
www.allitebooks.com

http://www.allitebooks.org

jQuery 1.4 Reference Guide

A comprehensive exploration of the popular
JavaScript library

Karl Swedberg

Jonathan Chaffer

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

jQuery 1.4 Reference Guide

Copyright © 2010 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2010

Production Reference: 1190110

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-84951-004-2

www.packtpub.com

Cover Image by Karl Swedberg (karl@englishrules.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Authors
Karl Swedberg

Jonathan Chaffer

Reviewers
Joydip Kanjilal

Dave Methvin

Acquisition Editor
Swapna V. Verlekar

Development Editor
Swapna V. Verlekar

Technical Editor
Tariq Rakhange

Copy Editor
Sneha Kulkarni

Indexer
Hemangini Bari

Production Editorial Manager
Abhijeet Deobhakta

Editorial Team Leader
Mithun Sehgal

Project Team Leader
Lata Basantani

Project Coordinator
Joel Goveya

Proofreader
Chris Smith

Graphics
Nilesh R. Mohite

Production Coordinator
Dolly Dasilva

Cover Work
Dolly Dasilva

www.allitebooks.com

http://www.allitebooks.org

About the Authors

Karl Swedberg is a web developer at Fusionary Media in Grand Rapids,
Michigan, where he spends much of his time solving problems with JavaScript
and implementing design. A member of the jQuery Project Team and an active
contributor to the jQuery discussion list, Karl has presented at workshops and
conferences, and provided corporate training in Europe and North America.

Before he got hooked on to web development, Karl worked as a copy editor,
a high-school English teacher, and a coffee house owner. He gave up his dream of
becoming a professional musician in the early 1990s about the same time that he
stumbled into a job at Microsoft in Redmond, Washington. He sold his hollow-body
Rickenbacker ages ago, but still keeps an acoustic guitar in the basement.

I wish to thank my wife, Sara, for keeping me sane. Thanks also to
my two delightful children, Benjamin and Lucia. Jonathan Chaffer
has my deepest respect for his programming expertise and my
gratitude for his willingness to write this book with me.

Many thanks to John Resig for creating the world's greatest
JavaScript library and for fostering an amazing community around
it. Thanks also to the folks at Packt Publishing, the technical
reviewers of this book, the jQuery Cabal, and the many others who
have provided help and inspiration along the way.

www.allitebooks.com

http://www.allitebooks.org

Jonathan Chaffer is a member of Rapid Development Group, a web development
irm located in Grand Rapids, Michigan. His work there includes overseeing and
implementing projects in a wide variety of technologies, with an emphasis on PHP,
MySQL, and JavaScript.

In the open source community, Jonathan has been very active in the Drupal CMS
project, which has adopted jQuery as its JavaScript framework of choice. He is the
creator of the Content Construction Kit, a popular module for managing structured
content on Drupal sites. He is responsible for major overhauls of Drupal's menu
system and developer API reference.

Jonathan lives in Grand Rapids with his wife, Jennifer.

I would like to thank Jenny for her tireless enthusiasm and support,
Karl for the motivation to continue writing when the spirit was
weak, and the Ars Technica community for constant inspiration
toward technical excellence.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Joydip Kanjilal is a Microsoft MVP in ASP.NET, and the author of a number
of books on .NET and its related technologies. He has over 12 years of industry
experience in IT with more than 6 years in Microsoft .NET and its related
technologies. He has authored a lot of articles for some of the most reputable sites
such as www.asptoday.com, www.devx.com, www.aspalliance.com,
www.aspnetpro.com, www.mcpressonline.com, www.sql-server-performance.
com, www.sswug.com, and so on. A lot of these articles have been selected at
www.asp.net—Microsoft's oficial site on ASP.NET. Joydip was also a community
credit winner at www.community-credit.com a number of times. Joydip was also
selected as MSDN Featured Developer of the Fortnight in November and December,
2008. Joydip has authored the following books:

•	 ASP.NET 4.0 Programming (Mc-Graw Hill Publishing)
•	 Entity Framework Tutorial (Packt Publishing)
•	 Pro Sync Framework (APRESS)
•	 Sams Teach Yourself ASP.NET Ajax in 24 Hours (Sams Publishing)
•	 ASP.NET Data Presentation Controls Essentials (Packt Publishing)

He is currently working as an independent software consultant and author. He has
years of experience in designing and architecting solutions for various domains. His
technical strengths include C, C++, VC++, Java, C#, Microsoft .NET, AJAX, Design
Patterns, SQL Server, Operating Systems, and Computer Architecture. Joydip blogs
at http://aspadvice.com/blogs/joydip and spends his time reading books,
blogs, and writing books and articles. His hobbies include watching cricket, soccer,
and playing chess.

www.allitebooks.com

http://www.allitebooks.org

Dave Methvin is the Chief Technology Oficer at PC Pitstop and one of the
founding partners of the company. He provides technical direction for the PCPitstop.
com (http://www.pcpitstop.com/) web site and oversees software development.

Before joining PC Pitstop, Dave had an extensive career in computer journalism.
He served as an Executive Editor at both Windows Magazine and PC Tech Journal,
co-authored a book on Windows NT networking, and wrote articles for more than
two dozen publications. Dave blogs on Windows issues for the InformationWeek
(http://www.informationweek.com) web site.

Dave holds both a bachelor's and a master's degree in Computer Science from the
University of Virginia. He has been active in the jQuery community since 2006 and
has written several popular plug-ins such as Splitter.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Anatomy of a jQuery Script 7

A dynamic table of contents 7
Obtaining jQuery 8
Setting up the HTML document 9
Writing the jQuery code 11

Script dissection 12
Selector expressions 12
DOM traversal methods 13
DOM manipulation methods 13
Event methods 14
Effect methods 14
AJAX methods 15
Miscellaneous methods 15
Plug-in API 16

Summary 16
Chapter 2: Selector Expressions 17

CSS selectors 17
Element (T) 17
ID (#myid) 18
Class (.myclass) 18
Descendant (E F) 19
Child (E > F) 20
Adjacent sibling (E + F) 20
General sibling (E ~ F) 21
Multiple expressions (E, F, G) 22
Numbered child (:nth-child(n/even/odd/expr)) 22
First child (:irst-child) 24

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Last child (:last-child) 24
Only child (:only-child) 25
Not (:not(E)) 25
Empty (:empty) 25
Universal (*) 26

Attribute selectors 26
Attribute ([foo]) 27
Attribute equals ([foo=bar]) 27
Attribute does not equal ([foo!=bar]) 27
Attribute begins with ([foo^=bar]) 28
Attribute ends with ([foo$=bar]) 28
Attribute contains ([foo*=bar]) 28
Attribute contains word ([foo~=bar]) 29
Attribute contains preix ([foo|=bar]) 29

Form selectors 30
Custom selectors 31

Element at index (:eq(n)) 31
Greater than (:gt(n)) 32
Less than (:lt(n)) 32
First (:irst) 32
Last (:last) 33
Even element (:even) 33
Odd element (:odd) 34
Is parent (:parent) 34
Contains text (:contains(text)) 35
Contains element (:has(E)) 35
Visible (:visible) 36
Hidden (:hidden) 37
Header element (:header) 37
Currently animating (:animated) 37

Chapter 3: DOM Traversal Methods 39
The jQuery function 39

$() 39
Filtering methods 42

.ilter() 42

.not() 44

.has() 46

.eq() 47

.irst() 48

.last() 49

Table of Contents

[iii]

.slice() 49
Tree traversal methods 51

.ind() 51

.children() 52

.parents() 53

.parentsUntil() 55

.parent() 56

.closest() 57

.offsetParent() 59

.siblings() 60

.prev() 61

.prevAll() 62

.prevUntil() 63

.next() 64

.nextAll() 65

.nextUntil() 66
Miscellaneous traversal methods 68

.add() 68

.is() 69

.end() 70

.andSelf() 72

.map() 73

.contents() 74
Chapter 4: DOM Manipulation Methods 77

General attributes 77
.attr() (getter) 77
.attr() (setter) 78
.removeAttr() 80

Style properties 80
.css() (getter) 80
.css() (setter) 81
.height() (getter) 82
.height() (setter) 83
.innerHeight() 84
.outerHeight() 84
.width() (getter) 85
.width() (setter) 86
.innerWidth() 87
.outerWidth() 87
.offset() (getter) 88

Table of Contents

[iv]

.offset() (setter) 89

.position() 89

.scrollTop() (getter) 90

.scrollTop() (setter) 90

.scrollLeft() (getter) 91

.scrollLeft() (setter) 91
Class attributes 91

.hasClass() 92

.addClass() 92

.removeClass() 93

.toggleClass() 95
DOM replacement 96

.html() (getter) 97

.html() (setter) 97

.text() (getter) 98

.text() (setter) 99

.val() (getter) 101

.val() (setter) 101

.replaceWith() 102

.replaceAll() 103
DOM insertion, inside 104

.prepend() 104

.prependTo() 106

.append() 108

.appendTo() 109
DOM insertion, outside 111

.before() 111

.insertBefore() 112

.after() 114

.insertAfter() 115
DOM insertion, around 117

.wrap() 117

.wrapAll() 118

.wrapInner() 119
DOM copying 121

.clone() 121
DOM removal 122

.empty() 122

.remove() 123

.detach() 125

.unwrap() 125

Table of Contents

[v]

Chapter 5: Event Methods 127
Event handler attachment 127

.bind() 127

.unbind() 131

.one() 134

.trigger() 135

.triggerHandler() 136

.live() 137

.die() 139
Document loading 140

.ready() 140

.load() 141

.unload() 143

.error() 144
Mouse events 144

.mousedown() 145

.mouseup() 146

.click() 148

.dblclick() 149

.toggle() 151

.mouseover() 152

.mouseout() 154

.mouseenter() 156

.mouseleave() 157

.hover() 159

.mousemove() 160
Form events 162

.focus() 162

.blur() 163

.change() 165

.select() 166

.submit() 167
Keyboard events 169

.keydown() 169

.keypress() 171

.keyup() 172
Browser events 174

.resize() 174

.scroll() 175

Table of Contents

[vi]

Chapter 6: Effect Methods 177
Pre-packaged effects 177

.show() 177

.hide() 179

.toggle() 181

.slideDown() 184

.slideUp() 185

.slideToggle() 186

.fadeIn() 189

.fadeOut() 190

.fadeTo() 192
Customized effects 193

.animate() 193

.stop() 198

.delay() 199

.queue() 200

.dequeue() 201

.clearQueue() 202
Chapter 7: AJAX Methods 203

Low-level interface 203
$.ajax() 203
$.ajaxSetup() 209

Shorthand methods 210
$.get() 210
.load() 211
$.post() 212
$.getJSON() 213
$.getScript() 214

Global AJAX event handlers 215
.ajaxComplete() 215
.ajaxError() 217
.ajaxSend() 218
.ajaxStart() 219
.ajaxStop() 220
.ajaxSuccess() 221

Helper functions 223
.serialize() 223
.serializeArray() 224

Table of Contents

[vii]

Chapter 8: Miscellaneous Methods 227
Setup methods 227

$.noConlict() 227
DOM element methods 228

.size() 228

.get() 229

.index() 230
Collection manipulation 232

.each() 232
$.grep() 234
$.makeArray() 235
$.inArray() 236
$.map() 237
$.merge() 239
$.unique() 240
$.extend() 240
$.trim() 242
$.param() 243

Introspection 244
$.isArray() 244
$.isFunction() 245
$.isPlainObject() 245
$.isEmptyObject() 245
$.isXMLDoc() 246

Data storage 246
.data() 246
.removeData() 248

Chapter 9: jQuery Properties 249
Global properties 249

$.browser 249
$.support 250

$.support.boxModel 250
$.support.cssFloat 251
$.support.hrefNormalized 251
$.support.htmlSerialize 251
$.support.leadingWhitespace 251
$.support.noCloneEvent 251
$.support.objectAll 251
$.support.opacity 252
$.support.scriptEval 252
$.support.style 252
$.support.tbody 252

Table of Contents

[viii]

jQuery object properties 252
.length 252
.selector 253
.context 254

Chapter 10: The Plug-in API 255
Using a plug-in 255
Developing a plug-in 256

Object method 256
Global function 258
Selector expression 261

Plug-in conventions 262
Use of the $ alias 262
Naming conventions 263
API standardization 263

Chapter 11: Alphabetical Quick Reference 265
Selector expressions 265
Methods 268
Properties 281

Appendix A: Online Resources 283
jQuery documentation 283
JavaScript reference 284
JavaScript code compressors 285
JavaScript code decompressors 286
(X)HTML reference 286
CSS reference 287
Useful blogs 287
Web development frameworks using jQuery 289

Appendix B: Development Tools 291
Tools for Firefox 291
Tools for Internet Explorer 292
Tools for Safari 293
Tools for Opera 294
Other tools 294

Index 297

Preface
jQuery is a powerful, yet easy-to-use, JavaScript library that helps web developers
and designers add dynamic, interactive elements to their sites, smoothing out
browser inconsistencies and greatly reducing development time. In jQuery 1.4
Reference Guide, you can investigate this library's features in a thorough,
accessible format.

This book offers an organized menu of every jQuery method, function, and selector.
Entries are accompanied by detailed descriptions and helpful recipes that will assist
you in getting the most out of jQuery, and avoiding the pitfalls commonly associated
with JavaScript and other client-side languages. If you're still hungry for more, the
book shows you how to cook up your own extensions with jQuery's elegant
plug-in architecture.

You'll discover the untapped possibilities that jQuery makes available and hone
your skills as you return to this guide time and again.

What this book covers
In Chapter 1, Anatomy of a jQuery Script, we'll begin by dissecting a working jQuery
example. This script will serve as a roadmap for this book, directing you to the
chapters containing more information on particular jQuery capabilities.

The heart of the book is a set of reference chapters, which allow you to quickly
look up the details of any jQuery method. Chapter 2, Selector Expressions, lists every
available selector for inding page elements.

Chapter 3, DOM Traversal Methods, builds on the previous chapter with a catalog of
jQuery methods for inding page elements.

Chapter 4, DOM Manipulation Methods, describes every opportunity for inspecting
and modifying the HTML structure of a page.

Preface

[2]

Chapter 5, Event Methods, details each event that can be triggered and reacted to
by jQuery.

Chapter 6, Effect Methods, deines the range of animations built into jQuery, as well as
the toolkit available for building your own.

Chapter 7, AJAX Methods, lists the ways in which jQuery can initiate and respond to
server communication without refreshing the page.

Chapter 8, Miscellaneous Methods, covers the remaining capabilities of the jQuery
library that don't neatly it into the other categories.

Chapter 9, jQuery Properties, lists properties of the jQuery object that can be inspected
for information about the browser environment.

With the catalog of built-in functionality concluded, we'll dive into the extension
mechanisms jQuery makes available. Chapter 10, Plug-in API, reveals these powerful
ways to enhance jQuery's already robust capabilities using a plug-in.

Chapter 11, Alphabetical Quick Reference, offers a handy list of all methods and
their arguments.

Appendix A, Online Resources, provides a handful of informative web sites on a wide
range of topics related to jQuery, JavaScript, and web development in general.

Appendix B, Development Tools, recommends a number of useful third-party
programs and utilities for editing and debugging jQuery code within your personal
development environment.

What you need for this book
This book is a reference guide, not a tutorial. As such, prior exposure to the
jQuery library will be beneicial in navigating this reference. The book Learning
jQuery 1.3 is well-suited for this purpose.

To understand jQuery concepts, some knowledge of JavaScript is required, and
familiarity with HTML and CSS is helpful.

The jQuery library itself can be downloaded from http://jquery.com/. The
majority of examples in this book require only this library, a text editor, and a
web browser. Some AJAX examples require web server software as well, such as
Apache, but this requirement is avoided wherever possible.

Preface

[3]

Who this book is for
This reference is designed for web developers who want a broad, organized view of
all that the jQuery library has to offer, or want a quick reference on their desks to refer
to for particular details. Basic knowledge of HTML and CSS is required. You should
be comfortable with the syntax of JavaScript, and have basic knowledge of jQuery to
make best use of this book.

Conventions
In this book, you will ind a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "The .removeAttr() method uses the
JavaScript removeAttribute() function."

A block of code is set as follows:

 list item 1

 list item 2

 list item 3

 list item 4

 list item 5

 list item 6

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

<head>

 <meta http-equiv="Content-Type"

 content="text/html; charset=utf-8"/>

 <script src="jquery.js" type="text/javascript"></script>

 <script src="jquery.plug-in.js"

 type="text/javascript"></script>

 <script src="custom.js" type="text/javascript"></script>

 <title>Example</title>

</head>

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "After this
code executes, clicks on Trigger the handler will also display the same message."

www.allitebooks.com

http://www.allitebooks.org

Preface

[4]

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an email to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or email to
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code for the book
Visit http://www.packtpub.com/files/code/0042_Code.zip
to directly download the example code.
The downloadable iles contain instructions on how to use them.

Preface

[5]

Errata
Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you ind a mistake in one of our books—maybe a mistake
in the text or the code—we would be grateful if you would report this to us.
By doing so, you can save other readers from frustration and help us to improve
subsequent versions of this book. If you ind any errata, please report them by
visiting http://www.packtpub.com/support, selecting your book, clicking on
the let us know link, and entering the details of your errata. Once your errata are
veriied, your submission will be accepted and the errata will be uploaded on
our web site, or added to any list of existing errata, under the Erarata section
of that title. Any existing errata can be viewed by selecting your title from
http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or web site name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Anatomy of a jQuery Script
A typical jQuery script uses a wide assortment of the methods that the library
offers. Selectors, DOM manipulation, event handling, and so forth come into play
as required by the task at hand. In order to make the best use of jQuery, it's good to
keep in mind the breadth of capabilities it provides.

This book will itemize every method and function found in the jQuery library. As
there are so many to sort through, it will be useful to know what the basic categories
of methods are and how they come to play within a jQuery script. Here we will see a
fully functioning script, and examine how the different aspects of jQuery are utilized
in each part of it.

A dynamic table of contents
As an example of jQuery in action, we'll build a small script that dynamically extracts
the headings from an HTML document and assembles them into a table of contents
for the page. Our table of contents will be nestled on the top-right corner of the page
as shown in the following screenshot:

Anatomy of a jQuery Script

[8]

We'll have it collapsed initially as shown, but a click will expand it to full height.

At the same time, we'll add a feature to the main body text. The introduction
of the text on the page will not be loaded initially, but when the user clicks on
Introduction, the intro text will be inserted in place from another ile.

Before we reveal the script that performs these tasks, we should walk through the
environment in which the script resides.

Obtaining jQuery
The oficial jQuery web site (http://jquery.com/) is always the most up-to-date
resource for code and news related to the library. To get started, we need a copy
of jQuery, which can be downloaded right from the front page of the site. Several
versions of jQuery may be available at any given moment; the most appropriate for
us will be the latest uncompressed version. As of the writing of this book, the latest
version of jQuery is 1.4.

No installation is required. To use jQuery, we just need to place it on our site in
a web-accessible location. As JavaScript is an interpreted language, there is no
compilation or build phase to worry about. Whenever we need a page to have
jQuery available, we will simply refer to the ile's location from the HTML document
with a <script> tag as follows:

<script src="jquery.js" type="text/javascript"></script>

Chapter 1

[9]

Setting up the HTML document
There are three pieces to most examples of jQuery usage—the HTML document
itself, CSS iles to style it, and JavaScript iles to act on it. For this example, we'll use a
page containing the text of a book:

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta http-equiv="Content-Type" content="text/html; charset=utf-
 8">

 <title>Doctor Dolittle</title>

 <link rel="stylesheet" href="dolittle.css" type="text/css"

 media="screen" />

 <script src="jquery.js" type="text/javascript"></script>

 <script src="dolittle.js" type="text/javascript"></script>

 </head>

 <body>

 <div class="container">

 <h1>Doctor Dolittle</h1>

 <div class="author">by Hugh Lofting</div>

 <div id="introduction">

 <h2>Introduction</h2>

 </div>

 <div class="content">

 <h2>Puddleby</h2>

 <p>ONCE upon a time, many years ago when our

 grandfathers were little children--there was a

 doctor; and his name was Dolittle-- John Dolittle,

 M.D. "M.D." means that he was a proper

 doctor and knew a whole lot. </p>

 <!-- More text follows... -->

 </div>

 </div>

 </body>

</html>

The actual layout of iles on the server does not matter. References
from one ile to another just need to be adjusted to match the
organization we choose. In most examples in this book, we will use
relative paths to reference iles (../images/foo.png) rather than
root-relative path (/images/foo.png). This will allow the code to
run locally without the need for a web server.

Anatomy of a jQuery Script

[10]

Immediately following the standard <head> elements, the stylesheet is loaded. Here
are the portions of the stylesheet that affect our dynamic elements:

/** =page contents

**/

#page-contents {

 position: absolute;

 text-align: left;

 top: 0;

 right: 0;

 width: 15em;

 border: 1px solid #ccc;

 border-top-width: 0;

 background-color: #e3e3e3;

}

#page-contents a {

 display: block;

 margin: .25em 0;

}

#page-contents a.toggler {

 padding-left: 20px;

 background: url(arrow-right.gif) no-repeat 0 0;

 text-decoration: none;

}

#page-contents a.arrow-down {

 background-image: url(arrow-down.gif);

}

#page-contents div {

 padding: .25em .5em .5em;

 display: none;

 background-color: #efefef;

}

/** =introduction

**/

.dedication {

 margin: 1em;

 text-align: center;

 border: 1px solid #555;

 padding: .5em;

}

Chapter 1

[11]

After the stylesheet is referenced, the JavaScript iles are included. It is important that
the script tag for the jQuery library be placed before the tag for our custom scripts;
otherwise, the jQuery framework will not be available when our code attempts to
reference it.

To enable faster rendering of visual elements on the page, some
developers prefer to include JavaScript iles at the end of the document
just before the closing </body> tag, so that the JavaScript ile is not
requested until the majority of the document has been loaded. For more
information about this perceived performance boost, see http://
developer.yahoo.com/performance/rules.html#js_bottom.

Writing the jQuery code
Our custom code will go in the second, currently empty, JavaScript ile that we
included from the HTML using <script src="dolittle.js" type="text/
javascript"></script>. Despite how much it accomplishes, the script is
fairly short.

jQuery.fn.toggleNext = function() {

 this.toggleClass('arrow-down')

 .next().slideToggle('fast');

 return this;

};

$(document).ready(function() {

 $('<div id="page-contents"></div>')

 .prepend('Page Contents')

 .append('<div></div>')

 .prependTo('body');

 $('.content h2').each(function(index) {

 var $chapterTitle = $(this);

 var chapterId = 'chapter-' + (index + 1);

 $chapterTitle.attr('id', chapterId);

 $('<a>').text($chapterTitle.text())

 .attr({

 'title': 'Jump to ' + $chapterTitle.text(),

 'href': '#' + chapterId

 })

 .appendTo('#page-contents div');

 });

Anatomy of a jQuery Script

[12]

 $('#page-contents > a.toggler').click(function() {

 $(this).toggleNext();

 return false;

 });

 $('#introduction > h2 a').click(function() {

 $('#introduction').load(this.href);

 return false;

 });

});

We now have a dynamic table of contents that brings users to the relevant portion of
the text, and an introduction that is loaded on demand.

Script dissection
This script has been chosen speciically because it illustrates the widespread
capabilities of the jQuery library. Now that we've seen the code as a whole, we can
identify the categories of methods used therein.

We will not discuss the operation of this script in much detail
here, but a similar script is presented as a tutorial on the Learning
jQuery blog: http://www.learningjquery.com/2007/06/
automatic-page-contents.

Selector expressions
Before we can act on an HTML document, we need to locate the relevant portions. In
our script, we sometimes use a simple approach to ind an element as follows:

$('#introduction')

This expression creates a new jQuery object that references the element with the ID
introduction. On the other hand, sometimes we require a more intricate selector.

$('#introduction > h2 a')

Here we produce a jQuery object referring to potentially many elements. With this
expression, elements are included if they are anchor tags that are descendants of <h2>
elements, which are themselves children of an element with the ID introduction.

These selector expressions can be as simple or as complex as we need. Chapter 2,
Selector Expressions, will enumerate all of the selectors available to us and how they
can be combined.

Chapter 1

[13]

DOM traversal methods
Sometimes we have a jQuery object that references a set of Document Object Model
(DOM) elements already, but we need to perform an action on a different, related
set of elements. In these cases, DOM traversal methods are useful. We can see this in
part of our script:

this.toggleClass('arrow-down')

 .next()

 .slideToggle('fast');

Because of the context of this piece of code, the keyword this refers to a jQuery
object (it often refers to a DOM element, instead). In our case, this jQuery object is
in turn pointing to the toggler link of the table of contents. The .toggleClass()
method call manipulates this element. However, the subsequent .next() operation
changes the element we are working with, so that the following .slideToggle()
call acts on the <div> containing the table of contents rather than its clicked link.
The methods that allow us to freely move about the DOM tree like this are listed in
Chapter 3, DOM Traversal Methods.

DOM manipulation methods
Finding elements is not enough; we want to be able to change them as well. Such
changes can be as straightforward as changing a single attribute.

$chapterTitle.attr('id', chapterId);

Here we modify the ID of the matched element on the ly.

Sometimes the changes are further-reaching:

$('<div id="page-contents"></div>')

 .prepend('Page Contents')

 .append('<div></div>')

 .prependTo('body');

This part of the script illustrates that the DOM manipulation methods can not only
alter elements in place but also remove, shufle, and insert them. These lines add
a new link at the beginning of <div id="page-contents">, insert another <div>
container at the end of it, and place the whole thing at the beginning of the document
body. Chapter 4, DOM Manipulation Methods, will detail these and many more ways
to modify the DOM tree.

www.allitebooks.com

http://www.allitebooks.org

Anatomy of a jQuery Script

[14]

Event methods
Even when we can modify the page at will, our pages will sit in place, unresponsive.
We need event methods to react to user input, making our changes at the
appropriate time.

$('#introduction > h2 a').click(function() {

 $('#introduction').load(this.href);

 return false;

});

In this snippet we register a handler that will execute each time the selected link
is clicked. The click event is one of the most common ones observed, but there are
many others; the jQuery methods that interact with them are discussed in Chapter 5,
Event Methods.

Chapter 5 also discusses a very special event method, .ready().

$(document).ready(function() {

 // ...

});

This method allows us to register behavior that will occur immediately when the
structure of the DOM is available to our code, even before the images have loaded.

Effect methods
The event methods allow us to react to user input; the effect methods let us do so
with style. Instead of immediately hiding and showing elements, we can do so with
an animation.

this.toggleClass('arrow-down')

 .next()

 .slideToggle('fast');

This method performs a fast-sliding transition on the element, alternately hiding
and showing it with each invocation. The built-in effect methods are described in
Chapter 6, Effect Methods, as is the way to create new ones.

Chapter 1

[15]

AJAX methods
Many modern web sites employ techniques to load content when requested without
a page refresh; jQuery allows us to accomplish this with ease. The AJAX methods
initiate these content requests and allow us to monitor their progress.

$('#introduction > h2 a').click(function() {

 $('#introduction').load(this.href);

 return false;

});

Here the .load() method allows us to get another HTML document from the
server and insert it in the current document, all with one line of code. This and more
sophisticated mechanisms of retrieving information from the server are listed in
Chapter 7, AJAX Methods.

Miscellaneous methods
Some methods are harder to classify than others. The jQuery library incorporates
several miscellaneous methods that serve as shorthand for common JavaScript
idioms. Even basic tasks like iteration are simpliied by jQuery.

$('#content h2').each(function(index) {

 // ...

});

The .each() method seen here steps through the matched elements in turn,
performing the enclosed code on all of them. In this case, the method helps us to collect
all of the headings on the page so that we can assemble a complete table of contents.
More helper functions like this can be found in Chapter 8, Miscellaneous Methods.

A number of additional pieces of information are provided by jQuery as
properties of its objects. These global and object properties are itemized in Chapter 9,
jQuery Properties.

Anatomy of a jQuery Script

[16]

Plug-in API
We need not conine ourselves to built-in functionality, either. The plug-in API
that is part of jQuery allows us to augment the capabilities already present with new
ones that suit our needs. Even in the small script we've written here, we've found use
for a plug-in.

jQuery.fn.toggleNext = function() {

 this.toggleClass('arrow-down')

 .next().slideToggle('fast');

 return this;

};

This code deines a new .toggleNext() jQuery method that slides the following
element open and shut. We can now call our new method later when needed.

$('#page-contents > a.toggler).click(function() {

 $(this).toggleNext();

 return false;

});

Whenever a code could be reused outside the current script, it might do well as a plug-
in. Chapter 10, Plug-in API, will cover the plug-in API used to build these extensions.

Summary
We've now seen a complete, functional jQuery-powered script. This example,
though small, brings a signiicant amount of interactivity and usability to the page.
The script has illustrated the major types of tools offered by jQuery, as well. We've
observed how the script inds items in the DOM and changes them as necessary.
We've witnessed response to user action, and animation to give feedback to the user
after the action. We've even seen how to pull information from the server without a
page refresh, and how to teach jQuery brand new tricks in the form of plug-ins.

In the following chapters, we'll be stepping through each function, method, and
selector expression in the jQuery library. Each method will be introduced with a
summary of its syntax and a list of its parameters and return value. Then we will
offer a description, which will provide examples where applicable. For further
reading about any method, consult the online resources listed in Appendix A, Online
Resources. We'll also examine jQuery's plug-in architecture and discuss both how to
use plug-ins and how to write our own.

Selector Expressions
Each action we perform with jQuery requires a target. For example, in order to hide
or show an element on the page, irst we must ind that element. To do so, we rely on
jQuery's selector expressions.

Borrowing from CSS 1–3 and then adding its own, jQuery offers a powerful set of
tools for matching a set of elements in a document. In this chapter, we'll examine
every selector expression that jQuery makes available in turn.

CSS selectors
The following selectors are based on the Cascading Style Sheet speciications (1–3),
as outlined by the W3C. For more information about the speciications, visit
http://www.w3.org/Style/CSS/#specs.

Element (T)
Select all elements that have a tag name of T.

Examples
• $('div') selects all elements with a tag name of div in the document
• $('em') selects all elements with a tag name of em in the document

Description
JavaScript's getElementsByTagName() function is called to return the appropriate
elements when this expression is used.

Selector Expressions

[18]

ID (#myid)
Select the unique element with an ID equal to myid.

Examples
• $('#myid') selects the unique element with id="myid"
• $('p#myid') selects a single paragraph with an ID of myid; in other words,

the unique element <p id="myid">

Description
Each ID value must be used only once within a document. If more than one element
has been assigned the same ID, queries that use that ID will only select the irst
matched element in the DOM. However, this behavior should not be relied on.
A document with more than one element using the same ID is invalid.

In our second example, it might not be immediately clear why someone might
want to specify a tag name associated with a particular ID, as that id value needs
to be unique anyway. However, some situations in which parts of the DOM are
user-generated may require a more speciic expression to avoid false positives.
Furthermore, when the same script is run on more than one page, it might be
necessary to identify the element ID as the pages could be associating the same ID
with different elements. For example, page A might have <h1 id="title"> while
page B has <h2 id="title">.

For ID selectors such as the preceding examples, jQuery uses the JavaScript function
getElementById(), which is extremely eficient. When another selector is attached
to the ID selector, like in the second example, jQuery performs an additional check
before identifying the element as a match.

As always, remember that as a developer, your time is typically the most
valuable resource. Do not focus on optimization of selector speed unless it
is clear that performance needs to be improved.

Class (.myclass)
Select all elements that have a class of myclass.

Chapter 2

[19]

Examples
• $('.myclass') selects all elements that have a class of myclass
• $('p.myclass') selects all paragraphs that have a class of myclass
• $('.myclass.otherclass') selects all elements that have a class of both

myclass and otherclass

Description
For class selectors, jQuery uses JavaScript's native getElementsByClassName()
function if the browser supports it. Otherwise, it checks the .className attribute of
each element.

As a CSS selector (for example, in a stylesheet), the multiple-class syntax used in the
third example is supported by all modern web browsers, but not by Internet Explorer
versions 6 and below. This makes the syntax especially handy for applying styles
cross-browser through jQuery.

Descendant (E F)
Select all elements matched by F that are descendants of an element matched by E.

Examples
• $('#container p') selects all paragraph elements that are descendants

of an element that has an ID of container
• $('a img') selects all elements that are descendants of

an <a> element

Description
Descendants of an element are that element's children, grandchildren,
great-grandchildren, and so on. For example, in the following HTML code,
the element is a descendant of the , <p>, <div id="inner">,
and <div id="container"> elements:

<div id="container">

 <div id="inner">

 <p>

 </p>

 </div>

</div>

Selector Expressions

[20]

Child (E > F)
Select all elements matched by F that are children of an element matched by E.

Examples
• $('li > ul') selects all elements that are children of an element
• $('.myclass > code') selects all <code> elements that are children of an

element with the class myclass

Description
As a CSS selector, the child combinator is supported by all modern web browsers
including Safari, Mozilla/Firefox, Opera, Chrome, and Internet Explorer 7 and
above; but notably not by Internet Explorer versions 6 and below. The irst example
is a handy way of selecting all nested unordered lists (that is, except the top level),
and jQuery makes it possible to do this in a cross-browser fashion.

The child combinator (E > F) can be thought of as a more speciic form of the
descendant combinator (E F) in that it selects only irst-level descendants. Therefore,
in the following HTML code, the element is a child only of the element:

<div id="container">

 <div id="inner">

 <p>

 </p>

 </div>

</div>

Adjacent sibling (E + F)
Select all elements matched by F that immediately follow and have the same parent as
an element matched by E.

Examples
• $('ul + p') selects all <p> elements that immediately follow

a sibling element
• $('#myid + .myclass') selects the element with class="myclass" that

immediately follows a sibling element with id="myid"

Chapter 2

[21]

Description
One important point to consider with both the adjacent sibling combinator
(E + F) and the general sibling combinator (E ~ F, covered next) is that they only
select siblings. Consider the following HTML code:

<div id="container">

 <p>

 </p>

</div>

• $('ul + p') selects <p> because it immediately follows and the two
elements share the same parent, <div id="container">

• $('p + img') selects nothing because <p> is one level higher in the DOM
tree than

• $('li + img') selects nothing because even though and are on
the same level in the DOM tree, they do not share the same parent

General sibling (E ~ F)
Select all elements matched by F that follow and have the same parent as an element
matched by E.

Examples
• $('ul ~ p') selects all <p> elements that follow a sibling element
• $('#myid ~ .myclass') selects all elements with class="myclass" that

follow a sibling element with id="myid"

Description
One important point to consider with both the adjacent sibling combinator (E + F)
and the general sibling combinator (E ~ F) is that they only select siblings. The notable
difference between the two is their respective reach. While the former reaches only
to the immediately following sibling element, the latter extends that reach to all of the
following sibling elements.

Selector Expressions

[22]

Consider the following HTML code:

 <li class="first">

 <li class="second">

 <li class="third>

 <li class="fourth">

 <li class="fifth">

 <li class="sixth">

• $('li.first ~ li') selects <li class="second"> and <li
class="third">

• $('li.first + li') selects <li class="second">

Multiple expressions (E, F, G)
Select all elements matched by any of the selector expressions E, F, or G.

Examples
• $('code, em, strong') selects all <code>, , and elements
• $('p strong, .myclass') selects all elements that are

descendants of a <p> element, as well as all elements that have a class
of myclass

Description
This multiple expression combinator is an eficient way to select disparate elements.
An alternative to this combinator is the .add() method described in Chapter 3, DOM
Traversal Methods.

Numbered child (:nth-child(n/even/odd/expr))
Select all elements that are the nth child of their parent.

Chapter 2

[23]

Examples
• $('li:nth-child(2)') selects all elements that are the second child

of their parent
• $('p:nth-child(odd)') selects all <p> elements that are an odd-numbered

child of their parent (irst, third, ifth, and so on)
• $('.myclass:nth-child(3n+2)') selects all elements with the class

myclass that are the (3n+2)th child of their parent (second, ifth, eighth,
and so on)

Description
As jQuery's implementation of :nth-child(n) is strictly derived from the CSS
speciication, the value of n is "1-based," meaning that the counting starts at 1.
However, for all other selector expressions, jQuery follows JavaScript's "0-based"
counting. Therefore, given a single containing two s, $('li:nth-
child(1)') selects the irst while $('li:eq(1)') selects the second.

As the two look so similar, the :nth-child(n) pseudo-class is easily confused with
:nth(n), a synonym for :eq(n). However, as we have just seen, the two can result
in dramatically different matched elements. With :nth-child(n), all children are
counted, regardless of what they are, and the speciied element is selected only if it
matches the selector attached to the pseudo-class. With :nth(n), only the selector
attached to the pseudo-class is counted, not limited to children of any other element,
and the nth one is selected. To demonstrate this distinction, let's examine the results
of a few selector expressions given the following HTML code:

<div>

 <h2></h2>

 <p></p>

 <h2></h2>

 <p></p>

 <p></p>

</div>

• $('p:nth(1)') selects the second <p> because numbering for :nth(n) starts
with 0

• $('p:nth-child(1)') selects nothing because there is no <p> element that
is the irst child of its parent

• $('p:nth(2)') selects the third <p>
• $('p:nth-child(2)') selects the irst <p> because it is the second child of

its parent

www.allitebooks.com

http://www.allitebooks.org

Selector Expressions

[24]

In addition to taking an integer, :nth-child(n) can take even or odd. This makes it
especially useful for table-row striping solutions when more than one table appears
in a document. Again, given the preceding HTML snippet:

• $('p:nth-child(even)') selects the irst and third <p> because they are
children 2 and 4 (both even numbers) of their parent

The third example selector illustrates the most complicated usage of :nth-child().
When a simple mathematical expression of the form an+b is provided with integers
substituted for a and b, :nth-child() selects the elements whose positions in the list
of children are equal to an+b for some integer value of n.

Further description of this unusual usage can be found in the W3C CSS speciication
at http://www.w3.org/TR/css3-selectors/#nth-child-pseudo.

First child (:irst-child)
Select all elements that are the irst child of their parent element.

Examples
• $('li:first-child') selects all elements that are the irst child of

their parent element
• $(.myclass:first-child') selects all elements with the class myclass that

are the irst child of their parent element

Description
The :first-child pseudo-class is shorthand for :nth-child(1).
For more information on :X-child pseudo-classes, see the Description for the
Numbered child selector.

Last child (:last-child)
Select all elements that are the last child of their parent element.

Examples
• $('li:last-child') selects all elements that are the last child of their

parent element
• $(.myclass:last-child') selects all elements with the class myclass that

are the last child of their parent element

Chapter 2

[25]

Description
For more information on :X-child pseudo-classes, see the Description for the
Numbered child selector.

Only child (:only-child)
Select all elements that are the only child of their parent element.

Examples
• $(':only-child') selects all elements in the document that are the only

child of their parent element
• $('code:only-child') selects all <code> elements that are the only child of

their parent element

Not (:not(E))
Select all elements that do not match the selector expression E.

Examples
• $(':not(.myclass)') selects all elements in the document that do not have

the class myclass
• $('li:not(:last-child)') selects all elements that are not the last

child of their parent elements

Empty (:empty)
Select all elements that have no children (including text nodes).

Examples
• $(':empty') selects all elements in the document that have no children
• $('p:empty') selects all <p> elements that have no children

Description
One important thing to note with :empty (and :parent) is that child elements include
text nodes.

The W3C recommends that the <p> element should have at least one child node,
even if that child is merely text (see http://www.w3.org/TR/html401/struct/
text.html#edef-P). On the other hand, some other elements are empty (that is,
have no children) by deinition; for example, <input>, ,
, and <hr>.

Selector Expressions

[26]

Universal (*)
Select all elements.

Examples
• $('*') selects all elements in the document
• $('p > *') selects all elements that are children of a paragraph element

Description
The universal selector is especially useful when combined with other expressions
to form a more speciic selector expression.

Attribute selectors
The CSS speciication also allows elements to be identiied by their attributes. While
not widely supported by browsers for the purpose of styling documents, these
attribute selectors are highly useful and jQuery allows us to employ them regardless
of the browser being used.

When using any of the following attribute selectors, we should account for attributes
that have multiple, space-separated values. As these selectors see attribute values as
a single string, $('a[rel=nofollow]'); for example, will select <a rel="nofollow"
href="example.html">Some text but not <a rel="nofollow self"
href="example.html">Some text.

Attribute values in selector expressions can be written as bare words or surrounded
by quotation marks. Therefore, the following variations are equally correct:

• Bare words: $('a[rel=nofollow self]')

• Double quotes inside single quotes: $('a[rel="nofollow self"]')

• Single quotes inside double quotes: $("a[rel='nofollow self']")

• Escaped single quotes inside single quotes: $('a[rel=\'nofollow self\']')

• Escaped double quotes inside double quotes: $("a[rel=\"nofollow
self\"]")

The variation we choose is generally a matter of style or convenience. The authors
choose to omit quotation marks in this context for clarity, and the examples that
follow relect this preference.

Chapter 2

[27]

Attribute ([foo])
Select all elements that have the foo attribute, with any value.

Examples
• $('[rel]') selects all elements that have a rel attribute
• $('.myclass[style]') selects all elements with the class myclass that have

a style attribute

Attribute equals ([foo=bar])
Select all elements that have the foo attribute with a value exactly equal to bar.

Examples
• $('[name=myname]') selects all elements that have a name value exactly

equal to myname
• $('a[rel=nofollow]') selects all <a> elements that have a rel value

exactly equal to nofollow

Description
For more information on this attribute selector, see the introduction to
Attribute selectors.

Attribute does not equal ([foo!=bar])
Select all elements that do not have the foo attribute, or have a foo attribute but with
a value other than bar.

Examples
• $('a[rel!=nofollow]') selects all <a> elements that either have no rel

attribute, or have one with a value other than nofollow
• $('input[name!=myname]') selects all <input> elements that either have no

name attribute, or have one with a value other than myname

Description
As these selectors see attribute values as a single string, the irst example will select
Some text. Consider the
Attribute contains word selector for alternatives to this behavior.

Selector Expressions

[28]

Attribute begins with ([foo^=bar])
Select all elements that have the foo attribute with a value beginning exactly with the
string bar.

Examples
• $('[id^=hello]') selects all elements that have an ID beginning with

hello

• $('input[name^=my]') selects all <input> elements that have a name value
beginning with my

Description
This selector can be useful for identifying elements in pages produced by server-side
frameworks that produce HTML with systematic element IDs.

Attribute ends with ([foo$=bar])
Select all elements that have the foo attribute with a value ending exactly with the
string bar.

Examples
• $('[id$=goodbye]') selects all elements that have an ID ending with

goodbye

• $('input[name$=phone]') selects all <input> elements that have a name
value ending with phone

Attribute contains ([foo*=bar])
Select all elements that have the foo attribute with a value containing the
substring bar.

Examples
• $('[style*=background]') selects all elements that have a style value

containing background
• $('a[href*=example.com]') selects all <a> elements that have an href

value containing example.com

Chapter 2

[29]

Description
This is the most generous of the jQuery attribute selectors that match against a value.
It will select an element if the selector's string appears anywhere within the element's
attribute value. Therefore, $('p[class*=my]') will select <p class="yourclass
myclass">Some text</p>, <p class="myclass yourclass">Some text</p> and
<p class="thisismyclass">Some text</p>.

Compare this selector with the Attribute contains word selector, which is more
appropriate in many cases.

Attribute contains word ([foo~=bar])
Select all elements that have the foo attribute with a value containing the word bar,
delimited by spaces.

Examples
• $('[class~=myclass]') selects all elements that have the class of

myclass (and optionally other classes as well).
• $('a[rel~=nofollow]') selects all <a> elements with a rel value

including nofollow.

Description
This selector matches the test string against each word in the attribute value, where
a "word" is deined as a string delimited by whitespace. The selector matches if the
test string is exactly equal to any of the words. Thus, the irst example is equivalent
to $('.myclass').

This selector is similar to the Attribute contains selector, but substring matches within
a word do not count. Therefore, the second example matches <a rel="nofollow"
href="example.html">Some text as well as <a rel="nofollow
self" href="example.html">Some text, but does not match Some text.

Attribute contains preix ([foo|=bar])
Select all elements that have the foo attribute with a value either equal to bar,
or beginning with bar and a hyphen (-).

Selector Expressions

[30]

Examples
• $('[id|=hello]') selects all elements with an ID of hello or an ID that

begins with hello-
• $('a[hreflang|=en]') selects all <a> elements with an hreflang value of

en or beginning with en-

Description
This selector was introduced into the CSS speciication to handle language
attributes. The second example, for instance, matches <a href="example.
html" hreflang="en">Some text as well as <a href="example.html"
hreflang="en-UK">Some text.

Form selectors
The following selectors can be used to access form elements in a variety of states.
When using any of the form selectors other than :input, providing a tag name as well
is recommended (for example, input:text rather than :text).

• Form element (:input): Select all form elements (<input> (all types),
<select>, <textarea>, <button>)

• Text ield (:text): Select all text ields (<input type="text">)
• Password ield (:password): Select all password ields (<input

type="password">)
• Radio button (:radio): Select all radio button ields (<input type="radio">)
• Checkbox (:checkbox): Select all checkbox ields (<input type="checkbox">)
• Submit button (:submit): Select all submit inputs and button elements

(<input type="submit">, <button>)
• Image button (:image): Select all image inputs (<input type="image">)
• Reset button (:reset): Select all reset buttons (<input type="reset">)
• Standard button (:button): Select all button elements and input elements

with a type of button (<button>, <input type="button">)
• File upload (:ile): Select all ile upload ields (<input type="file">)
• Enabled form element (:enabled): Select all form elements that are

enabled (that is, they do not have the disabled attribute and users can
interact with them)

Chapter 2

[31]

• Disabled form element (:disabled): Select all form elements that are
disabled (that is, they have the disabled attribute and users cannot interact
with them)

• Checked box (:checked): Select all form elements—checkboxes and radio
buttons—that are checked

• Selected option (:selected): Select all form elements (effectively, <option>
elements) that are currently selected

Custom selectors
The following selectors were added to the jQuery library in an attempt to address
common DOM traversal needs not met by the CSS speciication.

Element at index (:eq(n))
Select the element at index n within the matched set.

Examples
• $('li:eq(2)') selects the third element
• $('.myclass:eq(1)') selects the second element with the class myclass

Description
The selector :nth(n) exists as a synonym of this selector.

The index-related selector expressions (including this selector and the others that
follow) ilter the set of elements that have matched the expressions that precede
them. They narrow the set down based on the order of the elements within
this matched set. For example, if elements are irst selected with a class selector
(.myclass) and four elements are returned, these elements are given indices 0
through 3 for the purposes of these selectors.

Note that since JavaScript arrays use 0-based indexing, these selectors relect that
fact. This is why $('.myclass:eq(1)') selects the second element in the document
with the class myclass, rather than the irst. In contrast, :nth-child(n) uses 1-based
indexing to conform to the CSS speciication.

Selector Expressions

[32]

Greater than (:gt(n))
Select all elements at an index greater than n within the matched set.

Examples
• $('li:gt(2)') selects all elements following the third one
• $('.myclass:gt(1)') selects all elements with the class myclass following

the second one

Description
See the Description for Element at index, for important details regarding the indexing
used by this selector.

Less than (:lt(n))
Select all elements at an index less than n within the matched set.

Examples
• $('li:gt(2)') selects all elements preceding the third one
• $('.myclass:gt(1)') selects all elements with the class myclass preceding

the second one

Description
See the Description for Element at index for important details regarding the indexing
used by this selector.

First (:irst)
Select the irst element within the matched set.

Examples
• $('li:first') selects the irst element
• $('.myclass:first') selects the irst element with the class myclass

Description
The :first pseudo-class is shorthand for :eq(0). It could also be written as :lt(1).

Chapter 2

[33]

See the Description for Element at index for important details regarding the indexing
used by this selector.

Last (:last)
Select the last element within the matched set.

Examples
• $('li:last) selects the last element
• $('.myclass:last) selects the last element with the class myclass

Description
While :first has equivalent selectors—nth(0) and eq(0)—the :last pseudo-class
is unique in its ability to select only the last element in the set of matched elements.

See the Description for Element at index for important details regarding the indexing
used by this selector.

Even element (:even)
Select all elements with an even index within the matched set.

Examples
• $('li:even') selects the even-indexed elements within the set of

elements
• $('.myclass:even') selects the even-indexed elements within the set of

elements that have the class myclass

Description
See the Description for Element at index for important details regarding the indexing
used by this selector. In particular, note that the 0-based indexing means that,
counter-intuitively, :even selects the irst element, third element, and so on within
the matched set.

www.allitebooks.com

http://www.allitebooks.org

Selector Expressions

[34]

Odd element (:odd)
Select all elements with an odd index within the matched set.

Examples
• $('li:odd') selects the odd-indexed elements within the set of

 elements
• $('.myclass:odd') selects the odd-indexed elements within the set of

elements that have the class myclass

Description
See the Description for Element at index for important details regarding the indexing
used by this selector. In particular, note that the 0-based indexing means that,
counter-intuitively, :odd selects the second element, fourth element, and so on
within the matched set.

Is parent (:parent)
Select all elements that are the parent of another element, including text nodes.

Examples
• $(':parent') selects all elements that are the parent of another element,

including text nodes
• $('td:parent') selects all <td> elements that are the parent of another

element, including text nodes

Description
One important thing to note regarding use of :parent (and :empty) is that child
elements include text nodes.

The W3C recommends that the <p> element have at least one child node, even if
that child is merely text (see http://www.w3.org/TR/html401/struct/text.
html#edef-P). On the other hand, some other elements are empty (that is, have no
children) by deinition; for example, <input>, ,
, and <hr>.

Chapter 2

[35]

Contains text (:contains(text))
Select all elements that contain the speciied text.

Examples
• $('p:contains(nothing special)') selects all <p> elements that contain

the text nothing special
• $('li:contains(second)') selects all elements that contain the

text second

Description
The matching text can appear directly within the selected element in any of that
element's descendants, or a combination thereof. Therefore, the irst example would
still select the following paragraph:

<p>This paragraph is nothing special</p>

As with attribute value selectors, text inside the parentheses of :contains() can be
written as bare words or surrounded by quotation marks. The text must have matching
case to be selected.

Contains element (:has(E))
Select all elements that contain an element matching E.

Examples
• $('p:has(img)') selects all <p> elements that contain an element as a

descendant
• $('.myclass:has(#myid)') selects all elements with the class myclass that

contain a descendant with ID myid

Selector Expressions

[36]

Description
This expression matches an element if an element matched by E exists anywhere
among the descendants, and not just the direct children. For example, the irst
example matches the <p> element in the following HTML code:

<div id="container">

 <div id="inner">

 <p>

 </p>

 </div>

</div>

Visible (:visible)
Select all elements that are visible.

Examples
• $('li:visible') selects all elements that are visible
• $('.myclass:visible') selects all elements with the class myclass that

are visible

Description
The :visible selector matches items that are currently visible on the page. Rather
than relying on the CSS properties assigned to the element, such as its display and
visibility. jQuery determines whether the element is visible by testing its current
width and height.

Elements can be considered hidden for several reasons:

• They have a display value of none
• They are form elements with type="hidden"
• Their width and height are explicitly set to 0
• An ancestor element is hidden, so the element is not shown on the page

If the element satisies any of these conditions, it will not be matched by the
:visible selector.

Chapter 2

[37]

Hidden (:hidden)
Select all elements that are hidden.

Examples
• $('li:hidden') selects all elements that are hidden
• $('.myclass:hidden') selects all elements with the class myclass that

are hidden

Description
The :hidden selector matches items that are currently hidden on the page.
For details on how this determination is made, see the Description for :visible.

Header element (:header)
Select all elements that are headers, such as <h1> or <h2>.

Examples
• $(':header') selects all header elements
• $('.myclass:header') selects all header elements with the class myclass

Currently animating (:animated)
Select all elements that are in the progress of an animation at the time the selector
is run.

Examples
• $(':animated') selects all elements that are currently animating
• $('.myclass:animated') selects all elements with the class myclass that

are currently animating

DOM Traversal Methods
In addition to the selector expressions described in Chapter 2, Selector Expressions,
jQuery has a variety of DOM traversal methods that help us select elements in a
document. These methods offer a great deal of lexibility, even allowing us to act
upon multiple sets of elements in a single chain as follows:

$('div.section').addClass('lit').eq(1).addClass('profound');

At times, the choice between a selector expression and a corresponding DOM
traversal method is simply a matter of taste. However, there is no doubt that the
combined set of expressions and methods makes for an extremely powerful toolset
for acting on any part of the document we desire.

The jQuery function
The following function underpins the entire jQuery library. It serves as an "object
factory," which allows us to create the jQuery objects that all of the other methods are
attached to. The function is named jQuery(), but as with all uses of that identiier
throughout the library, we typically use the alias $() instead.

$()
Create a new jQuery object matching elements in the DOM.
 $(selector[, context])
 $(element)
 $(elementArray)
 $(object)
 $(html)

DOM Traversal Methods

[40]

Parameters (irst version)
• selector: A string containing a selector expression
• context (optional): The portion of the DOM tree within which to search

Parameters (second version)
• element: A DOM element to wrap in a jQuery object

Parameters (third version)
• elementArray: An array containing a set of DOM elements to wrap in a

jQuery object

Parameters (fourth version)
• object: An existing jQuery object to clone

Parameters (ifth version)
• html: A string containing an HTML snippet describing new DOM elements

to create

Return value
The newly constructed jQuery object.

Description
In the irst formulation of this function, $() searches through the DOM for any
elements that match the provided selector and creates a new jQuery object that
references these elements.

$('div.foo');

In Chapter 2, Selector Expressions, we explored the range of selector expressions that
can be used within this string.

Selector context
By default, selectors perform their searches within the DOM starting at the document
root. However, an alternative context can be given for the search by using the
optional second parameter to the $() function. For example, if we wish to do a
search for an element within a callback function, we can restrict that search like this:

$('div.foo').click(function() {

 $('span', this).addClass('bar');

});

Chapter 3

[41]

As we've restricted the span selector to the context of this, only spans within
the clicked element will get the additional class.

Internally, selector context is implemented with the .find() method,
so $('span', this) is equivalent to $(this).find('span').

Using DOM elements
The second and third formulations of this function allow us to create a jQuery object
using a DOM element(s) that we have already found in some other way. A common
use of this facility is to call jQuery methods on an element that has been passed to a
callback function through the this keyword.

$('div.foo').click(function() {

 $(this).slideUp();

});

This example causes elements to hide with a sliding animation when clicked.
Because the handler receives the clicked item in the this keyword as a bare DOM
element, the element must be wrapped in a jQuery object before we can call jQuery
methods on it.

When XML data is returned from an AJAX call, we can use the $() function to
wrap it in a jQuery object that we can easily work with. Once this is done, we can
retrieve individual elements of the XML structure using .find() and other DOM
traversal methods.

Cloning jQuery objects
When a jQuery object is passed as a parameter to the $() function, a clone of the
object is created. This new jQuery object references the same DOM elements as the
initial one.

Creating new elements
If a string is passed as the parameter to $(), jQuery examines the string to see
if it looks like HTML. If not, the string is interpreted as a selector expression, as
previously explained. However, if the string appears to be an HTML snippet, jQuery
attempts to create new DOM elements as described by the HTML. Then a jQuery
object that refers to these elements is created and returned. We can perform any of
the usual jQuery methods on this object:

$('<p>My new paragraph</p>').appendTo('body');

DOM Traversal Methods

[42]

When the parameter has multiple tags in it, as it does in this example, the actual
creation of the elements is handled by the browser's innerHTML mechanism.
Speciically, jQuery creates a new <div> element and sets the innerHTML property
of the element to the HTML snippet that was passed in. When the parameter has a
single tag, such as $('') or $('<a>hello'), jQuery creates the element
using the native JavaScript createElement() function.

To ensure cross-platform compatibility, the snippet must be well formed. Tags that
can contain other elements should be paired with a closing tag as follows:

$('<a>');

Alternatively, jQuery allows XML-like tag syntax (with or without a space before the
slash) such as this:

$('<a/>');

Tags that cannot contain elements may or may not be quick-closed.

$('');

$('<input>');

Filtering methods
These methods remove elements from the set matched by a jQuery object.

.ilter()
Reduce the set of matched elements to those that match the selector or pass the
function's test.
 .filter(selector)
 .filter(function)

Parameters (irst version)
• selector: A string containing a selector expression to match

elements against

Parameters (second version)
• function: A function used as a test for each element in the set

Chapter 3

[43]

Return value
The new jQuery object.

Description
Given a jQuery object that represents a set of DOM elements, the .filter() method
constructs a new jQuery object from a subset of the matching elements. The supplied
selector is tested against each element; all elements matching the selector will be
included in the result.

Consider a page with a simple list as follows:

 list item 1

 list item 2

 list item 3

 list item 4

 list item 5

 list item 6

We can apply this method to the set of list items like this:

$('li').filter(':even').css('background-color', 'red');

The result of this call is a red background for the items 1, 3, and 5, as they match the
selector. (Recall that :even and :odd use 0-based indexing.)

Using a ilter function
The second form of this method allows us to ilter elements against a function
rather than a selector. If the function returns true for an element, the element will
be included in the iltered set; otherwise, it will be excluded. Suppose we have a
somewhat more involved HTML snippet as follows:

 list item 1 -

 one strong tag

 list item 2 -

 two strong tags

 list item 3

 list item 4

 list item 5

 list item 6

www.allitebooks.com

http://www.allitebooks.org

DOM Traversal Methods

[44]

In such a case, we can select the list items and then ilter them based on their contents:

$('li').filter(function(index) {

 return $('strong', this).length == 1;

}).css('background-color', 'red');

This code will alter only the irst item in the list as it contains exactly one
tag. Within the ilter function, this refers to each DOM element in turn. The
parameter passed to the function tells us the index of that DOM element within the
set matched by the jQuery object.

We can also take advantage of the index parameter passed through the function,
which indicates the 0-based position of the element within the uniltered set of the
matched elements.

$('li').filter(function(index) {

 return index % 3 == 2;

}).css('background-color', 'red');

This alteration to the code will cause items 3 and 6 to be highlighted, as it uses the
modulus operator (%) to select every item with an index value that, when divided by
3, has a remainder of 2.

.not()
Remove elements from the set of matched elements.
 .not(selector)
 .not(elements)
 .not(function)

Parameters (irst version)
• selector: A string containing a selector expression to match

elements against

Parameters (second version)
• elements: One or more DOM elements to remove from the matched set

Parameters (third version)
• function: A function used as a test for each element in the set

Chapter 3

[45]

Return value
The new jQuery object.

Description
Given a jQuery object that represents a set of DOM elements, the .not() method
constructs a new jQuery object from a subset of the matching elements. The supplied
selector is tested against each element; the elements that don't match the selector will
be included in the result.

Consider a page with a simple list as follows:

 list item 1

 list item 2

 list item 3

 list item 4

 list item 5

We can apply this method to the set of list items.

$('li').not(':even').css('background-color', 'red');

The result of this call is a red background for items 2 and 4, as they do not match the
selector. (Recall that :even and :odd use 0-based indexing.)

Removing speciic elements
The second version of the .not() method allows us to remove elements from the
matched set, assuming we have found those elements previously by some other
means. For example, suppose our list had an ID applied to one of its items as follows:

 list item 1

 list item 2

 <li id="notli">list item 3

 list item 4

 list item 5

We can fetch the third item in the list using the native JavaScript getElementById()
function, and then remove it from a jQuery object.

$('li').not(document.getElementById('notli'))

 .css('background-color', 'red');

DOM Traversal Methods

[46]

This statement changes the color of items 1, 2, 4, and 5. We could have accomplished
the same thing with a simpler jQuery expression, but this technique can be useful
when, for example, other libraries provide references to plain DOM nodes.

As of jQuery 1.4, the .not() method can take a function as its argument in the
same way that .filter() does. Elements for which the function returns true are
excluded from the iltered set; all other elements are included.

.has()
Reduce the set of matched elements to those that have a descendant that matches
the selector.
 .has(selector)

Parameters
• selector: A string containing a selector expression to match

elements against

Return value
The new jQuery object.

Description
Given a jQuery object that represents a set of DOM elements, the .has() method
constructs a new jQuery object from a subset of the matching elements. The supplied
selector is tested against the descendants of the matching elements; the element will
be included in the result if any of its descendant elements matches the selector.

Consider a page with a nested list as follows:

 list item 1

 list item 2

 list item 2-a

 list item 2-b

 list item 3

 list item 4

Chapter 3

[47]

We can apply this method to the set of list items as follows:

$('li').has('ul').css('background-color', 'red');

The result of this call is a red background for item 2, as it is the only that has a
 among its descendants.

.eq()
Reduce the set of matched elements to the one at the speciied index.
 .eq(index)

Parameters
• index: An integer indicating the 0-based position of the element

Return value
The new jQuery object.

Description
Given a jQuery object that represents a set of DOM elements, the .eq() method
constructs a new jQuery object from one of the matching elements. The supplied
index identiies the position of this element in the set.

Consider a page with a simple list as follows:

 list item 1

 list item 2

 list item 3

 list item 4

 list item 5

We can apply this method to the set of list items as follows:

$('li').eq(2).css('background-color', 'red');

The result of this call is a red background for item 3. Note that the supplied index is
0-based, and refers to the position of the element within the jQuery object, not within
the DOM tree.

DOM Traversal Methods

[48]

If a negative number is provided, this indicates a position starting from the end of
the set, rather than the beginning. For example:

$('li').eq(-2).css('background-color', 'red');

The result of this call is a red background for item 4, as it is second from the end of
the set.

.irst()
Reduce the set of matched elements to the irst in the set.
 .first()

Parameters
None

Return value
The new jQuery object.

Description
Given a jQuery object that represents a set of DOM elements, the .first() method
constructs a new jQuery object from the irst matching element.

Consider a page with a simple list as follows:

 list item 1
 list item 2
 list item 3
 list item 4
 list item 5

We can apply this method to the set of list items as follows:

$('li').first().css('background-color', 'red');

The result of this call is a red background for item 1.

Chapter 3

[49]

.last()
Reduce the set of matched elements to the inal one in the set.
 .last()

Parameters
None

Return value
The new jQuery object.

Description
Given a jQuery object that represents a set of DOM elements, the .last() method
constructs a new jQuery object from the irst matching element.

Consider a page with a simple list as follows:

 list item 1
 list item 2
 list item 3
 list item 4
 list item 5

We can apply this method to the set of list items as follows:

$('li').last().css('background-color', 'red');

The result of this call is a red background for the inal list item.

.slice()
Reduce the set of matched elements to a subset speciied by a range of indices.
 .slice(start[, end])

Parameters
• start: An integer indicating the 0-based position after which the elements

are selected
• end (optional): An integer indicating the 0-based position before which the

elements stop being selected; if omitted, the range continues until the end of
the set

DOM Traversal Methods

[50]

Return value
The new jQuery object.

Description
Given a jQuery object that represents a set of DOM elements, the .slice() method
constructs a new jQuery object from a subset of the matching elements. The supplied
start index identiies the position of one of the elements in the set. If end is omitted,
all of the elements after this one will be included in the result.

Consider a page with a simple list as follows:

 list item 1

 list item 2

 list item 3

 list item 4

 list item 5

We can apply this method to the set of list items as follows:

$('li').slice(2).css('background-color', 'red');

The result of this call is a red background for the items 3, 4, and 5. Note that the
supplied index is 0-based, and refers to the position of elements within the jQuery
object; not within the DOM tree.

The end parameter allows us to limit the selected range even further. For example:

$('li').slice(2, 4).css('background-color', 'red');

Now only items 3 and 4 are selected. The index is once again 0-based. The range
extends up to, but doesn't include, the speciied index.

Negative indices
The jQuery .slice() method is patterned after the JavaScript .slice() method for
arrays. One of the features that it mimics is the ability for negative numbers to be
passed as either the start or end parameter. If a negative number is provided, this
indicates a position starting from the end of the set, rather than the beginning.
For example:

$('li').slice(-2, -1).css('background-color', 'red');

This time only the list item 4 turns red, as it is the only item in the range between the
second from the end (-2) and the irst from the end (-1).

Chapter 3

[51]

Tree traversal methods
These methods use the structure of the DOM tree to locate a new set of elements.

.ind()
Get the descendants of each element in the current set of matched elements
iltered by a selector.
 .find(selector)

Parameters
• selector: A string containing a selector expression to match

elements against

Return value
The new jQuery object.

Description
Given a jQuery object that represents a set of DOM elements, the .find() method
allows us to search through the descendants of these elements in the DOM tree
and construct a new jQuery object from the matching elements. The .find() and
.children() methods are similar, except that the latter only travels a single level
down the DOM tree.

The method accepts a selector expression of the same type that we can pass to
the $() function. The elements will be iltered by testing whether they match
this selector.

Consider a page with a basic nested list as follows:

<ul class="level-1">
 <li class="item-i">I
 <li class="item-ii">II
 <ul class="level-2">
 <li class="item-a">A
 <li class="item-b">B
 <ul class="level-3">
 <li class="item-1">1
 <li class="item-2">2
 <li class="item-3">3

DOM Traversal Methods

[52]

 <li class="item-c">C

 <li class="item-iii">III

If we begin at item II, we can ind list items within it as follows:

$('li.item-ii').find('li').css('background-color', 'red');

The result of this call is a red background on items A, B, 1, 2, 3, and C. Even though
item II matches the selector expression, it is not included in the results; only
descendants are considered candidates for the match.

As previously discussed in the section The jQuery Function, selector context is
implemented with the .find() method. Therefore, $('li.item-ii').find('li')
is equivalent to $('li', 'li.item-ii').

Unlike in the rest of the tree traversal methods, the selector expression is
required in a call to .find(). If we need to retrieve all of the descendant
elements, we can pass in the universal selector '*' to accomplish this.

.children()
Get the children of each element in the set of matched elements, optionally
iltered by a selector.
 .children([selector])

Parameters
• selector (optional): A string containing a selector expression to match

elements against

Return value
The new jQuery object.

Description
Given a jQuery object that represents a set of DOM elements, the .children()
method allows us to search through the immediate children of these elements in
the DOM tree and construct a new jQuery object from the matching elements. The
.find() and .children() methods are similar, except that the latter only travels a
single level down the DOM tree.

Chapter 3

[53]

The method optionally accepts a selector expression of the same type that we can
pass to the $() function. If the selector is supplied, the elements will be iltered by
testing whether they match it.

Consider a page with a basic nested list as follows:

<ul class="level-1">
 <li class="item-i">I
 <li class="item-ii">II
 <ul class="level-2">
 <li class="item-a">A
 <li class="item-b">B
 <ul class="level-3">
 <li class="item-1">1
 <li class="item-2">2
 <li class="item-3">3

 <li class="item-c">C

 <li class="item-iii">III

If we begin at the level-2 list, we can ind its children.

$('ul.level-2').children().css('background-color', 'red');

The result of this call is a red background behind the items A, B, and C. As we do
not supply a selector expression, all of the children are part of the returned jQuery
object; if we had supplied one, only the matching items among these three would
be included.

.parents()
Get the ancestors of each element in the current set of matched elements,
optionally iltered by a selector.
 .parents([selector])

Parameters
• selector (optional): A string containing a selector expression to match

elements against

Return value
The new jQuery object.

www.allitebooks.com

http://www.allitebooks.org

DOM Traversal Methods

[54]

Description
Given a jQuery object that represents a set of DOM elements, the .parents()
method allows us to search through the ancestors of these elements in the DOM tree
and construct a new jQuery object from the matching elements. The .parents() and
.parent() methods are similar, except that the latter only travels a single level up
the DOM tree.

The method optionally accepts a selector expression of the same type that we can
pass to the $() function. If the selector is supplied, the elements will be iltered by
testing whether or not they match it.

Consider a page with a basic nested list as follows:

<ul class="level-1">
 <li class="item-i">I
 <li class="item-ii">II
 <ul class="level-2">
 <li class="item-a">A
 <li class="item-b">B
 <ul class="level-3">
 <li class="item-1">1
 <li class="item-2">2
 <li class="item-3">3

 <li class="item-c">C

 <li class="item-iii">III

If we begin at item A, we can ind its ancestors as follows:

$('li.item-a').parents().css('background-color', 'red');

The result of this call is a red background for the level-2 list, the item II, and the
level-1 list (and on up the DOM tree all the way to the document's root element,
which is typically <html>). As we do not supply a selector expression, all of the
ancestors are part of the returned jQuery object. If we had supplied one, only the
matching items among these would be included.

Chapter 3

[55]

.parentsUntil()
Get the ancestors of each element in the current set of matched elements up to,
but not including, the element matched by the selector.
 .parentsUntil(selector)

Parameters
• selector: A string containing a selector expression to indicate where to stop

matching ancestor elements

Return value
The new jQuery object.

Description
Given a jQuery object that represents a set of DOM elements, the .parentsUntil()
method traverses through the ancestors of these elements until it reaches an element
matched by the selector passed in the method's argument. The resulting jQuery
object contains all of the ancestors up to, but not including, the one matched by the
.parentsUntil() selector. Consider a page with a basic nested list as follows:

<ul class="level-1">
 <li class="item-i">I
 <li class="item-ii">II
 <ul class="level-2">
 <li class="item-a">A
 <li class="item-b">B
 <ul class="level-3">
 <li class="item-1">1
 <li class="item-2">2
 <li class="item-3">3

 <li class="item-c">C

 <li class="item-iii">III

DOM Traversal Methods

[56]

If we begin at item A, we can ind its ancestors up to but not including <li
class="level-1"> as follows:

$('li.item-a').parentsUntil('.level-1')
 .css('background-color', 'red');

The result of this call is a red background for the level-2 list and the item II.

If the .parentsUntil() selector is not matched, or if no selector is supplied, the
returned jQuery object contains all of the previous jQuery object's ancestors. For
example, let's say we begin at item A again, but this time we use a selector that is not
matched by any of its ancestors:

$('li.item-a').parentsUntil('.not-here')
 .css('background-color', 'red');

The result of this call is a red background-color style applied to the level-2 list,
the item II, the level-1 list, the <body> element, and the <html> element.

.parent()
Get the parent of each element in the current set of matched elements, optionally
iltered by a selector.
 .parent([selector])

Parameters
• selector (optional): A string containing a selector expression to match

elements against

Return value
The new jQuery object.

Description
Given a jQuery object that represents a set of DOM elements, the .parent() method
allows us to search through the parents of these elements in the DOM tree and
construct a new jQuery object from the matching elements. The .parents() and
.parent() methods are similar, except that the latter only travels a single level up
the DOM tree.

The method optionally accepts a selector expression of the same type that we can
pass to the $() function. If the selector is supplied, the elements will be iltered by
testing whether they match it.

Chapter 3

[57]

Consider a page with a basic nested list as follows:

<ul class="level-1">
 <li class="item-i">I
 <li class="item-ii">II
 <ul class="level-2">
 <li class="item-a">A
 <li class="item-b">B
 <ul class="level-3">
 <li class="item-1">1
 <li class="item-2">2
 <li class="item-3">3

 <li class="item-c">C

 <li class="item-iii">III

If we begin at item A, we can ind its parents.

$('li.item-a').parent().css('background-color', 'red');

The result of this call is a red background for the level-2 list. As we do not supply
a selector expression, the parent element is unequivocally included as part of the
object. If we had supplied one, the element would be tested for a match before it
was included.

.closest()
Get the irst element that matches the selector, beginning at the current element
and progressing up through the DOM tree.
 .closest(selector[, context])

Parameters
• selector: A string containing a selector expression to match

elements against

• context (optional): A DOM element within which a matching element may
be found

Return value
The new jQuery object.

DOM Traversal Methods

[58]

Description
Given a jQuery object that represents a set of DOM elements, the .closest()
method allows us to search through these elements and their ancestors in the DOM
tree and construct a new jQuery object from the matching elements.

The .parents() and .closest() methods are similar in that they both traverse up
the DOM tree. The differences between the two, though subtle, are signiicant:

.closest() .parents()
Begins with the current element Begins with the parent element
Travels up the DOM tree until it inds
a match for the supplied selector

Travels up the DOM tree to the document's
root element, adding each ancestor element
to a temporary collection; it then ilters that
collection based on a selector if one is supplied

The returned jQuery object contains
zero or one element

The returned jQuery object contains zero, one,
or multiple elements

Consider a page with a basic nested list as follows:

<ul id="one" class="level-1">

 <li class="item-i">I

 <li id="ii" class="item-ii">II

 <ul class="level-2">

 <li class="item-a">A

 <li class="item-b">B

 <ul class="level-3">

 <li class="item-1">1

 <li class="item-2">2

 <li class="item-3">3

 <li class="item-c">C

 <li class="item-iii">III

Suppose we perform a search for elements starting at item A.

$('li.item-a').closest('ul')

 .css('background-color', 'red');

This will change the color of the level-2 , as it is the irst encountered
when traveling up the DOM tree.

Chapter 3

[59]

Suppose we search for an element instead:

$('li.item-a').closest('li')

 .css('background-color', 'red');

This will change the color of list item A. The .closest() method begins its search
with the element itself before progressing up the DOM tree and stops when item A
matches the selector.

We can pass in a DOM element as the context within which to search for the
closest element.

Var listItemII = document.getElementById('ii');

$('li.item-a').closest('ul', listItemII)

 .css('background-color', 'red');

$('li.item-a').closest('#one', listItemII)

 .css('background-color', 'green');

This will change the color of the level-2 , because it is both the irst
ancestor of list item A and a descendant of list item II. It will not change the color of
the level-1 , however, because it is not a descendant of list item II.

.offsetParent()
Get the closest ancestor element that is positioned.
 .offsetParent()

Parameters
None

Return value
The new jQuery object.

Description
Given a jQuery object that represents a set of DOM elements, the .offsetParent()
method allows us to search through the ancestors of these elements in the DOM tree
and construct a new jQuery object wrapped around the closest positioned ancestor.
An element is said to be positioned if its CSS position attribute is relative,
absolute, or fixed. This information is useful for calculating offsets for performing
animations and placing objects on the page.

DOM Traversal Methods

[60]

Consider a page with a basic nested list with a positioned element as follows:

<ul class="level-1">

 <li class="item-i">I

 <li class="item-ii" style="position: relative;">II

 <ul class="level-2">

 <li class="item-a">A

 <li class="item-b">B

 <ul class="level-3">

 <li class="item-1">1

 <li class="item-2">2

 <li class="item-3">3

 <li class="item-c">C

 <li class="item-iii">III

If we begin at item A, we can ind its positioned ancestor.

$('li.item-a').offsetParent().css('background-color', 'red');

This will change the color of list item II, which is positioned.

.siblings()
Get the siblings of each element in the set of matched elements, optionally
iltered by a selector.
 .siblings([selector])

Parameters
• selector (optional): A string containing a selector expression to match

elements against

Return value
The new jQuery object.

Chapter 3

[61]

Description
Given a jQuery object that represents a set of DOM elements, the .siblings()
method allows us to search through the siblings of these elements in the DOM tree
and construct a new jQuery object from the matching elements.

The method optionally accepts a selector expression of the same type that we can
pass to the $() function. If the selector is supplied, the elements will be iltered by
testing whether they match it.

Consider a page with a simple list as follows:

 list item 1

 list item 2

 <li class="third-item">list item 3

 list item 4

 list item 5

If we begin at the third item, we can ind its siblings as follows:

$('li.third-item').siblings().css('background-color', 'red');

The result of this call is a red background behind items 1, 2, 4, and 5. As we do
not supply a selector expression, all of the siblings are part of the object. If we had
supplied one, only the matching items among these four would be included.

The original element is not included among the siblings, which is important
to remember when we wish to ind all of the elements at a particular level of the
DOM tree.

.prev()
Get the immediately preceding sibling of each element in the set of matched
elements, optionally iltered by a selector.
 .prev([selector])

Parameters
• selector (optional): A string containing a selector expression to match

elements against

DOM Traversal Methods

[62]

Return value
The new jQuery object.

Description
Given a jQuery object that represents a set of DOM elements, the .prev() method
allows us to search through the predecessors of these elements in the DOM tree and
construct a new jQuery object from the matching elements.

The method optionally accepts a selector expression of the same type that we can
pass to the $() function. If the selector is supplied, the elements will be iltered by
testing whether they match it.

Consider a page with a simple list as follows:

 list item 1
 list item 2
 <li class="third-item">list item 3
 list item 4
 list item 5

If we begin at the third item, we can ind the element that comes just before it.

$('li.third-item').prev().css('background-color', 'red');

The result of this call is a red background behind item 2. As we do not supply
a selector expression, this preceding element is unequivocally included as part of
the object. If we had supplied one, the element would be tested for a match before it
was included.

.prevAll()
Get all preceding siblings of each element in the set of matched elements,
optionally iltered by a selector.
 .prevAll([selector])

Parameters
• selector (optional): A string containing a selector expression to match

elements against

Chapter 3

[63]

Return value
The new jQuery object.

Description
Given a jQuery object that represents a set of DOM elements, the .prevAll()
method allows us to search through the predecessors of these elements in the DOM
tree and construct a new jQuery object from the matching elements.

The method optionally accepts a selector expression of the same type that we can
pass to the $() function. If the selector is supplied, the elements will be iltered by
testing whether they match it.

Consider a page with a simple list as follows:

 list item 1
 list item 2
 <li class="third-item">list item 3
 list item 4
 list item 5

If we begin at the third item, we can ind the elements that come before it.

$('li.third-item').prevAll().css('background-color', 'red');

The result of this call is a red background behind items 1 and 2. As we do not supply
a selector expression, these preceding elements are unequivocally included as part of
the object. If we had supplied one, the elements would be tested for a match before
they were included.

.prevUntil()
Get all preceding siblings of each element up to, but not including, the element
matched by the selector.
 .prevUntil(selector)

Parameters
• selector: A string containing a selector expression to indicate where to stop

matching previous sibling elements

Return value
The new jQuery object.

DOM Traversal Methods

[64]

Description
Given a jQuery object that represents a set of DOM elements, the .prevUntil()
method allows us to search through the predecessors of these elements in the DOM
tree, stopping when it reaches an element matched by the method's argument.
The new jQuery object that is returned contains all previous siblings up to, but not
including, the one matched by the .prevUntil() selector.

If the selector is not matched or is not supplied, all previous siblings will be selected;
in these cases it selects the same elements as the .prevAll() method does when no
ilter selector is provided.

Consider a page with a simple deinition list as follows:

<dl>

 <dt>term 1</dt>

 <dd>definition 1-a</dd>

 <dd>definition 1-b</dd>

 <dd>definition 1-c</dd>

 <dd>definition 1-d</dd>

 <dt id="term-2">term 2</dt>

 <dd>definition 2-a</dd>

 <dd>definition 2-b</dd>

 <dd>definition 2-c</dd>

 <dt>term 3</dt>

 <dd>definition 3-a</dd>

 <dd>definition 3-b</dd>

</dl>

If we begin at the second term, we can ind the elements that come before it until a
preceding <dt>.

$('#term-2').prevUntil('dt').css('background-color', 'red');

The result of this call is a red background behind deinitions 1-a, 1-b, 1-c, and 1-d.

.next()
Get the immediately following sibling of each element in the set of matched
elements, optionally iltered by a selector.
 .next([selector])

Chapter 3

[65]

Parameters
• selector (optional): A string containing a selector expression to match

elements against

Return value
The new jQuery object.

Description
Given a jQuery object that represents a set of DOM elements, the .next() method
allows us to search through the successors of these elements in the DOM tree and
construct a new jQuery object from the matching elements.

The method optionally accepts a selector expression of the same type that we can
pass to the $() function. If the selector is supplied, the elements will be iltered by
testing whether or not they match it.

Consider a page with a simple list as follows:

 list item 1

 list item 2

 <li class="third-item">list item 3

 list item 4

 list item 5

If we begin at the third-item, we can ind the element that comes just after it
as follows:

$('li.third-item').next().css('background-color', 'red');

The result of this call is a red background behind item 4. As we do not supply
a selector expression, this following element is unequivocally included as part of
the object. If we had supplied one, the element would be tested for a match before it
was included.

.nextAll()
Get all following siblings of each element in the set of matched elements,
optionally iltered by a selector.
 .nextAll([selector])

DOM Traversal Methods

[66]

Parameters
• selector (optional): A string containing a selector expression to match

elements against

Return value
The new jQuery object.

Description
Given a jQuery object that represents a set of DOM elements, the .nextAll()
method allows us to search through the successors of these elements in the DOM tree
and construct a new jQuery object from the matching elements.

The method optionally accepts a selector expression of the same type that we can
pass to the $() function. If the selector is supplied, the elements will be iltered by
testing whether they match it.

Consider a page with a simple list as follows:

 list item 1

 list item 2

 <li class="third-item">list item 3

 list item 4

 list item 5

If we begin at the third-item, we can ind the elements that come after it.

$('li.third-item').nextAll().css('background-color', 'red');

The result of this call is a red background behind items 4 and 5. As we do not supply
a selector expression, these following elements are unequivocally included as part of
the object. If we had supplied one, the elements would be tested for a match before
they were included.

.nextUntil()
Get all following siblings of each element up to, but not including, the element
matched by the selector.
 .nextUntil(selector)

Chapter 3

[67]

Parameters
• selector: A string containing a selector expression to indicate where to stop

matching following sibling elements

Return value
The new jQuery object.

Description
Given a jQuery object that represents a set of DOM elements, the .nextUntil()
method allows us to search through the successive siblings of these elements in the
DOM tree, stopping when it reaches an element matched by the method's argument.
The new jQuery object that is returned contains all following siblings up to, but not
including, the one matched by the .nextUntil() selector.

If the selector is not matched or is not supplied, all following siblings will be selected;
in these cases it selects the same elements as the .nextAll() method does when no
ilter selector is provided.

Consider a page with a simple deinition list as follows:

<dl>

 <dt>term 1</dt>

 <dd>definition 1-a</dd>

 <dd>definition 1-b</dd>

 <dd>definition 1-c</dd>

 <dd>definition 1-d</dd>

 <dt id="term-2">term 2</dt>

 <dd>definition 2-a</dd>

 <dd>definition 2-b</dd>

 <dd>definition 2-c</dd>

 <dt>term 3</dt>

 <dd>definition 3-a</dd>

 <dd>definition 3-b</dd>

</dl>

If we begin at the second term, we can ind the elements that come after it until the
next <dt>.

$('#term-2').nextUntil('dt').css('background-color', 'red');

The result of this call is a red background behind deinitions 2-a, 2-b, and 2-c.

DOM Traversal Methods

[68]

Miscellaneous traversal methods
These methods provide other mechanisms for manipulating the set of matched DOM
elements in a jQuery object.

.add()
Add elements to the set of matched elements.
 .add(selector[, context])
 .add(elements)
 .add(html)

Parameters (irst version)
• selector: A string containing a selector expression to match additional

elements against

• context (optional): The portion of the DOM tree within which to search

Parameters (second version)
• elements: One or more elements to add to the set of matched elements

Parameters (third version)
• html: An HTML fragment to add to the set of matched elements

Return value
The new jQuery object.

Description
Given a jQuery object that represents a set of DOM elements, the .add() method
constructs a new jQuery object from the union of those elements and the ones passed
into the method. The argument to .add() can be pretty much anything that $()
accepts, including a jQuery selector expression, references to DOM elements, or an
HTML snippet.

Consider a page with a simple list along with a couple paragraphs as follows:

 list item 1
 list item 2
 list item 3

<p>a paragraph</p>

Chapter 3

[69]

<div>
 <p>paragraph within a div</p>
</div>

We can select the list items and then the paragraphs by using either a selector or a
reference to the DOM element itself as the .add() method's argument.

$('li').add('p').css('background-color', 'red');

or

$('li').add(document.getElementsByTagName('p')[0])
 .css('background-color', 'red');

The result of this call is a red background behind all three list items and two
paragraphs.

We can specify a context within which to search for the elements that we wish
to add:

$('li').add('p', 'div').css('background-color', 'red');

Now the result is a red background behind all three list items, but only the
second paragraph.

Using an HTML snippet as the .add() method's argument (as in the third version),
we can create additional elements on the ly and add those elements to the matched
set of elements. Let's say, for example, that we want to alter the background of the
list items along with a newly created paragraph.

$('li').add('<p id="new">new paragraph</p>')

 .css('background-color', 'red');

Although the new paragraph has been created and its background color changed,
it still does not appear on the page. To place it on the page, we could add one of the
insertion methods to the chain.

See Chapter 4, DOM Manipulation Methods, for more information
about the insertion methods.

.is()
Check the current matched set of elements against a selector and return true if
at least one of these elements matches the selector.
 .is(selector)

DOM Traversal Methods

[70]

Parameters
• selector: A string containing a selector expression to match elements against

Return value
A Boolean indicating whether an element matches the selector.

Description
Unlike the rest of the methods in this chapter, .is() does not create a new
jQuery object. Instead, it allows us to test the contents of a jQuery object without
modiication. This is often useful inside callbacks, such as event handlers.

Suppose we have a list, with two of its items containing a child element as follows:

 list item 1
 list item 2
 list item 3

We can attach a click handler to the element, and then limit the code to be
triggered only when a list item itself, not one of its children, is clicked.

$('ul').click(function(event) {

 if ($(event.target).is('li')) {

 $(event.target).css('background-color', 'red');

 }

});

Now, when the user clicks on the word list in item 1, or anywhere on item 3, the
clicked list item will be given a red background. However, when the user clicks on
item 1 in the irst item or anywhere in the second item, nothing will happen because
in those cases the target of the event would be or , respectively.

.end()
End the most recent iltering operation in the current chain and return the set of
matched elements to its previous state.
 .end()

Parameters
None

Chapter 3

[71]

Return value
The previous jQuery object.

Description
Most of the methods in this chapter operate on a jQuery object and produce a new
one that matches a different set of DOM elements. When this happens, it is as if the
new set of elements is pushed onto a stack that is maintained inside the object. Each
successive iltering method pushes a new element set onto the stack. If we need an
older element set, we can use .end() to pop the sets back off of the stack.

Suppose we have a couple short lists on a page as follows:

<ul class="first">

 <li class="foo">list item 1

 list item 2

 <li class="bar">list item 3

<ul class="second">

 <li class="foo">list item 1

 list item 2

 <li class="bar">

The .end() method is useful primarily when exploiting jQuery's chaining
properties. When not using chaining, we can usually just call up a previous object by
a variable name so that we don't need to manipulate the stack. With .end(), though,
we can string all of the method calls together.

$('ul.first').find('.foo').css('background-color', 'red')

 .end().find('.bar').css('background-color', 'green');

This chain searches for items with the foo class within the irst list only and turns
their backgrounds red. Then .end() returns the object to its state before the call to
.find(). So the second .find() looks for '.bar' inside <ul class="first">,
not just inside that list's <li class="foo">, and turns the matching elements'
backgrounds green. The net result is that items 1 and 3 of the irst list have a colored
background, while none of the items from the second list do.

A long jQuery chain can be visualized as a structured code block with iltering
methods providing the openings of nested blocks and .end() methods closing them:

$('ul.first').find('.foo')

 .css('background-color', 'red')

.end().find('.bar')

 .css('background-color', 'green')

.end();

DOM Traversal Methods

[72]

The last .end() is unnecessary, as we are discarding the jQuery object immediately
thereafter. However, when the code is written in this form, the .end() provides
visual symmetry and closure, making the program more readable at least in the eyes
of some developers.

.andSelf()

Add the previous set of elements on the stack to the current set.
 .andSelf()

Parameters
None

Return value
The new jQuery object.

Description
As previously described in the Description for .end(), jQuery objects maintain an
internal stack that keeps track of changes to the matched set of elements. When one
of the DOM traversal methods is called, the new set of elements is pushed onto the
stack. If the previous set of elements is desired as well, .andSelf() can help.

Consider a page with a simple list as follows:

 list item 1
 list item 2
 <li class="third-item">list item 3
 list item 4
 list item 5

If we begin at the third item, we can ind the elements that come after it.

$('li.third-item').nextAll().andSelf()

 .css('background-color', 'red');

The result of this call is a red background behind items 3, 4 and 5. First, the initial
selector locates item 3, initializing the stack with the set containing just this item. The
call to .nextAll() then pushes the set of items 4 and 5 onto the stack. Finally, the
.andSelf() invocation merges these two sets together, creating a jQuery object that
points to all three items.

Chapter 3

[73]

.map()
Pass each element in the current matched set through a function, producing a
new jQuery object containing the return values.
 .map(callback)

Parameters
• callback: A function object that will be invoked for each element in the

current set

Return value
The new jQuery object.

Description
The .map() method is particularly useful for getting or setting the value of a
collection of elements. Consider a form with a set of checkboxes as follows:

<form method="post" action="">

 <fieldset>

 <div>

 <label for="two">2</label>

 <input type="checkbox" value="2" id="two" name="number[]">

 </div>

 <div>

 <label for="four">4</label>

 <input type="checkbox" value="4" id="four" name="number[]">

 </div>

 <div>

 <label for="six">6</label>

 <input type="checkbox" value="6" id="six" name="number[]">

 </div>

 <div>

 <label for="eight">8</label>

 <input type="checkbox" value="8" id="eight" name="number[]">

 </div>

 </fieldset>

</form>

We can select all of the checkboxes by setting their checked property to true.

$(':checkbox').map(function() {

 return this.checked = true;

});

DOM Traversal Methods

[74]

We can get the sum of the values of the checked inputs as follows:

var sum = 0;

$(':checked').map(function() {

 return sum += (this.value * 1);

});

We can get a comma-separated list of checkbox IDs.

$(':checkbox').map(function() {

 return this.id;

}).get().join(',');

The result of this call is the two,four,six,eight string.

.contents()
Get the children of each element in the set of matched elements, including
text nodes.
 .contents()

Parameters
None

Return value
The new jQuery object.

Description
Given a jQuery object that represents a set of DOM elements, the .contents()
method allows us to search through the immediate children of these elements in
the DOM tree and construct a new jQuery object from the matching elements. The
.contents() and .children() methods are similar, except that the former includes
text nodes as well as HTML elements in the resulting jQuery object.

Chapter 3

[75]

Consider a simple <div> with a number of text nodes, each of which is separated by
two line break elements (
) as follows:

<div class="container">

 Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do
eiusmod tempor incididunt ut labore et dolore magna aliqua.

 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris
nisi ut aliquip ex ea commodo consequat.

 Duis aute irure dolor in reprehenderit in voluptate velit esse
cillum dolore eu fugiat nulla pariatur.

 </div>

We can employ the .contents() method to help convert this block of text into three
well-formed paragraphs.

$('.container').contents().filter(function() {

 return this.nodeType == 3;

})

 .wrap('<p></p>')

.end()

.filter('br')

 .remove();

This code irst retrieves the contents of <div class="container"> and then ilters it
for text nodes, which are wrapped in paragraph tags. This is accomplished by testing
the .nodeType property of the element. This DOM property holds a numeric code
indicating the node's type—text nodes use the code 3. The contents are again iltered,
this time for
 elements, and then these elements are removed.

DOM Manipulation Methods
All of the methods in this chapter manipulate the DOM in some manner. A few
of them simply change one of the attributes of an element, while others set an
element's style properties. Still others modify entire elements (or groups of elements)
themselves—inserting, copying, removing, and so on. All of these methods are
referred to as setters, as they change the values of properties.

A few of these methods such as .attr(), .html(), and .val() also act as getters,
retrieving information from DOM elements for later use.

General attributes
These methods get and set DOM attributes of elements.

.attr() (getter)

Get the value of an attribute for the irst element in the set of matched elements.
 .attr(attributeName)

Parameters
• attributeName: The name of the attribute to get

Return value
A string containing the attribute value.

DOM Manipulation Methods

[78]

Description
It's important to note that the .attr() method gets the attribute value for only the
irst element in the matched set. To get the value for each element individually, we
need to rely on a looping construct such as jQuery's .each() method.

Using jQuery's .attr() method to get the value of an element's attribute has two
main beneits:

• Convenience: It can be called directly on a jQuery object and chained to
other jQuery methods.

• Cross-browser consistency: Some attributes have inconsistent naming from
browser to browser. Furthermore, the values of some attributes are reported
inconsistently across browsers, and even across versions of a single browser.
The .attr() method reduces such inconsistencies.

.attr() (setter)
Set one or more attributes for the set of matched elements.
 .attr(attributeName, value)
 .attr(map)
 .attr(attributeName, function)

Parameters (irst version)
• attributeName: The name of the attribute to set
• value: A value to set for the attribute

Parameters (second version)
• map: A map of attribute-value pairs to set

Parameters (third version)
• attributeName: The name of the attribute to set
• function: A function returning the value to set

Return value
The jQuery object, for chaining purposes.

Chapter 4

[79]

Description
The .attr() method is a convenient and powerful way to set the value of attributes,
especially when setting multiple attributes or using values returned by a function.
Let's consider the following image:

<img id="greatphoto" src="brush-seller.jpg"

 alt="brush seller" />

Setting a simple attribute
We can change the alt attribute by simply passing the name of the attribute and its
new value to the .attr() method.

$('#greatphoto').attr('alt', 'Beijing Brush Seller');

We can add an attribute the same way.

$('#greatphoto')

 .attr('title', 'Photo by Kelly Clark');

Setting several attributes at once
To change the alt attribute and add the title attribute at the same time, we can pass
both sets of names and values into the method at once using a map (JavaScript object
literal). Each key-value pair in the map adds or modiies an attribute:

$('#greatphoto').attr({

 alt: 'Beijing Brush Seller',

 title: 'photo by Kelly Clark'

});

When setting multiple attributes, the quotation marks around attribute names are
optional.

Computed attribute values
By using a function to set attributes, we can compute the value based on other
properties of the element. For example, we could concatenate a new value with an
existing value as follows:

$('#greatphoto').attr('title', function() {

 return this.alt + ' – photo by Kelly Clark'

});

This use of a function to compute attribute values can be particularly useful when we
modify the attributes of multiple elements at once.

DOM Manipulation Methods

[80]

.removeAttr()
Remove an attribute from each element in the set of matched elements.
 .removeAttr(attributeName)
 .removeAttr(function)

Parameters (irst version)
• attributeName: An attribute to remove

Parameters (second version)
• function: A function returning the attribute to remove

Return value
The jQuery object, for chaining purposes.

Description
The .removeAttr() method uses the JavaScript removeAttribute() function,
but it has the advantage of being able to be called directly on a jQuery object and it
accounts for different attribute naming across browsers.

As of jQuery 1.4, the .removeAttr() function allows us to indicate the attribute to be
removed by passing in a function.

Style properties
These methods get and set CSS-related properties of elements.

.css() (getter)
Get the value of a style property for the irst element in the set of
matched elements.
 .css(propertyName)

Parameters
• propertyName: A CSS property

Return value
A string containing the CSS property value.

Chapter 4

[81]

Description
The .css() method is a convenient way to get a style property from the irst
matched element, especially in light of the different ways browsers access most of
those properties (the getComputedStyle() method in standards-based browsers
versus the currentStyle and runtimeStyle properties in Internet Explorer) and the
different terms browsers use for certain properties. For example, Internet Explorer's
DOM implementation refers to the float property as styleFloat, while W3C
standards-compliant browsers refer to it as cssFloat. The .css() method accounts
for such differences, producing the same result no matter which term we use. For
example, an element that is loated left will return the left string for each of the
following three lines:

• $('div.left').css('float');

• $('div.left').css('cssFloat');

• $('div.left').css('styleFloat');

Also, jQuery can equally interpret the CSS and DOM formatting of multiple-word
properties. For example, jQuery understands and returns the correct value for both
.css('background-color') and .css('backgroundColor').

.css() (setter)
Set one or more CSS properties for the set of matched elements.
 .css(propertyName, value)
 .css(map)
 .css(propertyName, function)

Parameters (irst version)
• propertyName: A CSS property name
• value: A value to set for the property

Parameters (second version)
• map: A map of property-value pairs to set

Parameters (third version)
• propertyName: A CSS property name
• function: A function returning the value to set

DOM Manipulation Methods

[82]

Return value
The jQuery object, for chaining purposes.

Description
As with the .attr() method, the .css() method makes setting properties of
elements quick and easy. This method can take either a property name and value as
separate parameters, or a single map of key-value pairs (JavaScript object notation).

Also, jQuery can equally interpret the CSS and DOM formatting of multiple-word
properties. For example, jQuery understands and returns the correct value for both
.css({'background-color': '#ffe', 'border-left': '5px solid #ccc'})
and .css({backgroundColor: '#ffe', borderLeft: '5px solid #ccc'}).
Notice that with the DOM notation, quotation marks around the property names are
optional. However, with CSS notation they're required due to the hyphen in
the name.

As with .attr(), .css() allows us to pass a function as the property value as follows:

$('div.example').css('width', function(index) {

 return index * 50;

});

This example sets the widths of the matched elements to incrementally larger values.

.height() (getter)
Get the current computed height for the irst element in the set of
matched elements.
 .height()

Parameters
None

Return value
The height of the element in pixels

Chapter 4

[83]

Description
The difference between .css('height') and .height() is that the latter returns a
unitless pixel value (for example, 400), while the former returns a value with units
intact (for example, 400px). The .height() method is recommended when an
element's height needs to be used in a mathematical calculation.

margin

padding

element

height

border

.height() (setter)
Set the CSS height of each element in the set of matched elements.
 .height(value)

Parameters
• value: An integer representing the number of pixels, or an integer with an

optional unit of measure appended

Return value
The jQuery object, for chaining purposes.

Description
When calling .height(value), the value can be either a string (number and unit) or
a number. If only a number is provided for the value, jQuery assumes a pixel unit.
However, if a string is provided, any valid CSS measurement may be used for the
height (such as 100px, 50%, or auto). Note that in modern browsers, the CSS height
property does not include padding, border, or margin.

DOM Manipulation Methods

[84]

.innerHeight()
Get the current computed height for the irst element in the set of matched
elements, including padding but not border.
 .innerHeight()

Parameters
None

Return value
The height of the element in pixels, including top and bottom padding.

Description
This method is not applicable to window and document objects; for these use
.height() instead.

margin

padding

element
Inner

height

border

.outerHeight()
Get the current computed height for the irst element in the set of matched
elements, including padding and border.
 .outerHeight([includeMargin])

Chapter 4

[85]

Parameters
• includeMargin: A Boolean indicating whether to include the element's

margin in the calculation

Return value
The height of the element, along with its top and bottom padding, border, and
optionally margin, in pixels.

Description
If includeMargin is omitted or false, the padding and border are included in the
calculation; if it's true, the margin is also included.

This method is not applicable to window and document objects, for these use
.height() instead.

margin

padding

element
Outer Height

border
Outer Height(true)

.width() (getter)
Get the current computed width for the irst element in the set of
matched elements.
 .width()

Parameters
None

Return value
The width of the element in pixels.

DOM Manipulation Methods

[86]

Description
The difference between .css(width) and .width() is that the latter returns a
unitless pixel value (for example, 400), while the former returns a value with units
intact (for example, 400px). The .width() method is recommended when an
element's width needs to be used in a mathematical calculation.

margin

padding

element

border

width

.width() (setter)
Set the CSS width of each element in the set of matched elements.
 .width(value)

Parameters
• value: An integer representing the number of pixels, or an integer along with

an optional unit of measure appended

Return value
The jQuery object, for chaining purposes.

Description
When calling .width('value'), the value can be either a string (number and unit)
or a number. If only a number is provided for the value, jQuery assumes a pixel unit.
However, if a string is provided, any valid CSS measurement may be used for the
width (such as 100px, 50%, or auto). Note that in modern browsers, the CSS width
property does not include padding, border, or margin.

Chapter 4

[87]

.innerWidth()

Get the current computed width for the irst element in the set of matched
elements, including padding but not border.
 .innerWidth()

Parameters
None

Return value
The width of the element, including left and right padding, in pixels.

Description
This method is not applicable to window and document objects, for these use
.width() instead.

margin

padding

element

border

Inner Width

.outerWidth()
Get the current computed width for the irst element in the set of matched
elements, including padding and border.
 .outerWidth([includeMargin])

Parameters
• includeMargin: A Boolean indicating whether to include the element's

margin in the calculation

DOM Manipulation Methods

[88]

Return value
The width of the element, along with left and right padding, border, and optionally
margin, in pixels.

Description
If includeMargin is omitted or false, the padding and border are included in the
calculation; if it's true, the margin is also included.

This method is not applicable to window and document objects; for these use
.width() instead.

margin

padding

element

border

Outer width (true)

Outer width

.offset() (getter)
Get the current coordinates of the irst element in the set of matched elements
relative to the document.
 .offset()

Parameters
None

Return value
An object containing the properties top and left.

Chapter 4

[89]

Description
The .offset() method allows us to retrieve the current position of an element
relative to the document. Contrast this with .position(), which retrieves the
current position relative to the offset parent. When positioning a new element
on top of an existing one for global manipulation (in particular, for implementing
drag-and-drop), .offset() is more useful.

.offset() (setter)
Set the current coordinates of the irst element in the set of matched elements
relative to the document.
 .offset(coordinates)

Parameters
• coordinates: An object containing the top and left properties, which are

integers indicating the new top and left coordinates for the element

Return value
The jQuery object, for chaining purposes.

Description
The .offset() setter method allows us to reposition an element. The element's
position is speciied relative to the document. If the element's position style property
is currently static, it will be set to relative to allow for this repositioning.

.position()
Get the current coordinates of the irst element in the set of matched elements,
relative to the offset parent.
 .position()

Parameters
None

Return value
An object containing the properties top and left.

DOM Manipulation Methods

[90]

Description
The .position() method allows us to retrieve the current position of an element
relative to the offset parent. Contrast this with .offset(), which retrieves the current
position relative to the document. When positioning a new element near another one
within the same DOM element, .position() is more useful.

.scrollTop() (getter)
Get the current vertical position of the scroll bar for the irst element in the set of
matched elements.
 .scrollTop()

Parameters
None

Return value
The vertical scroll position in pixels.

Description
The vertical scroll position is the same as the number of pixels that are hidden from
view above the scrollable area. If the scroll bar is at the very top, or if the element is
not scrollable, this number will be 0.

.scrollTop() (setter)
Set the current vertical position of the scroll bar for each of the sets of
matched elements.
 .scrollTop(value)

Parameters
• value: An integer indicating the new position to set the scroll bar to

Return value
The jQuery object, for chaining purposes.

Chapter 4

[91]

.scrollLeft() (getter)
Get the current horizontal position of the scroll bar for the irst element in the set
of matched elements.
 .scrollLeft()

Parameters
None

Return value
The horizontal scroll position in pixels.

Description
The horizontal scroll position is the same as the number of pixels that are hidden
from view to the left of the scrollable area. If the scroll bar is at the very left, or if the
element is not scrollable, this number will be 0.

.scrollLeft() (setter)
Set the current horizontal position of the scroll bar for each of the set of
matched elements.
 .scrollLeft(value)

Parameters
• value: An integer indicating the new position to set the scroll bar to

Return value
The jQuery object, for chaining purposes

Class attributes
These methods inspect and manipulate the CSS classes assigned to elements.

DOM Manipulation Methods

[92]

.hasClass()

Determine whether any of the matched elements are assigned
the given class.
 .hasClass(className)

Parameters
• className: The class name to search for

Return value
A Boolean indicating whether the class is assigned to an element in the set.

Description
Elements may have more than one class assigned to them. In HTML, this is
represented by separating the class names with a space:

<div id="mydiv" class="foo bar"></div>

The .hasClass() method will return true if the class is assigned to an element, and
it will also return true if any other classes are assigned to it. For example, given the
preceding HTML code, the following will return true:

• $('#mydiv').hasClass('foo')

• $('#mydiv').hasClass('bar')

.addClass()
Add one or more classes to each element in the set of matched elements.
 .addClass(className)
 .addClass(function)

Parameters (irst version)
• className: One or more class names to be added to the class attribute of

each matched element

Parameters (second version)
• function: A function returning one or more space-separated class names to

be added

Chapter 4

[93]

Return value
The jQuery object, for chaining purposes.

Description
It's important to note that this method does not replace a class. It simply adds the
class, appending it to any which may already be assigned to the elements.

More than one class may be added at a time, separated by a space, to the set of
matched elements.

$('p').addClass('myClass yourClass');

This method is often used with .removeClass() to switch elements' classes from one
to another.

$('p').removeClass('myClass noClass').addClass('yourClass');

Here, the myClass and noClass classes are removed from all paragraphs; while
yourClass is added.

As of jQuery 1.4, the .addClass() method allows us to set the class name by passing
in a function.

$('ul li:last').addClass(function() {

 return 'item-' + $(this).index();

});

Given an unordered list with ive elements, this example adds the item-4 class
to the last .

.removeClass()
Remove one or all classes from each element in the set of matched elements.
 .removeClass([className])
 .removeClass([function])

Parameters (irst version)
• className (optional): A class name to be removed from the class attribute of

each matched element

DOM Manipulation Methods

[94]

Parameters (second version)
• function (optional): A function returning one or more space-separated class

names to be removed

Return value
The jQuery object, for chaining purposes.

Description
If a class name is included as a parameter, then only that class will be removed from
the set of matched elements. If no class names are speciied in the parameter, all
classes will be removed.

More than one class may be removed at a time, separated by a space, from the set of
matched elements.

$('p').removeClass('myClass yourClass')

This method is often used with .addClass() to switch elements' classes from one to
another.

$('p').removeClass('myClass noClass').addClass('yourClass');

Here, the myClass and noClass classes are removed from all paragraphs; while
yourClass is added.

To replace all existing classes with another class, we can use .attr('class',
'newClass') instead.

The .removeClass() method allows us to indicate the class to be removed by
passing in a function.

$('li:last').removeClass(function() {

 return $(this).prev().attr('class');

});

This example removes the class name of the penultimate from the last .

Chapter 4

[95]

.toggleClass()
Add or remove a class from each element in the set of matched elements,
depending on either its presence or the value of the addOrRemove argument.
 .toggleClass(className)
 .toggleClass(className, addOrRemove)
 .toggleClass(function[, addOrRemove])

Parameters (irst version)
• className: A class name to be toggled in the class attribute of each element

in the matched set

Parameters (second version)
• className: A class name to be toggled in the class attribute of each element

in the matched set
• addOrRemove: A Boolean indicating whether to add or remove the class

Parameters (third version)
• function: A function that returns a class name to be toggled in the class

attribute of each element in the matched set
• addOrRemove (optional): A Boolean indicating whether to add or remove

the class

Return value
The jQuery object, for chaining purposes.

Description
This method takes one or more class names as its parameter. In the irst version, if
an element in the matched set of elements already has the class, then it is removed;
if an element does not have the class, then it is added. For example, we can apply
.toggleClass() to a simple <div> as follows:

<div class="tumble">Some text.</div>

The irst time we apply $('div.tumble').toggleClass('bounce'), we get
the following:

<div class="tumble bounce">Some text.</div>

DOM Manipulation Methods

[96]

The second time we apply $('div.tumble').toggleClass('bounce'), the <div>
class is returned to the single tumble value as follows:

<div class="tumble">Some text.</div>

Applying .toggleClass('bounce spin') to the same <div> alternates between
<div class="tumble bounce spin"> and <div class="tumble">.

The second version of .toggleClass() uses the second parameter for determining
whether the class should be added or removed. If this parameter's value is true, then
the class is added; if false, the class is removed. In essence, the statement:

$('#foo').toggleClass(className, addOrRemove);

is equivalent to

if (addOrRemove) {

 $('#foo').addClass(className);

}

else {

 $('#foo').removeClass(className);

}

As of jQuery 1.4, the .toggleClass() method allows us to indicate the class name to
be toggled by passing in a function.

$('div.foo').toggleClass(function() {

 if ($(this).parent().is('.bar') {

 return 'happy';

 } else {

 return 'sad';

 }

});

This example will toggle the happy class for <div class="foo"> elements if their
parent element has a class of bar; otherwise, it will toggle the sad class.

DOM replacement
These methods are used to remove content from the DOM and replace it with
new content.

Chapter 4

[97]

.html() (getter)
Get the HTML contents of the irst element in the set of matched elements.
 .html()

Parameters
None

Return value
A string containing the HTML representation of the element.

Description
This method is not available on XML documents.

In an HTML document, we can use .html() to get the contents of any element. If
our selector expression matches more than one element, only the irst one's HTML
content is returned. Consider the following code:

$('div.demo-container').html();

In order for the content of the following <div> to be retrieved, it would have to be
the irst one in the document.

<div class="demo-container">
 <div class="demo-box">Demonstration Box</div>
</div>

The result would look like this:

<div class="demo-box">Demonstration Box</div>

.html() (setter)
Set the HTML contents of each element in the set of matched elements.
 .html(htmlString)
 .html(function)

Parameters (irst version)
• htmlString: A string of HTML to set as the content of each matched element

DOM Manipulation Methods

[98]

Parameters (second version)
• function: A function returning the HTML content to set

Return value
The jQuery object, for chaining purposes.

Description
The .html() method is not available in XML documents.

When we use .html() to set the content of elements, any content that was in
those elements is completely replaced by the new content. Consider the following
HTML code:

<div class="demo-container">
 <div class="demo-box">Demonstration Box</div>
</div>

We can set the HTML contents of <div class="demo-container"> as follows:

$('div.demo-container')
 .html('<p>All new content. You bet!</p>');

That line of code will replace everything inside <div class="demo-container">.

<div class="demo-container">
 <p>All new content. You bet!</p>
</div>

As of jQuery 1.4, the .html() method allows us to set the HTML content by passing
in a function.

$('div.demo-container').html(function() {
 var emph = '' + $('p').length + ' paragraphs!';
 return '<p>All new content for ' + emph + '</p>';
});

Given a document with six paragraphs, this example will set the HTML of
<div class="demo-container"> to <p>All new content for 6
paragraphs!</p>.

.text() (getter)
Get the combined text contents of each element in the set of matched elements,
including their descendants.
 .text()

Chapter 4

[99]

Parameters
None

Return value
A string containing the combined text contents of the matched elements.

Description
Unlike the .html() method, .text() can be used in both XML and HTML
documents. The result of the .text() method is a string containing the combined
text of all matched elements. Consider the following HTML code:

<div class="demo-container">
 <div class="demo-box">Demonstration Box</div>

 list item 1
 list item 2

</div>

The code $('div.demo-container').text() would produce the following result:

Demonstration Box list item 1 list item 2

.text() (setter)
Set the content of each element in the set of matched elements to the
speciied text.
 .text(textString)
 .text(function)

Parameters (irst version)
• textString: A string of text to set as the content of each matched element

Parameters (second version)
• function: A function returning the text to set as the content

Return value
The jQuery object, for chaining purposes.

DOM Manipulation Methods

[100]

Description
Unlike the .html() method, .text() can be used in both XML and
HTML documents.

We need to be aware that this method escapes the string provided as necessary
so that it will render correctly in HTML. To do so, it calls the DOM method
.createTextNode(), which replaces special characters with their HTML entity
equivalents (such as < for <). Consider the following HTML code:

<div class="demo-container">

 <div class="demo-box">Demonstration Box</div>

 list item 1

 list item 2

</div>

The code $('div.demo-container').text('<p>This is a test.</p>'); will
produce the following DOM output:

<div class="demo-container">

 <p>This is a test.</p>

</div>

It will appear on a rendered page as though the tags were exposed as follows:

<p>This is a test</p>

As of jQuery 1.4, the .text() method allows us to set the text content by passing in
a function.

$('ul li').text(function() {

 return 'item number ' + ($(this).index() + 1);

});

Given an unordered list with three elements, this example will produce the
following DOM output:

 item number 1

 item number 2

 item number 3

Chapter 4

[101]

.val() (getter)
Get the current value of the irst element in the set of matched elements.
 .val()

Parameters
None

Return value
A string containing the value of the element, or an array of strings if the element can
have multiple values.

Description
The .val() method is primarily used to get the values of form elements. In the case
of <select multiple="multiple"> elements, the .val() method returns an array
containing each selected option.

.val() (setter)
Set the value of each element in the set of matched elements.
 .val(value)
 .val(function)

Parameters (irst version)
• value: A string of text or an array of strings to set as the value property of

each matched element

Parameters (second version)
• function: A function returning the value to set

Return value
The jQuery object, for chaining purposes.

Description
This method is typically used to set the values of form ields. For <select
multiple="multiple"> elements, multiple <option> can be selected by passing in
an array.

DOM Manipulation Methods

[102]

The .val() method allows us to set the value by passing in a function.

$('input:text.items').val(function() {

 return this.value + ' ' + this.className;

});

This example appends the string "items" to the text inputs' values.

.replaceWith()
Replace each element in the set of matched elements with the provided
new content.
 .replaceWith(newContent)

Parameters
• newContent: The content to insert. This might be an HTML string, a DOM

element, or a jQuery object.

Return value
The jQuery object, for chaining purposes. See the following section for details.

Description
The .replaceWith() method allows us to remove content from the DOM and insert
new content in its place with a single call. Consider this DOM structure:

<div class="container">

 <div class="inner first">Hello</div>

 <div class="inner second">And</div>

 <div class="inner third">Goodbye</div>

</div>

We can replace the second inner <div> with speciied HTML.

$('.second').replaceWith('<h2>New heading</h2>');

This results in the following structure:

<div class="container">

 <div class="inner first">Hello</div>

 <h2>New heading</h2>

 <div class="inner third">Goodbye</div>

</div>

Chapter 4

[103]

We could equally target all inner <div> elements at once.

$('.inner').replaceWith('<h2>New heading</h2>');

This causes all of them to be replaced.

<div class="container">

 <h2>New heading</h2>

 <h2>New heading</h2>

 <h2>New heading</h2>

</div>

Alternatively, we could select an element to use as the replacement.

$('.third').replaceWith($('.first'));

This results in the following DOM structure:

<div class="container">

 <div class="inner second">And</div>

 <div class="inner first">Hello</div>

</div>

From this example, we can see that the selected element replaces the target by being
moved from its old location, and not by being cloned.

The .replaceWith() method, like most jQuery methods, returns the jQuery object
so that other methods can be chained onto it. However, it must be noted that the
original jQuery object is returned. This object refers to the element that has been
removed from the DOM, not the new element that has replaced it.

.replaceAll()
Replace each target element with the set of matched elements.
 .replaceAll(target)

Parameters
• target: A selector expression indicating which element(s) to replace

Return value
The jQuery object, for chaining purposes.

DOM Manipulation Methods

[104]

Description
The .replaceAll() method is corollary to .replaceWith(), but with the source
and target reversed. Consider the following DOM structure:

<div class="container">
 <div class="inner first">Hello</div>
 <div class="inner second">And</div>
 <div class="inner third">Goodbye</div>
</div>

We can create an element, and then replace other elements with it.

$('<h2>New heading</h2>').replaceAll('.inner');

This causes all of them to be replaced.

<div class="container">
 <h2>New heading</h2>
 <h2>New heading</h2>
 <h2>New heading</h2>
</div>

Alternatively, we could select an element to use as the replacement:

$('.first').replaceAll('.third');

This results in the following DOM structure:

<div class="container">
 <div class="inner second">And</div>
 <div class="inner first">Hello</div>
</div>

From this example, we can see that the selected element replaces the target by being
moved from its old location, and not by being cloned.

DOM insertion, inside
These methods allow us to insert new content inside an existing element.

.prepend()
Insert content speciied by the parameter at the beginning of each element in the
set of matched elements.
 .prepend(content)
 .prepend(function)

Chapter 4

[105]

Parameters (irst version)
• content: An element, an HTML string, or a jQuery object to insert at the

beginning of each element in the set of matched elements

Parameters (second version)
• function: A function that returns an HTML string to insert at the beginning

of each element in the set of matched elements

Return value
The jQuery object, for chaining purposes.

Description
The .prepend() and .prependTo() methods perform the same task. The major
difference is in the syntax, speciically in the placement of the content and target.
With .prepend(), the selector expression preceding the method is the container into
which the content is inserted. With .prependTo(), on the other hand, the content
precedes the method either as a selector expression or as markup created on the ly.
It is then inserted into the target container.

Consider the following HTML code:

<h2>Greetings</h2>
<div class="container">
 <div class="inner">Hello</div>
 <div class="inner">Goodbye</div>
</div>

We can create content and insert it into several elements at once.

$('.inner').prepend('<p>Test</p>');

Each <div class="inner"> element gets the following new content:

<h2>Greetings</h2>
<div class="container">
 <div class="inner">
 <p>Test</p>
 Hello
 </div>
 <div class="inner">
 <p>Test</p>
 Goodbye
 </div>
</div>

DOM Manipulation Methods

[106]

We can also select an element on the page and insert it into another:

$('.container').prepend($('h2'));

If an element selected this way is inserted elsewhere, it will be moved into the target
(not cloned).

<div class="container">
 <h2>Greetings</h2>
 <div class="inner">Hello</div>
 <div class="inner">Goodbye</div>
</div>

However, if there are more than one target elements, cloned copies of the inserted
elements will be created for each target after the irst.

.prependTo()
Insert every element in the set of matched elements at the beginning of
the target.
 .prependTo(target)

Parameters
• target: A selector, element, HTML string, or jQuery object; the matched set

of elements will be inserted at the beginning of the element(s) speciied by
this parameter

Return value
The jQuery object, for chaining purposes.

Description
The .prepend() and .prependTo() methods perform the same task. The major
difference is in the syntax, speciically in the placement of the content and target.
With .prepend(), the selector expression preceding the method is the container into
which the content is inserted. With .prependTo(), on the other hand, the content
precedes the method either as a selector expression or as markup created on the ly,
and is inserted into the target container.

Chapter 4

[107]

Consider the following HTML code:

<h2>Greetings</h2>

<div class="container">

 <div class="inner">Hello</div>

 <div class="inner">Goodbye</div>

</div>

We can create content and insert it into several elements at once.

$('<p>Test</p>').prependTo('.inner');

Each inner <div> element gets the following new content:

<h2>Greetings</h2>

<div class="container">

 <div class="inner">

 <p>Test</p>

 Hello

 </div>

 <div class="inner">

 <p>Test</p>

 Goodbye

 </div>

</div>

We can also select an element on the page and insert it into another.

$('h2').prependTo($('.container'));

If an element selected this way is inserted elsewhere, it will be moved into the target
(not cloned).

<div class="container">

 <h2>Greetings</h2>

 <div class="inner">Hello</div>

 <div class="inner">Goodbye</div>

</div>

However, if there are more than one target elements, cloned copies of the inserted
elements will be created for each target after the irst.

DOM Manipulation Methods

[108]

.append()
Insert content speciied by the parameter at the end of each element in the set of
matched elements.
 .append(content)
 .append(function)

Parameters (irst version)
• content: An element, an HTML string, or a jQuery object to insert at the end

of each element in the set of matched elements

Parameters (second version)
• function: A function that returns an HTML string to insert at the end of

each element in the set of matched elements

Return value
The jQuery object, for chaining purposes.

Description
The .append() and .appendTo() methods perform the same task. The major
difference is in the syntax, speciically in the placement of the content and target.
With .append(), the selector expression preceding the method is the container into
which the content is inserted. With .appendTo(), on the other hand, the content
precedes the method either as a selector expression or as markup created on the ly,
and is inserted into the target container.

Consider the following HTML code:

<h2>Greetings</h2>

<div class="container">

 <div class="inner">Hello</div>

 <div class="inner">Goodbye</div>

</div>

We can create content and insert it into several elements at once.

$('.inner').append('<p>Test</p>');

Each inner <div> element gets the following new content:

<h2>Greetings</h2>

<div class="container">

 <div class="inner">

Chapter 4

[109]

 Hello

 <p>Test</p>

 </div>

 <div class="inner">

 Goodbye

 <p>Test</p>

 </div>

</div>

We can also select an element on the page and insert it into another.

$('.container').append($('h2'));

If an element selected this way is inserted elsewhere, it will be moved into the target
(not cloned).

<div class="container">

 <div class="inner">Hello</div>

 <div class="inner">Goodbye</div>

 <h2>Greetings</h2>

</div>

However, if there is more than one target element, cloned copies of the inserted
elements will be created for each target after the irst.

.appendTo()

Insert every element in the set of matched elements at the end of the target.
 .appendTo(target)

Parameters
• target: A selector, element, HTML string, or jQuery object; the matched

set of elements will be inserted at the end of the element(s) speciied by
this parameter

Return value
The jQuery object, for chaining purposes.

DOM Manipulation Methods

[110]

Description
The .append() and .appendTo() methods perform the same task. The major
difference is in the syntax, speciically in the placement of the content and target.
With .append(), the selector expression preceding the method is the container into
which the content is inserted. With .appendTo(), on the other hand, the content
precedes the method either as a selector expression or as markup created on the ly,
and is inserted into the target container.

Consider the following HTML code:

<h2>Greetings</h2>

<div class="container">

 <div class="inner">Hello</div>

 <div class="inner">Goodbye</div>

</div>

We can create content and insert it into several elements at once.

$('<p>Test</p>').appendTo('.inner');

Each inner <div> element gets the following new content:

<h2>Greetings</h2>

<div class="container">

 <div class="inner">

 Hello

 <p>Test</p>

 </div>

 <div class="inner">

 Goodbye

 <p>Test</p>

 </div>

</div>

We can also select an element on the page and insert it into another.

$('h2').append($('.container'));

If an element selected this way is inserted elsewhere, it will be moved into the target
(not cloned).

<div class="container">

 <div class="inner">Hello</div>

 <div class="inner">Goodbye</div>

 <h2>Greetings</h2>

</div>

Chapter 4

[111]

However, if there are more than one target elements, cloned copies of the inserted
elements will be created for each target after the irst.

DOM insertion, outside
These methods allow us to insert new content outside an existing element.

.before()
Insert content speciied by the parameter before each element in the set of
matched elements.
 .before(content)
 .before(function)

Parameters (irst version)
• content: An element, an HTML string, or a jQuery object to insert before

each element in the set of matched elements

Parameters (second version)
• function: A function that returns an HTML string to insert before each

element in the set of matched elements

Return value
The jQuery object, for chaining purposes.

Description
The .before() and .insertBefore() methods perform the same task. The major
difference is in the syntax, speciically in the placement of the content and target.
With .before(), the selector expression preceding the method is the container
before which the content is inserted. With .insertBefore(), on the other hand, the
content precedes the method either as a selector expression or as markup created on
the ly, and is inserted before the target container.

Consider the following HTML code:

<div class="container">

 <h2>Greetings</h2>

 <div class="inner">Hello</div>

 <div class="inner">Goodbye</div>

</div>

DOM Manipulation Methods

[112]

We can create content and insert it before several elements at once.

$('.inner').before('<p>Test</p>');

Each inner <div> element gets the following new content:

<div class="container">

 <h2>Greetings</h2>

 <p>Test</p>

 <div class="inner">Hello</div>

 <p>Test</p>

 <div class="inner">Goodbye</div>

</div>

We can also select an element on the page and insert it before another.

$('.container').before($('h2'));

If an element selected this way is inserted elsewhere, it will be moved before the
target (not cloned).

<h2>Greetings</h2>

<div class="container">

 <div class="inner">Hello</div>

 <div class="inner">Goodbye</div>

</div>

However, if there is more than one target element, cloned copies of the inserted
elements will be created for each target after the irst.

.insertBefore()
Insert every element in the set of matched elements before the target.
 .insertBefore(target)

Parameters
• target: A selector, element, HTML string, or jQuery object; the matched set

of elements will be inserted before the element(s) speciied by this parameter.

Return value
The jQuery object, for chaining purposes.

Chapter 4

[113]

Description
The .before() and .insertBefore() methods perform the same task. The major
difference is in the syntax, speciically in the placement of the content and target.
With .before(), the selector expression preceding the method is the container
before which the content is inserted. With .insertBefore(), on the other hand, the
content precedes the method either as a selector expression or as markup created on
the ly, and is inserted before the target container.

Consider the following HTML code:

<div class="container">

 <h2>Greetings</h2>

 <div class="inner">Hello</div>

 <div class="inner">Goodbye</div>

</div>

We can create content and insert it before several elements at once.

$('<p>Test</p>').insertBefore('.inner');

Each inner <div> element gets the following new content:

<div class="container">

 <h2>Greetings</h2>

 <p>Test</p>

 <div class="inner">Hello</div>

 <p>Test</p>

 <div class="inner">Goodbye</div>

</div>

We can also select an element on the page and insert it before another.

$('h2').insertBefore($('.container'));

If an element selected this way is inserted elsewhere, it will be moved before the
target (not cloned).

<h2>Greetings</h2>

<div class="container">

 <div class="inner">Hello</div>

 <div class="inner">Goodbye</div>

</div>

However if there are more than one target elements, cloned copies of the inserted
elements will be created for each target after the irst.

DOM Manipulation Methods

[114]

.after()
Insert content speciied by the parameter after each element in the set of
matched elements.
 .after(content)
 .after(function)

Parameters (irst version)
• content: An element, HTML string, or jQuery object to insert after each

element in the set of matched elements

Parameters (second version)
• function: A function that returns an HTML string to insert after each

element in the set of matched elements

Return value
The jQuery object, for chaining purposes.

Description
The .after() and .insertAfter() methods perform the same task. The major
difference is in the syntax, speciically in the placement of the content and target.
With .after(), the selector expression preceding the method is the container after
which the content is inserted. With .insertAfter(), on the other hand, the content
precedes the method either as a selector expression or as markup created on the ly,
and is inserted after the target container.

Consider the following HTML code:

<div class="container">

 <h2>Greetings</h2>

 <div class="inner">Hello</div>

 <div class="inner">Goodbye</div>

</div>

We can create content and insert it after several elements at once.

$('.inner').after('<p>Test</p>');

Chapter 4

[115]

Each inner <div> element gets the following new content:

<div class="container">

 <h2>Greetings</h2>

 <div class="inner">Hello</div>

 <p>Test</p>

 <div class="inner">Goodbye</div>

 <p>Test</p>

</div>

We can also select an element on the page and insert it after another.

$('.container').after($('h2'));

If an element selected this way is inserted elsewhere, it will be moved after the target
(not cloned).

<div class="container">

 <div class="inner">Hello</div>

 <div class="inner">Goodbye</div>

</div>

<h2>Greetings</h2>

However, if there are more than one target elements, cloned copies of the inserted
element will be created for each target after the irst.

.insertAfter()
Insert every element in the set of matched elements after the target.
 .insertAfter(target)

Parameters
• target: A selector, element, HTML string, or jQuery object; the matched set

of elements will be inserted after the element(s) speciied by this parameter

Return value
The jQuery object, for chaining purposes.

DOM Manipulation Methods

[116]

Description
The .after() and .insertAfter() methods perform the same task. The major
difference is in the syntax, speciically in the placement of the content and target.
With .after(), the selector expression preceding the method is the container after
which the content is inserted. With .insertAfter(), on the other hand, the content
precedes the method either as a selector expression or as markup created on the ly,
and is inserted after the target container.

Consider the following HTML code:

<div class="container">

 <h2>Greetings</h2>

 <div class="inner">Hello</div>

 <div class="inner">Goodbye</div>

</div>

We can create content and insert it after several elements at once.

$('<p>Test</p>').insertAfter('.inner');

Each inner <div> element gets the following content:

<div class="container">

 <h2>Greetings</h2>

 <div class="inner">Hello</div>

 <p>Test</p>

 <div class="inner">Goodbye</div>

 <p>Test</p>

</div>

We can also select an element on the page and insert it after another.

$('h2').insertAfter($('.container'));

If an element selected this way is inserted elsewhere, it will be moved after the target
(not cloned).

<div class="container">

 <div class="inner">Hello</div>

 <div class="inner">Goodbye</div>

</div>

<h2>Greetings</h2>

However, if there are more than one target elements, cloned copies of the inserted
elements will be created for each target after the irst.

Chapter 4

[117]

DOM insertion, around
These methods allow us to insert new content surrounding existing content.

.wrap()

Wrap an HTML structure around each element in the set of matched elements.
 .wrap(wrappingElement)
 .wrap(wrappingFunction)

Parameters (irst version)
• wrappingElement: An HTML snippet, selector expression, jQuery object, or

DOM element specifying the structure to wrap around the matched elements

Parameters (second version)
• wrappingFunction: A callback function that generates a structure to wrap

around the matched elements

Return value
The jQuery object, for chaining purposes.

Description
The .wrap() function can take any string or object that could be passed to the $()
factory function to specify a DOM structure. This structure may be nested several
levels deep, but should contain only one inmost element. The structure will be
wrapped around each of the elements in the set of matched elements.

Consider the following HTML code:

<div class="container">

 <div class="inner">Hello</div>

 <div class="inner">Goodbye</div>

</div>

Using .wrap(), we can insert an HTML structure around the inner <div> elements
as follows:

$('.inner').wrap('<div class="new" />');

DOM Manipulation Methods

[118]

The new <div> element is created on the ly and added to the DOM. The result is a
new <div> wrapped around each matched element.

<div class="container">

 <div class="new">

 <div class="inner">Hello</div>

 </div>

 <div class="new">

 <div class="inner">Goodbye</div>

 </div>

</div>

The second version of this method allows us to specify a callback function instead.
This callback function will be called once for every matched element. It should
return a DOM element, a jQuery object, or an HTML snippet in which to wrap the
corresponding element. For example:

$('.inner').wrap(function() {

 return '<div class="' + $(this).text() + '" />';

});

This will cause each <div> to have a class corresponding to the text it wraps.

<div class="container">

 <div class="Hello">

 <div class="inner">Hello</div>

 </div>

 <div class="Goodbye">

 <div class="inner">Goodbye</div>

 </div>

</div>

.wrapAll()

Wrap an HTML structure around all elements in the set of matched elements.
 .wrapAll(wrappingElement)

Parameters
• wrappingElement: An HTML snippet, selector expression, jQuery object, or

DOM element specifying the structure to wrap around the matched elements

Chapter 4

[119]

Return value
The jQuery object, for chaining purposes.

Description
The .wrapAll() function can take any string or object that could be passed to the
$() factory function to specify a DOM structure. This structure may be nested several
levels deep, but should contain only one inmost element. The structure will be
wrapped around all of the elements in the set of matched elements as a single group.

Consider the following HTML code:

<div class="container">

 <div class="inner">Hello</div>

 <div class="inner">Goodbye</div>

</div>

Using .wrapAll(), we can insert an HTML structure around the inner <div>
elements as follows:

$('.inner').wrapAll('<div class="new" />');

The new <div> element is created on the ly and added to the DOM. The result is a
new <div> wrapped around all matched elements.

<div class="container">

 <div class="new">

 <div class="inner">Hello</div>

 <div class="inner">Goodbye</div>

 </div>

</div>

.wrapInner()
Wrap an HTML structure around the content of each element in the set of
matched elements.
 .wrapInner(wrappingElement)
 .wrapInner(wrappingFunction)

Parameters (irst version)
• wrappingElement: An HTML snippet, a selector expression, a jQuery object,

or a DOM element specifying the structure to wrap around the content of the
matched elements

DOM Manipulation Methods

[120]

Parameters (second version)
• wrappingFunction: A callback function that generates a structure to wrap

around the content of the matched elements

Return value
The jQuery object, for chaining purposes.

Description
The .wrapInner() function can take any string or object that could be passed to
the $() factory function to specify a DOM structure. This structure may be nested
several levels deep, but should contain only one inmost element. The structure will be
wrapped around the content of each of the elements in the set of matched elements.

Consider the following HTML code:

<div class="container">

 <div class="inner">Hello</div>

 <div class="inner">Goodbye</div>

</div>

Using .wrapInner(), we can insert an HTML structure around the content of the
inner <div> elements as follows:

$('.inner').wrapInner('<div class="new" />');

The new <div> element is created on the ly and added to the DOM. The result is a
new <div> wrapped around the content of each matched element.

<div class="container">

 <div class="inner"> <div class="new">Hello</div>

 </div>

 <div class="inner">

 <div class="new">Goodbye</div>

 </div>

</div>

The second version of this method allows us to specify a callback function instead.
This callback function will be called once for every matched element; it should return
a DOM element, jQuery object, or HTML snippet in which to wrap the content of the
corresponding element. For example:

$('.inner').wrapInner(function() {

 return '<div class="' + this.nodeValue + '" />';

});

Chapter 4

[121]

This will cause each new <div> to have a class corresponding to the text it wraps.

<div class="container">

 <div class="inner">

 <div class="Hello">Hello</div>

 </div>

 <div class="inner">

 <div class="Goodbye">Goodbye</div>

 </div>

</div>

DOM copying
This method allows us to make copies of elements.

.clone()
Create a copy of the set of matched elements.
 .clone([withEvents])

Parameters
• withEvents (optional): A Boolean indicating whether event handlers should

be copied along with the elements

Return value
A new jQuery object referencing the created elements.

Description
The .clone() method, when used in conjunction with one of the insertion methods, is
a convenient way to duplicate elements on a page. Consider the following HTML code:

<div class="container">

 <div class="hello">Hello</div>

 <div class="goodbye">Goodbye</div>

</div>

As shown in the Description for .append(), normally when we insert an element
somewhere in the DOM, it is moved from its old location. So, suppose this code
is used:

$('.hello').appendTo('.goodbye');

DOM Manipulation Methods

[122]

The resulting DOM structure will be as follows:

<div class="container">

 <div class="goodbye">

 Goodbye

 <div class="hello">Hello</div>

 </div>

</div>

To prevent this and instead create a copy of the element, we could write the following:

$('.hello').clone()
.appendTo('.goodbye');

This will produce the following:

<div class="container">

 <div class="hello">Hello</div>

 <div class="goodbye">

 Goodbye

 <div class="hello">Hello</div>

 </div>

</div>

Note that when using the .clone() method, we can modify the cloned
elements or their contents before (re-)inserting them into the document.

Normally, any event handlers bound to the original element are not copied to
the clone. The optional withEvents parameter allows us to change this behavior,
and instead make copies of all the event handlers as well, bound to the new copy of
the element. As of jQuery 1.4, all element data attached by the .data() method will
be copied along with the event handlers.

DOM removal
These methods allow us to delete elements from the DOM.

.empty()
Remove all child nodes of the set of matched elements from the DOM.
 .empty()

Chapter 4

[123]

Parameters
None

Return value
The jQuery object, for chaining purposes.

Description
This method removes not only child (and other descendant) elements, but also
any text within the set of matched elements. This is because according to the DOM
speciication, any string of text within an element is considered a child node of that
element. Consider the following HTML code:

<div class="container">

 <div class="hello">Hello</div>

 <div class="goodbye">Goodbye</div>

</div>

We can target any element for removal.

$('.hello').empty();

This will result in a DOM structure with the "Hello" text deleted.

<div class="container">

 <div class="hello"></div>

 <div class="goodbye">Goodbye</div>

</div>

If we had any number of nested elements inside <div class="hello">, they would
be removed, too. Other jQuery constructs such as data or event handlers are erased
as well.

.remove()
Remove the set of matched elements from the DOM.
 .remove([selector])

Parameters
• selector (optional): A selector expression that ilters the set of matched

elements to be removed

DOM Manipulation Methods

[124]

Return value
The jQuery object, for chaining purposes. Note that the removed elements are still
referenced by this object, even though they are no longer in the DOM.

Description
Similar to .empty(), the .remove() method takes elements out of the DOM. We
use .remove() when we want to remove the element itself, as well as everything
inside it. In addition to the elements themselves, all bound events and jQuery data
associated with the elements are removed.

Consider the following HTML code:

<div class="container">

 <div class="hello">Hello</div>

 <div class="goodbye">Goodbye</div>

</div>

We can target any element for removal.

$('.hello').remove();

This will result in a DOM structure with the <div> element deleted.

<div class="container">

 <div class="goodbye">Goodbye</div>

</div>

If we had any number of nested elements inside <div class="hello">, they would
be removed, too. Other jQuery constructs such as data or event handlers are erased
as well.

We can also include a selector as an optional parameter. For example, we could
rewrite the previous DOM removal code as follows:

$('div').remove('.hello');

This would result in the same DOM structure.

<div class="container">

 <div class="goodbye">Goodbye</div>

</div>

Chapter 4

[125]

.detach()
Remove the set of matched elements from the DOM.
 .detach([selector])

Parameters
• selector (optional): A selector expression that ilters the set of matched

elements to be removed.

Return value
The jQuery object, for chaining purposes. Note that the removed elements are still
referenced by this object, even though they are no longer in the DOM.

Description
The .detach() method is the same as .remove(), except that .detach() keeps all
jQuery data associated with the removed elements. This method is useful when
removed elements are to be reinserted into the DOM at a later time.

.unwrap()
Remove the parents of the set of matched elements from the DOM, leaving the
matched elements in their place.
 .unwrap()

Parameters
None

Return value
The jQuery object, for chaining purposes.

Description
The .unwrap() method removes the element's parent. This is effectively the inverse
of the .wrap() method. The matched elements (and their siblings, if any) replace
their parents within the DOM structure.

Event Methods
The jQuery library allows us to observe user and browser behavior, and react
accordingly. In this chapter, we'll closely examine each of the available event methods
in turn. These methods are used to register behaviors to take effect when the user
interacts with the browser, and to further manipulate those registered behaviors.

Some of the examples in this chapter use the $.print() function
to print results to the page. This is a simple plug-in, which will be
discussed in Chapter 10, Plug-in API.

Event handler attachment
The following methods are the building blocks of jQuery's event handling module.

.bind()
Attach a handler to an event for the elements.
 .bind(eventType[, eventData], handler)

Parameters
• eventType: A string containing one or more JavaScript event types such as

click, submit, or custom event names
• eventData (optional): A map of data that will be passed to the event handler
• handler: A function to execute each time the event is triggered

Event Methods

[128]

Return value
The jQuery object, for chaining purposes.

Description
The .bind() method is the primary means of attaching behavior to a document.
All JavaScript event types such as focus, mouseover, and resize are allowed
for eventType.

The jQuery library provides shortcut methods for binding the standard event types
such as .click() for .bind('click'). Details of each event type can be found in
the Description of its shortcut method.

Any string is legal for eventType. If the string is not the name of a native JavaScript
event, then the handler is bound to a custom event. These events are never called
by the browser, but may be triggered manually from other JavaScript code using
.trigger() or .triggerHandler().

If the eventType string contains a period (.) character, then the event is namespaced.
The period character separates the event from its namespace. For example, in the call
.bind('click.name', handler), the string click is the event type and the string
name is the namespace. Namespacing allows us to unbind or trigger some events of a
type without affecting others. See the Description of .unbind() for
more information.

When an event reaches an element, all handlers bound to that event type for the
element are ired. If there are multiple handlers registered, they will always execute
in the order in which they were bound. After all handlers have executed, the event
continues along the normal event propagation path.

For an in-depth description of event propagation, see Chapter 3 of
the book Learning jQuery 1.3.

A basic usage of .bind() is:

$('#foo').bind('click', function() {

 alert('User clicked on "foo."');

});

This code will cause the element with an ID of foo to respond to the click event.
When a user clicks inside this element thereafter, the alert will be shown.

Chapter 5

[129]

Event handlers
The handler parameter takes a callback function, as previously shown. Within
the handler, the keyword this refers to the DOM element to which the handler is
bound. To make use of the element in jQuery, it can be passed to the normal $()
function. For example:

$('#foo').bind('click', function() {

 alert($(this).text());

});

After this code is executed, whenever the user clicks inside the element with an ID of
foo, its text contents will be shown as an alert.

The event object
The handler callback function can also take parameters. When the function is called,
the JavaScript event object will be passed to the irst parameter.

The event object is often unnecessary and the parameter is omitted, as suficient
context is usually available when the handler is bound to know exactly what needs
to be done when the handler is triggered. However, at times it becomes necessary
to gather more information about the user's environment at the time the event was
initiated. JavaScript provides information such as .shiftKey (whether the Shift key
was held down at the time), .offsetX (the x coordinate of the mouse cursor within
the element), and .type (to determine which kind of event this is).

Some of the event object's attributes and methods are not available on every
platform. If the event is handled by a jQuery event handler, however, the library
standardizes certain attributes so that they can be safely used on any browser.
The following attributes are standardized in particular:

• .target: This attribute represents the DOM element that initiated the event.
It is often useful to compare event.target to this in order to determine
if the event is being handled due to event bubbling.

• .relatedTarget: This attribute represents the other DOM element involved
in the event, if any. For mouseout, it indicates the element being entered,
and for mousein, it indicates the element being exited.

• .which: For the key or button events, this attribute indicates the speciic key
or button that was pressed.

• .pageX: This attribute contains the x coordinate of the mouse cursor relative
to the left edge of the page.

• .pageY: This attribute contains the y coordinate of the mouse cursor relative
to the top edge of the page.

Event Methods

[130]

• .result: This attribute contains the last value returned by an event handler
that was triggered by this event, unless the value was undefined.

• .timeStamp: This attribute returns the number of milliseconds since
January 1, 1970 when the event is triggered. It can be useful for proiling the
performance of certain jQuery functions.

• .preventDefault(): If this method is called, the default action of the event
will not be triggered. For example, clicked anchors will not take the browser
to a new URL. We can use .isDefaultPrevented() to determine if this
method has been called by an event handler that was triggered by this event.

• .stopPropagation(): This method prevents the event from bubbling
up the DOM tree looking for more event handlers to trigger. We can use
.isPropagationStopped() to determine if this method has been called by
an event handler that was triggered by this event.

Returning false from a handler is equivalent to calling both .preventDefault()
and .stopPropagation() on the event object.

Using the event object in a handler looks like this:

$(document).ready(function() {

 $('#foo').bind('click', function(event) {

 alert('The mouse cursor is at ('

 + event.pageX + ', ' + event.pageY + ')');

 });

});

Note the parameter added to the anonymous function. This code will cause a click
on the element with ID foo to report the page coordinates of the mouse cursor at the
time of the click.

Passing event data
The optional eventData parameter is not commonly used. When provided, this
argument allows us to pass additional information to the handler. One handy use of
this parameter is to work around issues caused by closures. For example, suppose
we have two event handlers that both refer to the same external variable.

var message = 'Spoon!';

$('#foo').bind('click', function() {

 alert(message);

});

message = 'Not in the face!';

$('#bar').bind('click', function() {

 alert(message);

});

Chapter 5

[131]

As the handlers are closures having message in their environment, both will display
the message Not in the face! when triggered. The variable's value has changed. To
sidestep this, we can pass the message in using eventData.

var message = 'Spoon!';

$('#foo').bind('click', {msg: message}, function(event) {

 alert(event.data.msg);

});

message = 'Not in the face!';

$('#bar').bind('click', {msg: message}, function(event) {

 alert(event.data.msg);

});

This time the variable is not referred to directly within the handlers. Instead, the
variable is passed in by value through eventData, which ixes the value at the time
the event is bound. The irst handler will now display Spoon!, while the second will
alert Not in the face!.

Note that objects are passed to functions by reference, which further
complicates this scenario. An in-depth description of closures can be
found in Appendix C of the book Learning jQuery 1.3.

If eventData is present, it is the second argument to the .bind() method. If no
additional data needs to be sent to the handler, then the callback is passed as the
second and inal argument.

See the .trigger() method reference for a way to pass data to a
handler at the time the event happens rather than when the handler
is bound.

.unbind()
Remove a previously-attached event handler from the elements.
 .unbind([eventType[, handler]])
 .unbind(event)

Parameters (irst version)
• eventType: A string containing a JavaScript event type such as click

or submit
• handler: The function that is to be no longer executed

Event Methods

[132]

Parameters (second version)
• event: A JavaScript event object as passed to an event handler

Return value
The jQuery object, for chaining purposes.

Description
Any handler that has been attached with .bind() can be removed with .unbind().
In the simplest case with no arguments, .unbind() removes all handlers attached to
the elements.

$('#foo').unbind();

This version removes the handlers regardless of type. To be more precise, we can
pass an event type.

$('#foo').unbind('click');

By specifying the click event type, only handlers for that event type will be
unbound. However, this approach can still have negative ramiications if other
scripts might be attaching behaviors to the same element. Robust and extensible
applications typically demand the two-argument version for this reason.

var handler = function() {

 alert('The quick brown fox jumps over the lazy dog.');

};

$('#foo').bind('click', handler);

$('#foo').unbind('click', handler);

By naming the handler, we can be assured that no other functions are caught in the
crossire. Note that the following will not work:

$('#foo').bind('click', function() {

 alert('The quick brown fox jumps over the lazy dog.');

});

$('#foo').unbind('click', function() {

 alert('The quick brown fox jumps over the lazy dog.');

});

Even though the two functions are identical in content, they are created separately
and so JavaScript is free to keep them as distinct function objects. To unbind a
particular handler, we need a reference to that function and not a different one that
happens to do the same thing.

Chapter 5

[133]

Using namespaces
Instead of maintaining references to handlers in order to unbind them, we can
namespace the events and use this capability to narrow the scope of our unbinding
actions. As shown in the Description for the .bind() method, namespaces are deined
by using a period (.) character when binding a handler.

$('#foo').bind('click.myEvents', handler);

When a handler is bound in this fashion, we can still unbind it the normal way.

$('#foo').unbind('click');

However, if we want to avoid affecting other handlers, we can be more speciic.

$('#foo').unbind('click.myEvents');

If multiple namespaced handlers are bound, we can unbind them at once.

$('#foo').unbind('click.myEvents.yourEvents');

This syntax is similar to that used for CSS class selectors; they are not hierarchical.
This method call is thus the same as the following:

$('#foo').unbind('click.yourEvents.myEvents');

We can also unbind all of the handlers in a namespace, regardless of event type.

$('#foo').unbind('.myEvents');

It is particularly useful to attach namespaces to event bindings when we are
developing plug-ins or otherwise writing code that may interact with other event-
handling code in the future.

Using the event object
The second form of the .unbind() method is used when we wish to unbind a
handler from within itself. For example, suppose we wish to trigger an event handler
only three times:

var timesClicked = 0;

$('#foo').bind('click', function(event) {

 alert('The quick brown fox jumps over the lazy dog.');

 timesClicked++;

 if (timesClicked >= 3) {

 $(this).unbind(event);

 }

});

Event Methods

[134]

The handler, in this case, must take a parameter so that we can capture the event
object and use it to unbind the handler after the third click. The event object contains
the context necessary for .unbind() to know which handler to remove.

This example is also an illustration of a closure. As the handler refers to the
timesClicked variable, which is deined outside the function, incrementing the
variable has an effect even between invocations of the handler.

.one()
Attach a handler to an event for the elements. The handler is executed at
most once.
 .one(eventType[, eventData], handler)

Parameters
• eventType: A string containing a JavaScript event type such as click

or submit
• eventData (optional): A map of data that will be passed to the event handler
• handler: A function to execute at the time the event is triggered

Return value
The jQuery object, for chaining purposes.

Description
This method is identical to .bind(), except that the handler is unbound after its irst
invocation. For example:

$('#foo').one('click', function() {
 alert('This will be displayed only once.');
});

After the code is executed, a click on the element with ID foo will display the alert.
Subsequent clicks will do nothing.

This code is equivalent to the following:

$('#foo').bind('click', function(event) {
 alert('This will be displayed only once.');
 $(this).unbind(event);
});

In other words, explicitly calling the .unbind() from within a regularly bound
handler has exactly the same effect.

Chapter 5

[135]

.trigger()
Execute all handlers and behaviors attached to the matched elements for the
given event type.
 .trigger(eventType[, extraParameters])

Parameters
• eventType: A string containing a JavaScript event type such as click

or submit
• extraParameters: An array of additional parameters to pass along to the

event handler

Return value
The jQuery object, for chaining purposes.

Description
Any event handlers attached with .bind() or one of its shortcut methods are
triggered when the corresponding event occurs. However, they can be ired
manually with the .trigger() method. A call to .trigger() executes the handlers
in the same order they would be if the event were triggered naturally by the user.

$('#foo').bind('click', function() {

 alert($(this).text());

});

$('#foo').trigger('click');

While .trigger() simulates an event activation, complete with a synthesized event
object, it does not perfectly replicate a naturally occurring event.

When we deine a custom event type using the .bind() method, the second
argument to .trigger() can become useful. For example, suppose we have bound
a handler for the custom event to our element instead of the built-in click event as
done previously:

$('#foo').bind('custom', function(event, param1, param2) {

 alert(param1 + "\n" + param2);

});

$('#foo').trigger('custom', ['Custom', 'Event']);

The event object is always passed as the irst parameter to an event handler.
However, if additional parameters are speciied during a .trigger() call as they are
here, these parameters will be passed along to the handler as well.

Event Methods

[136]

Note the difference between the extra parameters we're passing here and the
eventData parameter to the .bind() method. Both are mechanisms for passing
information to an event handler. However, the extraParameters argument to
.trigger() allows information to be determined at the time the event is triggered,
while the eventData argument to .bind() requires the information to be already
computed at the time the handler is bound.

.triggerHandler()
Execute all handlers attached to an element for an event.
 .triggerHandler(eventType[, extraParameters])

Parameters
• eventType: A string containing a JavaScript event type such as click

or submit
• extraParameters: An array of additional parameters to pass along to the

event handler

Return value
The return value of the triggered handler, or undefined if no handlers are triggered.

Description
The .triggerHandler() method behaves similarly to .trigger(), with the
following exceptions:

• The .triggerHandler() method does not cause the default behavior of an
event to occur (such as a form submission)

• While .trigger() will operate on all elements matched by the jQuery object,
.triggerHandler() only affects the irst matched element

• Events created with .triggerHandler() do not bubble up the DOM
hierarchy; if they are not handled by the target element directly, they
do nothing

• Instead of returning the jQuery object (to allow chaining),
.triggerHandler() returns whatever value was returned by the last
handler it caused to be executed

For more information on this method, see the Description for .trigger().

Chapter 5

[137]

.live()
Attach a handler to the event for all elements that match the current selector,
now or in the future.
 .live(eventType, handler)

Parameters
• eventType: A string containing a JavaScript event type such as click or

keydown

• handler: A function to execute each time the event is triggered

Return value
The jQuery object, for chaining purposes.

Description
This method is a variation on the basic .bind() method for attaching event handlers
to elements. When .bind() is called, the elements that the jQuery object refers to get
the handler attached; however, the elements that get introduced later do not, so they
would require another .bind() call. For instance, consider the following HTML code:

<body>

 <div class="clickme">

 Click here

 </div>

</body>

We can bind a simple click handler to this element.

$('.clickme').bind('click', function() {

 $.print('Bound handler called.');

});

When the element is clicked, the message gets printed. However, suppose that
another element is added after this.

$('body').append('<div class="clickme">Another target</div>');

This new element also matches the selector .clickme, but since it was added after
the call to .bind(), clicks on it will do nothing.

Event Methods

[138]

The .live() method provides an alternative to this behavior. Suppose we bind a
click handler to the target element using this method.

$('.clickme').live('click', function() {

 $.print('Live handler called.');

});

And then we add a new element to this.

$('body').append('<div class="clickme">Another target</div>');

Then clicks on the new element will also trigger the handler.

Event delegation
The .live() method is able to affect elements that have not yet been added to the
DOM through the use of event delegation—a handler bound to an ancestor element
is responsible for events that are triggered on its descendants. The handler passed
to .live() is never bound to an element; instead, .live() binds a special handler
to the root of the DOM tree. In our example, when the new element is clicked, the
following steps occur:

1. A click event is generated and passed to the <div> for handling.
2. No handler is directly bound to the <div>, so the event bubbles up the

DOM tree.
3. The event bubbles up until it reaches the root of the tree, which is where

.live() always binds its special handlers.
4. The special click handler bound by .live() executes.
5. This handler tests the target of the event object to see whether it should

continue. This test is performed by checking if $(event.target).
closest('.clickme') is able to locate a matching element.

6. If a matching element is found, the original handler is called on it.

As the test in step 5 is not performed until the event occurs, elements can be added at
any time and still respond to events.

Chapter 5

[139]

Caveats
The .live() technique is useful. However, due to its special approach, it cannot be
simply substituted for .bind() in all cases. Speciic differences include the following:

• Not all event types are supported. Only custom events and the following
JavaScript events may be bound with .live():

 ° click

 ° dblclick

 ° keydown

 ° keypress

 ° keyup

 ° mousedown

 ° mousemove

 ° mouseout

 ° mouseover

 ° mouseup

• DOM traversal methods are not fully supported for inding elements to send
to .live(). Rather, the .live() method should always be called directly
after a selector, as in the previous example.

• To stop further handlers from executing after one bound using .live(),
the handler must return false. Calling .stopPropagation() will not
accomplish this.

See the Description for .bind() for more information on event binding.

.die()
Remove an event handler previously attached using .live() from
the elements.
 .die(eventType[, handler])

Parameters
• eventType: A string containing a JavaScript event type such as click

or keydown
• handler (optional): The function that is to be no longer executed

Event Methods

[140]

Return value
The jQuery object, for chaining purposes.

Description
Any handler that has been attached with .live() can be removed with .die().
This method is analogous to .unbind(), which is used to remove handlers attached
with .bind().

See the Description of .live() and .unbind() for further details.

Document loading
These events deal with the loading of a page into the browser.

.ready()
Specify a function to execute when the DOM is fully loaded.
 $(document).ready(handler)
 $().ready(handler)
 $(handler)

Parameters
• handler: A function to execute after the DOM is ready

Return value
The jQuery object, for chaining purposes.

Description
While JavaScript provides the load event for executing code when a page is
rendered, this event does not get triggered until all assets, such as images, have
been completely received. In most cases, the script can be run as soon as the DOM
hierarchy has been fully constructed. The handler passed to .ready() is guaranteed
to be executed after the DOM is ready, so this is usually the best place to attach all
other event handlers and run other jQuery code. When using scripts that rely on
the value of CSS style properties, it's important to reference external stylesheets or
embed style elements before referencing the scripts.

Chapter 5

[141]

In cases where code relies on loaded assets (for example, if the dimensions of
an image are required), the code should be placed in a handler for the load
event instead.

The .ready() method is generally incompatible with the
<body onload=""> attribute. If load must be used, either do not
use .ready() or use jQuery's .load() method to attach load event
handlers to the window or to more speciic items such as images.

All three syntaxes provided are equivalent. The .ready() method can only be called
on a jQuery object matching the current document. So, the selector can be omitted.

The .ready() method is typically used with an anonymous function:

$(document).ready(function() {

 $.print('Handler for .ready() called.');

});

With this code in place, the following message is printed when the page is loaded:

Handler for .ready() called.

If .ready() is called after the DOM has been initialized, the new handler passed in
will be executed immediately.

Aliasing the jQuery namespace
When using another JavaScript library, we may wish to call $.noConflict() to
avoid namespace dificulties. When this function is called, the $ shortcut is no
longer available, forcing us to write jQuery each time we would normally write $.
However, the handler passed to the .ready() method can take an argument, which
is passed the global jQuery object. This means we can rename the object within the
context of our .ready() handler without affecting other code.

jQuery(document).ready(function($) {

 // Code using $ as usual goes here.

});

.load()
Bind an event handler to the load JavaScript event.
 .load(handler)

Event Methods

[142]

Parameters
• handler: A function to execute when the event is triggered

Return value
The jQuery object, for chaining purposes.

Description
This method is a shortcut for .bind('load', handler).

The load event is sent to an element when it and all its sub-elements have been
completely loaded. This event can be sent to any element associated with a URL such
as images, scripts, frames, and the body of the document itself.

It is possible that the load event will not be triggered if the image
is loaded from the browser cache. To account for this possibility,
we can test the value of the image's .complete property.

For example, consider a page with a simple image as follows:

The event handler can be bound to the image.

$('#book').load(function() {

 $.print('Handler for .load() called.');

});

Now as soon as the image has been loaded, the following message is displayed:

Handler for .load() called.

In general, it is not necessary to wait for all images to be fully loaded. If code
can be executed earlier, it is usually best to place it in a handler sent to the
.ready() method.

The AJAX module also has a method named .load();
which one is ired depends on the set of arguments passed.

Chapter 5

[143]

.unload()
Bind an event handler to the unload JavaScript event.
 .unload(handler)

Parameters
• handler: A function to execute when the event is triggered

Return value
The jQuery object, for chaining purposes.

Description
This method is a shortcut for .bind('unload', handler).

The unload event is sent to the window element when the user navigates away from
the page. This could mean one of many things. The user could have clicked on a link
to leave the page, or typed in a new URL in the address bar. The forward and back
buttons will trigger the event. Closing the browser window will cause the event to be
triggered. Even a page reload will irst create an unload event.

The exact handling of the unload event has varied from version
to version of browsers. For example, some versions of Firefox trigger
the event when a link is followed, but not when the window is closed.
In practical usage, behavior should be tested on all supported browsers
and contrasted with the proprietary beforeunload event.

Any unload event handler should be bound to the window object.

$(window).unload(function() {

 alert('Handler for .unload() called.');

});

After this code executes, the alert will be displayed whenever the browser leaves the
current page.

It is not possible to cancel the unload event with .preventDefault(). This event is
available so that scripts can perform cleanup when the user leaves the page.

Event Methods

[144]

.error()
Bind an event handler to the error JavaScript event.
 .error(handler)

Parameters
• handler: A function to execute when the event is triggered

Return value
The jQuery object, for chaining purposes.

Description
This method is a shortcut for .bind('error', handler).

The error event is sent to elements such as images, which are referenced
by a document and loaded by the browser. It is called if the element was not
loaded correctly.

For example, consider a page with a simple image as follows:

The event handler can be bound to the image.

$('#book').error(function() {

 $.print('Handler for .error() called.');

});

If the image cannot be loaded (for example, because it is not present at the supplied
URL), the following message is displayed:

Handler for .error() called.

This event may not be correctly ired when the page is served locally.
As error relies on normal HTTP status codes, it will generally not be
triggered if the URL uses the file: protocol.

Mouse events
These events are triggered by mouse movement and button presses.

Chapter 5

[145]

.mousedown()
Bind an event handler to the mousedown JavaScript event, or trigger that event
on an element.
 .mousedown(handler)
 .mousedown()

Parameters (irst version)
• handler: A function to execute each time the event is triggered.

Return value
The jQuery object, for chaining purposes.

Description
This method is a shortcut for .bind('mousedown', handler) in the irst variation
and .trigger('mousedown') in the second.

The mousedown event is sent to an element when the mouse pointer is over the
element and the mouse button is pressed. Any HTML element can receive this event.

For example, consider the following HTML code:

<div id="target">

 Click here

</div>

<div id="other">

 Trigger the handler

</div>

The event handler can be bound to any <div>.

$('#target').mousedown(function() {

 $.print('Handler for .mousedown() called.');

});

Event Methods

[146]

Now if we click on this element, the following message is displayed:

Handler for .mousedown() called.

We can also trigger the event when a different element is clicked.

$('#other').click(function() {

 $('#target').mousedown();

});

After this code executes, clicks on Trigger the handler will also display the
same message.

The mousedown event is sent when any mouse button is clicked. To act only on
speciic buttons, we can use the event object's .which property. Not all browsers
support this property (Internet Explorer uses .button instead), but jQuery
normalizes the property so that it is safe to use in any browser. The value of .which
will be 1 for the left button, 2 for the middle button, and 3 for the right button.

This event is primarily useful for ensuring that the primary button was used to begin
a drag operation. If it is ignored, strange results can occur when the user attempts to
use a context menu. While the middle and right buttons can be detected with these
properties, this is not reliable. In Opera and Safari, for example, right mouse button
clicks are not detectable by default.

If the user clicks on an element, drags away from it, and releases the button, this
is still counted as a mousedown event. This sequence of actions is treated as a
"canceling" of the button press in most user interfaces. So, it is usually better to
use the click event unless we know that the mousedown event is preferable for a
particular situation.

.mouseup()
Bind an event handler to the mouseup JavaScript event, or trigger that event on
an element.
 .mouseup(handler)
 .mouseup()

Parameters (irst version)
• handler: A function to execute each time the event is triggered

Return value
The jQuery object, for chaining purposes.

Chapter 5

[147]

Description
This method is a shortcut for .bind('mouseup', handler) in the irst variation,
and .trigger('mouseup') in the second.

The mouseup event is sent to an element when the mouse pointer is over the element,
and the mouse button is released. Any HTML element can receive this event.

For example, consider the following HTML code:

<div id="target">

 Click here

</div>

<div id="other">

 Trigger the handler

</div>

The event handler can be bound to any <div>.

$('#target').mouseup(function() {

 $.print('Handler for .mouseup() called.');

});

Now if we click on this element, the following message is displayed:

Handler for .mouseup() called.

We can also trigger the event when a different element is clicked.

$('#other').click(function() {

 $('#target').mouseup();

});

After this code executes, clicks on Trigger the handler will also display the
same message.

If the user clicks outside an element, drags onto it, and releases the button, this is still
counted as a mouseup event. This sequence of actions is not treated as a button press
in most user interfaces, so it is usually better to use the click event unless we know
that the mouseup event is preferable for a particular situation.

Event Methods

[148]

.click()
Bind an event handler to the click JavaScript event, or trigger that event on
an element.
 .click(handler)
 .click()

Parameters (irst version)
• handler: A function to execute each time the event is triggered.

Return value
The jQuery object, for chaining purposes.

Description
This method is a shortcut for .bind('click', handler) in the irst variation,
and .trigger('click') in the second.

The click event is sent to an element when the mouse pointer is over the element
and the mouse button is pressed and released. Any HTML element can receive
this event.

For example, consider the following HTML code:

<div id="target">

 Click here

</div>

<div id="other">

 Trigger the handler

</div>

The event handler can be bound to any <div>.

$('#target').click(function() {

 $.print('Handler for .click() called.');

});

Chapter 5

[149]

Now if we click on this element, the following message is displayed:

Handler for .click() called.

We can also trigger the event when a different element is clicked.

$('#other').click(function() {

 $('#target').click();

});

After this code executes, clicks on Trigger the handler will also display the
same message.

The click event is only triggered after this exact series of events:

1. The mouse button is depressed while the pointer is inside the element.
2. The mouse button is released while the pointer is inside the element.

This is usually the desired sequence before taking an action. If this is not required,
the mousedown or mouseup event may be more suitable.

.dblclick()

Bind an event handler to the dblclick JavaScript event, or trigger that event
on an element.
 .dblclick(handler)
 .dblclick()

Parameters (irst version)
• handler: A function to execute each time the event is triggered

Return value
The jQuery object, for chaining purposes.

Description
This method is a shortcut for .bind('dblclick', handler) in the irst variation,
and .trigger('dblclick') in the second.

The dblclick event is sent to an element when the element is double-clicked.
Any HTML element can receive this event.

Event Methods

[150]

For example, consider the following HTML code:

<div id="target">

 Double-click here

</div>

<div id="other">

 Trigger the handler

</div>

The event handler can be bound to any <div>.

$('#target').dblclick(function() {

 $.print('Handler for .dblclick() called.');

});

Now if we double-click on this element, the following message is displayed:

Handler for .dblclick() called.

We can also trigger the event when a different element is clicked.

$('#other').click(function() {

 $('#target').dblclick();

});

After this code executes, (single) clicks on Trigger the handler will also display the
same message.

The dblclick event is only triggered after this exact series of events:

1. The mouse button is depressed while the pointer is inside the element.
2. The mouse button is released while the pointer is inside the element.
3. The mouse button is depressed again while the pointer is inside the

element within a time window that is system-dependent.
4. The mouse button is released while the pointer is inside the element.

Chapter 5

[151]

It is inadvisable to ever bind handlers to both the click and dblclick events for
the same element. The sequence of events triggered varies from browser to browser
with some receiving two click events and others only one. If an interface that
reacts differently to single and double clicks cannot be avoided, then the dblclick
event should be simulated within the click handler. We can achieve this by saving
a timestamp in the handler, and then comparing the current time to the saved
timestamp on subsequent clicks. If the difference is small enough, we can treat the
click as a double-click.

.toggle()
Bind two or more handlers to the matched elements, to be executed on
alternate clicks.
 .toggle(handlerEven, handlerOdd[,
 additionalHandlers...])

Parameters
• handlerEven: A function to execute every even time the element is clicked
• handlerOdd: A function to execute every odd time the element is clicked
• additionalHandlers (optional): Additional handlers to cycle through

after clicks

Return value
The jQuery object, for chaining purposes.

Description
The .toggle() method binds a handler for the click event. So, the rules outlined
for the triggering of click apply here as well.

For example, consider the following HTML code:

<div id="target">

 Click here

</div>

Event Methods

[152]

Event handlers can then be bound to the <div>.

$('#target').toggle(function() {

 $.print('First handler for .toggle() called.');

}, function() {

 $.print('Second handler for .toggle() called.');

});

As the element is clicked repeatedly, the messages alternate:

First handler for .toggle() called.

Second handler for .toggle() called.

First handler for .toggle() called.

Second handler for .toggle() called.

First handler for .toggle() called.

If more than two handlers are provided, .toggle() will cycle among all of them. For
example, if there are three handlers, then the irst handler will be called on the irst
click, the fourth click, the seventh click, and so on.

The .toggle() method is provided for convenience. It is relatively straightforward
to implement the same behavior by hand, and this can be necessary if the
assumptions built into .toggle() prove limiting. For example, .toggle() is not
guaranteed to work correctly if applied twice to the same element. As .toggle()
internally uses a click handler to do its work, we must unbind click to remove a
behavior attached with .toggle() so that other click handlers can be caught in the
crossire. The implementation also calls .preventDefault() on the event. So links
will not be followed and buttons will not be clicked if .toggle() has been called on
the element.

.mouseover()
Bind an event handler to the mouseover JavaScript event, or trigger that event
on an element.
 .mouseover(handler)
 .mouseover()

Parameters (irst version)
• handler: A function to execute each time the event is triggered

Chapter 5

[153]

Return value
The jQuery object, for chaining purposes.

Description
This method is a shortcut for .bind('mouseover', handler) in the irst variation,
and .trigger('mouseover') in the second.

The mouseover event is sent to an element when the mouse pointer enters the
element. Any HTML element can receive this event.

For example, consider the following HTML code:

<div id="outer">

 Outer

 <div id="inner">

 Inner

 </div>

</div>

<div id="other">

 Trigger the handler

</div>

The event handler can be bound to any element.

$('#outer').mouseover(function() {

 $.print('Handler for .mouseover() called.');

});

Now when the mouse pointer moves over the Outer <div>, the following message
is displayed:

Handler for .mouseover() called.

Event Methods

[154]

We can also trigger the event when another element is clicked.

$('#other').click(function() {

 $('#outer').mouseover();

});

After this code executes, clicks on Trigger the handler will also display the
same message.

This event type can cause many headaches due to event bubbling. For instance, when
the mouse pointer moves over the Inner element in this example, a mouseover event
will be sent to that, and then it will trickle up to Outer. This can trigger our bound
mouseover handler at inopportune times. See the Description for .mouseenter() for
a useful alternative.

.mouseout()
Bind an event handler to the mouseout JavaScript event, or trigger that event on
an element.
 .mouseout(handler)
 .mouseout()

Parameters (irst version)
• handler: A function to execute each time the event is triggered

Return value
The jQuery object, for chaining purposes.

Description
This method is a shortcut for .bind('mouseout', handler) in the irst variation,
and .trigger('mouseout') in the second.

The mouseout event is sent to an element when the mouse pointer leaves the
element. Any HTML element can receive this event.

Chapter 5

[155]

For example, consider the following HTML code:

<div id="outer">

 Outer

 <div id="inner">

 Inner

 </div>

</div>

<div id="other">

 Trigger the handler

</div>

The event handler can be bound to any element.

$('#outer').mouseout(function() {

 $.print('Handler for .mouseout() called.');

});

Now when the mouse pointer moves out of the Outer <div>, the following message
is displayed:

Handler for .mouseout() called.

We can also trigger the event when another element is clicked.

$('#other').click(function() {

 $('#outer').mouseout();

});

After this code executes, clicks on Trigger the handler will also display the
same message.

This event type can cause many headaches due to event bubbling. For instance, when
the mouse pointer moves out of the Inner element in this example, a mouseout event
will be sent to that, and then it will trickle up to Outer. This can trigger our bound
mouseout handler at inopportune times. See the Description for .mouseleave() for
a useful alternative.

Event Methods

[156]

.mouseenter()
Bind an event handler to be ired when the mouse enters an element, or trigger
that handler on an element.
 .mouseenter(handler)
 .mouseenter()

Parameters (irst version)
• handler: A function to execute each time the event is triggered

Return value
The jQuery object, for chaining purposes.

Description
This method is a shortcut for .bind('mouseenter', handler) in the irst variation,
and .trigger('mouseenter') in the second.

The mouseenter JavaScript event is proprietary to Internet Explorer. Due to the
event's general utility, jQuery simulates this event so that it can be used regardless of
browser. This event is sent to an element when the mouse pointer enters the element.
Any HTML element can receive this event.

For example, consider the following HTML code:

<div id="outer">
 Outer
 <div id="inner">
 Inner
 </div>
</div>
<div id="other">
 Trigger the handler
</div>

Chapter 5

[157]

The event handler can be bound to any element.

$('#outer').mouseenter(function() {
 $.print('Handler for .mouseenter() called.');
});

Now when the mouse pointer moves over the Outer <div>, the following message
is displayed:

Handler for .mouseenter() called.

We can also trigger the event when another element is clicked.

$('#other').click(function() {
 $('#outer').mouseenter();
});

After this code executes, clicks on Trigger the handler will also display
the same message.

The mouseenter event differs from mouseover in the way it handles event bubbling.
If mouseover was used in this example, then whenever the mouse pointer moved
over the Inner element, the handler would be triggered. This is usually undesirable
behavior. The mouseenter event, on the other hand, only triggers its handler when
the mouse enters the element it is bound to (not a descendant). So in this example,
the handler is triggered when the mouse enters the Outer element, but not the
Inner element.

.mouseleave()
Bind an event handler to be ired when the mouse leaves an element, or trigger
that handler on an element.
 .mouseleave(handler)
 .mouseleave()

Parameters (irst version)
• handler: A function to execute each time the event is triggered

Return value
The jQuery object, for chaining purposes.

Event Methods

[158]

Description
This method is a shortcut for .bind('mouseleave', handler) in the irst variation,
and .trigger('mouseleave') in the second.

The mouseleave JavaScript event is proprietary to Internet Explorer. Because of the
event's general utility, jQuery simulates this event so that it can be used regardless
of the browser. This event is sent to an element when the mouse pointer leaves the
element. Any HTML element can receive this event.

For example, consider the following HTML code:

<div id="outer">
 Outer
 <div id="inner">
 Inner
 </div>
</div>
<div id="other">
 Trigger the handler
</div>

The event handler can be bound to any element.

$('#outer').mouseleave(function() {

 $.print('Handler for .mouseleave() called.');

});

Now when the mouse pointer moves out of the Outer <div>, the following message
is displayed:

Handler for .mouseleave() called.

We can also trigger the event when another element is clicked.

$('#other').click(function() {

 $('#outer').mouseleave();

});

Chapter 5

[159]

After this code executes, clicks on Trigger the handler will also display the
same message.

The mouseleave event differs from mouseout in the way it handles event bubbling. If
mouseout were used in this example, then when the mouse pointer moved out of the
Inner element, the handler would be triggered. This is usually undesirable behavior.
The mouseleave event, on the other hand, only triggers its handler when the mouse
leaves the element it is bound to (not a descendant). So in this example, the handler
is triggered when the mouse leaves the Outer element, but not the Inner element.

.hover()
Bind two handlers to the matched elements, to be executed when the mouse
pointer enters and leaves the elements.
 .hover(handlerIn, handlerOut)

Parameters
• handlerIn: A function to execute when the mouse pointer enters the element
• handlerOut: A function to execute when the mouse pointer leaves the element

Return value
The jQuery object, for chaining purposes.

Description
The .hover() method binds handlers for both mouseenter and mouseleave events.
We can use it to simply apply behavior to an element during the time the mouse is
within the element.

Calling $obj.hover(handlerIn, handlerOut) is shorthand for the following:

$obj.mouseenter(handlerIn);

$obj.mouseleave(handlerOut);

See the Description for .mouseenter() and .mouseleave() for more details.

Event Methods

[160]

.mousemove()
Blind an event handler to the mousemove JavaScript event, or trigger that event
on an element.
 .mousemove(handler)
 .mousemove()

Parameters (irst version)
• handler: A function to execute each time the event is triggered

Return value
The jQuery object, for chaining purposes.

Description
This method is a shortcut for .bind('mousemove', handler) in the irst variation,
and .trigger('mousemove') in the second.

The mousemove event is sent to an element when the mouse pointer moves inside the
element. Any HTML element can receive this event.

For example, consider the following HTML code:

<div id="target">

 Move here

</div>

<div id="other">

 Trigger the handler

</div>

The event handler can be bound to the target:

$('#target').mousemove(function(event) {

 $.print('Handler for .mousemove() called at ('

 + event.pageX + ', ' + event.pageY + ')');

});

Chapter 5

[161]

Now when the mouse pointer moves within the target button, the following
messages are displayed:

Handler for .mousemove() called at (399, 48)

Handler for .mousemove() called at (398, 46)

Handler for .mousemove() called at (397, 44)

Handler for .mousemove() called at (396, 42)

We can also trigger the event when the second button is clicked.

$('#other').click(function() {

 $('#target').mousemove();

});

After this code executes, clicks on the Trigger the handler button will also display
the following message:

Handler for .mousemove() called at (undeined, undeined)

When tracking mouse movement, we clearly usually need to know the actual
position of the mouse pointer. The event object that is passed to the handler contains
some information about the mouse coordinates. Properties such as .clientX,
.offsetX, and .pageX are available, but support for them differs between browsers.
Fortunately, jQuery normalizes the .pageX and .pageY attributes so that they can be
used in all browsers. These attributes provide the X and Y coordinates of the mouse
pointer relative to the top-left corner of the page, as illustrated in the preceding
example output.

We need to remember that the mousemove event is triggered whenever the mouse
pointer moves, even for a pixel. This means that hundreds of events can be generated
over a very small amount of time. If the handler has to do any signiicant processing,
or if multiple handlers for the event exist, this can be a serious performance drain on
the browser. It is important, therefore, to optimize mousemove handlers as much as
possible and to unbind them as soon as they are no longer needed.

A common pattern is to bind the mousemove handler from within a mousedown
hander, and to unbind it from a corresponding mouseup handler. If you're
implementing this sequence of events, remember that the mouseup event might be
sent to a different HTML element than the mousemove event was. To account for this,
the mouseup handler should typically be bound to an element high up in the DOM
tree such as <body>.

Event Methods

[162]

Form events
These events refer to <form> elements and their contents.

.focus()
Bind an event handler to the focus JavaScript event, or trigger that event on
an element.
 .focus(handler)
 .focus()

Parameters (irst version)
• handler: A function to execute each time the event is triggered

Return value
The jQuery object, for chaining purposes.

Description
This method is a shortcut for .bind('focus', handler) in the irst variation, and
.trigger('focus') in the second.

The focus event is sent to an element when it gains focus. This event is implicitly
applicable to a limited set of elements such as form elements (<input>, <select>,
and others) and links (<a href>). In recent browser versions, the event can be
extended to include all element types by explicitly setting the element's tabindex
property. An element can gain focus via keyboard commands such as the Tab key,
or by mouse clicks on the element.

Elements with focus are usually highlighted in some way by the browser, for
example with a dotted line surrounding the element. The focus is used to determine
which element is the irst to receive keyboard-related events.

For example, consider the following HTML code:

<form>

 <input id="target" type="text" value="Field 1" />

 <input type="text" value="Field 2" />

</form>

<div id="other">

 Trigger the handler

</div>

Chapter 5

[163]

The event handler can be bound to the irst input ield.

$('#target').focus(function() {

 $.print('Handler for .focus() called.');

});

Now if we click on the irst ield, or tab to it from another ield, the following
message is displayed:

Handler for .focus() called.

We can trigger the event when another element is clicked.

$('#other').click(function() {

 $('#target').focus();

});

After this code executes, clicks on Trigger the handler will also display the
same message.

The focus event does not bubble in Internet Explorer. Therefore, scripts that rely on
event delegation with the focus event will not work consistently across browsers.

Triggering the focus on hidden elements causes an error
in Internet Explorer. Take care to call .focus() without
parameters only on elements that are visible.

.blur()
Bind an event handler to the blur JavaScript event, or trigger that event on
an element.
 .blur(handler)
 .blur()

Parameters (irst version)
• handler: A function to execute each time the event is triggered

Return value
The jQuery object, for chaining purposes.

Event Methods

[164]

Description
This method is a shortcut for .bind('blur', handler) in the irst variation,
and .trigger('blur') in the second.

The blur event is sent to an element when it loses focus. Originally, this event
was only applicable to form elements such as <input>. In recent browsers, the
domain of the event has been extended to include all element types. An element can
lose focus via keyboard commands such as the Tab key, or by mouse clicks elsewhere
on the page.

For example, consider the following HTML code:

<form>

 <input id="target" type="text" value="Field 1" />

 <input type="text" value="Field 2" />

</form>

<div id="other">

 Trigger the handler

</div>

The event handler can be bound to the irst input ield.

$('#target').blur(function() {

 $.print('Handler for .blur() called.');

});

Now if the irst ield has the focus and we click elsewhere, or tab away from it,
the following message is displayed:

Handler for .blur() called.

We can trigger the event when another element is clicked.

$('#other').click(function() {

 $('#target').blur();

});

After this code executes, clicks on Trigger the handler will also display the
same message.

The blur event does not bubble in Internet Explorer. Therefore, scripts that rely on
event delegation with the blur event will not work consistently across browsers.

Chapter 5

[165]

.change()
Bind an event handler to the change JavaScript event, or trigger that event on
an element.
 .change(handler)
 .change()

Parameters (irst version)
• handler: A function to execute each time the event is triggered

Return value
The jQuery object, for chaining purposes.

Description
This method is a shortcut for .bind('change', handler) in the irst variation,
and .trigger('change') in the second.

The change event is sent to an element when its value changes. This event is limited
to <input type="text"> ields, <textarea> boxes, and <select> elements. For
select boxes, the event is ired immediately when the user makes a selection with the
mouse. However, for the other element types, the event is deferred until the element
loses focus.

For example, consider the following HTML code:

<form>

 <input class="target" type="text" value="Field 1" />

 <select class="target">

 <option value="option1" selected="selected">Option 1</option>

 <option value="option2">Option 2</option>

 </select>

</form>

<div id="other">

 Trigger the handler

</div>

The event handler can be bound to the text input and the select box.

$('.target').change(function() {

 $.print('Handler for .change() called.');

});

Event Methods

[166]

Now when the second option is selected from the dropdown, the following message
is displayed:

Handler for .change() called.

It is also displayed if we change the text in the ield and then click away. If the ield
loses focus without the contents having changed, though, the event is not triggered.
We can trigger the event manually when another element is clicked.

$('#other').click(function() {

 $('.target').change();

});

After this code executes, clicks on Trigger the handler will also display the same
message. The message will be displayed twice because the handler has been bound
to the change event on both of the form elements.

The change event does not bubble in Internet Explorer. Therefore, scripts that rely on
event delegation with the change event will not work consistently across browsers.

.select()
Bind an event handler to the select JavaScript event, or trigger that event on an
element.
 .select(handler)
 .select()

Parameters (irst version)
• handler: A function to execute each time the event is triggered

Return value
The jQuery object, for chaining purposes.

Description
This method is a shortcut for .bind('select', handler) in the irst variation,
and .trigger('select') in the second.

The select event is sent to an element when the user makes a text selection inside it.
This event is limited to <input type="text"> ields and <textarea> boxes.

Chapter 5

[167]

For example, consider the following HTML code:

<form>

 <input id="target" type="text" value="Hello ther<div id="other">

 Trigger the handler

</div>

The event handler can be bound to the text input.

$('#target').select(function() {

 $.print('Handler for .select() called.');

});

Now when any portion of the text is selected, the following message is displayed:

Handler for .select() called.

Merely setting the location of the insertion point will not trigger the event. We can
trigger the event manually when another element is clicked.

$('#other').click(function() {

 $('#target').select();

});

After this code executes, clicks on the Trigger the handler button will also display
the same message.

In addition, the default select action on the ield will be ired, so the entire text ield
will be selected.

The method for retrieving the current selected text differs from one browser
to another. For a simple cross-platform solution, use the ieldSelection
jQuery plug-in.

.submit()
Bind an event handler to the submit JavaScript event, or trigger that event on
an element.
 .submit(handler)
 .submit()

Parameters (irst version)
• handler: A function to execute each time the event is triggered

Event Methods

[168]

Return value
The jQuery object, for chaining purposes.

Description
This method is a shortcut for .bind('submit', handler) in the irst variation,
and .trigger('submit') in the second.

The submit event is sent to an element when the user is attempting to submit a
form. It can only be attached to <form> elements. Forms can be submitted either by
clicking an explicit <input type="submit"> button, or by pressing Enter when a
form element has focus.

Depending on the browser, the Enter key may only cause a form
submission if the form has exactly one text ield, or only when there is
a submit button present. The interface should not rely on a particular
behavior for this key unless the issue is forced by observing the
keypress event for presses of the Enter key.

For example, consider the following HTML code:

<form id="target" action="destination.html">
 <input type="text" value="Hello there" />
 <input type="submit" value="Go" />
</form>
<div id="other">
 Trigger the handler
</div>

The event handler can be bound to the form.

$('#target').submit(function() {
 $.print('Handler for .submit() called.');
 return false;
});

Now when the form is submitted, the following message is displayed:

Handler for .submit() called.

This happens prior to the actual submission. Therefore, we can cancel the submit
action by calling .preventDefault() on the event object or by returning false from
our handler. We can trigger the event manually when another element is clicked.

$('#other').click(function() {
 $('#target').submit();
});

Chapter 5

[169]

After this code executes, clicks on Trigger the handler will also display the
same message.

In addition, the default submit action on the form will be ired, so the form will
be submitted.

The submit event does not bubble in Internet Explorer. Therefore, scripts that rely on
event delegation with the submit event will not work consistently across browsers.

Keyboard events
These events are triggered by the keys on the keyboard.

.keydown()
Bind an event handler to the keydown JavaScript event, or trigger that event on
an element.
 .keydown(handler)
 .keydown()

Parameters (irst version)
• handler: A function to execute each time the event is triggered

Return value
The jQuery object, for chaining purposes.

Description
This method is a shortcut for .bind('keydown', handler) in the irst variation,
and .trigger('keydown') in the second.

The keydown event is sent to an element when the user irst presses a key on the
keyboard. It can be attached to any element, but the event is only sent to the element
that has the focus. Focusable elements can vary between browsers, but form elements
can always get focus so are reasonable candidates for this event type.

Event Methods

[170]

For example, consider the following HTML code:

<form>

 <input id="target" type="text" value="Hello there" />

</form>

<div id="other">

 Trigger the handler

</div>

The event handler can be bound to the input ield.

$('#target').keydown(function() {

 $.print('Handler for .keydown() called.');

});

Now when the insertion point is inside the ield and a key is pressed, the following
message is displayed:

Handler for .keydown() called.

We can trigger the event manually when another element is clicked.

$('#other').click(function() {

 $('#target').keydown();

});

After this code executes, clicks on Trigger the handler will also display the
same message.

If key presses anywhere need to be caught (for example, to implement global
shortcut keys on a page), it is useful to attach this behavior to the document object.
Because of event bubbling, all key presses will make their way up the DOM to the
document object unless explicitly stopped.

To determine which key was pressed, we can examine the event object that is
passed to the handler function. While browsers use differing attributes to store this
information, jQuery normalizes the .which attribute so we can reliably use it to
retrieve the key code. This code corresponds to a key on the keyboard, including
codes for special keys such as the arrow keys. For catching actual text entry,
.keypress() may be a better choice.

Chapter 5

[171]

.keypress()
Bind an event handler to the keypress JavaScript event, or trigger that event on
an element.
 .keypress(handler)
 .keypress()

Parameters (irst version)
• handler: A function to execute each time the event is triggered

Return value
The jQuery object, for chaining purposes.

Description
This method is a shortcut for .bind('keypress', handler) in the irst variation,
and .trigger('keypress') in the second.

The keypress event is sent to an element when the browser registers keyboard
input. This is similar to the keydown event, except in the case of key repeats. If
the user presses and holds a key, a keydown event is triggered once, but separate
keypress events are triggered for each inserted character. In addition, modiier keys
(such as Shift) cause keydown events, but not keypress events.

A keypress event handler can be attached to any element, but the event is only
sent to the element that has the focus. Focusable elements can vary between
browsers, but form elements can always get focus and so are reasonable candidates
for this event type.

For example, consider the following HTML code:

<form>

 <input id="target" type="text" value="Hello there" />

</form>

<div id="other">

 Trigger the handler

</div>

The event handler can be bound to the input ield.

$('#target').keypress(function() {

 $.print('Handler for .keypress() called.');

});

Event Methods

[172]

Now when the insertion point is inside the ield and a key is pressed, the following
message is displayed:

Handler for .keypress() called.

The message repeats if the key is held down. We can trigger the event manually
when another element is clicked.

$('#other').click(function() {

 $('#target').keypress();

});

After this code executes, clicks on Trigger the handler will also display the
same message.

If key presses anywhere need to be caught (for example, to implement global
shortcut keys on a page), it is useful to attach this behavior to the document object.
Because of event bubbling, all key presses will make their way up the DOM to the
document object unless explicitly stopped.

To determine which character was entered, we can examine the event object that
is passed to the handler function. While browsers use differing attributes to store
this information, jQuery normalizes the .which attribute so we can reliably use it to
retrieve the character code.

Note that keydown and keyup provide a code indicating which key is pressed, while
keypress indicates which character was entered. For example, a lowercase "a" will
be reported as 65 by keydown and keyup, but as 97 by keypress. An uppercase "A"
is reported as 97 by all events. Because of this distinction, when catching special
keystrokes such as arrow keys, .keydown() or .keyup() is a better choice.

.keyup()
Bind an event handler to the keyup JavaScript event, or trigger that event on
an element.
 .keyup(handler)
 .keyup()

Parameters (irst version)
• handler: A function to execute each time the event is triggered

Return value
The jQuery object, for chaining purposes.

Chapter 5

[173]

Description
This method is a shortcut for .bind('keyup', handler) in the irst variation, and
.trigger('keyup') in the second.

The keyup event is sent to an element when the user releases a key on the keyboard.
It can be attached to any element, but the event is only sent to the element that has
the focus. Focusable elements can vary between browsers, but form elements can
always get focus so are reasonable candidates for this event type.

For example, consider the following HTML code:

<form>

 <input id="target" type="text" value="Hello there" />

</form>

<div id="other">

 Trigger the handler

</div>

The event handler can be bound to the input ield.

$('#target').keyup(function() {

 $.print('Handler for .keyup() called.');

});

Now when the insertion point is inside the ield and a key is pressed and released,
the following message is displayed:

Handler for .keyup() called.

We can trigger the event manually when another element is clicked.

$('#other').click(function() {

 $('#target').keyup();

});

After this code executes, clicks on Trigger the handler will also display the
same message.

If key presses anywhere need to be caught (for example, to implement global
shortcut keys on a page), it is useful to attach this behavior to the document object.
Because of event bubbling, all key presses will make their way up the DOM to the
document object unless explicitly stopped.

Event Methods

[174]

To determine which key was pressed, we can examine the event object that is
passed to the handler function. While browsers use differing attributes to store this
information, jQuery normalizes the .which attribute so we can reliably use it to
retrieve the key code. This code corresponds to a key on the keyboard, including
codes for special keys such as the arrow keys. For catching actual text entry,
.keypress() may be a better choice.

Browser events
These are events related to the entire browser window.

.resize()
Bind an event handler to the resize JavaScript event, or trigger that event on
an element.
 .resize(handler)
 .resize()

Parameters (irst version)
• handler: A function to execute each time the event is triggered

Return value
The jQuery object, for chaining purposes.

Description
This method is a shortcut for .bind('resize', handler) in the irst variation,
and .trigger('resize') in the second.

The resize event is sent to the window element when the size of the browser
window changes.

$(window).resize(function() {

 $.print('Handler for .resize() called.');

});

Now whenever the browser window's size is changed, the following message
is displayed:

Handler for .resize() called.

Chapter 5

[175]

Code in a resize handler should never rely on the number of times the handler is
called. Depending on implementation, the resize events can be sent continuously
as the resizing is in progress (the typical behavior in Internet Explorer and
WebKit-based browsers such as Safari and Chrome), or only once at the end of
the resize operation (the typical behavior in Firefox).

.scroll()
Bind an event handler to the scroll JavaScript event, or trigger that event on
an element.
 .scroll(handler)
 .scroll()

Parameters (irst version)
• handler: A function to execute each time the event is triggered

Return value
The jQuery object, for chaining purposes.

Description
This method is a shortcut for .bind('scroll', handler) in the irst variation,
and .trigger('scroll') in the second.

The scroll event is sent to an element when the user scrolls to a different place in
the element. It applies to window objects as well as to scrollable frames and elements
with the overflow CSS property set to scroll (or auto when the element's explicit
height is less than the height of its contents).

For example, consider the following HTML code:

<div id="target"
 style="overflow: scroll; width: 200px; height: 100px;">
 Lorem ipsum dolor sit amet, consectetur adipisicing elit,
 sed do eiusmod tempor incididunt ut labore et dolore magna
 aliqua. Ut enim ad minim veniam, quis nostrud exercitation
 ullamco laboris nisi ut aliquip ex ea commodo consequat.
 Duis aute irure dolor in reprehenderit in voluptate velit
 esse cillum dolore eu fugiat nulla pariatur. Excepteur
 sint occaecat cupidatat non proident, sunt in culpa qui
 officia deserunt mollit anim id est laborum.
</div>
<div id="other">
 Trigger the handler
</div>

Event Methods

[176]

The style deinition is present to make the target element small enough to
be scrollable.

The scroll event handler can be bound to this element.

$('#target').scroll(function() {

 $.print('Handler for .scroll() called.');

});

Now when the user scrolls the text up or down, the following message is displayed:

Handler for .scroll() called.

We can trigger the event manually when another element is clicked.

$('#other').click(function() {

 $('#target').scroll();

});

After this code executes, clicks on Trigger the handler will also display the
same message.

A scroll event is sent whenever the element's scroll position changes, regardless
of the cause. Clicking on or dragging the scroll bar, dragging inside the element,
pressing the arrow keys, or scrolling the mouse wheel could cause this event.

Effect Methods
The jQuery library provides several techniques for adding animation to a web page.
These include simple, standard animations that are frequently used and the ability
to craft sophisticated custom effects. In this chapter, we'll closely examine each of
the effect methods, revealing all of the mechanisms jQuery has for providing visual
feedback to the user.

Some of the examples in this chapter use the $.print() function
to print results to the page. This is a simple plug-in, which will be
discussed in Chapter 10, Plug-in API.

Pre-packaged effects
These methods allow us to quickly apply commonly-used effects with a minimum
of coniguration.

.show()
Display the matched elements.
 .show([duration][, callback])

Parameters
•	 duration (optional): A string or number determining how long the

animation will run
•	 callback (optional): A function to call once the animation is complete

Effect Methods

[178]

Return value
The jQuery object, for chaining purposes.

Description
With no parameters, the .show() method is the simplest way to display an element.

$('.target').show();

The matched elements will be revealed immediately with no animation. This is
roughly equivalent to calling .css('display', 'block'), except that the display
property is restored to whatever it was initially. If an element has a display value of
inline, then is hidden and shown, it will once again be displayed inline.

When a duration is provided, .show() becomes an animation method.
The .show() method animates the width, height, and opacity of the matched
elements simultaneously.

Durations are given in milliseconds; higher values indicate slower animations, not
faster ones. The 'fast' and 'slow' strings can be supplied to indicate durations of
200 and 600 milliseconds, respectively.

If supplied, the callback is ired once the animation is complete. This can be useful
for stringing different animations together in sequence. The callback is not sent any
arguments, but this is set to the DOM element being animated. If multiple elements
are animated, it is important to note that the callback is executed once per matched
element, not once for the animation as a whole.

We can animate any element, such as a simple image:

<div id="clickme">

 Click here

</div>

With the element initially hidden, we can show it slowly.

$('#clickme').click(function() {

 $('#book').show('slow', function() {

 $.print('Animation complete.');

 });

});

Chapter 6

[179]

.hide()
Hide the matched elements.
 .hide([duration][, callback])

Parameters
•	 duration (optional): A string or number determining how long the

animation will run
•	 callback (optional): A function to call once the animation is complete

Return value
The jQuery object, for chaining purposes.

Description
With no parameters, the .hide() method is the simplest way to hide an element.

$('.target').hide();

The matched elements will be hidden immediately, with no animation. This is
roughly equivalent to calling .css('display', 'none'), except that the value of
the display property is saved in jQuery's data cache so that display can later be
restored to its initial value. If an element has a display value of inline, and then is
hidden and shown, it will once again be displayed inline.

Effect Methods

[180]

When a duration is provided, .hide() becomes an animation method. The
.hide() method animates the width, height, and opacity of the matched elements
simultaneously. When these properties reach 0, the display style property is set to
none to ensure that the element no longer affects the layout of the page.

Durations are given in milliseconds; higher values indicate slower animations, not
faster ones. The 'fast' and 'slow' strings can be supplied to indicate durations of
200 and 600 milliseconds, respectively.

If supplied, the callback is ired once the animation is complete. This can be useful
for stringing different animations together in sequence. The callback is not sent any
arguments, but this is set to the DOM element being animated. If multiple elements
are animated, it is important to note that the callback is executed once per matched
element, not once for the animation as a whole.

We can animate any element, such as a simple image:

<div id="clickme">

 Click here

</div>

With the element initially shown, we can hide it slowly.

$('#clickme').click(function() {

 $('#book').hide('slow', function() {

 $.print('Animation complete.');

 });

});

Chapter 6

[181]

.toggle()
Display or hide the matched elements.
 .toggle([duration][, callback])
 .toggle(showOrHide)

Parameters (irst version)
•	 duration (optional): A string or number determining how long the

animation will run
•	 callback (optional): A function to call once the animation is complete

Parameters (second version)
•	 showOrHide: A Boolean indicating whether to show or hide the elements

Return value
The jQuery object, for chaining purposes.

Description
With no parameters, the .toggle() method simply toggles the visibility of elements:

$('.target').toggle();

The matched elements will be revealed or hidden immediately with no animation.
If the element is initially displayed, it will be hidden; if hidden, it will be shown.
The display property is saved and restored as needed. If an element has a display
value of inline, then is hidden and shown, it will once again be displayed inline.

When a duration is provided, .toggle() becomes an animation method. The
.toggle() method animates the width, height, and opacity of the matched elements
simultaneously. When these properties reach 0 after a hiding animation, the display
style property is set to none to ensure that the element no longer affects the layout of
the page.

Durations are given in milliseconds; higher values indicate slower animations, not
faster ones. The 'fast' and 'slow' strings can be supplied to indicate durations of
200 and 600 milliseconds, respectively.

Effect Methods

[182]

If supplied, the callback is ired once the animation is complete. This can be useful
for stringing different animations together in sequence. The callback is not sent any
arguments, but this is set to the DOM element being animated. If multiple elements
are animated, it is important to note that the callback is executed once per matched
element, not once for the animation as a whole.

We can animate any element, such as a simple image:

<div id="clickme">

 Click here

</div>

We will cause .toggle() to be called when another element is clicked.

$('#clickme').click(function() {

 $('#book').toggle('slow', function() {

 $.print('Animation complete.');

 });

});

With the element initially shown, we can hide it slowly with the irst click:

Chapter 6

[183]

A second click will show the element once again:

The second version of the method accepts a Boolean parameter. If this parameter
is true, then the matched elements are shown; if false, the elements are hidden.
In essence, the following statement

$('#foo').toggle(showOrHide);

is equivalent to:

if (showOrHide) {

 $('#foo').show();

}

else {

 $('#foo').hide();

}

There is also an event method named .toggle().
For details on this method, see Chapter 5, Event Methods.

Effect Methods

[184]

.slideDown()
Display the matched elements with a sliding motion.
 .slideDown([duration][, callback])

Parameters
•	 duration (optional): A string or number determining how long the

animation will run
•	 callback (optional): A function to call once the animation is complete

Return value
The jQuery object, for chaining purposes.

Description
The .slideDown() method animates the height of the matched elements. This causes
lower parts of the page to slide down, making way for the revealed items.

Durations are given in milliseconds; higher values indicate slower animations, not
faster ones. The 'fast' and 'slow' strings can be supplied to indicate durations
of 200 and 600 milliseconds, respectively. If any other string is supplied, or if the
duration parameter is omitted, the default duration of 400 milliseconds is used.

If supplied, the callback is ired once the animation is complete. This can be useful
for stringing different animations together in sequence. The callback is not sent any
arguments, but this is set to the DOM element being animated. If multiple elements
are animated, it is important to note that the callback is executed once per matched
element, not once for the animation as a whole.

We can animate any element, such as a simple image:

<div id="clickme">

 Click here

</div>

With the element initially hidden, we can show it slowly.

$('#clickme').click(function() {

 $('#book').slideDown('slow', function() {

 $.print('Animation complete.');

 });

});

Chapter 6

[185]

.slideUp()
Hide the matched elements with a sliding motion.
 .slideUp([duration][, callback])

Parameters
•	 duration (optional): A string or number determining how long the

animation will run
•	 callback (optional): A function to call once the animation is complete

Return value
The jQuery object, for chaining purposes.

Description
The .slideUp() method animates the height of the matched elements. This causes
lower parts of the page to slide up, appearing to conceal the items. Once the height
reaches 0, the display style property is set to none to ensure that the element no
longer affects the layout of the page.

Durations are given in milliseconds; higher values indicate slower animations, not
faster ones. The 'fast' and 'slow' strings can be supplied to indicate durations
of 200 and 600 milliseconds, respectively. If any other string is supplied, or if the
duration parameter is omitted, the default duration of 400 milliseconds is used.

Effect Methods

[186]

If supplied, the callback is ired once the animation is complete. This can be useful
for stringing different animations together in sequence. The callback is not sent any
arguments, but this is set to the DOM element being animated. If multiple elements
are animated, it is important to note that the callback is executed once per matched
element, not once for the animation as a whole.

We can animate any element, such as a simple image:

<div id="clickme">

 Click here

</div>

With the element initially shown, we can hide it slowly.

$('#clickme').click(function() {

 $('#book').slideUp('slow', function() {

 $.print('Animation complete.');

 });

});

.slideToggle()
Display or hide the matched elements with a sliding motion.
 .slideToggle([duration][, callback])

Chapter 6

[187]

Parameters
•	 duration (optional): A string or number determining how long the

animation will run
•	 callback (optional): A function to call once the animation is complete

Return value
The jQuery object, for chaining purposes.

Description
The .slideToggle() method animates the height of the matched elements. This
causes lower parts of the page to slide up or down, appearing to reveal or conceal
the items. If the element is initially displayed, it will be hidden; if hidden, it will be
shown. The display property is saved and restored as needed. If an element has a
display value of inline, then is hidden and shown, it will once again be displayed
inline. When the height reaches 0 after a hiding animation, the display style
property is set to none to ensure that the element no longer affects the layout of
the page.

Durations are given in milliseconds; higher values indicate slower animations, not
faster ones. The 'fast' and 'slow' strings can be supplied to indicate durations of
200 and 600 milliseconds, respectively.

If supplied, the callback is ired once the animation is complete. This can be useful
for stringing different animations together in sequence. The callback is not sent any
arguments, but this is set to the DOM element being animated. If multiple elements
are animated, it is important to note that the callback is executed once per matched
element, not once for the animation as a whole.

We can animate any element, such as a simple image:

<div id="clickme">

 Click here

</div>

We will cause .slideToggle() to be called when another element is clicked.

$('#clickme').click(function() {

 $('#book').slideToggle('slow', function() {

 $.print('Animation complete.');

 });

});

Effect Methods

[188]

With the element initially shown, we can hide it slowly with the irst click:

A second click will show the element once again:

Chapter 6

[189]

.fadeIn()

Display the matched elements by fading them to opaque.
 .fadeIn([duration][, callback])

Parameters
•	 duration (optional): A string or number determining how long the

animation will run
•	 callback (optional): A function to call once the animation is complete

Return value
The jQuery object, for chaining purposes.

Description
The .fadeIn() method animates the opacity of the matched elements.

Durations are given in milliseconds; higher values indicate slower animations, not
faster ones. The 'fast' and 'slow' strings can be supplied to indicate durations
of 200 and 600 milliseconds, respectively. If any other string is supplied, or if the
duration parameter is omitted, the default duration of 400 milliseconds is used.

If supplied, the callback is ired once the animation is complete. This can be useful
for stringing different animations together in sequence. The callback is not sent any
arguments, but this is set to the DOM element being animated. If multiple elements
are animated, it is important to note that the callback is executed once per matched
element, not once for the animation as a whole.

We can animate any element, such as a simple image:

<div id="clickme">

 Click here

</div>

Effect Methods

[190]

With the element initially hidden, we can show it slowly.

$('#clickme').click(function() {

 $('#book').fadeIn('slow', function() {

 $.print('Animation complete.');

 });

});

.fadeOut()
Hide the matched elements by fading them to transparent.
 .fadeOut([duration][, callback])

Parameters
•	 duration (optional): A string or number determining how long the

animation will run
•	 callback (optional): A function to call once the animation is complete

Return value
The jQuery object, for chaining purposes.

Chapter 6

[191]

Description
The .fadeOut() method animates the opacity of the matched elements. Once the
opacity reaches 0, the display style property is set to none, so the element no longer
affects the layout of the page.

Durations are given in milliseconds; higher values indicate slower animations, not
faster ones. The 'fast' and 'slow' strings can be supplied to indicate durations
of 200 and 600 milliseconds, respectively. If any other string is supplied, or if the
duration parameter is omitted, the default duration of 400 milliseconds is used.

If supplied, the callback is ired once the animation is complete. This can be useful
for stringing different animations together in sequence. The callback is not sent any
arguments, but this is set to the DOM element being animated. If multiple elements
are animated, it is important to note that the callback is executed once per matched
element, not once for the animation as a whole.

We can animate any element, such as a simple image:

<div id="clickme">

 Click here

</div>

With the element initially shown, we can hide it slowly.

$('#clickme').click(function() {

 $('#book').fadeOut('slow', function() {

 $.print('Animation complete.');

 });

});

Effect Methods

[192]

.fadeTo()

Adjust the opacity of the matched elements.
 .fadeTo(duration, opacity[, callback])

Parameters
•	 duration: A string or number determining how long the animation will run
•	 opacity: A number between 0 and 1 denoting the target opacity
•	 callback (optional): A function to call once the animation is complete

Return value
The jQuery object, for chaining purposes.

Description
The .fadeTo() method animates the opacity of the matched elements.

Durations are given in milliseconds; higher values indicate slower animations, not
faster ones. The 'fast' and 'slow' strings can be supplied to indicate durations of
200 and 600 milliseconds, respectively. If any other string is supplied, the default
duration of 400 milliseconds is used. Unlike the other effect methods, .fadeTo()
requires that duration be explicitly speciied.

If supplied, the callback is ired once the animation is complete. This can be useful
for stringing different animations together in sequence. The callback is not sent any
arguments, but this is set to the DOM element being animated. If multiple elements
are animated, it is important to note that the callback is executed once per matched
element, not once for the animation as a whole.

We can animate any element, such as a simple image:

<div id="clickme">
 Click here
</div>

With the element initially shown, we can dim it slowly.

$('#clickme').click(function() {
 $('#book').fadeTo('slow', 0.5, function() {
 $.print('Animation complete.');
 });
});

Chapter 6

[193]

With duration set to 0, this method just changes the opacity CSS property, so
.fadeTo(0, opacity) is the same as .css('opacity', opacity).

Customized effects
This section describes how to create effects that are not provided out of the box
by jQuery.

.animate()
Perform a custom animation of a set of CSS properties.
 .animate(properties[, duration][, easing][, callback])
 .animate(properties, options)

Parameters (irst version)
•	 properties: A map of CSS properties that the animation will move toward
•	 duration (optional): A string or number determining how long the

animation will run
•	 easing (optional): A string indicating which easing function to use for

the transition
•	 callback (optional): A function to call once the animation is complete

Effect Methods

[194]

Parameters (second version)
•	 properties: A map of CSS properties that the animation will move toward
•	 options: A map of additional options to pass to the method. Supported

keys are:
	° duration: A string or number determining how long the

animation will run
	° easing: A string indicating which easing function to use for

the transition
	° complete: A function to call once the animation is complete
	° step: A function to be called after each step of the animation
	° queue: A Boolean indicating whether to place the

animation in the effects queue. If false, the animation
will begin immediately

	° specialEasing: A map of one or more of the CSS
properties deined by the properties argument and their
corresponding easing functions

Return value
The jQuery object, for chaining purposes.

Description
The .animate() method allows us to create animation effects on any numeric CSS
property. The only required parameter is a map of CSS properties. This map is
similar to the one that can be sent to the .css() method, except that the range of
properties is more restrictive.

All animated properties are treated as a number of pixels, unless otherwise speciied.
The units em and % can be speciied where applicable.

In addition to numeric values, each property can take the strings 'show', 'hide',
and 'toggle'. These shortcuts allow for custom hiding and showing animations that
take into account the display type of the element.

Animated properties can also be relative. If a value is supplied with a leading
+= or -= sequence of characters, then the target value is computed by adding or
subtracting the given number to or from the current value of the property.

Durations are given in milliseconds; higher values indicate slower animations, not
faster ones. The 'fast' and 'slow' strings can be supplied to indicate durations of
200 and 600 milliseconds, respectively. Unlike the other effect methods, .fadeTo()
requires that duration be explicitly speciied.

Chapter 6

[195]

If supplied, the callback is ired once the animation is complete. This can be useful
for stringing different animations together in sequence. The callback is not sent any
arguments, but this is set to the DOM element being animated. If multiple elements
are animated, it is important to note that the callback is executed once per matched
element, not once for the animation as a whole.

We can animate any element, such as a simple image:

<div id="clickme">

 Click here

</div>

<img id="book" src="book.png" alt="" width="100" height="123"

 style="position: relative; left: 10px;" />

We can animate the opacity, left offset, and height of the image simultaneously.

$('#clickme').click(function() {

 $('#book').animate({

 opacity: 0.25,

 left: '+=50',

 height: 'toggle'

 }, 5000, function() {

 $.print('Animation complete.');

 });

});

Effect Methods

[196]

Note that we have speciied toggle as the target value of the height property.
As the image was visible before, the animation shrinks the height to 0 to hide it.
A second click then reverses this transition:

The opacity of the image is already at its target value, so this property is not
animated by the second click. As we speciied the target value for left as a relative
value, the image moves even farther to the right during this second animation.

The position attribute of the element must not be static if we wish to animate the
left property as we do in the example.

The jQuery UI project extends the .animate() method
by allowing some non-numeric styles, such as colors, to be
animated. The project also includes mechanisms for specifying
animations through CSS classes rather than individual attributes.

Chapter 6

[197]

The remaining parameter of .animate() is a string naming an easing function to
use. An easing function speciies the speed at which the animation progresses at
different points within the animation. The only easing implementations in the jQuery
library are the default, called swing, and one that progresses at a constant pace,
called linear. More easing functions are available with the use of plug-ins, most
notably the jQuery UI suite.

As of jQuery version 1.4, we can set per-property easing functions within a single
.animate() call. In the irst version of .animate(), each property can take an
array as its value: The irst member of the array is the CSS property and the second
member is an easing function. If a per-property easing function is not deined for a
particular property, it uses the value of the .animate() method's optional easing
argument. If the easing argument is not deined, the default swing function is used.

We can simultaneously animate the width and height with the swing easing function
and the opacity with the linear easing function:

$('#clickme').click(function() {
 $('#book').animate({
 width: ['toggle', 'swing'],
 height: ['toggle', 'swing'],
 opacity: 'toggle'
 }, 5000, 'linear', function() {
 $.print('Animation complete.');
 });
});

In the second version of .animate(), the options map can include the
specialEasing property, which is itself a map of CSS properties and their
corresponding easing functions. We can simultaneously animate the width using the
linear easing function and the height using the easeOutBounce easing function.

$('#clickme').click(function() {
 $('#book').animate({
 width: 'toggle',
 height: 'toggle'
 }, {
 duration: 5000,
 specialEasing: {
 width: 'linear',
 height: 'easeOutBounce'
 },
 complete: function() {
 $.print('Animation complete.');
 }
 });
});

As previously noted, a plug-in is required for the easeOutBounce function.

Effect Methods

[198]

.stop()
Stop the currently running animation on the matched elements.
 .stop([clearQueue][, jumpToEnd])

Parameters
•	 clearQueue (optional): A Boolean indicating whether to remove queued

animation as well. Defaults to false
•	 jumpToEnd (optional): A Boolean indicating whether to complete the current

animation immediately. Defaults to false

Return value
The jQuery object, for chaining purposes.

Description
When .stop() is called on an element, the currently running animation (if any) is
immediately stopped. For instance, if an element is being hidden with .slideUp()
when .stop() is called, the element will now still be displayed, but will be a fraction
of its previous height. Callback functions are not called.

If more than one animation method is called on the same element, the later
animations are placed in the effects queue for the element. These animations will not
begin until the irst one completes. When .stop() is called, the next animation in the
queue begins immediately. If the clearQueue parameter is provided with a value of
true, then the rest of the animations in the queue are removed and never run.

If the jumpToEnd property is provided with a value of true, the current animation
stops, but the element is immediately given its target values for each CSS property.
In our .slideUp() example, the element would be immediately hidden. The callback
function is then immediately called, if provided.

The usefulness of the .stop() method is evident when we need to animate an
element on mouseenter and mouseleave.

<div id="hoverme">

 Hover me

</div>

Chapter 6

[199]

We can create a nice fade effect without the common problem of multiple queued
animations by adding .stop(true, true) to the chain.

$('#hoverme-stop-2').hover(function() {

 $(this).find('img').stop(true, true).fadeOut();

}, function() {

 $(this).find('img').stop(true, true).fadeIn();

});

Animations may be stopped globally by setting the $.fx.off property
to true. When this is done, all animation methods will immediately set
elements to their inal state when called, rather than displaying an effect.

.delay()
Set a timer to delay execution of subsequent items in the queue.
 .delay(duration, [queueName])

Parameters
•	 duration: An integer indicating the number of milliseconds to delay

execution of the next item in the queue

•	 queueName (optional): A string containing the name of the queue.
Defaults to fx, the standard effects queue

Return value
The jQuery object, for chaining purposes.

Description
Added to jQuery in version 1.4, the .delay() method allows us to delay the
execution of functions that follow it in the queue. It can be used with the standard
effects queue or with a custom queue.

Using the standard effects queue, we can, for example, set an 800-millisecond delay
between the .slideUp() and .fadeIn() of the foo element:

$('#foo').slideUp(300).delay(800).fadeIn(400);

When this statement is executed, the element slides up for 300 milliseconds and then
pauses for 800 milliseconds before fading in for 400 milliseconds.

Effect Methods

[200]

.queue()
Manipulate the queue of functions to be executed on the matched elements.
 .queue([queueName])
 .queue([queueName], newQueue)
 .queue([queueName], callback)

Parameters (irst version)
•	 queueName (optional): A string containing the name of the queue.

Defaults to fx, the standard effects queue

Parameters (second version)
•	 queueName (optional): A string containing the name of the queue.

Defaults to fx, the standard effects queue
•	 newQueue: An array of functions to replace the current queue contents

Parameters (third version)
•	 queueName (optional): A string containing the name of the queue.

Defaults to fx, the standard effects queue
•	 callback: The new function to add to the queue

Return value (irst version)
An array of the functions currently in the irst element's queue.

Return value (second and third versions)
The jQuery object, for chaining purposes.

Description
Every element can have one or many queues of functions attached to it by jQuery.
In most applications, only one queue (called fx) is used. Queues allow a sequence
of actions to be called on an element asynchronously, without halting program
execution. The typical example of this is calling multiple animation methods on an
element. For example:

$('#foo').slideUp().fadeIn();

When this statement is executed, the element begins its sliding animation
immediately, but the fading transition is placed on the fx queue to be called only
once the sliding transition is complete.

Chapter 6

[201]

The .queue() method allows us to directly manipulate this queue of functions.
The irst and second versions of the function allow us to retrieve the entire array
of functions or replace it with a new array, respectively.

The third version allows us to place a new function at the end of the queue. This
feature is similar to providing a callback function with an animation method, but
does not require the callback to be given at the time the animation is performed.

$('#foo').slideUp();

$('#foo').queue(function() {

 $.print('Animation complete.');

 $(this).dequeue();

});

This is equivalent to:

$('#foo').slideUp(function() {

 $.print('Animation complete.');

});

Note that when adding a function with .queue(), we should ensure that
.dequeue() is eventually called so that the next function in line executes.

.dequeue()
Execute the next function on the queue for the matched elements.
 .dequeue([queueName])

Parameters
•	 queueName (optional): A string containing the name of the queue. Defaults to

fx, the standard effects queue

Return value
The jQuery object, for chaining purposes.

Description
When .dequeue() is called, the next function on the queue is removed from the
queue and then executed. This function should, in turn (directly or indirectly), cause
.dequeue() to be called so that the sequence can continue.

Effect Methods

[202]

.clearQueue()
Remove from the queue all items that have not yet been run.
 .clearQueue([queueName])

Parameter
•	 queueName (optional): A string containing the name of the queue. Defaults to

fx, the standard effects queue

Return value
The jQuery object, for chaining purposes.

Description
When the .clearQueue() method is called, all functions on the queue that have
not been executed are removed from the queue. When used without an argument,
.clearQueue() removes the remaining functions from fx, the standard effects
queue. In this way it is similar to .stop(true). However, while the .stop()
method is meant to be used only with animations, .clearQueue() can also be used
to remove any function that has been added to a generic jQuery queue with the
.queue() method.

AJAX Methods
The jQuery library has a full suite of AJAX capabilities. The functions and methods
therein allow us to load data from the server without a browser page refresh.
In this chapter, we'll examine each of the available AJAX methods and functions.
We'll see various ways of initiating an AJAX request, as well as several methods that
can observe the requests that are in progress at any time.

Some of the examples in this chapter use the $.print() function
to print results to the page. This is a simple plug-in, which will be
discussed in Chapter 10, Plug-in API.

Low-level interface
These methods can be used to make arbitrary AJAX requests.

$.ajax()
Perform an asynchronous HTTP (AJAX) request.
 $.ajax(settings)

Parameters
• settings: A map of options for the request. It can contain the

following items:
 ° url: A string containing the URL to which the request is sent.
 ° async (optional): A Boolean indicating whether to perform

the request asynchronously. Defaults to true.

AJAX Methods

[204]

 ° beforeSend (optional): A callback function that is executed
before the request is sent.

 ° cache (optional): A Boolean indicating whether to allow the
browser to cache the response. Defaults to true.

 ° complete (optional): A callback function that executes
whenever the request inishes.

 ° contentType (optional): A string containing a MIME
content type to set for the request. Defaults to application/
x-www-form-urlencoded.

 ° context (optional): An object (typically a DOM element) to
set as this within the callback functions. Defaults to window.
New in jQuery 1.4.

 ° data (optional): A map or string that is sent to the server with
the request.

 ° dataFilter (optional): A callback function that can be used
to preprocess the response data before passing it to the
success handler.

 ° dataType (optional): A string deining the type of data
expected back from the server (xml, html, json, jsonp,
script, or text).

 ° error (optional): A callback function that is executed if the
request fails.

 ° global (optional): A Boolean indicating whether global
AJAX event handlers will be triggered by this request.
Defaults to true.

 ° ifModified (optional): A Boolean indicating whether the
server should check if the page is modiied before responding
to the request. Defaults to false.

 ° jsonp (optional): A string containing the name of the JSONP
parameter to be passed to the server. Defaults to callback.

 ° password (optional): A string containing a password to be
used when responding to an HTTP authentication challenge.

 ° processData (optional): A Boolean indicating whether to
convert submitted data from object form into query string
form. Defaults to true.

 ° scriptCharset (optional): A string indicating the character
set of the data being fetched; only used when the dataType
parameter is jsonp or script.

Chapter 7

[205]

 ° success (optional): A callback function that is executed if the
request succeeds.

 ° timeout (optional): A number of milliseconds after which the
request will time out in failure.

 ° type (optional): A string deining the HTTP method to use
for the request, such as GET or POST. Defaults to GET.

 ° username (optional): A string containing a user name to be
used when responding to an HTTP authentication challenge.

 ° xhr (optional): A callback function that is used
to create the XMLHttpRequest object. Defaults to a
browser-speciic implementation.

Return value
The XMLHttpRequest object that was created, if any.

Description
The $.ajax() function underlies all AJAX requests sent by jQuery. It is rarely
necessary to directly call this function, as several higher-level alternatives such as
$.get() and .load() are available and are easier to use. However, if less common
options are required, $.ajax() can be used more lexibly.

At its simplest, the $.ajax() function must at least specify a URL from which to
load the data.

$.ajax({

 url: 'ajax/test.html',

});

Even this sole required parameter may be made optional by setting
a default using the $.ajaxSetup() function.

Using the only required option, this example loads the contents of the speciied URL;
but does nothing with the result. To use the result, we can implement one of the
callback functions.

AJAX Methods

[206]

Callback functions
The beforeSend, error, dataFilter, success, and complete options all take
callback functions that are invoked at the appropriate times.

• beforeSend is called before the request is sent, and is passed the
XMLHttpRequest object as a parameter.

• error is called if the request fails. It is passed the XMLHttpRequest object,
a string indicating the error type, and an exception object if applicable.

• dataFilter is called on success. It is passed the returned data and
the value of dataType, and must return the (possibly altered) data to pass
on to success.

• success is called if the request succeeds. It is passed the returned data,
as well as a string containing the success code.

• complete is called when the request is inished, whether in failure or success.
It is passed the XMLHttpRequest object, as well as a string containing the
success or error code.

To make use of the returned HTML, we can implement a success handler as follows:

$.ajax({

 url: 'ajax/test.html',

 success: function(data) {

 $('.result').html(data);

 $.print('Load was performed.');

 }

});

Such a simple example would generally be better served by using .load()
or $.get().

Data types
The $.ajax() function relies on the server to provide information about the
retrieved data. If the server reports the return data as XML, the result can be
traversed using normal XML methods or jQuery's selectors. If another type is
detected, such as HTML in the preceding example, the data is treated as text.

Different data handling can be achieved by using the dataType option. Besides plain
xml, the dataType can be html, json, jsonp, script, or text.

The text and xml types return the data with no processing. The data is simply
passed on to the success handler, either through the responseText or responseHTML
property of the XMLHttpRequest object, respectively.

Chapter 7

[207]

We must ensure that the MIME type reported by the web server
matches our choice of dataType. In particular, XML must be declared
by the server as text/xml or application/xml for consistent results.

If html is speciied, any embedded JavaScript inside the retrieved data is executed
before the HTML is returned as a string. Similarly, script will execute the JavaScript
that is pulled back from the server, and then return the script itself as textual data.

The json type parses the fetched data ile as a JavaScript object and returns the
constructed object as the result data. To do so, it uses JSON.parse() when the
browser supports it; otherwise it uses a Function constructor. JSON data is
convenient for communicating structured data in a way that is concise and easy for
JavaScript to parse. If the fetched data ile exists on a remote server, the jsonp type
can be used instead. This type will cause a query string parameter of callback=? to
be appended to the URL; the server should prepend the JSON data with the callback
name to form a valid JSONP response. If a speciic parameter name is desired instead
of callback, it can be speciied with the jsonp option to $.ajax().

A detailed description of the JSONP protocol is beyond the scope of
this reference guide. This protocol is an extension of the JSON format,
requiring some server-side code to detect and handle the query string
parameter. Comprehensive treatments can be found online, or in
Chapter 7 of the book Learning jQuery 1.3.

When data is retrieved from remote servers (which is only possible using the script
or jsonp data types), the operation is performed using a <script> tag rather than
an XMLHttpRequest object. In this case, no XMLHttpRequest object is returned from
$.ajax(), nor is one passed to the handler functions such as beforeSend.

Sending data to the server
By default, AJAX requests are sent using the GET HTTP method. If the POST
method is required, the method can be speciied by setting a value for the type
option. This option affects how the contents of the data option are sent to the server.

The data option can contain either a query string of the form
key1=value1&key2=value2, or a map of the form {key1: 'value1', key2:
'value2'}. If the latter form is used, the data is converted into a query string
before it is sent. This processing can be circumvented by setting processData to
false. The processing might be undesirable if we wish to send an XML object to
the server. In this case, we would also want to change the contentType option from
application/x-www-form-urlencoded to a more appropriate MIME type.

AJAX Methods

[208]

Advanced options
The global option prevents handlers registered using .ajaxSend(), .ajaxError(),
and similar methods from iring when this request would trigger them. For example,
this can be useful to suppress a loading indicator that we implemented with
.ajaxSend() if the requests are frequent and brief. See the Descriptions of these
methods for more details.

If the server performs HTTP authentication before providing a response, the user
name and password pair can be sent via the username and password options.

AJAX requests are time-limited, so errors can be caught and handled to provide a
better user experience. Request timeouts are usually either left at their default, or set
as a global default using $.ajaxSetup(), rather than being overridden for speciic
requests with the timeout option.

By default, requests are always issued, but the browser may serve results out of its
cache. To disallow use of the cached results, set cache to false. Set ifModified to
true to cause the request to report failure if the asset has not been modiied since the
last request.

The scriptCharset allows the character set to be explicitly speciied for requests
that use a <script> tag (that is, a type of script or jsonp). This is useful if the script
and host page have differing character sets.

The irst letter in AJAX stands for "asynchronous," meaning that the operation
occurs in parallel and the order of completion is not guaranteed. The async
option to $.ajax() defaults to true, indicating that code execution can continue
after the request is made. Setting this option to false (and thus making the call
no longer asynchronous) is strongly discouraged, as it can cause the browser to
become unresponsive.

Rather than making requests synchronous using this option,
better results can be had using the blockUI plug-in. For more
information on using plug-ins, see Chapter 10, Plug-in API.

The $.ajax() function returns the XMLHttpRequest object that it creates. Normally,
jQuery handles the creation of this object internally, but a custom function for
manufacturing one can be speciied using the xhr option. The returned object can
generally be discarded, but it does provide a lower-level interface for observing and
manipulating the request. In particular, calling .abort() on the object will halt the
request before it completes.

Chapter 7

[209]

$.ajaxSetup()
Set default values for future AJAX requests.
 $.ajaxSetup(settings)

Parameters
• settings: A map of options for future requests; same possible items as

in $.ajax()

Return value
None

Description
For details on the settings available for $.ajaxSetup(), see $.ajax().

All subsequent AJAX calls using any function will use the new settings, unless
overridden by the individual calls, until the next invocation of $.ajaxSetup().

For example, we could set a default for the URL parameter before pinging the server
repeatedly as follows:

$.ajaxSetup({

 url: 'ping.php'

});

Now each time an AJAX request is made, this URL will be used automatically.

$.ajax({});

$.ajax({

 data: {'date': Date()}

});

Global callback functions should be set with their respective global
AJAX event handler methods—.ajaxStart(), .ajaxStop(),
.ajaxComplete(), .ajaxError(), .ajaxSuccess(), and
.ajaxSend()—rather than within the settings object for
$.ajaxSetup().

AJAX Methods

[210]

Shorthand methods
These methods perform the more common types of AJAX requests in less code.

$.get()
Load data from the server using a GET HTTP request.
 $.get(url[, data][, success][, dataType])

Parameters
• url: A string containing the URL to which the request is sent
• data (optional): A map or string that is sent to the server with the request
• success (optional): A callback function that is executed if the

request succeeds
• dataType (optional): A string deining the type of data expected back from

the server (xml, html, json, jsonp, script, or text)

Return value
The XMLHttpRequest object that was created.

Description
This is a shorthand AJAX function, which is equivalent to the following:

$.ajax({

 url: url,

 data: data,

 success: success,

 dataType: dataType

});

The callback is passed the returned data, which will be an XML root element, text
string, JavaScript ile, or JSON object, depending on the MIME type of the response.

Most implementations will specify a success handler.

$.get('ajax/test.html', function(data) {

 $('.result').html(data);

 $.print('Load was performed.');

});

This example fetches the requested HTML snippet and inserts it on the page.

Chapter 7

[211]

.load()
Load data from the server and place the returned HTML into the
matched element.
 .load(url[, data][, success])

Parameters
• url: A string containing the URL to which the request is sent
• data (optional): A map or string that is sent to the server with the request
• success (optional): A callback function that is executed if the

request succeeds

Return value
The jQuery object, for chaining purposes.

Description
This method is the simplest way to fetch data from the server. It is roughly
equivalent to $.get(url, data, success), except that it is a method rather than
global function and has an implicit callback function. When a successful response is
detected, .load() sets the HTML contents of the matched element to the returned
data. This means that most uses of the method can be quite simple, for example:

$('.result').load('ajax/test.html');

The provided callback, if any, is executed after this post-processing has
been performed:

$('.result').load('ajax/test.html', function() {

 $.print('Load was performed.');

});

The POST method is used if data is provided as an object; otherwise,
GET is assumed.

The event handling suite also has a method named .load().
Which one is ired depends on the set of arguments passed.

AJAX Methods

[212]

Loading page fragments
The .load() method, unlike $.get(), allows only part of a remote document to be
fetched. This is achieved with a special syntax for the url parameter. If one or more
space characters are included in the string, the portion of the string following the irst
space is assumed to be a jQuery selector. This selector is used to identify a portion of
the remote document to retrieve.

We could modify the preceding example to fetch only part of the document
as follows:

$('.result').load('ajax/test.html #container');

When this method executes, the content of ajax/test.html is loaded, but then
jQuery parses this returned document to ind the element with an ID of container.
The inner content of this element is inserted into the element with a class of result
and the rest of the loaded document is discarded.

$.post()

Load data from the server using a POST HTTP request.
 $.post(url[, data][, success][, dataType])

Parameters
• url: A string containing the URL to which the request is sent
• data (optional): A map or string that is sent to the server with the request
• success (optional): A callback function that is executed if the request succeeds
• dataType (optional): A string deining the type of data expected back from

the server (xml, html, json, jsonp, script, or text)

Return value
The XMLHttpRequest object that was created.

Description
This is a shorthand AJAX function, which is equivalent to the following:

$.ajax({

 type: 'POST',

 url: url,
 data: data,

Chapter 7

[213]

 success: success,
 dataType: dataType
});

The callback is passed the returned data, which will be an XML root element or a text
string depending on the MIME type of the response.

Most implementations will specify a success handler.

$.post('ajax/test.html', function(data) {

 $('.result').html(data);

 $.print('Load was performed.');

});

This example fetches the requested HTML snippet and inserts it on the page.

Pages fetched with POST are never cached, so the cache and ifModified options
have no effect on these requests.

$.getJSON()
Load JSON-encoded data from the server using a GET HTTP request.
 $.getJSON(url[, data][, success])

Parameters
• url: A string containing the URL to which the request is sent
• data (optional): A map or string that is sent to the server with the request
• success (optional): A callback function that is executed if the request succeeds

Return value
The XMLHttpRequest object that was created.

Description
This is a shorthand AJAX function, which is equivalent to the following:

$.ajax({

 url: url,
 dataType: 'json',

 data: data,
 success: success
});

AJAX Methods

[214]

The callback is passed the returned data, which will be a JavaScript object
or array as deined by the JSON structure and parsed using JSON.parse()
or a Function constructor.

For details on the JSON format, see http://json.org/.

Most implementations will specify a success handler.

$.getJSON('ajax/test.json', function(data) {

 $('.result').html('<p>' + data.foo + '</p>'

 + '<p>' + data.baz[1] + '</p>');

 $.print('Load was performed.');

});

This example, of course, relies on the structure of the JSON ile.

{

 "foo": "The quick brown fox jumps over the lazy dog.",

 "bar": "ABCDEFG",

 "baz": [52, 97]

}

Using this structure, the example inserts the irst string and second number from the
ile onto the page.

If there is a syntax error in the JSON ile, the request will usually fail silently.
Avoid frequent hand-editing of JSON data for this reason.

If the speciied URL is on a remote server, the request is treated as JSONP instead.
See the Description of the jsonp data type in $.ajax() for more details.

$.getScript()

Load a JavaScript ile from the server using a GET HTTP request, then execute it.
 $.getScript(url[, success])

Parameters
• url: A string containing the URL to which the request is sent
• success (optional): A callback function that is executed if the request succeeds

Chapter 7

[215]

Return value
The XMLHttpRequest object that was created.

Description
This is a shorthand AJAX function, which is equivalent to the following:

$.ajax({

 url: url,

 type: 'script',

 success: success

});

The callback is passed the returned JavaScript ile. This is generally not useful as the
script will already have run at this point.

The script is executed in the global context, so it can refer to other variables and use
jQuery functions. Included scripts should have some impact on the current page.

$('.result').html('<p>Lorem ipsum dolor sit amet.</p>');

The script can then be included and run by referencing the ile name as follows:

$.getScript('ajax/test.js', function() {

 $.print('Load was performed.');

});

Global AJAX event handlers
These methods register handlers to be called when certain events, such as
initialization or completion, take place for any AJAX request on the page.

.ajaxComplete()
Register a handler to be called when AJAX requests complete.
 .ajaxComplete(handler)

Parameters
• handler: The function to be invoked

Return value
The jQuery object, for chaining purposes.

AJAX Methods

[216]

Description
Whenever an AJAX request completes, jQuery triggers the ajaxComplete event. Any
and all handlers that have been registered with the .ajaxComplete() method are
executed at this time.

To observe this method in action, we can set up a basic AJAX load request as follows:

<div class="trigger">Trigger</div>

<div class="result"></div>

<div class="log"></div>

We can attach our event handler to any element.

$('.log').ajaxComplete(function() {

 $(this).text('Triggered ajaxComplete handler.');

});

Now, we can make an AJAX request using any jQuery method.

$('.trigger').click(function() {

 $('.result').load('ajax/test.html');

});

When the user clicks the button and the AJAX request completes, the log message
is displayed.

As .ajaxComplete() is implemented as a method rather than a
global function, we can use the this keyword as we do here to refer
to the selected elements within the callback function.

All ajaxComplete handlers are invoked, regardless of what AJAX request was
completed. If we must differentiate between the requests, we can use the parameters
passed to the handler. Each time an ajaxComplete handler is executed, it is passed
the event object, the XMLHttpRequest object, and the settings object that was used
in the creation of the request. We can restrict our callback to only handling events
dealing with a particular URL, for example:

$('.log').ajaxComplete(function(e, xhr, settings) {

 if (settings.url == 'ajax/test.html') {

 $(this).text('Triggered ajaxComplete handler.');

 }

});

Chapter 7

[217]

.ajaxError()
Register a handler to be called when AJAX requests complete with an error.
 .ajaxError(handler)

Parameters
• handler: The function to be invoked

Return value
The jQuery object, for chaining purposes.

Description
Whenever an AJAX request completes with an error, jQuery triggers the ajaxError
event. Any and all handlers that have been registered with the .ajaxError()
method are executed at this time.

To observe this method in action, we can set up a basic AJAX load request as follows:

<div class="trigger">Trigger</div>

<div class="result"></div>

<div class="log"></div>

We can attach our event handler to any element.

$('.log').ajaxError(function() {

 $(this).text('Triggered ajaxError handler.');

});

Now, we can make an AJAX request using any jQuery method.

$('.trigger').click(function() {

 $('.result').load('ajax/missing.html');

});

The log message is displayed when the user clicks the button and the AJAX request
fails because the requested ile is missing.

As .ajaxError() is implemented as a method rather than a global
function, we can use the this keyword as we do here to refer to the
selected elements within the callback function.

AJAX Methods

[218]

All ajaxError handlers are invoked, regardless of what AJAX request was
completed. If we must differentiate between the requests, we can use the parameters
passed to the handler. Each time an ajaxError handler is executed, it is passed the
event object, the XMLHttpRequest object, and the settings object that was used in the
creation of the request. If the request failed because JavaScript raised an exception,
the exception object is passed to the handler as a fourth parameter. We can restrict
our callback to only handling events dealing with a particular URL, for example:

$('.log').ajaxError(function(e, xhr, settings, exception) {

 if (settings.url == 'ajax/missing.html') {

 $(this).text('Triggered ajaxError handler.');

 }

});

.ajaxSend()
Register a handler to be called when AJAX requests are begun.
 .ajaxSend(handler)

Parameters
• handler: The function to be invoked

Return value
The jQuery object, for chaining purposes.

Description
Whenever an AJAX request is about to be sent, jQuery triggers the ajaxSend event.
Any and all handlers that have been registered with the .ajaxSend() method are
executed at this time.

To observe this method in action, we can set up a basic AJAX load request as follows:

<div class="trigger">Trigger</div>

<div class="result"></div>

<div class="log"></div>

We can attach our event handler to any element.

$('.log').ajaxSend(function() {

 $(this).text('Triggered ajaxSend handler.');

});

Chapter 7

[219]

Now, we can make an AJAX request using any jQuery method.

$('.trigger').click(function() {

 $('.result').load('ajax/test.html');

});

When the user clicks the button and the AJAX request is about to begin, the log
message is displayed.

As .ajaxSend() is implemented as a method rather than a global
function, we can use the this keyword as we do here to refer to the
selected elements within the callback function.

All ajaxSend handlers are invoked, regardless of what AJAX request is to be sent.
If we must differentiate between the requests, we can use the parameters passed to
the handler. Each time an ajaxSend handler is executed, it is passed the event object,
the XMLHttpRequest object, and the settings object that was used in the creation
of the request. We can restrict our callback to only handling events dealing with a
particular URL, for example:

$('.log').ajaxSend(function(e, xhr, settings) {

 if (settings.url == 'ajax/test.html') {

 $(this).text('Triggered ajaxSend handler.');

 }

});

.ajaxStart()
Register a handler to be called when the irst AJAX request begins.
 .ajaxStart(handler)

Parameters
• handler: The function to be invoked

Return value
The jQuery object, for chaining purposes.

AJAX Methods

[220]

Description
Whenever an AJAX request is about to be sent, jQuery checks whether there are
any other outstanding AJAX requests. If none are in progress, jQuery triggers
the ajaxStart event. Any and all handlers that have been registered with the
.ajaxStart() method are executed at this time.

To observe this method in action, we can set up a basic AJAX load request as follows:

<div class="trigger">Trigger</div>

<div class="result"></div>

<div class="log"></div>

We can attach our event handler to any element.

$('.log').ajaxStart(function() {

 $(this).text('Triggered ajaxStart handler.');

});

Now, we can make an AJAX request using any jQuery method.

$('.trigger').click(function() {

 $('.result').load('ajax/test.html');

});

The log message is displayed when the user clicks the button and the AJAX request
is sent.

As .ajaxStart() is implemented as a method rather than a global
function, we can use the this keyword as we do here to refer to
the selected elements within the callback function.

.ajaxStop()
Register a handler to be called when all AJAX requests have completed.
 .ajaxStop(handler)

Parameters
• handler: The function to be invoked

Return value
The jQuery object, for chaining purposes.

Chapter 7

[221]

Description
Whenever an AJAX request completes, jQuery checks whether there are any other
outstanding AJAX requests. If none remain, jQuery triggers the ajaxStop event.
Any and all handlers that have been registered with the .ajaxStop() method are
executed at this time.

To observe this method in action, we can set up a basic AJAX load request as follows:

<div class="trigger">Trigger</div>

<div class="result"></div>

<div class="log"></div>

We can attach our event handler to any element.

$('.log').ajaxStop(function() {

 $(this).text('Triggered ajaxStop handler.');

});

Now, we can make an AJAX request using any jQuery method.

$('.trigger').click(function() {

 $('.result').load('ajax/test.html');

});

The log message is displayed when the user clicks the button and the AJAX
request completes.

As .ajaxStop() is implemented as a method rather than a global
function, we can use the this keyword as we do here to refer to
the selected elements within the callback function.

.ajaxSuccess()
Register a handler to be called when AJAX requests complete and are successful.
 .ajaxSuccess(handler)

Parameters
• handler: The function to be invoked

Return value
The jQuery object, for chaining purposes.

AJAX Methods

[222]

Description
Whenever an AJAX request completes successfully, jQuery triggers the ajaxSuccess
event. Any and all handlers that have been registered with the .ajaxSuccess()
method are executed at this time.

To observe this method in action, we can set up a basic AJAX load request as follows:

<div class="trigger">Trigger</div>

<div class="result"></div>

<div class="log"></div>

We can attach our event handler to any element.

$('.log').ajaxSuccess(function() {

 $(this).text('Triggered ajaxSuccess handler.');

});

Now, we can make an AJAX request using any jQuery method.

$('.trigger').click(function() {

 $('.result').load('ajax/test.html');

});

The log message is displayed when the user clicks the button and the AJAX
request completes.

As .ajaxSuccess() is implemented as a method rather than a global
function, we can use the this keyword as we do here to refer to the
selected elements within the callback function.

All ajaxSuccess handlers are invoked, regardless of what AJAX request was
completed. If we must differentiate between the requests, we can use the parameters
passed to the handler. Each time an ajaxSuccess handler is executed, it is passed
the event object, the XMLHttpRequest object, and the settings object that was used
in the creation of the request. We can restrict our callback to only handling events
dealing with a particular URL, for example:

$('.log').ajaxSuccess(function(e, xhr, settings) {

 if (settings.url == 'ajax/test.html') {

 $(this).text('Triggered ajaxSuccess handler.');

 }

});

Chapter 7

[223]

Helper functions
These functions assist with common idioms encountered when performing
AJAX tasks.

.serialize()
Encode a set of form elements as a string for submission.
 .serialize()

Parameters
None

Return value
A string containing the serialized representation of the elements.

Description
The .serialize() method creates a text string in a standard URL-encoded notation.
It operates on a jQuery object representing a set of form elements. The form elements
can be of several types.

<form>

 <div><input type="text" name="a" value="1" id="a" /></div>

 <div><input type="text" name="b" value="2" id="b" /></div>

 <div><input type="hidden" name="c" value="3" id="c" /></div>

 <div>

 <textarea name="d" rows="8" cols="40">4</textarea>

 </div>

 <div><select name="e">

 <option value="5" selected="selected">5</option>

 <option value="6">6</option>

 <option value="7">7</option>

 </select></div>

 <div>

 <input type="checkbox" name="f" value="8" id="f" />

 </div>

 <div>

 <input type="submit" name="g" value="Submit" id="g" />

 </div>

</form>

AJAX Methods

[224]

The .serialize() method can act on a jQuery object that has selected individual
form elements, such as <input>, <textarea>, and <select>. However, it is typically
easier to select the <form> tag itself for serialization.

$('form').submit(function() {

 $.print($(this).serialize());

 return false;

});

This produces a standard-looking query string as follows:

a=1&b=2&c=3&d=4&e=5

.serializeArray()
Encode a set of form elements as an array of names and values.
 .serializeArray()

Parameters
None

Return value
An array of objects containing the serialized representation of each element.

Description
The .serializeArray() method creates a JavaScript array of objects, ready to be
encoded as a JSON string. It operates on a jQuery object representing a set of form
elements. The form elements can be of several types.

<form>

 <div><input type="text" name="a" value="1" id="a" /></div>

 <div><input type="text" name="b" value="2" id="b" /></div>

 <div><input type="hidden" name="c" value="3" id="c" /></div>

 <div>

 <textarea name="d" rows="8" cols="40">4</textarea>

 </div>

 <div><select name="e">

 <option value="5" selected="selected">5</option>

 <option value="6">6</option>

 <option value="7">7</option>

 </select></div>

 <div>

Chapter 7

[225]

 <input type="checkbox" name="f" value="8" id="f" />

 </div>

 <div>

 <input type="submit" name="g" value="Submit" id="g" />

 </div>

</form>

The .serializeArray() method can act on a jQuery object that has selected
individual form elements, such as <input>, <textarea>, and <select>. However, it
is typically easier to select the <form> tag itself for serialization.

$('form').submit(function() {

 $.print($(this).serializeArray());

 return false;

});

This produces the following data structure:

[

 {

 name: a

 value: 1

 },

 {

 name: b

 value: 2

 },

 {

 name: c

 value: 3

 },

 {

 name: d

 value: 4

 },

 {

 name: e

 value: 5

 }

]

Miscellaneous Methods
In the preceding chapters, we have examined many categories of jQuery methods.
However, a few methods provided by the library have so far deied categorization.
In this inal method reference chapter, we will explore these remaining methods that
can be used to abbreviate common JavaScript idioms.

Some of the examples in this chapter use the $.print() function to print
results to the page. This is a simple plug-in, which will be discussed in
Chapter 10, Plug-in API.

Setup methods
These functions are useful before the main code body begins.

$.noConlict()
Relinquish jQuery's control of the $ variable.
 $.noConflict([removeAll])

Parameters
•	 removeAll (optional): A Boolean indicating whether to remove all jQuery

variables from the global scope (including jQuery itself)

Return value
The global jQuery object. This can be set to a variable to provide an alternative
shortcut to $.

Miscellaneous Methods

[228]

Description
Many JavaScript libraries use $ as a function or variable name, just as jQuery does.
In jQuery's case, $ is just an alias for jQuery. So, all functionality is available without
using $. If we need to use another JavaScript library alongside jQuery, we can return
control of $ back to the other library with a call to $.noConflict().

<script type="text/javascript" src="other_lib.js"></script>
<script type="text/javascript" src="jquery.js"></script>
<script type="text/javascript">
 $.noConflict();
 // Code that uses other library's $ can follow here.
</script>

This technique is especially effective in conjunction with the .ready() method's
ability to alias the jQuery object, as within any callback passed to .ready(), we can
use $ if we wish, without fear of conlicts later.

<script type="text/javascript" src="other_lib.js"></script>
<script type="text/javascript" src="jquery.js"></script>
<script type="text/javascript">
 $.noConflict();
 jQuery(document).ready(function($) {
 // Code that uses jQuery's $ can follow here.
 });
 // Code that uses other library's $ can follow here.
</script>

If necessary, we can free up the jQuery name as well by passing true as an
argument to the method. This is rarely necessary and if we must do this (for
example, if we need to use multiple versions of the jQuery library on the same page),
we need to consider that most plug-ins rely on the presence of the jQuery variable
and may not operate correctly in this situation.

DOM element methods
These methods help us to work with the DOM elements underlying each
jQuery object.

.size()
Return the number of DOM elements matched by the jQuery object.
 .size()

Chapter 8

[229]

Return value
The number of elements matched.

Description
Suppose we had a simple unordered list on the page:

 foo
 bar

We could determine the number of list items by calling .size().

$.print('Size: ' + $('li').size());

This would output the count of items:

Size: 2

The .length property, discussed in Chapter 9, jQuery Properties,
is a slightly faster way to get this information.

.get()
Retrieve the DOM elements matched by the jQuery object.
 .get([index])

Parameters
•	 index (optional): An integer indicating which element to retrieve

Return value
A DOM element or an array of DOM elements if the index is omitted.

Description
The .get() method grants us access to the DOM nodes underlying each jQuery
object. Suppose we had a simple unordered list on the page:

 <li id="foo">foo
 <li id="bar">bar

Miscellaneous Methods

[230]

Without a parameter, .get() returns all of the elements.

$.print($('li').get());

All of the matched DOM nodes are returned by this call, contained in a standard array:

[<li id="foo">, <li id="bar">]

With an index speciied, .get() will retrieve a single element.

$.print($('li').get(0));

As the index is zero-based, the irst list item is returned:

<li id="foo">

Each jQuery object also masquerades as an array, so we can use the array-
dereferencing operator to get at the list item instead.

$.print($('li')[0]);

However, this syntax lacks some of the additional capabilities of .get(), such as
specifying a negative index.

$.print($('li').get(-1));

A negative index is counted from the end of the matched set. So this example will
return the last item in the list:

<li id="bar">

.index()
Search for a given element from among the matched elements.
 .index()
 .index(element)
 .index(string)

Parameters (irst version)
None

Return value (irst version)
An integer indicating the position of the irst element within the jQuery object
relative to its sibling elements, or -1 if not found.

Chapter 8

[231]

Parameters (second version)
•	 element: The DOM element or irst element within the jQuery object

to look for

Return value (second version)
An integer indicating the position of the element within the jQuery object, or -1
if not found.

Parameters (third version)
•	 string: A selector representing a jQuery collection in which to look for

an element

Return value (third version)
An integer indicating the position of the element within the jQuery object, or -1
if not found.

Description
.index(), which is the complementary operation to .get() (which accepts an index
and returns a DOM node), can take a DOM node and returns an index. Suppose we
had a simple unordered list on the page:

 <li id="foo">foo

 <li id="bar">bar

 <li id="baz">baz

If we have retrieved one of the three list items (for example, through a DOM function
or as the context to an event handler), .index() can search for this list item within
the set of matched elements:

var listItem = document.getElementById('bar');

$.print('Index: ' + $('li').index(listItem));

We get back the zero-based position of the list item:

Index: 1

Similarly, if we have retrieved a jQuery object consisting of one of the three list
items, .index() will search for that list item.

var listItem = $('#bar');

$.print('Index: ' + $('li').index(listItem));

Miscellaneous Methods

[232]

We get back the zero-based position of the list item:

Index: 1

Note that if the jQuery collection—used as the .index() method's
argument—contains more than one element, the irst element within
the matched set of elements will be used.

var listItems = $('li:gt(0)');

$.print('Index: ' + $('li').index(listItems));

We get back the zero-based position of the irst list item within the matched set:

Index: 1

If we use a string as the .index() method's argument, it is interpreted as a
jQuery selector string. The irst element among the object's matched elements
that also matches this selector is located.

var listItem = $('#bar');

$.print('Index: ' + listItem.index('li'));

We get back the zero-based position of the list item:

Index: 1

If we omit the argument, .index() will return the position of the irst element
within the set of matched elements in relation to its siblings.

$.print('Index: ' + $('#bar').index();

Again, we get back the zero-based position of the list item:

Index: 1

Collection manipulation
These helper functions manipulate arrays, maps, and strings.

.each()
Iterate over a collection, iring a callback function on each item.
 .each(callback)
 $.each(collection, callback)

Chapter 8

[233]

Parameters (irst version)
•	 callback: A function to execute for each matched element

Return value (irst version)
The jQuery object, for chaining purposes.

Parameters (second version)
•	 collection: An object or array to iterate over
•	 callback: A function to execute for each item in the collection

Return value (second version)
The collection argument.

Description
The .each() method and $.each() function are designed to make looping
constructs concise and less error-prone. They iterate over a collection, executing a
callback function once for every item in that collection.

The irst syntax listed earlier is a method of jQuery objects and when called, it
iterates over the DOM elements that are part of the object. Each time the callback
runs, it is passed the current loop iteration, beginning from 0. More importantly, the
callback is ired in the context of the current DOM element, so the this keyword
refers to the element.

Suppose we had a simple unordered list on the page:

 foo

 bar

We could select the list items and iterate across them.

$('li').each(function(index) {

 $.print(index + ': ' + $(this).text());

});

A message is thus logged for each item in the list:

0: foo

1: bar

Miscellaneous Methods

[234]

The second syntax is similar, but it is a global function rather than a method. The
collection is passed as the irst parameter in this case, and can be either a map
(JavaScript object) or an array. In the case of an array, the callback is passed an array
index and a corresponding array value each time.

$.each([52, 97], function(key, value) {

 $.print(key + ': ' + value);

});

This produces two messages:

0: 52

1: 97

If a map is used as the collection, the callback is passed a key-value pair each time.

var map = {

 'flammable': 'inflammable',

 'duh': 'no duh'

};

$.each(map, function(index, value) {

 $.print(index + ': ' + value);

});

Once again, this produces two messages:

lammable: inlammable

duh: no duh

We can stop the loop from within the callback function by returning false.

$.grep()
Winnow an array down to a selected set of items.
 $.grep(array, filter[, invert])

Parameters
•	 array: An array to search through
•	 filter: A function to apply as a test for each item
•	 invert (optional): A Boolean indicating whether to reverse the ilter condition

Chapter 8

[235]

Return value
The newly constructed, iltered array.

Description
The $.grep() method removes items from an array as necessary so that all
remaining items pass a provided test. The test is a function that is passed an array
item and the index of the item within the array. Only if the test returns true will the
item be in the result array.

As is typical with jQuery methods, the callback function is often deined anonymously.

var array = [0, 1, 52, 97];

$.print(array);

array = $.grep(array, function(item) {

 return (item > 50);

});

$.print(array);

All array items that are over 50 are preserved in the result array:

[0, 1, 52, 97]

[52, 97]

We can invert this test by adding the third parameter.

var array = [0, 1, 52, 97];

$.print(array);

array = $.grep(array, function(item) {

 return (item > 50);

}, true);

$.print(array);

This now produces an array of items less than or equal to 50:

[0, 1, 52, 97]

[0, 1]

$.makeArray()
Convert an array-like object into a true JavaScript array.
 $.makeArray(obj)

Miscellaneous Methods

[236]

Parameters
•	 obj: The object to convert to an array

Return value
The newly constructed array.

Description
Many methods, both in jQuery and in JavaScript in general, return objects that are
array-like. For example, the jQuery factory function $() returns a jQuery object that
has many of the properties of an array (a length, the [] array access operator, and
so on), but is not exactly the same as an array and lacks some of an array's built-in
methods (such as .pop() and .reverse()).

The $.makeArray() function allows us to convert such an object into a native array.

var obj = $('li');

$.print(obj);

obj = $.makeArray(obj);

$.print(obj);

The function call turns the numerically indexed object into an array:

{0: , 1: }

[,]

Note that after the conversion, any special features the object had (such as the jQuery
methods in our example) will no longer be present. The object is now a plain array.

$.inArray()
Search for a speciied value within an array.
 $.inArray(value, array)

Parameters
•	 value: The value to search for
•	 array: An array through which to search

Return value
An integer indicating the position of the element within an array, or -1 if not found.

Chapter 8

[237]

Description
The $.inArray() method is similar to JavaScript's native .indexOf() method in
that it returns -1 when it doesn't ind a match. If the irst element within the array
matches value, $.inArray() returns 0.

As JavaScript treats 0 as loosely equal to false (that is, 0 == false, but 0 !==
false), if we're checking for the presence of value within array, we need to
check if it's not equal to (or greater than) -1.

var array = [0, 1, 52, 97];
$.print(array);
var inArray = $.inArray(0, array);
$.print(inArray);
$.print(inArray == true);
$.print(inArray > -1);

Note that as 0 is the irst element in the array, it returns 0:

[0, 1, 52, 97]

0

false

true

$.map()
Transform an array into another one by using a transformation function.
 $.map(array, transform)

Parameters
•	 array: The array to convert
•	 transform: A function to apply to each item

Return value
The newly constructed, transformed array.

Description
The $.map() method applies a function to each item in an array and collects the
results into a new array. The transformation is a function that is passed an array item
and the index of the item within the array.

Miscellaneous Methods

[238]

As is typical with jQuery methods, the callback function is often deined anonymously.

var array = [0, 1, 52, 97];

$.print(array);

array = $.map(array, function(a) {

 return (a - 45);

});

$.print(array);

All array items are reduced by 45 in the result array:

[0, 1, 52, 97]

[-45, -44, 7, 52]

We can remove items from the array by returning null from the transformation
function.

var array = [0, 1, 52, 97];

$.print(array);

array = $.map(array, function(a) {

 return (a > 50 ? a - 45 : null);

});

$.print(array);

This now produces an array of the items that were greater than 50, each reduced
by 45:

[0, 1, 52, 97]

[7, 52]

If the transformation function returns an array rather than a scalar, the returned
arrays are concatenated together to form the result.

var array = [0, 1, 52, 97];

$.print(array);

array = $.map(array, function(a, i) {

 return [a - 45, i];

});

$.print(array);

Instead of a two-dimensional result array, the map forms a lattened one:

[0, 1, 52, 97]

[-45, 0, -44, 1, 7, 2, 52, 3]

Chapter 8

[239]

To perform this type of operation on a jQuery object rather than an array,
use the .map() method, described in Chapter 3, DOM Traversal Methods.

$.merge()
Merge the contents of two arrays together into the irst array.
 $.merge(array1, array2)

Parameters
•	 array1: The irst array to merge
•	 array2: The second array to merge

Return value
An array consisting of elements from both supplied arrays.

Description
The $.merge() operation forms an array that contains all elements from the two
arrays. The orders of items in the arrays are preserved, with items from the second
array appended.

var array1 = [0, 1, 52];

var array2 = [52, 97];

$.print(array1);

$.print(array2);

array = $.merge(array1, array2);

$.print(array);

The resulting array contains all ive items:

[0, 1, 52]

[52, 97]

[0, 1, 52, 52, 97]

Miscellaneous Methods

[240]

The $.merge() function is destructive. It alters the irst parameter to add the items
from the second. If you need the original irst array, make a copy of it before calling
$.merge(). Fortunately, $.merge() itself can be used for this duplication as follows:

var newArray = $.merge([], oldArray);

This shortcut creates a new, empty array and merges the contents of oldArray into
it, effectively cloning the array.

$.unique()
Create a copy of an array of DOM elements with the duplicates removed.
 $.unique(array)

Parameters
•	 array: An array of DOM elements

Return value
An array consisting of only unique objects.

Description
The $.unique() function searches through an array of objects, forming a new array
that does not contain duplicate objects. This function only works on plain JavaScript
arrays of DOM elements, and is chiely used internally by jQuery.

$.extend()
Merge the contents of two objects together into the irst object.
 $.extend([recursive,][target,]properties
 [, propertiesN])

Parameters
•	 recursive (optional): A Boolean indicating whether to merge objects

within objects
•	 target (optional): An object that will receive the new properties
•	 properties: An object containing additional properties to merge in
•	 propertiesN: Additional objects containing properties to merge in

Chapter 8

[241]

Return value
The target object after it has been modiied.

Description
The $.extend() function merges two objects in the same way that $.merge()
merges arrays. The properties of the second object are added to the irst, creating an
object with all the properties of both objects.

var object1 = {

 apple: 0,

 banana: {weight: 52, price: 100},

 cherry: 97

};

var object2 = {

 banana: {price: 200},

 durian: 100

};

$.print(object1);

$.print(object2);

var object = $.extend(object1, object2);

$.print(object);

The value for durian in the second object gets added to the irst, and the value
for banana gets overwritten:

{apple: 0, banana: {weight: 52, price: 100}, cherry: 97}

{banana: {price: 200}, durian: 100}

{apple: 0, banana: {price: 200}, cherry: 97, durian: 100}

The $.extend() function is destructive; the target object is modiied in the process.
This is generally desirable behavior, as $.extend() can in this way be used to
simulate object inheritance. Methods added to the object become available to all
code that has a reference to the object. However, if we want to preserve both of the
original objects, we can do this by passing an empty object as the target.

var object = $.extend({}, object1, object2)

We can also supply more than two objects to $.extend(). In this case, properties
from all of the objects are added to the target object.

Miscellaneous Methods

[242]

If only one argument is supplied to $.extend(), this means the target argument
was omitted. In this case, the jQuery object itself is assumed to be the target. By
doing this, we can add new functions to the jQuery namespace. We will explore this
capability when discussing how to create jQuery plug-ins.

The merge performed by $.extend() is not recursive by default. If a property of the
irst object is itself an object or array, it will be completely overwritten by a property
with the same key in the second object. The values are not merged. This can be seen
in the preceding example by examining the value of banana. However, by passing
true for the irst function argument, we can change this behavior.

var object = $.extend(true, object1, object2);

With this alteration, the weight property of banana is preserved while price
is updated:

{apple: 0, banana: {weight: 52, price: 100}, cherry: 97}

{banana: {price: 200}, durian: 100}

{apple: 0, banana: {weight: 52, price: 200}, cherry: 97, durian: 100}

$.trim()
Remove whitespace from the ends of a string.
 $.trim(string)

Parameters
•	 string: A string to trim

Return value
The trimmed string.

Description
The $.trim() function removes all newlines, spaces, and tabs from the beginning
and end of the supplied string. If these whitespace characters occur in the middle of
the string, they are preserved.

Chapter 8

[243]

$.param()
Create a serialized representation of an object or array, suitable for use in a URL
query string or AJAX request.
 $.param(obj[, traditional])

Parameters
•	 obj: An object or an array of data to serialize

•	 traditional (optional): A Boolean indicating whether to perform a
traditional "shallow" serialization of obj; defaults to false

Return value
A string containing the query string representation of the object.

Description
This function is used internally to convert form element values into a serialized
string representation. See the Description of .serialize() in Chapter 7, AJAX
Methods for more details.

As of jQuery 1.4, the $.param() method serializes deep objects recursively to
accommodate modern scripting languages and frameworks such as PHP and
Ruby on Rails.

Because some frameworks have limited ability to parse serialized
arrays, we should exercise caution when passing an obj argument that
contains objects or arrays nested within another array.

We can display a query string representation of an object and a URI-decoded version
of the same as follows:

var myObject = {

 a: {

 one: 1,

 two: 2,

 three: 3

 },

 b: [1,2,3]

};

var recursiveEncoded = $.param(myObject);

Miscellaneous Methods

[244]

var recursiveDecoded = decodeURIComponent($.param(myObject));

$.print(recursiveEncoded);

$.print(recursiveDecoded);

The values of recursiveEncoded and recursiveDecoded are displayed as follows:

a%5Bone%5D=1&a%5Btwo%5D=2&a%5Bthree%5D=3&b%5B%5D=1&b%5B%5D
=2&b%5B%5D=3

a[one]=1&a[two]=2&a[three]=3&b[]=1&b[]=2&b[]=3

To emulate the behavior of $.param() prior to jQuery 1.4, we can set the
traditional argument to true:

var myObject = {

 a: {

 one: 1,

 two: 2,

 three: 3

 },

 b: [1,2,3]

};

var shallowEncoded = $.param(myObject, true);

var shallowDecoded = decodeURIComponent(shallowEncoded);

$.print(shallowEncoded);

$.print(shallowDecoded);

The values of shallowEncoded and shallowDecoded are displayed as follows:

a=%5Bobject+Object%5D&b=1&b=2&b=3

a=[object+Object]&b=1&b=2&b=3

Introspection
These methods allow us to determine the kind of data stored in a variable.

$.isArray()
Determine whether the argument is an array.
 $.isArray(obj)

Chapter 8

[245]

Parameters
•	 obj: The object to be tested

Return value
A Boolean indicating whether the object is a JavaScript array (not an array-like object,
such as a jQuery object).

$.isFunction()
Determine whether the argument is a function object.
 $.isFunction(obj)

Parameters
•	 obj: The object to be tested

Return value
A Boolean indicating whether the object is a function.

$.isPlainObject()
Determine whether the argument is a plain JavaScript object.
 $.isPlainObject(obj)

Parameters
•	 obj: The object to be tested

Return value
A Boolean indicating whether the object is a plain JavaScript object (not an array or
function, which are subclasses of Object).

$.isEmptyObject()
Determine whether the argument is an empty JavaScript object.
 $.isEmptyObject(obj)

Miscellaneous Methods

[246]

Parameters
•	 obj: The object to be tested

Return value
A Boolean indicating whether the object is an empty JavaScript object (that is, the
object has no properties).

$.isXMLDoc()
Determine whether the argument is an XML document.
 $.isXMLDoc(doc)

Parameters
•	 doc: The document to be tested

Return value
A Boolean indicating whether the document is an XML document (as opposed to an
HTML document).

Data storage
These methods allow us to associate arbitrary data with speciic DOM elements.

.data()
Store or retrieve arbitrary data associated with the matched elements.
 .data(key, value)
 .data(obj)
 .data([key])

Parameters (irst version)
•	 key: A string naming the piece of data to set
•	 value: The new data value

Return value (irst version)
The jQuery object for chaining purposes.

Chapter 8

[247]

Parameters (second version)
•	 obj: An object, of key-value pairs of data to set

Return value (second version)
The jQuery object, for chaining purposes.

Parameters (third version)
•	 key (optional): A string naming the piece of data to retrieve

Return value (third version)
The previously stored data.

Description
The .data() method allows us to attach data of any type to DOM elements in a way
that is safe from circular references and, therefore, from memory leaks. We can set
several distinct values for a single element and retrieve them one at a time, or as a set.

$('body').data('foo', 52);

$('body').data('bar', 'test');

$.print($('body').data('foo'));

$.print($('body').data());

The irst two lines set values and the following two print them back out:

52

{foo: 52, bar: test}

As we see here, calling .data() with no parameters retrieves all of the values as a
JavaScript object.

If we set an element's data using an object, all data previously stored with that
element is overridden.

$('body').data('foo', 52);

$('body').data({one: 1, two: 2});

$.print($('body').data('foo'));

$.print($('body').data());

Miscellaneous Methods

[248]

When lines one and two are printed out, we can see that the object in the second line
writes over the foo data stored in the irst line:

undeined

{one: 1, two: 2}

As the foo data no longer exists, line 3 displays its value as undefined.

.removeData()
Remove a previously stored piece of data.
 .removeData([key])

Parameters
•	 key (optional): A string naming the piece of data to delete

Return value
The jQuery object, for chaining purposes.

Description
The .removeData() method allows us to remove values that were previously set
using .data(). When called with the name of a key, .removeData() deletes that
particular value; when called with no arguments, all values are removed.

jQuery Properties
In addition to the many methods jQuery offers for interacting with the DOM
and data, a number of properties are available for inspecting both the browser
environment and individual jQuery objects.

Some of the examples in this chapter use the $.print() function
to print results to the page. This is a simple plug-in, which will be
discussed in Chapter 10, Plug-in API.

Global properties
These properties are associated with the global jQuery object. They allow us to
retrieve information about the user agent (web browser) that is executing the script
and its features.

$.browser
Information about the user agent displaying the page.

The $.browser property allows us to detect which web browser is accessing the
page, as reported by the browser itself. It contains lags for each of the four most
prevalent browser classes (Internet Explorer, Mozilla, Safari, and Opera) as well as
version information.

$.print($.browser);

jQuery Properties

[250]

{
 version: 1.9.1.3,
 safari: false,
 opera: false,
 msie: false,
 mozilla: true
}

This property is available immediately. Therefore, it is safe to use it to determine
whether to call $(document).ready() or not.

The $.browser property is deprecated in jQuery 1.3, but there
are no immediate plans to remove it.

As $.browser uses navigator.useragent to determine the platform, it is
vulnerable to spooing by the user or misrepresentation by the browser itself.
It is always best to avoid browser-speciic code entirely wherever possible. The
$.support property is available for detection of support for particular features
rather than relying on $.browser.

$.support
Information about the browser's support for speciic rendering and
JavaScript features.

Rather than using $.browser to detect the current user agent and alter the page
presentation based on which browser is running, it is a good practice to perform
feature detection. This means that prior to executing code that relies on a browser
feature, we test to ensure that the feature works properly. To make this process
simpler, jQuery performs many such tests and makes the results available to us as
properties of the $.support object.

$.support.boxModel
This property is true if the current page has been rendered according to the
speciications of the W3C CSS box model.

http://www.w3.org/TR/CSS2/box.html

Chapter 9

[251]

$.support.cssFloat
This property is true if the name of the property containing the CSS float value is
.cssFloat, as required by the Document Object Model CSS speciication.

http://www.w3.org/TR/DOM-Level-2-Style/css.html#CSS-CSS2Properties-
cssFloat

$.support.hrefNormalized
This property is true if the .getAttribute() method retrieves the href attribute of
elements unchanged, rather than normalizing it to a fully qualiied URL.

http://www.w3.org/TR/DOM-Level-3-Core/core.html#ID-666EE0F9

$.support.htmlSerialize
This property is true if the browser is able to serialize/insert <link> elements using
the .innerHTML property of elements.

http://www.w3.org/TR/2008/WD-html5-20080610/serializing.html#html-
fragment

$.support.leadingWhitespace
This property is true if the browser inserts content with .innerHTML exactly as
provided; speciically, if leading whitespace characters are preserved.

http://www.w3.org/TR/2008/WD-html5-20080610/dom.html#innerhtml0

$.support.noCloneEvent
This property is true if cloned DOM elements are created without event handlers
(that is, if the event handlers on the source element are not cloned).

http://www.w3.org/TR/DOM-Level-2-Events/events.html#Events-
Registration-interfaces-h3

$.support.objectAll
This property is true if the .getElementsByTagName() method returns all
descendant elements when called with a wildcard argument ('*').

http://www.w3.org/TR/WD-DOM/level-one-core.html#ID-745549614

jQuery Properties

[252]

$.support.opacity
This property is true if the browser respects the CSS property opacity.

http://www.w3.org/TR/css3-color/#transparency

$.support.scriptEval
This property is true if inline scripts are automatically evaluated and executed when
inserted to the document using standard DOM manipulation methods,
such as .appendChild.

http://www.w3.org/TR/2008/WD-html5-20080610/tabular.html#script

$.support.style
This property is true if inline styles for an element can be accessed through the
DOM attribute called style, as required by the DOM Level 2 speciication. In
this case, .getAttribute('style') can retrieve this value; in Internet Explorer,
.cssText is used for this purpose.

http://www.w3.org/TR/DOM-Level-2-Style/css.html#CSS-
ElementCSSInlineStyle

$.support.tbody
This property is true if a <table> element can exist without a <tbody> element.
According to the HTML speciication, this subelement is optional, so the property
should be true in a fully compliant browser. If false, we must account for the
possibility of the browser injecting <tbody> tags implicitly.

http://dev.w3.org/html5/spec/Overview.html#the-table-element

jQuery object properties
Each jQuery object we create contains a number of properties alongside its methods.
These properties allow us to inspect various attributes of the object.

.length
The number of DOM elements matched by the jQuery object.

Chapter 9

[253]

Suppose we had a simple unordered list on the page:

 foo

 bar

We can determine the number of list items by examining .length.

$.print('Length: ' + $('li').length);

This will output the count of items:

Length: 2

.selector
The selector string that was used to create the jQuery object.

The .live() method for binding event handlers uses this property to determine
how to perform its searches. Plug-ins that perform similar tasks may also ind the
property useful.

This property contains a string representing the matched set of elements. However,
if DOM traversal methods have been called on the object, the string may not be a
valid jQuery selector expression. For example, examine the value of the property on
a newly-created jQuery object:

$.print($('ul li.foo').selector);

ul li.foo

Compare this with the value if the same elements are selected with a series of
method calls:

$.print($('ul').find('li').filter('.foo').selector);

ul li.ilter(.foo)

For this reason, the value of .selector is generally most useful immediately
following the original creation of the object. Consequently, the .live() method
should only be used in this scenario.

jQuery Properties

[254]

.context

The DOM context that was used to create the jQuery object.

The .live() method for binding event handlers uses this property to determine the
root element to use for its event delegation needs. Plug-ins that perform similar tasks
may also ind the property useful.

The value of this property is typically equal to document, as this is the default
context for jQuery objects if none is supplied. The context may differ if, for example,
the object was created by searching within an <iframe> or XML document.

The Plug-in API
Whenever a task is to be performed two or more times, it is a good idea to apply the
DRY principle—Don't Repeat Yourself. To facilitate this, jQuery provides several
tools for developers that go beyond simple iteration and function creation.

One of these powerful tools is jQuery's plug-in architecture, which makes creating
and reusing extensions to the jQuery library a simple task. In this chapter, we'll take
a brief look at using the existing third-party plug-ins and then delve into the various
ways of extending jQuery with plug-ins that we deine ourselves.

Using a plug-in
Taking advantage of an existing jQuery plug-in is very straightforward. A plug-in
is contained in a standard JavaScript ile. There are many ways to obtain the ile,
but the most straightforward way is to browse the jQuery plug-in repository at
http://plugins.jquery.com/. The latest releases of many popular plug-ins are
available for download from this site.

To make the methods of a plug-in available to us, we just include it in the <head> of
the document. We must ensure that it appears after the main jQuery source ile, and
before our custom JavaScript code.

<head>

 <meta http-equiv="Content-Type"

 content="text/html; charset=utf-8"/>

 <script src="jquery.js" type="text/javascript"></script>

 <script src="jquery.plug-in.js"

 type="text/javascript"></script>

 <script src="custom.js" type="text/javascript"></script>

 <title>Example</title>

</head>

The Plug-in API

[256]

After that, we're ready to use any of the methods made public by the plug-in. For
example, using the Form plug-in, we can add a single line inside our custom ile's
$(document).ready() method to make a form submit via AJAX.

$(document).ready(function() {

 $('#myForm').ajaxForm();

});

Each plug-in is independently documented. To ind out more about other plug-ins,
we can explore the documentation linked from the jQuery plug-in repository, or read
the explanatory comments found in the source code itself.

If we can't ind the answers to all of our questions in the plug-in repository,
the author's web site, and the comments within the plug-in, we can always turn
to the jQuery discussion list. Many of the plug-in authors are frequent
contributors to the list and are willing to help with any problems that new
users might face. Instructions for subscribing to the discussion list can be found
at http://docs.jquery.com/Discussion.

Appendix A, Online Resources lists even more resources for information
about plug-ins and assistance in using them.

Developing a plug-in
As discussed earlier, plug-in development is a useful technique whenever we
are going to perform a task more than once. Here we will itemize some of the
components that can populate a plug-in ile of our own design. Our plug-ins can use
any combination of the following types of jQuery enhancements.

Object method
Add a new method to all jQuery objects created with the $() function.
 jQuery.fn.methodName = methodDefinition;

Components
• methodName: A label for the new method
• methodDefinition: A function object to execute when .methodName() is

called on a jQuery object instance

Chapter 10

[257]

Description
When a function needs to act on one or more DOM elements, creating a new jQuery
object method is usually appropriate. Object methods have access to the matched
elements referenced by the jQuery object, and can inspect or manipulate them.

When we add a method to jQuery.fn, we are actually adding it to
the prototype of the jQuery object. Because of JavaScript's native
prototypal inheritance, our method will apply to every instance of
the jQuery object. For more information about prototypal inheritance, see
https://developer.mozilla.org/en/Core_JavaScript_1.5_
Guide/Inheritance.

The jQuery object can be retrieved from within the method implementation
by referencing the this keyword. We can either call the built-in jQuery methods of
this object, or we can extract the DOM nodes to work with them directly. As we saw
in Chapter 8, Miscellaneous Methods, we can retrieve a referenced DOM node using
array notation.

jQuery.fn.showAlert = function() {

 alert('You called the method on "' + this[0] + '".');

 return this;

}

However, we need to remember that a jQuery selector expression can always match
zero, one, or multiple elements. We must allow for any of these scenarios when
designing a plug-in method. The easiest way to accomplish this is to always call
.each() on the method context. This enforces implicit iteration, which is important
for maintaining consistency between plug-in and built-in methods. Within the
function argument of the .each() call, this refers to each DOM element in turn.

jQuery.fn.showAlert = function() {

 this.each(function() {

 alert('You called the method on "' + this + '".');

 });

 return this;

}

Now we can apply our method to a jQuery object referencing multiple items.

$('.myClass').showAlert();

Our method produces a separate alert for each element that was matched by the
preceding selector expression.

The Plug-in API

[258]

What is "this"?
It is very important to remember that the this keyword refers to
different types of data in different situations. In the body of a plug-in
method, this points to a jQuery object; in most callback functions such
as .each() in our example, this points to a plain DOM element.

Note also that in these examples, we return the jQuery object itself (referenced by
this) when we are done with our work. This enables the chaining behavior that
jQuery users should be able to rely on. We must return a jQuery object from all
plug-in methods, unless the method is clearly intended to retrieve a different piece
of information and is documented as such.

A popular shorthand pattern for jQuery plug-ins is to combine the .each() iteration
and the return statement as follows:

jQuery.fn.showAlert = function() {
 return this.each(function() {
 alert('You called the method on "' + this + '".');
 });
}

This has the same effect as the previous code block—enforcing implicit iteration and
enabling chaining.

Global function
Make a new function available to scripts contained within the jQuery namespace.
 jQuery.pluginName = fnDefinition;
 jQuery.extend({
 pluginName: fnDefinition
 });
 jQuery.pluginName = {
 function1: fnDefinition1,
 function2: fnDefinition2
 };

Components (irst and second versions)
• pluginName: The name of the current plug-in
• fnDefinition: A function object to execute when $.pluginName() is called

Chapter 10

[259]

Components (third version)
• pluginName: The name of the current plug-in
• function1: A label for the irst function
• fnDefinition1: A function object to execute when

$.pluginName.function1() is called
• function2: A label for the second function
• fnDefinition2: A function object to execute when

$.pluginName.function2() is called

Description
What we call global functions here are technically methods of the jQuery function
object. Practically speaking, though, they are functions within a jQuery namespace.
By placing the function within the jQuery namespace, we reduce the chance of name
conlicts with other functions and variables in scripts.

Plug-ins with a single function
The irst and second usages above illustrate the creation of a global function when
the plug-in needs only a single function. By using the plug-in name as the function
name, we can ensure that our function deinition will not be trod on by other
plug-ins (as long as the others follow the same guideline!). The new function is
assigned as a property of the jQuery function object:

jQuery.myPlugin = function() {
 alert('This is a test. This is only a test.');
};

Now in any code that uses this plug-in, we can write:

jQuery.myPlugin();

We can also use the $ alias and write:

$.myPlugin();

This will work just like any other function call and the alert will be displayed.

Plug-ins with multiple functions
In the third usage, we see how to deine global functions when more than one is
needed by the same plug-in. We encapsulate all of the plug-ins within a single
namespace named after our plug-in.

jQuery.myPlugin = {
 foo: function() {
 alert('This is a test. This is only a test.');

The Plug-in API

[260]

 },

 bar: function(param) {

 alert('This function was passed "' + param + '".');

 }

};

To invoke these functions, we address them as members of an object named after our
plug-in, which is itself a property of the global jQuery function object.

$.myPlugin.foo();

$.myPlugin.bar('baz');

The functions are now properly protected from collisions with other functions and
variables in the global namespace.

In general, it is wise to use this second usage from the start, even if it seems only one
function will be needed, as it makes future expansion easier.

Example: A simple print function
In the various examples in the preceding reference chapters, we have had the need
to output information to the screen to illustrate method behaviors. JavaScript's
alert() function is often used for this type of demonstration, but does not allow
for the frequent, timely messages we needed on occasion. A better alternative is
the console.log() function available to Firefox and Safari, which allows printing
messages to a separate log that does not interrupt the low of interaction on the page.
As this function is not available to Internet Explorer prior to version 8, we used a
custom function to achieve this style of message logging.

The Firebug Lite script (described in Appendix B, Development Tools)
provides a very robust cross-platform logging facility. The method
we develop here is tailored speciically for the examples in the
preceding chapters.

To print messages onto the screen, we are going to call the $.print() function.
Implementing this function is simple as shown in the following code snippet:

jQuery.print = function(message) {

 var $output = jQuery('#print-output');

 if ($output.length === 0) {

 $output = jQuery('<div id="print-output" />')

 .appendTo('body');

 }

Chapter 10

[261]

 jQuery('<div class="print-output-line" />')

 .html(message)

 .appendTo($output);

};

Our function irst determines whether a container exists for our messages. If no
element with the print-output ID already exists, we create one and append it to the
<body> element. Then, we make a new container for our message, place the message
inside it, and append it to the print-output container.

Note that we use the jQuery identiier rather than $ throughout the script to make
sure the plug-in is safe in situations where $.noConflict() has been called.

Selector expression
Add a new way to ind DOM elements using a jQuery selector string.
 jQuery.extend(jQuery.expr[selectorType], {
 selectorName: elementTest
 });

Components
• selectorType: The preix character for the selector string, which indicates

which type of selector is being deined. In practice, the useful value for
plug-ins is ':', which indicates a pseudo-class selector.

• selectorName: A string uniquely identifying this selector.
• elementTest: A callback function to test whether an element should be

included in the result set. If the function evaluates to true for an element,
that element will be included in the resulting set; otherwise, the element will
be excluded.

Description
Plug-ins can add selector expressions that allow scripts to ind speciic sets of DOM
elements using a compact syntax. Generally, the expressions that plug-ins add are
new pseudo-classes, identiied by a leading : character.

The pseudo-classes that are supported by jQuery have the general format
:selectorName(param). Only the selectorName portion of this format is required;
param is available if the pseudo-class allows parameters to make it more speciic.

The Plug-in API

[262]

The element test callback receives the following four arguments, which it can use to
determine whether the element passes the test:

• element: The DOM element under consideration. This is needed for
most selectors.

• index: The index of the DOM element within the result set. This is helpful for
selectors such as :eq() and :lt().

• matches: An array containing the result of the regular expression that was
used to parse this selector. Typically, matches[3] is the only relevant item in
the array. In a selector of the :selectorName(param) form, the matches[3]
item contains param—the text within the parentheses.

• set: The entire set of DOM elements matched up to this point. This
parameter is rarely needed.

For example, we can build a pseudo-class that tests the number of elements that are
child nodes of an element and call this new selector expression :num-children(n):

jQuery.extend(jQuery.expr[':'], {
 'num-children': function(element, index, matches, set) {
 var count = 0;
 for (var node = element.firstChild; node; node =
 node.nextSibling) {
 if (node.nodeType === 1) {
 count++;
 }
 }
 return count == matches[3];
 }
});

Now we can select all elements with exactly two child DOM elements, and turn
them red:

$(document).ready(function() {
 $('ul:num-children(2)').css('color', 'red');
});

Plug-in conventions
Before sharing our plug-in with the world at http://plugins.jquery.com/,
we should check to ensure that the code conforms to the following conventions.

Use of the $ alias
jQuery plug-ins may not assume that the $ alias is available. Instead, the full jQuery
name must be written out each time.

Chapter 10

[263]

In longer plug-ins, many developers ind that the lack of the $ shortcut makes code
more dificult to read. To combat this, the shortcut can be locally deined for the
scope of the plug-in by deining and executing a function. The syntax for deining
and executing a function at once looks like this:

(function($) {
 // Code goes here
})(jQuery);

The wrapping function takes a single parameter to which we pass the global jQuery
object. The parameter is named $. So within the function, we can use the $ alias with
no conlicts.

Naming conventions
Plug-in iles should be named jquery.myPlugin.js, where myPlugin is the name
of our plug-in. This allows jQuery plug-ins to be easily distinguished from other
JavaScript iles.

Global functions within myPlugin should be named jQuery.myPlugin(), or should
be grouped as methods of the jQuery.myPlugin object. This convention helps to
guard against conlicts with other plug-ins.

API standardization
Methods deined by our plug-in must abide by the contract established by the jQuery
API. In order to provide a consistent experience for plug-in users, these methods
must observe the following rules:

• Methods should support implicit iteration
• Methods should preserve chaining unless otherwise explicitly documented
• Arguments to methods should provide reasonable and conigurable defaults
• Method deinitions must terminate with a semicolon (;) character to avoid

errors during code compression

In addition to following these conventions, the API for the plug-in should be
well-documented.

Further details and related techniques can be found online,
or in Chapter 11 of the book Learning jQuery 1.3.

Alphabetical Quick Reference
Having an entire chapter devoted to quick reference might seem redundant in a
reference book. Still, it is quite a common experience to know the name of a function
(or at least have a general idea of the function's name), but not know exactly what
the function does. This alphabetical list is intended to help during those times when
we need to quickly conirm a feature of the library and provide a pointer to the page
where more detailed information is discussed.

Selector expressions
Modelled after the W3C's CSS 1-3 speciication, jQuery's selector expressions are the
primary means for inding elements on a page so that they can then be acted upon.
All of the selectors in the following table are listed bare—not wrapped in the $()
function—for easier and quicker browsing:

Expression Description Page
* Select all elements 26
T Select all elements that have a tag name of T 17
#myid Select the unique element with an ID equal to

myid
18

.myclass Select all elements that have a class of myclass 18
[foo] Select all elements that have the foo attribute

with any value
27

[foo=bar] Select all elements that have the foo attribute
with a value exactly equal to bar

27

[foo!=bar] Select all elements that do not have the foo
attribute, or have a foo attribute but with a value
other than bar

27

Alphabetical Quick Reference

[266]

Expression Description Page

[foo^=bar] Select all elements that have the foo attribute
with a value beginning exactly with the string
bar

28

[foo$=bar] Select all elements that have the foo attribute
with a value ending exactly with the string bar

28

[foo*=bar] Select all elements that have the foo attribute
with a value containing the substring bar

28

[foo~=bar] Select all elements that have the foo attribute
with a value containing the word bar, delimited
by spaces

29

[foo|=bar] Select all elements that have the foo attribute
with a value either equal to bar, or beginning
with bar and a hyphen (-).

29

E F Select all elements matched by F that are
descendants of an element matched by E

19

E > F Select all elements matched by F that are children
of an element matched by E

20

E + F Select all elements matched by F that
immediately follow and have the same parent as
an element matched by E

20

E ~ F Select all elements matched by F that follow and
have the same parent as an element matched by E

21

E, F, G Select all elements matched by any of the selector
expressions E, F, or G

22

:animated Select all elements that are in the progress of an
animation at the time the selector is run

37

:button Select all button elements and input elements
with a type of button (<button>,
<input type="button">)

30

:checkbox Select all checkbox ields
(<input type="checkbox">)

30

:checked Select all form elements—checkboxes and radio
buttons—that are checked

31

:contains(text) Select all elements that contain the speciied text 35
:disabled Select all form elements that are disabled (that

is, they have the disabled attribute and users
cannot interact with them)

31

:empty Select all elements that have no children
(including text nodes)

25

Chapter 11

[267]

Expression Description Page

:enabled Select all form elements that are enabled (that
is, they do not have the disabled attribute and
users can interact with them)

30

:eq(n) Select the element at index n within the matched
set

31

:even Select all elements with an even index within the
matched set

33

:file Select all ile upload ields
(<input type="file">)

30

:first Select the irst element within the matched set 32
:first-child Select all elements that are the irst child of their

parent element
24

:gt(n) Select all elements at an index greater than n
within the matched set

32

:has(E) Select all elements that contain an element
matching E

35

:header Select all elements that are headers, such as <h1>
or <h2>

37

:hidden Select all elements that are hidden 37
:image Select all image inputs (<input

type="image">)
30

:input Select all form elements (<input> (all types),
<select>, <textarea>, <button>)

30

:last Select the last element within the matched set 33
:last-child Select all elements that are the last child of their

parent element
24

:lt(n) Select all elements at an index less than n within
the matched set

32

:not(E) Select all elements that do not match the selector
expression E

25

:nth-child(n)
:nth-child(even)
:nth-child(odd)
:nth-child(expr)

Select all elements that are the nth child of their
parent

22

:odd Select all elements with an odd index within the
matched set

34

Alphabetical Quick Reference

[268]

Expression Description Page
:only-child Select all elements that are the only child of their

parent element
25

:parent Select all elements that are the parent of another
element, including text nodes

34

:password Select all password ields
(<input type="password">)

30

:radio Select all radio button ields
(<input type="radio">)

30

:reset Select all reset buttons
(<input type="reset">)

30

:selected Select all form elements (effectively, <option>
elements) that are currently selected

31

:submit Select all submit inputs and button elements
(<input type="submit">, <button>)

30

:text Select all text ields (<input type="text">) 30
:visible Select all elements that are visible 36

Methods
Every method in the jQuery library is listed in the following table. Methods that
begin with a period (.) can be chained to a jQuery object created with $() or another
method, and typically act on a set of DOM elements. Those that begin with $. are not
chainable and typically act on a non-DOM object (such as the XMLHttpRequest object
or a user-deined object).

Method Description Page
.add(selector)
.add(elements)
.add(html)

Add elements to the set of
matched elements

68

.addClass(className)

.addClass(function)
Add one or more classes to each
element in the set of matched
elements

92

.after(content)

.after(function)
Insert content, speciied by the
parameter, after each element in
the set of matched elements

114

$.ajax(settings) Perform an asynchronous HTTP
(AJAX) request

203

.ajaxComplete(handler) Register a handler to be called
when AJAX requests complete

215

Chapter 11

[269]

Method Description Page
.ajaxError(handler) Register a handler to be called

when AJAX requests complete
with an error

217

.ajaxSend(handler) Register a handler to be called
when AJAX requests are begun

218

$.ajaxSetup(settings) Set default values for future
AJAX requests

209

.ajaxStart(handler) Register a handler to be called
when the irst AJAX request
begins

219

.ajaxStop(handler) Register a handler to be called
when all AJAX requests have
completed

220

.ajaxSuccess(handler) Register a handler to be called
when AJAX requests complete
and are successful

221

.andSelf() Add the previous set of
elements on the stack to the
current set

72

.animate(properties[,
 duration][, easing][,
 callback])
.animate(properties, options)

Perform a custom animation of a
set of CSS properties

193

.append(content)

.append(function)
Insert content, speciied by the
parameter, at the end of each
element in the set of matched
elements

108

.appendTo(target) Insert every element in the set of
matched elements at the end of
the target

109

.attr(attributeName) Get the value of an attribute for
the irst element in the set of
matched elements

77

.attr(attributeName, value)

.attr(map)

.attr(attributeName,
 function)

Set one or more attributes for
the set of matched elements

78

.before(content)

.before(function)
Insert content, speciied by the
parameter, before each element
in the set of matched elements

111

Alphabetical Quick Reference

[270]

Method Description Page
.bind(eventType[, eventData],
 handler)

Attach a handler to an event for
the elements

127

.blur(handler)

.blur()
Bind an event handler to the
blur JavaScript event, or trigger
that event on an element

163

.change(handler)

.change()
Bind an event handler to the
change JavaScript event, or
trigger that event on an element

165

.children([selector]) Get the children of each element
in the set of matched elements,
optionally iltered by a selector

52

.clearQueue([queueName]) Remove from the queue all items
that have not yet been executed

202

.click(handler)

.click()
Bind an event handler to the
click JavaScript event, or
trigger that event on an element

148

.clone([withEvents]) Create a copy of the set of
matched elements

121

.closest(selector[, context]) Get the irst element that
matches the selector, beginning
at the current element and
progressing up through the
DOM tree

57

.contents() Get the children of each element
in the set of matched elements,
including text nodes

74

.css(propertyName) Get the value of a style property
for the irst element in the set of
matched elements

80

.css(propertyName, value)

.css(map)

.css(propertyName, function)

Set one or more CSS properties
for the set of matched elements

81

.data(key, value)

.data(obj)

.data([key])

Store or retrieve arbitrary data
associated with the matched
elements

246

.dblclick(handler)

.dblclick()
Bind an event handler to the
dblclick JavaScript event, or
trigger that event on an element

149

Chapter 11

[271]

Method Description Page
.delay(duration[, queueName]) Set a timer to delay execution of

subsequent items on the queue for
the matched elements

199

.dequeue([queueName]) Execute the next function on the
queue for the matched elements

201

.detach([selector]) Remove the set of matched
elements from the DOM

125

.die(eventType[, handler]) Remove an event handler
previously attached using
.live() from the elements

139

.each(callback)
$.each(collection, callback)

Iterate over a collection, iring a
callback function on each item

232

.empty() Remove all child nodes of the
set of matched elements from
the DOM

122

.end() End the most recent iltering
operation in the current chain
and return the set of matched
elements to its previous state

70

.error(handler) Bind an event handler to the
error JavaScript event

144

.eq(index) Reduce the set of matched
elements to the one at the
speciied index

47

$.extend([recursive,]
 [target,]properties[,
 propertiesN])

Merge the contents of two
objects together into the irst
object

240

.fadeIn([duration][,
 callback])

Display the matched elements
by fading them to opaque

189

.fadeOut([duration][,
 callback])

Hide the matched elements by
fading them to transparent

190

.fadeTo(duration, opacity[,
 callback])

Adjust the opacity of the
matched elements

192

.filter(selector)

.filter(function)
Reduce the set of matched
elements to those that match the
selector or pass the function's
test

42

Alphabetical Quick Reference

[272]

Method Description Page
.find(selector) Get the descendants of each

element in the current set of
matched elements, iltered by a
selector

51

.first() Reduce the set of matched
elements to the irst one

48

.focus(handler)

.focus()
Bind an event handler to the
focus JavaScript event, or
trigger that event on an element

162

.focusin(handler)

.focusin()
Bind an event handler to the
focusin JavaScript event, or
trigger that event on an element

—

.focusout(handler)

.focusout()
Bind an event handler to the
focusout JavaScript event, or
trigger that event on an element

—

.get([index]) Retrieve the DOM elements
matched by the jQuery object

229

$.get(url[, data][, success]
 [, dataType])

Load data from the server using
a GET HTTP request

210

$.getJSON(url[, data][,
 success])

Load JSON-encoded data from
the server using a GET HTTP
request

213

$.getScript(url[, success]) Load JavaScript from the server
using a GET HTTP request, and
then execute it

214

$.grep(array, filter[,
 invert])

Winnow an array down to a
selected set of items

234

.has(selector) Reduce the set of matched
elements to those that have an
element matched by selector as a
descendant

46

.hasClass(className) Determine whether any of the
matched elements are assigned
the given class

92

.height() Get the current computed height
for the irst element in the set of
matched elements

82

Chapter 11

[273]

Method Description Page
.height(value) Set the CSS height of each

element in the set of matched
elements

83

.hide([duration][, callback]) Hide the matched elements 179

.hover(handlerIn, handlerOut) Bind two handlers to the
matched elements to be
executed when the mouse
pointer enters and leaves the
elements

159

.html() Get the HTML contents of
the irst element in the set of
matched elements

97

.html(htmlString)

.html(function)
Set the HTML contents of each
element in the set of matched
elements

97

$.inArray(value, array) Search for a speciied value
within an array

236

.index()

.index(element)

.index(string)

Search for a given element from
among the matched elements

230

.innerHeight() Get the current computed height
for the irst element in the set
of matched elements, including
padding but not border

84

.innerWidth() Get the current computed width
for the irst element in the set
of matched elements, including
padding but not border

87

.insertAfter(target) Insert every element in the set
of matched elements after the
target

115

.insertBefore(target) Insert every element in the set
of matched elements before the
target

112

.is(selector) Check the current matched set
of elements against a selector
and return true if at least one
of these elements matches the
selector

69

Alphabetical Quick Reference

[274]

Method Description Page
$.isArray(obj) Determine whether the

argument is an array
244

$.isEmptyObject(obj) Determine whether the
argument is an empty JavaScript
object

245

$.isFunction(obj) Determine whether the
argument is a function object

245

$.isPlainObject(obj) Determine whether the
argument is a plain JavaScript
object

245

.keydown(handler)

.keydown()
Bind an event handler to the
keydown JavaScript event, or
trigger that event on an element

169

.keypress(handler)

.keypress()
Bind an event handler to the
keypress JavaScript event, or
trigger that event on an element

171

.keyup(handler)

.keyup()
Bind an event handler to the
keyup JavaScript event, or
trigger that event on an element

172

.last() Reduce the set of matched
elements to the last one

49

.live(eventType, handler) Attach a handler to the event
for all elements that match the
current selector, now or in the
future

137

.load(handler) Bind an event handler to the
load JavaScript event

141

.load(url[, data][, successs) Load data from the server and
place the returned HTML into
the matched element

211

$.makeArray(obj) Convert an array-like object into
a true JavaScript array

235

.map(callback) Pass each item element in the
current matched set through
a function, producing a new
jQuery object containing the
return values

73

$.map(array, transform) Transform an array into another
one by using a transformation
function

237

Chapter 11

[275]

Method Description Page
$.merge(array1, array2) Merge the contents of two

arrays together into the irst
array

239

.mousedown(handler)

.mousedown()
Bind an event handler to the
mousedown JavaScript event, or
trigger that event on an element

145

.mouseenter(handler)

.mouseenter()
Bind an event handler to be
ired when the mouse cursor
enters an element, or trigger that
handler on an element

156

.mouseleave(handler)

.mouseleave()
Bind an event handler to be
ired when the mouse cursor
leaves an element, or trigger that
handler on an element

157

.mousemove(handler)

.mousemove()
Bind an event handler to the
mousemove JavaScript event, or
trigger that event on an element

160

.mouseout(handler)

.mouseout()
Bind an event handler to the
mouseout JavaScript event, or
trigger that event on an element

154

.mouseover(handler)

.mouseover()
Bind an event handler to the
mouseover JavaScript event, or
trigger that event on an element

152

.mouseup(handler)

.mouseup()
Bind an event handler to the
mouseup JavaScript event, or
trigger that event on an element

146

.next([selector]) Get the immediately following
sibling of each element in the set
of matched elements, optionally
iltered by a selector

64

.nextAll([selector]) Get all following siblings of each
element in the set of matched
elements, optionally iltered by
a selector

65

.nextUntil(selector) Get the next siblings of each
element in the current set of
matched elements up to but not
including the element matched by
the selector

66

Alphabetical Quick Reference

[276]

Method Description Page
$.noConflict([removeAll]) Relinquish jQuery's control of

the $ variable
227

.not(selector)

.not(elements)

.not(function)

Remove elements from the set of
matched elements

44

.offset() Get the current coordinates of
the irst element in the set of
matched elements, relative to
the document

88

.offset(coordinates) Set the current coordinates
of every element in the set of
matched elements, relative to the
document

89

.offsetParent() Get the closest ancestor element
that is positioned

59

.one(eventType[, eventData],
 handler)

Attach a handler to an event
for the elements; the handler is
executed at most once

134

.outerHeight([includeMargin]) Get the current computed height
for the irst element in the set
of matched elements, including
padding and border

84

.outerWidth([includeMargin]) Get the current computed width
for the irst element in the set
of matched elements, including
padding and border

87

$.param(obj[, traditional]) Create a serialized representation
of an object or array, suitable
for use in a URL query string or
AJAX request.

243

.parent([selector]) Get the parent of each element
in the current set of matched
elements, optionally iltered by
a selector

56

.parents([selector]) Get the ancestors of each
element in the current set of
matched elements, optionally
iltered by a selector

53

Chapter 11

[277]

Method Description Page
.parentsUntil(selector) Get the ancestors of each element

in the current set of matched
elements up to but not including
the element matched by the
selector

55

.position() Get the current coordinates of
the irst element in the set of
matched elements, relative to
the offset parent

89

$.post(url[, data][, success]
[, dataType])

Load data from the server using
a POST HTTP request

212

.prepend(content)

.prepend(function)
Insert content, speciied by the
parameter, at the beginning
of each element in the set of
matched elements

104

.prependTo(target) Insert every element in the set
of matched elements at the
beginning of the target

106

.prev([selector]) Get the immediately preceding
sibling of each element in the set
of matched elements, optionally
iltered by a selector

61

.prevAll([selector]) Get all preceding siblings
of each element in the set of
matched elements, optionally
iltered by a selector

62

.prevUntil(selector) Get the previous siblings of each
element in the current set of
matched elements up to but not
including the element matched by
the selector

63

.queue([queueName])

.queue([queueName], newQueue)

.queue([queueName], callback)

Manipulate the queue of
functions to be executed on the
matched elements

200

$(document).ready(handler)
$().ready(handler)
$(handler)

Specify a function to execute
when the DOM is fully loaded

140

.remove([selector]) Remove the set of matched
elements from the DOM

123

Alphabetical Quick Reference

[278]

Method Description Page
.removeAttr(attributeName)
.removeAttr(function)

Remove an attribute from each
element in the set of matched
elements

80

.removeClass([className])

.removeClass([function])
Remove one or all classes
from each element in the set of
matched elements

93

.removeData([key]) Remove a previously stored
piece of data

248

.replaceAll(target) Replace each target element
with the set of matched elements

103

.replaceWith(newContent) Replace each element in the set
of matched elements with the
provided new content

102

.resize(handler)

.resize()
Bind an event handler to the
resize JavaScript event, or
trigger that event on an element

174

.scroll(handler)

.scroll()
Bind an event handler to the
scroll JavaScript event, or
trigger that event on an element

175

.scrollLeft() Get the current horizontal
position of the scroll bar for
the irst element in the set of
matched elements

91

.scrollLeft(value) Set the current horizontal
position of the scroll bar for each
of the set of matched elements

91

.scrollTop() Get the current vertical position
of the scroll bar for the irst
element in the set of matched
elements

90

.scrollTop(value) Set the current vertical position
of the scroll bar for each of the
set of matched elements

90

.select(handler)

.select()
Bind an event handler to the
select JavaScript event, or
trigger that event on an element

166

.serialize() Encode a set of form elements as
a string for submission

223

.serializeArray() Encode a set of form elements as
an array of names and values

224

Chapter 11

[279]

Method Description Page
.show([duration][, callback]) Display the matched elements 177
.siblings([selector]) Get the siblings of each element

in the set of matched elements,
optionally iltered by a selector

60

.size() Return the number of DOM
elements matched by the jQuery
object

228

.slice(start[, end]) Reduce the set of matched
elements to a subset speciied by
a range of indices

49

.slideDown([duration][,
 callback])

Display the matched elements
with a sliding motion

184

.slideToggle([duration][,
 callback])

Display or hide the matched
elements with a sliding motion

186

.slideUp([duration][,
 callback])

Hide the matched elements with
a sliding motion

185

.stop([clearQueue][,
 jumpToEnd])

Stop the currently-running
animation on the matched
elements

198

.submit(handler)

.submit()
Bind an event handler to the
submit JavaScript event, or
trigger that event on an element

167

.text() Get the combined text contents
of each element in the set of
matched elements, including
their descendants

98

.text(textString)

.text(function)
Set the content of each element
in the set of matched elements to
the speciied text

99

.toArray() Convert an array-like object
(such as the jQuery object) to a
true array

—

.toggle([duration][,
 callback])
.toggle(showOrHide)

Display or hide the matched
elements

181

.toggle(handlerEven,
 handlerOdd[,
 additionalHandlers...])

Bind two or more handlers to
the matched elements to be
executed on alternate clicks

151

Alphabetical Quick Reference

[280]

Method Description Page
.toggleClass(className)
.toggleClass(className,
 addOrRemove)
.toggleClass(function[,
 addOrRemove])

If the class is present, remove
it from each element in the set
of matched elements; if it is not
present, add the class

95

.trigger(eventType[,
extraParameters])

Execute all handlers and
behaviors attached to the
matched elements for the given
event type

135

.triggerHandler(eventType[,
extraParameters])

Execute all handlers attached to
an element for an event

136

$.trim(string) Remove whitespace from the
ends of a string

242

.unbind([eventType[,
handler]])
.unbind(event)

Remove a previously-attached
event handler from the elements

131

$.unique(array) Create a copy of an array
of DOM elements with the
duplicates removed

240

.unload(handler) Bind an event handler to the
unload JavaScript event

143

.unwrap() Remove a containing element
while keeping its contents

125

.val() Get the current value of the irst
element in the set of matched
elements

101

.val(value)

.val(function)
Set the value of each element in
the set of matched elements

101

.width() Get the current computed width
for the irst element in the set of
matched elements

85

.width(value) Set the CSS width of each
element in the set of matched
elements

86

Chapter 11

[281]

Method Description Page
.wrap(wrappingElement)
.wrap(wrappingFunction)

Wrap an HTML structure
around each element in the set
of matched elements

117

.wrapAll(wrappingElement) Wrap an HTML structure
around all elements in the set of
matched elements

118

.wrapInner(wrappingElement)

.wrapInner(wrappingFunction)
Wrap an HTML structure
around the content of each
element in the set of matched
elements

119

Properties
The following properties are available for inspecting both the browser environment
and individual jQuery objects.

Property Description Page
$.browser Information about the user agent displaying the page 249
.context The DOM context that was used to create the jQuery object 254
.length The number of DOM elements matched by the jQuery object 252
.selector The selector string that was used to create the jQuery object 253
$.support Information about the browser's support for speciic

rendering and JavaScript features
250

Online Resources
The following online resources represent a starting point for learning more about
jQuery, JavaScript, and web development in general beyond what is covered in this
book. There are far too many sources of quality information on the Web for this
appendix to approach anything resembling an exhaustive list. Furthermore, while
other print publications can also provide valuable information, they are not noted here.

jQuery documentation
These resources offer references and details on the jQuery library itself.

Oficial jQuery documentation
The documentation on jquery.com includes the full jQuery API, tutorials, getting
started guides, and more: http://docs.jquery.com/.

jQuery API browser
In addition to the HTML version at docs.jquery.com, the API is available via a
convenient browser application: http://api.jquery.com/.

Adobe AIR jQuery API Viewer
Remy Sharp has packaged the jQuery API into an Adobe AIR application
for ofline viewing. A Flash AIR installer available at http://api.jquery.com/
is the recommended method of installing the viewer. It is also available for
direct download at the following address: http://remysharp.com/downloads/
jquery-api-browser.air.zip.

Online Resources

[284]

JavaScript reference
These sites offer references and guides to JavaScript as a language in general, rather
than jQuery in particular.

Mozilla Developer Center
This site has a comprehensive JavaScript reference, a guide to programming with
JavaScript, links to helpful tools, and more: http://developer.mozilla.org/en/
docs/JavaScript/.

Client-Side JavaScript Reference
This online book provided by Sun is "a reference manual for the JavaScript language,
including both core and client-side JavaScript for version 1.3": http://docs.sun.
com/source/816-6408-10/contents.htm.

MSDN Reference
The Microsoft Developer Network (MSDN) JScript Reference provides descriptions
of the full set of functions, objects, and so on. It's especially helpful for understanding
Microsoft's implementation of the ECMAScript standard in Internet Explorer:
http://msdn.microsoft.com/en-us/library/x85xxsf4(VS.71).aspx.

Additionally, the MSDN, HTML, and DHTML reference provides descriptions of
collections, events, constants, methods, objects, and properties in the DHTML Object
Model. As with the JScript Reference, it can be especially useful for cases in which
Internet Explorer deviates from the standard or Internet Explorer's interpretation
of an ambiguous speciication differs from that of other major browsers:
http://msdn.microsoft.com/en-us/library/ms533050%28VS.85%29.aspx.

Dev.Opera
While focused primarily on its own browser platform, Opera's site
for web developers includes a number of useful articles on JavaScript:
http://dev.opera.com/articles/.

Quirksmode
Peter-Paul Koch's Quirksmode site is a terriic resource for understanding differences
in the way browsers implement various JavaScript functions, as well as many CSS
properties: http://www.quirksmode.org/.

Appendix A

[285]

JavaScript Toolbox
Matt Kruse's JavaScript Toolbox offers a large assortment of homespun
JavaScript libraries, as well as sound advice on JavaScript best practices
and a collection of vetted JavaScript resources elsewhere on the Web:
http://www.javascripttoolbox.com/.

comp.lang.javascript FAQ
This page includes a very lengthy list of questions frequently asked on the
comp.lang.javascript Usenet group, along with answers and links to further
information: http://www.jibbering.com/faq/.

JavaScript code compressors
When putting the inishing touches on a site, it is often advisable to minify the
JavaScript code. This process reduces download time for all users of the site,
especially when coupled with server-side compression.

JSMin
Created by Douglas Crockford, JSMin is a ilter that removes comments and
unnecessary whitespaces from JavaScript iles. It typically reduces ile size by half,
resulting in faster downloads, especially when combined with server-based
ile compression. Some web sites host the tool to allow users to minify their
code by pasting it into a textarea. JSMin can be downloaded as an MS-DOS
.exe ile or as source code written in a variety of programming languages:
http://www.crockford.com/javascript/jsmin.html.

YUI Compressor
The YUI Compressor is "designed to be 100% safe and yield a higher compression ratio
than most other tools". As of version 2.0, it is also able to minify CSS iles. It requires
Java version 1.4 or greater: http://developer.yahoo.com/yui/compressor/.

Google Closure Compiler
This new service from Google performs a similar compression to JSMin, and in some
tests has been found to achieve a higher degree of compression. The compiler is
available as both a standalone application and an on-demand API.

This tool also integrates a JavaScript syntax checker that warns of possible errors and
code defects: http://code.google.com/closure/compiler/.

Online Resources

[286]

Packer
This JavaScript compressor/obfuscator by Dean Edwards was used to compress the
source code of previous versions of jQuery. The tool is available as a web-based tool
or as a free download. The resulting code is very eficient in ile size at a cost of a
small increase in execution time. Although it is no longer oficially recommended,
it may be a legitimate option when server-side ile compression is not available:

http://dean.edwards.name/packer/

http://dean.edwards.name/download/#packer

JavaScript code decompressors
It may be necessary at times to reverse the results of miniication or
compression/obfuscation in order to debug or learn from the code. The following
online tools can help.

Pretty Printer
This tool prettiies JavaScript that has been compressed, restoring line breaks and
indentation where possible. It provides a number of options for tailoring the results:
http://www.prettyprinter.de/.

JavaScript beautiier
Similar to Pretty Printer, this tool unpacks compressed or miniied code to make it
much more readable. In addition to the web-based version, the JavaScript beautiier is
available as a command-line tool using the Rhino JavaScript engine and as an add-on
to the Fiddler web debugging proxy for Windows: http://jsbeautifier.org/.

(X)HTML reference
The jQuery library is at its best when working with properly formatted semantic
HTML and XHTML documents. The resource below provides assistance with these
markup languages.

W3C Hypertext Markup Language Home Page
The World Wide Web Consortium (W3C) sets the standard for (X)HTML, and the
HTML home page is a great launching point for its speciications and guidelines:
http://www.w3.org/MarkUp/.

Additionally, the new HTML5 Editor's Draft contains information about the
upcoming version of the HTML speciication: http://dev.w3.org/html5/spec/
Overview.html.

Appendix A

[287]

CSS reference
The effects and animations we have seen time and again all rely on the power of
Cascading Stylesheets. To incorporate the visual lourishes we desire in our sites, we
may need to turn to these CSS resources for guidance.

W3C Cascading Style Sheets Home Page
The W3C's CSS home page provides links to tutorials, speciications, test suites, and
other resources: http://www.w3.org/Style/CSS/.

Mezzoblue CSS Crib Sheet
Dave Shea provides this helpful CSS Crib Sheet in an attempt to make the design
process easier, and provides a quick reference to check when you run into trouble:
http://mezzoblue.com/css/cribsheet/.

Position Is Everything
This site includes a catalog of CSS browser bugs along with explanations of how to
overcome them: http://www.positioniseverything.net/.

Useful blogs
New techniques and features are always being developed and introduced for any
living technology. Staying on top of innovations can be made easier by checking in
with these sources of web development news from time to time.

The jQuery blog
John Resig and other contributors to the oficial jQuery blog post announcements
about new versions and other initiatives among the project team, as well as
occasional tutorials and editorial pieces: http://blog.jquery.com/.

Learning jQuery
Karl Swedberg runs this blog for jQuery tutorials, techniques, and announcements.
Guest authors include jQuery team members Mike Alsup and Brandon Aaron:
http://www.learningjquery.com/.

jQuery for Designers
This blog by Remy Sharp offers a number of tutorials and screencasts
aimed primarily at designers who want to leverage the power of jQuery:
http://jqueryfordesigners.com/.

Online Resources

[288]

Ajaxian
This frequently-updated blog begun by Dion Almaer and Ben Galbraith provides
a tremendous amount of news and features and the occasional tutorial about
JavaScript: http://ajaxian.com/.

John Resig
The creator of jQuery, John Resig, discusses advanced JavaScript topics on his
personal blog: http://ejohn.org/.

JavaScript Ant
This site contains a repository of articles pertaining to JavaScript and its usage in
modern web browsers, as well as an organized list of JavaScript resources found
elsewhere on the Web: http://javascriptant.com/.

Robert's talk
Robert Nyman writes about developing for the Internet, especially client-side
scripting: http://www.robertnyman.com/.

Snook
Jonathan Snook's general programming/web-development blog has a number of
useful articles on advanced JavaScript and CSS techniques: http://snook.ca/.

Paul Irish
Paul Irish writes about jQuery, JavaScript, and cutting-edge web development topics:
http://paulirish.com/.

NCZOnline
The blog of Nicholas C. Zakas contains reviews and articles on web site performance,
JavaScript, and other web-related topics: http://www.nczonline.net/blog/.

I Can't
Three sites by Christian Heilmann provide blog entries, sample code, and lengthy
articles related to JavaScript and web development:

http://icant.co.uk/

http://www.wait-till-i.com/

http://www.onlinetools.org/

Appendix A

[289]

DOM scripting
Jeremy Keith's blog picks up where the popular DOM scripting book leaves off—a
fantastic resource for unobtrusive JavaScript: http://domscripting.com/blog/.

Steve Souders
Author of the acclaimed books High Performance Websites and Even Faster Websites
Steve Souders posts the results of his research on performance-related issues on his
web site: http://www.stevesouders.com/blog/.

As days pass by
Stuart Langridge experiments with advanced use of the browser DOM:
http://www.kryogenix.org/code/browser/.

A List Apart
A List Apart explores the design, development, and meaning of web content with a
special focus on web standards and best practices: http://www.alistapart.com/.

Web development frameworks using
jQuery
As developers of open source projects become aware of jQuery, many are
incorporating the JavaScript library into their own systems. The following is an
abbreviated list of these adopters:

CouchDB: http://couchdb.apache.org/

Digitalus CMS: http://code.google.com/p/digitalus-cms/

DotNetNuke: http://www.dotnetnuke.com/

Drupal: http://drupal.org/

DutchPIPE: http://dutchpipe.org/

ExpressionEngine: http://expressionengine.com/

Hpricot: http://wiki.github.com/hpricot/hpricot

JobberBase: http://www.jobberbase.com/

Laconica: http://laconi.ca/

Piwik: http://piwik.org/

Online Resources

[290]

Plone: http://plone.org

Pommo: http://pommo.org/

simfony: http://www.symfony-project.org/

SPIP: http://www.spip.net/

Textpattern: http://www.textpattern.com/

Trac: http://trac.edgewall.org/

WordPress: http://wordpress.org/

Z-Blog: http://www.rainbowsoft.org/zblog

For a more complete list, visit the Sites Using jQuery page at:
http://docs.jquery.com/Sites_Using_jQuery.

Development Tools
Documentation can help in troubleshooting issues with our JavaScript applications,
but there is no replacement for a good set of software development tools.
Fortunately, there are many software packages available for inspecting and
debugging JavaScript code, and most of them are available for free.

Tools for Firefox
Mozilla Firefox is the browser of choice for the lion's share of web developers and,
therefore, has some of the most extensive and well-respected development tools.

Firebug
The Firebug extension for Firefox is indispensable for jQuery development:
http://www.getfirebug.com/.

Some of the features of Firebug are:

• An excellent DOM inspector for inding names and selectors for pieces of
the document

• CSS manipulation tools for inding out why a page looks a certain way and
changing it

• An interactive JavaScript console
• A JavaScript debugger that can watch variables and trace code execution

Development Tools

[292]

Firebug has spawned a number of its own extensions, which make the tool even
more versatile. A few of the more popular Firebug extensions are:

• YSlow: For page-load performance testing:
http://developer.yahoo.com/yslow/

• FireUnit: For simple test logging and viewing within a Firebug tab:
http://fireunit.org/

• FireCookie: For viewing and managing cookies within a Firebug tab:
http://code.google.com/p/firecookie/

Web Developer toolbar
This not only overlaps Firebug in the area of DOM inspection, but also contains tools
for common tasks such as cookie manipulation, form inspection, and page resizing.
You can also use this toolbar to quickly and easily disable JavaScript for a site to
ensure that functionality degrades gracefully when the user's browser is less capable:
http://chrispederick.com/work/web-developer/.

Venkman
Venkman is the oficial JavaScript debugger for the Mozilla project. It provides
a troubleshooting environment that is reminiscent of the GDB system for
debugging programs that are written in other languages: http://www.mozilla.org/
projects/venkman/.

Regular Expressions Tester
Regular expressions for matching strings in JavaScript can be tricky to craft. This
extension for Firefox allows easy experimentation with regular expressions using
an interface for entering search text: http://sebastianzartner.ath.cx/new/
downloads/RExT/.

Tools for Internet Explorer
Sites often behave differently in IE than in other web browsers, so having debugging
tools for this platform is important.

Microsoft Internet Explorer Developer Toolbar
The Developer Toolbar for Internet Explorer versions 6 and 7 primarily provides a
view of the DOM tree for a web page. Elements can be located visually and modiied
on the ly with new CSS rules. It also provides other miscellaneous development
aids, such as a ruler for measuring page elements: http://www.microsoft.com/
downloads/details.aspx?FamilyID=e59c3964-672d-4511-bb3e-2d5e1db91038.

Appendix B

[293]

Microsoft Internet Explorer 8 Developer Tools
Internet Explorer 8 comes with a set of developer tools that is much improved over
previous versions' Developer Toolbar. Somewhat resembling Firefox's Firebug
extension, the Developer Tools suite provides a console for JavaScript execution and
logging, as well as tabs for JavaScript debugging and proiling, and CSS and HTML
inspection and modiication.

Microsoft Visual Web Developer Express
Microsoft's free Visual Web Developer Express package can be used not only to build
web pages, but also to inspect and debug JavaScript code: http://www.microsoft.
com/express/vwd/.

To run the debugger interactively, follow the process outlined here:
http://www.berniecode.com/blog/2007/03/08/how-to-debug-javascript-
with-visual-web-developer-express/.

dynaTrace AJAX Edition
This free tool gathers an enormous amount of performance data for web applications
and displays it in a number of ways for further analysis: http://ajax.dynatrace.
com/pages/.

DebugBar
The DebugBar provides a DOM inspector as well as a JavaScript console for
debugging. It is especially useful for Internet Explorer 6 and 7, which do not have
their own consoles: http://www.debugbar.com/.

Drip
Memory leaks in JavaScript code can cause performance and stability issues
for Internet Explorer. Drip helps to detect and isolate these memory issues:
http://Sourceforge.net/projects/ieleak/.

Tools for Safari
Safari's suite of developer tools has come a long way since its inception.

Development Tools

[294]

Develop menu
As of Safari 3.1, an option in Preferences | Advanced provides a special menu called
Develop. With this menu enabled, the following developer tools are available:

• Web Inspector: Inspect individual page elements and collect information
especially about the CSS rules that apply to each one

• Error Console: Not just for logging errors, this console is similar to the
console in Firebug and Internet Explorer 8's Developer Tools

• JavaScript debugging and proiling
• Resource tracking
• Disabling browser features such as caches, images, styles, and JavaScript

Tools for Opera
While it has a limited market share as a desktop browser, Opera is a signiicant
player in embedded systems and mobile devices, and its capabilities should be
considered during web development.

Dragonly
While still in its early stages, Dragonly is a promising debugging environment for
Opera browsers on computers or mobile devices. Dragonly's feature set is similar to
that of Firebug, including JavaScript debugging as well as CSS and DOM inspection
and editing: http://www.opera.com/dragonfly/.

Other tools
While the previous tools each focus on a speciic browser, these utilities are broader
in their scope.

Firebug Lite
Though the Firebug extension itself is limited to the Firefox web browser,
some of the features can be replicated by including the Firebug Lite script on
the web page. This package simulates the Firebug console, including allowing
calls to console.log() to work in all browsers and not raise JavaScript errors:
http://www.getfirebug.com/lite.html.

Appendix B

[295]

NitobiBug
Like Firebug Lite, NotobiBug is a cross-browser tool that covers some of the same
ground as the more robust and reined Firebug. Its strength lies in its DOM and
object inspection, though it has a capable console as well. The console and inspector
can be invoked by including a reference to the Nitobi JavaScript ile and calling
nitobi.Debug.log(): http://www.nitobibug.com/.

TextMate jQuery Bundle
This extension for the popular Mac OS X text editor TextMate provides syntax
highlighting for jQuery methods and selectors, code completion for methods, and
a quick API reference from within your code. The bundle is also compatible with the
E text editor for Windows: http://github.com/kswedberg/jquery-tmbundle/.

jQuerify Bookmarklet
This bookmarklet runs jQuery on web pages that don't already have it loaded,
which allows us to experiment with jQuery on those sites in a console such as the
one provided by Firebug or Safari's Develop menu: http://www.learningjquery.
com/2009/04/better-stronger-safer-jquerify-bookmarklet.

Charles
When developing AJAX-intensive applications, it can be useful to see exactly what data
is being sent between the browser and the server. The Charles web debugging proxy
displays all HTTP trafic between two points, including normal web requests, HTTPS
trafic, Flash remoting, and AJAX responses: http://www.charlesproxy.com/.

Fiddler
Fiddler is another useful HTTP debugging proxy with features similar to
those in Charles. According to its site, Fiddler "includes a powerful
event-based scripting subsystem, and can be extended using any .NET language":
http://www.fiddler2.com/fiddler2/.

Sloppy
Sloppy is a Java-based web proxy that, according to its web site, "deliberately slows the
transfer of data between client and server" in order to simulate loading web pages with
a dial-up connection at various bandwidths: http://www.dallaway.com/sloppy/.

Development Tools

[296]

JS Bin
JS Bin is a collaborative JavaScript Debugging tool for rapid prototyping and sharing
of scripts. It has a three-tab interface for writing JavaScript and HTML and viewing
the output, and it automatically loads one of a handful of JavaScript libraries via a
select list: http://jsbin.com/.

Bespin
Bespin is a web-based, extensible code editor with collaboration features.
It allows users to create an entire web site on Bespin's server and then deploy
it to another server. As it uses the HTML5 Canvas element for rendering the code,
only the most recent versions of Firefox, Safari, or Chrome are supported:
https://bespin.mozilla.com/.

Aptana
This Java-based web development IDE is free and cross-platform. Along with both
standard and advanced code-editing features, it incorporates a full copy of the
jQuery API documentation and has its own Firebug-based JavaScript debugger:
http://www.aptana.com/.

[297]

Index
Symbols
$.ajax() method

about 203, 205
advanced options 208
callback functions 206
data, sending to server 207
data types 206, 207
settings parameter 203, 204, 205
XMLHttpRequest object 205

$.ajaxSetup() method
about 209
settings parameter 209

$.browser property 249, 250
$.extend() method

about 240, 241
propertiesN parameter 240
properties parameter 240
recursive parameter 240
return value 241
target parameter 240

$() function
about 39, 40
context parameter 40
DOM elements, wrapping 41
elementArray parameter 40
element parameter 40
html parameter 40
jQuery object 40
object parameter 40
selector context 40
selector parameter 40

$.getJSON() method
about 213, 214
data parameter 213
success parameter 213

url parameter 213
XMLHttpRequest object 213

$.get() method
about 210
data parameter 210
dataType parameter 210
success parameter 210
url parameter 210
XMLHttpRequest object 210

$.getScript() method
about 214, 215
success parameter 214
url parameter 214
XMLHttpRequest object 215

$.grep() method
about 234, 235
array parameter 234
ilter parameter 234
invert parameter 234
return value 235

$.inArray() method
about 236, 237
array parameter 236
return value 236
value parameter 236

$.isArray() method
about 244
obj parameter 245
return value 245

$.isEmptyObject() method
about 245
obj parameter 246
return value 246

$.isFunction() method
about 245
obj parameter 245

[298]

return value 245
$.isPlainObject() method

obj parameter 245
return value 245

$.isXMLDoc() method
about 246
doc parameter 246
return value 246

$.makeArray() method
about 235, 236
obj parameter 236
return value 236

$.map() method
about 237, 238
array parameter 237
return value 237
transform parameter 237

$.merge() method
about 239, 240
array1 parameter 239
array2 parameter 239
return value 239

$.noConlict() method
about 227, 228
global jQuery object, return value 227
removeAll parameter 227

$.param() method
about 243, 244
obj parameter 243
return value 243
traditional parameter 243

$.post() method
about 212, 213
data parameter 212
dataType parameter 212
success parameter 212
url parameter 212
XMLHttpRequest object 212

$.support.boxModel 250
$.support.cssFloat 251
$.support.hrefNormalized 251
$.support.htmlSerialize 251
$.support.leadingWhitespace 251
$.support.noCloneEvent 251
$.support.objectAll 251
$.support.opacity 252

$.support property
$.support.boxModel 250
$.support.cssFloat 251
$.support.hrefNormalized 251
$.support.htmlSerialize 251
$.support.leadingWhitespace 251
$.support.noCloneEvent 251
$.support.objectAll 251
$.support.opacity 252
$.support.scriptEval 252
$.support.style 252
$.support.tbody 252
about 250

$.support.scriptEval 252
$.support.style 252
$.support.tbody 252
$.trim() method

about 242
return value 242
string parameter 242

$.unique() method
about 240
array parameter 240
return value 240

.addClass() method
about 92, 93
className parameter 92
function parameter 92
jQuery object, return value 93

.add() method
about 68, 69
context parameter 68
elements parameter 68
html parameter 68
jQuery object, return value 68
selector parameter 68

.after() method
about 114, 115
content parameter 114
function parameter 114
jQuery object, return value 114

.ajaxComplete() method
about 215, 216
handler parameter 215
return value 215

.ajaxError() method
about 217, 218

[299]

handler parameter 217
return value 217

.ajaxSend() method
about 218, 219
handler parameter 218
return value 218

.ajaxStart() method
about 219, 220
handler parameter 219
return value 219

.ajaxStop() method
about 220, 221
handler parameter 220
return value 220

.ajaxSuccess() method
about 221, 222
handler parameter 221
return value 221

.andSelf() method
about 72
jQuery object, return value 72

.animate() method
about 193-197
callback parameter 193
complete parameter 194
duration parameter 193
easing parameter 193
jQuery object, return value 194
options parameter 194
properties parameter 193
queue parameter 194
specialEasing parameter 194
step parameter 194

.append() method
about 108, 109
content parameter 108
function parameter 108
jQuery object, return value 108

.appendTo() method
about 109, 110
jQuery object, return value 109
target parameter 109

.attr() (getter) method
about 77, 78
advantages 78
attributeName parameter 77
return value 77

.attr() (setter) method
about 78, 79
attributeName parameter 78
computed attribute values 79
function parameter 78
map parameter 78
return value 78
several attributes, setting 79
simple attribute, setting 79
value parameter 78

.before() method
about 111, 112
content parameter 111
function parameter 111
jQuery object, return value 111

.bind() method
about 127, 128
eventData parameter 127
event data, passing 130, 131
event handlers 129
event object 129
eventType parameter 127
handler parameter 127
return value 128

.blur() method
about 163, 164
handler parameter 163
return value 163

.change() method
about 165, 166
handler parameter 165
return value 165

.children() method
about 52
jQuery object, return value 52
selector parameter 52

.clearQueue() method
about 202
jQuery object, return value 202
queueName parameter 202

.click() method
about 148
handler parameter 148
return value 148

.clone() method
about 121
jQuery object, return value 121

[300]

withEvents parameter 121
.closest() method

about 57-59
context parameter 57
jQuery object, return value 57
.closest() methodselector parameter 57

.contents() method
about 74, 75
jQuery object, return value 74

.context, jQuery object properties 254

.css() (getter) method
about 80, 81
CSS property value, return value 80

.css() (setter) method
about 81, 82
function parameter 81
jQuery object, return value 82
map parameter 81
propertyName parameter 81
value parameter 81

.data() method
about 247
key parameter 246
obj parameter 247
return value 246
value parameter 246

.dblclick() method
about 149, 150
handler parameter 149
return value 149

.delay() method
about 199
duration parameter 199
jQuery object, return value 199
queueName parameter 199

.dequeue() method
about 201
jQuery object, return value 201
queueName parameter 201

.detach() method
about 125
jQuery object, return value 125
selector parameter 125

.die() method
about 139, 140
eventType parameter 139
handler parameter 139

return value 140
.each() method

about 232-234
callback parameter 233
collection argument, return value 233
collection parameter 233
jQuery object, return value 233

.empty() method
about 122
jQuery object, return value 123

.end() method
about 70, 71
jQuery object, return value 71

.eq() method
about 47
index parameter 47
jQuery object, return value 47

.error() method
about 144
handler parameter 144
return value 144

.fadeIn() method
about 189
callback parameter 189
duration parameter 189
jQuery object, return value 189

.fadeOut() method
about 190, 191
callback parameter 190
duration parameter 190
jQuery object, return value 190

.fadeTo() method
about 192, 193
callback parameter 192
duration parameter 192
jQuery object, return value 192
opacity parameter 192

.ilter() method
about 42, 43
ilter function, using 43, 44
function parameter 42
jQuery object, return value 43
selector parameter 42

.ind() method
about 51, 52
jQuery object, return value 51
selector parameter 51

[301]

.irst() method
about 48
jQuery object, return value 48

.focus() method
about 162
handler parameter 162
return value 162

.get() method
about 229, 230
index parameter 229
return value 229

.hasClass() method
about 92
className parameter 92
return value 92

.has() method
about 46
jQuery object, return value 46
selector parameter 46

.height() (getter) method
about 82, 83
return value 82

.height() (setter) method
about 83
return value 83
value parameter 83

.hide() method
about 179
callback parameter 179
duration parameter 179
jQuery object, return value 179

.hover() method
about 159
handlerIn parameter 159
handlerOut parameter 159
return value 159

.html() (getter) method
about 97
return value 97

.html() (setter) method
about 97, 98
function parameter 98
htmlString parameter 97
jQuery object, return value 98

.index() method
about 230-232
element parameter 231

return value 230
string parameter 231

.innerHeight() method
about 84
return value 84

.innerWidth() method
about 87
return value 87

.insertAfter() method
about 115, 116
jQuery object, return value 115
target parameter 115

.insertBefore() method
about 112, 113
jQuery object, return value 112
target parameter 112

.is() method
about 69, 70
return value 70
selector parameter 70

.keydown() method
about 169, 170
handler parameter 169
return value 169

.keypress() method
about 171, 172
handler parameter 171
return value 171

.keyup() method
about 172, 173
handler parameter 172
return value 172

.last() method
about 49
jQuery object, return value 49

.length, jQuery object properties 253

.live() method
about 137
caveats 139
event delegation 138
eventType parameter 137
handler parameter 137
return value 137

.load() method
about 141, 142, 211
data parameter 211
handler parameter 142

[302]

page fragments, loading 212
return value 142, 211
success parameter 211
url parameter 211

.map() method
about 73
callback parameter 73
jQuery object, return value 73

.mousedown() method
about 145, 146
handler parameter 145
return value 145

.mouseenter() method
about 156, 157
handler parameter 156
return value 156

.mouseleave() method
about 157, 158
handler parameter 157
return value 157

.mousemove() method
about 160, 161
handler parameter 160
return value 160

.mouseout() method
about 154, 155
handler parameter 154
return value 154

.mouseover() method
about 152, 153
handler parameter 152
return value 153

.mouseup() method
about 146, 147
handler parameter 146
return value 146

.nextAll() method
about 65, 66
jQuery object, return value 66
selector parameter 66

.next() method
about 64, 65
jQuery object, return value 65
selector parameter 65

.nextUntil() method
about 66, 67
jQuery object, return value 67

selector parameter 67
.not() method

elements parameter 44
function parameter 44
jQuery object, return value 45
selector parameter 44
speciic elements, removing 45

.offset() (getter) method
about 88, 89
return value 88

.offsetParent() method
about 59, 60
jQuery object, return value 59

.offset() (setter) method
about 89
coordinates parameter 89
return value 89

.one() method
about 134
eventData parameter 134
eventType parameter 134
handler parameter 134
return value 134

.outerHeight() method
about 84, 85
includeMargin parameter 85
return value 85

.outerWidth() method
about 87, 88
includeMargin parameter 87
return value 88

.parent() method
about 56
jQuery object, return value 56
selector parameter 56

.parents() method
about 53, 54
jQuery object, return value 53
selector parameter 53

.parentsUntil() method
about 55, 56
jQuery object, return value 55
selector parameter 55

.position() method
about 89, 90
return value 89

[303]

.prepend() method
about 104-106
content parameter 105
function parameter 105
jQuery object, return value 105

.prependTo() method
about 106
jQuery object, return value 106
target parameter 106

.prevAll() method
about 62, 63
jQuery object, return value 63
selector parameter 62

.prev() method
about 61, 62
jQuery object, return value 62
selector parameter 61

.prevUntil() method
about 63, 64
jQuery object, return value 63
selector parameter 63

.queue() method
about 200, 201
callback parameter 200
jQuery object, return value 200
newQueue parameter 200
queueName parameter 200

.ready() method
about 140
handler parameter 140
jQuery namespace, aliasing 141
return value 140

.removeAttr() method
about 80
attributeName parameter 80
function parameter 80
jQuery object, return value 80

.removeClass() method
about 93
className parameter 93
function parameter 94
jQuery object, return value 94

.removeData() method
about 248
key parameter 248
return value 248

.remove() method
about 123, 124
jQuery object, return value 124
selector parameter 123

.replaceAll() method
about 103, 104
jQuery object, return value 103
target parameter 103

.replaceWith() method
about 102, 103
jQuery object, return value 102
newContent parameter 102

.resize() method
about 174
handler parameter 174
return value 174

.scrollLeft() (getter) method
about 91
return value 91

.scrollLeft() (setter) method
about 91
return value 91
value parameter 91

.scroll() method
about 175, 176
handler parameter 175
return value 175

.scrollTop() (getter) method
about 90
return value 90

.scrollTop() (setter) method
about 90
return value 90
value parameter 90

.select() method
about 166
handler parameter 166
return value 166

.selector, jQuery object properties 253

.serializeArray() method
about 224, 225
return value 224

.serialize() method
about 223
return value 223

.show() method
about 177, 178

[304]

callback parameter 177
duration parameter 177
jQuery object, return value 178

.siblings() method
about 60, 61
jQuery object, return value 60
selector parameter 60

.size() method
about 228, 229
return value 229

.slice() method
about 49, 50
end parameter 49
jQuery object, return value 50
.slice() methodstart parameter 49

.slideDown() method
about 184
callback parameter 184
duration parameter 184
jQuery object, return value 184

.slideToggle() method
about 186-188
callback parameter 187
duration parameter 187
jQuery object, return value 187

.slideUp() method
about 185
callback parameter 185
duration parameter 185
jQuery object, return value 185

.stop() method
about 198, 199
clearQueue parameter 198
jQuery object, return value 198
jumpToEnd parameter 198

.submit() method
about 167-169
handler parameter 167
return value 168

.text() (getter) method
about 98, 99
return value 99

.text() (setter) method
about 99, 100
function parameter 99
jQuery object, return value 99
textString parameter 99

.toggleClass() method
about 95, 96
addorRemove parameter 95
className parameter 95
function parameter 95
jQuery object, return value 95

.toggle() method
about , 181, 151
additionalHandlers parameter 151
callback parameter 181
duration parameter 181
handlerEven parameter 151
handlerOdd parameter 151
jQuery object, return value 181
return value 151
showOrHide parameter 181

.triggerHandler() method
about 136
eventType parameter 136
extraParameters 136
return value 136

.trigger() method
about 135
eventType parameter 135
extraParameters 135
return value 135

.unbind() method
about 131, 132
event object, using 133
event parameter 132
eventType parameter 131
handler parameter 131
namespaces, using 133
return value 132

.unload() method
about 143
handler parameter 143
return value 143

.unwrap() method
about 125
jQuery object, return value 125

.val() (getter) method
about 101
return value 101

.val() (setter) method
about 101
function parameter 101

[305]

jQuery object, return value 101
value parameter 101

.width() (getter) method
about 85, 86
return value 85

.width() (setter) method
about 86
return value 86
value parameter 86

.wrapAll() method
about 118, 119
jQuery object, return value 119
wrappingElement parameter 118

.wrapInner() method
about 119, 120
jQuery object, return value 120
wrappingElement parameter 119
wrappingFunction parameter 120

.wrap() method
about 117
jQuery object, return value 117
wrappingElement parameter 117
wrappingFunction parameter 117

(X)HTML reference
about 286
W3C Hypertext Markup Language home

page 286

A
adjacent sibling (E + F)

about 20
examples 20

advanced options, $.ajax() method
about 208
global option 208

Ajaxian 288
AJAX methods

about 15, 203
global AJAX event handlers 215
helper functions 223
low-level interface methods 203
shorthand methods 210

a list part blog 289
API standardization 263
Aptana 296

attribute begins with ([foo^=bar])
about 28
examples 28

attribute contains ([foo*=bar])
about 28
examples 28

attribute contains preix ([foo|=bar])
about 29
examples 30

attribute contains word ([foo~=bar])
about 29
examples 29

attribute does not equal ([foo!=bar])
about 27
examples 27

attribute ends with ([foo$=bar])
about 28
examples 28

attribute equals ([foo=bar])
about 27
examples 27

attribute ([foo])
about 27
examples 27

attribute selectors
about 26
attribute begins with ([foo^=bar]) 28
attribute contains ([foo*=bar]) 28
attribute contains preix ([foo|=bar]) 29
attribute contains word ([foo~=bar]) 29
attribute does not equal ([foo!=bar]) 27
attribute ends with ([foo$=bar]) 28
attribute equals ([foo=bar]) 27
attribute ([foo]) 27

B
Bespin 296
blogs

Ajaxian 288
a list aprt 289
DOM scripting 289
i cant blog 288
JavaScript Ant 288
John Resig blog 288
jQuery blog 287
jQuery for designers blog 287

[306]

learning jQuery 287
NCZOnline 288
paul rish 288
Robert's talk 288
snook 288
Steve Souders 289

browser events methods
.resize() 174
.scroll() 175
about 174

C
callback functions, $.ajax() method

about 206
beforeSend 206
complete 206
dataFilter 206
error 206
success 206

chaining properties 71
Charles 295
child (E > F)

about 20
examples 20

class attributes, DOM manipulation
methods

.addClass() 92

.removeClass() 93

.toggleClass() 95
class (.myclass)

about 18, 19
examples 19

clientside JavaScript Reference 284
comp.lang.javascript FAQ 285
contains element (:has(E))

about 35
examples 35

contains text (:contains(text))
about 35
examples 35

CouchDB 289
CSS reference

about 287
Mezzoblue CSS Crib Sheet 287
W3C CSS home page 287

CSS selectors
about 17
adjacent sibling (E + F) 20
child (E > F) 20
class (.myclass) 18
descendant (E F) 19
element(T) 17
empty (:empty) 25
irst child (:irst-child) 24
general sibling (E ~ F) 21
ID (#myid) 18
last child (:last-child) 24
multiple expressions (E, F, G) 22
not (:not(E)) 25
numbered child (:nth-child(n/even/odd/

expr)) 22
only child (:only-child) 25
universal (*) 26

currently animating (:animated)
about 37
examples 37

customized effect methods
.animate() 193
.clearqueue() 202
.delay() 199
.dequeue() 201
.queue() 200
.stop() 198
about 193

custom selectors
about 31
contains element (:has(E)) 35
contains text (:contains(text)) 35
currently animating (:animated) 37
element at index (:eq(n)) 31
even element (:even) 33
irst (:irst) 32
greater than (:gt(n)) 32
header element (:header) 37
hidden (:hidden) 37
is parent (:parent) 34
last (:last) 33
less than (:lt(n)) 32
odd element (:odd) 34
visible (:visible) 36

[307]

D
data storage methods

.data() 246

.removeData() 248
about 246

data types, $.ajax() method
about 206
html 207
json type 207
text 206
xml 206

DebugBar 293
descendants (E F)

about 19
examples 19

development tools
about 291
Firefox, tools 291
IE, tools 292
Opera, tools 294
other tools 294
Safari, tools 293

develop menu 294
develop menu, Safari tools

Error Console 294
Web Inspector 294

Dev.Opera 284
Digitalus CMS 289
DOM copying methods

.clone() 121
DOM element methods

.get() 229

.index() 230

.size() 228
about 228

DOM elements
jQuery objects, cloning 41
new elements, creating 41, 42
wrapping 41

DOM insertion methods
.after() 114
.append() 108
.appendTo() 109
.before() 111
.insertAfter() 115
insertBefore() 112

.prepend() 104

.prependTo() 106

.wrap() 117

.wrapAll() 118

.wrapInner() 119
about 104

DOM manipulation methods
about 13, 77
class attributes 92
DOM replacement 96
general attributes 77
style properties 80

DOM removal method
.detach() 125
.empty() 122
.remove() 123
.unwrap() 125

DOM replacement, DOM manipulation
methods

.html() (getter) 97

.html() (setter) 97

.replaceAll() 103

.replaceWith() 102

.text() (getter) 98

.text() (setter) 99

.val() (getter) 101

.val() (setter) 101
DOM scripting blog 289
DOM traversal methods 13, 39
DotNetNuke 289
Dragonly 294
Drip 293
Drupal 289
DutchPIPE 289
dynamic table of contents

about 7
HTML document, setting up 9-11
jQuery code, writing 11, 12
jQuery, obtaining 8

dynaTrace AJAX Edition 293

E
effect methods

about , 14
customized effects 193
pre-packaged effects 177

[308]

element at index (:eq(n))
about 31
examples 31

element (T)
about 17
examples 17

empty (:empty)
about 25
examples 25

even element (:even)
about 33
examples 33

event handler attachment methods
.bind() 127
.die() 139
.live() 137
.one() 134
.trigger() 135
.triggerHandler() 136
.unbind() 131
about 127

event loading methods
.error() 144
.load() 141
.ready() 140
.unload() 143
about 140

event methods
about 14, 127
browser events methods 174
document loading methods 140
event handler attachment methods 127
form events methods 162
keyboard events methods 169
mouse events methods 144

ExpressionEngine 289

F
Fiddler 295
iltering methods

.eq() 47

.ilter() 42

.irst() 48

.has() 46

.last() 49

.slice() 49
about 42

Firebug
about 291
extensions 292
features 291

Firebug extensions
FireCookie 292
FireUnit 292
YSlow 292

Firebug Lite 294
Firefox, tools

Firebug 291
Regular expressions tester 292
Venkman 292
Web Developer toolbar 292

irst child (:irst-child)
about 24
examples 24

irst (:irst)
about 32, 33
examples 32

form events methods
.blur() 163
.change() 165
.focus() 162
.select() 166
.submit() 167

form selectors
:button 30
:checkbox 30
:checked 31
:disabled 31
:enabled 30
:ile 30
:image 30
:input 30
:password 30
:radio 30
:reset 30
:selected 31
:submit 30
:text 30
about 30

[309]

G
general attributes, DOM manipulation

methods
.attr() (getter) 77
.attr() (setter) 78
.removeAttr() 80

general sibling (E ~ F)
about 21
examples 21

global AJAX event handlers
.ajaxComplete() 215
.ajaxError() 217
.ajaxSend() 218
.ajaxStart() 219
.ajaxStop() 220
.ajaxSuccess() 221
about 215

global function, jQuery plug-in
about 258, 259
fnDeinition 258
fnDeinition1 259
fnDeinition2 259
function1 259
function2 259
pluginName 258, 259
plug-ins, with multiple functions 259, 260
plug-ins, with single function 259
simple print function 260, 261

global properties
$.browser property 249, 250
$.support 250
about 249

Google Closure Compiler 285
greater than (-gt(n))

about 32
examples 32

H
header element (-header)

about 37
examples 37

helper functions
$.extend() 240
$.grep() 234
$.inArray() 236

$.makeArray() 235
$.map() 237
$.merge() 239
$.param() 243
$.trim() 242
$.unique() 240
.each() 232
about 232

helper functions, AJAX methods
.serialize() 223
.serializeArray() 224
about 223

hidden (:hidden)
about 37
examples 37

Hpricot 289
HTML document

setting up 10, 11

I
i cant blog 288
ID (#myid)

about 18
examples 18

IE 8 Developer tools 293
IE Developer toolbar 292
IE, tools

about 292
DebugBar 293
Drip 293
dynaTrace AJAX edition 293
IE 8 Developer tools 293
IE Developer toolbar 292
Visual Web Developer Express 293

implicit iteration 257, 258
introspection methods

$.isArray() 244
$.isEmptyObject() 245
$.isFunction() 245
$.isPlainObject() 245
$.isXMLDoc() 246
about 244

is parent (-parent)
about 34
examples 34

[310]

J
JavaScript Ant blog 288
JavaScript beautiier 286
JavaScript code compressors

about 285
Google Closure Compiler 285
JSMin 285
Packer 286
YUI Compressor 285

JavaScript code decompressors
about 286
JavaScript beautiier 286
Pretty Printer 286

JavaScript reference, online resources
client-side JavaScript Reference 284
comp.lang.javascript FAQ 285
Dev.Opera 284
JavaScript Toolbox 285
Mozilla developer center 284
MSDN Reference 284
Quirksmode 284

JavaScript Toolbox 285
JobberBase 289
John Resig blog 288
jQuerify bookmarklet 295
jQuery

dynamic table of contents 7
example 7, 8
obtaining 8

jQuery blog 287
jQuery code

writing 11, 12
jQuery documentation, online resources

Adobe AIR jQuery API Viewer 283
jQuery API browser 283
oficial jQuery documentation 283

jQuery for designers blog 287
jQuery function

$() 39
about 39

jQuery library
effect methods 177

jQuery methods
AJAX methods 15
DOM manipulation methods 13
DOM traversal methods 13

effect methods 14
event methods 14
miscellaneous methods 15
plug-in API 16
selector expressions 12

jQuery object properties
.context 254
.length 253
.selector 253
about 252

jQuery plug-in
about 255
conventions 262
developing 256
using 255, 256

jQuery plug-in development
about 256
global function 258
object method 256
selector expression 261

jQuery properties
about 249
glbal properties 249

jQuery script 12
JS Bin 296
JSMin 285

K
keyboard events methods

.keydown() 169

.keypress() 171

.keyup() 172

L
Laconica 289
last child (:last-child)

about 24
examples 24

last (:last)
about 33
examples 33

learning jQuery blog 287
less than (:lt(n))

about 32
examples 32

[311]

low-level interface methods, AJAX methods
$.ajax() 203
$.ajaxSetup() 209
about 203

M
methods

$.ajax(settings) 268
$.ajaxSetup(settings) 269
$(document).ready(handler) 277
$.each(collection, callback) 271
$.extend([recursive,][target,]properties[,

propertiesN]) 271
$.getJSON(url[, data][, success]) 272
$.getScript(url[, success]) 272
$.get(url[, data][, success][, dataType]) 272
$.grep(array, ilter[, invert]) 272
$(handler) 277
$.inArray(value, array) 273
$.isArray(obj) 274
$.isEmptyObject(obj) 274
$.isFunction(obj) 274
$.isObject(obj) 274
$.makeArray(obj) 274
$.map(array, ilter) 274
$.merge(array1, array2) 275
$.noConlict([removeAll]) 276
$.param(obj[, traditional]) 276
$.post(url[, data][, success][, dataType]) 277
$().ready(handler) 277
$.trim(string) 280
$.unique(array) 280
.addClass(className) 268
.add(elements) 268
.add(html) 268
.add(selector) 268
.after(content) 268
.ajaxComplete(handler) 268
.ajaxError(handler) 269
.ajaxSend(handler) 269
.ajaxStart(handler) 269
.ajaxStop(handler) 269
.ajaxSuccess(handler) 269
.andSelf() 269
.animate() 269
.append(content) 269

.append(function) 269

.appendTo(target) 269

.attr(attributeName) 269

.attr(attributeName, function) 269

.attr(attributeName, value) 269

.attr(map) 269

.before(content) 269

.before(function) 269

.bind(eventType[, eventData], handler) 270

.blur() 270

.blur(handler) 270

.change() 270

.change(handler) 270

.children([selector]) 270

.click() 270

.click(handler) 270

.clone([withEvents]) 270

.closest(selector) 270

.contents() 270

.css(map) 270

.css(propertyName) 270

.css(propertyName, function) 270

.css(propertyName, value) 270

.data([key]) 270

.data(key, value) 270

.dblclick() 270

.dblclick(handler) 270

.dequeue([queueName]) 271

.detach([selector]) 271

.die(eventType[, handler]) 271

.each(callback) 271

.empty() 271

.end() 271

.eq(index) 271

.error(handler) 271

.fadeIn([duration][, callback]) 271

.fadeOut([duration][, callback]) 271

.fadeTo(duration, opacity[, callback]) 271

.ilter(function) 271

.ilter(selector) 271

.ind(selector) 272

.irst() 272

.focus() 272

.focus(handler) 272

.get([index]) 272

.hasClass(className) 272

.height() 272

[312]

.height(value) 273

.hide([duration][, callback]) 273

.hover(handlerIn, handlerOut) 273

.html() 273

.html(htmlString) 273

.index() 273

.index(element) 273

.index(string) 273

.innerHeight() 273

.innerWidth() 273

.insertAfter(target) 273

.insertBefore(target) 273

.is(selector) 273

.keydown() 274

.keydown(handler) 274

.keypress() 274

.keypress(handler) 274

.keyup() 274

.keyup(handler) 274

.last() 274

.live(eventType, handler) 274

.load(handler) 274

.load(url[, data][, successs) 274

.map(callback) 274

.mousedown() 275

.mousedown(handler) 275

.mouseenter() 275

.mouseenter(handler) 275

.mouseleave() 275

.mouseleave(handler) 275

.mousemove() 275

.mousemove(handler) 275

.mouseout() 275

.mouseout(handler) 275

.mouseover() 275

.mouseover(handler) 275

.mouseup() 275

.mouseup(handler) 275

.nextAll([selector]) 275

.next([selector]) 275

.not(elements) 276

.not(function) 276

.not(selector) 276

.offset() 276

.offsetParent() 276

.one(eventType[, eventData], handler) 276

.outerHeight([includeMargin]) 276

.outerWidth([includeMargin]) 276

.parent([selector]) 276

.parents([selector]) 276

.position() 277

.prepend(content) 277

.prepend(function) 277

.prependTo(target) 277

.prevAll([selector]) 277

.prev([selector]) 277

.queue([queueName]) 277

.queue([queueName], callback) 277

.queue([queueName], newQueue) 277

.removeAttr(attributeName) 278

.removeClass([className]) 278

.removeData([key]) 278

.remove([selector]) 277

.replaceAll(target) 278

.replaceWith(newContent) 278

.resize() 278

.resize(handler) 278

.scroll() 278

.scroll(handler) 278

.scrollLeft() 278

.scrollLeft(value) 278

.scrollTop() 278

.scrollTop(value) 278

.select() 278

.select(handler) 278

.serialize() 278

.serializeArray() 278
show([duration][, callback]) 279
.siblings([selector]) 279
.size() 279
.slice(start[, end]) 279
.slideDown([duration][, callback]) 279
.slideToggle([duration][, callback]) 279
.slideUp([duration][, callback]) 279
.stop([clearQueue][, jumpToEnd]) 279
.submit() 279
.submit(handler) 279
.text() 279
.text(textString) 279
.toArray() 279
.toggleClass(className) 280
.toggle([duration][, callback]) 279
.toggle(handlerEven, handlerOdd[, addi-

tionalHandlers...]) 279

[313]

.trigger(eventType[, extraParameters]) 280

.triggerHandler(eventType[, extraParam-
eters]) 280

.unbind(event) 280

.unbind([eventType[, handler]]) 280

.unload(handler) 280

.unwrap(element) 280

.val() 280

.val(function) 280

.val(value) 280

.width() 280

.width(value) 280

.wrapAll(wrappingElement) 281

.wrapInner(wrappingElement) 281

.wrapInner(wrappingFunction) 281

.wrap(wrappingElement) 281

.wrap(wrappingFunction) 281
Mezzoblue CSS Crib Sheet 287
miscellaneous methods 15
miscellaneous traversal methods

.add() 68

.andSelf() 72

.contents() 74

.end() 70

.is() 69

.map() 73
about 68

mouse events methods
.click() 148
.dblclick() 149
.hover() 159
.mousedown() 145
.mouseenter() 156
.mouseleave() 157
.mousemove() 160
.mouseout() 154
.mouseover() 152
.mouseup() 146
.toggle() 151

Mozilla developer center 284
MSDN Reference 284
multiple expressions (E, F, G)

about 22
examples 22

N
NCZOnline 288
NitobiBug 295
not (:not(E))

about 25
examples 25

numbered child (:nth-child(n/even/odd/expr))
about 22, 24
examples 23

O
object method, jQuery plug-in

about 256, 257
methodDeinition 256
methodName 256

odd element (:odd)
about 34
examples 34

online resources, jQuery
about 283
CSS reference 287
JavaScript code compressors 285
JavaScript code decompressors 286
JavaScript reference 284
jQuery documentation 283
useful blogs 287
web development frameworks 289
(X)HTML reference 286

only child (:only-child)
about 25
examples 25

Opera, tools
Dragonly 294

P
Packer 286
paul rish 288
Piwik 289
Plone 290
plug-in API 16, 255
plug-in conventions

$ alias, using 262
about 262
API standardization 263
naming conventions 263

[314]

Pommo 290
pre-packaged effect methods

.fadeIn() 189

.fadeOut() 190

.fadeTo() 192

.hide() 179

.show() 177

.slideDown() 184

.slideToggle() 186

.slideUp() 185

.toggle() 181
Pretty Printer 286
properties

$.browser 281
$.support 281
.context 281
.length 281
.selector 281

pseudo-classes 261

Q
Quirksmode 284

R
Regular expressions tester 292
Robert's talk blog 288

S
Safari, tools

develop menu 294
selector expression, jQuery plug-in

about 261, 262
elementTest 261
pseudo-classes 261
selectorName 261
selectorType 261

selector expressions
#myid 265
* 265
[foo] 265
[foo$=bar] 266
[foo^=bar] 266
[foo!=bar] 265
[foo*=bar] 266
[foo=bar] 265

[foo~=bar] 266
:animated 266
:button 266
:checkbox 266
:checked 266
:contains(text) 266
:disabled 266
:empty 266
:enabled 267
:eq(n) 267
:even 267
:ile 267
:irst 267
:irst-child 267
:gt(n) 267
:has(E) 267
:header 267
:hidden 267
:image 267
:input 267
:last 267
:last-child 267
:lt(n) 267
:not(E) 267
:nth-child(even) 267
:nth-child(expr) 267
:nth-child(n) 267
:nth-child(odd) 267
:odd 267
:only-child 268
:parent 268
:password 268
:radio 268
:reset 268
:selected 268
:submit 268
:text 268
:visible 268
.myclass 265
about 12, 17
attribute selectors 26
CSS selectors 17
custom selectors 31
E + F 266
E > F 266
E ~ F 266
E F 266

[315]

E, F, G 266
form selectors 30
T 265

setup methods
$.noConlict() 227
about 227

shorthand methods, AJAX methods
$.get() 210
$.getJSON() 213
$.getScript() 214
$.post() 212
.load() 211
about 210

simfony 290
Sloppy 295
snook blog 288
SPIP 290
Steve Souders blog 289
style properties, DOM manipulation meth-

ods
.css() (getter) 80
.css() (setter) 81
.height() (getter) 82
.height() (setter) 83
.innerHeight() 84
.innerWidth() 87
.offset() (getter) 88
.offset() (setter) 89
.outerHeight() 84
.outerWidth() 87
.position() 89
.scrollLeft() (getter) 91
.scrollLeft() (setter) 91
.scrollTop() (getter) 90
.scrollTop() (setter) 90
.width() (getter) 85
.width() (setter) 86
about 80

T
TextMate jQuery Bundle 295
Textpattern 290
Trac 290
tree traversal methods

.children() 52

.closest() 57

.ind() 51

.next() 64

.nextAll() 65

.nextUntil() 66

.offsetParent() 59

.parent() 56

.parents() 53

.parentsUntil() 55

.prev() 61

.prevAll() 62

.prevUntil() 63

.siblings() 60
about 51

U
universal (*)

about 26
examples 26

V
Venkman 292
visible (:visible)

about 36
examples 36

Visual Web Developer Express 293

W
W3C 286
Web Developer toolbar 292
WordPress 290
World Wide Web Consortium. See W3C

Y
YUI Compressor 285

Z
Z-Blog 290

Thank you for buying
jQuery 1.4 Reference Guide

Packt Open Source Project Royalties
When we sell a book written on an Open Source project, we pay a royalty directly to that
project. Therefore by purchasing jQuery 1.4 Reference Guide, Packt will have given some of
the money received to the jQuery project.
In the long term, we see ourselves and you—customers and readers of our books—as part of
the Open Source ecosystem, providing sustainable revenue for the projects we publish on.
Our aim at Packt is to establish publishing royalties as an essential part of the service and
support a business model that sustains Open Source.
If you're working with an Open Source project that you would like us to publish on, and
subsequently pay royalties to, please get in touch with us.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it irst before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

About Packt Publishing
Packt, pronounced 'packed', published its irst book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on speciic technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more speciic and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.PacktPub.com.

Learning jQuery 1.3
ISBN: 978-1-847196-70-5 Paperback: 444 pages

Better Interaction Design and Web Development with
Simple JavaScript Techniques

1. An introduction to jQuery that requires
minimal programming experience

2. Detailed solutions to speciic
client-side problems

3. For web designers to create interactive elements
for their designs

jQuery 1.3 with PHP
ISBN: 978-1-847196-98-9 Paperback: 248 pages

Enhance your PHP applications by increasing their
responsiveness through jQuery and its plugins.

1. Combine client-side jQuery with your server-
side PHP to make your applications more
eficient and exciting for the client

2. Learn about some of the most popular jQuery
plugins and methods

3. Create powerful and responsive user interfaces
for your PHP applications

Please check www.PacktPub.com for information on our titles

Drupal 6 JavaScript and jQuery
ISBN: 978-1-847196-16-3 Paperback: 340 pages

Putting jQuery, AJAX, and JavaScript effects into
your Drupal 6 modules and themes

1. Learn about JavaScript support in Drupal 6

2. Packed with example code ready for you to use

3. Harness the popular jQuery library to enhance
your Drupal sites

3. Make the most of Drupal's built-in
JavaScript libraries

jQuery UI 1.7: The User Interface
Library for jQuery
ISBN: 978-1-847199-72-0 Paperback: 392 pages

Build highly interactive web applications with ready-
to-use widgets from the jQuery User Interface library

1. Organize your interfaces with reusable widgets:
accordions, date pickers, dialogs, sliders, tabs,
and more

2. Enhance the interactivity of your pages by
making elements drag-and-droppable, sortable,
selectable, and resizable

3. Packed with examples and clear explanations
of how to easily design elegant and powerful
front-end interfaces for your web applications

Please check www.PacktPub.com for information on our titles

	Packt - jQuery 1.4 Reference Guide (January 2010) (ATTiCA)
	Credits
	About the Authors
	About the Reviewers
	Table of Contents
	Preface
	Chapter 1: Anatomy of a jQuery Script
	A dynamic table of contents
	Obtaining jQuery
	Setting up the HTML document
	Writing the jQuery code

	Script dissection
	Selector expressions
	DOM traversal methods
	DOM manipulation methods
	Event methods
	Effect methods
	AJAX methods
	Miscellaneous methods
	Plug-in API

	Summary

	Chapter 2: Selector Expressions
	CSS selectors
	Element (T)
	ID (#myid)
	Class (.myclass)
	Descendant (E F)
	Child (E > F)
	Adjacent sibling (E + F)
	General sibling (E ~ F)
	Multiple expressions (E, F, G)
	Numbered child (:nth-child(n/even/odd/expr))
	First child (:first-child)
	Last child (:last-child)
	Only child (:only-child)
	Not (:not(E))
	Empty (:empty)
	Universal (*)

	Attribute selectors
	Attribute ([foo])
	Attribute equals ([foo=bar])
	Attribute does not equal ([foo!=bar])
	Attribute begins with ([foo^=bar])
	Attribute ends with ([foo$=bar])
	Attribute contains ([foo*=bar])
	Attribute contains word ([foo~=bar])
	Attribute contains prefix ([foo|=bar])

	Form selectors
	Custom selectors
	Element at index (:eq(n))
	Greater than (:gt(n))
	Less than (:lt(n))
	First (:first)
	Last (:last)
	Even element (:even)
	Odd element (:odd)
	Is parent (:parent)
	Contains text (:contains(text))
	Contains element (:has(E))
	Visible (:visible)
	Hidden (:hidden)
	Header element (:header)
	Currently animating (:animated)

	Chapter 3: DOM Traversal Methods
	The jQuery function
	$()

	Filtering methods
	.filter()
	.not()
	.has()
	.eq()
	.first()
	.last()
	.slice()

	Tree traversal methods
	.find()
	.children()
	.parents()
	.parentsUntil()
	.parent()
	.closest()
	.offsetParent()
	.siblings()
	.prev()
	.prevAll()
	.prevUntil()
	.next()
	.nextAll()
	.nextUntil()

	Miscellaneous traversal methods
	.add()
	.is()
	.end()
	.andSelf()
	.map()
	.contents()

	Chapter 4: DOM Manipulation Methods
	General attributes
	.attr() (getter)
	.attr() (setter)
	.removeAttr()

	Style properties
	.css() (getter)
	.css() (setter)
	.height() (getter)
	.height() (setter)
	.innerHeight()
	.outerHeight()
	.width() (getter)
	.width() (setter)
	.innerWidth()
	.outerWidth()
	.offset() (getter)
	.offset() (setter)
	.position()
	.scrollTop() (getter)
	.scrollTop() (setter)
	.scrollLeft() (getter)
	.scrollLeft() (setter)

	Class attributes
	.hasClass()
	.addClass()
	.removeClass()
	.toggleClass()

	DOM replacement
	.html() (getter)
	.html() (setter)
	.text() (getter)
	.text() (setter)
	.val() (getter)
	.val() (setter)
	.replaceWith()
	.replaceAll()

	DOM insertion, inside
	.prepend()
	.prependTo()
	.append()
	.appendTo()

	DOM insertion, outside
	.before()
	.insertBefore()
	.after()
	.insertAfter()

	DOM insertion, around
	.wrap()
	.wrapAll()
	.wrapInner()

	DOM copying
	.clone()

	DOM removal
	.empty()
	.remove()
	.detach()
	.unwrap()

	Chapter 5: Event Methods
	Event handler attachment
	.bind()
	.unbind()
	.one()
	.trigger()
	.triggerHandler()
	.live()
	.die()

	Document loading
	.ready()
	.load()
	.unload()
	.error()

	Mouse events
	.mousedown()
	.mouseup()
	.click()
	.dblclick()
	.toggle()
	.mouseover()
	.mouseout()
	.mouseenter()
	.mouseleave()
	.hover()
	.mousemove()

	Form events
	.focus()
	.blur()
	.change()
	.select()
	.submit()

	Keyboard events
	.keydown()
	.keypress()
	.keyup()

	Browser events
	.resize()
	.scroll()

	Chapter 6: Effect Methods
	Pre-packaged effects
	.show()
	.hide()
	.toggle()
	.slideDown()
	.slideUp()
	.slideToggle()
	.fadeIn()
	.fadeOut()
	.fadeTo()

	Customized effects
	.animate()
	.stop()
	.delay()
	.queue()
	.dequeue()
	.clearQueue()

	Chapter 7: AJAX Methods
	Low-level interface
	$.ajax()
	$.ajaxSetup()

	Shorthand methods
	$.get()
	.load()
	$.post()
	$.getJSON()
	$.getScript()

	Global AJAX event handlers
	.ajaxComplete()
	.ajaxError()
	.ajaxSend()
	.ajaxStart()
	.ajaxStop()
	.ajaxSuccess()

	Helper functions
	.serialize()
	.serializeArray()

	Chapter 8: Miscellaneous Methods
	Setup methods
	$.noConflict()

	DOM element methods
	.size()
	.get()
	.index()

	Collection manipulation
	.each()
	$.grep()
	$.makeArray()
	$.inArray()
	$.map()
	$.merge()
	$.unique()
	$.extend()
	$.trim()
	$.param()

	Introspection
	$.isArray()
	$.isFunction()
	$.isPlainObject()
	$.isEmptyObject()
	$.isXMLDoc()

	Data storage
	.data()
	.removeData()

	Chapter 9: jQuery Properties
	Global properties
	$.browser
	$.support
	$.support.boxModel
	$.support.cssFloat
	$.support.hrefNormalized
	$.support.htmlSerialize
	$.support.leadingWhitespace
	$.support.noCloneEvent
	$.support.objectAll
	$.support.opacity
	$.support.scriptEval
	$.support.style
	$.support.tbody

	jQuery object properties
	.length
	.selector
	.context

	Chapter 10: The Plug-in API
	Using a plug-in
	Developing a plug-in
	Object method
	Global function
	Selector expression

	Plug-in conventions
	Use of the $ alias
	Naming conventions
	API standardization

	Chapter 11: Alphabetical Quick Reference
	Selector expressions
	Methods
	Properties

	Appendix A: Online Resources
	jQuery documentation
	JavaScript reference
	JavaScript code compressors
	JavaScript code decompressors
	(X)HTML reference
	CSS reference
	Useful blogs
	Web development frameworks using jQuery

	Appendix B: Development Tools
	Tools for Firefox
	Tools for Internet Explorer
	Tools for Safari
	Tools for Opera
	Other tools

	Index
	Thank you

