
www.allitebooks.com

http://www.allitebooks.org

jQuery 1.4 Animation Techniques
Beginner's Guide

Quickly master all of jQuery's animaion methods and build
a toolkit of ready-to-use animaions using jQuery 1.4

Dan Wellman

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

jQuery 1.4 Animation Techniques
Beginner's Guide

Copyright © 2011 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmited in any form or by any means, without the prior writen permission of the
publisher, except in the case of brief quotaions embedded in criical aricles or reviews.

Every efort has been made in the preparaion of this book to ensure the accuracy of the
informaion presented. However, the informaion contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark informaion about all of the
companies and products menioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this informaion.

First published: March 2011

Producion Reference: 1140311

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-849513-30-2

www.packtpub.com

Cover Image by Filippo (Filosarti@tiscali.it)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author

Dan Wellman

Reviewers

Shaiful Islam

Ben Nadel

Cyril Pierron

Acquisiion Editor

Sarah Cullington

Development Editor

Roger D'souza

Technical Editor

Conrad Sardinha

Indexer

Hemangini Bari

Editorial Team Leader

Akshara Aware

Project Team Leader

Priya Mukherji

Project Coordinator

Sneha Harkut

Proofreader

Aaron Nash

Producion Coordinator

Melwyn D'sa

Cover Work

Melwyn D'sa

www.allitebooks.com

http://www.allitebooks.org

Foreword

Since the irst jQuery homepage in 2006, an interacive example introduced visitors to jQuery
with a single line of code, and a buton to run that code. When clicked, it added a class to a
hidden paragraph, and animated that paragraph to become visible.

Today, in late 2010, the API documentaion has 15 methods listed in the Efects category.
These provide built-in animaions for fading and sliding, as well as various ways to create
custom animaions. When combined with color and class animaions and custom easings
that jQuery UI provides, there are even more ways to create animaions.

A good rule of thumb for using animaions is to use slides when showing elements within
the pagelow, and fades for overlays, like a toolip. But that's just a rule of thumb, and with
all the tools available there's a lot more opportunity to improve interacions, as well as
messing them up.

With that in mind, a full book on animaions starts to make a lot of sense. It makes even
more sense when also taking into account upcoming technologies which aren't bound to
jQuery directly, like CSS3 animaions or animated canvas drawings.

As a tech reviewer I've worked with Dan on his jQuery UI 1.6 and jQuery UI 1.7 books. At the
ime the jQuery UI team was sill iguring out the scope and exact direcion of the project,
including several direcion changes at the ime when Dan was wriing the irst book. Despite
these challenges Dan did a great job providing documentaion and extensive examples on
how to use and combine the widgets and interacions jQuery UI provides.

With this book Dan brings his experience in wriing on jQuery topics to teach you when
and how to use animaions to create beter user experiences. I hope it serves you well.

Jörn Zaeferer

jQuery UI development lead, plugin author, and QUnit maintainer

www.allitebooks.com

http://www.allitebooks.org

About the Author

Dan Wellman is an author and web developer based on the South coast of the UK. By day
he works alongside some of the most talented people he has had the pleasure of calling
colleagues, for a small, yet accomplished digital agency called Design Haus. By night he
writes books and tutorials on a range of frontend topics. He is hopelessly addicted to jQuery.
His life is enriched by four wonderful children, a beauiful wife, and a close circle of family
and friends. This is his ith book.

I would like to thank the hugely supporive and paient editorial team at
Packt, without whom this book would not exist. I would also like to thank
the reviewers, especially Ben Nadel and Cyril Pierron, who put aside
their own personal projects and dedicated countless hours to ensuring
the book's technical accuracy. I'd also like to say a big Hey! to some of
my closest friends, in no paricular order; Andrew Herman, Steev Bishop,
Aaron Matheson, Eamon O'Donoghue, James Zabiela, Mike Woodford, and
John Adams.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Shaiful Islam completed his graduaion in Computer Science and Engineering (CSE) from
IIUC (Internaional Islamic University Chitagong), and loves web development and PHP.

He is a Sotware Engineer, with three years of experience in web development and a
keen lover of web technology. He also loves CSS, JQuery, CodeIgniter, Cakephp, and Zend
Framework, which showed him the way to develop his career in web development and the
programming ield.

His moto is: Work through best approach, commitment, skill, and keep smiling.

Currently he is working for "bGlobal Sourcing LLC" as a Sotware Engineer.

I would like to thank all of my friends, colleagues, and those senior
brothers who reviewed this type of book before and from whom I got
inspiraion. Special thanks to everyone at Packt Publishing.

Ben Nadel is the chief sotware engineer at Epicenter Consuling, a Manhatan-based web
applicaion development irm specializing in innovaive custom sotware that transforms
the way its clients do business. He is also an Adobe Community Professional as well as an
Adobe Ceriied Professional in Advanced ColdFusion. In his spare ime, he blogs extensively
about all aspects of obsessively thorough web applicaion development at http://www.
bennadel.com/.

www.allitebooks.com

http://www.allitebooks.org

Cyril Pierron is an engineer, a web addict, tech savvy, and life curious. He started
programming at age 8, and has been working in telecommunicaions for the past 12 years.
He is married and a father of a lovely baby girl.

I would actually like to thank Twiter which gave me the opportunity to see
Packt Publishing message when they were looking for reviewers. Obviously
thanks to the Packt Publishing team for giving me the chance to work on
one of their itles. Lots of thanks to Dan Wellman who I actually followed
on Twiter previously to realizing I was reviewing one of his books. This is
an amazing piece that draws inspiraion and Dan is the most cheerful,
open minded, and supporive person. Finally thanks to my wife who
showed quite some paience and support when I kept working on this
book ater hours.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support iles, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support iles and downloads related to
your book.

Did you know that Packt ofers eBook versions of every book published, with PDF and ePub
iles available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are enitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collecion of free technical aricles, sign up
for a range of free newsleters and receive exclusive discounts and ofers on Packt books
and eBooks.

http://PacktLib.PacktPub.com

Do you need instant soluions to your IT quesions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's enire library of books.

Why Subscribe?
 � Fully searchable across every book published by Packt

 � Copy and paste, print and bookmark content

 � On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine enirely free books. Simply use your login credenials for
immediate access.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

For Pat Spacagna, the greatest mother-in-law I could have wished for. You are fondly
remembered, but sorely missed. May you rest in peace always.

Table of Contents
Preface 1

Chapter 1: Introducion 7
Animaion on the Web 7
The power of animated UIs 8

When to use animaions 9
When not to use animaions 10
Animaion checklist 10

Animaing with jQuery 10
The template ile 11

Creaing a project folder 13
A basic animaion example 13
Time for acion – creaing an animated loader 14
Summary 17

Chapter 2: Fading Animaions 19
Fading animaions 20

Coniguring the animaions with arguments 20
jQuery's Uniied Animaion API 21
Enhancing simple CSS hover states with fadeIn 22

Time for acion – adding the underlying markup and styling 23
Time for acion – scriping the animaion 25
Fading elements out 27
Time for acion – creaing the dialog 29
Fading PNGs in IE 31
Using fadeToggle() for convenient state-checking logic 33
Time for acion – showing and hiding with fadeToggle() 34
Greater opacity control with fadeTo() 36

Animaing to parial opacity 37
Time for acion – creaing the example page 38

Table of Contents

[ii]

Time for acion – adding the behavior 39
Fading table-rows in Internet Explorer 43

Time for acion – fading table-rows in IE 43
Showing and hiding 46

Flyout submenus with jQuery's show/hide logic 47
Time for acion – animaions with show/hide 49

Animated toggling 52
Time for acion – replacing show and hide with toggle 52
Summary 53

Chapter 3: Managing Animaions 55
Working with the queue 56

Viewing the queue 57
Time for acion - viewing the queue 57

Adding a funcion to the queue 61
Time for acion – adding a single funcion to the queue 61

Using a callback funcion to keep the queue moving 62
Time for acion – keeping the queue running 62

Replacing the queue 63
Time for acion – replacing the queue 63
Ensuring custom queues iterate correctly 65
Time for acion – dequeueing funcions 66
Stopping an animaion 66
Time for acion – prevening animaion build-up using the stop method 68
Delaying queue execuion 69
Clearing the queue 69
Useful properies of the jQuery object 70

Globally disabling animaions 70
Changing the default frame rate 70

Summary 71

Chapter 4: Sliding Animaions 73
Sliding elements into view 74
Time for acion – creaing a slide-down login form 75
Sliding elements out of view 79
Time for acion – sliding elements up 80
Toggling the slide 83
Time for acion – using slideToggle 83
Easing 89
Time for acion – adding easing 90

Using an object literal to add easing 91
Time for acion – using the alternaive argument format 91

Table of Contents

[iii]

The licker efect 92
Time for acion – avoiding the licker efect 92
Time for acion – ixing the licker 97
Summary 99

Chapter 5: Custom Animaions 101
The animate method 102

Per-property easing 102
An alternaive syntax for animate() 103

Animaing an element's posiion 103
Time for acion – creaing an animated content viewer 104
Time for acion – iniializing variables and prepping the widget 106
Time for acion – deining a post-animaion callback 107
Time for acion – adding event handlers for the UI elements 109
Skinning the widget 111
Time for acion – adding a new skin 111
Time for acion – creaing the underlying page and basic styling 114
Time for acion – deining the full and small sizes of the images 115
Time for acion – creaing the overlay images 116
Time for acion – creaing the overlay wrappers 116
Time for acion – maintaining the overlay posiions 119
Creaing a jQuery animaion plugin 121
Time for acion – creaing a test page and adding some styling 122
Creaing the plugin 124
Time for acion – adding a license and deining conigurable opions 124
Time for acion – adding our plugin method to the jQuery namespace 125
Time for acion – creaing the UI 127
Time for acion – creaing the transiion overlay 129
Time for acion – deining the transiions 130
Using the plugin 132
Summary 135

Chapter 6: Extended Animaions with jQuery UI 137
Obtaining and seing up jQuery UI 138

A new template ile 139
The new efects added by jQuery UI 139

Using the efect API 140
The bounce efect 141

Coniguraion opions 141

Time for acion – using the bounce efect 141
The highlight efect 143

Coniguraion opions 143

Table of Contents

[iv]

Time for acion – highlighing elements 143
The pulsate efect 145

Coniguraion opions 145

Time for acion – making an element pulsate 145
The shake efect 147

Coniguraion opions 147

Time for acion – shaking an element 147
The size efect 149

Coniguraion opions 149

Time for acion – resizing elements 150
The transfer efect 152

Coniguraion opions 152

Time for acion – transferring the outline of one element to another 152
Using efects with show and hide logic 155

The blind efect 155
Coniguraion opions 156

Time for acion – using the blind efect 156
The clip efect 157

Coniguraion opions 157

Time for acion – clipping an element in and out 158
The drop efect 159

Coniguraion opions 160

Time for acion – using the efect 160
The explode efect 162

Coniguraion opions 162

Time for acion – exploding an element 163
The fold efect 164

Coniguraion opions 164

Time for acion – folding an element away 164
The puf efect 166

Coniguraion opions 166

Time for acion – making an element disappear in a puf 166
The slide efect 168

Coniguraion opions 168

Time for acion – sliding elements in and out of view 168
The scale efect 170

Coniguraion opions 170

Time for acion – scaling an element 170
Easing funcions 173
Time for acion – adding easing to efects 174
Color animaions 174
Time for acion – animaing between colors 174
Class transiions 176

Table of Contents

[v]

Time for acion – transiioning between classes 176
Summary 178

Chapter 7: Full Page Animaions 179
Animated page scroll 179
Time for acion – creaing the page that will scroll and its styling 180
Time for acion – animaing the scroll 183
The illusion of depth with parallax 186

A litle help from the new cssHooks funcionality 186
Time for acion – creaing the stage and adding the styling 187
Time for acion – animaing the background posiion 188
Animated single-page navigaion 190
Time for acion – creaing individual pages and adding the styles 190
Time for acion – adding the scroll navigaion 193
Stop-moion animaion 201

Imagery 201
Technique 201

Time for acion – adding the markup and styling 202
Time for acion – creaing the frames and running the animaion 202
Summary 205

Chapter 8: Other Popular Animaions 207
Proximity animaions 207
Time for acion – creaing and styling the page 208
Time for acion – prepping the page for sliding funcionality 210
Time for acion – animaing the scroller 213
Time for acion – adding the mouse events 214
Time for acion – adding keyboard events 215
Animated page headers 217
Time for acion – creaing an animated header 218
Marquee text 219
Time for acion – creaing and styling the underlying page 220
Time for acion – retrieving and processing the post list 222
Time for acion – animaing the post links 227
Summary 229

Chapter 9: CSS3 Animaions 231
CSS3 2D transforms 231

Understanding the matrix 232
Translate 233
Scale 234
Skew 236
Rotaion 237

Working with transforms 238

Table of Contents

[vi]

jQuery and transforms 238
Internet Explorer transforms 239

CSS3 3D transforms 241
Animated rotaion with jQuery and CSS3 242
Time for acion – animaing an element's rotaion 242

Problems with IE 246
Animated skewing 247
Time for acion – creaing the underlying markup 248
and basic styling 248
Time for acion – iniializing the widget 250
Time for acion – animaing an element's skew 254
Time for acion – skewing an element from let to right 259
Time for acion – wiring up the controls 262
Summary 263

Chapter 10: Canvas Animaions 265
The canvas API 266

The canvas element 266
Context methods 267
Naive shapes 267
Paths 268
Images and paterns 269
Text 270
Transformaion methods 271
Pixel manipulaion 271

Drawing to the canvas 272
Time for acion – drawing to the canvas 272
Canvas, IE, and the alternaives 277

API methods that simply do not work 277
Time for acion – making our code compaible with IE 278
Animaing the canvas 281
Time for acion – creaing an animaion on the canvas 282
Time for acion – animaing the white crosses 284
Time for acion – animaing the red crosses 286
Creaing a canvas game 290
Time for acion – creaing the iniial page 290
Time for acion – the iniial script 292
Time for acion – adding the aliens to the page 293
Time for acion – moving the aliens 294
Time for acion – adding handlers to control the ship 297
Summary 301

Table of Contents

[vii]

Pop Quiz Answers 303
Chapter 1 303

Basic animaion with jQuery 303
Chapter 2 303

Using fadeIn 303
Using fadeOut 303
Using fadeToggle() 304
Using fadeTo 304
Using show and hide 304

Chapter 3 304
Viewing the queue 304
Adding new items to the array 304
Keeping the queue running 305
Replacing the queue 305
Stopping an animaion 305

Chapter 4 305
Sliding elements down 305
Sliding elements up 305
Using slideToggle 306
Using easing 306
Fixing the licker 306

Chapter 5 306
Creaing an animated content-viewer 306
Creaing expanding images 306
Creaing a plugin 307

Chapter 6 307
Using the efect API 307
Using show/hide logic 307
Easing, color, and class animaions 307

Chapter 7 307
Animaing page scroll 307
Implemening the parallax efect 308
Creaing a single-page website 308
Implemening stop-moion animaion with jQuery 308

Chapter 8 308
Implemening proximity animaions 308
Creaing a marquee scroller 308

Chapter 9 309
Implemening CSS3 rotaion 309
Using the matrix 309

Chapter 10 309

www.allitebooks.com

http://www.allitebooks.org

Drawing to the canvas 309
Supporing IE 309
Animaing the canvas 310
Creaing canvas-based games 310

Index 311

Preface
jQuery is a cross-browser JavaScript library designed to simplify the client-side scriping of
HTML, and is the most popular JavaScript library in use today. Using the features ofered by
jQuery, developers are able to create dynamic web pages. This book will act as a resource for
you to create animaion and advanced special efects in your web applicaions, by following
the easy-to-understand steps menioned in it.

jQuery 1.4 Animaion Techniques: Beginner's Guide will allow you to master animaion in
jQuery to produce slick and atracive interfaces that respond to your visitors' interacions.
You will learn everything you need to know about creaing engaging and efecive web
page animaions using jQuery. The book uses many examples and explains how to create
animaions using an easy, step-by-step, beginner's guide approach.

This book provides various examples that gradually build up the reader's knowledge and
pracical experience in using the jQuery API to create stunning animaions. The book starts
of by explaining how animaions make your user interface interacive and atracive.
It explains the various methods used to make the element being animated appear or
disappear. It provides a set of steps to create simple animaions and show fading animaions.

You can later learn how to make complex animaions by chaining diferent efects
together as well as how to halt a currently running applicaion. You will ind out how
to slide your animaion elements and learn to create custom animaions that can be
complex and specialized.

You will ind out how to obtain and set up the jQuery UI—the oicial user interface library
for jQuery. This book will tell you how to animate a page's background image, and will teach
you how to make images scroll in a certain direcion and at a certain speed depending on the
movement of the mouse pointer.

Preface

[2]

What this book covers
Chapter 1, Introducion covers the basics including downloading jQuery and seing up a
development area, a brief history of animaion on the Web, when and where not to use
animaion, how animaion can enhance an interface, and the animaion methods exposed
by jQuery. A basic example of animaion is also covered.

Chapter 2, Fading Animaions looks at the fading family of animaion methods including
fading elements in and out, fade toggling, triggering animaions with show(), hide(),
and toggle(), and fading an element to a speciic opacity.

Chapter 3, Managing Animaions covers the animaion queue and the methods jQuery
provides for managing it. We see how to clear the queue, how to add funcions to it, and
how to clear it. We see how to add a delay between queued items and how to prevent
animaions building up in the queue when they are not required.

Chapter 4, Sliding Animaions looks at jQuery's sliding animaion and covers how to slide
elements in an out of view and how to toggle the slide based on their current state. We also
look at how CSS posiioning can afect animaions and how to avoid a common pifall when
using these methods in a drop-down menu.

Chapter 5, Custom Animaions focuses on the animate() method, which jQuery provides
for us as a means of creaing custom animaions not already predeined. This extremely
powerful method allows us to animate almost any CSS-style property to easily create
complex and atracive animaions.

Chapter 6, Extended Animaions with jQuery UI looks at the addiional efects added by
jQuery UI, the oicial UI library built on top of jQuery. We look at each of the 14 new
efects as well as covering the easing funcions built into the library.

Chapter 7, Full Page Animaions looks at animaions that form the main focus of the page.
Techniques we cover include animaing page scroll, creaing a parallax efect, and creaing
basic stop-moion animaions.

Chapter 8, Other Popular Animaions looks at some common types of animaions found on
the web including proximity animaions triggered by the mouse pointer, animated headers,
and a modern-day equivalent to the marquee element.

Chapter 9, CSS3 Animaions covers how we can use CSS3 to create atracive animaions
driven by the latest CSS transforms and how jQuery can be used to make the process easier,
including the latest cssHooks funcionality.

Chapter 10, Canvas Animaions looks at the HTML5 canvas element and shows how it
can be used to create stunning animaions without the use of Flash or other proprietary
technologies. The book closes with an in-depth example teaching how to create an
interacive game using nothing but HTML and JavaScript.

Preface

[3]

What you need for this book
To get the most out of this book you should have some knowledge of frontend development,
preferably including JavaScript. Experience with jQuery is also preferable, but is not essenial
as all techniques used in the book are discussed in full.

You should have a computer capable of running the latest browsers and preferably an Internet
connecion. A code ediing development sotware package will be of help, but again is not
essenial provided you have a text editor of some descripion.

Who this book is for
This book is writen for web designers and frontend developers who already have good
knowledge of HTML and CSS, and some experience with jQuery. If you want to learn how to
animate the user interface of your web applicaions with jQuery, then this book is for you.

Conventions
In this book, you will ind several headings appearing frequently.

To give clear instrucions of how to complete a procedure or task, we use:

Time for action – heading
1.	 Acion 1

2.	 Acion 2

3.	 Acion 3

Instrucions oten need some extra explanaion so that they make sense, so they are
followed with:

What just happened?
This heading explains the working of tasks or instrucions that you have just completed.

You will also ind some other learning aids in the book, including:

Pop quiz – heading
These are short muliple choice quesions intended to help you test your own understanding.

Preface

[4]

Have a go hero – heading
These set pracical challenges and give you ideas for experimening with what you
have learned.

You will also ind a number of styles of text that disinguish between diferent kinds of
informaion. Here are some examples of these styles, and an explanaion of their meaning.

Code words in text are shown as follows: "The fadeIn() and fadeOut() methods perform
the least complex animaions available via jQuery".

A block of code is set as follows:

$("#fader").fadeOut(function() {

 console.log($(this).queue());

}).fadeIn().fadeOut().fadeIn();

When we wish to draw your atenion to a paricular part of a code block, the relevant lines
or items are set in bold:

subMenuParent.mouseenter(function() {

 $(this).find("ul").toggle("fast");

});
New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "In this case, we clear the
whole canvas, removing the space ship and any surviving aliens, and print the text GAME
OVER! to the center of the canvas".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[5]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to
develop itles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and menion the book itle via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in
the SUGGEST A TITLE form on www.packtpub.com or e-mail suggest@packtpub.com.

If there is a topic that you have experise in and you are interested in either wriing or
contribuing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code iles for all Packt books you have purchased from your
account at http://www.PacktPub.com. If you purchased this book elsewhere, you can
visit http://www.PacktPub.com/support and register to have the iles e-mailed directly
to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you ind a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustraion and help us improve subsequent versions of this book. If you
ind any errata, please report them by visiing http://www.packtpub.com/support,
selecing your book, clicking on the errata submission form link, and entering the details
of your errata. Once your errata are veriied, your submission will be accepted and the
errata will be uploaded on our website, or added to any list of exising errata, under the
Errata secion of that itle. Any exising errata can be viewed by selecing your itle from
http://www.packtpub.com/support.

Preface

[6]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protecion of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the locaion
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecing our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

1
Introduction

Welcome to the jQuery 1.4 Animaion Techniques: Beginner's Guide book. Over
the course of the book we'll look at each and every method that produces or
controls animaions available in the jQuery JavaScript library. We'll see how
the methods are used, the arguments they are able to accept, and the diferent
behavior they produce. We'll also look at how to use a range of accompanying
resources including selected jQuery plugins and the jQuery UI library.

In this introductory chapter, we'll look at the following topics:

 � A brief history of animaion on the Web

 � Why animaing your UIs is important

 � Animaion methods provided by jQuery

 � The template ile used by each of the examples

 � A basic animaion example

Animation on the Web
In 1989 Compuserve released GIF89A, an enhanced version of the popular GIF image format
which allowed a sequence of frames to be stored as a single image and played by supporing
sotware.

The GIF format was already popular on what passed for the Internet in those days
(remember, the World Wide Web didn't even exist unil 1991) due to its small ile size,
lossless compression, and wide support. The enhanced version, which allowed animaions
that anyone could create themselves provided they had supporing sotware, quickly became
popular also.

Introducion

[8]

In addiion to animated GIFs, browser vendors added support for proprietary HTML elements
that handled animaion naively, such as the <blink> and <marquee> elements, which
added diferent animated efects to text.

Neither of these elements was paricularly atracive or successful and the W3C, as well as
leading industry accessibility and usability experts, advised against their use in most cases.
Diferent browsers at the ime supported one or the other of these elements but not both.
Both elements were added by their respecive vendors as part of the original browser wars.

In the late 1990s, popular browsers added support for a technique known as Dynamic HTML
(DHTML), which allowed scriping languages to modify the contents of a page ater the
page had loaded. DHTML wasn't any single technology, but rather a collecion of techniques
(JavaScript, CSS, the DOM, and so on) that worked together to enable a basic level of
interacivity and/or animaion.

In fact, DHTML made it possible to create quite advanced animaions, but restricions in
the early implementaions of the required technologies, as well as hugely varying browser
support, made DHTML tricky at best.

This era also saw the release and rise of Flash (and Shockwave, a compeing technology that
was eventually subsumed by Macromedia), a vector and raster graphics format that allowed
audio and video streaming, frame-by-frame animaion, and a host of other features. Flash
quickly became popular and at the ime of wriing is sill the number one format for
web-based video, browser-based gaming, and adverising.

Gradual standardizaion of the DOM across (most) browsers, as well as the rise of JavaScript
libraries such as jQuery, which abstracted away the diferences that remained between
browsers, have opened up animaion to a much wider range of people than ever before.
The term DHTML isn't oten used these days because of its connotaions with poor support
between browsers, but the underlying principles and techniques that drive many interacive
and animated sites remain similar.

Today, in addiion to the animaions made plausible and accessible by JavaScript libraries
we have much newer, much more exciing possibiliies with CSS3 and naive HTML elements
such as the <canvas> element, which provides complete pixel-level control over an area
of the page. We'll be looking at some CSS3 animaion techniques, as well as the <canvas>
element in more detail towards the end of the book. Flash-based animaion is on the decline
for the irst ime this century, and new technologies are poised on the horizon.

The power of animated UIs
Modern operaing systems use animaions constantly to engage their users and to create a
more compelling compuing experience. Used in the right way, animaions provide assistance
to the users of the system, to lead and guide them through diferent tasks, provide context
or feedback, and reinforce posiive acions.

Chapter 1

[9]

A good example of this is the way that applicaions are minimized in Windows 7, or OSX—the
applicaion appears to squish down into the icon on the taskbar/dock, which shows the user
where to go when they want to return to the applicaion. It's the simple details like this that
can be the most efecive.

Good animaions can lend an air of sleek professionalism to an interface and make
it appear more advanced or more modern. Apple's iPhone (or iPad) is a perfect
example—the seamless use of subtle animaions and transiions within the operaing
system and its applicaions allow the user to connect with the device in a profoundly
saisfying and immersive way. Anything that appears or disappears is faded smoothly
in or out, and menus and content panels slide in or out from the top or the sides. Sudden
events can unsetle or distract users, but a well-imed animaion can help to make them
aware that something is happening or something is about to happen.

Be warned however—badly executed, clumsy, or overly pointless animaions can do the
opposite, making your interface appear basic, poorly designed, or inferior. No animaion
can be beter than poor animaion. Even if your applicaion works perfectly, superluous
animaions can leave your users feeling frustrated and cause them to forgo your applicaion
or website.

Desktop computers and a rapidly growing number of mobile and hand-held devices are
easily powerful enough to handle quite complex animaions, and with integrated hardware
acceleraion and more reined CSS3 and HTML5 making its way into the latest browsers, the
possibiliies of what can be achieved on the Web are increasing exponenially.

When to use animations
Animaions can make a great impression and enhance the user experience in the
following situaions:

 � When showing or hiding windows, pop ups, and content panels

 � When something is moved to a diferent area of the window or page

 � When something has changed state on the page as a result of the acion of the user

 � When something is transiioning between diferent states

 � To lead the user to a speciic call to acion or bring their atenion
to something important

www.allitebooks.com

http://www.allitebooks.org

Introducion

[10]

When not to use animations
Too many animaions or animaions in unnecessary places can be damaging. Try and avoid
animaions, or at least give them serious consideraion, in the following situaions:

 � When an acion needs to be repeated very frequently by the user

 � Where the capabiliies of the devices known to use the system are likely to be
incapable of displaying the animaion adequately

 � On ime-sensiive acions or processes

Bear in mind that these are guidelines only, not laws which must be obeyed at all costs, and
they are certainly not deiniive. There are few situaions where animaions should never,
ever be used and few situaions where they must always be used.

Use your judgment to determine whether an animaion is suitable for your applicaion or
page and its intended audience. If possible, give your users the chance to enable or disable
animaions based on their own personal preferences.

Animation checklist
Before implemening an animaion in our pages or applicaions, consider the following
checklist of quesions:

 � Is the animaion appropriate for your target users?

 � Is the animaion pracical?

 � Does the animaion add value or enhance the user experience?

 � Will the animaion run at appropriate speeds on the devices that are most likely to
be used?

If you can answer yes to all of the above, the animaion will probably be a posiive feature. If
you answered no to any of these quesions, you probably need to stop and think about what
you are trying to achieve by adding the animaion, and whether or not it could be beter
achieved in some other manner.

Animating with jQuery
jQuery provides a range of animaion methods naively, without the use of addiional efects
libraries or plugins. There are however, many plugins contributed from the online community,
including jQuery UI, the oicial UI library for jQuery, which extend jQuery's animaion
capabiliies. Naively, jQuery provides methods that add sliding and fading behavior with
minimal coniguraion, and which work cross-browser. It also exposes methods related to
managing the animaion queue, and provides a means for creaing custom animaions that

Chapter 1

[11]

work on almost all numerical CSS styles. Over the course of this book, we'll look at every
animaion method that the library contains in detail. These methods are listed below:

 � animate()

 � clearQueue()

 � delay()

 � dequeue()

 � fadeIn()

 � fadeout()

 � fadeTo()

 � fadeToggle()

 � hide()

 � queue()

 � show()

 � slideDown()

 � slideToggle()

 � slideUp()

 � stop()

 � toggle()

All in all, it gives us a powerful and robust environment to easily add almost any type
of animaion that we can conceive.

Animaion is also a popular theme for plugins, with many available plugins that bring
diferent types of animaions to our ingerips, for instant implementaion with minimal
coniguraion. We'll look at several plugins later in the book.

The template ile
Each of the example iles we'll create throughout the course of this book will rely on a
common set of elements. Rather than repeatedly showing these same elements in every
single code secion and example in the book, I'll show you them just once now:

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="utf-8">

 <title></title>

 <link rel="stylesheet" href="css/.css">

 <!--[if lte IE 8]>

Introducion

[12]

 <script src=
 http://html5shiv.googlecode.com/svn/trunk/html5.js"></script>

 <![endif]-->

 </head>

 <body>

 <script src="js/jquery.js"></script>

 <script>

 (function($){

 })(jQuery);

 </script>

 </body>

</html>

Downloading the example code

You can download the example code iles for all Packt books you have purchased
from your account at http://www.PacktPub.com. If you purchased this
book elsewhere, you can visit http://www.PacktPub.com/support and
register to have the iles e-mailed directly to you.

Save a copy of this ile now and call it template.html. This is the base ile that we'll use
for every single example, so when we start working through the examples and I say "add
the following markup to the <body> of the template ile", I mean insert it directly between
the opening <body> tag and the irst <script> tag in the template ile, as shown above.
Whenever we add any JavaScript to the template ile, it will be added within the anonymous
funcion in the second <script> tag.

Let's just take a look at what the template ile contains. We start out with the HTML5
doctype declaraion as we'll be using plenty of HTML5 elements in our examples. We also set
the lang atribute of the <html> element to en, and <meta> tag with its charset atribute
to utf-8, neither of which are strictly required but are nevertheless best pracice.

Next comes an empty <title> element, to which we can add the name of each example,
and a <link> element with an incomplete href, ready for us to add the name of the
stylesheet that each example will use.

Because current versions (prior to version 9) of Internet Explorer don't support any HTML5
elements, we need to use Remy Sharp's html5shiv script to make this browser use them
correctly. We can link to the online version of this ile for convenience using a condiional
comment that targets all versions of IE lower than version 9. Feel free to download html5.
js and store it locally if you plan on playing with the examples in IE while disconnected from
the Internet.

Chapter 1

[13]

To get the most out of the examples throughout the book, it would probably be wise to
upgrade to the latest stable release versions of the most common browsers, which at the
ime of wriing are Firefox 3.6.13, Chrome 9.0, Safari 5.03, and Opera 11, although expect
these to change quite rapidly.

At the ime of wriing, Internet Explorer 9 is available in beta release and is scheduled to
go to full release at some point in early 2011. IE9 does support a lot of HTML5 and CSS3,
so using the html5shiv ile may not be required.

The <body> of the page is empty except for some <script> tags. We'll obviously use
jQuery in every example, so the irst tag links to that. The current version of jQuery is 1.5
at the ime of wriing (but like the browser versions, this is likely to change prety quickly!).

In the second <script> tag we have an empty funcion, into which all of the example
JavaScript code we write will go. We pass the jQuery object into our anonymous funcion
and alias it to the $ character. Although not strictly necessary (except in the example where
we create a jQuery plugin), this is another good habit to get into.

Creating a project folder
So that's the template ile that we'll be referring to and using in the code examples
throughout the book. Let's also take a moment to look at the folder structure that the
example iles use. Create a project folder and call it jquery-animation or similar. Within
this, create three new folders and call them css, img, and js.

The HTML pages we create will go into the jquery-animation folder alongside the
subfolders. All of the CSS iles we create will go into the css folder and all of the images that
we use in the examples will go into the img folder. The jQuery library and any addiional script
iles we use or create will go into the js folder. This is also the directory structure you'll ind if
you download and unpack the accompanying code archive containing all of the examples.

A basic animation example
Let's look at a basic example of the kind of animaion that can help reassure our visitors that
something is happening. If the user performs an acion, and the results are not displayed
immediately, feedback that their acion is in the process of being executed is a helpful use
of animaion. This is what we will end up with at the end of the example:

Introducion

[14]

In the previous screenshot we can see the loading indicator centered beneath the trigger
<button>. It features three separate loading bars which sequenially light up to show that
something is happening. Each bar is styled slightly diferently.

Time for action – creating an animated loader
In this example we'll create a simple animated loading indicator that we can start when
a paricular process is iniiated, and stop once the process has completed.

1.	 Open up the template ile that we just looked at and add the following <button>
to the <body> of the page (this should go before the <script> elements):

<button id="go">Initiate the action</button>

2.	 Next, in the empty funcion in the second <script> element at the botom of the
page, add the following code:

var loader = $("<div></div>", {

 id: "loader"

 }).css("display", "none"),

 bar = $("").css("opacity", 0.2),

 loadingInterval = null;

 for (var x = 0; x < 3; x++) {

 bar.clone().addClass("bar-" + x).appendTo(loader);

 }

 loader.insertAfter("#go");

 function runLoader() {

 var firstBar = loader.children(":first"),

 secondBar = loader.children().eq(1),

 thirdBar = loader.children(":last");

 firstBar.fadeTo("fast", 1, function(){

 firstBar.fadeTo("fast", 0.2, function() {

 secondBar.fadeTo("fast", 1, function() {

 secondBar.fadeTo("fast", 0.2, function() {

 thirdBar.fadeTo("fast", 1, function() {

 thirdBar.fadeTo("fast", 0.2);

 });

 });

 });

 });

 });

Chapter 1

[15]

 };

$("#go").toggle(function() {

 loader.show();

 loadingInterval = setInterval(function() {
 runLoader(); }, 1200);

}, function() {

 loader.hide();

 clearInterval(loadingInterval);

});

3.	 Save the ile as loading.html in the main project folder (jquery-animation).
Finally, we'll need to add a few basic styles to the example. Create a new ile in your
text editor and add to it the following code:

#loader { margin:10px 0 0 36px; }

#loader span {

 display:block; width:6px; float:left; margin-right:6px;

 border:1px solid #336633; position:relative;

 background-color:#ccffcc;

}

#loader .bar-0 { height:15px; bottom:-20px; }

#loader .bar-1 { height:25px; bottom:-10px; }

#loader .bar-2 { height:35px; margin-right:0; }

4.	 Save this ile in the css folder as loading.css.

What just happened?
The <button> hardcoded onto the page is used to show and hide the loading animaion.
This is done purely for the purpose of this example. In an actual implementaion, we'd show
the loading animaion at the start of a load operaion, when new content was being added
to the page for example, and then hide it again once the operaion was complete.

The irst thing we do inside the outer funcion is set some variables. We create a new <div>
element as a container for the loader, using an object literal as the second argument to the
$() (jQuery()) method to give it an id of loader. We then set its style to display:none
with jQuery's css() method so that it is not immediately visible.

We also create a new element, which will be used as a template to create the
three individual loading bars. We set its opacity to 0.2 (20% opaque), also using the css()
method. jQuery normalizes this style for us so that it works correctly in Internet Explorer. The
last variable, loadingInterval will be used to store the id of an interval so that we can
clear the interval when we need to. We set this to null iniially as the interval has not yet
been set.

Introducion

[16]

Once our variables have been deined and iniialized, we then execute a short for loop, with
just three iteraions. Within this loop we clone the span element we created, give it a class
name for styling purposes, and then append it to the container. Once the three loading bars
have been added to the container, we insert the container ater the <button>.

Next we deine a funcion called runLoader. This is the funcion that will be repeatedly
called by the interval. The funcion doesn't run unil the buton is clicked. Within this
funcion we cache the selector for each of the three individual bars and then run a series
of nested funcions.

We irst increase the irst loading bar to full opacity using the fadeTo() jQuery animaion
method. This method takes a string indicaing the speed of the animaion as its irst
argument, the opacity that the element should be faded to as its second argument, and a
callback funcion as the third argument. The callback funcion is executed as soon as the
animaion ends.

In the callback funcion, we then fade the irst loading bar back to its original opacity of 0.2.
We supply another callback funcion to this method call, and within this callback funcion
we animate the second loading bar to full opacity, and then back to its original opacity. The
process is repeated for the third loading bar.

Finally, we use the jQuery toggle() method to add two funcions which will be executed
alternately each ime the <button> is clicked. In the irst funcion, we show the loader
and then set the interval that repeatedly calls the runLoader() funcion. In the second
funcion, we hide the loader and clear the interval.

Pop quiz – basic animation with jQuery
1. Thinking about what we discussed earlier regarding when and when not to use

animaions, when would be an appropriate ime to use this animaion?

a. When there is a browser-intensive operaion taking place

b. When there is a delay between something being requested from the server
and the request returning from the server, but where the processing required
by the browser is minimal

c. As an alternaive to a Flash animaion

d. When animated GIF images are not supported

2. What arguments are used with jQuery's fadeTo() method?

a. An integer represening the ending opacity

b. An object containing coniguraion opions for the animaion

Chapter 1

[17]

c. A string or integer represening the speed or duraion of the animaion as
the irst argument, the ending opacity of the target element, and opionally
a callback funcion to be executed when the animaion ends

d. No arguments are required

Have a go hero – extending the loading animation
I menioned that we could use the loading animaion when making requests and waiing for
a response. Try using it with jQuery's AJAX methods, showing the loader just before making
the request, and hiding it again once the response has been processed. The JSONP example,
which retrieves images of cats, on the jQuery website (at http://api.jquery.com/
jQuery.getJSON/) makes a great test case, although depending on the speed of your
connecion, the loader may not be visible for very long.

Summary
In this introductory chapter, we looked at a brief history of animaion on the Web including
how it began, early HTML elements and browser support, the rise of Flash, and the direcion
it's heading in the not too distant future.

We also looked at how animaions can be used in a user interface to enhance the user
experience. We saw some guidelines as to when animaion should and shouldn't be used
and looked at some of the things we should consider when implemening animaions.

We closed the chapter with a basic example looking at a loading animaion. In this example,
we used the fadeTo() jQuery method to change the opacity of elements on the page, and
a simple interval to "play" the animaion. We didn't cover the method in full detail, but we
saw one example of how it can be used. We'll look at this method in more detail in the next
chapter, which covers all of the fading animaions provided by jQuery.

2
Fading Animations

In this chapter we'll be looking at the most basic types of jQuery animaions, in
which the element being animated gradually appears or disappears. There are
several jQuery methods that deal with fading and we'll look at each of them in
turn throughout the chapter. These methods are:

fadeIn()

fadeOut()

fadeTo()

fadeToggle()

show()

hide()

toggle()

In this chapter, we will learn:

 � How to create simple animaions with the fadeIn(), fadeOut(), and
fadeToggle() methods

 � How to control the ending opacity value of the animaion with the
fadeTo() method

 � How to create fading animaions with the show() and hide() methods

 � How to simplify our code with the toggle() methods

www.allitebooks.com

http://www.allitebooks.org

Fading Animaions

[20]

Fading animations
The fadeIn() and fadeOut() methods perform the least complex animaions available
via jQuery. They simply adjust the opacity of selected elements to either show or hide the
element, and can be used with no addiional coniguraion. The fadeToggle() method
is almost as simple, but does provide some basic logic to check the selected element's
current state.

Elements that are hidden with display:none will be set to their correct display type,
(either display:block for block-level elements or display:inline for inline elements)
where possible at the start of a fadeIn() animaion.

An element's natural display type is used wherever possible, so hidden elements are
set to display:list-item, and hidden <td> elements are set to display:table-cell.
IE however, has been known to have issues fading <tr> elements. In IE8 (and lower) for
example, the <tr> is shown immediately when the fadeIn() method is used, even with a
large duraion.

Elements that are set to display:block (or are set to another display type but
nevertheless visible on the page) will be set to display:none at the end of a fadeOut()
animaion. Elements will switch between their visible and non-visible states when the
fadeToggle() method is used.

Elements that are to be shown using the fadeIn() method must be iniially hidden with
display:none; while elements that are hidden with visibility:hidden; for example,
will remain hidden at the end of the animaion.

In their simplest forms, these methods can be used without any addiional coniguraion.
We can simply call the methods on any collecion of selected elements without using
any arguments:

jQuery(elements).fadeIn();
jQuery(elements).fadeOut();
jquery(elements).fadeToggle();

When no arguments are provided, the animaions will have the default duraion of 400
milliseconds and the default easing of swing.

Coniguring the animations with arguments
With arguments, the fading methods may take the following form, (square brackets denote
opional arguments):

jQuery(elements).fadeIn([duraion], [easing], [callback]);
jQuery(elements).fadeOut([duraion], [easing], [callback]);
jQuery(elements).fadeToggle([duraion], [easing], [callback);

Chapter 2

[21]

We can control the duraion of the animaion using the duraion argument to specify either
an integer in milliseconds or one of the strings slow or fast, which are shortcuts for
duraions of 600 or 200 milliseconds, respecively.

We can also supply 0 as the duraion argument, which will efecively disable the animaion.
It's unlikely that we'd need to do this as it would be more eicient to not use an animaion at
all, but it is useful to know. I should point out that the fade will sill occur; it will just happen
over a duraion of 0 milliseconds.

The duraion argument relates to the length of ime the animaion takes to run,
not the speed of the animaion. Therefore, a higher value will mean a slower,
longer animaion and not a faster, shorter animaion.

The easing argument can be changed from its default value of swing to linear, which
causes the animaion to progress at the same speed throughout the animaion. The default,
swing, causes the animaion to start slowly, speed up slightly, and then slow down towards
the end of the animaion.

The number of easing types can be greatly increased using plugins. We'll look
at the extra easing types added by jQuery UI later in the book.

We may supply a callback funcion (either a funcion reference or an anonymous funcion,
with the later being more common-place). This callback funcion will be executed ater the
animaion ends for each element in the selecion, so it may be triggered more than once if
more than a single element is being animated.

jQuery's Uniied Animation API
In addiion to the fading methods looked at in this chapter, it is worth noing at this stage
that any of the animaion methods exposed by jQuery can accept the strings slow or fast
as the value of the duraion argument, and they will always equate to duraions of 600 or
200 milliseconds, respecively.

Any other strings that are supplied will be ignored and will cause the animaion to take its
default duraion of 400 milliseconds (as if no duraion argument had been supplied). Any
integer, represening an actual length of ime in milliseconds, can also be supplied.

Addiionally, all jQuery animaion methods can have easing conigured, and all can accept a
callback funcion as an argument. Each of the animaion methods work and are used in the
same way; it is just the efect which difers. This makes using the methods easy and intuiive.

Fading Animaions

[22]

A useful point to note is that the arguments do not need to all be provided when only
the callback funcion is required. If we don't need to set the duraion or easing arguments,
we can just supply the callback funcion and jQuery will sill execute it at the end of
the animaion.

Enhancing simple CSS hover states with fadeIn
It is standard pracice to add hover-states for the items in a navigaion menu using CSS, but
with jQuery we can progressively enhance simple CSS hover states into full-on animaions
that give a much more atracive and professional efect when hovered.

In this example, we will see how to:

 � Disable standard CSS hovers when JavaScript is enabled

 � Add the addiional HTML markup required for the animaions

 � Implement atracive fadeIn() animaions triggered by hovering

We'll end up with a navigaion menu in which the hover-states are animated into view
instead of being shown instantly, as shown in the following screenshot:

Chapter 2

[23]

The previous screenshot shows how the hover-state is applied to one of the menu items
over a short period of ime, instead of instantly, as it would normally be with pure CSS,
The animaion proceeds from top to botom in the previous picture.

Time for action – adding the underlying markup and styling
To begin with, we need to create the elements that will be used by the example and the
styling to set their visual appearance.

1.	 Add the following underlying markup for our navigaion menu to the template ile
we created in Chapter 1, Introducion:

<nav>

 <ul class="purecss">

 Home

 Articles

 Code

 Demos

 <li class="last">

 Portfolio

</nav>

2.	 Save the page in the jquery-animation directory as fadeIn.html.

3.	 We'll also need to link to a custom stylesheet for this example. Add the following
code to the <head> of the page:

<link rel="stylesheet" href="css/fadeIn.css">

4.	 Next we should create the stylesheet we just linked to. In a new ile, add the
following code:

body { text-align:center; }

nav {

 display:inline-block;

 font:normal 18px "Nimbus Sans L", "Helvetica Neue", "Franklin
 Gothic Medium", Sans-serif; border:2px solid #aaa; -moz-border-
 radius:7px; -webkit-border-radius:7px; border-radius:7px;

}

nav ul { list-style-type:none; padding:0; margin:0; }

nav li { float:left; border-right:2px solid #aaa; }

nav a {

 display:block; padding:10px 20px; position:relative; color:#333;

Fading Animaions

[24]

 text-decoration:none; background-color:#eee;

 border:1px solid #fff;

}

nav span {

 display:none; width:100%; height:33px; padding-top:10px;

 position:absolute; top:0; left:0; background-color:#ccc;

}

nav .purecss a:hover { background-color:#ccc; }

nav li.first a {

 -moz-border-radius:7px 0 0 7px;

 -webkit-border-top-left-radius:7px;

 -webkit-border-bottom-left-radius:7px;

 border-radius:7px 0 0 7px;

}

nav li.first span {

 -moz-border-radius:7px 0 0 7px;

 -webkit-border-top-left-radius:7px;

 -webkit-border-bottom-left-radius:7px;

 border-radius:7px 0 0 7px;

}

nav li.last { border-right:none; }

nav li.last a {

 -moz-border-radius:0 7px 7px 0;

 -webkit-border-top-right-radius:7px;

 -webkit-border-bottom-right-radius:7px;

 border-radius:0 7px 7px 0;

}

nav li.last span {

 -moz-border-radius:0 7px 7px 0;

 -webkit-border-top-right-radius:7px;

 -webkit-border-bottom-right-radius:7px;

 border-radius:0 7px 7px 0;

}

5.	 Save this ile as fadeIn.css in the css folder within our project folder.

What just happened?
We use the HTML5 <nav> element as the logical container for our navigaion menu. The
menu itself is created from a simple unordered list, where each link is made from an anchor
element within a list item. This is the simple, semanic structure that will be rendered by
default. Addiional enhancements will be made in our script.

Chapter 2

[25]

Most of the styles we used in this example are purely for the layout and appearance of this
example and can be changed to suit your implementaional requirements. What's important
is that the hover states for the navigaion links are provided using the class name pure-css
atached to the outer element.

We do use a CSS3 style in this example, which some readers may not be familiar with. We'll
be looking at CSS3 in much more detail towards the end of the book but, we'll cover this one
for the beneit of those that have not used it before.

The CSS3 style we used was the border-radius style, which gives the element rounded
corners in supporing browsers. Few browsers currently support the true border-radius
CSS3 style property (at the ime of wriing, only Opera supports this style property naively),
but Firefox and Webkit-based browsers do support it with their vendor-preixes, -moz- and
–webkit- respecively.

Internet Explorer 8 and below do not support the border-radius style property, or any
variant of it, and these browsers do not provide their own vendor-preixes to use. However,
the menu itself and the example code, sill work perfectly in these browsers. The only
diference is, they have square corners and not rounded ones.

If this is acceptable, then everything is ine, and you have super-simple rounded corners
without the addiional HTTP request(s) and payload that images would require in supporing
browsers. If rounded corners are criical to your applicaion or interface, we can always
provide these to IE using condiional comments.

Time for action – scripting the animation
Now we just need to add the script that will animate our simple navigaion menu.

1.	 Add the following code within the anonymous funcion at the botom of
the <body>:

var ul = $("nav ul");

ul.removeClass("purecss");

ul.find("a").each(function(){
 var a = $(this);
 a.append("" + a.text() + "");
});

ul.find("a").hover(function() {
 $(this).find("span").fadeIn("slow");
}, function() {
 $(this).find("span").hide();
});

Fading Animaions

[26]

What just happened?
The irst thing we did was cache a reference to the located inside our <nav> element.
We'll be referencing it several imes so it is more eicient to only select it from the DOM a
single ime. For performance reasons, it is generally best to minimize the number of DOM
operaions that are carried out.

We then remove the purecss class from the element so that our standard CSS hover states
are no longer efecive. We use JavaScript to do this so the basic hovers sill work if JavaScript
is disabled in the browser.

Next we insert a new element into each of the anchors. We'll perform the
animaion on each of these elements so that anchors themselves remain clickable
and funcional. As the elements are styled to it exactly within their parent <a>
elements, we also add the text from the anchor into the .

Finally, we use jQuery's hover() method to atach mouseover and mouseout event
handlers to the <a> elements. This method accepts two funcions; the irst is executed on
mouseover, the second on mouseout.

In the irst funcion, we select the inside the <a> that was hovered on and call
the fadeIn() method specifying the slow string. In the second funcion, we simply hide
the again. When we run the page in a browser, we ind that the hover states are
acivated when we hover over the list items. It's a great efect, and one I use frequently
when building clients' sites. In this example, we have a potenial issue in that the link text
is duplicated in the elements that are added to each link. It would be trivial to hide
the link text when the is made visible, which we could do using a callback funcion
supplied as an argument to the fadeIn() method.

Pop quiz – using fadeIn
1. Which strings can be passed into the method as the irst argument?

a. The strings short or long, which refer to the duraion of the animaion

b. The strings low or high, which refer to the opacity that the element
is faded to

c. The strings slow or fast, which refer to the duraion of the animaion

d A hexadecimal string specifying the background-color of the element

Chapter 2

[27]

2. What else can be passed into the method?

a. A string specifying the easing funcion to use for the animaion, and a callback
funcion to be executed once the animaion ends

b. An object containing addiional coniguraion opions

c. An array containing addiional coniguraion opions

d. A callback funcion to be executed at the start of an animaion and a callback
funcion to be executed at the end of the animaion

Have a go hero – doing more with fadeIn
In this example, we used the fadeIn() method to show the hidden elements on
mouseover, but hide the element straight away on mouseout. Have a go at extending the
example so that the elements are faded out on mouseout instead of being hidden straight
away using the fadeOut() method.

Fading elements out
The fadeOut() method is syntacically idenical to fadeIn() in that it accepts the same
arguments and adjusts the opacity of the selected element, except that with the fadeout()
method, the target element is hidden instead of being shown. Let's look at this method in
acion with a brief example.

When elements need to be removed from the page, using a subtle fade out can be much
more efecive than just removing the element in quesion. We may have an overlay of some
descripion, like a dialog box for example, on the page which can be closed by the visitor.
Instead of having it disappear instantly, we can animate its disappearance smoothly.

In this example, we'll look at the following aspects of using fadeOut():

 � Hiding an element with the fadeOut() method

 � Using a numerical argument to control the duraion

 � Running addiional code once the animaion completes

Fading Animaions

[28]

This is how our dialog will disappear from the page:

In the previous screenshot, we see the dialog gradually fading from view once the <button>
has been clicked. The animaion proceeds from top to botom in the previous image.

Chapter 2

[29]

Time for action – creating the dialog
We'll start again by creaing the underlying markup that the dialog is built with and add any
necessary styling.

1.	 First, add the following code to the <body> in a fresh copy of the template ile:

<div id="dialog">

<header>A dialog box of some description</header>

Lorem ipsum etc, etc.

<footer><button>Ok</button></footer>

</div>

2.	 We'll also need to link to a stylesheet in the <head> of the page:

<link rel="stylesheet" href="css/fadeOut.css">

3.	 Save this page as fadeOut.html in the main project folder. The code for the
stylesheet is as follows:

#dialog {

 background-color:#fff; width:300px; padding:10px;

 font:normal 14px "Nimbus Sans L", "Helvetica Neue", "Franklin
 Gothic Medium", Sans-serif;

 border:1px solid #aaa; -moz-border-radius:7px;

 -webkit-border-radius:7px; border-radius:7px;

 -moz-box-shadow:2px 2px 5px #000;

 -webkit-box-shadow:2px 2px 5px #000;

 box-shadow:2px 2px 5px #000;

}

#dialog:after {

 content:""; height:0; display:block; clear:both;

 visibility:hidden;

}

#dialog header {

 display:block; padding-bottom:5px; margin-bottom:10px;

 font-weight:bold; font-size:16px; border-bottom:1px solid #aaa;

}

#dialog footer {

 display:block; padding-top:10px; margin-top:10px;

 border-top:1px solid #aaa;

}

#dialog button { float:right; }

www.allitebooks.com

http://www.allitebooks.org

Fading Animaions

[30]

4.	 Save this in the css folder as fadeOut.css. To perform the fadeOut() animaion,
we'll need just a iny bit of JavaScript. Inside the anonymous funcion in the second
<script> element at the botom of the <body>, add the following code:

$("#overlay button").click(function() {

 $("#overlay").fadeOut(500, function() {

 $(this).remove();

 });

});

What just happened?
In our code, we atach a click handler to the <button> using jQuery's click() helper
method. The anonymous funcion we specify as an argument is executed whenever
the buton is clicked. Within this funcion we select the dialog using its id and call the
fadeOut() method on it using a numerical argument of 500 milliseconds instead of one
of the acceptable strings.

We also specify a callback funcion as the second argument to the fadeOut() method.
As there is only a single element in the selecion (the element with an id of overlay),
this funcion will be executed only once. Inside this callback funcion, the this keyword
is set to the current element, so we can easily manipulate it from within the callback.

All the funcion does is remove the dialog from the DOM. This behavior would be
appropriate when the element to be removed was a one-ime-only dialog that would either
not be shown again during the current session, or would be generated again from scratch by
the system when required.

We'll see the dialog when we load the page. In a proper implementaion, it would probably
be centered in the viewport and be absolutely posiioned so that it appears to loat above
the page (addiionally the CSS3 shadow that we used would reinforce this impression).
It would also more than likely be modal, so the underlying page would be obscured, or
otherwise shielded from interacion, unil the dialog is closed.

To avoid unnecessary clutering of the example however, our dialog is alone on an empty
page. Clicking the <button> will cause the dialog to fade away and then be removed from
the page.

The animaion is fairly quick and less jarring than instantaneous removal of the dialog,
but I should point out that fading animaions can oten annoy users if they are too frequent,
take too long to complete, or are felt to be completely unnecessary.

Chapter 2

[31]

For example, the applicaion may generate a large number of dialogs during any single
session and if the user has to repeatedly wait half a second every ime they close a dialog,
they may perceive that the animaion is wasing their ime or otherwise acing as a barrier
to their interacion.

I believe it is best to pass control of whether the animaion is used or not back to the visitor,
and provide an opion to disable the animaion if the system is going to be generaing them
on a regular basis. This way, users will be able to remove the efect if they do feel that it is
a barrier.

Pop quiz – using fadeOut
1. What happens if the integer 0 is supplied as the value of the duraion argument?

a. The animaion occurs instantly

b. The animaion runs at the default speed of 400 milliseconds

c. Animaions with jQuery are disabled globally

d. A script error is thrown

2. How can we access the element that was animated within a supplied
callback funcion?

a. The callback funcion is passed a reference to the element that was animated

b. By reselecing it from the DOM

c. Using the jQuery property animatedElement

d. Using the this keyword (opionally wrapped in jQuery funcionality
($(this))

Have a go hero – doing more with fadeout
A popular implementaion that makes use of fade-out animaions is a "growl" style
messaging system where feedback is provided in the form of messages that pop up in the
viewport before fading away; why not create your own growl style messaging system that
uilizes the fadeOut() method.

Fading PNGs in IE
In the previous examples, we've looked at fading in and out using CSS background colors to
illustrate the efect. We could easily extend it to include background images instead, which
generally work just as well, if not beter, with this efect.

Fading Animaions

[32]

One thing to watch out for when using background images in conjuncion with fading
animaions however is that problems can be encountered with the display of the images
when the animaions are viewed in Microsot's Internet Explorer.

It is known as the black-border problem and causes a black aura to be displayed around the
image when a PNG with alpha-transparency (semi-opacity) is used as the background image.
It really only afects IE8 as there are work-arounds that can be used to ix the issue in both
IE7 and IE6.

Here's a screenshot of the problem:

The previous screenshot shows a fadeout() animaion in progress. The jagged black border
around the logo is the issue we face in IE and is caused by Microsot's proprietary filter
properies, which jQuery uses to set the opacity (and produce the fade) in IE.

There are several diferent ixes for this issue including:

 � Fading the container of the element instead of the element directly

 � Giving the container, or the element that is faded, a background color

Whichever soluion works best will depend on the situaion at hand. An alternaive soluion,
but which only ixes the issue in both IE6 and IE7, involves using the DD_BelatedPng.js
library, to display alpha-transparent PNGs using VML. Unfortunately this doesn't work in IE8,
so someimes a combinaion of ixes may be required.

Chapter 2

[33]

The following screenshot shows an image in IE8 fading out correctly:

We can see in the previous screenshot that there are no black borders around the
image while it is fading out in IE8. In this example, I put the PNG into a container, set the
background-color of the container to white, and faded out the container.

Using fadeToggle() for convenient state-checking logic
The fadeToggle() method exposed by jQuery will either fade an element in, or fade it out
depending on the current state of the element. Elements that are visible will be faded out,
while elements that are hidden will be faded in.

When elements are faded out with fadeToggle(), they will automaically be set to
display:none at the end of the animaion so that the element doesn't afect the layout
of the page.

Fading Animaions

[34]

Time for action – showing and hiding with fadeToggle()
As before, we irst create the HTML markup and CSS styling required by the example.

1.	 Open up a new copy of the template ile and add the following code to the <body>
of the page:

<form>

 <label for="name">Enter your name:

 <input id="name" name="name" type="text">

 Your name. You know, the thing that people
 call you by

 </label>

</form>

2.	 Save this page as fadeToggle.html. Next we need to add a few styles. In a new
page in your text editor, add the following code:

form { width:280px; margin:100px auto; position:relative; }
input { margin-left:5px; }
#help {
 display:block; width:16px; height:16px; margin-top:3px;
 float:right; cursor:pointer;
 background:url(../img/help.png) no-repeat;
}
#helpText {
 display:none; width:100px; height:75px; padding:12px 18px;
 position:absolute; left:115px; top:-90px;
 font:normal 12px "Nimbus Sans L", "Helvetica Neue",
 "Franklin Gothic Medium", Sans-serif;
 background:url(../img/bubble.png) no-repeat;

}

3.	 Save this ile as fadeToggle.css in the css folder. Finally, let's add the script
that will make the example work. Within the anonymous funcion in the second
<script> element, add the following code:

$("#help").click(function() {

 $("#helpText").fadeToggle();

});

What just happened?
On the page we have a simple <form> containing a label, an <input>, and a couple of
elements. The irst is used as an icon, while the second contains
help text to prompt the user for the value the <input> expects.

Chapter 2

[35]

The CSS is used mostly to lay out the example page, and to give the elements their
required sizing and background images. The most important rule is seing the help text to
display:none, although this isn't actually criical like when using the fadeIn() method
as the fadeToggle() method will work on both visible and hidden elements.

In the script we simply call the fadeToggle() method on the second each ime the
irst is clicked. The page will alternately show and hide the help text on each click of
the help icon.

With this method, the natural display style of elements is not maintained. When our
helpText is shown, it will have its display set to block, as opposed to a
element's natural display type inline. In this example, this actually helps us—if the
 were set to its natural inline display, our widths and padding would not work
correctly. But it is something we need to be aware of when using the method.

Here's how the page should look ater clicking the icon the irst ime:

Fading Animaions

[36]

In the previous screenshot, we see our help text gradually fading into view. Once the icon is
clicked a second ime, the animaion will be shown in reverse, with the element going from
full opacity to full transparency.

Pop quiz – using fadeToggle()
1. Why should we use cauion when using fadeToggle()?

a. Because elements sill afect the low of the page once they have been
faded out

b. Because of the black border problem in Internet Explorer

c. Because the natural display style of an element is not always maintained,
so inline elements will be set to display:block when they are faded in

d. Because the method does not check the current state of the element it is
called on

Have a go hero – extending fadeToggle()
In this example we faded an element that has an alpha-transparent PNG as its background
image. This means that the page will sufer from the black border problem in all current
versions of IE. Have a go at using one of the ixes described earlier in the chapter to ix
the problem.

Greater opacity control with fadeTo()
With the fadeTo() method we can use the same arguments as before, but we can also
control the inal opacity of the element that is being animated. This is very useful for
situaions where we don't want to fade an element all the way in or out.

Unlike the fadeIn() or fadeOut() methods, the fadeTo() method must be supplied
with both a duraion and an ending opacity at least. The duraion argument accepts the
same values as with the fadeIn(), fadeToggle(), and fadeOut() methods.

The ending opacity is provided as the second argument and should be a decimal number
between the integers 0 and 1, which represents the percentage of opacity, with 0 being fully
transparent, and 1 being fully opaque. 50% opacity is therefore speciied as 0.5.

If easing is required, this should be provided as the third argument and can take the strings
swing (the default) or linear, like the other methods we have looked at so far. A callback
funcion to be executed for each selected element may also be supplied.

Chapter 2

[37]

The fadeTo() method is used in the following way:

jQuery(elements).fadeTo(duration, ending-opacity, [easing],
 [callback]);

Animating to partial opacity
In this example we have a table in which certain rows can be removed. When one of the
rows is selected for removal by the user, we can animate the row to parial opacity while
requesing conirmaion of the removal. In this secion we will cover the following topics:

 � The required arguments of the fadeTo() method

 � Seing a speciic ending opacity

 � A work-around for fading table-rows in IE

Once a table row has been faded, it will appear like this:

The middle row of the table shown in the previous screenshot has been faded
to 50 % opacity.

Fading Animaions

[38]

Time for action – creating the example page
This example requires signiicantly more HTML than before, although we sill add this, as well
as the styling irst.

1.	 Begin by adding the following example markup to our template ile:

<div id="messageList">

 <header>Private Messages</header>

 <table summary="This table lists the personal messages you
 have received">

 <tr><th class="rec">Recieved</th><th class="sub">Subject</th><th
 class="from">From</th><th class="del">Delete</th></tr> <tr><td
 class="rec">Today</td><td class="sub">Re: tomorrow</td><td
 class="from">Bob</td><td class="del"><a href="#" title="Delete
 Message">x</td></tr>

 <tr><td class="rec">Today</td><td class="sub">Re:
 tomorrow</td><td class="from">Bill</td><td class="del">
 x</td></tr>

 <tr><td class="rec">Today</td><td class="sub">Re:
 tomorrow</td><td class="from"></td><td class="del">
 x</td></tr>

 <tr><td class="rec">Yesterday</td><td class="sub">Re:
 tomorrow</td><td class="from"></td><td class="del">
 x</td></tr>

 <tr><td class="rec">Yesterday</td><td class="sub">Re:
 tomorrow</td><td class="from"></td><td class="del">
 x</td></tr>

 </table>

</div>

2.	 Save this page as fadeTo.html in the main project folder.

3.	 To create the stylesheet for this example, add the following code in a new ile in
your text editor:

#messageList {

 width:540px; padding:10px 20px; margin:auto;

 font:normal 14px "Nimbus Sans L", "Helvetica Neue", "Franklin
 Gothic Medium", Sans-serif;

 background-color:#666; border:1px solid #aaa;

 -moz-border-radius:7px; -webkit-border-radius:7px;

 border-radius:7px;

}

#messageList header {

 color:#eee; padding-left:10px; font-size:20px;

}

Chapter 2

[39]

#messageList table {

 border-collapse:collapse; margin:10px 0; background-color:#666;

}

#messageList th, #messageList td {

 width:100px; padding:10px; color:#eee; text-align:left;

 border-bottom:1px solid #eee;

}

#messageList td { background-color:#ccc; color:#000; }

#messageList th.sub { width:220px; }

#messageList th.del { text-align:right; }

#messageList table a {

 padding:0 7px 2px; float:right; background-color:#ea3c37;

 color:#fff; text-align:center; text-decoration:none;

 border:1px solid #990000; -moz-border-radius:5px;

 -webkit-border-radius:5px; border-radius:5px;

}

.confirm { color:#eee; font-size:16px; }

.confirm button { margin:0 10px; }

.confirm a { font-size:12px; color:#ffcaca; }

4.	 Save this as fadeTo.css in the css folder.

What just happened?
The underlying HTML is relaively simple; we have an outer containing <div> within which
reside a HTML5 <header> element and a <table>. Each row of the <table> corresponds
to a received message. Don't forget to link to the fadeTo.css ile in the <head> of the new
page, as we have in previous examples.

As with previous examples, the CSS we use for this example is purely arbitrary and is used
simply to make the example presentable. We use the CSS3 rounded corner style property
again, to give a nice efect to the widget. Once again, these styles won't work in IE, but the
worst that will happen is that it will have square corners.

Time for action – adding the behavior
Finally we can add the script that will make it all work. In the empty funcion at the botom
of the <body> element, add the following:

var messageList = document.getElementById("messageList"),

 messages = $("table", messageList),

 confirmDiv = $("<div></div>", {

 "class": "confirm",

 text: "Really delete?"

www.allitebooks.com

http://www.allitebooks.org

Fading Animaions

[40]

 }),
 remove = $("<button></button>", {
 id: "delete",
 text: "Yes"
 }).appendTo(confirmDiv),
 cancel = $("<a>", {
 href: "#",
 id: "cancel",
 text: "Cancel",
 title: "Cancel"
 }).appendTo(confirmDiv),

 deleteRow = function(e) {

 e.preventDefault();

 $(this).closest("tr").fadeTo(400, 0.5, function() {

 $(this).addClass("pre-delete");
 confirmDiv.clone().insertAfter(messages);
 messages.find("a").unbind();
 });
 };

 messages.find("a").click(deleteRow);

 $("#delete, #cancel").live("click", function(e) {
 e.preventDefault();

 if (this.id === "delete") {
 messages.find(".pre-delete").fadeTo(400, 0, function() {
 $(this).remove();
 });
 } else {
 messages.find(".pre-delete").removeClass("
 pre-delete").fadeTo(400, 1, function() {
 var el = $(this);
 if (el.css("filter")) {
 el[0].style.removeAttribute("filter");;
 }
 });
 }

 $(".confirm", messageList).remove();

 messages.find("a").click(deleteRow);
 });

Chapter 2

[41]

What just happened?
Our script is a litle longer than those in previous examples, but sill relaively simple; let's
step through what happens. First we get a reference to the outer container for our message
widget. We get the element using the standard JavaScript document.getElementById()
funcion. We can use this DOM node as a context for jQuery methods to make selecing
elements from the DOM faster. Selecing elements by class name is not very eicient
(even with jQuery), so being able to pass in a DOM node to a jQuery selector to tell jQuery
where to begin for searching for the element makes our queries much faster than searching
through the enire document each ime we want to get an element using its class name.

We also store a reference to the <table> element as we'll need to refer to this element
throughout the script. Instead of creaing a new jQuery object and selecing the element
each ime we need to manipulate it, we create a single jQuery object represening the
element (noice how we use our messageList variable as a context for the selecion)
and store it in a variable for use as many imes as we require with no addiional overhead.

Next we create a series of new elements for use later in the script. We create a container
<div> and give it some atributes including a class name and some text. Note that the
word class is surrounded with quotaion marks to prevent Internet Explorer throwing
script errors.

We also create a new <button> element and a new <a> element and give both of these
some atributes too. The new buton and anchor elements are appended to the new
container. These elements are not added to the page however, they are kept in memory
for use later on in the script.

Next we add an inline funcion stored in the deleteRow variable, which is used to handle
clicks on the delete icons in each row of the <table>. Within this funcion we irst use the
preventDefault() JavaScript method to prevent the delete link being "followed" by the
browser and jumping back to the top of the page. We then select the closest parent <tr>
element and call the fadeTo() method specifying a duraion of 400 milliseconds
(the default) and an ending opacity of 0.5.

We also supply a callback funcion that is executed when the animaion ends. We use this
funcion to add a class name to the row so that we can easily refer to it later on. We then
create a copy of the container element (including the child elements we added to it) that we
created at the start of the script using jQuery's clone() method. Copying these elements
from memory is much more eicient than creaing them from scratch each ime the funcion
is executed. The copy of the container is then inserted into the widget ater the <table>.

To prevent other messages being selected for deleion (and a build-up of conirmaion
messages), we unbind the click handler from the delete links in each row. We don't need
to select the links from the DOM at this point. We use the messages variable (containing a
reference to the <table>) and jQuery's find() method to select the links without needing
to create a new jQuery object.

Fading Animaions

[42]

Next we pass a reference to the deleteRow funcion that we just deined to jQuery's
click() event-helper method. We don't provide the deleteRow funcion itself as an
argument to the click() method this ime, as it is easier and less repeiive to pass the
funcion reference to the methods instead of deining it several imes.

We then add a click handling funcion to the <button> and the <a> elements that exist
in the conirmaion panel and are inserted each ime a delete icon is clicked. We use the
live() method here so that we don't have to rebind to each handler whenever one of
these elements are created.

Whether the <button> or the Cancel link is clicked, we irst check the id of the clicked
element (accessible via the this keyword) to determine which element was clicked.
Because all we are checking is the id of the element, we don't need to wrap the this
keyword in jQuery funcionality ($()).If the id is delete, we know the buton was clicked
and can proceed with fading out the <tr> so that it is completely transparent, and then
removing it from the page altogether using a callback funcion supplied as an argument to
the fadeTo() method.

If the id is cancel, we know that the <a> element was clicked. In this case, we stop the
browser from following the link with preventDefault(), remove the pre-delete class
name from the <tr>, and then fade it back to full opacity.

We also use a callback funcion for this method too. Within it we check whether the element
that was faded contains a filter style property, and if it does, we remove the filter
atribute from the element. This ixes the issue with aliased text in IE which afects elements
ater they have been faded.

This is all we need to make our fadeTo() example work as intended in most browsers.
Whenever one of the delete icons is clicked, the corresponding row is animated to 50%
opacity and the conirmaion is then displayed.

This requires the acion be conirmed or canceled. When the Cancel link is clicked, the row
is animated back to full opacity. When the delete <button> is clicked, the row is animated
all the way to full transparency and then removed from the page.

Pop quiz – using fadeTo
1. Which arguments must be provided when using the fadeTo() method?

a. The duraion and easing arguments

b. The ending opacity

c. A callback funcion

d. The duraion and ending opacity

Chapter 2

[43]

2. What format can these arguments take?

a. They must be strings

b. They must be arrays or objects

c. They may be either strings or integers

d. They must be funcions that return the value in string format

Have a go hero – doing more with fadeTo
A great applicaion of the fadeTo() method is when it is combined with a modal
overlay. Oten when a pop-up dialog is displayed, the underlying page is screened with
a semi-transparent PNG. Instead of using an image why not obscure the underlying page by
fading an element that covers the enire visible area of the page to semi-transparency instead.

Fading table-rows in Internet Explorer
If we run the previous example in any current version of IE (8 or below), we see that the
example fails. Fading <tr> elements in IE simply does not work. However, all is not lost,
with just a few tweaks and minor changes to the code we can get the example working
in IE as well.

Time for action – fading table-rows in IE
This ime we'll change the script slightly so that it works as intended in Internet Explorer.

1.	 Change the contents of the last <script> element in the fadeTo.html ile that
we created in the last example so that it appears like this (new or changed code is
shown in bold):

var messageList = document.getElementById("messageList"),

 messages = $("table", messageList),

 confirmDiv = $("<div></div>", {

 "class": "confirm",

 text: "Really delete?"

 }),

 remove = $("<button></button>", {

 id: "delete",

 text: "Yes"

 }).appendTo(confirmDiv),

 cancel = $("<a>", {

 href: "#",

 id: "cancel",

Fading Animaions

[44]

 text: "Cancel",

 title: "Cancel"

 }).appendTo(confirmDiv),

 deleteRow = function(e) {

 var selector = (window.ActiveXObject) ? $(this).closest("tr").
 children() : $(this).closest("tr");

 selector.fadeTo(400, 0.5, function() {

 $(this).addClass("pre-delete");

 if(!$(".confirm").length) {

 confirmDiv.clone().insertAfter(messages);

 }

 messages.find("a").unbind();

 });

 };

messages.find("a").click(deleteRow);

$("#delete, #cancel").live("click", function(e) {

 if (this.id === "delete") {

 messages.find(".pre-delete").fadeTo(400, 0, function() {

 $(this).remove();

 if (window.ActiveXObject) {

 messages.find("tr").each(function() {

 var row = $(this);

 if(!row.children().length) {

 row.remove();

 }

 });

 }

 });

 } else {

 e.preventDefault();

 messages.find(".pre-delete").removeClass("pre-
 delete").fadeTo(400, 1, function() {

Chapter 2

[45]

 var el = $(this);

 if (el.css("filter")) {

 el.css("filter", "");

 }

 });

 }

 $(".confirm", messageList).remove();

 messages.find("a").click(deleteRow);

});

2.	 Save the new ile as fadeToIE.html in the main project folder.

What just happened?
Let's look at what changed in the new version of this example. The irst diference is that in
the deleteRow funcion, we store a reference to the element that we are going to fade in a
variable called selector (storing jQuery objects in a variable like this is commonly known
as caching a selector).

We check for the presence of the ActiveXObject on the window object. This object will
only exist in IE and so is a useful thing to check for if we are looking to target just IE. If the
object is found, we select the <td> elements within the target row instead of the row itself.
If the object is not found, we select the <tr> itself (as we did in the previous example).

The other changes are in the click handler for the delete and cancel elements. All we do is
check for the ActiveXObject again and if found, check each <tr> element to ind which
one is empty. One of the rows will be empty because it is the <td> elements that get
removed in IE. The empty row is then removed.

We have also added a callback funcion to the animaion when the Cancel link is clicked.
When IE animates the <td> elements to half opacity, the clearType efect that IE uses for
font-smoothing is removed. This is a consequence of the filter being applied, which is
how jQuery sets the opacity in IE.

Within the new callback funcion, we check for the presence of the filter atribute,
and if it is found, we set to an empty string to disable it. The text will then return to its
ani-aliased state.

Fading Animaions

[46]

When we run the new version of the ile in IE we should ind now that it works as expected
in all current versions. Even though we are fading the individual cells in IE instead of the
rows, visually it is the same. Because of the condiional checking we do, this version of the
example should coninue to work in other browsers such as Firefox, Chrome, or Safari
as well.

As we can see in the previous screenshot, the fades are now working in IE. However, IE sill
doesn't like fading the <td> elements. It displays a border between the From and Delete
columns, even though these cells do not have a border style set on them. IE8 also loses
borders when the element is faded back to full opacity. This is not a problem in IE7, and
can be ixed in IE8 by removing the background-color from the <td> elements.

Showing and hiding
By default, jQuery's show(), hide(), and toggle() methods show or hide the selected
element by manipulaing its display style property. This is an instantaneous efect and
does not consitute an animaion.

Chapter 2

[47]

Usually these methods do not take any arguments, but we can trigger an animaion by
supplying an addiional argument which represents either the duraion, or the easing of the
animaion. We can also add a callback funcion in keeping with the animaion methods we
have looked at so far.

The methods can take the following format:

jQuery(elements).show(duraion, [easing], [callback]);
jQuery(elements).hide(duraion, [easing], [callback]);

These animaions are a step-up in complexity from simple fading because instead of just
animaing the opacity of the selected elements, the width and height of the element are
animated too. Syntacically, the methods are very similar however.

This means that the selected elements will grow in size as they appear, or shrink as they
disappear. We have litle direct control over this however, and can set only the duraion
or easing of the animaions.

The direcion in which the selected element will grow or shrink can be manipulated
indirectly via CSS however. If the selected element is posiioned using its left and top
style properies, the animaion will proceed from the top-let corner, growing to the right
and down. If it is posiioned using its right and bottom style properies, it will grow up
and to the let instead.

When an animaion is not proceeding in the way in which you expect, it is always worth
ruling out any interference from CSS. Styles can afect how an element is animated, so if
you aren't geing errors in the JavaScript console, always check that the CSS isn't the cause
of unexpected behavior. I have lost count of the hours spent checking and rechecking scripts,
only to ind that a iny tweak to the CSS ixes the problem enirely.

Like the fadeIn() method, elements that are to be animated using the show() method
should iniially be hidden with display:none. Elements being shown will be set to
display:block, or whatever other display mode is acceptable for the element in quesion.

Flyout submenus with jQuery's show/hide logic
Let's take a look at a basic example of the show() and hide() methods in acion. We'll
create a simple verical navigaion menu which features ly-out submenus that are animated
in and out of view. We'll look at the following aspects of these methods:

 � How to trigger an animaion using the show() or hide() methods

Fading Animaions

[48]

Our ly-out menu will be displayed like this:

In the previous screenshot, we see the submenu fade in as well as grow outwards as the
mouse pointer hovers over a top-level menu item. As before, the animaion proceeds from
the top to the botom in the screenshot.

Chapter 2

[49]

Time for action – animations with show/hide
It's always easiest to add any required HTML and basic CSS irst, before adding any behavior
with JavaScript, and this example is no excepion.

1.	 Add the following markup to the <body> of the template ile:

<nav>

 Top Level

 Top Level »

 2nd Level
 Link

 2nd Level
 Link

 2nd Level
 Link

 Top Level

 <li class="last">Top Level
 »

 2nd Level
 Link

 2nd Level
 Link

 2nd Level
 Link

</nav>

2.	 Save this ile as showHide.html. The following CSS should go into a new ile:

nav {

 font:normal 18px "Nimbus Sans L", "Helvetica Neue", "Lucida Sans
 Unicode", Sans-serif;

}

nav a {

 display:block; padding:20px 30px; text-decoration:none;

 background-color:#ddd; color:#333; border:1px solid #fff;

}

nav a:hover { background-color:#333; color:#ddd; }

www.allitebooks.com

http://www.allitebooks.org

Fading Animaions

[50]

nav ul {

 padding:0; float:left; list-style-type:none;

 border:1px solid #666;

}

nav ul li { position:relative; border-bottom:1px solid #666; }

nav ul li.last { border-bottom:none; }

nav ul ul {

 display:none; position:absolute; top:10px; left:150px;

 z-index:999; -moz-border-radius-bottomleft:7px;

 -moz-border-radius-bottomright:7px;

 -webkit-border-bottom-left-radius:7px;

 -webkit-border-bottom-right-radius:7px;

 border-bottom-left-radius:7px; border-bottom-left-radius:7px;

 -moz-box-shadow:0px 4px 10px #666;

 -webkit-box-shadow:0px 4px 10px #666;

 box-shadow:0px 4px 10px #666;

}

nav ul ul li a { white-space:pre; }

nav ul ul li:last-child a {

 -moz-border-radius-bottomleft:7px;

 -moz-border-radius-bottomright:7px;

 -webkit-border-bottom-left-radius:7px;

 -webkit-border-bottom-right-radius:7px;

 border-bottom-left-radius:7px; border-bottom-left-radius:7px;

}

3.	 Save this in the css folder as showHide.css and don't forget to link to it in the
<head> of the page.

4.	 Finally, we need to add the jQuery methods that will show and hide our submenus
when appropriate. Add the following code to the anonymous funcion at the botom
of the <body>:

var subMenuParent = $("nav ul ul").parent();

subMenuParent.mouseenter(function() {

 $(this).find("ul").show("fast");

});

subMenuParent.mouseleave(function() {

 $(this).find("ul").hide("fast");

});

Chapter 2

[51]

What just happened?
The simple markup for this example consists of the <nav> container element and a series of
nested unordered lists.

As I menioned, the way in which the selected element grows when it is acted upon by the
show() method is dictated by the CSS posiioning that it uses. In this case, we'd like the
menu to grow down and to the right, so we posiion the submenus using their top and left
properies. The submenus are also hidden iniially with display:none; as is required for
an element to be shown with the show() method.

In the script, we irst select each of the nested elements and then navigate up to their
respecive parent elements. We then use the mouseleave() and mouseenter()
event helper method to atach the events. This is so that only list items containing submenus
will have the listeners atached.

In the anonymous funcions supplied to these listeners, we navigate down to the nested
 and call the show() or hide() method as appropriate, triggering an animaion by
supplying the string fast.

When we run this page in a browser, we should ind that hovering the mouse pointer over
one of the list items that contain a submenu cause the submenu to be animated into full size
and opacity.

Pop quiz – using show and hide
1. Which argument should be provided to trigger animaions when using the show()

or hide() methods?

a. A callback funcion

b. An object containing the duraion and easing for the animaion

c. An integer or string specifying the duraion of the animaion, and/or a string
specifying the easing

d. An array containing the duraion and easing for the animaion

2. How is the direcion of growth in the animated element controlled?

a. By its CSS posiioning properies

b. By seing a property of the jQuery object

c. By passing an object containing values for let and top properies into
the method

d. It cannot be controlled

Fading Animaions

[52]

Animated toggling
jQuery provides a toggle() method, which can be used in several diferent ways depending
on which arguments are passed to it. Normally it is used to execute two or more funcions
alternately, but like the show() or hide() methods, it can be used to create animaions
when a duraion or easing is supplied as an argument.

When animaions are required from the toggle() method, we should simply supply a
duraion and/or an easing argument, which may take the same numerical or string based
format as the other animaion methods we have looked at so far.

The same rules about CSS posiioning also apply to the toggle() method, so the direcion
of animaion is easy to customize. The duraion argument may be of string or integer types,
and a callback funcion may be provided if required. The easing argument should be in
string format.

The toggle() method works in a similar way to the fadeToggle() method that we looked
at earlier in the chapter. It contains logic that checks the current state of the element and
either shows, or hides the element based on this.

The method should be seen merely as a convenient short-cut that may be beneicial in some
basic situaions. From a performance perspecive, the show() and hide() methods are
marginally more eicient as there is no internal check on the current visibility of the element
being animated. It is efecively a combinaion of the show() and hide() methods.

Time for action – replacing show and hide with toggle
In this example, we'll change our showHide.html page so that the submenus are displayed
(or hidden) with toggle() instead of using show() and hide().

1.	 All that needs to change is the script:

subMenuParent.mouseenter(function() {

 $(this).find("ul").toggle("fast");

});

subMenuParent.mouseleave(function() {

 $(this).find("ul").toggle("fast");

});

Chapter 2

[53]

2.	 Save the changes as toggle.html.

3.	 We should ind when we run the page that it works in the same way as it did using
the show() and hide() methods. In this example, using the toggle() method
has done nothing for us; we haven't reduced our own code at all.

4.	 In some applicaions, if we were using the click event to either show or hide an
element for example, we would be able to reduce the complexity of our event
handlers and rely on toggle() to do it for us.

Have a go hero – doing more with toggle
Why not change the last two examples so that the verical <nav> menu uses click events
instead of hover events. You'll get to see when toggle() can be used to simplify your code.

Summary
In this chapter, we looked at some of jQuery's most basic animaion methods. The fade class
of methods are the simplest animaion methods found in jQuery, animaing nothing except
the opacity of the selected element(s).

The show(), hide(), and toggle() methods can also be used to perform animaions but
alter the dimensions of the element as well as its opacity. All of these methods are simple to
use and require few or no addiional coniguraion in order to run.

We looked at the following methods in this chapter:

 � fadeIn()

 � fadeOut()

 � fadeTo()

 � fadeToggle()

 � show()

 � hide()

 � toggle()

Fading Animaions

[54]

We also covered the following points:

 � The fade methods work by altering the opacity and display properies of the
selected elements. All methods may accept an opional duraion argument in string
or integer format except for the fadeTo() method, with which the argument is
mandatory.

 � Transparent PNGs in IE can end up with unsightly black borders when they are faded
in or out with jQuery, but there are ways to avoid the issue in all current versions of
IE. We also saw that fading table elements can cause problems in IE.

 � By default, the show(), hide(), and toggle() methods occur instantaneously.
However, they can all be used to create animaions by supplying a duraion and/
or easing argument(s).The duraion argument may take integers represening
milliseconds, or the strings slow or fast which correspond to duraions of 600
or 200 milliseconds.

 � All animaions have a default easing of swing, although we can change this to
linear for an animaion that proceeds at a uniform pace.

 � CSS can have a huge impact on how animaions proceed, as we saw when we looked
at how to control the direcion that the selected elements grow or shrink when
using show() or hide().

One thing to note with all of the fading animaions is that it can cause issues with
clearType text in IE; clearType is disabled when the animaion runs so any text in the
element being animated becomes aliased. There are several diferent work-arounds for this
issue which involve removing the filter atribute once the animaion has run.

Now that we've covered the most basic types of jQuery animaions and got an idea about
how they run, we can move on to look at the animaion queue and the methods we have at
our disposal for managing it.

3
Managing Animations

Like most of the methods that jQuery makes available to us, the efect,
or animaion, methods can be chained together in sequence, like this:

 jQuery(elements).fadeIn().slideDown()

When several animaion methods, such as fadeIn(), and so on, are chained
together and called on the same element or collecion of elements, they are
placed into a queue to be executed one ater the other in series rather than
all execuing simultaneously in parallel. The standard animaion queue created
for an animated element is called fx, although custom queues can easily
be created.

jQuery gives us several methods that make working with and manipulaing an element's fx
queue extremely easy. These methods include:

 � clearQueue()

 � delay()

 � dequeue()

 � queue()

 � stop()

The techniques that we'll learn in this chapter include:

 � Viewing the items in an element's queue

 � Couning the items in an element's queue

 � Prevening queued efects from execuing

 � Delaying the start of the next efect in the queue

Managing Animaions

[56]

 � Replacing the exising queue with a new queue

 � Calling the next funcion in a custom queue

 � Stopping the current efect without execuing the rest of the queue

 � Globally disabling all animaions

 � Changing the frame rate of animaions globally

The jQuery object itself also contains several properies that can be useful when working
with animaions. These include:

 � jQuery.fx.off

 � jQuery.fx.interval

The queue is not restricted to storing animaion methods; other methods can
also be added to the queue. We will only be looking at the queue() method
from an animaion perspecive here.

Working with the queue
When several efects are chained together, the irst efect is begun straight away. The
remaining efects are stored as funcions in an array in the element's fx queue. As the
efects are stored in an array, we can call standard JavaScript array methods on it to
manipulate it, and examine its properies to ind out addiional informaion about it.

We can determine how many funcions are in the queue by looking at the length property
of the array, or we can call standard funcions such as push(), pop(), or reverse() on
it to perform various operaions on the items (funcions) in the array. It is unlikely that this
would be required in most normal situaions however.

An important point to note about the queue is that the irst efect method called on an
element does not get stored in the queue, so the length of the queue at the start of
the operaion will always be one less than the total number of efect methods called on
the element.

The queue executes on a irst-in-irst-out basis, with the last funcion stored in the queue
execuing last. The default fx queue for an animated element will run automaically
and each funcion contained within it will be called automaically by jQuery. The string
inprogress is used as the irst item in the default fx queue as a lag indicaing that the
queue is currently being run.

Chapter 3

[57]

A custom queue that we create ourselves will not run automaically and we must ensure
that each item in the queue is executed one ater the other. jQuery provides several ways of
doing this including the dequeue() method, which executes the next funcion in the queue,
and a callback funcion that we can pass into funcions in the queue. We'll look at both of
these techniques later in the chapter.

Viewing the queue
To view the queue we simply call the queue() method; no arguments are required but we
can opionally supply the queue name if it difers from the default fx. When the method
is called, it returns an array containing the remaining funcions in the queue. The queue()
method may be used in the following form:

jQuery(elements).queue([queue name], [new queue], [callback]);

In addiion to the name of the queue, we can also supply either a new queue, or a single
callback funcion. The new queue, if supplied, should take the form of an array of funcions.
The new queue will replace the exising queue enirely. Passing an empty array to the
queue() method will clear the queue. A callback passed to the queue() method will be
added to the end of the queue and executed last ater the funcions originally in the queue.

A common use of the queue() method is to look at the length property of the returned
array to determine how many funcions are let to run; but if we need to, we can also look at
each funcion individually by calling the toString() JavaScript funcion on any item in the
array (except for item 0 which will simply display the string inprogress).

Most funcions in the returned array are funcion literals, however, the "next" item in the
queue is not available via the queue() method. The contents of item 0 in the default fx
queue will always be the string inprogress as this is the animaion currently being run.

Time for action - viewing the queue
Let's look at a basic example of the use of the queue() method and the type of results we
can expect to obtain.

1.	 In the <head> of our template ile add the following code:

<style>

 #fader { width:100px; height:100px; background-color:#000; }

</style>

Managing Animaions

[58]

2.	 Finally, in the anonymous funcion at the botom of the second <script> element,
add the following code:

$("#fader").fadeOut(function() {

 console.log($(this).queue());

}).fadeIn().fadeOut().fadeIn();

3.	 Save the page as queue.html.

What just happened?
Typically, we'd use an external stylesheet for any styling, but for a single selector and three
rules, it seems pointless creaing a separate ile. In the script we have four efects chained
together to form a simple animaion in which our <div> element is simply faded out and
back in twice. We provide a callback funcion as an argument to the irst of our efect
methods, within which we call the queue() method.

You'll need to use a browser that has a console for this example, such as Firefox. Here's what
the output looks like in Firebug:

In the previous screenshot, we can see that the array making up the queue has been output
to the console for us to view. There are three items let in the queue when the method is
called. The irst item in the array is the string inprogress. The remaining two items are the
queued methods that have not yet run.

Chapter 3

[59]

If we wish to see how many funcions are let in the queue (including the one that is in
progress), we could change the console.log line to this:

console.log($(this).queue().length);

This code would show the following output in Firebug's console:

This ime our console shows numerically how many items are let in the queue, as shown
in the previous screenshot.

We can use other array methods on the queue if we wish (although this would rarely be
useful), such as push() or pop() to add or remove items for example. We can also get a
single item from the queue if we wish, by adding square braces and an index number ater
the call to queue():

console.log($(this).queue()[1]);

As shown above, this ime the value of the second item is output to the console. As I
menioned earlier, we can see the actual contents of the funcion using the toString()
JavaScript funcion:

console.log($(this).queue()[1].toString);

Managing Animaions

[60]

Running this code produces the following output:

The code shown in the previous screenshot won't make much sense to the casual observer
as it's been miniied, but it's the contents of jQuery's fadeout() method.

Pop quiz – viewing the queue
1. What is the easiest way of determining the number of funcions in the queue?

a. Using the length() method

b. Using the length property

c. Couning them in Firebug

d. By looking at the effectsLeftToRun property of the animated element's
fx queue

Chapter 3

[61]

2. What does the queue() method return?

a. A funcion

b. A JSON object

c. An array

d. The number of efects let to run

Adding a function to the queue
Appending a new funcion to the end of the queue is a trivial mater and we don't even need
to use a new method. We just need to pass the new funcion, or a funcion reference, to the
queue() method as an argument.

When we pass a single funcion into the queue() method and we are working with the
default fx queue, jQuery will automaically call the funcion for us using the dequeue()
method. We haven't looked at the dequeue() method yet, but we will cover this a litle
later in the chapter.

Time for action – adding a single function to the queue
Let's see how easy it is to add a new funcion to the end of the queue.

1.	 Update the script in queue.html so that it appears as follows:

$("#fader").fadeOut(function() {

 $(this).queue(function() {

 $(this).css("backgroundColor", "green");

 });

}).fadeIn().fadeOut().fadeIn();

2.	 Save the new ile as queueAdd.html.

What just happened?
By supplying a callback funcion as the opional second argument to the queue() method,
we add the funcion to the end of the animaion queue. When we run the code in a browser
the animaion should proceed as normal; then once the efects have run, the <div> will
turn green.

We don't need to supply the name of the queue unless it difers from the default fx queue.
In this simple example, we just change the background-color of the target element, but
in reality a funcion of any complexity can be appended to the queue.

Managing Animaions

[62]

jQuery handles calling this funcion for us when we add it to the default fx queue. When
working with custom queues we will need to dequeue the funcion manually using the
dequeue() method, which we'll look at shortly.

Pop quiz – adding new items to the array
1. What is the easiest method of adding a new funcion to the queue?

a. Supplying a callback to the queue() method

b. Using the JavaScript push() funcion

c. Using the add() method

d. Using the jQuery.fx.queue property

Using a callback function to keep the queue moving
In the last example, the funcion that we added to the queue was added as the last funcion
in the queue, so ensuring that the queue kept running was not necessary. Someimes
however we may need to add several funcions to the end of the queue, and will therefore
need to execute the addiional funcions ourselves.

Time for action – keeping the queue running
1.	 Change the <script> element at the botom of the queueAdd.html so that it

appears as follows (new code is shown in bold):

$("#fader").fadeOut(function() {

 $(this).queue(function(next) {

 $(this).css("backgroundColor", "green");

 next();

 }).fadeOut();

}).fadeIn().fadeOut().fadeIn();

2.	 Save this ile as queueInsert.html.

What just happened?
This ime we have chained an extra call to the fadeout() method to the end of the
queue() method inside the callback funcion for the irst fadeout() method. We sill
pass an anonymous funcion to the queue() method, but this ime we supply an argument
to this funcion as well.

Chapter 3

[63]

The argument we supply to the funcion passed into the queue() method is called next.
jQuery will treat whatever we pass in as a funcion and all we have to do is call this funcion
from within the callback funcion and that will make sure the next funcion in the queue
is executed.

The funcion we pass into the callback funcion passed to the queue() method doesn't have
to be ideniied as next, it can be any accepted funcion name. In this example, we call the
next funcion ater seing the background-color of the <div> to green.

This will cause the extra fadeout() method to be executed last, so when we run this
example in a browser, we should ind that the green <div> disappears at the end.

Pop quiz – keeping the queue running
1. What can we use to call the next funcion in the queue when insering a callback

funcion into the queue using the queue() method?

a. A Boolean value of true passed into the callback funcion as an argument

b. A string containing the word next

c. A funcion

d. An integer of -1

Replacing the queue
Someimes adding a single funcion to the end of the queue may not be enough—we
may wish to replace the queue enirely. This behavior is also managed enirely by the
queue() method.

Time for action – replacing the queue
1.	 We'll update the queue.html ile once again for this example. We'll need another

style rule in the <style> element in the <head> of the page:

#fader span {

 display:none; width:100%; height:100%; position:absolute;
 left:0;

 top:0;

}

2.	 We should also add position:relative; to the #fader selector.

Managing Animaions

[64]

3.	 Now change the script at the botom of the page to this:

<script>

 (function($){

 function changeColor(element, newColor) {

 $("").css("backgroundColor",
 newColor).appendTo(element).fadeIn(500, function(){

 element.dequeue();

 });

 }

 var fader = $("#fader");

 var newQ = [

 function() { changeColor(fader, "yellow") },

 function() { changeColor(fader, "orange") },

 function() { changeColor(fader, "green") },

 function() { changeColor(fader, "red") },

 function() { changeColor(fader, "blue") },

 function() { changeColor(fader, "purple") }

];

 $("#fader").fadeOut(function() {

 //replace queue

 $(this).queue(newQ);

 }).fadeIn().fadeOut().fadeIn();

 })(jQuery);

</script>

4.	 Save the ile as queueReplace.html.

What just happened?
First we deine a single funcion which accepts two arguments. The irst is a jQuery object
referring to the animated element and the second is a new color.

We then create a new element, set its background-color to the color passed into
the funcion, append it to the element passed in to the funcion, and then fade it into view.

Chapter 3

[65]

We pass a callback funcion into the fadeIn() method used with the new . In this
funcion, we just call the dequeue() method. This is required for the next funcion in the
queue to be executed; if we don't do this, only the irst funcion in our custom queue will
be executed.

Next we deine our replacement queue, ater irst caching a selector for the #fader
element. The new queue is deined as an array where each item consists of an anonymous
funcion which in turn invokes our colorChange() funcion, passing in the cached selector
and a CSS color name.

Finally, we call an efect method on the target element and queue up some addiional
efects as we did before. This ime when we call the queue() method, we supply our
custom queue, which replaces the default fx queue created by the chained fade methods.

When we run the page in a browser, we see that the irst efect is applied, and then our
queue of custom colorChange funcions is called. The two fade efects that would have
been in the default fx queue originally are not executed.

Pop quiz – replacing the queue
1. What do we need to pass to the queue() method in order to replace the queue?

a. A string containing a funcion reference

b. The dequeue() method

c. An array

d. A Boolean

2. What is an easy way of clearing the default fx queue, other than using the
clearQueue() method?

a. Passing the string clear to the queue() method

b. Passing the integer 0 to the queue() method

c. Passing the Boolean false to the queue() method

d. Passing an empty array to the queue() method

Ensuring custom queues iterate correctly
When we create custom queues, the chained methods are not automaically called for us.
This is something we need to do manually and is handled using the dequeue() method as
we saw in the previous example.

Managing Animaions

[66]

When called, it will remove the next funcion in the queue and execute it. It's a simple
method, with few arguments, and is used in a very speciic manner. The method may take a
single opional argument which is the name of the queue to execute the next funcion from:

jQuery(elements).dequeue([queue name]);

The queue name is only required if we are working with a queue other than the default fx
queue. We didn't need to provide the name of the queue in the previous example in the last
secion because we replaced the animated element's default fx queue. The dequeue()
method has the same efect as calling the next() funcion that we used to keep the queue
moving in the queueInsert.html example from the last secion.

Time for action – dequeueing functions
Let's change the queueInsert.html page so that it uses the dequeue() method instead
of the next() funcion to keep the queue moving.

1.	 Change the code in queueAdd.html so that it appears as follows:

$("#fader").fadeOut(function() {

 $(this).queue(function() {

 $(this).css("backgroundColor", "green").dequeue();

 }).fadeOut();

}).fadeIn().fadeOut().fadeIn();

2.	 Save this version as dequeue.html.

What just happened?
This ime we do not need to pass anything into the callback funcion passed to the
queue() method. We simply chain the dequeue() method to the <div> ater seing its
background-color to green. This has the same efect as before and the green <div> will
fade out at the end of the animaion.

Stopping an animation
The stop() method can be used to stop an efect that is currently running on the selected
element. In its simplest form, we may call the method without supplying any addiional
arguments, but if necessary we can supply up to two Boolean arguments. The method takes
the following format:

jQuery(elements).stop([clear queue], [jump to end]);

Chapter 3

[67]

The irst argument clears the element's queue and the second forces the inal state of the
efect to be applied.

The stop() method behaves diferently depending on whether there are any addiional
efects in the fx queue.

When the method is called and there are no funcions in the queue, any efects that are
currently running on the selected element(s) will simply stop and the element will remain in
whatever state it reached during the animaion.

If there are several funcions in the queue however, the current animaion will be stopped
in whatever state it is in at the ime, but then the remaining funcions in the queue will
be executed.

Take the following code for example:

$("#fader").fadeOut(5000).fadeIn().fadeOut().fadeIn();

$("#stop").click(function() {

 $("#fader").stop();

});

If the stop element is clicked while the irst efect is running, the fader element will licker as
the remaining efects are applied one ater the other.

To prevent the queued funcions being executed, we can supply true as the value of the irst
argument. To force the element into its inal state, we can also supply true as the value of
the second argument. Both arguments default to false.

The stop() method can be really useful for prevening animaion build-up. If an animaion
is triggered by clicking a buton for example and the buton is clicked repeatedly, the
animaion can run muliple imes. Usually this behavior is undesirable and can be prevented
using the stop() method.

To see the diferences between each variaion of the stop() method, see
the stopTest.html ile in the accompanying code download for this book.

Managing Animaions

[68]

Time for action – preventing animation build-up using
the stop method

In Chapter 2, Fading Animaions, we used the fadeIn() method to enhance CSS hover
states, but we didn't hide the hover state using fadeOut(). The reason for this is because
the animaions can quickly build up. If the mouse pointer is moved on and of one of the
links repeatedly, the hover state will coninue to fade in and out even ater the mouse
pointer moves away.

Fortunately, we can use the stop() method to prevent this from happening. In this secion,
we'll add fadeOut() efects to the navigaion menu example from Chapter 2, Fading
Animations and use the stop() method to prevent an efect build-up.

1.	 In fadeIn.html, change the hover() method so that it appears as follows:

ul.find("a").hover(function() {

 $(this).ind("span").stop(true, true).fadeIn("slow");
}, function() {

 $(this).ind("span").stop(true, true).fadeOut("slow");
});

2.	 Save this ile as stop.html.

What just happened?
By calling the stop() method directly before applying the fadeIn() efect, we ensure that
a build-up of efects does not occur and spoil the hover states. In order for the efects to work
correctly, we supply true as the values of both the clear queue and jump to end arguments.

Pop quiz – stopping an animation
1. What does the irst argument that can be passed to the stop() method determine?

a. Whether or not the method should return false

b. Whether or not the element should be removed from the page

c. Whether or not the queue should be cleared

d. Whether or not the queue should be replaced

2. What does the second argument control?

a. Whether or not the queue is cleared

b. Whether or not the method returns the queue as an array

c. Whether the element should be removed from the page

d. Whether the element should be set to its inal state

Chapter 3

[69]

Delaying queue execution
As of jQuery 1.4 we can choose to delay the execuion of the next funcion in the queue
using the delay() method. We need to supply the duraion as an argument to the method
to tell it how long the delay before the next efect starts should be, and we can opionally
supply the name of the queue to delay as an argument as well. The method is used in
this format:

jQuery(elements).delay(duraion, [queue name]);

The duraion argument may be supplied as an integer represening the length of the duraion
in milliseconds, just like the efect methods we've covered so far, or it may be one of the
strings slow or fast which correspond to the standard values. If no duraion is provided,
the queue will not be delayed, and if a string other than slow or fast is provided, the delay
will be the default duraion of 400 milliseconds.

The queue does not need to be directly manipulated in order to set a delay. All we need
to do is chain the method between our animaion methods, so an animaion that fades an
element in and out several imes that required a delay could be constructed like this:

$("#fader").fadeOut().delay(2000).fadeIn().fadeOut().fadeIn();

Note that the delay() method is only supposed to be used with methods or funcions in a
queue, just like the stop() method, and cannot (and is not meant to) replace JavaScript's
setTimeout() funcion.

Plugins

There are several great plugins that make working with both the
setTimeout() and setInterval() naive JavaScript funcions
quicker and easier. Just search the plugin repository for setTimeout.

Clearing the queue
As well as viewing the queue and manipulaing its contents, we can also remove all of the
funcions from it enirely. jQuery provides the clearQueue() method allowing us to easily
clear all funcions in the speciied element's queue.

Like dequeue(), this is a simple method that takes just a single opional argument:

jQuery(elements).clearQueue([queue name]);

This method is generally used with non-animaion-based queues, when using the stop()
method is not possible, and so will not be discussed further.

Managing Animaions

[70]

Passing an empty array to the queue() method will also
clear the queue.

Useful properties of the jQuery object
The jQuery object contains a couple of properies that we can set which can be useful when
creaing animaions. The jQuery (or $) object contains an fx property, which itself contains
two properies related to animaions which we can manipulate.

This fx object is not to be confused with the fx queues that are created by default for any
element that has more than one animaion method called on it in a chain. These individual
fx queues do not contain the same properies that the jQuery fx property contains.

Globally disabling animations
One property of fx that we can set is the off property. This property contains a Boolean
that is set to false by default, but which we can set to true to globally disable all
animaions on a page. The property is set using the following syntax:

jQuery.fx.off = true;

That's all we do need to do. If this is set at any point in our script, all elements that have
animaion methods atached to them will be set to their inal state, as if the animaion
had already completed.

Changing the default frame rate
The other property of jQuery's fx that we can set is the interval property. This property
accepts an integer and speciies the number of milliseconds between each frame of the
animaion. By default, it is set to 13, so an animaion will have a frame-rate of about 76
frames per second.

To set this property, we just supply a diferent integer:

jQuery.fx.interval = 28

Seing the property to 28 like this would make the animaion run at about 35 frames per
second, making animaions run almost half as smoothly.

Note that animaions will sill run over the same duraion of ime (whether that is the default
400 milliseconds, or another value set with the duraion argument of an animaion method)
regardless of what this property is set to. However, an interval value that is lower, and
therefore has a higher number of frames per second, will make animaions appear smoother.

Chapter 3

[71]

Also note that the lower we set the interval property, the more intensive animaions will
be. While the latest browsers will cope with these increased demands saisfactorily, older or
slower browsers will struggle.

There must be no animaions running when this property is set for it to take efect. Any
animaions that are running must be stopped.

Summary
While manipulaing an element's fx queue directly may not oten be required, when we
do need to work with it, jQuery makes the process easy and transparent. With a collecion
of methods at our disposal, we can have full control over how the queue behaves. In this
chapter, we looked at the following methods:

 � clearQueue()

 � delay()

 � dequeue()

 � queue()

 � stop()

We also looked at the following properies of the jQuery object:

 � jQuery.fx.off

 � jQuery.fx.interval

In this chapter we found that:

 � The contents of the queue and the number of items in the queue can be easily
obtained using the array that's returned by the queue() method. We can also
use standard JavaScript array methods, such as push() or pop(), to interact
with the array.

 � We can supply diferent arguments to the queue() method which make adding
a single funcion to the queue, or replacing the queue enirely, a trivial mater.

 � When working with custom queues, or when adding more than a single new
funcion to the default fx queue, we will need to ensure that the queue keeps
running and execuing the remaining funcions. We can do this using either the
dequeue() method, or a funcion passed into a callback funcion.

 � The stop() method will halt the currently-running animaion and can be made
to clear the queue and force the element into its inal state if necessary using
addiional arguments.

 � The delay() method allows us to add an interval, or delay, in between
queued animaions.

Managing Animaions

[72]

 � The clearQueue() method is not designed to work with animaions, when using
the stop() method and clearQueue argument is more appropriate.

 � We can globally disable all animaions on a page by seing the off property of
jQuery's fx property to true.

 � We can change the global frame rate of animaions using the interval property
of jQuery's fx property.

Now that we've mastered the animaion queue, we'll move back to looking at some more
of jQuery's built-in efect methods. In the next chapter, we'll look at the sliding group of
methods including slideDown(), slideUp(), and slideToggle().

4
Sliding Animations

Another type of efect that is built into jQuery is the slide efect. Elements can
be made to slide verically so that they appear to open or close depending on
their current state. There are three methods related to sliding that are exposed
by jQuery:

slideDown()

slideUp()

slideToggle()

How each of these methods works will be explored thoroughly over the course
of this chapter.

Some of the skills we'll learn include:

 � Showing hidden elements with slideDown()

 � Hiding visible elements with slideUp()

 � How an element's CSS styling can inluence sliding animaions

 � How we can save code with slideToggle()

 � How to add easing efects to sliding animaions

 � How to deal with a common usability issue with sliding animaions triggered by
hover events

You should note that the sliding methods all work with the display style property of the
selected element(s), and are used to either show or hide the element in quesion by sliding
it open or closed.

Sliding Animaions

[74]

Sliding elements into view
When an element is hidden from view using display:none; we can easily show the
element using the slideDown() method. This method may take the following form:

jQuery(elements).slideDown([duraion], [easing] [callback]);

The opional duraion argument may take either integer or string formats just like the
animaion methods we have already looked at, and the default duraion of 400 milliseconds
will be used when no duraion argument is supplied.

As before, an easing funcion may also be supplied as the second argument, and a callback
funcion, if supplied, will be executed once for each selected element once the animaion
has completed.

The slideDown() method works by changing an element's display property from none
to block in the same way that fade animaions do. If an element requires a diferent display
mode, such as inline-block for example, this will need to be set using the opional
callback funcion, or by using a nested element within the element that has slideDown()
called on it.

As well as the display property, the method also adjusts the target element's height
property to gradually reveal the hidden element. The height of the target element is
calculated by jQuery, so things that afect this, such as padding or margin, can afect how
the animaion displays as it runs.

Sliding an element that does have padding or margin applied to it can cause the animaion
to run unusually, with the elements inside the animated element also appearing to move.
Padding or margin can also cause animaions to be choppy or uneven when being run.

Elements that do not have ixed widths can also cause problems when animated with
slideDown(), slideUp(), or slideToggle(). This can also cause a small jump at the
end of a slide animaion in some browsers.

If margin or padding is required, or if a ixed width is not possible, it is advisable to use a
wrapper element in conjuncion with the target element to run the animaion on, or to give
the required padding or margin. All of the sliding methods return the original jQuery object
and so are perfectly safe for chaining. Addiionally, the sliding efects will be stored in the
selected element's fx queue when several are chained to a single element.

Chapter 4

[75]

Time for action – creating a slide-down login form
In this example we'll see how easy it is to implement a login form that slides open when a
link is clicked. It's common pracice to include a login link at the top of a page, but usually
the whole login form isn't shown. Instead, clicking the link will reveal an inline form that is
hidden by default. The following screenshot shows how the page will appear with the login
form open:

1.	 To begin with, add the following code to the <body> of our template ile:

<header>

 Already registered?

 Login

 <form>

 <fieldset>

 <legend>Login Form</legend>

 <label for="username">Username:<input
 name="username" id="username"></label>

 <label for="password">Password:<input
 name="password" id="password"
 type="password"></label>

 <input name="remember" id="remember"
 type="checkbox"><label for="remember">Remember
 me:</label>

 <button type="submit">Login</button>

 </fieldset>

 </form>

</header>

Sliding Animaions

[76]

2.	 Save the ile as slideDown.html in the main project folder.

3.	 Next let's add the CSS for this example. In a new ile in your text editor, add the
following code:

header {

 display:block;

 font-family:Verdana, Arial, Helvetica, sans-serif;

}

header ul {

 margin:0; position:relative; float:right; list-style-type:none;

 font-size:11px;

}

header ul li { float:left; margin-top:10px; }

header ul li a {

 display:block; margin:-13px 0 0 10px; padding:11px 18px;

 -moz-border-radius:5px; -webkit-border-radius:5px;

 border-radius:5px; font-size:14px; color:#000;

}

header ul li a:hover, header ul li a:focus, header ul li a.on {

 padding:3px 10px; border:8px solid #666; background-color:#fff;

 text-decoration:none;

}

header ul li a.on {

 border-bottom:0; padding-bottom:10px;

 -moz-border-radius-bottomright:0; -moz-border-radius-
 bottomleft:0;

 -webkit-border-bottom-right-radius:0;

 -webkit-border-bottom-left-radius:0; border-bottom-right-
 radius:0;

 border-bottom-right-radius:0; position:relative; z-index:10;

 outline:0;

}

header form {

 display:none; width:260px; border:8px solid #666;

 -moz-border-radius:px; -moz-border-radius-topright:0;

 -webkit-border-radius:5px; -webkit-border-top-right-radius:0;

 border-radius:5px; border-top-right-radius:0;

 position:absolute; right:0; top:27px; z-index:5;

}

header fieldset { margin:0; padding:20px 10px 10px; border:0; }

header legend { display:none; }

header form label { display:block; float:right; font-size:14px; }

header form label:first-child { margin-bottom:10px; }

Chapter 4

[77]

header form input {

 display:block; width:148px; margin:-2px 0 10px 8px; float:right;

}

header form input#remember { width:auto; margin:3px 0 0 10px; }

header form button {

 margin:10px -1px 0 0; float:right; clear:right;

}

4.	 Save this stylesheet in the css folder as slideDown.css.

5.	 Finally we should add the script that will enable the slide efect. Within the
anonymous funcion in the second <script> element, add the following code:

$("#login").click(function(e) {

 e.preventDefault();

 $(this).addClass("on").next().slideDown();

});

6.	 When we run the page now, we should see that the hidden form slides open when
the login link is clicked:

Sliding Animaions

[78]

The previous picture shows the menu as it opens. The animaion proceeds from top to
botom. Because the slideDown() efect is only applied to elements that are hidden,
clicking the link while the menu is open will not cause the menu to reopen.

What just happened?
We have a relaively straight-forward collecion of elements here. The HTML5 <header>
element is the natural container for our login elements. The form is part of a simple
unordered-list along with a link that will open the form.

Note that the link that will be used to open the login form has its href atribute set to
a page that contains the login form. This is a simple fallback so that if the visitors have
JavaScript disabled, they can sill login even if they don't get to see the slide down form.

A lot of the styling is purely presentaional and does not afect how the form funcions.
Similarly, a lot of it is standard posiional stuf. What's important is that the form is iniially
hidden from view with display:none, and that the form is posiioned using its top
style property.

We atach a click-handler to the login link, which automaically receives the event object
(e) as an argument. We use this object to cancel the default behavior of the browser. This
prevents the page from jumping to the top when the link is clicked, or following the href
of the link provided in case JavaScript is disabled. The preventDefault() funcion, which
jQuery normalizes to work in IE as well as standard-compliant browsers, handles this for us.

We then add the class name on to the link so that our :hover styles are persisted when
the pointer moves of the link and the form is sill open. We then move to the next element
ater the link, our hidden login form, and call the slideDown() method on it with no
addiional arguments.

Posiion is important

The posiion of an element that has slideDown() applied to it is very
important. The animaion will not run correctly if the element uses absolute
posiioning in conjuncion with its bottom style property to posiion itself by.

In this situaion, the element will appear to slide up from the botom, instead
of sliding down as intended. We do not see this behavior with relaively
posiioned elements however.

Chapter 4

[79]

Pop quiz – sliding elements down
1. What should be applied to an element before it has the slideDown() method

called on it?

a. visibility:hidden;

b. height:0;

c. display:none;

d. position:static;

2. What style does an element that has been shown with slideDown() end up with?

a. display:block;

b. visibility:visible;

c. position:absolute;

d. height:100%;

Have a go hero – sliding elements down
In our basic example, once the form has been opened it then stays open unil the page is
reloaded. Add some addiional code that fades the login form away ater a speciied length
of ime in case it is not interacted with.

Sliding elements out of view
The slideUp() method works in exactly the same way as slideDown(), except that it
hides the target element instead of showing it. The slideUp() method accepts the same
arguments as slideDown() and can be afected by CSS in the same way, so padding
and margin should be taken into account and cauion is advised when using absolute
posiioning. The original value of an element's display property however, is not a factor
when using slideUp().

The method's patern of usage is as follows:

jQuery(elements).slideUp([duration], [easing], [callback]);

Sliding Animaions

[80]

Time for action – sliding elements up
Let's build on the previous example so that the form slides back up out of view if a cancel
link is clicked. We can add this link to the underlying markup for the page:

1.	 In slideDown.html, change the form so that it appears as follows
(new code is highlighted):

<fieldset>

 <legend>Login Form</legend>

 <label for="username">Username:<input name="username"
 id="username"></label>

 <label for="password">Password:<input name="password"
 id="password" type="password"></label>

 <input name="remember" id="remember" type="checkbox"><label
 for="remember">Remember me:</label>

 Cancel

 <button type="submit">Login</button>

</fieldset>

2.	 Save the new ile as slideUp.html.

3.	 We'll also need some more styles in order to stop our new link from picking up
the styling of the login link. At the end of the slideDown.css stylesheet, add
the following new selectors and rules:

header ul li a#cancel {

 margin:0; padding:0; position:absolute; bottom:14px; left:10px;

 font-size:11px; color:#993333;

}

header ul li a#cancel:hover, header ul li a#cancel:focus {

 border:none; text-decoration:underline; color:#ff0000;

}

4.	 Save the updated ile in the css folder as slideUp.css, and update the <link>
in the <head> of slideUp.html to point to the new stylesheet.

5.	 To add the new behavior, update the <script> at the botom of the page so that it
includes the following new code:

$("#cancel").click(function(e) {

 e.preventDefault();

 $(this).closest("form").slideUp(function() {

Chapter 4

[81]

 $(this).prev().removeClass("on");

 });

});

This code should appear within the outer anonymous funcion, but ater the click handler for
the login link. Now we can close the form while it is opened by clicking the new cancel link.
When this event occurs, we should see the reverse of the opening animaion:

The animaion sill proceeds from top to botom, but this ime the form ends up hidden
when the Cancel link is clicked.

Sliding Animaions

[82]

What just happened?
We added a new click-handler in much the same way as we did before, including cancelling
the default behavior of the browser using the event object (e). In this example, we don't
paricularly need to do this because the login form is at the very top of the page, so the
visitor won't have scrolled down the page at all and there won't be a jump to the top of the
page when either the Login or Cancel links are clicked. However, I have included it here as it
is good pracice.

We then ind the closest parent of the link that is a <form> and call the slideUp() method
on it. This ime we also supply a callback funcion, which is used to remove the on class from
the Login link.

You should noice that the Cancel link does not behave like the other elements in the form
while the form is sliding open or closed. The link is visible all the ime and moves with the
botom of the form as it grows or shrinks (depending on whether the form is opening or
closing). The reason for this is simple—it's because the Cancel link is posiioned absolutely.

We've speciically added the CSS that causes the Cancel link to behave in this way, even
though it is generally undesirable, as a reminder that CSS can oten cause issues when
combined with animaions.

Pop quiz – sliding elements up
1. What is the only requirement for an element to have the slideUp() method called

on it?

a. It should be set to visibility:visible;

b. It should contain a wrapper element

c. It should have a minimum height of 100 pixels

d. It should be an element with a display type that naturally renders it visible
on the page

Have a go hero – ixing the Cancel link
Have a go at ixing the Cancel link so that it is only visible while the form is fully open.
The change is simple and requires just a few tweaks to the CSS.

Chapter 4

[83]

Toggling the slide
The inal slide method is slideToggle(), which provides rudimentary state-checking in
order to determine whether the element should be hidden with slideUp() or shown with
slideDown(), and then applies the relevant efect. Like the toggle() method that we
looked at earlier, the built-in state checking mechanism is provided as a simple convenience,
but there may be situaions where we need to provide our own logic.

The slideToggle() method may accept the same arguments as the other slide methods,
or an object that makes use of easing. For reference, the usage patern is as follows:

jQuery(elements).slideToggle([duraion], [easing], [callback]);

Time for action – using slideToggle
On the checkout pages of e-commerce sites, it's customary to show the products that are
in the visitor's basket so that they know exactly what they're buying. Typically the checkout
page (or pages) will be quite long due to the amount of informaion the visitor will need to
enter, especially if it is their irst visit to the site.

The page can oten end up requesing names, e-mail addresses, and other contact
informaion, payment methods, and more. Hence, it can be useful to hide the contents
of the basket and just show a summary, but to allow the basket to be expanded to show
the full details of their purchase.

The following screenshot shows how the basket will appear once it has been opened:

Sliding Animaions

[84]

Once the basket area has been expanded, the contents are displayed in full.

1.	 Let's make a start by creaing the underlying HTML. Add the following code to the
template ile:

<div id="basket">

 <h2>Basket Summary</h2>

 <a id="basketToggle" href="#" title="Display basket
 contents">Show basket contents

 <div id="contents">

 <table>

 <tr><th class="qty">Qty</th><th
 class="desc">Description</th><th
 class="subtotal">Price</th><th
 class="total">Total</th></tr>

 <tr><td class="qty">2</td><td class="desc"></td><td
 class="subtotal">£10</td><td class="total">£20</td></tr>

 <tr><td class="qty">1</td><td class="desc"></td><td
 class="subtotal">£5</td><td class="total">£5</td></tr>

 <tr><td class="qty">3</td><td class="desc"></td><td
 class="subtotal">£7</td><td class="total">£21</td></tr>

 <tr class="summary"><td colspan="3" class="subtotal">5 Day
 standard shipping</td><td class="total">£10</td></tr>

 <tr class="summary vat"><td colspan="3"
 class="subtotal">VAT</td><td class="total">£10</td></tr>

 </table>

 </div>

 <table>

 <tr id="total"><td class="subtotal">6 Items</td><td
 class="total">£66</td></tr>

 </table>

</div>

2.	 Save this page as slideToggle.html.

3.	 Now let's add some basic styling to idy up and improve the appearance of our
example page. In a new ile in your text editor, add the following code:

#basket {

 width:860px; margin:auto; position:relative;

 border:1px solid #000; -moz-border-radius:7px;

 -webkit-border-radius:7px; border-radius:7px;

 background-color:#000;

 font:normal 14px "Nimbus Sans L", "Helvetica Neue", "Franklin
 Gothic Medium", Sans-serif;

Chapter 4

[85]

}
h2 {
 margin:0; padding:7px 0 7px 14px; -moz-border-radius:7px;
 -webkit-border-radius:7px; border-radius:7px; color:#fff;
 background-image:-moz-linear-gradient(0% 22px 90deg, #222,
 #999);
 background-image:-webkit-gradient(linear, 0% 0%, 0% 50%,
 from(#999), to(#222));
}
#basketToggle {
 position:absolute; right:14px; top:10px; color:#ccc;
}
#basketToggle:hover { color:#fff; }
#basketToggle:active { color:#ddd; }
#basketToggle:focus { outline:none; color:#ddd; }
table {
 width:860px; margin:auto; border-collapse:collapse;
 border-spacing:0;
}
td, th { padding:20px 10px; border:1px solid #000; }
th { border-top:none; }
#contents { display:none; }
#contents table { background-color:#fff; }
.summary td, th {
 background-color:#ccc;
 background-image:-moz-linear-gradient(0% 40% 90deg, #ccc, #fff);
 background-image:-webkit-gradient(linear, 0% 0%, 0% 40%,
 from(#fff), to(#ccc));
}
.qty, .desc { width:50px; text-align:left; }
.qty, #total .subtotal { border-left:none; }
.subtotal, .total { width:112px; }
.subtotal { text-align:right; border-left:0; }
.total { text-align:left; border-right:none; }
.vat .subtotal, .vat .total { border-bottom:none; }
#total .subtotal, #total .total { border-bottom:none; }
#total td { color:#fff; border:1px solid #fff; }
#total .total { border-right:none; font-weight:bold; }
.summary .subtotal, #total .subtotal, .desc { width:auto; }
#total .subtotal, #total .total {
 -moz-border-radius:0 0 7px 7px;
 -webkit-border-radius-bottom-left:7px;
 -webkit-border-radius-bottom-right:7px; border-radius:0 0 7px
 7px;
 background-image:-moz-linear-gradient(0% 70% 90deg, #222, #999);
 background-image:-webkit-gradient(linear, 0% 0%, 0% 70%,
 from(#999), to(#222));

}

Sliding Animaions

[86]

4.	 Save this in the css folder as slideToggle.css and link to the ile from the
<head> of the page we just created.

5.	 For the inal part of the example we can add the script that will toggle the visibility
of the contents table. Add the following code to the botom of the HTML page:

var toggler = $("#basketToggle"),

 basketArea = $("#contents"),

 newText = ["", "basket", "contents"];

toggler.click(function(e) {

 e.preventDefault();

 if (!basketArea.is(":animated")) {

 basketArea.slideToggle("slow", function(){

 toggler.text(function(i, text) {

 if (basketArea.is(":visible")) {

 newText[0] = "Hide";

 } else {

 newText[0] = "Show";

 }

 toggler.text(newText.join(" "));

 });

 });

 }

});

6.	 Run the page in your browser now. You should ind that you can open or close
the contents secion of the basket area by clicking the link in the top-right of the
container. The basket area should expand like this:

Chapter 4

[87]

The previous screenshots shows the animaion in a top-down format with the start of the
animaion at the top and the animaion nearing the end at the botom. As we're using the
slideToggle() method, it is equally valid when running backwards too.

Sliding Animaions

[88]

What just happened?
The underlying structures we've placed on the page are prety straight-forward. To
summarize, we basically have two tables, one of which is wrapped in a <div>, and an outer
container for the whole collecion of elements. The table that is wrapped will be hidden
when the basket is collapsed. We also have a link at the top of the container which will show
or hide the basket contents.

Our JavaScript code is divided into two main secions. In the irst secion, we cache some
jQuery selectors that we'll use a couple of imes in the code to save from selecing them one
at a ime, each ime they are required.

We also deine a funcion that we can call whenever we need to change the value of the
toggling link. The funcion sets the text of the link using an anonymous funcion which
returns the new text to add. This is passed to the index of the element in the collecion on
which the text() method was called as the irst argument and the second is the original
text of the element. We don't need the irst argument but we must specify it in order to
access the second argument.

The second part of the code is the click handler for the toggle link. It checks that the
<div> containing the irst <table> is not already being animated and if not, it calls the
slideToggle() method, which will either slide the basket open or closed depending on its
current state. We use the callback funcion to update the text of the link once the animaion
is complete.

The: animated ilter

Checking whether an element is already being animated using the :animated
ilter is a quick and easy alternaive to the stop() method in the previous
example in that it only applied the animaion if the element was not already
animated and therefore prevented a build-up of animaions.

Have a go hero – doing more with slideToggle
Have a go at reworking the code so that it uses the slideDown() and slideUp() methods
instead of the slideToggle(). It won't make the code any more eicient, but you should
get to see roughly how much code the slideToggle() method can save you.

Chapter 4

[89]

Pop quiz – using slideToggle
1. What does the slideToggle() method return?

a. Nothing

b. The value true when the animaion ends

c. The original jQuery object for chaining purposes

d. A string indicaing whether the element is visible or not

2. What arguments can the slideToggle() method accept?

a. The duraion and a callback funcion, or an object

b. An array containing items specifying the duraion, easing and a callback

c. A collecion of strings

d. A jQuery object containing the selected element

Easing
We discussed easing very briely in Chapter 2, Fading Animaions when we saw that each
fading method could have an easing type set by passing an argument into the animaion
method being used. The sliding animaions are the same and can also accept an easing type
as an argument. Let's take a moment to familiarize ourselves with what easing is exactly and
how it can be used with jQuery animaions.

Easing is a technique where the speed and/or the direcion of animaion are changed while
the animaion is running. Easing can make the animaion start of slow and gradually speed
up, start up fast and gradually slow down, and a whole host of other efects.

 jQuery has two modes of easing built in: linear easing and swing easing, with swing
being the default for all types of animaions. Someimes using linear easing can help make
a coninuous animaion run smoother, but the diference between swing and linear is
subtle at best.

There are many more types of easing than the two exposed by jQuery. The jquery.
easing.1.3.js plugin, writen by George McGinley Smith, adapts Robert Penner's original
easing equaions so that they can be used with jQuery, and makes 30 new types of easing
available to us.

The easing plugin changes the default easing type from
swing to easeOutQuad.

Sliding Animaions

[90]

The new types of easing added by the plugin are listed in the following table:

easeInQuad easeOutQuad EaseInOutQuad

easeInCubic easeOutCubic easeInOutCubic

easeInQuart easeOutQuart easeInOutQuart

easeInQuint easeOutQuint easeInOutQuint

easeInSine easeOutSine easeInOutSine

easeInExpo easeOutExpo easeInOutExpo

easeInCirc easeOutCirc easeInOutCirc

easeInElastic easeOutElastic easeInOutElastic

easeInBack easeOutBack easeInOutBack

easeInBounce easeOutBounce easeInOutBounce

Time for action – adding easing
The easeOutBounce easing type adds a paricularly atracive efect when used with
slideDown() animaions.

The easing plugin can be obtained from http://gsgd.co.uk/sandbox/
jquery/easing/jquery.easing.1.3.js. A copy of this ile is
included with the companion download for this book.

In this example, we'll add some easing to our example ile.

1.	 Change the call to the slideDown() method in slideUp.html so that it appears
as follows:

$(this).addClass("on").next().slideDown(400, "easeOutBounce");

2.	 Save the changed ile as slideEasing.html. Don't forget to add a new
<script> reference to the easing plugin directly ater the jQuery reference
to avoid a script error.

What just happened?
We supply the name of the easing type we'd like to use as a string. It is the second argument,
so to use it we must also supply the irst argument. As we don't actually need to change the
duraion we just supply the default value of 400 milliseconds.

When the login form drops down now, it will appear to bounce a litle at the end of the
animaion. Suddenly our example has physics—the form appears to literally drop down as
if pulled upon by gravity and doesn't just stop when it hits its full height, it bounces a litle,
giving a much more aestheically pleasing efect.

Chapter 4

[91]

Easing is a great efect that can be added with the addiion of an 8 KB plugin (3.51 KB when
miniied and with the license moved to an external ile) and a very minor tweak to our code.
Using it is simple, but its efects can be enormous, transforming a monotonous or otherwise
boring animaion into one illed with impact and interest.

Using an object literal to add easing
We can also change the format of the arguments we pass into the predeined animaion
methods in order to use easing. Prior to the easing argument being added to the animaion
methods (fadeIn(), slideDown(), and so on) in version 1.4.3 of jQuery, this was the de-
facto means of using easing with animaion methods.

Instead of providing string or numerical arguments (or a callback funcion), we can provide
an object literal where each key refers to the duraion, the easing type, and opionally a
callback to call when the animaion is complete. The usage then becomes as follows:

jQuery(elements).slideDown({
 duration: [duraion],
 easing: [easing],
 complete: [callback]
});

Time for action – using the alternative argument format
This ime we'll use the alternaive syntax for supplying an easing funcion.

1.	 Change the call to the slideDown() method in slideEasing.html so that it
appears as follows:

$(this).addClass("on").next().slideDown({

 easing: "easeOutBounce"

});

2.	 Save this version of the ile as slideEasingObject.html.

What just happened?
By supplying an object literal as the irst argument to the slideDown() method, we are
able to make use of the easing types provided by the plugin in an alternaive syntax. In this
example, we omit the duration and complete keys of the object and supply only the
name of the easing type as a string.

Sliding Animaions

[92]

Have a go hero – using easing
Try out some of the other easing methods that are available via the easing plugin in this,
and some of our earlier examples. We'll be using easing where appropriate throughout the
remainder of the book, but other than a cursory explanaion these won't be focused on in
any great detail.

Pop quiz – using easing
1. How many easing types does the easing plugin add?

a. 20

b. 30

c. 17

d. 48

2. What can we pass into an efect method in the alternaive format for using easing?

a. An object with opional keys specifying the duraion, easing type, and a
funcion to call on complete

b. A string specifying the easing type

c. An array where the irst item is the duraion, the second is the easing type
and the third is a funcion to call on complete

d. An integer specifying the duraion of easing

The licker effect
Someimes, using slideDown() and slideUp() animaions on the same elements that
are triggered when the visitor hovers over an element, such as with a navigaion menu for
example, can have an impact on the usability of a site. It's important to be aware of what the
issue is and how it can be resolved.

Time for action – avoiding the licker effect
Let's put together a couple of examples so that we can see which situaions can cause the
problem to arise.

1.	 Open up the fadeIn.html ile from Chapter 2, and update the <nav> element so
that it appears as follows (new code shown in bold):

<nav>

 <ul class="purecss">

Chapter 4

[93]

 <li class="first">Home

 Articles

 <div class="subnav">

 <ul class="left">

 <h2>JavaScript</h2>

 JS Article
 1

 JS Article
 2

 <li class="last">JS
 Article 3

 <ul class="right">

 <h2>jQuery</h2>

 jQuery Article
 1

 jQuery Article
 2

 <li class="last"><a href="#" title="jQuery Article
 3">jQuery Article 3

 </div>

 Code

 Demos

 <ul class="subnav">

 <li class="first">The
 first demo

 Another demo

 <li class="last">The
 third demo

 <li class="last"><a href="#"
 title="Portfolio">Portfolio

</nav>

Sliding Animaions

[94]

2.	 Save the new ile as slideFlicker.html. We'll also need a new stylesheet for this
example (in addiion to fadeIn.css, which should already be linked to from the
original ile). In a new ile in your text editor, add the following code:

nav li { position:relative; }

.subnav {

 display:none; width:100%; margin-left:-2px; border:2px solid
 #aaa;

 border-top:none; -moz-border-radius:0 0 7px 7px;

 -webkit-border-bottom-left-radius:7px;

 -webkit-border-bottom-right-radius:7px; border-radius:0 0 7px
 7px;

 position:absolute; text-align:left;

}

div.subnav { width:244%; }

.subnav ul { float:left; }

.subnav li { float:none; border-right:none; }

.subnav li a { border-bottom:none; font-size:14px; }

.subnav li a:hover { background-color:#ccc; }

.subnav li.first a {

 border-top:none; -moz-border-radius:0;

 -webkit-border-bottom-left-radius:0;

 -webkit-border-top-left-radius:0; border-radius:0;

}

.subnav li.last a {

 border-bottom:1px solid #fff; -moz-border-radius:0 0 7px 7px;

 -webkit-border-top-right-radius:0;

 -webkit-border-bottom-left-radius:7px;

 -webkit-border-bottom-right-radius:7px; border-radius:0 0 7px
 7px;

 }

.subnav .left li a { border-right:none; }

.subnav .left li.last a {

 -moz-border-radius:0 0 0 7px;

 -webkit-border-bottom-right-radius:0; border-radius:0 0 0 7px;

}

.subnav .right li.last a {

 -moz-border-radius:0 0 7px 0; -webkit-border-bottom-left-
 radius:0;

 border-radius:0 0 7px 0;

}

.subnav li h2 {

 margin:0; padding:5px 0; font-size:12px; font-weight:normal;

 text-indent:20px; background-color:#eee;

}

Chapter 4

[95]

3.	 Save this ile as slideFlicker.css, and add a link to the ile from the <head> of
slideFlicker.html (directly ater the link to fadeIn.css).

4.	 Finally, update the second <script> element at the botom of slideFlicker.
html so that it appears as follows (new code shown in bold):

var ul = $("nav ul");

ul.removeClass("purecss");

ul.find("a").each(function(){

 if (!$(this).closest(".subnav").length) {

 var a = $(this);

 a.append("" + a.text() + "");

 }

});

ul.find("a").hover(function() {

 $(this).find("span").fadeIn("slow");

}, function() {

 $(this).find("span").hide();

});

$(".subnav", ul).parent().mouseenter(function() {

 $(this).find(".subnav").stop(true, true).slideDown("fast");

});

$(".subnav", ul).parent().mouseleave(function() {

 $(this).find(".subnav").stop(true, true).slideUp("fast");

});

What just happened?
All we've done to the underlying HTML is added a couple of submenus to two of the top level
list items in the <nav>. One of the submenus is a split menu made up of two elements
inside a <div>, the other is a single menu built from a standard .

We've also added some new styling, mostly to carry on the theme from the original example.
Some of the CSS is used to override previous rules set in the original stylesheet. Mostly the
styling is purely for aestheics, and we use a lot of CSS3 rounded-corner styling, which will
not be apparent in all browsers.

Sliding Animaions

[96]

For the animaions to work as intended, the submenus should iniially be hidden from view
with display:none. For the licker efect to occur, the submenus should be wider than the
parent that they are contained within. We've made one of our submenus wider, and
the other one the same width so that we can easily see the diference.

In the <script>, we've added a simple check when the fading elements are added
to the page so that the fade efect isn't applied to the submenus (it could easily be adapted
to work, but we're looking at a diferent efect in this paricular example).

Following this we atach mouseenter and mouseleave efect handlers to the parents of
any elements with the class subnav. In these handlers, we simply ind the subnav within
the element that triggered the event and either show or hide it with a slide efect. The
stop() method is used to prevent animaion build-up, as described in the previous chapter.

Take a look at the page in a browser and note the diference between the two submenus:

Chapter 4

[97]

In the previous screenshot, we see both submenus in their expanded, visible states.

The licker problem arises in part because of the visitor's percepion of where the submenu
actually is. It is quite clear with the thin submenu where the boundaries of the menu are.
The visitor will most likely move their mouse pointer straight down into the submenu when
it appears on the page.

With the wider submenu, the visitor may not be quite as sure where they need to move their
mouse in order to enter the submenu. Instead of moving straight down from the Aricles
top-level item into the submenu, they may instead move their mouse pointer diagonally
down and to the right, thinking that they can enter the second list of links that way.

It is this behavior that produces the licker efect; try it out yourself—move the mouse
pointer diagonally down and to the right when entering the wide submenu. The submenu
should licker on and of wildly.

Time for action – ixing the licker
In this secion we'll see how to prevent the licker from spoiling the animaion.

1.	 Fixing the problem is relaively easy. Simply update the JavaScript so that it appears
as follows (new code again shown in bold):

var ul = $("nav ul"),

 timer = null;

ul.removeClass("purecss");

ul.find("a").each(function(){

 if (!$(this).closest(".subnav").length) {

 var a = $(this);

 a.append("" + a.text() + "");

 }

});

ul.find("a").hover(function() {

 $(this).find("span").fadeIn("slow");

}, function() {

 $(this).find("span").hide();

});

$(".subnav", ul).parent().mouseenter(function() {

 clearTimeout(timer);

 $(this).find(".subnav").stop(true, true).slideDown("fast");

});

Sliding Animaions

[98]

function closeIt(el) {

 el.stop(true, true).slideUp("fast");

}

$(".subnav", ul).parent().mouseleave(function() {

 var el = $(this).find(".subnav");

 timer = setTimeout(function() { closeIt(el); }, 100);

});

2.	 Save this new ile as slideFlickerFixed.html.

What just happened?
First of all, we iniialize a new variable at the top of our code. The timer variable will be
used to store a imeout ID in so that it can be accessed and cleared from within a funcion.
We iniially set it to null as there is no other appropriate data type for it to temporarily
hold. In our mousenter event handling funcion, we irst clear the imeout using the ID
held in our timer variable. The variable may or may not be populated when the handler
executes. It is clearing this timeOut which is what prevents the licker efect from occurring.

Ater our mouseenter handler we deine a new funcion, closeIt(), which accepts a
single argument. The argument will be set to the submenu currently open. The funcion
simply calls the same code from before which closes the submenu by sliding it up.

In our mouseleave handler funcion, we store the currently open submenu in a variable
and then use a standard JavaScript setTimeout() funcion to call the closeIt() funcion
ater a short delay of 100 milliseconds.

We need to use an anonymous funcion within the setTimeout() funcion to call our
closeIt() funcion, so that we can pass in the cached submenu element that the funcion
requires as an argument.

Adding this slight delay with setTimeout() ixes the licker efect enirely. The delay is
too short to cause a noiceable delay when the visitor actually moves of of the submenu
intenionally. If they accidently move the pointer over the corner of the next top-level link
when going diagonally down and to the right to reach the second list of links, when they
move back into the submenu it will clear the imeout and the submenu will not close,
or licker.

Chapter 4

[99]

Pop quiz – ixing the licker
1. Why was it necessary to use a an anonymous funcion when calling the

setTimeout() funcion in the previous example?

a. It is the only format accepted by setTimeout()

b. It executes faster

c. In order to pass in an argument

d. For fun

Have a go hero – adding a delay before showing a submenu
Usability king Jakob Nielsen advises that a short-delay between the visitor hovering over a
navigaion menu item and the submenu being displayed, to ensure that the visitor actually
wants to see the submenu, should be implemented in common interfaces. Not everyone
will agree with this, and there is a danger of the menu feeling unresponsive if the delay is
too long.

Update the flickerFixed.html ile so that there is a short delay before a submenu is
shown ater its parent menu item is hovered on.

The aricle which menions the iming of displaying submenus can be found
at http://www.useit.com/alertbox/mega-dropdown-menus.
html.

Summary
The sliding family of methods that we looked at over the course of the chapter are the last
of jQuery's built-in, predeined animaion methods. The methods we looked at in this
chapter were:

 � slideDown()

 � slideUp()

 � slideToggle()

We saw that these methods are very similar in how they are used to the other built-in jQuery
efect methods, allowing us to specify the same arguments. All that difers is the actual
efect. The techniques we learned in this chapter included:

 � Showing elements that are hidden using slideDown()

 � Hiding visible elements with slideUp()

 � Toggling the visibility of elements with slideToggle()

Sliding Animaions

[100]

 � Adding easing to jQuery's built-in efects

 � Using the :animated ilter to test whether an element is currently being animated

 � Fixing a common lickering issue with slide-down submenus

 � How CSS afects sliding elements

We looked at how each of the sliding methods can be used, and also covered easing and
how we can easily add these subtle but efecive methods to enhance or otherwise improve
how the efects appear when they run. The easing types require the inclusion of an external
plugin in order to funcion.

In the next chapter we'll move on to look at the animate() method, which allows us
to create custom animaions which can animate almost any numerical style property
of an element.

5
Custom Animations

The predeined efects that we have looked at throughout the book so far
are very good at what they do, but they are there to cater for very speciic
requirements and will someimes not be enough when more complex
animaions are needed.

In these situaions we can use jQuery's animate() method, which allows us to
deine custom animaions with ease that can be as complex and as specialized
as the task at hand requires, and this is what we'll be looking at over the course
of this chapter.

Subjects that we'll cover throughout the course of this chapter will include:

 � Creaing custom animaions with the animate() method

 � Passing arguments to the method

 � Animaing an element's dimensions

 � Animaing an element's posiion

 � Creaing a jQuery animaion plugin

Custom Animaions

[102]

The animate method
All custom animaions with jQuery are driven with the animate() method. Despite the
ability to animate almost any style property that has a numeric value, the method is simple
to use and takes just a few arguments. The method may be used in the following way:

jQuery(elements).animate(properties to animate,

 [duration],

 [easing],

 [callback]

);
The irst argument should take the form of an object where each property of the object is a
style that we'd like to animate, very similar to how we would use jQuery's css() method.

As I menioned before, this can be any CSS style that takes a purely numerical argument
(with the excepion of colors, although with the jQuery UI library we can animate colors as
well. See Chapter 6, Extended Animaions with jQuery UI for more informaion on jQuery UI).
Background posiions cannot be animated by jQuery naively, but it is quite easy to animate
this property manually; see Chapter 7, Full Page Animaions for more informaion on
this technique.

The duraion, easing, and callback arguments take the same formats as those that we used
with the fading and sliding methods earlier in the book and are used in exactly the same way.

Per-property easing
As of the 1.4 version of jQuery, we can apply diferent types of easing to each style property
we are animaing when using the animate() method. So if we are animaing both the
width and height of an element for example, we can use linear easing for the width
animaion, and swing easing for the height animaion. This applies to the standard easing
funcions built into jQuery, or any of the easing funcions added with the easing plugin that
we looked at in Chapter 4, Sliding Animaions.

To supply easing types to the animate() method on a per-property basis, we need to
provide an array as the value of the property we are animaing. This can be done using the
following syntax:

jQuery(elements).animate({
 property: [value, easingType]
});

Chapter 5

[103]

An alternative syntax for animate()
Instead of using the duraion, easing, and callback arguments individually, we may
alternaively pass a coniguraion object to the animate() method containing the
following coniguraion opions:

 � duration

 � easing

 � complete

 � step

 � queue

 � specialEasing

The irst three opions are the same as the arguments would be if we passed them into the
method in the standard way. The last three are interesing however, in that we do not have
access to them in any other way.

The step opion allows us to specify a callback funcion that will be executed on each step
of the animaion. The queue opion accepts a Boolean that controls whether the animaion
is executed immediately or placed into the selected element's queue. The specialEasing
opion allows us to specify an easing funcion for each individual style property that is being
animated, giving us easing on a per-property basis using the alternaive syntax.

The patern for this second method of usage is as follows:

jQuery(elements).animate(properties to animate, [configuration
 options]);

Like most (but not all) jQuery methods, the animate() method returns a jQuery object so
that addiional methods can be chained to it. Like the other efect methods, muliple calls
to animate() on the same element will result in an animaion queue being created for the
element. If we want to animate two diferent style properies at the same ime, we can pass all
required properies within the object passed to the animate() method as the irst argument.

Animating an element's position
The animate() method is able to animate changes made to any CSS style property that
has a numeric value, with the excepion of colors and background-positions. In this
example, we'll create a content viewer that shows diferent panels of content by sliding
them in and out of view using the animate() method.

This type of widget is commonly used on porfolio or showcase sites and is an atracive way
to show a lot of content without clutering a single page. In this example, we'll be animaing
the element's posiion.

Custom Animaions

[104]

Time for action – creating an animated content viewer
We'll start again by adding the underlying markup and styling.

1.	 The underlying markup for the content viewer should be as follows:

<div id="slider">

 <div id="viewer">

 <img id="image4" src="img/commodore128.jpg" alt="Commodore
 128">

 <img id="image5" src="img/spectrum.jpg" alt="Sinclair ZX
 Spectrum +2">

 </div>

 <ul id="ui">

 <li class="hidden" id="prev">
 «

 Image
 1

 Image 2

 Image 3

 Image 4

 Image 5

 <li class="hidden" id="next">
 »

</div>

2.	 Save the ile as animate-position.html.

3.	 Next we should create the base CSS. By that I mean that we should add the CSS
which is essenial for the content-viewer to funcion as intended, as opposed to
styling that gives the widget a theme or skin. It's good pracice to separate out
the styling in this way when creaing plugins so that the widget is compaible with
jQuery UI's Themeroller theming mechanism.

4.	 In a new ile in your text editor add the following code:

#slider { width:500px; position:relative; }

#viewer {

 width:400px; height:300px; margin:auto; position:relative;

 overflow:hidden;

}

#slider ul {

Chapter 5

[105]

 width:295px; margin:0 auto; padding:0; list-style-type:none;

}

#slider ul:after {

 content:"."; visibility:hidden; display:block; height:0;

 clear:both;

}

#slider li { margin-right:10px; float:left; }

#prev, #next { position:absolute; top:175px; }

#prev { left:20px; }

#next { position:absolute; right:10px; }

.hidden { display:none; }

#slide {

 width:2000px; height:300px; position:absolute; top:0; left:0;

}

#slide img { float:left; }

#title { margin:0; text-align:center; }

5.	 Save this in the css folder as animate-position.css, and don't forget to link
to the new stylesheet from the <head> of our page. Run the page in your browser
now, before we get into the scriping, so that you can see how the widget behaves
without the accompanying script. You should ind that any image can be viewed by
clicking its corresponding link using only CSS, and this will work in any browser. The
previous and next arrows are hidden with our CSS because these will simply not
work with JS turned of and the image itles are not displayed, but the widget's core
funcionality is sill fully accessible.

What just happened?
The underlying HTML in this example is very straighforward. We have an outer container for
the content-viewer as a whole, then within this we have a container for our content panels
(simple images in this example) and a navigaion structure to allow the diferent panels to
be viewed.

Some of the elements we've added style rules for in our CSS ile aren't hardcoded into the
underlying markup, but will be created as necessary when needed. Doing it this way ensures
that the content-viewer is sill usable even when the visitor has JavaScript disabled.

One important point to note is that the #slide wrapper element that we create and wrap
around the images has a height equal to a single image and a width equal to the sum of
all image widths. The #viewer element on the other hand has both a width and a height
equal to a single image so that only one image is visible at any one ime.

With JavaScript disabled, the images will appear to stack up on top of each other, but once
the #slide wrapper element has been created the images are set to loat in order to stack
up horizontally.

Custom Animaions

[106]

We'll use easing in this example, so be sure to link to the easing plugin directly ater the
jQuery reference at the end of the <body>:

<script src="js/jquery.easing.1.3.js"></script>

Time for action – initializing variables and prepping the widget
First we need to prepare the underlying markup and store some element selectors:

$("#viewer").wrapInner("<div id=\"slide\"></div>");

var container = $("#slider"),

 prev = container.find("#prev"),

 prevChild = prev.find("a"),

 next = container.find("#next").removeClass("hidden"),

 nextChild = next.find("a"),

 slide = container.find("#slide"),

 key = "image1",

 details = {

 image1: {

 position: 0, title: slide.children().eq(0).attr("alt")

 },

 image2: {

 position: -400, title: slide.children().eq(1).attr("alt")

 },

 image3: {

 position: -800, title: slide.children().eq(2).attr("alt")

 },

 image4: {

 position: -1200, title: slide.children().eq(3).attr("alt")

 },

 image5: {

 position: -1600, title: slide.children().eq(4).attr("alt")

 }

 };

$("<h2>", {

 id: "title",

 text: details[key].title

}).prependTo("#slider");

Chapter 5

[107]

What just happened?
To start with, we irst wrap all of the images inside the #viewer <div> in a new container.
We'll be using this container to animate the movement of the panels. We give this new
container an id atribute so that we can easily select it from the DOM when required.

This is the element that we will be animaing later in the example.

Next we cache the selectors for some of the elements that we'll need to manipulate
frequently. We create a single jQuery object poining to the outer #slider container and
then select all of the elements we want to cache, such as the previous and next arrows, using
the jQuery find() method.

A key variable is also iniialized which will be used to keep track of the panel currently being
displayed. Finally, we create a details object that contains informaion about each image
in the content viewer. We can store the left posiion in pixels that the slide container
must be animated to in order to show any given panel, and we can also store the itle of
each content panel.

The itle of each panel is read from the alt atribute of each image, but if we were using
other elements, we could select the title atribute, or use jQuery's data method to set and
retrieve the itle of the content.

The <h2> element used for the itle is created and inserted into the content-viewer with JS
because there is no way for us to change it without using JS. Therefore when visitors have JS
disabled, the itle is useless and is beter of not being shown at all.

The last thing we do in the irst secion of code is to remove the hidden class name from the
next buton so that it is displayed.

The previous link (by this I mean the link that allows the visitor to move to the previous
image in the sequence) is not shown iniially because the irst content panel is always the
panel that is visible when the page loads, so there are no previous panels to move to.

Time for action – deining a post-animation callback
Next we need a funcion that we can execute each ime an animaion ends:

function postAnim(dir) {

 var keyMatch = parseInt(key.match(/\d+$/));

 (parseInt(slide.css("left")) < 0) ? prev.show() : prev.hide();

 (parseInt(slide.css("left")) === -1600) ? next.hide() :
 next.show();

Custom Animaions

[108]

 if (dir) {
 var titleKey = (dir === "back") ? keyMatch - 1 : keyMatch + 1;
 key = "image" + titleKey;
 }

 container.find("#title").text(details[key].title);

 container.find(".active").removeClass("active");
 container.find("a[href=#" + key + "]").addClass("active");
};

What just happened?
In this second secion of code, we deine a funcion that we'll call ater an animaion ends.
This is used for some housekeeping to do various things that may need doing repeatedly,
so it is more eicient to bundle them up into a single funcion instead of deining them
separately within event handlers. This is the postAnim() funcion and it may accept a
single parameter which refers to the direcion that the slider has moved in.

The irst thing we do in this funcion is use the regular expression /\d+$/ with JavaScript's
match() funcion to parse the panel number from the end of the string saved in the key
variable which we iniialized in the irst secion of code, and which will always refer to the
currently visible panel.

Our postAnim() funcion may be called either when a panel is selected using the numeric
links, or when the previous/next links are used. However, when the previous/next links are
used we need the key to know which panel is currently being displayed in order to move to
the next or previous panel.

We then check whether the irst panel is currently being displayed by checking the left
CSS style property of the #slide element. If the #slide element is at 0, we know the irst
panel is visible so we hide the previous link. If the left property is less than 0, we show
the previous link. We do a similar test to check whether the last panel is visible, and if so,
we hide the next link. The previous and next links will only be shown if they are
currently hidden.

We then check whether the dir (direcion) argument has been supplied to the funcion. If
it has, we have to work out which panel is now being displayed by reading the keyMatch
variable that we created earlier and then either subtracing 1 from it if the dir argument is
equal to back, or adding 1 to it if not.

The result is saved back to the key variable, which is then used to update the <h2> itle
element. The itle text for the current panel is obtained from our details object using the
key variable. Lastly we add the class name active to the numeric link corresponding to the
visible panel.

Chapter 5

[109]

Although not essenial, this is something we will want to use when we come to add a skin to
the widget. We select the right link using an atribute selector that matches the href of the
current link. Note that we don't create any new jQuery objects in this funcion; we use our
cached container object and the find() method to obtain the elements we require.

Time for action – adding event handlers for the UI elements
Now that the slider has been created, we can add the event handlers that will drive the
funcionality:

$("#ui li a").not(prevChild).not(nextChild).click(function(e){

 e.preventDefault();

 key = $(this).attr("href").split("#")[1];

 slide.animate({

 left: details[key].position

 }, "slow", "easeOutBack", postAnim);

});

nextChild.add(prevChild).click(function(e){

 e.preventDefault();

 var arrow = $(this).parent();

 if (!slide.is(":animated")) {

 slide.animate({

 left: (arrow.attr("id") === "prev") ? "+=400" : "-=400"

 }, "slow", "easeOutBack", function(){

 (arrow.attr("id") === "prev") ? postAnim("back") :
 postAnim("forward")

 });

 }

});

What just happened?
The irst handler is bound to the main links used to display the diferent panels, excluding the
previous and next links with the jQuery not() method. We irst stop the browser following
the link with the preventDefault() method.

We then update the key variable with the panel that is being displayed by extracing the
panel name from the link's href atribute. We use JavaScript's split() method to obtain
just the panel id and not the # symbol.

Custom Animaions

[110]

Finally, we animate the slide element by seing its left CSS style property to the value
extracted from the details object. We use the key variable to access the value of the
position property.

As part of the animaion, we conigure the duraion as slow and the easing as easeOutBack,
and specify our postAnim funcion as the callback funcion to execute when the animaion
ends.

Finally, we need to add a click handler for the previous/next links used to navigate to the
next or previous image. These two links can both share a single click handler. We can select
both of these two links using our cached selectors from earlier, along with jQuery's add()
method to add them both to a single jQuery object in order to atach the handler funcions
to both links.

We again stop the browser from following the link using preventDefault(). We then
cache a reference to the parent of the link that was clicked, using the arrow variable, so that
we can easily refer to it later on in the funcion. This is needed because within the callback
funcion for the animate() method, the $(this) keyword will be scoped to the #slide
element instead of the link that was clicked.

We then check that the #slide element is not already being animated using the :animated
ilter. This check is important because it prevents the viewer breaking if one of the links is
clicked repeatedly.

If it is not already being animated, we perform the animaion and move the slide element
either 400 pixels (the width of a single content panel) backwards or forwards. We can check
which arrow was clicked by looking at the id atribute of the element referenced by the
arrow variable.

We specify the same duraion and easing values as before in the animaion method, but
instead of passing a reference to the postAnim funcion as the callback parameter we pass
an anonymous funcion instead. Within this anonymous funcion, we determine which link
was clicked and then call the postAnim funcion with the appropriate argument. Remember,
this is necessary to obtain the correct key for the details object because neither the
previous nor the next links have href atributes poining to an image.

Try the page out in a browser at this point and you should ind that an image can be viewed
by clicking on any of the links, including the previous and next links. This is how the widget
should appear at this stage:

Chapter 5

[111]

The previous screenshot shows the widget in its un-skinned state, with only the CSS required
for it to funcion included.

Skinning the widget
'There's more than one way to skin a cat' was once proclaimed, and this applies to widgets as
well as cats. Lastly, let's add some custom styling to the widget to see how easy it is to make
the widget atracive as well as funcional.

Time for action – adding a new skin
At the botom of the animate-position.css ile, add the following code:

a { outline:0 none; }
#slider {
 border:1px solid #999; -moz-border-radius:8px;
 -webkit-border-radius:8px; border-radius:8px;
 background-color:#ededed; -moz-box-shadow:0px 2px 7px #aaa;
 -webkit-box-shadow:0px 2px 7px #aaa; box-shadow:0px 2px 7px #aaa;
}
#title, #slider ul { margin-top:10px; margin-bottom:12px; }
#title {
 font:normal 22px "Nimbus Sans L", "Helvetica Neue", "Franklin
 Gothic Medium", Sans-serif;

Custom Animaions

[112]

 color:#444;
}
#viewer { border:1px solid #999; background-color:#fff; }
#slider ul { width:120px; }
#slider ul li a {
 display:block; width:10px; height:10px; text-indent:-5000px;
 text-decoration:none; border:2px solid #666;
 -moz-border-radius:17px; -webkit-border-radius:17px;
 border-radius:17px; background-color:#fff; text-align:center;
}
#slider #prev, #slider #next { margin:0; text-align:center; }
#slider #prev { left:10px; }
#slider #prev a, #slider #next a {
 display:block; height:28px; width:28px; line-height:22px;
 text-indent:0; border:1px solid #666; -moz-border-radius:17px;
 -webkit-border-radius:17px; border-radius:17px;
 background-color:#fff;
}
#prev a, #next a { font:bold 40px "Trebuchet MS"; color:#666; }
#slider ul li a.active { background-color:#F93; }

What just happened?
With this code we style all of the visual aspects of the widget without interfering with
anything that controls how it works. We give it some nice rounded corners and add a
drop-shadow to the widget, turn the numeric links into litle clickable icons, and style
the previous and next links. Colors and fonts are also set in this secion as they too are
obviously highly dependent on the theme.

These styles add a basic, neutral theme to the widget, as shown in the following screenshot:

Chapter 5

[113]

The styles we used to create the theme are purely arbitrary and simply for the purpose of
the example. They can be changed to whatever we need in any given implementaion to suit
other elements on the page, or the overall theme of the site.

Pop quiz – creating an animated content-viewer
1. What arguments may the animate() method be passed?

a. An array where the array items are the element to animate, the duraion, the
easing, and a callback funcion

b. The irst argument is an object containing the style properies to animate,
opionally followed by the duraion, an easing type, and a callback funcion

c. An object where each property refers to the style properies to animate, the
duraion, easing, and a callback funcion

d. A funcion which must return the style properies to animate, the duraion,
easing, and a callback funcion

2. What does the animate() method return?

a. An array containing the style properies that were animated

b. A array containing the elements that were animated

c. A jQuery object for chaining purposes

d. A Boolean indicaing whether the animaion completed successfully

Have a go hero – making the image viewer more scalable
In our animated content viewer, we had a ixed number of images and a hardcoded
navigaion structure to access them. Extend the content viewer so that it will work with an
indeterminate number of images. To do this, you will need to complete the following tasks:

 � Determine the number of images in the content viewer at run ime and set the
width of the #slide wrapper element based on the number of images

 � Build the navigaion links dynamically based on the number of images

 � Create the details object dynamically based on the number of images and set the
correct left properies to show each image

Custom Animaions

[114]

Animating an element's size
As I menioned at the start of the chapter, almost any style property that contains a purely
numeric value may be animated with the animate() method.

We looked at animaing an element's posiion by manipulaing its left style property, so
let's move on to look at animaing an element's size by manipulaing its height and width
style properies.

In this example, we'll create image wrappers that can be used to display larger versions of
any images on the page by manipulaing the element's size.

Time for action – creating the underlying page and basic styling
First, we'll create the underlying page on which the example will run.

1.	 Add the following HTML to the <body> of our template ile:

<article>
 <h1>The Article Title</h1>
 <p><img id="image1-thumb" class="expander" alt="An ASCII Zebra"
 src="img/ascii.gif" width="150" height="100">Lorem ipsum
 dolor...</p>
 <p><img id="image2-thumb" class="expander" alt="An ASCII Zebra"
 src="img/ascii2.gif" width="100" height="100">Lorem ipsum
 dolor...</p>
</article>

2.	 Save the example page as animate-size.html. We'll keep the styling light in this
example; in a new ile in your text editor, add the following code:

article {
 display:block; width:800px; margin:auto; z-index:0;
 font:normal 18px "Nimbus Sans L", "Helvetica Neue", "Franklin
 Gothic Medium", sans-serif;
}
article p {
 margin:0 0 20px; width:800px; font:15px Verdana, sans-serif;
 line-height:20px;
}
article p #image2-thumb { float:right; margin:6px 0 0 30px; }
img.expander { margin:6px 30px 1px 0; float:left; }
.expander-wrapper { position:absolute; z-index:999; }
.expander-wrapper img {
 cursor:pointer; margin:0; position:absolute;
}
.expander-wrapper .expanded { z-index:9999; }

3.	 Save this ile as animate-size.css in the css folder.

Chapter 5

[115]

What just happened?
The HTML could be any simple blog post consising of some text and a couple of images. The
points to note are that each image is given an id atribute so that it can be easily referenced,
and that each image is actually the full-sized version of the image, scaled down with width
and height atributes.

The styles used are purely to lay out the example; very litle of the code is actually required
to make the example work. The expander-wrapper styles are needed to posiion the
overlaid images correctly, but other than that the styling is purely arbitrary.

We're loaing the second image to the right. Again this isn't strictly necessary; it's used just
to make the example a litle more interesing.

Time for action – deining the full and small sizes of the images
First we need to specify the full and small sizes of each image:

var dims = {

 image1: {

 small: { width: 150, height: 100 },

 big: { width: 600, height: 400 }

 },

 image2: {

 small: { width: 100, height: 100 },

 big: { width: 400, height: 400 }

 }

},

webkit = ($("body").css("-webkit-appearance") !== "" && $("body").
css("-webkit-appearance") !== undefined) ? true : false;

What just happened?
We create an object which itself contains properies matching each image's ilename.
Each property contains another nested object which has small and big properies and
the relevant integers as values. This is a convenient way to store structured informaion
that can easily be accessed at diferent points in our script.

We also create a variable called webkit. There is a slight bug in how images loated to the
right are treated in Webkit-based browsers such as Safari or Chrome. This variable will hold
a Boolean that will indicate whether Webkit is in use.

A test is performed which tries to read the -webkit-appearance CSS property. In Webkit
browsers, the test will return none as the property is not set, but other browsers will either
return an empty string or the value undefined.

Custom Animaions

[116]

Time for action – creating the overlay images
Next we should create an almost exact copy of each image on the page to use as an overlay:

$(".expander").each(function(i) {

 var expander = $(this),

 coords = expander.offset(),

 copy = $("", {

 id: expander.attr("id").split("-")[0],

 src: expander.attr("src"),

 width: expander.width(),

 height: expander.height()

 });

What just happened?
In this part of the <script>, we select each image on the page and process them using
jQuery's each() method. We set some variables, caching a reference to the current image
and storing its coordinates on the page relaive to the document using the jQuery offset()
method.

We then create a new image for each exising image on the page, giving it an id atribute
that pairs it with the image it is overlaying, the src of the original image, and the width and
height of the original image. We use the JavaScript split() funcion to remove the part
of the string that says thumb when we set the id of the new image.

Note that the previous code does not represent an enire snippet of fully-funcional code.
The outer funcion passed to the each() method has not yet been closed as we need to
add some addiional code ater these variables.

Time for action – creating the overlay wrappers
We now need to create the wrappers for each of the overlay images (note that this code is
sill within the each() method and so will be executed for each of the images that have the
expanded class name):

 $("<div></div>", {

 "class": "expander-wrapper",

 css: {

 top: coords.top,

 left: (webkit === true && expander.css("float") === "right") ?
 (coords.left + expander.width()) : coords.left,
 direction: (expander.css("float") === "right") ? "rtl" :
 "ltr"

Chapter 5

[117]

 },

 html: copy,

 width: expander.width(),

 height: expander.height(),

 click: function() {

 var img = $(this).find("img"),

 id = img.attr("id");

 if (!img.hasClass("expanded")) {

 img.addClass("expanded").animate({

 width: dims[id].big.width,

 height: dims[id].big.height

 }, {

 queue: false

 });

 } else {

 img.animate({

 width: dims[id].small.width,

 height: dims[id].small.height

 }, {

 queue: false,

 complete: function() {

 $(this).removeClass("expanded");

 }

 });

 }

 }

 }).appendTo("body");

What just happened?
In this secion of code, we create the wrapper element for the new image. We give it a new
class name so that it can be posiioned correctly.

Quoing the class property

We need to use quotes around the property name class so that it works
correctly in Internet Explorer. If we fail to quote it, IE will throw a script error
staing that it expected an ideniier, string, or number.

We set the posiion of the wrapper element using the css property in conjuncion with the
coordinates we obtained from the offset() method earlier.

Custom Animaions

[118]

When seing the left posiion of the wrapper element, we need to check our webkit
variable to see if Safari is in use. If this variable is set to true, and if the image is loated
to the right, we posiion the overlay according to the cords.left value in addiion to the
width of the original image. If the webkit variable is false, or if the original image is
loated left, we just set the left posiion of the wrapper to the value stored in
coords.left.

We also need to set the direction property of any images that are loated right. We check
the float style property and set the direction to rtl if the image is loated right, or ltr
if not. This is done using JavaScript's ternary condiional.

This check is done so that the wrapper expands from right-to-let when the image is loated
right. If we didn't set this, the wrapper would open up from let-to-right, which could make
the full-sized image overlow the viewport or the content container resuling in scroll bars.

We add the new image to the wrapper by passing a reference to it into the jQuery html()
method, and set the width of the wrapper to the width of the original (and new) image.
This is necessary for the overlay to be posiioned correctly over any images that are
loated right.

Next we add a click handler to the wrapper. Within the anonymous funcion passed as
the value of the click() method, we irst cache a reference to the image within the
wrapper that was clicked, and get the id of the image for convenience. Remember, the
id of the overlay image will be the same as the original image it is covering minus the
text string -thumb.

We then check whether the image has the class name expanded. If it doesn't, we add
the class name and then animate the image to its full size using the second format of the
animate() method. We pass two objects into the method as arguments; the irst contains
the CSS properies we wish to animate, in this case the width and height of the image.

The correct width and height to increase the image to are retrieved from the dims object
using the id of the image that was clicked as the key. In the second object passed to the
animate() method, we set the queue property to false. This has the same efect as using
the stop() method directly before the animate() method and ensures that nothing bad
happens if the overlay wrapper is repeatedly clicked.

Chapter 5

[119]

If the image already has the class name expanded, we animate the image back to its small
size. Again we use the two-object format of the animate() method, supplying false as
the value of the queue property, and removing the class name expanded in an anonymous
callback funcion passed to the complete property. Once the wrapper has been created, we
append it to the <body> of the page.

At this point the code we've writen will work as intended—clicking an image will result in
the expanded version being animated to its full size. However, if the page is resized at all,
the overlays will no longer be overlaying their images.

Time for action – maintaining the overlay positions
Because the overlays are posiioned absolutely, we need to prevent them from becoming
misaligned if the window is resized:

$(window).resize(function() {

 $("div.expander-wrapper").each(function(i) {

 var newCoords = $("#image" + (i + 1) + "-thumb").offset();

 $(this).css({

 top: newCoords.top,

 left: newCoords.left

 });

 });

});

What just happened?
All we need to do is make sure the overlay images stay directly on top of the original images
when the page resizes, which we can achieve by binding a handler for the resize event to the
window object. In the handler funcion, we just get the new coordinates of the underlying
image, and set the top and left properies of the wrapper accordingly. Note that we don't
animate the reposiioning of the overlays.

Custom Animaions

[120]

Save the ile and preview it in your browser. We should ind that we can click on either image
and it will expand to show a full-sized version of the image, with the irst image expanding to
the right, and the second expanding to the let:

In the previous screenshot we see the irst image as it expands to its full size.

Pop quiz – creating expanding images
1. In this example, we used a diferent format for the arguments passed to the

animate() method, what format did the arguments take?

a. Two arrays where the irst array contains selectors for the elements to animate,
and the second contains the duraion, easing, and specialEasing strings,
and a callback funcion

b. A single object containing the style properies to animate, duraion, easing, and
specialEasing strings, and step and complete callback funcions

c. A funcion which must return the style properies to animate, the duraion and
easing strings, and a callback funcion

Chapter 5

[121]

d. Two objects where the irst object contains the style properies to animate, and
the second object contains the duraion, easing and specialEasing strings, a
Boolean indicaing whether to queue repeated animate() calls, and the step
and complete callback funcions

2. What is the keyword this scoped to in an animaion's callback funcion?

a. The element that was animated

b. The current window

c. The container of the element that was animated

d. The event object

Have a go hero – doing away with the hardcoded dims object
In the previous example, we hardcoded an image into the top of our script that was used
to tell the animate() method what size the image should be animated to. While this was
ine for the purpose of the example, it doesn't really scale well as a long-term soluion as we
would have to remember to set this every ime we used the script (or otherwise ensure our
images are always a ixed size).

The problem is that we have no way to programmaically get both the full size and thumb
size from a single image. The good news is that any data that can be stored in a JavaScript
object can also be passed across a network for consumpion as a JSON object. Extend this
example so that when the page loads, it passes the src atributes of the images on the
page to the server, which returns a JSON object containing the small and large image sizes.
An image manipulaion library, like GD or ImageMagick, for PHP, or the System.Drawing.
Image type in .Net, will be your friend here.

Creating a jQuery animation plugin
Plugins are an excellent way of packaging up funcionality into an easy to deploy and share
module of code that serves a speciic purpose. jQuery provides the fn.extend() method
precisely for this purpose, making it easy to create powerful and efecive plugins that can be
easily distributed and used.

There are a few guidelines that should be adhered to when creaing jQuery plugins; these
are as follows:

 � New methods, which are called like other jQuery methods, for example
$(elements).newMethod() should be atached to the fn object, and new
funcions, which are used by the plugin, for example $.myFunction(), should be
atached to the jQuery object

Custom Animaions

[122]

 � New methods and funcions should always end in a semi-colon (;) to preserve
funcionality when the plugin is compressed

 � Inside methods, the this keyword always refers to the current selecion of
elements, and methods should always return this to preserve chaining

 � Always atach new methods and funcions to the jQuery object as opposed to the $
alias, unless using an anonymous funcion with an aliased $ object

In this secion, we'll create a plugin which can be used to create advanced transiion efects
when showing a series of images. The inished widget will be similar in some respects to the
image viewer we created earlier, but will not animate the images themselves. Instead, it will
apply transiion efects between showing them.

Time for action – creating a test page and adding some styling
Once again we'll create the example page and basic styling irst and add the script last.

1.	 The underlying HTML for this example is very light. All we need in the <body> of our
template ile are the following elements:

<div id="frame">

 <img class="visible" src="img/F-35_Lightning.jpg" alt="F-35
 Lightning">

</div>

2.	 Save this page as advanced-transitions.html.

3.	 Like the markup, the CSS we rely on for a plugin should also be as minimal as
possible. Luckily not much CSS is required for our small collecion of elements.

4.	 Add the following code to a new ile in your text editor:

#frame { position:relative; width:520px; height:400px; z-index:0;
}

#frame img { position:absolute; top:0; left:0; z-index:1; }

#frame img.visible { z-index:2; }

#frame a {

 display:block; width:50%; height:100%; position:absolute; top:0;

 z-index:10; color:transparent;

 background-image:url(transparent.gif); filter:alpha(
 opacity = 0);

Chapter 5

[123]

 text-align:center; text-decoration:none;

 font:90px "Palatino Linotype", "Book Antiqua", Palatino, serif;

 line-height:400%;

}

#frame a:hover {

 color:#fff; text-shadow:0 0 5px #000; filter:alpha(
 opacity = 100);

 filter: Shadow(Color=#000, Direction=0);

}

#frame a:focus { outline:none; }

#prev { left:0; }

#next { right:0; }

#overlay {

 width:100%; height:100%; position:absolute; left:0; top:0;

 z-index:3;

}

#overlay div { position:absolute; }

5.	 Save this in the css folder as advanced-transitions.css.

What just happened?
All we have on the underlying page are the images we wish to transiion between within
a container. It's best to keep the markup requirements for plugins as simple as possible so
that they are easy for others to use and don't place undue restricions on the elements or
structure they want to use.

The images are posiioned absolutely within the container using CSS so that they stack up on
top of one another, and we set our visible class on the irst element to ensure one image
is above the rest in the stack.

Most of the styling goes towards the previous and next anchors, which we'll create with
the plugin. These are set so that each one will take up exactly half of the container and are
posiioned to appear side-by-side. We set the z-index of these links so that they appear
above all of the images. The font-size is ramped up considerably, and an excessive
line-height means we don't need to middle-align the text with padding.

In most browsers, we simply set the color of the anchors to transparent, which hides
them. Then we set the color to white in the hover state. This won't work too well in IE
however, so instead we set the link iniially to transparent with the Microsot opacity
filter and then set it to fully opaque in the hover, which serves the same purpose.

Custom Animaions

[124]

Another IE-speciic ix

IE also presents us with another problem in that the clickable area of our links
will only extend the height of the text within them because of their absolute
posiioning. We can overcome this by seing a reference to a background-image.

The best part is that the image doesn't even need to exist for the ix to work (so
you'll ind no corresponding transparent.gif ile in the book's companion
code bundle). The ix has no detrimental efects on normal browsers.

Creating the plugin
Now let's create the plugin itself. Unlike most of the other example code we've looked at, the
code for our plugin will go into its own separate ile.

Time for action – adding a license and deining
conigurable options

In a new ile create the following outer structure for the plugin:

/*
 Plugin name jQuery plugin version 1.0

 Copyright (c) date copyright holder

 License(s)

*/

;(function($) {

 $.tranzify = {

 defaults: {
 transitionWidth: 40,
 transitionHeight: "100%",
 containerID: "overlay",
 transitionType: "venetian",
 prevID: "prev",
 nextID: "next",
 visibleClass: "visible"
 }
 };

})(jQuery);

Chapter 5

[125]

What just happened?
All plugins should contain informaion on the plugin name and version number, the copyright
owner (usually the author of the code) and the terms, or links to the terms, of the license or
licenses it is released under.

The plugin is encapsulated within an anonymous funcion so that its variables are protected
from other code which may be in use on the page it is deployed on, and has a semicolon
placed before it to ensure it remains a discrete block of code ater potenial miniicaion, and
in case it is used with other, less scrupulously writen code than our own.

We also alias the $ character for safe use within our funcion, to ensure it is not hijacked
by any other libraries running on the page and to preserve the funcionality of jQuery's
noConflict() method.

It is good pracice to make plugins as conigurable as possible so that end users can adjust it
to suit their own requirements. To facilitate this, we should provide a set of default values for
any conigurable opions. When deciding what to make conigurable, a good rule of thumb is
to hardcode nothing other than pure logic into the plugin. Hence, IDs, class names, anything
like that, should be made conigurable.

The defaults we set for the plugin are stored in an object that is itself stored as a property
of the jQuery object that is passed into the funcion. The property added to the jQuery
object is called tranzify, the name of our plugin, and will be used to store the properies,
funcions, and methods we create so that all of our code is within a single namespace.

Our default properies are contained in a separate object called defaults within the
tranzify object. We set the width and height of the transiion elements, the id of the
container that gets created, the default transiion, the ids for the previous and next links,
and the class name we give to the currently-showing image.

As I menioned, it's best not to hardcode any id values or class names into a plugin if possible.
The person implemening the plugin may already have an element on the page with an id of
overlay for example, so we should give them the opion to change it if need be.

Time for action – adding our plugin method to the
jQuery namespace

Next we can add the code that will insert our plugin into the jQuery namespace so that it can
be called like other jQuery methods:

$.fn.extend({

 tranzify: function(userConfig) {

 var config = (userConfig) ? $.extend({}, $.tranzify.defaults,

Custom Animaions

[126]

 userConfig) : $.tranzify.defaults;

 config.selector = "#" + this.attr("id");

 config.multi = parseInt(this.width()) / config.transitionWidth;

 $.tranzify.createUI(config);

 return this;

 }

});

What just happened?
jQuery provides the fn.extend() method speciically for adding new methods into
jQuery, which is how most plugins are created. We deine a funcion as the value of the sole
property of an object passed to the extend() method. We also specify that the method
may take one argument, which may be a coniguraion object passed into the method by
whoever is using the plugin to change the default properies we have set.

The irst thing our method does is check whether or not a coniguraion object has been
passed into the method. If it has, we use the extend() method (not fn.extend()
however) to merge the user's coniguraion object with our own defaults object.

The resuling object, created by the merging of these two objects, is stored in the variable
config for easy access by our funcions. Any properies that are in the userConfig
object will overwrite the properies stored in our defaults object. Properies found in
the defaults object but not the userConfig object will be preserved. If no userConfig
object is passed into the method, we simply assign the defaults object to the
config variable.

Next we build an id selector that matches the element that the method was called on and
add this as an extra property to the config object, making it convenient to use throughout
the plugin. We can't store this as a default property because it is likely to be diferent on
every page that the plugin is used on, and we also can't expect users of the plugin to have to
deine this in a coniguraion object each ime the plugin is used.

The number of transiion elements we need to create will depend on the size of the images,
and the width of the transiion elements (deined as a conigurable property), so we work
out a quick muliplier based on the width of the image and the conigured transiion width
for use later on.

Following this we call the funcion that will create the prev/next links (we deine this shortly)
and pass the funcion the config object so that it can read any properies that the user
has conigured.

Chapter 5

[127]

Finally, we return the jQuery object (which is automaically assigned to the value of the this
keyword within our plugin method). This is to preserve chaining so that the user can call
addiional jQuery methods ater calling our plugin.

Time for action – creating the UI
Next we need to create the previous and next links that are overlaid above the images and
allow the visitor to cycle through the images:

$.tranzify.createUI = function(config) {

 var imgLength = $(config.selector).find("img").length,

 prevA = $("<a>", {

 id: config.prevID,

 href: "#",

 html: "«",

 click: function(e) {

 e.preventDefault();

 $(config.selector).find("a").css("display", "none");

 $.tranzify.createOverlay(config);

 var currImg = $("." + config.visibleClass, $(config.selector));

 if(currImg.prev().filter("img").length > 0) {

 currImg.removeClass(config.visibleClass).prev().addClass
 (config.visibleClass);

 } else {

 currImg.removeClass(config.visibleClass);

 $(config.selector).find("img").eq(imgLength -
 1).addClass(config.visibleClass);

 }

 $.tranzify.runTransition(config);

 }

 }).appendTo(config.selector),

 nextA = $("<a>", {

 id: config.nextID,

 href: "#",

 html: "»",

 click: function(e) {

 e.preventDefault();

Custom Animaions

[128]

 $(config.selector).find("a").css("display", "none");

 $.tranzify.createOverlay(config);

 var currImg = $("." + config.visibleClass, $(config.selector));

 if(currImg.next().filter("img").length > 0) {

 currImg.removeClass(config.visibleClass).next().addClass(
 config.visibleClass);

 } else {

 currImg.removeClass(config.visibleClass);

 $(config.selector).find("img").eq(0).addClass(
 config.visibleClass);

 }

 $.tranzify.runTransition(config);

 }

 }).appendTo(config.selector);

};

What just happened?
This is by far our largest funcion and deals with creaing the previous and next links, as well
as deining their click handlers during creaion using the jQuery 1.4 syntax. The irst thing we
do is obtain the number of images in the container as the click handlers we add will need to
know this.

We create the anchor for the previous link and in the object passed as the second argument
we deine the id (using the value from the config object), a dummy href, an HTML enity
as its innerHTML, and a click handler.

Within the click handler, we use the preventDefault() method to stop the browser
following the link, then hide the previous and next links in order to protect the widget
against muliple clicks, as this will break the transiions.

Next we call our createOverlay() funcion, passing it the config object, to create the
overlay container and the transiion elements. We also cache a reference to the currently
selected image using the class name stored in the config object.

We then test whether there is another image element before the visible image. If there is,
we remove the class from the element that currently has it and give it to the previous image
in order to bring it to the top of the stack. If there aren't any more images before the current
image, we remove the visible class from the current image and move to the last image in
the container to show that instead.

Chapter 5

[129]

Once we've deined everything we need, we can append the new anchor to the speciied
container. We also create the next link within the current funcion as well, giving it a very
similar set of atributes and a click handler too. All that difers in this click handler is that we
test for an image ater the current one, and move to the irst image in the container if there
isn't one.

Time for action – creating the transition overlay
Our next funcion will deal with creaing the overlay and transiion elements:

$.tranzify.createOverlay = function(config) {

 var posLeftMarker = 0,

 bgHorizMarker = 0

 overlay = $("<div></div>", {

 id: config.containerID

 });

 for (var x = 0; x < multiX; x++) {

 $("<div></div>", {

 width: config.transitionWidth,

 height: config.transitionHeight,

 css: {

 backgroundImage: "url(" + $("." + config.visibleClass,
 $(config.selector)).attr("src") + ")",

 backgroundPosition: bgHorizMarker + "px 0",

 left: posLeftMarker,

 top: 0

 }

 }).appendTo(overlay);

 bgHorizMarker -=config.transitionWidth;

 posLeftMarker +=config.transitionWidth;

 }

 overlay.insertBefore("#" + config.prevID);

};

Custom Animaions

[130]

What just happened?
Our next funcion deals with creaing the overlay container and the transiion elements
that will provide the transiion animaions. The plugin will need to set the position
and background-position of each transiion element diferently in order to stack the
elements up horizontally. We'll need a couple of counter variables to do this, so we iniialize
them at the start of the funcion.

We then create the overlay container <div> and give it just an id atribute so that we can
easily select it when we run the transiions.

Next we create the transiion elements. To do this, we use a standard JavaScript for loop,
which is executed a number of imes depending on the muliplier we set earlier in the script.
On each iteraion of the loop, we create a new <div> which has its width and height set
according to the properies stored in the coniguraion object.

We use the css() method to set the backgroundImage of the overlay to the currently
visible image, and the backgroundPosition according to the current value of the
bgHorizMarker counter variable. We also set the left property to posiion the new
element correctly according to the posLeftMarker variable, and the top property to 0 to
ensure correct posiioning.

Once created, we append the new element to the container and increment our counter
variables. Once the loop exits and we have created and appended all of the transiion
elements to the container, we can then append the container to the element on the page
that the method was called on.

Time for action – deining the transitions
The inal funcion will perform the actual transiions:

$.tranzify.runTransition = function(config) {

 var transOverlay = $("#" + config.containerID),

 transEls = transOverlay.children(),

 len = transEls.length - 1;

 switch(config.transitionType) {

 case "venetian":

 transEls.each(function(i) {

 transEls.eq(i).animate({

 width: 0

 }, "slow", function() {

 if (i === len) {

 transOverlay.remove();

Chapter 5

[131]

 $(config.selector).find("a").css("display", "block");

 }

 });

 });

 break;

 case "strip":

 var counter = 0;

 function strip() {

 transEls.eq(counter).animate({

 height: 0

 }, 150, function() {

 if (counter === len) {

 transOverlay.remove();

 $(config.selector).find("a").css("display", "block");

 } else {

 counter++;

 strip();

 }

 });

 }

 strip();

 }

};

What just happened?
Our last funcion deals with actually running the transiions. In this example, there are
just two diferent types of transiions, but we could easily extend this to add more
transiion efects.

This funcion also requires some variables, so we set these at the start of the funcion for
later use. We cache a reference to the overlay container as we'll be referring to it several
imes. We also store the collecion of transiion elements, and the number of transiion
elements. We subtract 1 from the number of children because the igure will be used with
jQuery's eq() method, which is zero-based.

To determine which of our transiions to run, we use a JavaScript switch statement and
check the value of the config.transitionType property. The irst transiion is a kind of
veneian-blind efect. To run this transiion, we just animate the width of each element to 0
using the jQuery each() method. The funcion we specify as the argument to this method
automaically receives the index of the current element, which we access using i.

Custom Animaions

[132]

In the callback funcion for each animaion, we check whether i is equal to the length
of the collecion of transiion elements, and if it is we remove the overlay and show the
previous and next links once more.

The second transiion removes the old image one strip at a ime. To do this, we use a simple
counter variable and a standard JavaScript funcion. We can't use the each() method this
ime, or all of the transiion elements will slide down together, but we want each one to slide
down on its own.

Within the funcion, we animate the current transiion element's height to 0 and set a rather
low duraion so that it happens fairly quickly. If the animaion is too slow it spoils the efect.
In the callback funcion, we check whether our counter variable is equal to the number of
transiion elements, and if so remove the overlay and show the links again. If the counter
hasn't reached the last element at this point, we increment the counter variable and call
the funcion once more.

Save this ile as jquery.tranzify.js in the js folder. This is the standard naming
convenion for jQuery plugins and should be adhered to.

Using the plugin
To use the plugin, we just call it like we would call any other jQuery method, like this:

$("#frame").tranzify();

In this form, the default properies will be used. If we wanted to change one of the
properies, we just supply a coniguraion object, such as this:

$("#frame").tranzify({

 transitionType: "strip"

});

The default animaion should run something like this:

Chapter 5

[133]

In the previous screenshot, we see the transiion elements all simultaneously shrinking to 0
width, creaing an efect like Veneian blinds being opened to reveal the new image.

Using the plugin is simple; there is just one point to remember. The images should
all be the same size, and the width of each image should be exactly divisible by the
transitionWidth property. As we've exposed the transitionWidth as a conigurable
property, we should be able to use any size image we wish and set this accordingly.

Custom Animaions

[134]

For reference, the second transiion efect runs like this, with strips of the old image sliding
away to reveal the new image:

In the previous screenshot, we can see the efects of the second transiion type, with the old
image being stripped away to reveal the new image.

Pop quiz – creating a plugin
1. What is the diference between a plugin method and a funcion?

a. There is no diference, conceptually and in pracice they are the same

b. Methods are able to accept arguments, funcions are not

c. Methods execute faster

d. Methods are atached to the fn object and are used like exising jQuery
methods, while funcions are atached directly to the jQuery object and
called like any normal funcion

2. What must each new method return?

a. A string containing the id atribute of the selected element

b. An array containing the id atributes of selected elements

c. The this object, which points to the currently selected element

d. Nothing should be returned

Chapter 5

[135]

Have a go hero – extending the plugin
Our plugin currently contains just two transiion efects (veneian and strip). Extend the
plugin to include more transiion efects of your own devising. The plugin currently creates a
number of transiion elements that are the full height of each image.

By wrapping our exising for loop within another for loop and adding some new counter
variables for top posiion and verical background-position, it is relaively easy to add
square transiion elements in a checker-board style, which opens up the possibility of more
complex, and atracive, transiion efects. Do this.

Summary
In this chapter, we looked at some common usages of the animate() method, which is
the means for us to create custom animaions in jQuery when the built-in efects are not
enough for our requirements. The method is robust, easy to use, and makes complex
animaions trivial.

When simple sliding or fading does not meet our requirements, we can fall back onto the
animate() method in order to crat our own high-quality custom animaions. We learnt the
following points about the method:

 � The animate() method can be used to animate any numeric CSS property (except
colors, for which a separate plugin is required).

 � The arguments passed into the method may take one of two formats. The irst
allows us to pass in an object containing the CSS properies to animate, as well as
separate duraion, easing, and callback arguments. The second format allows us to
pass in two objects, the irst allowing us to specify the CSS properies to animate
as before, and the second allowing us to specify addiional opions such as the
duraion, easing, and callback. The second opion gives us access to some special
arguments not accessible in the irst format such as specialEasing and the
step callback.

 � All CSS properies speciied in the irst object will be executed simultaneously.

 � How to achieve animaions involving an element's posiion, or its dimensions

We also looked at how we can extend the jQuery library with brand new funcions and
methods in the form of plugins. Plugins are a great way of wrapping up code for easy
deployment and sharing.

Now that we've looked at all of jQuery's animaion methods, we're going to move on and
take a look at the addiional animaion funcionality provided by the excellent jQuery UI
library. The next chapter will cover all of the addiional efects added by the UI library,
as well as look at class transiioning and smooth color animaing.

6
Extended Animations with jQuery UI

jQuery UI is the oicial user interface library for jQuery and adds a suite of
interacive widgets such as tabs and accordions, a series of interacion helpers
such as drag and drop, and a comprehensive set of efects that extend those
provided naively by jQuery.

Over the course of this chapter, we'll be looking at the addiional efects added by jQuery UI.
Topics we'll cover include:

 � Obtaining and seing up jQuery UI

 � The new efects added by jQuery UI

 � Using the effect() method

 � Extending the show(), hide(), and toggle() methods

 � Using easing with jQuery UI

 � Animaing an element's color

 � Animated class transiions

jQuery UI adds several new animaion methods, as well as modifying several jQuery
methods. The methods we'll be looking at in this chapter are:

 � animate()

 � addClass()

 � effect()

 � hide()

 � switchClass()

 � show()

 � toggle()

Extended Animaions with jQuery UI

[138]

Obtaining and setting up jQuery UI
jQuery UI is very easy to obtain and set up. There is an online tool that will build a custom
download package for us containing just the parts of jQuery UI that we'll need. Due to the
modular nature of jQuery UI it makes sense to minimize the code payload we use on any
given web project and so the ability to include only the modules of code we intend to use
helps us to minimize any impact on the visitor our code may have.

The jQuery UI download builder can be found at http://jqueryui.com/download.
The page is split into two secions with the components of the library listed at the let and
the theme details at the right. The download builder has a certain amount of intelligence,
and will ensure that any dependencies are automaically selected when we choose the
components we require.

Chapter 6

[139]

The download builder shown in the previous screenshot gives us everything we need to run
any subset of the library components.

All we'll be using in this chapter are the efects, so when we download a package we should
only select the components found in the efects subsecion at the let. We don't need to
include a theme, and we don't even need to include the library core. The efects can be
used completely independently of the rest of the library; all we need is the efects Core ile
and the individual efects we require. Make sure all of them are selected and download
the package.

The package will give us everything we need to use the components we've selected,
including a copy of the latest stable release of jQuery, so when using jQuery UI, jQuery
itself does not need to be downloaded separately.

All of the JavaScript for each selected component is combined and compressed into a single
ile by the download builder, and any funcional CSS or theme iles will be combined into
a single stylesheet. We don't need any of the theme iles for working with the efects, but
ensure the .js ile from the archive provided by the download builder goes into our
js folder.

A new template ile
The examples in the remainder of this chapter will be short, mostly image-based examples
that illustrate each efect in turn, so it makes sense to use a slightly diferent template ile
for them. Create a new template ile by adding a reference to the jQuery UI source ile
directly ater the jQuery one just before the closing </body> tag. We won't be using any
HTML5 elements in this chapter so we can safely remove the link to shiv.js in our new
template ile.

The new effects added by jQuery UI
jQuery UI gives us 14 new predeined animaions to use in our pages; these are listed,
together with a brief descripion of their usage, as follows:

Animaions Descripion

blind The target element is shown or hidden by rolling it down or up like a window blind.

bounce The target element is bounced horizontally or verically for a speciied number of
imes.

clip The target element is shown or hidden by moving opposing edges in towards the
center of the element, or out to its full width or height.

drop The element appears to drop onto or of of the page in order to show or hide it
respecively.

Extended Animaions with jQuery UI

[140]

Animaions Descripion

explode The explode efect causes the target element to separate into a speciied number
of pieces before fading away, or to fade into view in several pieces before coming
together to form the complete element.

fold The element appears to fold closed or open.

highlight The background-color of the target element is set (to yellow by default,
although this is conigurable), and then fades away ater a short interval.

puff The target element increases in size slightly and then fades away.

pulsate The target element's opacity is adjusted a speciied number of imes, making the
element appear to licker on and of.

scale The dimensions of the target element are adjusted to increase or decrease its size.

shake The target element is shaken a speciied number of imes. This efect is similar to
the bounce efect with the key diference that the distance of the shake remains the
same on each iteraion of the animaion.

size The dimensions of the target element are adjusted to increase or decrease its size.
This efect is almost idenical to scale.

slide The target element is made to slide in or out of view, horizontally or verically.

transfer The outline of the speciied element is transferred to another element on the page.

Using the effect API
jQuery UI introduces the effect() method which can be used to trigger any of the efects
listed in the previous table. The effect() method's usage patern is as follows:

jQuery(elements).effect(efect name, [coniguraion], [duraion],
[callback]);

The name of the efect that we would like to use is always the irst argument of the
effect() method. It is supplied in string format.

Each efect has custom coniguraion opions that can be set to control how the efect
displays. These opions are set in a coniguraion object which is passed to the effect()
method as the second argument, following the name of the efect.

We can also supply a duraion for the efect as an argument. As with standard jQuery
animaions, we can supply either an integer represening the duraion of the efect in
milliseconds, or one of the strings slow or fast.

If no coniguraion is required, the duraion may be passed to the effect() method as
the second argument. If no duraion is supplied, the default duraion of 400 milliseconds
will be used.

Chapter 6

[141]

Opionally, a callback funcion may be provided as the inal argument. The supplied funcion
will be executed once for each selected element when the efect ends.

Let's look at a few examples of how the effect() method can be used.

The bounce effect
The bounce efect is similar to, but much more controllable than, the easeOutBounce
easing funcion. It can be used with either the efect API or show/hide logic depending on
your requirements.

Coniguration options
The following coniguraion opions are available for the bounce efect:

Opion Default Usage

direction "up" The direcion of bounce. The other possible opion is the string
down.

distance 20 The iniial distance of bounce (successive bounces reduce in
distance) in pixels.

mode "effect" Whether to run the efect normally or use show/hide logic. Other
values accepted may be the strings show, hide, or toggle.

times 5 The number of bounces.

Time for action – using the bounce effect
In this example we'll see how the jQuery UI efect can be combined to create a bouncing ball
that travels across the page:

1.	 Use the following simple elements in the <body> of the template ile:

<div id="travel">

 <div id="ball"><!-- --></div>

</div>

2.	 All we need is a simple container <div> and an inner <div>. In the empty funcion
at the end of the <body>, add the following script:

$("#ball").click(function() {

 $("#travel").animate({

 left: "+=300px"

 }, 2000).find("div").effect("bounce");

});

Extended Animaions with jQuery UI

[142]

3.	 Save the ile as bounce.html. We also need a few simple styles. Add the following
CSS to a new ile:

#travel { position:absolute; top:100px; }

#ball {

 width:150px; height:150px; cursor:pointer;

 background:url(../img/ball.jpg) no-repeat 0 0;

}

4.	 Save this as bounce.css in the css folder. When we run the page and click on the
ball we should ind that it bounces along the page, gradually coming to a halt:

The previous composiion shows the ball traveling across the page, bouncing up and down as
it goes from let to right.

What just happened?
When the ball is clicked, we irst use jQuery's animate() method to animate the left style
property of the container by 300 pixels, over a duraion of 2 seconds. We slow this animaion
down to improve the appearance of the overall animaion, but it is not strictly required. We
then navigate down to the inner <div> element and use the effect() method, specifying
the bounce efect.

We need to use both elements because if we use the animate() and effect() methods
on the same element, the bounce efect will go into the element's animaion queue and the
two animaions will execute one ater the other instead of running simultaneously.

Chapter 6

[143]

The highlight effect
The highlight efect is a simple but efecive way to draw the visitor's atenion to new items
that have been added to the page, and is used for this purpose in many of today's leading
web-based interfaces.

Coniguration options
There are only two coniguraion opions for the highlight efect; these are listed as follows:

Opions Default Usage

color "#ffff99" Sets the background-color of the element being highlighted.

mode "show" Sets whether the efect will be hidden or shown when used with the
effect() method. Other possible values include hide, toggle,
or effect.

Time for action – highlighting elements
In this example we'll create a simple todo list, with a series of default items that can be
checked of. We can also allow new items to be added to the list and will apply the highlight
efect to new items as they are added.

1.	 Add the following HTML to the <body> of the template ile:

<div id="todo">

 <h2>Todo List</h2>

 <label><input type="checkbox">Item 1</label>

 <label><input type="checkbox">Item 2</label>

 <label><input type="checkbox">Item 3</label>

 <input type="text" id="new"><button id="add">Add</button>

</div>

2.	 Add the behavior for our todo list using the following code:

$("#add").click(function() {

 var newItem = $("#new"),

 text = newItem.val();

 if (text) {

 var li = $(""),

 label = $("<label>").html(
 "<input type=\"checkbox\">" + text).appendTo(li);

Extended Animaions with jQuery UI

[144]

 li.appendTo("#todo ul").effect("highlight", 2000);

 newItem.val("");

 }

});

3.	 Save this page as highlight.html. We also need some CSS for this example. In a
new ile in your text editor add the following code:

#todo {

 width:208px;

 font:normal 13px "Nimbus Sans L", "Helvetica Neue", "Franklin
 Gothic Medium", Sans-serif;

}

#todo ul { padding:0; margin-bottom:30px; }

#todo li { list-style-type:none; }

#todo label { display:block; border-bottom:1px dotted #000; }

li input { position:relative; top:2px; }

input { margin-right:10px; }

4.	 Save this page as highlight.css.

5.	 When we run the page in a browser, we can add a new item and it will be
highlighted briely as the new item is added to the list:

In the previous screenshot we see the fade efect before it fades away from the newly
added item.

Chapter 6

[145]

What just happened?
We add a click handler to the <button> at the botom of the list which drives the
funcionality of the rest of the behavior. When the <button> is clicked, we cache the
selector for the <input> ield and obtain the text that was entered into it.

If the variable holding the text is not empty, we then create a new <label> and <input>.
We add the text to the <label> as well and then append the new item to the list. Finally,
we apply the highlight efect and empty the <input> ield.

The pulsate effect
The pulsate efect fades the element in and out of view a speciied number of imes so that
the target element appears to pulsate. Like most of the efects we have looked at so far, it is
easy to use and requires litle or no coniguraion.

Coniguration options
The pulsate efect also has just two conigurable opions; these are shown in the
following table:

Opion Default Usage

mode "show" Sets whether the target element is shown or hidden when used with the
effect() method. Other possible values include hide, toggle, and
effect.

times 5 Sets the number of imes the target element is pulsated.

Time for action – making an element pulsate
In this example, we'll show a simple ime sheet in which rows can be deleted by clicking
a link. If a link is clicked, the corresponding row will be pulsated before it is removed.

1.	 Use the following markup in the template ile:

<table>

 <tr><th>Job Number</th><th>Start Time</th><th>End Time</th>
 <th colspan="2">Total</th></tr>

 <tr><td>05432</td><td>8:00</td><td>8:43</td><td>43
 minutes</td><td><a class="delete" href="#" title="Delete this
 item">Delete</td></tr>

 <tr><td>05684</td><td>8:43</td><td>10:21</td><td>1 hour 38
 minutes</td><td><a class="delete" href="#" title="Delete this
 item">Delete</td></tr>

Extended Animaions with jQuery UI

[146]

 <tr><td>05684</td><td>10:21</td><td>13:30</td><td>3 hour 9
 minutes</td><td><a class="delete" href="#" title="Delete this
 item">Delete</td></tr>

</table>

2.	 Add the code to apply the efect to the closure at the botom of the page:

$(".delete").click(function(e) {

 e.preventDefault();

 var row = $(this).closest("tr");

 row.closest("tr").children().css("backgroundColor",
 "red").effect("pulsate", function() {

 row.remove();

 });

});

3.	 Save this ile as pulsate.html. Only a couple of styles are required for this
example. These should go into a new ile:

table {

 border-spacing:0;

 font:normal 13px "Nimbus Sans L", "Helvetica Neue", "Franklin
 Gothic Medium", Sans-serif;

}

th, td { text-align:left; padding-right:20px; }

4.	 Save this ile in the css folder as pulsate.css.

5.	 Clicking the delete link in any row will apply the pulsate efect and then remove the
table row:

The previous screenshot shows a single pulsate iteraion as it fades out.

Chapter 6

[147]

What just happened?
When a Delete link is clicked, our handler funcion irst sets the background-color of
the <tr> that the link is within. This is not mandatory for the efect, but it does help bring
it to life.

We then apply the pulsate efect to all <td> elements within the row using the effect()
method. We need to apply the efect to the <td> elements instead of the <tr> element so
that the efect works as intended in IE.

When the efect ends, our inline callback funcion will be executed which removes the <tr>.
Obviously the <tr> can only be removed once, but once it has been removed, subsequent
atempts to remove it will just fail silently.

The shake effect
The shake efect shakes the element that it is applied to back and forth a speciied number
of imes.

Coniguration options
The shake efect exposes three coniguraion opions that allow us to customize its behavior.
These are listed in the following table:

Opion Default Usage

direction "left" Sets the direcion that the element moves in

distance 20 Sets the number of pixels the element travels when
it is shaken

times 3 Sets the number of imes the element shakes

Time for action – shaking an element
The open source .Net CMS Umbraco uses the shake efect when incorrect login details are
entered in the sign-in form for its back-oice administraion area. In this example we can see
how easy it is to implement this behavior using the shake efect.

1.	 Add the following markup to the template ile as the basis of the log in form:

<form>

 <h2>Login</h2>

 <label>Username:<input id="name" type="text"></label>

 <label>Password:<input id="pass" type="text"></label>

 <button id="submit">Login</button>

</form>

Extended Animaions with jQuery UI

[148]

2.	 Now add the following code to the empty closure at the botom of the template ile:

$("#submit").click(function(e) {

 e.preventDefault();

 $("input").each(function(i, val) {

 if (!$(this).val()) {

 $(this).css("border", "1px solid red").effect("shake", {

 distance: 5 }, 100);

 }

 });

});

3.	 Save this ile as shake.html. We also need a basic stylesheet for this example. Add
the following CSS to a new ile:

form {

 width:145px; padding:20px; margin:auto; border:1px solid #000;

 font:normal 13px "Nimbus Sans L", "Helvetica Neue", "Franklin
 Gothic Medium", Sans-serif;

}

h2 { font-size:14px; margin-top:0; }

input { display:block; margin-bottom:10px; border:1px solid #000;
}

4.	 Save this ile as shake.css.

5.	 If we run the page in a browser and click the <button> without compleing either
of the <input> ields, both ields will have their borders set to red and will shake
from side to side:

Chapter 6

[149]

In the previous screenshot, we see the text ields being shaken when they are let empty and
the <button> is clicked.

What just happened?
When the <button> is clicked we simply check to see if each <input> has a value and
if not, we apply a red border and then call the effect() method specifying shake as the
efect. We use a coniguraion object to reduce the distance the element moves, as well as
specifying a relaively short duraion.

The size effect
The size efect is used to resize an element, making it grow or shrink depending on its
coniguraion. Unlike most of the other efects, the size efect must be conigured for it
to be used successfully.

The size efect is also one of the only efects that has the base core ile as well as another
efect as dependencies. Most components rely only on the core ile. As we downloaded
the enire efect suite from the jQuery UI download builder, we don't need to worry about
including the addiional efect. It's already in the single ile that the download builder
created when we downloaded it at the start of the chapter.

Coniguration options
The size efect gives us four conigurable opions, which are listed as follows:

Opion Default Usage

from none Sets the size of the target element at the beginning of the
animaion. This opion accepts an object with height and
width keys which are used to set the staring size of the target
element. This opion is not mandatory.

to none Sets the size of the target element at the end of the animaion.
This opion accepts an object with height and width keys
which are used to set the ending size of the target element. This
opion must be supplied.

origin ['middle ',
'center']

Sets the vanishing point for hiding animaions, or the point from
which it grows when used with show logic.

scale "both " This opion sets whether the whole box of the element
(including border and padding CSS values) is scaled, just the
content, or as in the default, both.

Extended Animaions with jQuery UI

[150]

Time for action – resizing elements
A popular use of growing and shrinking elements is the Fisheye menu, where elements grow
when the mouse pointer hovers over them, and shrink back down when the pointer moves
of them. This efect is also used by the icons on the dock in Apple's OSX.

Using the size efect, we can implement our own basic Fisheye menu with just a few lines
of code.

1.	 Add the following markup to the <body> of the template ile:

<div id="dock">

</div>

2.	 Add the following JavaScript to the third <script> element at the botom of the
<body>:

$(".icon", "#dock").hover(function() {

 $(this).stop().animate({

 top: -31

 }).find("img").stop().effect("size", {

 to: { width: 64, height: 64 }

 });

}, function() {

 $(this).stop().animate({

 top: -15

 }).find("img").stop().effect("size", {

 to: { width: 48, height: 48 }

 });

});

3.	 Save this ile as size.html. We also need some styling. In a new ile add the
following code:

#dock {

 width:380px; height:90px; position:fixed; bottom:0;

Chapter 6

[151]

 background:url(../img/dock.png) no-repeat 0 0;

}

.icon { position:absolute; top:-15px; left:44px; }

.icon img { border:none; }

#mail { left:108px; }

#safari { left:170px; }

#firefox { left:229px; }

#itunes { left:289px; }

4.	 Save this ile as size.css in the css folder.

5.	 When we run the ile in a browser, we should see that the individual items in the
menu grow and shrink as the mouse pointer moves over them:

In the previous screenshot we see the menu as the pointer hovers over one of the items in
the menu.

What just happened?
We atach mouseenter and mouseleave event handlers to each item within the dock using
jQuery's hover() method, which accepts two funcions, the irst being executed on the
mouseenter event, the second being executed on mouseleave.

In the irst funcion we use the stop() method to manage the queue and then animate the
element's posiion by changing its top CSS value. Using stop() here prevents an unsightly
jarring of the element's posiion on screen.

We then navigate down the image inside the link and call the stop() method on this
element too before applying the size efect. We provide integer values for the width and
height keys in a coniguraion object and as these values are larger than the dimensions of
the image, the image will be increased in size.

Extended Animaions with jQuery UI

[152]

Note that when we use the stop() method with the image, it is to prevent a build-up of
efects if the mouse pointer is repeatedly moved on and of one of the links. The second
funcion is really the reverse of the irst funcion, which simply resizes the element back to
its original posiion and size.

The transfer effect
The transfer efect simply transfers the outline of one element to another element. Like
the size efect that we looked at a moment ago, the transfer efect will not work if it is
not conigured.

Coniguration options
The transfer efect has only two coniguraion opions, although only one is mandatory.
These opions are listed in the following table:

Opion Default Usage

className none The value of this opion, if set, is added to the transfer
element when the efect runs

to none A jQuery selector that speciies the target element that the
transfer element is sent to

Time for action – transferring the outline of one element
to another

In this example we'll recreate a popular applicaion installaion dialog from OSX, and use
the transfer efect to help show visitors where to drag the icon (the icon won't actually be
draggable, all we're doing is looking at the transfer efect).

1.	 Add the following elements to the <body> of the template ile to create the install
dialog:

<div id="install">

 <div id="firefox"><!-- --></div>

 <div id="apps"><!-- --></div>

</div>

<p>To install the application, drag its icon over to the apps
folder icon.</p>

<button id="show">Show me</button>

Chapter 6

[153]

2.	 Add the following script to the empty funcion at the botom of the template ile:

$("#show").click(function() {

 $("#firefox").effect("transfer", {

 to: "#apps",

 className: "ui-effect-transfer"

 }, 1000);

});

3.	 Save the page as transfer.html. For the stylesheet add the following code to a
new ile:

body {

 font:normal 14px "Nimbus Sans L", "Helvetica Neue", "Franklin
 Gothic Medium", Sans-serif;

}

#install {

 width:417px; height:339px; position:relative;

 background:url(../img/install.jpg) no-repeat 0 0;

}

#firefox {

 width:124px; height:121px; position:absolute; left:34px;

 top:132px; background:url(../img/firefox.png) no-repeat 0 0;

}

#apps {

 width:54px; height:52px; position:absolute; right:58px;
 top:172px; background:url(../img/apps.png) no-repeat 0 0;

}

.ui-effect-transfer { border:2px solid #7bee76; }

4.	 Save this ile as transfer.css in the css folder.

Extended Animaions with jQuery UI

[154]

5.	 When the <button> is clicked, an outline is transferred from the Firefox icon to the
App folder icon to direct the visitor:

The transfer element is resized as it moves from the staring element across to the target
element. The animaion is approximately 50 % complete in the previous screenshot.

What just happened?
In the underlying HTML we have a container <div> which is given the background image
of the applicaion install dialog box. Within this we have a <div> which is given the Firefox
icon background, and a second <div> which is given the App folder icon. Both inner <div>
elements are given id atributes for styling purposes and for easy selecion with jQuery.

In the script we add a click-handler to the <button> which applies the efect every ime
the <button> is clicked. The handler funcion calls the transfer efect on the #firefox
element, which sets the icon as the staring element.

Chapter 6

[155]

In the coniguraion object, we set the to opion to a selector for the apps element, and
the className opion to the string ui-effect-transfer. This string is applied to the
element as a class name and is used to add a green border to the transfer element while
it is visible.

Each ime the <button> is clicked, the transfer element will be shown and will animate
from the staring element (the Firefox icon) to the ending element (the Apps folder icon).

Pop quiz – using the effect API
1. How many new efects does jQuery UI give us?

a. 2

b. 18

c. 9

d. 14

2. How is the efect we wish to use speciied?

a. By calling the efect as a funcion, for example bounce()

b. The name of the efect is passed in string format to the effect() method
as the irst argument, for example effect("bounce")

c. The name of the efect is provided as the value of the effect key in an
object passed to the animate() method, for example animate({ effect:
"bounce" })

d. The name of the efect is passed as a string to an event helper, for example
click("bounce")

Using effects with show and hide logic
Some of the jQuery UI efects can also be used in conjuncion with jQuery's show(),
hide(), and toggle() methods when showing or hiding logic is required. In fact,
some of the efects are beter suited to this method of execuion.

The blind effect
The blind efect is the perfect example of an efect that is usually best used with show/hide
logic as opposed to the standard efect API. Although the blind efect will work with the
standard efect API, what will happen is that the efect will run according to its default mode,
but then the element will be put back into its original state. This is true for all efects that
have a mode coniguraion opion.

Extended Animaions with jQuery UI

[156]

Coniguration options
The blind efect has the following coniguraion opions:

Opion Default Usage

direction "vertical" Sets the axis along which the target element is shown or
hidden.

mode "hide" Sets whether the element is shown or hidden when used with
the effect() method. Other possible values include show,
toggle, and effect.

Time for action – using the blind effect
I menioned earlier that the efect is reminiscent of a window blind rolling up or down, so
let's base our next example on that:

1.	 In the <body> of the template ile add the following code:

<div id="window">

 <div id="blind"><!-- --></div>

</div>

2.	 Implement the efect with the following script:

$("#window").click(function() {

 $("#blind").toggle("blind");

});

3.	 Save this ile as blind.html. The stylesheet for this example is as follows:

#window {

 width:464px; height:429px; position:relative; cursor:pointer;

 background:url(../img/window.jpg) no-repeat 0 0;

}

#blind {

 display:none; width:332px; height:245px; position:absolute;

 left:64px; top:113px;

 background:url(../img/blind.png) no-repeat 0 100%;

}

4.	 Save this as blind.css in the css folder.

5.	 When we run the page in a browser, the blind should alternately roll down and up
each ime the window is clicked:

Chapter 6

[157]

The previous screenshot shows the blind in its fully-open state.

What just happened?
We set a click handler on the outer container which calls the toggle() method on the
inner element. In the CSS we set the inner element to be hidden iniially, so the irst ime
the container element is clicked, the inner element will be shown.

The clip effect
The clip efect causes the element it is called upon to reduce in size verically or horizontally
unil it disappears.

Coniguration options
The coniguraion opions we have at our disposal when using the clip efect allow us to
control the direcion in which the animaion proceeds, and whether the element is shown
or hidden:

Opion Default Usage

direction "vertical" Sets the axis along which the element animates.

mode "hide" Conigures whether the element is hidden or shown. Other
possible values are show, toggle, and effect.

Extended Animaions with jQuery UI

[158]

Time for action – clipping an element in and out
This efect is billed as being similar to what happens to the picture when an old television set
is turned of, so let's work that into our example.

1.	 Add the following elements to the <body> of the template ile:

<div id="tv">

 <div id="bg"><!-- --></div>

 <div id="static"><!-- --></div>

</div>

2.	 Then use the following simple script at the botom of the page:

$("#tv").click(function() {

 $("#static").effect("clip");

});

3.	 Save this ile as clip.html. The stylesheet for this example is as follows:

#tv {

 width:300px; height:269px; position:relative; cursor:pointer;

 background:url(../img/tv.png) no-repeat 0 0;

}

#bg {

 width:220px; height:180px; position:absolute; left:42px;
 top:30px;

 z-index:-2; background-color:#000;

}

#static {

 width:216px; height:178px; position:absolute; left:44px;
 top:31px;

 z-index:-1; background:url(../img/static.gif) no-repeat 0 0;

}

4.	 Save this ile in the css folder as clip.css.

5.	 When the page is run, we should be able to click anywhere on the television and see
the efect run:

Chapter 6

[159]

The previous screenshot shows the staic element as it is being clipped.

What just happened?
The underlying page has a collecion of elements on it with the outer container being
styled to look like the television and a couple of inner elements, one of which is a simple
background which sits behind the staic element. Both inner containers use CSS z-index
to sit behind the outer container.

When any part of the television is clicked, the staic element has the efect applied to it
without any addiional coniguraion, and because the default mode of the efect is hide, the
element will be hidden automaically when the efect ends. To see the reverse of the efect,
we could hide the staic by default and set the mode to show, or we could set the mode to
toggle and have the staic alternately show and hide.

The drop effect
The drop efect is used to show an element while sliding it open, or hide it while sliding it
closed. This efect works on both the position and opacity of the element it is applied to.

Extended Animaions with jQuery UI

[160]

Coniguration options
The drop efect allows us to control the direcion that the element drops, and whether it is
shown or hidden:

Opion Default Usage

direction "left" Sets the direcion that the element drops in or out of the page.
The other opion is the string right.

mode "hide" Sets whether the element is shown or hidden when using the
effect() method. Other possible values include show,
toggle, and effect.

Time for action – using the effect
The social networking site Twiter introduced a novel efect whereby the system reports
acions to the visitor by displaying a message that drops down at the top of the page.
We can easily replicate this behavior using the drop efect.

1.	 Add the following markup to the <body> of our template page:

<div id="confirmation">

 <p>Your request has been completed!</p>

</div>

2.	 Now at the botom of the page add the following code:

$("#confirmation").effect("drop", {

 mode: "show",

 direction: "up"

}, function() {

 var timer = function() {

 $("#confirmation").effect("drop", { mode: "hide", direction:
 "up"});

 }

 setTimeout(function() { timer() }, 3000);

});

3.	 Save the page as drop.html. We only need a few styles for this example. Create
the following very basic stylesheet:

body { background-color:#3cf; }

#confirmation {

 display:none width:100%; height:60px; position:absolute; top:0;

 left:0; z-index:999; background-color:#fff; text-align:center;

 font:normal 18px "Nimbus Sans L", "Helvetica Neue", "Franklin

Chapter 6

[161]

 Gothic Medium", Sans-serif;

}

#confirmation p { margin:0; position:relative; top:18px; }

4.	 Save the CSS as drop.css.

5.	 When the page loads, the message should iniially be displayed before fading away
ater a short interval:

The previous screenshot shows the message slowly being hidden. It will appear to slide up
and fade out at the same ime when being hidden ater the imer interval has passed.

What just happened?
The underlying markup of the message itself is extremely simple; we just need a container
and the actual message. In our example the message is hardcoded into the page, but we
could easily set this dynamically depending on the acion being reported.

Extended Animaions with jQuery UI

[162]

The CSS is equally as simple, supplying a background color for the page to beter highlight
the message, and providing some basic styles for the container and the message itself.
The most important rule (in this implementaion) is that the container is iniially hidden
from view.

Our script shows the message as soon as the page has loaded, but normally it would be
triggered by the compleion of some system acion. We use the effect() method to
iniiate the efect and conigure the mode to show and the direction to up (the element
will sill appear to drop downwards because it is posiioned absolutely) using a coniguraion
object passed as the second argument to the effect() method.

Within the callback funcion passed to the efect method, we create an inline funcion stored
in the timer variable. Within this funcion we just hide the conirmaion message, using the
effect() method and seing the mode coniguraion opion to hide and the direction
opion to up once again.

Ater this funcion deiniion we use JavaScript's setTimeout funcion to execute the imer
funcion ater three seconds have elapsed. We use a closure to call our timer funcion in
keeping with the current best-pracice.

The explode effect
The explode efect provides a great visual show by literally exploding the selected element
into a speciied number of pieces before fading them away. This efect can be used with both
the efect API as well as show, hide, or toggle logic.

Coniguration options
When using the explode efect we can control how many pieces the element is exploded
into, and whether the element is shown or hidden:

Opion Default Usage

mode "hide" Sets whether the element is shown or hidden when
used with the effect() method. Other values are
show, effect, and toggle.

pieces 9 Sets the number of pieces the element is exploded
into.

Chapter 6

[163]

Time for action – exploding an element
In this example we will make an image explode.

1.	 Just add the following simple image to the <body> of the template ile:

2.	 Then add the following equally simple code to the empty funcion at the botom of
the template ile:

$("img").click(function() {

 $(this).effect("explode");

});

3.	 Save this page as explode.html.

4.	 This example is so simple we don't even need a stylesheet. Once we click on the
grenade, it is exploded into the default number of pieces:

The exploded element fades away as the individual pieces of the element move apart.

What just happened?
In the example, all we need to do is atach a click handler directly to the image which applies
the explode efect using the effect() method. No coniguraion in this instance is required
because the default mode of the efect is hide.

Note that we can also run this efect in reverse by seing the mode opion to show, or using
the show() logic instead. In this scenario, we will see the target element constructed from a
series of pieces that fade in and ly together—an explosion in reverse.

Extended Animaions with jQuery UI

[164]

The fold effect
The fold efect simulates something being folded in half along one axis and then folded in
half along the other axis. Of course, the element isn't actually folded in the 3D sense, irst
one side of the element moves up a speciied amount, then another side is moved in and
the element disappears.

By default the efect uses the hide mode so it will automaically be hidden at the end of the
animaion. The element being folded is not scaled; it is clipped instead so images and text
will not squash up as the efect runs.

Coniguration options
The fold efect exposes three conigurable opions which are shown in the following table:

Opion Default Usage

horizFirst false Sets whether the element is clipped along the horizontal axis irst
or not.

mode "hide" Sets whether the element is shown or hidden when used with the
effect() method. Other values may include show, effect,
or toggle.

Size 15 This sets the distance of the irst fold in pixels and can take either
an integer, or a string specifying a value, such as a percentage.

Time for action – folding an element away
In this example, we'll apply the efect to a simple image of a piece of paper.

1.	 All we need is an image; add the following code to the <body> of the template ile:

2.	 Next add the following simple script to the botom of the page, in the empty
funcion as with previous examples:

$("img").click(function() {

 $(this).effect("fold", { size: "50%" }, 1000);

});

3.	 Save this ile as fold.html.

Chapter 6

[165]

4.	 This is another example that we don't need a stylesheet for. When the image is
clicked, it should fold up and disappear:

In the previous screenshot we see the image irst as it starts out, then when the efect
has hidden the botom half of the image, and inally as the top half of the image is being
hidden. Noice that the target element is clipped and not resized.

Extended Animaions with jQuery UI

[166]

What just happened?
We simply set a click handler on the element, which will apply the fold efect. We
specify the size opion as 50% so that the amount of fold along each axis is equal, and slow
the efect down slightly by specifying a longer than default duraion of 1000 milliseconds.

The puff effect
The puf efect expands the element it is applied to by a speciied amount while fading it
away to nothing, or fades it in and then shrinks it slightly, depending on how it is used.

Coniguration options
The puf efect gives us control over the size that the element is increased to, and whether it
is shown or hidden:

Opion Default Usage

mode "hide" Sets whether the element is displayed or hidden when used with
the effect() method. Other possible values include show,
effect, and toggle.

percent 150 Sets the size the element is scaled to in percent.

Time for action – making an element disappear in a puff
In this example, we'll have a dialog box displayed in the center of the browser window and
apply the puf efect to it when either the Ok or Cancel butons are clicked.

1.	 In the <body> of our template ile, add the following elements for the dialog:

<div id="confirm">

 <p>Are you sure you want to do that?</p>

 <button>Ok</button><button>Cancel</button>

</div>

2.	 Add the accompanying script to the empty funcion as follows:

$("#confirm").css({

 left: $(window).width() / 2 - $("#confirm").width() / 2,

 top: $(window).height() / 2 - $("#confirm").height() / 2

});

$("#confirm, button").click(function() {

 $("#confirm").effect("puff");

});

Chapter 6

[167]

3.	 Save this page as puff.html. Add the following styles for the dialog box to a new
ile in your text editor:

#confirm {

 display:block; width:400px; height:120px; position:absolute;

 border:1px solid #ccc;

 background-image:-moz-linear-gradient(0% 5px 90deg, #eee, #666);

 background-image:-webkit-gradient(linear, 0% 0%, 0% 5%,
 from(#333), to(#eee));

 font:normal 13px "Nimbus Sans L", "Helvetica Neue", "Franklin
 Gothic Medium", Sans-serif;

}

#confirm img { margin:20px 20px 0 20px; float:left; }

#confirm p { margin:40px 0 0 0; }

#confirm button { width:68px; margin:20px 10px 0 0; float:right; }

4.	 Save this new ile as puff.css in the css directory.

5.	 When we run the page in a browser, we should ind that the dialog is iniially
centered in the window, and that clicking either of the <button> elements closes it
using the puf efect:

The previous screenshot shows the dialog expanding while it is faded away.

What just happened?
The irst part of our script centers the dialog in the window both verically and horizontally.
One point to note is that we cannot use margin:auto to center the dialog because it will
lose these margins when the efect is applied.

The second part of the script simply adds click handlers to each of the <button> elements
which apply the puf efect when they are clicked.

Extended Animaions with jQuery UI

[168]

The slide effect
The slide efect is very similar to the drop efect. The only diference is that with slide the
opacity of the target element is not adjusted at all. It's also very similar to the slide family of
efects exposed by jQuery itself, although with the jQuery UI slide efect, we're not restricted
to the verical axis—we can slide horizontally too.

Coniguration options
The slide efect has three coniguraion opions which let us specify the direcion and
distance of the slide, and whether it is shown or hidden:

Opion Default Usage

direcion "left" Sets the direcion the animaion proceeds in.

distance The width of the target
element, including padding

Sets the distance that the target element slides to.

mode "show" Sets whether the element is displayed or hidden
when used with the effect() method. Other
acceptable values are hide, effect, and toggle.

Time for action – sliding elements in and out of view
Displaying capions when a visitor hovers over an image is an interacive and interesing way
of displaying addiional informaion about the image without making your design appear
clutered. With the slide efect we can easily animate the showing and hiding of the capion,
which is what we'll do in this example.

1.	 Add the following code to <body> of the template ile:

<div id="image">

 <div>Praying Mantis: Mantis religiosa</div>

</div>

2.	 Then at the botom of the page, in the empty funcion, add the following
short script:

$("#image").hover(function() {

 $(this).find("div").stop(true, true).show("slide");

}, function() {

 $(this).find("div").stop(true, true).hide("slide");

});

Chapter 6

[169]

3.	 Save this as slide.html. Next create the following stylesheet:

#image { position:relative; float:left; }

#image img { margin-bottom:-5px; }

#image div {

 display:none; width:100%; padding:10px 0; position:absolute;

 left:0; bottom:0; top:auto !important; text-align:center;

 font-style:italic; background-color:#000; color:#fff;

}

4.	 Save this ile as slide.css.

5.	 When we view the page we should ind that the capion is displayed as soon as
we move the mouse over the image, and then removed when we move the mouse
of it:

In the previous screenshot we see the capion sliding out from the let edge of the container.

What just happened?
The image and capion are held in a container so that the capion can be posiioned
accurately. We use jQuery's hover() method, which allows us to atach event handlers for
both the mouseover and mouseout events, to show the capion by sliding it in, or hide it by
sliding it out.

Extended Animaions with jQuery UI

[170]

We don't need any addiional coniguraion in this simple example, but we do need to
manage the queue efecively to stop a build up of animaions if the mouse pointer is
moved on and of the image repeatedly, which we handle with the stop() method.

The scale effect
The scale efect is very similar to the size efect that we looked at earlier, and as we saw,
several efects actually require this efect as a dependency. The main diference between this
efect and the size efect is that with scale, we can only specify a percentage that the target
element should be scaled to, not supply exact pixel sizes.

Coniguration options
The scale efect has more coniguraion opions than any other efect added by jQuery UI.
These opions are listed in the following table:

Opion Default Usage

direction "both" Sets which axis the element is scaled along.

from none Sets the staring dimensions of the element.

origin ['middle', 'center'] Sets the vanishing point of the element if it is
being hidden, or the point from which it grows if
it is being shown.

percent 0 Sets the percentage by which the element will
grow or shrink.

scale "both" This opion sets whether the whole box of the
element (including border and padding CSS
values) is scaled, just the content, or as in the
default, both.

Time for action – scaling an element
It's common pracice on an image-heavy site to show a set of thumbnail images which link to
a full-sized image which is displayed when the image is clicked, either inline in a modal pop
up, or in a separate window. In this example we'll create a thumbnail image that scales to a
full-sized version when clicked.

1.	 Add the following few elements to the <body> of the template ile:

<div id="container">

</div>

Chapter 6

[171]

2.	 The script we need is a litle longer, but is sill prety simple. In the empty funcion at
the end of the page add the following code:

$("img").click(function() {

 var img = $(this);

 if(!img.hasClass("full")) {

 img.addClass("full").effect("scale", { percent: 400 },
 function() {

 $("<a>", {

 href: "#",

 text: "x",

 click: function(e) {

 e.preventDefault;

 var a = $(this);

 a.parent().find("img").removeClass("full").effect("scale", {

 percent: 25 });

 a.remove();

 }

 }).appendTo("#container");

 });

 };

});

3.	 Save the page as scale.html. In the stylesheet for this example, we'll need the
following code:

#container { position:relative; float:left; cursor:pointer; }

#container img { width:150px; height:150px; }

#container a {

 position:absolute; top:0; right:10px; color:#f21515;

 text-decoration:none; font:bold 22px "Nimbus Sans L", "Helvetica
 Neue", "Franklin Gothic Medium", Sans-serif;

}

#container a:hover { color:#fb5e5e; }

4.	 Save this ile as scale.css.

Extended Animaions with jQuery UI

[172]

5.	 When we run the page we should ind that clicking on the image causes it to be
scaled up to 400 percent of its iniial size:

The previous screenshot shows the image in its "scaled-up" size, with the red close icon in
the top-right of the image.

What just happened?
On the page our image is held in a simple container <div>. The image is scaled down from
its original size using CSS, so when we scale the image up we will actually be returning it to
full size, so it won't look blocky or fuzzy at all.

In the script we irst set a click handler on the image and then we cache a reference to it so
that we don't have to keep creaing jQuery objects referring to this. If the image doesn't
have a class name of full, we know the image has not been scaled up already, so we add
the class full and then scale it up by 400 percent using the percent opion.

Once the image has been scaled, we then create a new anchor element which will be
appended to the container element and used as a close buton. We set the link's inner text
and href atribute, and then assign a click handler to it. Within this handler we prevent the
browser following the link and then cache the selector once more, which this ime points to
the anchor.

We then reduce the image to a quarter of its size, retuning it back to its original dimensions.
Once this is done we remove the close link.

Chapter 6

[173]

Pop quiz – using show/hide logic
1. How are supported arguments passed to an efect?

a. In string format as the second argument, for example show("blind",
"vertical")

b. As values in a coniguraion object passed directly to the animate()
method, for example animate({ effect: "blind", configuration: {
direction: "vertical" })

c. As values in a coniguraion object passed as the second argument, for
example show("blind", { direction: "vertical" })

d. By seing the effect.config global property, for example $.effect.
config = { direction: "vertical" })

2. What else can be passed to the method?

a. An integer or string represening the duraion, and a callback funcion or
funcion reference

b. Nothing

c. A Boolean that controls whether the animaion should repeat indeinitely

d. A Boolean indicaing whether further efects should be queued or executed
in parallel

Have a go hero – experimenting with the effect API
I would strongly recommend that you experiment with the efects that we have looked at in
this secion to see which ones work well with the effect() method and which ones work
best with show/hide logic, and so you can see exactly what happens when the ones that
don't work so well are used. This should improve your ability to quickly decide exactly when
and where each method is appropriate.

Easing functions
To use the full set of easing funcions with jQuery, we needed to use an extra plugin, but
with jQuery UI all of the funcions are included directly in the core efects ile, so we can use
them naively with any of our jQuery UI efects.

Easing can be used with all of the jQuery UI efects with the excepion of explode, although it
can look a litle strange in a few of the efects, such as bounce or pulsate. Easing can also be
used if jQuery UI is present with standard jQuery.

Extended Animaions with jQuery UI

[174]

For a full list of the easing funcions available with jQuery (either via the
easing plugin, or jQuery UI) see the table in the easing secion in Chapter 4,
Sliding Animaions.

Time for action – adding easing to effects
To use easing, all we need to do is include the easing funcion name as a coniguraion
opion. For example, to add easing to the blind.html example that we looked at earlier,
we could change the JavaScript so that it appeared as follows:

$("#window").click(function() {

 $("#blind").toggle("blind", { easing: "easeOutBounce" });

});

What just happened?
We use the coniguraion opion easing, with the name of the easing funcion as a string
supplied as the value of the opion. Any of the easing funcions can be used by referencing
their name in this way.

Color animations
As well as the complete range of easing funcions, the efects core ile also gives us the ability
to atracively and smoothly animate between diferent colors. Several CSS properies can
be animated including the color, background-color, border-color, and outline-
color.

jQuery UI extends jQuery's animate() method to achieve color animaions, so the syntax to
implement it is the same as using animate(). For any other purpose, we just need to target
one of the above CSS properies and supply the new color value as a string, hexadecimal
(#xxxxxx), or RGB (rgb(xxx, xxx, xxx)) value. Let's look at a basic example.

Time for action – animating between colors
In this example, we'll use color animaions to show that a form ield has been let empty.

1.	 In a fresh copy of the template ile, use the following elements in the <body> of the
page:

<input><button id="search">Search</button>

Chapter 6

[175]

2.	 To invoke the color changes when the <button> is clicked, we can use the following
JavaScript in the empty funcion near the botom of the document:

$("#search").click(function (e) {

 e.preventDefault();

 var input = $(this).prev();

 if (input.val() == "") {

 input.animate({

 backgroundColor: "#f78080",

 borderTopColor: "#a72b2e",

 borderRightColor: "#a72b2e",

 borderBottomColor: "#a72b2e",

 borderLeftColor: "#a72b2e"

 }, 1200);

 };

});

3.	 Save this page as color-animations.html. We literally only need a couple
of styles for this example. We could probably get away with deining them in a
<style> block in the <head> of the page. We just use the following CSS:

input { width:200px; border:2px solid #27659f; }

4.	 When we run the page, we see that the text ield changes color if the <button> is
clicked while it is empty.

What just happened?
The CSS, while extremely small, is required in this example because the <input> will lose
any atracive styling provided by modern browsers when the colors are animated. Seing
the CSS properies we are animaing helps prevent this ugly switch.

In the script we simply cache a selector that points to the <input>, and then test whether
the ield is empty. If it is we call the animate() method, specifying the aspects of the target
element we'd like to animate. Noice that we must specify each border-color independently
for the animaion to work correctly.

Extended Animaions with jQuery UI

[176]

Class transitions
As well as extending jQuery's animate() method in order to provide color animaions,
jQuery UI also extends some of jQuery's element manipulaion methods. The following
methods are extended to provide class transiions:

 � addClass()

 � removeClass()

 � toggleClass()

jQuery UI also exposes a new method for transiioning between two classes—the
switchClass() method, which accepts the current class and new class, as well
as duraion, easing, and callback arguments.

Time for action – transitioning between classes
We can rework our previous example so that it uses some of the class transiion methods.

1.	 Add the class name default to the <input> element and then change the
JavaScript so that it appears as follows:

$("#search").click(function(e) {

 e.preventDefault();

 var input = $(this).prev();

 if (input.val() == "") {

 input.switchClass("default", "error", 1200);

 } else if (input.val() && input.hasClass("error")) {

 input.removeClass("error", 1200);

 }

});

2.	 Save the new page as class-animation.html. We'll need to make some changes
to the stylesheet as well. Create a new stylesheet and add the following rules to it
(or change the styles in the <head> of the page):

input { width:200px; }

.default, input { border:2px solid #27659f; }

.error { border:2px solid #a72b2e; background-color:#f78080; }

3.	 Save the new ile as class-animation.css.

Chapter 6

[177]

4.	 Run the page in a browser and again, click the <button> without entering anything
into the text ield. The <input> should transiion to the error class and appear
the same as it did in the last example. This ime however enter some text in the
<input> and click the <button> again. The error should then transiion back
to default.

What just happened?
This ime if the <input> has no value we just call the switchClass() method specifying
the current class of default, the new class of error, and a duraion of 1.2 seconds. Note
that you must supply both the current and new classes for the example to work correctly.

In the next branch of the condiional, we check that the <input> has both a value and a
class name of error. If it does we call the removeClass() method specifying just the
class to remove and a duraion. The duraion is required in order to trigger the transiion.

In the CSS we provide the default styling using the class name default as well as generally
for all input elements. We need to do this because otherwise the element loses its styles
while the error class is in the process of being removed, causing it to revert to a standard
un-styled <input> element.

Performance

When using jQuery, we are always advised that changing the class name of
an element is more eicient than manipulaing an element's style atribute
directly, so it's natural to assume that using switchClass() would be more
eicient than using animate().

This however is not the case, as Firebug's proile tool will show. In the previous
example, if the second branch of the condiional is removed and the page
and both color-animation.html and class-animation.html are
proiled, it is color-animation.html that wins by a margin of around 20
milliseconds.

Pop quiz – easing, color, and class animations
1. How are easing funcions speciied?

a. In string format as the third argument to the effect() method, for example
effect("blind", {}, "easeOutBounce")

b. As Boolean in a callback funcion, for example effect("blind",
function() { easeOutBounce = true })

c. Easing cannot be used

d. In string format as the value of the easing coniguraion opion, for example
effect("blind", { easing: "easeOutBounce" })

Extended Animaions with jQuery UI

[178]

2. Which method is extended to produce color animaions?

a. The effect() method

b. The show() method

c. The animate() method

d. The switchClass() method

Summary
In this chapter we looked at the complete range of new efects which are added by the
jQuery UI library. We looked at how they can be used with the effect() method, or the
show(), hide(), and toggle() methods when necessary. We saw the coniguraion
arguments that each efect takes, and their default values when used out of the box.

We also covered how jQuery UI extends the animation(), addClass(), and
removeClass() methods, and the switchClass() method that it adds in order
to add the ability to animate between colors and classes.

The key points to take from this chapter include:

 � jQuery UI together with jQuery can be downloaded using the jQuery UI download
builder, which builds a custom package, complete with a theme if required for you
to download.

 � jQuery UI adds a total of 14 new predeined efects to our animaion toolkit.
The efects are easy to use but highly conigurable.

 � The effect() method is the basic means of specifying an efect, its coniguraion
opions, a duraion, and a callback funcion.

 � Some of the efects work much beter with the show(), hide(), or toggle()
methods and are equally as easy to use with this aspect of the API.

 � The easing funcions are built directly into jQuery UI and can be used by specifying
them as values for the easing coniguraion opion.

 � jQuery UI also gives us the ability to transiion an element's color or class name by
extending some of jQuery's methods and adding the new switchClass() method.

In the next chapter, we'll switch back to jQuery and look at full page animaions including
how to animate the page's background image, animaing page scroll, and feature animaions
that are the main focus of the page.

7
Full Page Animations

So far the examples that we've looked at are animaions that have formed a
single part of the user interface of the page, or formed part of a speciic widget.
In this chapter, we'll look at animaions that take up the whole page, such as
background-image animaions, or "feature" animaions where the thing
being animated is the main focus of the page.

In this chapter, we'll cover the following subjects:

 � Animaing page scroll

 � Animaing background-position to create a parallax efect

 � Combining page scroll with page navigaion

 � Creaing stop-moion animaion

All of the examples that we'll look at in this chapter will be based on the animate() method
that was introduced earlier in the book. As we've already learnt how the method is used, we
can jump straight into the acion and start on the examples.

Animated page scroll
We can animate the scroll of the enire page very easily using a combinaion of some built-in
jQuery funcionality and some plain vanilla JavaScript. Long blog pages are oten split into
smaller, more readable secions with sub-headings, and a secondary navigaion structure,
separate from the main site navigaion, which links to the diferent secions. Opionally,
there may also be back to top links that take the reader back up to the top of the page.

Full Page Animaions

[180]

Can we animate the scroll using jQuery's animate() method so that the document scrolls
smoothly instead of jumping to the desired locaion when any of these links are clicked?
Not exactly—the scrollTop() method that jQuery exposes cannot be used directly in
conjuncion with the animate() method.

But we can spoof the animaion efect ourselves manually and make it appear as if the scroll
is animated very easily, which is what we'll do in the irst example of this chapter.

Time for action – creating the page that will scroll
and its styling

The example page needs to be quite long for the scroll efect to work. The underlying HTML
used could be any modern blog post.

1.	 Add the following code to the <body> of the template ile:

<article id="post">

 <header id="top">

 <h1>A long article with lots of sections</h1>

 <nav>

 Section 1

 Section 2

 Section 3

 Section 4

 Section 5

 </nav>

 <p>Posted on <time datetime="2010-11-13">
 13 November 2010</time> by Dan Wellman</p>

 </header>

 <section id="section1">

 <h1>Section 1</h1>

 <p>Lorem ipsum dolor...</p>

 <p>Lorem ipsum dolor...</p>

 Back to top

 </section>

 <section id="section2">

Chapter 7

[181]

 <h1>Section 2</h1>

 <p>Lorem ipsum dolor...</p>

 <p>Lorem ipsum dolor...</p>

 Back to top

 </section>

 <section id="section3">

 <h1>Section 3</h1>

 <p>Lorem ipsum dolor...</p>

 <p>Lorem ipsum dolor...</p>

 Back to top

 </section>

 <section id="section4">

 <h1>Section 4</h1>

 <p>Lorem ipsum dolor...</p>

 <p>Lorem ipsum dolor...</p>

 Back to top

 </section>

 <section id="section5">

 <h1>Section 5</h1>

 <p>Lorem ipsum dolor...</p>

 <p>Lorem ipsum dolor...</p>

 Back to top

 </section>

</article>

2.	 Save this ile as scroll.html. We'll also need a litle CSS to lay out the example
page. Add the following selectors and rules to a new page in your text editor:

#post {

 display:block; width:960px; margin:auto;

 font:22px "Nimbus Sans L", "Helvetica Neue",
 "Franklin Gothic Medium", sans-serif;

 color:#444;

}

#post header p, #post section .top {

 margin-bottom:0;

 font:italic 14px "Palatino Linotype", "Times New Roman",
 "Nimbus Roman No9 L", serif;

 color:#aaa; text-align:right;

}

#post section .top {

Full Page Animaions

[182]

 display:block; text-decoration:none;

 border-bottom:1px dotted #aaa;

 float:right;

}

#post section .top:hover { border-bottom-style:solid; }

#post ul { margin:0; padding:0; }

#post li { list-style-type:none; }

#post section h1, #post section p {

 margin:0 0 6px; clear:right; font-size:24px;

}

#post section p { font-size:20px; }

3.	 Save this in the css folder as scroll.css. Don't forget to link to this stylesheet
from the <head> of the HTML ile. Here's a screenshot to show how the page
should appear:

Showing how the screen is scrolled in a simple screenshot could be problemaic so
the previous image is just to show you how the page should appear at this point for
reference purposes.

Chapter 7

[183]

What just happened?
The HTML is very simple. There's just more of it than there has been in previous examples.
It represents a single aricle that is divided into diferent secions, with each secion having a
sub-heading and some layout text.

A table of contents style navigaion menu at the top of the aricle (this would be considered
a secondary nav) links to each of the diferent secions. The styling is also very basic and
simply sets some rules to lay out the page in a clean format.

Time for action – animating the scroll
The script itself is relaively straight-forward too. Add the following code to the empty
funcion at the botom of the HTML ile:

var parent = document.getElementById("post"),
 speed = 7,
 win = $(window);

$("nav a", parent).click(function(e) {

 e.preventDefault();

 var target = $(this).attr("href"),
 offset = $(target).offset(),
 newScroll = 0,
 maxScroll = document.body.scrollHeight;

 while (newScroll < offset.top && win.scrollTop() < maxScroll) {

 win.scrollTop(newScroll);
 newScroll = newScroll + speed;
 }
 });

$(".top", parent).click(function(e) {

 e.preventDefault;

 var newScroll = win.scrollTop();

 while (newScroll > 0 && win.scrollTop() > 0) {

 win.scrollTop(newScroll);
 newScroll = newScroll - speed;
 }

});

Full Page Animaions

[184]

Save the HTML ile again and run it in a browser. You should ind that the document
smoothly scrolls to the desired locaion when any of the top links on the page are clicked.

What just happened?
First we set some variables including a reference to the DOM node of the parent container
(the <article>). We obtain this with the raw JavaScript getElementById() funcion so
that we can pass it into a jQuery selector as a context for the selector.

Doing this is great for performance and means that we don't have to give muliple elements
id atributes for the sole purpose of jQuery element selecion. Everything is selected by
staring at the parent that is originally selected from the document.

We also set a variable called speed which we'll use when we create the simulated
animaion. This is the igure that the current scroll amount is incremented by, so lower
values will mean a longer "animaion" ime and higher values will mean a shorter ime,
completely the opposite of jQuery's duration argument.

We also cache a selector for the window object as we'll need to refer to this several
imes, oten from within for or while condiional branches, so again this is purely
for performance reasons.

We then set a click handler on the table of contents links. Within this funcion we irst stop
the browser from following the link using the preventDefault() method, which jQuery
normalizes across all common browsers.

We then set some more variables, irst geing the target element of the link that was
clicked, then storing its current ofset, and the maximum scroll amount of the document.
We also iniialize a newScroll variable so that we can calculate what the new scroll amount
should be.

We then use a JavaScript while loop to incrementally scroll the document, using the speed
variable that we set earlier. The condiion of the loop is that it should coninue while the
newScroll variable is less than the top ofset of the target element and while the current
scroll is less than the maximum scroll.

The ofset of the target element is obtained using jQuery's offset() method, which returns
an object with top and left properies that correspond to the element's posiion relaive
to the document. The maximum scroll is obtained using standard JavaScript to query the
scrollHeight property of the document body.

The current scroll is normalized by jQuery so that the scrollTop() method returns the
current posiion of the verical scroll bar. This is useful because it means that we don't
have to feature-detect the browser and obtain the value using either document.body.
scrollTop or window.pageYOffset depending on the browser in use.

Chapter 7

[185]

Within the while loop, we use jQuery's scrollTop() method in seter mode to set
the scroll to the value of the newScroll variable, and then increment the newScroll
value using our speed variable. This is what I meant by spooing the animated scroll—the
document just scrolls sequenially in a series of jumps; it isn't actually animated, but because
it happens fairly rapidly it gives the impression of being animated.

Ater the click handler for the table of contents links, we also set a click handler on the
back to top links. Because we're just going straight back to the top of the page, we don't
need to do any complex calculaions, so this funcion is really just a simpliied version of
the irst funcion.

There is already a jQuery plugin that can be used to animate scroll: the scrollTo
plugin. This plugin allows us to easily animate both verical and horizontal scroll
on any element whose contents overlows the dimensions set on it.

However, as an exercise in how to fake animaion without using any of jQuery's
animaion methods, I thought it would be of value to do it ourselves manually
here. We'll use the plugin later in the chapter. For reference it was created by
Ariel Flesler and can be downloaded from http://flesler.blogspot.
com/2007/10/jqueryscrollto.html.

Pop quiz – animating page scroll
1. In this example we used old-school JavaScript to obtain a reference to the

<article> DOM node instead of using jQuery. Why?

a. Because it's easier

b. Because it's fun to mix things up a litle

c. Because it's faster to give jQuery selectors a DOM node context so that the
enire document doesn't need to be searched when selecing elements from
the page

d. Because it makes the byte count of the page smaller

2. Why can we not use jQuery to animate the page scroll?

a. Because scrollTop (or window.pageYOffset) are properies of the
document or window and not CSS style properies

b. Because the values for these properies are not true integers

c. Because jQuery does not want us to animate scroll

d. We can, we just chose to do it this way instead

Full Page Animaions

[186]

Have a go hero – extending animated page scroll
In this example we just animated the verical scroll of the document. Have a go at changing
the example so that the horizontal scroll can also be animated. This will entail making the
page not just longer than the viewport, but also wider too.

The illusion of depth with parallax
The term parallax, when used in the context of computer graphics, especially in video games,
refers to the technique of using muliple background layers that scroll at slightly diferent
speeds to create the illusion of depth. Although not as widely deployed in modern gaming,
thanks to the advent of richer 3D graphics engines, parallax is sill seen frequently in portable
gaming devices, and increasingly, on the Web.

A parallax efect is achievable using pure CSS, as demonstrated nicely by the Silverback site
(see http://silverbackapp.com/ for the efect, and http://thinkvitamin.com/
design/how-to-recreate-silverbacks-parallax-effect/ for the details on how it
was implemented). This applicaion of parallax will only become apparent when the window
is resized, which is a fantasic efect when the window is resized, but doesn't help us if we
want the efect to take more of a center stage.

A little help from the new cssHooks functionality
jQuery 1.4.3 introduced a new mechanism for easily extending the css() and animate()
methods of jQuery. The new cssHooks feature allows us to easily extend the css()
method to allow the geing and seing of CSS style properies not naively supported by
jQuery. As the animate() method makes use of the css() method internally, we can use
the cssHooks to add animaion support for certain style properies that previously were
unsupported.

This is great, but even beter is the fact that some of the jQuery core contributors, most
notably Mr Brandon Aaron, have already begun building a suite of pre-built cssHooks for
certain style properies, including background-position. We can use one of these brand
new, pre-built cssHooks in our next example.

The ile containing the cssHook for background-posiion is included in the code
download accompanying this book, but for reference, the complete suite can be
found at https://github.com/brandonaaron/jquery-cssHooks.

Chapter 7

[187]

Time for action – creating the stage and adding the styling
The underlying page requires just ive elements (for this simple example), which sit in the
<body> of the page.

1.	 Add the elements in the following structure to a fresh copy of the template ile:

<div id="background"><!-- --></div>

<div id="midground"><!-- --></div>

<div id="foreground"><!-- --></div>

<div id="ground"><!-- --></div>

2.	 This page can be saved as parallax.html. Don't forget to link to the cssHooks
ile that we'll be using in this example ater the link to jQuery at the botom of the
<body>:

<script src="js/jquery.js"></script>

<script src="js/bgpos.js"></script>

<script>

3.	 The CSS in this example is equally as simple as the underlying HTML. Add the
following code to a new ile in your text editor:

div { width:100%; height:1000px; position:absolute; left:0; top:0;
}

#background { background:url(../img/background.png) repeat-x 0 0;
}

#midground { background:url(../img/midground.png) repeat-x 0 0; }

#foreground { background:url(../img/foreground.png) repeat-x 0 0;
}

#stage { background:url(../img/ground.png) repeat-x 0 100%; }

Full Page Animaions

[188]

4.	 Save this ile as parallax.css in the css directory. At this point the page should
appear like this:

The stage area is the ground, the foreground layer is the dark green bushes, the midground
is the light green bushes, and the background slice is the sky and clouds.

What just happened?
You'll also ind the images for this example in the img folder of the code download
accompanying this book. We have a separate image for each element that we wish to
be part of the parallax efect, three in this example, one for the background, one for
the midground, and one for the foreground.

The underlying HTML is also very simple. We just have a separate <div> for each layer of
the background. In the CSS, each image layer is posiioned absolutely so that they overlay
each other.

Time for action – animating the background position
Now for the <script> itself. At the botom of the HTML ile, in the empty funcion as usual,
add the following code:

var bg = $("#background"),

 mg = $("#midground"),

 fg = $("#foreground");

Chapter 7

[189]

$(document).keydown(function(e) {

 if (e.which === 39) {

 bg.animate({ "backgroundPosition": "-=1px" }, 0, "linear");

 mg.animate({ "backgroundPosition": "-=10px" }, 0, "linear");

 fg.animate({ "backgroundPosition": "-=20px" }, 0, "linear");

 }

});

If we run this page in a browser now, we should ind that as we hold down the right arrow
key, the diferent background slices move at progressively slower speeds with the foreground
almost rushing past, and the background moving along leisurely.

What just happened?
In the script we irst cache the selectors we'll be using so that we don't have to create a new
jQuery object and select the elements from the DOM each ime the background-position
changes, which will be very frequently indeed. We then set a keydown event listener on the
document object. Within the anonymous funcion we use as the event handler, we check
whether the key code supplied by the which property of the event object (this is normalized
by jQuery so it will be accessible cross-browser) is equal to 39, which is the key code returned
by the right arrow key.

We then call the animate() method, which is extended by the cssHooks bgpos.js ile
to allow us to specify backgroundPosition as the style property to animate. We supply
relaive values of +=1px, +=10px, and +=20px to move each layer at progressively faster
speeds which gives us the parallax efect. These animaions are called simultaneously
and also have very short duraions and linear easing. This is the last thing our keydown
handler needs to do.

Pop quiz – implementing the parallax effect
1. Why is it necessary to use linear easing in the previous example?

a. To prevent a lickering efect

b. It's not necessary, we just used it for fun

c. To prevent the animaion using the default easing type of swing, which
causes a slowing down at the start and end as this would stop the animaion
from running smoothly

d. To slow the animaion down slightly

Full Page Animaions

[190]

2. The bgpos cssHooks ile extends the jQuery css() method and allows us to
animate the background-position of an element. What format does the value
we provide to the backgroundPosition key need to take?

a. An integer

b. An array of integers

c. A string

d. An array of strings

Have a go hero – extending parallax
In this example the backgrounds animate only from right to let. Extend the example so that
both let to right and right to let moion is available.

Animated single-page navigation
Instead of navigaing to separate pages when links in a navigaion menu are clicked, we can
navigate to diferent areas of the current page. While it would be SEO-suicide to build your
enire site on a single page, and could potenially hide a lot of content from users without
JavaScript enabled, we can progressively enhance the site to take this format, while sill
leaving the site overall as a normal collecion of separate HTML documents.

Time fr action – creating individual pages and adding the styles
In this example we'll start with a collecion of separate pages. These are prety much just
carbon copies of each other with the numbers in the headings changed.

1.	 Add the following markup to the <body> of our template ile:

<div id="outer-container">

 <header>

 <h1>A Whole Site on a Single Page</h1>

 <nav class="clear-float">

 <a class="on" href="single-page-site-1.html"
 title="Page 1">Page 1

 Page 2

 Page 3

 Page 4

Chapter 7

[191]

 Page 5

 </nav>

 </header>

 <div id="content">

 <h1>Single Page Site Page 1</h1>

 <p>This is the first page of the site</p>

 <p>Lorem ipsum dolor...</p>

 </div>

 <footer>

 <small>Copyright © Dan Wellman 2010</small>

 <nav class="clear-float">

 Page 1

 Page 2

 Page 3

 Page 4

 Page 5

 </nav>

 </footer>

</div>

2.	 Save ive copies of this page, calling them single-page-site-[1-5].html. The
CSS used in this example is almost purely to get a feel for the page; it isn't decoraive
at all. Add the following code to a new ile in your text editor:

body { margin:0; overflow:hidden; }

#outer-container { width:960px; margin:auto; }

header {

 display:block; border:1px solid #000; border-top:none;

 -moz-border-radius-bottomright:8px;

 -moz-border-radius-bottomleft:8px;

 -webkit-border-bottom-right-radius:8px;

 -webkit-border-bottom-left-radius:8px;

 border-bottom-right-radius:8px; border-bottom-right-radius:8px;

 background-color:#fff;

}

header h1 { margin:0 0 0 20px; float:left; line-height:2em; }

header nav { display:block; margin-top:23px; }

Full Page Animaions

[192]

nav ul { margin:0; padding:0; float:right; }

nav li {

 border-left:1px solid #000; padding:0 20px; float:left;

 list-style-type:none;

}

nav li:first-child { border:none; }

#content { padding-left:20px; }

footer {

 display:block; width:960px; padding:10px 0;

 border:1px solid #000;

 border-bottom:none;

 -moz-border-radius-topright:8px;

 -moz-border-radius-topleft:8px;

 -webkit-border-top-right-radius:8px;

 -webkit-border-top-left-radius:8px;
 border-top-right-radius:8px;

 border-top-right-radius:8px; clear:both; background-color:#fff;

}

footer small { display:block; float:left; margin-left:20px; }

footer nav { font-size:12px; }

.clear-float:after {

 display:block; content:"."; clear:both; visibility:hidden;

 height:0;

}

.fixed { width:960px; position:fixed; z-index:1; }

header.fixed { top:0; }

footer.fixed { bottom:0; }

#pages { position:relative; }

.page { width:920px; position:absolute; }

3.	 Save this ile as single-page-site.css in the css directory. Note that each of
the ive HTML pages link to this stylesheet.

4.	 The page will appear like this with no JS funcionality added, which is how it would
appear were JavaScript disabled on the client:

Chapter 7

[193]

As the screenshot shows, the page sill works and the site can be navigated with JavaScript
disabled. Some of our styling is added with JavaScript (via class name addiions), so the inal
page will appear slightly diferently.

What just happened?
The underlying HTML is fairly straight-forward and just represents a simple collecion of
example elements including header and footer navigaion. The styles are also very light and
are there mostly just to lay out the example pages. The rules at the botom of the ile are for
elements or classes that are added dynamically by the script.

The previous screenshot shows how the page will appear to those with scriping disabled,
although it is very similar to how the page will appear once we've added the script, which
we'll do next.

Time for action – adding the scroll navigation
In this secion we will add the code that will enable animated scrolling.

1.	 In another new ile in your text editor, add the following code (it should go into a
empty funcion which aliases the $ character, the same as in the other examples):

$("#content").empty();

var win = $(window),

 links = $("header nav a"),

 content = $("#content"),

 positions = {},

Full Page Animaions

[194]

 screensize = {

 width: win.width(),

 height: win.height()

 },

 pages = $("<div></div>", {

 id: "pages"

 }).bind("contentLoaded", function() {

 var multiplier = Math.ceil(links.length / 2);

 $(this).appendTo(content).parent().addClass("full");

 content.width(screensize.width * multiplier +
 screensize.width);

 content.height(screensize.height * multiplier);

 content.parent().find("header, footer").addClass(
 "fixed").closest("body").css(
 "padding-top", $("header").outerHeight());

 links.add("footer nav a").click(function(e) {

 e.preventDefault();

 var id = (this.href.indexOf("#") != -1) ?
 this.href.split("#")[1] : "page-" +
 this.title.split(" ")[1];

 navs = $("header").add("footer");

 navs.fadeOut("fast");

 $.scrollTo({ top: positions[id].top,
 left: positions[id].left }, 800, function() {

 navs.slideDown("fast");

 });

 });

 });

 links.each(function(i) {

 var id = "page-" + (i + 1);

 positions[id] = {};

 positions[id].left = (i === links.length - 1) ?

Chapter 7

[195]

 screensize.width * i - (screensize.width / 2) -
 (960 / 2) + parseInt(content.css("paddingLeft")) :
 screensize.width * i;

 positions[id].top = (i % 2) ? screensize.height : 0;

 $("<div></div>", {

 "class": "page",

 load: this.href + " #content > *"

 }).css({

 left: positions[id].left,

 top: positions[id].top

 }).appendTo(pages);

 this.href = "#" + id;

 if(i == links.length - 1) {

 pages.trigger("contentLoaded");

 }

});

2.	 Save this ile as single-page-site.js in the js folder. You'll need to link to this
new ile, as well as the scrollTo plugin, which we'll make use of in this example, from
each individual page. Add the script references at the end of the <body> element:

<script src="js/jquery.scrollTo-min.js"></script>

<script src="js/single-page-site.js"></script>

3.	 Run the page in a browser now. You should be able to navigate smoothly around the
page to each of the external pages that have been pulled in.

We can't run this page successfully on a local machine (that is using a
file:/// URL) in Google Chrome without changing the --allow-ile-
access-from-iles opion due to a bug in the browser (see issue 4197
documented at http://code.google.com/p/chromium/issues/
detail?id=4197).

The example will however work as intended if we run it through a web server
(this can even be a test/development web server running on the local machine)
using an http:// URL.

Full Page Animaions

[196]

What just happened?
The script can be roughly broken into two secions. We have a series of variables irst,
followed by an each() method that processes the navigaion in the header. The very
irst thing we do however is to empty the contents of the current page. This helps make
our script cleaner, because we don't have to avoid processing the irst navigaion link in
our each() funcion.

It also ensures the page coninues to work if someone visits, say, page-3.html instead of
the irst page by typing the URL of that page directly into the browser's address bar. It resets
the site so that the content of the irst page is always shown irst.

So we irst deine a series of variables. We cache references to the window object, the
top set of navigaion links, and the content container, and create a new object that we'll
populate later in the script to determine where each page is posiioned. We also create an
object containing the width and height of the window, again so that we can reference
these properies easily from diferent points in the script.

We then create a new div element and give it an id atribute for styling purposes. We then
bind an event handler to it which listens for a custom contentLoaded event. jQuery easily
allows us to create custom events which can be triggered programmaically by our script
when appropriate.

Within the anonymous handler funcion, we irst deine a muliplier that will be used to work
out how big the container for the collecion of pages should be.

We then append the pages element, which will contain the content of each external page,
to the content container on the page, and then add a class name to the content container,
again for styling, but this ime for styles that only need to be applied with JavaScript enabled.

Next we set the size of the content container so that it can accommodate all of the external
page content. We use our screensize object and multiplier to determine its size.
The container needs to be one screen-width wider due to how the external page content
is laid out.

We cater for a litle more dynamic styling to the header and footer elements by adding a
class name to them. This allows us to give these two elements fixed posiioning so that
they always appear at the top and botom of the viewport and hence remain usable while
we (or our visitors) are navigaing around the page. We also add some padding equal to the
height of the header so that the content does not slide below it at any point.

Chapter 7

[197]

Next we can add a click handler to each of the top and footer navigaion links. Within the
handler funcion, we irst prevent the browser from following the link and then get the
region of the page that we need to scroll to from the href property of the link that was
clicked. When we process the header links in a moment, we add some code that will change
the href of these links so that they no longer point to the individual pages, but to the page
regions on the single page.

The footer links aren't processed like the header links will be, so we can't just use whatever
value the href is because it may sill point to a separate page. Instead we use the JavaScript
ternary condiional to see whether the href contains a # sign. If it does, we just split the
string on the # and keep everything ater.

If it doesn't we get the number of the page that it points to and add this to a string. We also
cache a reference to a jQuery object containing both the header and footer.

The this object versus a jQuery object

Note that when we read the href atribute, we're interacing with the
this object directly, without wrapping the object in jQuery funcionality.
We can read the href property of the this object without any special
JavaScript magic, so there is no point creaing a new jQuery object, and
paying for the performance hit when we do, just to read this atribute.

Next we hide the header and footer with a fast fade-out and then invoke the scrollTo()
method added by the scrollTo plugin.

This method accepts an object with top and left properies, to which we pass references
to the relevant properies from our positions object, using the string we saved in the id
variable. We populate the positions object in the next secion of code, but for reference
the object will end up with a property and value pair for each external page linked to in
the navigaion, where each key will be page-1...page-n, and each value will contain the
precise coordinates that need to be scrolled to.

Once the scroll animaion has completed, we then show the header and footer again using
the slideDown() method. As these elements have ixed posiioning, we can apply the slide
animaion to them together and they will both slide in the intended direcion.

Using the scrollTo() method is very similar to using the animate() method. We can
supply a duraion, as well as a callback funcion, as we do in this example. Calling the
scrollTo() method directly on the jQuery object is a shortcut to calling it on the window
object. The plugin handles this internally for us.

Don't forget, most of the funcionality we've just added won't be executed straight
away—it's mostly all stored in the page's variable. The variable will be created and the
pages <div> will exist in memory, but it won't actually be appended to the page unil the
contentLoaded custom event is triggered by the next secion of code.

Full Page Animaions

[198]

The second secion of code is encompassed within an anonymous funcion passed to jQuery's
each() method which we use to process each of the links in the header. The funcion we
deine is automaically passed an index (i) as an argument represening the current iteraion
which we use to build an ID string ready for populaing the positions object.

This object will contain a set of nested objects where each nested object represents one
of the external pages and has a let and a top property which correspond to where on the
single page the content is posiioned.

Working out where to place the content secion on the verical axis is easy; we just use the
JavaScript modulus operator (%) to see if there is a remainder let ater dividing the index by
two, in conjuncion with a ternary condiional.

If the index can be divided by two without a remainder, we posiion the content from the
external page one window's height from the top of the page. If there is a remainder, we
just posiion it at the top of the page. This means that the content secions will be laid out in
a zig-zag patern along two rows, where each row is equal to the height of the window.

Working out where to place each content secion along the page horizontally is a litle more
challenging, but it's only the very last secion that proves to be tricky. We use the ternary
here as well, this ime checking whether we are processing the last link or not.

If we aren't, we simply posiion the content by muliplying the width of the window by the
index, moving each successive secion along the page by one window's width.

If we are processing the last link however, we need to posiion the content by muliplying
the width by the window width, but then subtracing one window's width dived by two,
minus the width of the content's container dived by two. This ensures that the content
secion is aligned with the header and footer correctly.

Once the locaion for the page that the current link points to has been added to the
posiion's object, we then create the new container for the page content and give it a class
name for styling purposes.

We also use the load() method to load the external pages asynchronously. This method
accepts the URL of the page to load, which we can get from the href property of the current
link and a selector that matches all child elements within the content element in the page
that is loaded. When a selector is passed to the load() method, only that porion of the
external page will be retrieved.

Once the container has been created, we posiion it using the css() method, seing
its left and top properies to the corresponding properies in our posiions object for
convenience. Finally we append the new <div> to the page's <div> (which sill only exists
in memory at this point).

Chapter 7

[199]

We then set the href of the current link to a document fragment ideniier poining to the
name of the corresponding content secion. This wouldn't have any efect if we weren't
interceping clicks on the nav links because the content secions don't have matching id
atributes, but it is necessary to store the fragment here so that we can read it back when
the link is clicked.

Lastly, we check again whether we're processing the last link or not, and if we are, we trigger
our custom contentLoaded event, which results in the page's element being appended to
the page, and the click handlers bound to the navigaion links.

Building a site like this which pulls all of its content into a single page won't suit every type of
site. Most clients would probably pay the cancellaion fees and switly withdraw if this idea
was presented to them. However, on highly stylized sites, where the design and behavior of
the site is of special importance, this kind of efect can work well. Sites with litle content on
each page are especially suited to it.

The following screenshot shows the funcionality in acion:

In the previous screenshot, we can see the header and footer partly faded out, and the page
content being scrolled diagonally downwards to the right.

Full Page Animaions

[200]

Pop quiz – creating a single-page website
1. We interact with the this object directly in this example instead of the jQuery

equivalent $(this), why?

a. Because it uses fewer characters

b. Its faster and more eicient because an enirely new jQuery object is not
created

c. Because it looks beter

d. Because it contains more informaion

2. We create and use a custom event in this example, why?

a. Because custom events execute faster than standard browser events

b. Because the each() method does not allow us to update the scrollTop
property of the window

c. Because it is more eicient for the code executed by the handler to be called
once than on every iteraion of the each() method

d. Because the scrollTo plugin can only be used in conjuncion with
custom events

Have a go hero – extending single-page navigation
There are several things you could do to expand on this example. One thing you could do
is add funcionality that checks which page is requested by looking at the href property
of the document. If a page other than the irst page is requested, you could scroll to the
corresponding page secion so that the page they link to is actually shown instead of
reseing to the irst page.

Another thing you could do would be to extend the example so that the pages don't have
to be numbered page-2.html, and so on, and instead could have any ile name. In the
irst secion of code, we read the href of the link if one of the footer links is clicked instead
of looking for a document fragment ideniier. This same technique could be applied to the
header links as well, so that any page that is linked to can be included in the single page.

Or, to really appreciate the visual efect of our site-on-a-page, you could add some addiional
content and a theme to the site. Each page need not have the same skin, and scrolling
between diferent colors and imagery can really bring the page to life.

Chapter 7

[201]

Stop-motion animation
Stop-moion animaion is a technique whereby a scene is laid out (either in 2 or 3
dimensions) and a picture or snap-shot is taken (typically referred to as a frame), then that
scene, or certain characters within it are manipulated, moved, or otherwise changed, before
another picture or snapshot is taken. This process coninues, creaing a series of frames that
when replayed sequenially produce the efect of moion.

It is generally quite easy to produce animaions in this way and we can do the same thing on
a web page trivially. We won't be using any of jQuery's built-in animaion methods, or the
animate() method. jQuery is used to help us select elements from the page, and build the
frames, but is not essenial in this applicaion.

Imagery
The hard part of any stop-moion animaion is the number of frames that need to be
generated. Too few frames and the animaion will become jerky or overly rapid. But the
smoothness that is generally required takes many, many frames. In this example, we'll use
a series of separate images. One image is equal to one frame and there are 75 images in
total—not a huge number, but enough to make their creaion somewhat labor-intensive and
ime-consuming.

Our animaion will consist of a sick man that runs across the page, does a lying kick,
and then bows to an unseen opponent. You will ind all of these images in a folder called
stickman in the img folder of the downloadable code archive that accompanies the book.

There are many available sotware products that animators can use to simplify the process
of frame creaion. I used an applicaion called Pivot Sickigure Animator, created by Peter
Bone, which was specially created to make animaing sick igures easier.

Technique
As well as creaing all the individual frames of our animaion, hardcoding 75 images into a
page, as well as deining a unique style for each one, would also be quite tedious, and our
example animaion is relaively short. This type of animaion can easily run into hundreds
of frames for even quite short animaions.

Instead, we'll create the 75 images and set their atributes and styles programmaically,
which makes the process much easier for us to complete, and sill happens quite quickly
when the page loads.

Full Page Animaions

[202]

Time for action – adding the markup and styling
1.	 Add the following markup to the template ile:

<div id="cartoon">

 <img class="loading" src="img/stickman/ajax-loader.gif"
 alt="Loading Frames">

</div>

2.	 Save the template ile as stickman.html. Now add the following styles to a
new ile:

#cartoon { width:500px; height:500px; position:relative; }

img { position:absolute; top:0; left:0; }

img.loading { z-index:0; left:50%; top:50%; }

3.	 Save this stylesheet as stickman.css in the css folder.

What just happened?
All we have on the page is a container to load the frames into and a loading icon so that
it appears as if something is happening when the page iniially loads and the frames are
being created. While running this example locally, the frames should be loaded prety much
instantly, but in the wild there would certainly be some delay.

The CSS sets the container to the width of a single frame, and the frames are posiioned
absolutely so that they stack up on top of each other. We'll set the z-index for each element
manually in the script. We can also posiion the loader so that it is roughly in the centre of
the container.

Time for action – creating the frames and running the animation
Next, add the following code to the empty funcion at the end of the <body> in stickman.
html:

var counter = 1,

 srcStr1 = "img/stickman/stick-kick",

 srcStr2 = ".jpg",

 frames = $("<div id=\"frames\"></div>"),

 removeFrame = function() {

 if (frames.children().length > 1) {

 frames.children(":first").remove();

 } else {

 clearInterval(timer);

 }

Chapter 7

[203]

 },

 timer = setInterval(function() { removeFrame() }, 50);

 for(var x = 75; x--;) {

 $("", {

 src: srcStr1 + counter + srcStr2

 }).css("zIndex", x).appendTo(frames);

 counter++;

 }

frames.appendTo("#cartoon");

When we run the page, the animaion should proceed as we expect, much like the type
of sketch we perhaps may have idly created in a notepad in our youth and "watched" by
licking through the pages quickly. The following screenshot shows a single frame of the
sickman animaion:

Clearly, the best way to view the animaion is in a browser.

What just happened?
We start out by iniializing some variables. We set a counter variable and a series of strings
represening the common strings that we'll need to use repeatedly. These will be used inside
a for loop so we don't want to deine them within the loop as JavaScript will create the
same string objects repeatedly, whereas by deining them outside of the loop will ensure
they only get created once.

We also create a new container <div> which we'll append each of the new frames to, and
assign a funcion to the setInterval JavaScript funcion.

Full Page Animaions

[204]

Next we deine the removeFrame() funcion which will be executed by setInterval.
All this funcion does is check whether there is more than one element within the frames
container and if so, remove the irst one. Every 50 milliseconds, the top image will be
removed, which is fast enough for the repeated showing of sill images to be perceived
as an animaion. If there is only one image let, we clear the imeout as the animaion
has completed.

Next we deine the for loop, specifying the maximum number of frames, and decremening
on each iteraion of the loop. We don't need to specify a comparison condiion in this form
of loop however, because the loop will naturally end when x = 0 (because 0 is a falsey
value). Using decremening for loops is a proven strategy for faster JavaScript.

On each iteraion of the loop we create a new element and set its src to point to the
correct image ile using a combinaion of the strings we created earlier and the counter
variable. We set the z-index of each image as it is created using the css() method and the
x variable used to control the loop. On each iteraion, x will decrease, so each image added
to the page will be lower down in stacking order than the previous one, which is exactly the
order we require. We then append the image to our new container <div>.

At the end of each iteraion, we increment the counter variable by 1. Ater the loop has
completed, we append our container element, which now contains all of the necessary
images, to the container hardcoded into the page. This will overlay the loading spinner.
In a full implementaion, we'd probably remove the spinner at this point.

Pop quiz – implementing stop-motion animation with jQuery
1. In this example, we used a decremening for loop, why?

a. We need to in order to set a descending z-index on the images.

b. The decremening format of the loop is required when creaing inline
elements with jQuery.

c. Because the code is easier to read.

d. For performance reasons. Because the loop isn't checking a condiion on
every iteraion. It's simply removing one from the value of x, so it runs faster.

Have a go hero – extending stop-motion animation
Simple two dimensional sickmen aren't the only images that can be used to create a
stop-moion animaion. Prety much any series of sequenial images can be used, so
experiment with color images or photographs. Time-lapse photography ofers an
excellent source of the right kind of photos to use.

Chapter 7

[205]

Summary
In this chapter, we looked at some examples of full page animaion, where the animaion
itself is one of the key elements of the page, not just an atracive but short-lived feature
of the interface.

In this example-based chapter, we looked at the following animaion techniques:

 � Scroll animaions where the page is automaically scrolled verically to diferent
parts of the page when table of contents links are clicked.

 � Parallax animaions where several background layers are animated at diferent
speeds to create the illusion of depth. In this example, we uilized the brand
new cssHooks bgpos.js ile to animate the background-position of the
diferent layers.

 � Scroll animaions where individual pages making up a site are pulled into a single
page and the window scrolls both horizontally and verically to diferent areas of
the page. In this example, we didn't scroll the page manually but relied on the
scrollTo plugin.

 � Stop moion animaion where a series of images are shown so rapidly that it creates
an animaion.

The next chapter will also be a series of examples looking at other popular animaions that
may be used on websites.

8
Other Popular Animations

This chapter will follow a similar format to the previous one and will consist
of a series of recipe-style examples that show real-world implementaions of
animaions in acion. We won't restrain ourselves to full-page animaions this
ime however—anything goes!

We'll look at the following examples in this chapter:

 � Proximity animaions, where the animaion is a reacion to the proximity
of the mouse pointer to a target element or area of the page

 � An animated header element

 � A text-scrolling marquee widget

Proximity animations
Proximity animaions, which are usually driven by the posiion of the mouse pointer relaive
to an element or series of elements on the page, are an awesome efect. While not suitable
on all sites and in all contexts, it can add real lair when used in certain situaions.

The efect isn't oten very accessible, and prety much shuts the door on non-mouse users,
but it can be implemented as an addiional bonus to visitors that are able to make use of it,
while at the same ime providing other, more accessible forms of interacion.

In this example, we'll create an image scroller that is triggered when the mouse pointer
enters its container. The speed that the images will scroll will be determined by the distance
of the mouse pointer from the center of the container. Moving the pointer will slow down or
speed up the animaion accordingly.

Other Popular Animaions

[208]

Time for action – creating and styling the page
In this part of the example we'll create the underlying page that the animaion will run on
and add the styling.

1.	 First we'll create the default page and add the CSS for the example. Add the
following elements to the <body> of our template ile:

<div id="proximity">

</div>

2.	 Save this ile as proximity.html. Next we'll add some CSS. In a new ile, add the
following code:

/* base classes (scripting disabled) */

#proximity {

 width:960px; margin:auto; border:1px solid #000;

 -moz-border-radius:8px; -webkit-border-radius:8px;

 border-radius:8px;

}

#proximity img { border:1px solid #000; }

/* scripting enabled classes */

#proximity.slider {

 width:550px; height:250px; position:relative; overflow:hidden;

Chapter 8

[209]

}

.slider #scroller { position:absolute; left:0; top:0; }

.slider #scroller img {

 display:block; width:150px; height:150px; margin:50px 0 0 50px;
 float:left; color:#fff; background-color:#000;

}

.slider #scroller img:first-child { margin-left:0; }

#message {

 width:100%; height:30px; padding-top:10px; margin:0;

 -moz-border-radius:0 0 8px 8px;

 -webkit-border-bottom-radius:8px;

 -webkit-border-bottom-right-radius:8px;

 border-radius:0 0 8px 8px; position:absolute; bottom:0;

 left:0;

 background-color:#000; color:#fff; text-align:center;

 font:18px "Nimbus Sans L", "Helvetica Neue",
 "Franklin Gothic Medium", Sans-serif;

}

3.	 Save this in the css folder as proximity.css and don't forget to link to it from the
<head> of the HTML page.

What just happened?
Keeping the HTML as simple and as light as possible, we simply add the images that we want
to show to a container element. Any extra elements that we need can be added dynamically
in the nature of progressive enhancement.

There are two secions in the CSS ile. The irst secion is a collecion of base styles which
are used if the page is loaded by a visitor that has JavaScript disabled. This ensures that
all of the images are visible and therefore accessible—none of them are hidden or
otherwise obscured.

The second secion changes the appearance of the container element and adds styling to
elements or classes that are added dynamically, transforming the appearance of the slider,
provided JavaScript is enabled.

We set the height and width of the container so that only three images are visible at any
one ime and set its overflow style property to hidden so that all of the other images are
hidden, ready to be scrolled into view.

We also add posiioning for an element with an id of scroller. This element doesn't yet
exist and will be added by the script, which we'll look at shortly. This element will also need
a width, but we can assign this dynamically based on the number of images in the container.

Other Popular Animaions

[210]

We also change the styling of the images themselves, seing them to block-level elements
and loaing them to the let so that they stack up horizontally in a long line without
wrapping onto two lines as this would destroy the funcionality of the scroller. It is the
combinaion of loaing the images, and seing the width of the container to accommodate
them all that allows them to stack up as horizontally as required. We'll add a message that
tells the visitor how to use the scroller so we also include some styling for this as well.

The following screenshot shows how the page will appear with scriping disabled:

In the previous image we can see that the images are all visible. It's not prety, but it's highly
accessible and doesn't hide the content when scriping is disabled on the client.

Time for action – prepping the page for sliding functionality
When scriping is enabled we can enhance the page to add the addiional elements that the
proximity slider requires. Add the following code to the empty funcion at the botom of the
HTML page:

var prox = $("#proximity"),

 scroller = $("<div></div>", {

 id: "scroller"

Chapter 8

[211]

 }),

 pointerText = "Use your pointer to scroll, moving to the edge
 scrolls faster!",

 keyboardMessage = "Use your arrow keys to scroll the images!",

 message = $("<p></p>", {

 id: "message",

 text: keyboardMessage

 });

prox.addClass("slider").wrapInner(scroller).append(message);

var middle = prox.width() / 2;

scroller = $("#scroller");

scroller.width(function() {

 var total = 0;

 scroller.children().each(function(i, val) {

 var el = $(this);

 total = total + (el.outerWidth() +
 parseInt(el.css("marginLeft")));

});

return total;

}).css("left", "-" + (scroller.width() / 2 - middle) + "px");

What just happened?
First we cache the selector for the proximity container, which we'll use a couple of imes
in this chunk of code, and a couple of imes a litle later on in the script. Next we create a
new <div> element and give it an id atribute so that we can easily select it again when
necessary. We also use this id for styling purposes.

Next we store a couple of text strings in variables for convenience. These will be used
as messages to display to the visitor at diferent points. We also create a new paragraph
element as a container for the message text, give the element an id (again for selecing
purposes), and use the jQuery text() method to set its innerText to one of the text
strings. Using jQuery 1.4 syntax we can use the property text on the object passed as the
second argument to the element creaion jQuery method format, which automaically maps
to the text() method.

Other Popular Animaions

[212]

Next we add a class name to the outer proximity container. Remember, this class name is
used to difereniate between scriping being disabled and enabled so that we can add the
required styling. We also wrap the contents of the proximity container (the 20 images) in
our newly created scroller element, and append the message to the proximity container.

Next we set a variable which is equal to the width of the proximity container divided by
two, which gives us the horizontal middle of the element, which we'll need to use in some
calculaions to posiion the scroller element, and work out where the mouse pointer is
relaive to the proximity container.

We could just as easily have set the number that the middle variable needs to contain,
instead of calculaing it in this way. The width of the proximity container (with scriping
enabled) is set in our CSS ile and is highly arbitrary to this paricular example. If we changed
its width however, the script would break if we set the igure directly in the variable instead
of working it out programmaically. It is always best to avoid hardcoding 'magic' numbers
into scripts whenever possible.

At this point we also need to cache a reference to the scroller element now that it has
been appended to the page. We can't use the contents of the scroller variable that we
created at the start of the script, so we overwrite it with a fresh reference to the element by
selecing it from the page again.

We now need to set the width of the scroller element so that it is wide enough to
accommodate all of the images in a single row. To do this we pass a funcion to jQuery's
width() method which returns the width to set.

The funcion calculates this igure by iteraing over each image and adding both its width
and horizontal margin to the total variable. This means that an indeterminate number of
images can be used without changing the script, and that images with diferent widths and
spacing can be used.

Once we've set the width of the scroller element, we then need to posiion it so that the
center of the scroller is at the center of the proximity container. This is so that when the page
loads, the visitor can move it to the let or right depending on where they move their pointer
or which arrow key is pressed.

If we load the page in a browser at this point, we should ind that the appearance of the
elements on the page has changed:

Chapter 8

[213]

In the previous screenshot, we can see that the proximity container is resized and the
scroller element is centered within it. We can also see the default message at the botom
of the proximity container.

Time for action – animating the scroller
The next secion of code deals with actually animaing the scroller element based on where
the mouse pointer is relaive to the outer proximity container:

function goAnim(e) {

 var offset = prox.offset(),

 resetOffset = e.pageX - offset.left - middle,

 normalizedDuration = (resetOffset > 0) ? resetOffset :
 -resetOffset,

 duration = (middle - normalizedDuration) * 50;

 scroller.stop().animate({

 left: (resetOffset < 0) ? 0 : "-" + (parseInt(scroller.width())
 - parseInt(prox.width()))

 }, duration, "linear");

 }

Other Popular Animaions

[214]

What just happened?
Within the goAnim() funcion, we irst get the offset of the proximity container so that
we know its posiion relaive to the document. We then work out where the mouse pointer
is relaive to the middle of the proximity container. This means that numerically, the pointer
ofset will be 0 when it is in the center.

If the mouse pointer is in the let half of the proximity container, the number in the
resetOffset variable will be negaive. This would cause our calculaions later in the
funcion to be incorrect, so we need to check whether the resetOffset variable is greater
than 0, and if it isn't we invert the number using its minus value.

Ulimately, what we want to happen is for the speed of the scroller to increase as the pointer
moves towards either end of the proximity container, and slow down as it moves into the
center. In other words, the speed of the animaion needs to be inversely proporionate to
the distance of the pointer from the middle of the proximity container.

The problem that we have at this point is that the igure represening the distance of the
pointer from the middle of the proximity container gets larger as it moves towards the edge,
so the animaion would slow down instead of speeding up if we were to use this igure as
the duraion of the animaion.

To invert the value stored in the normalizedDuration variable, we subtract it from the
value represening the middle of the proximity container, and then muliply the resuling
igure by 50. The duraion argument is in milliseconds, so if we don't use a muliplier (50 was
arrived at by trial and error) to increase our value, the animaions will occur too quickly.

We can now iniiate the animaion. We use the JavaScript ternary statement to test whether
the resetOffset igure is less than 0 and if it is, we know that to get the scroller to slide to
the right we just need to set the left style property of the scroller element to 0.

If the variable is greater than 0, we have to move the scroller element negaively (to the let)
in order to show the images hidden at the right. To align the right edge of the scroller <div>
to the right edge of the proximity container, we set the end point of the animaion to the
width of the scroller <div> minus the width of the proximity container.

Time for action – adding the mouse events
Now we need to add the mouse events that will trigger the animaions:

prox.mouseenter(function(e) {

 message.text(pointerText).delay(1000).fadeOut("slow");

 goAnim(e);

Chapter 8

[215]

 prox.mousemove(function(ev) {

 goAnim(ev);

 });

});

prox.mouseleave(function() {

 scroller.stop();

 prox.unbind("mousemove");

});

What just happened?
First we set a mouseeenter event handler so that we can detect when the pointer iniially
enters the proximity container. When this occurs we change the message text so that it
shows what to do with the mouse pointer and then fade out the message slowly ater a
delay of one second.

We then call our goAnim() funcion to start the animaion. At this point, we set a
mousemove event so that we can increase or decrease the speed of the animaion as the
pointer moves within the proximity container. Each ime the pointer moves, we call the
goAnim() funcion once more. Each ime this funcion is called we pass in the event object.

We also set a mouseleave event handler on the proximity container so that we can detect
when the pointer leaves this element altogether. When this occurs we stop the currently
running animaion and unbind the mousemove event handler.

At this point we should have a fully working proximity slider. Earlier we discussed how the
proximity efect is only useful to mouse users, so let's add a keyboard event handler to our
script that will let keyboard users navigate the scroller as well.

Time for action – adding keyboard events
The following code enables keyboard driven animaions:

$(document).keydown(function(e) {

 if (e.keyCode === 37 || e.keyCode === 39) {

 message.fadeOut("slow");

 if (!scroller.is(":animated")) {

 scroller.stop().animate({

 left: (e.keyCode === 37) ? 0 : -(scroller.width() -

Other Popular Animaions

[216]

 prox.width())

 }, 6000, "linear");

 }

 }

}).keyup(function() {

 scroller.stop();

});

What just happened?
We atach the keydown event handler to the document object so that the visitor doesn't
have to focus the proximity container somehow. Within the anonymous funcion, we irst
check whether the let or right arrow keys were pressed.

The key code 37 refers to the let arrow key and the code 39 refers to the right arrow key.
The keyCode property, normalized by jQuery so that it is accessible to all browsers, will
contain the code for whichever key was pressed, but we only want to react to either of the
speciied keys being pressed.

When either of these keys are pressed, we irst fade out the message and then check that
the scroller is not already being animated using jQuery's is() method in conjuncion with
the :animated ilter.

As long as the scroller element is not already being animated (denoted by the ! at the start
of the condiion), we then animate it. We check the keyCode once again with a ternary so
that we can move the scroller in the correct direcion depending on which key is pressed.

Finally we add a keyup event handler that stops the scroller animaion once the key is
released. This improves the interacivity of animaion as it allows the visitor to intuiively
stop the scroller whenever they wish.

Have a go hero – extending proximity animations
The obvious way to extend our example would be to trigger animaions on the verical axis
as well. We could have a grid of images instead of a single row and animate the grid up and
down as well as let and right.

One thing to do to extend the example would be to add addiional keyboard funcionality.
Check for addiional keys such as the home and end keys for example, which could navigate
to the start or end of the scroller element accordingly.

Chapter 8

[217]

Pop quiz – implementing proximity animations
1. We provided addiional funcionality by adding keyboard navigability in the previous

example, why?

a. For fun

b. To look good

c. To provide an alternate way for the content to be explored by
non-mouse users

d. Keyboard events must be bound whenever mouse events are used

2. Why should we avoid hardcoding 'magic' numbers into our scripts?

a. To make our code more readable

b. So that our scripts are less reliant on the content that they act upon

c. hardcoded integers take longer to process

d. Because jQuery prefers working with strings

Animated page headers
Another quite fashionable technique at the moment is to have an animaion that runs in the
header of the page when the home page loads. Someimes the animaions run coninually
on every page of the site; others run once on the home page only.

This technique is an easy and efecive way to make your site stand out, and they needn't be
complex or heavily apparent animaions; a short, subtle animaion can be enough to add the
wow factor.

Earlier in the book we looked at using the new cssHooks funcionality in conjuncion with a
pre-writen ile that makes use of cssHooks, which extends jQuery's css() method to allow
an element's background-position style property to be animated. In this example, we'll
look at how we can do this manually without the use of the plugin.

Well-writen plugins can be an efecive and easy soluion, but there are imes when a plugin
adds much more funcionality than we actually need and therefore increase a page's script
overhead. It's not oten that reinvening the wheel is necessary or advised, but there can be
imes when it's beneicial to write a custom script that does only what we require.

Other Popular Animaions

[218]

Time for action – creating an animated header
The underlying page for this example will be relaively straight-forward, with just a
<header> element whose background-position we'll animate manually:

1.	 The header of the example page will consist of just an empty <header> element:

<header>

</header>

2.	 Save this as animated-header.html. The CSS is even simpler, with just a single
selector and a few rules:

header {

 display:block; width:960px; height:200px; margin:auto;

 background:url(../img/header.jpg) repeat 0 0;

}

3.	 Save this as animated-header.css. We'll need to link to the ile from the <head>
of the page we just created.

4.	 The script itself is also surprisingly simple. Add the following code to the funcion at
the end of the <body>:

var header = $("header");

header.css("backgroundPosition", "0 0");

var bgscroll = function() {

 var current = parseInt(header.css("
 backgroundPosition").split(" ")[1]),

 newBgPos = "0 " + (current - 1) + "px";

 header.css("backgroundPosition", newBgPos);

};

setInterval(function() { bgscroll() }, 75);

5.	 When we run the ile in a browser, we should ind that the background image used
for the <header> slowly scrolls.

Chapter 8

[219]

What just happened?
In the script we cache the header selector outside of our main funcion for eiciency, so
that we aren't creaing a new jQuery object every ime the funcion is executed. Even though
the header is cached in a variable outside of the funcion, the variable is sill accessible by
the funcion.

Within the funcion we irst get the current verical background-position of the header
element, extracing just the part of the returned string we require using the JavaScript
split() funcion. We also use parseInt to convert the string into an integer.

We then decrement the integer by one. This means that the background image will scroll
up. This is not important. There's no reason why the image couldn't scroll down, I just
happen to prefer moion in the upwards direcion for some reason. Finally we set the new
background-position using jQuery's css() method.

Ater the funcion deiniion, we use the JavaScript setInterval() method to repeatedly
call the funcion every 75 milliseconds. This is relaively quick, but is quite smooth—much
higher than this and the animaion begins to get a bit jerky. There's no reason however that
diferent background images might not need to run as quickly.

Have a go hero – extending the animated header
As the example is so small, there is a lot that could be done to build on it. Depending on the
background image in use, it could be extended to move along the horizontal axis instead, or
even both, perhaps moving diagonally in a north-westerly direcion.

Marquee text
The use of the <marquee> element died out many years ago, but a similar efect, created
with JavaScript is resurfacing in recent years thanks to its use on high-proile sites such as
the typed headlines on the BBC News site, and the animated trending topics on the twiter
home page.

This is an efecive and atracive way to present potenially relevant content to the visitor
without taking up too much content space. It won't suit all sites of course, but used
sparingly, and in as non-intrusive a way as possible, it can be a great efect.

Other Popular Animaions

[220]

Time for action – creating and styling the underlying page
In this example, we can see how easy it is to grab a series of text strings and display them
in a smoothly scrolling marquee style. We'll use jQuery's built-in AJAX capabiliies to grab a
JSON ile of the latest posts on my blog. Let's get started.

1.	 Add the following markup to the <body> of the template ile:

<div id="outer">

 <header>

 <hgroup>

 <h1>Site Title</h1>

 <h2>Site Description</h2>

 </hgroup>

 <nav>Main site navigation along here</nav>

 </header>

 <article>

 <h1>A Blog Post Title</h1>

 <p>The post copy</p>

 </article>

 <aside>

 <div>

 <h2>Ads</h2>

 <p>Probably a bunch of ads here that take up a reasonable
 section of this aside vertically</p>

 </div>

 <div>

 <h2>Popular Posts</h2>

 <p>Some links here to other posts, which may or may not
 be related to the current post, but are deemed popular
 based on the number of comments</p>

 </div>

 <div>

 <h2>Related Posts</h2>

 <p>Some links here to other posts that are definitely
 related to this post, based on post tags</p>

 </div>

 <div>

 <h2>Twitter Feed</h2>

 <p>Maybe a twitter feed here that displays recent tweets
 or something. Aside could be quite long by now</p>

 </div>

 </aside>

</div>

Chapter 8

[221]

2.	 Save the new page as marquee.html.

3.	 We can also add some basic CSS at this point to layout the example in an acceptable,
generic manner. In a new ile in your text editor, add the following code:

#outer {

 width:960px; margin:auto; color:#3c3c3c;

 font:normal 17px "Palatino Linotype", "Book Antiqua",
 Palatino, serif;

}

header {

 display:block; padding:0 20px 0; margin-bottom:40px;

 border:3px solid #d3d1d1; background-color:#e5e5e5;

}

hgroup { float:left; }

h1, h2 { margin-bottom:10px; }

nav {

 display:block; width:100%; height:40px; clear:both;

 text-align:right;

}

article {

 width:700px; height:900px; border:3px solid #d3d1d1;

 background-color:#e5e5e5; float:left;

}

article h1, article p { margin:20px; }

p , nav{

 font:normal 17px "Nimbus Sans L", "Helvetica Neue",
 "Franklin Gothic Medium", Sans-serif;

}

p { margin-top:0; }

aside {

 width:220px; height:900px; border:3px solid #d3d1d1;

 background-color:#e5e5e5; float:right;

}

aside div { padding:0 20px 20px; }

4.	 Save this ile as marquee.css in the css directory. Link to this stylesheet from the
<head> of the page we just created.

Other Popular Animaions

[222]

What just happened?
The underlying HTML represents a typical blog. We've added a series of elements for two
reasons, primarily so that we have somewhere to insert the marquee, but also so that we
can see why this approach can be necessary.

Having the latest posts scrolling across the page near the top of the site ensures that this
content is seen straight away, and the fact that it's animated also helps to draw the visitor's
atenion to it.

The CSS used so far is purely to layout the example elements in a precise and mildly aestheic
way, giving us a generic layout and a light skinning. We'll add some more CSS a litle later in
the example for our dynamically created marquee. At this point, the page should appear
like this:

Remember, all of the elements in the previous screenshot are there for the marquee to be
inserted between. They are not speciically required, and are there for this example.

Time for action – retrieving and processing the post list
Now we're ready to retrieve the list of latest posts and process them, making them ready to
be displayed as items in the marquee. In order to access this data across the Internet from
another domain, we need to use JSONP, which stands for JSON with Padding, and involves
dynamically creaing and injecing a <script> element to the page, although jQuery
actually handles this aspect of it for us.

Chapter 8

[223]

1.	 jQuery provides naive support for JSONP and allows us to bypass the same-origin
security policy of the browser. In order to output JSON in the correct format, I'm
using the JSON API plugin on a WordPress-powered blog, which outputs JSON in the
following format:

{

 "status": "ok",

 "count": 1,

 "count_total": 1,

 "pages": 1,

 "posts": [

 {

 "id": 1,

 etc...

 },

 {

 "id": 2,

 Etc...

 }

]

}

2.	 There are more properies in the posts array shown in the previous code block, as
well as other arrays and properies in the outer object, but the previous snippet
should give you an idea of the structure of the data we'll be working with.

3.	 Add the following code to the botom of the HTML page:

$.getJSON("http://danwellman.co.uk?json=1&count=10&callback=?",
function(data) {

 var marquee = $("<div></div>", {

 id: "marquee"

 }),

 h2 = $("<h2></h2>", {

 text: "Recent Posts:"

 }),

 fadeLeft = $("<div></div>", {

 id: "fadeLeft"

 }),

 fadeRight = $("<div></div>", {

 id: "fadeRight"

 });

 for(var x = 0, y = data.count; x < y; x++) {

Other Popular Animaions

[224]

 $("<a>", {

 href: data.posts[x].url,

 title: data.posts[x].title,

 html: data.posts[x].title

 }).appendTo(marquee);

 }

 marquee.wrapInner("<div></div>").prepend(h2).append(fadeLeft)
 .append(fadeRight).insertAfter("header").slideDown("slow");

 $("#marquee").find("div").eq(0).width(function() {

 var width = 0;

 $(this).children().each(function() {

 var el = $(this);

 width += el.width() + parseInt(el.css("marginRight"));

 });

 return width;

 });

 marquee.trigger("marquee-ready");

});

4.	 We can also add some more CSS, this ime for the newly-created elements. Add the
following code to the botom of marquee.css:

#marquee {

 display:none; height:58px; margin:-20px 0 20px;

 border:3px solid #d3d1d1; position:relative;

 overflow:hidden;

 background-color:#e5e5e5;

}

#marquee h2 { margin:0; position:absolute; top:10px; left:20px; }

#marquee a {

 display:block; margin-right:20px; float:left;

 font:normal 15px "Nimbus Sans L", "Helvetica Neue",
 "Franklin Gothic Medium", Sans-serif;

}

#marquee div { margin:20px 0 0 210px; overflow:hidden; }

#marquee div:after {

 content:""; display:block; height:0; visibility:hidden;

Chapter 8

[225]

 clear:both;

}

div#fadeLeft, div#fadeRight {

 width:48px; height:21px; margin:0; position:absolute;

 top:17px;

 left:210px; background:url(../img/fadeLeft.png) no-repeat;

}

div#fadeRight {

 left:906px; background:url(../img/fadeRight.png) no-repeat;

}

5.	 When we run the page now, we should see that the new marquee element, along
with its links, is inserted into the page:

The previous screenshot shows the elements in the new marquee secion including the
heading, the links themselves, and the fade elements which are added purely for aestheics.

What just happened?
All of our JavaScript is wrapped up in jQuery's getJSON() method, which uses jQuery's AJAX
funcionality to make a request to the URL speciied as the irst argument to the method. The
second argument is an anonymous funcion that is executed if the request is successful. The
returned JSON data is passed to this funcion automaically.

Other Popular Animaions

[226]

Within the funcion we irst create some of the elements that make up our marquee
including the outer container, the heading and two purely aestheic <div> elements used
to add the let and right fade efect at the start and end of the row of links. All of these
elements are stored in variables so that we can access them easily when required.

Next we process the JSON object passed into the funcion. Remember, this object contains
a series of properies where the values of some of these properies are arrays, such as the
posts array, which contains each of the returned posts as objects within each of its
array items.

We use a for loop to iterate over each object in the posts array that is returned with the
JSON object. This object contains a property called count, where the number of posts that
are returned is stored as an integer, so we can use this to tell the for loop how many imes
to execute, which is marginally easier than couning the objects in the posts array.

For each post that has been returned, we create a new <a> element, seing its href to
point to the url property of the current object, and the title and text of the element set
to the title property of the current object, and then append the new <a> to the marquee
element that we created a minute ago.

Once we've created and appended a link for each post, we then wrap the contents of the
marquee element (the links) in a new <div>, prepend the <h2> to the start of the marquee,
and append the <div> elements for the fades to the end of the marquee element. We then
append the marquee to the page before sliding it into view with the slideDown() method.

At this point we need to set a width on the container <div> that we wrapped the links in
a moment ago. This is so that the links can all line up in a single row. We need to take into
account the width of each link, plus any margin it has (which we set in the CSS).

We use a funcion as the value of jQuery's width() method to iterate over each link and
add its width and margin to a running total. We can't do this unil the marquee has been
appended to the page because it is not unil this point that each element actually has a
width or margin that we can retrieve.

The last thing we do in the callback funcion for our getSJON() method is ire of a custom
event with the trigger() jQuery method. The custom event is called marquee-ready
and is used to tell our script when the marquee has been added to the page. We'll use this
custom event shortly to animate the post links.

We also added some new CSS to our stylesheet. Some of this code is to give our marquee
elements the same light skin as the rest of the page. But other parts of it, such as loaing the
links, and seing the marquee's overflow property to hidden is so that the links line up in
a single row, and so that the majority of the links are hidden, ready to be scrolled into view.
We also add the fade images to the last two <div> elements inside the marquee element.

Chapter 8

[227]

Time for action – animating the post links
We're now ready to begin scrolling the post links within the marquee. We can do this using
our custom event.

1.	 Ater the getJSON() method, add the following code to the page:

$("body").delegate("#marquee", "marquee-ready", function() {

 var marquee = $(this),

 postLink = marquee.find("a").eq(0);

 width = postLink.width() +
 parseInt(postLink.css("marginRight")),

 time = 15 * width;

 postLink.animate({

 marginLeft: "-=" + width

 }, time, "linear", function() {

 $(this).css({

 marginLeft: 0

 }).appendTo(marquee.find("div").eq(0));

 marquee.trigger("marquee-ready");

 });

});

2.	 Our example is now complete. When we run the page at this point, the posts should
begin scrolling from let to right.

What just happened?
We use the jQuery delegate() method to bind an event handler to our custom
marquee-ready event. We need to use event delegaion to achieve this because when
this part of the code is executed, the JSON response is unlikely to have returned so the
marquee element won't even exist. Ataching the event handler to the body of the page
is an easy way to prepare the page for when the marquee element does exist.

Within the anonymous event-handling funcion, we irst cache a reference to the marquee
element using the this object, which is scoped to our marquee element. We then select
the irst link in the marquee, and determine its total width including margin.

We also work out what is efecively the speed of the animaion. jQuery animaions use a
duraion to determine how quickly an animaion should run, but the problem this causes
us is that posts with longer itles will move faster, because they have a greater distance to
animate in the same amount of ime.

Other Popular Animaions

[228]

To ix this, we work out a duraion to pass to the animaion method based on an arbitrary
"speed" of 15 muliplied by the width of the current <a>. This ensures that each post will
scroll at the same speed regardless of how long it is.

Once we have obtained the total width and duration, we can then run the animaion
on the irst link in the marquee, using our width and time variables to conigure the
animaion. We animate the post link by seing a negaive margin of the irst link, which
drags all of the other links along with it.

Once the animaion is complete, we remove the margin-left from the link, re-append it
to the end of the <div> within the marquee element, and ire the marquee-ready event
once more to repeat the process. This occurs repeatedly, creaing the ongoing animaion and
bringing us to the end of this example.

Have a go hero – extending the marquee scroller
One feature that would certainly be beneicial to your users would be if the post itles
stopped being animated when the mouse pointer hovered over them. The animaion
could then be restarted when the pointer moves of them again. Have a go at adding this
funcionality yourself. It shouldn't be too tricky at all and should involve adding mouseenter
and mouseleave event handlers.

You'll need to work out how much of any given link is already outside of the visible area of
the marquee in order to ensure the animaion restarts at the same speed that it stopped
at, but this should be quite similar to how we worked out the duraion in this version of the
example. See how you get on.

Pop Quiz – creating a marquee scroller
1. Why did we create a dynamic-duraion variable (time) instead of using one of

jQuery's predeined duraions?

a. Because its quicker using an integer, even if that integer has to be calculated,
than using one of the duraion strings

b. Because it's more fun

c. To make sure the links are appended to the correct element ater being
animated

d. To ensure that the links all animate at the same speed regardless of how long
they are

Chapter 8

[229]

2. In this example we used the delegate() method, why?

a. Because the delegate() method executes faster than the bind() or
live() methods

b. Because the delegate() method must be used when binding to custom
events

c. Because the element we need to bind to doesn't exist when the handler for
it is added, and therefore the delegate() or live() methods are our only
opions, with delegate() being the more eicient

d. Because we don't need to use the event object

Summary
In this chapter, the second of our heavily example-based as opposed to theory-based
chapters, we looked at some more common animaions that are increasingly found on the
Web. Speciically we looked at the following types of animaions:

 � A proximity driven image scroller where the images scrolled in a certain direcion,
and at a certain speed, depending on the movements of the mouse pointer

 � Background-posiion animaions, in which we created a coninuous header
animaion manually with just a few lines of code

 � A text marquee, where a series of headlines were grabbed from a live Internet feed
and displayed in a scrolling marquee-style banner

In the next chapter, we'll move to look at some of the new pure CSS animaions that have
been introduced with CSS3, and how jQuery can be used to enhance them and generally
make working with them easier.

9
CSS3 Animations

CSS3 brings many impressive new styles to the web-development arena, and
even though the speciicaion is far from complete, many aspects of it are being
used in the latest browsers. Pure-CSS animaion may even make it into the
speciicaion at some point, and although at the ime of wriing few browsers
support this, with a litle help from jQuery we can create our own CSS3
animaions that work with varying degrees of success, across most
common browsers.

In this chapter, we'll be covering the following topics:

 � The diferent CSS3 transforms available

 � Animaing an element's rotaion

 � Using the CSS3 transforms matrix

 � Animaing an element's skew with jQuery

For further informaion on CSS3 2D transforms, see the W3C Working Drat
speciicaion at http://www.w3.org/TR/css3-2d-transforms/.

CSS3 2D transforms
CSS3 deines a style property called transform which allows us to transform targeted
elements in a two-dimensional space along x and y axes. A range of transform funcions can
be supplied as the value of the transform property, which dictates how the transformaion
should be applied.

CSS3 Animaions

[232]

The following transform funcions are deined:

Funcion Example usage Descripion of the transform

matrix matrix(a, b, c, d, e, f) Rotates, scales, skews, or translates the element
according to the combinaion of supplied
parameters.

rotate rotate(x) Rotates the element the speciied number of
degrees around the transform-origin. By default,
the origin should be the center of the element.

scale scale(x, y) Scales the element the speciied number of units
along the x and y axes. If y is not supplied, it is
assumed to be the same as x.

scaleX scale(x) Scales the element the speciied number of units
along the x axis.

scaleY scale(y) Scales the element the speciied number of units
along the y axis.

skew skew(x, y) Skews the element the speciied number of
degrees along the x and y axes. If y is not supplied
it is assumed to be 0.

skewX skew(x) Skews the element the speciied number of
degrees along the x axis.

skewY skew(y) Skews the element the speciied number of
degrees along the y axis.

translate translate(x, y) Reposiions the element the speciied number of
pixels along the x and y axes. If y is not provided it
is assumed to be 0.

translateX translate(x) Reposiions the element the speciied number of
pixels along the x axis.

translateY translate(y) Reposiions the element the speciied number of
pixels along the y axis.

Understanding the matrix
All of the individual transform funcions (rotate(), skew(), among others) can be thought
of as shortcuts for speciic matrix transforms. Indeed, most browsers will apply a matrix
behind-the-scenes even when a transform funcion is provided.

The matrix takes six parameters, and each of the above transforms can be performed by
providing diferent combinaions of values for these parameters. Someimes we can apply
several transforms simultaneously by using the matrix. Let's look at some quick examples
to illustrate how the matrix can be used.

Chapter 9

[233]

Translate
Translaing an element causes it to move from its original locaion. Posiive values translate
to the right or down the page (depending on the axis), and negaive values move it to the
let or up the page. For example, an element could be moved 100 pixels right along the x axis
and 100 pixels down along the y axis using the following transformaion matrix:

transform: matrix(1, 0, 0, 1, 100px, 100px);

This matrix funcion, equivalent to using the transform funcion: translate(100px,
100px), would cause the targeted element to appear like this:

As we can see in the previous screenshot, the element has moved from its original locaion
even though it has not been posiioned, which we can see is the case in Firebug.

The ith parameter of the matrix in this example corresponds to the x axis, and the sixth
parameter to the y axis. Don't worry too much about the irst four parameters as we will
cover these in more detail shortly.

CSS3 Animaions

[234]

Units

It is of criical importance to note that some browsers, such as Firefox, expect
these values with the units speciied (as in the previous picture), while other
browsers, such as Opera, or those based on the Webkit rendering engine, will
expect these values without units.

An element does not need to be posiioned in order for it to be translated, and the transform
does not afect the low of the document, or other elements around it. Adjacent elements
will posiion themselves according to an element's original locaion, not its new locaion
following a translaion. The translated element's content is also translated along with it.

Scale
You may be wondering why we supplied the value 1 as the irst and fourth parameters in our
irst matrix code snippet, but 0 as the value of the second and third parameters instead of
supplying all zeros.

The reason for this is because these parameters (the irst and fourth) correspond to the
scale transform funcion, so to retain the transformed element's original size, the scale
parameters are set to 1. To double the size of an element (without translaing its posiion),
we could use the following transformaion matrix:

transform: matrix(2, 0, 0, 2, 0, 0);

This snippet would be equivalent to using transform: scale(2, 2) and would cause the
targeted element to appear like this:

Chapter 9

[235]

In the previous screenshot we can see that the element is now twice its original size.

The previous code symmetrically scales the target element along both the x and y axes.
These values are unit-less in all supporing browsers, and the value 0 cannot be speciied.
Integers or loaing-point numbers may be provided, and the scaling may be asymmetrical
if necessary.

An interesing efect of scaling is that providing negaive values cause the element to be
reversed, and not shrunk, as we may intuiively surmise. So if we were to provide -2 and -2
as the irst and fourth values in the previous code-snippet, the element would be relected
both verically and horizontally, as well as being made twice its original size. We can even
supply a combinaion of posiive and negaive values for this type of transformaion.

A relected element would appear like this:

The element is reversed along both its x and y axes, as if it were being viewed upside
down in a mirror. This could be hugely useful if, for example, we were implemening
pure-CSS relecions.

CSS3 Animaions

[236]

Skew
Remember the two zero values that correspond to parameters 2 and 3? These can be used
as skew values, with the x axis using the second parameter, and the y axis using the third.
We could skew an element (without modifying its scale or posiion) using the following
matrix transform funcion:

transform: matrix(1, 1, 0, 1, 0, 0);

The following screenshot shows a skewed element:

The previous screenshot shows an element skewed along the x axis. As with other matrix
funcions, posiive values for these parameters cause transformaion along the right or
downwards direcion, negaive values along the let or up direcions.

In the previous snippet, only the x axis has been skewed. A consequence of the skew is that
the element has grown in size. The bounding box of the transformed element has doubled
in size from 200 px (the original size of the element) to 400 px.

Regardless of this increase in size however, the low of the document remains unafected
by the transform, and just like the other transforms, any content within the transformed
element also becomes transformed.

Text appearance

Transforms have a varying impact on any text contained in the element
across diferent browsers, with the text remaining crisp and readable in
some browsers following a transform, and degrading in other browsers.

Chapter 9

[237]

Rotation
To rotate an element using the matrix, we need to use the trigonometric funcions sine
and cosine to calculate the values of the irst four parameters. Parameters 1 and 4 take
cosine funcions of the angle of rotaion, while parameters 2 and 3 are sine and minus-sine
funcions of the rotaion respecively.

Sine and cosine funcions are relaively advanced mathemaical constructs
used to express the diferent relaionships between the sides of triangles and
the angles of triangles.

While an understanding of their exact nature is not essenial to use them
(JavaScript has built-in funcions that will calculate them automaically), a
deeper understanding of their nature and use will only help when working
speciically with rotaion.

For a basic introducion, see the Trigonometric Funcions Wikipedia aricle at:
http://en.wikipedia.org/wiki/Trigonometric_functions.

To rotate an element by, for example, 37 degrees we would use the following transform:

transform: matrix(0.7986355, 0.6018150, -0.6018150, 0.7986355, 0, 0);

Our rotated element should appear like this:

As we can see, the edges of the rotated element appear outside of the viewport. Care should
be taken to correctly posiion elements that are to be rotated so as to ensure that there is
adequate space to display the element in its enirety if necessary.

CSS3 Animaions

[238]

Calculaing the sine and cosine funcions of the angle of rotaion can easily be done using
a scieniic calculator, or of course, JavaScript itself programmaically.

Working with transforms
Using the short-cut transform funcions such as rotate(), or skew() is easier and more
convenient than using the matrix. However, this ease of use comes at a price—we're limited
to only using one of them at a ime on a single element. If we were to try and use more than
one of them in a CSS statement, only the last one deined would be applied.

If we need to apply several diferent transforms to an element, we can use the matrix
funcion, depending on which transformaions we need to apply. For example, we can
skew an element, while also translaing and scaling it using something like the following:

transform: matrix(2, -1, 0, 2, 300px, 0);

In this example, the element would be skewed along the x axis, doubled in size and moved
300 px to the right. We couldn't rotate the targeted element in the previous code-snippet at
the same ime as doing these things.

Even if we supply two matrix funcions, one for the skew, scale and translate, and a second
for the rotaion, only the rotaion would be applied. We can however rotate and translate,
or rotate and scale an element simultaneously using a single matrix funcion.

jQuery and transforms
We can use jQuery's css() method in seter mode to set CSS3 transforms on selected
elements, and we can use it in geter mode to retrieve any transform funcions set on an
element. We just need to ensure that we use the correct vendor preix, such as –moz-
transform for Firefox, or -webkit-transform for Webkit-based browsers. Opera also
has its own vendor preix, as do newer versions of IE.

One thing to be aware of is that while we can set a speciic transform funcion, such as
rotate(), on a selected element, we can only get the value of the style property in its
matrix format. Look at the following code:

$("#get").css("-moz-transform", "rotate(30deg)");

$("#get").text($("#get").css("-moz-transform"));

This would result in the following:

Chapter 9

[239]

In the previous screenshot, we see that the rotaion we applied in the irst line of code
using the rotate() transform funcion is returned with the second line of code as a
matrix funcion.

Using the new cssHooks

The cssHooks ile that we used earlier in the book (see https://github.
com/brandonaaron/jquery-cssHooks) also has some CSS3 2D
transforms behavior included. While it is beneicial from a learning perspecive
to create these efects manually, as we do throughout the remainder of this
chapter, remember to use this ile to save yourself ime and efort in the future.

Internet Explorer transforms
Internet Explorer, versions 8 and below, do not support the CSS3 transform style property
at all. These browsers do however provide a proprietary Matrix ilter that can be used to
generate (almost) the same efects as those provided by the W3C CSS3 version.

E9 has recently been released in preview/beta format and
has added support for true CSS3 2D transforms.

CSS3 Animaions

[240]

The filter property is used in a very similar way to the CSS3 version. For example, to rotate
an element by 15 degrees, we could use the following CSS:

progid:DXImageTransform.Microsoft.Matrix(

 M11=1.4488887394336025,

 M12=-0.388228567653781,

 M21=0.388228567653781,

 M22=1.4488887394336025,

 SizingMethod='auto expand'

);

This code produces the following efect in IE8:

As you may noice in the previous screenshot, the size of the element has increased
considerably. This is due to the sizingMethod being set to auto expand. Another
thing you may noice is that two of the parameters are reversed in IE's implementaion
of the matrix (parameters b and c).

Instead of hiding some of the content outside of the viewport, IE has reposiioned the
element so that it remains enirely visible. This may or may not be beneicial depending
on the circumstances of a paricular implementaion.

Chapter 9

[241]

Seing the auto expand parameter causes the image to increase in size, which is a slight
inconvenience to say the least. However if we don't set this, the element will be clipped,
as shown in the following screenshot:

Clipping prety much destroys our simple box (and the content is sill scaled), as we can see
in the previous screenshot.

CSS3 3D transforms
All of the transform funcions we have looked at so far are two-dimensional, operaing on
just the x and y axes. Transforms that operate in three dimensions, along x, y, and z axes have
also been proposed.

3D equivalents of all of the transform funcions exist and usually just take an extra parameter
which corresponds to the vector of each dimension, and the angle. For example, a 3D
rotaion could be added using this code:

transform: rotate3d(0, 1, 0, 30deg);

As with 2D transforms, there is an all-encompassing matrix funcion that allows us to
implement any of the other transforms and allows us to combine some of them together
on a single element.

CSS3 Animaions

[242]

If, like me, you thought the 2D transform matrix, with its six parameters, was complex and
perhaps a litle hard to understand, wait ill you start using the 3D matrix, which has 16
parameters in total!

At present 3D transforms are only supported in Webkit-based browsers, so we won't be
looking at these in any further detail. But hopefully they'll be appearing in more browsers
sooner rather than later.

Animated rotation with jQuery and CSS3
In this example, we'll set up an animaion that rotates an image using the rotate()
transform funcion. Because this is supported by the majority of common browsers it's
actually really easy to implement, and can be a great efect that enhances the appearance
and behavior of the page it is used on.

Time for action – animating an element's rotation
We'll just be rotaing a simple image in this example, so this is the only visible element we
need in the <body> of the page.

1.	 Add the following to a fresh copy of the template ile:

2.	 At this point we don't even need any styles as everything we need to set can be
done in the JavaScript, which we'll add next.

3.	 In the funcion at the botom of the HTML page, add the following code:

var img = $("#colorWheel"),

 offset = img.offset(),

 origWidth = img.width(),

 origHeight = img.height(),

 rotateStrings = [

 "rotate(",

 0,

 "deg)"

],

 getVendor = function() {

 var prefix = null,

 vendorStrings = {

 pure: "transform",

Chapter 9

[243]

 moz: "-moz-transform",

 webkit: "-webkit-transform",

 op: "-o-transform"

 };

 for (props in vendorStrings) {

 if(img.css(vendorStrings[props]) === "none") {

 prefix = vendorStrings[props];

 }

 }

 if (prefix === null) {

 prefix = "filter";

 img.css({

 position: "absolute",

 filter: "progid:DXImageTransform.Microsoft.Matrix(
 sizingMethod='auto expand');"

 });

 }

 return prefix;

},

vendor = getVendor();

function doRotate() {

 rotateStrings[1]++;

 if (vendor === "filter") {

 var rad = rotateStrings[1] * (Math.PI * 2 / 360),

 cos = Math.cos(rad),

 sin = Math.sin(rad),

 driftX = (img.width() - origWidth) / 2,

 driftY = (img.height() - origHeight) / 2,

 el = img.get(0);

 img.css({

 left: offset.left - driftX,

 top: offset.top - driftY

 });

 el.filters.item("DXImageTransform.Microsoft.Matrix")
 .M11 = cos;

CSS3 Animaions

[244]

 el.filters.item("DXImageTransform.Microsoft.Matrix")
 .M12 = -sin;

 el.filters.item("DXImageTransform.Microsoft.Matrix")
 .M21 = sin;

 el.filters.item("DXImageTransform.Microsoft.Matrix")
 .M22 = cos;

 } else {

 img.css(vendor, rotateStrings.join(""));

 }

}

setInterval(function() { doRotate() }, 100);

4.	 Save the page as rotate.html. If we run the page in a browser now, we should see
the color wheel slowly spinning around its center.

What just happened?
The irst thing we do is cache a selector for the image as we'll be referring to it several imes
throughout the code. Note that this is the only jQuery object we create in the whole script,
which as we've discussed earlier in the book, is great for improving performance.

We also set some other variables at this point including the ofset of the image
(its absolute posiion on the page), its original width and height, and an array
containing diferent parts of the CSS property that we'll set, in string and integer formats.

We also set an inline funcion (getVendor()) as the value of a variable which we can use
to determine which vendor preix to use. This funcion irst also sets some variables which
will be used to store the determined vendor preix, and an object literal containing all of
the diferent preixes we want to test for. We also include the naive transform property.
Although this isn't yet supported by any browser, one day it may be, so this helps future-
proof our code.

The funcion iterates over each property in the object literal using a for in loop. Within
the loop, we try to read the value of the transform property using each vendor preix. An
interesing fact is that each browser will report none as the value of the preix it supports,
and a falsey value such as false, null, or undefined for the preixes it doesn't support.
We can use this to reliably determine which browser is in use and therefore which vendor
preix we need to use. The correct vendor preix for whichever browser is in use is then
saved to the vendor variable ready to be returned.

Chapter 9

[245]

If none of these tests idenify a vendor preix, then it's likely that the browser in use is a
version of Internet Explorer. Internet Explorer versions 8 and below do not currently have a
vendor preix (although IE9 does feature one) and do not support the rotate funcion at all.
It does support rotaion via its proprietary filter property however.

If the vendor variable is sill set to null at this point, we set the variable to filter. In order
to programmaically work with the value of the filter property in IE, the filter must
already be applied to the element, so we also set a ilter on the element in this part of the
code using jQuery's css() method ready for us to manipulate later in the code. We also set
the sizing mode to auto expand in order to prevent the element from being clipped when
the rotate is applied.

At the end of the funcion the prefix variable is returned containing a string of the vendor
preix for the browser currently in use. Directly ater the funcion we set a variable called
vendor which will contain the value returned by the funcion for easy reference.

Next we deine a regular funcion doRotate() which will be used to perform the actual
rotaion. The irst thing we do in this funcion is increment the second property of our
rotateStrings array by one.

We then check whether the vendor variable equals filter. If it does, we know that the
browser in use is IE and can proceed to determine the values that the proprietary filter
will need. IE allows rotaion to be implemented in two diferent ways. We could use the
BasicImage filter property to rotate the image, although that only allows us to set one
of four rotaion values: 0, 1, 2 or 3, which correspond to 0, 90, 180, or 270 degrees. This is
simply not lexible enough for our needs in this example.

So instead we use the Matrix ilter, which gives us much more control over the degree of
rotaion. This is very similar to the CSS3 matrix transform, with six parameter values that are
combined to generate the diferent transforms (a rotaion in this case).

The parameters that we use in this example are M11, M12, M21, and M22 which map roughly
to the irst four values in the CSS3 version, with the excepion that values two and three are
reversed in Microsot's version.

The values of each of these properies must be computed using the JavaScript trigonometry
Math.cos and Math.sin funcions. We set some variables to calculate these values. The
irst, rad, converts the number of degrees of rotaion into radians as these are the units
required by the Matrix ilter. The radians are calculated by muliplying the current degree
of rotaion (as stored in the second item in our rotateStrings array) by PI imes 2 divided
by 360.

CSS3 Animaions

[246]

An unfortunate problem that occurs in IE when rotaing elements is that the rotated element
drits around the page as it is being rotated. This is caused by the size of the elements
bounding box increasing as the element rotates. The rotaion does occur around the center
of the element, but because IE thinks the element has grown, the center of the rotated
element is shited on each rotaion.

The drifX and driftY variables that we set allow us to determine how far the element
has shited so that we can correct it. The shit is worked out by comparing the original width
and height of the element prior to it being rotated, with the new width and height
following the rotaion.

We also store the raw img element from the jQuery object using jQuery's get() method
with an argument of 0 which returns the actual DOM node instead of a jQuery object. The
filter must be applied to a proper DOM element.

Once we've set our variables, we then correct the drit caused by the previous rotaion
using jQuery's css() method, and then insert our computed trigonometry values into
the Matrix ilter.

Finally, if the vendor variable equals anything other than filter we can simply set
the relevant vendor preix to the items in our rotateStrings array. We do this by
calling JavaScript's join() method on the array. This is much more eicient than using
concatenaion to create the string needed for the CSS property, and as this funcion will be
executed repeatedly we really need to make sure it is as eicient as possible.

The last thing we do in our code is start the rotaion animaion of by seing an interval that
calls our doRotate() funcion every 100 milliseconds. We use an anonymous funcion as
the irst argument of the setInterval() funcion which avoids requiring that we atach
the funcion to be executed be saved to the window object.

Problems with IE
Aside from the fact that IE makes us work twice as hard as any other browser to set the
element's rotaion, it also presents us with another problem: it totally destroys the alpha
layer of the PNG we are rotaing. Suddenly our nice ani-aliased circle-edge becomes jagged
and unsightly (view this example in IE to see the issue).

The animaion is also slightly jerky in IE, and both this and the inability to use PNGs with
alpha-layers in them could easily be a show-stopper for IE. If this was the case, we could
easily disable the animaion in IE by simply doing nothing when the filter property is
returned by our getVendor() funcion. There are some things we could do however, to
negate the problems in IE.

Chapter 9

[247]

For example, we could simply use a PNG with no transparency, which would preserve the
circle's border in IE (in this example). Or, we could lay another image over the top of the
image we are rotaing to hide the jagged edges.

Pop quiz – implementing CSS3 rotation
1. In this example we used an array in conjuncion with the JavaScript join() method

to create the string. Why?

a. Because it's more fun

b. Because it makes our code look beter

c. Because performance-wise, it's much faster than string concatenaion

d. Because otherwise the element won't rotate correctly

2. To make the animaion run correctly in Internet Explorer we had to constantly adjust
the top and left style properies of the rotated element in order to maintain its
posiion. Why does the drit in IE occur?

a. Because the size of the rotated element's bounding box is changed
throughout the animaion. As the rotated element is centered within its
bounding box, its posiion changes as the box increases and decreases in size

b. Because the alpha layer of the PNG was removed

c. Because the Matrix filter property was used

d. Because of a bug in IE's implementaion of the CSS3 rotate property

Have a go hero – extending CSS3 rotation
The rotaion efect can be used in many places, whether animated or not, but when
animated as in this example, it makes a very good background as part of a larger composiion
of elements. Used as the background of a semi-transparent logo for example, creates a
stunning efect.

Have a go at incorporaing the efect into a page and using it as the background of another
image. You'll also see irst-hand how much this can improve the appearance of the efect
in IE.

Animated skewing
Just like with the rotate() funcion, we can animate a skew() transform for creaing
atracive special efects. In this example, we'll use the matrix() funcion for all browsers,
not just IE, in order to apply several transforms to an element at once.

CSS3 Animaions

[248]

The context of this example will be a cover-low style widget that displays images one ater
the other by animaing the images' skew. The user will be able to cycle back and forth
through the images using links:

The previous screenshot shows how the inished widget will appear.

Time for action – creating the underlying markup
and basic styling

First we'll look at the HTML that we'll be using in the example and then we'll look at the
iniial styling added to the elements prior to being skewed.

1.	 Add the following code to the <body> of the template ile:

<div id="viewer">

 <div id="flow">

Chapter 9

[249]

 </div>

 <li id="left">Left

 <li id="right">Right

</div>

2.	 Save the page as skew.html. Next in a new ile add the following code:

#viewer {

 width:700px; height:220px; padding:100px 0 30px; margin:auto;

 border:1px solid #000; position:relative;

}

#flow:after {

 content:""; display:block; height:0; clear:both;

 visibility:hidden;

}

#flow img {

 display:block; margin-left:-165px; position:relative; top:-15px;

 left:245px; float:left; background-color:#fff;

}

#viewer li { list-style-type:none; position:absolute; bottom:10px;
}

#left { left:20px; }

#right { right:20px; }

3.	 Save this ile in the css directory as skew.css.

What just happened?
We're using a simple collecion of elements for this example. We use an outer container,
mostly for posiioning purposes so that we can center the widget in the viewport and
posiion other elements within it.

The elements are what we will be applying the skew animaions to, so these are
isolated in their own container to make selecing them in the script later on easier. We
also have a list element containing two links. These will be used to trigger the animaions.

The CSS is as light as the HTML. We simply posiion the container, the images, and the
controls as required for the example. All of the fun CSS3 we'll set and manipulate using
the script. You should note that this example isn't progressively-enhanced as this would
deviate too far from an already quite large example, as we'll see in a moment when we
add the JavaScript.

CSS3 Animaions

[250]

Time for action – initializing the widget
The irst thing we need to do is set up the images ready to have their skew manipulated. We
can also add the funcion that will return the correct vendor-speciic preix for the transform
style property that we used in the last example. In the empty funcion at the botom of the
HTML page, add the following code:

var viewer = $("#viewer"),

 flow = viewer.find("#flow"),

 order = flow.children().length,

 oneRad = 1 * (Math.PI / 180),

 matrix = ["matrix(", 1, ",", 0, ",", 0, ",", 1, ",",
 "0px,", "0px)"],

 msMatrix = "progid:DXImageTransform.Microsoft.Matrix(
 sizingMethod='auto expand')",

 getVendor = function() {

 var prefix = null,

 vendorStrings = {

 pure: "transform",

 moz: "-moz-transform",

 webkit: "-webkit-transform",

 op: "-o-transform"

 };

 for (props in vendorStrings) {

 if(flow.css(vendorStrings[props]) === "none") {

 prefix = vendorStrings[props];

 }

 }

 if (prefix === null) {

 prefix = "filter";

 }

 return prefix;

 },

 vendor = getVendor(),

 property = (vendor !== "filter") ? matrix.join("") : msMatrix;

flow.children().eq(0).addClass("flat").css(vendor,
 property).css("zIndex", order + 1);

flow.children().not(":first").each(function(i) {

 el = flow.children().eq(i + 1);

Chapter 9

[251]

 matrix[1] = 0.7;

 matrix[3] = -30 * oneRad;

 matrix[5] = -10 * oneRad;

 matrix[7] = 0.7;

 matrix[9] = (vendor === "-moz-transform") ? "90px," : "90,";

 matrix[10] = (vendor === "-moz-transform") ? "-30px)" : "-30)";

 if (vendor !== "filter") {

 el.addClass("skew-right").css(vendor,
 matrix.join("")).css("zIndex", order);

 } else {

 el.addClass("skew-right").css(vendor, msMatrix).css({

 zIndex: order,

 top: -30,

 left: 270,

 width: 140,

 height: 140,

 marginLeft: -100

 });

 el.get(0).filters.item("DXImageTransform.Microsoft.Matrix")
 .M11 = 1;

 el.get(0).filters.item("DXImageTransform.Microsoft.Matrix")
 .M12 = matrix[5];

 el.get(0).filters.item("DXImageTransform.Microsoft.Matrix")
 .M21 = matrix[3];

 el.get(0).filters.item("DXImageTransform.Microsoft.Matrix")
 .M22 = 1;

 }

 order--;

});

matrix[3] = 0;

matrix[5] = 0;

What just happened?
In the irst part of the script we iniialize our variables. If you've wondered why we always
iniialize our variables at the top of funcions, the reason is because of a phenomenon
called Hoising. This is where variables iniialized in funcions get "hoisted" to the top of
the funcion and can contain results that we aren't expecing.

CSS3 Animaions

[252]

The irst variable we create is a cached selector for the outer container of our widget. This
is the one and only jQuery object we create in this enire example. Some of the code we'll
add is quite intensive in places, so keeping the number of jQuery objects we create to a bare
minimum is essenial for performance reasons.

Next we use the original jQuery object and the find() jQuery method to cache a selector
for the flow element (the direct parent of the image elements that will be skewed) as we'll
need to access or manipulate this element several imes as well.

Then we store the number of image elements in the widget using the length property
of a jQuery object containing the child elements of the low element. We also store the
result of convering one degree to one radian so that we can easily convert from one unit
to another throughout the script without repeatedly performing the same calculaion. Both
the CSS3 transform matrix and IE's matrix ilter can accept radians so that makes them a
convenient unit to work with.

We then create our matrix array, and Microsot's matrix property as a string. The array
includes all of the individual properies as array items, including the required commas as
strings. The reason we include the commas in our array is so that we can call the join()
JavaScript funcion on the array later without specifying a separator and without having to
worry about removing the unnecessary commas this would insert incorrectly.

Next we add the getVendor() funcion that we used in the last example. This is a
convenient way to ensure the correct preix is used when we apply the skew styling.
We won't cover this funcion in detail as we have already looked at it earlier in the chapter.
Again we call the funcion straight away ater deining it and store the result in a variable
for later use.

The last variable we create will hold a string containing either the CSS3 matrix funcion with
all required parameters, or it will contain IE's matrix property in its most basic form, with
only the sizingMethod parameter deined. If you remember from the previous example,
IE can only manipulate the matrix property ater it has been iniially set.

At this point we can move on to prepare the irst image. We select the irst image using
jQuery's eq() method, passing in 0 as the index of the element we are interested in.
We set a class name of flat on the irst image so that we can easily select it later, and
also give it a higher z-index than the other images so that it is visible in its enirety.

Next we loop through the remaining images using jQuery's each() method.
The anonymous funcion we pass to the method accepts the parameter i which
is the index of the current iteraion.

Chapter 9

[253]

This will allow us to select each element in turn one ater the other on each iteraion of
the loop. The irst thing we do in the funcion is cache a reference to the current
using the index as an argument for the eq() method. We add 1 to the index value to avoid
selecing the irst image.

In the next block of code we set some of the items in our matrix array. We set the scale
parameters (items 1 and 7 in the array) to 0.7 so that the skewed images are reduced in size
slightly, and we set the skew parameters (items 3 and 5) to the radian equivalent of -30 and
-10 degrees. This will skew the images slightly up and to the right.

We also set the translate parameters (items 9 and 10 in the array) to posiion the skewed
elements correctly so that they stack up horizontally. If the browser in use is Firefox we have
to use px in the value for the translate properies, but with other browsers the values should
be unit-less. We use a ternary condiion to check the vendor variable (this will contain the
vendor-preix for the current browser) and set the value accordingly.

Once we've set our array items we then check that the browser in use is not IE and provided
it isn't, we apply the skew to the current element. We also set the z-index of the current
element using the order variable, which is set to the length of the number of images.

On each iteraion of the loop we reduce the value of this variable by one (later in this secion
of code you'll see the statement index-- which decreases the variable). The z-index of
each element will therefore get progressively lower as we process each image.

If the browser in use is IE, we apply the Microsot matrix and set some diferent CSS on the
images. The translate parameters don't work in IE, so we posiion the images using jQuery
instead. Skewing the elements in IE also causes the elements to increase in size, so we have
to drasically reduce their dimensions, which we also do with jQuery.

Once we have set the required CSS styles, we then skew the elements by manipulaing the
proprietary Microsot matrix ilters. Remember, these properies can only be manipulated
on actual DOM elements, not jQuery objects, so we retrieve the raw element using jQuery's
get() method and the index 0.

Ater the each() loop has inished, we reset parameters 3 and 5 in the matrix array. This
is because we will use the array again several imes, so each ime we should use the default
values for the parameters.

CSS3 Animaions

[254]

Time for action – animating an element's skew
Next we'll add the funcion that will skew elements to the let. The funcion will need to be
applied to two elements, the lat, or non-skewed element, as well as the one before it (to the
right in this case). The funcion to animate the skew from right to let is as follows:

function skewRTL() {

 var flat = flow.find(".flat").css("zIndex", order + 1),

 preFlat = flat.next(),

 flatMatrix = matrix.slice(0),

 preMatrix = matrix.slice(0),

 flatDims = 200,

 preDims = 170,

 skew = function() {

 if (preFlat.length) {

 if (flatMatrix[3] <= 30 * oneRad && flatMatrix[5] <=
 10 * oneRad) {

 var flatTranslateX = parseInt(
 flatMatrix[9].split("p")[0], 10),

 flatTranslateY = parseInt(
 flatMatrix[10].split("p")[0], 10),

 preTranslateX = parseInt(
 preMatrix[9].split("p")[0], 10),

 preTranslateY = parseInt(
 preMatrix[10].split("p")[0], 10);

 flatMatrix[1] = flatMatrix[1] - 0.001;

 flatMatrix[3] = flatMatrix[3] + oneRad;

 flatMatrix[5] = flatMatrix[5] + (oneRad / 3);

 flatMatrix[7] = flatMatrix[7] - 0.001;

 preMatrix[1] = preMatrix[1] + 0.01;

 preMatrix[3] = preMatrix[3] + oneRad;

 preMatrix[5] = preMatrix[5] + (oneRad / 3);

 preMatrix[7] = preMatrix[7] + 0.01;

 flatMatrix[9] = (vendor === "-moz-transform") ?
 flatTranslateX - 6 + "px," : flatTranslateX - 6 + ",";

 preMatrix[9] = (vendor === "-moz-transform") ?
 preTranslateX - 3 + "px," : preTranslateX - 3 + ",";

 preMatrix[10] = (vendor === "-moz-transform") ?
 preTranslateY + 1 + "px)" : preTranslateY + 1 + ")";

Chapter 9

[255]

 if (vendor !== "filter") {

 flat.css(vendor, flatMatrix.join(""));

 preFlat.css(vendor, preMatrix.join(""));

 } else {

 flat.get(0).filters.item(
 "DXImageTransform.Microsoft.Matrix")
 .M12 = flatMatrix[5];

 flat.get(0).filters.item(
 "DXImageTransform.Microsoft.Matrix")
 .M21 = flatMatrix[3];

 preFlat.get(0).filters.item(
 "DXImageTransform.Microsoft.Matrix")
 .M12 = preMatrix[5];

 preFlat.get(0).filters.item(
 "DXImageTransform.Microsoft.Matrix")
 .M21 = preMatrix[3];

 flatDims = flatDims - 2;

 preDims = preDims + 0.5;

 flat.css({

 width: flatDims,

 height: flatDims

 });

 preFlat.css({

 width: preDims,

 height: preDims

 });

 }

 } else {

 clearInterval(flatInterval);

 if (vendor !== "filter") {

 preMatrix[3] = 0;

 preMatrix[5] = 0;

 preFlat.css(vendor, preMatrix.join(""));

 } else {

 flat.css({

 top: -30,

 left: 260

 });

 }

CSS3 Animaions

[256]

 flat.prev().css("zIndex", "");

 flat.removeClass("flat").css("zIndex", "");

 preFlat.addClass("flat");

 }

 } else {

 clearInterval(flatInterval);

 flat.css("zIndex", order + 1);

 }

 };

 preMatrix[3] = -30 * oneRad;

 preMatrix[5] = -10 * oneRad;

 if(!flatInterval) {

 var flatInterval = setInterval(function() { skew() }, 1);

 }

};

What just happened?
The irst thing we do in our funcion is set the variables used by the funcion. We cache
a reference to the current element that has the class flat and also set this element's
z-index to be one higher than any of the other images to ensure it is always on top
of the other images.

We also cache a reference to the next image ater the flat image. In this funcion, this will
be the image to the right of the un-skewed image. We then make two copies of the original
matrix array, one for the flat element and one for the preFlat element. To copy an array
all we do is use JavaScript's slice() method with an index of zero.

The next two variables we create are the iniial dimensions of the flat and preFlat
images. These variables are only used by IE, but because of hoising we need to deine
them here and not in an IE-speciic code block later in the funcion.

Next we deine an inline funcion called skew() which we'll repeatedly call in order to
produce the actual animaion. Within this funcion we irst check that there is an element
ater the flat element by checking that the preFlat object has a length. If the length is
equal to zero (that is if it does not have length), we simply clear any intervals that may exist,
and make sure the flat element is at the top of the z-index stack.

Chapter 9

[257]

If the preFlat object does have a length however, we then check that the current skewX
property is less than or equal to the radian equivalent of 30 degrees, and that the skewY
property is less than or equal to the radian equivalent of 10 degrees (we can work this out
by muliplying 30 or 10 respecively by our stored igure for 1 radian). The current skew
properies for the flat image are currently stored in items 3 and 5 in the flatMatrix
array.

Provided both condiions are true we can then proceed with the animaion. Part of the
animaion involves translaing the flat and preFlat images so that as well as skewing,
they move as well (we'll also resize them, but we'll come to that in a moment).

In order to translate the images correctly we need to get their current translaion, which
we do irst of all by deining four new variables and populaing them with the current
translaion values from the two matrix arrays. These igures need to be numerical so we
use JavaScript's parseInt() and split() funcions to break the strings apart and convert
the digits to integers.

Next we need to update our two matrix arrays with the new values. The right-to-let funcion
will incrementally update the values in the flatMatrix and preMatrix arrays, and then
apply the arrays to the element. So the animaion will consist of rapid updates to each
transform parameter.

The flat image also needs to be skewed as it is translated, so we increase the skewX
and skewY parameters by one radian and a third of one radian respecively. Remember,
in order to skew an element to the let and up direcions the skew parameters should be
posiive, so we increase the values of items 3 and 5 of the flatMatrix array on each
pass of the funcion.

The flat image starts of larger than the skewed images so we need to reduce array items
1 and 7 slightly each ime the funcion runs. The skew() funcion will be called 30 imes, so
to reduce the scale of the lat image so that it inishes the correct size we reduce the scale
parameters by 0.001 on each pass of the funcion.

The values we want are 30 degrees of skew on the x axis, and 10 degrees of the skew on the
y axis. 10 is one third of 30 which is why we increase the skewY parameter by one radian
divided by three.

I menioned earlier that in Firefox the translate parameters need a unit, such as px, but
other browsers are unit-less for these values. We use a JavaScript ternary condiional to
check the vendor string and if it equals the Firefox vendor preix (-moz-transform),
we add px to the value. The lat image only needs to be translated on the x axis and it
needs to move let by 6 pixels, so we update array item 9 with a value that is 6 less than
its current value.

CSS3 Animaions

[258]

We also have to update the preFlat image so that it goes from being skewed to the right to
being lat. We also have to increase the size of the preFlat image as they start out smaller.
In a similar way to before, we update the relevant array items in the preMatrix so that
over the course of 30 iteraions of the skew() funcion they end up at the right values.
The preFlat image also needs to be translated, but this ime along both the x and y axes.

Next we check the vendor string once more and as long as it isn't filter (IE), we apply the
transform to the flat and preFlat image by joining the array. If it is IE we have to do a
litle more work to apply the transformaion.

We apply each of the relevant Matrix properies, M12 and M21 on the flat and preFlat
images. We use jQuery's get() method with an index of 0 to obtain the actual DOM
element once more. We also reduce the size of the flat image, and increase the size of the
preFlat image using our flatDims and preDims variables that we iniialized earlier and
then jQuery's css() method to apply the new sizes.

IE's Matrix property helpfully ignores the scaling parameters when the sizingMethod is
set to auto expand, but this property must be set to prevent the images from being clipped.
This is why we fallback to jQuery's css() method.

Unusually, we are able to set fracional pixel sizes when using IE, which is fortunate as it
allows us to set the size of the images correctly in order for them to end up at the right size
when the animaion ends.

We now come to the other part of the inner condiional. This block of code is executed once
at the end of the animaion when the third and ith items in our flatMatrix array are
greater than 30 and 10 respecively.

First we clear the intervals so that the skew is not animated further. We then check the
vendor string once more, and as long as it isn't filter we reset the skew on the lat
element to 0 (on both the x and y axes).

This is needed because for some reason, the preFlat image doesn't quite go back to exactly
zero. I assume this is because JavaScript's Math funcions do not allow the number to have
enough decimal places to be enirely accurate. The image is only slightly of however, so this
sudden switch to 0 at the end of the animaion is not noiceable.

Unfortunately, translaing an element at the same ime as skewing it does not seem possible
in IE. What happens is that IE applies the new skew, but fails to apply the new posiion unil
ater the skew animaion has inished, so the element is skewed and then moved in two
separate steps. It doesn't look too great so instead we simply reposiion the lat element
without animaing it at this point once the skew animaion has inished.

Ater correcing the skew, or the posiion, we then remove the z-index from the lat
element (which has now been skewed to the let) and remove the class name flat from it,
and then add the class name flat to the preFlat element.

Chapter 9

[259]

At this point the lat image has been skewed to the let, resized and translated, and the
preFlat image has been skewed back to zero, resized and translated. Both the flat and
preFlat images are transformed together at the same ime, which is why the funcion is
as large as it is.

Right at the end of the skewRTL() funcion, deined ater the skew() funcion that will be
repeatedly called by the setInterval() funcion, we iniialize the 3rd and 5th values in
the preMatrix array so that the array will contain the correct skew for the iniial state of
the element. When we create the array, by copying the original matrix array used when the
widget is iniialized, these items will both be set to 0.

Before calling the setInterval() funcion on the two images to be skewed, we irst
check that an interval doesn't already exist. This stops the widget from breaking if the link
is repeatedly clicked by the visitor. The element will be skewed more than once if the link is
clicked several imes in rapid succession, but the widget will coninue to funcion and the
page will not throw errors.

Time for action – skewing an element from left to right
We can now add the funcion that skews an element from let to lat and from lat to right.
This funcion is very similar to the funcion we just looked at. Changes in the code are shown
in bold:

function skewLTR() {

 var flat = flow.find(".flat"),

 preFlat = flat.prev(),

 flatMatrix = matrix.slice(0),

 preMatrix = matrix.slice(0),

 flatDims = 200,

 preDims = 170,

 skew = function() {

 if (preFlat.length) {

 if (flatMatrix[3] >= -30 * oneRad && flatMatrix[5] >=
 -10 * oneRad) {

 var preTranslateX = parseInt(preMatrix[9].
 split("p")[0], 10),

 preTranslateY = parseInt(preMatrix[10].
 split("p")[0], 10);

 flatMatrix[1] = flatMatrix[1] - 0.001;

CSS3 Animaions

[260]

 flatMatrix[3] = flatMatrix[3] - oneRad;

 flatMatrix[5] = flatMatrix[5] - (oneRad / 3);

 flatMatrix[7] = flatMatrix[7] - 0.001;

 preMatrix[1] = preMatrix[1] + 0.01;

 preMatrix[3] = preMatrix[3] - oneRad;

 preMatrix[5] = preMatrix[5] - (oneRad / 3);

 preMatrix[7] = preMatrix[7] + 0.01;

 preMatrix[9] = (vendor === "-moz-transform") ?
 preTranslateX + 3 + "px," : preTranslateX + 3 + ",";

 preMatrix[10] = (vendor === "-moz-transform") ?
 preTranslateY + 1 + "px)" : preTranslateY + 1 + ")";

 if (vendor !== "filter") {

 flat.css(vendor, flatMatrix.join(""));

 preFlat.css(vendor, preMatrix.join(""));

 } else {

 flat.get(0).filters.item(
 "DXImageTransform.Microsoft.Matrix")
 .M12 = flatMatrix[5];

 flat.get(0).filters.item(
 "DXImageTransform.Microsoft.Matrix")
 .M21 = flatMatrix[3];

 preFlat.get(0).filters.item(
 "DXImageTransform.Microsoft.Matrix")
 .M12 = preMatrix[5];

 preFlat.get(0).filters.item(
 "DXImageTransform.Microsoft.Matrix")
 .M21 = preMatrix[3];

 flatDims = flatDims - 1.5;

 preDims = preDims + 1.5;

 flat.css({

 width: flatDims,

 height: flatDims

 });

 preFlat.css({

 width: preDims,

 height: preDims

 });

 }

 } else {

Chapter 9

[261]

 clearInterval(flatInterval);

 clearInterval(preInterval);

 if (vendor !== "filter") {

 preMatrix[3] = 0;

 preMatrix[5] = 0;

 preFlat.css(vendor, preMatrix.join(""));

 }

 flat.removeClass("flat").css("zIndex",
 parseInt(flat.next().css("zIndex")) + 1);

 preFlat.addClass("flat").css("zIndex", order + 1);

 }

 } else {

 clearInterval(flatInterval);

 clearInterval(preInterval);

 flat.css("zIndex", order + 1);

 }

 };

 order = flow.children().length;

 preMatrix[3] = 30 * oneRad;

 preMatrix[5] = 10 * oneRad;

 preMatrix[9] = (vendor === "-moz-transform") ? "-90px," : "-90,";

 preMatrix[10] = (vendor === "-moz-transform") ? "-30px," :
 "-30,";

 if(!flatInterval) {

 var flatInterval = setInterval(function() { skew() }, 1),

 preInterval = setInterval(function() { skew() }, 1);

 }

};

What just happened?
We won't cover the whole funcion in its enirety as it's very similar to before, but let's take
a moment to look at what difers in this funcion. First, instead of selecing the next image
to the right of the flat element, we select the one to the let of it using jQuery's prev()
method instead of next().

CSS3 Animaions

[262]

When updaing the skew on our flat and preFlat elements, we are skewing the element
the opposite way. To skew an element to the right, we need to use a minus igure so instead
of going from 0 to 30 or from -30 to 0, we are going the opposite way, from 30 to 0 or 0 to
-30, so we minus the radian equivalent of 1 degree instead of adding it.

We are also translaing to the right instead of to the let, so instead of removing 3 pixels each
ime to move the image let we add 3 pixels to move it right. We also provide diferent values
for the dimensions variables used by IE.

This ime when we set the z-index of the element that was previously lat, we add 1 to
the z-index of the next element (to the right) to make sure it is higher than this element.
However, we can't use our length variable from earlier or it will be at the same z-index as
the flat element, but will appear above it as it comes ater the element in the DOM.

The inal diference is that when we iniialize the third and ith items in our array, we are
specifying the current skew to the let and not the right, so these items are set to the radian
equivalent of 30 and 10 degrees instead of -30 and -10.

Time for action – wiring up the controls
All that's let to do is add the event handlers to the let and right links at the botom of the
widget so that the diferent images can be viewed. Ater the two skew funcions, add the
following code:

viewer.find("#left a").click(function(e) {

 e.preventDefault();

 skewRTL();

});

viewer.find("#right a").click(function(e) {

 e.preventDefault();

 skewLTR();

});

What just happened?
All we do is add a click handler to each link which prevents the link from being followed
with preventDefault() and then call the relevant skew funcion. The example should
now be fully working in all common browsers, although the efect is handled rather badly
by IE in general, with slower, more sluggish animaions, less accurate skewing, and jitery,
uncontrollable movements.

One point to note is that there is a diference between the full and miniied versions of the
jQuery source ile which causes IE to throw errors when the miniied version is used, but not
when the un-miniied version is used.

Chapter 9

[263]

Pop quiz – using the matrix
1. The CSS3 matrix transform funcion is useful in which situaion?

a. When we want to work in radians instead of degrees

b. When we need to animate a transform funcion

c. When we want to apply more than one transform funcion to an element

d. When coding for Internet Explorer

2. In the transform funcion matrix(a, b, c, d, e, f), which parameters refer to
the element's translaion?

a. a and b

b. a and d

c. b and c

d. e and f

Have a go hero – extending matrix animation
It would deinitely be beneicial to build this example so that it incorporated progressive
enhancement. Work on an alternaive, accessible layout that works with scriping disabled,
and then convert the widget into the format used in this example.

You could also work on a more suitable fallback for IE, in which the example uses a simpler
image viewer, perhaps one of those looked at earlier in the book.

Summary
In this chapter we look at the new CSS3 transform style property in detail, covering all of the
diferent transform funcions including:

 � matrix

 � rotate

 � scale

 � scaleX

 � scaleY

 � skew

 � skewX

 � skewY

CSS3 Animaions

[264]

 � translate

 � translateX

 � translateY

We learned a lot about the new CSS3 matrix property in this chapter, as well as how to
make use of it with jQuery. Speciically, we learned the following:

 � We irst saw the diferent values that these funcions take and the efects that they
have on elements they are applied to.

 � We also saw that in order to animate these styles, we can use simple naive
JavaScript intervals or imeouts to coninuously adjust the funcion parameters,
or apply them in a rapid sequence.

 � We learned that mostly, these transform funcions can only be applied to elements
individually, with only the last to be deined being applied. The matrix funcion
however allows us to apply several of the funcions to a single element.

 � We can't rotate and skew a single element, but we can rotate, scale, and translate
an element, or skew, scale, and translate it if we wish. Browser support for CSS3
transforms is very good, with only very minor diferences between most browsers
(such as the translate values being in pixels for Firefox and unit-less for Webkit-
based browsers and Opera) except IE.

 � IE does have its own proprietary implementaion of the diferent transforms,
although these are not implemented in a paricularly useful way, such as not being
able to translate elements if we don't want those same elements to be clipped. We
can only hope that IE9, recently released as a beta product, will handle them beter.

 � In addiion to CSS3 transforms, a CSS3 transiions speciicaion has also been
proposed, which would allow us to transiion elements between diferent transform
states using pure CSS, without the need for animaing them with JavaScript at all.
We didn't look at these at all in this chapter because support for them is restricted
to just Webkit-based browsers or Opera at the ime of wriing. Beta versions of
Firefox and IE also have support for them, but we have dealt only with fully-released
browsers throughout the book.

 � We saw that although we can't use the transform funcions in jQuery's animate()
method, we can easily create our own animaions manually, and we can use them
with other methods, such as the css() method. Don't forget about using cssHooks
to achieve this kind of funcionality too.

In the next and inal chapter of the book, we'll take a look at a new HTML5 element that
allows us pixel-perfect control over an area on the page—the <canvas> element—and how
it can be used to create interacive animaions.

10
Canvas Animations

In the last chapter, we looked at one of the latest CSS3 styles: the transform,
which enabled us to create animated rotaions, skews, scales, and translates.
In this chapter, we're going to look at one of the new addiions to HTML5—the
<canvas> element.

The best way to think of the <canvas> element is to treat it like the kind of
canvas on which an arist would paint. We can draw simple lines or complex
shapes using JavaScript API methods, and there is also support for images
and text. The canvas is two dimensional at this point, but may be extended to
include 3D support in the future.

The <canvas> element, irst proposed and used by Apple, has been
implemented by most common browsers, and is considered one of the most
stable elements from the HTML5 speciicaion. However, support for it is not
yet universal.

Like CSS3 transforms, the <canvas> element isn't supported in any current
version of Internet Explorer (although it is supported in IE9), but just like
transforms, there are alternaives that can be used in IE to create the same
efect as <canvas>, which we'll look at when we come to the examples a litle
later in the chapter.

The best descripion of the <canvas> element I've seen states "A canvas is
a rectangle in your page where you can use JavaScript to draw anything you
want", from diveintohtml5.org, which sums it up quite nicely I feel.

Canvas Animaions

[266]

Subjects that we'll look at in this chapter will include:

 � The <canvas> API

 � Drawing to the <canvas>

 � Animaing the <canvas>

 � Using <canvas> with jQuery

 � <canvas> in IE and the alternaives

 � Creaing a <canvas> based game

The canvas API
The <canvas> element comes with a rich scriping API that exposes methods and properies
allowing us to deine and control the shapes that are drawn on the canvas. The API can be
broken down into disinct secions depending on what the methods do.

The canvas element
The <canvas> element itself has a couple of methods that can be called on it, including:

Method Usage

getContext(a) Returns an object (a CanvasRenderingContext2D object to be precise) which
can then have other methods from the API called on it to manipulate the
<canvas>. The argument speciies the type of context to retrieve. Only
two dimensional contexts are available at present.

toDataURL() Returns a data URL represening the image on the <canvas>. Opional
arguments include the type of image represented by the data URL (with the
default being image/png), and any arguments speciic to the type, such as
the quality for image/jpg data URLs.

The <canvas> element can be thought of as being similar to an element that doesn't
have an src atribute. Allowed atributes include the width and height of the element, an
id and a class, among others. There are no special atributes associated with the canvas,
although it can contain other elements. When the browser cannot display the <canvas>,
it can display the element's content as a fallback. The only properies of the <canvas>
element we have access to, are the width and height. Seing either of these properies
causes the <canvas> to reset its contents to nothing, which can be useful when we want
to clear it.

Chapter 10

[267]

Context methods
There are two methods that relate directly to the context object returned by the
getContext() method. These are:

Method Usage

save() Saves the current state of the canvas; only transforms are saved, not shapes or
paths.

restore() Restores the saved state.

We can also set a couple of global properies that apply to all shapes on the <canvas>.
These properies are:

Property Usage

globalAlpha Sets the alpha transparency of shapes. Takes a decimal
between 0.0 and 1.0.

globalCompositeOperation Sets how shapes stack up on top of one another. Can be used
to create masks and clear areas of shapes.

Native shapes
The <canvas> has just one naive shape deined: the rectangle. One important point to note
here is that the <canvas> element does not have an internal DOM tree—shapes or paths
we draw on the <canvas> are not created as child elements of the <canvas> element
and cannot be accessed with standard DOM manipulaion methods. They are not individual
objects, they are just pixels. Methods from the scriping API used speciically when working
with rectangles include the following:

Method Usage

clearRect(a, b, c, d) Removes all shapes and paths from an area of the canvas.
Arguments a and b specify the coordinates to begin clearing at
and arguments c and d specify the width and height of the area to
clear.

fillRect(a, b, c, d) Draws a rectangle. Arguments a and b specify the coordinates to
begin drawing at and arguments c and d specify the width and
height of its sides.

strokeRect(a, b, c, d) Draws the outline of a rectangle. Arguments a and b represent the
staring coordinates of the shape and arguments c and d represent
the width and height of its sides.

Canvas Animaions

[268]

We can set the color of strokes (outlines) or ills, as well as drop-shadows using the
following properies:

Property Usage

fillStyle Sets the color of the ill. Can be set to a CSS color, or a gradient object.

shadowBlur Sets the amount of blur on the shadow.

shadowColor Sets the color of the shadow. Can be set to a CSS color or a gradient
object.

shadowOffsetX Sets the relaive posiion of the shadow along the x axis.

shadowOffsetY Sets the relaive posiion of the shadow along the y axis.

strokeStyle Sets the color of the stroke. Can be set to a CSS color, or a gradient object.

These properies can be set on paths and text as well. They aren't limited strictly to the
naive shape.

Paths
Any shape other than a rectangle must be drawn using a path. This gives us a lexible way
of drawing custom, complex shapes. Methods used for creaing paths include:

Method Usage

arc(a, b, c, d, e, f) Draws a circular sub-path. Arguments a and b are the
staring coordinates of the sub-path, c is the radius,
d is the staring angle in radians, and e is the ending
angle in radians. The last parameter f accepts a Boolean
indicaing whether the sub-path should be drawn
aniclockwise or not.

arcTo(a, b, c, d, e) Draws a circular sub-path to a speciied point. Arguments
a and b are the staring coordinates, c and d are the
ending coordinates. Argument e is the radius.

beginPath() Starts a new path.

bezierCurveTo(a, b, c, d, e, f) Draws a sub-path along a Bezier curve, which is a curve
featuring two control points. Arguments a, b, c, and d
represent the coordinates of the two control points and
arguments e and f represent the end coordinates of the
sub-path.

closePath() Closes the path by drawing a line from the current
posiion to the staring posiion of the irst sub-path in
the current path list.

Chapter 10

[269]

Method Usage

fill() Colors in the shape created by the current path.

lineTo(a, b) Creates a new sub-path from the current locaion to the
coordinates speciied as arguments.

moveTo(a, b) Moves to the coordinates speciied by the arguments
without drawing a new sub-path.

quadraticCurveTo(a, b, c, d) Draws a sub-path along a quadraic curve, which is a
curve with a single control point. Arguments a and b
represent the coordinates of the control point, while
arguments c and d represent the end coordinates of the
sub-path.

stroke() Colors in the outline of the current path list.

Paths have several properies that can be set including the style of the end of the line, or
cap, or how paths are joined:

Property Usage

lineCap Can be set to either but (the default), round, or square.

lineJoin Can be set to either miter (the default), round, or bevel.

lineWidth A decimal specifying the width of the path.

miterLimit Determines the length between the inner point where two paths
connect and the outer point before the join is mitered.

Images and patterns
The canvas allows us to draw images to the canvas in the same way that we might assign
a background image to another element. We can also draw paterns based on images or
gradients. This category of methods includes:

Method Usage

drawImage(a, b, c) Draws an image on the <canvas>. Argument
a is the image to draw and arguments b and
c are the coordinates to place the top-let
point of the image. Note that other variants
of this method exist which allow diferent
combinaions of arguments allowing images to
be scaled and sliced.

createPattern(a, b) Draws a repeated patern on the <canvas>.
Argument a is the image to use as the patern,
b is the type of repeat.

Canvas Animaions

[270]

Method Usage

createLinearGradient(a, b, c, d) Creates a linear gradient between two points.
Arguments a and b are the start coordinates of
the gradient, c and d are the end coordinates.

createRadialGradient(a, b, c, d, e, f) Creates a radial gradient between two circles.
Arguments a and b are the start coordinates,
and c is the radius of the irst circle. Arguments
d and e are the start coordinates of the second
circle, and f is its radius.

addColorStop(a, b) Adds color to a gradient. The irst argument is a
decimal between 0.0 and 1.0 and is the relaive
posiion within the gradient to add the color.
The second argument is the color to use.

The drawImage() and createPattern() methods are very similar in that they are both
used to draw an image on the <canvas>. The diference is that the patern is repeated. The
gradient methods return a gradient object which can then be used as the ill or stroke style
for a shape.

Text
Text strings can be writen to the canvas, but there is litle styling we can perform on them
as there is no associated box model with the text so that means no padding, margins, or
borders. Although, we can set the font and alignment (and the ill color or stroke color using
other properies). API methods include:

Method Usage

fillText(a, b, c) Creates solid text strings on the <canvas>. The irst argument is
the text to write and arguments b and c are the start coordinates of
the text.

measureText(a) Measures the speciied text string and returns a metrics object with
a width property.

stroketext(a, b, c) Creates outline text strings on the <canvas>. The irst argument is
the text to write and arguments b and c are the start coordinates of
the text.

Chapter 10

[271]

The properies we can set on text include:

Property Usage

font Sets the size and the font-family of the text.

textAlign Sets the alignment of the text. Can be either start (the default),
end, left, right, or center.

textBaseline Sets the baseline of the text. Can be either alphabetic (the
default), top, hanging, middle, ideographic, or bottom.

Transformation methods
The <canvas> can have the same transforms applied to it that we saw in the last chapter,
which can be applied using the following methods:

Method Usage

rotate(a) Rotates a shape by the speciied number of radians.

scale(a, b) Scales a shape along each axis by the speciied amount, with
a being the x axis and b the y axis.

translate(a, b) Translates the shape along each axis by the speciied amount,
with a being the x axis and b the y axis.

transform(a, b, c, d, e, f) The transform() method is equivalent to the matrix
transform form funcion and can be used in the same way to
scale, translate, and/or skew the shape.

Pixel manipulation
The <canvas> even allows us to work directly with the pixels in the canvas and can retrieve
shapes as imageData objects, or create shapes directly by manipulaing the <canvas> at
pixel-level. We have the following methods for manipulaing pixels:

Method Usage

createImageData(a, b) Creates a new, blank imageData object using the supplied
arguments as width and height properies. This method can also be
passed another imageData object, which will cause the method
to return an (empty) imageData object the same width and
height as the original.

getImageData(a, b, c, d) Returns an imageData object containing the pixel data for the
speciied area of the <canvas>. Arguments a and b are the start
coordinates of the area, c and d are the width and height.

putImageData(a, b, c) Paints the pixel data to the <canvas>. The irst argument is the
imageData object to use, the second and third are the start
coordinates of the resuling shape.

Canvas Animaions

[272]

All imageData objects, either those we get from the <canvas>, or those we create with the
createImageDate() method have several properies we can make use of, including:

Property Usage

data This property is a CanvasPixelArray, and is read-only when
we get an imageData object from the <canvas>. We can also
use it to set pixel data in an imageData object we create. The
array contains four items per-pixel: the r, g, and b values for
the pixel, and the alpha.

height The height of the image represented by the imageData
object. This property is read-only.

length The length of the CanvasPixelArray in bytes. This
property is read-only.

width The width of the image represented by the imageData object.
This property is read-only.

Drawing to the canvas
Drawing to the <canvas> programmaically is very straight forward in theory. The methods
and properies are easy to use, and are quite consistent between supporing browsers.
Direct pixel manipulaion is the trickiest part of the API to master, but other than that there
is nothing really complicated.

One thing we do ind is that our code can very quickly mount up. As soon as we're drawing
muliple, complex shapes, and seing various properies, our code can easily run to a few
hundred lines or more even for relaively simple drawings. This is especially true when
animaing the contents of the <canvas>.

Time for action – drawing to the canvas
Let's take a look at a quick example of drawing a non-animated shape. We don't even need
jQuery for this.

1.	 Add the <canvas> element to the <body> of our template ile:

<canvas id="c" width="500" height="300">

 <p>Your browser doesn't support the canvas element!</p>

</canvas>

Chapter 10

[273]

2.	 Next we can add the JavaScript that will draw to the <canvas>. We'll draw a Union
Jack lag. Funcion in the <script> element at the botom of the template ile and
add the following code in its place:

var canvas = document.getElementById("c"),

 context = canvas.getContext("2d");

 context.fillStyle = "#039";

 context.fillRect(50, 50, 400, 200);

 context.beginPath();

 context.strokeStyle = "#fff";

 context.lineWidth = 50;

 context.moveTo(250, 50);

 context.lineTo(250, 250);

 context.moveTo(50, 150);

 context.lineTo(450, 150);

 context.moveTo(50, 50);

 context.lineTo(450, 250);

 context.moveTo(50, 250);

 context.lineTo(450, 50);

 context.stroke();

 context.closePath();

 context.strokeStyle = "#C00";

 context.lineWidth = 30;

 context.beginPath();

 context.moveTo(250, 50);

 context.lineTo(250, 250);

 context.moveTo(50, 150);

 context.lineTo(450, 150);

 context.stroke();

 context.closePath();

 context.lineWidth = 1;

 context.fillStyle = "#C00";

 context.beginPath();

 context.moveTo(50, 50);

 context.lineTo(195, 125);

 context.lineTo(165, 125);

 context.lineTo(50, 66);

 context.fill();

 context.closePath();

Canvas Animaions

[274]

 context.beginPath();
 context.moveTo(450, 50);
 context.lineTo(305, 125);
 context.lineTo(275, 125);
 context.lineTo(422, 50);
 context.lineTo(450, 50);
 context.fill();
 context.closePath();

 context.beginPath();
 context.moveTo(450, 250);
 context.lineTo(310, 175);
 context.lineTo(335, 175);
 context.lineTo(450, 235);
 context.lineTo(450, 250);
 context.fill();
 context.closePath();

 context.beginPath();
 context.moveTo(50, 250);
 context.lineTo(200, 175);
 context.lineTo(225, 175);
 context.lineTo(80, 250);
 context.lineTo(50, 250);
 context.fill();
 context.closePath();

3.	 Save the ile as canvas.html.

4.	 If we run the page now in any browser except IE, we should see something like
the following:

Chapter 10

[275]

In the previous screenshot, we can see the simple arrangement of geometric shapes that
make up the Briish lag (note that the lag is not completely to scale). Images like this are
easy to produce using the <canvas> but even simple shapes can require a lot of code.

What just happened?
The irst thing we do is get the <canvas> element using JavaScript's getElementById()
method, and then get the two-dimensional context object from the <canvas> with the
getContext() method. We can now interact with the <canvas> via the context object.

We set some of the color for the context using the fillStyle property, and then draw a
solid rectangle using the fillRect() method. The arguments speciied are the staring x
and y locaion of the rectangle, and the width and height.

The illed rectangle picks up the ill style that we just set which is deep blue and will form the
background of our lag. We now need to create a white horizontal and diagonal cross on top
of the blue background. We can do this by drawing two thick lines across the middle of the
lag, one verical and one horizontal. We'll use paths for this, so we start a new path using
the beginPath() method.

Next we set the color of the stroke to white using the strokeStyle property, and
the width of the path using the lineWidth property. To draw a path we have tell the
<canvas> (or the context object actually) where to start the path, which we do using the
moveTo() method, specifying the coordinates to move to as arguments (the top middle
of the rectangle).

To make the path, we then use the lineTo() method, specify the coordinates of where to
end the path (the botom middle of the rectangle). This gives us the verical line. To make the
horizontal path, we repeat the same process, moving to the let middle of the rectangle and
drawing to the right middle.

Coordinates speciied using the moveTo() method are always relaive to the canvas itself
with 0, 0 represening the top-let corner of the canvas. This is the same for the lineTo()
method as well, even though the line that is drawn begins at the point speciied by the last
call of moveTo().

Next we need to make a diagonal white cross over the background rectangle and the verical
cross, which we'll do by drawing paths in the same way as before using combinaions of
moveTo() and lineTo() methods.

All of the paths we've added so far are part of the same path—they are sub-paths, and at
this point they aren't actually visible. To make them visible, we need to either ill or stroke
them, so we stroke them with the stroke() method and then close the path with the
closePath() method.

Canvas Animaions

[276]

For the next part of the lag, we need to draw a slightly thinner red cross over the white
cross. We'll use another path for this. We set the new color style and width, and draw a new
path across the center of the rectangle verically and horizontally again.

To complete the lag, we need to add four more shapes to make the diagonal parts of the red
cross. We can't use straight-line paths for these because they don't intersect, and they are
all posiioned slightly diferently. This means that we have to draw them manually as custom
shapes and ill them.

These four shapes actually make up the majority of the code, but we're basically doing very
similar things as before. Each shape is made by drawing sub-paths and illing them. We use a
new path for each shape to preserve the ani-aliasing of the lines. If we used one big path for
all four shapes, the edges of the shapes would be jagged.

Pop quiz – drawing to the canvas
1. What arguments are required for the fillRect() method?

a. The x and y locaion of the rectangle

b. The width and height of the rectangle

c. The x and y locaion of the rectangle, its width and height, and its color

d. The x and y locaion of the rectangle, and its width and height

2. What method is required to make a path visible?

a. strokeStyle and lineWidth

b. moveTo() and lineTo()

c. stroke() or fill()

d. closePath()

Have a go hero – creating the lag of your nation
If you're not from the UK, have a go at drawing the lag of your own naion on the canvas.
We can create composiions of repeated shapes using standard JavaScript for loops, so use
this to your advantage in keeping the code required for your lag as minimal as possible.
If you are from the UK, try recreaing a favorite logo or icon.

If part of your lag (or logo) is extremely complex, remember that we can draw images to
the <canvas> as well as lines and shapes, so feel free to draw out the basic part of your
lag using the <canvas> drawing methods, and then use an image for the complex part.

Chapter 10

[277]

Canvas, IE, and the alternatives
Our lag example will work in IE9, but not in any previous version. If we run the previous
example in IE8 or lower, we'll see the fallback content consising of a paragraph of
explanatory text:

The fallback mechanism for the HTML5 <canvas> element is simple but efecive. Any
browser that doesn't understand the element simply displays any elements that are
contained within it, while supporing browsers do not show any of its content except what
we draw using the JavaScript API.

There is an easy way that we can allow our lag to work in older versions of IE thanks to the
explorercanvas library created by Google. IE uses a proprietary technology called Vector
Markup Language (VML) which is similar (but much older than and now deprecated) to the
<canvas>. In fact it was Microsot's alternaive technology to Scalable Vector Graphics
(SVG) but can also be used as a simple <canvas> approximaion.

Using the explorercanvas library is almost as simple as downloading it and then referencing
it in the page on which the <canvas> appears, but there is a subtle change that we need to
make to our code.

The explorercanvas library can be downloaded from Google's code
repository at htp://code.google.com/p/explorercanvas/.

API methods that simply do not work
The explorercanvas library does not port all canvas funcionality to IE. A couple of methods
and techniques simply will not work. These include:

 � The clearRect() method will not work in IE

 � Radial gradients do not work in IE

 � Non-uniform scaling does not work correctly

Canvas Animaions

[278]

Time for action – making our code compatible with IE
In this example we will recreate our lag example so that it works as intended in IE.

1.	 Resave the canvas.html page as canvas-explorer.html and add a reference
to the explorercanvas library in the <head> of the page:

<!--[if IE]>

 <script src="js/excanvas.compiled.js"></script>

<![endif]-->

2.	 Now change the script at the botom so that it appears like this (new/changed code
is shown in bold):

var canvas = document.getElementById("c"),

 draw = function(context) {

 context.fillStyle = "#039";

 context.fillRect(50, 50, 400, 200);

 context.beginPath();

 context.strokeStyle = "#fff";

 context.lineWidth = 50;

 context.moveTo(250, 50);

 context.lineTo(250, 250);

 context.moveTo(50, 150);

 context.lineTo(450, 150);

 context.moveTo(50, 50);

 context.lineTo(450, 250);

 context.moveTo(50, 250);

 context.lineTo(450, 50);

 context.stroke();

 context.closePath();

 context.strokeStyle = "#C00";

 context.lineWidth = 30;

 context.beginPath();

 context.moveTo(250, 50);

 context.lineTo(250, 250);

 context.moveTo(50, 150);

 context.lineTo(450, 150);

 context.stroke();

 context.lineWidth = 1;

 context.fillStyle = "#C00";

Chapter 10

[279]

 context.beginPath();

 context.moveTo(50, 50);

 context.lineTo(195, 125);

 context.lineTo(165, 125);

 context.lineTo(50, 66);

 context.fill();

 context.closePath();

 context.beginPath();

 context.moveTo(450, 50);

 context.lineTo(305, 125);

 context.lineTo(275, 125);

 context.lineTo(422, 50);

 context.lineTo(450, 50);

 context.fill();

 context.closePath();

 context.beginPath();

 context.moveTo(450, 250);

 context.lineTo(310, 175);

 context.lineTo(335, 175);

 context.lineTo(450, 235);

 context.lineTo(450, 250);

 context.fill();

 context.closePath();

 context.beginPath();

 context.moveTo(50, 250);

 context.lineTo(200, 175);

 context.lineTo(225, 175);

 context.lineTo(80, 250);

 context.lineTo(50, 250);

 context.fill();

 context.closePath();

 };

if (window.ActiveXObject) {

 window.onload = function() {

 var context = canvas.getContext("2d");

 draw(context);

 }

} else {

 var context = canvas.getContext("2d");

 draw(context);

}

Canvas Animaions

[280]

3.	 Save the new page and view it in IE. Our lag should now be visible:

IE can be made to understand the <canvas> element, as we see in the previous screenshot,
although its support is not completely idenical to that of capable browsers. If we compare
our example in IE and Firefox alongside each other, we see that IE also slightly enlarges the
lag for some reason.

What just happened?
First of all we need to link to the explorercanvas library. We don't want to let normal
browsers that support the naive <canvas> element use this ile as it will slow them down,
so we put the <script> element into an IE-speciic condiional comment (like we did with
the html5shiv ile earlier in the book). The .compiled version of the script ile is simply a
miniied version for producion use.

The next change we make is to put the methods that draw the lag into an inline funcion
stored as a variable. This is necessary because otherwise IE will atempt to use these drawing
methods before the explorercanvas library has inished iniializing and will throw errors.
The next part of our code also deals with this.

We use a condiional if statement to check for the presence of an ActiveXObject
property of the window object (this will only exist in IE). If it is found, we atach an onload
handler to the <body> of the page that calls the getContext() method and our draw()
funcion once the page has inished loading, and the explorercanvas library has done
its thing.

Chapter 10

[281]

If the browser is not IE, we simply get the context and call our draw() funcion straight
away. Note that we pass the context object into the draw() funcion as an argument so that
the API methods work correctly. Other than these changes, our code is the same and should
now funcion as intended in IE versions 8 and below.

Pop Quiz – supporting IE
1. We wrap the getContext() method in a condiional comment that checks for IE

and uses an onload handler atached to the <body>. Why?

a. The <canvas> can only be interacted with via the <body> element in IE

b. To give explorercanvas a chance to add getContext() support to the
<canvas> in IE

c. To prevent memory leaks in IE

d. A handler funcion must be used with explorercanvas

2. Which methods/techniques do now work in IE when using explorercanvas?

a. Scaling and Bezier curves

b. Radial gradients and quadraic curves

c. Radial gradients, clearRect(), and non-uniform scaling

d. Non-uniform scaling, PNG-based images, and stroked text

Have a go hero – extending IE support
Convert your own lag (or logo/alternaive) so that it works in IE using the explorercanvas
library. You'll more than likely need to make use of an onload event handler to ensure that
the getContext() method isn't called unil the <canvas> is ready to be used.

Animating the canvas
The <canvas> methods we've looked at so far are easy to use and nothing if not a litle
repeiive. Animaing the objects on the <canvas> is where things start to get interesing.
Animaing is harder than simply drawing on the <canvas> and as we have no real way of
debugging it other than trial and error, solving bugs can quickly become problemaic and
somewhat ime-consuming.

In our lag example, there was no real beneit to using the <canvas>. We could have got
exactly the same efect, with much less code and processing, by simply including an image
of the lag on our page. However, animaing the <canvas> is where its beneits really begin.
This is where we can do much more than anything we could achieve with a simple image.
The addiional complexity that animaing the <canvas> entails is totally worth it.

Canvas Animaions

[282]

Time for action – creating an animation on the canvas
In this example, we'll draw the same lag as we did before, except that this ime we'll
animate the diferent shapes. The underlying HTML used in this example is exactly the same
as in the previous examples. All that changes is the contents of the <script> element at the
end of the <body>.

1.	 To make the working ile for this example, just remove everything in the <script>
element at the botom of canvas-explorer.html and resave the ile as
canvas-animated.html.

2.	 The irst thing we'll do is bring the blue rectangle in from the side of the canvas to
the center of the <canvas> element. Add the following code to the now empty
<script> element at the botom of the page:

(function() {

 var canvas = document.getElementById("c"),

 init = function(context) {

 var width = 0,

 pos = 0,

 rectMotion = function() {

 if (width < 400) {

 width = width + 2;

 context.fillStyle = "#039";

 context.fillRect(0, 50, width, 200);

 } else if (pos < 50) {

 pos = pos + 2;

 canvas.width = 500;

 context.fillStyle = "#039";

 context.fillRect(pos, 50, 400, 200);

 } else {

 clearInterval(rectInt);

 whiteLines(context);

 }

 },

 rectInt = setInterval(function() { rectMotion() }, 1);

 };

 if (window.ActiveXObject) {

 window.onload = function() {

Chapter 10

[283]

 var context = canvas.getContext("2d");

 init(context);

 }

 } else {

 var context = canvas.getContext("2d");

 init(context);

 }

})();

What just happened?
In the previous examples in this chapter all of our variables were global, which is generally
a bad pracice when coding for the real world. In this example our code is within the scope
of the anonymous funcion, so the variables are only accessible within that funcion and are
therefore not considered global.

We also use the same construct for detecing and working with IE that we did before,
where we deine an inline funcion that is either called straight away for most browsers,
or once the onload event of the body is ired for IE. The funcion that is called is init()
in this example.

Within this funcion we declare width and pos variables and then deine another inline
funcion called rectMotion(), which will be called repeatedly by an interval. Any shapes
drawn outside of the bounds of the <canvas> do not exist, so we can't draw a rectangle
out of view and then animate it into view. Instead, we gradually build up the rectangle by
staring at the let edge and incrementally widening the rectangle unil it is the correct width.

This is done using the irst branch of the if statement, which will be executed while the
width variable is less than 400. To speed the animaion up, we actually increase the
width of the rectangle by two pixels at a ime (although the speed of the animaion is also
considerably diferent between browsers) by increasing the width variable and then using
the variable as the width argument in the fillRect() method.

Once the width variable has reached 400, we then change over to use the pos variable
instead. In this part of the condiional, we increase the pos variable by two (the rectangle
will appear to move two pixels at a ime, again for speed), reset the <canvas> by seing
its width, and set the fillStyle property. We then draw the new rectangle, using the pos
variable as the argument for the x axis posiion.

It will look as if the rectangle is being moved to the right, but this is not the case at all. We
are actually destroying the rectangle and then drawing a completely new one two pixels to
the right of the original.

Canvas Animaions

[284]

Once the rectangle is in the correct locaion we clear the interval and then call the next
funcion, (we'll add this shortly) passing in the context object. Ater the rectMotion()
funcion, we add a inal variable that contains the ID of the interval which calls the funcion
to animate the rectangle. We use this variable to clear the interval once the animaion
is complete.

If you run the page in a browser at this point, the blue rectangle appears to move into
the <canvas> from the let before stopping in the middle. Next, we need to animate the
horizontal and diagonal white crosses over the blue rectangle.

Time for action – animating the white crosses
In this part of the animaion, we'll draw a white line down the middle and across the center
of the rectangle, and then make the diagonal cross grow out from the center to the corners.
The following code should be added in between the canvas and init variables in the code
so far:

whiteLines = function(context) {

 context.fillStyle = "#fff";

 context.strokeStyle = "#fff";

 context.lineWidth = 50;

 var width = 0,

 height = 0,

 pos = {

 ne: { x: 250, y: 150 },

 se: { x: 250, y: 150 },

 nw: { x: 250, y: 150 },

 sw: { x: 250, y: 150 }

 },

 growDiagonal = function() {

 if (pos.ne.x >= 50) {

 context.beginPath();

 context.moveTo(pos.ne.x, pos.ne.y);

 context.lineTo(pos.ne.x - 4, pos.ne.y - 2);

 context.moveTo(pos.se.x, pos.se.y);

 context.lineTo(pos.se.x - 4, pos.se.y + 2);

 context.moveTo(pos.nw.x, pos.nw.y);

 context.lineTo(pos.nw.x + 4, pos.nw.y + 2);

 context.moveTo(pos.sw.x, pos.sw.y);

 context.lineTo(pos.sw.x + 4, pos.sw.y - 2);

 context.stroke();

Chapter 10

[285]

 context.closePath();

 pos.ne.x = pos.ne.x - 2;

 pos.ne.y = pos.ne.y - 1;

 pos.se.x = pos.se.x - 2;

 pos.se.y = pos.se.y + 1;

 pos.nw.x = pos.nw.x + 2;

 pos.nw.y = pos.nw.y + 1;

 pos.sw.x = pos.sw.x + 2;

 pos.sw.y = pos.sw.y - 1;

 } else {

 clearInterval(crossInt);

 redCross(context);

 }

 },

 growVertical = function() {

 if (height < 200 || width < 400) {

 if (height < 200) {

 height = height + 2;

 context.fillRect(225, 50, 50, height);

 }

 if (width < 400) {

 width = width + 4;

 context.fillRect(50, 125, width, 50);

 }

 } else {

 clearInterval(rectInt);

 crossInt = setInterval(function() { growDiagonal() }, 1);

 }

 },

 rectInt = setInterval(function() { growVertical() }, 1);

},

What just happened?
Essenially we have another inline funcion, which contains another funcion that gets
repeatedly called with another interval. As we're drawing white crosses this ime, we need to
set some style properies (we'll be drawing both lines and rectangles in this funcion and so
set the fillStyle and strokeStyle) as well as the lineWidth property.

We iniialize width and height control variables, which will be used to control how many
imes the interval runs, and we also store the staring posiions of the verical and diagonal
crosses in an object called pos.

Canvas Animaions

[286]

We then deine two inline funcions, one to create the verical cross and the other to create
the diagonal cross. The growVertical() funcion is called irst with an interval and we
just draw one white rectangle from top to botom, and one from let to right in the center of
the background using the width and height variables to repeat the interval as many imes
as necessary. The interval is cleared once the rectangles are the correct size and then the
growDiagonal() funcion is called with another interval.

In this funcion we need to draw four lines, each staring in the middle of the verical cross.
We use the diferent properies in our pos object to do this. Each ime the funcion is
executed, we move to the x and y posiions speciied for each line in the object and then
draw towards the relevant corner. We then update the properies in the object ready for the
next iteraion of the funcion.

The properies each need to be updated by diferent amounts, for example, the line moving
from the center to the top-let of the rectangle need to move negaively along both the x and
y axes, whereas the line to move to the top-right corner needs to move posiively along the
x axis, but negaively along the y axis. We use a new path on each iteraion of the funcion to
preserve the ani-aliasing of the lines.

Once the lines are drawn we clear the interval and call the next funcion. We'll deine
this funcion now. It should be placed ater the canvas variable, but directly before the
whiteLines() funcion that we just added.

Time for action – animating the red crosses
All we need to do now is draw the verical red cross and the four custom red shapes. Add the
following code in between the rectInt variable declaraion near the top of the <script>
and the whiteLines funcion we deined in the previous secion:

redCross = function(context) {

 context.fillStyle = "#C00";

 context.strokeStyle = "#C00";

 context.lineWidth = 30;

 var width = 0,

 height = 0,

 pos = {

 up : { x: 250, y: 150 },

 down : { x: 250, y: 150 },

 left: { x: 250, y: 150 },

 right: { x: 250, y: 150 }

 },

 addStripes = function() {

Chapter 10

[287]

 context.lineWidth = 1;

 function makeStripe(props) {

 context.beginPath();

 context.moveTo(props.startX, props.startY);

 context.lineTo(props.line1X, props.line1Y);

 context.lineTo(props.line2X, props.line2Y);

 context.lineTo(props.line3X, props.line3Y);

 context.fill();

 context.closePath();

 }

 setTimeout(function() { makeStripe({

 startX: 50, startY: 50,

 line1X: 195, line1Y: 125,

 line2X: 165, line2Y: 125,

 line3X: 50, line3Y: 66

 })}, 1);

 setTimeout(function() { makeStripe({

 startX: 450, startY: 50,

 line1X: 305, line1Y: 125,

 line2X: 275, line2Y: 125,

 line3X: 422, line3Y: 50

 })}, 50);

 setTimeout(function() { makeStripe({

 startX: 450, startY: 250,

 line1X: 310, line1Y: 175,

 line2X: 335, line2Y: 175,

 line3X: 450, line3Y: 235

 })}, 100);

 setTimeout(function() { makeStripe({

 startX: 50, startY: 250,

 line1X: 200, line1Y: 175,

 line2X: 225, line2Y: 175,

 line3X: 80, line3Y: 250

 })}, 150);

 },

 growVertical = function() {

 if (height < 100 || width < 200) {

 if (height < 100) {

 context.beginPath();

 context.moveTo(pos.up.x, pos.up.y);

Canvas Animaions

[288]

 context.lineTo(pos.up.x, pos.up.y - 2);

 context.moveTo(pos.down.x, pos.down.y);

 context.lineTo(pos.down.x, pos.down.y + 2);

 context.stroke();

 context.closePath();

 height = height + 2;

 pos.up.y = pos.up.y - 2;

 pos.down.y = pos.down.y + 2;

 }

 if (width < 200) {

 context.beginPath();

 context.moveTo(pos.left.x, pos.left.y);

 context.lineTo(pos.left.x - 2, pos.left.y);

 context.moveTo(pos.right.x, pos.right.y);

 context.lineTo(pos.right.x + 2, pos.right.y);

 context.stroke();

 context.closePath();

 width = width + 2

 pos.left.x = pos.left.x - 2;

 pos.right.x = pos.right.x + 2;

 }

 } else {

 clearInterval(crossInt);

 addStripes();

 }

 },

 crossInt = setInterval(function() { growVertical() }, 1);

},

What just happened?
Again, we have an outer inline funcion (called redCross()) containing some properies
that set the color and line styles, and some nested funcions that will be used to draw the
red cross and the four custom shapes. As with the previous funcion, we declare width and
height control variables, and an object called pos containing the staring posiions for the
lines that make up the cross. The cross is drawn irst with the growVertical() funcion.

This funcion is very similar to the funcion in the last secion of code. We draw four lines
staring in the middle of the rectangle which radiate to the top and botom center, and the
right and let center.

Chapter 10

[289]

The four custom shapes are drawn using a single master funcion that accepts a coniguraion
object specifying the start point (passed to the moveTo() method), and the points that
make up each sub-path (passed to the lineTo() methods). We then use the setTimeout
JavaScript funcion to create each shape one ater the other, using the object passed to the
master funcion to specify the relevant points on the canvas to draw each shape.

This is all the code we need, so when we run the page now we should see the animaion
of the lag being drawn. The code works in all browsers, including IE, but as I menioned
earlier, the performance does vary considerably between browsers, with Webkit and Opera
browsers running smoothly and very quickly, Firefox somewhere in the middle, and IE
crawling along almost intolerably slowly.

Animaing the <canvas> is all about condiional if statements, intervals, and imeouts. As
we saw, the code itself is quite straight-forward. We just need rather a lot of it in order to
produce even simple animaions.

Pop quiz – animating the canvas
1. Why did we store each call to setInterval() in a variable?

a. For performance reasons

b. In order to clear the interval when appropriate

c. Because of the closure created with the anonymous funcion as the irst
argument to the funcion

d. So that we can pass arguments to the funcion called by the interval

2. In the irst funcion, where we drew the blue rectangle, we set the width of the
<canvas> each ime the rectMotion() funcion is called by the interval. Why?

a. To make sure the <canvas> was big enough to contain the rectangle as it
grew

b. To correct a bug in Internet Explorer

c. To reset the state of the <canvas>, ensuring there was only one rectangle at
each point in the animaion

d. As a requirement for seing the fillStyle property

Have a go hero – creating canvas animations
Go back to the staic version of the lag you drew of your home country (or the logo
or image of your choice) and convert it so that the diferent parts of the lag are animated
into existence.

Canvas Animaions

[290]

Creating a canvas game
The best animaions are those that are interacive and engage the user, and this is exactly
how a game can be seen, as one coninuous, user-driven animaion. The power of the
<canvas> element is really highlighted when it is used to create games, as we'll see over
the course of this secion.

We'll create a very basic clone of the arcade classic Space Invaders with a series of alien ships
that slowly advance down the screen, and a user-controlled space ship at the botom that
can shoot the incoming aliens:

Time for action – creating the initial page
The iniial page that we'll use for this example is similar to that used in the previous example,
although this ime we won't be supporing Microsot's Internet Explorer so some of the
iniializaion code isn't required.

1.	 Create a new page in your text editor that contains the following markup:

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="utf-8">

 <title>A canvas and jQuery Game</title>

 <link rel="stylesheet" href="css/canvas-game.css">

 </head>

Chapter 10

[291]

 <body>

 <canvas tabindex="1" id="c" width="900" height="675">

 <p>Your browser doesn't support the canvas element!</p>

 </canvas>

 <script src="js/jquery.js"></script>

 <script>

 (function($) {

 })(jQuery);

 </script>

 </body>

</html>

2.	 Save the ile as canvas-game.html. We also require a very basic stylesheet for
our game. All we're styling is the <canvas> element itself. Create a new stylesheet
containing the following style rules:

canvas {

 border:1px solid #000; margin:auto; display:block;

 outline:none;

 background:url(../img/bg.gif) no-repeat;

}

3.	 Save this ile in the css directory as canvas-game.css.

What just happened?
The main element on the page is of course the <canvas> element. The only diference
between this and the element used in previous examples is that we have set the tabindex
atribute on it so that it can receive keyboard events, which is necessary for detecing and
reacing to the input from the user. We're also using jQuery in this example and using the
standard anonymous funcion + $ aliasing construct we've used throughout the book.

The styles we've used simply posiion the <canvas> element in the center of the page, give
it a border, and remove the doted outline that appears around focused elements in some
browsers. We also set a background image on the element.

The background image applied to the <canvas> element helps to set a scene for our game,
and using CSS to set a background image on the <canvas> element is much easier than
drawing the image within it.

Canvas Animaions

[292]

Time for action – the initial script
The script for the game is quite long so we'll look at it in diferent secions, staring with the
iniial structure of the script. The following code should go into the anonymous funcion at
the botom of the page:

var canvas = document.getElementById("c"),

 context = canvas.getContext("2d"),

 motionInt = null,

 dirCounter = 0,

 alienSpeed = 1000,

 aliens = [],

 alienMotion = function(dir) {

 },

 addAliens = function() {

 },

 ship = new Image(),

 shipPos = [430, 600];

 ship.src = "img/ship.png";

 ship.onload = function() {

 context.drawImage(ship, shipPos[0], shipPos[1]);

 addAliens();

 };

What just happened?
Essenially, all we've done here is deine a series of variables and an onload event handler.
The canvas and context variables are deined irst, as in previous examples, in order to
access and manipulate the canvas.

We also set a variable called motionInt which will be used to hold the ID of a
setInterval() funcion later on, a variable called dirCounter which will be used to
determine which direcion the aliens move in, an alienSpeed variable to set the speed that
the aliens move at, and an empty aliens array which we'll use to keep track of each alien
on the page.

Chapter 10

[293]

Following this we deine two inline funcions, one to move the aliens and one to add the
aliens to the page. These are empty at the moment but we'll populate each of them next. We
also create a new image, which will be the user-controlled space ship, and a shipPosition
array which will be used to keep track of the ship's locaion on the page.

Once we've deined all our variables, we set the src of the new image object we created to
represent the space ship. We then atach an onload event handler to the ship object, which
will be executed once the image has inished loading. Within this funcion we draw the
ship on the canvas, using the values stored in the imagePosition array. We then call the
addAliens() funcion, which will add the aliens to the canvas. We can add the code to the
addAliens() funcion next.

Time for action – adding the aliens to the page
Add the following code to the addAliens() inline funcion in the previous code block:

addAliens = function() {

 var alienPos = [13, 0],
 alien = new Image();

 alien.src = "img/alien.gif";
 alien.onload = function () {
 for (var x = 0; x < 15; x++) {
 for (var y = 0; y < 3; y++) {

 context.drawImage(alien, alienPos[0], alienPos[1]);

 var data = {
 img: alien, posX: alienPos[0], posY: alienPos[1]
 };
 aliens.push(data);

 if (alienPos[1] < 100) {
 alienPos[1] = alienPos[1] + 50;
 } else {
 alienPos[0] = alienPos[0] + 50;
 alienPos[1] = 0;
 }
 };
 }
 };

 motionInt = setInterval(function () {
 alienMotion("right"); }, alienSpeed);

},

Canvas Animaions

[294]

What just happened?
We irst deine a new array that we'll use to incrementally set the posiion of each alien ship
while the aliens are iniially being drawn to the canvas. We deine a new Image object for
the image that will be used by all of the alien ships and set its src atribute. We then set an
onload handler for the new alien image so that we can manipulate the image once it has
inished loading.

We want to create three rows of 15 aliens, so within the onload handler we start with two
nested for loops where the outer loop runs 15 imes and on each loop, the inner for loop
executes three imes. Within the nested loops, we irst draw the new alien to the canvas
using the values stored in the alienPos array. We then create a new data object which
stores a reference to the image object, and the x and y posiion of the image on the canvas.
The new data object is then pushed into the aliens array which we deined earlier at the
start of the script.

We then update the values in the alienPos array. If the second item in the array (the item
with an index of 1) is less than 100, we add 50 to the value of the array item. The second
item in the array corresponds to the posiion on the y axis of the canvas. This will give us a
single column of three aliens. Note that we start the x posiion of the irst three aliens at 13
instead of 0 so that there is a guter between the edge of the canvas and the irst column
of aliens.

If the second array item is more than 100, we add 50 to the irst item in the array instead,
which corresponds to the x axis on the canvas, and reset the second array item to zero. This
will give us 15 columns of three aliens.

Once all of the aliens have been drawn on the canvas, we set an interval that will repeatedly
execute the next funcion, alienMotion(), according to the number of milliseconds
contained in the alienSpeed variable, which iniially is set to 1000 at the start of the script.
The interval ID is stored in the motionInt variable we also created at the start of the script.
We can add the code to our alienMotion() funcion next.

Time for action – moving the aliens
Our next block of code will give the aliens their moion, causing them to advance to the right
along the canvas irst, then down a line, then to the let, and so on and so forth:

alienMotion = function (dir) {

 var alienLength = aliens.length;

 if (dirCounter < 4) {

Chapter 10

[295]

 for (var x = 0; x < alienLength; x++) {

 context.clearRect(aliens[x].posX, aliens[x].posY,
 aliens[x].img.width, aliens[x].img.height);

 }

 for (var y = 0; y < alienLength; y++) {

 aliens[y].posX = (dir === "right") ? aliens[y].posX + 35 :
 aliens[y].posX - 35;

 context.drawImage(aliens[y].img, aliens[y].posX,
 aliens[y].posY);

 }

 dirCounter++;

 } else {

 clearInterval(motionInt);

 dirCounter = 0;

 for (var z = 0; z < alienLength; z++) {

 context.clearRect(aliens[z].posX, aliens[z].posY,
 aliens[z].img.width, aliens[z].img.height);

 }

 if (aliens[alienLength - 1].posY > 530) {

 canvas.width = 900;

 context.fillStyle = "#fff";

 context.textAlign = "center";

 context.font = "bold 36px Tahoma";

 context.fillText("GAME OVER!", 450, 350);

 $(canvas).blur().unbind("keydown");

 } else {

 for (var a = 0; a < alienLength; a++) {

 aliens[a].posY = aliens[a].posY + 29;

 context.drawImage(aliens[a].img, aliens[a].posX,
 aliens[a].posY);

 }

 motionInt = (dir === "right") ? setInterval(
 function () { alienMotion("left"); }, alienSpeed) :
 setInterval(function () { alienMotion("right"); },
 alienSpeed);

 }

 }

},

Canvas Animaions

[296]

What just happened?
The irst thing we do is store the length of the aliens array in a local variable. We'll use
several for loops in this funcion so it makes sense to retrieve this value only once and
compare the counter variables of the for loops to the variable instead of checking the
length on each iteraion of the various loops.

We then use an if statement to check whether the dirCounter variable is less than 4.
Remember, this was one of the variables we set at the start of the script. If the variable is
less than 4, we irst use a for loop to cycle through each item in the aliens array and use
the clearRect() funcion to remove the alien from the canvas.

We then use a second for loop that cycles through the aliens array once more, this ime
updaing the x posiion of each alien by either adding or removing 35 from the current x
posiion stored in the current item in the array.

Whether 35 is added or removed is determined by the parameter passed into the funcion.
The irst ime the alienMotion() funcion is called, it will receive the parameter right, so
the aliens will iniially move across to the canvas to the right. We then draw each alien in its
new posiion. Once the for loop has inished and all of the aliens have been drawn in their
new posiions we update the dirCounter variable.

If the dirCounter variable is equal to 4, the aliens have moved horizontally across the
canvas as far as they should, so this ime we need to move the aliens down the canvas a line
instead of across it. In this branch of the condiional, we clear the interval that controls the
horizontal movement, then reset the dirCounter variable back to 0. We then remove the
aliens from the canvas by clearing the rectangle that each alien covers.

Before moving the aliens down a line, we irst check whether the y posiion of the last alien
in the array is greater than 530, as this is the maximum distance from the top of the canvas
that an alien should get. If it is greater than this igure, at least one alien has reached the
botom of the canvas and it's game over for the player.

In this case, we clear the whole canvas, removing the space ship and any surviving aliens,
and print the text GAME OVER! to the center of the canvas. We also use jQuery to unbind
the keyboard events that control the space ship (we'll add these bindings shortly).

If the aliens have not reached the botom of the canvas, we instead use another for loop to
iterate over each alien in the array and move each of their y posiions down by one line, and
then draw each alien in its new locaion.

We then set a new interval, passing in the opposite direcion string to the alienMotion()
funcion that was used previously. These loops of four steps to the right, one step down, four
steps to the let, and so on, will coninue unil the aliens reach the botom of the canvas and
the game is over. Next, we need to add the handlers that enable the player to control the
space ship.

Chapter 10

[297]

Time for action – adding handlers to control the ship
The following block of code should be added to the onload event handler for the ship
image object:

ship.onload = function () {

 context.drawImage(ship, shipPos[0], shipPos[1]);

 addAliens();

 $(canvas).focus().bind("keydown", function (e) {

 if (e.which === 37 || e.which === 39) {

 context.clearRect(shipPos[0], shipPos[1], ship.width,
 ship.height);

 if (e.which === 37 && shipPos[0] > 4) {

 shipPos[0] = shipPos[0] - 4;

 } else if (e.which === 39 && shipPos[0] < 896 - ship.width) {

 shipPos[0] = shipPos[0] + 4;

 }

 context.drawImage(ship, shipPos[0], shipPos[1]);

 } else if (e.which === 32) {

 context.fillStyle = "#fff";

 var bulletPos = shipPos[0] + 20,

 newBulletPos = [bulletPos, 596],

 alienLength = aliens.length,

 fire = function () {

 if (newBulletPos[1] > 0) {

 context.clearRect(newBulletPos[0],
 newBulletPos[1], 3, 6);

 newBulletPos[1] = newBulletPos[1] - 2;

 context.fillRect(newBulletPos[0], newBulletPos[1], 3, 6);

 for (var x = 0; x < alienLength; x++) {

 if (newBulletPos[1] === aliens[x].posY ||
 newBulletPos[1] === aliens[x].posY +
 aliens[x].img.height) {

 if (newBulletPos[0] > aliens[x].posX &&
 newBulletPos[0] - aliens[x].posX <
 aliens[x].img.width + 13) {

 context.clearRect(aliens[x].posX, aliens[x].posY,
 aliens[x].img.width, aliens[x].img.height);

Canvas Animaions

[298]

 aliens.splice(x, 1);

 clearInterval(bulletInt);

 context.clearRect(newBulletPos[0],
 newBulletPos[1], 3, 6);

 if (!aliens.length) {

 clearInterval(motionInt);

 dirCounter = 0;

 alienSpeed = alienSpeed - 100;

 addAliens();

 }

 }

 }

 }

 } else {

 context.clearRect(newBulletPos[0], newBulletPos[1], 3, 6);

 clearInterval(bulletInt);

 }

 },

 bulletInt = setInterval(function () { fire(); }, 1);

 }

 });

};

What just happened?
We use jQuery to atach an event handler to the <canvas> element that listens for
keydown events. Although we're not providing support for IE and so don't need jQuery for
its cross-browser normalizaion when ataching events, it sill makes the event handling
process much easier.

Within the funcion that is executed whenever a keydown event is detected, we check for
the presence of either the let or right arrow keys, which have a which property in the event
object of 37 and 39, or the space bar, which has the code 32.

If the code 37 or 39 is detected we then use a nested if statement to determine between
the two keys. We also check that the ship hasn't reached either the let edge, or the right
edge of the canvas.

We then use the clearRect() funcion to remove the ship and draw a new one either 4
pixels to the let, or 4 pixels to the right depending on which key was pressed. This gives the
ship let and right moion along the botom of the canvas.

The second branch of the outer condiional deals with the space bar being pressed, which
causes a bullet to leave the ship and travel in a straight line to the top of the canvas. The
bullets will be white, so we set the fillStyle property of the canvas to #fff.

Chapter 10

[299]

We also declare some more local variables here including bulletPos which is the current
posiion of the bullet plus half of the width of the ship, and an array to hold the x and y
coordinates of the bullet. The values for this array are set to the bulletPos variable for the
x posiion, and directly above the nose of the ship for the y posiion. We also store the length
of the aliens array as a local variable for use in a for loop once again.

We deine an inline funcion along with our variables called fire(). This funcion is used
in conjuncion with an interval to create the moion of the bullet. Within this funcion, we
check that the bullet hasn't reached the top of the canvas, and provided it hasn't, that is if
its y posiion is greater than 0, we remove the bullet with the clearRect() funcion, then
update the values in the bulletPos array and draw the bullet in its new locaion using the
updated values from the array.

Once the posiion of the bullet has been updated, we then need to check whether the bullet,
in its new posiion, has collided with an alien or not, so we use a for loop to iterate over
each alien in the aliens array.

On each iteraion we irst check whether the bullet falls within the y axis of an alien, that
is whether its posiion is less than the botom edge of an alien, but more than its top edge.
The aliens are posiioned according to their top-let corner, so to work out whether the
bullet has passed its botom edge we just add the height of an alien to its y posiion.

If the bullet does fall within the alien on the y axis, we then check whether it falls within
the space an alien is taking up along the x axis. If it does, we remove the alien from the
canvas with the clearRect() funcion and splice the alien out of the array so that it
stays removed.

We then remove the bullet from the canvas using the clearRect() funcion again,
and clear the bulletInt interval. If there are no more aliens let, we clear the interval
producing the moion of the aliens, reset the dirCounter variable, reduce the
alienSpeed variable by 100, and then call the addAliens() funcion to redraw
the aliens at the top of the canvas.

This is efecively how the player moves up to the next level, and each ime the aliens are
redrawn they move faster, creaing basic progression of the game. This now brings us to the
end of the code. If we run the game now in a standard-compliant browser such as Firefox or
Chrome, we should ind that we have a perfectly playable game, implemented enirely using
JavaScript and the <canvas> element.

Canvas Animaions

[300]

Pop quiz – creating canvas-based games
1. In this example a lot of funcionality that related to the player's space ship was put

into an onload event handler. Why?

a. Because we cannot interact with an image unil it has loaded completely

b. To make the code work correctly in Internet Explorer

c. Because the code runs faster once the image has inished loading

d. To help make our code more modular

2. Why did we set the textAlign property of the canvas to center when wriing the
GAME OVER message?

a. Seing the alignment is a prerequisite for wriing text to the canvas

b. Because it is easier than working out the width of the text and then seing its
posiion on the x axis in order to posiion the text in the center of the canvas

c. To ani-alias the text

d. Because it is more eicient than using padding

Have a go hero – extending the space invaders clone
Our game is a much simpler version of the original space invaders. The original arcade
game had many other features including aliens that ired back at the player's ship, bases to
hide behind, and one of special aliens that appeared randomly throughout the game and
dropped bonuses when hit.

Certainly one thing that the game needs is a scoring mechanism, otherwise there is simply
no incenive to play. Implement a scoring system that tracks a player's score throughout the
game and saves the highest score to the player's machine. This could be done easily with
jQuery and the cookie plugin, or using LocalStorage.

I'd also urge you, as this is the last example of the book, to implement some of the other
missing features, such as giving the aliens the ability to ire back, and adding bases or shields
that the player can hide beneath when the going gets tough.

Chapter 10

[301]

Summary
In this chapter we looked at the HTML5 <canvas> element and saw how it can be used
to create simple, staic images, basic animaions, and even complex interacive games. It
provides a rich API that allows us to interact with it programmaically and gives us complete
pixel-level control over an area of the page.

We also saw that although current versions of Internet Explorer don't support the <canvas>
element naively, we can use a JavaScript library provided by Google to port most canvas
funcionality to this browser. Some animaions however are sill beyond IE8's capabiliies
even with Google's library. IE9 does support the <canvas> element, so hopefully the
requirement of this library will soon become a thing of the past.

In this chapter, we covered the following subjects:

 � The <canvas> script API

 � Drawing to the <canvas>

 � Using the <canvas> with Internet Explorer

 � Creaing animaions on the <canvas>

 � Creaing interacive games with the <canvas>

Like with the CSS3 examples from the last chapter, there are no methods or properies in
jQuery speciically for use with <canvas>, although they have been a number of plugins
that combine the power of <canvas> with the ease of jQuery, and several projects that
extend the jQuery animate() method to allow it work on objects drawn to the canvas. For
more informaion on this, a good staring point is Steven Witens' blog at http://acko.
net/blog/abusing-jquery-animate-for-fun-and-profit-and-bacon.

We've now reached the end of the book. I hope that over these 10 chapters I've given you a
solid foundaion for producing animaions using jQuery that acts as a solid staring point for
you to bring your web-based UIs to life.

Pop Quiz Answers

Chapter 1

Basic animation with jQuery

Quesion number Answers

1 b

2 c

Chapter 2

Using fadeIn

Quesion number Answers

1 b

2 a

Using fadeOut

Quesion number Answers

1 a

2 d

Pop Quiz Answers

[304]

Using fadeToggle()

Quesion number Answers

1 c

Using fadeTo

Quesion number Answers

1 d

2 c

Using show and hide

Quesion number Answers

1 c

2 a

Chapter 3

Viewing the queue

Quesion number Answers

1 b

2 c

Adding new items to the array

Quesion number Answers

1 a

Appendix

[305]

Keeping the queue running

Quesion number Answers

1 a

Replacing the queue

Quesion number Answers

1 c

2 d

Stopping an animation

Quesion number Answers

1 c

2 d

Chapter 4

Sliding elements down

Quesion number Answers

1 c

2 a

Sliding elements up

Quesion number Answers

1 d

Pop Quiz Answers

[306]

Using slideToggle

Quesion number Answers

1 c

2 a

Using easing

Quesion number Answers

1 b

2 a

Fixing the licker

Quesion number Answers

1 c

Chapter 5

Creating an animated content-viewer

Quesion number Answers

1 b

2 c

Creating expanding images

Quesion number Answers

1 d

2 a

Appendix

[307]

Creating a plugin

Quesion number Answers

1 d

2 c

Chapter 6

Using the effect API

Quesion number Answers

1 d

2 b

Using show/hide logic

Quesion number Answers

1 c

2 a

Easing, color, and class animations

Quesion number Answers

1 d

2 c

Chapter 7

Animating page scroll

Quesion number Answers

1 c

2 a

Pop Quiz Answers

[308]

Implementing the parallax effect

Quesion number Answers

1 c

2 c

Creating a single-page website

Quesion number Answers

1 b

2 c

Implementing stop-motion animation with jQuery

Quesion number Answers

1 d

Chapter 8

Implementing proximity animations

Quesion number Answers

1 c

2 b

Creating a marquee scroller

Quesion number Answers

1 d

2 c

Appendix

[309]

Chapter 9

Implementing CSS3 rotation

Quesion number Answers

1 c

2 a

Using the matrix

Quesion number Answers

1 c

2 d

Chapter 10

Drawing to the canvas

Quesion number Answers

1 d

2 c

Supporting IE

Quesion number Answers

1 b

2 c

Pop Quiz Answers

[310]

Animating the canvas

Quesion number Answers

1 b

2 c

Creating canvas-based games

Quesion number Answers

1 a

2 b

Index
Symbols
:animated ilter 88
<buton> element 41
 element 204
<nav> element 24
#slide wrapper element 105
 element 26
<table> element 41
 element 25
#viewer element 105

A
addAliens() funcion 293
addClass(), class transiion methods 176
addColorStop() method 270
add() method 110
alienMoion() funcion 296
aliens

adding, to canvas game 293, 294
moving 294, 296

alt atribute 107
animated content viewer

creaing 104, 105, 113
animated loader

creaing 14
animated page headers

about 217
creaing 218, 219
extending 219

animated page scroll
extending 186

animated UIs 8
animate() method

about 102

alternaive syntax 103
coniguraion opions 103
per-property easing 102

animaion efects, jQuery UI
blind 139
bounce 139
clip 139
drop 139
explode 140
fold 140
highlight 140
puf 140
pulsate 140
scale 140
shake 140
size 140
slide 140
transfer 140

animaion example
about 13
animated loader, creaing 14

animaion methods
addClass() 137
animate() 137
efect() 137
hide() 137
show() 137
switchClass() 137
toggle() 137

animaion methods, jQuery 10
animaions

avoiding 10
checklist 10
default frame rate, changing 70
disabling, globally 70
prevening, stop() method used 68

[312]

show() or hide() method, triggering 46-51
stopping 66, 67
using 9

API methods, canvas element
illText() method 270
measureText() method 270
stroketext() method 270

arc() fmethod 268
arcTo() method 268
auto expand parameter 241

B
background-image animaions 179
BasicImage ilter property 245
beginPath() method 268
bezierCurveTo() method 268
black-border problem 32
blind efect

about 155
coniguraion opions 156
using 156, 157

border-radius style property 25
bounce efect

about 141
coniguraion opions 141
using 141, 142

C
callback funcion

using, to keep queue running 62, 63
canvas animaion

about 281
creaing 282-289
red crosses, animaing 286-289
white crosses, animaing 284, 285

canvas API
about 266
canvas element 266
context methods 267
images and paterns 269
naive shapes 267
paths 268
pixel manipulaion 271
text 270
transformaion methods 271

canvas element
about 266
clearRect(a, b, c, d) method 267
code, making compaible with IE 278-280
drawing to 272-276
illRect(a, b, c, d) method 267
illStyle property 268
getContext() method 266
IE support 277
IE support, extending 281
properies 267
shadowBlur property 268
shadowColor property 268
shadowOfsetX property 268
shadowOfsetY property 268
strokeRect(a, b, c, d) method 267
strokeStyle property 268
toDataURL() method 266
transformaion methods 271
using, with IE 277

canvas game
aliens, adding to page 293, 294
aliens, moving 294, 296
creaing 290
handlers, adding 297-299
iniial page, creaing 290, 291
iniial script 292, 293
space invaders clone, extending 300

classes
transiioning between 176

class transiion methods
addClass() 176
removeClass() 176
toggleClass() 176

class transiions
about 176
using 176

clearQueue() method 55, 65
clearRect(a, b, c, d) method 267
clearRect() funcion 296
clearType efect 45
click() event-helper method 42
click() method 42
clip efect

about 157
coniguraion opions 157

[313]

element, clipping in and out 158, 159
using 158, 159

clone() method 41
closeIt() funcion 98
closePath() method 268
color animaions

about 174
using 174, 175

colorChange() funcion 65
conig object 128
coniguraion opions, animate() method

about 103
complete 103
duraion 103
easing 103
queue 103
specialEasing 103
step 103

coniguraion opions, blind efect
direcion 156
mode 156

coniguraion opions, bounce efect
direcion 141
distance 141
mode 141
imes 141

coniguraion opions, clip efect
direcion 157
mode 157

coniguraion opions, drop efect
direcion 160
mode 160

coniguraion opions, explode efect
mode 162
pieces 162

coniguraion opions, fold efect
horizFirst 164
mode 164
Size 164

coniguraion opions, highlight efect
color 143
mode 143
mode 166
percent 166

coniguraion opions, pulsate efect
mode 145
imes 145

coniguraion opions, scale efect
direcion 170
from 170
origin 170
percent 170
scale 170

coniguraion opions, shake efect
direcion 147
distance 147
imes 147

coniguraion opions, size efect
from 149
origin 149
scale 149
to 149

coniguraion opions, slide efect
direcion 168
distance 168
mode 168

coniguraion opions, transfer efect
className 152
to 152

container object 109
contentLoaded event 196
context methods, canvas element

about 267
restore() 267
save() 267

counter variable 132
createImageData() method 271
createLinearGradient() method 270
createOverlay() funcion 128
createPatern() method 269
createRadialGradient() method 270
CSS3 2D transforms

about 231
Internet Explorer transforms 239, 240
jQuery, using 238
matrix 232
transform funcions 232
working with 238

CSS3 3D transforms 241, 242
CSS3 animaions 231
CSS3 rotaion

extending 247
IE issues 246
implemening 242-246

[314]

cssHooks
using 239

cssHooks feature 186
css() method 186
custom queues

creaing 65
funcions, dequeueing 66

D
delay() method 55
delegate() method 227
deleteRow funcion 42
deleteRow variable 41
dequeue() method 55, 57
document.getElementById() funcion 41
doRotate() funcion 245
draw() funcion 281
drawImage() method 269
drop efect

about 159
coniguraion opions 160
using 160

E
each() funcion 196
each() method 116, 131, 196
easeOutBounce easing funcion 141
easeOutBounce easing type 90
easing

about 89
linear easing 89
object literal, using 91
swing easing 89

easing funcions
easing, adding to efects 174
using 173

efect API
bounce efect 141
experimening with 173
highlight efect 143
pulsate efect 145
shake efect 147
size efect 149
transfer efect 152
using 140

efect() method 140
elements

skewing, from let to right 259-261
sliding down 74
sliding up 80, 81
visibility, toggling 83-87

element size
animaing 114

element’s posiion
animated content viewer, animaing 104, 105
animaing 103
event handlers, adding for UI elements 109,

110
post-animaion callback, deining 107, 108
variables, iniializing 106
widget, prepping 106

element’s rotaion
animaing 242-246

element’s skew
animaing 254-259

eq() method 131
event handlers

adding, to UI elements 109, 110
expander-wrapper styles 115
explode efect

about 162
coniguraion opions 162
element, exploding 163
using 163

explorercanvas library
clearRect() method 277
using 277

extend() method 126

F
fadeIn() method 20
fadeout() method 60
fadeOut() method

about 20, 27, 28
dialog, creaing 29, 30

fadeToggle() method 20
about 33
extending 36
hiding 34-36
showing 34-36

fadeTo() method

[315]

about 36
opacity control 36
parial opacity, animaing 37

fading animaions
about 20
coniguring 20, 21
scriping 25, 26
styling, adding 23, 24
underlying markup, adding 23, 24
Uniied Animaion API 21

fading PNGs, in IE 31, 32
fallback mechanism 277
ill() method 269
illRect(a, b, c, d) method 267
illRect() method 283
illStyle property 268
illText() method 270
ilter atribute 45
ilter property 240, 245
ind() method 41, 107
latMatrix array 257
licker efect

about 92
avoiding 92- 97
issues 92
troubleshooing 97, 98

ly-out submenus 47, 48
fn.extend() method 121
fold efect

about 164
coniguraion opions 164
element, folding 164, 165
using 164, 165

font-size 123
funcion

adding, to queue 61
funcions, custom queues

dequeueing 66
fx property 70
fx queue

about 55
working with 56

G
getImageData() method 271
getJSON() method 225

getVendor() funcion 246, 252
globalAlpha property 267
globalCompositeOperaion property 267
goAnim() funcion 214, 215
growDiagonal() funcion 286
growVerical() funcion 286

H
highlight efect

about 143
coniguraion opions 143
elements, highlighing 143
implemening 143, 144

history, web animaion 7, 8
hover() method 151
href atribute 109
href property 197

I
id atribute 107, 211
IE

fading PNGs 31-33
table rows, fading 43-46

IE issues 246
image viewer

making scalable 113
iniial page, canvas game

creaing 290, 291
iniial script, canvas game 292
Internet Explorer transforms 239-241
interval property 70

J
JavaScript getElementById() funcion 184
join() method 246
jQuery

animate() method 102
animaion methods 10
cssHooks feature 186
easing 89
elements, sliding down 74- 78
elements, sliding up 79-82
elements visibility, toggling 83-87

[316]

fading animaions 20
licker efect 92
proximity animaions 207
scrollTop() method 180
slide-down login form, creaing 75-78
sliding animaions 73
sliding methods 73
Uniied Animaion API 21

jQuery animaion plugin
conigurable opions, deining 124, 125
creaing 121
guidelines for creaing 121, 122
implemening 132-134
license, adding 124, 125
plugin method, adding to jQuery namespace

125, 126
test page, creaing 122, 123
transiion overlay, creaing 129, 130
transiions, deining 130, 131
UI, creaing 127, 128

jQuery animaions 19
jquery.easing.1.3.js plugin

about 89
easing types 90

jQuery methods
about 19
fadeIn() 20
fadeOut() 20
fadeToggle() 20

jQuery object
fx property 70
interval property 70
properies 70

jQuery UI
about 138
animaion methods 137
class transiions 176
color animaions 174
downloading 138
easing funcions 173
efect() method 140
new template ile 139
predeined animaion efects 139
seing up 139

K
keyboard events

adding, proximity animaions 215
keyCode property 216
keydown event 189
keyMatch variable 108
keyup event handler 216
key variable 107

L
linear easing 89
lineCap property 269
line-height 123
lineJoin property 269
lineTo() method 269
lineWidth property 269, 285
live() method 42
loading animaion

extending 17

M
marquee element 227
marquee-ready event 228
marquee text

about 219
marquee scroller, extending 228
page, creaing and styling 220-222
post links, animaing 227
post list, processing 222-225
post list, retrieving 222- 225

match() funcion 108
matrix animaion

extending 263
matrix, CSS3 2D transforms

about 232
rotaion funcion 237
scale funcion 234, 235
skew funcion 236
translate funcion 233

Matrix ilter 245
matrix funcion

about 232
examples 232

[317]

measureText() method 270
messageList variable 41
methods, paths

arc(a, b, c, d, e, f) 268
arcTo(a, b, c, d, e) 268
beginPath() 268
bezierCurveTo(a, b, c, d, e, f) 268
closePath() 268
ill() 269
lineTo(a, b) 269
moveTo(a, b) 269
quadraicCurveTo(a, b, c, d) 269
stroke() 269

methods, pixel manipulaion
createImageData() 271
getImageData() 271
putImageData() 271

middle variable 212
miterLimit property 269
mouseeenter event handler 215
mouseenter event 151
mouse events

adding, to proximity animaions 214
mouseleave handler funcion 98
mousenter event handling funcion 98
moveTo() method 269

N
naive shapes, canvas element 267
newScroll variable 184
noConlict() method 125
normalizedDuraion variable 214
not() method 109

O
ofset() method 116, 184
onload handler 281
overlay images

creaing, in widget 116
overlay posiions, widget

maintaining 119
overlay wrappers

creaing, in widget 116-118

P
page scroll

animaing 179-184
parallax efect

about 186
background posiion, animaing 188, 189
cssHooks feature, using 186
extending 190
implemening 189
stage, creaing 187, 188
stage, styling 187, 188

parseInt() funcion 257
parial opacity

animaing 37
behavior, adding 39-41
example page, creaing 38-43

pop() funcion 56
posLetMarker variable 130
post-animaion callback

deining 107, 108
postAnim funcion
postAnim() funcion 108, 110
preFlat object 257
preventDefault() funcion 78, 262
preventDefault() method 109, 128, 184
properies

globalAlpha 267
globalCompositeOperaion 267

properies, createImageData() method
data 272
height 272
length 272
width 272

properies, paths
lineCap 269
lineJoin 269
lineWidth 269
miterLimit 269

properies, text
font 271
textAlign 271
textBaseline 271

[318]

proximity animaions
about 207
extending 216
keyboard events, adding 215, 216
mouse events, adding to 214
page, creaing and styling 208, 209
page, prepping for sliding funcionality 210-213
scroller, animaing 213, 214

puf efect
about 166
coniguraion opions 166
element, making disappear in puf 166, 167
using 166, 167

pulsate efect
about 145
coniguraion opions 145
element, pulsaing 145, 146
using 145, 146

purecss class 26
push() funcion 56
putImageData() method 271

Q
quadraicCurveTo() method 269
queue

callback funcion, using 62, 63
clearing 69
funcion, adding 61
replacing 63
single funcion, adding 61
viewing 57,-60
working with 56

queue execuion
delaying 69

queue() method 55, 57

R
rectInt variable 286
rectMoion() funcion 283, 289
removeClass(), class transiion methods 176
removeClass() method 177
removeFrame() funcion 204
resetOfset variable 214
reverse() funcion 56
rotate funcion 232

rotate() method 271
rotateStrings array 245

S
Scalable Vector Graphics (SVG) 277
scale efect

about 170
coniguraion opions 170
element, scaling 170, 172
using 170, 172

scale funcion 232, 234
scale() method 271
scaleX funcion 232
scaleY funcion 232
screensize object 196
scroller variable 212
scrollHeight property 184
scroll navigaion

adding, to single-page navigaion 193-195
scrollTo() method 197
scrollTo plugin 185, 197
scrollTop() method 179, 184
setInterval() funcion 204, 246, 289
setInterval() method 219
setTimeout() funcion 98
shadowBlur property 268
shadowColor property 268
shadowOfsetX property 268
shadowOfsetY property 268
shake efect

about 147
coniguraion opions 147
element, shaking 147, 148
using 147, 148

show() or hide() method 155
triggering 46, 47

simple CSS hover states
enhancing, fadeIn() animaions used 22, 23

single-page navigaion
animaing 190
extending 200
individual pages, creaing 190-193
scroll navigaion, adding 193-195
styles, adding to pages 190-193

single-page website
creaing 196-199

[319]

size efect
about 149
coniguraion opions 149
elements, resizing 150, 151
using 150, 151

sizingMethod 240
sizingMethod parameter 252
skew funcion 232, 236
skewRTL() funcion 259
skew() transform

animaing 247-249
basic styling 248
controls, wiring up 262
underlying markup, creaing 248
widget, iniializing 250, 251

skewX funcion 232
skewY funcion 232
slice() method 256
slide-down login form

creaing 75-78
slideDown() method 197, 226

about 73
using 74
working 74

slide efect
about 168
coniguraion opions 168
elements, sliding 168, 169
using 168, 169

slideToggle() method
about 73, 83
using 83-87
working 83

slideUp() method
about 73, 79
using 79-81
working 79

sliding methods
slideDown() 73
slideToggle() 73
slideUp() 73

space invaders clone
extending 300

specialEasing opion 103
split() funcion 116, 219, 257
split() method 109

stop() method 55, 66, 152
stop-moion animaion

about 201
extending 204
frames, creaing 202, 203
imagery 201
implemening 204
markup and styling, adding 202
running 202, 203
technique 201

stroke() method 269
strokeRect(a, b, c, d) method 267
strokeStyle property 268
stroketext() method 270
swing easing 89
switchClass() method 176, 177

T
table rows

fading, in IE 43-45
template ile

about 11, 13
project folder, creaing 13

text() method 88, 211
itle atribute 107
toggleClass(), class transiion methods 176
toggle() method 155

about 52
show and hide, replacing with 52, 53

toString() funcion 59
transfer efect

about 152
coniguraion opions 152
outline, transferring from one element to an-

other 152-154
using 152-154

transformaion methods, canvas element
rotate() 271
scale() 271
transform() 271
translate() 271

transform funcions
matrix 232
rotate 232
scale 232
scaleX 232

[320]

V
Vector Markup Language (VML) 277
vendor variable 244
verical navigaion menu

creaing 47, 48

W
web animaion

history 7, 8
Webkit 115
whiteLines() funcion 286
widget

skinning 111
widget skinning

about 111
animated content-viewer, adding 113
basic styling, creaing 114
element size, animaing 114
expanding images, creaing 120
image sizes, specifying 115
image viewer, making scalable 113
new skin, adding 111-113
overlay images, creaing 116
overlay posiions, maintaining 119, 120
overlay wrappers, creaing 116-118
underlying page, creaing 114

scaleY 232
skew 232
skewX 232
skewY 232
translate 232
translateX 232
translateY 232

transform() method 271
transform property 244
transiion overlay

creaing 129
transiions

deining 130
transiionWidth property 133
translate funcion 232, 233
translate() method 271
translateX funcion 232
translateY funcion 232
transparent 123
tranzify 125
trigger() jQuery method 226

U
Uniied Animaion API 21
userConig object 126

Thank you for buying
jQuery 1.4 Animation Techniques: Beginner's Guide

About Packt Publishing
Packt, pronounced 'packed', published its irst book "Mastering phpMyAdmin for Efecive
MySQL Management" in April 2004 and subsequently coninued to specialize in publishing
highly focused books on speciic technologies and soluions.

Our books and publicaions share the experiences of your fellow IT professionals in adaping
and customizing today's systems, applicaions, and frameworks. Our soluion based books
give you the knowledge and power to customize the sotware and technologies you're
using to get the job done. Packt books are more speciic and less general than the IT books
you have seen in the past. Our unique business model allows us to bring you more focused
informaion, giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cuing-edge books for communiies of developers, administrators, and newbies alike. For
more informaion, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to coninue its focus on specializaion. This book is part of the Packt Open Source brand,
home to books published on sotware built around Open Source licences, and ofering
informaion to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose sotware a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is sill at an early stage and you
would like to discuss it irst before wriing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no wriing
experience, our experienced editors can help you develop a wriing career, or simply get
some addiional reward for your experise.

jQuery 1.4 Reference Guide
ISBN: 978-1-849510-04-2 Paperback: 336 pages

A comprehensive exploraion of the popular
JavaScript library

1. Quickly look up features of the jQuery library

2. Step through each funcion, method, and selector
expression in the jQuery library with an easy-to-
follow approach

3. Understand the anatomy of a jQuery script

jQuery UI 1.7: The User Interface Library for jQuery
ISBN: 978-1-847199-72-0 Paperback: 392 pages

Build highly interacive web applicaions with
ready-to-use widgets from the jQuery User
Interface library

1. Organize your interfaces with reusable widgets:
accordions, date pickers, dialogs, sliders, tabs, and
more

2. Enhance the interacivity of your pages by making
elements drag-and-droppable, sortable, selectable,
and resizable

3. Packed with examples and clear explanaions of
how to easily design elegant and powerful front-end
interfaces for your web applicaions

Please check www.PacktPub.com for information on our titles

Learning jQuery 1.3
ISBN: 978-1-847196-70-5 Paperback: 444 pages

Beter Interacion Design and Web Development
with Simple JavaScript Techniques

1. An introducion to jQuery that requires minimal
programming experience

2. Detailed soluions to speciic client-side problems

3. For web designers to create interacive elements for
their designs

4. For developers to create the best user interface for
their web applicaions

jQuery Reference Guide
ISBN: 978-1-847193-81-0 Paperback: 268 pages

A Comprehensive Exploraion of the Popular
JavaScript Library

1. Organized menu to every method, funcion, and
selector in the jQuery library

2. Quickly look up features of the jQuery library

3. Understand the anatomy of a jQuery script

4. Extend jQuery's built-in capabiliies with plug-ins,
and even write your own

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introduction
	Animation on the Web
	The power of animated UIs
	When to use animations
	When not to use animations
	Animation checklist

	Animating with jQuery
	The template file
	Creating a project folder

	A basic animation example
	Time for action – creating an animated loader
	Summary

	Chapter 2: Fading Animations
	Fading animations
	Configuring the animations with arguments
	jQuery's Unified Animation API
	Enhancing simple CSS hover states with fadeIn

	Time for action – adding the underlying markup and styling
	Time for action – scripting the animation
	Fading elements out
	Time for action – creating the dialog
	Fading PNGs in IE
	Using fadeToggle() for convenient state-checking logic
	Time for action – showing and hiding with fadeToggle()
	Greater opacity control with fadeTo()
	Animating to partial opacity

	Time for action – creating the example page
	Time for action – adding the behavior
	Fading table rows in Internet Explorer

	Time for action – fading table-rows in IE
	Showing and hiding
	Flyout submenus with jQuery's show/hide logic

	Time for action – animations with show/hide
	Animated toggling

	Time for action – replacing show and hide with toggle
	Summary

	Chapter 3: Managing Animations
	Working with the queue
	Viewing the queue

	Time for action - viewing the queue
	Adding a function to the queue

	Time for action – adding a single function to the queue
	Using a callback function to keep the queue moving

	Time for action – keeping the queue running
	Replacing the queue

	Time for action – replacing the queue
	Ensuring custom queues iterate correctly
	Time for action – dequeueing functions
	Stopping an animation
	Time for action – preventing animation build-up using
	the stop method
	Delaying queue execution
	Clearing the queue
	Useful properties of the jQuery object
	Globally disabling animations
	Changing the default frame rate

	Summary

	Chapter 4: Sliding Animations
	Sliding elements into view
	Time for action – creating a slide-down login form
	Sliding elements out of view
	Time for action – sliding elements up
	Toggling the slide
	Time for action – using slideToggle
	Easing
	Time for action – adding easing
	Using an object literal to add easing

	Time for action – using the alternative argument format
	The flicker effect
	Time for action – avoiding the flicker effect
	Time for action – fixing the flicker
	Summary

	Chapter 5: Custom Animations
	The animate method
	Per-property easing
	An alternative syntax for animate()

	Animating an element's position
	Time for action – creating an animated content viewer
	Time for action – initialising variables and prepping the widget
	Time for action – defining a post-animation callback
	Time for action – adding event handlers for the UI elements
	Skinning the widget
	Time for action – adding a new skin
	Time for action – creating the underlying page and basic styling
	Time for action – defining the full and small sizes of the images
	Time for action – creating the overlay images
	Time for action – creating the overlay wrappers
	Time for action – maintaining the overlay positions
	Creating a jQuery animation plugin
	Time for action – creating a test page and adding some styling
	Creating the plugin
	Time for action – adding a license and defining
	configurable options
	Time for action – adding our plugin method to the
	jQuery namespace
	Time for action – creating the UI
	Time for action – creating the transition overlay
	Time for action – defining the transitions
	Using the plugin
	Summary

	Chapter 6: Extended Animations with jQuery UI
	Obtaining and setting up jQuery UI
	A new template file

	The new effects added by jQuery UI
	Using the effect API
	The bounce effect
	Configuration options

	Time for action – using the bounce effect
	The highlight effect
	Configuration options

	Time for action – highlighting elements
	The pulsate effect
	Configuration options

	Time for action – making an element pulsate
	The shake effect
	Configuration options

	Time for action – shaking an element
	The size effect
	Configuration options

	Time for action – resizing elements
	The transfer effect
	Configuration options

	Time for action – transferring the outline of one element
	to another
	Using effects with show and hide logic
	The blind effect
	Configuration options

	Time for action – using the blind effect
	The clip effect
	Configuration options

	Time for action – clipping an element in and out
	The drop effect
	Configuration options

	Time for action – using the effect
	The explode effect
	Configuration options

	Time for action – exploding an element
	The fold effect
	Configuration options

	Time for action – folding an element away
	The puff effect
	Configuration options

	Time for action – making an element disappear in a puff
	The slide effect
	Configuration options

	Time for action – sliding elements in and out of view
	The scale effect
	Configuration options

	Time for action – scaling an element
	Easing functions
	Time for action – adding easing to effects
	Color animations
	Time for action – animating between colors
	Class transitions
	Time for action – transitioning between classes
	Summary

	Chapter 7: Full Page Animations
	Animated page scroll
	Time for action – creating the page that will scroll
	and its styling
	Time for action – animating the scroll
	The illusion of depth with parallax
	A little help from the new cssHooks functionality

	Time for action – creating the stage and adding the styling
	Time for action – animating the background position
	Animated single-page navigation
	Time for action – creating the individual pages
	and adding the styles
	Time for action – adding the scroll navigation
	Stop-motion animation
	Imagery
	Technique

	Time for action – adding the markup and styling
	Time for action – creating the frames and running the animation
	Summary

	Chapter 8: Other Popular Animations
	Proximity animations
	Time for action – creating and styling the page
	Time for action – prepping the page for sliding functionality
	Time for action – animating the scroller
	Time for action – adding the mouse events
	Time for action – adding keyboard events
	Animated page headers
	Time for action – creating an animated header
	Marquee text
	Time for action – creating and styling the underlying page
	Time for action – retrieving and processing the post list
	Time for action – animating the post links
	Summary

	Chapter 9: CSS3 Animations
	CSS3 2D transforms
	Understanding the matrix
	Translate
	Scale
	Skew
	Rotation

	Working with transforms
	jQuery and transforms
	Internet Explorer transforms

	CSS3 3D transforms
	Animated rotation with jQuery and CSS3
	Time for action – animating an element's rotation
	Problems with IE

	Animated skewing
	Time for action – creating the underlying markup
	and basic styling
	Time for action – initializing the widget
	Time for action – animating an element's skew
	Time for action – skewing an element from left to right
	Time for action – wiring up the controls
	Summary

	Chapter 10: Canvas Animations
	The canvas API
	The canvas element
	Context methods
	Native shapes
	Paths
	Images and patterns
	Text
	Transformation methods
	Pixel manipulation

	Drawing to the canvas
	Time for action – drawing to the canvas
	Canvas, IE, and the alternatives
	API methods that simply do not work

	Time for action – making our code compatible with IE
	Animating the canvas
	Time for action – creating an animation on the canvas
	Time for action – animate the white crosses
	Time for action – animating the red crosses
	Creating a canvas game
	Time for action – creating the initial page
	Time for action – the initial script
	Time for action – adding the aliens to the page
	Time for action – moving the aliens
	Time for action – adding handlers to control the ship
	Summary

	Pop Quiz Answers
	Chapter 1
	Basic animation with jQuery

	Chapter 2
	Using fadeIn
	Using fadeOut
	Using fadeToggle()
	Using fadeTo
	Using show and hide

	Chapter 3
	Viewing the queue
	Adding new items to the array

	Keeping the queue running
	Replacing the queue
	Stopping an animation

	Chapter 4
	Sliding elements down
	Sliding elements up
	Using slideToggle
	Using easing
	Fixing the flicker

	Chapter 5
	Creating an animated content-viewer
	Creating expanding images
	Creating a plugin

	Chapter 6
	Using the effect API
	Using show/hide logic
	Easing, color, and class animations

	Chapter 7
	Animating page scroll
	Implementing the parallax effect
	Creating a single-page website
	Implementing stop-motion animation with jQuery

	Chapter 8
	Implementing proximity animations
	Creating a marquee scroller

	Chapter 9
	Implementing CSS3 rotation
	Using the matrix

	Chapter 10
	Drawing to the canvas
	Supporting IE
	Animating the canvas
	Creating canvas-based games

	Index

