implementing the plugin may already have an element on the page with an id of
overlay for example, so we should give them the option to change it if need be.

Time for action - adding our plugin method to the

Next we can add the code that will insert our plugin into the jQuery namespace so that it can
be called like other jQuery methods:

$.fn.extend ({
tranzify: function(userConfig) ({

var config = (userConfig) ? $.extend({}, $.tranzify.defaults,

11251

Custom Animations

userConfig) : $.tranzify.defaults;
config.selector = "#" + this.attr("id");
config.multi = parselInt (this.width()) / config.transitionWidth;

$.tranzify.createUI (config) ;

return this;

}
3N

What just happened?

jQuery provides the £n.extend () method specifically for adding new methods into
jQuery, which is how most plugins are created. We define a function as the value of the sole
property of an object passed to the extend () method. We also specify that the method
may take one argument, which may be a configuration object passed into the method by
whoever is using the plugin to change the default properties we have set.

The first thing our method does is check whether or not a configuration object has been
passed into the method. If it has, we use the extend () method (not fn.extend ()
however) to merge the user's configuration object with our own defaults object.

The resulting object, created by the merging of these two objects, is stored in the variable
config for easy access by our functions. Any properties that are in the userConfig
object will overwrite the properties stored in our defaults object. Properties found in

the defaults object but not the userConfig object will be preserved. If no userConfig
object is passed into the method, we simply assign the defaults object to the

config variable.

Next we build an id selector that matches the element that the method was called on and
add this as an extra property to the config object, making it convenient to use throughout
the plugin. We can't store this as a default property because it is likely to be different on
every page that the plugin is used on, and we also can't expect users of the plugin to have to
define this in a configuration object each time the plugin is used.

The number of transition elements we need to create will depend on the size of the images,
and the width of the transition elements (defined as a configurable property), so we work
out a quick multiplier based on the width of the image and the configured transition width
for use later on.

Following this we call the function that will create the prev/next links (we define this shortly)
and pass the function the config object so that it can read any properties that the user
has configured.

11261

Chapter 5

Finally, we return the jQuery object (which is automatically assigned to the value of the this
keyword within our plugin method). This is to preserve chaining so that the user can call
additional jQuery methods after calling our plugin.

Time for action - creating the Ul

Next we need to create the previous and next links that are overlaid above the images and
allow the visitor to cycle through the images:

$.tranzify.createUI = function(config) {
var imgLength = $(config.selector).find("img") .length,
prevA = $("<a>", {
id: config.previD,
href: "$",
html: "«",
click: function(e) ({
e.preventDefault () ;

S (config.selector) .find("a") .css("display", "none");
$.tranzify.createOverlay (config) ;

var currImg = $("." + config.visibleClass, $(config.selector)) ;
if (currImg.prev () .filter ("img") .length > 0) {
currImg.removeClass (config.visibleClass) .prev () .addClass
(config.visibleClass) ;
} else {
currImg.removeClass (config.visibleClass) ;
S (config.selector) .find("img") .eq(imgLength -
1) .addClass (config.visibleClass) ;

$.tranzify.runTransition (config) ;

}

}).appendTo(config.selector),

nextA = $("<a>", {
id: config.nextID,
href: "$",
html: "»",
click: function(e) ({
e.preventDefault () ;

1211

Custom Animations

S (config.selector) .find("a") .css("display", "none");
$.tranzify.createOverlay (config) ;
var currImg = $("." + config.visibleClass, $(config.selector)) ;

if (currImg.next () .filter ("img") .length > 0)

currImg.removeClass (config.visibleClass) .next () .addClass (
config.visibleClass) ;

} else {
currImg.removeClass (config.visibleClass) ;

S (config.selector) .find ("img") .eq(0) .addClass (
config.visibleClass) ;

$.tranzify.runTransition (config) ;

}

}) .appendTo (config.selector) ;

}i

What just happened?

This is by far our largest function and deals with creating the previous and next links, as well
as defining their click handlers during creation using the jQuery 1.4 syntax. The first thing we
do is obtain the number of images in the container as the click handlers we add will need to
know this.

We create the anchor for the previous link and in the object passed as the second argument
we define the id (using the value from the config object), a dummy href, an HTML entity
as its innerHTML, and a click handler.

Within the click handler, we use the preventDefault () method to stop the browser
following the link, then hide the previous and next links in order to protect the widget
against multiple clicks, as this will break the transitions.

Next we call our createOverlay () function, passing it the config object, to create the
overlay container and the transition elements. We also cache a reference to the currently
selected image using the class name stored in the config object.

We then test whether there is another image element before the visible image. If there is,
we remove the class from the element that currently has it and give it to the previous image
in order to bring it to the top of the stack. If there aren't any more images before the current
image, we remove the visible class from the current image and move to the last image in
the container to show that instead.

11281

Chapter 5

Once we've defined everything we need, we can append the new anchor to the specified
container. We also create the next link within the current function as well, giving it a very
similar set of attributes and a click handler too. All that differs in this click handler is that we
test for an image after the current one, and move to the first image in the container if there
isn't one.

Time for action - creating the transition overiay

Our next function will deal with creating the overlay and transition elements:

$.tranzify.createOverlay = function(config)

var posLeftMarker = 0,
bgHorizMarker = 0

overlay = $("<div></div>", {
id: config.containerID

I3
for (var x = 0; x < multiX; x++) {

$("<divs</divs", |
width: config.transitionWidth,
height: config.transitionHeight,
css: |
backgroundImage: "url(" + $("." + config.visibleClass,
$(config.selector)) .attr("src") + ")",
backgroundPosition: bgHorizMarker + "px 0",
left: posLeftMarker,
top: 0
}
}) .appendTo (overlay) ;
bgHorizMarker -=config.transitionwidth;
posLeftMarker +=config.transitionwidth;

}

overlay.insertBefore ("#" + config.prevID) ;

Vi

11291

Custom Animations

What just happened?

Our next function deals with creating the overlay container and the transition elements
that will provide the transition animations. The plugin will need to set the position

and background-position of each transition element differently in order to stack the
elements up horizontally. We'll need a couple of counter variables to do this, so we initialize
them at the start of the function.

We then create the overlay container <divs and give it just an id attribute so that we can
easily select it when we run the transitions.

Next we create the transition elements. To do this, we use a standard JavaScript for loop,
which is executed a number of times depending on the multiplier we set earlier in the script.
On each iteration of the loop, we create a new <div> which has its width and height set
according to the properties stored in the configuration object.

We use the css () method to set the backgroundImage of the overlay to the currently
visible image, and the backgroundPosition according to the current value of the
bgHorizMarker counter variable. We also set the 1eft property to position the new
element correctly according to the posLeftMarker variable, and the top property to 0 to
ensure correct positioning.

Once created, we append the new element to the container and increment our counter
variables. Once the loop exits and we have created and appended all of the transition
elements to the container, we can then append the container to the element on the page
that the method was called on.

Time for action - defining the transitions

The final function will perform the actual transitions:

$.tranzify.runTransition = function(config)
var transOverlay = S$("#" + config.containerID),
transEls = transOverlay.children(),
len = transEls.length - 1;

switch(config.transitionType) {
case "venetian":
transEls.each (function (i) {
transEls.eq (i) .animate ({

width: 0
}, "slow", function() {
if (i === len) {

transOverlay.remove () ;

[130]

Chapter 5

$ (config.selector) .find("a") .css("display", "block");
}
1)
1
break;
case "strip":
var counter = 0;
function strip()

transEls.eq(counter) .animate ({
height: 0
}, 150, function() {

if (counter === len) {

transOverlay.remove () ;

$ (config.selector) .find("a") .css("display", "block");
} else {

counter++;

strip();

}
}i

What just happened?

Our last function deals with actually running the transitions. In this example, there are
just two different types of transitions, but we could easily extend this to add more
transition effects.

This function also requires some variables, so we set these at the start of the function for
later use. We cache a reference to the overlay container as we'll be referring to it several
times. We also store the collection of transition elements, and the number of transition
elements. We subtract 1 from the number of children because the figure will be used with
jQuery's eq () method, which is zero-based.

To determine which of our transitions to run, we use a JavaScript switch statement and
check the value of the config.transitionType property. The first transition is a kind of
venetian-blind effect. To run this transition, we just animate the width of each element to 0
using the jQuery each () method. The function we specify as the argument to this method
automatically receives the index of the current element, which we access using i.

11311

Custom Animations

In the callback function for each animation, we check whether i is equal to the 1ength
of the collection of transition elements, and if it is we remove the overlay and show the
previous and next links once more.

The second transition removes the old image one strip at a time. To do this, we use a simple
counter variable and a standard JavaScript function. We can't use the each () method this
time, or all of the transition elements will slide down together, but we want each one to slide
down on its own.

Within the function, we animate the current transition element's height to 0 and set a rather
low duration so that it happens fairly quickly. If the animation is too slow it spoils the effect.
In the callback function, we check whether our counter variable is equal to the number of
transition elements, and if so remove the overlay and show the links again. If the counter
hasn't reached the last element at this point, we increment the counter variable and call
the function once more.

Save this file as jquery.tranzify.js in the js folder. This is the standard naming
convention for jQuery plugins and should be adhered to.

Using the plugin
To use the plugin, we just call it like we would call any other jQuery method, like this:

S("#frame") .tranzify () ;

In this form, the default properties will be used. If we wanted to change one of the
properties, we just supply a configuration object, such as this:

$("#frame") .tranzify ({
transitionType: "strip"

3N

The default animation should run something like this:

11321

Chapter 5

2) Advanced Transition effects - Mozilla Firefox [_IO[x]
| Advanced Transition effects 2 =

[l M

) advanced Transition effects - Mozilla Firefox

|_| Advanced Transition effects =]

&[S M [# [Rysow [W[d 4

| & =h

= [SE T [(W vsow [[,

In the previous screenshot, we see the transition elements all simultaneously shrinking to 0
width, creating an effect like Venetian blinds being opened to reveal the new image.

Using the plugin is simple; there is just one point to remember. The images should

all be the same size, and the width of each image should be exactly divisible by the
transitionWidth property. As we've exposed the transitionwWidth as a configurable
property, we should be able to use any size image we wish and set this accordingly.

[1331

Custom Animations

For reference, the second transition effect runs like this, with strips of the old image sliding
away to reveal the new image:

Advanced Transition effects - Opera [O] =]
B advanced Tansitoneff... x |[& | B
4= | = || D | M| [E fe:ocahost/c: fapachesite/iquery-ai T -lv search vith [l
9
LA
+
EH o $-8 - @, View (100%) =

In the previous screenshot, we can see the effects of the second transition type, with the old
image being stripped away to reveal the new image.

Pop quiz - creating a plugin

1. What is the difference between a plugin method and a function?
a. There is no difference, conceptually and in practice they are the same
b. Methods are able to accept arguments, functions are not
c. Methods execute faster
d. Methods are attached to the £n object and are used like existing jQuery
methods, while functions are attached directly to the jQuery object and
called like any normal function
2. What must each new method return?
a. Astring containing the id attribute of the selected element
b. An array containing the 14 attributes of selected elements
c. The this object, which points to the currently selected element

d. Nothing should be returned

(1341

Chapter 5

Our plugin currently contains just two transition effects (venetian and strip). Extend the
plugin to include more transition effects of your own devising. The plugin currently creates a
number of transition elements that are the full height of each image.

By wrapping our existing for loop within another for loop and adding some new counter
variables for top position and vertical background-position, it is relatively easy to add
square transition elements in a checker-board style, which opens up the possibility of more
complex, and attractive, transition effects. Do this.

sSummary

In this chapter, we looked at some common usages of the animate () method, which is
the means for us to create custom animations in jQuery when the built-in effects are not
enough for our requirements. The method is robust, easy to use, and makes complex
animations trivial.

When simple sliding or fading does not meet our requirements, we can fall back onto the
animate () method in order to craft our own high-quality custom animations. We learnt the
following points about the method:

¢ The animate () method can be used to animate any numeric CSS property (except
colors, for which a separate plugin is required).

¢ The arguments passed into the method may take one of two formats. The first
allows us to pass in an object containing the CSS properties to animate, as well as
separate duration, easing, and callback arguments. The second format allows us to
pass in two objects, the first allowing us to specify the CSS properties to animate
as before, and the second allowing us to specify additional options such as the
duration, easing, and callback. The second option gives us access to some special
arguments not accessible in the first format such as specialEasing and the
step callback.

¢ AlICSS properties specified in the first object will be executed simultaneously.

¢ How to achieve animations involving an element's position, or its dimensions

We also looked at how we can extend the jQuery library with brand new functions and
methods in the form of plugins. Plugins are a great way of wrapping up code for easy
deployment and sharing.

Now that we've looked at all of jQuery's animation methods, we're going to move on and
take a look at the additional animation functionality provided by the excellent jQuery Ul
library. The next chapter will cover all of the additional effects added by the Ul library,

as well as look at class transitioning and smooth color animating.

[1351

Extended Animations with jQuery Ul

jQuery Ul is the official user interface library for jQuery and adds a suite of
interactive widgets such as tabs and accordions, a series of interaction helpers
such as drag and drop, and a comprehensive set of effects that extend those
provided natively by jQuery.

Over the course of this chapter, we'll be looking at the additional effects added by jQuery UL.
Topics we'll cover include:

® & 6 6 o o o

Obtaining and setting up jQuery Ul

The new effects added by jQuery Ul

Using the effect () method

Extending the show (), hide (), and toggle () methods
Using easing with jQuery Ul

Animating an element's color

Animated class transitions

jQuery Ul adds several new animation methods, as well as modifying several jQuery
methods. The methods we'll be looking at in this chapter are:

L 2R R JER JER 2K R 4

animate ()
addClass ()
effect ()
hide ()
switchClass ()
show ()

toggle ()

Extended Animations with jQuery Ul

jQuery Ul is very easy to obtain and set up. There is an online tool that will build a custom
download package for us containing just the parts of jQuery Ul that we'll need. Due to the
modular nature of jQuery Ul it makes sense to minimize the code payload we use on any

given web project and so the ability to include only the modules of code we intend to use
helps us to minimize any impact on the visitor our code may have.

The jQuery Ul download builder can be found at http://jqueryui.com/download.
The page is split into two sections with the components of the library listed at the left and
the theme details at the right. The download builder has a certain amount of intelligence,

and will ensure that any dependencies are automatically selected when we choose the

components we require.

¥)) jQuery UI - Configure your download - Mozilla Firefox

File Edit View History Delidious Bookmarks Tools Help

@ - C < o [T oo

i I-'_l*‘:::-;s

@ jQuervy

user interfoce

Build Your Download

J jQuery UI - Configure your download - -

jQuery Plugins Donate

Download Demo! ocumentation

Customize your jQuery Ul download by selecting the version and specific modules you

need in the form below or select a quick download package. A range of current and
historical jQuery Ul releases are also hosted on Google's CDN.

Themes evelopment Support

182

e, for jQuery 1.4+)

Quick downloads: Stable (1.8.2: for jQuery 1.4¢) | Legacy (1.7.3: for jQuery 1.3+)
nts (13 of 30 selectad) ® Select all components
Ul Core ™ Core The core of jQuery UI, requirsd for all interactions
A required dependency, and widgets.
contains basic functions and .
initializers ™ Widget The widget factory, base for all widgets
™ Mouse The mouse widget, a base class for all interactions.
and widgets with heavy mouse interaction.
T Pasition Autility plugin for positioning elements relative to
other elements.
® Deselect all
Interactions ™ Draggable Makes any element on the page draggabls.

These add basic behaviors to
any element and are used by ™ Droppable
many components below.

Generated drop targets for draggabie elements.

for jQuery

™ Resizable Makes any element on the page resizabie. s
Download
™ Selectable Makes a list of elements mouse selectable by dragging |)
abax or clicking on them.
™ Sortable Makes list of items sortable =
[|Done [# W vson [,

11381

Chapter 6

The download builder shown in the previous screenshot gives us everything we need to run
any subset of the library components.

All we'll be using in this chapter are the effects, so when we download a package we should
only select the components found in the effects subsection at the left. We don't need to
include a theme, and we don't even need to include the library core. The effects can be
used completely independently of the rest of the library; all we need is the effects Core file
and the individual effects we require. Make sure all of them are selected and download

the package.

The package will give us everything we need to use the components we've selected,
including a copy of the latest stable release of jQuery, so when using jQuery Ul, jQuery
itself does not need to be downloaded separately.

All of the JavaScript for each selected component is combined and compressed into a single
file by the download builder, and any functional CSS or theme files will be combined into

a single stylesheet. We don't need any of the theme files for working with the effects, but
ensure the . s file from the archive provided by the download builder goes into our

js folder.

The examples in the remainder of this chapter will be short, mostly image-based examples
that illustrate each effect in turn, so it makes sense to use a slightly different template file
for them. Create a new template file by adding a reference to the jQuery Ul source file
directly after the jQuery one just before the closing </body> tag. We won't be using any
HTMLS5 elements in this chapter so we can safely remove the link to shiv.js in our new
template file.

The new effects added by jQuery Ul

jQuery Ul gives us 14 new predefined animations to use in our pages; these are listed,
together with a brief description of their usage, as follows:

Animations Description

blind The target element is shown or hidden by rolling it down or up like a window blind.

bounce The target element is bounced horizontally or vertically for a specified number of
times.

clip The target element is shown or hidden by moving opposing edges in towards the

center of the element, or out to its full width or height.

drop The element appears to drop onto or off of the page in order to show or hide it
respectively.

[1391

Extended Animations with jQuery Ul

Animations Description

explode The explode effect causes the target element to separate into a specified number
of pieces before fading away, or to fade into view in several pieces before coming
together to form the complete element.

fold The element appears to fold closed or open.

highlight The background-color of the target element is set (to yellow by default,
although this is configurable), and then fades away after a short interval.

puff The target element increases in size slightly and then fades away.

pulsate The target element's opacity is adjusted a specified number of times, making the
element appear to flicker on and off.

scale The dimensions of the target element are adjusted to increase or decrease its size.

shake The target element is shaken a specified number of times. This effect is similar to

the bounce effect with the key difference that the distance of the shake remains the
same on each iteration of the animation.

size The dimensions of the target element are adjusted to increase or decrease its size.
This effect is almost identical to scale.

slide The target element is made to slide in or out of view, horizontally or vertically.

transfer The outline of the specified element is transferred to another element on the page.

Using the effect API

jQuery Ul introduces the ef fect () method which can be used to trigger any of the effects
listed in the previous table. The effect () method's usage pattern is as follows:

jQuery (elements) .effect (effect name, [configurationl, [duration],
[callbackl) ;

The name of the effect that we would like to use is always the first argument of the
effect () method. It is supplied in string format.

Each effect has custom configuration options that can be set to control how the effect
displays. These options are set in a configuration object which is passed to the effect ()
method as the second argument, following the name of the effect.

We can also supply a duration for the effect as an argument. As with standard jQuery
animations, we can supply either an integer representing the duration of the effect in
milliseconds, or one of the strings slow or fast.

If no configuration is required, the duration may be passed to the effect () method as
the second argument. If no duration is supplied, the default duration of 400 milliseconds
will be used.

(1101

Chapter 6

Optionally, a callback function may be provided as the final argument. The supplied function
will be executed once for each selected element when the effect ends.

Let's look at a few examples of how the effect () method can be used.

The hounce effect

The bounce effect is similar to, but much more controllable than, the easeOutBounce
easing function. It can be used with either the effect API or show/hide logic depending on
your requirements.

Configuration options

The following configuration options are available for the bounce effect:

Option Default Usage

direction "up" The direction of bounce. The other possible option is the string
down.

distance 20 The initial distance of bounce (successive bounces reduce in

distance) in pixels.

mode "effect" Whether to run the effect normally or use show/hide logic. Other
values accepted may be the strings show, hide, or toggle.

times 5 The number of bounces.

Time for action - using the hounce effect

In this example we'll see how the jQuery Ul effect can be combined to create a bouncing ball
that travels across the page:

1. Use the following simple elements in the <body> of the template file:

<div id="travel">
<div id="ball"><!-- --></divs>

</div>

2. All we need is a simple container <div> and an inner <divs. In the empty function
at the end of the <body>, add the following script:

$("#ball") .click (function() {
$("#travel") .animate ({
left: "+=300px"
}, 2000) .find("div") .effect ("bounce") ;

I3F;

(a1l

Extended Animations with jQuery Ul

3. Save the file as bounce . html. We also need a few simple styles. Add the following
CSS to a new file:

#travel { position:absolute; top:100px; }

#ball
width:150px; height:150px; cursor:pointer;
background:url (../img/ball.jpg) no-repeat 0 0;

}

4. Save this as bounce.css in the css folder. When we run the page and click on the
ball we should find that it bounces along the page, gradually coming to a halt:

[jQuery UT Bounce Effect - Mozilla Fircfox

[E= | pone & R (W

The previous composition shows the ball traveling across the page, bouncing up and down as
it goes from left to right.

What just happened?

When the ball is clicked, we first use jQuery's animate () method to animate the 1eft style
property of the container by 300 pixels, over a duration of 2 seconds. We slow this animation
down to improve the appearance of the overall animation, but it is not strictly required. We
then navigate down to the inner <div> element and use the effect () method, specifying
the bounce effect.

We need to use both elements because if we use the animate () and effect () methods
on the same element, the bounce effect will go into the element's animation queue and the
two animations will execute one after the other instead of running simultaneously.

[142]

Chapter 6

The highlight effect

The highlight effect is a simple but effective way to draw the visitor's attention to new items
that have been added to the page, and is used for this purpose in many of today's leading
web-based interfaces.

Configuration options

There are only two configuration options for the highlight effect; these are listed as follows:

Options Default Usage

color "HEFFFO9" Setsthe background-color of the element being highlighted.

mode "show" Sets whether the effect will be hidden or shown when used with the
effect () method. Other possible values include hide, toggle,
oreffect.

Time for action - highlighting elements

In this example we'll create a simple todo list, with a series of default items that can be
checked off. We can also allow new items to be added to the list and will apply the highlight
effect to new items as they are added.

1. Add the following HTML to the <body> of the template file:
<div id="todo">
<h2>Todo List</h2>

<label><input type="checkbox">Item 1l</label></1li>
<label><input type="checkbox">Item 2</label></1li>
<labels><input type="checkbox">Item 3</label></1li>

<input type="text" id="new"s<button id="add">Add</buttons>
</div>

2. Add the behavior for our todo list using the following code:

$("#add") .click (function() {
var newltem = $("#new"),
text = newltem.val();

if (text) {
var 1i = $("<1li>"),
label = $("<label>") .html (
"<input type=\"checkbox\">" + text) .appendTo (1l1i) ;

(1431

Extended Animations with jQuery Ul

li.appendTo ("#todo ul") .effect ("highlight",
newItem.val("") ;

2000) ;

}
3N

3. Save this page as highlight.html. We also need some CSS for this example. In a
new file in your text editor add the following code:
#todo {
width:208px;
font:normal 13px "Nimbus Sans L", "Helvetica Neue", "Franklin
Gothic Medium", Sans-serif;
}
#todo ul { padding:0; margin-bottom:30px; }
#todo 1i { list-style-type:none; }
#todo label { display:block; border-bottom:1px dotted #000; }
1li input { position:relative; top:2px; }
input { margin-right:10px; }
4. Save this page ashighlight.css.
5. When we run the page in a browser, we can add a new item and it will be

highlighted briefly as the new item is added to the list:

¥) jQuery UT Highlight Effect - Mo... =] E3
Ele Edit Wiew History Deldous Bookma
@ -cxo@dl
Lgnmwmmwmmmat I+|v
Todo List

[~ Item1

[~ Item2

[~ Item3

[T Newltem

el |Dcne ’?'ﬁ, Yslow ’E 4

In the previous screenshot we see the fade effect before it fades away from the newly

added item.

[114]

Chapter 6

What just happened?

We add a click handler to the <button> at the bottom of the list which drives the
functionality of the rest of the behavior. When the <buttons is clicked, we cache the
selector for the <input > field and obtain the text that was entered into it.

If the variable holding the text is not empty, we then create a new <label> and <inputs.
We add the text to the <1abels> as well and then append the new item to the list. Finally,
we apply the highlight effect and empty the <input> field.

The pulsate effect

The pulsate effect fades the element in and out of view a specified number of times so that
the target element appears to pulsate. Like most of the effects we have looked at so far, it is
easy to use and requires little or no configuration.

Configuration options

The pulsate effect also has just two configurable options; these are shown in the
following table:

Option Default Usage

mode "show" Sets whether the target element is shown or hidden when used with the
effect () method. Other possible values include hide, toggle, and
effect.

times 5 Sets the number of times the target element is pulsated.

Time for action — making an element pulsate

In this example, we'll show a simple time sheet in which rows can be deleted by clicking
a link. If a link is clicked, the corresponding row will be pulsated before it is removed.

1. Use the following markup in the template file:

<table>

<tr><th>Job Number</ths><ths>Start Time</th><th>End Time</th>
<th colspan="2">Total</th></tr>

<tr><td>05432</td><td>8:00</td><td>8:43</td><td>43
minutes</td><td><a class="delete" href="#" title="Delete this
item"sDelete</td></tr>

<tr><td>05684</td><td>8:43</td><td>10:21</td><td>1 hour 38
minutes</td><td><a class="delete" href="#" title="Delete this
item"sDelete</td></tr>

11451

Extended Animations with jQuery Ul

<tr><td>05684</td><td>10:21</td><td>13:30</td><td>3 hour 9
minutes</td><td><a class="delete" href="#" title="Delete this
item">Delete</td></tr>

</table>

2. Add the code to apply the effect to the closure at the bottom of the page:

$(".delete") .click (function(e) {

e.preventDefault () ;

var row = $(this).closest("tr");

row.closest ("tr") .children() .css ("backgroundColor",
"red") .effect ("pulsate", function/() {

row.remove () ;

I3F;

P
3. Save this file as pulsate.html. Only a couple of styles are required for this
example. These should go into a new file:
table {
border-spacing:0;
font:normal 13px "Nimbus Sans L", "Helvetica Neue", "Franklin
Gothic Medium", Sans-serif;
th, td { text-align:left; padding-right:20px; }
4. Savethis file in the css folder as pulsate.css.
5. Clicking the delete link in any row will apply the pulsate effect and then remove the
table row:
[© souery U1 Puisate ffect—tozlaprcfox _____________ISIEA) |
File Edit Wew History Delidous Bookmarks Tools Help
@ - 2% H I._,|ﬁ|e:f,|’fc:fapad W I-.l—|sﬁt:ky):'
J' || jQuery UI Pulsate Effect [= B
Job Number Start Time End Time Total
05432 8:00 8:43 43 minutes Delete
05684 8:43 1021 1 hour 38 minutes Delete
IE |ﬁIE:HIC:fapachesiteﬁquary—an\matianﬁqueryuifpuls... ,?r ¥Slow ’i 4

The previous screenshot shows a single pulsate iteration as it fades out.

(1461

Chapter 6

What just happened?

When a Delete link is clicked, our handler function first sets the background-color of
the <tr> that the link is within. This is not mandatory for the effect, but it does help bring
it to life.

We then apply the pulsate effect to all <td> elements within the row using the effect ()
method. We need to apply the effect to the <td> elements instead of the <tr> element so
that the effect works as intended in IE.

When the effect ends, our inline callback function will be executed which removes the <tr>.
Obviously the <tr> can only be removed once, but once it has been removed, subsequent
attempts to remove it will just fail silently.

The shake effect

The shake effect shakes the element that it is applied to back and forth a specified number
of times.

Configuration options

The shake effect exposes three configuration options that allow us to customize its behavior.
These are listed in the following table:

Option Default Usage

direction "left™" Sets the direction that the element moves in

distance 20 Sets the number of pixels the element travels when
it is shaken

times 3 Sets the number of times the element shakes

Time for action - shaking an element

The open source .Net CMS Umbraco uses the shake effect when incorrect login details are
entered in the sign-in form for its back-office administration area. In this example we can see
how easy it is to implement this behavior using the shake effect.

1. Add the following markup to the template file as the basis of the log in form:

<form>
<h2>Login</h2>
<label>Username:<input id="name" type="text"></labels>
<label>Password:<input id="pass" type="text"></label>
<button id="submit">Login</buttons>

</form>

(1411

Extended Animations with jQuery Ul

2. Now add the following code to the empty closure at the bottom of the template file:

$ ("#submit") .click (function(e) {
e.preventDefault () ;

$("input") .each (function (i, wval) {
if (!$(this).val()) {
$(this) .css("border", "lpx solid red").effect ("shake", (
distance: 5 }, 100);

3. Save this file as shake . html. We also need a basic stylesheet for this example. Add
the following CSS to a new file:

form {
width:145px; padding:20px; margin:auto; border:1px solid #000;
font:normal 13px "Nimbus Sans L", "Helvetica Neue", "Franklin
Gothic Medium", Sans-serif;

}
h2 { font-size:1l4px; margin-top:0; }
input { display:block; margin-bottom:10px; border:1lpx solid #000;

4. Save this file as shake.css.
5. If we run the page in a browser and click the <button> without completing either

of the <input> fields, both fields will have their borders set to red and will shake
from side to side:

¥2) jQuery UT Shake Effect - Moxzill. [Ix] E3 I
J || jQuery UT Shake Effect EE

Login

Username:
| |

Password:

== [* R _[=[]

(181

Chapter 6

In the previous screenshot, we see the text fields being shaken when they are left empty and
the <buttons is clicked.

What just happened?

When the <buttons is clicked we simply check to see if each <input > has a value and

if not, we apply a red border and then call the effect () method specifying shake as the
effect. We use a configuration object to reduce the distance the element moves, as well as
specifying a relatively short duration.

The size effect

The size effect is used to resize an element, making it grow or shrink depending on its
configuration. Unlike most of the other effects, the size effect must be configured for it
to be used successfully.

The size effect is also one of the only effects that has the base core file as well as another
effect as dependencies. Most components rely only on the core file. As we downloaded
the entire effect suite from the jQuery Ul download builder, we don't need to worry about
including the additional effect. It's already in the single file that the download builder
created when we downloaded it at the start of the chapter.

Configuration options

The size effect gives us four configurable options, which are listed as follows:

Option Default Usage

from none Sets the size of the target element at the beginning of the
animation. This option accepts an object with height and
width keys which are used to set the starting size of the target
element. This option is not mandatory.

to none Sets the size of the target element at the end of the animation.
This option accepts an object with height and width keys
which are used to set the ending size of the target element. This
option must be supplied.

origin ['middle ', Sets the vanishing point for hiding animations, or the point from
'center'] which it grows when used with show logic.
scale "both " This option sets whether the whole box of the element

(including border and padding CSS values) is scaled, just the
content, or as in the default, both.

11491

Extended Animations with jQuery Ul

Time for action - resizing elements

A popular use of growing and shrinking elements is the Fisheye menu, where elements grow
when the mouse pointer hovers over them, and shrink back down when the pointer moves
off them. This effect is also used by the icons on the dock in Apple's OSX.

Using the size effect, we can implement our own basic Fisheye menu with just a few lines
of code.

1. Add the following markup to the <body> of the template file:

<div id="dock">

</div>

2. Add the following JavaScript to the third <script> element at the bottom of the

<body>:
$(".icon", "#dock") .hover (function()
$(this) .stop () .animate ({
top: -31

}) . find("img") .stop () .effect ("size",
to: { width: 64, height: 64 }
1)
}, function() {
$(this) .stop () .animate ({
top: -15
}) . find("img") .stop () .effect ("size",
to: { width: 48, height: 48 }
1)
1)

3. Savethis file as size.html. We also need some styling. In a new file add the
following code:

#dock {
width:380px; height:90px; position:fixed; bottom:0;

[1501

Chapter 6

background:url (../img/dock.png) no-repeat 0 0;
}
.icon { position:absolute; top:-15px; left:44px; }
.icon img { border:none; }
#mail { left:108px; }
#safari { left:170px; }
#firefox { left:229px; }
#itunes { left:289px; }

4. Save this file as size.css in the css folder.

5. When we run the file in a browser, we should see that the individual items in the
menu grow and shrink as the mouse pointer moves over them:

@ jQuery UI Size Effect =] E3

«|» | [+ [@riesiiciapa & | [Q- Google | [+ -

In the previous screenshot we see the menu as the pointer hovers over one of the items in
the menu.

What just happened?

We attach mouseenter and mouseleave event handlers to each item within the dock using
jQuery's hover () method, which accepts two functions, the first being executed on the
mouseenter event, the second being executed on mouseleave.

In the first function we use the stop () method to manage the queue and then animate the
element's position by changing its top CSS value. Using stop () here prevents an unsightly
jarring of the element's position on screen.

We then navigate down the image inside the link and call the stop () method on this
element too before applying the size effect. We provide integer values for the width and
height keys in a configuration object and as these values are larger than the dimensions of
the image, the image will be increased in size.

[1511

Extended Animations with jQuery Ul

Note that when we use the stop () method with the image, it is to prevent a build-up of
effects if the mouse pointer is repeatedly moved on and off one of the links. The second
function is really the reverse of the first function, which simply resizes the element back to
its original position and size.

The transfer effect

The transfer effect simply transfers the outline of one element to another element. Like
the size effect that we looked at a moment ago, the transfer effect will not work if it is
not configured.

Configuration options

The transfer effect has only two configuration options, although only one is mandatory.
These options are listed in the following table:

Option Default Usage

className none The value of this option, if set, is added to the transfer
element when the effect runs

to none A jQuery selector that specifies the target element that the
transfer element is sent to

Time for action - transferring the outline of one element

to another

In this example we'll recreate a popular application installation dialog from OSX, and use
the transfer effect to help show visitors where to drag the icon (the icon won't actually be
draggable, all we're doing is looking at the transfer effect).

1. Add the following elements to the <body> of the template file to create the install

dialog:
<div id="install">
<div id="firefox"><!-- --></div>
<div id="apps"><!-- --></div>
</div>

<p>To install the application, drag its icon over to the apps
folder icon.</p>
<button id="show">Show me</buttons>

[1521

Chapter 6

Add the following script to the empty function at the bottom of the template file:

$ ("#show") .click (function() {
$("#firefox") .effect ("transfer", (
to: "#apps",
className: "ui-effect-transfer"
}, 1000);

3N

Save the page as transfer.html. For the stylesheet add the following code to a
new file:
body {

font:normal 14px "Nimbus Sans L", "Helvetica Neue", "Franklin
Gothic Medium", Sans-serif;

#install {
width:417px; height:339px; position:relative;
background:url (../img/install.jpg) no-repeat 0 0;
}
#firefox {
width:124px; height:121px; position:absolute; left:34px;
top:132px; background:url(../img/firefox.png) no-repeat 0 0;
}
#apps |
width:54px; height:52px; position:absolute; right:58px;
top:172px; background:url(../img/apps.png) no-repeat 0 0;
}

.ui-effect-transfer { border:2px solid #7bee76; }

Save this file as transfer.css in the css folder.

[1531

Extended Animations with jQuery Ul

5. When the <buttons is clicked, an outline is transferred from the Firefox icon to the
App folder icon to direct the visitor:

{2 jQuery UI Transfer Effect - Windows Internet Explorer = =)
G:—t: v |g, C:\apaﬁesite'quuery—j 4[| X '-"l Google L2~
M . - - o d
5.p Favorites @ j0uery UI Transfer Effect | | TR SRR
)8 Firefox
2 1 item, Zero KB available

Firefox

(2]

Firefox.app

& Firefox 4

To install the application, drag its icon over to the apps folder icon.

Computer | Protected Mode: Off Yo ov | ®00% -
i~ a8 4

The transfer element is resized as it moves from the starting element across to the target
element. The animation is approximately 50 % complete in the previous screenshot.

What just happened?

In the underlying HTML we have a container <div> which is given the background image
of the application install dialog box. Within this we have a <div> which is given the Firefox
icon background, and a second <div> which is given the App folder icon. Both inner <div>
elements are given id attributes for styling purposes and for easy selection with jQuery.

In the script we add a click-handler to the <button> which applies the effect every time
the <buttons is clicked. The handler function calls the transfer effect on the #firefox
element, which sets the icon as the starting element.

(1541

Chapter 6

In the configuration object, we set the to option to a selector for the apps element, and
the className option to the string ui-effect-transfer. This string is applied to the
element as a class name and is used to add a green border to the transfer element while
it is visible.

Each time the <buttons is clicked, the transfer element will be shown and will animate
from the starting element (the Firefox icon) to the ending element (the Apps folder icon).

Pon yuiz - using the effect API

1. How many new effects does jQuery Ul give us?

a. 2
b. 18
c. 9
d. 14

2. How is the effect we wish to use specified?
a. By calling the effect as a function, for example bounce ()

b. The name of the effect is passed in string format to the effect () method
as the first argument, for example effect ("bounce")

¢. The name of the effect is provided as the value of the effect key in an
object passed to the animate () method, for example animate ({ effect:
"bounce" })

d. The name of the effect is passed as a string to an event helper, for example
click ("bounce")

Some of the jQuery Ul effects can also be used in conjunction with jQuery's show (),
hide (), and toggle () methods when showing or hiding logic is required. In fact,
some of the effects are better suited to this method of execution.

The blind effect

The blind effect is the perfect example of an effect that is usually best used with show/hide
logic as opposed to the standard effect API. Although the blind effect will work with the
standard effect API, what will happen is that the effect will run according to its default mode,
but then the element will be put back into its original state. This is true for all effects that
have a mode configuration option.

[1551]

Extended Animations with jQuery Ul

Configuration options

The blind effect has the following configuration options:

Option Default Usage

direction "vertical" Sets the axis along which the target element is shown or
hidden.

mode "hide" Sets whether the element is shown or hidden when used with

the effect () method. Other possible values include show,
toggle,and effect.

Time for action - using the blind effect

| mentioned earlier that the effect is reminiscent of a window blind rolling up or down, so
let's base our next example on that:

1. Inthe <body> of the template file add the following code:
<div id="window">
<div id="blind"><!-- --></div>
</div>

2. Implement the effect with the following script:

$ ("#window") .click (function() {
S ("#blind") .toggle ("blind") ;

13N

3. Save this file as blind.html. The stylesheet for this example is as follows:

#window {
width:464px; height:429px; position:relative; cursor:pointer;
background:url (../img/window.jpg) no-repeat 0 0;

}

#blind {
display:none; width:332px; height:245px; position:absolute;
left:64px; top:113px;
background:url (../img/blind.png) no-repeat 0 100%;

}

4. Savethisasblind.css inthe css folder.

5. When we run the page in a browser, the blind should alternately roll down and up
each time the window is clicked:

(1561

Chapter 6

jQuery UI Blind Effect - Opera !IE[ﬂ
TR | [ssery U Bind Effect L+ B8
& D ||| B Local | ocabost/ci/a v

The previous screenshot shows the blind in its fully-open state.

What just happened?

We set a click handler on the outer container which calls the toggle () method on the
inner element. In the CSS we set the inner element to be hidden initially, so the first time
the container element is clicked, the inner element will be shown.

The clip effect

The clip effect causes the element it is called upon to reduce in size vertically or horizontally
until it disappears.

Configuration options

The configuration options we have at our disposal when using the clip effect allow us to
control the direction in which the animation proceeds, and whether the element is shown
or hidden:

Option Default Usage
direction "vertical" Setsthe axis along which the element animates.
mode "hide" Configures whether the element is hidden or shown. Other

possible values are show, toggle, and effect.

1571

Extended Animations with jQuery Ul

Time for action - clipping an element in and out

This effect is billed as being similar to what happens to the picture when an old television set
is turned off, so let's work that into our example.

1.

2.

3.

Add the following elements to the <body> of the template file:

<div id="tv">

<div id="bg"><!-- --></div>
<div id="static"s><!-- --></div>
</div>

Then use the following simple script at the bottom of the page:

$("#tv") .click (function()
S ("#static") .effect ("clip");

13N

Save this file as c1ip.html. The stylesheet for this example is as follows:

#tv |
width:300px; height:269px; position:relative; cursor:pointer;
background:url (../img/tv.png) no-repeat 0 0;

}

#og {
width:220px; height:180px; position:absolute; left:42px;
top:30px;
z-index:-2; background-color:#000;

}

#static {
width:216px; height:178px; position:absolute; left:44px;
top:31px;
z-index:-1; background:url(../img/static.gif) no-repeat 0 0;

Save this file in the css folder as clip.css.

When the page is run, we should be able to click anywhere on the television and see
the effect run:

[1581]

Chapter 6

[The jQuery UI Clip Effect

€« C ¥ fiesic »| O Fr

The previous screenshot shows the static element as it is being clipped.

What just happened?

The underlying page has a collection of elements on it with the outer container being
styled to look like the television and a couple of inner elements, one of which is a simple
background which sits behind the static element. Both inner containers use CSS z-index
to sit behind the outer container.

When any part of the television is clicked, the static element has the effect applied to it
without any additional configuration, and because the default mode of the effect is hide, the
element will be hidden automatically when the effect ends. To see the reverse of the effect,
we could hide the static by default and set the mode to show, or we could set the mode to
toggle and have the static alternately show and hide.

The drop effect

The drop effect is used to show an element while sliding it open, or hide it while sliding it
closed. This effect works on both the position and opacity of the element it is applied to.

[1591]

Extended Animations with jQuery Ul

Configuration options

The drop effect allows us to control the direction that the element drops, and whether it is
shown or hidden:

Option Default Usage

direction "left" Sets the direction that the element drops in or out of the page.
The other option is the string right .

mode "hide" Sets whether the element is shown or hidden when using the
effect () method. Other possible values include show,
toggle,and effect.

Time for action - using the effect

The social networking site Twitter introduced a novel effect whereby the system reports
actions to the visitor by displaying a message that drops down at the top of the page.
We can easily replicate this behavior using the drop effect.

1. Add the following markup to the <body> of our template page:

<div id="confirmation"s>
<p>Your request has been completed!</p>
</div>

2. Now at the bottom of the page add the following code:

S ("#confirmation") .effect ("drop", {
mode: "show",
direction: "up"

}, function() {
var timer = function() {
S ("#confirmation") .effect ("drop", { mode: "hide", direction:
nupu}) ;
}
setTimeout (function() { timer() }, 3000);

3N

3. Save the page as drop.html. We only need a few styles for this example. Create
the following very basic stylesheet:

body { background-color:#3cf; }

#confirmation {
display:none width:100%; height:60px; position:absolute; top:0;
left:0; z-index:999; background-color:#fff; text-align:center;
font:normal 18px "Nimbus Sans L", "Helvetica Neue", "Franklin

[160]

Chapter 6

Gothic Medium", Sans-serif;

}

#confirmation p { margin:0; position:relative; top:18px; }
4. Savethe CSSasdrop.css.

5. When the page loads, the message should initially be displayed before fading away
after a short interval:

) jQuery UI Drop Effect - Mozilla Firefox

Your request has been completed!

3 [S+7 [pone R 1Y

) jQuery UI Drop Effect - Mozilla Firefox I

[T [+ [oone (@ [Rvson [W]0 4

) jQuery UI Drop Effect - Mozilla Firefox

[[[S8~ [pone (o [vson [0

The previous screenshot shows the message slowly being hidden. It will appear to slide up
and fade out at the same time when being hidden after the timer interval has passed.

What just happened?

The underlying markup of the message itself is extremely simple; we just need a container
and the actual message. In our example the message is hardcoded into the page, but we
could easily set this dynamically depending on the action being reported.

11611

Extended Animations with jQuery Ul

The CSS is equally as simple, supplying a background color for the page to better highlight
the message, and providing some basic styles for the container and the message itself.
The most important rule (in this implementation) is that the container is initially hidden
from view.

Our script shows the message as soon as the page has loaded, but normally it would be
triggered by the completion of some system action. We use the effect () method to
initiate the effect and configure the mode to show and the direction to up (the element
will still appear to drop downwards because it is positioned absolutely) using a configuration
object passed as the second argument to the effect () method.

Within the callback function passed to the effect method, we create an inline function stored
in the timer variable. Within this function we just hide the confirmation message, using the
effect () method and setting the mode configuration option to hide and the direction
option to up once again.

After this function definition we use JavaScript's set Timeout function to execute the timer
function after three seconds have elapsed. We use a closure to call our timer function in
keeping with the current best-practice.

The explode effect

The explode effect provides a great visual show by literally exploding the selected element
into a specified number of pieces before fading them away. This effect can be used with both
the effect APl as well as show, hide, or toggle logic.

Configuration options

When using the explode effect we can control how many pieces the element is exploded
into, and whether the element is shown or hidden:

Option Default Usage

mode "hide" Sets whether the element is shown or hidden when
used with the effect () method. Other values are
show, effect, and toggle.

pieces 9 Sets the number of pieces the element is exploded
into.

11621

Chapter 6

Time for action — exploding an element

In this example we will make an image explode.

1.

Just add the following simple image to the <body> of the template file:

Then add the following equally simple code to the empty function at the bottom of
the template file:

$("img") .click (function()
$(this) .effect ("explode") ;

1)
Save this page as explode.html.

This example is so simple we don't even need a stylesheet. Once we click on the
grenade, it is exploded into the default number of pieces:

jQuery UI Explode Effect - Opera [_ (O] x|
Menu - | IE| jQuery UI Explode EFf... | = :
= = | | B Lol |localhost/Cifa ¥
: = : -
Bl

The exploded element fades away as the individual pieces of the element move apart.

What just happened?

In the example, all we need to do is attach a click handler directly to the image which applies
the explode effect using the effect () method. No configuration in this instance is required
because the default mode of the effect is hide.

Note that we can also run this effect in reverse by setting the mode option to show, or using
the show () logic instead. In this scenario, we will see the target element constructed from a
series of pieces that fade in and fly together—an explosion in reverse.

11631

Extended Animations with jQuery Ul

The fold effect

The fold effect simulates something being folded in half along one axis and then folded in
half along the other axis. Of course, the element isn't actually folded in the 3D sense, first
one side of the element moves up a specified amount, then another side is moved in and
the element disappears.

By default the effect uses the hide mode so it will automatically be hidden at the end of the
animation. The element being folded is not scaled; it is clipped instead so images and text
will not squash up as the effect runs.

Configuration options

The fold effect exposes three configurable options which are shown in the following table:

Option Default Usage

horizFirst false Sets whether the element is clipped along the horizontal axis first
or not.

mode "hide" Sets whether the element is shown or hidden when used with the
effect () method. Other values may include show, effect,
or toggle.

Size 15 This sets the distance of the first fold in pixels and can take either

an integer, or a string specifying a value, such as a percentage.

Time for action - folding an element away

In this example, we'll apply the effect to a simple image of a piece of paper.

1. Allwe need is an image; add the following code to the <body> of the template file:

2. Next add the following simple script to the bottom of the page, in the empty
function as with previous examples:

$("img") .click (function()
$(this) .effect ("fold", { size: "50%" }, 1000);

3N

3. Save this file as fold.html.

11641

Chapter 6

4. This is another example that we don't need a stylesheet for. When the image is
clicked, it should fold up and disappear:

@ iQuery UI Fold Effect

<

+ | flex//jcifap ¢ | [Q- Google

[_ O[]

»

<

@ iQuery UI Fold Effect

+ @ fie:f/icap ¢ | [Q- Google

[O[]

<

@ jQuery UI Fold Effect

+ | filez///ci/ap ¢ | [Q- Google

[_[O]x]

In the previous screenshot we see the image first as it starts out, then when the effect
has hidden the bottom half of the image, and finally as the top half of the image is being

hidden. Notice that the target element is clipped and not resized.

(1651

Extended Animations with jQuery Ul

What just happened?

We simply set a click handler on the element, which will apply the fold effect. We
specify the size option as 50% so that the amount of fold along each axis is equal, and slow
the effect down slightly by specifying a longer than default duration of 1000 milliseconds.

The puff effect

The puff effect expands the element it is applied to by a specified amount while fading it
away to nothing, or fades it in and then shrinks it slightly, depending on how it is used.

Configuration options

The puff effect gives us control over the size that the element is increased to, and whether it
is shown or hidden:

Option Default Usage

mode "hide" Sets whether the element is displayed or hidden when used with
the effect () method. Other possible values include show,
effect,and toggle.

percent 150 Sets the size the element is scaled to in percent.

Time for action — making an element disappear in a puff

In this example, we'll have a dialog box displayed in the center of the browser window and
apply the puff effect to it when either the Ok or Cancel buttons are clicked.

1. Inthe <body> of our template file, add the following elements for the dialog:

<div id="confirm">

<p>Are you sure you want to do that?</p>
<button>0k</button><button>Cancel</buttons>
</div>

2. Add the accompanying script to the empty function as follows:
$("#confirm") .css ({
left: $(window) .width() / 2 - $("#confirm").width() / 2,
top: $(window) .height() / 2 - $("#confirm").height() / 2

13N

$("#confirm, button").click (function() {
S ("#confirm") .effect ("puff") ;

3N

(1661

Chapter 6

3.

Save this page as puf £ . html. Add the following styles for the dialog box to a new
file in your text editor:

#confirm {

display:block; width:400px; height:120px; position:absolute;

border:1px solid #ccc;

background-image: -moz-linear-gradient (0% 5px 90deg, #eee, #666);

background-image: -webkit-gradient (linear, 0% 0%, 0% 5%,
from(#333), to(#eee));

font:normal 13px "Nimbus Sans L", "Helvetica Neue", "Franklin
Gothic Medium", Sans-serif;

#confirm img { margin:20px 20px 0 20px; float:left; }
#confirm p { margin:40px 0 0 0; }
#confirm button { width:68px; margin:20px 10px 0 0; float:right; }

Save this new file as puf£.css in the css directory.
When we run the page in a browser, we should find that the dialog is initially

centered in the window, and that clicking either of the <button> elements closes it
using the puff effect:

/2 iQuery U1 Pufl Effect - Windows Internct Explorer M=] |
@) = | i8] crapachesiteljquery-animation\iqueryuitputfnt =] |44 | | [2f coogie P
o Favorites @ jQuery UI Puff Effect] I B - -) gm v Page~ Safetyr Tooks+ @@~ 7
Done [[[[[[[Computer |Protected Mode: Off [fa~®w% ~ 2

The previous screenshot shows the dialog expanding while it is faded away.

What just happened?

The first part of our script centers the dialog in the window both vertically and horizontally.
One point to note is that we cannot use margin:auto to center the dialog because it will
lose these margins when the effect is applied.

The second part of the script simply adds click handlers to each of the <buttons elements
which apply the puff effect when they are clicked.

11671

Extended Animations with jQuery Ul

The slide effect

The slide effect is very similar to the drop effect. The only difference is that with slide the
opacity of the target element is not adjusted at all. It's also very similar to the slide family of
effects exposed by jQuery itself, although with the jQuery Ul slide effect, we're not restricted
to the vertical axis—we can slide horizontally too.

Configuration options

The slide effect has three configuration options which let us specify the direction and
distance of the slide, and whether it is shown or hidden:

Option Default Usage
direction "left" Sets the direction the animation proceeds in.
distance The width of the target Sets the distance that the target element slides to.

element, including padding

mode "show" Sets whether the element is displayed or hidden
when used with the effect () method. Other
acceptable values are hide, effect, and toggle.

Time for action - sliding elements in and out of view

Displaying captions when a visitor hovers over an image is an interactive and interesting way
of displaying additional information about the image without making your design appear
cluttered. With the slide effect we can easily animate the showing and hiding of the caption,
which is what we'll do in this example.

1. Add the following code to <body> of the template file:
<div id="image">

<div>Praying Mantis: Mantis religiosa</div>
</div>

2. Then at the bottom of the page, in the empty function, add the following
short script:

$("#image") .hover (function () ({

$(this) .find ("div") .stop (true, true) .show("slide");
}, function() {
$(this) .find ("div") .stop (true, true) .hide("slide");

1)

(1681

Chapter 6

3.

Save this as s1ide.html. Next create the following stylesheet:

#image { position:relative; float:left; }

#image img { margin-bottom:-5px; }

#image div {
display:none; width:100%; padding:10px 0; position:absolute;
left:0; bottom:0; top:auto !important; text-align:center;
font-style:italic; background-color:#000; color:#fff;

}

Save this file as s1lide.css.

When we view the page we should find that the caption is displayed as soon as
we move the mouse over the image, and then removed when we move the mouse
off it:

[Query UI Slide Effect

& C M | O fle:///C:fapachesit 7 | A

In the previous screenshot we see the caption sliding out from the left edge of the container.

What just happened?

The image and caption are held in a container so that the caption can be positioned
accurately. We use jQuery's hover () method, which allows us to attach event handlers for
both the mouseover and mouseout events, to show the caption by sliding it in, or hide it by
sliding it out.

(1691

Extended Animations with jQuery Ul

We don't need any additional configuration in this simple example, but we do need to
manage the queue effectively to stop a build up of animations if the mouse pointer is
moved on and off the image repeatedly, which we handle with the stop () method.

The scale effect

The scale effect is very similar to the size effect that we looked at earlier, and as we saw,
several effects actually require this effect as a dependency. The main difference between this
effect and the size effect is that with scale, we can only specify a percentage that the target
element should be scaled to, not supply exact pixel sizes.

Configuration options

The scale effect has more configuration options than any other effect added by jQuery UL.
These options are listed in the following table:

Option Default Usage

direction "both" Sets which axis the element is scaled along.
from none Sets the starting dimensions of the element.
origin ['middle', 'center'] Sets the vanishing point of the element if it is

being hidden, or the point from which it grows if
it is being shown.

percent 0 Sets the percentage by which the element will
grow or shrink.
scale "both" This option sets whether the whole box of the

element (including border and padding CSS
values) is scaled, just the content, or as in the
default, both.

Time for action - scaling an element

It's common practice on an image-heavy site to show a set of thumbnail images which link to
a full-sized image which is displayed when the image is clicked, either inline in a modal pop
up, or in a separate window. In this example we'll create a thumbnail image that scales to a
full-sized version when clicked.

1. Add the following few elements to the <body> of the template file:
<div id="container"s

</div>

(1701

Chapter 6

2. The script we need is a little longer, but is still pretty simple. In the empty function at
the end of the page add the following code:

$("img") .click (function()
var img = $(this);

if (!img.hasClass ("full"))

img.addClass ("full") .effect ("scale", { percent: 400 }
function() {

$(m<asm, |
href: "$",
text: "x",
click: function(e) ({
e.preventDefault;

var a = $(this);

a.parent () .find ("img") .removeClass ("full") .effect ("scale", {
percent: 25 });
a.remove () ;

}

}) .appendTo ("#container") ;

3. Save the page as scale.html. In the stylesheet for this example, we'll need the
following code:

#container { position:relative; float:left; cursor:pointer; }
#container img { width:150px; height:150px; }
#container a {
position:absolute; top:0; right:10px; color:#f£21515;
text-decoration:none; font:bold 22px "Nimbus Sans L", "Helvetica
Neue", "Franklin Gothic Medium", Sans-serif;
}

#container a:hover { color:#fb5e5e; }

4. Savethisfile as scale.css.

1l

Extended Animations with jQuery Ul

5. When we run the page we should find that clicking on the image causes it to be
scaled up to 400 percent of its initial size:

I3 [[pone [+ [l 5o W0

The previous screenshot shows the image in its "scaled-up" size, with the red close icon in
the top-right of the image.

What just happened?

On the page our image is held in a simple container <divs. The image is scaled down from
its original size using CSS, so when we scale the image up we will actually be returning it to
full size, so it won't look blocky or fuzzy at all.

In the script we first set a click handler on the image and then we cache a reference to it so
that we don't have to keep creating jQuery objects referring to this. If the image doesn't
have a class name of full, we know the image has not been scaled up already, so we add
the class full and then scale it up by 400 percent using the percent option.

Once the image has been scaled, we then create a new anchor element which will be
appended to the container element and used as a close button. We set the link's inner text
and href attribute, and then assign a click handler to it. Within this handler we prevent the
browser following the link and then cache the selector once more, which this time points to
the anchor.

We then reduce the image to a quarter of its size, retuning it back to its original dimensions.
Once this is done we remove the close link.

[17121

Chapter 6

Pop quiz - using show/hide logic

1. How are supported arguments passed to an effect?

a. Instring format as the second argument, for example show ("blind",
"vertical")

b. Asvalues in a configuration object passed directly to the animate ()
method, for example animate ({ effect: "blind", configuration: {
direction: "vertical" })

¢. Asvalues in a configuration object passed as the second argument, for
example show ("blind", { direction: "vertical" })

d. By settingthe effect.config global property, for example $.effect.
config = { direction: "vertical" })
2. What else can be passed to the method?

a. Aninteger or string representing the duration, and a callback function or
function reference

b. Nothing
c. A Boolean that controls whether the animation should repeat indefinitely

d. A Boolean indicating whether further effects should be queued or executed
in parallel

Have a go hero - experimenting with the effect API

| would strongly recommend that you experiment with the effects that we have looked at in
this section to see which ones work well with the effect () method and which ones work
best with show/hide logic, and so you can see exactly what happens when the ones that
don't work so well are used. This should improve your ability to quickly decide exactly when
and where each method is appropriate.

To use the full set of easing functions with jQuery, we needed to use an extra plugin, but
with jQuery Ul all of the functions are included directly in the core effects file, so we can use
them natively with any of our jQuery Ul effects.

Easing can be used with all of the jQuery Ul effects with the exception of explode, although it
can look a little strange in a few of the effects, such as bounce or pulsate. Easing can also be
used if jQuery Ul is present with standard jQuery.

(1131

Extended Animations with jQuery Ul

For a full list of the easing functions available with jQuery (either via the
easing plugin, or jQuery Ul) see the table in the easing section in Chapter 4,
Sliding Animations.

Time for action - adding easing to effects

To use easing, all we need to do is include the easing function name as a configuration
option. For example, to add easing to the b1ind.html example that we looked at earlier,
we could change the JavaScript so that it appeared as follows:

$ ("#window") .click (function() {
$("#blind") .toggle ("blind", { easing: "easeOutBounce" });

13N

What just happened?

We use the configuration option easing, with the name of the easing function as a string
supplied as the value of the option. Any of the easing functions can be used by referencing
their name in this way.

As well as the complete range of easing functions, the effects core file also gives us the ability
to attractively and smoothly animate between different colors. Several CSS properties can

be animated including the color, background-color, border-color, and outline-
color.

jQuery Ul extends jQuery's animate () method to achieve color animations, so the syntax to
implement it is the same as using animate (). For any other purpose, we just need to target
one of the above CSS properties and supply the new color value as a string, hexadecimal
(#xxxxxx), or RGB (rgb (xxx, xxx, xxx)) value. Let's look at a basic example.

Time for action - animating hetween colors

In this example, we'll use color animations to show that a form field has been left empty.

1. Inafresh copy of the template file, use the following elements in the <body> of the
page:

<input><button id="search">Search</button>

(1l

Chapter 6

2. Toinvoke the color changes when the <buttons is clicked, we can use the following
JavaScript in the empty function near the bottom of the document:

$ ("#search") .click (function (e)
e.preventDefault () ;

var input = $(this) .prev();

if (input.val() == "m) {
input.animate ({

backgroundColor: "#£78080",
borderTopColor: "#a72b2e",
borderRightColor: "#a72b2e",
borderBottomColor: "#a72b2e",
borderLeftColor: "#a72b2e"

}, 1200);

}i
1

3. Save this page as color-animations.html. We literally only need a couple
of styles for this example. We could probably get away with defining them in a
<style> block in the <head> of the page. We just use the following CSS:

input { width:200px; border:2px solid #27659f; }

4. When we run the page, we see that the text field changes color if the <buttons is
clicked while it is empty.

What just happened?

The CSS, while extremely small, is required in this example because the <input> will lose
any attractive styling provided by modern browsers when the colors are animated. Setting
the CSS properties we are animating helps prevent this ugly switch.

In the script we simply cache a selector that points to the <input>, and then test whether
the field is empty. If it is we call the animate () method, specifying the aspects of the target
element we'd like to animate. Notice that we must specify each border-color independently

for the animation to work correctly.

(1151

Extended Animations with jQuery Ul

As well as extending jQuery's animate () method in order to provide color animations,
jQuery Ul also extends some of jQuery's element manipulation methods. The following
methods are extended to provide class transitions:

¢ addClass ()
& removeClass ()
& toggleClass()
jQuery Ul also exposes a new method for transitioning between two classes—the

switchClass () method, which accepts the current class and new class, as well
as duration, easing, and callback arguments.

Time for action - transitioning hetween classes

We can rework our previous example so that it uses some of the class transition methods.

1. Addthe class name default to the <inputs> element and then change the
JavaScript so that it appears as follows:

$ ("#search") .click (function(e)
e.preventDefault () ;

var input = $(this) .prev();
if (input.val() == "m) {
input.switchClass ("default", "error", 1200);
} else if (input.val() && input.hasClass("error")) {

input.removeClass ("error", 1200) ;

}
I3

2. Save the new page as class-animation.html. We'll need to make some changes
to the stylesheet as well. Create a new stylesheet and add the following rules to it
(or change the styles in the <head> of the page):
input { width:200px; }
.default, input { border:2px solid #27659f; }
.error { border:2px solid #a72b2e; background-color:#£78080; }

3. Savethe new file as class-animation.css.

(1761

Chapter 6

4. Runthe page in a browser and again, click the <button> without entering anything
into the text field. The <input > should transition to the error class and appear
the same as it did in the last example. This time however enter some text in the
<input> and click the <buttons> again. The error should then transition back
to default.

What just happened?

This time if the <input > has no value we just call the switchClass () method specifying
the current class of default, the new class of error, and a duration of 1.2 seconds. Note
that you must supply both the current and new classes for the example to work correctly.

In the next branch of the conditional, we check that the <input > has both a value and a
class name of error. If it does we call the removeClass () method specifying just the
class to remove and a duration. The duration is required in order to trigger the transition.

In the CSS we provide the default styling using the class name default as well as generally
for all input elements. We need to do this because otherwise the element loses its styles
while the error class is in the process of being removed, causing it to revert to a standard
un-styled <input> element.

Performance
When using jQuery, we are always advised that changing the class name of

an element is more efficient than manipulating an element's style attribute
directly, so it's natural to assume that using switchClass () would be more

~ efficient than using animate ().
This however is not the case, as Firebug's profile tool will show. In the previous

example, if the second branch of the conditional is removed and the page

and both color-animation.html and class-animation.html are

profiled, itis color-animation.html that wins by a margin of around 20
L milliseconds. -

Pop quiz - easing, color, and class animations

1. How are easing functions specified?

a. Instring format as the third argument to the effect () method, for example
effect ("blind", {}, "easeOutBounce")

b. As Boolean in a callback function, for example effect ("blind",
function() { easeOutBounce = true })

c. Easing cannot be used

d. Instring format as the value of the easing configuration option, for example
effect ("blind", { easing: "easeOutBounce" })

[l

Extended Animations with jQuery Ul

2.

Which method is extended to produce color animations?
a. Theeffect () method
b. The show () method
¢. The animate () method

d. The switchClass () method

In this chapter we looked at the complete range of new effects which are added by the
jQuery Ul library. We looked at how they can be used with the effect () method, or the
show (), hide (), and toggle () methods when necessary. We saw the configuration
arguments that each effect takes, and their default values when used out of the box.

We also covered how jQuery Ul extends the animation (), addClass (), and
removeClass () methods, and the switchClass () method that it adds in order
to add the ability to animate between colors and classes.

The key points to take from this chapter include:

*

jQuery Ul together with jQuery can be downloaded using the jQuery Ul download
builder, which builds a custom package, complete with a theme if required for you
to download.

jQuery Ul adds a total of 14 new predefined effects to our animation toolkit.
The effects are easy to use but highly configurable.

The effect () method is the basic means of specifying an effect, its configuration
options, a duration, and a callback function.

Some of the effects work much better with the show (), hide (), or toggle ()
methods and are equally as easy to use with this aspect of the API.

The easing functions are built directly into jQuery Ul and can be used by specifying
them as values for the easing configuration option.

jQuery Ul also gives us the ability to transition an element's color or class name by
extending some of jQuery's methods and adding the new switchClass () method.

In the next chapter, we'll switch back to jQuery and look at full page animations including
how to animate the page's background image, animating page scroll, and feature animations
that are the main focus of the page.

(1181

So far the examples that we've looked at are animations that have formed a
single part of the user interface of the page, or formed part of a specific widget.
In this chapter, we'll look at animations that take up the whole page, such as
background-image animations, or "feature" animations where the thing
being animated is the main focus of the page.

In this chapter, we'll cover the following subjects:

Animating page scroll
Animating background-position to create a parallax effect

Combining page scroll with page navigation

* & o o

Creating stop-motion animation

All of the examples that we'll look at in this chapter will be based on the animate () method
that was introduced earlier in the book. As we've already learnt how the method is used, we
can jump straight into the action and start on the examples.

We can animate the scroll of the entire page very easily using a combination of some built-in
jQuery functionality and some plain vanilla JavaScript. Long blog pages are often split into
smaller, more readable sections with sub-headings, and a secondary navigation structure,
separate from the main site navigation, which links to the different sections. Optionally,
there may also be back to top links that take the reader back up to the top of the page.

Full Page Animations

Can we animate the scroll using jQuery's animate () method so that the document scrolls
smoothly instead of jumping to the desired location when any of these links are clicked?
Not exactly—the scrol1Top () method that jQuery exposes cannot be used directly in
conjunction with the animate () method.

But we can spoof the animation effect ourselves manually and make it appear as if the scroll
is animated very easily, which is what we'll do in the first example of this chapter.

Time for action - creating the page that will scroll

and its styling

The example page needs to be quite long for the scroll effect to work. The underlying HTML
used could be any modern blog post.

1. Add the following code to the <body> of the template file:

<article id="post">
<header id="top">
<hl>A long article with lots of sections</hl>
<navs

Section 1</1i>

Section 2</1i>

Section 3</1li>

Section 4</1li>

Section 5</1li>
</uls>
</navs>
<p>Posted on <time datetime="2010-11-13">
13 November 2010</time> by Dan Wellman</p>
</headers>
<section id="sectionl">
<hl>Section 1</hl>
<p>Lorem ipsum dolor...</p>
<p>Lorem ipsum dolor...</p>

Back to top
</section>
<section id="section2">

[1801]

Chapter 7

<hls>Section 2</hl>
<p>Lorem ipsum dolor...</p>
<p>Lorem ipsum dolor...</p>

Back to top

</section>

<section id="section3">
<hls>Section 3</hl>
<p>Lorem ipsum dolor...</p>
<p>Lorem ipsum dolor...</p>

Back to top

</section>

<section id="section4">
<hl>Section 4</hl>
<p>Lorem ipsum dolor...</p>
<p>Lorem ipsum dolor...</p>

Back to top

</section>

<section id="section5">
<hl>Section 5</hl>
<p>Lorem ipsum dolor...</p>
<p>Lorem ipsum dolor...</p>

Back to top

</section>
</article>

Save this file as scroll.html. We'll also need a little CSS to lay out the example
page. Add the following selectors and rules to a new page in your text editor:

#post {
display:block; width:960px; margin:auto;
font:22px "Nimbus Sans L", "Helvetica Neue",
"Franklin Gothic Medium", sans-serif;
color:#444;

}

#post header p, #post section .top {
margin-bottom:0;
font:italic 14px "Palatino Linotype", "Times New Roman",
"Nimbus Roman No9 L", serif;
color:#aaa; text-align:right;
}

#post section .top {

11811

Full Page Animations

display:block; text-decoration:none;
border-bottom:1px dotted #aaa;
float:right;
}
#post section .top:hover { border-bottom-style:solid; }
#post ul { margin:0; padding:0; }
#post 1i { list-style-type:none; }
#post section hl, #post section p
margin:0 0 6px; clear:right; font-size:24px;
}

#post section p { font-size:20px; }

3. Save thisin the css folder as scroll.css. Don't forget to link to this stylesheet
from the <head> of the HTML file. Here's a screenshot to show how the page
should appear:

¥3) Animating Page Scroll - Mozilla Firefox

A long article with lots of sections

Section 1
Section 2
Section 3
Section 4
Section b

Section 1

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore
magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea
commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla
pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est
laborum.

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore
magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea
commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla
pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est
laborum.

Section 2

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore
magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea
commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla

pe ied 3 nieid ——— P P S S TORRPRPUN (PR Y P PO Sy | T apupy

eminga T " e i s =l
[T [[Sal=] [pone [[Rvsor MDD 4

Showing how the screen is scrolled in a simple screenshot could be problematic so
the previous image is just to show you how the page should appear at this point for
reference purposes.

11821

Chapter 7

What just happened?

The HTML is very simple. There's just more of it than there has been in previous examples.
It represents a single article that is divided into different sections, with each section having a
sub-heading and some layout text.

A table of contents style navigation menu at the top of the article (this would be considered
a secondary nav) links to each of the different sections. The styling is also very basic and
simply sets some rules to lay out the page in a clean format.

Time for action — animating the scroll

The script itself is relatively straight-forward too. Add the following code to the empty
function at the bottom of the HTML file:

var parent = document.getElementById("post"),
speed = 7,
win = $(window) ;

$("nav a", parent).click(function(e) ({
e.preventDefault () ;
var target = $(this).attr("href"),
offset = $(target) .offset (),

newScroll 0,
maxScroll = document.body.scrollHeight;

while (newScroll < offset.top && win.scrollTop() < maxScroll) {

win.scrollTop (newScroll) ;
newScroll = newScroll + speed;

}
I3

$(".top", parent).click(function(e) ({
e.preventDefault;
var newScroll = win.scrollTop() ;
while (newScroll > 0 && win.scrollTop() > 0) {

win.scrollTop (newScroll) ;
newScroll = newScroll - speed;

}
I3

[1831

Full Page Animations

Save the HTML file again and run it in a browser. You should find that the document
smoothly scrolls to the desired location when any of the top links on the page are clicked.

What just happened?

First we set some variables including a reference to the DOM node of the parent container
(the <articles). We obtain this with the raw JavaScript getElementById () function so
that we can pass it into a jQuery selector as a context for the selector.

Doing this is great for performance and means that we don't have to give multiple elements
id attributes for the sole purpose of jQuery element selection. Everything is selected by
starting at the parent that is originally selected from the document.

We also set a variable called speed which we'll use when we create the simulated
animation. This is the figure that the current scroll amount is incremented by, so lower
values will mean a longer "animation" time and higher values will mean a shorter time,
completely the opposite of jQuery's duration argument.

We also cache a selector for the window object as we'll need to refer to this several
times, often from within for or while conditional branches, so again this is purely
for performance reasons.

We then set a click handler on the table of contents links. Within this function we first stop
the browser from following the link using the preventDefault () method, which jQuery
normalizes across all common browsers.

We then set some more variables, first getting the target element of the link that was
clicked, then storing its current offset, and the maximum scroll amount of the document.
We also initialize a newScroll variable so that we can calculate what the new scroll amount
should be.

We then use a JavaScript while loop to incrementally scroll the document, using the speed
variable that we set earlier. The condition of the loop is that it should continue while the
newScroll variable is less than the top offset of the target element and while the current
scroll is less than the maximum scroll.

The offset of the target element is obtained using jQuery's of fset () method, which returns
an object with top and 1eft properties that correspond to the element's position relative
to the document. The maximum scroll is obtained using standard JavaScript to query the
scrollHeight property of the document body.

The current scroll is normalized by jQuery so that the scrol1Top () method returns the
current position of the vertical scroll bar. This is useful because it means that we don't
have to feature-detect the browser and obtain the value using either document .body .
scrollTop or window.pageYOffset depending on the browser in use.

(1841

Chapter 7

Within the while loop, we use jQuery's scrol1Top () method in setter mode to set

the scroll to the value of the newScroll variable, and then increment the newScroll

value using our speed variable. This is what | meant by spoofing the animated scroll—the
document just scrolls sequentially in a series of jumps; it isn't actually animated, but because
it happens fairly rapidly it gives the impression of being animated.

After the click handler for the table of contents links, we also set a click handler on the
back to top links. Because we're just going straight back to the top of the page, we don't
need to do any complex calculations, so this function is really just a simplified version of
the first function.

There is already a jQuery plugin that can be used to animate scroll: the scrollTo
plugin. This plugin allows us to easily animate both vertical and horizontal scroll
on any element whose contents overflows the dimensions set on it.

% However, as an exercise in how to fake animation without using any of jQuery's
~ animation methods, | thought it would be of value to do it ourselves manually
here. We'll use the plugin later in the chapter. For reference it was created by
Ariel Flesler and can be downloaded from http://flesler.blogspot.
com/2007/10/jqueryscrollto.html.

Pop quiz - animating page scroll
1. Inthis example we used old-school JavaScript to obtain a reference to the
<article> DOM node instead of using jQuery. Why?
a. Because it's easier
b. Because it's fun to mix things up a little

c. Because it's faster to give jQuery selectors a DOM node context so that the
entire document doesn't need to be searched when selecting elements from
the page

d. Because it makes the byte count of the page smaller

2. Why can we not use jQuery to animate the page scroll?

a. Because scrollTop (or window.pageYOffset) are properties of the
document or window and not CSS style properties

b. Because the values for these properties are not true integers
Because jQuery does not want us to animate scroll

d. We can, we just chose to do it this way instead

(1851

Full Page Animations

Have a go hero - extending animated page scroll

In this example we just animated the vertical scroll of the document. Have a go at changing
the example so that the horizontal scroll can also be animated. This will entail making the
page not just longer than the viewport, but also wider too.

The illusion of depth with paraliax

The term parallax, when used in the context of computer graphics, especially in video games,
refers to the technique of using multiple background layers that scroll at slightly different
speeds to create the illusion of depth. Although not as widely deployed in modern gaming,
thanks to the advent of richer 3D graphics engines, parallax is still seen frequently in portable
gaming devices, and increasingly, on the Web.

A parallax effect is achievable using pure CSS, as demonstrated nicely by the Silverback site
(see http://silverbackapp.com/ for the effect, and http://thinkvitamin.com/
design/how-to-recreate-silverbacks-parallax-effect/ for the details on how it
was implemented). This application of parallax will only become apparent when the window
is resized, which is a fantastic effect when the window is resized, but doesn't help us if we
want the effect to take more of a center stage.

Alittle help from the new cssHooks functionality

jQuery 1.4.3 introduced a new mechanism for easily extending the css () and animate ()
methods of jQuery. The new cssHooks feature allows us to easily extend the css ()
method to allow the getting and setting of CSS style properties not natively supported by
jQuery. As the animate () method makes use of the css () method internally, we can use
the cssHooks to add animation support for certain style properties that previously were
unsupported.

This is great, but even better is the fact that some of the jQuery core contributors, most
notably Mr Brandon Aaron, have already begun building a suite of pre-built cssHooks for
certain style properties, including background-position. We can use one of these brand
new, pre-built cssHooks in our next example.

The file containing the cssHook for background-position is included in the code
download accompanying this book, but for reference, the complete suite can be
found at https://github.com/brandonaaron/jquery-cssHooks.

[1861]

Chapter 7

Time for action - creating the stage and adding the styling

The underlying page requires just five elements (for this simple example), which sit in the
<body> of the page.

1.

Add the elements in the following structure to a fresh copy of the template file:

<div id="background"><!-- --></div>
<div id="midground"><!-- --></div>
<div id="foreground"><!-- --></div>
<div id="ground"><!-- --></div>

This page can be saved as parallax.html. Don't forget to link to the cssHooks
file that we'll be using in this example after the link to jQuery at the bottom of the
<body>:

<script src="js/jquery.js"></script>
<script src="js/bgpos.js"></script>
<scripts>

The CSS in this example is equally as simple as the underlying HTML. Add the
following code to a new file in your text editor:

div { width:100%; height:1000px; position:absolute; left:0; top:0;
}
#background { background:url(../img/background.png) repeat-x 0 0;
}
#midground { background:url(../img/midground.png) repeat-x 0 0; }
#foreground { background:url(../img/foreground.png) repeat-x 0 0;

}

#stage { background:url(../img/ground.png) repeat-x 0 100%; }

11871

Full Page Animations

4. Save thisfile as parallax.css in the css directory. At this point the page should
appear like this:

The stage area is the ground, the foreground layer is the dark green bushes, the midground
is the light green bushes, and the background slice is the sky and clouds.

What just happened?

You'll also find the images for this example in the img folder of the code download
accompanying this book. We have a separate image for each element that we wish to
be part of the parallax effect, three in this example, one for the background, one for
the midground, and one for the foreground.

The underlying HTML is also very simple. We just have a separate <div> for each layer of
the background. In the CSS, each image layer is positioned absolutely so that they overlay
each other.

Time for action — animating the background position

Now for the <scripts> itself. At the bottom of the HTML file, in the empty function as usual,
add the following code:

var bg = $("#background"),
mg = $("#midground"),
fg = $("#foreground") ;

[1881]

Chapter 7

$ (document) .keydown (function (e) {

if (e.which === 39) {
bg.animate ({ "backgroundPosition": "-=1px" }, 0, "linear");
mg.animate ({ "backgroundPosition": "-=10px" }, 0, "linear");
fg.animate ({ "backgroundPosition": "-=20px" }, 0, "linear");

}
3N

If we run this page in a browser now, we should find that as we hold down the right arrow
key, the different background slices move at progressively slower speeds with the foreground
almost rushing past, and the background moving along leisurely.

What just happened?

In the script we first cache the selectors we'll be using so that we don't have to create a new
jQuery object and select the elements from the DOM each time the background-position
changes, which will be very frequently indeed. We then set a keydown event listener on the
document object. Within the anonymous function we use as the event handler, we check
whether the key code supplied by the which property of the event object (this is normalized
by jQuery so it will be accessible cross-browser) is equal to 39, which is the key code returned
by the right arrow key.

We then call the animate () method, which is extended by the cssHooks bgpos . js file
to allow us to specify backgroundPosition as the style property to animate. We supply
relative values of +=1px, +=10px, and +=20px to move each layer at progressively faster
speeds which gives us the parallax effect. These animations are called simultaneously

and also have very short durations and 1inear easing. This is the last thing our keydown
handler needs to do.

Pop yuiz - implementing the parallax effect

1. Whyis it necessary to use linear easing in the previous example?
a. To prevent a flickering effect
b. It's not necessary, we just used it for fun

c. To prevent the animation using the default easing type of swing, which
causes a slowing down at the start and end as this would stop the animation
from running smoothly

d. To slow the animation down slightly

(1891

Full Page Animations

2. The bgpos cssHooks file extends the jQuery css () method and allows us to
animate the background-position of an element. What format does the value
we provide to the backgroundPosition key need to take?

a. Aninteger
b. An array of integers
c. Astring

d. An array of strings

In this example the backgrounds animate only from right to left. Extend the example so that
both left to right and right to left motion is available.

Animated single-page navigation

Instead of navigating to separate pages when links in a navigation menu are clicked, we can
navigate to different areas of the current page. While it would be SEO-suicide to build your
entire site on a single page, and could potentially hide a lot of content from users without
JavaScript enabled, we can progressively enhance the site to take this format, while still
leaving the site overall as a normal collection of separate HTML documents.

Time fr action - creating individual pages and adding the styles

In this example we'll start with a collection of separate pages. These are pretty much just
carbon copies of each other with the numbers in the headings changed.

1. Add the following markup to the <body> of our template file:

<div id="outer-container"s>
<headers>
<hl1>A Whole Site on a Single Page</hl>
<nav class="clear-float">
<uls>
<a class="on" href="single-page-site-1.html"
title="Page 1">Page 1l

Page 2

Page 3

Page 4</1li>

[1901]

Chapter 7

Page 5</1li>

</navs>
</headers>
<div id="content"s>
<hl>Single Page Site Page 1</hl>

<p>This is the first page of the site</p>

<p>Lorem ipsum dolor...</p>
</div>
<footer>

<small>Copyright © Dan Wellman 2010</small>

<nav class="clear-float">

<a href="single-page-site-1.html"
Page l
<a href="single-page-site-2.html"
Page 2</1li>
<a href="single-page-site-3.html"
Page 3</1li>
<a href="single-page-site-4.html"
Page 4</1li>
<a href="single-page-site-5.html"
Page 5</1li>

</navs>
</footers>
</div>

title="Page
title="Page
title="Page
title="Page

title="Page

1">

2">

3>

4" >

5">

Save five copies of this page, calling them single-page-site-[1-5] .html. The
CSS used in this example is almost purely to get a feel for the page; it isn't decorative
at all. Add the following code to a new file in your text editor:

body { margin:0; overflow:hidden; }

#outer-container { width:960px; margin:auto; }

header

display:block; border:1px solid #000; border-top:none;

-moz-border-radius-bottomright:8px;
-moz-border-radius-bottomleft:8px;
-webkit-border-bottom-right-radius:8px;
-webkit-border-bottom-left-radius:8px;

border-bottom-right-radius:8px; border-bottom-right-radius:8px;

background-color:#f£ff;

}

header hl { margin:0 0 0 20px; float:left; line-height:2em; }

header nav { display:block; margin-top:23px; }

11911

Full Page Animations

nav ul { margin:0; padding:0; float:right; }
nav 1i {
border-left:1px solid #000; padding:0 20px; float:left;
list-style-type:none;
}
nav li:first-child { border:none; }
#content { padding-left:20px; }
footer ({
display:block; width:960px; padding:10px 0;
border:1px solid #000;
border-bottom:none;
-moz-border-radius-topright:8px;
-moz-border-radius-topleft:8px;
-webkit-border-top-right-radius:8px;
-webkit-border-top-left-radius:8px;
border-top-right-radius:8px;
border-top-right-radius:8px; clear:both; background-color:#fff;
}
footer small { display:block; float:left; margin-left:20px; }
footer nav { font-size:12px; }
.clear-float:after {
display:block; content:"."; clear:both; visibility:hidden;
height:0;

}

.fixed { width:960px; position:fixed; z-index:1; }
header.fixed { top:0; }

footer.fixed { bottom:0; }

#pages { position:relative; }

.page { width:920px; position:absolute; }

3. Savethisfile as single-page-site.css in the css directory. Note that each of
the five HTML pages link to this stylesheet.

4. The page will appear like this with no JS functionality added, which is how it would
appear were JavaScript disabled on the client:

11921

Chapter 7

¥ single Site Page Master - Moxzilla Firefox [_ O] x] .
Fle Edit View History Delicous Bookmarks Tools Help

- c ar u I L1 |ﬁle:[ffC:fapad‘lesltequuary-anlmahun[ﬁ.ll\-pagefs\ng\a-pages\b&-th‘nl T I"_] ’| Google P K |4
J || Single Site Page Master +* F
Page 1 Page 2 Page 3 Page 4 Page 5

A Whole Site on a Single Page

Single Page Site Page 1

This is the first page of the site

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis
nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute frure dolor in reprehenderit in voluptate velit esse cillum dolore en
fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident. sunt in culpa qui officia deserunt mollit anim id est laborum.

{ Copyright © Dan Wellman 2010 Pagel | Page2 | Paged | Page4 | Pag3 1

’ﬁ‘ Done |d~‘ ’—E Yslow ’EW 4

As the screenshot shows, the page still works and the site can be navigated with JavaScript
disabled. Some of our styling is added with JavaScript (via class name additions), so the final
page will appear slightly differently.

What just happened?

The underlying HTML is fairly straight-forward and just represents a simple collection of
example elements including header and footer navigation. The styles are also very light and
are there mostly just to lay out the example pages. The rules at the bottom of the file are for
elements or classes that are added dynamically by the script.

The previous screenshot shows how the page will appear to those with scripting disabled,
although it is very similar to how the page will appear once we've added the script, which
we'll do next.

Time for action - adding the scroll navigation

In this section we will add the code that will enable animated scrolling.

1. Inanother new file in your text editor, add the following code (it should go into a
empty function which aliases the $ character, the same as in the other examples):

$("#content") .empty () ;

var win = $(window),
links = $("header nav a"),
content = $("#content"),
positions = {},

[1931

Full Page Animations

screensize = {
width: win.width(),
height: win.height ()

b

pages = $("<divs</divs", {
id: "pages"
}) .bind ("contentLoaded", function() {

var multiplier = Math.ceil (links.length / 2);

$ (this) .appendTo (content) .parent () .addClass ("full") ;

content .width (screensize.width * multiplier +
screensize.width) ;

content .height (screensize.height * multiplier) ;

content .parent () .find ("header, footer") .addClass (
"fixed") .closest ("body") .css (
"padding-top", $("header") .outerHeight()) ;

links.add("footer nav a").click(function(e)

e.preventDefault () ;

var id = (this.href.indexOf ("#") != -1) ?
this.href.split ("#") [1] : "page-" +
this.title.split (" ") [1];

navs = $("header") .add("footer") ;

navs.fadeOut ("fast") ;

$.scrollTo({ top: positions([id].top,
left: positions([id].left }, 800, function()
navs.slideDown ("fast") ;

links.each (function (i)
var id = "page-" + (i + 1);

positions([id] = {};
positions[id] .left = (i === links.length - 1) ?

11941

Chapter 7

screensize.width * i1 - (screensize.width / 2) -
(960 / 2) + parselnt (content.css("paddingLeft"))
screensize.width * 1;

positions[id] .top = (i % 2) ? screensize.height : 0;

$("<divs</divs", |

llclassll: Ilpagelll
load: this.href + " #content > *"
}) .ess ({

left: positions[id].left,
top: positions[id].top
}) .appendTo (pages) ;

this.href = "#" + id;
if (i == links.length - 1) {

pages.trigger ("contentLoaded") ;

}
3N

2. Savethisfile as single-page-site.js in the js folder. You'll need to link to this
new file, as well as the scrollTo plugin, which we'll make use of in this example, from
each individual page. Add the script references at the end of the <body> element:

<script src="js/jquery.scrollTo-min.js"></script>
<script src="js/single-page-site.js"></script>

3. Run the page in a browser now. You should be able to navigate smoothly around the
page to each of the external pages that have been pulled in.

We can't run this page successfully on a local machine (that is using a
file:/// URL) in Google Chrome without changing the --allow-file-
access-from-files option due to a bug in the browser (see issue 4197
~ documented at http://code.google.com/p/chromium/issues/
<::§ detail?id=4197).
The example will however work as intended if we run it through a web server
(this can even be a test/development web server running on the local machine)
usingan http:// URL.

(1951

Full Page Animations

What just happened?

The script can be roughly broken into two sections. We have a series of variables first,
followed by an each () method that processes the navigation in the header. The very
first thing we do however is to empty the contents of the current page. This helps make
our script cleaner, because we don't have to avoid processing the first navigation link in
our each () function.

It also ensures the page continues to work if someone visits, say, page-3.html instead of
the first page by typing the URL of that page directly into the browser's address bar. It resets
the site so that the content of the first page is always shown first.

So we first define a series of variables. We cache references to the window object, the

top set of navigation links, and the content container, and create a new object that we'll
populate later in the script to determine where each page is positioned. We also create an
object containing the width and height of the window, again so that we can reference
these properties easily from different points in the script.

We then create a new div element and give it an 14 attribute for styling purposes. We then
bind an event handler to it which listens for a custom contentLoaded event. jQuery easily
allows us to create custom events which can be triggered programmatically by our script
when appropriate.

Within the anonymous handler function, we first define a multiplier that will be used to work
out how big the container for the collection of pages should be.

We then append the pages element, which will contain the content of each external page,
to the content container on the page, and then add a class name to the content container,
again for styling, but this time for styles that only need to be applied with JavaScript enabled.

Next we set the size of the content container so that it can accommodate all of the external
page content. We use our screensize object and multiplier to determine its size.

The container needs to be one screen-width wider due to how the external page content

is laid out.

We cater for a little more dynamic styling to the header and footer elements by adding a
class name to them. This allows us to give these two elements f£ixed positioning so that
they always appear at the top and bottom of the viewport and hence remain usable while
we (or our visitors) are navigating around the page. We also add some padding equal to the
height of the header so that the content does not slide below it at any point.

[1961]

Chapter 7

Next we can add a click handler to each of the top and footer navigation links. Within the
handler function, we first prevent the browser from following the link and then get the
region of the page that we need to scroll to from the href property of the link that was
clicked. When we process the header links in a moment, we add some code that will change
the href of these links so that they no longer point to the individual pages, but to the page
regions on the single page.

The footer links aren't processed like the header links will be, so we can't just use whatever
value the href is because it may still point to a separate page. Instead we use the JavaScript
ternary conditional to see whether the href contains a # sign. If it does, we just split the
string on the # and keep everything after.

If it doesn't we get the number of the page that it points to and add this to a string. We also
cache a reference to a jQuery object containing both the header and footer.

The this object versus a jQuery object
\1 Note that when we read the href attribute, we're interacting with the
~ this object directly, without wrapping the object in jQuery functionality.
Q We can read the href property of the this object without any special
JavaScript magic, so there is no point creating a new jQuery object, and
paying for the performance hit when we do, just to read this attribute.

Next we hide the header and footer with a fast fade-out and then invoke the scrol1To ()
method added by the scrol1To plugin.

This method accepts an object with top and 1eft properties, to which we pass references
to the relevant properties from our positions object, using the string we saved in the id
variable. We populate the positions object in the next section of code, but for reference
the object will end up with a property and value pair for each external page linked to in
the navigation, where each key will be page-1. . .page-n, and each value will contain the
precise coordinates that need to be scrolled to.

Once the scroll animation has completed, we then show the header and footer again using
the s1ideDown () method. As these elements have fixed positioning, we can apply the slide
animation to them together and they will both slide in the intended direction.

Using the scrol1To () method is very similar to using the animate () method. We can
supply a duration, as well as a callback function, as we do in this example. Calling the
scrollTo () method directly on the jQuery object is a shortcut to calling it on the window
object. The plugin handles this internally for us.

Don't forget, most of the functionality we've just added won't be executed straight
away—it's mostly all stored in the page's variable. The variable will be created and the
pages <div> will exist in memory, but it won't actually be appended to the page until the
contentLoaded custom event is triggered by the next section of code.

11971

Full Page Animations

The second section of code is encompassed within an anonymous function passed to jQuery's
each () method which we use to process each of the links in the header. The function we
define is automatically passed an index (i) as an argument representing the current iteration
which we use to build an ID string ready for populating the positions object.

This object will contain a set of nested objects where each nested object represents one
of the external pages and has a left and a top property which correspond to where on the
single page the content is positioned.

Working out where to place the content section on the vertical axis is easy; we just use the
JavaScript modulus operator (%) to see if there is a remainder left after dividing the index by
two, in conjunction with a ternary conditional.

If the index can be divided by two without a remainder, we position the content from the
external page one window's height from the top of the page. If there is a remainder, we
just position it at the top of the page. This means that the content sections will be laid out in
a zig-zag pattern along two rows, where each row is equal to the height of the window.

Working out where to place each content section along the page horizontally is a little more
challenging, but it's only the very last section that proves to be tricky. We use the ternary
here as well, this time checking whether we are processing the last link or not.

If we aren't, we simply position the content by multiplying the width of the window by the
index, moving each successive section along the page by one window's width.

If we are processing the last link however, we need to position the content by multiplying
the width by the window width, but then subtracting one window's width dived by two,
minus the width of the content's container dived by two. This ensures that the content
section is aligned with the header and footer correctly.

Once the location for the page that the current link points to has been added to the
position's object, we then create the new container for the page content and give it a class
name for styling purposes.

We also use the 1oad () method to load the external pages asynchronously. This method
accepts the URL of the page to load, which we can get from the href property of the current
link and a selector that matches all child elements within the content element in the page
that is loaded. When a selector is passed to the 1oad () method, only that portion of the
external page will be retrieved.

Once the container has been created, we position it using the css () method, setting

its left and top properties to the corresponding properties in our positions object for
convenience. Finally we append the new <divs> to the page's <divs (which still only exists
in memory at this point).

[198]

Chapter 7

We then set the href of the current link to a document fragment identifier pointing to the
name of the corresponding content section. This wouldn't have any effect if we weren't
intercepting clicks on the nav links because the content sections don't have matching id
attributes, but it is necessary to store the fragment here so that we can read it back when
the link is clicked.

Lastly, we check again whether we're processing the last link or not, and if we are, we trigger
our custom contentLoaded event, which results in the page's element being appended to
the page, and the click handlers bound to the navigation links.

Building a site like this which pulls all of its content into a single page won't suit every type of
site. Most clients would probably pay the cancellation fees and swiftly withdraw if this idea
was presented to them. However, on highly stylized sites, where the design and behavior of
the site is of special importance, this kind of effect can work well. Sites with little content on
each page are especially suited to it.

The following screenshot shows the functionality in action:

@) =[] fie:///c: fapachesite query-animationfull-page fsingle-page site-L himl #page-2 =l xR £ -

- o »
"¢ Favorites @ single Site Page Master | ‘ T - B -) d= - Page- Safety~ Took - {@-

. .
ingle Page Site Page 1

is is the first page of the site

irem ipsum dolor sit amet. consectetur adipisicing elit. sed do emsmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam_

s nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum
ore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident. sunt in culpa qui officia deserunt mollit anim id est laborum.

file:///C:/apachesite/jquer y-animation/ful-page fsingle-page site-L html#page -2 [[[[[Computer | Protected Mode: OFf ERIERT T |

In the previous screenshot, we can see the header and footer partly faded out, and the page
content being scrolled diagonally downwards to the right.

[199]

Full Page Animations

Pop quiz - creating a single-page wehsite

1. We interact with the this object directly in this example instead of the jQuery
equivalent $ (this), why?

a. Because it uses fewer characters

b. Its faster and more efficient because an entirely new jQuery object is not
created

Because it looks better

d. Because it contains more information

2. We create and use a custom event in this example, why?
a. Because custom events execute faster than standard browser events

b. Because the each () method does not allow us to update the scrollTop
property of the window

c. Because it is more efficient for the code executed by the handler to be called
once than on every iteration of the each () method

d. Because the scrollTo plugin can only be used in conjunction with
custom events

There are several things you could do to expand on this example. One thing you could do
is add functionality that checks which page is requested by looking at the href property
of the document. If a page other than the first page is requested, you could scroll to the
corresponding page section so that the page they link to is actually shown instead of
resetting to the first page.

Another thing you could do would be to extend the example so that the pages don't have
to be numbered page-2.html, and so on, and instead could have any file name. In the
first section of code, we read the href of the link if one of the footer links is clicked instead
of looking for a document fragment identifier. This same technique could be applied to the
header links as well, so that any page that is linked to can be included in the single page.

Or, to really appreciate the visual effect of our site-on-a-page, you could add some additional
content and a theme to the site. Each page need not have the same skin, and scrolling
between different colors and imagery can really bring the page to life.

[200]

Chapter 7

Stop-motion animation is a technique whereby a scene is laid out (eitherin 2 or 3
dimensions) and a picture or snap-shot is taken (typically referred to as a frame), then that
scene, or certain characters within it are manipulated, moved, or otherwise changed, before
another picture or snapshot is taken. This process continues, creating a series of frames that
when replayed sequentially produce the effect of motion.

It is generally quite easy to produce animations in this way and we can do the same thing on
a web page trivially. We won't be using any of jQuery's built-in animation methods, or the
animate () method. jQuery is used to help us select elements from the page, and build the
frames, but is not essential in this application.

Imagery

The hard part of any stop-motion animation is the number of frames that need to be
generated. Too few frames and the animation will become jerky or overly rapid. But the
smoothness that is generally required takes many, many frames. In this example, we'll use

a series of separate images. One image is equal to one frame and there are 75 images in
total—not a huge number, but enough to make their creation somewhat labor-intensive and
time-consuming.

Our animation will consist of a stick man that runs across the page, does a flying kick,
and then bows to an unseen opponent. You will find all of these images in a folder called
stickman in the img folder of the downloadable code archive that accompanies the book.

There are many available software products that animators can use to simplify the process
of frame creation. | used an application called Pivot Stickfigure Animator, created by Peter
Bone, which was specially created to make animating stick figures easier.

Technigue

As well as creating all the individual frames of our animation, hardcoding 75 images into a
page, as well as defining a unique style for each one, would also be quite tedious, and our
example animation is relatively short. This type of animation can easily run into hundreds
of frames for even quite short animations.

Instead, we'll create the 75 images and set their attributes and styles programmatically,
which makes the process much easier for us to complete, and still happens quite quickly
when the page loads.

2011

Full Page Animations

Time for action - adding the markup and styling

1. Add the following markup to the template file:

<div id="cartoon">
<img class="loading" src="img/stickman/ajax-loader.gif™"
alt="Loading Frames">
</div>

2. Save the template file as stickman.html. Now add the following styles to a
new file:

#cartoon { width:500px; height:500px; position:relative; }
img { position:absolute; top:0; left:0; }
img.loading { z-index:0; left:50%; top:50%; }

3. Save this stylesheet as stickman.css in the css folder.

What just happened?

All we have on the page is a container to load the frames into and a loading icon so that

it appears as if something is happening when the page initially loads and the frames are
being created. While running this example locally, the frames should be loaded pretty much
instantly, but in the wild there would certainly be some delay.

The CSS sets the container to the width of a single frame, and the frames are positioned
absolutely so that they stack up on top of each other. We'll set the z-index for each element
manually in the script. We can also position the loader so that it is roughly in the centre of
the container.

Time for action - creating the frames and running the animation

Next, add the following code to the empty function at the end of the <body> in stickman.
html:

var counter = 1,
srcStrl = "img/stickman/stick-kick",
srcStr2 = ".jpg",
frames = $("<div id=\"frames\"></div>"),
removeFrame = function() ({
if (frames.children().length > 1) {
frames.children(":first") .remove () ;
} else {
clearInterval (timer) ;

12021

Chapter 7

|
timer = setInterval (function() { removeFrame() }, 50);
for(var x = 75; x--;) {

$(||"1 {

src: srcStrl + counter + srcStr2
}).css("zIndex", x) .appendTo (frames) ;
counter++;

frames.appendTo ("#cartoon") ;

When we run the page, the animation should proceed as we expect, much like the type
of sketch we perhaps may have idly created in a notepad in our youth and "watched" by
flicking through the pages quickly. The following screenshot shows a single frame of the
stickman animation:

jQuery Sequential Animation - Opera

(v e [Bl i0uery Seaiertial A s w 1 oo | —

-\ (Bl sQuery Sequental rima... ¢ | | &
* Q[M [Local [locahostici/a v

[l | ——

Clearly, the best way to view the animation is in a browser.

What just happened?

We start out by initializing some variables. We set a counter variable and a series of strings
representing the common strings that we'll need to use repeatedly. These will be used inside
a for loop so we don't want to define them within the loop as JavaScript will create the
same string objects repeatedly, whereas by defining them outside of the loop will ensure
they only get created once.

We also create a new container <div> which we'll append each of the new frames to, and
assign a function to the set Interval JavaScript function.

[2031

Full Page Animations

Next we define the removeFrame () function which will be executed by setInterval.
All this function does is check whether there is more than one element within the frames
container and if so, remove the first one. Every 50 milliseconds, the top image will be
removed, which is fast enough for the repeated showing of still images to be perceived

as an animation. If there is only one image left, we clear the timeout as the animation

has completed.

Next we define the for loop, specifying the maximum number of frames, and decrementing
on each iteration of the loop. We don't need to specify a comparison condition in this form
of loop however, because the loop will naturally end when x = 0 (because 0 isa falsey
value). Using decrementing for loops is a proven strategy for faster JavaScript.

On each iteration of the loop we create a new element and set its src to point to the
correct image file using a combination of the strings we created earlier and the counter
variable. We set the z-index of each image as it is created using the css () method and the
x variable used to control the loop. On each iteration, x will decrease, so each image added
to the page will be lower down in stacking order than the previous one, which is exactly the
order we require. We then append the image to our new container <divs.

At the end of each iteration, we increment the counter variable by 1. After the loop has
completed, we append our container element, which now contains all of the necessary
images, to the container hardcoded into the page. This will overlay the loading spinner.
In a full implementation, we'd probably remove the spinner at this point.

Pop quiz - implementing stop-motion animation with jQuery

1. In this example, we used a decrementing for loop, why?

a. We need to in order to set a descending z- index on the images.

b. The decrementing format of the loop is required when creating inline
elements with jQuery.

c. Because the code is easier to read.

d. For performance reasons. Because the loop isn't checking a condition on
every iteration. It's simply removing one from the value of x, so it runs faster.

Have a go hero - extending stop-motion animation

Simple two dimensional stickmen aren't the only images that can be used to create a
stop-motion animation. Pretty much any series of sequential images can be used, so
experiment with color images or photographs. Time-lapse photography offers an
excellent source of the right kind of photos to use.

12041

Chapter 7

In this chapter, we looked at some examples of full page animation, where the animation
itself is one of the key elements of the page, not just an attractive but short-lived feature
of the interface.

In this example-based chapter, we looked at the following animation techniques:

*

Scroll animations where the page is automatically scrolled vertically to different
parts of the page when table of contents links are clicked.

Parallax animations where several background layers are animated at different
speeds to create the illusion of depth. In this example, we utilized the brand
new cssHooks bgpos . js file to animate the background-position of the
different layers.

Scroll animations where individual pages making up a site are pulled into a single
page and the window scrolls both horizontally and vertically to different areas of
the page. In this example, we didn't scroll the page manually but relied on the
scrollTo plugin.

Stop motion animation where a series of images are shown so rapidly that it creates
an animation.

The next chapter will also be a series of examples looking at other popular animations that
may be used on websites.

[2051]

This chapter will follow a similar format to the previous one and will consist
of a series of recipe-style examples that show real-world implementations of
animations in action. We won't restrain ourselves to full-page animations this
time however—anything goes!

We'll look at the following examples in this chapter:

¢ Proximity animations, where the animation is a reaction to the proximity
of the mouse pointer to a target element or area of the page

¢ An animated header element

¢ Atext-scrolling marquee widget

Proximity animations

Proximity animations, which are usually driven by the position of the mouse pointer relative
to an element or series of elements on the page, are an awesome effect. While not suitable
on all sites and in all contexts, it can add real flair when used in certain situations.

The effect isn't often very accessible, and pretty much shuts the door on non-mouse users,
but it can be implemented as an additional bonus to visitors that are able to make use of it,
while at the same time providing other, more accessible forms of interaction.

In this example, we'll create an image scroller that is triggered when the mouse pointer
enters its container. The speed that the images will scroll will be determined by the distance
of the mouse pointer from the center of the container. Moving the pointer will slow down or
speed up the animation accordingly.

Other Popular Animations

Time for action - creating and styling the page

In this part of the example we'll create the underlying page that the animation will run on
and add the styling.

1. First we'll create the default page and add the CSS for the example. Add the
following elements to the <body> of our template file:

<div id="proximity">

</div>

2. Save this file as proximity.html. Next we'll add some CSS. In a new file, add the
following code:

/* base classes (scripting disabled) */

#proximity {
width:960px; margin:auto; border:1px solid #000;
-moz-border-radius:8px; -webkit-border-radius:8px;
border-radius:8px;

}

#proximity img { border:1px solid #000; }

/* scripting enabled classes */
#proximity.slider ({
width:550px; height:250px; position:relative; overflow:hidden;

[208]

Chapter 8

}

.slider #scroller { position:absolute; left:0; top:0; }
.slider #scroller img
display:block; width:150px; height:150px; margin:50px 0 0 50px;
float:1left; color:#fff; background-color:#000;
}
.slider #scroller img:first-child { margin-left:0; }
#message {
width:100%; height:30px; padding-top:10px; margin:0;
-moz-border-radius:0 0 8px 8px;
-webkit-border-bottom-radius:8px;
-webkit-border-bottom-right-radius:8px;
border-radius:0 0 8px 8px; position:absolute; bottom:0;

left:0;
background-color:#000; color:#fff; text-align:center;
font:18px "Nimbus Sans L", "Helvetica Neue",

"Franklin Gothic Medium", Sans-serif;

3. Save thisin the css folder as proximity.css and don't forget to link to it from the
<head> of the HTML page.

What just happened?

Keeping the HTML as simple and as light as possible, we simply add the images that we want
to show to a container element. Any extra elements that we need can be added dynamically
in the nature of progressive enhancement.

There are two sections in the CSS file. The first section is a collection of base styles which
are used if the page is loaded by a visitor that has JavaScript disabled. This ensures that
all of the images are visible and therefore accessible—none of them are hidden or
otherwise obscured.

The second section changes the appearance of the container element and adds styling to
elements or classes that are added dynamically, transforming the appearance of the slider,
provided JavaScript is enabled.

We set the height and width of the container so that only three images are visible at any
one time and set its overflow style property to hidden so that all of the other images are
hidden, ready to be scrolled into view.

We also add positioning for an element with an id of scroller. This element doesn't yet
exist and will be added by the script, which we'll look at shortly. This element will also need
a width, but we can assign this dynamically based on the number of images in the container.

[2091]

Other Popular Animations

We also change the styling of the images themselves, setting them to block-level elements
and floating them to the left so that they stack up horizontally in a long line without
wrapping onto two lines as this would destroy the functionality of the scroller. It is the
combination of floating the images, and setting the width of the container to accommodate
them all that allows them to stack up as horizontally as required. We'll add a message that
tells the visitor how to use the scroller so we also include some styling for this as well.

The following screenshot shows how the page will appear with scripting disabled:

&) jQuery Mouse Pointer Proxmimity - Mozilla Fircfox

[[T~ [cone [o [vson [iW [0 4

In the previous image we can see that the images are all visible. It's not pretty, but it's highly
accessible and doesn't hide the content when scripting is disabled on the client.

Time for action — prepping the page for sliding functionality

When scripting is enabled we can enhance the page to add the additional elements that the
proximity slider requires. Add the following code to the empty function at the bottom of the
HTML page:

var prox = $("#proximity"),
scroller = $("<divs></divs>", {
id: "scroller"

[2101

Chapter 8

1

pointerText = "Use your pointer to scroll, moving to the edge
scrolls faster!",

keyboardMessage = "Use your arrow keys to scroll the images!™",

message = $("<p></p>", {

id: "message",
text: keyboardMessage

3N

prox.addClass ("slider") .wrapInner (scroller) .append (message) ;
var middle = prox.width() / 2;
scroller = $("#scrollexr");

scroller.width (function() {
var total = 0;
scroller.children() .each(function (i, wval) {
var el = $(this);
total = total + (el.outerWidth() +
parselnt (el.css ("marginLeft"))) ;

3N

return total;

}).css("left", "-" + (scroller.width() / 2 - middle) + "px");

What just happened?

First we cache the selector for the proximity container, which we'll use a couple of times

in this chunk of code, and a couple of times a little later on in the script. Next we create a
new <div> element and give it an id attribute so that we can easily select it again when
necessary. We also use this id for styling purposes.

Next we store a couple of text strings in variables for convenience. These will be used

as messages to display to the visitor at different points. We also create a new paragraph
element as a container for the message text, give the element an id (again for selecting
purposes), and use the jQuery text () method to set its innerText to one of the text
strings. Using jQuery 1.4 syntax we can use the property text on the object passed as the
second argument to the element creation jQuery method format, which automatically maps
to the text () method.

[21]

Other Popular Animations

Next we add a class name to the outer proximity container. Remember, this class name is
used to differentiate between scripting being disabled and enabled so that we can add the
required styling. We also wrap the contents of the proximity container (the 20 images) in
our newly created scroller element, and append the message to the proximity container.

Next we set a variable which is equal to the width of the proximity container divided by
two, which gives us the horizontal middle of the element, which we'll need to use in some
calculations to position the scroller element, and work out where the mouse pointer is
relative to the proximity container.

We could just as easily have set the number that the midd1le variable needs to contain,
instead of calculating it in this way. The width of the proximity container (with scripting
enabled) is set in our CSS file and is highly arbitrary to this particular example. If we changed
its width however, the script would break if we set the figure directly in the variable instead
of working it out programmatically. It is always best to avoid hardcoding 'magic' numbers
into scripts whenever possible.

At this point we also need to cache a reference to the scroller element now that it has

been appended to the page. We can't use the contents of the scroller variable that we
created at the start of the script, so we overwrite it with a fresh reference to the element by
selecting it from the page again.

We now need to set the width of the scroller element so that it is wide enough to
accommodate all of the images in a single row. To do this we pass a function to jQuery's
width () method which returns the width to set.

The function calculates this figure by iterating over each image and adding both its width
and horizontal margin to the total variable. This means that an indeterminate number of
images can be used without changing the script, and that images with different widths and
spacing can be used.

Once we've set the width of the scroller element, we then need to position it so that the
center of the scroller is at the center of the proximity container. This is so that when the page
loads, the visitor can move it to the left or right depending on where they move their pointer
or which arrow key is pressed.

If we load the page in a browser at this point, we should find that the appearance of the
elements on the page has changed:

[212]

Chapter 8

@ jQuery Mouse Pointer Proxmimity [_ O]

4 + | file:///C:fapachesitefjguery-animation/p & | | Qr Google O~ 2%~

Use your arrow keys to scroll the images!

In the previous screenshot, we can see that the proximity container is resized and the
scroller element is centered within it. We can also see the default message at the bottom
of the proximity container.

Time for action — animating the scroller

The next section of code deals with actually animating the scroller element based on where
the mouse pointer is relative to the outer proximity container:

function goAnim(e)

var offset = prox.offset(),
resetOffset = e.pageX - offset.left - middle,

normalizedDuration = (resetOffset > 0) ? resetOffset
-resetOffset,
duration = (middle - normalizedDuration) * 50;

scroller.stop() .animate ({
left: (resetOffset < 0) ?
)

0 : "-" + (parselnt(scroller.width())
- parselnt (prox.width()))

)

}, duration, "linear");

[2131

Other Popular Animations

What just happened?

Within the goAnim () function, we first get the of £set of the proximity container so that
we know its position relative to the document. We then work out where the mouse pointer
is relative to the middle of the proximity container. This means that numerically, the pointer
offset will be 0 when it is in the center.

If the mouse pointer is in the left half of the proximity container, the number in the
resetOffset variable will be negative. This would cause our calculations later in the
function to be incorrect, so we need to check whether the resetOffset variable is greater
than 0, and if it isn't we invert the number using its minus value.

Ultimately, what we want to happen is for the speed of the scroller to increase as the pointer
moves towards either end of the proximity container, and slow down as it moves into the
center. In other words, the speed of the animation needs to be inversely proportionate to
the distance of the pointer from the middle of the proximity container.

The problem that we have at this point is that the figure representing the distance of the
pointer from the middle of the proximity container gets larger as it moves towards the edge,
so the animation would slow down instead of speeding up if we were to use this figure as
the duration of the animation.

To invert the value stored in the normalizedDuration variable, we subtract it from the
value representing the middle of the proximity container, and then multiply the resulting
figure by 50. The duration argument is in milliseconds, so if we don't use a multiplier (50 was
arrived at by trial and error) to increase our value, the animations will occur too quickly.

We can now initiate the animation. We use the JavaScript ternary statement to test whether
the resetOffset figure is less than 0 and if it is, we know that to get the scroller to slide to
the right we just need to set the 1eft style property of the scroller element to o.

If the variable is greater than 0, we have to move the scroller element negatively (to the left)
in order to show the images hidden at the right. To align the right edge of the scroller <div>
to the right edge of the proximity container, we set the end point of the animation to the
width of the scroller <div> minus the width of the proximity container.

Time for action — adding the mouse events

Now we need to add the mouse events that will trigger the animations:

prox.mouseenter (function(e) {
message.text (pointerText) .delay (1000) . fadeOut ("slow") ;

goAnim(e) ;

[214]

Chapter 8

prox.mousemove (function(ev) {

goAnim(ev) ;
3N
3N

prox.mouseleave (function()
scroller.stop() ;
prox.unbind ("mousemove") ;

3N

What just happened?

First we set a mouseeenter event handler so that we can detect when the pointer initially
enters the proximity container. When this occurs we change the message text so that it
shows what to do with the mouse pointer and then fade out the message slowly after a
delay of one second.

We then call our goAnim () function to start the animation. At this point, we set a
mousemove event so that we can increase or decrease the speed of the animation as the
pointer moves within the proximity container. Each time the pointer moves, we call the
goAnim () function once more. Each time this function is called we pass in the event object.

We also set a mouseleave event handler on the proximity container so that we can detect
when the pointer leaves this element altogether. When this occurs we stop the currently
running animation and unbind the mousemove event handler.

At this point we should have a fully working proximity slider. Earlier we discussed how the
proximity effect is only useful to mouse users, so let's add a keyboard event handler to our
script that will let keyboard users navigate the scroller as well.

Time for action - adding keyhoard events

The following code enables keyboard driven animations:

S (document) .keydown (function (e) {
if (e.keyCode === 37 || e.keyCode === 39) ({
message.fadeOut ("slow") ;
if (!scroller.is(":animated")) {

scroller.stop().animate({
left: (e.keyCode === 37) ? 0 : -(scroller.width() -

[215]

Other Popular Animations

prox.width())
}, 6000, "linear");
}
}
}) .keyup (function() {
scroller.stop() ;

3N

What just happened?

We attach the keydown event handler to the document object so that the visitor doesn't
have to focus the proximity container somehow. Within the anonymous function, we first
check whether the left or right arrow keys were pressed.

The key code 37 refers to the left arrow key and the code 39 refers to the right arrow key.
The keyCode property, normalized by jQuery so that it is accessible to all browsers, will
contain the code for whichever key was pressed, but we only want to react to either of the
specified keys being pressed.

When either of these keys are pressed, we first fade out the message and then check that
the scroller is not already being animated using jQuery's is () method in conjunction with
the :animated filter.

As long as the scroller element is not already being animated (denoted by the ! at the start
of the condition), we then animate it. We check the keyCode once again with a ternary so
that we can move the scroller in the correct direction depending on which key is pressed.

Finally we add a keyup event handler that stops the scroller animation once the key is
released. This improves the interactivity of animation as it allows the visitor to intuitively
stop the scroller whenever they wish.

The obvious way to extend our example would be to trigger animations on the vertical axis
as well. We could have a grid of images instead of a single row and animate the grid up and
down as well as left and right.

One thing to do to extend the example would be to add additional keyboard functionality.
Check for additional keys such as the home and end keys for example, which could navigate
to the start or end of the scroller element accordingly.

(2161

Chapter 8

Pop quiz - implementing proximity animations

1. We provided additional functionality by adding keyboard navigability in the previous
example, why?

a. Forfun
b. Tolook good

c. To provide an alternate way for the content to be explored by
non-mouse users

d. Keyboard events must be bound whenever mouse events are used

2. Why should we avoid hardcoding 'magic' numbers into our scripts?
a. To make our code more readable
b. So that our scripts are less reliant on the content that they act upon
¢. hardcoded integers take longer to process

d. Because jQuery prefers working with strings

Another quite fashionable technique at the moment is to have an animation that runs in the
header of the page when the home page loads. Sometimes the animations run continually
on every page of the site; others run once on the home page only.

This technique is an easy and effective way to make your site stand out, and they needn't be
complex or heavily apparent animations; a short, subtle animation can be enough to add the
wow factor.

Earlier in the book we looked at using the new cssHooks functionality in conjunction with a
pre-written file that makes use of cssHooks, which extends jQuery's css () method to allow
an element's background-position style property to be animated. In this example, we'll
look at how we can do this manually without the use of the plugin.

Well-written plugins can be an effective and easy solution, but there are times when a plugin
adds much more functionality than we actually need and therefore increase a page's script
overhead. It's not often that reinventing the wheel is necessary or advised, but there can be
times when it's beneficial to write a custom script that does only what we require.

[2111

Other Popular Animations

Time for action - creating an animated header

The underlying page for this example will be relatively straight-forward, with just a
<header> element whose background-position we'll animate manually:

1.

The header of the example page will consist of just an empty <header> element:

<headers>
</header>

Save this as animated-header.html. The CSS is even simpler, with just a single
selector and a few rules:

header {
display:block; width:960px; height:200px; margin:auto;
background:url (../img/header.jpg) repeat 0 0;

}

Save this as animated-header.css. We'll need to link to the file from the <head>
of the page we just created.

The script itself is also surprisingly simple. Add the following code to the function at
the end of the <body>:

var header = $("header");
header.css ("backgroundPosition", "0 0");
var bgscroll = function() {

var current = parselnt (header.css("
backgroundPosition") .split (" ") [1]),

newBgPos = "0 " + (current - 1) + "px";

header.css ("backgroundPosition", newBgPos) ;

}i
setInterval (function() { bgscroll() }, 75);

When we run the file in a browser, we should find that the background image used
for the <header> slowly scrolls.

[218]

Chapter 8

What just happened?

In the script we cache the header selector outside of our main function for efficiency, so
that we aren't creating a new jQuery object every time the function is executed. Even though
the header is cached in a variable outside of the function, the variable is still accessible by
the function.

Within the function we first get the current vertical background-position of the header
element, extracting just the part of the returned string we require using the JavaScript
split () function. We also use parseInt to convert the string into an integer.

We then decrement the integer by one. This means that the background image will scroll
up. This is not important. There's no reason why the image couldn't scroll down, | just
happen to prefer motion in the upwards direction for some reason. Finally we set the new
background-position using jQuery's css () method.

After the function definition, we use the JavaScript setInterval () method to repeatedly
call the function every 75 milliseconds. This is relatively quick, but is quite smooth—much
higher than this and the animation begins to get a bit jerky. There's no reason however that
different background images might not need to run as quickly.

Have a go hero - extending the animated header

As the example is so small, there is a lot that could be done to build on it. Depending on the
background image in use, it could be extended to move along the horizontal axis instead, or
even both, perhaps moving diagonally in a north-westerly direction.

The use of the <marquee> element died out many years ago, but a similar effect, created
with JavaScript is resurfacing in recent years thanks to its use on high-profile sites such as
the typed headlines on the BBC News site, and the animated trending topics on the twitter
home page.

This is an effective and attractive way to present potentially relevant content to the visitor
without taking up too much content space. It won't suit all sites of course, but used
sparingly, and in as non-intrusive a way as possible, it can be a great effect.

[219]

Other Popular Animations

Time for action - creating and styling the underlying page

In this example, we can see how easy it is to grab a series of text strings and display them
in a smoothly scrolling marquee style. We'll use jQuery's built-in AJAX capabilities to grab a
JSON file of the latest posts on my blog. Let's get started.

1. Add the following markup to the <body> of the template file:

<div id="outer"s
<header>
<hgroups>
<hl>Site Title</hl>
<h2>Site Description</h2>
</hgroup>
<nav>Main site navigation along here</navs>
</header>
<articles
<hl>A Blog Post Title</hl>
<p>The post copy</p>
</article>
<aside>
<div>
<h2>Ads</h2>
<p>Probably a bunch of ads here that take up a reasonable
section of this aside vertically</p>
</div>
<div>
<h2>Popular Posts</h2>

<p>Some links here to other posts, which may or may not
be related to the current post, but are deemed popular
based on the number of comments</p>
</div>
<div>
<h2>Related Posts</h2>
<p>Some links here to other posts that are definitely
related to this post, based on post tags</p>
</div>
<div>
<h2>Twitter Feed</h2>
<p>Maybe a twitter feed here that displays recent tweets
or something. Aside could be quite long by now</p>
</div>
</aside>
</div>

12201

Chapter 8

Save the new page as marquee.html.

We can also add some basic CSS at this point to layout the example in an acceptable,
generic manner. In a new file in your text editor, add the following code:

#outer {
width:960px; margin:auto; color:#3c3c3c;
font:normal 17px "Palatino Linotype", "Book Antiqua",
Palatino, serif;
}
header {
display:block; padding:0 20px 0; margin-bottom:40px;
border:3px solid #d3dldl; background-color:#e5e5e5;
}
hgroup { float:left; }
hl, h2 { margin-bottom:10px; }
nav {
display:block; width:100%; height:40px; clear:both;
text-align:right;
}
article {
width:700px; height:900px; border:3px solid #d3d1dil;
background-color:#e5e5e5; float:left;
}
article hl, article p { margin:20px; }
p , nav{
font:normal 17px "Nimbus Sans L", "Helvetica Neue",
"Franklin Gothic Medium", Sans-serif;

}

p { margin-top:0; }

aside {
width:220px; height:900px; border:3px solid #d3d1dil;
background-color:#e5e5e5; float:right;

}

aside div { padding:0 20px 20px; }

Save this file as marquee. css in the css directory. Link to this stylesheet from the
<head> of the page we just created.

[221]

Other Popular Animations

What just happened?

The underlying HTML represents a typical blog. We've added a series of elements for two
reasons, primarily so that we have somewhere to insert the marquee, but also so that we
can see why this approach can be necessary.

Having the latest posts scrolling across the page near the top of the site ensures that this
content is seen straight away, and the fact that it's animated also helps to draw the visitor's
attention to it.

The CSS used so far is purely to layout the example elements in a precise and mildly aesthetic
way, giving us a generic layout and a light skinning. We'll add some more CSS a little later in
the example for our dynamically created marquee. At this point, the page should appear

like this:

J 1Query Marquee Effect

< X % (© fie:///C:/apachesite/jquery-animation/popular/marquee.html

Site Title

Site Description

Main site navigation along here

A Blog Post Title Ads
Probably a bunch of ads
The post copy here that take up a

reasonable section of
this aside vertically

Popular Posts

Some links here to other

posts, which may or may

not be related to the

current post, but are

deemed popular based
Viaiting for . danweliman.co. k... on the number of

Remember, all of the elements in the previous screenshot are there for the marquee to be
inserted between. They are not specifically required, and are there for this example.

Time for action - retrieving and processing the post list

Now we're ready to retrieve the list of latest posts and process them, making them ready to
be displayed as items in the marquee. In order to access this data across the Internet from
another domain, we need to use JSONP, which stands for JSON with Padding, and involves
dynamically creating and injecting a <script> element to the page, although jQuery
actually handles this aspect of it for us.

12221

Chapter 8

1.

jQuery provides native support for JSONP and allows us to bypass the same-origin
security policy of the browser. In order to output JSON in the correct format, I'm
using the JSON API plugin on a WordPress-powered blog, which outputs JSON in the
following format:

{

"status": "ok",
"count": 1,
"count total": 1,
"pages": 1,
"posts": [

llidll: 1’

etc. ..

Ilidll: 2,

Etc...

}

There are more properties in the posts array shown in the previous code block, as
well as other arrays and properties in the outer object, but the previous snippet
should give you an idea of the structure of the data we'll be working with.

Add the following code to the bottom of the HTML page:

$.getJSON ("http://danwellman.co.uk?json=1&count=10&callback=?",
function (data)

var marquee = $("<divs</divs", {
id: "marquee"
I3
h2 = $("<h2></h2>", {
text: "Recent Posts:"
I3
fadeLeft = $("<divs</divs", {
id: "fadeLeft"
I
fadeRight = $("<divs</divs", {
id: "fadeRight"

3N

for(var x = 0, y = data.count; x < y; x++) {

12231

Other Popular Animations

$("<as", {
href: data.posts[x] .url,
title: data.posts[x].title,
html: data.posts[x].title
}) .appendTo (marquee) ;

marquee.wraplnner ("<divs></divs>") .prepend (h2) .append (fadeLeft)
.append (fadeRight) .insertAfter ("header") .slideDown ("slow") ;

$ ("#marquee") . find ("div") .eq(0) .width (function() {
var width = 0;

$(this) .children() .each (function() {
var el = $(this);
width += el.width() + parselInt(el.css("marginRight"));

3N

return width;

3N

marquee.trigger ("marquee-ready") ;

3N

4. We can also add some more CSS, this time for the newly-created elements. Add the
following code to the bottom of marquee.css:

#marquee {
display:none; height:58px; margin:-20px 0 20px;
border:3px solid #d3dldl; position:relative;
overflow:hidden;
background-color: #e5e5e5;
}
#marquee h2 { margin:0; position:absolute; top:10px; left:20px; }
#marquee a {
display:block; margin-right:20px; float:left;
font:normal 15px "Nimbus Sans L", "Helvetica Neue",
"Franklin Gothic Medium", Sans-serif;

}

#marquee div { margin:20px 0 0 210px; overflow:hidden; }
#marquee div:after ({
content:""; display:block; height:0; visibility:hidden;

[224]

Chapter 8

clear:both;

}

div#fadeLeft, div#fadeRight
width:48px; height:21px; margin:0; position:absolute;
top:17px;
left:210px; background:url(../img/fadelLeft.png) no-repeat;
}
div#fadeRight
left:906px; background:url(../img/fadeRight.png) no-repeat;

5. When we run the page now, we should see that the new marquee element, along
with its links, is inserted into the page:

e Effect - Opera [_ O[]

jQuery Marquee Effect

4 = | # | W Local | localhost/C:/apachesite/jquery-animation/popular/marquee html v [~ search it

Site Title

Site Description

Main site navigation along here

Recenl; POSl;S: 1 G500 Gaming Mouse Review Why IE9 Fails Plugin Update: hoverfade-1.0.2 .net Magazine Awa
A Blog Post Title Ads

Probably a bunch of ads
The post copy here that take up a

reasonable section of
this aside vertically

Popular Posts

Some links here to other ﬂ

The previous screenshot shows the elements in the new marquee section including the
heading, the links themselves, and the fade elements which are added purely for aesthetics.

What just happened?

All of our JavaScript is wrapped up in jQuery's getJSON () method, which uses jQuery's AJAX
functionality to make a request to the URL specified as the first argument to the method. The
second argument is an anonymous function that is executed if the request is successful. The
returned JSON data is passed to this function automatically.

12251

Other Popular Animations

Within the function we first create some of the elements that make up our marquee
including the outer container, the heading and two purely aesthetic <div> elements used
to add the left and right fade effect at the start and end of the row of links. All of these
elements are stored in variables so that we can access them easily when required.

Next we process the JSON object passed into the function. Remember, this object contains
a series of properties where the values of some of these properties are arrays, such as the
posts array, which contains each of the returned posts as objects within each of its

array items.

We use a for loop to iterate over each object in the posts array that is returned with the
JSON object. This object contains a property called count, where the number of posts that
are returned is stored as an integer, so we can use this to tell the for loop how many times
to execute, which is marginally easier than counting the objects in the posts array.

For each post that has been returned, we create a new <a> element, setting its href to
point to the url property of the current object, and the title and text of the element set
to the title property of the current object, and then append the new <a> to the marquee
element that we created a minute ago.

Once we've created and appended a link for each post, we then wrap the contents of the

marquee element (the links) in a new <divs, prepend the <h2> to the start of the marquee,
and append the <div> elements for the fades to the end of the marquee element. We then
append the marquee to the page before sliding it into view with the s1ideDown () method.

At this point we need to set a width on the container <div> that we wrapped the links in
a moment ago. This is so that the links can all line up in a single row. We need to take into
account the width of each link, plus any margin it has (which we set in the CSS).

We use a function as the value of jQuery's width () method to iterate over each link and
add its width and margin to a running total. We can't do this until the marquee has been
appended to the page because it is not until this point that each element actually has a
width or margin that we can retrieve.

The last thing we do in the callback function for our get SJON () method is fire off a custom
event with the trigger () jQuery method. The custom event is called marquee-ready
and is used to tell our script when the marquee has been added to the page. We'll use this
custom event shortly to animate the post links.

We also added some new CSS to our stylesheet. Some of this code is to give our marquee
elements the same light skin as the rest of the page. But other parts of it, such as floating the
links, and setting the marquee's overflow property to hidden is so that the links line up in
a single row, and so that the majority of the links are hidden, ready to be scrolled into view.
We also add the fade images to the last two <div> elements inside the marquee element.

12261

Chapter 8

Time for action — animating the post links

We're now ready to begin scrolling the post links within the marquee. We can do this using
our custom event.

1. After the getJsoN () method, add the following code to the page:

$ ("body") .delegate ("#marquee", "marquee-ready", function() {

var marquee = $(this),
postLink = marquee.find("a").eq(0) ;
width = postLink.width() +
parselnt (postLink.css ("marginRight")),
time = 15 * width;

postLink.animate ({
marginLeft: "-=" + width

}, time, "linear", function() {
$(this) .css ({

marginLeft: 0

}) .appendTo (marquee.find ("div") .eq(0)) ;
marquee.trigger ("marquee-ready") ;

I

3N

2. Our example is now complete. When we run the page at this point, the posts should
begin scrolling from left to right.

What just happened?

We use the jQuery delegate () method to bind an event handler to our custom
marquee-ready event. We need to use event delegation to achieve this because when
this part of the code is executed, the JSON response is unlikely to have returned so the
marquee element won't even exist. Attaching the event handler to the body of the page
is an easy way to prepare the page for when the marquee element does exist.

Within the anonymous event-handling function, we first cache a reference to the marquee
element using the this object, which is scoped to our marquee element. We then select
the first link in the marquee, and determine its total width including margin.

We also work out what is effectively the speed of the animation. jQuery animations use a
duration to determine how quickly an animation should run, but the problem this causes
us is that posts with longer titles will move faster, because they have a greater distance to
animate in the same amount of time.

[2211

Other Popular Animations

To fix this, we work out a duration to pass to the animation method based on an arbitrary
"speed" of 15 multiplied by the width of the current <a>. This ensures that each post will
scroll at the same speed regardless of how long it is.

Once we have obtained the total width and duration, we can then run the animation
on the first link in the marquee, using our width and time variables to configure the
animation. We animate the post link by setting a negative margin of the first link, which
drags all of the other links along with it.

Once the animation is complete, we remove the margin-1left from the link, re-append it
to the end of the <div> within the marquee element, and fire the marquee-ready event
once more to repeat the process. This occurs repeatedly, creating the ongoing animation and
bringing us to the end of this example.

One feature that would certainly be beneficial to your users would be if the post titles
stopped being animated when the mouse pointer hovered over them. The animation

could then be restarted when the pointer moves off them again. Have a go at adding this
functionality yourself. It shouldn't be too tricky at all and should involve adding mouseenter
and mouseleave event handlers.

You'll need to work out how much of any given link is already outside of the visible area of
the marquee in order to ensure the animation restarts at the same speed that it stopped
at, but this should be quite similar to how we worked out the duration in this version of the
example. See how you get on.

1. Why did we create a dynamic-duration variable (t ime) instead of using one of
jQuery's predefined durations?

a. Because its quicker using an integer, even if that integer has to be calculated,
than using one of the duration strings

b. Because it's more fun

c. To make sure the links are appended to the correct element after being
animated

d. To ensure that the links all animate at the same speed regardless of how long
they are

12281

Chapter 8

2. Inthis example we used the delegate () method, why?

a. Because the delegate () method executes faster than the bind () or
live () methods

b. Because the delegate () method must be used when binding to custom
events

c. Because the element we need to bind to doesn't exist when the handler for
it is added, and therefore the delegate () or 1ive () methods are our only
options, with delegate () being the more efficient

d. Because we don't need to use the event object

In this chapter, the second of our heavily example-based as opposed to theory-based
chapters, we looked at some more common animations that are increasingly found on the
Web. Specifically we looked at the following types of animations:

& A proximity driven image scroller where the images scrolled in a certain direction,
and at a certain speed, depending on the movements of the mouse pointer

& Background-position animations, in which we created a continuous header
animation manually with just a few lines of code

¢ Atext marquee, where a series of headlines were grabbed from a live Internet feed
and displayed in a scrolling marquee-style banner

In the next chapter, we'll move to look at some of the new pure CSS animations that have
been introduced with CSS3, and how jQuery can be used to enhance them and generally
make working with them easier.

12291

CSS3 brings many impressive new styles to the web-development arena, and
even though the specification is far from complete, many aspects of it are being
used in the latest browsers. Pure-CSS animation may even make it into the
specification at some point, and although at the time of writing few browsers
support this, with a little help from jQuery we can create our own CSS3
animations that work with varying degrees of success, across most

common browsers.

In this chapter, we'll be covering the following topics:

The different CSS3 transforms available
Animating an element's rotation

Using the CSS3 transforms matrix

* & o o

Animating an element's skew with jQuery

For further information on CSS3 2D transforms, see the W3C Working Draft
o specification at http://www.w3 .0org/TR/css3-2d-transforms/ .

CSS3 2D transforms

CSS3 defines a style property called transform which allows us to transform targeted
elements in a two-dimensional space along x and y axes. A range of transform functions can
be supplied as the value of the transform property, which dictates how the transformation
should be applied.

CSS3 Animations

The following t ransform functions are defined:

Function Example usage Description of the transform

matrix matrix(a, b, ¢, d, e, £) Rotates, scales, skews, or translates the element
according to the combination of supplied
parameters.

rotate rotate (x) Rotates the element the specified number of

degrees around the transform-origin. By default,
the origin should be the center of the element.

scale scale (x, y) Scales the element the specified number of units
along the x and y axes. If y is not supplied, it is
assumed to be the same as x.

scaleX scale (x) Scales the element the specified number of units
along the x axis.

scaleY scale (y) Scales the element the specified number of units
along the y axis.

skew skew (x, y) Skews the element the specified number of
degrees along the x and y axes. If y is not supplied
it is assumed to be 0.

skewX skew (x) Skews the element the specified number of
degrees along the x axis.

skewY skew (y) Skews the element the specified number of
degrees along the y axis.

translate translate(x, y) Repositions the element the specified number of
pixels along the x and y axes. If y is not provided it
is assumed to be 0.

translateX translate (x) Repositions the element the specified number of
pixels along the x axis.

translateY translate (y) Repositions the element the specified number of
pixels along the y axis.

Understanding the matrix

All of the individual transform functions (rotate (), skew (), among others) can be thought
of as shortcuts for specific matrix transforms. Indeed, most browsers will apply a matrix
behind-the-scenes even when a transform function is provided.

The matrix takes six parameters, and each of the above transforms can be performed by
providing different combinations of values for these parameters. Sometimes we can apply
several transforms simultaneously by using the matrix. Let's look at some quick examples
to illustrate how the matrix can be used.

12321

Chapter 9

Translate

Translating an element causes it to move from its original location. Positive values translate
to the right or down the page (depending on the axis), and negative values move it to the
left or up the page. For example, an element could be moved 100 pixels right along the x axis
and 100 pixels down along the y axis using the following transformation matrix:

transform: matrix(1, 0, 0, 1, 100px, 100px);

This matrix function, equivalent to using the transform function: translate (100px,
100px), would cause the targeted element to appear like this:

&) Matrix Examples - Mozilla Firefox =] I
| [Matrix Examples [= [~

Translate
P =] =
Oy | < 2 | = ﬂ Con.. | HTML~ | €55 Scri.. DOM Met vsl...H P (=&
<> | Edit | div#translate - body = himl = document Style~ | Computed Layout DOM
ftranslate { transforms.html (line &)
5 <html lang="en"> -moz-transform: matrix(l, 0, 0, 1, 100px, 100px);
+ <head> i
= <body> div { transforms.html (line 7)
<div id="translate">Translat v order: lpx sclid #000000;

height: Z00px;

H <script src="js/jguery.js">
F J=/Janesy-a width: 200px;

+ <script>

</body>
[E3 [T [oone [# [vsow 0.087 [[4, 4

As we can see in the previous screenshot, the element has moved from its original location
even though it has not been positioned, which we can see is the case in Firebug.

The fifth parameter of the matrix in this example corresponds to the x axis, and the sixth
parameter to the y axis. Don't worry too much about the first four parameters as we will
cover these in more detail shortly.

[2331]

CSS3 Animations

Units

4 It is of critical importance to note that some browsers, such as Firefox, expect
these values with the units specified (as in the previous picture), while other

browsers, such as Opera, or those based on the Webkit rendering engine, will
expect these values without units.

An element does not need to be positioned in order for it to be translated, and the transform
does not affect the flow of the document, or other elements around it. Adjacent elements
will position themselves according to an element's original location, not its new location
following a translation. The translated element's content is also translated along with it.

You may be wondering why we supplied the value 1 as the first and fourth parameters in our
first matrix code snippet, but 0 as the value of the second and third parameters instead of
supplying all zeros.

The reason for this is because these parameters (the first and fourth) correspond to the
scale transform function, so to retain the transformed element's original size, the scale
parameters are set to 1. To double the size of an element (without translating its position),
we could use the following transformation matrix:

transform: matrix (2, 0, 0, 2, 0, 0);

This snippet would be equivalent to using transform: scale (2, 2) and would cause the
targeted element to appear like this:

[™) Matrix Examples

= C M O file://C:/apachesitefjquery-a T A

12331

Chapter 9

In the previous screenshot we can see that the element is now twice its original size.

The previous code symmetrically scales the target element along both the x and y axes.
These values are unit-less in all supporting browsers, and the value 0 cannot be specified.
Integers or floating-point numbers may be provided, and the scaling may be asymmetrical
if necessary.

An interesting effect of scaling is that providing negative values cause the element to be
reversed, and not shrunk, as we may intuitively surmise. So if we were to provide -2 and -2
as the first and fourth values in the previous code-snippet, the element would be reflected
both vertically and horizontally, as well as being made twice its original size. We can even
supply a combination of positive and negative values for this type of transformation.

A reflected element would appear like this:

[Matrix Examples

& C N O fie:///C:/apachesitefiquery-a 57 X

aeos

The element is reversed along both its x and y axes, as if it were being viewed upside
down in a mirror. This could be hugely useful if, for example, we were implementing
pure-CSS reflections.

[2351]

CSS3 Animations

Remember the two zero values that correspond to parameters 2 and 3? These can be used
as skew values, with the x axis using the second parameter, and the y axis using the third.
We could skew an element (without modifying its scale or position) using the following
matrix transform function:

transform: matrix(1, 1, 0, 1, 0, 0);

The following screenshot shows a skewed element:

Matrix Examples - Opera !EE .
U - [N

* < | #

The previous screenshot shows an element skewed along the x axis. As with other matrix
functions, positive values for these parameters cause transformation along the right or
downwards direction, negative values along the left or up directions.

In the previous snippet, only the x axis has been skewed. A consequence of the skew is that
the element has grown in size. The bounding box of the transformed element has doubled
in size from 200 px (the original size of the element) to 400 px.

Regardless of this increase in size however, the flow of the document remains unaffected
by the transform, and just like the other transforms, any content within the transformed
element also becomes transformed.

. Text appearance

s

~ Transforms have a varying impact on any text contained in the element
across different browsers, with the text remaining crisp and readable in

some browsers following a transform, and degrading in other browsers.

[2361]

Chapter 9

To rotate an element using the matrix, we need to use the trigonometric functions sine
and cosine to calculate the values of the first four parameters. Parameters 1 and 4 take
cosine functions of the angle of rotation, while parameters 2 and 3 are sine and minus-sine
functions of the rotation respectively.

Sine and cosine functions are relatively advanced mathematical constructs
used to express the different relationships between the sides of triangles and
the angles of triangles.

(JavaScript has built-in functions that will calculate them automatically), a
deeper understanding of their nature and use will only help when working
specifically with rotation.

.\'Q While an understanding of their exact nature is not essential to use them

For a basic introduction, see the Trigonometric Functions Wikipedia article at:
http://en.wikipedia.org/wiki/Trigonometric functions.

To rotate an element by, for example, 37 degrees we would use the following transform:
transform: matrix(0.7986355, 0.6018150, -0.6018150, 0.7986355, 0, 0);

Our rotated element should appear like this:

&) Matrix Examples - Mozilla Firefox [H[=] E3 I

J | Matrix Examples EE

o

,ﬁ“ﬁt r,?lﬁl ¥Slow IEII “

As we can see, the edges of the rotated element appear outside of the viewport. Care should
be taken to correctly position elements that are to be rotated so as to ensure that there is
adequate space to display the element in its entirety if necessary.

2311

CSS3 Animations

Calculating the sine and cosine functions of the angle of rotation can easily be done using
a scientific calculator, or of course, JavaScript itself programmatically.

Working with transforms

Using the short-cut transform functions such as rotate (), or skew () is easier and more
convenient than using the matrix. However, this ease of use comes at a price—we're limited
to only using one of them at a time on a single element. If we were to try and use more than
one of them in a CSS statement, only the last one defined would be applied.

If we need to apply several different transforms to an element, we can use the matrix
function, depending on which transformations we need to apply. For example, we can
skew an element, while also translating and scaling it using something like the following:

transform: matrix(2, -1, 0, 2, 300px, 0);

In this example, the element would be skewed along the x axis, doubled in size and moved
300 px to the right. We couldn't rotate the targeted element in the previous code-snippet at
the same time as doing these things.

Even if we supply two matrix functions, one for the skew, scale and translate, and a second
for the rotation, only the rotation would be applied. We can however rotate and translate,
or rotate and scale an element simultaneously using a single matrix function.

We can use jQuery's css () method in setter mode to set CSS3 transforms on selected
elements, and we can use it in getter mode to retrieve any transform functions set on an
element. We just need to ensure that we use the correct vendor prefix, such as -moz-
transform for Firefox, or -webkit-transform for Webkit-based browsers. Opera also
has its own vendor prefix, as do newer versions of IE.

One thing to be aware of is that while we can set a specific transform function, such as
rotate (), on a selected element, we can only get the value of the style property in its
matrix format. Look at the following code:

S("#get") .css("-moz-transform", "rotate(30deg)") ;
S("#get") .text (S ("#get") .css ("-moz-transform")) ;

This would result in the following:

2381

Chapter 9

¥ Matrix Examples - Mozilla Firefox H=]

J' || Matrix Examples | - | =

[[# [Rvson [W[0

In the previous screenshot, we see that the rotation we applied in the first line of code
using the rotate () transform function is returned with the second line of code as a
matrix function.

Using the new cssHooks

M The cssHooks file that we used earlier in the book (see https://github.
com/brandonaaron/jquery-cssHooks) also has some CSS3 2D
Q transforms behavior included. While it is beneficial from a learning perspective
to create these effects manually, as we do throughout the remainder of this
chapter, remember to use this file to save yourself time and effort in the future.

Internet Explorer, versions 8 and below, do not support the CSS3 transform style property
at all. These browsers do however provide a proprietary Matrix filter that can be used to
generate (almost) the same effects as those provided by the W3C CSS3 version.

E9 has recently been released in preview/beta format and
s has added support for true CSS3 2D transforms.

[2391]

CSS3 Animations

The filter property is used in a very similar way to the CSS3 version. For example, to rotate
an element by 15 degrees, we could use the following CSS:

progid:DXImageTransform.Microsoft . Matrix(
M11=1.4488887394336025,
M12=-0.388228567653781,
M21=0.388228567653781,
M22=1.4488887394336025,
SizingMethod='auto expand'

)i

This code produces the following effect in IE8:

/2 Matrix Examples - Windows Internet Explorer |- [O] <] .
@’—:‘ L Igi C:\apachesiteljquery- 'I 2 K| 2 Ll -
oy Favorites (@ Matrix Examples | | L S R

[[[| Computer | Protected Mode: OFf ‘A | R10% -

As you may notice in the previous screenshot, the size of the element has increased
considerably. This is due to the sizingMethod being set to auto expand. Another
thing you may notice is that two of the parameters are reversed in IE's implementation
of the matrix (parameters b and c).

Instead of hiding some of the content outside of the viewport, IE has repositioned the
element so that it remains entirely visible. This may or may not be beneficial depending
on the circumstances of a particular implementation.

[2401

Chapter 9

Setting the auto expand parameter causes the image to increase in size, which is a slight
inconvenience to say the least. However if we don't set this, the element will be clipped,
as shown in the following screenshot:

,C" Matrix Examples - Windows Internet Explorer
@ =P I.é_;, C:'»,apamesite'l,jquery-j | X
File Edit WView Favorites Tools Help

.y Favorites (& Matrix Examples ‘ ‘ i - B -

&

[[j& computer | Protected Mode: Off 5~ [®ws - 4

Clipping pretty much destroys our simple box (and the content is still scaled), as we can see
in the previous screenshot.

All of the transform functions we have looked at so far are two-dimensional, operating on
just the x and y axes. Transforms that operate in three dimensions, along x, y, and z axes have
also been proposed.

3D equivalents of all of the transform functions exist and usually just take an extra parameter
which corresponds to the vector of each dimension, and the angle. For example, a 3D
rotation could be added using this code:

transform: rotate3d(0, 1, 0, 30deg);

As with 2D transforms, there is an all-encompassing matrix function that allows us to
implement any of the other transforms and allows us to combine some of them together
on a single element.

[241]

CSS3 Animations

If, like me, you thought the 2D transform matrix, with its six parameters, was complex and
perhaps a little hard to understand, wait till you start using the 3D matrix, which has 16
parameters in total!

At present 3D transforms are only supported in Webkit-based browsers, so we won't be
looking at these in any further detail. But hopefully they'll be appearing in more browsers
sooner rather than later.

In this example, we'll set up an animation that rotates an image using the rotate ()
transform function. Because this is supported by the majority of common browsers it's
actually really easy to implement, and can be a great effect that enhances the appearance
and behavior of the page it is used on.

Time for action — animating an element's rotation

We'll just be rotating a simple image in this example, so this is the only visible element we
need in the <body> of the page.

1. Add the following to a fresh copy of the template file:

2. At this point we don't even need any styles as everything we need to set can be
done in the JavaScript, which we'll add next.

3. Inthe function at the bottom of the HTML page, add the following code:

var img = $("#colorWheel"),
offset = img.offset (),
origWidth = img.width(),
origHeight = img.height (),

rotateStrings = [
"rotate (",
0,
n deg) n

1,

getVendor = function() {

var prefix = null,
vendorStrings =
pure: "transform",

[242]

Chapter 9

moz: "-moz-transform",
webkit: "-webkit-transform",
op: "-o-transform"

}i

for (props in vendorStrings) ({
if (img.css (vendorStrings [props]) === "none") ({
prefix = vendorStrings [props];

}

if (prefix === null) {
prefix = "filter";

img.css ({
position: "absolute",
filter: "progid:DXImageTransform.Microsoft.Matrix(
sizingMethod="'auto expand') ;"

3N

return prefix;

b

vendor = getVendor () ;
function doRotate()
rotateStrings [1] ++;
if (vendor === "filter") {

var rad = rotateStrings[l] * (Math.PI * 2 / 360),
cos = Math.cos(rad),
sin = Math.sin(rad),
driftX = (img.width() - origWidth) /
driftY = (img.height () - origHeight)
el = img.get (0);

’

2
/2,

img.css ({
left: offset.left - driftX,
top: offset.top - drifty
3N
el.filters.item("DXImageTransform.Microsoft.Matrix")
.M11 = cos;

[2431

CSS3 Animations

el.filters.item("DXImageTransform.Microsoft.Matrix")

.M12 = -sin;
el.filters.item("DXImageTransform.Microsoft.Matrix")
.M21 = sin;
el.filters.item("DXImageTransform.Microsoft.Matrix")
.M22 = cos;
} else {

img.css (vendor, rotateStrings.join(""));

}
}

setInterval (function() { doRotate() }, 100);

4. Savethe page as rotate.html. If we run the page in a browser now, we should see
the color wheel slowly spinning around its center.

What just happened?

The first thing we do is cache a selector for the image as we'll be referring to it several times
throughout the code. Note that this is the only jQuery object we create in the whole script,
which as we've discussed earlier in the book, is great for improving performance.

We also set some other variables at this point including the offset of the image
(its absolute position on the page), its original width and height, and an array
containing different parts of the CSS property that we'll set, in string and integer formats.

We also set an inline function (getVendor ()) as the value of a variable which we can use
to determine which vendor prefix to use. This function first also sets some variables which
will be used to store the determined vendor prefix, and an object literal containing all of
the different prefixes we want to test for. We also include the native transform property.
Although this isn't yet supported by any browser, one day it may be, so this helps future-
proof our code.

The function iterates over each property in the object literal using a for in loop. Within
the loop, we try to read the value of the transform property using each vendor prefix. An
interesting fact is that each browser will report none as the value of the prefix it supports,
and a falsey value such as false, null, or undefined for the prefixes it doesn't support.
We can use this to reliably determine which browser is in use and therefore which vendor
prefix we need to use. The correct vendor prefix for whichever browser is in use is then
saved to the vendor variable ready to be returned.

[241]

Chapter 9

If none of these tests identify a vendor prefix, then it's likely that the browser in use is a
version of Internet Explorer. Internet Explorer versions 8 and below do not currently have a
vendor prefix (although IE9 does feature one) and do not support the rotate function at all.
It does support rotation via its proprietary £ilter property however.

If the vendor variable is still set to null at this point, we set the variable to filter. In order
to programmatically work with the value of the filter property in IE, the filter must
already be applied to the element, so we also set a filter on the element in this part of the
code using jQuery's css () method ready for us to manipulate later in the code. We also set
the sizing mode to auto expand in order to prevent the element from being clipped when
the rotate is applied.

At the end of the function the prefix variable is returned containing a string of the vendor
prefix for the browser currently in use. Directly after the function we set a variable called
vendor which will contain the value returned by the function for easy reference.

Next we define a regular function doRotate () which will be used to perform the actual
rotation. The first thing we do in this function is increment the second property of our
rotateStrings array by one.

We then check whether the vendor variable equals £ilter. If it does, we know that the
browser in use is IE and can proceed to determine the values that the proprietary filter
will need. IE allows rotation to be implemented in two different ways. We could use the
BasicImage filter property to rotate the image, although that only allows us to set one
of four rotation values: 0, 1, 2 or 3, which correspond to 0, 90, 180, or 270 degrees. This is
simply not flexible enough for our needs in this example.

So instead we use the Matrix filter, which gives us much more control over the degree of
rotation. This is very similar to the CSS3 matrix transform, with six parameter values that are
combined to generate the different transforms (a rotation in this case).

The parameters that we use in this example are M11, M12, M21, and M22 which map roughly
to the first four values in the CSS3 version, with the exception that values two and three are
reversed in Microsoft's version.

The values of each of these properties must be computed using the JavaScript trigonometry
Math.cos and Math. sin functions. We set some variables to calculate these values. The
first, rad, converts the number of degrees of rotation into radians as these are the units
required by the Matrix filter. The radians are calculated by multiplying the current degree
of rotation (as stored in the second item in our rotateStrings array) by Pl times 2 divided
by 360.

[2451

CSS3 Animations

An unfortunate problem that occurs in IE when rotating elements is that the rotated element
drifts around the page as it is being rotated. This is caused by the size of the elements
bounding box increasing as the element rotates. The rotation does occur around the center
of the element, but because IE thinks the element has grown, the center of the rotated
element is shifted on each rotation.

The drifxX and driftY variables that we set allow us to determine how far the element

has shifted so that we can correct it. The shift is worked out by comparing the original width
and height of the element prior to it being rotated, with the new width and height
following the rotation.

We also store the raw img element from the jQuery object using jQuery's get () method
with an argument of 0 which returns the actual DOM node instead of a jQuery object. The
filter must be applied to a proper DOM element.

Once we've set our variables, we then correct the drift caused by the previous rotation
using jQuery's css () method, and then insert our computed trigonometry values into
the Matrix filter.

Finally, if the vendor variable equals anything other than £ilter we can simply set

the relevant vendor prefix to the items in our rotateStrings array. We do this by
calling JavaScript's join () method on the array. This is much more efficient than using
concatenation to create the string needed for the CSS property, and as this function will be
executed repeatedly we really need to make sure it is as efficient as possible.

The last thing we do in our code is start the rotation animation off by setting an interval that
calls our doRotate () function every 100 milliseconds. We use an anonymous function as
the first argument of the setInterval () function which avoids requiring that we attach
the function to be executed be saved to the window object.

Problems with IE

Aside from the fact that IE makes us work twice as hard as any other browser to set the
element's rotation, it also presents us with another problem: it totally destroys the alpha
layer of the PNG we are rotating. Suddenly our nice anti-aliased circle-edge becomes jagged
and unsightly (view this example in IE to see the issue).

The animation is also slightly jerky in IE, and both this and the inability to use PNGs with
alpha-layers in them could easily be a show-stopper for IE. If this was the case, we could
easily disable the animation in IE by simply doing nothing when the £ilter property is
returned by our getVendor () function. There are some things we could do however, to
negate the problems in IE.

[2461

Chapter 9

For example, we could simply use a PNG with no transparency, which would preserve the
circle's border in IE (in this example). Or, we could lay another image over the top of the
image we are rotating to hide the jagged edges.

1. Inthis example we used an array in conjunction with the JavaScript join () method
to create the string. Why?

a
b.
c.
d.

Because it's more fun
Because it makes our code look better
Because performance-wise, it's much faster than string concatenation

Because otherwise the element won't rotate correctly

2. To make the animation run correctly in Internet Explorer we had to constantly adjust
the top and left style properties of the rotated element in order to maintain its
position. Why does the drift in IE occur?

a.

C.
d.

Because the size of the rotated element's bounding box is changed
throughout the animation. As the rotated element is centered within its
bounding box, its position changes as the box increases and decreases in size

Because the alpha layer of the PNG was removed
Because the Matrix filter property was used

Because of a bug in IE's implementation of the CSS3 rotate property

The rotation effect can be used in many places, whether animated or not, but when
animated as in this example, it makes a very good background as part of a larger composition
of elements. Used as the background of a semi-transparent logo for example, creates a
stunning effect.

Have a go at incorporating the effect into a page and using it as the background of another
image. You'll also see first-hand how much this can improve the appearance of the effect

in IE.

Just like with the rotate () function, we can animate a skew () transform for creating
attractive special effects. In this example, we'll use the matrix () function for all browsers,
not just IE, in order to apply several transforms to an element at once.

[247]

CSS3 Animations

The context of this example will be a cover-flow style widget that displays images one after
the other by animating the images' skew. The user will be able to cycle back and forth
through the images using links:

¥) jQuery and €5S3 Skew Example - Mozilla Firefox [_ O] =] I

J || jQuery and €553 Skew Example |_~\ F

Left Right

’ﬁ“_T | Done ’7@, ¥Slow ,E’I 7

The previous screenshot shows how the finished widget will appear.

Time for action - creating the underiying markup

and hasic styling

First we'll look at the HTML that we'll be using in the example and then we'll look at the
initial styling added to the elements prior to being skewed.

1. Add the following code to the <body> of the template file:

<div id="viewer"s>
<div id="flow">

[2481

Chapter 9

</div>
<uls>
<li id="left"><a href="#" title="Move Left"sLeft
<li id="right">Right

</div>

2. Save the page as skew.html. Next in a new file add the following code:

#viewer {
width:700px; height:220px; padding:100px 0 30px; margin:auto;
border:1px solid #000; position:relative;

}

#flow:after {
content:""; display:block; height:0; clear:both;
visibility:hidden;

}

#flow img {

display:block; margin-left:-165px; position:relative; top:-15px;
left:245px; float:left; background-color:#fff;

}

#viewer 1i { list-style-type:none; position:absolute; bottom:10px;

}

#left { left:20px; }
#right { right:20px; }

3. Save this file in the css directory as skew. css.

What just happened?

We're using a simple collection of elements for this example. We use an outer container,
mostly for positioning purposes so that we can center the widget in the viewport and
position other elements within it.

The elements are what we will be applying the skew animations to, so these are
isolated in their own container to make selecting them in the script later on easier. We
also have a list element containing two links. These will be used to trigger the animations.

The CSS is as light as the HTML. We simply position the container, the images, and the
controls as required for the example. All of the fun CSS3 we'll set and manipulate using
the script. You should note that this example isn't progressively-enhanced as this would
deviate too far from an already quite large example, as we'll see in a moment when we
add the JavaScript.

12491

CSS3 Animations

Time for action - initializing the widget

The first thing we need to do is set up the images ready to have their skew manipulated. We
can also add the function that will return the correct vendor-specific prefix for the transform
style property that we used in the last example. In the empty function at the bottom of the
HTML page, add the following code:

var viewer = S ("#viewer"),
flow = viewer.find("#flow"),
order = flow.children() .length,

oneRad = 1 * (Math.PI / 180),

matrix = ["matrix(", 1’ "1"1 O, "1"1 O, "1"1 1’ "1"1
"OpX, n , "OpX) n] s

msMatrix = "progid:DXImageTransform.Microsoft.Matrix(

sizingMethod='auto expand')",
getVendor = function() {
var prefix = null,
vendorStrings =

pure: "transform",
moz: "-moz-transform",
webkit: "-webkit-transform",
op: "-o-transform"

Vi

for (props in vendorStrings) ({
if (flow.css (vendorStrings [props]) === "none") {
prefix = vendorStrings [props];

if (prefix === null) {
prefix = "filter";

return prefix;

},
vendor = getVendor (),
property = (vendor !== "filter") ? matrix.join("") : msMatrix;

flow.children() .eqg(0) .addClass ("flat") .css (vendor,
property) .css ("zIndex", order + 1);

flow.children() .not (":first") .each (function (i) ({

el = flow.children() .eq(i + 1);

[2501]

Chapter 9

matrix[1] 0.7;

[
matrix[3] = -30 * oneRad;
matrix[5] = -10 * oneRad;
matrix[7] = 0.7;
matrix[9] = (vendor === "-moz-transform") ? "90px," "90,";
matrix[10] = (vendor === "-moz-transform") ? "-30px)" "-30)";
if (vendor !== "filter") {
el.addClass ("skew-right") .css (vendor,
matrix.join("")) .css("zIndex", order) ;
} else {
el.addClass ("skew-right") .css (vendor, msMatrix).css({
zIndex: order,
top: -30,
left: 270,
width: 140,
height: 140,
marginLeft: -100
1)
el.get (0) .filters.item("DXImageTransform.Microsoft.Matrix")
.M11 = 1;
el.get (0) .filters.item("DXImageTransform.Microsoft.Matrix")
.M12 = matrix|[5];
el.get (0) .filters.item("DXImageTransform.Microsoft.Matrix")
.M21 = matrix[3];
el.get (0) .filters.item("DXImageTransform.Microsoft.Matrix")
.M22 = 1;
}
order--;
1)
matrix[3] = 0;
matrix[5] = 0;
What just happened?

In the first part of the script we initialize our variables. If you've wondered why we always
initialize our variables at the top of functions, the reason is because of a phenomenon
called Hoisting. This is where variables initialized in functions get "hoisted" to the top of
the function and can contain results that we aren't expecting.

[2511

CSS3 Animations

The first variable we create is a cached selector for the outer container of our widget. This

is the one and only jQuery object we create in this entire example. Some of the code we'll
add is quite intensive in places, so keeping the number of jQuery objects we create to a bare
minimum is essential for performance reasons.

Next we use the original jQuery object and the £ind () jQuery method to cache a selector
for the £1ow element (the direct parent of the image elements that will be skewed) as we'll
need to access or manipulate this element several times as well.

Then we store the number of image elements in the widget using the 1ength property

of a jQuery object containing the child elements of the flow element. We also store the
result of converting one degree to one radian so that we can easily convert from one unit
to another throughout the script without repeatedly performing the same calculation. Both
the CSS3 transform matrix and IE's matrix filter can accept radians so that makes them a
convenient unit to work with.

We then create our matrix array, and Microsoft's matrix property as a string. The array
includes all of the individual properties as array items, including the required commas as
strings. The reason we include the commas in our array is so that we can call the join ()
JavaScript function on the array later without specifying a separator and without having to
worry about removing the unnecessary commas this would insert incorrectly.

Next we add the getvendor () function that we used in the last example. This is a
convenient way to ensure the correct prefix is used when we apply the skew styling.

We won't cover this function in detail as we have already looked at it earlier in the chapter.
Again we call the function straight away after defining it and store the result in a variable
for later use.

The last variable we create will hold a string containing either the CSS3 matrix function with
all required parameters, or it will contain IE's matrix property in its most basic form, with
only the sizingMethod parameter defined. If you remember from the previous example,
IE can only manipulate the matrix property after it has been initially set.

At this point we can move on to prepare the first image. We select the first image using
jQuery's eq () method, passing in 0 as the index of the element we are interested in.
We set a class name of £1at on the first image so that we can easily select it later, and
also give it a higher z-index than the other images so that it is visible in its entirety.

Next we loop through the remaining images using jQuery's each () method.
The anonymous function we pass to the method accepts the parameter i which
is the index of the current iteration.

[2521

Chapter 9

This will allow us to select each element in turn one after the other on each iteration of
the loop. The first thing we do in the function is cache a reference to the current
using the index as an argument for the eq () method. We add 1 to the index value to avoid
selecting the first image.

In the next block of code we set some of the items in our matrix array. We set the scale
parameters (items 1 and 7 in the array) to 0.7 so that the skewed images are reduced in size
slightly, and we set the skew parameters (items 3 and 5) to the radian equivalent of -30 and
-10 degrees. This will skew the images slightly up and to the right.

We also set the translate parameters (items 9 and 10 in the array) to position the skewed
elements correctly so that they stack up horizontally. If the browser in use is Firefox we have
to use px in the value for the translate properties, but with other browsers the values should
be unit-less. We use a ternary condition to check the vendor variable (this will contain the
vendor-prefix for the current browser) and set the value accordingly.

Once we've set our array items we then check that the browser in use is not IE and provided
itisn't, we apply the skew to the current element. We also set the z-index of the current
element using the order variable, which is set to the length of the number of images.

On each iteration of the loop we reduce the value of this variable by one (later in this section
of code you'll see the statement index- - which decreases the variable). The z- index of
each element will therefore get progressively lower as we process each image.

If the browser in use is IE, we apply the Microsoft matrix and set some different CSS on the
images. The translate parameters don't work in IE, so we position the images using jQuery
instead. Skewing the elements in IE also causes the elements to increase in size, so we have
to drastically reduce their dimensions, which we also do with jQuery.

Once we have set the required CSS styles, we then skew the elements by manipulating the
proprietary Microsoft matrix filters. Remember, these properties can only be manipulated
on actual DOM elements, not jQuery objects, so we retrieve the raw element using jQuery's
get () method and the index o.

After the each () loop has finished, we reset parameters 3 and 5 in the matrix array. This
is because we will use the array again several times, so each time we should use the default
values for the parameters.

[2531]

CSS3 Animations

Time for action — animating an element's Skew

Next we'll add the function that will skew elements to the left. The function will need to be
applied to two elements, the flat, or non-skewed element, as well as the one before it (to the
right in this case). The function to animate the skew from right to left is as follows:

function skewRTL() ({

var flat = flow.find(".flat") .css("zIndex", order + 1),
preFlat = flat.next(),
flatMatrix = matrix.slice(0),
preMatrix = matrix.slice(0),
flatDims = 200,
preDims = 170,

skew = function() {
if (preFlat.length)

if (flatMatrix[3] <= 30 * oneRad && flatMatrix[5] <=
10 * oneRad) ({

var flatTranslateX = parselnt (
flatMatrix[9] .split ("p") [0], 10),
flatTranslateY = parselnt (
flatMatrix[10] .split ("p") [0], 10),
preTranslateX = parselnt(
preMatrix[9] .split ("p") [0], 10),
preTranslateY = parselnt (
preMatrix[10] .split ("p") [0], 10);

flatMatrix[1l] = flatMatrix[1] 0.001;
flatMatrix[3] = flatMatrix[3] + oneRad;
flatMatrix[5] = flatMatrix[5] + (oneRad / 3);
flatMatrix[7] = flatMatrix[7] 0.001;
preMatrix[1l] = preMatrix[1l] + 0.01;
preMatrix[3] = preMatrix[3] + oneRad;
preMatrix[5] = preMatrix[5] + (oneRad / 3);
preMatrix[7] = preMatrix[7] + 0.01;

flatMatrix[9] = (vendor === "-moz-transform") ?
flatTranslateX - 6 + "px," : flatTranslateX - 6 + ",";

preMatrix[9] = (vendor === "-moz-transform") ?
preTranslateX - 3 + "px," : preTranslateX - 3 + ",";

preMatrix[10] = (vendor === "-moz-transform") ?
preTranslateY + 1 + "px)" : preTranslateY + 1 + ")";

12541

Chapter 9

if (vendor !== "filter") {
flat.css(vendor, flatMatrix.join(""));
preFlat.css (vendor, preMatrix.join(""));
} else {

flat.get (0) .filters.item(
"DXImageTransform.Microsoft.Matrix™")
.M12 = flatMatrix|[5];

flat.get (0) .filters.item(
"DXImageTransform.Microsoft.Matrix™")
.M21 = flatMatrix[3];

preFlat.get (0) .filters.item(
"DXImageTransform.Microsoft.Matrix™")
.M12 = preMatrix[5];

preFlat.get (0) .filters.item(
"DXImageTransform.Microsoft.Matrix™")
.M21 = preMatrix[3];

flatDims = flatDims - 2;
preDims = preDims + 0.5;

flat.css ({
width: flatDims,
height: flatDims
1)
preFlat.css ({
width: preDims,
height: preDims

1)

else {

clearInterval (flatInterval) ;

if (vendor !== "filter") ({

preMatrix[3] = 0;

preMatrix[5] = 0;

preFlat.css (vendor, preMatrix.join(""));
} else {

flat.css ({

top: -30,

left: 260

3N

[2551]

CSS3 Animations

flat.prev() .css("zIndex", "");
flat.removeClass ("flat") .css ("zIndex", "");
preFlat.addClass ("flat") ;

}

} else {

clearInterval (flatInterval) ;
flat.css("zIndex", order + 1);
}
}i

-30 * oneRad;
-10 * oneRad;

preMatrix[3]
preMatrix[5]

if (1flatInterval)
var flatInterval = setInterval (function() { skew() }, 1);

}
};

What just happened?

The first thing we do in our function is set the variables used by the function. We cache
a reference to the current element that has the class £1at and also set this element's
z-index to be one higher than any of the other images to ensure it is always on top
of the other images.

We also cache a reference to the next image after the £1at image. In this function, this will
be the image to the right of the un-skewed image. We then make two copies of the original
matrix array, one for the £1at element and one for the preFlat element. To copy an array
all we do is use JavaScript's s1lice () method with an index of zero.

The next two variables we create are the initial dimensions of the f1at and preFlat
images. These variables are only used by IE, but because of hoisting we need to define
them here and not in an IE-specific code block later in the function.

Next we define an inline function called skew () which we'll repeatedly call in order to
produce the actual animation. Within this function we first check that there is an element
after the £1at element by checking that the preFlat object has a length. If the length is
equal to zero (that is if it does not have length), we simply clear any intervals that may exist,
and make sure the £1at element is at the top of the z-index stack.

[2561]

Chapter 9

If the preFlat object does have a length however, we then check that the current skewx
property is less than or equal to the radian equivalent of 30 degrees, and that the skewy
property is less than or equal to the radian equivalent of 10 degrees (we can work this out
by multiplying 30 or 10 respectively by our stored figure for 1 radian). The current skew
properties for the £1at image are currently stored in items 3 and 5 in the flatMatrix
array.

Provided both conditions are true we can then proceed with the animation. Part of the
animation involves translating the f1at and preFlat images so that as well as skewing,
they move as well (we'll also resize them, but we'll come to that in a moment).

In order to translate the images correctly we need to get their current translation, which

we do first of all by defining four new variables and populating them with the current
translation values from the two matrix arrays. These figures need to be numerical so we

use JavaScript's parselInt () and split () functions to break the strings apart and convert
the digits to integers.

Next we need to update our two matrix arrays with the new values. The right-to-left function
will incrementally update the values in the flatMatrix and preMatrix arrays, and then
apply the arrays to the element. So the animation will consist of rapid updates to each
transform parameter.

The f1at image also needs to be skewed as it is translated, so we increase the skewX
and skewY parameters by one radian and a third of one radian respectively. Remember,
in order to skew an element to the left and up directions the skew parameters should be
positive, so we increase the values of items 3 and 5 of the f1atMatrix array on each
pass of the function.

The f1lat image starts off larger than the skewed images so we need to reduce array items
1 and 7 slightly each time the function runs. The skew () function will be called 30 times, so
to reduce the scale of the flat image so that it finishes the correct size we reduce the scale
parameters by 0.001 on each pass of the function.

The values we want are 30 degrees of skew on the x axis, and 10 degrees of the skew on the
y axis. 10 is one third of 30 which is why we increase the skewY parameter by one radian
divided by three.

I mentioned earlier that in Firefox the translate parameters need a unit, such as px, but
other browsers are unit-less for these values. We use a JavaScript ternary conditional to
check the vendor string and if it equals the Firefox vendor prefix (-moz-transform),
we add px to the value. The flat image only needs to be translated on the x axis and it
needs to move left by 6 pixels, so we update array item 9 with a value that is 6 less than
its current value.

2571

CSS3 Animations

We also have to update the preFlat image so that it goes from being skewed to the right to
being flat. We also have to increase the size of the preFlat image as they start out smaller.
In a similar way to before, we update the relevant array items in the preMatrix so that
over the course of 30 iterations of the skew () function they end up at the right values.

The preFlat image also needs to be translated, but this time along both the x and v axes.

Next we check the vendor string once more and as long asitisn't filter (IE), we apply the
transform to the £1at and preFlat image by joining the array. If it is IE we have to do a
little more work to apply the transformation.

We apply each of the relevant Matrix properties, M12 and M21 on the f1at and preFlat
images. We use jQuery's get () method with an index of 0 to obtain the actual DOM
element once more. We also reduce the size of the £1at image, and increase the size of the
preFlat image using our flatDims and preDims variables that we initialized earlier and
then jQuery's css () method to apply the new sizes.

IE's Matrix property helpfully ignores the scaling parameters when the sizingMethod is
set to auto expand, but this property must be set to prevent the images from being clipped.
This is why we fallback to jQuery's css () method.

Unusually, we are able to set fractional pixel sizes when using IE, which is fortunate as it
allows us to set the size of the images correctly in order for them to end up at the right size
when the animation ends.

We now come to the other part of the inner conditional. This block of code is executed once
at the end of the animation when the third and fifth items in our f1latMatrix array are
greater than 30 and 10 respectively.

First we clear the intervals so that the skew is not animated further. We then check the
vendor string once more, and as long as it isn't £ilter we reset the skew on the flat
element to 0 (on both the x and y axes).

This is needed because for some reason, the preFlat image doesn't quite go back to exactly
zero. | assume this is because JavaScript's Math functions do not allow the number to have
enough decimal places to be entirely accurate. The image is only slightly off however, so this
sudden switch to 0 at the end of the animation is not noticeable.

Unfortunately, translating an element at the same time as skewing it does not seem possible
in IE. What happens is that IE applies the new skew, but fails to apply the new position until
after the skew animation has finished, so the element is skewed and then moved in two
separate steps. It doesn't look too great so instead we simply reposition the flat element
without animating it at this point once the skew animation has finished.

After correcting the skew, or the position, we then remove the z-index from the flat
element (which has now been skewed to the left) and remove the class name £1at from it,
and then add the class name flat to the preFlat element.

[2581]

Chapter 9

At this point the flat image has been skewed to the left, resized and translated, and the
preFlat image has been skewed back to zero, resized and translated. Both the £1at and
preFlat images are transformed together at the same time, which is why the function is
as large as it is.

Right at the end of the skewRTL () function, defined after the skew () function that will be
repeatedly called by the setInterval () function, we initialize the 3rd and 5th values in
the preMatrix array so that the array will contain the correct skew for the initial state of
the element. When we create the array, by copying the original matrix array used when the
widget is initialized, these items will both be set to 0.

Before calling the setInterval () function on the two images to be skewed, we first
check that an interval doesn't already exist. This stops the widget from breaking if the link
is repeatedly clicked by the visitor. The element will be skewed more than once if the link is
clicked several times in rapid succession, but the widget will continue to function and the
page will not throw errors.

Time for action - skewing an element from left to right

We can now add the function that skews an element from left to flat and from flat to right.
This function is very similar to the function we just looked at. Changes in the code are shown
in bold:

function skewLTR() {

var flat = flow.find(".flat"),
preFlat = flat.prev(),
flatMatrix = matrix.slice(0),
preMatrix = matrix.slice(0),
flatDims = 200,
preDims = 170,

skew = function() {
if (preFlat.length) ({

if (flatMatrix[3] >= -30 * oneRad && flatMatrix[5] »>=
-10 * oneRad) {

var preTranslateX = parselnt (preMatrix[9].
split ("p") [0], 10),

preTranslateY = parselnt (preMatrix[10].
split ("p") [0], 10);

flatMatrix[1] = flatMatrix[1] - 0.001;

[2591]

CSS3 Animations

flatMatrix[3] = flatMatrix[3] oneRad;
flatMatrix[5] = flatMatrix[5] - (oneRad / 3);
flatMatrix[7] flatMatrix[7] - 0.001;
preMatrix[1l] = preMatrix[1l] + 0.01;

preMatrix[3] = preMatrix[3] - oneRad;
preMatrix[5] = preMatrix[5] - (oneRad / 3);
preMatrix[7] = preMatrix[7] + 0.01;

preMatrix[9] = (vendor === "-moz-transform") ?
preTranslateX + 3 + "px," : preTranslateX + 3 + ",";

preMatrix[10] = (vendor === "-moz-transform") ?
preTranslateY + 1 + "px)" : preTranslateY + 1 + ")";
if (vendor !== "filter") ({

flat.css(vendor, flatMatrix.join(""));
preFlat.css (vendor, preMatrix.join(""));
} else {

flat.get (0) .filters.item(
"DXImageTransform.Microsoft.Matrix™")
.M12 = flatMatrix|[5];

flat.get (0) .filters.item(
"DXImageTransform.Microsoft.Matrix™")
.M21 = flatMatrix[3];

preFlat.get (0) .filters.item(
"DXImageTransform.Microsoft.Matrix™")
.M12 = preMatrix[5];

preFlat.get (0) .filters.item(
"DXImageTransform.Microsoft.Matrix")
.M21 = preMatrix[3];

flatDims = flatDims - 1.5;
preDims = preDims + 1.5;

flat.css ({
width: flatDims,
height: flatDims
P
preFlat.css ({
width: preDims,
height: preDims

1)

[260]

Chapter 9

clearInterval (flatInterval) ;
clearInterval (prelnterval) ;

if (vendor !== "filter") {
preMatrix[3] = 0;
preMatrix[5] = 0;

preFlat.css (vendor, preMatrix.join(""));

}

flat.removeClass ("flat") .css("zIndex",
parselInt (flat.next () .css("zIndex")) + 1);

preFlat.addClass("flat") .css("zIndex", order + 1);

}

} else {

clearInterval (flatInterval) ;
clearInterval (prelInterval) ;
flat.css("zIndex", order + 1);

}
Vi

order = flow.children() .length;
preMatrix[3] = 30 * oneRad;
10 * oneRad;

preMatrix[5]

preMatrix[9] = (vendor === "-moz-transform") ? "-90px," : "-90,";
preMatrix[10] = (vendor === "-moz-transform") ? "-30px,"
||_30’ u;

if (1flatInterval)

var flatInterval = setInterval (function() { skew() }, 1),
prelnterval = setInterval (function() { skew() }, 1);
}
}i
What just happened?

We won't cover the whole function in its entirety as it's very similar to before, but let's take
a moment to look at what differs in this function. First, instead of selecting the next image
to the right of the £1at element, we select the one to the left of it using jQuery's prev ()
method instead of next ().

12611

CSS3 Animations

When updating the skew on our £1at and preFlat elements, we are skewing the element
the opposite way. To skew an element to the right, we need to use a minus figure so instead
of going from 0 to 30 or from -30 to 0, we are going the opposite way, from 30 to 0 or 0 to
-30, so we minus the radian equivalent of 1 degree instead of adding it.

We are also translating to the right instead of to the left, so instead of removing 3 pixels each
time to move the image left we add 3 pixels to move it right. We also provide different values
for the dimensions variables used by IE.

This time when we set the z-index of the element that was previously flat, we add 1 to
the z-index of the next element (to the right) to make sure it is higher than this element.
However, we can't use our length variable from earlier or it will be at the same z-index as
the f1at element, but will appear above it as it comes after the element in the DOM.

The final difference is that when we initialize the third and fifth items in our array, we are
specifying the current skew to the left and not the right, so these items are set to the radian
equivalent of 30 and 10 degrees instead of -30 and -10.

Time for action — wiring up the controls

All that's left to do is add the event handlers to the left and right links at the bottom of the
widget so that the different images can be viewed. After the two skew functions, add the
following code:

viewer.find ("#left a") .click (function (e) {
e.preventDefault () ;
skewRTL () ;

I

viewer.find ("#right a") .click(function (e) {
e.preventDefault () ;
skewLTR () ;

13N

What just happened?

All we do is add a click handler to each link which prevents the link from being followed
with preventDefault () and then call the relevant skew function. The example should
now be fully working in all common browsers, although the effect is handled rather badly
by IE in general, with slower, more sluggish animations, less accurate skewing, and jittery,
uncontrollable movements.

One point to note is that there is a difference between the full and minified versions of the
jQuery source file which causes IE to throw errors when the minified version is used, but not
when the un-minified version is used.

12621

Chapter 9

1. The CSS3 matrix transform function is useful in which situation?
a. When we want to work in radians instead of degrees
b. When we need to animate a transform function
When we want to apply more than one transform function to an element
d. When coding for Internet Explorer
2. Inthe transform function matrix (a, b, ¢, d, e, £), which parameters refer to
the element's translation?
a. a and b
b. a and 4
c. b and c

d. e and £

It would definitely be beneficial to build this example so that it incorporated progressive
enhancement. Work on an alternative, accessible layout that works with scripting disabled,
and then convert the widget into the format used in this example.

You could also work on a more suitable fallback for IE, in which the example uses a simpler
image viewer, perhaps one of those looked at earlier in the book.

sSummary

In this chapter we look at the new CSS3 transform style property in detail, covering all of the
different transform functions including:

matrix

rotate

scale

L 2

*

L 2

& scaleX
& scaleyY
& skew
& skewX
*

skewY

12631

CSS3 Animations

¢ translate
& translateX

¢ translateY

We learned a lot about the new CSS3 matrix property in this chapter, as well as how to
make use of it with jQuery. Specifically, we learned the following:

¢ We first saw the different values that these functions take and the effects that they
have on elements they are applied to.

¢ We also saw that in order to animate these styles, we can use simple native
JavaScript intervals or timeouts to continuously adjust the function parameters,
or apply them in a rapid sequence.

¢ We learned that mostly, these transform functions can only be applied to elements
individually, with only the last to be defined being applied. The matrix function
however allows us to apply several of the functions to a single element.

¢ We can't rotate and skew a single element, but we can rotate, scale, and translate
an element, or skew, scale, and translate it if we wish. Browser support for CSS3
transforms is very good, with only very minor differences between most browsers
(such as the translate values being in pixels for Firefox and unit-less for Webkit-
based browsers and Opera) except IE.

¢ IE does have its own proprietary implementation of the different transforms,
although these are not implemented in a particularly useful way, such as not being
able to translate elements if we don't want those same elements to be clipped. We
can only hope that IE9, recently released as a beta product, will handle them better.

¢ In addition to CSS3 transforms, a CSS3 transitions specification has also been
proposed, which would allow us to transition elements between different transform
states using pure CSS, without the need for animating them with JavaScript at all.
We didn't look at these at all in this chapter because support for them is restricted
to just Webkit-based browsers or Opera at the time of writing. Beta versions of
Firefox and IE also have support for them, but we have dealt only with fully-released
browsers throughout the book.

¢ We saw that although we can't use the transform functions in jQuery's animate ()
method, we can easily create our own animations manually, and we can use them
with other methods, such as the css () method. Don't forget about using cssHooks
to achieve this kind of functionality too.

In the next and final chapter of the book, we'll take a look at a new HTML5 element that
allows us pixel-perfect control over an area on the page—the <canvas> element—and how
it can be used to create interactive animations.

12641

10

In the last chapter, we looked at one of the latest CSS3 styles: the transform,
which enabled us to create animated rotations, skews, scales, and translates.
In this chapter, we're going to look at one of the new additions to HTML5—the
<canvas> element.

The best way to think of the <canvas> element is to treat it like the kind of
canvas on which an artist would paint. We can draw simple lines or complex
shapes using JavaScript APl methods, and there is also support for images
and text. The canvas is two dimensional at this point, but may be extended to
include 3D support in the future.

The <canvas> element, first proposed and used by Apple, has been
implemented by most common browsers, and is considered one of the most
stable elements from the HTML5 specification. However, support for it is not
yet universal.

Like CSS3 transforms, the <canvas> element isn't supported in any current
version of Internet Explorer (although it is supported in IE9), but just like
transforms, there are alternatives that can be used in IE to create the same
effect as <canvas>, which we'll look at when we come to the examples a little
later in the chapter.

The best description of the <canvas> element I've seen states "A canvas is
a rectangle in your page where you can use JavaScript to draw anything you
want", from diveintohtmls . org, which sums it up quite nicely I feel.

Canvas Animations

Subjects that we'll look at in this chapter will include:

The <canvas> API

Drawing to the <canvas>
Animating the <canvas>
Using <canvas> with jQuery

<canvas> in |E and the alternatives

* 6 ¢ 6 o o

Creating a <canvas> based game

The canvas API

The <canvas> element comes with a rich scripting API that exposes methods and properties
allowing us to define and control the shapes that are drawn on the canvas. The API can be
broken down into distinct sections depending on what the methods do.

The canvas element

The <canvas> element itself has a couple of methods that can be called on it, including:

Method Usage

getContext (a) Returns an object (a CanvasRenderingContext2D object to be precise) which
can then have other methods from the API called on it to manipulate the
<canvas>. The argument specifies the type of context to retrieve. Only
two dimensional contexts are available at present.

toDataURL () Returns a data URL representing the image on the <canvas>. Optional
arguments include the type of image represented by the data URL (with the
default being image/png), and any arguments specific to the type, such as
the quality for image/jpg data URLs.

The <canvas> element can be thought of as being similar to an element that doesn't
have an src attribute. Allowed attributes include the width and height of the element, an
id and a class, among others. There are no special attributes associated with the canvas,
although it can contain other elements. When the browser cannot display the <canvass>,

it can display the element's content as a fallback. The only properties of the <canvas>
element we have access to, are the width and height. Setting either of these properties
causes the <canvas> to reset its contents to nothing, which can be useful when we want

to clear it.

12661

Chapter 10

Context methods

There are two methods that relate directly to the context object returned by the
getContext () method. These are:

Method Usage

save () Saves the current state of the canvas; only transforms are saved, not shapes or
paths.

restore () Restores the saved state.

We can also set a couple of global properties that apply to all shapes on the <canvas>.
These properties are:

Property Usage

globalAlpha Sets the alpha transparency of shapes. Takes a decimal
between 0.0 and 1.0.

globalCompositeOperation Sets how shapes stack up on top of one another. Can be used
to create masks and clear areas of shapes.

The <canvas> has just one native shape defined: the rectangle. One important point to note
here is that the <canvas> element does not have an internal DOM tree—shapes or paths
we draw on the <canvas> are not created as child elements of the <canvas> element

and cannot be accessed with standard DOM manipulation methods. They are not individual
objects, they are just pixels. Methods from the scripting API used specifically when working
with rectangles include the following:

Method Usage

clearRect (a, b, ¢, 4d) Removes all shapes and paths from an area of the canvas.
Arguments a and b specify the coordinates to begin clearing at
and arguments ¢ and d specify the width and height of the area to
clear.

fillRect (a, b, ¢, d) Draws a rectangle. Arguments a and b specify the coordinates to
begin drawing at and arguments ¢ and d specify the width and
height of its sides.

strokeRect (a, b, ¢, d) Draws the outline of a rectangle. Arguments a and b represent the
starting coordinates of the shape and arguments ¢ and d represent
the width and height of its sides.

12671

Canvas Animations

We can set the color of strokes (outlines) or fills, as well as drop-shadows using the

following properties:

Property Usage

fillstyle Sets the color of the fill. Can be set to a CSS color, or a gradient object.

shadowBlur Sets the amount of blur on the shadow.

shadowColor Sets the color of the shadow. Can be set to a CSS color or a gradient
object.

shadowOffsetX Sets the relative position of the shadow along the x axis.

shadowOffsetY Sets the relative position of the shadow along the y axis.

strokeStyle Sets the color of the stroke. Can be set to a CSS color, or a gradient object.

These properties can be set on paths and text as well. They aren't limited strictly to the

native shape.

Paths

Any shape other than a rectangle must be drawn using a path. This gives us a flexible way
of drawing custom, complex shapes. Methods used for creating paths include:

Method

Usage

arc(a, b, c,d, e, f)

arcTo(a, b, ¢, d, e)

beginPath ()

bezierCurveTo(a, b, ¢, d, e,)

closePath ()

Draws a circular sub-path. Arguments a and b are the
starting coordinates of the sub-path, c is the radius,

d is the starting angle in radians, and e is the ending
angle in radians. The last parameter £ accepts a Boolean
indicating whether the sub-path should be drawn
anticlockwise or not.

Draws a circular sub-path to a specified point. Arguments
a and b are the starting coordinates, ¢ and d are the
ending coordinates. Argument e is the radius.

Starts a new path.

Draws a sub-path along a Bezier curve, which is a curve
featuring two control points. Arguments a, b, ¢, and d
represent the coordinates of the two control points and
arguments e and £ represent the end coordinates of the
sub-path.

Closes the path by drawing a line from the current
position to the starting position of the first sub-path in
the current path list.

[268]

Chapter 10

Method Usage
£111() Colors in the shape created by the current path.
lineTo (a, b) Creates a new sub-path from the current location to the

coordinates specified as arguments.

moveTo (a, b) Moves to the coordinates specified by the arguments
without drawing a new sub-path.

quadraticCurveTo (a, b, ¢, d) Draws a sub-path along a quadratic curve, which is a
curve with a single control point. Arguments a and b
represent the coordinates of the control point, while
arguments c and d represent the end coordinates of the
sub-path.

stroke () Colors in the outline of the current path list.

Paths have several properties that can be set including the style of the end of the line, or
cap, or how paths are joined:

Property Usage

lineCap Can be set to either butt (the default), round, or square.
lineJoin Can be set to either miter (the default), round, or bevel.
lineWidth A decimal specifying the width of the path.

miterLimit Determines the length between the inner point where two paths

connect and the outer point before the join is mitered.

Images and patterns

The canvas allows us to draw images to the canvas in the same way that we might assign
a background image to another element. We can also draw patterns based on images or
gradients. This category of methods includes:

Method Usage

drawImage (a, b, ¢) Draws an image on the <canvas>. Argument
a is the image to draw and arguments b and
¢ are the coordinates to place the top-left
point of the image. Note that other variants
of this method exist which allow different
combinations of arguments allowing images to
be scaled and sliced.

createPattern(a, b) Draws a repeated pattern on the <canvas>.
Argument a is the image to use as the pattern,
b is the type of repeat.

12691

Canvas Animations

Method Usage

createLinearGradient (a, b, ¢, d) Creates a linear gradient between two points.
Arguments a and b are the start coordinates of
the gradient, ¢ and d are the end coordinates.

createRadialGradient (a, b, ¢, d, e, £) Creates a radial gradient between two circles.
Arguments a and b are the start coordinates,
and c is the radius of the first circle. Arguments
d and e are the start coordinates of the second
circle, and £ is its radius.

addColorStop(a, b) Adds color to a gradient. The first argument is a
decimal between 0.0 and 1.0 and is the relative
position within the gradient to add the color.
The second argument is the color to use.

The drawImage () and createPattern () methods are very similar in that they are both
used to draw an image on the <canvas>. The difference is that the pattern is repeated. The
gradient methods return a gradient object which can then be used as the fill or stroke style
for a shape.

Text

Text strings can be written to the canvas, but there is little styling we can perform on them
as there is no associated box model with the text so that means no padding, margins, or
borders. Although, we can set the font and alignment (and the fill color or stroke color using
other properties). APl methods include:

Method Usage

fillText (a, b, ¢) Creates solid text strings on the <canvas>. The first argument is
the text to write and arguments b and c are the start coordinates of
the text.

measureText (a) Measures the specified text string and returns a metrics object with
awidth property.

stroketext (a, b, ¢) Creates outline text strings on the <canvas>. The first argument is
the text to write and arguments b and ¢ are the start coordinates of
the text.

12101

Chapter 10

The properties we can set on text include:

Property Usage

font Sets the size and the font-family of the text.

textAlign Sets the alighment of the text. Can be either start (the default),
end, left, right, or center.

textBaseline Sets the baseline of the text. Can be either alphabetic (the

default), top, hanging, middle, ideographic, or bottom.

Transformation methods

The <canvas> can have the same transforms applied to it that we saw in the last chapter,
which can be applied using the following methods:

Method

Usage

rotate (a)

scale(a, b)

translate (a, b)

transform(a, b, ¢, d, e, £f)

Rotates a shape by the specified number of radians.

Scales a shape along each axis by the specified amount, with
a being the x axis and b the y axis.

Translates the shape along each axis by the specified amount,
with a being the x axis and b the y axis.

The transform () method is equivalent to the matrix
transform form function and can be used in the same way to
scale, translate, and/or skew the shape.

Pixel manipulation

The <canvas> even allows us to work directly with the pixels in the canvas and can retrieve
shapes as imageData objects, or create shapes directly by manipulating the <canvas> at
pixel-level. We have the following methods for manipulating pixels:

Method

Usage

createImageData (a, b)

getImageData(a, b, ¢, d)

putImageData(a, b, ¢)

Creates a new, blank imageData object using the supplied
arguments as width and height properties. This method can also be
passed another imageData object, which will cause the method
to return an (empty) imageData object the same width and
height as the original.

Returns an imageData object containing the pixel data for the
specified area of the <canvas>. Arguments a and b are the start
coordinates of the area, c and d are the width and height.

Paints the pixel data to the <canvass>. The first argument is the
imageData object to use, the second and third are the start
coordinates of the resulting shape.

[2nl

Canvas Animations

All imageData objects, either those we get from the <canvas>, or those we create with the
createImageDate () method have several properties we can make use of, including:

Property Usage

data This property is a CanvasPixelArray, and is read-only when
we get an imageData object from the <canvas>. We can also
use it to set pixel data in an imageData object we create. The
array contains four items per-pixel: the r, g, and b values for
the pixel, and the alpha.

height The height of the image represented by the imageData
object. This property is read-only.

length The length of the CanvasPixelArray in bytes. This
property is read-only.

width The width of the image represented by the imageData object.
This property is read-only.

Drawing to the <canvas> programmatically is very straight forward in theory. The methods
and properties are easy to use, and are quite consistent between supporting browsers.
Direct pixel manipulation is the trickiest part of the APl to master, but other than that there
is nothing really complicated.

One thing we do find is that our code can very quickly mount up. As soon as we're drawing
multiple, complex shapes, and setting various properties, our code can easily run to a few
hundred lines or more even for relatively simple drawings. This is especially true when
animating the contents of the <canvas>.

Time for action — drawing to the canvas

Let's take a look at a quick example of drawing a non-animated shape. We don't even need
jQuery for this.
1. Addthe <canvas> element to the <body> of our template file:

<canvas id="c" width="500" height="300">
<p>Your browser doesn't support the canvas element!</p>
</canvas>

[2121

Chapter 10

Next we can add the JavaScript that will draw to the <canvas>. We'll draw a Union
Jack flag. Function in the <script> element at the bottom of the template file and
add the following code in its place:

var canvas = document.getElementById("c"),

context = canvas.getContext ("2d");
context.fillStyle = "#039";
context.fillRect (50, 50, 400, 200);
context .beginPath() ;
context.strokeStyle = "#fff";
context.lineWidth = 50;
context .moveTo (250, 50);
context.lineTo (250, 250) ;
context .moveTo (50, 150);
context.lineTo (450, 150);
context .moveTo (50, 50) ;
context.lineTo (450, 250);
context .moveTo (50, 250);
context.lineTo (450, 50);
context.stroke () ;
context.closePath() ;
context.strokeStyle = "#C00";
context.lineWidth = 30;
context .beginPath() ;

context .moveTo (250, 50);
context.lineTo (250, 250) ;
context .moveTo (50, 150);
context.lineTo (450, 150);
context.stroke () ;
context.closePath() ;
context.lineWidth = 1;
context.fillStyle = "#C0OO0";
context .beginPath() ;

context .moveTo (50, 50) ;
context.lineTo (195, 125);
context.lineTo (165, 125);
context.lineTo (50, 66) ;
context.fill () ;

context

.closePath ()

I

(2131

Canvas Animations

context .beginPath() ;
context.moveTo (450, 50) ;

context.lineTo (305, 125);
context.lineTo (275, 125);
context.lineTo (422, 50);
context.lineTo (450, 50);

context.fi111 () ;
context.closePath()

context .beginPath() ;
context .moveTo (450, 250

I

)
context.lineTo (310, 175);
context.lineTo (335, 175);
context.lineTo (450, 235);
context.lineTo (450, 250);

I

context.fill () ;
context.closePath() ;

context .beginPath() ;
context.moveTo (50, 250) ;
context.lineTo (200, 175);
context.lineTo (225, 175)
context.lineTo (80, 250);
context.lineTo (50, 250);
context.fill () ;
context.closePath() ;

I

3. Save the file as canvas.html.

4. If we run the page now in any browser except IE, we should see something like
the following:

¥)) Drawing to the canvas - Mozilla Firefox [_[o]x] l
Fle Edt Vew History Delidous Bookmarks Took Help

- o E | 2 [fiespc:apachestte, 15 - |‘_I

J || Drawing to the canvas m

=2 =+~ | pene [% [vsow [N [7 |

12141

Chapter 10

In the previous screenshot, we can see the simple arrangement of geometric shapes that
make up the British flag (note that the flag is not completely to scale). Images like this are
easy to produce using the <canvas> but even simple shapes can require a lot of code.

What just happened?

The first thing we do is get the <canvas> element using JavaScript's getElementById ()
method, and then get the two-dimensional context object from the <canvas> with the
getContext () method. We can now interact with the <canvas> via the context object.

We set some of the color for the context using the £i11Style property, and then draw a
solid rectangle using the fil1Rect () method. The arguments specified are the starting x
and y location of the rectangle, and the width and height.

The filled rectangle picks up the fill style that we just set which is deep blue and will form the
background of our flag. We now need to create a white horizontal and diagonal cross on top
of the blue background. We can do this by drawing two thick lines across the middle of the
flag, one vertical and one horizontal. We'll use paths for this, so we start a new path using
the beginPath () method.

Next we set the color of the stroke to white using the strokeStyle property, and

the width of the path using the 1ineWwidth property. To draw a path we have tell the
<canvas> (or the context object actually) where to start the path, which we do using the
moveTo () method, specifying the coordinates to move to as arguments (the top middle
of the rectangle).

To make the path, we then use the 1ineTo () method, specify the coordinates of where to
end the path (the bottom middle of the rectangle). This gives us the vertical line. To make the
horizontal path, we repeat the same process, moving to the left middle of the rectangle and
drawing to the right middle.

Coordinates specified using the moveTo () method are always relative to the canvas itself
with 0, 0 representing the top-left corner of the canvas. This is the same for the 1ineTo ()
method as well, even though the line that is drawn begins at the point specified by the last
call of moveTo ().

Next we need to make a diagonal white cross over the background rectangle and the vertical
cross, which we'll do by drawing paths in the same way as before using combinations of
moveTo () and 1ineTo () methods.

All of the paths we've added so far are part of the same path—they are sub-paths, and at
this point they aren't actually visible. To make them visible, we need to either fill or stroke
them, so we stroke them with the stroke () method and then close the path with the
closePath () method.

[215]

Canvas Animations

For the next part of the flag, we need to draw a slightly thinner red cross over the white
cross. We'll use another path for this. We set the new color style and width, and draw a new
path across the center of the rectangle vertically and horizontally again.

To complete the flag, we need to add four more shapes to make the diagonal parts of the red
cross. We can't use straight-line paths for these because they don't intersect, and they are

all positioned slightly differently. This means that we have to draw them manually as custom
shapes and fill them.

These four shapes actually make up the majority of the code, but we're basically doing very
similar things as before. Each shape is made by drawing sub-paths and filling them. We use a
new path for each shape to preserve the anti-aliasing of the lines. If we used one big path for
all four shapes, the edges of the shapes would be jagged.

1. What arguments are required for the fi11Rect () method?
a. Thexandy location of the rectangle
b. The width and height of the rectangle
¢. Thexandy location of the rectangle, its width and height, and its color

d. The x andy location of the rectangle, and its width and height

2. What method is required to make a path visible?
a. strokeStyleand lineWidth
b. moveTo () and 1ineTo ()

stroke () or £i11 ()

o

d. closePath()

Have a go hero - creating the flag of your nation

If you're not from the UK, have a go at drawing the flag of your own nation on the canvas.
We can create compositions of repeated shapes using standard JavaScript for loops, so use
this to your advantage in keeping the code required for your flag as minimal as possible.

If you are from the UK, try recreating a favorite logo or icon.

If part of your flag (or logo) is extremely complex, remember that we can draw images to
the <canvas> as well as lines and shapes, so feel free to draw out the basic part of your
flag using the <canvas> drawing methods, and then use an image for the complex part.

12161

Chapter 10

Our flag example will work in IE9, but not in any previous version. If we run the previous
example in IE8 or lower, we'll see the fallback content consisting of a paragraph of
explanatory text:

f:‘ Drawing to the canvas - Windows Internet Explorer [Hj[=]
@ "= I.é'_; C: '»,apad'uesihe'n,iquery-j || X

5. Favorites € Drawing to the canvas |

Your browser doesn't support the canvas element!

|iMs Computer | Protected Mode: Off ‘At | R10% - g

The fallback mechanism for the HTML5 <canvas> element is simple but effective. Any
browser that doesn't understand the element simply displays any elements that are
contained within it, while supporting browsers do not show any of its content except what
we draw using the JavaScript API.

There is an easy way that we can allow our flag to work in older versions of IE thanks to the
explorercanvas library created by Google. |IE uses a proprietary technology called Vector
Markup Language (VML) which is similar (but much older than and now deprecated) to the
<canvas>. In fact it was Microsoft's alternative technology to Scalable Vector Graphics
(SVG) but can also be used as a simple <canvas> approximation.

Using the explorercanvas library is almost as simple as downloading it and then referencing
it in the page on which the <canvas> appears, but there is a subtle change that we need to
make to our code.

The explorercanvas library can be downloaded from Google's code
s repository at http://code.google.com/p/explorercanvas/.

APl methods that simply do not work
The explorercanvas library does not port all canvas functionality to IE. A couple of methods
and techniques simply will not work. These include:

¢ The clearRect () method will not work in IE

¢ Radial gradients do not work in IE

¢ Non-uniform scaling does not work correctly

[2m1

Canvas Animations

Time for action — making our code compatible with IE

In this example we will recreate our flag example so that it works as intended in IE.

1. Resave the canvas.html page as canvas-explorer.html and add a reference
to the explorercanvas library in the <head> of the page:

<!--[1if IE]>
<script src="js/excanvas.compiled.js"></scripts>
<! [endif]-->

2. Now change the script at the bottom so that it appears like this (new/changed code
is shown in bold):

var canvas = document.getElementById("c"),
draw = function(context) ({

context.fillStyle = "#039";
context.fillRect (50, 50, 400, 200);

context .beginPath() ;
context.strokeStyle = "#fff";
context.lineWidth = 50;
context .moveTo (250, 50) ;
context.lineTo (250, 250) ;
context.moveTo (50, 150) ;
context.lineTo (450, 150) ;
context .moveTo (50, 50) ;
context.lineTo (450, 250) ;
(50, 250);
context.lineTo (450, 50);
context.stroke () ;

context .moveTo

context.closePath() ;

context.strokeStyle = "#C00";
context.lineWidth = 30;
context .beginPath() ;

context .moveTo (250, 50) ;
context.lineTo (250, 250) ;

50, 150);

450, 150);

)i

context .moveTo
context.lineTo

(
(
(
context.stroke (

context.lineWidth = 1;
context.fillStyle = "#C0O0";

12181

Chapter 10

context
context
context
context
context
context
context

context
context
context
context
context
context
context
context

context
context
context
context
context
context
context
context

context
context
context
context
context
context
context
context

}i

.lineTo
Ei11 () ;
.closePath() ;

.closePath ()

.beginPath () ;

.moveTo (50, 50);

.lineTo(

.lineTo (165, 125);
(

195, 125);

50, 66);

.beginPath () ;
.moveTo (450, 50);
.lineTo (305, 125);
.lineTo (275, 125);
.lineTo (422, 50);
.1lineTo (450, 50);
LE4111 () ;

.beginPath () ;
.moveTo (450, 250);
.lineTo (310, 175);
.lineTo (335, 175);
.lineTo (450, 235);
.1lineTo (450, 250);
LE4111 () ;

.closePath() ;

.beginPath () ;
.moveTo (50, 250) ;
.lineTo (200, 175);
.lineTo (225, 175);
.1lineTo (80, 250);
.1lineTo (50, 250);
LE4111 () ;

.closePath() ;

if (window.ActiveXObject) {
window.onload = function() {
var context = canvas.getContext("2d4");
draw (context) ;

}

} else {

var context = canvas.getContext("2d");
draw (context) ;

(2191

Canvas Animations

3. Save the new page and view it in IE. Our flag should now be visible:

/2 Drawing to the canvas in IE - Windows Internet Explorer [l B | |
@A =[] crapachesitejquery- x| |42 || X | [$P coocle Lol -

. i »
.7 Favorites & Drawing to the canvas in IE | | %3 - B - [o= - Page- Safety~

Dore | [[[[| [Computer | Protected Mode: OFF o [m0% -

IE can be made to understand the <canvas> element, as we see in the previous screenshot,
although its support is not completely identical to that of capable browsers. If we compare
our example in |IE and Firefox alongside each other, we see that IE also slightly enlarges the
flag for some reason.

What just happened?

First of all we need to link to the explorercanvas library. We don't want to let normal
browsers that support the native <canvas> element use this file as it will slow them down,
so we put the <script> element into an IE-specific conditional comment (like we did with
the html5shiv file earlier in the book). The . compiled version of the script file is simply a
minified version for production use.

The next change we make is to put the methods that draw the flag into an inline function
stored as a variable. This is necessary because otherwise IE will attempt to use these drawing
methods before the explorercanvas library has finished initializing and will throw errors.

The next part of our code also deals with this.

We use a conditional i f statement to check for the presence of an ActiveXObject
property of the window object (this will only exist in IE). If it is found, we attach an onload
handler to the <body> of the page that calls the getContext () method and our draw ()
function once the page has finished loading, and the explorercanvas library has done

its thing.

[2801]

Chapter 10

If the browser is not IE, we simply get the context and call our draw () function straight
away. Note that we pass the context object into the draw () function as an argument so that
the APl methods work correctly. Other than these changes, our code is the same and should
now function as intended in IE versions 8 and below.

1. We wrap the getContext () method in a conditional comment that checks for IE
and uses an onload handler attached to the <body>. Why?

a. The <canvas> can only be interacted with via the <body> element in IE

b. To give explorercanvas a chance to add getContext () support to the
<canvas> in |E

To prevent memory leaks in IE

d. A handler function must be used with explorercanvas

2. Which methods/techniques do now work in IE when using explorercanvas?
a. Scaling and Bezier curves
b. Radial gradients and quadratic curves
¢. Radial gradients, clearRect (), and non-uniform scaling

d. Non-uniform scaling, PNG-based images, and stroked text

Have a go hero - extending IE support

Convert your own flag (or logo/alternative) so that it works in IE using the explorercanvas
library. You'll more than likely need to make use of an onload event handler to ensure that
the getContext () method isn't called until the <canvas> is ready to be used.

Animating the canvas

The <canvas> methods we've looked at so far are easy to use and nothing if not a little
repetitive. Animating the objects on the <canvas> is where things start to get interesting.
Animating is harder than simply drawing on the <canvas> and as we have no real way of
debugging it other than trial and error, solving bugs can quickly become problematic and
somewhat time-consuming.

In our flag example, there was no real benefit to using the <canvas>. We could have got
exactly the same effect, with much less code and processing, by simply including an image
of the flag on our page. However, animating the <canvas> is where its benefits really begin.
This is where we can do much more than anything we could achieve with a simple image.
The additional complexity that animating the <canvas> entails is totally worth it.

2811

Canvas Animations

Time for action - creating an animation on the canvas

In this example, we'll draw the same flag as we did before, except that this time we'll
animate the different shapes. The underlying HTML used in this example is exactly the same
as in the previous examples. All that changes is the contents of the <script> element at the
end of the <body>.

1. To make the working file for this example, just remove everything in the <scripts>
element at the bottom of canvas-explorer.html and resave the file as
canvas-animated.html.

2. The first thing we'll do is bring the blue rectangle in from the side of the canvas to
the center of the <canvas> element. Add the following code to the now empty
<scripts element at the bottom of the page:

(function()
var canvas = document.getElementById("c"),
init = function (context) ({

var width = 0,
pos = 0,
rectMotion = function() {

if (width < 400) {
width = width + 2;
context.fillStyle = "#039";
context.fillRect (0, 50, width, 200);
} else if (pos < 50) {
pos = pos + 2;
canvas.width = 500;

context.fillStyle = "#039";
context.fillRect (pos, 50, 400, 200);
} else {

clearInterval (rectInt) ;
whiteLines (context) ;

}
b

rectInt = setInterval (function() { rectMotion () }, 1) ;

}i

if (window.ActiveXObject)
window.onload = function() {

12821

Chapter 10

var context = canvas.getContext ("2d");
init (context) ;
} else {
var context = canvas.getContext ("2d");
init (context) ;

P O;

What just happened?

In the previous examples in this chapter all of our variables were global, which is generally

a bad practice when coding for the real world. In this example our code is within the scope
of the anonymous function, so the variables are only accessible within that function and are
therefore not considered global.

We also use the same construct for detecting and working with IE that we did before,
where we define an inline function that is either called straight away for most browsers,
or once the onload event of the body is fired for IE. The function that is called is init ()
in this example.

Within this function we declare width and pos variables and then define another inline
function called rectMotion (), which will be called repeatedly by an interval. Any shapes
drawn outside of the bounds of the <canvas> do not exist, so we can't draw a rectangle

out of view and then animate it into view. Instead, we gradually build up the rectangle by
starting at the left edge and incrementally widening the rectangle until it is the correct width.

This is done using the first branch of the i f statement, which will be executed while the
width variable is less than 400. To speed the animation up, we actually increase the
width of the rectangle by two pixels at a time (although the speed of the animation is also
considerably different between browsers) by increasing the width variable and then using
the variable as the width argument in the £i11Rect () method.

Once the width variable has reached 400, we then change over to use the pos variable
instead. In this part of the conditional, we increase the pos variable by two (the rectangle
will appear to move two pixels at a time, again for speed), reset the <canvas> by setting
its width, and set the £i11Style property. We then draw the new rectangle, using the pos
variable as the argument for the x axis position.

It will look as if the rectangle is being moved to the right, but this is not the case at all. We
are actually destroying the rectangle and then drawing a completely new one two pixels to
the right of the original.

[2831]

Canvas Animations

Once the rectangle is in the correct location we clear the interval and then call the next
function, (we'll add this shortly) passing in the context object. After the rectMotion ()
function, we add a final variable that contains the ID of the interval which calls the function
to animate the rectangle. We use this variable to clear the interval once the animation

is complete.

If you run the page in a browser at this point, the blue rectangle appears to move into
the <canvas> from the left before stopping in the middle. Next, we need to animate the
horizontal and diagonal white crosses over the blue rectangle.

Time for action — animating the white crosses

In this part of the animation, we'll draw a white line down the middle and across the center
of the rectangle, and then make the diagonal cross grow out from the center to the corners.
The following code should be added in between the canvas and init variables in the code
so far:

whitelLines = function (context) {
context.fillStyle = "#Eff";
context.strokeStyle = "#fff";

context.lineWidth = 50;

var width = 0,

height = 0,

pos = {
ne: { x: 250, y: 150 },
se: { x: 250, y: 150 },
nw: { x: 250, y: 150 },
sw: { x: 250, y: 150 }

b

growDiagonal = function () {

if (pos.ne.x >= 50) {

context.beginPath() ;

context .moveTo (pos.ne.x, pos.ne.y);
context.lineTo(pos.ne.x - 4, pos.ne.y - 2);

context.moveTo (p

.se.x, pos.se.y);
context.lineTo(pos.se.x - 4, pos.se.y + 2);
context .moveTo
context.lineTo

pos.nw.x + 4, pos.nw.y + 2);

p
pos.sw.x + 4, pos.sw.y - 2);
)

os

os
pos.nw.x, pPosS.nw.y) ;

os
context .moveTo (pos.sw.x, POS.SW.Y) ;
context.lineTo

(
(
(
(
(
(
(
(

7

context.stroke

12841

Chapter 10

}
b

context.closePath() ;

pos.ne.x = pos.ne.x - 2;
pos.ne.y = pos.ne.y - 1;
pos.se.x = pos.se.xX - 2;
pos.se.y = pos.se.y + 1;
pos.nw.x = pos.nw.x + 2;
pos.nw.y = pos.nw.y + 1;
POS.SW.X = pPOS.SW.X + 2;
pos.sw.y = pos.sw.y - 1;
else {

clearInterval (crossInt) ;
redCross (context) ;

growVertical = function() {

if (height < 200 || width < 400) {

}
b

if (height < 200) {
height = height + 2;
context.fillRect (225, 50, 50, height);
}
if (width < 400) {
width = width + 4;
context.fillRect (50, 125, width, 50);
}
else {
clearInterval (rectInt) ;
crossInt = setInterval (function|() { growDiagonal () }, 1);

rectInt = setInterval (function() { growVertical() }, 1);

What just happened?

Essentially we have another inline function, which contains another function that gets
repeatedly called with another interval. As we're drawing white crosses this time, we need to
set some style properties (we'll be drawing both lines and rectangles in this function and so
setthe fillStyle and strokeStyle) as well as the 1ineWidth property.

We initialize width and height control variables, which will be used to control how many
times the interval runs, and we also store the starting positions of the vertical and diagonal
crosses in an object called pos.

[2851]

Canvas Animations

We then define two inline functions, one to create the vertical cross and the other to create
the diagonal cross. The growVertical () function is called first with an interval and we
just draw one white rectangle from top to bottom, and one from left to right in the center of
the background using the width and height variables to repeat the interval as many times
as necessary. The interval is cleared once the rectangles are the correct size and then the
growDiagonal () function is called with another interval.

In this function we need to draw four lines, each starting in the middle of the vertical cross.
We use the different properties in our pos object to do this. Each time the function is
executed, we move to the x and y positions specified for each line in the object and then
draw towards the relevant corner. We then update the properties in the object ready for the
next iteration of the function.

The properties each need to be updated by different amounts, for example, the line moving
from the center to the top-left of the rectangle need to move negatively along both the x and
y axes, whereas the line to move to the top-right corner needs to move positively along the

x axis, but negatively along the y axis. We use a new path on each iteration of the function to
preserve the anti-aliasing of the lines.

Once the lines are drawn we clear the interval and call the next function. We'll define
this function now. It should be placed after the canvas variable, but directly before the
whiteLines () function that we just added.

Time for action — animating the red crosses

All we need to do now is draw the vertical red cross and the four custom red shapes. Add the
following code in between the rectInt variable declaration near the top of the <script>
and the whiteLines function we defined in the previous section:

redCross = function (context) {
context.fillStyle = "#C0O0";
context.strokeStyle = "#C00";

context.lineWidth = 30;

var width = 0,
height = 0,
pos = {
up : { x: 250, y: 150 },
down : { x: 250, y: 150 },
left: { x: 250, y: 150 },
right: { x: 250, y: 150 }

b

addStripes = function() {

[2861]

context.lineWidth

1;

function makeStripe (props) {

context .beginPath() ;
context .moveTo (props.startX, props.
context.lineTo (props.linelX, props.
context.lineTo (props.line2X, props.
context.lineTo (props.line3X, props.
context.fi111 () ;
context.closePath() ;

}

setTimeout (function() { makeStripe ({
startX: 50, starty¥: 50,
linelX: 195, linelY: 125,
line2X: 165, line2Y: 125,
line3X: 50, line3Y: 66

Ny, o1);

setTimeout (function() { makeStripe ({
startX: 450, startY¥: 50,
linelX: 305, linelY: 125,
line2X: 275, line2Y: 125,
line3X: 422, line3Y: 50

1Y, s0);

setTimeout (function() { makeStripe ({
startX: 450, starty¥Y: 250,
linelX: 310, linelY: 175,
line2X: 335, line2Y: 175,
line3X: 450, line3Y: 235

N}, 100);

setTimeout (function() { makeStripe ({
startX: 50, startY¥: 250,
linelX: 200, linelY: 175,
line2X: 225, line2Y: 175,
line3X: 80, line3Y: 250

N}, 150);

b
growVertical = function() {

if (height < 100 || width < 200) {

if (height < 100) {

context .beginPath() ;

startyY
linelY
line2Y
line3Y

context .moveTo (pos.up.x, pos.up.y);

12871

7

I

Canvas Animations

context
context
context
context
context

height

pos.up.y
pos.down.y =

}

if (width
context
context
context
context
context
context

context

width =

pos.left.x =
pos.right.x =

}

.lineTo (pos.
.moveTo (pos.
.lineTo (pos.

.lineTo(pos.up.x, pos.up.y - 2);
.moveTo (pos.down.x, pos.down.y) ;
.lineTo (pos.down.x, pos.down.y + 2);
.stroke () ;

.closePath() ;

height + 2;
= pos.up.y - 2;
pos.down.y + 2;

< 200) {

.beginPath () ;
.moveTo (pos.

left.x, pos.left.y);
left.x - 2,
right.x, pos.right.y);

pos.left.y);

right.x + 2, pos.right.y);

.stroke () ;
.closePath() ;

width + 2
pos.left.x - 2;
pos.right.x + 2;

} else {
clearInterval (crossInt) ;
addStripes () ;
!
b
crossInt = setInterval(function /() { growVertical () }, 1) ;
|
What just happened?

Again, we have an outer inline function (called redCross ()) containing some properties
that set the color and line styles, and some nested functions that will be used to draw the
red cross and the four custom shapes. As with the previous function, we declare width and
height control variables, and an object called pos containing the starting positions for the
lines that make up the cross. The cross is drawn first with the growvertical () function.

This function is very similar to the function in the last section of code. We draw four lines
starting in the middle of the rectangle which radiate to the top and bottom center, and the

right and left center.

[2881]

Chapter 10

The four custom shapes are drawn using a single master function that accepts a configuration
object specifying the start point (passed to the moveTo () method), and the points that
make up each sub-path (passed to the 1ineTo () methods). We then use the setTimeout
JavaScript function to create each shape one after the other, using the object passed to the
master function to specify the relevant points on the canvas to draw each shape.

This is all the code we need, so when we run the page now we should see the animation

of the flag being drawn. The code works in all browsers, including IE, but as | mentioned
earlier, the performance does vary considerably between browsers, with Webkit and Opera
browsers running smoothly and very quickly, Firefox somewhere in the middle, and IE
crawling along almost intolerably slowly.

Animating the <canvass is all about conditional if statements, intervals, and timeouts. As
we saw, the code itself is quite straight-forward. We just need rather a lot of it in order to
produce even simple animations.

1. Why did we store each call to setInterval () in avariable?
a. For performance reasons
b. Inorder to clear the interval when appropriate

c. Because of the closure created with the anonymous function as the first
argument to the function

d. So that we can pass arguments to the function called by the interval
2. Inthe first function, where we drew the blue rectangle, we set the width of the
<canvas> each time the rectMotion () function is called by the interval. Why?

a. To make sure the <canvas> was big enough to contain the rectangle as it
grew

b. To correct a bug in Internet Explorer

c. Toreset the state of the <canvas>, ensuring there was only one rectangle at
each point in the animation

d. Asarequirement for setting the £111Style property

Have a go hero - creating canvas animations

Go back to the static version of the flag you drew of your home country (or the logo
or image of your choice) and convert it so that the different parts of the flag are animated
into existence.

[2891]

Canvas Animations

The best animations are those that are interactive and engage the user, and this is exactly
how a game can be seen, as one continuous, user-driven animation. The power of the
<canvas> element is really highlighted when it is used to create games, as we'll see over
the course of this section.

We'll create a very basic clone of the arcade classic Space Invaders with a series of alien ships
that slowly advance down the screen, and a user-controlled space ship at the bottom that
can shoot the incoming aliens:

« + [file:///C:fapachest: y-animation, -t ¢] [Q- Google O~ 25~

ERBRER BRERRRBREBRR
EERBRER BRE BREREBREBRR
BBRERER ® RERBRBRR

Time for action - creating the initial page

The initial page that we'll use for this example is similar to that used in the previous example,
although this time we won't be supporting Microsoft's Internet Explorer so some of the
initialization code isn't required.

1. Create a new page in your text editor that contains the following markup:

<!DOCTYPE htmls>
<html lang="en">
<head>
<meta charset="utf-8">
<title>A canvas and jQuery Game</titles
<link rel="stylesheet" href="css/canvas-game.css">
</head>

[290]

Chapter 10

<body>
<canvas tabindex="1" id="c" width="900" height="675">
<p>Your browser doesn't support the canvas element!</p>
</canvas>
<script src="js/jquery.js"></script>
<scripts
(function ($)

}) (jQuery) ;
</script>
</body>
</html>

2. Save the file as canvas-game . html. We also require a very basic stylesheet for
our game. All we're styling is the <canvas> element itself. Create a new stylesheet
containing the following style rules:

canvas {
border:1px solid #000; margin:auto; display:block;
outline:none;
background:url (../img/bg.gif) no-repeat;

}

3. Save this file in the css directory as canvas-game. css.

What just happened?

The main element on the page is of course the <canvas> element. The only difference
between this and the element used in previous examples is that we have set the tabindex
attribute on it so that it can receive keyboard events, which is necessary for detecting and
reacting to the input from the user. We're also using jQuery in this example and using the
standard anonymous function + $ aliasing construct we've used throughout the book.

The styles we've used simply position the <canvas> element in the center of the page, give
it a border, and remove the dotted outline that appears around focused elements in some
browsers. We also set a background image on the element.

The background image applied to the <canvas> element helps to set a scene for our game,
and using CSS to set a background image on the <canvas> element is much easier than
drawing the image within it.

2911

Canvas Animations

Time for action - the initial script

The script for the game is quite long so we'll look at it in different sections, starting with the
initial structure of the script. The following code should go into the anonymous function at
the bottom of the page:

var canvas = document.getElementById("c"),
context = canvas.getContext ("24d"),
motionInt = null,

dirCounter = 0,
alienSpeed = 1000,
aliens = [],

alienMotion = function(dir) {

b

addAliens = function() {

b

ship = new Image(),

shipPos = [430, 600];
ship.src = "img/ship.png";
ship.onload = function() {

context.drawImage (ship, shipPos[0], shipPos[1]);

addAliens () ;

Vi

What just happened?

Essentially, all we've done here is define a series of variables and an onload event handler.
The canvas and context variables are defined first, as in previous examples, in order to
access and manipulate the canvas.

We also set a variable called mot ionInt which will be used to hold the ID of a
setInterval () function later on, a variable called dirCounter which will be used to
determine which direction the aliens move in, an alienSpeed variable to set the speed that
the aliens move at, and an empty aliens array which we'll use to keep track of each alien
on the page.

12921

Chapter 10

Following this we define two inline functions, one to move the aliens and one to add the
aliens to the page. These are empty at the moment but we'll populate each of them next. We
also create a new image, which will be the user-controlled space ship, and a shipPosition
array which will be used to keep track of the ship's location on the page.

Once we've defined all our variables, we set the src of the new image object we created to
represent the space ship. We then attach an onload event handler to the ship object, which
will be executed once the image has finished loading. Within this function we draw the

ship on the canvas, using the values stored in the imagePosition array. We then call the
addAliens () function, which will add the aliens to the canvas. We can add the code to the
addaliens () function next.

Time for action - adding the aliens to the page

Add the following code to the addaliens () inline function in the previous code block:

addAliens = function() {

var alienPos = [13, 0],
alien = new Image() ;

alien.src = "img/alien.gif";
alien.onload = function () {
for (var x = 0; x < 15; x++) {

for (var v = 0; v < 3; v++) {

context.drawImage (alien, alienPos[0], alienPos([1]) ;

var data = {
img: alien, posX: alienPos[0], posY: alienPos([1]

bi

aliens.push(data) ;

if (alienPos[1] < 100) {

alienPos[1l] = alienPos[1] + 50;
} else {
alienPos[0] = alienPos[0] + 50;
alienPos[1] = 0;
}
}i
1
}i
motionInt = setInterval (function () {
alienMotion ("right") ; }, alienSpeed) ;

b

12931

Canvas Animations

What just happened?

We first define a new array that we'll use to incrementally set the position of each alien ship
while the aliens are initially being drawn to the canvas. We define a new Image object for
the image that will be used by all of the alien ships and set its src attribute. We then set an
onload handler for the new alien image so that we can manipulate the image once it has
finished loading.

We want to create three rows of 15 aliens, so within the onload handler we start with two
nested for loops where the outer loop runs 15 times and on each loop, the inner for loop
executes three times. Within the nested loops, we first draw the new alien to the canvas
using the values stored in the alienPos array. We then create a new data object which
stores a reference to the image object, and the x and y position of the image on the canvas.
The new data object is then pushed into the aliens array which we defined earlier at the
start of the script.

We then update the values in the alienPos array. If the second item in the array (the item
with an index of 1) is less than 100, we add 50 to the value of the array item. The second
item in the array corresponds to the position on the y axis of the canvas. This will give us a
single column of three aliens. Note that we start the x position of the first three aliens at 13
instead of 0 so that there is a gutter between the edge of the canvas and the first column
of aliens.

If the second array item is more than 100, we add 50 to the first item in the array instead,
which corresponds to the x axis on the canvas, and reset the second array item to zero. This
will give us 15 columns of three aliens.

Once all of the aliens have been drawn on the canvas, we set an interval that will repeatedly
execute the next function, alienMotion (), according to the number of milliseconds
contained in the alienSpeed variable, which initially is set to 1000 at the start of the script.
The interval ID is stored in the motionInt variable we also created at the start of the script.
We can add the code to our alienMotion () function next.

Time for action — moving the aliens

Our next block of code will give the aliens their motion, causing them to advance to the right
along the canvas first, then down a line, then to the left, and so on and so forth:

alienMotion = function (dir) {
var alienLength = aliens.length;

if (dirCounter < 4) {

12941

Chapter 10

for (var x = 0; x < alienLength; x++) {
context.clearRect (aliens [x] .posX, aliens[x] .posY,
aliens[x] .img.width, aliens[x].img.height) ;

for (var y = 0; y < alienLength; y++) {
aliens[y] .posX = (dir === "right") ? aliensl[y].posX + 35
aliens[y] .posX - 35;

context.drawImage (aliens[y] .img, aliens[y] .posX,
aliens[y] .posY) ;
}

dirCounter++;

else {

clearInterval (motionInt) ;

dirCounter = 0;

for (var z = 0; z < alienLength; z++) {

context.clearRect (aliens[z] .posX, aliens|[z] .posY,
aliens[z] .img.width, aliens([z].img.height) ;

if (aliens[alienLength - 1].posY > 530) {

canvas.width = 900;
context.fillStyle = "Hfff";
context.textAlign = "center";
context.font = "bold 36px Tahoma";

context.fillText ("GAME OVER!", 450, 350);
$ (canvas) .blur () .unbind ("keydown") ;
} else {

for (var a = 0; a < alienLength; a++) {
aliens[a] .posY = aliens[a] .posY + 29;

context.drawImage (aliens[a] .img, aliens[a] .posX,
aliens[al .posY) ;

motionInt = (dir === "right") ? setInterval/(
function () { alienMotion("left"); }, alienSpeed)
setInterval (function () { alienMotion("right"); },
alienSpeed) ;

[2951]

Canvas Animations

What just happened?

The first thing we do is store the length of the aliens array in a local variable. We'll use
several for loops in this function so it makes sense to retrieve this value only once and
compare the counter variables of the for loops to the variable instead of checking the
length on each iteration of the various loops.

We then use an if statement to check whether the dirCounter variable is less than 4.
Remember, this was one of the variables we set at the start of the script. If the variable is
less than 4, we first use a for loop to cycle through each item in the aliens array and use
the clearRect () function to remove the alien from the canvas.

We then use a second for loop that cycles through the aliens array once more, this time
updating the x position of each alien by either adding or removing 35 from the current x
position stored in the current item in the array.

Whether 35 is added or removed is determined by the parameter passed into the function.
The first time the alienMotion () function is called, it will receive the parameter right, so
the aliens will initially move across to the canvas to the right. We then draw each alien in its
new position. Once the for loop has finished and all of the aliens have been drawn in their
new positions we update the dirCounter variable.

If the dirCounter variable is equal to 4, the aliens have moved horizontally across the
canvas as far as they should, so this time we need to move the aliens down the canvas a line
instead of across it. In this branch of the conditional, we clear the interval that controls the
horizontal movement, then reset the dirCounter variable back to 0. We then remove the
aliens from the canvas by clearing the rectangle that each alien covers.

Before moving the aliens down a line, we first check whether the y position of the last alien
in the array is greater than 530, as this is the maximum distance from the top of the canvas
that an alien should get. If it is greater than this figure, at least one alien has reached the
bottom of the canvas and it's game over for the player.

In this case, we clear the whole canvas, removing the space ship and any surviving aliens,
and print the text GAME OVER! to the center of the canvas. We also use jQuery to unbind
the keyboard events that control the space ship (we'll add these bindings shortly).

If the aliens have not reached the bottom of the canvas, we instead use another for loop to
iterate over each alien in the array and move each of their y positions down by one line, and
then draw each alien in its new location.

We then set a new interval, passing in the opposite direction string to the alienMotion ()
function that was used previously. These loops of four steps to the right, one step down, four
steps to the left, and so on, will continue until the aliens reach the bottom of the canvas and
the game is over. Next, we need to add the handlers that enable the player to control the
space ship.

[2961]

Chapter 10

Time for action - adding handiers to control the ship

The following block of code should be added to the onload event handler for the ship
image object:

ship.onload = function () {
context.drawImage (ship, shipPos[0], shipPos[1]);

addAliens () ;
$ (canvas) .focus () .bind ("keydown", function (e) {

if (e.which === 37 || e.which === 39) (

context.clearRect (shipPos [0], shipPos[1l], ship.width,
ship.height) ;

if (e.which === 37 && shipPos[0] > 4) {
shipPos [0] = shipPos[0] - 4;
} else if (e.which === 39 && shipPos[0] < 896 - ship.width) {

shipPos [0] = shipPos[0] + 4;

context.drawImage (ship, shipPos[0], shipPos[1]);
} else if (e.which === 32) {
context.fillStyle = "#Eff";
var bulletPos = shipPos[0] + 20,
newBulletPos = [bulletPos, 59617,
alienLength = aliens.length,
fire = function () {
if (newBulletPos[1] > 0) {
context.clearRect (newBulletPos[0],
newBulletPos[1], 3, 6);
newBulletPos[1l] = newBulletPos[1l] - 2;
context.fillRect (newBulletPos[0], newBulletPos[1l], 3, 6);

for (var x = 0; x < alienLength; x++) {
if (newBulletPos[l] === aliens[x].posY ||
newBulletPos [1] === aliens[x] .posY +

aliens[x] .img.height) {
if (newBulletPos[0] > aliens[x] .posX &&
newBulletPos [0] - aliens([x].posX <
aliens[x] .img.width + 13) {
context.clearRect (aliens [x] .posX, aliens[x] .posY,
aliens[x] .img.width, aliens[x].img.height) ;

2971

Canvas Animations

aliens.splice(x, 1);
clearInterval (bulletInt) ;

context.clearRect (newBulletPos[0],
newBulletPos[1], 3, 6);

if (laliens.length)
clearInterval (motionInt) ;

dirCounter = 0;
alienSpeed = alienSpeed - 100;
addAliens () ;

}
}
}
}

} else {
context.clearRect (newBulletPos[0], newBulletPos[1l], 3, 6);
clearInterval (bulletInt) ;
}
I

bulletInt = setInterval (function () { fire(); }, 1);

3N
¥

What just happened?

We use jQuery to attach an event handler to the <canvas> element that listens for
keydown events. Although we're not providing support for IE and so don't need jQuery for
its cross-browser normalization when attaching events, it still makes the event handling
process much easier.

Within the function that is executed whenever a keydown event is detected, we check for
the presence of either the left or right arrow keys, which have a which property in the event
object of 37 and 39, or the space bar, which has the code 32.

If the code 37 or 39 is detected we then use a nested if statement to determine between
the two keys. We also check that the ship hasn't reached either the left edge, or the right
edge of the canvas.

We then use the clearRect () function to remove the ship and draw a new one either 4
pixels to the left, or 4 pixels to the right depending on which key was pressed. This gives the
ship left and right motion along the bottom of the canvas.

The second branch of the outer conditional deals with the space bar being pressed, which
causes a bullet to leave the ship and travel in a straight line to the top of the canvas. The
bullets will be white, so we set the £111Style property of the canvas to #f£f.

[298]

Chapter 10

We also declare some more local variables here including bulletPos which is the current
position of the bullet plus half of the width of the ship, and an array to hold the x and y
coordinates of the bullet. The values for this array are set to the bulletPos variable for the
X position, and directly above the nose of the ship for the y position. We also store the length
of the aliens array as a local variable for use in a for loop once again.

We define an inline function along with our variables called £ire (). This function is used
in conjunction with an interval to create the motion of the bullet. Within this function, we
check that the bullet hasn't reached the top of the canvas, and provided it hasn't, that is if
its y position is greater than 0, we remove the bullet with the clearRect () function, then
update the values in the bulletPos array and draw the bullet in its new location using the
updated values from the array.

Once the position of the bullet has been updated, we then need to check whether the bullet,
in its new position, has collided with an alien or not, so we use a for loop to iterate over
each alien in the aliens array.

On each iteration we first check whether the bullet falls within the y axis of an alien, that
is whether its position is less than the bottom edge of an alien, but more than its top edge.
The aliens are positioned according to their top-left corner, so to work out whether the
bullet has passed its bottom edge we just add the height of an alien to its y position.

If the bullet does fall within the alien on the y axis, we then check whether it falls within
the space an alien is taking up along the x axis. If it does, we remove the alien from the
canvas with the clearRect () function and splice the alien out of the array so that it
stays removed.

We then remove the bullet from the canvas using the clearRect () function again,
and clear the bulletInt interval. If there are no more aliens left, we clear the interval
producing the motion of the aliens, reset the dirCounter variable, reduce the
alienSpeed variable by 100, and then call the addaliens () function to redraw

the aliens at the top of the canvas.

This is effectively how the player moves up to the next level, and each time the aliens are
redrawn they move faster, creating basic progression of the game. This now brings us to the
end of the code. If we run the game now in a standard-compliant browser such as Firefox or
Chrome, we should find that we have a perfectly playable game, implemented entirely using
JavaScript and the <canvas> element.

[299]

Canvas Animations

Pop quiz - creating canvas-hased games

1. In this example a lot of functionality that related to the player's space ship was put
into an onload event handler. Why?

a. Because we cannot interact with an image until it has loaded completely
b. To make the code work correctly in Internet Explorer
c. Because the code runs faster once the image has finished loading
d. To help make our code more modular
2. Why did we set the textAlign property of the canvas to center when writing the
GAME OVER message?
a. Setting the alignment is a prerequisite for writing text to the canvas

b. Because it is easier than working out the width of the text and then setting its
position on the x axis in order to position the text in the center of the canvas

c. To anti-alias the text

d. Because it is more efficient than using padding

Have a go hero - extending the space invaders clone

Our game is a much simpler version of the original space invaders. The original arcade
game had many other features including aliens that fired back at the player's ship, bases to
hide behind, and one off special aliens that appeared randomly throughout the game and
dropped bonuses when hit.

Certainly one thing that the game needs is a scoring mechanism, otherwise there is simply
no incentive to play. Implement a scoring system that tracks a player's score throughout the
game and saves the highest score to the player's machine. This could be done easily with
jQuery and the cookie plugin, or using LocalStorage.

I'd also urge you, as this is the last example of the book, to implement some of the other
missing features, such as giving the aliens the ability to fire back, and adding bases or shields
that the player can hide beneath when the going gets tough.

Chapter 10

In this chapter we looked at the HTML5 <canvas> element and saw how it can be used

to create simple, static images, basic animations, and even complex interactive games. It
provides a rich API that allows us to interact with it programmatically and gives us complete
pixel-level control over an area of the page.

We also saw that although current versions of Internet Explorer don't support the <canvas>
element natively, we can use a JavaScript library provided by Google to port most canvas
functionality to this browser. Some animations however are still beyond IE8's capabilities
even with Google's library. IE9 does support the <canvas> element, so hopefully the
requirement of this library will soon become a thing of the past.

In this chapter, we covered the following subjects:

The <canvas> script AP
Drawing to the <canvas>
Using the <canvas> with Internet Explorer

Creating animations on the <canvas>

* & 6 o o

Creating interactive games with the <canvas>

Like with the CSS3 examples from the last chapter, there are no methods or properties in
jQuery specifically for use with <canvas>, although they have been a number of plugins
that combine the power of <canvas> with the ease of jQuery, and several projects that
extend the jQuery animate () method to allow it work on objects drawn to the canvas. For
more information on this, a good starting point is Steven Wittens' blog at http://acko.
net/blog/abusing-jquery-animate-for-fun-and-profit-and-bacon.

We've now reached the end of the book. | hope that over these 10 chapters I've given you a
solid foundation for producing animations using jQuery that acts as a solid starting point for
you to bring your web-based Uls to life.

[3011

Chapter1

Question number

Answers

1

b

2

C

Chapter 2

Question number

Answers

1

b

2

a

Using fadeOut

Question number

Answers

1

2

Pop Quiz Answers

Using fadeTogglel)
Question number Answers
1 c
Using fadeTo
Question number Answers
1 d
2 [o
Using show and hide
Question number Answers
1 c
2 a
Chapter 3
Viewing the queue
Question number Answers
1 b
2 c
Adding new items to the array
Question number Answers

1

a

3041

Appendix

Question number Answers

1 a
Replacing the queue

Question number Answers

1 C

2 d
Stopping an animation

Question number Answers

1 c

2 d
Chapter 4
Sliding elements down

Question number Answers

1 c

2 a
Sliding elements up

Question number Answers

1 d

Pop Quiz Answers

Using slideToggle

Question number Answers

1 C

2 a
Using easing

Question number Answers

1 b

2 a
Fixing the flicker

Question number Answers

1 [
Chapter 5

Question number Answers
1 b

2 C
Question number Answers
1 d

2

a

Appendix

Creating a plugin
Question number Answers
1 d
2 C
Chapter 6
Using the effect API
Question number Answers
1 d
2 b
Using show/hide logic
Question number Answers

1

C

2

a

Question number Answers
1 d
2 c
Chapter?
Animating page scroll
Question number Answers
1 c
2 a

[3071

Pop Quiz Answers

Impiementing the paraliax effect

Question number Answers
1 [
2 [

Question number Answers
1 b
2 C

Question number Answers
1 d

Question number Answers
1
2 b

Question number Answers
1 d
2 C

Appendix

Question number Answers

1 C

2 a
Using the matrix

Question number Answers

1 o

2 d
Chapter 10
Drawing to the canvas

Question number Answers

1 d

2 C
Supporting IE

Question number Answers

1 b

2

C

Pop Quiz Answers

Animating the canvas
Question number Answers
1 b
2 C

Question number Answers
1 a
2 b

3101

Index

Symbols alter.native' syntax. 103
configuration options 103
:animated filter 88 per-property easing 102
<button> element 41 animation effects, jQuery Ul
 element 204 blind 139
<nav> element 24 bounce 139
#slide wrapper element 105 clip 139
 element 26 drop 139
<table> element 41 explode 140
 element 25 fold 140
#viewer element 105 highlight 140
puff 140
A pulsate 140
scale 140
addAliens() function 293 shake 140
addClass(), class transition methods 176 size 140
addColorStop() method 270 slide 140
add() method 110 transfer 140
alienMotion() function 296 animation example
aliens about 13
adding, to canvas game 293, 294 animated loader, creating 14
moving 294, 296 animation methods
alt attribute 107 addClass() 137
animated content viewer animate() 137
creating 104, 105, 113 effect() 137
animated loader hide() 137
creating 14 show() 137
animated page headers switchClass() 137
about 217 toggle() 137
creating 218, 219 animation methods, jQuery 10
extending 219 animations
animated page scroll avoiding 10
extending 186 checklist 10
animated Uls 8 default frame rate, changing 70
animate() method disabling, globally 70

about 102 preventing, stop() method used 68

show() or hide() method, triggering 46-51 canvas element

stopping 66, 67 about 266
using 9 clearRect(a, b, c, d) method 267
API methods, canvas element code, making compatible with IE 278-280
fillText() method 270 drawing to 272-276
measureText() method 270 fillRect(a, b, ¢, d) method 267
stroketext() method 270 fillStyle property 268
arc() fmethod 268 getContext() method 266
arcTo() method 268 IE support 277
auto expand parameter 241 IE support, extending 281
properties 267
B shadowBlur property 268
shadowColor property 268
background-image animations 179 shadowOffsetX property 268
Basicimage filter property 245 shadowOffsetY property 268
beginPath() method 268 strokeRect(a, b, ¢, d) method 267
bezierCurveTo() method 268 strokeStyle property 268
black-border problem 32 toDataURL() method 266
blind effect transformation methods 271
about 155 using, with IE 277
configuration options 156 canvas game
using 156, 157 aliens, adding to page 293, 294
border-radius style property 25 aliens, moving 294, 296

bounce effect creating 290

about 141 handlers, adding 297-299
configuration options 141 initial page, creating 290, 291
using 141, 142 initial script 292, 293
space invaders clone, extending 300
C classes

transitioning between 176
class transition methods
addClass() 176
removeClass() 176
toggleClass() 176
class transitions

callback function

using, to keep queue running 62, 63
canvas animation

about 281

creating 282-289

red crosses, animating 286-289

white crosses, animating 284, 285 abput 176
canvas API using 176
about 266 clearQueue() method 55, 65

clearRect(a, b, c, d) method 267
clearRect() function 296
clearType effect 45

click() event-helper method 42
click() method 42

canvas element 266
context methods 267
images and patterns 269
native shapes 267

paths 268 clip effect
pixel manipulation 271 apbout 157
text 270

transformation methods 271 configuration options 157

[312]

element, clipping in and out 158, 159

using 158, 159
clone() method 41
closelt() function 98
closePath() method 268
color animations

about 174

using 174,175
colorChange() function 65
config object 128

configuration options, animate() method

about 103
complete 103
duration 103
easing 103
queue 103
specialEasing 103
step 103
configuration options, blind effect
direction 156
mode 156
configuration options, bounce effect
direction 141
distance 141
mode 141
times 141
configuration options, clip effect
direction 157
mode 157
configuration options, drop effect
direction 160
mode 160
configuration options, explode effect
mode 162
pieces 162
configuration options, fold effect
horizFirst 164
mode 164
Size 164
configuration options, highlight effect
color 143
mode 143
mode 166
percent 166
configuration options, pulsate effect
mode 145
times 145

configuration options, scale effect
direction 170
from 170
origin 170
percent 170
scale 170
configuration options, shake effect
direction 147
distance 147
times 147
configuration options, size effect
from 149
origin 149
scale 149
to 149
configuration options, slide effect
direction 168
distance 168
mode 168
configuration options, transfer effect
className 152
to 152
container object 109
contentLoaded event 196
context methods, canvas element
about 267
restore() 267
save() 267
counter variable 132
createlmageData() method 271
createlinearGradient() method 270
createOverlay() function 128
createPattern() method 269
createRadialGradient() method 270
CSS3 2D transforms
about 231

Internet Explorer transforms 239, 240

jQuery, using 238
matrix 232
transform functions 232
working with 238
CSS3 3D transforms 241, 242
CSS3 animations 231
CSS3 rotation
extending 247
IE issues 246
implementing 242-246

[313]

cssHooks
using 239
cssHooks feature 186
css() method 186
custom queues
creating 65
functions, dequeueing 66

D

delay() method 55
delegate() method 227
deleteRow function 42
deleteRow variable 41
dequeue() method 55, 57
document.getElementByld() function 41
doRotate() function 245
draw() function 281
drawlmage() method 269
drop effect

about 159

configuration options 160

using 160

E

each() function 196
each() method 116, 131, 196
easeOutBounce easing function 141
easeOutBounce easing type 90
easing
about 89
linear easing 89
object literal, using 91
swing easing 89
easing functions
easing, adding to effects 174
using 173
effect API
bounce effect 141
experimenting with 173
highlight effect 143
pulsate effect 145
shake effect 147
size effect 149
transfer effect 152
using 140

effect() method 140
elements
skewing, from left to right 259-261
sliding down 74
sliding up 80, 81
visibility, toggling 83-87
element size
animating 114
element’s position
animated content viewer, animating 104, 105
animating 103
event handlers, adding for Ul elements 109,
110
post-animation callback, defining 107, 108
variables, initializing 106
widget, prepping 106
element’s rotation
animating 242-246
element’s skew
animating 254-259
eq() method 131
event handlers
adding, to Ul elements 109, 110
expander-wrapper styles 115
explode effect
about 162
configuration options 162
element, exploding 163
using 163
explorercanvas library
clearRect() method 277
using 277
extend() method 126

F

fadeln() method 20
fadeout() method 60
fadeOut() method
about 20, 27, 28
dialog, creating 29, 30
fadeToggle() method 20
about 33
extending 36
hiding 34-36
showing 34-36
fadeTo() method

[314]

about 36 getVendor() function 246, 252

opacity control 36 globalAlpha property 267
partial opacity, animating 37 globalCompositeOperation property 267
fading animations goAnim() function 214, 215
about 20 growDiagonal() function 286
configuring 20, 21 growVertical() function 286
scripting 25, 26
styling, adding 23, 24 H
underlying markup, adding 23, 24
Unified Animation APl 21 highlight effect
fading PNGs, in IE 31, 32 about 143
fallback mechanism 277 configuration options 143
fill() method 269 elements, highlighting 143
fillRect(a, b, c, d) method 267 implementing 143, 144
fillRect() method 283 history, web animation 7, 8
fillstyle property 268 hover() method 151
fillText() method 270 href attribute 109
filter attribute 45 href property 197
filter property 240, 245
find() method 41, 107 I

flatMatrix array 257

i i 107, 211
flicker effect id attribute 107,

IE

abO_L(ljt_n9292_ o fading PNGs 31-33
avoiding table rows, fading 43-46
issues 92

IE issues 246
image viewer

making scalable 113
initial page, canvas game

creating 290, 291
initial script, canvas game 292
Internet Explorer transforms 239-241
interval property 70

troubleshooting 97, 98
fly-out submenus 47, 48
fn.extend() method 121
fold effect

about 164

configuration options 164

element, folding 164, 165

using 164, 165

font-size 123 J
function
adding, to queue 61 JavaScript getElementByld() function 184
functions, custom queues join() method 246
dequeueing 66 jQuery
fx property 70 animate() method 102
fx queue animation methods 10
about 55 cssHooks feature 186
working with 56 easing 89

elements, sliding down 74-78
G elements, sliding up 79-82

getimageData() method 271 elements visibility, toggling 83-87

getJSON() method 225

[315]

fading animations 20
flicker effect 92
proximity animations 207
scrollTop() method 180
slide-down login form, creating 75-78
sliding animations 73
sliding methods 73
Unified Animation APl 21
jQuery animation plugin
configurable options, defining 124, 125
creating 121
guidelines for creating 121, 122
implementing 132-134
license, adding 124, 125
plugin method, adding to jQuery namespace
125, 126
test page, creating 122, 123
transition overlay, creating 129, 130
transitions, defining 130, 131
Ul, creating 127,128
jQuery animations 19
jquery.easing.1.3.js plugin
about 89
easing types 90
jQuery methods
about 19
fadeln() 20
fadeOut() 20
fadeToggle() 20
jQuery object
fx property 70
interval property 70
properties 70
jQuery UI
about 138
animation methods 137
class transitions 176
color animations 174
downloading 138
easing functions 173
effect() method 140
new template file 139
predefined animation effects 139
setting up 139

K

keyboard events
adding, proximity animations 215
keyCode property 216
keydown event 189
keyMatch variable 108
keyup event handler 216
key variable 107

L

linear easing 89
lineCap property 269
line-height 123
lineJoin property 269
lineTo() method 269
lineWidth property 269, 285
live() method 42
loading animation

extending 17

M

marquee element 227
marquee-ready event 228
marquee text
about 219
marquee scroller, extending 228
page, creating and styling 220-222
post links, animating 227
post list, processing 222-225
post list, retrieving 222- 225
match() function 108
matrix animation
extending 263
matrix, CSS3 2D transforms
about 232
rotation function 237
scale function 234, 235
skew function 236
translate function 233
Matrix filter 245
matrix function
about 232
examples 232

[316]

measureText() method 270 P
messagelist variable 41

methods, paths page scroll
arc(a, b, c, d, e, f) 268 animating 179-184
arcTo(a, b, c, d, e) 268 parallax effect
beginPath() 268 about 186
bezierCurveTo(a, b, ¢, d, e, f) 268 background position, animating 188, 189
closePath() 268 cssHooks feature, using 186
fill() 269 extending 190
lineTo(a, b) 269 implementing 189
moveTo(a, b) 269 stage, creating 187, 188
quadraticCurveTo(a, b, ¢, d) 269 stage, styling 187, 188
stroke() 269 parseint() function 257
methods, pixel manipulation partial opacity
createlmageData() 271 animating 37
getlmageData() 271 behavior, adding 39-41
putlmageData() 271 example page, creating 38-43
middle variable 212 pop() function 56
miterLimit property 269 posLeftMarker variable 130
mouseeenter event handler 215 post-animation callback
mouseenter event 151 defining 107, 108
mouse events postAnim function
adding, to proximity animations 214 postAnim() function 108, 110
mouseleave handler function 98 preFlat object 257
mousenter event handling function 98 preventDefault() function 78, 262
moveTo() method 269 preventDefault() method 109, 128, 184
properties
N globalAlpha 267
globalCompositeOperation 267
native shapes, canvas element 267 properties, createlmageData() method
newScroll variable 184 data 272
noConflict() method 125 height 272
normalizedDuration variable 214 length 272
not() method 109 width 272
properties, paths
(0 lineCap 269
lineloin 269

offset() method 116, 184
onload handler 281
overlay images
creating, in widget 116
overlay positions, widget
maintaining 119
overlay wrappers
creating, in widget 116-118

lineWidth 269
miterLimit 269
properties, text
font 271
textAlign 271
textBaseline 271

[317]

proximity animations
about 207
extending 216
keyboard events, adding 215, 216
mouse events, adding to 214
page, creating and styling 208, 209

page, prepping for sliding functionality 210-213

scroller, animating 213, 214
puff effect
about 166
configuration options 166
element, making disappear in puff 166, 167
using 166, 167
pulsate effect
about 145
configuration options 145
element, pulsating 145, 146
using 145, 146
purecss class 26
push() function 56
putimageData() method 271

Q

quadraticCurveTo() method 269
queue
callback function, using 62, 63
clearing 69
function, adding 61
replacing 63
single function, adding 61
viewing 57,-60
working with 56
queue execution
delaying 69
queue() method 55, 57

R

rectint variable 286

rectMotion() function 283, 289
removeClass(), class transition methods 176
removecClass() method 177

removeFrame() function 204

resetOffset variable 214

reverse() function 56

rotate function 232

rotate() method 271
rotateStrings array 245

S

Scalable Vector Graphics (SVG) 277
scale effect
about 170
configuration options 170
element, scaling 170, 172
using 170, 172
scale function 232, 234
scale() method 271
scaleX function 232
scaleY function 232
screensize object 196
scroller variable 212
scrollHeight property 184
scroll navigation
adding, to single-page navigation 193-195
scrollTo() method 197
scrollTo plugin 185, 197
scrollTop() method 179, 184
setinterval() function 204, 246, 289
setinterval() method 219
setTimeout() function 98
shadowBlur property 268
shadowColor property 268
shadowOffsetX property 268
shadowOffsetY property 268
shake effect
about 147
configuration options 147
element, shaking 147, 148
using 147, 148
show() or hide() method 155
triggering 46, 47
simple CSS hover states
enhancing, fadeln() animations used 22, 23
single-page navigation
animating 190
extending 200
individual pages, creating 190-193
scroll navigation, adding 193-195
styles, adding to pages 190-193
single-page website
creating 196-199

[318]

size effect stop() method 55, 66, 152

about 149 stop-motion animation
configuration options 149 about 201
elements, resizing 150, 151 extending 204
using 150, 151 frames, creating 202, 203
sizingMethod 240 imagery 201
sizingMethod parameter 252 implementing 204
skew function 232, 236 markup and styling, adding 202
skewRTL() function 259 running 202, 203
skew() transform technique 201
animating 247-249 stroke() method 269
basic styling 248 strokeRect(a, b, ¢, d) method 267
controls, wiring up 262 strokeStyle property 268
underlying markup, creating 248 stroketext() method 270
widget, initializing 250, 251 swing easing 89
skewX function 232 switchClass() method 176, 177
skewY function 232
slice() method 256 T
slide-down login form
creating 75-78 table rows
slideDown() method 197, 226 fading, in IE 43-45
about 73 template file
using 74 about 11, 13
working 74 project folder, creating 13
slide effect text() method 88, 211
about 168 title attribute 107
configuration options 168 toggleClass(), class transition methods 176
elements, sliding 168, 169 toggle() method 155
using 168, 169 about 52
slideToggle() method show and hide, replacing with 52, 53
about 73, 83 toString() function 59
using 83-87 transfer effect
working 83 about 152
slideUp() method configuration options 152
about 73, 79 outline, transferring from one element to an-
using 79-81 other 152-154
working 79 using 152-154
sliding methods transformation methods, canvas element
slideDown() 73 rotate() 271
slideToggle() 73 scale() 271
slideUp() 73 transform() 271
space invaders clone translate() 271
extending 300 transform functions
specialEasing option 103 matrix 232
split() function 116, 219, 257 rotate 232
split() method 109 scale 232
scaleX 232

[319]

scaleY 232

skew 232

skewX 232

skewY 232

translate 232

translateX 232

translateY 232
transform() method 271
transform property 244
transition overlay

creating 129
transitions

defining 130
transitionWidth property 133
translate function 232, 233
translate() method 271
translateX function 232
translateY function 232
transparent 123
tranzify 125
trigger() jQuery method 226

U

Unified Animation API 21
userConfig object 126

\

Vector Markup Language (VML) 277
vendor variable 244
vertical navigation menu

creating 47, 48

W

web animation

history 7, 8

Webkit 115
whiteLines() function 286
widget

skinning 111

widget skinning

about 111

animated content-viewer, adding 113
basic styling, creating 114

element size, animating 114
expanding images, creating 120
image sizes, specifying 115

image viewer, making scalable 113
new skin, adding 111-113

overlay images, creating 116

overlay positions, maintaining 119, 120
overlay wrappers, creating 116-118
underlying page, creating 114

[320]

open source

community experience distilled

PUBLISHING

Thank you for buying
jQuery 1.4 Animation Techniques: Beginner's Guide

About Packt Publishing

Packt, pronounced 'packed’, published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're

using to get the job done. Packt books are more specific and less general than the IT books
you have seen in the past. Our unique business model allows us to bring you more focused
information, giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub. com.

About Packt Open Source

In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licences, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get
some additional reward for your expertise.

open source

community experience distilled

PUBLISHING

jQuery 1.4 Reference Guide

jQuery 1.4 Reference Guide
ISBN: 978-1-849510-04-2 Paperback: 336 pages

A comprehensive exploration of the popular
JavaScript library

1. Quickly look up features of the jQuery library

2. Step through each function, method, and selector
expression in the jQuery library with an easy-to-
follow approach

3. Understand the anatomy of a jQuery script

PACKT

jQuery Ul 1.7: The User Interface Library for jQuery
ISBN: 978-1-847199-72-0 Paperback: 392 pages

Build highly interactive web applications with
ready-to-use widgets from the jQuery User
Interface library

1. Organize your interfaces with reusable widgets:
accordions, date pickers, dialogs, sliders, tabs, and
more

2. Enhance the interactivity of your pages by making
elements drag-and-droppable, sortable, selectable,
and resizable

3. Packed with examples and clear explanations of
how to easily design elegant and powerful front-end
interfaces for your web applications

Please check www.PacktPub.com for information on our titles

[open source

community experience distilled

PUBLISHING

Learning jQuery 1.3
ISBN: 978-1-847196-70-5 Paperback: 444 pages

Better Interaction Design and Web Development
with Simple JavaScript Techniques

1. Anintroduction to jQuery that requires minimal
programming experience

2. Detailed solutions to specific client-side problems

3. For web designers to create interactive elements for
their designs

4. For developers to create the best user interface for
PACKT their web applications

jQuery Reference Guide
ISBN: 978-1-847193-81-0 Paperback: 268 pages

A Comprehensive Exploration of the Popular
JavaScript Library

1. Organized menu to every method, function, and
selector in the jQuery library

2. Quickly look up features of the jQuery library
3. Understand the anatomy of a jQuery script

4. Extend jQuery's built-in capabilities with plug-ins,
and even write your own

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introduction
	Animation on the Web
	The power of animated UIs
	When to use animations
	When not to use animations
	Animation checklist

	Animating with jQuery
	The template file
	Creating a project folder

	A basic animation example
	Time for action – creating an animated loader
	Summary

	Chapter 2: Fading Animations
	Fading animations
	Configuring the animations with arguments
	jQuery's Unified Animation API
	Enhancing simple CSS hover states with fadeIn

	Time for action – adding the underlying markup and styling
	Time for action – scripting the animation
	Fading elements out
	Time for action – creating the dialog
	Fading PNGs in IE
	Using fadeToggle() for convenient state-checking logic
	Time for action – showing and hiding with fadeToggle()
	Greater opacity control with fadeTo()
	Animating to partial opacity

	Time for action – creating the example page
	Time for action – adding the behavior
	Fading table rows in Internet Explorer

	Time for action – fading table-rows in IE
	Showing and hiding
	Flyout submenus with jQuery's show/hide logic

	Time for action – animations with show/hide
	Animated toggling

	Time for action – replacing show and hide with toggle
	Summary

	Chapter 3: Managing Animations
	Working with the queue
	Viewing the queue

	Time for action - viewing the queue
	Adding a function to the queue

	Time for action – adding a single function to the queue
	Using a callback function to keep the queue moving

	Time for action – keeping the queue running
	Replacing the queue

	Time for action – replacing the queue
	Ensuring custom queues iterate correctly
	Time for action – dequeueing functions
	Stopping an animation
	Time for action – preventing animation build-up using
	the stop method
	Delaying queue execution
	Clearing the queue
	Useful properties of the jQuery object
	Globally disabling animations
	Changing the default frame rate

	Summary

	Chapter 4: Sliding Animations
	Sliding elements into view
	Time for action – creating a slide-down login form
	Sliding elements out of view
	Time for action – sliding elements up
	Toggling the slide
	Time for action – using slideToggle
	Easing
	Time for action – adding easing
	Using an object literal to add easing

	Time for action – using the alternative argument format
	The flicker effect
	Time for action – avoiding the flicker effect
	Time for action – fixing the flicker
	Summary

	Chapter 5: Custom Animations
	The animate method
	Per-property easing
	An alternative syntax for animate()

	Animating an element's position
	Time for action – creating an animated content viewer
	Time for action – initialising variables and prepping the widget
	Time for action – defining a post-animation callback
	Time for action – adding event handlers for the UI elements
	Skinning the widget
	Time for action – adding a new skin
	Time for action – creating the underlying page and basic styling
	Time for action – defining the full and small sizes of the images
	Time for action – creating the overlay images
	Time for action – creating the overlay wrappers
	Time for action – maintaining the overlay positions
	Creating a jQuery animation plugin
	Time for action – creating a test page and adding some styling
	Creating the plugin
	Time for action – adding a license and defining
	configurable options
	Time for action – adding our plugin method to the
	jQuery namespace
	Time for action – creating the UI
	Time for action – creating the transition overlay
	Time for action – defining the transitions
	Using the plugin
	Summary

	Chapter 6: Extended Animations with jQuery UI
	Obtaining and setting up jQuery UI
	A new template file

	The new effects added by jQuery UI
	Using the effect API
	The bounce effect
	Configuration options

	Time for action – using the bounce effect
	The highlight effect
	Configuration options

	Time for action – highlighting elements
	The pulsate effect
	Configuration options

	Time for action – making an element pulsate
	The shake effect
	Configuration options

	Time for action – shaking an element
	The size effect
	Configuration options

	Time for action – resizing elements
	The transfer effect
	Configuration options

	Time for action – transferring the outline of one element
	to another
	Using effects with show and hide logic
	The blind effect
	Configuration options

	Time for action – using the blind effect
	The clip effect
	Configuration options

	Time for action – clipping an element in and out
	The drop effect
	Configuration options

	Time for action – using the effect
	The explode effect
	Configuration options

	Time for action – exploding an element
	The fold effect
	Configuration options

	Time for action – folding an element away
	The puff effect
	Configuration options

	Time for action – making an element disappear in a puff
	The slide effect
	Configuration options

	Time for action – sliding elements in and out of view
	The scale effect
	Configuration options

	Time for action – scaling an element
	Easing functions
	Time for action – adding easing to effects
	Color animations
	Time for action – animating between colors
	Class transitions
	Time for action – transitioning between classes
	Summary

	Chapter 7: Full Page Animations
	Animated page scroll
	Time for action – creating the page that will scroll
	and its styling
	Time for action – animating the scroll
	The illusion of depth with parallax
	A little help from the new cssHooks functionality

	Time for action – creating the stage and adding the styling
	Time for action – animating the background position
	Animated single-page navigation
	Time for action – creating the individual pages
	and adding the styles
	Time for action – adding the scroll navigation
	Stop-motion animation
	Imagery
	Technique

	Time for action – adding the markup and styling
	Time for action – creating the frames and running the animation
	Summary

	Chapter 8: Other Popular Animations
	Proximity animations
	Time for action – creating and styling the page
	Time for action – prepping the page for sliding functionality
	Time for action – animating the scroller
	Time for action – adding the mouse events
	Time for action – adding keyboard events
	Animated page headers
	Time for action – creating an animated header
	Marquee text
	Time for action – creating and styling the underlying page
	Time for action – retrieving and processing the post list
	Time for action – animating the post links
	Summary

	Chapter 9: CSS3 Animations
	CSS3 2D transforms
	Understanding the matrix
	Translate
	Scale
	Skew
	Rotation

	Working with transforms
	jQuery and transforms
	Internet Explorer transforms

	CSS3 3D transforms
	Animated rotation with jQuery and CSS3
	Time for action – animating an element's rotation
	Problems with IE

	Animated skewing
	Time for action – creating the underlying markup
	and basic styling
	Time for action – initializing the widget
	Time for action – animating an element's skew
	Time for action – skewing an element from left to right
	Time for action – wiring up the controls
	Summary

	Chapter 10: Canvas Animations
	The canvas API
	The canvas element
	Context methods
	Native shapes
	Paths
	Images and patterns
	Text
	Transformation methods
	Pixel manipulation

	Drawing to the canvas
	Time for action – drawing to the canvas
	Canvas, IE, and the alternatives
	API methods that simply do not work

	Time for action – making our code compatible with IE
	Animating the canvas
	Time for action – creating an animation on the canvas
	Time for action – animate the white crosses
	Time for action – animating the red crosses
	Creating a canvas game
	Time for action – creating the initial page
	Time for action – the initial script
	Time for action – adding the aliens to the page
	Time for action – moving the aliens
	Time for action – adding handlers to control the ship
	Summary

	Pop Quiz Answers
	Chapter 1
	Basic animation with jQuery

	Chapter 2
	Using fadeIn
	Using fadeOut
	Using fadeToggle()
	Using fadeTo
	Using show and hide

	Chapter 3
	Viewing the queue
	Adding new items to the array

	Keeping the queue running
	Replacing the queue
	Stopping an animation

	Chapter 4
	Sliding elements down
	Sliding elements up
	Using slideToggle
	Using easing
	Fixing the flicker

	Chapter 5
	Creating an animated content-viewer
	Creating expanding images
	Creating a plugin

	Chapter 6
	Using the effect API
	Using show/hide logic
	Easing, color, and class animations

	Chapter 7
	Animating page scroll
	Implementing the parallax effect
	Creating a single-page website
	Implementing stop-motion animation with jQuery

	Chapter 8
	Implementing proximity animations
	Creating a marquee scroller

	Chapter 9
	Implementing CSS3 rotation
	Using the matrix

	Chapter 10
	Drawing to the canvas
	Supporting IE
	Animating the canvas
	Creating canvas-based games

	Index

