
www.allitebooks.com

http://www.allitebooks.org

jQuery Mobile Web
Development Essentials

Learn to use the touch-optimized, cross-device,
cross-platform jQM web framework for smartphones
and tablets

Raymond Camden

Andy Matthews

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

jQuery Mobile Web Development Essentials

Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: May 2012

Production Reference: 1200412

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84951-726-3

www.packtpub.com

Cover Image by Faiz Fattohi (faizfattohi@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Authors
Raymond Camden

Andy Matthews

Reviewers
Md Mahmud Ahsan

Shameemah Kurzawa

M. Ali Qureshi

Joe Wu

Acquisition Editor
Usha Iyer

Lead Technical Editor
Dayan Hyames

Technical Editor
Sonali Tharwani

Project Coordinator
Sai Gamare

Proofreader
Linda Morris

Indexer
Monica Ajmera Mehta

Production Coordinators
Nilesh R. Mohite

Prachali Bhiwandkar

Cover Work
Nilesh R. Mohite

www.allitebooks.com

http://www.allitebooks.org

About the Authors

Raymond Camden is a Developer Evangelist for Adobe focusing on web
standards and mobile development. He is a contributing author to numerous
technical books including the best selling ColdFusion Web Application Construction
Kit, published by Adobe Press. He has spoken at conferences around the world
and maintains many popular ColdFusion community websites. He is the
manager of www.RIAForge.org, www.CFLib.org, and writes at his blog
www.raymondcamden.com. Raymond is happily married and a proud father
to three kids and is somewhat of a Star Wars nut.

I'd like to thank everyone on the jQuery and jQuery Mobile teams
for making tools that have changed my life. Without your hard work
and dedication, the web would be less awesome. Thank you Andy,
for coming on board and helping to make this book better.

www.allitebooks.com

http://www.allitebooks.org

Andy Matthews has been working as a web and application developer for 13
years, with an experience in a wide range of industries, and has a skill set which
includes graphic design, programming, business strategy and planning, and
marketing. Throughout his career he has been privileged to work on projects
which interfaced with industry giants such as Craigslist, written code that allowed
Enterprise level sales teams to quickly and efficiently build presentations for their
clients. He stays up-to-date with current trends in the marketplace by helping
previous employers transition to newer, more effective, coding habits and standards.
He is a frequent speaker at conferences around the country. He has also developed
software for the open source community, and he currently works for a social
networking startup Goba.mobi in Nashville, TN.

I'd like to thank my wife Jaime, and my children Noelle, Evan, and
Mason for their patience and grace in letting me pursue my passion.
Most of all, thank you God for giving me the desire to learn, the
ability to pick things up quickly, and the perseverance to apply the
knowledge I've gained throughout the years.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Md Mahmud Ahsan has been developing and leading some medium to large
web applications for the past six years. He has worked with a number of PHP
frameworks (Zend, CodeIgniter) and generally likes working with an MVC design
pattern. His experience ranges from developing web applications from scratch, as
well as modifying and adding functionality to existing custom in-house systems,
open source applications, and commercial applications. He graduated in Computer
Science and Engineering, and is a PHP5 Zend Certified Engineer. He is also an
expert in iPhone applications development and has in depth working knowledge
in Objective C, C, C++, Cocos2D, Box2D, and Xcode. Apart from his full time job,
he maintains a blog at http://thinkdiff.net. He lives in Bangladesh with his
wife Jinat Jahan.

Currently, he is self employed and has been developing iPhone and iPad
applications, which he publishes through his own site http://ithinkdiff.net.
Besides this, he is a part time freelancer and works on LAMP based web
applications development.

He was a technical reviewer for the following books published by Packt Publishing:

•	 Zend Framework 1.8 Web Application Development Book
•	 PHP jQuery Cookbook
•	 jQuery UI themes
•	 Android 3.0 Application Development Cookbook

I'm very grateful to my father who brought a computer for me
in 2001, since then I have loved programming and work in
various technologies.

www.allitebooks.com

http://www.allitebooks.org

Shameemah Kurzawa started programming when she was at high school.
Being motivated to be a System Analyst, she pursued both undergraduate
and postgraduate studies in Business Information Systems and Software
Engineering respectively.

She has been working as a Web Developer/Analyst for the past six years; she
has worked in the past for Australia's renowned broadcasting company SBS
and has freelanced for her own company since 2010. Besides work she enjoys
spending time with her family, traveling, and cooking. She likes to read and
try new web technologies.

She has previously reviewed jQuery UI themes and PHP jQuery Cookbook for
Packt Publishing.

I would like to thank my husband and the Packt team for their
support and understanding in helping me review this book.

M. Ali Qureshi is based in Lahore, Pakistan. He has developed a comprehensive
understanding of web development processes having worked in the capacity of
Web Designer, Frontend developer, PHP Developer, Flash ActionScript Developer,
Software Engineer, and Project Manager in the last 12 years designing and
developing creative, interactive and usable web solutions, that get high rankings
in search engines and drive qualified traffic to websites, making them a successful
technology investment.

He has done a Masters in Economics and Computer Sciences. Running along Lahore
canal early in the morning, watching good movies and listening to music, working
out at the gym, reading books, discussing politics, and an occasional stroll in
Lawrence Garden, Lahore are a few things that Ali mostly enjoys.

When not working, he spends his time blogging and exploring new technologies.
Ali is an avid sports fan and likes watching Cricket, especially Pakistan and Australia
which are his favorite teams.

www.allitebooks.com

http://www.allitebooks.org

Joe Wu is a Senior PHP Web Developer and has more than four years of commercial
experience to date.

Joe is always enthusiastic about exploring new ideas, technologies and opportunities
that arise. He has a wide range of skills, specializing primarily in PHP, CodeIgniter
PHP Framework, MySQL, JQuery, HTML, and CSS. Joe's skills and experiences
further extends out to various other technologies and tools such as Subversion,
Microsoft CRM, SOAP, Bash Scripting, and Symfony PHP Framework.

Joe is also a professional Badminton player, achieving the highest ranking of 59 in
the world in singles and top ranking in Australasia in 2010.

If you would like to get in touch with Joe to discuss any opportunities please do not
hesitate to visit his personal website: http://www.joewu.net/.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on
Packt books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.allitebooks.com

http://www.allitebooks.org

To my wife Jeanne. Thank you for always being there. Thank you for making me feel like I
could do this. Thank you being strong when I'm weak. Thank you for everything.

 -Raymond Camden

Table of Contents
Preface 1
Chapter 1: Preparing your First jQuery Mobile Project 11

Important preliminary points 11
Building an HTML page 11
Getting jQuery Mobile 13
Implementing jQuery Mobile 14
Working with data attributes 16
Summary 18

Chapter 2: Working with jQuery Mobile Pages 19
Important preliminary points 19
Adding multiple pages to one file 20
jQuery Mobile, links, and you 22
Working with multiple files 23
jQuery Mobile and URLs 26
Additional customization 26

Page titles 27
Prefetching content 28
Changing page transitions 28

Summary 29
Chapter 3: Enhancing Pages with Headers, Footers, and Toolbars 31

Important preliminary points 31
Adding headers 31
Icon sneak peak 34
Working with back buttons 34
Working with footers 36
Creating fixed and full screen headers and footers 38

Full screen positioning 39
Working with navigation bars 40

Persisting navigation bar footers across multiple pages 42

Table of Contents

[ii]

Summary 44
Chapter 4: Working with Lists 45

Creating lists 45
Working with list feature 50

Creating Inset lists 51
Creating list dividers 52
Creating lists with count bubbles 53
Using thumbnails and icons 54
Creating Split Button lists 56
Using a search filter 57

Summary 58
Chapter 5: Getting Practical – Building a Simple Hotel Mobile Site 59

Welcome to Hotel Camden 59
The home page 60
Finding the hotel 62
Listing the hotel rooms 65
Contacting the hotel 68
Summary 70

Chapter 6: Working with Forms and jQuery Mobile 71
Before you begin 71
What jQuery Mobile does with forms 72

Working with radio buttons and checkboxes 76
Working with select menus 79
Search, toggle, and slider fields 82

Search fields 83
Flip toggle fields 83
Slider fields 84

Using native form controls 85
Working with "mini" fields 85
Summary 86

Chapter 7: Creating Modal Dialogs, Grids, and Collapsible Blocks 87
Creating dialogs 87
Laying out content with grids 91
Working with collapsible content 97
Summary 102

Chapter 8: jQuery Mobile Configuration, Utilities,
and JavaScript methods 103

Configuring jQuery Mobile 103
Using jQuery Mobile utilities 109

Page methods and utilities 109

Table of Contents

[iii]

Path and URL related utilities 111
Miscellaneous utilities 115

jQuery widget and form utilities 115
Summary 119

Chapter 9: Working with Events 121
Working with physical events 121
Handling page events 129

What about $(document).ready? 133
Creating a real example 133

Summary 136
Chapter 10: Moving further with the Notekeeper
Mobile Application 137

What is a mobile application? 137
Designing your first mobile application 138

Listing out the requirements 138
Building your wireframes 139
Designing the add note wireframe 139
Display notes wireframe 140
View note/delete button wireframe 140

Writing the HTML 141
Adding functionality with JavaScript 143

Storing Notekeeper data 146
Using localStorage 146

Effective use of boilerplates 148
Building the Add Note feature 148

Adding bindings 148
Collecting and storing the data 150
Building the Display Notes feature 151

Dynamically adding notes to our listview 153
Viewing a note 154

Using the Live function 154
Dynamically creating a new page 155
Deleting a note 157

Summary 158
Chapter 11: Enhancing jQuery Mobile 159

What's possible? 159
The visual building blocks of jQuery Mobile 160

Border-radius 161
Applying drop shadows 162

Using text-shadow 163
Using box-shadow 164
CSS gradients 165

Table of Contents

[iv]

The basics of jQuery Mobile theming 168
Bars (.ui-bar-?) 169
Content blocks (.ui-body-?) 169
Buttons and listviews (.ui-btn-?) 170
Mixing and matching swatches 170
Site-wide active state 171
Default icons 172

Creating and using a custom theme 172
What's ThemeRoller? 173

Using ThemeRoller 173
Preview 175

Colors 175
Inspector 176
Tools 177

Creating a theme for Notekeeper 178
Exporting your theme 181

Creating and using custom icons 183
CSS Sprites 183
Designing your first icon 185
High and low resolution 187

Updating the Notekeeper app 188
Adding our custom theme 188
Adding our custom icon 189

Summary 190
Chapter 12: Creating Native Applications 191

HTML as a native application 191
Working with PhoneGap 192
Adding PhoneGap functionality 199

Summary 203
Chapter 13: Becoming an expert - Build an RSS
Reader application 205

RSS Reader – the application 205
Creating the RSS Reader Application 208

The displayFeeds function 210
Storing our feeds 211
Adding an RSS feed 212
Viewing a feed 214
Creating the entry view 216
Going further 218

Summary 218
Index 219

Preface

What is jQuery Mobile?
On August 11, 2010, nearly two years ago, John Resig (creator of jQuery) announced
the jQuery Mobile project. While focused on the UI framework, it was also a
recognition of jQuery itself as a tool for mobile sites and that work would be done
to the core framework itself, to make it work better on devices. Release after release,
the jQuery Mobile project evolved into a powerful framework encompassing more
platforms, more features, and better performance with every update.

But what do we mean when we say a UI framework? What does it mean for developers
and designers? jQuery Mobile provides a way to turn regular HTML (and CSS) into
mobile friendly sites. As you will see soon in the first chapter, you can take a regular
HTML page, add in the required bits for jQuery Mobile (essentially five lines of
HTML), and find your page transformed into a mobile-friendly version instantly.

Unlike other frameworks, jQuery Mobile is focused on HTML. In fact, for a
framework tied to jQuery, you can do a heck of a lot of work without writing one
line of JavaScript. It's a powerful, practical way of creating mobile websites that
any existing HTML developer can pick up and adapt within a few hours. Compare
this to other frameworks, such as Sencha Touch. Sencha Touch is also a powerful
framework, but its approach is radically different, using JavaScript to help define
and layout pages. jQuery Mobile is much friendlier to people who are more familiar
with HTML, as opposed to JavaScript. jQuery Mobile is touch friendly, which will
make sense to anyone who has used a smart phone and struggled to click the exact
right spot on a website with tiny text and hard to spot links. It will make sense to
anyone who accidentally clicked on a Reset button instead of Submit. jQuery Mobile
will enhance your content to help solve these issues. Regular buttons become large,
fat, and easy to hit buttons. Links can be turned into list based navigation systems.
Content can be split into virtual pages with smooth transitions. You will be surprised
just how jQuery Mobile works without writing much code at all.

Preface

[2]

jQuery Mobile has some very big sponsors. They include Nokia, Blackberry, Adobe,
and other large companies. These companies have put in money, hardware, and
developer resources to help ensure the success of the project:

What's the cost?
Ah, the million dollar question. Luckily this one is easy to answer: nothing. jQuery
Mobile, like jQuery itself, is completely free to use for any purpose. Not only that, it's
completely open source. Don't like how something works? You can change it. Want
something not supported by the framework? You can add it. To be fair, digging deep
into the code base is probably something most folks will not be comfortable doing.
However, the fact that you can if you need to, and the fact that other people can,
leads to a product that will be open to development by the community at large.

Preface

[3]

What do you need to know?
Finally, along with not paying a dime to get, and work with, jQuery Mobile, the
best thing is that you probably already have all the skills necessary to work with
the framework. As you will see in the upcoming chapters, jQuery Mobile is an
HTML based framework. If you know HTML, even just simple HTML, you can use
the jQuery Mobile framework. Knowledge of CSS and JavaScript is a plus, but not
entirely required. (While jQuery Mobile uses a lot of CSS and JavaScript behind the
scenes, you don't actually have to write any of this yourself!)

What about native apps?
jQuery Mobile does not create native applications. You'll see later in the book how
you can combine jQuery Mobile with wrapper technologies such as PhoneGap to
create native apps but, in general, jQuery Mobile is for building websites. The
question on whether to develop a website or a mobile app is not something this book
can answer. You need to look at your business needs and see what will satisfy them.
Because we are not building mobile apps themselves, you do not have to worry
about setting up any accounts with Google or Apple, or paying any fees for the
marketplace. Any user with a mobile device that includes a browser will be able to
view your mobile-optimized sites.

Again – if you want to develop true mobile apps with jQuery Mobile, it's
definitely an option.

Help!
While we'd like to think that this book will cover every single possible topic you
would need for all your jQuery Mobile needs, most likely there will be things we
can't cover. If you need help, there are a couple of places you can try.

First, the jQuery Mobile docs (http://jquerymobile.com/demos/1.0/), cover
syntax, features, and development in general, much like this book. While the
material may cover some of the same ground, if you find something confusing here,
try the official docs. Sometimes a second explanation can really help.

Second, the jQuery Mobile forum (http://forum.jquery.com/jquery-mobile),
is an open ended discussion list for jQuery Mobile topics. This is the perfect place
to ask questions. Also, it's a good place to learn about problems other people are
having. You may even be able to help them. One of the best ways to learn a new
topic is by helping others.

www.allitebooks.com

http://www.allitebooks.org

Preface

[4]

Examples
Want to see jQuery Mobile in action? There's a site for that. JQM Gallery
(http://www.jqmgallery.com/), is a collection of sites submitted by users,
built using jQuery Mobile. Not surprisingly, this website too uses jQuery Mobile,
which makes it yet another way to sample jQuery Mobile:

Preface

[5]

What this book covers
Chapter 1, Preparing your First jQuery Mobile Project, works you through your first
jQuery Mobile project. It details what must be added to your project's directory
and source code.

Chapter 2, Working with jQuery Mobile Pages, continues the work in the previous
chapter and introduces the concept of jQuery Mobile pages.

Chapter 3, Enhancing Pages with Headers, Footers, and Toolbars, explains how to
enhance your pages with nicely formatted headers and footers.

Chapter 4, Working with Lists, describes how to create jQuery Mobile list views.
These are mobile optimized lists which are especially great for navigation.

Chapter 5, Getting Practical – Building a Simple Hotel Mobile Site, walks you through
creating your first "real" (albeit simple) jQuery Mobile application.

Chapter 6, Working with Forms and jQuery Mobile, explains the process of using jQuery
Mobile optimized forms. Layout and special form features are covered in detail.

Chapter 7, Creating Modal Dialogs, Grids, and Collapsible Blocks, walks you through
special jQuery Mobile user interface items for creating grid based layouts, dialogs,
and collapsible content areas.

Chapter 8, jQuery Mobile Configuration, Utilities, and JavaScript methods, describes the
various JavaScript-based utilities your code may have need of.

Chapter 9, Working with Events, details the events thrown by various jQuery
Mobile-related features, like pages loading and unloading.

Chapter 10, Moving Further with the Notekeeper Mobile Application, walks you
through the process of creating another website, an HTML5-enhanced note
taking application.

Chapter 11, Enhancing jQuery Mobile, demonstrates how to change the default
appearance of your jQuery Mobile sites by selecting and creating unique themes.

Chapter 12, Creating Native Applications, takes what you've learned previously
and shows how to use the open source PhoneGap project to create real
native applications.

Chapter 13, Becoming an expert Build an RSS Reader application, expands upon the
previous chapter by creating an application that lets you add and read RSS feeds
on mobile devices.

Preface

[6]

What you need for this book
Nothing! Technically you need a computer, and a browser as well, but jQuery
Mobile is built with HTML, CSS, and JavaScript. No IDE (Integrated Development
Environment) or special tool will be required to work with the framework. If you've
got any editor on your system (and all operating systems include a free editor of
some sort), you can develop with jQuery Mobile.

There are good IDEs out there that can help you be more productive. For example,
Adobe Dreamweaver CS 5.5 includes native support for jQuery Mobile with code
assist and device previews:

At the end of the day, you can develop with jQuery Mobile for free. It's zero cost to
you to download, develop, and publish jQuery Mobile sites.

Who this book is for
This book is for anyone looking to embrace mobile development and expand their
skill set beyond the desktop.

Preface

[7]

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "Notice the new data-title tag added
to the div tag."

A block of code is set as follows:

<html>
 <head>
 <meta name="viewport" content="width=device-width, initial-
 scale=1">
 <title>Multi Page Example</title>

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Imagine
our Megacorp page. It's got three pages, but the Products page is a separate
HTML file."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Preface

[8]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
This book contains many code samples. You are not expected to type them in. You
should not type them all in. Rather, you should download them from the public
Github repository setup for the book: https://github.com/cfjedimaster/
jQuery-Mobile-Book. The Github repository will be updated as typos and other
mistakes are found in the book. Therefore, it is possible the code may not match
exactly the text in the book.

If you are not familiar with Github, then simply click the Downloads tab and then
either Download as zip or Download as tar.gz to quickly get an archived collection
of all the files.

You should extract these files onto a local web server. If you do not have one
installed, we recommend installing Apache (http://httpd.apache.org/). Apache
works on all platforms, is free, and is typically easy to install. Once extracted, you
can edit these files, view them in your browser, or copy them as a starting point for
your own projects.

You can also download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you purchased this
book elsewhere, you can visit http://www.packtpub.com/support and register
to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded to our website, or added to any list
of existing errata, under the Errata section of that title.

Preface

[9]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Preparing your First jQuery
Mobile Project

You know what jQuery Mobile is, the history of it as well as its features and goals.
Now we're actually going to build our first jQuery Mobile website (well, web page)
and see how easy it is to use.

In this chapter we will:

•	 Create a simple HTML page
•	 Add jQuery Mobile to the page
•	 Make use of custom data attributes (data-*)
•	 Update the HTML to make use of the data attributes

jQuery Mobile recognizes

Important preliminary points
You can find all the source code for this chapter in the c1 folder of the ZIP file
you downloaded from Github. If you wish to type everything out by hand, we
recommend you use similar file names.

Building an HTML page
Let's begin with a simple web page that is not mobile optimized. To be clear, we
aren't saying it can't be used on a mobile device. Not at all. But it may not be usable
on a mobile device. It may be hard to read (text too small). It may be too wide. It
may use forms that don't work well on a touch screen. We don't know what kinds
of problems will have at all until we start testing. (And we've all done testing of our
websites on mobile devices to see how well they work, right?)

Preparing your First jQuery Mobile Project

[12]

Lets have a look at Listing 1-1:

Listing 1-1: test1.html
<html>
 <head>
 <title>First Mobile Example</title>
 </head>
 <body>
 <h1>Welcome</h1>
 <p>
 Welcome to our first mobile web site. It's going to be the
 best site you've ever seen. Once we get some content. And a
 business plan. But the hard part is done!
 </p>
 <p>
 <i>Copyright Megacorp © 2012</i>
 </p>
 </body>
</html>

As we said, nothing too complex, right? Let's take a quick look at this in the browser:

You can also download the example code files for all Packt
books you have purchased from your account at http://
www.packtpub.com. If you purchased this book elsewhere,
you can visit http://www.packtpub.com/support and
register to have the files e-mailed directly to you.

Chapter 1

[13]

Not so bad, right? But let's take a look at the same page in a mobile simulator:

Wow, that's pretty tiny. You've probably seen web pages like this before on your
mobile device. You can, of course, typically use pinch and zoom or double click
actions to increase the size of the text. But it would be preferable to have the page
render immediately in a mobile friendly view. This is where jQuery Mobile enters.

Getting jQuery Mobile
In the preface we talked about how jQuery Mobile is "just" a set of files. That isn't
said to minimize the amount of work done to create those files, or how powerful
they are, but to emphasize that using jQuery Mobile means you don't have to install
any special tools or server. You can download the files and simply include them in
your page. And if that's too much work, you have an even simpler solution. jQuery
Mobile's files are hosted on a Content Delivery Network (CDN). This is a resource
hosted by them and guaranteed (as much as anything like this can be) to be online
and available. Multiple sites are already using these CDN hosted files. That means
when your users hit your site they will already have the resources in their cache.
For this book we will be making use of the CDN hosted files, but just for this first
example we'll download and extract the bits. I recommend doing this anyway for
those times when you're on an airplane and wanting to whip up a quick mobile site.

www.allitebooks.com

http://www.allitebooks.org

Preparing your First jQuery Mobile Project

[14]

To grab the bits, visit http://jquerymobile.com/download. There are a few
options here but you want the ZIP file option. Go ahead and download that ZIP file
and extract it. (The ZIP file you downloaded earlier from Github has a copy already.)
The following screenshot demonstrates what you should see after extracting the files
from the ZIP file:

Important note: At the time this book was written, jQuery Mobile
was preparing for the release of Version 1.1. The released version was
1.0.1. But with 1.1 so close to release, that version is in use. Obviously,
by the time you read this book a later version may be released. The
file names you see listed in the previous screenshot are version
specific, so keep in mind they may look a bit different for you.

Notice the ZIP file contains a CSS and JavaScript file for jQuery Mobile, as well as a
minified version of both. You will typically want to use the minified version in your
production apps and the regular version while developing. The images folder has 6
images used by the CSS when generating mobile optimized pages. So, to be clear, the
entire framework, and all the features we will be talking about over the rest of the
book, will consist of a framework of 8 files. Of course, you also need to include the
jQuery library. You can download that separately at www.jquery.com.

Implementing jQuery Mobile
Ok, we've got the bits, how do we use them? Adding jQuery Mobile support to a site
requires the following three steps at a minimum:

1. First add the HTML 5 doctype to the page: <!DOCTYPE html>. This is used to
help inform the browser about the type of content it will be dealing with.

Chapter 1

[15]

2. Add a viewport metatag: <meta name="viewport"
content="width=device-width, initial-scale="1">. This helps set
better defaults for pages when viewed on a mobile device.

3. Finally – the CSS, JavaScript library, and jQuery itself need to be included
into the file.

Let's look at a modified version of our previous HTML file that adds all of the above:

Listing 1-2: test2.html
<!DOCTYPE html>
<html>
 <head>
 <title>First Mobile Example</title>
 <meta name="viewport" content="width=device-width, initial-
 scale=1">
 <link rel="stylesheet" href="jquery.mobile-1.1.0-rc.1.css" />
 <script type="text/javascript"
 src="http://code.jquery.com/jquery-1.7.1.min.js"></script>
 <script type="text/javascript" src="jquery.mobile-1.1.0-
 rc.1.min.js"></script>
 </head>
 <body>
 <h1>Welcome</h1>
 <p>
 Welcome to our first mobile web site. It's going to be the best
 site you've ever seen. Once we get some content. And a business
 plan. But the hard part is done!
 </p>
 <p>
 <i>Copyright Megacorp © 2012</i>
 </p>
 </body>
</html>

For the most part, this version is the exact same as listing 1, except for the
addition of the doctype, the CSS link, and our two JavaScript libraries. Notice we
point to the hosted version of the jQuery library. It's perfectly fine to mix local
JavaScript files and remote ones. If you wanted to ensure you could work offline,
you can simply download the jQuery library as well.

Preparing your First jQuery Mobile Project

[16]

So while nothing changed in the code between the body tags, there is going to be a
radically different view now in the browser. The following screenshot shows how
the Android mobile browser renders the page now:

Right away you see a couple of differences. The biggest difference is the relative
size of the text. Notice how much bigger it is and easier to read. As we said, the user
could have zoomed in on the previous version, but many mobile users aren't aware
of this technique. This page loads up immediately in a manner that is much more
usable on a mobile device.

Working with data attributes
As we saw in the previous example, just adding in jQuery Mobile goes a long way
to updating our page for mobile support. But there's a lot more involved to really
prepare our pages for mobile devices. As we work with jQuery Mobile over the
course of the book, we're going to use various data attributes to mark up our pages
in a way that jQuery Mobile understands. But what are data attributes?

HTML5 introduced the concept of data attributes as a way to add ad-hoc values to
the DOM (Document Object Model). As an example, this is a perfectly valid HTML:

<div id="mainDiv" data-ray="moo">Some content</div>

Chapter 1

[17]

In the previous HTML, the data-ray attribute is completely made up. However,
because our attribute begins with data-, it is also completely legal. So what happens
when you view this in your browser? Nothing! The point of these data attributes is
to integrate with other code, like JavaScript, that does… whatever it wants basically
with them. So for example, you could write JavaScript that finds every item in the
DOM with the data-ray attribute and change the background color to whatever was
specified in the value.

This is where jQuery Mobile comes in, making extensive use of data attributes,
both for markup (to create widgets) and behavior (to control what happens when
links are clicked). Let's look at one of the main uses of data attributes within jQuery
Mobile – defining pages, headers, content, and footers:

Listing 1-3: test3.html
<!DOCTYPE html>
<html>
 <head>
 <title>First Mobile Example</title>
 <meta name="viewport" content="width=device-width, initial-
 scale=1">
 <link rel="stylesheet" href="jquery.mobile-1.1.0-rc.1.css" />
 <script type="text/javascript" src="http://code.jquery
 .com/jquery-1.7.1.min.js"></script>
 <script type="text/javascript" src="jquery.
 mobile-1.1.0-rc.1.min.js"></script>
 </head>
 <body>
 <div data-role="page">
 <div data-role="header">Welcome</div>
 <div data-role="content">
 <p>
 Welcome to our first mobile web site. It's going to be the
 best site you've ever seen. Once we get some content. And
 a business plan. But the hard part is done!
 </p>
 </div>
 <div data-role="footer">
 <i>Copyright Megacorp © 2012</i>
 </div>
 </div>
 </body>
</html>

Preparing your First jQuery Mobile Project

[18]

Compare the previous code snippet to listing 1-2 and you can see that the main
difference was the addition of the div blocks. One div block defines the page. Notice
it wraps all of the content inside the body tags. Inside the body tag, there are three
separate div blocks. One has a role of "header", another a role of "content", and the
final one is marked as "footer". All the blocks use data-role which should give you
a clue that we're defining a role for each of the blocks. As we stated above, these
data attributes mean nothing to the browser itself. But let's look what at what jQuery
Mobile does when it encounters these tags:

Notice right away that both the header and footer now have a black background
applied to them. This makes them stick out even more from the rest of the content.
Speaking of content, the page text now has a bit of space between it and the sides.
All of this was automatic once the div tags with the recognized data-roles were
applied. This is a theme you're going to see repeated again and again as we go
through this book. A vast majority of the work you'll be doing will involve the use of
data attributes.

Summary
In this chapter, we talked a bit about how web pages may not always render well in a
mobile browser. We talked about how the simple use of jQuery Mobile can go a long
way to improving the mobile experience for a website. Specifically, we discussed
how you can download jQuery Mobile and add it to an existing HTML page, what
data attributes mean in terms of HTML, and how jQuery Mobile makes use of data
attributes to enhance your pages. In the next chapter, we will build upon this usage
and start working with links and multiple pages of content.

Working with jQuery
Mobile Pages

In the previous chapter, you saw how easy it was to add jQuery Mobile to a simple
HTML page. While it would be nice if every website consisted of one, and only one
page, real websites consist of multiple pages connected via links. jQuery Mobile
makes it easy to work with multiple pages and provides many different ways to
create, and link, to the pages.

In this chapter, we will:

•	 Add multiple pages to one jQuery Mobile file
•	 Discuss how links are modified by jQuery Mobile (and how to disable it)
•	 Demonstrate how additional files can be linked to and added to a jQuery

Mobile site
•	 Discuss how jQuery Mobile automatically handles URLs to allow for easy

bookmarking

Important preliminary points
As mentioned in the previous chapter, all of the code from this chapter is available
via the ZIP file downloaded at Github.

Working with jQuery Mobile Pages

[20]

Adding multiple pages to one file
In the previous chapter, we worked on a file that had a simple page of text. For our
first modification, we're going to add another page to the file and create a link to it.
If you remember, jQuery Mobile looks for a particular <div> wrapper to help it
know where your page is: <div data-role="page">. What makes jQuery Mobile so
simple to use is that we can add another page by simply adding another div using
the same format. The following code snippet Listing 2-1 shows a simple example
of this feature:

Listing 2-1: test1.html
<!DOCTYPE html>
<html>
 <head>
 <meta name="viewport" content="width=device-width, initial-
 scale=1">
 <title>Multi Page Example</title>
 <link rel="stylesheet" href="http://code.jquery.com/mobile/
 latest/jquery.mobile.min.css" />
 <script src="http://code.jquery.com/jquery-
 1.7.1.min.js"></script>
 <script src="http://code.jquery.com/mobile/latest/
 jquery.mobile.min.js"></script>
 </head>
 <body>
 <div data-role="page" id="homePage">
 <div data-role="header">Welcome</div>
 <div data-role="content">
 <p>
 Welcome to our first mobile web site. It's going to be the
 best site you've ever seen. Once we get some content. And
 a business plan. But the hard part is done!
 </p>
 <p>
 You can also learn more about
 Megacorp.
 </p>
 </div>
 <div data-role="footer">
 <i>Copyright Megacorp © 2012</i>
 </div>
 </div>

Chapter 2

[21]

 <div data-role="page" id="aboutPage">
 <div data-role="header">About Megacorp</div>
 <div data-role="content">
 <p>
 This text talks about Megacorp and how interesting it is.
 Most likely though you want to
 return to the home page.
 </p>
 </div>
 <div data-role="footer">
 <i>Copyright Megacorp © 2012</i>
 </div>
 </div>
 </body>
</html>

OK, so as always, we begin our template with a few required bits: the HTML5
doctype, the meta tag, one CSS include, and two JavaScript files. This was covered in
the previous chapter and we will not be mentioning it again. Note that this template
switches over to the CDN version of the CSS and JavaScript libraries:

<link rel="stylesheet" href="http://code.jquery.com/
 mobile/latest/jquery.mobile.min.css" />
<script src="http://code.jquery.com/jquery-1.7.1.min.js"></script>
<script src="http://code.jquery.com/mobile/latest/
 jquery.mobile.min.js"></script>

These versions are hosted by the jQuery team and have the benefit of always being
the latest version. Most likely your visitors will have loaded these libraries already
so they exist in their cache before arriving at your mobile site. While this is the route
we will take going further with our examples, remember that you can always use the
version you downloaded instead.

Notice now we have two <div> blocks. The first hasn't much changed from the
previous example. We've added a unique ID (homepage), as well as a second
paragraph. Notice the link in the second paragraph. It's using a standard internal
link (#aboutPage) to tell the browser that we want to simply scroll the browser
down to that part of the page. The target specified, aboutPage, is defined right below
in another div block.

Working with jQuery Mobile Pages

[22]

In a traditional web page, this would display as two main blocks of text on a
page. Clicking any of the two links would simply scroll the browser up and down
accordingly. However, jQuery Mobile is going to do something significantly different
here. The following figure shows how the page is rendered in the mobile browser:

Notice something? Even though our HTML included two blocks of text (the two
<div> blocks) it only rendered one. jQuery Mobile will always display the first
page it finds, and only that page. Here comes the best part. If you click on the link,
the second page automatically loads. Using your devices back button, or simply
clicking the link, will return you back to the first page. You will also notice a smooth
transition. This is something you can configure later on. But all of the interactions
here, the showing and hiding of pages, the transitions, were all done automatically
by jQuery Mobile. Now is a good time to talk about links and what jQuery Mobile
does when you click on them.

jQuery Mobile, links, and you
When jQuery Mobile encounters a simple link (
Foo), it will automatically capture any clicks on that link and change it to an
Ajax-based load. This means that if it detects that the target is something on the same
page, that is, the hashmark style (href="#foo") links we used above, it will handle
transitioning the user to a new page. If it detects a page to another file on the same
server, it will use Ajax to load the page and replace the currently visible one.

Chapter 2

[23]

If you link to an external site, then jQuery Mobile will leave the link as is and the
normal link behavior will occur. There may be times when you want to disable
jQuery Mobile from doing anything with your links at all. In that case, you can make
use of a data attribute that lets the framework know it shouldn't do anything at all.
An example:

Normal, non-special link

As we saw in Chapter 1, Preparing Your First jQuery Mobile Project, jQuery Mobile
makes heavy use of data attributes. It is also very good at letting you disable
behaviors you don't like. As we continue in the book you will see example after
example of something jQuery Mobile does to enhance your site for mobile devices.
In all of these cases though, the framework recognizes there may be times when you
want to disable that.

Working with multiple files
In an ideal world, we could build an entire website with one file, never have to
perform revisions, and be done with every project by 2 P.M. on Friday. But in the
real world we have to deal with lots of files, lots of revisions, and, unfortunately,
lots of work. In the earlier code listing you saw how we can include two pages
within one file. jQuery Mobile handles this easily enough. But you can imagine that
this would get unwieldy after a while. While we could include ten, twenty, even
thirty pages, this is going to make the file difficult to work with and make the initial
download for the user that much slower.

To work with multiple pages, and files, all we need to do is make a simple link
to other files in the same domain as our first file. We can even combine the first
technique (two pages in one file) with links to other files. In listing 2-2, we've
modified the first example to add a link to a new page. Note that we keep the
existing About page.

Listing 2-2:test2.html
<!DOCTYPE html>
<html>
 <head>
 <meta name="viewport" content="width=device-width, initial-
 scale=1">
 <title>Multi Page Example (2)</title>
 <link rel="stylesheet" href="http://code.jquery.com/mobile/
 latest/jquery.mobile.min.css" />
 <script src="http://code.jquery.com/jquery-
 1.7.1.min.js"></script>
 <script src="http://code.jquery.com/mobile/
 latest/jquery.mobile.min.js"></script>

www.allitebooks.com

http://www.allitebooks.org

Working with jQuery Mobile Pages

[24]

 </head>
 <body>
 <div data-role="page" id="homePage">
 <div data-role="header">Welcome</div>
 <div data-role="content">
 <p>
 Welcome to our first mobile web site. It's going to be the
 best site you've ever seen. Once we get some content. And
 a business plan. But the hard part is done!
 </p>
 <p>
 Find out about our wonderful
 products.
 </p>
 <p>
 You can also learn more about
 Megacorp.
 </p>
 </div>
 <div data-role="footer">
 <i>Copyright Megacorp © 2012</i>
 </div>
 </div>
 <div data-role="page" id="aboutPage">
 <div data-role="header">About Megacorp</div>
 <div data-role="content">
 <p>
 This text talks about Megacorp and how interesting it is.
 Most likely though you want to
 return to the home page.
 </p>
 </div>
 <div data-role="footer">
 <i>Copyright Megacorp © 2012</i>
 </div>
 </div>
 </body>
</html>

Now, let's look at listing 2-3, our products page:

Listing 2-3: products.html
<!DOCTYPE html>
<html>
 <head>
 <meta name="viewport" content="width=device-width, initial-
 scale=1">
 <title>Products</title>

Chapter 2

[25]

 <link rel="stylesheet" href="http://code.jquery.com/mobile/
 latest/jquery.mobile.min.css" />
 <script src="http://code.jquery.com/jquery-
 1.7.1.min.js"></script>
 <script src="http://code.jquery.com/mobile/
 latest/jquery.mobile.min.js"></script>
 </head>
 <body>
 <div data-role="page" id="productsPage">
 <div data-role="header">Products</div>
 <div data-role="content">
 <p>
 Our products include:
 </p>

 Alpha Series
 Beta Series
 Gamma Series

 </div>
 </div>
 </body>
</html>

Our products page is rather simple, but notice that we included the jQuery and
jQuery Mobile resources on top. Why? I mentioned earlier that jQuery Mobile is
going to use Ajax to load in your additional pages. If you open up test2.html in
either Chrome or a Firebug-enabled Firefox you can see this for yourself. Clicking
on the link for products will fire an XHR (think Ajax) request, as shown in the
following role:

That's neat. But what happens when someone bookmarks the application? Let's now
take a look at how jQuery Mobile handles URLs and navigation.

Working with jQuery Mobile Pages

[26]

What is Firebug?
Firebug is an extension for Firefox (www.getfirebug.com) that
provides a suite of developer-related tools for your browser. Chrome
has similar tools built-in. These tools allow for a number of features,
one of which is the ability to monitor XHR (or Ajax) related requests.

jQuery Mobile and URLs
If you've opened up test2.html in your browser and played with it, you may
have noticed something interesting about the URLs as you navigate. Following is
the initial URL. (The address and folder will, of course, differ on your computer):
http://localhost/mobile/c2/test2.html.

After clicking on products, the URL changes to http://localhost/mobile/c2/
products.html. If I click back, and click learn more, I get http://localhost/
mobile/c2/test2.html#aboutPage.

In both sub pages (the Products page and the About page) the URL was changed
by the framework itself. The framework uses history.pushState and history.
replaceState in browsers that support it. For older browsers, or browsers that don't
support JavaScript manipulation of the URL, hash based navigation is used instead.
The products link, when viewed in Internet Explorer, looks like the following:

http://localhost/mobile/c2/test2.html#/mobile/c2/products.html.

What's interesting is that in this bookmark style, test2.html is always loaded first.
You could actually build your products.html to only include the div and be assured
that if the request was made for products first, it would still render correctly. It's the
newer, fancier browsers that have an issue. If you didn't include the proper jQuery
and jQuery Mobile includes, when they go directly to products.html you would
end up with a page that has no styles. It's best to simply always include your proper
header files (the CSS, the JavaScript, and so on). Any decent editor will provide
simple ways to create templates.

Additional customization
Working with multiple pages in jQuery Mobile is pretty simple. You could take
what's been discussed in the first two chapters and build a pretty simple, but mobile
compliant, website right now. The following are a few more interesting tricks you
may want to consider.

Chapter 2

[27]

Page titles
You may have noticed when you clicked on the Products page in the previous
example, the title of the browser correctly updated to Products. This is because
jQuery Mobile noticed, and parsed in, the title tag from the products.html file. But
if you click on the About link, you don't get the same behavior. Obviously, since the
About page resides within the same HTML, it has the same title tag as well. jQuery
Mobile provides a simple way to solve this and once again it involves data tags. The
following code snippet shows a simple way to add a title to embedded pages:

<div data-role="page" id="aboutPage" data-title="About Megacorp">
 <div data-role="header">About Megacorp</div>
 <div data-role="content">
 <p>
 This text talks about Megacorp and how interesting it is. Most
 likely though you want to
 return to the home page.
 </p>
 </div>
 <div data-role="footer">
 <i>Copyright Megacorp © 2012</i>
 </div>
</div>

Notice the new data-title tag added to the div tag. jQuery Mobile will notice then
and when the About page is loaded, it will update the browser title as well. Again,
this is only required when you include multiple pages within one HTML file. You
can find this version in test3.html:

Working with jQuery Mobile Pages

[28]

Prefetching content
The benefit of including all your content within one HTML file is that all of your
pages are available immediately. But the negatives (too difficult to update, too slow
for an initial download) far outweigh that. Most jQuery Mobile applications will
include multiple files and typically just one or two pages per file. You can, however,
ensure speedier loading of some pages to help improve the user experience. Imagine
our Megacorp page. It's got three pages, but the Products page is a separate HTML
file. Since it's the only real content on the site, most likely all of our users will end
up clicking that link. We can tell jQuery Mobile to prefetch the content immediately
upon the main page loading. That way when the user does click the link, the page
will load much quicker. Once again, this comes down to one simple data attribute.

<p>
 Find out about our wonderful <a href="products.html" data-
 prefetch>products.
</p>

In the previous link, all we've done is added data-prefetch to the link. When
jQuery Mobile finds this in a link it will automatically fetch the content right away.
Now, when the user clicks the Products link, they will see the content even quicker.
This modification was saved in test4.html.

Obviously, this technique should be used with care. Given a page with four main
links, you may want to consider only prefetching the two most popular pages, not
all four.

Changing page transitions
Earlier, we mentioned that you could configure the transitions jQuery Mobile
uses between pages. Later in the book, we'll discuss how to do that globally, but
if you want to switch to a different transition for a particular link, just include a
data-transition attribute in your link:

<p>
Find out about our wonderful <a href="products.html" data-
 transition="pop">products.
</p>

Many transitions also support a reverse action. Normally jQuery Mobile figures out
if you need this, but if you want to force a direction, use the data-direction attribute:

<p>
Find out about our wonderful <a href="products.html" data-
 transition="pop" data-direction="reverse">products.
</p>

Chapter 2

[29]

Summary
This chapter further fleshed out the concept of jQuery Mobile pages and how to
work with multiple pages. Specifically we saw how one physical file can contain
many different pages. jQuery Mobile will handle hiding all but the first page. We
also saw how you can link to other pages and how jQuery Mobile uses Ajax to
dynamically load the content into the browser. Next we discussed how jQuery
Mobile handles updating the URL of the browser in order to enable bookmarking.
Finally, we discussed two utilities that will help to improve your page. The first way
was to provide a title for embedded pages. The second technique demonstrated how
to prefetch content to further improve the experience of the users visiting your site.

In the next chapter, we'll take a look at headers, footers, and navigation bars. These
will greatly enhance our pages and make them easier to navigate.

Enhancing Pages
with Headers, Footers,

and Toolbars
Toolbars provide a simple way to add navigation elements to a mobile web site.
They can be especially useful for consistent, or site-wide navigation controls that
users can always refer to when navigating through your application.

In this chapter, we will:

•	 Talk about how to create both headers and footers
•	 Discuss how to turn these headers and footers into useful toolbars
•	 Demonstrate how to create fixed positioned toolbars that always show

up, no matter how large the content of a particular page is
•	 Show an example of navigation bars

Important preliminary points
As mentioned in the previous chapter, all of the code from this chapter is available
via the ZIP file downloaded at Github. Most of the code samples in this chapter are
short, therefore the complete code should be used when testing.

Adding headers
You've already worked with headers before, so the code will be familiar. In this
chapter, we will study them deeper and demonstrate how to add additional
functionality, like buttons, to your site headers.

Enhancing Pages with Headers, Footers, and Toolbars

[32]

If you remember, a header can be defined by simply using a div with the
appropriate role:

<div data-role="header">My Header</div>

The previous tag will add a nice black background to the text making it stand out a
bit more, as shown in the following screenshot:

However, we can make this even nicer. By including an h1 tag around our text,
jQuery Mobile will make the header even larger, and automatically center the text, as
shown in the screenshot following the tag:

<div data-role="header"><h1>My Header</h1></div>

Right away you can see the difference. We can further add functionality to headers
by adding buttons. Buttons could be used for navigation (for example, to return
to the home screen), or to provide links to related pages. Because the center of the
header is used for text, there are only two spaces available for buttons – one to the left
and one to the right. Buttons can be added simply by creating links in your header.
The first link will be to the left of the text and the second link to the right. The
following code snippet is an example:

<div data-role="header">
 Home
 <h1>My Header</h1>
 Contact
</div>

Chapter 3

[33]

When viewed in the mobile browser, you can see the following screenshot:

Notice how the simpler links were automatically turned into big buttons, making
them easier to use and more "control like" for the header. You may be wondering,
what if you only want one button, and want it on the right-hand side? Removing the
first button and keeping the second in place will not work, as shown in the following
code snippet:

<div data-role="header">
 <h1>My Header</h1>
 Contact
</div>

The previous code snippet creates a button in the header but on the left-hand side.
In order to position the button to the right, simply add the class ui-btn-right. The
following code snippet is an example:

<div data-role="header">
 <h1>My Header</h1>
 Contact
</div>

You can also specify ui-btn-left to place a link on the left-hand side, but as
demonstrated in the previous code snippet, that's the normal behavior:

www.allitebooks.com

http://www.allitebooks.org

Enhancing Pages with Headers, Footers, and Toolbars

[34]

Icon sneak peak
While not specifically a header toolbar feature, one interesting feature available to
all buttons in jQuery Mobile is the ability to specify an icon. A set of simple, easily
recognizable icons ship with jQuery Mobile and are available to use immediately.
These icons will be discussed further in Chapter 6, Creating Mobile Optimized Forms,
but as a quick preview, the following code snippet shows a header with two
customized icons:

<div data-role="header">
 Home
 <h1>My Header</h1>
 Contact
</div>

Notice the new attribute, data-icon. When viewed in the browser, you get what is
shown in the following screenshot:

Working with back buttons
Depending on your user's hardware, they may or may not have a physical back
button. For devices that do, like Android phones, hitting the back button will work
just fine in a jQuery Mobile application. Whatever page the user was on previously
will be loaded as soon as the button is clicked. But on other devices, like the iPhone,
there is no such button to click. While you can provide links to navigate around
pages yourself, jQuery Mobile provides some nice built in support for navigating
backwards out of the box.

Chapter 3

[35]

There are two ways you can add an automatic back button. Listing 3-1 shows
a simple, two page jQuery Mobile site. In the second page, we've added a new
data attribute, data-add-back-btn="true". This will create a back button in the
header of the second page automatically. Next, we also added a simple link in the
page content. While the actual URL for the link is blank, make note of the data-
rel="back" attribute. jQuery Mobile will detect this link and automatically send the
user to the previous page. The following code snippet is an example:

Listing 3-1: back_button_test.html
<!DOCTYPE html>
<html>
 <head>
 <title>Back Examples</title>
 <meta name="viewport" content="width=device-width, initial-
 scale=1">
 <link rel="stylesheet" href="http://code.jquery.com/mobile/
 latest/jquery.mobile.min.css" />
 <script src="http://code.jquery.com/jquery-
 1.7.1.min.js"></script>
 <script src="http://code.jquery.com/mobile/
 latest/jquery.mobile.min.js"></script>
 </head>
 <body>
 <div data-role="page">
 <div data-role="header"><h1>My Header</h1></div>
 <div data-role="content">
 <p>
 Go to the sub page...
 </p>
 </div>
 </div>
 <div data-role="page" id="subpage" data-add-back-btn="true">
 <div data-role="header"><h1>Sub Page</h1></div>
 <div data-role="content">
 <p>
 Go back...
 </p>
 </div>
 </div>
 </body>
</html>

Enhancing Pages with Headers, Footers, and Toolbars

[36]

The following screenshot demonstrates the feature in action:

In case you're curious, the text of the button can be customized by simply using
another data attribute in your page div: data-add-back-btn="true" data-back-
btn-text="Return". You can turn on back button support globally and change the
text via JavaScript as well. This will be discussed in Chapter 9, JavaScript Configuration
and Utilities in jQuery Mobile.

Working with footers
Footers are going to be, for the most part, much like headers. We've previously
demonstrated the use of the data-role to create a footer:

<div data-role="footer">My Footer</div>

But, as with our headers, if we add the proper HTML inside the div tag, we can get
even better formatting:

<div data-role="header"><h4>My Footer</h4></div>

With the addition of the h4 tags, our footers are now centered and padded a bit to
make them stand out more, as shown in the following screenshot:

Chapter 3

[37]

As with headers, you can include buttons in the footer. Unlike headers, the buttons
in a footer do not automatically position themselves to the left and right of the text.
In fact, if you decide to make use of text and buttons, you want to ensure you remove
the h4 tag from the footer text or your footer will end up quite large. The following is
a simple example with two buttons:

<div data-role="footer">
 Credits
 Contact
</div>

The following screen shot demonstrates this change:

This works – but notice the buttons don't have much space around them. You can
improve that by adding a class called ui-bar to your footer div tag, as shown in the
following code snippet:

<div data-role="footer" class="ui-bar">
 Credits
 Contact
</div>

Enhancing Pages with Headers, Footers, and Toolbars

[38]

Creating fixed and full screen headers
and footers
In the previous discussion about headers and footers, you saw a few examples of
how buttons can be added. These buttons could be useful for navigating in your site.
But what if a particular page is somewhat long? A blog entry, for example, could
be quite long, especially when viewed on a mobile device. As the user scrolls, the
header, or footer, could be off screen. jQuery Mobile provides a way to create fixed
position headers and footers. With this feature enabled, the header and footer will
always be visible. They may disappear while the user scrolls, but as soon as they lift
their finger and stop scrolling, the header and footer will reappear. This feature can
be enabled by adding data-position="fixed" to the div tag used for either the
header or footer. Listing 3-2 demonstrates an example. In order to ensure the page
actually scrolls, many paragraphs of text were repeated. This has been removed from
the code in the book, but exists in the actual file.

Listing 3-2: longpage.html
<!DOCTYPE html>
<html>
 <head>
 <title>Fixed Positioning Example</title>
 <meta name="viewport" content="width=device-width, initial-
 scale=1">
 <link rel="stylesheet" href="http://code.jquery.com/mobile/
 latest/jquery.mobile.min.css" />
 <script src="http://code.jquery.com/jquery-
 1.7.1.min.js"></script>
 <script src="http://code.jquery.com/mobile/
 latest/jquery.mobile.min.js"></script>
 </head>
 <body>
 <div data-role="page">
 <div data-role="header" data-position="fixed"><h1>My
 Header</h1></div>
 <div data-role="content">
 <p>
 Lorem ipsum dolor sit amet, consectetur adipiscing elit.
 Suspendisse id posuere lacus. Nulla ac sem ut eros
 dignissim interdum a et erat. Class aptent taciti
 sociosqu ad litora torquent per conubia nostra, per
 inceptos himenaeos. In ac tellus est. Nunc consequat
 metus lobortis enim mattis nec convallis tellus pulvinar.
 Nullam diam ligula, dictum sed congue nec, dapibus id
 ipsum. Ut facilisis pretium dui, nec varius dui iaculis
 ultricies. Maecenas sollicitudin urna felis, non faucibus

Chapter 3

[39]

 leo. Cum sociis natoque penatibus et magnis dis
 parturient montes, nascetur ridiculus mus. In id volutpat
 lectus.Quisque mauris ipsum, vehicula id ornare aliquet,
 auctor volutpat dui. Sed euismod sem in arcu dapibus
 condimentum dictum nibh consequat.
 </p>
 </div>
 <div data-role="footer" data-position="fixed"><h4>My
 Footer</h4></div>
 </div>
 </body>
</html>

We won't bother with a screenshot of this example as it won't exactly convey the
feature well, but if you try this in your mobile device, notice while scrolling up and
down, as soon as you lift your finger the header and footer will both pop in. This
gives the user access to them no matter how large the page may be.

Full screen positioning
Another option to consider is what's called full screen positioning. This is a metaphor
commonly used with pictures, but can also be used where fixed positioned headers
and footers are used. In this scenario, the header and footer appear and disappear
with clicks. So, with a photo, this allows you a view of the photo as it is, but also
the ability to get the header and footer back with a simple click. Perhaps, instead of
full screen positioning you can consider it as retrievable headers and footers instead.
In general, this is best used when you want the content of the page to be viewed by
itself, again, an excellent example of this would be pictures.

To enable this feature, simply add data-fullscreen="true" to the div tag used to
define the page. Listing 3-3 demonstrates this feature, as shown in the following
code snippet:

Listing 3-3: fullscreen.html
<!DOCTYPE html>
<html>
 <head>
 <title>Full Screen Example</title>
 <meta name="viewport" content="width=device-width, initial-
 scale=1">
 <link rel="stylesheet" href="http://code.jquery.com/mobile/
 latest/jquery.mobile.min.css" />
 <script src="http://code.jquery.com/jquery-
 1.7.1.min.js"></script>
 <script src="http://code.jquery.com/mobile/
 latest/jquery.mobile.min.js"></script>

Enhancing Pages with Headers, Footers, and Toolbars

[40]

 </head>
 <body>
 <div data-role="page" data-fullscreen="true">
 <div data-role="header" data-position="fixed"><h1>My
 Header</h1></div>
 <div data-role="content">
 <p>

 </p>
 <p>
 </div>
 <div data-role="footer" data-position="fixed"><h4>My
 Footer</h4></div>
 </div>
 </body>
</html>

As with the previous example, the previous code snippet doesn't translate very well
to static screen shots. Open it up in your mobile browser and take a look. Remember,
you can click multiple times to toggle on and off the effect.

Working with navigation bars
You've seen a few examples now which include buttons with headers and footers,
but jQuery Mobile has a cleaner version of this called NavBars (or navigation bars).
These are full screen-wide bars used to hold buttons. jQuery Mobile also supports
highlighting one button at a time as an active button. When used for navigation, this
is an easy way to mark a page as being active.

A NavBar is simply an unordered list wrapped in a div tag that uses data-
role="navbar". Placed inside a footer it looks similar to the following code snippet:

<div data-role="footer">
 <div data-role="navbar">

 <a href="persistent_footer_index.html" class="ui-btn-
 active">Home
 Credits
 Contact

 </div>
</div>

Chapter 3

[41]

Notice the use of class="ui-btn-active" on the first link. This will mark the first
button as active. jQuery Mobile won't be able to do this for you automatically, so
as you build each page and make use of navbar, you will have to move the class
appropriately. The following screenshot shows how it looks:

You can add up to 5 buttons and jQuery Mobile will appropriately size the buttons to
make them fit. If you go over five, then the buttons will simply be split over multiple
lines. Most likely this is not something you want to cover. Overwhelming the user
with too many buttons is a sure way to confuse, and ultimately anger, your users.

You can also include a navbar in your header. If placed after the text, or any other
buttons, jQuery Mobile will automatically drop it to the next line:

<div data-role="header">
 <h1>Home</h1>
 <div data-role="navbar">

 <a href="persistent_footer_index.html" class="ui-btn-
 active">Home
 Credits
 Contact

 </div>
</div>

You can see an example of both of these in action in the file named
header_and_footer_with_navbar.html.

Enhancing Pages with Headers, Footers, and Toolbars

[42]

Persisting navigation bar footers across
multiple pages
Let's now take two of the previous topics and combine them into one incredibly
cool little feature – multiple page persistent footers. It's a bit more work, but you can
create a footer NavBar that will not disappear when switching from page to page. In
order to do this, you have to follow a few simple rules:

•	 Your footer div must be present on all pages
•	 Your footer div must use the same data-id value across all pages
•	 You must use two CSS classes: ui-state-persist and ui-btn-active, on

the active page in the NavBar
•	 You must also use the persistent footer feature

That sounded a bit complex, but it's really just a tiny bit more HTML in your
template. In listing 3-4, an index page for a fictional company makes use of a
footer NavBar. Note the use of ui-state-persist and ui-btn-active for the
currently selected page.

Listing 3-4: persistent_footer_index.html
<!DOCTYPE html>
<html>
 <head>
 <title>Persistent Footer Example</title>
 <meta name="viewport" content="width=device-width, initial-
 scale=1">
 <link rel="stylesheet" href="http://code.jquery.com/mobile/
 latest/jquery.mobile.min.css" />
 <script src="http://code.jquery.com/jquery-
 1.7.1.min.js"></script>
 <script src="http://code.jquery.com/mobile/
 latest/jquery.mobile.min.js"></script>
 </head>
 <body>
 <div data-role="page">
 <div data-role="header"><h1>Home</h1></div>
 <div data-role="content">
 <p>
 This is the Home Page
 </p>

Chapter 3

[43]

 </div>
 <div data-role="footer" data-position="fixed" data-
 id="footernav">
 <div data-role="navbar">

 <a href="persistent_footer_index.html" class="ui-btn-
 active ui-state-persist">Home

 Credits

 Contact

 </div>
 </div>
 </div>
 </body>
</html>

The following screenshot shows how the complete page looks:

www.allitebooks.com

http://www.allitebooks.org

Enhancing Pages with Headers, Footers, and Toolbars

[44]

We don't need to worry so much about the other two pages. You can find them
in the ZIP file you downloaded. The following code snippet is the footer section
from the second page. Notice that the only change here is the movement of the
ui-btn-active class:

<div data-role="footer" data-position="fixed" data-id="footernav">
 <div data-role="navbar">

 Home
 <a href="persistent_footer_credits.html" class="ui-btn-
 active ui-state-persist">Credits
 Contact

 </div>
</div>

Clicking from one page to another shows a smooth transition to each page, but the
footer bar remains. Much like a framed site (don't shudder – frames weren't always
looked at with scorn), the footer will stay as the user navigates throughout the site.

Summary
In this chapter, we discussed how to add headers, footers, and navigation bars
(NavBars) to your jQuery Mobile pages. We showed how the proper div tags
will create nicely formatted headers and footers on your page and how to make
these headers and footers persist over a long page. Further, we demonstrated full
screen mode for headers and footers. These are headers and footers that appear and
disappear with clicks – perfect for images and other items you want to show in a full
screen type view on your mobile device. Finally, we saw how to combine persistent
footers and NavBars to create a footer that doesn't go away when the page changes.

In the next chapter, we'll do a deep dive into lists. Lists are one of the primary ways
folks add navigation and menus to their mobile sites. jQuery Mobile provides a
plethora of options for creating and styling lists.

Working with Lists
Lists are a great way to provide menus to users on a mobile website. jQuery Mobile
provides a wealth of list options, from simple lists to lists with custom thumbnails
and multiple user actions.

In this chapter, we will:

•	 Talk about how to create lists
•	 How to create linked and sub-menu style lists
•	 How to create different styles of lists

Creating lists
As you've (hopefully!) come to learn jQuery Mobile takes an approach of
enhancement when it comes to UI. You take ordinary, simple HTML, add a bit of
markup (sometimes!), and jQuery Mobile will do the heavy lifting of enhancing the
UI. The same process applies to lists. We've all worked with simple lists in HTML
before, the following code snippet is an example:

 Raymond Camden
 Scott Stroz
 Todd Sharp
 Dave Ferguson

Working with Lists

[46]

And we all know how they are displayed (a bulleted list in the case of the previous
code snippet). Let's take that list and drop it in a simple jQuery Mobile optimized
page. Listing 4-1 takes a typical page and drops in our list:

Listing 4-1: test1.html
<!DOCTYPE html>
<html>
 <head>
 <title>Unordered List Example</title>
 <meta name="viewport" content="width=device-width, initial-
 scale=1">
 <link rel="stylesheet" href="http://code.jquery.com/mobile/
 latest/jquery.mobile.min.css" />
 <script src="http://code.jquery.com/jquery-
 1.7.1.min.js"></script>
 <script src="http://code.jquery.com/mobile/
 latest/jquery.mobile.min.js"></script>
 </head>
 <body>
 <div data-role="page">
 <div data-role="header">
 <h1>My Header</h1>
 </div>
 <div data-role="content">

 Raymond Camden
 Scott Stroz
 Todd Sharp
 Dave Ferguson

 </div>
 <div data-role="footer">
 <h1>My Footer</h1>
 </div>
 </div>
 </body>
</html>

Chapter 4

[47]

Given this HTML, jQuery Mobile gives us something nice right away, as shown in
the following screenshot:

We can enhance that list though with a simple change. Take the ordinary tag
from listing 4-1, and add a data-role="listview" attribute, as shown in the
following line of code:

<ul data-role="listview">

In the code you download from Github, you can find this modification in test2.
html. The change, though, is rather dramatic, as shown in the following screenshot:

Working with Lists

[48]

You can see that the items no longer have the bullets in front, but they are much
larger and easier to read. Things get even more interesting when we begin to add
links to our list. In the following code snippet I've added a link to each list item:

<ul data-role="listview">
 Raymond Camden
 Scott Stroz
 Todd Sharp
 Dave Ferguson

Once again you can find the complete file this was taken from in the ZIP file
you downloaded earlier. This one may be found in test3.html. The following
screenshot shows how this code is rendered:

Notice the new arrow image. This was automatically added when jQuery Mobile
detected a link in your list. Now you've turned a relatively simple HTML unordered
list into a simple menu system. This, by itself, is pretty impressive, but as we will see
throughout the remaining chapter, jQuery Mobile provides a wealth of rendering
options to let you customize your lists.

You may wonder how complex a menu system you can create. Because HTML itself
supports nested lists, jQuery Mobile will also render them as well. Listing 4-2
demonstrates an example of a nested list:

Listing 4-2: Nested List
<!DOCTYPE html>
<html>

Chapter 4

[49]

 <head>
 <title>List Example</title>
 <meta name="viewport" content="width=device-width, initial-
 scale=1">
 <link rel="stylesheet" href="http://code.jquery.com/mobile/
 latest/jquery.mobile.min.css" />
 <script src="http://code.jquery.com/jquery-
 1.7.1.min.js"></script>
 <script src="http://code.jquery.com/mobile/
 latest/jquery.mobile.min.js"></script>
 </head>
 <body>
 <div data-role="page">
 <div data-role="header">
 <h1>My Header</h1>
 </div>
 <div data-role="content">
 <ul data-role="listview">
 Games

 Pong
 Breakout
 Tron

 Weapons

 Nukes
 Swords
 Ninja Stars

 Planets

 Earth
 Jupiter
 Uranus

 </div>
 <div data-role="footer">
 <h1>My Footer</h1>
 </div>
 </div>
 </body>
</html>

Working with Lists

[50]

The HTML used in the nested lists, in the previous example aren't special in any
way. It's standard. But jQuery Mobile will take the inner lists and actually hide the
content. Even without links in the upper level LI items, they become links:

Clicking on one of the menu items loads the inner menu. If you run this in your
own mobile device (or in your browser), notice the URL changes too, they create
a bookmarkable view into the application:

Working with list feature
jQuery Mobile provides multiple different styles of lists, as well as different features
that can be applied to them. For the next part of this chapter we'll cover some of
these options available. These aren't in any particular order and are presented as a
gallery of options available to you. You probably will not (and should not!) try to use
all of these within one application, but it's good to keep in mind the various types of
list styles jQuery Mobile has available.

Chapter 4

[51]

Creating Inset lists
One of the simplest, and slickest changes you can make to your lists is to turn
them into Inset lists. These are lists that do not take up the full width of the
device. Taking the initial list we modified with data-role="content", we can
simply add another attribute, data-inset="true", for the following code block
(found in test5.html):

<ul data-role="listview" data-inset="true">
 Raymond Camden
 Scott Stroz
 Todd Sharp
 Dave Ferguson

The result is now very different from the earlier example:

Working with Lists

[52]

Creating list dividers
Another interesting UI element you may wish to add to your lists are dividers.
These are a great way to separate a long list into something that is a bit easier
to scan. Adding a list divider is as simple as adding a li tag that makes use of
data-role="list-divider". The following code snippet shows a simple
example of this element:

<ul data-role="listview" data-inset="true">
 <li data-role="list-divider">Active
 Raymond Camden
 Scott Stroz
 Todd Sharp
 <li data-role="list-divider">Archived
 Dave Ferguson

In the previous code block, note the two new li tags making use of the
list-divider role. In this example, I've used these to separate the list of
people into two groups. You can find the complete template in test6.html.
The following screenshot shows how this is rendered:

Chapter 4

[53]

Creating lists with count bubbles
Yet another interesting UI trick you can perform with jQuery Mobile lists are count
bubbles. This is a UI enhancement that adds a simple number to the end of each list
item. The numbers are wrapped in a bubble like look which is commonly used for
e-mail-style interfaces. In the following code snippet, the count bubble is used to
signify the number of cookies consumed at a technical conference:

<ul data-role="listview" data-inset="true">
 <li data-role="list-divider">Cookies Eaten
 Raymond Camden 9
 Scott Stroz 4
 Todd Sharp 13
 Dave Ferguson 8

In the previous code snippet, we make use of a span tag with a class of
ui-list-count to wrap the numbers representing the amount of cookies
eaten by each person. A simple HTML change, but consider how nicely it
gets rendered, as shown in the following screenshot:

You can find a complete example of this feature in test7.html.

www.allitebooks.com

http://www.allitebooks.org

Working with Lists

[54]

Using thumbnails and icons
Another common need with lists is to include images. jQuery Mobile supports
both thumbnails (smallish images) and icons (even smaller images) that display
well within the list control. Let's first look at including thumbnails within your list.
Assuming you already have nicely sized images (our examples are all 160 pixels
wide by 160 pixels high), you can simply include them within each li element as
demonstrated in the following code snippet:

<ul data-role="listview" data-inset="true">
 Raymond Camden
 Scott Stroz
 Todd Sharp
 Dave Ferguson

Nothing special is done with the image, no data attribute or class is added. jQuery
Mobile will automatically left align the image and place the item text aligned to the
top of each li block:

Chapter 4

[55]

You can find the previous demonstration in test8.html. So what about icons? To
include an icon in your code, add the class ui-li-icon to your image. (Note that the
beginning of the class is ui, not ul.) The following code snippet is an example of that
with our same list:

<ul data-role="listview" data-inset="true">

 Raymond Camden
 <img src="scott_small.png" class="ui-li-
 icon"> Scott Stroz
 <img src="todd_small.png" class="ui-li-
 icon"> Todd Sharp
 <img src="dave_small.png" class="ui-li-
 icon"> Dave Ferguson

jQuery Mobile does shrink images when used with this class, but in my experience,
the formatting was better when the image was resized beforehand. Doing so also
improves the speed of your web page as the smaller images should result in quicker
download times. The images above are all 16 pixels wide and high each. And the
result is…

You can find the previous example in test9.html.

Working with Lists

[56]

Creating Split Button lists
Another interesting feature of jQuery Mobile lists is the Split Button list. This is
simply a list with multiple actions. There's a main action activated when the user
clicks on the list item and a secondary action available via a button at the end of
the list item. For this example, let's start with the screenshot first and then show
how it's done:

As you can see, each list item has a secondary icon at the end of the row. This is an
example of a split item list and is defined by simply adding a second link to a list
item. For example:

<ul data-role="listview" data-inset="true">

 Raymond CamdenDelete
 <img src="scott_small.png" class="ui-li-
 icon"> Scott StrozDelete
 <img src="todd_small.png" class="ui-li-
 icon"> Todd SharpDelete
 <img src="dave_small.png" class="ui-li-
 icon"> Dave FergusonDelete

Chapter 4

[57]

Note that the second link's text, Delete, is actually replaced by the icon. You can
specify an icon by adding the data attribute split-icon to your ul tag, as shown in
the following line of code:

<ul data-role="listview" data-inset="true" data-split-icon="delete">

The complete code for this example may be found in test10.html.

Using a search filter
For our last and final list feature we will look at search filters. The lists we've worked
with so far have been pretty short. Longer lists though may make it difficult for users
to find what they are looking for. jQuery Mobile provides an incredibly simple way
to add a search filter to your lists. By adding data-filter="true" to any list, jQuery
Mobile will automatically add a search field on top that filters as you type:

<ul data-role="listview" data-inset="true" data-filter="true">
 Raymond Camden
 Scott Stroz
 Todd Sharp
 Dave Ferguson
 (lots of items….)

The result looks similar to the following screenshot:

Working with Lists

[58]

If you begin typing in the previous field, the list automatically filters out the results
as you type:

By default, the search is case-insensitive and matches anywhere in the list item.
You can specify placeholder text for the search form by using data-placeholder-
text="Something" in your ul tag. You can also specify a specific theme for the
form using data-filter-theme. Finally, you can use JavaScript to add your own
custom list filtering logic on a case by case basis.

Summary
This chapter discussed how to work with list views in jQuery Mobile. We saw how
to turn a regular HTML list into a mobile optimized list and we demonstrated the
numerous types of list features available with the framework.

In the next chapter, we'll take what we've learned already and build a real (albeit a
bit simple) mobile-optimized website for a hotel.

Getting Practical – Building a
Simple Hotel Mobile Site

In the past four chapters, we've looked at a few features of jQuery Mobile,
but we already have enough knowledge to build a simple, pretty basic
mobile-optimized website.

In this chapter, we will:

•	 Discuss what our hotel mobile website will contain
•	 Create the hotel mobile website using jQuery Mobile
•	 Discuss what could be done to make the site more interactive

Welcome to Hotel Camden
The Hotel Camden, known throughout the world, has had a web presence for some
time now. (Ok, just to be clear, we're making this up!) They were an early innovator
in the online world, beginning with a simple website in 1996 and gradually
improving their online presence over the years. Online visitors to the Hotel Camden
can now see virtual tours of rooms, check the grounds with a stunning 3D Adobe
Flash plugin, and actually make reservations online. Recently, though, the owners
of Hotel Camden have decided they want to move into the mobile space. For now,
they want to start simply and create a mobile-optimized site which includes the
following features:

•	 Contact Information: This will include both a phone number and an e-mail
address. Ideally, the user will be able to click these and get connected to
a real person.

Getting Practical – Building a Simple Hotel Mobile Site

[60]

•	 Map of the hotel location: This should include the address and possibly
a map too.

•	 Room types available: This can be a simple list of the rooms from the
simplest to the most grand.

•	 And finally – provide a way for the user to get to the real website. We are
accepting that our mobile version will be somewhat limited (for this version),
so at a minimum we should provide a way for users to return to the desktop
version of the site.

The home page
Let's begin with the initial home page for the Camden Hotel. This will provide a
simple list of options, as well as a bit of marketing text on the top. The text doesn't
actually help anyone but the marketing staff won't let us release the site without it:

Listing 5-1: index.html
<!DOCTYPE html>
<html>
 <head>
 <title>The Camden Hotel</title>
 <meta name="viewport" content="width=device-width, initial-
 scale=1">
 <link rel="stylesheet" href="http://code.jquery.com/mobile/
 latest/jquery.mobile.min.css" />
 <script src="http://code.jquery.com/jquery-
 1.7.1.min.js"></script>
 <script src="http://code.jquery.com/mobile/
 latest/jquery.mobile.min.js"></script>
 </head>
 <body>
 <div data-role="page">
 <div data-role="header">
 <h1>Camden Hotel</h1>
 </div>
 <div data-role="content">

Chapter 5

[61]

 <p>
 Welcome to the Camden Hotel. We are a luxury hotel
 specializing in catering to the rich and overly
 privileged. You will find our accommodations both
 flattering to your ego, as well as damaging to your
 wallet. Enjoy our complimentary wi-fi access, as well as
 caviar baths while sleeping in beds with gold thread.
 </p>
 <ul data-role="listview" data-inset="true">
 Find Us
 Our Rooms
 Contact Us
 Non-Mobile Site

 </div>
 <div data-role="footer">
 <h4>© Camden Hotel 2012</h4>
 </div>
 </div>
 </body>
</html>

At a high level, the code in listing 5-1 is simply another instance of the jQuery
page model we've discussed before. You can see what the CSS and JavaScript
includes, as well as the div wrappers that set up our page, header, footer, and the
content. Within our content div you can also see a list being used. We've left the URL
blank for the Non-Mobile site option ("Non-Mobile Site") as we don't have a real
website for the Camden Hotel.

The order of the list items is also thought out. Each item is listed in order of what the
staff feel are the most common requests, with the number one being simply finding
the hotel and the last option (ignoring leaving the site) being able to contact the hotel.

Getting Practical – Building a Simple Hotel Mobile Site

[62]

Over all – the idea of this example is to provide quick access to the most important
aspects of what we think the hotel customers will need. The following screenshot
shows how the site looks:

It isn't terribly sexy, but it renders well and is pretty easy to use. Later on you'll
learn how to theme jQuery Mobile so your site doesn't look like every other
example out there.

Finding the hotel
The next page of our mobile website is focused on helping the user find the hotel. This
will include the address, as well as a map. Listing 5-2 shows how this is done:

Listing 5-2: find.html
<!DOCTYPE html>
<html>
 <head>
 <title>The Camden Hotel - Find Us</title>

Chapter 5

[63]

 <meta name="viewport" content="width=device-width, initial-
 scale=1">
 <link rel="stylesheet" href="http://code.jquery.com/mobile/
 latest/jquery.mobile.min.css" />
 <script src="http://code.jquery.com/jquery-
 1.7.1.min.js"></script>
 <script src="http://code.jquery.com/mobile/latest/
 jquery.mobile.min.js"></script>
 </head>
 <body>
 <div data-role="page">
 <div data-role="header">
 <h1>Find Us</h1>
 </div>
 <div data-role="content">
 <p>
 The Camden Hotel is located in beautiful downtown
 Lafayette, LA. Home of the Ragin Cajuns, good food, good
 music, and all around good times, the Camden Hotel is
 smack dab in the middle of one of the most interesting
 cities in America!
 </p>
 <p>
 400 Kaliste Saloom

 Lafayette, LA

 70508
 </p>
 <p>
 <img src="http://maps.googleapis.com/maps/api/
 staticmap?center=400+Kaliste+Saloom,+Lafayette,
 LA&zoom=12&size=150x150&scale=2&maptype=roadmap&
 markers=label:H%7C400+Kaliste+Saloom,+Lafayette,
 LA&sensor=false">
 </p>
 </div>
 <div data-role="footer">
 <h4>© Camden Hotel 2012</h4>
 </div>
 </div>
 </body>
</html>

Getting Practical – Building a Simple Hotel Mobile Site

[64]

The beginning of the template has our boiler plate included again, and as before,
we have some marketing speak fluff on top. Immediately below this though is the
address and the map. We created the map using one of the cooler Google features,
Static Maps. You can read more about Google Static Maps at its home page: http://
code.google.com/apis/maps/documentation/staticmaps/. Essentially, it is a
way to create static maps via URL parameters. There's no zooming or panning in
these maps, but if you are just trying to show a user where your business is located,
it's an incredibly powerful and simple way to do so. While there are a large number
of options you can use with this API, our example simply centers it on an address
and adds a marker there as well. The label H is used for the marker, but a custom
icon could be used instead. The following screenshot shows how this looks:

You could play around with that map URL a bit more to change the zoom, change
the colors, and so on to your liking.

Chapter 5

[65]

Listing the hotel rooms
Now let's look at rooms.html. This is where we will list out the room types available
at the hotel:

Listing 5-3: rooms.html
<!DOCTYPE html>
<html>
 <head>
 <title>The Camden Hotel - Our Rooms</title>
 <meta name="viewport" content="width=device-width, initial-
 scale=1">
 <link rel="stylesheet" href="http://code.jquery.com/mobile/
 latest/jquery.mobile.min.css" />
 <script src="http://code.jquery.com/jquery-
 1.7.1.min.js"></script>
 <script src="http://code.jquery.com/mobile/
 latest/jquery.mobile.min.js"></script>
 </head>
 <body>
 <div data-role="page">
 <div data-role="header">
 <h1>Our Rooms</h1>
 </div>
 <div data-role="content">
 <p>
 Select a room below to see a picture.
 </p>
 <ul data-role="listview" data-inset="true">
 Simple Elegance
 Gold Standard
 Emperor Suite

 </div>
 <div data-role="footer">
 <h4>© Camden Hotel 2012</h4>
 </div>
 </div>
 </body>
</html>

Getting Practical – Building a Simple Hotel Mobile Site

[66]

The rooms page is simply a list of their rooms. The hotel has three levels of rooms,
each linked to from the list, so the user can get details. You can find all three files in
the ZIP downloaded from Github, but let's look at one of them in detail:

Listing 5-4: room_high.html
<!DOCTYPE html>
<html>
 <head>
 <title>The Camden Hotel - Emperor Suite</title>
 <meta name="viewport" content="width=device-width, initial-
 scale=1">
 <link rel="stylesheet" href="http://code.jquery.com/mobile/
 latest/jquery.mobile.min.css" />
 <script src="http://code.jquery.com/jquery-
 1.7.1.min.js"></script>
 <script src="http://code.jquery.com/mobile/
 latest/jquery.mobile.min.js"></script>
 </head>
 <body>
 <div data-role="page" data-fullscreen="true">
 <div data-role="header" data-position="fixed">
 <h1>Emperor Suite</h1>
 </div>
 <div data-role="content">

 </div>
 <div data-role="footer" data-position="fixed">
 <h4>© Camden Hotel 2012</h4>
 </div>
 </div>
 </body>
</html>

Chapter 5

[67]

The room detail page is only an image. Not very helpful, but it gets the point across.
However, notice that we use a trick we learned in Chapter 3, Enhancing Pages with
Toolbars – full screen mode. This allows the user to quickly click and hide the headers
so they can see the room in all its glory:

Getting Practical – Building a Simple Hotel Mobile Site

[68]

Contacting the hotel
Now let's take a look at the contact page. This will provide the user with
information on how to reach the hotel:

Listing 5-5: contact.html
<!DOCTYPE html>
<html>
 <head>
 <title>The Camden Hotel - Contact</title>
 <meta name="viewport" content="width=device-width, initial-
 scale=1">
 <link rel="stylesheet" href="http://code.jquery.com/mobile/
 latest/jquery.mobile.min.css" />
 <script src="http://code.jquery.com/jquery-
 1.7.1.min.js"></script>
 <script src="http://code.jquery.com/mobile/
 latest/jquery.mobile.min.js"></script>
 </head>
 <body>
 <div data-role="page">
 <div data-role="header">
 <h1>Contact Us</h1>
 </div>
 <div data-role="content">
 <p>
 Phone:
 555-555-5555

 Email:
 people@camdenhotel.fake
 </p>
 </div>
 <div data-role="footer">
 <h4>© Camden Hotel 2012</h4>
 </div>
 </div>
 </body>
</html>

Chapter 5

[69]

As before, we've wrapped our page in the proper script blocks and div tags. Make
a special note of our two links. Both the phone and e-mail links use URLs that may
not look familiar to you. The first, tel:555-555-555, is actually a way to ask the
mobile device to call a phone number. Clicking it brings up the dialer, as shown in
the following screenshot:

This makes it easy for the user to quickly call the hotel. Similarly the mailto link will
allow for quickly jotting an email off to the hotel. Other URL schemes exist, including
ones to send an SMS message. As you can probably guess, this scheme uses the form
"sms", so to begin an SMS message to a phone number, you could use the following
URL: sms://5551112222.

Getting Practical – Building a Simple Hotel Mobile Site

[70]

Summary
In this chapter, we took what we've learned so far and built a very simple, but
effective, website for a fake hotel. This website shared essential information for
folks needing to learn about the hotel while on a mobile device, made use of
Google's Static Maps API to create a simple map showing the hotel's location, and
demonstrates the use of tel and mailto URL schemes for automatic phone dialing
and e-mailing.

In the next chapter, we'll take a look at forms and how they are automatically
improved with jQuery Mobile.

Working with Forms and
jQuery Mobile

In this chapter, we will look at forms. Forms are a critical part of most websites
as they provide the primary way for users to interact with the website. jQuery
Mobile goes a long way to making forms both usable and elegantly designed for
mobile devices.

In this chapter, we will:

•	 Talk about what jQuery Mobile does with forms
•	 Work with a sample form and describe how the results are handled
•	 Discuss specifics about how to build certain types of forms and make use of

jQuery Mobile conventions

Before you begin
In this chapter, we're going to talk about forms and how jQuery Mobile enhances
them. As part of our discussion, we will be posting our forms to the server. In order
to have the server actually do something with the response we're going to make use
of an application server from Adobe called ColdFusion. ColdFusion is not free for
production use, but is 100% free for development and is a great server for building
web applications. You do not need to download ColdFusion. If you do not, the
forms you use within this chapter should not be submitted. This chapter does talk
about how forms are submitted, but the response to the forms isn't really critical. If
you know another language, like PHP, you should be able to simply mimic the code
ColdFusion is using to echo back the form data.

Working with Forms and jQuery Mobile

[72]

ColdFusion (currently version 9) can be downloaded at http://www.adobe.com/go/
coldfusion. Versions exist for Windows, OS X, and Linux. As stated above, you can
run ColdFusion for free on your development server with no timeout restrictions.

What jQuery Mobile does with forms
Before we get into the code, there are two very important things you should know
about what jQuery Mobile will do with your HTML forms:

•	 All forms will submit their data via Ajax. That means the data is sent directly
to the action of your form and the result will be brought back to the user and
placed within the page that held the form. This prevents a full page reload.

•	 All form fields are automatically enhanced, each in their own way. As we go
on in the chapter you will see examples of this, but basically jQuery Mobile
modifies your form fields to work better on a mobile device. A great example
of this are buttons. jQuery Mobile automatically widens and heightens
buttons to make them easier to click in the small form factor of a phone. If
for some reason you don't like this, jQuery Mobile provides a way to disable
this, either on a global or per use basis.

With that in mind, let's look at our first example in Listing 6-1:

Listing 6-1: test1.html
<!DOCTYPE html>
<html>
 <head>
 <title>Form Example 1</title>
 <meta name="viewport" content="width=device-width, initial-
 scale=1">
 <link rel="stylesheet" href="http://code.jquery.com/mobile/
 latest/jquery.mobile.min.css" />
 <script src="http://code.jquery.com/jquery-
 1.7.1.min.js"></script>
 <script src="http://code.jquery.com/mobile/
 latest/jquery.mobile.min.js"></script>
 </head>
 <body>
 <div data-role="page">
 <div data-role="header">
 <h1>Form Demo</h1>
 </div>
 <div data-role="content">
 <form action="echo.cfm" method="post">
 <div data-role="fieldcontain">

Chapter 6

[73]

 <label for="name">Name:</label>
 <input type="text" name="name" id="name" value="" />
 </div>
 <div data-role="fieldcontain">
 <label for="email">Email:</label>
 <input type="text" name="email" id="email" value="" />
 </div>
 <div data-role="fieldcontain">
 <input type="submit" name="submit" value="Send" />
 </div>
 </form>
 </div>
 </div>
 </body>
</html>

As usual, the template begins with the proper includes and wraps the main content
of our page with our specially marked up div tags. We will focus on the form fields
with the main content area. It is recommended that every form field be wrapped
with the following tag:

<div data-role="fieldcontain">
</div>

This will help jQuery Mobile align the label and form field. You'll see why in a
moment. Our form has two text fields, one for name and one for e-mail. The last item
is just the submit button. So outside of using a fieldcontain wrapper and ensuring
we had labels for our form fields, nothing else special is going on here. Right away
though you can see some pretty impressive changes to the form:

Working with Forms and jQuery Mobile

[74]

Notice how the labels are presented above the form fields. This gives the fields more
space on the mobile device. Also notice the submit button is large and easy to click.
If we rotate the device, jQuery Mobile updates the display to take advantage of the
additional space:

Notice that the fields now line up directly to the right of their labels. So what
happens when the form is submitted? As mentioned at the beginning of this chapter,
we're making use of ColdFusion to handle responding to the form requests. Our
echo.cfm template will simply loop over all the form fields and display them back
out to the user:

Listing 6-2: echo.cfm
<div data-role="page">
 <div data-role="header">
 <h1>Form Result</h1>
 </div>
 <div data-role="content">
 <cfloop item="field" collection="#form#">
 <cfoutput>
 <p>
 The form field #field# has the value #form[field]#.
 </p>
 </cfoutput>
 </cfloop>
 </div>
</div>

Chapter 6

[75]

If you do not want to install ColdFusion, you can simply edit the form action value
in listing 6-1 to point to a PHP file, or any other server-side processor. You may
also simply change it to test1.html, the file itself. Nothing will happen when you
submit, but you will not get an error either. Here's what the device will show after
hitting submit:

Another great example of how jQuery Mobile updates form fields is with textarea.
textarea, by default, can be very difficult to work with on a mobile device,
especially as the amount of text grows beyond the size of the textarea and a scroll
bar is added. In the following code listing, we've simply modified the previous form
to include a third item, a bio field that uses textarea. The complete file may be
found in the book's code ZIP file. The following code snippet is the div block added
after the previous two fields:

<div data-role="fieldcontain">
 <label for="bio">Bio:</label>
 <textarea name="bio" id="bio" />
</div>

Working with Forms and jQuery Mobile

[76]

When viewed on the device, the textarea expands to take in more width like the
regular text fields, and grows taller:

But once you begin typing, and entering multiple lines of text, the textarea
automatically expands:

This is much easier to read than if scroll bars had been used. Now let's look at
another common form option – radio buttons and checkboxes.

Working with radio buttons and checkboxes
Both radio buttons and checkboxes are also updated to work nicely on a mobile
device, but require a tiny bit more code. In the earlier examples, we wrapped form
fields with a div tag that made use of data-role="fieldcontain". When working
with radio buttons and checkboxes, one more tag is required:

<fieldset data-role="controlgroup">

Chapter 6

[77]

This fieldset tag will be used to group together your radio buttons or checkboxes.
Listing 6-3 demonstrates one set of radio buttons and one checkbox group:

Listing 6-3: test3.html
<!DOCTYPE html>
<html>
 <head>
 <title>Form Example 3</title>
 <meta name="viewport" content="width=device-width, initial-
 scale=1">
 <link rel="stylesheet" href="http://code.jquery.com/mobile/
 latest/jquery.mobile.min.css" />
 <script src="http://code.jquery.com/jquery-
 1.7.1.min.js"></script>
 <script src="http://code.jquery.com/mobile/
 latest/jquery.mobile.min.js"></script>
 </head>
 <body>
 <div data-role="page">
 <div data-role="header">
 <h1>Form Demo</h1>
 </div>
 <div data-role="content">
 <form action="echo.cfm" method="post">
 <div data-role="fieldcontain">
 <fieldset data-role="controlgroup">
 <legend>Favorite Movie:</legend>
 <input type="radio" name="favoritemovie"
 id="favoritemovie1" value="Star Wars">
 <label for="favoritemovie1">Star Wars</label>
 <input type="radio" name="favoritemovie"
 id="favoritemovie2" value="Vanilla Sky">
 <label for="favoritemovie2">Vanilla Sky</label>
 <input type="radio" name="favoritemovie"
 id="favoritemovie3" value="Inception">
 <label for="favoritemovie3">Inception</label>
 </fieldset>
 </div>
 <div data-role="fieldcontain">
 <fieldset data-role="controlgroup">
 <legend>Favorite Colors:</legend>
 <input type="checkbox" name="favoritecolor"
 id="favoritecolor1" value="Green">
 <label for="favoritecolor1">Green</label>

Working with Forms and jQuery Mobile

[78]

 <input type="checkbox" name="favoritecolor"
 id="favoritecolor2" value="Red">
 <label for="favoritecolor2">Red</label>
 <input type="checkbox" name="favoritecolor"
 id="favoritecolor3" value="Yellow">
 <label for="favoritecolor3">Yellow</label>
 </fieldset>
 </div>
 <input type="submit" name="submit" value="Send" />
 </div>
 </form>
 </div>
 </div>
 </body>
</html>

Our form has two main questions – what is your favorite movie and what are your
favorite colors? Each block is wrapped in the div tag we mentioned before. Inside
this is the fieldset using data-role="controlgroup". Finally, you then have your
radio and checkbox groups. It is important to include the labels within a proper label
tab, as each of the previous examples have. Once rendered, jQuery Mobile groups
these into a nice looking, singular control:

Chapter 6

[79]

Notice the wide, clickable regions for each item. This makes it much easier to select
items on a mobile device. Another interesting feature of both of these controls is the
ability to turn them into horizontal button bars. In test4.html, both fieldset tags
were modified to include a new data attribute:

<fieldset data-role="controlgroup" data-type="horizontal">

As you can see, the effect doesn't work well with the longer text in the first group, so
be sure to test it.

Working with select menus
Yet another example of jQuery Mobile form enhancement is with select menus. As
with our earlier examples, we make use of a fieldcontain div and label tag, but
outside of that, the select tag is used as normal. The following code snippet is from
test5.html:

<div data-role="fieldcontain">
 <label for="favmovie">Favorite Movie:</label>
 <select name="favmovie" id="favmovie">
 <option value="Star Wars">Star Wars</option>
 <option value="Revenge of the Sith">Revenge of the Sith</option>
 <option value="Tron">Tron</option>
 <option value="Tron Legacy">Tron Legacy</option>
 </select>
</div>

Working with Forms and jQuery Mobile

[80]

On the mobile device, the initial display of the select is modified to be easier to hit:

However, once clicked, the device's native menu will take over. This will look
different on the platform you are using. The following screenshot shows how
Android renders the menu:

Another option to use with select fields is grouping. jQuery Mobile allows you to
vertically or horizontally group together multiple select fields. In both cases, all
that's required is to wrap your select fields in a fieldset using the data-role of
controlgroup, much like we did earlier for radio and checkboxes. The following
code snippet is an example of a vertically aligned group of select fields:

<div data-role="fieldcontain">
 <fieldset data-role="controlgroup">
 <legend>Trip Setup:</legend>
 <label for="location">Location</label>

Chapter 6

[81]

 <select name="location" id="location">
 <option value="Home">Home</option>
 <option value="Work">Work</option>
 <option value="Moon">Moon</option>
 <option value="Airport">Airport</option>
 </select>
 <label for="time">Time</label>
 <select name="time" id="time">
 <option value="Morning">Morning</option>
 <option value="Afternoon">Afternoon</option>
 <option value="Evening">Evening</option>
 </select>
 <label for="time">Meal</label>
 <select name="meal" id="meal">
 <option value="Meat">Meat</option>
 <option value="Vegan">Vegan</option>
 <option value="Kosher">Kosher</option>
 </select>
 </fieldset>
</div>

The rest of this template can be found in test6.html. The following screenshot
shows how it looks:

Note how jQuery Mobile groups them together and nicely rounds the corners. The
horizontal version can be achieved by adding a data-type="horizontal" attribute
to the fieldset tag. It's also important to remove the div using "fieldcontain". Here
is an example (the complete file may be found in test7.html):

<div data-role="page">
 <div data-role="header">
 <h1>Form Demo</h1>
 </div>
 <div data-role="content">

Working with Forms and jQuery Mobile

[82]

 <form action="echo.cfm" method="post">
 <fieldset data-role="controlgroup" data-type="horizontal">
 <legend>Trip Setup:</legend>
 <label for="location">Location</label>
 <select name="location" id="location">
 <option value="Home">Home</option>
 <option value="Work">Work</option>
 <option value="Moon">Moon</option>
 <option value="Airport">Airport</option>
 </select>
 <label for="time">Time</label>
 <select name="time" id="time">
 <option value="Morning">Morning</option>
 <option value="Afternoon">Afternoon</option>
 <option value="Evening">Evening</option>
 </select>
 <label for="meal">Meal</label>
 <select name="meal" id="meal">
 <option value="Meat">Meat</option>
 <option value="Vegan">Vegan</option>
 <option value="Kosher">Kosher</option>
 </select>
 </fieldset>
 <div data-role="fieldcontain">
 <input type="submit" name="submit" value="Send" />
 </div>
 </form>
 </div>
</div>

The following screenshot shows the result:

Search, toggle, and slider fields
Along with taking regular form fields and making them work better, jQuery Mobile
also helps make some of the newer HTML5 form fields work correctly across
multiple browsers. While support still isn't nailed down on the desktop across every
major browser, jQuery Mobile provides built-in support for search, toggle, and slider
fields. Let's take a look at each one.

Chapter 6

[83]

Search fields
The simplest of the three new fields, search fields simply adds a quick delete icon to
the end of the field after you begin typing. Some devices will also put an hourglass
icon in front as well, to help convey the idea of the field being used for some type
of search. To use this field, simply switch your type from text to search. As in the
following example from test8.html:

<div data-role="fieldcontain">
 <label for="name">Name:</label>
 <input type="search" name="name" id="name" value="" />
</div>

The following screenshot is the result. Notice that I've typed a bit and the field
automatically adds a Delete icon at the end:

Flip toggle fields
Flip toggle fields are controls that flip back between one and two values. Creating
a toggle field involves using a select control with a particular data-role value. Now,
here is where things may get a bit confusing. To enable a select field to turn into
a toggle field, you use data-role="slider". In a little bit we're going to look at
another slider control, but it uses a different technique. Just keep in mind that even
though you'll be seeing "slider" in the HTML, it's really a toggle control we are
creating. Let's look at a simple example. (You can find the complete source for this in
test9.html):

<div data-role="fieldcontain">
 <label for="gender">Gender:</label>
 <select name="gender" id="gender" data-role="slider">
 <option value="0">Male</option>
 <option value="1">Female</option>
 </select>
</div>

Working with Forms and jQuery Mobile

[84]

Once rendered by jQuery Mobile, the following screenshots show the result, first
with the default Male option, and then Female:

Slider fields
For the last of our special fields, we take a look at sliders. Like search fields, this
is based on an HTML5 specification that works in some browsers and not others.
jQuery Mobile simply makes it work everywhere. To enable this field, we take a
regular text field and switch the type to "range" To give our slider a range we
also provide a min and max value. You can also add additional color to the slider
by adding the attribute: data-highlight="true". The following code snippet is a
sample. (You can find the complete file in test10.html):

<div data-role="fieldcontain">
 <label for="coolness">Coolness:</label>
 <input type="range" name="coolness" id="coolness" min="0" max="100"
 value="22" data-highlight="true">
</div>

The result is a slider control and an input field. Both allow you to modify the value
between the minimum and maximum value:

Note – the HTML5 specification for the range supports a step attribute. While this
works in some browsers, it is not yet directly supported by jQuery Mobile. In
other words, jQuery Mobile won't try to add this support on a browser that
doesn't have it built-in. You can add the attribute as long as you are aware it
may not always work as intended.

Chapter 6

[85]

Using native form controls
Now you've seen how far jQuery Mobile will go to enhance and empower your
form fields to work better on mobile devices, but what if you don't like what jQuery
Mobile does? What if you love its updates to buttons but despise its changes to
drop-downs? Luckily jQuery Mobile provides a simple way to disable automatic
enhancement. In each field you want to be left alone, simply add data-role="none"
to the markup. So given the following HTML, the first item will be updated while the
second will not:

<input type="submit" value="Awesome">
<input type="submit" value="Not So Awesome" data-role="none">

Another option is to disable it when jQuery Mobile is initialized. That option will be
discussed in Chapter 9, JavaScript Configuration and Utilities in jQuery Mobile.

Working with "mini" fields
In the previous examples, we saw how jQuery Mobile automatically enhanced form
fields to make them easier on smaller, touch based devices. In general, jQuery Mobile
took your fields and made them nice and fat. While that's desirable most of the time,
you may want to put your form fields on a bit of a diet. This is especially true for
placing form fields in a header or footer. jQuery Mobile supports an attribute on
any form field that creates a smaller version of the field: data-mini="true". The
following code snippet is a complete example:

<div data-role="fieldcontain">
 <label for="name">Name:</label>
 <input type="search" name="name" id="name" value="" />
</div>
<div data-role="fieldcontain">
 <label for="name">Name (Slim):</label>
 <input type="search" name="name" id="name" value="" data-
 mini="true" />
</div>

Working with Forms and jQuery Mobile

[86]

The result is a bit subtle, but you can see the height difference in the second field in
the following screenshot:

This example may be found with the rest of the files in a file named test12.html.

Summary
In this chapter, we discussed forms and how they are rendered in a jQuery Mobile
application. We discussed how jQuery Mobile automatically turns all form
submissions into Ajax based calls and updates form fields to work better on mobile
devices. Not only are all your form fields automatically updated, but you can also
make use of new controls like the toggle, slider, and search inputs.

In the next chapter, we'll take a look at modal dialogs, widgets, and layout grids.
These provide additional UI options for your mobile optimized site.

Creating Modal Dialogs,
Grids, and Collapsible Blocks

In this chapter, we will look at dialogs, grids, and collapsible blocks. In the previous
chapters we've dealt with pages, buttons, and form controls. While jQuery Mobile
provides great support for them, there are even more UI controls you get within the
framework.

In this chapter, we will:

•	 Discuss how to link to and create dialogs – also how to handle leaving them
•	 Demonstrate grids and how you can add them to your pages
•	 Show how collapsible blocks allow you to pack a lot of information in a small

amount of space

Creating dialogs
Dialogs: at least under the jQuery Mobile framework: are small windows that cover
an existing page. They typically provide a short message or question for the user.
They will also typically include a button that allows the user to dismiss the dialog
and return back to the site. Creating a dialog in jQuery Mobile is done by simply
adding a simple attribute to a link: data-rel="dialog". The following listing
demonstrates an example:

Listing 7-1: test1.html
<!DOCTYPE html>
<html>
 <head>
 <title>Dialog Test</title>
 <meta name="viewport" content="width=device-width, initial-
 scale=1">

Creating Modal Dialogs, Grids, and Collapsible Blocks

[88]

 <link rel="stylesheet" href="http://code.jquery.com/mobile/
 latest/jquery.mobile.min.css" />
 <script src="http://code.jquery.com/jquery-
 1.7.1.min.js"></script>
 <script src="http://code.jquery.com/mobile/latest/
 jquery.mobile.min.js"></script>
 </head>
 <body>
 <div data-role="page" id="first">
 <div data-role="header">
 <h1>Dialog Test</h1>
 </div>
 <div data-role="content">
 <p>
 Another Page (normal)
 </p>
 <p>
 A Dialog (dialog)

 </p>
 </div>
 </div>
 <div data-role="page" id="page2">
 <div data-role="header">
 <h1>The Second</h1>
 </div>
 <div data-role="content">
 <p>
 This is the Second
 </p>
 </div>
 </div>
 <div data-role="page" id="page3">
 <div data-role="header">
 <h1>The Third</h1>
 </div>
 <div data-role="content">
 <p>
 This is the Third
 </p>
 </div>
 </div>
 </body>
</html>

Chapter 7

[89]

This is a simple, multi-page jQuery Mobile site. Notice how we link to the second
and third page. The first link is typical. The second link, though, includes the
data-rel attribute mentioned earlier. Notice that both the second and third page
are defined in the usual manner. So the only change we have here is in the link.
When that second link is clicked, the page is rendered completely differently:

Remember, that page wasn't defined differently. The change you see in the previous
screenshot is driven by the change to the link itself. That's it! Clicking the little X
button will hide the dialog and return the user back to the original page.

Any link within the page will handle closing the dialog as well. If you wish to add
a cancel type button, or link, you can do so using data-rel="back" in the link. The
target of the link should be to the page that launched the dialog. Listing 7-2 shows
a modified version of the earlier template. In this one, we've simply added two
buttons to the dialog. The first button will launch the second page, while the second
one will act as a Cancel action.

Listing 7-2: test2.html
<!DOCTYPE html>
<html>
 <head>
 <title>Dialog Test (2)</title>
 <meta name="viewport" content="width=device-width, initial-
 scale=1">
 <link rel="stylesheet" href="http://code.jquery.com/mobile/
 latest/jquery.mobile.min.css" />
 <script src="http://code.jquery.com/jquery-
 1.7.1.min.js"></script>

Creating Modal Dialogs, Grids, and Collapsible Blocks

[90]

 <script src="http://code.jquery.com/mobile/
 latest/jquery.mobile.min.js"></script>
 </head>
 <body>
 <div data-role="page" id="first">
 <div data-role="header">
 <h1>Dialog Test</h1>
 </div>
 <div data-role="content">
 <p>
 Another Page (normal)
 </p>
 <p>
 A Dialog (dialog)

 </p>
 </div>
 </div>
 <div data-role="page" id="page2">
 <div data-role="header">
 <h1>The Second</h1>
 </div>
 <div data-role="content">
 <p>
 This is the Second
 </p>
 </div>
 </div>
 <div data-role="page" id="page3">
 <div data-role="header">
 <h1>The Third</h1>
 </div>
 <div data-role="content">
 <p>
 This is the Third
 </p>
 Page 2
 <a href="#first" data-role="button" data-
 rel="back">Cancel
 </div>
 </div>
 </body>
</html>

Chapter 7

[91]

The major change in this template is the addition of the buttons in the dialog,
contained within page3 div. Notice the first link is turned into a button, but
outside of that is a simple link. The second button includes the addition of the
data-rel="back" attribute. This will handle simply dismissing the dialog. The
following screenshot shows how the dialog looks with the buttons added:

Laying out content with grids
Grids are one of the few features of jQuery Mobile that do not make use of particular
data attributes. Instead, you work with grids simply by specifying CSS classes for
your content.

Grids come in four flavors: Two column, Three column, Four column, and Five
column. (You will probably not want to use the five column on a phone device. Save
that for a tablet instead.)

You begin a grid with a div block that makes use of the class ui-grid-X, where X
will be either a, b, c, or d. ui-grid-a represents a two column grid. ui-grid-b is a
three column grid. You can probably guess what c and d create.

So to begin a two column grid, you would wrap your content with the following:

<div class="ui-grid-a">
 Content
</div>

Creating Modal Dialogs, Grids, and Collapsible Blocks

[92]

Within the div tag, you then use a div for each "cell" of the content. The class for
grid calls begins with ui-block-X, where X goes from a to d. ui-block-a would
be used for the first cell, ui-block-b for the next, and so on. This works much like
HTML tables.

Putting it together, the following code snippet demonstrates a simple two column
grid with two cells of content:

<div class="ui-grid-a">
 <div class="ui-block-a">Left</div>
 <div class="ui-block-b">Right</div>
</div>

Text within a cell will automatically wrap. Listing 7-3 demonstrates a simple grid
with a large amount of text in one of the columns:

Listing 7-3: test3.html
<!DOCTYPE html>
<html>
 <head>
 <title>Grid Test</title>
 <meta name="viewport" content="width=device-width, initial-
 scale=1">
 <link rel="stylesheet" href="http://code.jquery.com/mobile/
 latest/jquery.mobile.min.css" />
 <script src="http://code.jquery.com/jquery-
 1.7.1.min.js"></script>
 <script src="http://code.jquery.com/mobile/
 latest/jquery.mobile.min.js"></script>
 </head>
 <body>
 <div data-role="page" id="first">
 <div data-role="header">
 <h1>Grid Test</h1>
 </div>
 <div data-role="content">
 <div class="ui-grid-a">
 <div class="ui-block-a">
 <p>
 This is my left hand content. There won't be a lot of
 it.

Chapter 7

[93]

 </p>
 </div>
 <div class="ui-block-b">
 <p>
 This is my right hand content. I'm going to fill it
 with some dummy text.
 </p>
 <p>
 Bacon ipsum dolor sit amet andouille capicola spare
 ribs, short loin venison sausage prosciutto turducken
 turkey flank frankfurter pork belly short ribs. Venison
 frankfurter filet mignon, jowl meatball hamburger
 pastrami pork chop drumstick. Fatback pancetta boudin,
 ribeye shoulder capicola cow leberkäse bresaola spare
 ribs prosciutto venison ball tip jowl andouille. Beef
 ribs t-bone swine, tail capicola turkey pork belly
 leberkäse frankfurter jowl. Shankle ball tip sirloin
 frankfurter bacon beef ribs. Tenderloin beef ribs pork
 chop, pancetta turkey bacon short ribs ham flank chuck
 pork belly. Tongue strip steak short ribs tail swine.
 </p>
 </div>
 </div>
 </div>
 </div>
 </body>
</html>

Creating Modal Dialogs, Grids, and Collapsible Blocks

[94]

In the mobile browser, you can clearly see the two columns:

Working with other types of grids then is simply a matter of switching to the other
classes. For example, a four column grid would be set up similar to the following
code snippet:

<div class="ui-grid-c">
 <div class="ui-block-a">1st cell</div>
 <div class="ui-block-b">2nd cell</div>
 <div class="ui-block-c">3rd cell</div>
</div>

Again, keep in mind your target audience. Anything over two columns may be too
thin on a mobile phone.

Chapter 7

[95]

To create multiple rows in a grid, you simply repeat blocks. The following code
snippet demonstrates a simple example of a grid with two rows of cells:

<div class="ui-grid-a">
 <div class="ui-block-a">Left Top</div>
 <div class="ui-block-b">Right Top</div>
 <div class="ui-block-a">Left Bottom</div>
 <div class="ui-block-b">Right Bottom</div>
</div>

Notice that there isn't any concept of a row. jQuery Mobile handles knowing
that it should create a new row when the block starts over with the one marked
ui-block-a. The following code snippet, Listing 7-4 is a simple example:

Listing 7-4:test4.html
<!DOCTYPE html>
<html>
 <head>
 <title>Grid Test (2)</title>
 <meta name="viewport" content="width=device-width, initial-
 scale=1">
 <link rel="stylesheet" href="http://code.jquery.com/mobile/
 latest/jquery.mobile.min.css" />
 <script src="http://code.jquery.com/jquery-
 1.7.1.min.js"></script>
 <script src="http://code.jquery.com/mobile/latest/
 jquery.mobile.min.js"></script>
 </head>
 <body>
 <div data-role="page" id="first">
 <div data-role="header">
 <h1>Grid Test</h1>
 </div>
 <div data-role="content">
 <div class="ui-grid-a">
 <div class="ui-block-a">
 <p>

 </p>
 </div>
 <div class="ui-block-b">
 <p>
 This is Raymond Camden. Here is some text about him. It
 may wrap or it may not but jQuery Mobile will make it
 look good. Unlike Ray!
 </p>

Creating Modal Dialogs, Grids, and Collapsible Blocks

[96]

 </div>
 <div class="ui-block-a">
 <p>
 This is Scott Stroz. Scott Stroz is a guy who plays
 golf and is really good at FPS video games.
 </p>
 </div>
 <div class="ui-block-b">
 <p>

 </p>
 </div>
 </div>
 </div>
 </div>
 </body>
</html>

The following screenshot shows the result:

Chapter 7

[97]

Working with collapsible content
The final widget we will look at in this chapter supports collapsible content. This is
simply content that can be collapsed and expanded. Creating a collapsible content
widget is as simple as wrapping it in a div, adding data-role="collapsible", and
including a title for the content. Consider the following simple example:

<div data-role="collapsible">
 <h1>My News</h1>
 <p>This is the latest news about me…
</div>

Upon rendering, jQuery Mobile will turn the title into a clickable banner that can
expand and collapse the content within. Let's look at a real example. Imagine you
want to share the location of your company's primary address. You also want to
include satellite offices. Since most people won't care about the other offices, we can
use a simple collapsible content widget to hide the content by default. The following
code snippet, Listing 7-5 demonstrates an example of this:

Listing 7-5: test5.html
<!DOCTYPE html>
<html>
 <head>
 <title>Collapsible Content</title>
 <meta name="viewport" content="width=device-width, initial-
 scale=1">
 <link rel="stylesheet" href="http://code.jquery.com/mobile/
 latest/jquery.mobile.min.css" />
 <script src="http://code.jquery.com/jquery-
 1.7.1.min.js"></script>
 <script src="http://code.jquery.com/mobile/latest/
 jquery.mobile.min.js"></script>
 </head>
 <body>
 <div data-role="page" id="first">
 <div data-role="header">
 <h1>Our Offices</h1>
 </div>
 <div data-role="content">
 <p>
 Main Office:

 400 Elm Street

 New York, NY

 90210
 </p>

Creating Modal Dialogs, Grids, and Collapsible Blocks

[98]

 <div data-role="collapsible">
 <h3>Satellite Offices</h3>
 <p>
 Asia:
 Another Address Here
 </p>
 <p>
 Europe:
 Another Address Here
 </p>
 <p>
 Mars:
 Another Address Here
 </p>
 </div>
 </div>
 </div>
 </body>
</html>

You can see that the other offices are all wrapped in the div tag using the new
collapsible content role. When viewed, notice that they are hidden:

Chapter 7

[99]

Clicking the + next to the title opens it, and can be clicked again to reclose it:

By default, jQuery Mobile will collapse and hide the content. You can, of course, tell
jQuery Mobile to initialize the block open instead of closed. To do so, simply add
data-collapsed="false" to the initial div tag. For example:

<div data-role="collapsible" data-collapsed="false">
 <h1>My News</h1>
 <p>This is the latest news about me…
</div>

This region will still have the ability to collapse and open, but will simply default to
being opened initially.

Creating Modal Dialogs, Grids, and Collapsible Blocks

[100]

Another option for collapsible content blocks is the ability to theme the content of
the area that is collapsed. By providing a data-content-theme attribute, you can
specify a background color that makes the region a bit more cohesive. Theming
is covered in Chapter 11, Theming jQuery Mobile, but we can take a look at a quick
example. In the following screenshot, the first region does not make use of the
feature, while the second one does:

Notice that the icon is also shifted to the right. This demonstrates another
option, data-iconpos. The following code snippet, found in the code folder
as test5-2.html, demonstrates these options:

<div data-role="collapsible">
 <h3>First</h3>
 <p>
 Hello World...
 </p>
</div>
<div data-role="collapsible" data-content-theme="c" data-
 iconpos="right">
 <h3>First</h3>
 <p>
 Hello World again...
 </p>
 </div>

Chapter 7

[101]

Finally, you can take multiple collapsible regions and combine them into
one called an accordion. This is done by simply taking multiple collapsible
blocks and wrapping them in a new div tag. This div tag makes use of
data-role="collapsible-set" to make the inner blocks as one unit.
Listing 7-6 demonstrates an example of this. It takes the earlier office
address example and uses a collapsible set for each unique address:

Listing 7-6: test6.html
<!DOCTYPE html>
<html>
 <head>
 <title>Collapsible Content</title>
 <meta name="viewport" content="width=device-width, initial-
 scale=1">
 <link rel="stylesheet" href="http://code.jquery.com/mobile/
 latest/jquery.mobile.min.css" />
 <script src="http://code.jquery.com/jquery-
 1.7.1.min.js"></script>
 <script src="http://code.jquery.com/mobile/
 latest/jquery.mobile.min.js"></script>
 </head>
 <body>
 <div data-role="page" id="first">
 <div data-role="header">
 <h1>Our Offices</h1>
 </div>
 <div data-role="content">
 <div data-role="collapsible-set">
 <div data-role="collapsible">
 <h3>Main Office</h3>
 <p>
 400 Elm Street

 New York, NY

 90210
 </p>
 </div>
 <div data-role="collapsible">
 <h3>Asia</h3>
 <p>
 Another Address Here
 </p>
 </div>
 <div data-role="collapsible">
 <h3>Europe</h3>
 <p>
 Another Address Here
 </p>

Creating Modal Dialogs, Grids, and Collapsible Blocks

[102]

 </div>
 <div data-role="collapsible">
 <h3>Mars</h3>
 <p>
 Another Address Here
 </p>
 </div>
 </div>
 </div>
 </div>
 </body>
</html>

In listing 7-6, we simply wrap four collapsible blocks with a div tag that makes
use of a collapsible set. Once done, jQuery Mobile will group them together and
automatically close one once another is open:

Summary
In this chapter, we learned more about how jQuery Mobile enhances basic HTML
to provide additional layout controls to our mobile pages. With dialogs, we learned
how to provide a basic, quick, modal message to users. With grids, we learned a
new way to easily layout content in columns. Finally, with the collapsible content
blocks, we learned a cool way to share additional content without taking up as
much screen space.

In the next chapter, we demonstrate a full, real example that creates a basic Note
Tracker. It makes use of additional HTML5 features, as well as some of the UI tips
you've learned over the past few chapters.

jQuery Mobile Configuration,
Utilities, and JavaScript

methods
In this chapter, we will look at how JavaScript can be used to further configure
and enhance jQuery Mobile websites. So far we've made use of HTML and CSS
to generate everything. Now we'll look at additional scripting that add additional
functionality to your sites.

In this chapter, we will:

•	 Explain how jQuery Mobile sites can be configured via JavaScript
•	 Discuss the various JavaScript utilities that ship with jQuery Mobile

and how they can be used
•	 Explain the APIs used to work with the enhanced jQuery Mobile form and

widget controls

Configuring jQuery Mobile
jQuery Mobile does many things for you – from improving page navigation to
changing how form controls work. All of this is done in an effort to make your
content work better in a mobile environment. There will be times, however, when
you do not want jQuery Mobile to do something, or you perhaps simply want to
slightly tweak how the framework acts. That's where configuration comes in.

jQuery Mobile Configuration, Utilities, and JavaScript methods

[104]

To configure a jQuery Mobile site, you begin by writing code that listens for the
mobileinit event. This can be listened to using a normal jQuery event handler,
similar to the following code snippet:

$(document).bind("mobileinit", function() {
 //your customization here
});

In order for this event to be captured, you must configure it before jQuery Mobile
is actually loaded. The simplest way to do this, and the way recommended by the
jQuery Mobile docs, is to simply place this code in a script loaded before the jQuery
Mobile JavaScript library. The following code snippet shows what the header of our
files typically look like:

<!DOCTYPE html>
<html>
 <head>
 <title>Dialog Test</title>
 <meta name="viewport" content="width=device-width, initial-
 scale=1">
 <link rel="stylesheet" href="http://code.jquery.com/mobile/
 latest/jquery.mobile.min.css" />
 <script src="http://code.jquery.com/jquery-
 1.7.1.min.js"></script>
 <script src="http://code.jquery.com/mobile/
 latest/jquery.mobile.min.js"></script>
 </head>

Notice the jQuery Mobile library is the last one loaded. We can simply add in a
new script tag before it:

<!DOCTYPE html>
<html>
 <head>
 <title>Dialog Test</title>
 <meta name="viewport" content="width=device-width, initial-
 scale=1">
 <link rel="stylesheet" href="http://code.jquery.com/mobile/
 latest/jquery.mobile.min.css" />
 <script src="http://code.jquery.com/jquery-
 1.7.1.min.js"></script>
 <script src="config.js"></script>
 <script src="http://code.jquery.com/mobile/
 latest/jquery.mobile.min.js"></script>
 </head>

Chapter 8

[105]

Configuring jQuery Mobile is as simple as updating the $.mobile object. The
following code snippet is a simple example:

$(document).bind("mobileinit", function() {
 $.mobile.someSetting="some value here";
});

This object contains a set of key/value pairs for the various settings that can be
configured. You don't actually create it – it exists when the event handler is run.
Another option is to make use of jQuery's extend() functionality, as shown in the
following code snippet:

$(document).bind("mobileinit", function() {
 $.extend($.mobile, {
 someSetting:"some value here"
 });
});

Either form is ok and works absolutely the same. Use whichever feels more
comfortable. Now, let's look at the various configuration options:

Settings Use
ns This is the namespace value used for data attributes.

It defaults to nothing. You would specify a value
here if you wanted to prefix the jQuery
Mobile-recognized data attributes. So for example,
if you wanted to use data-jqm-role="page"
instead of data-role="page", you would
configure the ns value to be jqm.

activeBtnClass This simply sets the class name used for buttons
in the active state. The default for this value is
ui-btn-active.

activePageClass This sets the class name for pages that are
currently being viewed. The default for this value
is ui-page-active.

ajaxEnabled We've discussed before how Ajax is used for both,
page loads and form submissions. If you wish to
disable this, set this value to false. The default,
obviously, is true.

allowCrossDomainPages A security setting that defaults to false, setting this
to true allows for remote pages to be loaded via
$.mobile.loadPage. This is normally only required
for PhoneGap applications that load content from
another server.

jQuery Mobile Configuration, Utilities, and JavaScript methods

[106]

Settings Use
autoInitializePage Normally, jQuery Mobile will run $.mobile.

initializePage on load. This displays the renders
page. (At this time, this particular function isn't
properly documented.) If you wish to disable this
default value, set autoInitializePage to false.
You will need to run $.mobile.initializePage
manually.

defaultDialogTransition Specifies what transition should be used to show or
hide dialogs. The default is pop. Possible values are:
fade, flip, pop, slide, slidedown, and slideup.

defaultPageTransition Like the previous option, this setting is used for
transitions, this time for page loads. The default is
slide and the options similar to the previous option
are possible.

gradea Used to determine what actually constitutes a "good"
browser. This is handled by jQuery Mobile but if you
want to overrule the framework, or define some other
condition that must be met, you would provide a
function here that returns a Boolean (true or false).

hashListeningEnabled Refers to the ability to listen to changes in the
location.hash property of the browser. jQuery
Mobile handles this normally, but if the value is set
to false, you can write your own code to respond to
these changes.

ignoreContentEnabled Normally jQuery Mobile automatically enhances
everything it can. You can disable this in some cases
at a control level, but you can also tell jQuery Mobile
to ignore everything within a particular container
by adding data-enhance=true. If you make use
of this feature, then your configuration must be set
ignoreContentEnabled to true. This tells jQuery
Mobile to look for, and respect, that particular flag.
This is set to false by default and allows jQuery
Mobile to do its magic quite a bit faster.

linkBindingEnabled jQuery Mobile typically listens to all link clicks. If
you wish to disable this globally, you can do so with
this setting.

loadingMessage This specifies the text used when pages are loading.
This is normally "loading", but you could use custom
code here to check the user's locale and use a local
specific version. However, the message is typically
hidden. See the next setting for more information.

Chapter 8

[107]

Settings Use
loadingMessageTextVisible When pages are loaded by jQuery Mobile, only a

loading graphic is used. If you wish a message to be
displayed as well, set this value to true. The default
is false.

loadingMessageTheme The theme to use for the page loading dialog.
The default is a.

minScrollBack jQuery Mobile will attempt to remember your scrolled
position in a page when you return to it. This can be
useful on a large page that the user returns to after
visiting another page. By default, the scroll will be
remembered if it is more than 150, the default.

pageLoadErrorMssage This is a message shown to users if an error occurs
when loading a page. The default is Error Loading
Page, but could be changed for localization reasons.
(Or any reason really.)

pageLoadErrorMessageTheme The theme to use when a page load error dialog is
displayed. The default is e.

pushStateEnabled Tells jQuery Mobile to use the HTML5 pushState
functionality instead of hash based changes for page
navigation. This defaults to true.

subPageUrlKey jQuery Mobile supports multiple pages within one
file. In order to make these "virtual" pages
bookmarkable, jQuery Mobile will append a value
to the URL containing the prefix ui-page. So for
example, ui-page=yourpage. This setting lets
you customize the prefix.

That's quite a few options, but typically you will only need to configure one or two
of these settings. Let's look at a simple example where a few of these are put to use.
Listing 8-1 is the home page for the application. Note the use of the additional
script tag to load in our configuration:

Listing 8-1: test1.html
<!DOCTYPE html>
<html>
 <head>
 <title>Page Transition Test</title>
 <meta name="viewport" content="width=device-width, initial-
 scale=1">
 <link rel="stylesheet" href="http://code.jquery.com/mobile/
 latest/jquery.mobile.min.css" />
 <script src="http://code.jquery.com/jquery-
 1.6.4.min.js"></script>

jQuery Mobile Configuration, Utilities, and JavaScript methods

[108]

 <script src="config.js"></script>
 <script src="http://code.jquery.com/mobile/
 latest/jquery.mobile.min.js"></script>
 </head>
 <body>
 <div data-role="page" id="first">
 <div data-role="header">
 <h1>Dialog Test</h1>
 </div>
 <div data-role="content">
 <p>
 Another Page

 Yet Another Page

 </p>
 </div>
 </div>
 <div data-role="page" id="page2">
 <div data-role="header">
 <h1>The Second</h1>
 </div>
 <div data-role="content">
 <p>
 This is the Second. Go first.
 </p>
 </div>
 </div>
 </body>
</html>

The file contains two pages, and links to another, test2.html. That page simply
provides a link back so will not be included in the text. Now let's look at config.js:

Listing 8-2: config.js
$(document).bind("mobileinit", function() {
 $.mobile.defaultPageTransition = "fade";
 $.mobile.loadingMessage="Fetching page...";
});

In config.js, two settings are modified – the default page transition and the loading
message for pages.

In an earlier chapter, we discussed forms and how jQuery Mobile automatically
enhances controls. While you can suppress this enhancement on a control within
your HTML, you can also tell jQuery Mobile a list of controls never to enhance. To
set this list, specify a value for $.mobile.page.prototype.options.keepnative.
The value should be a list of selectors. Any field that matches one of the selectors will
not be enhanced.

Chapter 8

[109]

Using jQuery Mobile utilities
Now that we've covered jQuery Mobile configuration, let's take a look at the utilities
available to your applications. These are utilities provided by the framework and
can be used in any application. You may not need them all (or any) on your site, but
knowing they are there can help save you time in the future.

Page methods and utilities
Let's begin looking at methods and utilities related to pages and navigation
between pages:

•	 $.mobile.activePage: This property is a reference to the current page.
•	 $.mobile.changePage(page,options): This method is used to change

to another page. The first argument, page, can be either a string (the URL),
or a jQuery DOM object. The options argument is an optional object of
key/value pairs. These options are:

	° allowSamePageTransition: Normally jQuery Mobile will not
allow you to transition to the same page, but if set to false, this
will be allowed.

	° changeHash: Determines if the URL should change.
	° data: Either a string or an object of values passed to the next page.
	° data-url: Value used for the URL in the browser. This is normally

set by the page the user is being sent to. You can override this here.
	° pageContainer: jQuery Mobile will place pages within a DOM item

that acts as a bag for all the pages. You can bypass this automatic
collection and use another item in the DOM instead.

	° reloadPage: If a page already exists in the browser, jQuery Mobile
will fetch it from memory. Setting this to true will force jQuery
Mobile to reload the page.

	° role: jQuery Mobile will typically look for the data-role attribute of
the page loaded. To specify another role, set this option.

	° showLoadMsg: Normally jQuery Mobile shows a loading message
when a page is fetched. You can disable this by setting this value
to false.

	° transition: What transition to use. Remember this can be
configured at a global level as well.

	° type: We mentioned earlier that jQuery Mobile loads in new pages
via an Ajax-based request. The type option allows you to specify the
HTTP method used to load the page. The default is get.

jQuery Mobile Configuration, Utilities, and JavaScript methods

[110]

•	 $.mobile.loadPage(page,options): This is a lower-level function
used when $.mobile.changePage is passed a string URL to load. Its first
argument is the same as $.mobile.changePage, but its options are limited
to data, loadMsgDelay, pageContainer, reloadPage, role, and type.
Those options are the same as those listed in the previous option, except for
loadMsgDelay. This value gives time for the framework to try to fetch a page
via the cache first.

•	 $.mobile.showPageLoadingMsg() and $.mobile.hidePageLoadingMsg():
Either shows or hides the page loading message. The showPageLoadingMsg
function allows for custom text, theming, and an icon only view.

In listing 8-2, a simple example of $.mobile.changePage is demonstrated:

Listing 8-2: test3.html
<!DOCTYPE html>
<html>
 <head>
 <title>Page Tester</title>
 <meta name="viewport" content="width=device-width, initial-
 scale=1">
 <link rel="stylesheet" href="http://code.jquery.com/mobile/
 latest/jquery.mobile.min.css" />
 <script src="http://code.jquery.com/jquery-
 1.7.1.min.js"></script>
 <script src="http://code.jquery.com/mobile/
 latest/jquery.mobile.min.js"></script>
 </head>
 <body>
 <div data-role="page" id="third">
 <div data-role="header">
 <h1>Test</h1>
 </div>
 <div data-role="content">
 <input type="button" id="pageBtn" value="Go to page">
 </div>
 </div>
 <script>
 $("#pageBtn").click(function() {
 $.mobile.changePage("test2.html", {transition:"flip"});
 });
 </script>
 </body>
</html>

Chapter 8

[111]

The page simply contains one button. At the bottom of the file is a jQuery event
listener for that button. When clicked, $.mobile.changePage is used to load
test2.html while making use of the flip transition.

Path and URL related utilities
These utilities are related to the current location, URL, or path of the application:

•	 $.mobile.path.isAbsoluteUrl and $.mobile.path.isRelativeUrl:
These two functions look at a URL and allow you to check if they are either
a full, or absolute URL, or a relative URL.

•	 $.mobile.path.isSameDomain(first url, second url): Allows you
to compare two URLs and determine if they are in the same domain.
This method will notice http versus https and correctly consider these
separate domains.

•	 $.mobile.path.makePathAbsolute(relative path, absolute path):
Takes a relative path, compares it to an absolute path, and returns an
absolute path version of the relative path.

•	 $.mobile.path.makeUrlAbsolute(relative url, absolute url): A
slightly different form of the previous function, this utility works with
absolute URLs instead.

•	 $.mobile.path.parseUrl(url): URLs are made up of many different parts.
This function will take either a full or relative URL and return an object
containing the following properties: hash, host, hostname, href, pathname,
port, protocol, and search. Along with these fairly typical URL properties, the
function also returns the following properties:

	° authority: Contains the username, password, and host properties.
	° directory: Given the path portion of a URL, this will return just

the directory.
	° domain: Contains the authority and protocol portions of the URL.
	° filename: Returns just the filename portion of the URL.
	° hrefNoHash: Given a URL with a hash, this returns the href minus

the hash.
	° hrefNoSearch: Given a URL with a search property, this returns the

href minus the search value.
	° username and password: Contains the username and password if

present in the URL.

jQuery Mobile Configuration, Utilities, and JavaScript methods

[112]

Listing 8-3 is a tester application. It contains form fields allowing you to test all of
the methods previously discussed:

Listing 8-3: test4.html
<!DOCTYPE html>
<html>
 <head>
 <title>Path Tester</title>
 <meta name="viewport" content="width=device-width, initial-
 scale=1">
 <link rel="stylesheet" href="http://code.jquery.com/mobile/
 latest/jquery.mobile.min.css" />
 <script src="http://code.jquery.com/jquery-
 1.6.4.min.js"></script>
 <script src="http://code.jquery.com/mobile/
 latest/jquery.mobile.min.js"></script>
 </head>
 <body>
 <div data-role="page" id="third">
 <div data-role="header">
 <h1>Test</h1>
 </div>
 <div data-role="content">
 <form>
 <div data-role="fieldcontain">
 <label for="isabsurl">Is Absolute URL?</label>
 <input type="text" name="isabsurl" id="isabsurl"
 value="" />
 <div id="isabsurlresult"></div>
 </div>
 <div data-role="fieldcontain">
 <label for="isrelurl">Is Relative URL?</label>
 <input type="text" name="isrelurl" id="isrelurl"
 value="" />
 <div id="isrelurlresult"></div>
 </div>
 <div data-role="fieldcontain">
 <label for="issamedomain">Is Same Domain?</label>
 <input type="text" name="issamedomain" id="issamedomain"
 value="" />
 <input type="text" name="issamedomain2"
 id="issamedomain2" value="" />
 <div id="issamedomainresult"></div>
 </div>
 <div data-role="fieldcontain">

Chapter 8

[113]

 <label for="makepath">Make Path Absolute</label>
 <input type="text" name="makepath" id="makepath" value=""
 placeholder="Relative Path" />
 <input type="text" name="makepath2" id="makepath2"
 value="" placeholder="Absolute Path" />
 <div id="makepathresult"></div>
 </div>
 <div data-role="fieldcontain">
 <label for="makeurl">Make URL Absolute</label>
 <input type="text" name="makeurl" id="makeurl" value=""
 placeholder="Relative URL" />
 <input type="text" name="makeurl2" id="makeurl2" value=""
 placeholder="Absolute URL" />
 <div id="makeurlresult"></div>
 </div>
 <div data-role="fieldcontain">
 <label for="parseurl">Parse URL</label>
 <input type="text" name="parseurl" id="parseurl"
 value="" />
 <div id="parseurlresult"></div>
 </div>
 </form>
 </div>
 </div>
 <script>
 $("#isabsurl").keyup(function() {
 var thisVal = $(this).val();
 var isAbsUrl = $.mobile.path.isAbsoluteUrl(thisVal);
 $("#isabsurlresult").text(isAbsUrl);
 });
 $("#isrelurl").keyup(function() {
 var thisVal = $(this).val();
 var isRelUrl = $.mobile.path.isRelativeUrl(thisVal);
 $("#isrelurlresult").text(isRelUrl);
 });
 $("#issamedomain,#issamedomain2").keyup(function() {
 var domainVal1 = $("#issamedomain").val();
 var domainVal2 = $("#issamedomain2").val();
 var isSameDomain =
 $.mobile.path.isSameDomain(domainVal1,domainVal2);
 $("#issamedomainresult").text(isSameDomain);
 });
 $("#makepath,#makepath2").keyup(function() {
 var pathVal1 = $("#makepath").val();
 var pathVal2 = $("#makepath2").val();

jQuery Mobile Configuration, Utilities, and JavaScript methods

[114]

 var makePathResult =
 $.mobile.path.makePathAbsolute(pathVal1,pathVal2);
 $("#makepathresult").text(makePathResult);
 });
 $("#makeurl,#makeurl2").keyup(function() {
 var urlVal1 = $("#makeurl").val();
 var urlVal2 = $("#makeurl2").val();
 var makeUrlResult =
 $.mobile.path.makeUrlAbsolute(urlVal1,urlVal2);
 $("#makeurlresult").text(makeUrlResult);
 });
 $("#parseurl").keyup(function() {
 var thisVal = $(this).val();
 var parsedUrl = $.mobile.path.parseUrl(thisVal);
 var s = "";
 for (k in parsedUrl) {
 s+= k+"="+parsedUrl[k]+"
";
 }
 $("#parseurlresult").html(s);
 });
 </script>
 </body>
</html>

Listing 9-4 is a bit long, but it's really pretty simple. Each fieldcontain block
consists of one particular test of the path methods and utilities. In the bottom half of
the template you can see we've made use of keyup event listeners to monitor changes
to these fields and run each test. You can use this template to see how these methods
react based on different inputs. The following screenshot shows an example:

Chapter 8

[115]

Miscellaneous utilities
There are a few more utilities you may want to know about:

•	 $.mobile.fixedToolbars.hide() and $.mobile.fixedToolbars.show():
Either show or hide fixed toolbars. Both utilities can take a Boolean argument
that specifies if the hide (or show) action takes place immediately. If not
specified (or false is passed) then the toolbars will animate as they hide
or show.

•	 $.mobile.silentScroll(position): Scrolls the page to a certain
y-position. The term silent here refers to the fact that this method
will not fire any code listening for scroll events.

•	 jqmData() and jqmRemoveData(): Due to jQuery Mobile's heavy use of data
attributes for various features, "regular" usage of jQuery's data functions
should be replaced with these instead. They handle recognizing any update
to the default namespace as well.

jQuery widget and form utilities
We've mentioned, numerous times, how jQuery Mobile automatically updates
various items and supports things like lists and collapsible content. One of the things
you may run into, however, is trying to get jQuery Mobile to work with content
loaded after the page is rendered. So, for example, imagine a list view that has data
added to it via some JavaScript code. Listing 8-4 demonstrates a simple example
of this. It has a listview with a few items in it, but also a form by which a person
could add new entries:

Listing 8-4: test5.html
<!DOCTYPE html>
<html>
 <head>
 <title>List Updates</title>
 <meta name="viewport" content="width=device-width, initial-
 scale=1">
 <link rel="stylesheet" href="http://code.jquery.com/mobile/
 latest/jquery.mobile.min.css" />
 <script src="http://code.jquery.com/jquery-
 1.7.1.min.js"></script>
 <script src="http://code.jquery.com/mobile/
 latest/jquery.mobile.min.js"></script>
 </head>
 <body>
 <div data-role="page" id="third">
 <div data-role="header">
 <h1>List Updates</h1>

jQuery Mobile Configuration, Utilities, and JavaScript methods

[116]

 </div>
 <div data-role="content">
 <ul id="theList" data-role="listview" data-inset="true">
 Initial
 Item

 <form>
 <div data-role="fieldcontain">
 <label for="additem">New Item</label>
 <input type="text" name="additem" id="additem"
 value="" />
 </div>
 <input type="button" id="testBtn" value="Add It">
 </form>
 </div>
 </div>
 <script>
 $("#testBtn").click(function() {
 var itemToAdd = $.trim($("#additem").val());
 if(itemToAdd == "") return;
 $("#theList").append(""+itemToAdd+"");
 });
 </script>
 </body>
</html>

When initially loaded, notice everything seems fine:

Chapter 8

[117]

However, the following screenshot shows what happens when an item is added to
the end of the list:

As you can see, the new item was indeed added to the end of the list, but it wasn't
drawn correctly. This brings up a critical point. jQuery Mobile parses your code for
data attributes and checks for form fields once. After it has done so, it considers its
work done. Luckily, there is a standard way for these UI items to be updated. For
our listview it is a simple matter of calling the listview method on the list itself.
The listview method can be used to turn a new list into a listview, or to refresh an
existing listview. To refresh our listview , we'd simply modify the code, as shown
in the following code snippet:

<script>
 $("#testBtn").click(function() {
 var itemToAdd = $.trim($("#additem").val());
 if(itemToAdd == "") return;
 $("#theList").append(""+itemToAdd+"");
 $("#theList").listview("refresh");
 });
</script>

jQuery Mobile Configuration, Utilities, and JavaScript methods

[118]

You can find the previous code snippet in test6.html. The following screenshot
shows how the application handles the new item:

That listview method could also be used for completely new lists. Consider the
following code snippet listing 8-5:

Listing 8-5: test7.html
<!DOCTYPE html>
<html>
 <head>
 <title>List Updates</title>
 <meta name="viewport" content="width=device-width, initial-
 scale=1">
 <link rel="stylesheet" href="http://code.jquery.com/mobile/
 latest/jquery.mobile.min.css" />
 <script src="http://code.jquery.com/jquery-
 1.7.1.min.js"></script>
 <script src="http://code.jquery.com/mobile/
 latest/jquery.mobile.min.js"></script>
 </head>
 <body>
 <div data-role="page" id="third">
 <div data-role="header">
 <h1>List Updates</h1>
 </div>

Chapter 8

[119]

 <div data-role="content" id="contentDiv">
 <input type="button" id="testBtn" value="Add A List">
 </div>
 </div>
 <script>
 $("#testBtn").click(function() {
 $("#contentDiv").append("<ul data-role='listview' data-
 inset='true' id='theList'>Item OneItem
 Two");
 $("#theList").listview();
 });
 </script>
 </body>
</html>

In this example, a completely new list is appended to the div tag. Notice that we still
include the proper data-role. But, this by itself, is not enough. We follow up the
HTML insertion with a call to the listview method to enhance the list just added.

Similar APIs exist for other fields. For example, new buttons added to a page can be
enhanced by calling the button() method on them. In general, assume any changes
to enhanced controls will need to be updated via their respective JavaScript APIs.

Summary
In this chapter, we (finally!) broke out some JavaScript. We looked at how you can
configure various jQuery Mobile settings, what utilities exist, and how to handle
post-rendered updates to enhanced controls.

In the next chapter, we'll continue working with JavaScript and look at the various
events your code can listen to.

Working with Events
In this chapter, we will look at how events work in jQuery Mobile. While developers
obviously have access to regular events (button clicks, and so on), jQuery Mobile also
exposes its own events for developers to make use of.

In this chapter, we will:

•	 Discuss touch, swipe, scroll, and other physical events
•	 Discuss page events

Working with physical events
For the first part of this chapter, we will focus on the "physical" events, or events
related to touch and other actions done with a device.

For those of you who have been testing jQuery Mobile using a
regular browser, please note that some of the following examples
will not work properly on a desktop browser. If you wish, you
can download and install emulators for various mobile phone
types. For example, Android has an SDK that supports creating
virtual mobile devices. Apple also has a way to simulate an iOS
device. Setting up and installing these emulators are beyond the
scope of this chapter, but it is certainly an option. Of course, you
can also use a real hardware device as well.

Working with Events

[122]

The physical events include the following:

•	 tap and taphold: tap represents what it sounds like – a quick physical touch
on the web page. taphold is a longer touch. Many applications will make use
of two separate actions – one for tap and one for taphold.

•	 swipe, swipeleft, and swiperight: These represent swipes, or a finger
movement across most of the devices. The swipe event is a generic one,
whereas swipeleft and swiperight represent a swipe in a specific
direction. There is no support for a swipe up or down event.

•	 scrollstart and scrollstop: Respectively handle the beginning and end
of scrolling a page.

•	 orientationchange: Fired when the device's orientation changes.
•	 vclick, vmousedown, vmouseup, vmousemove, vmousecancel, and

vmouseover: All of these are "virtual" events meant to abstract away
checking for either touch or mouse click events. As these are mainly just
aliases for click and touch events, they will not be demonstrated.

Now that we've listed the basic physical events, let's start looking at a few examples.
Listing 9-1 demonstrates a simple example of the tap and taphold events:

Listing 9-1: test1.html
<!DOCTYPE html>
<html>
 <head>
 <title>Tap Tests</title>
 <meta name="viewport" content="width=device-width, initial-
 scale=1">
 <link rel="stylesheet" href="http://code.jquery.com/mobile/
 latest/jquery.mobile.min.css" />
 <script src="http://code.jquery.com/jquery-
 1.7.1.min.js"></script>
 <script src="http://code.jquery.com/mobile/
 latest/jquery.mobile.min.js"></script>
 </head>
 <body>
 <div data-role="page" id="first">
 <div data-role="header">
 <h1>Tap Tests</h1>
 </div>

Chapter 9

[123]

 <div data-role="content">
 <p>
 Tap anywhere on the page...
 </p>
 <p id="status"></p>
 </div>
 </div>
 <script>
 $("body").bind("tap", function(e) {
 $("#status").text("You just did a tap event!");
 });
 $("body").bind("taphold", function(e) {
 $("#status").text("You just did a tap hold event!");
 });
 </script>
 </body>
</html>

This template is rather simple. The page has some explanatory text asking the user
to tap on it. Beneath it is an empty paragraph. Note though the two binds at the end
of the document. One listens for tap while the other listens for taphold. The user
can do either action and a different status message is displayed. While rather simple,
this gives you a good idea of how you could respond differently based on how long
the user holds their finger down. (The time for the taphold event to fire is around
one second):

Working with Events

[124]

Now let's look at Listing 9-2, an example of swipe events:

Listing 9-2: test2.html
<!DOCTYPE html>
<html>
 <head>
 <title>Swipe Tests</title>
 <meta name="viewport" content="width=device-width, initial-
 scale=1">
 <link rel="stylesheet" href="http://code.jquery.com/mobile/
 latest/jquery.mobile.min.css" />
 <script src="http://code.jquery.com/jquery-
 1.7.1.min.js"></script>
 <script src="http://code.jquery.com/mobile/latest/
 jquery.mobile.min.js"></script>
 </head>
 <body>
 <div data-role="page" id="first">
 <div data-role="header">
 <h1>Swipe Tests</h1>
 </div>
 <div data-role="content">
 <p>
 Swipe anywhere on the page...
 </p>
 <p id="status"></p>
 </div>
 </div>
 <script>
 $("body").bind("swipe", function(e) {
 $("#status").append("You just did a swipe event!
");
 });
 $("body").bind("swipeleft", function(e) {
 $("#status").append("You just did a swipe left event!
");
 });
 $("body").bind("swiperight", function(e) {
 $("#status").append("You just did a swipe right
 event!
");
 });
 </script>
 </body>
</html>

Chapter 9

[125]

This example is pretty similar to the previous one, except now our event handlers
listen for swipe, swipeleft, and swiperight. One important difference is that
we append to the status div instead of simply setting it. Why? A swiperight or
swipeleft event is automatically a swipe event. If we simply set the text in the
paragraph, one would wipe out the other. The following screenshot shows how
the device looks after a few swipes:

How about a more complex example? Consider the following code
snippet, Listing 9-3:

Listing 9-3: test3.html
<!DOCTYPE html>
<html>
 <head>
 <title>Swipe Tests</title>
 <meta name="viewport" content="width=device-width, initial-
 scale=1">
 <link rel="stylesheet" href="http://code.jquery.com/mobile/
 latest/jquery.mobile.min.css" />
 <script src="http://code.jquery.com/jquery-
 1.7.1.min.js"></script>
 <script src="http://code.jquery.com/mobile/
 latest/jquery.mobile.min.js"></script>
 </head>

Working with Events

[126]

 <body>
 <div data-role="page" id="first">
 <div data-role="header">
 <h1>First</h1>
 </div>
 <div data-role="content">
 <p>
 Swipe to navigate
 </p>
 </div>
 </div>
 <div data-role="page" id="second">
 <div data-role="header">
 <h1>Second</h1>
 </div>
 <div data-role="content">
 <p>
 Swipe to the right...
 </p>
 </div>
 </div>
 <script>
 $("body").bind("swipeleft swiperight", function(e) {
 var page = $.mobile.activePage[0];
 var dir = e.type;
 if(page.id == "first" && dir == "swipeleft")
 $.mobile.changePage("#second");
 if(page.id == "second" && dir == "swiperight")
 $.mobile.changePage("#first");
 });
 </script>
 </body>
</html>

In this example, we've got a file that includes two separate pages, one with the id
first and the other with the id second. Notice we have no links. So how do we
navigate? With swipes! Our event handler is now listening for both swipeleft
and swiperight. We first grab the active page using $.mobile.activePage, as
described in Chapter 8, JavaScript Configuration and Utilities in jQuery Mobile on
methods and utilities. The [0] at the end refers to the fact that the value is actually
a jQuery Selector. Using [0] grabs the actual DOM item. The event type will be
either swipeleft or swiperight. Once we know that, we can actively move the
user around depending on what page they are currently on and in what direction
they swiped.

Chapter 9

[127]

Now let's look at scrolling. You can detect when a scroll starts and when one ends.
Listing 9-4 is another simple example of this in action:

Listing 9-4: test4.html
<!DOCTYPE html>
<html>
 <head>
 <title>Scroll Tests</title>
 <meta name="viewport" content="width=device-width, initial-
 scale=1">
 <link rel="stylesheet" href="http://code.jquery.com/mobile/
 latest/jquery.mobile.min.css" />
 <script src="http://code.jquery.com/jquery-
 1.7.1.min.js"></script>
 <script src="http://code.jquery.com/mobile/
 latest/jquery.mobile.min.js"></script>
 </head>
 <body>
 <div data-role="page" id="first">
 <div data-role="header">
 <h1>Scroll Tests</h1>
 </div>
 <div data-role="content">
 <p>
 Scroll please....

 (Many
 tags removed to save space!)

 </p>
 <p id="status"></p>
 </div>
 </div>
 <script>
 $("body").bind("scrollstart", function(e) {
 $("#status").append("Start
");
 });
 $("body").bind("scrollstop", function(e) {
 $("#status").append("Done!
");
 });
 </script>
 </body>
</html>

Working with Events

[128]

This template is pretty similar to test1.html, the tap tester, except now we've
listened to scrollstart and scrollstop. Also note the list of
 tags. In the
real source file, there are many of these. This will ensure that the page is actually
scrollable when you test. When the scrolling will start and end, we simply append to
another status div. (Please note that currently DOM manipulation is listed as being
buggy when listening to scrollstart. The previous example may not work in iOS,
but works fine on Android.)

Now let's look at orientation. While the previous examples should be (mostly)
testable on your desktop, you will definitely need a real mobile device to test
the next example:

Listing 9-5: test5.html
<!DOCTYPE html>
<html>
 <head>
 <title>Orientation Tests</title>
 <meta name="viewport" content="width=device-width, initial-
 scale=1">
 <link rel="stylesheet" href="http://code.jquery.com/mobile/
 latest/jquery.mobile.min.css" />
 <script src="http://code.jquery.com/jquery-
 1.7.1.min.js"></script>
 <script src="http://code.jquery.com/mobile/
 latest/jquery.mobile.min.js"></script>
 </head>
 <body>
 <div data-role="page" id="first">
 <div data-role="header">
 <h1>Orientation Tests</h1>
 </div>
 <div data-role="content">
 <p>
 Tilt this sideways!
 </p>
 <p id="status"></p>
 </div>
 </div>
 <script>
 $(window).bind("orientationchange", function(e,type) {
 $("#status").html("Orientation changed to "+e.orientation);
 });
 </script>
 </body>
</html>

Chapter 9

[129]

The critical part of the previous code listing is the JavaScript at the end, specifically
the event listener for changing orientation. This is not actually a jQuery Mobile
supported event but something supported by the browser itself. Once the event
listener is attached, you can do whatever you wish based on the orientation of the
device. The following screenshot is the demonstration:

Handling page events
Now that we've discussed physical type events, it's time to turn our attention
to page events. Remember that jQuery Mobile has its own concept of pages. In
order to give developers even more control over how pages work within jQuery
Mobile, numerous page events are supported. Not all will necessarily be useful
in your day to day development. In general, page events can be split into the
following categories:

•	 load: These are events related to the loading of a page. They are
pagebeforeload, pageload, and pageloadfailed. pagebeforeload is fired
prior to a page being requested. Your code can either approve or deny this
request based on whatever logic may make sense. If a page is loaded, then
pageload is fired. Conversely, pageloadfailed will be fired on any load that
does not complete.

•	 change: These events are related to the change from one page to another.
They are: pagebeforechange, pagechange, and pagechangefailed. As
before, the pagebeforechange function acts as a way to programmatically
decline the event. If done, the pagechangefailed event is fired.
pagebeforechange is fired before the pagebeforeload event. pagechange
will fire after the page is displayed.

•	 transition: Events related to the movement, or transition, from one page to
another. They are: pagebeforeshow, pageshow, pagebeforehide, pagehide.
Both pagebeforeshow and pagebeforehide run prior to their related events
but unlike pagebeforeload and pagebeforechange, they can't actually
prevent the next event.

Working with Events

[130]

•	 init: As it has been shown many times in this book, jQuery Mobile performs
multiple updates to basic HTML to optimize it for mobile displays.
These are initialization related events. The events you can listen to are:
pagebeforecreate, pagecreate, and pageinit. pagebeforecreate fires
before any of the automatic updates are fired on your controls. This allows
you to manipulate your HTML via Javascript beforehand. pagecreate is
fired after page content exists in the DOM, but still before the layout has
been updated by jQuery Mobile. The official docs recommend this as the
place to do any custom widget handling. Finally, pageinit will run after the
initialization has been completed.

•	 remove: There is one event for this category – pageremove. This event is
fired before jQuery Mobile removes an inactive page from the DOM. You can
listen to this event to prevent the framework from removing the page.

•	 layout: The final category is related to layout and has one event –
updatelayout. This is typically fired by other layout changes as a way to let
the page know it needs to update itself.

That's quite a lot! A simple way to look at these events in action would be to simply
listen to all of them. In Listing 9-6, we have a simple example of this in action:

Listing 9-6: test_page.html
<!DOCTYPE html>
<html>
 <head>
 <title>Page Event Tests</title>
 <meta name="viewport" content="width=device-width, initial-
 scale=1">
 <link rel="stylesheet" href="http://code.jquery.com/mobile/
 latest/jquery.mobile.min.css" />
 <script src="http://code.jquery.com/jquery-
 1.7.1.min.js"></script>
 <script src="http://code.jquery.com/mobile/
 latest/jquery.mobile.min.js"></script>
 </head>
 <body>
 <div data-role="page" id="first">
 <div data-role="header">
 <h1>Page Event Tests</h1>
 </div>

Chapter 9

[131]

 <div data-role="content">
 <p>
 Go to Page 2

 Go to Page 3

 Go to Page 4

 Go to Page Failed
 </p>
 </div>
 </div>
 <div data-role="page" id="page2">
 <div data-role="header">
 <h1>Page Event Tests</h1>
 </div>
 <div data-role="content">
 <p>
 Go to Page 1

 Go to Page 3

 Go to Page 4
 </p>
 </div>
 </div>
 <script>
 $(document).bind("pagebeforeload pageload pageloadfailed
 pagebeforechange pagechange pagechangefailed pagebeforeshow
 pagebeforehide pageshow pagehide pagebeforecreate pagecreate
 pageinit pageremove updatelayout", function(e) {
 console.log(e.type);
 });
 </script>
 </body>
</html>

Working with Events

[132]

This template is part of a four-page, three-file simple application that has buttons
linking to each of the other pages. The other pages may be found in the ZIP file you
downloaded. In order to test this application, you should use a desktop browser
with console support. That's any version of Chrome, recent Firefox browsers (or
Firefox with Firebug), and the latest Internet Explorer. A full explanation of the
browser console wouldn't fit in this chapter, but you can think of it as a hidden
away debugging log useful for recording events and other messages. In this case,
we've told jQuery to listen for all of our jQuery Mobile page events. We then log
the specific event type to the console. After clicking around a bit, the following
screenshot shows how the console log looks in a Chrome browser:

Opening the console in Chrome is simple. Click on the monkey wrench icon in the
upper right corner of the browser. Select Tools and then JavaScript Console. Open
the console up before testing these files yourself and you can monitor the page
events as they happen in real time.

Chapter 9

[133]

What about $(document).ready?
If you are a jQuery user, you may be curious how $(document).ready comes
into play with a jQuery Mobile site. Almost all jQuery applications use
$(document).ready for initialization and other important setup operations.
However, in a jQuery Mobile application, this will not work well. Since Ajax is
used to load pages, $(document).ready is only really effective for the first page.
Therefore, the pageInit event should be used in cases where you would have
used $(document).ready in the past.

Creating a real example
So what about a real example? Our next set of code is going to demonstrate how
to create a simple, but dynamic, jQuery Mobile web site. The content will be loaded
via Ajax. Normally this would be dynamic data, but for our purposes we'll use
simple static files of JSON data. JSON, stands for JavaScript Object Notation, is a
way to represent complex data as simple strings. Listing 9-7 is the application's
home page:

Listing 9-7: test_dyn.html
<!DOCTYPE html>
<html>
 <head>
 <title>Test Dynamic</title>
 <meta name="viewport" content="width=device-width, initial-
 scale=1">
 <link rel="stylesheet" href="http://code.jquery.com/mobile/
 latest/jquery.mobile.min.css" />
 <script src="http://code.jquery.com/jquery-
 1.7.1.min.js"></script>
 <script src="http://code.jquery.com/mobile/latest/
 jquery.mobile.min.js"></script>
 </head>
 <body>
 <div data-role="page" id="homepage">
 <div data-role="header">
 <h1>Dynamic Pages</h1>
 </div>
 <div data-role="content">
 <ul id="peopleList" data-role="listview"
 data-inset="true">
 </div>
 </div>
 <script>
 $("#homepage").bind("pagebeforecreate", function(e) {

Working with Events

[134]

 //load in our people
 $.get("people.json", {}, function(res,code) {
 var s = "";
 for (var i = 0; i < res.length; i++) {
 s+="<a href='test_people.html
 ?id="+res[i].id+"'>"+res[i].name+"";
 }
 $("#peopleList").html(s).listview("refresh");
 }, "json");
 });
 $("#personpage").live("pagebeforeshow", function(e) {
 var thisPage = $(this);
 var thisUrl = thisPage.data("url");
 var thisId = thisUrl.split("=")[1];
 $.get("person"+thisId+".json", {}, function(res, code) {
 $("h1",thisPage).text(res.name);
 s = "<p>"+res.name +" is a "+res.gender+" and
 likes "+res.hobbies+"</p>";
 $("#contentArea", thisPage).html(s);
 }, "json");
 });
 </script>
 </body>
</html>

The first thing you may notice about this jQuery Mobile page is that there isn't any
actual content. Not within the jQuery Mobile page's content block at least. There's a
listview but no actual content. So where's the content going to come from? At the
bottom of the page you can see two event listeners. For now let's just focus on the
first one.

The code here binds to the pagebeforecreate event that jQuery Mobile fires for
pages. We've told jQuery Mobile to run this event before it creates the page. This
event will run once and only once. Within this event we use the jQuery get feature
to do an Ajax request to the file people.json. That file is simply an array of names
in JSON format:

[{"id":1,"name":"Raymond Camden"},{"id":2,"name":"Todd
 Sharp"},{"id":3,"name":"Scott Stroz"},{"id":4,"name":"Dave
 Ferguson"},{"id":5,"name":"Adam Lehman"}]

Chapter 9

[135]

Each name has both an ID and the actual name value. When loaded by jQuery, this
is turned into an actual array of simple objects. Looking back at the event handler,
you can see that we simply loop over this array and create a string representing a set
of li tags. Note that each one has a link to test_people.html as well as a dynamic
name. Also note the links themselves are dynamic. They include each person's ID
value as retrieved from the JSON string:

It was mentioned earlier, but take note of the call to listview("refresh"):

$("#peopleList").html(s).listview("refresh");

Without the listview("refresh") portion, the items we added to the listview
would not be styled correctly.

Let's take a quick look at test_people.html next:

Listing 9-8: test_people.html
<!DOCTYPE html>
<html>
 <head>
 <title>Test Dynamic</title>
 <meta name="viewport" content="width=device-width, initial-
 scale=1">
 <link rel="stylesheet" href="http://code.jquery.com/mobile/
 latest/jquery.mobile.min.css" />
 <script src="http://code.jquery.com/jquery-
 1.7.1.min.js"></script>
 <script src="http://code.jquery.com/mobile/latest/
 jquery.mobile.min.js"></script>
 </head>
 <body>

Working with Events

[136]

 <div data-role="page" id="personpage">
 <div data-role="header">
 <h1></h1>
 </div>
 <div data-role="content" id="contentArea">
 </div>
 </div>
 </body>
</html>

As with our last page, this one is pretty devoid of content. Note that both the header
and the content area are blank. But, if you remember the second event handler in
test_dyn.html, we have support to load the content here. This time we used the
pagebeforeshow event. Why? We want to run this code before every display of the
page. We need to know what particular person to load. If you remember, the ID of the
person was passed in the URL. We can fetch that via a data property, url, that exists
on the page object. This returns the complete URL, but all we care about is the end of
it – our ID. So we split the string and grab the last value. Once we have, we can then
load in a particular JSON file for each person. The form of this filename is personX.
json, where X is the number 1 through 5. The following line of code is one example:

{"name":"Raymond Camden","gender":"male","hobbies":"Star Wars"}

Obviously, a real person object would have a bit more data. Once we fetch this
string, we can then parse it and lay out the result on the page itself:

Summary
In this chapter, we looked into events that jQuery Mobile application can listen and
respond to. These events include physical types (scrolling, orientation, touching) and
page based ones as well.

In the next chapter, we'll look at how jQuery Mobile sites are themed – both out of
the box themes and custom ones as well.

Moving further
with the Notekeeper

Mobile Application
In this chapter, we're going to begin assembling everything we've learned about lists,
forms, pages, and content formatting thus far into a usable "mobile application"; the
Notekeeper application.

In this chapter, we will:

•	 Accept user input using forms
•	 Store user inputted data locally using the HTML5 localStorage functionality
•	 Demonstrate how to add, edit, and remove items from the page dynamically

What is a mobile application?
Before writing our first mobile application, perhaps we should define what one is.
Wikipedia says that a mobile application is Software that is developed for small low-
power handheld devices such as personal digital assistants, enterprise digital assistants or
mobile phones. While it's true that jQuery Mobile apps are written in HTML, CSS, and
JavaScript, that doesn't prevent them from being sophisticated pieces of software.
They're certainly developed with mobile devices in mind.

Some critics might note that it can't really be software unless it's "installed". As you'll
see later in the book, jQuery Mobile applications can actually be installed on a wide
array of devices (including iOS, Android, and Windows Mobile) when coupled with
the open source library PhoneGap. This means that you'll be able to have your cake
and eat it too. You might be asking yourself if code written using jQuery Mobile can
be considered software, and as you'll find out in this chapter, the answer is yes.

Moving further with the Notekeeper Mobile Application

[138]

Designing your first mobile application
The goal of any piece of software is to meet a need. Gmail met a need by freeing
users from a single computer and letting them check their e-mail from any web
browser. Photoshop met a need by allowing users to manipulate photos in ways
no one had ever done. Our Notekeeper application meets a need by allowing us to
record simple notes for later reference. I know, sort of a letdown by comparison but
we've got to start somewhere right?

When building software, it's a good idea to spend time up front writing out a
specification for your project: what it will do, what it will look like, and what it
should have. Remember that if you don't know what you're building, how will you
ever know if it's done?

Listing out the requirements
We already know what we want our application to do, take notes. The problem is
that there are so many ways that you could build a note-taking app that it's essential
to sketch out just what we want ours to do. Not too much, not too little, but just
enough, for now. It's a point of fact with developers that our applications are never
"done", they're only finished "for now". With Notekeeper, we've decided that we
want to be able to do the following three things with our application:

•	 Add a note
•	 Display a list of notes
•	 View a note/delete a note

After deciding what tasks our app needs to accomplish, we need to decide how it
will accomplish them. The easiest approach is to simply write those things out in a
list. By breaking each part down into smaller pieces we make it easier to understand,
and to see just what we need to make it work. It's just like getting directions to your
favourite restaurant; a left turn here, a roundabout there, and you're sitting down at
the table before you know it. Let's look at each thing we want Notekeeper to do, with
the pieces and parts underneath:

•	 Adding a note (form)
	° A form container. All user input widgets are wrapped up into

a form.
	° A title, the name of the note. This will also be used to display

existing notes.
	° The note itself. The content or body of the note.
	° A save button. This triggers the actual saving.

Chapter 10

[139]

•	 The ability to display a list of notes (listview)
	° A row item containing the title of the note. This row should be a link

to a page containing the body of the note.
	° A section header row might be nice.

•	 The ability to view a note, and delete a note (label, paragraph, button)
	° A label for the title of the note
	° A paragraph containing the content of the note
	° A button labeled Delete
	° A back button

Building your wireframes
Now that we've listed out the functionality for our app, how about we sketch each
piece so that we get an idea of what we want it to look like? Don't worry if you failed
art, or if you can't draw a stick figure. Use a ruler if you have to, or consider using
Microsoft Excel, or PowerPoint if you have those. You just need to be able to draw
some boxes and some text labels.

Designing the add note wireframe
Now, what about the add note part? We decided that it needs a title, a box for the
note, and a submit button. The form is an invisible container so we don't need to
draw that:

Moving further with the Notekeeper Mobile Application

[140]

Display notes wireframe
The listview is an integral part of mobile development. It's the simplest way to group
similar items together, plus it offers lots of extra functionality such as scrolling, and
built in images for links. We'll be using a listview to display our list of notes:

View note/delete button wireframe
Finally, once we've added a note, we need to be able delete the evidence, I mean
clear out old notes to make way for new ones. Note that we've also sketched out a
back button. Once you start seeing things laid out, you'll find that you've forgotten
something really important (like being able to return to the previous page):

Chapter 10

[141]

Writing the HTML
Now that our wireframes are done, and we're happy with them it's time to turn
pencil drawings into 1's and 0's. Since our app is relatively simple, none of the HTML
should be difficult. You're more than halfway through the book after all and you
should be doing these things in your sleep.

The HTML that you come up with should look remarkably like what's shown in the
following code snippet. Let's examine it together:

Listing 10-1: notekeeper.html
<!DOCTYPE html>
<html>
 <head>
 <title>Notekeeper</title>
 <meta name="viewport" content="width=device-width, initial-
 scale=1">
 <link rel="stylesheet" href="http://code.jquery.com/mobile/
 latest/jquery.mobile.min.css" />
 <script src="http://code.jquery.com/jquery-1.6.4.js"></script>
 <script src="http://code.jquery.com/mobile/latest/
 jquery.mobile.min.js"></script>
 <script src="application.js"></script>
 </head>
 <body>
 <div data-role="page">
 <div data-role="header">
 <h1>Notekeeper</h1>
 </div>
 <div data-role="content">
 <form>
 <div>
 <input id="title" type="text" placeholder="Add a note" />
 </div>
 <div>
 <textarea id="note" placeholder="The content of your
 note"></textarea>
 </div>
 <div class="ui-grid-a">
 <div class="ui-block-a">
 <input id="btnNoThanks" type="submit" value="No Thanks" />
 </div>
 <div class="ui-block-b">

Moving further with the Notekeeper Mobile Application

[142]

 <input id="btnAddNote" type="button" value="Add Note" />
 </div>
 </div>
 </form>
 <ul id="notesList" data-role="listview" data-inset="true">
 <li data-role="list-divider">Your Notes
 <li id="noNotes">You have no notes

 </div>
 <div data-role="footer" class="footer-docs">
 <h5>Intro to jQuery Mobile</h5>
 </div>
 </div>
 </body>
</html>

Our Notekeeper application will make use of a single HTML file
(notekeeper.html) and a single JavaScript file (application.js). Up until
this point none of the code you've written has really needed JavaScript, but
once you begin writing more complex applications, JavaScript will be a
necessity. Preview the HTML from Listing 10-1 in your web browser
and you should see something similar to the following screenshot:

Chapter 10

[143]

Notice that we're displaying the Add Note form on the same page as the view notes.
With mobile application development, it's a good idea to condense things where
possible. Don't make this a hard and fast rule but since there's so little to our app, it's
an acceptable decision to place both parts together as long as they're clearly labeled.
You can see that this page meets all the requirements we set for adding a note, and
for displaying our existing notes. It has a title input field, a note input field, a save
button, and the entire thing is wrapped inside a form container. It also has a listview
that will be used to display our notes once we start adding them. What isn't seen
here is a delete button, but that will show up once we add our first note and view the
details page.

Adding functionality with JavaScript
As this book has mentioned, you don't need to write any JavaScript to get your
money's worth from jQuery Mobile. But as you begin to progress in your experience
with jQuery Mobile you'll begin to see how much additional value JavaScript can add
to your projects. Before we look at the code, lets talk about how it will be structured. If
you've done any web design or development at all, you've probably seen JavaScript.
It has been around since 1995 after all. The problem is that there's been many different
ways to do the same thing in JavaScript and not all of them good.

The JavaScript code in this application will use what's called a design pattern. It's
just a fancy term that specifies a certain structure to the code. There are three main
reasons for using an existing design pattern:

•	 It helps our code stay organized and tidy.
•	 It prevents the variables and functions we write from being accidentally

overwritten or altered by any other code we might add. A jQuery plugin
perhaps, or code that's being loaded in from a third party website.

•	 It will help the future developers to acclimiatize themselves to your code
much more rapidly. You are thinking about future developers as you work
on the next Facebook right?

Let's take a look at a very simple implementation of this design pattern before
jumping into the full code:

Listing 10-2: kittyDressUp.js
$(document).ready(function(){
 // define the application name
 var kittyDressUp = {};
 (function(app){

Moving further with the Notekeeper Mobile Application

[144]

 // set a few variables which can be used within the app
 var appName = 'Kitty Dress Up';
 var version = '1.0';
 app.init = function(){
 // init is the typical name that developers give for the
 // code that runs when an application first loads
 // use whatever word you prefer
 var colors = app.colors();
 }
 app.colors = function(){
 var colors = ['red','blue','yellow','purple'];
 return colors;
 }
 app.init();
 })(kittyDressUp);
});

If you're familiar with JavaScript or jQuery, you'll probably see some elements
that you're familiar with. For those readers who aren't familiar with jQuery, or
JavaScript we'll review this example line by line. KittyDressUp.js starts off with
jQuery's best friend. Any code contained within the curly braces waits to execute
until the document, or the HTML page, is completely loaded. This means that you,
the developer, can be assured that everything which needs to be on the page is there
before your code runs:

$(document).ready({
 // I'm ready captain!
});

In simple terms, the next line creates a variable named kittyDressUp and assigns
it a value of an empty object. However, in our code this new object will contain our
entire application:

// define the application name
var kittyDressUp = {};

The following declaration is the core of the Kitty Dress Up application. It creates
a function that accepts a single argument, and then immediately calls itself, passing
in the empty object we created in the previous line. This concept is known as a
self-executing function and is what keeps the external code from interfering with
our application.

Chapter 10

[145]

(function(app){
 // define the app functionality
})(kittyDressUp);

The next two lines set a few variables that can only be accessed from within the
context, or scope, of our application:

// set a few variables which can be used within the app
var appName = 'Kitty Dress Up';
var version = '1.0';

Finally, the last few lines set up two functions that are available for use within the
application. You can see that each function is assigned a name that is within the
scope of the larger application. The app variable is where the function lives, and the
word after the . is the function name. Notice that within the init function we're
calling another function inside the same application, app.colors(). We could also
reference any of the variables that we defined at the top as well.

app.init = function(){
 // init is the typical name that developers give for the
 // code that runs when an application first loads
 // use whatever word you prefer
 var colors = app.colors();
}
app.colors = function(){
 var colors = ['red','blue','yellow','purple'];
 return colors;
}
app.init();

Remember that app was the name of the parameter passed into the self-executing
function, and that its value is an empty object. Taken as a whole these few lines
create an object named kittyDressUp that contains two variables (appName and
version), and two functions (init and colors). This example, as well as the code
for Notekeeper, are simple examples, but they illustrate how you can go about
wrapping up code for various pieces of a larger app into discrete packages. In fact,
after kittyDressUp.js runs you could even pass the kittyDressUp into yet another
set of code for use there.

Phew…everyone take five, you've earned it.

Moving further with the Notekeeper Mobile Application

[146]

Storing Notekeeper data
Now that we're back from our five minute break it's time to roll up our sleeves and
get to work adding functionality to our app. While we've talked about how we want
Notekeeper to behave, we haven't discussed the core issue of where to store the note
data. There are a few possibilities, all of which have pros and cons. Let's list them out:

•	 Database (MySQL, SQL Server, PostgreSQL): While a database would be the
ideal solution, it's a little complex for our app, it requires internet connectivity,
and you'd need a server-side component (ColdFusion, PHP, .NET) acting as a
middle man to save notes to the database.

•	 Text file: Text files are great because they take up very little room. The
problem is that as a web app, Notekeeper can't save files to the user's device.

•	 localStorage: localStorage is relatively new, but it's quickly becoming a good
option. It stores information on the user's machine in key/value pairs. It's got
a size limit, but it's pretty large for plain text, most modern browsers support
it, and it can be used in offline mode.

Using localStorage
For the purposes of this chapter, we'll be selecting localStorage as our method
of choice. Let's take a quick look at how it behaves so that you'll be familiar with
it when you see it. As mentioned earlier, localStorage works on the premise of
storing data in key/value pairs. Saving a value to localStorage works in one of two
ways and is easy, no matter which one you choose:

localStorage.setItem('keyname','this is the value I am saving');

or

localStorage['keyname'] = 'this is the value I am saving';

Which version you choose is personal preference, but because it's slightly less
typing we'll be using the second method, square brackets. One issue we'll run into
is that localStorage can't store complex data like arrays, or objects. It only stores
strings. That's a problem because we're going to be storing all of our data inside one
variable so that we always know where it lives. Never fear, we can pull a fast one on
localStorage and convert our complex object into a string representation of itself
using a built in function called stringify().

Chapter 10

[147]

The following code snippet shows how it works:

// create our notes object
var notes = {
 'note number one': 'this is the contents of note number one', 'make
 conference call': 'call Evan today'
 }
// convert it to a string, then store it.
localStorage['Notekeeper'] = JSON.stringify(Notekeeper);

Retrieving a value is just as simple as setting it, and it also offers two options.
You'll usually want to define a variable to receive the contents of the
localStorage variable.

var family = localStorage.getItem('my family');

or

var family = localStorage['my family'];

If you're retrieving a complex value there's an additional step that must be
performed before you can use the contents of the variable. As we just mentioned,
to store complex values you must first use the stringify() function, which has
a counterpart function called parse(). The parse() function takes the string
containing that complex object and turns it back into pure JavaScript. It's used as
follows:

var myFamily = ['andy', 'jaime', 'noelle', 'evan', 'mason'];
localStorage['family'] = JSON.stringify(myFamily);

var getFamily =JSON.parse(localStorage['family']);

Finally, if ever you wanted to delete the key completely then you can accomplish it
in a single line of code, again with two flavors:

localStorage.removeItem('my family');

or

delete localStorage[my family'];

It's worth noting that if you try to retrieve a key that doesn't exist within
localStorage, JavaScript won't throw an error. It'll just return "undefined" which is
JavaScript's way of saying "sorry, but nothing's there". The following code snippet is
an example:

var missing = localStorage['yertl the turtle'];
console.log(missing);
// returns undefined

Moving further with the Notekeeper Mobile Application

[148]

Effective use of boilerplates
One last thing before we start building our JavaScript file. In our application, we're
only going to have one JavaScript file, and it's going to contain the entire codebase.
This is fine for smaller apps like ours, but it's a bad idea for larger apps. It's better
to break up your project into distinct pieces, then put each of those into their own
files. This makes it easier for teams of developers to work together (for example,
Noelle works on the login process, while Mason builds out the list of vendors). It
also makes each file smaller and easier to understand because it only addresses one
part of the whole. When you want all of the pieces of your app to have a similar
structure and design, it's a good idea to start each section with a boilerplate. We'll be
using a boilerplate for our app's only file (which you can see in the following code
snippet, Listing 10-3). You might notice it looks very similar to the kittyDressUp
example, and you'd be right:

Listing 10-3: application.js
$(function(){
 // define the application
 var Notekeeper = {};
 (function(app){
 // variable definitions go here
 app.init = function(){
 // stuff in here runs first
 }
 app.init();
 })(Notekeeper);
});

Building the Add Note feature
At last, we can get started building! Since it's difficult to display a list of notes that
don't exist, much less delete one, we'll start writing the Add Note functionality first.
For a user to be able to add a note, they have to enter a title, the contents of a note,
then hit the submit button. So let's start there.

Adding bindings
We're going to create a new, empty, function block under the app.init() function
definition. It should look something similar to the following line of code:

app.bindings = function(){
}

Chapter 10

[149]

The bindings function will contain any piece of code that needs to fire when a user
does something in our app, like clicking the submit button or the delete button.
We group that code together for the sake of organization. Within the bindings()
function we're going to add the following lines. This will fire when a user clicks the
submit button on the Add Note form:

// set up binding for form
$('#btnAddNote').bind('click', function(e){
 e.preventDefault();
 // save the note
 app.addNote(
 $('#title').val(),
 $('#note').val()
);
});

jQuery's val() function is a shorthand method used to get the current value of any
form input field.

A few notes about this new addition:

•	 When using jQuery, there will always be more than one way to accomplish
something, and in most cases you simply pick the one that you like the best
(they usually offer identical performance). You might be more familiar with
$('#btnAddNote').click() and that's just fine as well.

•	 Notice that the click function accepts a single parameter: e which is the
event object (in this case a click event). We call e.preventDefault() to
stop the standard click event from happening on this element, but still
allow the remaining code to continue running. You might have seen other
developers use return false, but jQuery best practices recommend using
e.preventDefault() instead.

•	 Within the click binding, we're calling the addNote function, and passing into
it the title typed in by the user, and the note. The whitespace is unimportant,
serving merely to make it easier to see what we're doing.

Even though we've added the binding to our code, if you run the app right now,
nothing will happen when you click the Add Note button. The reason is that nothing
has actually called the bindings() function yet. Add the following line inside the
init() function and you'll be ready to go:

app.init = function(){
 app.bindings();
}

Moving further with the Notekeeper Mobile Application

[150]

Collecting and storing the data
Next we add another new, empty, function block under app.bindings:

app.addNote = function(title, note){
}

Now, because we're storing all of our notes into one key within localStorage, we
first need to check to see if any notes already exist. Retrieve the Notekeeper key from
localStorage, save it to a variable, then compare it. If the value of the key we ask
for is an empty string, or undefined we'll need to create an empty object. If there is a
value, then we take that and use the parse() function to turn it into JavaScript:

var notes = localStorage['Notekeeper'];
if (notes == undefined || notes == '') {
 var notesObj = {};
} else {
 var notesObj = JSON.parse(notes)
}

Notice that we're expecting two variables to be passed into the addNote() function,
title and note. Next we replace any spaces in the title with dashes, this makes it
easier for some browsers to understand the string of text. Then we place the key/
value pair into our newly minted notes object:

notesObj[title.replace(/ /g,'-')] = note;

The JavaScript replace method makes string manipulation quite simple. It acts on a
string, taking a search term and a replacement term. The search term can be a simple
string, or a complex regular expression.

The next step is to take our notesObj variable, stringify() it and place it into
localStorage. We then clear the values from the two input fields to make it easier for
the user to input another note. As a rule in building software it's a nice touch to return
the interface to its original state after an action such as adding or removing content:

localStorage['Notekeeper'] = JSON.stringify(notesObj);
// clear the two form fields
$note.val('');
$title.val('');
//update the listview
app.displayNotes();

All of these variable definitions should be familiar to you with perhaps one exception
that we should point out. Many jQuery developers like to use conventional naming
for variables which contain jQuery objects.

Chapter 10

[151]

Specifically, they prepend the variable name with a $ sign just like with jQuery. This
lets them, or future developers know, what's contained within the variable. Let's go
ahead and add those definitions to the top of our app. Just after the line which reads
// variable definitions go here, add the following lines. They refer to the title
input field and the note textarea field respectively:

var $title = $('#title');
var $note = $('#note');

As a final step to this function we fire off a call to app.displayNotes() to update
the list of notes. Since that function doesn't exist yet, let's create it next.

Building the Display Notes feature
You probably tested out the Add Note feature while writing the previous section.
This means that you'll have at least one note saved in localStorage for use in
testing the Display Notes feature. By now you're familiar with our first steps for
any new section. Go ahead and add your empty displayNotes() function to hold
our code:

app.displayNotes = function(){
}

Next we need to retrieve all of our notes from localStorage:

// get notes
var notes = localStorage['Notekeeper'];
// convert notes from string to object
return JSON.parse(notes);

You might start to see a pattern with many of our functions, almost all of them begin
with us retrieving notes from localStorage. While there are only two lines of code
needed to perform this task, there's no need for us to repeat those two lines each time
we need to get the notes. So we're going to write a quick helper function containing
those two lines. It looks similar to the following code snippet:

app.getNotes = function(){
 // get notes
 var notes = localStorage['Notekeeper'];
 // convert notes from string to object
 return JSON.parse(notes);
}

Moving further with the Notekeeper Mobile Application

[152]

With our new helper function in place, we can use it in the displayNotes() function
as shown in the following code snippet:

app.displayNotes = function(){
 // get notes
 var notesObj = app.getNotes();
}

Now that we have the notesObj variable containing our packet of notes, we need to
loop over that packet and output the contents:

// create an empty string to contain html
var html = '';
// loop over notes
for (n in notesObj) {
 html += li.replace(/ID/g,n.replace(/-/g,' ')).replace(/LINK/g,n);
}
$ul.html(notesHdr + html).listview('refresh');

It might seem odd for the line inside the for loop to have multiple replace
statements, but the nature of JavaScript allows for methods to be chained.
Chaining refers to a method which returns the entire results of it's action.
Adding an additional method call simply repeats the process.

There might be some new concepts in this code block so let's take a closer look. The
variable named html is nothing special, but how we're using it might be. As we loop
over the existing notes, we're storing new information into the html variable along
with whatever else is inside it. We accomplish this by using the += operator which
allows us to assign and append at the same time.

The second thing you might notice is the li on the right side of the assignment.
Where does that come from? That's a template for a single list item which has
not yet been created. Let's do that right before we talk about it. At the top of your
app.js file, just after the line which reads // variable definitions go here,
add the following two lines of code:

var $ul = $('#notesList');
var li = 'ID';

You should already be familiar with the convention of adding a $ before a variable to
indicate a jQuery object. That's what we're doing with the $ul variable. The second
variable, the li is slightly different. This contains the HTML for a single list item
that will display a notes title. It's best practice to avoid mixing HTML or CSS in with
your JavaScript wherever possible. We're declaring this as a template now in case we
decide to use it in multiple places later.

Chapter 10

[153]

The other part which might be of interest is the way we're using the li variable.
When calling the string replace function, we're looking for all occurrences of the
word LINK (upper case intended) and replacing it with the title of the note. Because
JavaScript is a case-sensitive language it's a safe assumption that we won't run into a
natural occurrence of that work.

Dynamically adding notes to our listview
There's one final thing we need to put in place before our notes show up on the
page. You might have noticed that the only place which calls the displayNotes()
function appears within the addNote() function. This is a good place for it, but it
can't be the only place. We need something that runs when the page first loads. The
prime place for this would be in the init() function, and that's where we'll place it.

There's one problem though, we can't just load our notes and run, what
happens if there are no notes? We need a nice message to display to the
user so that they don't think something's wrong. Let's create a new function
called app.checkForStorage() which handles all of this:

app.checkForStorage = function(){
 // are there existing notes?
 if (localStorage['Notekeeper']) {
 // yes there are. pass them off to be displayed
 app.displayNotes();
 } else {
 // nope, just show the placeholder
 $ul.html(notesHdr + noNotes).listview('refresh');
 }
}

By now, all of this should be familiar to you: checking localStorage for notes, and
calling the displayNotes() function if it finds them. The second part has some new
items though. When we set the html for the $ul jQuery object, we're calling two
new variables. One for the listview header, and another if we don't have any notes.
Let's add those two variable definitions now. Under // variable definitions go
here, add the following two lines:

var notesHdr = '<li data-role="list-divider">Your Notes';
var noNotes = '<li id="noNotes">You have no notes';

Moving further with the Notekeeper Mobile Application

[154]

The last part of the line normally might go unnoticed, but we won't let it. It's really
crucial. jQuery Mobile offers developers options. The option of having static HTML
code, that's already on the page when it loads; jQuery Mobile also provides an option
for adding HTML code on the fly. That really gives developers lots of flexibility, but
it presents a unique challenge as well. By design jQuery Mobile converts HTML into
stylish looking buttons before the page loads. This means that any HTML added
after that will be presented to the user without any style.

However, jQuery Mobile also offers a way to get around this by building in the
ability to refresh each and every element that it converts. Most of them have a
built-in function corresponding to the name of the element; in our case it's the
listview() function. Actually this method offers the ability to add a completely
new listview to the page. In our situation we only care about refreshing the one
we have, so we simply add the refresh keyword and jQuery Mobile converts
your plain text listview. Try leaving that last part off and see just how much work
jQuery Mobile saves you. Maybe you should add the jQuery Mobile team to your
Christmas card list?

Finally, we have to actually call our newest function. Within the init() function add
the following line. Then reload the page and watch your notes load up.

app.checkForStorage();

Viewing a note
At this point we should be able to create a new note, and have that note be
immediately displayed in our listview. In fact, the rows in the listview are already
links, they just don't work, let's change that right now.

Using the Live function
Add the following lines to the bindings() function:

$('#notesList a').live('click',function(e){
 e.preventDefault();
 var href = $(this)[0].href.match(/\?.*$/)[0];
 var title = href.replace(/^\?title=/,'');
 app.loadNote(title);
});

This new binding has a few new concepts so let's unpack them. First up, we're not
using the bind function, instead we use jQuery's live function. The difference is that
bind only works on existing page elements, whereas live is proactive. It works on
existing elements as well as ones which get created after the binding is applied.

Chapter 10

[155]

The second and third lines of the binding might look a little confusing but they
only do one thing. They retrieve the URL from the href attribute of the link that was
clicked. The li template we defined earlier in the chapter contained the following
URL for each list item:

#pgNotesDetail?title=LINK

After the displayNote() function runs, the URL looks like this (run your mouse
over each list item to see the link displayed at the bottom of your browser window):

#pgNotesDetail?title=the-title-of-the-note

Finally we tell our code to run a new function appropriately named app.loadNote().

Dynamically creating a new page
If you haven't already created the new empty function block for our new
loadNote() function, go ahead and do it now. Remember that we're passing in the
title of the note we want to view, so make sure to add that as an argument in the
loadNote() function:

app.loadNote = function(title){
}

Then place the following two lines at the top of the function:

// get notes
var notes = app.getNotes();
// lookup specific note
var note = notes[title];

The first line retrieves our note object, while the second line pulls the specific
note that the user has requested. The next variable definition breaks the rule we
mentioned earlier in the chapter about mixing HTML and JavaScript, but every
rule has exceptions. We're defining it here as opposed to the header of our JS file
since this is the only place it is needed. This still serves the purpose of keeping the
document organized.

var page = '<div data-role="page" data-url="details" data-add-back-
 btn="true">\
 <div data-role="header">\
 <h1>Notekeeper</h1>\
 <a id="btnDelete" href="" data-href="ID" data-role="button"
 class="ui-btn-right">Delete\
 </div>\
 <div data-role="content"><h3>TITLE</h3><p>NOTE</p></div>\
</div>';

Moving further with the Notekeeper Mobile Application

[156]

The page variable now contains all of the HTML needed to display a "note details"
page to the user. Do you recall that our app has only one HTML file? We're actually
creating an entire page from scratch using the previous HTML code. There are also
some details in it worth pointing out:

•	 By default jQuery Mobile does not offer a back button for pages. You can,
however, enable one on a page by page basis using the data-add-back-
btn="true" attribute on any div tag which also has a data-role="page"
attribute.

•	 The data-url attribute is an identifier used by jQuery Mobile so that it can
keep track of multiple pages which are generated.

Now that we have a whole page contained within a variable, what can we do with it?
The first thing we can do is to turn it into a jQuery object. By wrapping any distinct
chunk of HTML with a $() you turn it into a Grade-A jQuery object:

var newPage = $(page);

Then we can take the HTML of that newly created page and replace parts of it with
the values from our selected note.

//append it to the page container
newPage.html(function(index,old){
 return old
 .replace(/ID/g,title)
 .replace(/TITLE/g,title
 .replace(/-/g,' '))
 .replace(/NOTE/g,note)
}).appendTo($.mobile.pageContainer);

Since Version 1.4, jQuery has offered the option of a callback within certain
functions. These include .html(), .text(), .css() and a few others. This function
expects two arguments, of which the second contains the full HTML currently
contained within the matching element. This means that we can make tweaks to the
HTML contained inside our newPage variable without having to completely change
it. Wonderful isn't it?

Next we're appending the entire newPage variable to the end of the current page,
referenced here by the $.mobile.pageContainer constant. Finally, because we
cancelled the default click action in our binding, we have to tell the link to perform
an action which is to forward the user to this newly created page. jQuery Mobile
offers a built-in way to do this:

$.mobile.changePage(newPage);

Chapter 10

[157]

And now for the grand reveal. If you load up notekeeper.html in your browser you
should be able to add, display, and finally view notes, all within the confines of a
single browser window. Isn't jQuery Mobile great?

Deleting a note
Looking back to the requirements for our app, we're doing pretty well. We've written
HTML code that sets up the document structure, allowed us to add a note, display
notes, and view a note. All that's left is deleting a note and it begins with a last
binding set up in our bindings() function. Let's add it right now:

$('#btnDelete').live('click',function(e){
 e.preventDefault();
 var key = $(this).data('href');
 app.deleteNote(key);
});

There's only one item that might be new to you in this binding, the use of jQuery's
.data() function. HTML 5 allows you to store arbitrary data directly on any HTML
element by using an attribute prepended with data- and this ability is at the core of
jQuery Mobile's functionality. Anywhere you see data-role="something", you're
seeing HTML 5 data in action. Further jQuery allows you to retrieve any data- value
by using the .data() function and passing in the key of the item you want to view.
In the case above we've stored the title of the note into a data-href attribute directly
on the delete button within the view page. Because the binding we're adding is a
click handler assigned to the delete button we can retrieve the title of the note by
calling $(this).data('href'). Neat-o!

This will be the last function that we add in this chapter. Are you sad? It's a poignant
moment for certain, but we can look back on this with fondness after you're a
successful jQuery Mobile developer. Once again we start with an empty function
which accepts a single argument, the title of the note we're deleting.

Moving further with the Notekeeper Mobile Application

[158]

app.deleteNote = function(key){
}

Follow the function definition up with our helper function for retrieving notes:

// get the notes from localStorage
var notesObj = app.getNotes();

Then we delete the note. You've already seen this in action when we reviewed
localStorage so it should be familiar to you:

// delete selected note
delete notesObj[key];
// write it back to localStorage
localStorage['Notekeeper'] = JSON.stringify(notesObj);

Deleting the note is followed in quick succession by writing the remaining notes
back to localStorage. The final two lines in the deleteNote() function take us
back to the main page of the app, the list of notes. They also trigger the original
checkForStorage() function.

// return to the list of notes
$.mobile.changePage('notekeeper.html');
// restart the storage check
app.checkForStorage();

The last line may seem odd to you, but keep in mind that we don't know in advance
if there are still any notes left. Running through the storage check allows us to
display the placeholder text, in case there are no notes. It's a good habit to get
into, as it helps our app become less prone to errors.

Summary
In this chapter, we built a living, breathing mobile application with jQuery Mobile.
Stop and give yourself a pat on the back. We walked through the process of listing
the requirements for our app, building the wireframes, and writing the HTML. We
learned about HTML 5's localStorage, using templates for text replacement, and
some of the cooler features of jQuery Mobile including dynamically adding and
refreshing elements on the page.

In the next chapter, you'll learn how to set global configuration options for jQuery
Mobile, how to use other APIs within jQuery Mobile to work with forms and
content blocks.

Enhancing jQuery Mobile
In this chapter, we'll learn how to enhance jQuery Mobile, how to make your mobile
applications really stand out from the pack by creating themes and icons to improve
the look and functionality of our app.

In this chapter, we will:

•	 Learn about the building blocks of jQuery Mobile
•	 Create our own jQuery Mobile theme using ThemeRoller
•	 Design and implement custom icons for our application

What's possible?
The reaction many developers have when using jQuery Mobile for the first time
is awe at how easy it is to implement a rich, compelling mobile website for their
users. The ease with which it converts plain HTML to beautiful, usable buttons, and
listviews. The form elements are a dream to work with. The jQuery Mobile team
even shipped five well designed and attractive themes and 18 commonly used icons
along with the rest of the package. They even built a tool that we can use to build
our own themes; ThemeRoller.

After working with jQuery Mobile for sometime developers might be asking
"what else can I do with this?" Just like muscle cars from the 60s and 70s. It wasn't
enough that they were already awesome, the tweakers and the gearheads wanted
to do more. If you are identified with that mentality then this chapter is for you.

Enhancing jQuery Mobile

[160]

The wonderful thing about jQuery Mobile is that because it's all plain CSS and
HTML, we can do almost anything we want to it with very little effort. In this
chapter we'll be creating our own theme from scratch using ThemeRoller for jQuery
Mobile. We'll be designing buttons and writing the CSS code needed to implement
both low and high resolution versions. We'll also be looking at how we can expand
on the styles and classes already available in jQuery Mobile and make something
different and unique. Let's get started now, shall we?

The visual building blocks of
jQuery Mobile
As you've already seen, jQuery Mobile is very user friendly and pleasing to the eye.
It makes good use of rounded corners, subtle gradients, drop shadows to make
elements stand out from their surroundings, and other tricks that graphic designers
have been using for years in print. But on the web, these effects were only possible
with the use of images, or complicated and poorly supported plugins and applets.

With the advent of the Web 2.0 and CSS 3, all of these options have been made
available to us, the layman web developers. Just remember that with great
power comes great responsibility. jQuery Mobile operates on the principle of
progressive enhancement. A tricky phrase but it just means that you should
develop for the lowest common denominator and offer enhancements for
browsers that understand them.

Luckily for us these stylistic additions are almost purely cosmetic. If a browser
doesn't understand the border-radius declaration, then it simply displays squared
off corners. The same holds true for gradients and shadows. While jQuery Mobile
adds these effects to your application out of the box, it's worthwhile knowing how to
add them on your own.

Chapter 11

[161]

Border-radius
Rounded corners can be one of the most elegant and appealing effects, and
they are also the simplest to add. There are a few caveats that developers need
to know about this effect and the other effects. While there is a specification for
border-radius as recommended by the W3C, it turns out that each of the primary
browser manufacturers supports it in slightly different ways. The end result is the
same, but the path to it varies. Let's take a look at the most basic border-radius
declaration, and the following screenshot is its result:

#rounded {
 border-radius: 10px;
}

You also have the option of rounding only certain corners, as well as tweaking
the values so that the corner isn't a perfect quarter-circle. Let's look at a few more
examples. The following code snippet and the screenshot demonstrate an example
to get two rounded corners:

#topLeftBottomRight {
 border-radius: 15px 0 15px 0;
}

The following code snippet and the screenshot demonstrate an example to get one
rounded corner:

#bottomLeft {
 border-top-left-radius: 100px 40px;
}

Enhancing jQuery Mobile

[162]

Sadly, it's not quite as easy as this, just yet. Because each browser vendor has their
own unique rendering for this effect, software developers like Google, or Mozilla
have taken to creating their own versions, commonly called vendor prefixes. For the
previous style declarations to have the widest range of coverage you'd have to add
the following lines of code:

#rounded {

 -webkit-border-radius: 10px;
 -moz-border-radius: 10px;
 border-radius: 10px;
}
#topLeftBottomRight {

 -webkit-border-top-left-radius: 15px;
 -webkit-border-bottom-right-radius: 15px;
 -moz-border-radius-topleft: 15px;
 -moz-border-radius-bottomright: 15px;
 border-top-left-radius: 15px;
 border-bottom-right-radius: 15px;
 /* mozilla and webkit prefixes require you to define each corner
 individually when setting different values */
}
#bottomLeft {

 -webkit-border-top-left-radius: 100px 40px;
 -moz-border-radius-topleft: 100px 40px;
 border-top-left-radius: 100px 40px;
}

Applying drop shadows
Drop shadows in CSS take one of two forms: text-shadows (applied to text) and
box-shadows (applied to everything else). Like border-radius, drop shadows are
fairly straightforward if you're looking at the W3C specification.

Chapter 11

[163]

Using text-shadow
Let's look at text-shadow first:

p {
 text-shadow: 2px 2px 2px #000000;
 /* horizontal, vertical, blur, color */
}

This property also supports multiple shadows by adding additional declarations in a
comma separated list, as shown in the following code snippet and the output:

p {
 text-shadow: 0px 0 px 4px white,
 0 px -5px 4px #ffff33,
 2px -10px 6px #ffdd33,
 -2px -15px 11px #ff8800,
 2px -25px 18px #ff2200
}

Unlike the border-radius property, the text-shadow property doesn't require
vendor prefixes. That doesn't mean that all browsers support it, it simply means that
browsers that do support this property, display it as intended, while browsers that
do not, simply see nothing.

Enhancing jQuery Mobile

[164]

Using box-shadow
Box-shadow follows a very similar model to text-shadow, with one addition, that
is the inset keyword which allows for inner shadowing. Let's get to the examples.
The first example shows standard outer shadows:

#A {
 -moz-box-shadow: -5px -5px #888888;
 -webkit-box-shadow: -5px -5px #888888;
 box-shadow: -5px -5px #888888; /* horizontal, vertical, color */
}

#B {
 -moz-box-shadow: -5px -5px 5px #888888;
 -webkit-box-shadow: -5px -5px 5px #888888;
 box-shadow: -5px -5px 5px #888888;
 /* horizontal, vertical, blur, color */
}

#C {
 -moz-box-shadow: 0 0 5px 5px #888888;
 -webkit-box-shadow: 0 0 5px 5px #888888;
 box-shadow: 0 0 5px 5px #888888;
 /* horizontal, vertical, blur, spread, color */
}

And now, in the following example check out these inner shadows. Snazzy eh?

#D {
 -moz-box-shadow: inset -5px -5px #888888;
 -webkit-box-shadow: inset -5px -5px #888888;
 box-shadow: inset -5px -5px #888;}

#E {
 -moz-box-shadow: inset -5px -5px 5px #888888;
 -webkit-box-shadow: inset -5px -5px 5px #888888;
 box-shadow: inset 0px 0px 10px 20px #888888;

Chapter 11

[165]

}

#F {
 -moz-box-shadow: inset -5px -5px 0 5px #888888;
 -webkit-box-shadow: inset -5px -5px 0 5px #888888;
 box-shadow: inset 0 0 5px 5px #888888;
}

It's worth mentioning that both box-shadow and text-shadow can have their
colors set with the less commonly used rgb and rgba declarations. This allows the
developers to set colors using the more familiar convention of RGB values. The rgba
declaration also allows setting color opacity from 0 to 1. The code for that is a simple
change, as shown in the following snippet:

#opacity {
 box-shadow: inset 0 0 5px 5px rgb(0,0,0); /* black */
}
#transparent {
 box-shadow: inset 0 0 5px 5px rgba(0,0,0,.5);
 /* black with 50% transparency */
}

CSS gradients
CSS gradients are a great way to add beauty and impact to your website. Options
include linear gradients (right to left, top to bottom, and so on.), and radial gradients
(from center outwards). By default, gradients consist of a start color and an end
color. CSS gradients may also include additional tones using color stops.

It should be noted however that support for CSS gradients in older browsers isn't
perfect, specifically in Internet Explorer. The good news is that there are ways to
address IE that can allow developers to reliably use gradients in their development.
The bad news is that the code for that support is robust. Let's take a look at the
simplest possible gradient declaration:

div {
 width: 500px;
 height: 100px;
 background: linear-gradient(left, #ffffff 0%,#000000 100%);
}

Enhancing jQuery Mobile

[166]

Gradient declarations can be quite complex so let's break it down with an infographic:

Now here's the kicker...at the time of writing this, there were no browsers that
supported the W3C specification using the actual property. Let's take a look at the
code to support multiple browsers and you'll love jQuery Mobile even more than
you already do:

div {
 width: 500px;
 height: 100px;
 border: 1px solid #000000;
 /* Old browsers */
 background: #ffffff;
 /* FF3.6+ */
 background: -moz-linear-gradient(left, #ffffff 0%, #000000 100%);
 /* Chrome10+,Safari5.1+ */
 background: -webkit-linear-gradient(left, #ffffff 0%,#000000 100%);
 /* Opera 11.10+ */
 background: -o-linear-gradient(left, #ffffff 0%,#000000 100%);
 /* IE10+ */
 background: -ms-linear-gradient(left, #ffffff 0%,#000000 100%);
 /* W3C spec*/
 background: linear-gradient(left, #ffffff 0%,#000000 100%);
 /* IE6-9 */
 filter: progid:DXImageTransform.Microsoft.gradient(
 startColorstr='#ffffff', endColorstr='#000000',GradientType=1);
}

Chapter 11

[167]

You can add multiple colors to your gradient by adding additional comma separated
declarations. For example, the following code:

div {
 width: 500px;
 height: 100px;
 border: 1px solid #000000;
 /* Old browsers */
 background: #ffffff;
 /* FF3.6+ */
 background: -moz-linear-gradient(left, #ffffff 0%, #000000 35%,
 #a8a8a8 100%);
 /* Chrome10+,Safari5.1+ */
 background: -webkit-linear-gradient(left, #ffffff 0%,#000000
 35%,#a8a8a8 100%);
 /* Opera 11.10+ */
 background: -o-linear-gradient(left, #ffffff 0%,#000000 35%,#a8a8a8
 100%);
 /* IE10+ */
 background: -ms-linear-gradient(left, #ffffff 0%,#000000
35%,#a8a8a8
 100%);
 /* W3C */
 background: linear-gradient(left, #ffffff 0%,#000000 35%,#a8a8a8
 100%);
 /* IE6-9 */
 filter: progid:DXImageTransform.Microsoft.gradient(
 startColorstr='#ffffff', endColorstr='#a8a8a8',GradientType=1);
}

Results are shown in the following gradient:

As you might guess after reading the last few pages, jQuery Mobile does a lot of
heavy lifting on your behalf. Not only does it add slick gradient page backgrounds,
but it has to keep track of all of the browser quirks that might prevent that sweet
drop shadow from showing up. As we move into the next section you'll likely be
even more impressed with the way it handles themes and color swatches.

Enhancing jQuery Mobile

[168]

The basics of jQuery Mobile theming
Theming in jQuery Mobile is straightforward and simple to use for the developer,
but is pretty elaborate behind the scenes. Luckily there will rarely be a time when
you need to know everything that's being done for you. However, it's worth a little
bit of our time to understand how it works.

Out of the box jQuery Mobile comes with a theme set comprised of five color
swatches, each associated with a letter from A-E. The theme contains a series of base
CSS classes which can be applied at will to nearly any element and they contain
global settings for width, height, border radius, shadows. The individual swatches
contain specific information about color, fonts, and so on.

Additional swatches can be added to the five original swatches from F-Z, or the
original swatches can be replaced or overridden at will. This system allows for a
total of 26 distinct swatches, allowing for millions of possible combinations of theme
colors, styles, and patterns. You apply a jQuery Mobile theme to the selected element
by adding a data-theme attribute with the letter of the desired theme:

Developers will generally choose to use the data-theme attribute method when
applying styles, but it's also possible to attach the CSS class names directly to your
page elements for more granular control. There are a handful of primary prefixes
which allow for this flexibility.

Chapter 11

[169]

Bars (.ui-bar-?)
The bar prefix is generally applied to headers, footers, and other areas with
high importance:

Content blocks (.ui-body-?)
Content blocks are generally applied to areas where paragraph text is expected
to occur. Its color helps to ensure maximum readability with the text color placed
against it:

Enhancing jQuery Mobile

[170]

Buttons and listviews (.ui-btn-?)
Buttons and listviews are two of the most important elements in the jQuery Mobile
library and you can rest assured that the team took their time getting them right. The
.ui-btn prefix also includes styles for up, down, hover, and active states:

Mixing and matching swatches
One of the nice things about theming in jQuery Mobile is that child elements inherit
from their parent unless otherwise specified. This means that if you put a button
without its own data-theme attribute inside a header or footer bar, that button will
use the same theme as its parent. Wicked eh?

Chapter 11

[171]

It's also perfectly acceptable, and even encouraged, to place an element using one
swatch and the child of an element using another swatch. This can help the element
stand out more, or match a different part of the app, or whatever reasoning the
developer chooses. It's possible, and what's more it's easy. Simply place a button (or
other element) inside a header bar, and assign it its own data-theme attribute:

Site-wide active state
jQuery Mobile also applies a global active state for all elements. This active state is
used for buttons, form elements, navigation, and anywhere there's a need to indicate
that something is currently selected. The only way to change this color value is to set
(or override) it via CSS. The CSS class for the active state is, appropriately named,
.ui-btn-active:

Enhancing jQuery Mobile

[172]

Default icons
Included in the jQuery Mobile set are 18 icons which cover a wide array of needs for
developers. The icon set is white on transparent which jQuery Mobile overlays over
a semi-transparent black circle to provide contrast against all of the swatches. To add
an icon, specify the data-icon attribute with the name of the desired icon:

jQuery Mobile also provides the ability to place icons on the top, right, bottom, or left
side of a button using the data-iconpos="[top, right, bottom, left]" attribute,
with left being the default placement. Developers are also able to display an icon
alone, without text, by specifying data-iconpos="notext":

Deploying custom icons is also possible and will be covered later in this chapter.

Creating and using a custom theme
We've already discussed how powerful theming is in jQuery Mobile. It makes it
trivial to develop a rich mobile website with simple and elegant style. Even more
powerful is the ability to create your own library of swatches which can be used to
make your application or website truly unique. Developing your own theme can be
approached in one of the following two ways:

1. Download and open the existing jQuery Mobile CSS file and edit to your
heart's content.

2. Point your web browser to ThemeRoller for jQuery Mobile: http://
jquerymobile.com/themeroller/.

Chapter 11

[173]

We'll be focusing solely on option two because let's be honest, why wade through
all of that CSS when you can point, click, and drag your way to a new theme, full of
swatches in 10 minutes? Let's find out what ThemeRoller is all about.

What's ThemeRoller?
ThemeRoller for jQuery Mobile is an extension of a web-based app that was written
for the jQuery UI project. It allows users to quickly assemble a theme full of swatches
in minutes using drag-and-drop color management. It features an interactive
preview so that you can immediately see how your changes affect your theme. It
also has a built-in inspector tool which helps you dig into the minute details (should
you want them). It also integrates with Adobe® Kuler®, a color management tool.
You can download your theme after you're done, you can share it with others via
a custom URL, and you can re-import past themes for last-minute tweaking. It's a
powerful tool and is a perfect complement to jQuery Mobile.

One of the hallmarks of the five default swatches is that the jQuery Mobile team
spent quite a bit of time working on readability and usability. The swatches range
from highest contrast (A), to lowest contrast (E). Within a single theme the areas
which have most contrast are the areas most prominent on the page. This includes
the header (and listview headers), and buttons. When creating your own theme it's a
good idea to keep this in mind. We always want to focus on usability within our app
right? What good is a slick app if no one can read it because of poor color choices?

Using ThemeRoller
The first thing you'll see when you load up ThemeRoller is a slick looking splash
screen, followed by a helpful Getting Started screen:

Enhancing jQuery Mobile

[174]

The Getting Started screen has some helpful tips so make sure to glance at it before
clicking the Get Rolling button:

After all of the splash screens are out of the way you'll be presented with the
primary interface:

ThemeRoller is broken into four main areas: Preview, Color, Inspector and Tools.
Each of these contains important functionality that we need to review. We'll start
with the Preview section.

Chapter 11

[175]

Preview
Unless you're loading an existing theme, the preview area will present three
complete, identical and interactive jQuery Mobile pages packed with widgets
of all sorts:

Move your mouse over them and you'll see that each page is functional. The header
on each page contains a letter indicating which swatch controls its appearance.

Colors
At the top of the page you'll see a series of color chips, along with two slider controls
and a toggle button. Further to the right, you'll see another ten color chips which
should be blank. These are dedicated to recently used colors and will be empty until
you've selected a color:

Enhancing jQuery Mobile

[176]

Below the color chips are two sliders labelled Lightness and Saturation. The
lightness slider adjusts the light and dark tones of the series of color swatches, while
the saturation makes the colors more, or less, vibrant. Taken together, a user should
be able to approximate nearly any color they choose. To use colors from Kuler®, click
the text link marked Adobe Kuler swatches.

Each of the color chips can be dragged onto any element within the preview area.
This makes development of a swatch set extremely easy. Note that many of the
jQuery Mobile styles overlap, for example, the header bar at the top of the page
receives the same style as the header of the listview. Adjust the colors as desired then
drag each chip onto an element on the page. Remember that each individual page is
its own swatch so be careful about how you choose to mix colors.

Inspector
On the far left of the interface is the inspector panel, split into two parts. The top part
contains buttons allowing developers to download their theme, import an existing
theme, and share a link to their theme. There's also a Help link for people who didn't
buy this book:

Chapter 11

[177]

The bottom section contains a series of tabs labelled Global, A, B, C, and +. Each of
these tabs holds an accordion panel which contains all of the values for an individual
swatch, except for the Global tab which applies to all of the swatches.

Select the Global tab, then click Active State, and the accordion panel will expand
to show settings for the active state for your entire theme. Options include text color,
text-shadow, background, and border. Changing a value in the global causes every
current (and future) swatch to reflect the new setting.

Additional swatches can be added to your theme in two ways. Clicking the + tab at
the top of the inspector adds a new swatch at the last place in your theme. You can
also add a new swatch by clicking the Add Swatch button located at the bottom
of the preview area. Swatches can be deleted by selecting the tab with the swatch
you want to remove, then clicking the Delete link located to the right of the swatch
name. Note that deleting a swatch from the top of the stack will cause the remaining
swatches to be renamed.

Tools
At the very top of the page there are a series of buttons. These buttons allow you to
perform a variety of tasks which we'll cover in a moment, but first, take a closer look
at the buttons themselves:

You'll notice the following buttons: a switch allowing you to change between the
1.1 (current) Version and the 1.0.1 Version, undo/redo, and a toggle button for the
inspector. Setting this toggle to on allows you to inspect any widget in the preview
area. Hovering over a widget highlights that element with a blue box. Clicking the
element will cause the accordion menu in the Inspector area to expand to display
settings specific to that element.

There are four additional buttons which allow you to download your theme,
import or upgrade a previously created theme, share your theme with others,
and a help button.

Enhancing jQuery Mobile

[178]

Creating a theme for Notekeeper
Now that we're familiar with the ThemeRoller interface, how about we go ahead and
create our first theme? Rather than build one in abstract, let's create one that we'll
actually use for the Notekeeper app we built earlier. Let's start simply by modifying
one of the existing themes that is shipped with jQuery Mobile. The team was kind
enough to let users import the default themes as a starting place for new themes, so
that's where we'll head first. Click the Import button at the top left of the window
and you'll get a box allowing you to paste in the contents of an existing theme:

Import the default theme by clicking the link in the top-right corner, appropriately
titled Import Default Theme. After the textarea fills with CSS, click Import. The
preview area will reload and display swatches from A to E.

We'll focus our efforts on changing up the white swatch, D, as it's the closest to
what our end goal is. Since we'd rather use swatch A as the name, let's delete the
other swatches so that only D is left. Remember that ThemeRoller renames swatches
as others are deleted. That means when you delete swatch A, B becomes A, C
becomes D, and so on.

Chapter 11

[179]

Keep going until the swatch that was D is now in the
A position. Finally, delete swatch B (which was formerly swatch E) so that all we
have left is swatch A:

This swatch is nice looking but it's a little bland. Let's inject a little color by changing
the header to a nice green. The simplest way to determine what values should be
changed for any element is to use the inspector. Toggle the inspector to On at the
top, then click anywhere on the header of theme A. You'll know if you got it right if
the A tab is selected on the left, and the Header/Footer Bar panel expands:

Enhancing jQuery Mobile

[180]

You can change the color in one of a few ways. You can drag a color chip from the
top directly onto the background. You can also drag a color chip onto an input field.
Finally you can manually input the value. Notice that when you click into a field
containing a color value you're provided with a slick color picker. Go ahead and
change the values in the input fields in this panel to the values shown in the
previous screenshot.

Looking good, but now the blue from the theme's active state clashes with our green.
Using the inspector tool, click once on the On section of the On/Off toggle bar. This
should cause the Active State panel within the Global tab to expand. We'll change
the blue to a nice warm grey. The Global panel should now look similar to the
following screenshot:

There's only one thing that's keeping our new theme from looking its hottest, the
blue text link in the paragraph at the top. Going back to our trusty inspector, let's
click directly on the link which will expand the Content Body panel within the A tab.
Now, for those already familiar with CSS you know that you can't simply change the
link color without changing the hover also, visited:hover, and active states. The
problem is that there are no options to make those changes, but ThemeRoller has you
covered. Click the + to the right of the Link Color input field to display the rest of
the options, then change the colors, as shown in the following screenshot:

Chapter 11

[181]

And that's that. Feel free to make additional changes to your theme as you explore
the inspector area. Change whatever you like, it's just bits and bytes right now. Keep
in mind though that there's no undo option at the time. If you really like something,
consider writing down the values so that you don't lose them or exporting it as it is.
Speaking of...

Exporting your theme
Before we actually export our theme there's one thing that must be noted. Remember
the splash page with the "helpful" information? It turns out that there's one piece
that's not a recommendation, but a requirement.

We recommend building themes with at least 3 swatches (A-C).

Enhancing jQuery Mobile

[182]

For our theme to apply to our Notekeeper app properly we'll need to duplicate
our single swatch (letter A) to swatches B and C. Luckily this is an easy thing to
do. Select the A tab at the top of the inspector, then click the + tab twice. What you
should see is three identical swatches, and now we're done.

Now that we've finished our theme we're going to export it for use in our
Notekeeper application. This is a straightforward process which begins by clicking
the Download Theme button located in the middle of the page, at the top of the
interface. You'll be presented with a box allowing you to name your theme, some
information about how to apply your theme, and a button labelled Download Zip.
After naming our theme Notekeeper, click the Download Zip button and you'll
receive a tasty little morsel in your downloads folder.

Extract the contents of the ZIP file and you'll see the following directory structure:

•	 index.html
•	 themes/

	° Notekeeper.css (The uncompressed version of your theme)
	° Notekeeper.min.css (The compressed version. Use this

in production)
	° images/

	° ajax-loader.gif

	° icons-18-black.png

	° icons-18-white.png

	° icons-36-black.png

	° icons-36-white.png

The HTML file at the top of the tree contains information on how to implement your
theme, as well as a few widgets to confirm that the theme works. All of the links
are relative in the example file, so you should be able to drag it into any browser
window and see the results.

A few notes about the download and implementation of themes:

1. The jQuery team provides the icons for buttons to you in this ZIP file for a
reason. The theme requires those images to be relative to the CSS file. This
means that unless you're already using the default themes you need to also
include the images folder when you upload your theme to your website or
the icons won't show up.

Chapter 11

[183]

2. Hang on to the uncompressed version of your theme. While you don't want
to use it in production because of the size, you will need it should you ever
wish to edit it within ThemeRoller. ThemeRoller cannot, at the time of this
writing, import the minified CSS file.

Creating and using custom icons
We've seen how easy it is to add our own theme to jQuery Mobile using
ThemeRoller. Now we're going to add a little more spice to our Notekeeper
application by creating a custom icon. The directions in this section will be
specific to Photoshop but any graphics application capable of exporting
transparent PNG files should be acceptable.

CSS Sprites
Before we create and use an icon, we should first understand how jQuery Mobile
uses icons and applies them. In the theme you just created there are several image
files present (themes/images). Open icons-18-black.png, and icons-36-black.
png in the graphics editor of your choice. Zoom in on both of them to 400% or so and
you should see something very similar to the following image:

When opening each of these files you'll probably notice that each image contains all
the icons. This is because jQuery Mobile takes advantage of a technique called CSS
Sprites which itself takes advantage of the fact that CSS allows developers to crop
a background image by specifying its position within its container, and to hide any
other part of the background that would normally display outside of that container.
Its primary benefits include the following:

1. Reducing the number of requests a browser has to make. Fewer requests
generally mean that a page will load faster.

2. Centralize image locations. All icons can be found in one location.

Enhancing jQuery Mobile

[184]

The following screenshot is a simple illustration of the technique:

A browser always refers to an image from its top-left corner. In CSS language that's
0,0. To achieve this effect you set the background image on a container then simply
adjust the X and Y coordinates until the position of the image matches your design.
Then set the overflow of the container to crop, or hide, the remainder of the image.
Remember that you're moving the image to the left so you'll use negative numbers
for the X position. Using the previous illustration as a reference, the following code
snippet is used to achieve this effect:

<html>
 <head>
 <title></title>
 <style>
 div {
 background: url("icons-36-black.png");
 background-position: -929px 4px;
 background-repeat: no-repeat;
 border: 1px solid #000000;
 height: 44px;
 overflow: hidden;
 width: 44px;
 }
 </style>
 </head>
 <body>
 <div></div>
 </body>
</html>

Chapter 11

[185]

Designing your first icon
We're only going to be creating a single icon so we won't quite need all of the
empty space around the icon. Let's start by deciding what we want to illustrate. Our
application is called Notekeeper and it creates notes. Perhaps an icon illustrating a
sheet of paper would work? This would have the added benefit of being fairly easy
to represent at a small size. In the image editor of your choice create a new document
at 36x36 pixels at 72 dpi. Name it notekeeper-icon-black-36.png:

Even though the dimensions of the document are 36x36 pixels, the active area of
the icon will only be 22x22 pixels. This is in keeping with the icons provided by the
jQuery Mobile team and will make sure our icon doesn't look odd. To make it easier
to stay within the lines, use the rectangular selection tool to draw a square at 22px,
then position it 7px from the top edge of the document and 7px from the left.

Enhancing jQuery Mobile

[186]

Next draw guides along each edge so that your document looks something similar to
the following screenshot:

When drawing icons, you want to keep in mind the dimensions and attributes of the
thing being illustrated. You won't be able to represent everything, but you need to
communicate the spirit of the thing. A sheet of paper is taller than it is wide, and has
lines on it. Let's start with those two things and see what we can come up with. The
other icons in the set have a thick feel to them so that they can stand out against the
background. Let's color in a solid shape, then delete the lines for the page so that the
icon has the same thick feel. We're going to draw the lines in black so that they show
up better printed in the book, but our icons will need to be white. Make sure you
adjust your design accordingly:

Chapter 11

[187]

This icon seems to meet all of our criteria. It's taller than it is wide, and has lines just
like paper. It also has a jaunty little page turn to give it some attitude. Isn't that what
everyone looks for in their paper icon? Make sure that the icon's lines are white, then
save it. The jQuery Mobile icons have been saved as transparent PNG-8 files. This
is similar to the GIF format, but isn't required. Use transparent GIF or transparent
PNG-24 if you wish.

When we created our first icon, we created the high resolution version. For brevity's
sake we're going to quickly walk through the steps of creating a low-resolution icon:

1. Create a new image document at 18x18 pixels. Name this one
notekeeper-icon-18.

2. The active area of this icon will be 12x12 pixels. Draw a selection 12px square
then position it 3px from the top, and 3px from the left.

3. Draw your guides then sketch out the icon using the previous version as a
reference. It's a lot harder drawing with this little space isn't it?

4. Your final result should look similar to the following screenshot:

Save both images along with your Notekeeper theme and close Photoshop.

High and low resolution
Resolution is the number of dots, or pixels, that can be displayed into a given area.
Those of you from the web world measure everything in 72dpi, because that's what
most monitors display. If you have much experience with mobiles then you might
know that each device can have a different resolution compared to the one next to it.
The problem with this is that higher resolution devices simply display more pixels
on screen. This means that an image displayed on a high resolution screen will be
smaller than the same image on a low resolution screen.

Enhancing jQuery Mobile

[188]

jQuery Mobile accounts for this by having two versions of each icon, along with two
sets of code for high and low resolution devices. In the next section we'll apply our
custom theme and custom icon to our Notekeeper application.

Updating the Notekeeper app
It's time for us to tie all of these loose ends together. We have a custom theme that
we built using ThemeRoller, we've got our sweet custom icon, and now it's time for
us to put all the pieces together. You'll need the following pieces to finish up:

1. The code you completed at the end of the Notekeeper chapter.
2. The custom theme you created earlier in this chapter.
3. Your custom icon; in white; in both 18px and 36px sizes.

Adding our custom theme
Let's start with the easiest part. Adding in our custom theme is pretty simple. Open
notekeeper.html (in your browser, and in the text editor of your choice). Look for
the <head> tag and add the following lines:

<title>Notekeeper</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="http://code.jquery.com/mobile/
 latest/jquery.mobile.min.css" />

 <link rel="stylesheet" href="themes/Notekeeper.min.css" />
 <link rel="stylesheet" href="styles.css" />
 <script src="http://code.jquery.com/jquery-1.6.4.js"></script>
 <script src="http://code.jquery.com/mobile/
 latest/jquery.mobile.min.js"></script>
 <script src="application.js"></script>

The first new line implements the new theme we created. The second line currently
points to a missing file (because we haven't created it yet). Even with a rich theming
system such as jQuery Mobile has, we're still going to have some custom CSS for
various things. styles.css is where we'll put our assorted styles, especially the
definitions for our custom icon.

By the way, go ahead and reload your browser window and take a look at our new
theme in action. Isn't it snazzy? It's going to look even snazzier in a few minutes
when our custom icon appears.

Chapter 11

[189]

Adding our custom icon
Go ahead and create styles.css in the root of your Notekeeper application code,
then open it. The first thing we'll do is to add in the declaration for our 18px icon.
It's low-resolution and will be the one you'll see in your desktop browser.
High-resolution icons only show up in iPhone 4 and iPhone 4S at the moment.

To add our custom icon we follow the pattern set by jQuery Mobile. It applies icons
to buttons and other elements using the .ui-icon prefix. This means that for our
icon to work within the framework we have to name our CSS class as follows:

.ui-icon-notekeeper-note {
 background-image: url("themes/images/notekeeper-icon-white-18.png");
}

Then adding the icon to our Add Note button is as simple as adding a data-icon
attribute, as shown in the following lines of code:

<div class="ui-block-b">
 <input id="btnAddNote" type="button" value="Add Note" data-
 icon="notekeeper-note" />
</div>

Keep in mind that the string notekeeper-note can be anything as long as it matches
the second half of the CSS class you created earlier. Finally let's add the remaining
piece to our app, the high-resolution icon.

One of the hallmarks of jQuery Mobile is its support for something called media
queries. Media queries essentially allows you to query a given device for various
pieces of information based on its media type: screen, print, tv, handheld, and
several others. The answer to this query allows developers to branch CSS code and
display the page one way for a desktop browser (screen), and another way for a
TV (tv). In the case of our icons, we want to ask any viewing device with a type of
screen, if it supports a property called -webkit-min-device-pixel-ratio and
if the value of that property is 2. Add the following lines to styles.css after the
declaration for the low-resolution icon:

@media only screen and (-webkit-min-device-pixel-ratio: 2) {
 .ui-icon-notekeeper-note {
 background-image: url("themes/images/notekeeper-icon-white-36.
png");
 background-size: 18px 18px;
 }
}

Enhancing jQuery Mobile

[190]

Other than the media query code the only thing unique about this is the
background-size property. It allows developers to specify that a given background
should be scaled to the specified size (18x18 pixels) rather than its original size of
36x36 pixels. Since the resolution on the iPhone 4 and 4S is exactly double the size
of the low-resolution devices this means that we're packing double the pixels into
the same space as the smaller icon. The end result is that the icon looks crisper and
sharper. If you've got one of these devices, upload your code to a server and view it.
Your patience will be rewarded.

Summary
In this chapter, we learned about advanced CSS techniques that are central to the
jQuery Mobile experience, and how jQuery Mobile uses them to provide a rich
interface to the end user. We took a deep dive into the basics of jQuery Mobile
theming and how it works. We built a custom theme using the ThemeRoller tool, a
custom icon with our very own hands, and we learned how to tie all those things
together and implement them in our application.

In the next chapter, you'll learn how to take the principles you've learned in the past
11 chapters and create a native application which can run on the iOS and Android
platforms (along with several others), using the Phonegap open source library.

Creating Native Applications
In this chapter, we will look at how to turn jQuery Mobile based web applications
into native applications for mobile devices. We'll discuss the PhoneGap framework
and how it allows you to tap into your device's hardware.

In this chapter, we will:

•	 Discuss the PhoneGap project and what it does
•	 Demonstrate how to use PhoneGap's Build service to create

native applications

HTML as a native application
For most folks, creating a native application on a platform like Android or iOS
requires learning an entirely new programming language. While it is always good
to learn new languages and expand your skill set, wouldn't it be cool if you could
take your existing HTML skills and use them natively on a mobile device?

Luckily there is just such a platform. PhoneGap (http://www.phonegap.com)
is an open source project that allows you to take HTML pages and create native
applications. This code is entirely free and can be used to develop applications for
iOS (both iPhone and iPad), Android (again both phones and tablets), Blackberry,
WebOS, Windows Phone 7, Symbian, and Bada. PhoneGap works by creating a
project in the native environment and pointing to an HTML file. Once setup, you can
use your existing HTML, CSS, and JavaScript skills to create the UI and functionality
of your application.

Creating Native Applications

[192]

Even better, PhoneGap provides additional APIs to your JavaScript code.
These APIs allow for:

•	 Accelerometer: Allows your code to detect basic movement on the device
•	 Camera: Allows your code to work with the camera
•	 Compass: Gives you access to the compass on the device
•	 Contacts: Provides basic search and contact creation support
•	 File: Read/write access to the device's storage
•	 Geolocation: Provides a way to detect the location of the device
•	 Media: Allows for basic video/audio capture support
•	 Network: Determines the network connectivity settings of the device
•	 Notification: A simple way to create a notification (via a pop up,

sound, or vibration)
•	 Storage: Access to a simple SQL database

By using these APIs, you can take normal HTML sites and turn them into powerful,
native-like applications that users can download and install on their devices.

Before we go any further, let's take a quick note on PhoneGap. PhoneGap is an
open source project currently in incubation status at Apache. It has been renamed as
Cordova. You may hear people refer to it by either name. At the time this book was
written, most people still referred to the project as PhoneGap and that is the term we
will use. The important thing to remember is that PhoneGap is free and open source!

Before we go further, let's talk quickly about how a PhoneGap application compares
to a native application. Native applications – in most cases – will perform faster
than applications created with PhoneGap. PhoneGap is not meant to replace native
development. But by allowing you to use existing skills and deploy to multiple
platforms at once, the benefits can far outweigh any concerns over performance.

Working with PhoneGap
Creating a PhoneGap project is done via two main methods. The primary way
people use PhoneGap is by using the development tool of the platform they are
building for first. So, for an Android project, that involves using the Eclipse editor
with the right plugins, and on iOS it involves XCode. The Get Started Guide
(http://www.phonegap.com/start) provides details on how to set up your
environment for the device platform of your choice:

Chapter 12

[193]

Creating Native Applications

[194]

Detailing the setup for each platform would be too much for this book (and would
just duplicate what's on the PhoneGap website), so instead we will focus on the other
option for creating native applications, the PhoneGap Build service. PhoneGap
Build (https://build.phonegap.com) is an online service that simplifies and
automates the process of creating native applications. It allows you to simply upload
code (or use a public source control repository) to generate the native binaries. Even
better, you can use PhoneGap Build to generate binaries for all their supported
platforms. That means you can write your code and spit out code for an iPhone,
Android, Blackberry, and other versions, all from the site itself:

Chapter 12

[195]

The PhoneGap Build service is not free, though. Pricing plans and other details may
be found on the site, but luckily there is a free Developer plan. That is the service
we'll be using for this chapter. Lets begin by creating an account. (In the screen
shots and examples that follow, be sure to change the details to something
specific for you.)

Begin by clicking the Creating an account button and filling out the
pertinent details:

Creating Native Applications

[196]

After you sign up, you will be returned to the PhoneGap Build home page and
you will not see any type of confirmation message. This is a bit unfortunate, but if
you check your e-mail, you should see a message from them asking to verify your
sign-up. Click that link, and you'll be taken to a page asking you to create your first
PhoneGap Build project:

Notice that the Build service supports seeding a project from a new Github
repository, an existing Git or Subversion repository, or via an uploaded ZIP or
HTML file. At this point, let's switch away from the website and back to code. We
want to begin with a very simple set of code. Later on in the chapter we will do
something a bit more interesting, but for now, our objective is to just upload some
HTML and see what comes next. In the code you downloaded from GitHub, open
the c12 folder and look at the app1 folder. This contains a copy of one of the list
examples from Chapter 4, Working with Lists. It uses jQuery Mobile to create a simple
list of four people, along with thumbnail pictures. Nothing too exciting, but it gets the
job done for our purposes here. You will notice that there is already an app1.zip file.

Chapter 12

[197]

If you go back to the website and select upload an archive, you can then browse to
the location on your computer where you extracted the files and select that ZIP file.
Be sure to also enter a name for the application. I chose FirstBuildApp. After hitting
Create, you are then taken to a page with all your apps, which if you are a new Build
user will only contain the one just created:

Clicking on the app title then gives you the option to download various flavors of the
application. Believe it or not – you are already able to download a version for most
platforms. Working with iOS requires you to provide additional details though:

Creating Native Applications

[198]

If you do not see a Download link but rather a Queued notice, please give the Build
service a minute or two to catch up. If you simply reload the page, you will see the
link show up eventually.

Actually using the applications depends on your platform of choice. For Android,
you need to ensure that you have enabled the setting, Allow installation of
non-Market applications. The exact wording and location of that setting will depend
on your device. That phrase was found in the Applications setting on my HTC
Inspire device. You can sign the application by editing the settings on the PhoneGap
Build site. Once you've done that, you can actually submit your application to the
Android Market. But since Android allows you to play with applications that are not
signed, you can skip that step while testing. If you download the APK (the actual
file representing your application), you can get it on your device in a few ways.
The Android SDK includes tools to install applications from the command line. The
easiest way would be to use your e-mail. If you e-mail the file to yourself and check
your e-mail on your device, you should be able to install it there. The following
screenshot shows the application running on my phone:

Chapter 12

[199]

Adding PhoneGap functionality
We just demonstrated how to use the PhoneGap Build service to turn HTML
(and JavaScript, CSS, and images of course) into a real, native application for
multiple platforms. As mentioned earlier in the chapter though, PhoneGap provides
more than a simple wrapper to turn HTML into native applications. The PhoneGap
JavaScript API provides access to a number of cool device-centric services that can
greatly enhance the power of your application. For our second example, we'll take
a look at one of these features – the Contacts API. (For full details, see the Contacts
API documentation which is available at: http://docs.phonegap.com/en/1.4.1/
phonegap_contacts_contacts.md.html#Contacts).

The application in Listing 12-1 is a simple contact search tool. Let's take a look at
the code and then cover what's going on:

Listing 12-1: index.html
<!DOCTYPE html>
<html>
 <head>
 <title>Contact Search</title>
 <meta name="viewport" content="width=device-width, initial-
 scale=1">
 <link rel="stylesheet" href="jquery.mobile.min.css" />
 <script src="jquery.js"></script>
 <script src="jquery.mobile.min.js"></script>
 <script src="phonegap-1.4.1.js"></script>
 <script>
 document.addEventListener("deviceready", onDeviceReady, false);
 function onDeviceReady(){
 $("#searchButton").bind("touchend", function() {
 var search = $.trim($("#search").val());
 if(search == "") return;
 var opt = new ContactFindOptions();
 opt.filter = search;
 opt.multiple = true;
 navigator.contacts.find(["displayName","emails"],
 foundContacts, errorContacts, opt);
 });
 foundContacts = function(matches){
 //create results in our list
 var s = "";
 for (var i = 0; i < matches.length; i++) {
 s += ""+matches[i].displayName+"";
 }
 $("#results").html(s);

Creating Native Applications

[200]

 $("#results").listview("refresh");
 }
 errorContacts = function(err){
 navigator.notification.alert("Sorry, we had a problem and
gave
 up.", function() {});
 }
 }
 </script>
 </head>
 <body>
 <div data-role="page">
 <div data-role="header">
 <h1>Contact Search</h1>
 </div>
 <div data-role="content">
 <input type="text" id="search" value="adam" />
 <button id="searchButton">Search</button>
 <ul id="results" data-role="listview" data-inset="true"></
ul>
 </div>
 </div>
 </div>
 </body>
</html>

Let's begin by looking at the layout portion of the application which resides in the
bottom half of the file. You can see our jQuery Mobile page structure, and within it,
an input field, a button, and an empty list. The idea here is that the user will enter a
name to search for, hit the button, and the results will show up within the list. The
following screenshot demonstrates the output:

Chapter 12

[201]

Now take a look at the JavaScript code. The first change we've made is to include the
PhoneGap JavaScript library:

<script src="phonegap-1.4.1.js"></script>

This JavaScript library is available from the ZIP file you download from PhoneGap.
Even though we aren't going to be building our application locally (although you
certainly can), we need to include the JavaScript file in the ZIP file we send up to
the Build service. Here's the one tricky part. As of PhoneGap v 1.4.1, the JavaScript
file is unique per platform. That means there is a different JavaScript file for each of
the operating systems supported by PhoneGap. The Build service is smart enough to
swap out your file reference with the right file for the right platform. If you use the
code from the Github repository for this book, it is the Android version. If you wish
to take this code and work with it for iOS, be sure to replace the JavaScript
file locally.

The next interesting tidbit is the following line of code:

document.addEventListener("deviceready", onDeviceReady, false);

The deviceready event is a special event fired by PhoneGap. It essentially
means that your code can now make use of advanced functionality, such as the
Contacts API.

Within the event handler onDeviceReady, we have a few things going on. The first
function of note is the event handler for the search button. The first few lines simply
get, trim, and validate the value.

After we are sure there's actually something to search for, you can see the first actual
use of the Contacts API, as shown in the following code snippet:

var opt = new ContactFindOptions();
opt.filter = search;
opt.multiple = true;
navigator.contacts.find(["displayName","emails"], foundContacts,
 errorContacts, opt);

The Contacts API has a search method. Its first argument is an array of fields to both
search and return. In our case, we are saying we want to search against the name and
e-mail values for contacts. The second and third arguments are the success and error
callbacks. The final option is a set of options for the search. You can see it created
before the call. The filter key is simply the search term. By default, contact searches
return one result, so we specifically ask for multiple results as well.

Creating Native Applications

[202]

Now let's take a look at the success handler:

foundContacts = function(matches){
 //create results in our list
 var s = "";
 for (var i = 0; i < matches.length; i++) {
 s += ""+matches[i].displayName+"";
 }
 $("#results").html(s);
 $("#results").listview("refresh");
}

The result of the contact search will be an array of results. Remember that you only
get back what you asked for, so our result objects contain the displayName and
emails property. For now, our code simply takes the displayName and adds it to
the list. Remembering what we learned from one of the previous chapters, we also
know that we need to refresh the jQuery Mobile listview whenever we modify it.
The following screenshot shows a sample search:

Chapter 12

[203]

Summary
In this chapter, we looked into the PhoneGap open source project and how it
allows you to take your HTML, JavaScript, and CSS, and create native applications
for a multitude of different devices. We played with the Build service and used it to
upload our code and download compiled native applications. While jQuery Mobile
isn't required with PhoneGap, the two make an incredibly powerful team.

In the next chapter, we'll take this team and create our final application, a
full-fledged RSS reader.

Becoming an expert - Build
an RSS Reader application

Now that you've been introduced to jQuery Mobile and its features, it's time to build
our final, full application – an RSS Reader.

In this chapter, we will:

•	 Discuss the RSS Reader application and its features
•	 Create the application
•	 Discuss what could be added to the application

RSS Reader – the application
Before diving into the code, it may make sense to quickly demonstrate the
application in its final working form so you can see the pieces and how they work
together. The RSS Reader application is exactly that, an application meant to take
RSS feeds (for example from CNN, ESPN, and other sites), parse them into readable
data, and provide a way for the user to view the articles. This application will allow
you to add and delete feeds, providing both a name and a URL, and then provide a
way to view the current entries from the feed.

Becoming an expert - Build an RSS Reader application

[206]

The application begins with a basic set of instructions. These instructions are only
visible when you run the application without any known feeds:

Clicking the Add Feed button brings you to a simple form allowing for both a name
and a URL. (Unfortunately the URL has to be typed in manually. Luckily modern
mobile devices allow for copy and paste. I'd strongly recommend using that!):

Chapter 13

[207]

After adding the feed, you are returned back to the home page. The following
screenshot shows the view after a few feeds are added:

To begin reading entries, the user simply selects one of the feeds. This will then fetch
the feed and display the current entries:

Becoming an expert - Build an RSS Reader application

[208]

The final part of the application is the entry view itself. Some blogs don't provide
a "full" copy of the entry via RSS, and obviously you may want to comment on the
blog itself. So, at the bottom we provide a simple way to hit the real web site, as
shown in the following screenshot:

Now that you've seen the application, let's build it. Once again we're going to use
PhoneGap Build to create the final result, but this application will actually run as
is on a regular website as well. (We will discuss exactly why in a bit.)

Creating the RSS Reader Application
Our application begins with the first page, index.html. This page will load in jQuery
and jQuery Mobile as well. Its core mission is to list your current feeds, but it has
to recognize when the user has no feeds at all and provide a bit of text encouraging
them to add their first feed:

Listing 13-1: index.html
<!DOCTYPE html>
<html>
 <head>
 <title>RSS Reader App</title>
 <meta name="viewport" content="width=device-width, initial-
 scale=1">
 <link rel="stylesheet" href="jquery.mobile/jquery.mobile-
 1.1.0.min.css" />
 <script src="jquery.mobile/jquery-1.6.4.min.js"></script>

Chapter 13

[209]

 <script src="jquery.mobile/jquery.mobile-1.1.0.min.js"></script>
 <script src="main.js"></script>
 </head>
 <body>
 <div data-role="page" id="intropage">
 <div data-role="header">
 <h1>RSS Reader Application</h1>
 </div>
 <div data-role="content" id="introContent">
 <p id="introContentNoFeeds" style="display:none">
 Welcome to the RSS Reader Application. You do not currently
have
 any RSS Feeds. Please use the "Add Feed" button below to
begin.
 </p>
 <ul id="feedList" data-role="listview" data-inset="true" data-
 split-icon="delete">
 Add
 Feed
 </div>
 <div data-role="footer">
 <h4>Created with jQuery Mobile</h4>
 </div>
 </div>
 <script>
 $("#intropage").bind("pagecreate", function(e) {
 init();
 });
 </script>
 </body>
</html>

As mentioned before the code listing, we need to load up our jQuery and jQuery
Mobile templates first. You can see that in the beginning of the previous code listing.
Most of the rest of the page is boiler-plate HTML you've seen in the previous chapter,
so let's call out a few specifics.

First make note of the introductory paragraph. Notice the CSS to hide the text? The
assumption here is that – most of the time – the user won't need this text as they will
have feeds. Our code then is going to handle showing it when necessary.

Following that paragraph is an empty list that will display our feeds. Right below
that is the button that will be used for adding new feeds.

Becoming an expert - Build an RSS Reader application

[210]

Finally, we've got a bit of script at the end. This creates an event listener for the
jQuery Mobile page event, pagecreate, that we tie into to then start up our
application tasks.

All of our code (our custom code that is) will be stored in main.js. This file is a bit
big, so we'll simply show parts of it that relate to each section. Please keep that in
mind as we go through the chapter. The entire file can be found with the rest of the
book's sample code:

Listing 13-2: Portion of main.js
function init() {
 //handle getting and displaying the intro or feeds
 $("#intropage").live("pageshow",function(e) {
 displayFeeds();
 });

Our first snippet from main.js comes from the init function. Remember this is run
on pagecreate for the home page. It's run before the page shows up. That makes it a
good place to go ahead and register a function for when the page is displayed. We've
taken most of that logic out into its own function, so let's take a look at that next.

The displayFeeds function
displayFeeds handles retrieving our feeds and displaying them. The logic is simple.
If there are no feeds, we want to display the introductory text:

Listing 13-3: displayFeeds from main.js
function displayFeeds() {
 var feeds = getFeeds();
 if(feeds.length == 0) {
 //in case we had one form before...
 $("#feedList").html("");
 $("#introContentNoFeeds").show();
 } else {
 $("#introContentNoFeeds").hide();
 var s = "";
 for(var i=0; i<feeds.length; i++) {
 s+= "<a href='feed.html?id="+i+"' data-
 feed='"+i+"'>"+feeds[i].name+" <a href=''
class='deleteFeed'
 data-feedid='"+i+"'>Delete";
 }
 $("#feedList").html(s);
 $("#feedList").listview("refresh");
 }
}

Chapter 13

[211]

Notice we also clean out the list. It's possible, a user had feeds and deleted them.
By resetting the list to an empty string we ensure that we don't leave anything
behind. If there are feeds, we create the list dynamically ensuring we call the
listview("refresh") API at the end to ask jQuery Mobile to pretty up the list.

Storing our feeds
So where do the feeds come from? How do we store them? While we are using
PhoneGap and could make use of the embedded SQLite database implementation,
we can use something simpler – localStorage. localStorage is an HTML5 feature
that allows you to store key/value pairs on the client. While you can't store complex
data, you can use JSON serialization to encode complex data before it's stored. This
makes storage of data extremely simple. Do keep in mind though that localStorage
involves file storage. Your application needs to read from a file whenever a change is
made to the data. Since we are talking about a simple list of feeds, though, this data
should be relatively small:

Listing 13-3: getFeeds, addFeed, and removeFeed
function getFeeds() {
 if(localStorage["feeds"]) {
 return JSON.parse(localStorage["feeds"]);
 } else return [];
}
function addFeed(name,url) {
 var feeds = getFeeds();
 feeds.push({name:name,url:url});
 localStorage["feeds"] = JSON.stringify(feeds);
}
function removeFeed(id) {
 var feeds = getFeeds();
 feeds.splice(id, 1);
 localStorage["feeds"] = JSON.stringify(feeds);
 displayFeeds();
}

The previous three functions represent the entire wrapper to our storage system.
getFeeds simply checks localStorage for the value, and if it exists, handles
converting the JSON data into a native JavaScript object. addFeed takes a feed name
and URL, creates a simple object out of it, and stores the JSON version. Finally, the
removeFeed function simply handles finding the right item in the array, removing it,
and storing it back to localStorage.

Becoming an expert - Build an RSS Reader application

[212]

Adding an RSS feed
So far so good. Now let's look at the logic necessary to add a feed. If you remember,
the link we used to add a feed went to addfeed.html. Let's take a look at it:

Listing 13-4: addfeed.html
<!DOCTYPE html>
<html>
 <head>
 <title>Add Feed</title>
 <meta name="viewport" content="width=device-width, initial-
scale=1">
 </head>
 <body>
 <div data-role="page" id="addfeedpage" data-add-back-btn="true">
 <div data-role="header">
 <h1>Add Feed</h1>
 </div>
 <div data-role="content">
 <form id="addFeedForm">
 <div data-role="fieldcontain">
 <label for="feedname">Feed Name:</label>
 <input type="text" id="feedname" value="" />
 </div>
 <div data-role="fieldcontain">
 <label for="feedurl">Feed URL:</label>
 <input type="text" id="feedurl" value="" />
 </div>
 <input type="submit" value="Add Feed" data-theme="b">
 </div>
 <div data-role="footer">
 <h4>Created with jQuery Mobile</h4>
 </div>
 </div>
 </body>
</html>

There isn't much to this page outside of the form. Note that our form has no
action. We aren't using a server here. Instead our code is going to handle picking
up the form submission and doing something with it. Also note that we've not
done something we recommended earlier – putting the jQuery and jQuery Mobile
includes on top. Those includes are necessary in desktop applications because it's
possible the user may bookmark a page outside of your application's home page.
Since the eventual target for this code is a PhoneGap application, we don't have to
worry about that. This makes our HTML files a bit smaller. Now let's return to main.
js and look at the code that handles this logic.

Chapter 13

[213]

The following code is a snippet from the init method of main.js. It handles the
button click on the form:

Listing 13-5: Add Feed event registration logic
//Listen for the addFeedPage so we can support adding feeds
$("#addfeedpage").live("pageshow", function(e) {
 $("#addFeedForm").submit(function(e) {
 handleAddFeed();
 return false;
 });
});

Now we can take a look at handleAddFeed. I've abstracted this code, just to make
things simpler:

Listing 13-6: handleAddFeed
function handleAddFeed() {
 var feedname = $.trim($("#feedname").val());
 var feedurl = $.trim($("#feedurl").val());
 //basic error handling
 var errors = "";
 if(feedname == "") errors += "Feed name is required.\n";
 if(feedurl == "") errors += "Feed url is required.\n";
 if(errors != "") {
 //Create a PhoneGap notification for the error
 navigator.notification.alert(errors, function() {});
 } else {
 addFeed(feedname, feedurl);
 $.mobile.changePage("index.html");
 }
}

For the most part, the logic here should be simple to understand. We get the feed
name and URL values, ensure they aren't blank, and optionally alert any error. If
an error didn't occur, then we run the addFeed method described earlier. Notice we
make use of the changePage API to return the user to the home page.

I'll call out one particular bit of code here, the line that handles displaying the error:

navigator.notification.alert(errors, function() {});

This line comes from the PhoneGap API. It creates a mobile-specific alert
notification for your device. You can think of it as a fancier JavaScript alert()
call. The second argument is a callback function for the alert window dismissal.
Because we don't need to do anything in that situation, we provide an empty
callback that does nothing.

Becoming an expert - Build an RSS Reader application

[214]

Viewing a feed
Moving on – what happens when a user clicks to view a feed? This is probably the
most complex aspect of the application. We begin with the HTML template, which is
rather simple because most of the work is going to be done in JavaScript:

Listing 13-7: feed.html
<!DOCTYPE html>
<html>
 <head>
 <title>Feed</title>
 <meta name="viewport" content="width=device-width, initial-
scale=1">
 </head>
 <body>
 <div data-role="page" id="feedpage" data-add-back-btn="true">
 <div data-role="header">
 <h1></h1>
 </div>
 <div data-role="content" id="feedcontents">
 </div>
 <div data-role="footer">
 <h4>Created with jQuery Mobile</h4>
 </div>
 </div>
 </body>
</html>

This page basically acts as a shell. Note it has no real content at all, just empty HTML
elements waiting to be filled. Let's return to main.js and see how this works:

Listing 13-8: Feed display handler (part 1)
 //Listen for the Feed Page so we can displaying entries
 $("#feedpage").live("pageshow", function(e) {
 //get the feed id based on query string
 var query = $(this).data("url").split("=")[1];
 //remove ?id=
 query = query.replace("?id=","");
 //assume it's a valid ID, since this is a mobile app folks won't
 be messing with the urls, but keep
 //in mind normally this would be a concern
 var feeds = getFeeds();
 var thisFeed = feeds[query];
 $("h1",this).text(thisFeed.name);
 if(!feedCache[thisFeed.url]) {

Chapter 13

[215]

 $("#feedcontents").html("<p>Fetching data...</p>");
 //now use Google Feeds API
 $.get("https://ajax.googleapis.com/ajax/services/feed/
 load?v=1.0&num=10&q="+encodeURI(thisFeed.url)+"&callback=?", {},
 function(res,code) {
 //see if the response was good...
 if(res.responseStatus == 200) {
 feedCache[thisFeed.url] = res.responseData.feed.entries;
 displayFeed(thisFeed.url);
 } else {
 var error = "<p>Sorry, but this feed could not be
 loaded:</p><p>"+res.responseDetails+"</p>";
 $("#feedcontents").html(error);
 }
 },"json");
} else {
 displayFeed(thisFeed.url);
 }
});

This first snippet handles listening for the pageshow event on feed.html. This means
it will run every time the file is viewed, which is what we want since it is used for
every different feed. How does that work? Remember that our list of feeds included
an identifier for the feed itself:

for(var i=0; i<feeds.length; i++) {
 s+= "<a href='feed.html?id="+i+"' data-
 feed='"+i+"'>"+feeds[i].name+" <a href='' class='deleteFeed'
 data-feedid='"+i+"'>Delete";
 }

jQuery Mobile provides us access to the URL via the data ("url") API. Since this
returns the entire URL and we only care about stuff after the question mark, we
can use some string functions to clean it up. The end result is a numeric value
query, that we can use to fetch the data out of our feed query. In a regular desktop
application it would be pretty simple for a user to mess with the URL parameters.
Therefore, we'd do some checking here to ensure that the value requested actually
exists. Since this is a single user application on a mobile device, it really isn't
necessary to worry about that.

Before we try to fetch the feed, we make use of a simple caching system. The very
first line in main.js creates an empty object:

//used for caching
var feedCache= {};

Becoming an expert - Build an RSS Reader application

[216]

This object will store the results from our feeds so that we don't have to constantly
re-fetch them. That's why the following line:

if(!feedCache[thisFeed.url]) {

is run before we do any additional network calls. So how do we actually get the
feed? Google has a cool service called the Feed API (https://developers.google.
com/feed/). It lets us use Google to handle fetching in the XML of an RSS feed and
converting it to JSON. JavaScript can work with XML, but JSON is far easier since
it becomes regular, simple JavaScript objects. We've got a bit of error handling,
but if everything works well, we simply cache the result. The final bit is a call to
displayFeed:

Listing 13-9: displayFeed
function displayFeed(url) {
 var entries = feedCache[url];
 var s = "<ul data-role='listview' data-inset='true'
id='entrylist'>";
 for(var i=0; i<entries.length; i++) {
 var entry = entries[i];
 s += "<a href='entry.html?entry="+i+"&url="+encodeURI(u
rl)+"'>"+
 entry.title+"";
 }
 s += "";
 $("#feedcontents").html(s);
 $("#entrylist").listview();
}

All that the previous block does is iterate over the result feed. When Google parsed
the XML from the feed, it turned into an array of objects we can loop over. While
there are a number of properties in the feed we may be interested in, for the list we
care about the title only. Notice how we build our link. We pass the numeric index
and the URL (which we will use in the next portion). This is then rendered to a
simple jQuery Mobile listview.

Creating the entry view
Ready for the last part? Let's look at the individual entry display. As before, we'll
begin with the template:

Listing 13-10: entry.html
<!DOCTYPE html>
<html>
 <head>
 <title>Entry</title>

Chapter 13

[217]

 <meta name="viewport" content="width=device-width, initial-
scale=1">
 </head>
 <body>
 <div data-role="page" id="entrypage" data-add-back-btn="true">
 <div data-role="header">
 <h1></h1>
 </div>
 <div data-role="content">
 <div id="entrycontents"></div>
 Visit Entry
 </div>
 <div data-role="footer">
 <h4>Created with jQuery Mobile</h4>
 </div>
 </div>
 </body>
</html>

Similar to feed.html before it, entry.html is an empty shell. Note that the header,
the content, and the link are empty. All of these will be replaced with real code. Let's
head back to main.js and look at the code that handles this page:

Listing 13-11: Entry page event handler
 $("#entrypage").live("pageshow", function(e) {
 //get the entry id and url based on query string
 var query = $(this).data("url").split("?")[1];
 //remove ?
 query = query.replace("?","");
 //split by &
 var parts = query.split("&");
 var entryid = parts[0].split("=")[1];
 var url = parts[1].split("=")[1];
 var entry = feedCache[url][entryid];
 $("h1",this).text(entry.title);
 $("#entrycontents",this).html(entry.content);
 $("#entrylink",this).attr("href",entry.link);
});

So what's going on here? Remember that we passed an index value (which entry was
clicked, the first, the second?) and the URL of the feed. We parse out those values
from the URL. Once we know the URL of the feed, we can use our cache to get the
specific entry. Once we have that, it's a simple matter to update the header, contents,
and link. And that's it!

Becoming an expert - Build an RSS Reader application

[218]

Going further
You can take the code from this application and upload it to the PhoneGap Build
service now to try it out on your own device. But what else could we have done?
Here's a short list of things to consider:

•	 PhoneGap provides a connection API (http://docs.phonegap.com/
en/1.4.1/phonegap_connection_connection.md.html) that returns
information about the device's connection status. You could add support
for this to prevent the user from trying to read a feed when the device
isn't online.

•	 While we store the user's feeds in localStorage, the cached data from
reading the RSS entry is stored temporarily. You could also store that data
and use it when the user is offline.

•	 PhoneGap has an excellent plugin API and a great variety of plugins are
already available. (https://github.com/phonegap/phonegap-plugins)
One of these plugins allow for easier sending of SMS messages. You could
add an option to send an entry title and link to a friend via SMS. Did we
mention PhoneGap also lets you work with your contacts? See the Contacts
API for more information: http://docs.phonegap.com/en/1.4.1/
phonegap_contacts_contacts.md.html.

Hopefully you get the idea. This is only one example of the power of jQuery Mobile
and PhoneGap.

Summary
In this chapter, we took what we had learned of PhoneGap from the previous
chapter and created a full, if rather simple, mobile application making use of
jQuery Mobile for design and interactivity.

[219]

Index
Symbols
$(document).ready

about 133
example, creating 133-136

$.mobile.activePage property 109
$.mobile.changePage(page,options)

property 109
$.mobile.fixedToolbars.hide() 115
$.mobile.fixedToolbars.show() 115
$.mobile.hidePageLoadingMsg()

property 110
$.mobile.loadPage(page,options)

property 110
$.mobile object 105
$.mobile.pageContainer constant 156
$.mobile.path.isAbsoluteUrl 111
$.mobile.path.isRelativeUrl 111
$.mobile.path.isSameDomain(first url,

second url) 111
$.mobile.path.makePathAbsolute

(relative path, absolute path) 111
$.mobile.path.makeUrlAbsolute

(relative url, absolute url) 111
$.mobile.path.parseUrl(url) 111
$.mobile.showPageLoadingMsg()

property 110
$.mobile.silentScroll(position) 115
.data() function 157

A
About page 23
accelerometer 192
accordion 101
activeBtnClass setting 105

activePageClass setting 105
Add Feed button 206
addFeed method 213
Add Note button 149, 189
add note feature

bindings, adding 148, 149
building 148
data, collecting 150
data, storing 150
display notes feature, building 151-153

addNote function 149
addNote() function 153
add note wireframe

designing 139
ajaxEnabled setting 105
alert() call 213
allowCrossDomainPages setting 105
allowSamePageTransition option 109
app.checkForStorage() 153
app.colors() 145
app.init() function 148
app variable 145
autoInitializePage setting 106

B
back buttons

working with 34, 36
background-size property 190
bars (.ui-bar-?) 169
bindings

adding 148, 149
bindings() function 149, 154, 157
body tags 18
boilerplates

uses 148

[220]

border-radius 161
box-shadow

using 164, 165
button() method 119
buttons and listviews (.ui-btn-?) 170

C
camera 192
CDN 13
change event

pagebeforechange 129
pagechange 129
pagechangefailed 129

changeHash option 109
changePage API 213
checkboxes

working with 76-79
checkForStorage() function 158
ColdFusion

URL 72
collapsible content

about 97
accordion 101
data-content-theme attribute 100
data-iconpos option 100
example 97, 98

compass 192
contacts 192
content blocks (.ui-body-?) 169
Content Body panel 180
Content Delivery Network. See CDN
count bubbles

lists, creating with 53
CSS gradients 165, 167
CSS sprites 183, 184
custom icons

CSS sprites 183, 184
first icon, designing 185-187
high resolution 187
low resolution 187
low resolution creating, steps 187

custom theme
adding 188
colors 175, 176
creating 172, 173
inspector 176, 177

tools 177
using 172, 173

D
data attributes

working with 16-18
database 146
data-content-theme attribute 100
data-iconpos option 100
data option 109
data-ray attribute 17
data-theme attribute 170, 171
data-url attribute 156
data-url option 109
defaultDialogTransition setting 106
defaultPageTransition setting 106
delete button wireframe

viewing 140
deleteNote() function 158
design pattern

implementation 143, 144
need for, using 143

dialogs 87, 89
displayFeeds function 210, 211
displayNote() function 155
display notes feature

building 151-153
displayNotes() function 151, 153
DOM (Document Object Model) 16
drop shadows

applying 162
box-shadow, using 164, 165
CSS gradients 165, 167
text-shadow, using 163

E
entry view

creating 216, 217
e.preventDefault() 149

F
feed

storing 211
viewing 214-216

fieldcontain block 114

[221]

fieldcontain div tag 79
fieldset tag 77, 79
file 192
Firebug 26
fixed screen footers

creating 38, 39
fixed screen headers

creating 38, 39
flip toggle field 83, 84
Footer Bar panel 179
footers

fixed screen footers, creating 38, 39
working with 36, 37

for loop 152
forms

about 71
adding 138

full screen positioning
about 39
enabling 39

G
geolocation 192
getFeeds 211
global active state 171
Google Static Maps

homepage, URL 64
gradea setting 106
grids

about 91
div block 91
five column grid 91
four column grid 91, 94
multiple rows, creating 95
three column grid 91
two column grid 91
two column grid, in mobile browser 94
ui-grid-X class 91

H
handleAddFeed 213
hashListeningEnabled setting 106
Header Bar panel 179
headers

adding 31-33
fixed screen headers, creating 38, 39

hotel mobile site, hotel camden example
about 59
contact page 68, 69
atures 59, 60
home page 60, 62
hotel, finding 62-64
hotel rooms, listing 65, 67

HTML
page, building 11-13
writing 141-143

html variable 152

I
icon

about 54, 55
designing 185-187

ignoreContentEnabled setting 106
Import button 178
init event

pagebeforecreate 130
pagecreate 130
pageinit 130

init() function 149, 153
init method 213
inset lists 51

J
JavaScript

functionality, adding with 143-145
jqmData() 115
jqmRemoveData() 115
jQuery Mobile

about 1, 13, 14
and URLs 26
border-radius 161
building blocks 160
configuration options 105
configuring 103-105
docs, URL 3
drop shadows, applying 162
examples 4
forum, URL 3
implementing 14, 16
links 22
multiple files, working with 23-26
native apps 3

[222]

text-shadow, using 163
theming 168
with forms 72-76

jQuery Mobile, configuration options
activeBtnClass 105
activePageClass 105
ajaxEnabled 105
allowCrossDomainPages 105
autoInitializePage 106
defaultDialogTransition 106
defaultPageTransition 106
gradea 106
hashListeningEnabled 106
ignoreContentEnabled 106
linkBindingEnabled 106
loadingMessage 106
loadingMessageTextVisible 107
loadingMessageTheme 107
minScrollBack 107
ns 105
pageLoadErrorMessageTheme 107
pageLoadErrorMssage 107
pushStateEnabled 107
subPageUrlKey 107

jQuery Mobile, customization
content, prefetching 28
page titles 27
page transitions, changing 28

jQuery Mobile docs
URL 3

jQuery Mobile file
multiple pages, adding 20-22

jQuery Mobile forum
URL 3

jQuery Mobile theming
about 168
bars (.ui-bar-?) 169
buttons and listviews (.ui-btn-?) 170
content blocks (.ui-body-?) 169
default icons 172
site-wide active state 171
swatches, mixing 170

jQuery mobile utilities
about 109
miscellaneous utilities 115
page methods and utilities 109-111
path and URL related utilities 111-114

jQuery widget and form utilities 115-118

K
keyup event listeners 114

L
label tag 79
layout event

updatelayout 130
linkBindingEnabled setting 106
list-divider role 52
list dividers 52
Listing 8-1 107
Listing 8-3 112
Listing 8-4 115
Listing 9-4 114
lists

creating, without count bubbles 53
icons, using 54, 55
inset lists 51
list dividers 52
search filter, using 57, 58
split button lists, creating 56, 57
thumbnails, using 54, 55
working with 45-50

listview
notes, adding 153

listview() function 154
listview method 117, 118
li tag 52
live function

using 154
load event

pagebeforeload 129
pageload 129
pageloadfailed 129

loadingMessage setting 106
loadingMessageTextVisible setting 107
loadingMessageTheme setting 107
loadNote() function 155
localStorage

about 146, 211
boilerplates, using 148
using 146

localStorage variable 147

[223]

M
media 192
media queries 189
Megacorp page 28
mini fields

working with 85, 86
minScrollBack setting 107
miscellaneous utilities, jQuery

mobile utilities 115
mobile application

about 137
add note wireframe, designing 139
delete button wireframe, viewing 140
designing 138
HTML, writing 141-143
note, adding 138
note button wireframe, viewing 140
note, deleting 139
note list, displaying 139
notes wireframe, displaying 140
note, viewing 139
requisites 138, 139
wireframes, building 139

mobileinit event 104
mobile site. See hotel mobile site, hotel

camden example
multiple files

working with 23-26
multiple pages, jQuery Mobile file

adding, to one file 20-22

N
native application

creating 191, 192
native form controls

using 85
NavBar 40
navigation bar

footers, persisting across multiple
pages 42-44

working with 40, 41
network 192
new page

creating 155, 156

note button wireframe
viewing 140

Notekeeper
theme, creating 178-181

Notekeeper app, updating
about 188
custom icon, adding 189
custom theme, adding 188

Notekeeper data
storing 146

notekeeper mobile application. See
mobile application

notes
adding 138
adding, to listview 153
deleting 157, 158
displaying 139
list, displaying 139
listview, displaying 139
viewing 139, 154

notesObj variable 152
notes wireframe

displaying 140
notification 192

O
Off position 176
orientationchange event 122

P
pagebeforechange, change event 129
pagebeforecreate, init event 130
pagebeforehide, transition event 129
pagebeforeload, load event 129
pagebeforeshow, transition event 129
pagechange, change event 129
pagechangefailed, change event 129
pageContainer option 109
pagecreate, init event 130
page events

categories 129, 130
handling 129, 132

page events, categories
change event 129
init event 130

[224]

layout event 130
load event 129
remove event 130
transition event 129

pagehide, transition event 129
pageinit, init event 130
pageLoadErrorMessageTheme setting 107
pageLoadErrorMessage setting 107
pageloadfailed, load event 129
pageload, load event 129
page methods and utilities, jQuery mobile

utilities 109-111
pagermove, remove event 130
pageshow event 215
pageshow, transition event 129
page variable 156
parse() function 147, 150
path and URL related utilities, jQuery mo-

bile utilities 111
PhoneGap

about 192, 218
creating 192, 196
functionality, adding 199-201
success handler 202
URL 191

PhoneGap Build service 194, 195
physical events

orientationchange 122
scrollstart 122
scrollstop 122
swipe 122
swipeleft 122
swiperight 122
tap 122
taphold 122
vclick 122
vmousecancel 122
vmousedown 122
vmousemove 122
vmouseover 122
vmouseup 122
working with 121

Products page 27
pushStateEnabled setting 107

R
radio buttons

working with 76-79
refresh keyword 154
reloadPage option 109
remove event

pagermove 130
replace method 150
role option 109
RSS reader application

about 205-208
creating 208-210
displayFeeds function 210, 211
entry view, creating 216, 217
feeds, storing 211
RSS feed, adding 212, 213
RSS feed, viewing 214-216

S
scrollstart event 122, 128
scrollstop event 122, 128
search fields 83
search filter

using 57, 58
select menus

working with 79-82
showLoadMsg option 109
showPageLoadingMsg function 110
slider fields 84
split button lists

creating 56, 57
storage 192
stringify() function 146, 147
subPageUrlKey setting 107
swipe event 122
swipeleft event 122, 126
swiperight event 122, 126

T
tap event 122
taphold event 122, 123
text file 146
text-shadow

using 163

[225]

theme
exporting 181

ThemeRoller
about 173
preview 175
using 173, 174

thumbnails 54, 55
toolbars 31
transition event

pagebeforehide 129
pagebeforeshow 129
pagehide 129
pageshow 129

transition option 109
type option 109

U
ui-grid-X class 91
updatelayout, layout event 130

V
val() function 149
vclick event 122
vendor prefixes 162
vmousecancel event 122
vmousemove event 122
vmouseover event 122
vmouseup event 122

W
wireframe, mobile application

add note wireframe, designing 139
building 139
delete button wireframe, viewing 140
display notes wireframe, displaying 140
HTML, writing 141-143
note button wireframe, viewing 140

Thank you for buying
jQuery Mobile Web Development Essentials

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

jQuery Mobile First Look
ISBN: 978-1-84951-590-0 Paperback: 216 pages

Discover the endless possibilities offered by jQuery
Mobile for rapid mobile web development

1. Easily create your mobile web applications
from scratch with jQuery Mobile

2. Learn the important elements of the framework
and mobile web development best practices

3. Customize elements and widgets to match
your desired style

4. Step-by-step instructions on how to use
jQuery Mobile

PhoneGap Beginner's Guide
ISBN: 978-1-84951-536-8 Paperback: 328 pages

Build cross-platform mobile applications with the
PhoneGap open source development framework

1. Learn how to use the PhoneGap mobile
application framework

2. Develop cross-platform code for iOS, Android,
BlackBerry, and more

3. Write robust and extensible JavaScript code

4. Master new HTML5 and CSS3 APIs

5. Full of practical tutorials to get you writing
code right away

Please check www.PacktPub.com for information on our titles

Sencha Touch Mobile JavaScript
Framework
ISBN: 978-1-84951-510-8 Paperback: 316 pages

Build web applications for Apple iOS and Google
Android touchscreen devices with this first HTML5
mobile framework

1. Learn to develop web applications that look
and feel native on Apple iOS and Google
Android touchscreen devices using Sencha
Touch through examples

2. Design resolution-independent and graphical
representations like buttons, icons, and tabs of
unparalleled flexibility

3. Add custom events like tap, double tap, swipe,
tap and hold, pinch, and rotate

Android Application
Testing Guide
ISBN: 978-1-84951-350-0 Paperback: 332 pages

Build intensively tested and bug free
Android applications

1. The first and only book that focuses on testing
Android applications

2. Step-by-step approach clearly explaining the
most efficient testing methodologies

3. Real world examples with practical test cases
that you can reuse

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Preparing your First jQuery Mobile Project
	Important preliminary points
	Building an HTML page
	Getting jQuery Mobile
	Implementing jQuery Mobile
	Working with data attributes
	Summary

	Chapter 2: Working with jQuery Mobile Pages
	Important preliminary points
	Adding multiple pages to one file
	jQuery Mobile, links, and you
	Working with multiple files
	jQuery Mobile and URLs
	Additional customization
	Page titles
	Prefetching content
	Changing page transitions

	Summary

	Chapter 3: Enhancing Pages with Headers, Footers, and Toolbars
	Important preliminary points
	Adding headers
	Icon sneak peak
	Working with back buttons
	Working with footers
	Creating fixed and full screen headers and footers
	Full screen positioning

	Working with navigation bars
	Persisting navigation bar footers across multiple pages

	Summary

	Working with Lists
	Creating lists
	Working with list feature
	Creating Inset lists
	Creating list dividers
	Creating lists with count bubbles
	Using thumbnails and icons
	Creating Split Button lists
	Using a search filter

	Summary

	Chapter 5: Getting Practical – Building a Simple Hotel Mobile Site
	Welcome to the Hotel Camden
	The home page
	Finding the hotel
	Listing the hotel rooms
	Contacting the hotel
	Summary

	Chapter 6: Working with Forms and jQuery Mobile
	Before you begin
	What jQuery Mobile does with forms
	Working with radio buttons and checkboxes
	Working with select menus
	Search, toggle, and slider fields
	Search fields
	Flip toggle fields
	Slider fields

	Using native form controls

	Working with "mini" fields
	Summary

	Chapter 7: Creating Modal Dialogs, Grids, and Collapsible Blocks
	Creating dialogs
	Laying out content with grids
	Working with collapsible content
	Summary

	Chapter 8: jQuery Mobile Configuration, Utilities, and JavaScript methods
	Configuring jQuery Mobile
	Using jQuery Mobile utilities
	Page methods and utilities
	Path and URL related utilities
	Miscellaneous utilities

	jQuery widget and form utilities
	Summary

	Chapter 9: Working with Events
	Working with physical events
	Handling page events
	What about $(document).ready?
	Creating a real example

	Summary

	Chapter 10: Moving further with the Notekeeper Mobile Application
	What is a mobile application?
	Designing your first mobile application
	Listing out the requirements
	Building your wireframes
	Designing the add note wireframe
	Display notes wireframe
	View note/delete button wireframe

	Writing the HTML

	Adding functionality with JavaScript
	Storing Notekeeper data
	Using localStorage

	Effective use of boilerplates
	Building the Add Note feature
	Adding bindings
	Collecting and storing the data
	Building the Display Notes feature

	Dynamically adding notes to our listview
	Viewing a note
	Using the Live function

	Dynamically creating a new page
	Deleting a note

	Summary

	Chapter 11: Enhancing jQuery Mobile
	What's possible?
	The visual building blocks of
jQuery Mobile
	Border-radius
	Applying drop shadows
	Using text-shadow
	Using box-shadow
	CSS gradients

	The basics of jQuery Mobile theming
	Bars (.ui-bar-?)
	Content blocks (.ui-body-?)
	Buttons and listviews (.ui-btn-?)
	Mixing and matching swatches
	Site-wide active state
	Default icons

	Creating and using a custom theme
	What's ThemeRoller?
	Using ThemeRoller
	Preview

	Colors
	Inspector
	Tools

	Creating a theme for Notekeeper
	Exporting your theme

	Creating and using custom icons
	CSS Sprites
	Designing your first icon
	High and low resolution

	Updating the Notekeeper app
	Adding our custom theme
	Adding our custom icon

	Summary

	Chapter 12: Creating Native Applications
	HTML as a native application
	Working with PhoneGap
	Adding PhoneGap functionality

	Summary

	Chapter 13: Becoming an expert - Build an RSS Reader application
	RSS Reader – the application
	Creating the RSS Reader Application
	The displayFeeds function
	Storing our feeds
	Adding an RSS feed
	Viewing a feed
	Creating the entry view
	Going further

	Summary

	Index

