
this print for content only—size & color not accurate trim = 7.5" x 9.25"  spine = 0.000"  000 page count

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Harwani

jQuery Recipes

Companion
eBook Available

US $44.99

Shelve in:
Web Development

User level:
Intermediate

www.apress.com
SOURCE CODE ONLINE

Companion eBook

See last page for details

on $10 eBook version

ISBN 978-1-4302-2709-0

9 781430 227090

54499

jQuery Recipes:
A Problem-Solution Approach
Dear Reader,

The jQuery framework is fantastically powerful and elegant, but it still has
enough thorny edges to snag unwary users. jQuery Recipes is chock full of solu-
tions to those thorny problems, over a hundred of them, ranging from the com-
mon to the more obscure. We cover areas such as:

• Handling keyboard and mouse events
• Form validation techniques
• Applying animation effects
• Manipulating the DOM
• Advanced table handling
• Working with JSON and XML data
For each problem, we carefully define what the issue is first, and then pro-

vide the code solution along with any required HTML and CSS to get the exam-
ple working. Where there are numerous permutations to the problem, we’ll run
through a set of solutions to keep you fully armed for all eventualities. The code
is then carefully explained so that you understand the core details of the solution
and can apply them to your own code any time you come across a similar issue.

Along with using the book as a reference to dip into for answers, you can also
use it for increasing your knowledge of jQuery. By reading through the solutions
and trying out the fully illustrated and explained sample code, you will gain a bet-
ter understanding of the inner workings of the jQuery framework and how it can
be used to make your websites more dynamic and sticky.

B.M. Harwani

THE EXPERT’S VOICE® IN WEB DEVELOPMENT

jQuery
Recipes
A Problem-Solution Approach

B.M. Harwani

An expert compilation of solutions
to real-world jQuery problems

THE APRESS ROADMAP

jQuery Recipes

Practical JavaScript Projects

Beginning
JavaScript

Pro JavaScript Techniques

Pro JavaScript RIA Techniques

  CYAN
  MAGENTA

  YELLOW
  BLACK
  PANTONE 123 C

B.M. Harwani
Author of

Foundation Joomla

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

www.allitebooks.com

http://www.allitebooks.org

this print for content only—size & color not accurate trim = 7.5" x 9.25"  spine = 0.000"  000 page count

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Harwani

jQuery Recipes

Companion
eBook Available

US $44.99

Shelve in:
Web Development

User level:
Intermediate

www.apress.com
SOURCE CODE ONLINE

Companion eBook

See last page for details

on $10 eBook version

ISBN 978-1-4302-2709-0

9 781430 227090

54499

jQuery Recipes:
A Problem-Solution Approach
Dear Reader,

The jQuery framework is fantastically powerful and elegant, but it still has
enough thorny edges to snag unwary users. jQuery Recipes is chock full of solu-
tions to those thorny problems, over a hundred of them, ranging from the com-
mon to the more obscure. We cover areas such as:

• Handling keyboard and mouse events
• Form validation techniques
• Applying animation effects
• Manipulating the DOM
• Advanced table handling
• Working with JSON and XML data
For each problem, we carefully define what the issue is first, and then pro-

vide the code solution along with any required HTML and CSS to get the exam-
ple working. Where there are numerous permutations to the problem, we’ll run
through a set of solutions to keep you fully armed for all eventualities. The code
is then carefully explained so that you understand the core details of the solution
and can apply them to your own code any time you come across a similar issue.

Along with using the book as a reference to dip into for answers, you can also
use it for increasing your knowledge of jQuery. By reading through the solutions
and trying out the fully illustrated and explained sample code, you will gain a bet-
ter understanding of the inner workings of the jQuery framework and how it can
be used to make your websites more dynamic and sticky.

B.M. Harwani

THE EXPERT’S VOICE® IN WEB DEVELOPMENT

jQuery
Recipes
A Problem-Solution Approach

B.M. Harwani

An expert compilation of solutions
to real-world jQuery problems

THE APRESS ROADMAP

jQuery Recipes

Practical JavaScript Projects

Beginning
JavaScript

Pro JavaScript Techniques

Pro JavaScript RIA Techniques

  CYAN
  MAGENTA

  YELLOW
  BLACK
  PANTONE 123 C

B.M. Harwani
Author of

Foundation Joomla

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

www.allitebooks.com

http://www.allitebooks.org

jQuery Recipes

■ ■ ■

B.M. Harwani

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

www.allitebooks.com

http://www.allitebooks.org

jQuery Recipes

Copyright © 2010 by B.M. Harwani

All rights reserved. No part of this work may be reproduced or transmitted in any form or by
any means, electronic or mechanical, including photocopying, recording, or by any
information storage or retrieval system, without the prior written permission of the copyright
owner and the publisher.

ISBN-13 (pbk): 978-1-4302-2709-0

ISBN-13 (electronic): 978-1-4302-2710-6

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, we use the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

President and Publisher: Paul Manning
Lead Editor: Steve Anglin
Developmental Editor: Matthew Moodie
Technical Reviewer: Massimo Nardone
Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Gary

Cornell, Jonathan Gennick, Jonathan Hassell, Michelle Lowman, Matthew Moodie,
Duncan Parkes, Jeffrey Pepper, Frank Pohlmann, Douglas Pundick, Ben Renow-Clarke,
Dominic Shakeshaft, Matt Wade, Tom Welsh

Coordinating Editor: Kelly Moritz
Copy Editor: Candace English
Production Support: Patrick Cunningham
Indexer:
Artist: April Milne
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-
ny@springer-sbm.com, or visit http://www.springeronline.com.

For information on translations, please e-mail info@apress.com, or visit
http://www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or
promotional use. eBook versions and licenses are also available for most titles. For more
information, reference our Special Bulk Sales–eBook Licensing web page at
http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although
every precaution has been taken in the preparation of this work, neither the author(s) nor
Apress shall have any liability to any person or entity with respect to any loss or damage
caused or alleged to be caused directly or indirectly by the information contained in this work.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

www.allitebooks.com

http://www.allitebooks.org

To my mother Mrs. Nita Harwani. My mother is next to God for me. Whatever I am today is just because
of the Moral values taught by her

To Dennis Ritchie and Ken Thompson - the creators of UNIX. I appreciate Ken Thompson’s work with B
programming language and have been fond of programming in Ritchie’s invention: ‘C’ programming

language since I was doing Engineering. I am a great admirer of the security features of Unix and used
to love making shell scripts on UNIX operating sytem during my study days. Their achievments are the

inspiration for the millions of programmers around the world.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

www.allitebooks.com

http://www.allitebooks.org

iv

Contents at a Glance

About the Author.. xxviii

About the Technical Reviewer ... xxix

Acknowledgments .. xxx

Introduction ... xxxi

■Chapter 1: jQuery Basics ...1

■Chapter 2: Arrays and Strings ...17

■Chapter 3: Event Handling ...45

■Chapter 4: Form Validation ..107

■Chapter 5: Page Navigation ...167

■Chapter 6: Visual Effects ...199

■Chapter 7: Dealing with Tables ..253

■Chapter 8: Ajax ..291

■Chapter 9: Using Plugins ...327

■Chapter 10: Using CSS ...357

Index ...409

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

www.allitebooks.com

http://www.allitebooks.org

v

Contents

About the Author.. xxviii

About the Technical Reviewer ... xxix

Acknowledgments .. xxx

Introduction ... xxxi

■Chapter 1: jQuery Basics ...1

1-1. Installing jQuery... 1

Problem ... 1

Solution ... 2

How It Works ... 2

1-2. Selecting Nodes in the DOM .. 2

Problem ... 2

Solution ... 2

How It Works ... 3

1-3. Delaying the Execution of JavaScript .. 3

Problem ... 3

Solution ... 3

How It Works ... 3

1-4. Applying CSS to Elements ... 4

Problem ... 4

Solution ... 4

How It Works ... 4

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

www.allitebooks.com

http://www.allitebooks.org

■ CONTENTS

vi

1-5. Selecting a Non-Standard Series of HTML Elements .. 4

Problem ... 4

Solution ... 4

How It Works ... 5

1-6. Counting the Number of Nodes in the DOM and Displaying Their Text 5

Problem ... 5

Solution ... 5

How It Works ... 6

1-7. Obtaining the HTML of an Element .. 8

Problem ... 8

Solution ... 8

How It Works ... 8

1-8. Changing the Content of a DOM Node ... 9

Problem ... 9

Solution ... 9

How It Works ... 10

1-9. Creating a DOM Node on the Fly ... 11

Problem ... 11

Solution ... 12

How It Works ... 13

1-10. Assigning the Same Class Name to Different HTML
Elements and Applying Styles to Them .. 14

Problem ... 14

Solution ... 15

How It Works ... 16

Summary .. 16

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

www.allitebooks.com

http://www.allitebooks.org

■ CONTENTS

vii

■Chapter 2: Arrays and Strings ...17

2-1. Displaying Names in a List Using Arrays ... 17

Problem ... 17

Solution ... 18

How It Works ... 19

2-2. Manipulating Array Elements .. 21

Problem ... 21

Solution ... 21

How It Works ... 23

2-3. Filtering Arrays to Show Desired Data Only .. 24

Problem ... 24

Solution ... 24

How It Works ... 25

2-4. Sorting String and Numerical Arrays ... 30

Problem ... 30

Solution ... 30

How It Works ... 31

2-5. Splitting an Array ... 33

Problem ... 33

Solution ... 33

How It Works ... 34

2-6. Combining Two Arrays .. 35

Problem ... 35

Solution ... 35

How It Works ... 36

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

www.allitebooks.com

http://www.allitebooks.org

■ CONTENTS

viii

2-7. Converting a Numerical Array into a String and Finding Its Substring 37

Problem ... 37

Solution ... 37

How It Works ... 37

2-8. Creating an Array of Objects ... 38

Problem ... 38

Solution ... 38

How It Works ... 39

2-9. Sorting an Array of Objects ... 40

Problem ... 40

Solution ... 41

How It Works ... 42

Summary .. 43

■Chapter 3: Event Handling ...45

3-1. Finding Out Which Button Is Clicked ... 46

Problem ... 46

Solution ... 46

How It Works ... 48

3-2. Triggering Events Automatically ... 50

Problem ... 50

Solution ... 51

How It Works ... 51

trigger() .. 52

3-3. Disabling a Button After It Is Clicked Once .. 52

Problem ... 52

Solution ... 53

How It Works ... 53

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

www.allitebooks.com

http://www.allitebooks.org

■ CONTENTS

ix

3-4. Handling Mouse Events ... 54

Problem ... 54

Solution ... 54

How It Works ... 55

3-5. Finding Out Which Mouse Button Is Pressed .. 57

Problem ... 57

Solution ... 57

How It Works ... 58

3-6. Finding the Screen Coordinates of a Mouse-Button Press 59

Problem ... 59

Solution ... 59

How It Works ... 59

3-7. Highlighting Text Dynamically ... 60

Problem ... 60

Solution ... 60

How It Works ... 61

3-8. Making an Image Bright and Blurred with Mouse Movements 62

Problem ... 62

Solution ... 62

How It Works ... 63

3-9. Finding When an Element Gains and Loses Focus .. 65

Problem ... 65

Solution ... 65

How It Works ... 66

3-10. Applying Hover Effects on Buttons .. 67

Problem ... 67

Solution ... 67

How It Works ... 68

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

■ CONTENTS

x

3-11. Toggling the Application of a CSS Class.. 69

Problem ... 69

Solution ... 69

How It Works ... 70

3-12. Creating Image-Based Rollovers ... 71

Problem ... 71

Solution ... 71

How It Works ... 73

3-13. Adding and Removing Text in Response to Events ... 75

Problem ... 75

Solution ... 75

How It Works ... 76

3-14. Applying Styles in Response to Events ... 77

Problem ... 77

Solution ... 77

How It Works ... 78

3-15. Displaying Word Balloons .. 79

Problem ... 79

Solution ... 79

How It Works ... 80

3-16. Creating “Return to Top” Links ... 82

Problem ... 82

Solution ... 82

How It Works ... 83

3-17. Offering “Read More...” links .. 84

Problem ... 84

Solution ... 84

How It Works ... 84

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

■ CONTENTS

xi

3-18. Displaying Text with an Animation Effect .. 87

Problem ... 87

Solution ... 88

How It Works ... 89

3-19. Replacing Text with a Sliding Effect .. 91

Problem ... 91

Solution ... 91

How It Works ... 91

3-20. Making an Image Scroll... 93

Problem ... 93

Solution ... 93

How It Works ... 95

3-21. Determining Which Key Was Pressed ... 98

Problem ... 98

Solution ... 98

How It Works ... 98

3-22. Preventing Event Bubbling .. 101

Problem ... 101

Solution ... 101

How It Works ... 102

3-23. Chaining Multiple Activities ... 103

Problem ... 103

Solution ... 104

How It Works ... 104

Summary .. 106

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

■ CONTENTS

xii

■Chapter 4: Form Validation ..107

4-1. Confirming a Required Field Is Not Left Blank .. 108

Problem ... 108

Solution ... 108

How It Works ... 109

4-2. Validating a Numerical Field ... 110

Problem ... 110

Solution ... 110

How It Works ... 113

4-3. Validating Phone Numbers .. 114

Problem ... 114

Solution ... 114

How It Works ... 115

4-4. Validating a User ID ... 116

Problem ... 116

Solution ... 117

How It Works ... 117

4-5. Validating a Date ... 118

Problem ... 118

Solution ... 118

How It Works ... 119

4-6. Validating an Email Address .. 120

Problem ... 120

Solution ... 121

How It Works ... 121

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

■ CONTENTS

xiii

4-7. Checking Whether a Checkbox Is Checked ... 123

Problem ... 123

Solution ... 123

How It Works ... 125

4-8. Checking Whether a Radio Button Is Selected .. 126

Problem ... 126

Solution ... 127

How It Works ... 128

4-9. Checking Whether an Option in a Select Element Is Selected 129

Problem ... 129

Solution ... 129

How It Works ... 130

4-10. Applying Styles to Options and a Form Button .. 133

Problem ... 133

Solution ... 133

How It Works ... 135

4-11. Checking and Unchecking All Checkboxes Together .. 137

Problem ... 137

Solution ... 137

How It Works ... 138

4-12. Validating Two Fields .. 140

Problem ... 140

Solution ... 140

How It Works ... 141

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

■ CONTENTS

xiv

4-13. Matching the Password and Confirm Password Fields 144

Problem ... 144

Solution ... 144

How It Works ... 145

.next() .. 146

4-14. Disabling Certain Fields .. 147

Problem ... 147

Solution ... 147

How It Works ... 148

4-15. Validating a Complete Form .. 149

Problem ... 149

Solution ... 150

How It Works ... 153

4-16. Serializing Form Data .. 161

Problem ... 161

Solution ... 161

How It Works ... 162

How It Works ... 164

Summary .. 166

■Chapter 5: Page Navigation ...167

5-1. Writing a Breadcrumb Menu ... 167

Problem ... 167

Solution ... 167

How It Works ... 168

5-2. Adding a Hover Effect to Menu Items .. 169

Problem ... 169

Solution ... 169

How It Works ... 171

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

■ CONTENTS

xv

5-3. Creating a Contextual Menu .. 172

Problem ... 172

Solution ... 172

How It Works ... 174

5-4. Creating a Navigation Menu with Access Keys ... 175

Problem ... 175

Solution ... 176

How It Works ... 178

5-5. Creating a Context Menu on Right-Click ... 179

Problem ... 179

Solution ... 179

How It Works ... 181

5-6. Creating Two Menus with Separate Menu Items .. 182

Problem ... 182

Solution ... 183

How It Works ... 184

5-7. Creating Two Menus with Submenu Items ... 185

Problem ... 185

Solution ... 185

How It Works ... 187

:first ... 188

5-8. Making an Accordion Menu ... 190

Problem ... 190

Solution ... 190

How It Works ... 191

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

■ CONTENTS

xvi

5-9. Making a Dynamic Visual Menu .. 193

Problem ... 193

Solution ... 193

How It Works ... 196

Summary .. 198

■Chapter 6: Visual Effects ...199

6-1. Displaying Images Horizontally and Vertically .. 200

Problem ... 200

Solution ... 200

How It Works ... 200

.eq() ... 201

.length ... 201

Display Images Vertically .. 202

6-2. Creating a Horizontal Image Slider .. 204

Problem ... 204

Solution ... 204

How It Works ... 204

6-3. Displaying an Image that Scrolls Left and Becomes Invisible When Clicked 206

Problem ... 206

Solution ... 206

How It Works ... 207

Making the Scrolling Image Appear at the Center of the Browser Window 208

How It Works – Part 2 .. 209

6-4. Creating an Image that Scrolls Left, Disappears, and Reappears at the Right ... 209

Problem ... 209

Solution ... 209

How It Works ... 210

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

■ CONTENTS

xvii

6-5. Scrolling an Image at the Center of the Browser Window 212

Problem ... 212

Solution ... 212

How It Works ... 213

setTimeout() ... 214

6-6. Showing Images One After the Other on Hover ... 214

Problem ... 214

Solution ... 214

How It Works ... 215

Making a Slide Show ... 216

6-7. Scrolling an Image Vertically ... 217

Problem ... 217

Solution ... 217

How It Works ... 218

Making the Images Scroll in a Small Window at the Center of the Browser Window 219

How It Works ... 220

Making the Scroller Scroll Upward .. 221

6-8. Scrolling an Image Horizontally ... 221

Problem ... 221

Solution ... 222

How It Works ... 223

Pausing the Scroll on Hover .. 224

Scrolling to the Right ... 225

6-9. Making a News Scroller .. 226

Problem ... 226

Solution ... 226

How It Works ... 227

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

■ CONTENTS

xviii

News Scroller Using the .css() Method .. 229

How It Works ... 229

Making the News Scroller Pause on Hover ... 230

6-10. Displaying an Enlarged Image on Mouseover ... 231

Problem ... 231

Solution ... 231

How It Works ... 232

Enlarging the Icon Itself on Hover .. 234

How It Works – Enlarging the Icon Itself ... 234

Making a Content Slider .. 235

How It Works – The Content Slider .. 236

6-11. Showing Images Pagewise ... 238

Problem ... 238

Solution ... 238

How It Works ... 239

6-12. Shuffling Images in Either Direction .. 240

Problem ... 240

Solution ... 241

How It Works ... 242

6-13. Writing a Pendulum Scroller ... 244

Problem ... 244

Solution ... 244

How It Works ... 246

6-14. Scrolling Images Using Arrays .. 247

Problem ... 247

Solution ... 247

Scrolling an Image over Other Images .. 248

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

www.allitebooks.com

http://www.allitebooks.org

■ CONTENTS

xix

Scrolling Only the Image that Is Hovered Over .. 249

Fading Out and Replacing an Image .. 250

Scrolling One Image Left and One Image Right, and Fading Out the Middle 250

Summary .. 251

■Chapter 7: Dealing with Tables ..253

7-1. Highlighting a Table Row on Hover ... 253

Problem ... 253

Solution ... 253

How It Works ... 254

7-2. Highlighting Alternate Columns ... 255

Problem ... 255

Solution ... 255

How It Works ... 255

:nth-child() ... 256

7-3. Filtering Rows ... 259

Problem ... 259

Solution ... 259

How It Works ... 260

7-4. Hiding the Selected Column .. 261

Problem ... 261

Solution ... 261

How It Works ... 262

How It Works ... 264

7-5. Paginating a Table ... 265

Problem ... 265

Solution ... 265

How It Works ... 266

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

■ CONTENTS

xx

7-6. Expanding and Collapsing List Items .. 268

Problem ... 268

Solution ... 268

How It Works ... 270

7-7. Expanding and Collapsing Table Rows .. 272

Problem ... 272

Solution ... 272

How It Works ... 274

7-8. Sorting List Items .. 278

Problem ... 278

Solution ... 278

How It Works ... 279

7-9. Sorting a Table .. 280

Problem ... 280

Solution ... 280

How It Works ... 281

The > Symbol .. 282

How It Works ... 285

7-10. Filtering Rows from a Table .. 286

Problem ... 286

Solution ... 287

How It Works ... 288

Summary .. 289

■Chapter 8: Ajax ..291

8-1. Displaying a Welcome Message .. 291

Problem ... 291

Solution ... 291

How It Works ... 292

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

■ CONTENTS

xxi

8-2. Performing Authentication .. 296

Problem ... 296

Solution ... 297

How It Works ... 298

8-3. Validating a User Name ... 299

Problem ... 299

Solution ... 299

How It Works ... 300

8-4. Validating an Email Address .. 302

Problem ... 302

Solution ... 302

How It Works ... 305

8-5. Using Auto complete ... 308

Problem ... 308

Solution ... 309

How It Works ... 311

8-6. Importing HTML ... 313

Problem ... 313

Solution ... 313

How It Works ... 314

8-7. Getting JSON Data ... 316

Problem ... 316

Solution ... 316

How It Works ... 317

8-8. Getting XML data ... 319

Problem ... 319

Solution ... 319

How It Works ... 321

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

■ CONTENTS

xxii

8-9. Paginating tables ... 323

Problem ... 323

Solution ... 323

How It Works ... 325

Summary .. 326

■Chapter 9: Using Plugins ...327

9-1. Filtering on any column of a table with a limit on rows 327

Problem ... 327

Solution ... 328

How It Works ... 329

9-2. Annotating an image with comments ... 330

Problem ... 330

Solution ... 330

How It Works ... 331

9-3. Dragging and dropping table rows .. 333

Problem ... 333

Solution ... 333

How It Works ... 334

9-4. Getting, serializing and clearing form controls ... 335

Problem ... 335

Solution ... 335

How It Works ... 337

9-5. Submitting the Form via Ajax .. 338

Problem ... 338

Solution ... 339

How It Works ... 341

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

■ CONTENTS

xxiii

9-6. Finding the exact position and dimension of an element 344

Problem ... 344

Solution ... 344

How It Works ... 346

9-7. Displaying images in a carousel ... 347

Problem ... 347

Solution ... 348

How It Works ... 349

9-8. Selecting a Date with a Datepicker ... 350

Problem ... 350

Solution ... 351

How It Works ... 351

9-9. Sorting tables .. 352

Problem ... 352

Solution ... 352

How It Works ... 353

Summary .. 355

■Chapter 10: Using CSS ...357

10-1. Distinguishing HTML Elements .. 358

Problem ... 358

Solution ... 358

How It Works ... 359

10-2. Applying Styles to an Element Nested Inside another Element 359

Problem ... 359

Solution ... 359

How It Works ... 360

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

■ CONTENTS

xxiv

10-2. Indenting Paragraphs .. 361

Problem ... 361

Solution ... 361

How It Works ... 362

10-3. Applying an Initial Cap to a Paragraph .. 362

Problem ... 362

Solution ... 362

How It Works ... 363

10-4. Removing the Gap between Heading and Paragraph .. 363

Problem ... 363

Solution ... 364

How It Works ... 364

10-5. Applying Styles to Heading Text .. 365

Problem ... 365

Solution ... 365

How It Works ... 365

10-6. Indenting the First Line of Multiple Paragraphs .. 366

Problem ... 366

Solution ... 366

How It Works ... 367

10-7. Creating Paragraphs with Hanging Indents ... 367

Problem ... 367

Solution ... 367

How It Works ... 368

10-8. Creating a Bordered Pull Quote ... 368

Problem ... 368

Solution ... 368

How It Works ... 369

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

■ CONTENTS

xxv

10-9. Creating a Pull Quote with Images .. 370

Problem ... 370

Solution ... 370

How It Works ... 371

10-10. Applying List Properties to List Items .. 372

Problem ... 372

Solution ... 372

How It Works ... 373

10-11. Applying Styles to Only Selected List Items .. 374

Problem ... 374

Solution ... 374

How It Works ... 376

10-12. Placing Dividers between List Items ... 377

Problem ... 377

Solution ... 377

How It Works ... 378

10-13. Applying Image Markers to the List .. 378

Problem ... 378

Solution ... 378

How It Works ... 379

10-14. Creating Inline Lists ... 380

Problem ... 380

Solution ... 380

How It Works ... 381

10-15. Applying Styles to Hyperlinks .. 381

Problem ... 381

Solution ... 381

How It Works ... 382

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

■ CONTENTS

xxvi

10-16. Assigning Different Dimensions to HTML Elements .. 383

Problem ... 383

Solution ... 383

How It Works ... 384

10-17. Placing HTML Elements ... 385

Problem ... 385

Solution ... 385

How It Works ... 386

10-18. Creating a Multicolumn Layout ... 387

Problem ... 387

Solution ... 387

How It Works ... 388

10-19. Wrapping Text around Images .. 389

Problem ... 389

Solution ... 389

How It Works ... 390

10-20. Placing a Drop Shadow behind an Image ... 391

Problem ... 391

Solution ... 391

How It Works ... 392

10-21. Changing the Cursor When the Mouse Moves over a Link 393

Problem ... 393

Solution ... 393

How It Works ... 394

10-22. Displaying a Long Piece of Text within a Specific Area 395

Problem ... 395

Solution ... 395

How It Works ... 395

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

■ CONTENTS

xxvii

10-23. Making a Rounded-Corner Column ... 397

Problem ... 397

Solution ... 397

How It Works ... 398

10-24. Applying Text Decorations ... 399

Problem ... 399

Solution ... 399

How It Works ... 400

10-25. Scaling Images .. 401

Problem ... 401

Solution ... 401

How It Works ... 401

10-26. Setting a Background Image ... 403

Problem ... 403

Solution ... 403

How It Works ... 404

10-27. Centering a Background Image in the Browser .. 404

Problem ... 404

Solution ... 405

How It Works ... 405

10-28. Making the Background Image Stationary .. 406

Problem ... 406

Solution ... 406

How It Works ... 406

Summary .. 407

Index ...409

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

xxviii

About the Author

■B.M. Harwani is managing director of Computer Education Centre - Microchip
Computer Education (MCE), based in Ajmer, India. He graduated with a BE in
computer engineering from the University of Pune, and also has a 'C' Level
(master's diploma in computer technology) from DOEACC, Government Of India.

Involved in the teaching field for over 15 years, he has developed the art of
explaining even the most complicated topics in a manner that everybody can
easily understand. He has written several successful books, including
Programming & Problem Solving through 'C' (BPB, 2004), Learn Tally in Just Three
Weeks (Pragya, 2005), Data Structures and Algorithms through C (CBC, 2006),
Master Unix Shell Programming (CBC, 2006), Business Systems (CBC, 2006),
Practical Java Project (Shroff, 2007), Practical Web Services (Shroff, 2007), Java for

Professionals (Shroff, 2008), C++ for Beginners (Shroff, 2009), Practical ASP.NET 3.5 Projects (Shroff,
2009), Java Server Faces - A Practical Approach for Beginners (PHI Learning, 2009), Practical JSF Project
using NetBeans (PHI Learning, 2009), Foundation Joomla (friendsof ED, 2009), and Practical EJB Project
(Shroff, 2009). He also writes articles on a variety of computer subjects which can be seen on a number
of websites. To find more visit http://bmharwani.com.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

www.allitebooks.com

http://www.allitebooks.org

xxix

About the Technical Reviewer

■Massimo Nardone was born under the Vesuvius and holds a Master Science
Degree in Computing Science from the University of Salerno, Italy. He
currently works as a Senior IT Security and Infrastructure Architect and
Finnish Invention Development Team Leader (FIDTL) for IBM Finland. He is
an IT lead Architect with main security responsibilities regarding IT
Infrastructure, Security Auditing and Assessment, PKI/WPKI, Secure
tunneling, LDAP Security, and SmartCard Security.

With more then 15 years of work experience in Mobile, Security and WWW
technology areas for both national and international projects, Nardone has
been working as a Project Manager, Software Engineer, Research Engineer,
Chief Security Architect and Software Specialist. He also worked as Visiting

lecturer and supervisor for exercises at the Networking Laboratory of the Helsinki University of
Technology (TKK) for the course of "Security of Communication Protocols". Nardone is very familiar
with Security Communication Protocols testing tools and methodologies, and has been developing
Internet and mobile applications in many programming languages, with many evolving.

Massimo Nardone works as Technical Reviewer in many different IT areas, including security, www-
technology, and database. He researched, designed, and implemented security methodologies for
Standard BS7799, PKI and WPKI, Security Java (JAAS, JSSE, JCE, etc), BEA Web logic Security, J2EE
Security, LDAP Security, SSO, Apache Security, MS SQL Server Security, XML Security, and SmartCard
Security. Nardone currently holds four International Patents (PKI, SIP, SAML and Proxy areas)

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

xxx

Acknowledgments

I owe a debt of gratitude to Steve Anglin, Asst Editorial Director for his initial acceptance of my book,
and for giving me an opportunity to create this work. I am highly grateful to the whole team at Apress for
their constant cooperation and contribution to the creation this book.

My gratitude goes out to Matthew Moodie who, as a Development Editor, offered a significant
amount of feedback that helped to improve the chapters. He played a vital role in improving the
structure and quality of the information.

I must thank Massimo Nardone, the technical reviewer, for his excellent detailed reviewing of the
work and the many helpful comments and suggestions he made.

Special thanks to Candace English, the copy editor, for her first class structural and language
editing. I appreciate her efforts in enhancing the contents of the book and giving it a polished look.

Big and ongoing thanks to Kelly Moritz, Coordinating Editor, for doing a great job, and for her
sincere efforts with the whole team to get the book published on time.

A great big thank you to the editorial and production staff and the entire team at Apress who worked
tirelessely to produce this book. Really, I enjoyed working with each of you.

I am also thankful to my family – my small world: Anu (my wife) and my two little darlings: Chirag
and Naman for allowing me to work on the book, even during the time that I was supposed to spend
with them.

I should not forget to thank my dear students, who have been good teachers for me. They allow me
to understand the basic probelms they face in a subject, and enable me to directly address those
problem topics. The endless interesting queries of my students helped me in writing this book with a
practical and focused approach.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

xxxi

Introduction

What the book is about
jQuery a rich bundle of JavaScript libraries that helps users apply dynamic functionality to web pages
with great ease. jQuery provides several powerful features, including the ability to access a part of a web
page, modify the content on fly, add animation, apply AJAX, and more.

This book uses a problem-solution approach to understanding the wide features provided by this
open source project. Beginning by using selectors to apply effects to paragraphs and lists, we learn how
to set the layouts of a web page. After that, we cover techniques involved in event handling, followed by
performing validations to different form elements. Applying visual effects, navigations, AJAX and many
more facets of jQuery are also explained in the form of recipes. The coding used in all the recipes is
completely explained with screen shots at each step. If you know a bit of HTML, CSS and jQuery, then
this is the book for you, as it is covers most of the problems a person faces while working with jQuery.

Who the book is for
This book is suitable for web developers, professionals, trainers, students and professionals who are
looking for quick solutions to the problems that are usually encountered while applying features to web
pages.

What you will learn from this book
• Applying effects to Paragraphs and Lists

• Setting Layouts

• Event Handling

• Form Validation

• Page Navigations

• Visual Effects

• Dealing with Tables

• AJAX

• Using Plug ins

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

C H A P T E R 1

■ ■ ■

1

jQuery Basics

In this chapter, we will be dealing with the basics of jQuery, from installing it to working with DOM
nodes. These fundamental recipes will help refresh your memory or fill in any gaps in your knowledge.
We will be covering the following recipes in this chapter:

• Installing jQuery

• Selecting nodes in the DOM

• Delaying the execution of JavaScript

• Applying CSS to elements

• Selecting a non-standard series of HTML elements

• Counting the number of nodes in the DOM and displaying their text

• Obtaining the HTML of an element

• Changing the content of a DOM node

• Creating a DOM node on the fly

• Assigning the same class name to different HTML elements and applying styles to
them

■ Note CSS will be covered in more depth in Chapter 10. We will be covering CSS techniques that can
complement your jQuery code. Because CSS is a basic jQuery skill, we'll also include some basic CSS recipes.

1-1. Installing jQuery

Problem
You want to install jQuery so you can use it in your application and follow the recipes in this book.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 1 ■ JQUERY BASICS

2

Solution
jQuery comes as a single .js (JavaScript) file and it is very easy to download and install jQuery in any
web application. Download the latest version of jQuery from its official site: http://jquery.com/. This
book uses version jquery-1.3.2. Copy the downloaded file to the folder where you are going to write
jQuery programs.

The statement to load the jQuery library is written in the head tag of the HTML file and the statement
is as follows:

<script src="jquery-1[1].3.2.js" type="text/javascript"></script>

In almost all the recipes, we will be adding the following three lines in HTML files (in the head tag):

<link rel="stylesheet" href="style.css" type="text/css" />
<script src="jquery-1[1].3.2.js" type="text/javascript"></script>
<script src="d1.js" type="text/javascript"></script>

How It Works
The first line is used to link the external style sheet file style.css (or any name you wish to call it) to the
HTML file. The second line is to load the jQuery library and the third line is to specify the JavaScript file
name (d1.js here, but it can be any name) that contains the jQuery code from the recipes in this book.

1-2. Selecting Nodes in the DOM

Problem
You want to use jQuery to access elements in the Document Object Model (DOM) in order to manipulate
them.

Solution
jQuery makes use of CSS and XPath selectors to access elements in the DOM. When a selector is applied
to access elements in the DOM, the elements are retrieved in the form of jQuery objects. For using any
selector, whether CSS or XPath, to access elements in the DOM, we make use of the $() function.

A typical JavaScript file to select a paragraph using jQuery code appears as follows:

//d1.js
$(document).ready(function() {
 $('p').addClass('highlight');
});

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 1 ■ JQUERY BASICS

3

How It Works
The $() function is used for selecting a part of the document. It accepts any CSS selector expression and
zero or more DOM nodes. It returns all the matched elements, which allows us to manipulate them to
change their appearance.

Here are some examples:

• $('p')—Accesses all the paragraph elements in the HTML file

• $('div')—Accesses all the div elements in the HTML file

• $('#A')—Accesses all the HTML elements with id=A

• $('.b')—Accesses all the HTML elements with class=b

So, in our recipe we select all the paragraph elements and call the addClass() method on them. This
will apply the CSS class highlight to all the paragraphs in the document.

1-3. Delaying the Execution of JavaScript

Problem
A JavaScript file referenced in the head section of the HTML file is executed as soon as the browser finds
the script line, but there are no HTML elements to which the styles can be applied (because the
JavaScript file is referenced in the head section, and HTML elements are present in the body section and
won't be loaded yet). So, we need to delay the execution of the JavaScript code until the DOM is loaded.

Solution
The method used to inform us when the DOM is ready is $(document).ready(). This method executes
the function call (written as its argument) when the DOM is loaded and ready:

$(document).ready(function() {
 $('p').addClass('highlight');
});

How It Works
We use the function keyword (without the function name) and define the body of the function to use
when the DOM has loaded. The function body is used as an argument to the method for the simple
reason that we want the function to be executed immediately, but once only. We don’t want it to be
reused again. In other words, $(document).ready() registers a ready event for the document.

The $('p') in the preceding solution is a selector that accesses the paragraph elements of the HTML
file, and to those elements the addClass() method will apply the specified CSS class.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 1 ■ JQUERY BASICS

4

1-4. Applying CSS to Elements

Problem
You want to apply a CSS class to certain elements on your page.

Solution
The addClass() method is used for applying a CSS class to the selected part of the page. It contains the
name of the class to be applied as a parameter. By defining style rules for CSS classes in a separate
stylesheet, we can use this method very easily. The style rule written for different CSS classes in the
stylesheet may be as follows:

.highlight {
 font-style: italic;
 background-color: #0f0;
}

Here's how to apply the CSS class:

$('div').addClass('highlight');
$('body').addClass('highlight');

How It Works
In the first line of jQuery code, $('div') selects all the div elements of the HTML file and applies the style
rules in highlight class to them. In the second line, the $('body') selector accesses the body element of
the HTML file and then the CSS class highlight is applied to it.

1-5. Selecting a Non-Standard Series of HTML Elements

Problem
You want to select unconventional HTML elements, such as HTML elements that may contain a given
piece of text, elements in a particular place in a sequence, or odd- or even-numbered elements in the
HTML file.

Solution
To select unconventional HTML elements, we need to use custom selectors. Custom selectors help us to
select groups of HTML elements, such as HTML elements that contain a given piece of text or that are in
a particular place in the document (for example, the third paragraph). Custom selectors also help in
selecting odd- or even-numbered elements in an HTML file.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 1 ■ JQUERY BASICS

5

Here's how to select all the elements that contain the text Life:

 $('span:contains(Life)').addClass('highlight');

In the following example, we will apply styles to even- and odd-numbered div elements and the
paragraph of a given sequence number of the HTML file:

$('div:odd').addClass('highlight');
$('div:even').addClass('boundary');
$('p:eq(1)').addClass('linkstyle');

How It Works
Our first example selects span elements that contain the word Life and applies the CSS class highlight
to them. Then in our next example :odd and :even are jQuery custom selectors that help in choosing the
desired element. The numbering in JavaScript begins with 0, which is even, 1 which is odd, and so on.
The example statement here selects the odd div elements (numbered 1,3,...) and applies the CSS class
highlight to them:

$('div:odd').addClass('highlight');

Similarly, the following example statement selects the even elements (numbered 0,2,…) and applies
the CSS class boundary to them:

$('div:even').addClass('boundary');

Finally, the example statement here uses the custom selector :eq to select the second paragraph
(because the first paragraph is numbered 0) and applies the CSS class linkstyle to it:

$('p:eq(1)').addClass('linkstyle');

1-6. Counting the Number of Nodes in the DOM and
Displaying Their Text

Problem
You want to access the DOM and its nodes via jQuery.

Solution
In the DOM, a web page is represented in the form of a tree structure with a root node (parent) and
several branches (children) where each HTML element is represented in the form of a node. These nodes
can be accessed and manipulated as desired with the help of jQuery.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 1 ■ JQUERY BASICS

6

Let’s look at the following HTML page:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>
 <title>JQuery Examples</title>
 <script src="jquery-1[1].3.2.js" type="text/javascript"></script>
 <script src="d1.js" type="text/javascript"></script>
 </head>
 <body>
 <div id="root">
 <div>Darjeeling</div>
 <div>Assam</div>
 <div>Kerala</div>
 </div>
 </body>
</html>

We can see that the preceding HTML file includes the <script> tags for loading the jQuery library as
well as for including the JavaScript file that contains the jQuery code (d1.js). We also see that the HTML
file contains a div element with id=”root”. All the elements inside this div element are its child
elements; i.e., the div with id=“root” is the parent of all the div elements described inside it. To count
the DOM nodes and display their text, we write the following jQuery code:

$(document).ready(function() {
 var $nodes = $('#root').children();
 alert('Number of nodes is '+$nodes.length);
 var txt="";
 $('#root').children().each(function() {
 txt+=$(this).text();
 });
 alert(txt);
});

How It Works
All the child elements of the div of id="root" are accessed and assigned to a variable $nodes. We display
the length of the collection of child nodes using the alert statement. Thereafter, with the help of the
each() method, we access all the elements stored in $nodes one at a time. We use the text() method and
access and concatenate the text of the elements in a string variable $txt. At the end, the text of all the
children is displayed via another alert() method. Let us look at the methods used in the preceding
jQuery code one by one.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 1 ■ JQUERY BASICS

7

children()
The children() method is a tree-traversal method that searches for the immediate children of the
specified element and returns a new jQuery object. This method travels only a single level down in the
DOM tree. In our example, this method accesses all the DOM nodes defined in the root div element and
assigns them to the variable $nodes. $nodes is a jQuery object that contains the three div elements
defined in the root div element. Using the $nodes object's length attribute, we first display the count of
the number of DOM nodes in the HTML file.

each()
each() is a method that is used to iterate over each element in the wrapped collection. It contains an
iterator function in which we write the code to be applied to each individual element of the collection.

text()
text() is a method of the jQuery object that accesses the text contents of the selected element(s). The
text contents of the selected element(s) are combined and returned in the form of a string. To see the
text contents of a paragraph element, we may write following jQuery code:

alert($('p').text());

Let’s assume that the paragraph element appears as shown in the following example:

<p>Styles make the formatting job much easier and more efficient. To give an attractive look
to web sites, styles are heavily used.
jQuery is a powerful JavaScript library that allows us to add dynamic elements to our
web sites. Not only is it easy to learn, but it's easy to implement too.

 jQuery Selectors are used for selecting the area of the document where
we want to apply styles </p>

The preceding jQuery code will display the output as shown in Figure 1-1.

Figure 1-1. The text content of the paragaph element of an HTML file

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ JQUERY BASICS

8

We can see the text contents of the children of a paragraph element by using the following
statement:

$(document).ready(function() {
 alert($('p').children().text());
});

parent()
The parent() method is a tree-traversal method that searches for the immediate parent of each of
the selected elements and returns a new jQuery object. This method travels only a single level up in
the DOM tree. To get the text content of the parent of the span element, we may use the following
jQuery code:

alert($('span').parent().text());

1-7. Obtaining the HTML of an Element

Problem
You want to see the HTML code of the selected element(s).

Solution
First assume that the HTML file contains the paragraph element as shown in the following example:

<p>Styles make the formatting job much easier and more efficient. To give an attractive look
to web sites, styles are heavily used.
jQuery is a powerful JavaScript library that allows us to add dynamic elements to our
web sites. Not only is it easy to learn, but it's easy to implement too.

 jQuery Selectors are used for selecting the area of the document where
we want to apply styles </p>

The jQuery code to display the HTML code of the paragraph element appears as follows:

$(document).ready(function() {
 alert($('p').html());
});

How It Works
The contents of the paragraph element are accessed and with the help of the html() method, and its
HTML code is displayed. The html() method gets the HTML content of the first element of the selected
elements. It returns the HTML contents in the form of a string. The difference between html() and
text() is that the text() method can be used in XML as well as in HTML documents, whereas html() can

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 1 ■ JQUERY BASICS

9

be used only in an HTML document. Another difference is that the html() method displays the tags
along with the text.

The output we may get is as shown in Figure 1-2. We can see that the output includes the tags
together with the text.

Figure 1-2. The HTML content of the paragaph element of an HTML file

To get the HTML content of the span element, we would use following statement:

alert($('span').html());

To get the HTML content of the parent of the span element, we would use the following jQuery code:

alert($('span').parent().html());

1-8. Changing the Content of a DOM Node

Problem
You want to change the contents of a DOM node dynamically. For example, you have an HTML file in
which the h2 element displays certain text and you want to change the text message using jQuery code.

Solution
Here is an HTML file with a paragraph element and an h2 element. It also has two elements, a span and
an anchor, nested inside the paragraph element. The HTML file appears as shown:

<body>
<p>Styles make the formatting job much easier and more efficient. To give an attractive look
to
web sites, styles are heavily used.
jQuery is a powerful JavaScript library that allows us to add dynamic elements to our
web sites. Not only is it easy to learn, but it's easy to implement too.

 jQuery Selectors are used for selecting the area of the document where
we want to apply styles </p>
<h2>Using jQuery</h2>
</body>

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 1 ■ JQUERY BASICS

10

On executing the HTML file without applying any jQuery code, we may get the original output as
shown in Figure 1-3.

Figure 1-3. Original text contents of the h2 element

We can see that currently, the h2 element displays the text Using jQuery. This isn’t what we want yet,
so let's look at two ways of solving our problem and changing the contents using jQuery code.

text(text)
Now we will make use of the text(text) method to change the contents of the h2 element on the fly.

$(document).ready(function() {
 $('h2').text('JavaScript Libraries');
});

html(HTML)
Similar to text(text) method is the .html(HTML) method. This method sets the HTML contents of the
selected element(s).

To set the HTML contents of the h2 element, we would use the following statement:

$('h2').html('JavaScript Libraries');

How It Works
The text(text) method sets the contents of the selected element to the specified text and returns it as a
new jQuery object. The jQuery code that uses text(text) is for setting the text contents of all h2 elements
present in the HTML file to JavaScript Libraries. Since there is only one h2 element in the HTML file, its
text contents will be replaced and we get the output shown in Figure 1-4.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 1 ■ JQUERY BASICS

11

Figure 1-4. Setting the text contents of the h2 element by applying the .text(text) method

Unlike the text(text) method, in the html(HTML) method, we can also specify the HTML tags along
with the text. For, example to change the contents of the paragraph element, we can write the following
jQuery code:

$('p').html('We can create Rich Internet Applications
by making AJAX requests');

In our example, the html(HTML) jQuery code will access the paragraph element of the HTML file and
set its contents to two lines, one line to appear in bold with the text as Rich Internet Applications and the
other line to appear as normal with the text as by making AJAX requests. In other words, the original
contents of the paragraph element will be replaced by these two lines. The output that we may get is
shown in Figure 1-5.

Figure 1-5. Setting the HTML contents of the paragraph element

1-9. Creating a DOM Node on the Fly

Problem
You want to create a DOM node dynamically. In this recipe, we will create an h2 element on the fly and
add it before an existing paragraph element in an HTML file.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 1 ■ JQUERY BASICS

12

Solution
Our HTML file consists of a paragraph element and an h2 element, as shown in the following example:

<body>
<p>Styles make the formatting job much easier and more efficient. To give an attractive look
to
web sites, styles are heavily used.
jQuery is a powerful JavaScript library that allows us to add dynamic elements to our
web sites. Not only is it easy to learn, but it's easy to implement too.

 jQuery Selectors are used for selecting the area of the document where
we want to apply styles </p>
<h2>Using jQuery </h2>
</body>

The methods we will use for creating DOM nodes in this solution are: prepend(), prependTo(), and
clone(). Other methods that may be used for creating DOM nodes on the fly: append(), appendTo(),
before(), insertBefore(), after(), and insertAfter(). Let's look at the prepend() method first.

prepend()
This method inserts the specified content at the beginning of the selected element and returns a jQuery
object. The content can be in the form of text, an HTML element, or a jQuery object.

Let’s insert an h2 element with the text Power of selectors before the paragraph element. The jQuery
code for doing so is as follows:

$('p').prepend('<h2> Power of selectors </h2>');

prependTo()
Similar to prepend(), prependTo() is used for adding DOM nodes dynamically. It inserts the specified
element(s) at the beginning of the selected target, where the target can be in the form of an HTML
element, a string, or a jQuery object. The method returns a jQuery object. The following is the equivalent
of the previous prepend() call.

$('<h2> Power of selectors </h2>').prependTo('p');

We can see that the contents we want to insert (the h2 element) precede the method.

clone()
When we want to add a DOM node (which is a copy of an existing element) on the fly, we use the clone()
method. This method makes a copy of the selected element and returns it as a new jQuery object. To
make a copy of the h2 element in the jQuery code and insert it before the paragraph element, the code
may be as follows:

$('h2').clone().prependTo('p');

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 1 ■ JQUERY BASICS

13

How It Works
The preceding prepend() jQuery code accesses the paragraph element of the HTML file and inserts an h2
element before it with the text Power of selectors. The output that we may get is shown in Figure 1-6.

Figure 1-6. DOM node: h2 added on the fly, before the paragraph element

■ Note By using the prepend() method, the inserted contents also appear at the beginning of the element. In
other words, if we apply a style to the paragraph element, it will also be applied to the h2 element.

To see if the style is applied to the combined paragraph and the h2 element), let us make an external
style sheet called style.css and write the following CSS class in it:

.highlight {
font-style: italic;
background-color: #0f0;
}

The preceding style rules make the text appear in italics and change the text color to green. Now
let’s insert an h2 element before the paragraph element and apply the style to it. The jQuery code for this
will be as follows:

$('p').prepend('<h2> Power of selectors </h2>');
$('p').addClass('highlight');

We can see that the jQuery code accesses the paragraph element of the HTML file and inserts an h2
element before it with the text Power of selectors. Next, the CSS class highlight is applied to the
paragraph element (including the newly inserted h2 element). The output that we may get is shown in
Figure 1-7.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 1 ■ JQUERY BASICS

14

Figure 1-7. Inserting contents using the prepend() method and applying styles to the combination

Our prependTo() example was very similar to our prepend() example. The difference between
prepend() and prependTo() is that the place of the content and target are interchanged. In the prepend()
method, the target element (which we're prepending to) precedes the method, whereas in prependTo(),
the content we're prepending precedes the method.

Finally, the clone() jQuery code accesses the h2 element of the HTML file and makes a copy. It then
inserts the copy before the paragraph element. The output that we may get is shown in Figure 1-8.

Figure 1-8. Inserting the copy of h2 element before the paragraph element

1-10. Assigning the Same Class Name to Different HTML
Elements and Applying Styles to Them

Problem
You want to assign the same class name to two HTML elements and apply styles to them. The two
elements can be a paragraph and an h1 element.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 1 ■ JQUERY BASICS

15

Solution
Let’s examine the following HTML file, where the class name features is assigned to a paragraph and the
h1 element:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>
 <title>JQuery Examples</title>
 <link rel="stylesheet" href="style.css" type="text/css" media="screen" />
 <script src="jquery-1[1].3.2.js" type="text/javascript"></script>
 <script src="d1.js" type="text/javascript"></script>
 </head>
<body>
<p class="features">Styles make the formatting job much easier and more efficient.</p>
To give an attractive look to web sites, styles are heavily used.
<h1 class="features">Using jQuery</h1>
</body>
</html>

To apply style to the elements of class features in the preceding HTML file, the external style sheet
(style.css) may be created with the following contents:

.features{color:green;font-style:italic}

If we want the style rule to be applied to the HTML element via jQuery code (and not automatically),
we need to assign some other name to the style rule in the style sheet.

.highlight{color:green;font-style:italic}

Then we need to write the following jQuery code:

$('.features').addClass('highlight');

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 1 ■ JQUERY BASICS

16

How It Works
In the HTML file, the paragraph and h1 elements both belong to class features. In the final style sheet,
the style rule has the selector .highlight, which means the properties defined in this rule will be applied
to all the HTML elements that belong to class highlight. The style rule has two properties defined in it,
color and font-style, and these properties apply the green color and italic style.

The preceding jQuery code will set the CSS class highlight on all HTML elements with class name
features. The output appears as shown in Figure 1-9.

Figure 1-9. The same class applied to <p> and <h1> tags

Summary
In this chapter we went over installing jQuery, selecting nodes in the DOM, and applying CSS to
elements. We also saw how to select non-standard series of HTML elements, count the number of nodes
in the DOM and display their text. We have learned the method of obtaining the HTML of an element,
changing the content of a DOM node, creating a DOM node on the fly and assigning the same class
name to different HTML elements and applying styles to them. In the next chapter, we will be learning
about the different recipes that deal with arrays. We will also learn how to filter, sort, split and
manipulate arrays

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

C H A P T E R 2

■ ■ ■

17

Arrays and Strings

In this chapter we will see how arrays, maps, and strings are dealt with in jQuery. We will be covering the
following recipes in this chapter:

• Displaying names in a list using arrays

• Manipulating array elements

• Filtering arrays to show desired data only

• Sorting string and numerical arrays

• Splitting an array

• Combining two arrays

• Converting a numerical array into a string and finding substrings

• Creating an array of objects

• Sorting an array of objects

2-1. Displaying Names in a List Using Arrays

Problem
You want to display a list of names using arrays. That is, assuming that an array containing names exists,
you want to display its elements on a web page.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2 ■ ARRAYS AND STRINGS

18

Solution
Let’s make an HTML file to display a heading above the names list. The file will also contain an empty
paragraph element, as shown here:

<body>
<h3> Members of my Group are </h3>
<p></p>
</body>

Now add to this paragraph element the names contained in our array. The jQuery code looks
something like this:

$(document).ready(function() {
 var members = ["John", "Steve", "Ben", "Damon", "Ian"];
 $('p').text(members.join(", "));
});

Displaying Names One Below the Other
We can also display the names one below the other, as the following jQuery shows:

$(document).ready(function() {
 var members = ["John", "Steve", "Ben", "Damon", "Ian"];
 $('p').html(members.join("
"));
});

Displaying Names with Their Position in the Array
To display the names along with their position in the array, we need to alter the HTML file to contain an
empty ordered list element, as shown here:

<body>
<h3> Members of my Group are </h3>
<ol id="list">

</body>

The jQuery code for getting the names from the array and appending to the ordered list looks like this:

$(document).ready(function() {
 var memlist = $("#list");
 var members = ["John", "Steve", "Ben", "Damon", "Ian"];
 $.each(members,function(index, value){
 memlist.append($("" + value + ""));
 });
});

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 2 ■ ARRAYS AND STRINGS

19

Making the Array from HTML Elements and Counting the Array Length
In this solution, we assume that the list of names exists in the HTML file in the form of div elements.
We'll get all the names stored in div elements and store them into an array. Then we’ll find out the count
of the names in the array and display it. The HTML file that contains names of div elements may appear
as shown here:

<body>
<p></p>

 John
 Steve
 Ben
 Damon
 Ian

</body>

The paragraph element before the div elements is for displaying the count of the names. Currently it
has no text but uses jQuery code; we’ll assign it some text to display along with the count of the names in
the div elements:

$(document).ready(function() {
 var names = $("li").get();
 $('p').text("Following are the " + names.length + " members of my Group");
});

How It Works
We can see in the first solution that an array by the name members is created that contains five names:
John, Steve, Ben, Damon, and Ian. All the elements of the array are assigned to the paragraph element
using text(). The elements are joined one after the other with a comma (,) in between using the join()
method. In other words, all the names in the array are delimited by a comma and are assigned to the
paragraph element. The output will be all the names (separated by a comma) displayed on the web page,
as shown in Figure 2-1.

Figure 2-1. The names from Array displayed in a row

To display the names one below the other, we use a line break
 in between the array elements
instead of a comma while using the join() method. Also, to parse the
 element as an HTML tag and
not as text, we need to assign the array elements to the paragraph element using the html() method

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 2 ■ ARRAYS AND STRINGS

20

instead of text(). Otherwise the
 element will be displayed literally on the screen instead of
creating line breaks.

$('p').html(members.join("
"));

The output in Figure 2-2 shows us how the array elements are now displayed one below the other:

Figure 2-2. The names from Array are displayed with a line break between them.

In our ordered-list solution, we have assigned an id of list to the ordered list. It is to this ordered
list that we will append the names from our array. Recall that ordered lists automatically display
numbers for the list items being displayed. In other words, to assign the auto numbering to the names
(stored in the array), we will extract one name at a time from the array and will append it to the ordered
element ol:

var memlist = $("#list");
var members = ["John", "Steve", "Ben", "Damon", "Ian"];
$.each(members,function(index, value){
 memlist.append($("" + value + ""));
});

In the preceding jQuery code, we see that the element of id list in the HTML file (the ordered list
element) is assigned to a variable memlist. That is, the memlist refers to the ol element of the HTML file.
An array by name members is defined and five names are stored in it. After that, with the help of the
each() method, every element (name) in the members array is extracted and appended to the ol element.

The output will be the names with serial numbers assigned to them, as shown in Figure 2-3.

Figure 2-3. The elements of Array appended in the form of list items

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 2 ■ ARRAYS AND STRINGS

21

Our final example extracted the names from the div elements and put them into an array. The
following statement does just this: it extracts the text of all the div elements with the get() method and
stores it in an array called names:

var names = $("div").get();

The following statement then assigns text to the paragraph element, inserting the count of the
elements in the array names:

$('p').text("Following are the " + names.length + " members of my Group");

The output will display the names along with their count, as shown in Figure 2-4.

Figure 2-4. The length of Array is used as a count of the div elements (members).

2-2. Manipulating Array Elements

Problem
You want to manipulate array elements for tasks like applying serial numbers to them, converting them
to uppercase, and other tasks similar to these.

Solution
Let’s assume an HTML file that has a heading element to display the message Members of my Group are
along with an empty paragraph element, as shown here:

<body>
<h3> Members of my Group are </h3>
<p></p>
</body>

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 2 ■ ARRAYS AND STRINGS

22

This blank paragraph element will display names taken from an array, with serial numbers applied.
The jQuery code to display the array elements along with the serial number is as shown here:

$(document).ready(function() {
 var members = ["John", "Steve", "Ben", "Damon", "Ian"];
 members = $.map(members, function(n,i){ return(i+1+"."+n); });
 $('p').html(members.join("
"));
});

Converting Names to Uppercase
Let's see how we can use other useful methods in the callback method to manipulate members of the
array. Our first solution shows how to convert all the names to uppercase with the toUpperCase()
method:

$(document).ready(function() {
 var members = ["John", "Steve", "Ben", "Damon", "Ian"];
 members=$.map(members, function(n,i){ return(i+1+"."+n.toUpperCase());});
 $('p').html(members.join("
"));
});

Using an Ordered List
Another method of displaying the array elements in capital letters along with serial numbers is to make
use of the ordered-list element. Let’s make an HTML file that displays a heading element and an empty
ordered-list element, as shown here:

<body>
<h3> Members of my Group are </h3>
<ol id="list">

</body>

The jQuery code to display the array elements in uppercase is then as follows:

$(document).ready(function() {
 var memlist = $("#list");
 var members = ["John", "Steve", "Ben", "Damon", "Ian"];
 members=$.map(members, function(n){ return(n.toUpperCase());});
 $.each(members,function(index, value){
 memlist.append($("" + value + ""));
 });
});

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 2 ■ ARRAYS AND STRINGS

23

How It Works
To understand this recipe, you need to know about the map() method. This method iterates through
each element of the array and invokes a callback function on each of the array elements. The returned
elements can be assigned to another array or the same array if you prefer. The map() method can also
iterate through array-like objects that have a length property. Here is the syntax for map():

map(array, callback);

The callback function here contains the statements for performing the processing task on the array
elements. In our first solution, we want to display the names stored in the array along with serial
numbers. We can see that an array members is defined that contains the names we want to display. We
next pass this array to the map() method. The callback function in the map() method contains two
arguments, n and i, where n refers to the elements of the array (names) being passed to the map()
method, and i is the index of the individual array element (index begins with 0). To make the serial
numbers begin with 1 instead of 0, we can add 1 to i in each iteration. The values returned by the
callback function thus appear as follows:

return(i+1+"."+n)

This statement returns all the elements of the array one by one with index beginning from 1. The
output that we get is as shown in Figure 2-5.

Figure 2-5. Using array mapping to assign serial numbers to elements of the array

In the solution that followed, we then used the toUpperCase() method in the callback function to
convert into uppercase all the names stored in the array:

 members=$.map(members, function(n,i){ return(i+1+"."+n.toUpperCase()); });

Recall that the arguments n and i in the callback function refer to the array element and index
number respectively. We can see that the application of toUpperCase() to n (that is, the names stored in
the array in the form of array elements) converts the names into uppercase and returns them for
displaying in the paragraph element.

The output will be the names converted to uppercase, along with serial numbers, as shown in
Figure 2-6.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 2 ■ ARRAYS AND STRINGS

24

Figure 2-6. Using array mappings to convert array elements to uppercase

The ordered-list solution applies auto numbering to its list elements. To the members array, we assign
the result of the map() method, which will convert each array element into uppercase. We then append
each member of the members array one by one to the ordered list (which has an id of list to identify it
through jQuery code). We will get the output shown in Figure 2-7.

Figure 2-7. Displaying array elements in uppercase via list items

2-3. Filtering Arrays to Show Desired Data Only

Problem
You have an array that contains some names and you want to filter it to see only the desired names. For
example, you may want to see only those names with a length of more than four characters.

Solution
Let’s consider an HTML file that has two heading elements and each is followed by a paragraph element.
The first paragraph element is assigned a class name allmem and the other paragraph is assigned the
class name selected. The HTML file may appear as shown here:

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 2 ■ ARRAYS AND STRINGS

25

<body>
<h3> Members of my Group are </h3>
<p class="allmem"></p>
<h3> Names with more than 4 characters in length are </h3>
<p class="selected"></p>
</body>

We will be using the first paragraph (class allmem) to display the whole array; that is, all the names in
the list. We’ll use the second paragraph (class selected) for displaying the filtered names.

Using grep()
Let’s write some jQuery code for displaying only the names that have a length of more than four
characters using the grep() method. (We’ll look at how it works a little more in the “How It Works”
section.)

$(document).ready(function() {
 var members = ["John", "Steve", "Ben", "Damon","Ian"];
 $('p.allmem').html(members.join("
"));
 members = $.grep(members, function(v) { return v.length > 4});
 $('p.selected').html(members.join("
"));
});

Using match()
We’ll also write some jQuery code to display only those names in the array that begin with any character
from A through D using the match() method and a regular expression:

$(document).ready(function() {
 var members = ["John", "Steve", "Ben", "Damon","Ian"];
 $('p.allmem').html(members.join("
"));
 members = $.grep(members, function(v) { return v.match(/^[A-D]/)});
 $('p.selected').html(members.join("
"));
});

How It Works
Our first solution performed filtering on arrays using the grep() method. This method parses all the
elements of the array and invokes a callback function on each element. In the callback function, we can
write statements that filter out undesired elements; that is, only the values that we want in the filtered
array are returned by the callback function. Here is the syntax

grep(array, callback, boolean)

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 2 ■ ARRAYS AND STRINGS

26

where the parameters in grep are as follows:

• array is the original array that is passed to this method for performing filtering
tasks on it.

• callback is the function that performs filtering tasks and returns the values that
make up the filtered array. This function can carry two parameters; one is the
array element and the second is the index value.

• boolean is usually omitted. If it is specified and is set to false (which is the
default), then it has no effect, but if its value is set to true, then the operation of
the callback function is inverted. That is, it will return the values that do not match
the conditional statements present in the callback function.

Using our knowledge of grep(), let's dissect the first solution. We can see that members is an array
that contains some names. The following statement separates each array element with a line break
(
) and displays them all as the text of the first paragraph (of class allmem). This therefore displays
the original array on the screen:

$('p.allmem').html(members.join("
"));

The following statement makes use of the grep() method and the members array is passed to it. Its
callback function has the parameter v, which represents each array element:

members = $.grep(members, function(v) { return v.length >4});

We see that the callback function returns only names that have a length greater than four
characters. The returned array elements are stored in the original array members (replacing its old
contents). The following statement displays the filtered array elements with a line break in between (to
display them on separate lines) as a text of the paragraph of class selected:

$('p.selected').html(members.join("
"));

On execution of the preceding jQuery code, you will get the output shown in Figure 2-8.

Figure 2-8. Displaying array elements that have a length of more than four characters

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 2 ■ ARRAYS AND STRINGS

27

Now let's make some changes in our grep() method to include the boolean parameter, which, as I
said before, reverses the operation of the callback function, as shown here:

members = $.grep(members, function(v) { return v.length >4}, true);

This statement will return those names of the array with a length less than or equal to four
characters.

Our second solution used the match() method for defining regular expressions, which in our case
matched strings starting with A through D, where match() is a method of the String class that is used for
determining whether the regular expression specified matches the specified string object.

Using Regular Expressions

Regular expressions are used as concise methods for specifying patterns of characters that we want in an
element. They are a powerful tool for parsing and validating strings.

Here is a list of regular-expression notation:

Character Matches

\b Word boundary

\d Numerical from 0 to 9

\s Single white space

\w Character, numeral, or underscore

. Any character except the newline character

[…] Any one of the character in the brackets

{n} Exactly n times

{n,} n or more times

{n.m} Between n and m

? Zero or more times

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2 ■ ARRAYS AND STRINGS

28

Character Matches

+ One or more times

^ At the beginning

$ At the end

The following statement uses the grep() method, passing the members array to it:

members = $.grep(members, function(v) { return v.match(/^[A-D]/)});

Again, the callback function carries an argument v that gets the array elements one by one. The
callback function returns only those array elements that begin with any character from A through D. The
output we get is shown in Figure 2-9.

Figure 2-9. Displaying names that begin with a letter from A through D

Armed with new knowledge, we can now modify the regular expression in match() to display only
those names that end with character n, like this:

members = $.grep(members, function(v) { return v.match(/[n]$/)});

Recall that $ is used in a regular expression for specifying the content that we want to see at the end
of the line. The output we may get is shown in Figure 2-10.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 2 ■ ARRAYS AND STRINGS

29

Figure 2-10. Displaying names ending with the character n

To see all the names in the array that have the character e one or more times, we will use the
following regular expression:

members = $.grep(members, function(v) { return v.match(/[e].+/)});

This displays for us only those names that have character e one or more times, as shown in
Figure 2-11.

Figure 2-11. Displaying names having one or more character e

To find out the names that are of exactly five characters in length, we may use following regular
expression

members = $.grep(members, function(v) { return v.match(/\b.{5}\b/)});

which, of course, gives us the output shown in Figure 2-12.

Figure 2-12. Displaying names that are of exactly five characters

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 2 ■ ARRAYS AND STRINGS

30

2-4. Sorting String and Numerical Arrays

Problem
You have two arrays; one is a string array and the other is a numerical array. You want to sort them
individually.

Solution
Let us start with the string array.

Sorting String Arrays
The following is an HTML file that has two heading elements, each followed by a paragraph element.
The heading elements are for displaying title messages of original array and sorted array, respectively.
The two paragraph elements are distinguished by assigning them two different class names, allmem and
sorted, respectively. The HTML file may appear as follows:

<body>
<h3> Members of my Group are </h3>
<p class="allmem"></p>
<h3> Members of my Group in sorted order </h3>
<p class="sorted"></p>
</body>

The paragraph element of class allmem will be used for displaying the original array elements and
the paragraph element class sorted will be used for displaying the sorted array. The actual jQuery code
for sorting the string array can then look like this, and you’ll see how it works shortly:

$(document).ready(function() {
 var members = ["John", "Steve", "Ben", "Damon","Ian"];
 $('p.allmem').html(members.join("
"));
 members = members.sort();
 $('p.sorted').html(members.join("
"));
});

Sorting Numerical Arrays
The sorting of numerical values is done in a different way from sorting strings in jQuery. We again make
an HTML file with two heading elements and two paragraphs elements, as shown here:

<body>
<h3>Original numerical array is </h3>
<p class="allmem"></p>

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 2 ■ ARRAYS AND STRINGS

31

<h3> Array in sorted order </h3>
<p class="sorted"></p>
</body>

As with the string solution, the paragraph element class allmem is meant for displaying the original
array and the paragraph element class sorted is for displaying the sorted array.

Here is the jQuery code to sort a numerical array:

$(document).ready(function() {
 var members = [45, 10,3,22,7];
 $('p.allmem').html(members.join("
"));
 members = members.sort(function(a,b){
 return a-b;
 });
 $('p.sorted').html(members.join("
"));
});

How It Works
The statement, which actually sorts the string array in our preceding recipe, looks like this:

members = members.sort();

Here the sort() method sorts the string array in alphabetical order. This method sorts on the basis
of the ASCII values, so it is better to have all uniform names. That is, they must begin with either
uppercase or lowercase, but not mixed case. The preceding statement will sort the string array members,
and the sorted version is stored in the members array (replacing older values).

Before we use sort(), the members string array method is assigned to the paragraph element class
allmem (for the purpose of displaying it) and the same array after the application of sort() is assigned to
the paragraph element class sorted. The output is as shown in Figure 2-13.

Figure 2-13. Displaying names in sorted order

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 2 ■ ARRAYS AND STRINGS

32

The sort() method, as noted earlier, sorts the elements on the basis of ASCII values, so it cannot be
used with numerical values, as it will consider 10 smaller than 3 (as the ASCII value of 1 is smaller than
that of 3). If we try sort() with the numerical array, the jQuery code would be as shown here:

$(document).ready(function() {
 var members = [45, 10, 3, 22, 7];
 $('p.a').html(members.join("
"));
 members = members.sort();
 $('p.b').html(members.join("
"));
});

We would then get output like that shown in Figure 2-14.

Figure 2-14. Numerical arrays not sorted correctly

As you can see here, the numerical values are not sorted correctly with the sort() method because it
considers the ASCII value of the first numerical digit of all numerical values for sorting purposes. To sort
numerical values correctly, we must therefore define a comparison function with sort().

If we define a comparison function, then a pair of values from the array will be repeatedly sent to the
function until all elements of the array are processed. In the comparison function, we thus write a
statement considering the pair of values passed to it so that the function returns any of the following
three values: <0, =0, or >0.

• When the function returns value <0, the second value (of the pair of array values
sent to the function) is larger than the first value and hence must be pushed down
the sorting order.

• When the function returns value >0, the first value is larger than the second value,
so it must be pushed down the sorting order.

• When the function returns value =0, it means there is no need to change the sort
order since the two values are same.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 2 ■ ARRAYS AND STRINGS

33

The jQuery code with the comparison function added to the sort() method looks like this:

 members = members.sort(function(a,b){
 return a-b;
 });

The following statement in the comparison function will sort the numerical values in ascending
order:

return a-b;

We get output much like Figure 2-15.

Figure 2-15. Numerical arrays sorted correctly

Of course, to sort the values in descending order, we just need to change the return value in the
comparison function from a-b to b-a!

2-5. Splitting an Array

Problem
You have an array and you want to divide it into two parts.

Solution
The following is a HTML file that has three heading elements to display the title messages of the original
array, and the two pieces we’ll be splitting. The file also contains the three paragraph elements of classes
allnum, firstp, and secondp for displaying the contents of the original array, the first piece, and the
second piece of the array, respectively:

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 2 ■ ARRAYS AND STRINGS

34

<body>
<h3>Original numerical array is </h3>
<p class="allnum"></p>
<h3> First piece of array </h3>
<p class="firstp"></p>
<h3> Second piece of array </h3>
<p class="secondp"></p>
</body>

The jQuery code to split the array is as shown here:

$(document).ready(function() {
 var members = [45, 10, 3, 22, 7];
 $('p.allnum').html(members.join("
"));
 memsecond = members.splice(0,3);
 $('p.firstp').html(memsecond.join("
"));
 $('p.secondp').html(members.join("
"));
});

How It Works
In the jQuery code, we use the splice() method for splitting the array. To split the array, this method
requires two parameters: the first parameter specifies the index location from where to start splitting,
and the second parameter specifies the number of elements to be removed from the original array. The
range of array elements defined by the two parameters will be extracted from the original array and will
be returned so it can be saved in another array. To recap, one part of the array (defined by the two
parameters sent to splice) will be returned; the other remaining array part will be the original array after
the first has been removed.

subarray = mainarray.splice (m,n);

Here subarray is the array that will be made after removing the elements from the mainarray from
index m through n elements.

■ Note The mainarray will be left with the remaining elements.

We can see in the preceding code that members is a numerical array with five numerical values
defined in it. The elements of the array will be displayed on the web page in the form of the text of
paragraph containing class allnum, with the line break (
) defined in between. That is, all the
elements of the array are displayed one below the other.

The following statement extracts three elements, starting from index location 0, and returns them to
be stored in the array memsecond:

memsecond = members.splice(0,3);

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 2 ■ ARRAYS AND STRINGS

35

As we have planned, the main array members will be left with the remaining elements only. So the
memsecond array will contain the first three elements of the members array, and the members array will be left
with the last two elements. The first three elements of the array stored in memsecond will be displayed in the
paragraph element of the class firstp' and the last two elements left behind in the array members will be
displayed as the paragraph element of the class secondp'. Figure 2-16 shows a typical output from all this.

Figure 2-16. Array split in two halves

2-6. Combining Two Arrays

Problem
You have two arrays and you want to combine them into a single array.

Solution
Here is an HTML file that has three heading elements to display the title messages of two arrays, and the
title message of an array that is a combination of the two arrays. The file here also contains three
paragraph elements of the classes firstarr, secondarr, and combinedarr for displaying the elements of
two arrays that we want to combine and the total elements of the combined array, respectively:

<body>
<h3>First array is </h3>
<p class="firstarr"></p>
<h3> Second array is </h3>
<p class="secondarr"></p>
<h3> Array after combination </h3>
<p class="combinedarr"></p>
 </body>

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 2 ■ ARRAYS AND STRINGS

36

The jQuery code to combine two arrays is as follows:

$(document).ready(function() {
 var mem1 = [45, 10, 3];
 var mem2 = [22, 7];
 $('p.firstarr').html(mem1.join("
"));
 $('p.secondarr').html(mem2.join("
"));
 members = mem1.concat(mem2);
 $('p.combinedarr').html(members.join("
"));
});

How It Works
The concat() method is the method of an array object and it is invoked on the first array (the one that we
want to concatenate) while a second array is passed to it as a parameter. This returned array is the
concatenation (the combination of the two arrays) and is stored in the third array like this:

combinedarray = array1.concat(array2);

Here array1 invokes the concat() method and array2 is passed as a parameter. The combined array
is the array that will have all the elements of array1 followed by all the elements of array2.

In our solution we start by defining two arrays called mem1 and mem2. Then we display the elements of
array1 and array2 in the form of paragraph text of the classes firstarr and secondarr; that is, the
contents of two arrays are displayed at the paragraphs of the classes firstarr and secondarr,
respectively. We also see that the mem1 array invokes the concat() method, passing the mem2 array as a
parameter. The resultant combination of the two arrays is stored in the array members. The contents of
the array members are then displayed on the paragraph of the class combinedarr.

The output that we get on execution of the preceding jQuery code is as shown in Figure 2-17.

Figure 2-17. Combining two arrays

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 2 ■ ARRAYS AND STRINGS

37

2-7. Converting a Numerical Array into a String and Finding
Its Substring

Problem
You have a numerical array and you want it to be converted into a string so that you can apply the
substr() method to take out a part of the string.

Solution
Here is an HTML file that contains three headings elements to display the titles for the original
numerical array we’re working with, the array converted into string form, and finally the substring of the
string. Also, below each heading element is a paragraph element. The three paragraph elements are
assigned class names origarr, arrstring, and partstring. The paragraph of the class origarr will be
used for displaying elements of the numerical array. The paragraph of the class arrstring will be used
for displaying the string (the array after converted into string form) and the paragraph of the class
partstring will be used for displaying the part of the string that we want to take out. The HTML file may
appear as shown:

<body>
<h3>Original array is </h3>
<p class="origarr"></p>
<h3> Array in form of string </h3>
<p class="arrstring"></p>
<h3> Substring is </h3>
<p class="partstring"></p>
</body>

The jQuery code to convert the numerical array into a string, and for then taking out a part of it, is as
follows:

$(document).ready(function() {
 var members = [45, 10, 3, 22, 7];
 $('p.origarr').html(members.join("
"));
 var str = members.join("");
 $('p.arrstring').text(str);
 var substr = str.substr(0,3);
 $('p.partstring').text(substr);
});

How It Works
We define a numerical array members of five elements, and display the contents in the paragraph element
of the class origarray, delimiting each array element with a line break (
) so that the array elements
are displayed one below the other.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2 ■ ARRAYS AND STRINGS

38

Next we convert the numerical array members into a string by joining each of its elements into the
string variable str without any white space in between. That is, the string str will contain all the
numerical values of the numerical array joined one after the other, without any space in between. The
str variable is displayed on the paragraph element of the class arrstring.

Finally, we take out a part of the string from the str variable, beginning from index location 0. From
there, three characters are extracted and stored in a string variable substr. The contents of the variable
substr will be displayed in the paragraph element of the class partstring. The output that we will get is
shown in Figure 2-18.

Figure 2-18. A numerical array converted to a string

2-8. Creating an Array of Objects

Problem
You want to create an array of objects to store the information about a certain entity, item, person,
object, etc. In this solution we will store the information about three students. Each student object is
assumed to consist of three attributes: role, name, and emailId.

Solution
We’ll make an HTML file that consists of a heading element to display a title and a paragraph element to
display the contents of an array:

<body>
<h3>List of students is </h3>
<p class="listofstud"></p>
</body>

The jQuery code to create an array of objects called students with three attributes—role, name, and
emailId—is shown here:

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 2 ■ ARRAYS AND STRINGS

39

$(document).ready(function() {
 var students=[
 {
 "role": 101,
 "name": "Ben",
 "emailId":"ben@gmail.com"
 },
 {
 "role": 102,
 "name": "Ian",
 "emailId":"ian@gmail.com"
 },
 {
 "role": 103,
 "name": "Caroline",
 "emailId":"carol@gmail.com"
 }
];

 $.each(students,function(index, value){
 $('p.listofstud').append(value.role+" "+value.name+" "+value.emailId);
 });
});

This won't be a very appealing display, so let's display the contents of the array in a table element so
that the attributes (role, name, and emailId) will appear aligned, which makes it appear neat and tidy.
The HTML file is as shown here:

<body>
<h3>List of students is </h3>
<table class="listofstud"></table>
</body>

The jQuery code for making an array of objects and assigning it to the table element is as shown
here. The file is the same as it was previously, except for the bold lines:

$(document).ready(function() {
 ...

 $.each(students,function(index, value){
 $('table.listofstud').append("<tr><td>"+value.role+"</td><td>"+value.name+
 "</td><td>"+value.emailId+"</td></tr>");
 });
});

How It Works
In the first solution above, we see that three elements are created in the array students. After that, we
make use of the each() method, applying a callback function to each of the array elements.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 2 ■ ARRAYS AND STRINGS

40

In the callback function, two parameters are passed: index and value. The parameter index refers to
the index location of the array element and the parameter value refers to the array element itself. Each
array element has three attributes: role, name, and emailId. So, the three attributes role, name, and
emailId of all the array elements are appended to the paragraph element of the class listofstud with a
white space in between to display the information of all the students on the screen.

We could also have used a for loop for iterating through the elements of the array. The each()
method in the preceding jQuery code could be replaced by the for loop as shown here:

for(var i=0;i<students.length;i++){
 $('p.listofstud').append(students[i].role+" "+students[i].name+" "+students[i].emailId);
}

As you can see, the each() approach iterates automatically and is easier to handle.
Both approaches get the output shown in Figure 2-19.

Figure 2-19. An array of objects displayed as paragraph text

In the table display version, you can see that after creation of our array of the object students, we
use each() to parse each of the array elements and process it via its callback function. In the callback
function each of the array element attributes (that is, role, name, and emailId) are displayed by
enclosing them in the <td> and </td> tags. Each array element is stored in the table element in a separate
row, and the attributes of array elements are displayed in columns. This makes the array of objects
appear in tabular format, as shown in Figure 2-20.

Figure 2-20. Anarray of objects displayed in tabular format

2-9. Sorting an Array of Objects

Problem
You have student information stored in the form of an array of objects. Each student object is assumed
to consist of three attributes: role, name, and emailId. You want to sort the array on the basis of its
attributesrole.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 2 ■ ARRAYS AND STRINGS

41

Solution
Let’s create an HTML file that displays a heading and an empty table element of the class listofstud.
The table element will be used for displaying a sorted array of objects. The HTML file may appear as
shown here:

<body>
<h3>List of students is </h3>
<table class="listofstud"></table>
</body>

We’ll now write the jQuery code to create an array of objects to store information of three students
with attributes role, name, and emailId. Also, we need to include the code to perform sorting on the role
attribute of the student object. The jQuery code is shown here, and in the next section we’ll look at how
it all works:

$(document).ready(function() {
 var students=[
 {
 "role": 101,
 "name": "Ben",
 "emailId":"ben@gmail.com"
 },
 {
 "role": 102,
 "name": "Ian",
 "emailId":"ian@gmail.com"
 },
 {
 "role": 103,
 "name": "Caroline",
 "emailId":"carol@gmail.com"
 }
];

 students = students.sort(function(a,b){
 return b.role-a.role;
 });

 $.each(students,function(index, value){
 $('table.listofstud').append("<tr><td>"+value.role+"</td><td>"+value.name+"</td><td>"+
 value.emailId+"</td></tr>");
 });
});

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 2 ■ ARRAYS AND STRINGS

42

If we want to sort the array on the basis of alphabetical order of its name attribute, we need to replace
the preceding sort() function with one like this:

students = students.sort(function(a,b){
 if(a.name<b.name){ return -1 };
 if(a.name>b.name){ return 1 };
 return 0;
});

How It Works
In the sort() method we needed to add the comparison function that repeatedly takes a pair of values
from the array and returns the values <0, =0, and >0 on the basis of comparison. The basis on which
these values are returned is described in Recipe 2-4.

You can see that in the comparison function we are comparing the role attributes of the students
object. In that function, we return the following:

return b.role-a.role;

This means the function will sort the array in descending order of the attribute role.

Thereafter, we use each()to parse each of the array elements and process them via their callback
function. In the callback function each of the array element’s attributes—that is, role, name, and
emailId, are displayed by enclosing them in the <td> and </td> tags. This means that each array
element is stored in a table data element in a separate row and each of the attributes of the array
element is displayed in the form of columns. The result is that now the array of objects appears in
tabular format, as shown in Figure 2-21.

Figure 2-21. An array of student objects, sorted in descending order of the role attribute

When we sort on the name attribute, you can see that this time in the comparison function we are
comparing the name attributes of the students object. The function returns -1 if the name attribute of the
first element is smaller (in ASCII value) than the name attribute of the second element, and returns 1 in
the opposite scenario. The result will be the array of student objects sorted on the basis of the name
attribute. You’ll see output something like Figure 2-22.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 2 ■ ARRAYS AND STRINGS

43

Figure 2-22. An array of student objects, sorted in alphabetical order of the name attribute

Summary
In this chapter we discussed the different recipes that deal with arrays, such as how to display names in a
list, and how the elements of an array are manipulated. We also went over the recipes that perform the
task of filtering arrays.

In the next chapter, we will see several recipes that deal with event handling. We will also learn how
to highlight the text dynamically, and how to make an image bright and blur with mouse movements.
We will also see the process of creating image-based rollovers, event based addition and removal of text,
and more.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

C H A P T E R 3

■ ■ ■

45

Event Handling

In this chapter we are going to see how events are handled in jQuery. Events may be in terms of hover,
click, double-click, and so on. We will see events related to both mouse and keyboard. Though Chapter 6
covers visual effects and describes how to do animations with images, there are a few animation effects
related to text included in this chapter because they are useful when reacting to events. The recipes that
we are going to see in this chapter are as follows:

• Finding out which button is clicked

• Triggering events automatically

• Disabling a button after it is clicked once

• Handling mouse events

• Finding out which mouse button is pressed

• Finding the screen coordinates of a mouse-button press

• Highlighting text dynamically

• Making an image bright and blurred with mouse movements

• Finding when an element gains and loses focus

• Applying hover effects on buttons

• Toggling the application of a CSS class

• Creating image-based rollovers

• Adding and removing text in response to events

• Applying styles in response to events

• Displaying word balloons

• Creating “Return to Top” links

• Offering “Read More...” links

• Displaying text with an animation effect

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 3 ■ EVENT HANDLING

46

• Replacing text with a sliding effect

• Making an image scroll

• Determining which key was pressed

• Preventing event bubbling

• Chaining multiple activities

3-1. Finding Out Which Button Is Clicked

Problem
On every web page, you find several buttons, each meant for doing different jobs. In order to take the
correct action, you need to know which button has been clicked.

Solution
In this recipe, we assume there are two buttons and we want to know which of them is clicked by the
user. Let us define an HTML file that contains the text Bold and Italic to which we will assign the shape of
a button by applying different style properties. The HTML file will appear as shown here:

<body>
Bold
Italic
</body>

In the external style sheet style.css, we write the CSS class by name buttons to give the shape of the
button to the text. The CSS class buttons may have the following properties:

.buttons{
width: 100px;
float: left;
text-align: center;
margin: 5px;
border: 2px solid;
font-weight: bold;
}

Let’s write the jQuery code to attach the click event on the buttons, using the bind() method:

$(document).ready(function() {
 $('.bold').bind('click', function(){
 alert('You have clicked the Bold button');
 });

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 3 ■ EVENT HANDLING

47

 $('.italic').bind('click', function(){
 alert('You have clicked the Italic button');
 });
});

Applying Click Events to Both the Buttons
Instead of adding a click event to each button individually, we can apply the click event to both buttons
simultaneously by adding the click event to the whole button class. For this, we use the following jQuery
code:

$(document).ready(function() {
 $('.buttons').bind('click', function(){
 alert('You have clicked the ' +$(this).text()+' button');
 });
});

Attaching the Event Directly
We can also attach the event to any specified element directly without using the bind() method. Let’s see
the jQuery code that attaches the click event to the element of the class buttons:

$(document).ready(function() {
 $('.buttons').click(function(){
 alert('You have clicked the ' +$(this).text()+' button');
 });
});

Using the Target Attribute of the Event Object
The event object is automatically sent to the event-handling function by JavaScript and contains details
of the event. One of its attributes, called target, can be used to find out the element where the event has
occurred.

The jQuery code using the target attribute of the event object to find out the element where the
click event has occurred is as shown here:

$(document).ready(function() {
 $('.buttons').click(function(event){
 var $target=$(event.target);
 if($target.is('.bold')){
 alert('You have clicked the Bold button');
 }
 if($target.is('.italic')){
 alert('You have clicked the Italic button');
 }
 });
});

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 3 ■ EVENT HANDLING

48

Attaching a Double-Click Event
Let’s modify our jQuery code a bit to attach the double-click event to our HTML elements of the buttons
class:

$(document).ready(function() {
 $('.buttons').dblclick(function(){
 alert('You have double-clicked the ' +$(this).text()+' button');
 });
});

How It Works
In the HTML file, the statement:

Bold

This defines the text Bold in a span element of the classes bold and buttons. The class bold we will be
for applying jQuery code to the span element and the class buttons is for applying the styles defined in
the CSS class buttons specified in the style sheet.

Similarly, the second statement defines the text Italic in a span element of the class italic and
buttons. The italic class is for applying the jQuery code and the class buttons is for applying CSS class.

The style rules in the style sheet apply width, float, text-align, margin, border, and font-weight
properties to both the span elements of the class buttons. It will display two buttons, as shown in
Figure 3-1.

The jQuery code makes use of the bind() method, so let’s see what it is meant for before we go
ahead with understanding of jQuery code.

bind()
This method attaches the specific event to the given element.

bind(eventType, data, handler)

• eventType—A string that specifies the type of the event—click, double-click, focus,
blur, etc.

• data—The data to be passed to the event handler for processing. If it is omitted,
the handler function can be used as second argument.

• handler—The function that contains the statements to perform on occurrence of
the given event.

In the jQuery code, the statement

$('.bold').bind('click', function(){

binds an inline function as the click event handler for the HTML element of class bold; that is, the click
event is bound to the span element of the class bold and hence if the user clicks on the text Bold, it will
execute the statement stored in the inline function.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 3 ■ EVENT HANDLING

49

The statement

alert('You have clicked the Bold button');

displays the alert message when the click event occurs on the text.

On execution of the first jQuery code, we find that the text Bold and Italic appears in the form of
buttons. On clicking on the Bold button, we get the alert message “You have clicked the Bold button,” as
shown in Figure 3-1.

Figure 3-1. Alert message displayed when a button is clicked

In the jQuery code that applies click events to both buttons, the statement

$('.buttons').bind('click', function(){

attaches the click event to all the HTML elements of the class buttons. Since the text Bold and Italic is
enclosed in the span element of the class buttons, the click event will be attached to both pieces of text
(the shape of the button will be assigned to these pieces of text by the style rule buttons defined in the
style.css file).

In the statement

alert('You have clicked the ' +$(this).text()+' button');

the $(this).text() will display the text contents of the HTML element on which the click event has
occurred; that is, if the Bold button is pressed, $(this).text() will display Bold. Similarly, if the Italic
button is clicked, it will display Italic. The output will be exactly same as shown in Figure 3-1.

Now let’s look at how the click event works.

click()
This method binds the click event to the selected element. The click event occurs if the mouse pointer is
over the element and the mouse button is pressed and released.

.click(handler)
.click()

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 3 ■ EVENT HANDLING

50

Here handler is the function that contains the statement we want to execute when the specified
element is clicked with the mouse.

When using the target attribute of the event object, we get the same output as shown in Figure 3-1.
In the jQuery code, we can see that the target attribute of the event object is used to find out the target
of the element (when the click event has occurred) and is stored in a variable $target. After that, via
conditional statements, we check whether the element stored in the $target variable is of the class bold
or the class italic; that is, whether the Bold button is pressed or the Italic button is pressed.
Accordingly, the alert message is displayed on the screen.

One more event that is similar to the click event is the double-click event. Let’s take a look at this
next.

dblclick()
This method attaches the double-click event to the specified element. Double-click is the event that
occurs when the mouse is over the element and is double-clicked.

.dblclick(handler)
.dblclick()

Here handler is the function that contains the statement we want to execute when the element is
double-clicked.

In the jQuery code that uses the double-click event, the text Bold and Italic has the dblclick()
event attached to them. When either of the buttons is double-clicked we will see the output shown in
Figure 3-2.

Figure 3-2. Alert message displayed when a button is double-clicked

3-2. Triggering Events Automatically

Problem
You have a web page with two buttons that say Bold and Italic and you want the click event to trigger
automatically on either button.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 3 ■ EVENT HANDLING

51

Solution
In this recipe, we assume there are two buttons and we want to fire an event automatically. Let us define
an HTML file that contains the text Bold and Italic for the buttons that we want to create. This may
appear as shown here:

<body>
Bold
Italic
</body>

In the external style sheet style.css, we write the CSS class buttons to give the shape of the button
to the text:

.buttons{
width: 100px;
float: left;
text-align: center;
margin: 5px;
border: 2px solid;
font-weight: bold;
}

Let’s write the jQuery code to make an event occur automatically; that is, to be triggered by the
script instead of by the user. We may require certain events to occur automatically, like autoclick of a
button or autosubmission of a form. The method provided by jQuery to trigger an event is trigger().
Let’s make the click event trigger automatically on the Italic button. The jQuery code for doing so is as
follows:

$(document).ready(function() {
 $('.buttons').bind('click', function(){
 alert('You have clicked the ' +$(this).text()+' button');
 });
 $('.italic').trigger('click');
});

How It Works
In the HTML file, the statement

Bold

defines the text Bold in a span element of the classes bold and buttons. The class bold will be used for
applying jQuery code to the span element, and the class buttons is for applying the styles defined in the
CSS class buttons specified in the style sheet.

Similarly, the second statement defines the text Italic of the span element of the classes italic and
buttons. The italic class is for applying the jQuery code and the buttons class is for applying the CSS
class.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 3 ■ EVENT HANDLING

52

In the jQuery code, we have made use of the method trigger() to trigger an event. So, let’s have a
brief introduction to the method.

trigger()
This method invokes the event handler of the specified event type (passed to this method)

trigger(eventType)

where eventType is a string that specifies the type of the event; that is, whether it is a click, double-click,
focus, etc.

The method returns a jQuery object. When we trigger the event, the code in the respective event
handler will be executed. That means before using the trigger() method on any element, we need to
confirm that it has an event handler defined.

In the jQuery code, we can see that the click event is attached to the elements of the buttons class;
that is, to both the Bold and Italic buttons. In addition, the inline functions in the form of event handlers
are also defined for them. After that, the statement

$('.italic').trigger('click');

fires the click event on the Italic button, causing its event handler to be invoked. The event handler
displays an alert message that indicates the button is clicked, as shown in Figure 3-3.

Figure 3-3. Alert message on autotriggering of a click event on the Italic button

3-3. Disabling a Button After It Is Clicked Once

Problem
Sometimes we want an event to fire only once, or want to disable it when certain conditions are met. For
example, we might want to disable the Submit button after it is has been clicked once.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 3 ■ EVENT HANDLING

53

Solution
In this recipe, we assume there are two buttons, and we want to disable a button after it is clicked once.
Let us define an HTML file that contains the text Bold and Italic for the buttons that we want to create,
which may appear as shown here:

<body>
Bold
Italic
</body>

In the external style sheet style.css, we write the CSS class buttons to give the shape of the button
to the text. The CSS class buttons may have the following properties:

.buttons{
width: 100px;
float: left;
text-align: center;
margin: 5px;
border: 2px solid;
font-weight: bold;
}

Let’s write the jQuery code to disable the event handlers after being clicked once. The code may be
as follows:

$(document).ready(function() {
 $('.buttons').bind('click', function(){
 alert('You have clicked the ' +$(this).text()+' button');
 $('.buttons').unbind('click');
 });
});

How It Works
jQuery provides the unbind() method to remove the event type from the specified element. jQuery also
supports namespaced events, which allow you to trigger or unbind specific groups of bound handlers
without having to reference them directly.

The unbind() method removes the previously attached event handler from the specified element:

unbind(eventType, handler)
unbind(eventType)
unbind()

• eventType refers to different events, like click, double-click etc. All the event
handlers attached to the specified eventType will be stopped from being executed.

• handler is the event handler to remove; it should be the same as the one passed to
bind().

• If you pass no arguments, all events will be removed.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 3 ■ EVENT HANDLING

54

In the jQuery code, we can see that the click event is bound to the buttons. Clicking on either button
will display an alert message showing the text of the button selected. So, if we select the Italic button, we
will get the output as shown in Figure 3-2, but after that the statement

$('.buttons').unbind('click');

unbinds the event handler (inline function) of the click event and hence clicking any button will not
display any message.

3-4. Handling Mouse Events

Problem
You want to handle various mouse-related events in your application.

Solution
In this recipe, we assume there are two buttons over which we test different mouse events to take place.
Let us define an HTML file that contains the text Bold and Italic for the buttons that we want to create,
which may appear as shown here:

<body>
Bold
Italic
</body>

In the external style sheet style.css, we write the CSS class buttons to give the shape of the button
to the text. The CSS class buttons has the following properties:

.buttons{
width: 100px;
float: left;
text-align: center;
margin: 5px;
border: 2px solid;
font-weight: bold;
}

Let’s write the jQuery code to display the message when the mouse button is pressed on any of the
buttons:

$(document).ready(function() {
 $('.buttons').bind('mousedown', function(){
 alert('The mouse button is pressed over ' +$(this).text()+' button');
 });
});

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 3 ■ EVENT HANDLING

55

Responding to the Mouseup Event
The jQuery code to respond to the mouseup event may be as follows:

$(document).ready(function() {
 $('.buttons').mouseup(function(){
 alert('The mouse button is released over ' +$(this).text()+' button');
 });
});

Responding to the Mouseover Event
The jQuery code to respond to the mouseover event may be as follows:

$(document).ready(function() {
 $('.buttons').mouseover(function(){
 alert('The mouse is over ' +$(this).text()+' button');
 });
});

How It Works
In the preceding jQuery code, we have used the method mousedown(), so let’s first have a brief
introduction to this. Then we’ll examine the mouseup(), mouseover(),and mouseout() methods.

mousedown()
This method executes the attached event handler when the mousedown event occurs on the specified
element. The mousedown event means the mouse pointer is over the specified element and the mouse
button is pressed.

.mousedown(handler)
.mousedown()

Here handler is the function that executes on occurrence of the mousedown event.
The second syntax is for invoking the mousedown() event manually. The following example invokes

the mousedown() event on button2 (the HTML element of the class button2) when button1 (the HTML
element of the class button1) is clicked:

$(' .button1').click(function(){
 $('.button2').mousedown();
});

In the jQuery code in our example, we bind the mousedown event to the HTML elements of the
class buttons, so we may get the output as shown in Figure 3-4 when the mouse button is pressed over
the Bold button.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 3 ■ EVENT HANDLING

56

Figure 3-4. Alert message displayed when the mouse button is pressed on the Bold button

Let’s take a look at the methods of handling mouse events, one by one.

mouseup()
This method binds the mouseup event to the specified element. The mouseup event occurs when the
mouse pointer is over an element and the mouse button is released.

.mouseup(handler)
.mouseup()

Here handler is the inline function that we want to execute on occurrence of the event. The second
syntax is for invoking the mouseup event manually.

mouseover()
This method binds the mouseover event to the specified element. The mouseover event occurs when the
mouse pointer enters the specified element.

.mouseover(handler)
.mouseover()

Here handler is the inline function that we want to execute on occurrence of the event. The second
syntax is for invoking the mouseover event manually.

In the jQuery code that responds to the mouseover event, the output that we may get when the
mouse pointer enters the region of the Bold button will be as shown in Figure 3-5.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 3 ■ EVENT HANDLING

57

Figure 3-5. Alert message displayed when the mouse pointer enters the Bold button region

mouseout()
This method binds the mouseout event to the specified element. The mouseout event occurs when the
mouse pointer leaves the specified element.

.mouseout(handler)
.mouseout()

Here handler is the inline function that we want to execute on occurrence of the event. The second
syntax is for invoking the mouseout event manually.

3-5. Finding Out Which Mouse Button Is Pressed

Problem
You have a button on the web page and you want to detect which mouse button is pressed on it: whether
it is the left or right mouse button.

Solution
Let’s say we have an HTML file that has the text Click Me (to be represented as a button) and an empty
paragraph element, as shown here:

<body>
Click Me

<p></p>
</body>

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 3 ■ EVENT HANDLING

58

The class selector buttons is as given here:

.buttons{
width: 100px;
float: left;
text-align: center;
margin: 5px;
border: 2px solid;
font-weight: bold;
}

The jQuery code to detect which mouse button is pressed on the Click Me button is as follows:

$(document).ready(function() {
 $('.buttons').mousedown(function(event){
 if(event.button==1){
 $('p').text('Left mouse button is pressed');
 }
 else
 {
 $('p').text('Right mouse button is pressed');
 }
 });
});

How It Works
In the HTML file, the text Click Me is enclosed in a span element of class buttons so that the properties
defined in the class selector buttons defined in the style sheet can be applied to it to give it the shape of a
button. The empty paragraph element will be used to display the message showing which mouse button
is pressed.

In the jQuery code, we can see that the mousedown event is attached to the element of the class
buttons; that is, to the Click Me text (that is given the shape of a button). Also we know that when an
event occurs, the event object is sent to the event-handling function by JavaScript. So, when any mouse
button is pressed on the Click Me button, the event object will be automatically passed to the event-
handling function.

We use the button attribute of the event object to determine which mouse button is pressed. For the
left mouse button the value of the button attribute is 1, and for the right mouse button the value is 2. If
the value returned by the button attribute of the event object is 1, we assign the text Left mouse button is
pressed to the paragraph element, as shown in Figure 3-6.

Figure 3-6. The text message displayed when the left mouse button is pressed on the Click Me button

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 3 ■ EVENT HANDLING

59

If the value returned by the button attribute of the event object is not 1, we assign the text Right
mouse button is pressed to the paragraph element, as shown in Figure 3-7.

Figure 3-7. The text message displayed when the right mouse button is pressed on the Click Me button

3-6. Finding the Screen Coordinates of a Mouse-Button Press

Problem
You have an image on the web page and want to display the screen coordinates of the location where the
mouse button is pressed on the image.

Solution
Let’s make an HTML file that displays an image and an empty paragraph element, as shown here:

<body>

<p></p>
 </body>

The empty paragraph will be used for displaying the screen coordinates.
We will now write the jQuery code to attach the mousedown event to the image to sense if the

mouse button is pressed on any part of it. The code is as shown here:

$(document).ready(function() {
 $('img').mousedown(function(event){
 $('p').text('Mouse is clicked at horizontal coordinate: '+event.screenX+
 ' and at vertical coordinate: '+event.screenY);
 });
});

How It Works
In this recipe, we use the attributes of the event object. The event object is the one that is automatically
sent by JavaScript to the event-handling function when an event occurs. The event object has several
properties or attributes. The two properties that we are going to use in this solution are as follows:

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 3 ■ EVENT HANDLING

60

• screenX—Specifies the horizontal coordinate of the occurrence of the event
relative to the screen origin

• screenY—Specifies the vertical coordinate of the occurrence of the event relative
to the screen origin

In the event-handling function of the mousedown event, we write the code to display the values of
the screenX and screenY attributes of the event object in the form of text of the paragraph element. On
execution of the jQuery code, we get the output shown in Figure 3-8.

Figure 3-8. The location of screen coordinates displaying where the mouse button is clicked on the image

3-7. Highlighting Text Dynamically

Problem
You have certain text on a web page along with a button, and you want to highlight the text (by changing
its background and foreground colors) when the mouse moves over the button.

Solution
The following is the HTML file that has the text Highlight enclosed in a span element of the class buttons,
and paragraph text as shown here:

<body>
Highlight

<p>Styles make the formatting job much easier and more efficient. To give an attractive look
to web sites, styles are heavily used. A person must have a good knowledge of HTML and CSS
and a bit of JavaScript. </p>
</body>

On the text Highlight, the style rule buttons defined in the style sheet will be applied to give it the
shape of a button. The style sheet has the following properties:

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 3 ■ EVENT HANDLING

61

.buttons{
width: 80px;
float: left;
text-align: center;
margin: 5px;
border: 2px solid;
font-weight: bold;
}

To apply the styles to the text dynamically (when the mouse is moved over the text), we write the
following jQuery code:

$(document).ready(function() {
 $('.buttons').mouseover(function(){
 $('p').css({
 'background-color':'cyan',
 'font-weight':'bold',
 'color':'blue'
 });
 });
});

How It Works
In this recipe, we use a technique by which the style properties defined in the style sheet are overridden
and the CSS properties will be applied to the specified element(s) directly. jQuery provides us with a
method called css() for applying CSS properties to the HTML directly. This method sets CSS properties
to the specified elements directly—overriding the styles defined in the style sheet (if any). It allows us to
have better control of application of styles on the individual elements as well as a collection of elements:

.css(property, value)

Here property is the CSS property name that we want to set and value can be either the property
value that we want to assign to the property or it can be a function that returns the property value to set.

Here's an example:

$('p').css('color':'blue');

It sets the color of the paragraph text to blue. The following uses a function that returns the height of
the img element after incrementing it by 30; that is, it will increase the height of the img element by 30px:

$('img').css('height',function(){ return $(this).height()+30;});

The output of our solution will display the button and the paragraph text as shown in Figure 3-9.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 3 ■ EVENT HANDLING

62

Figure 3-9. The button and the paragraph text

We can see in the jQuery code that css() defines several properties, like the background-color
property to apply cyan as the background of the paragraph text, font-weight to make the text appear in
bold, and color to change the foreground color of the paragraph text to blue. The properties in the css()
method will be applied to the paragraph text when the mouse is moved over the button and may appear
as shown in Figure 3-10 (despite this being in black and white, you can see the general idea).

Figure 3-10. The paragraph text gets highlighted when the mouse is moved over the button

3-8. Making an Image Bright and Blurred with Mouse
Movements

Problem
Imagine you have an image displayed on your web page along with a button. The image is initially
blurred.You want to make it so that when the mouse is moved over the button, the image becomes
bright and when the mouse is moved away from the button, the image again becomes blurred. Also, you
want to increase the height and width of the image when you click on the button.

Solution
In this recipe we will be making use of the different mouse event-handling methods you saw in Recipe 3-
4. So, if you don’t know the workings of the different mouse event methods, like mouseover(),
mouseout(), mousedown(), etc., go through Recipe 3-4 before you attempt to work through this recipe.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 3 ■ EVENT HANDLING

63

Let’s assume an HTML file that displays a button and an image, as shown here:

<body>
Bright Image

</body>

The text Bright Image is enclosed within a span element of the class buttons so that the style rule
buttons defined in the external style sheet is applied to the text to give it the shape of a button.

.buttons{
width: 100px;
float: left;
text-align: center;
margin: 5px;
border: 2px solid;
font-weight: bold;
}

The jQuery code to apply effects to the image is as follows:

$(document).ready(function() {
 $('img').css('opacity',0.4);

 $('.buttons').bind('mouseover', function(){
 $('img').css('opacity',1.0);
 });

 $('.buttons').bind('mouseout', function(){
 $('img').css('opacity',0.4);
 });

 $('.buttons').bind('mousedown', function(){
 $('img').css('width',function(){ return $(this).width()+50;});
 $('img').css('height',function(){ return $(this).height()+30;});
 });
});

How It Works
In this solution, we will be using the opacity CSS property. The value of the opacity property ranges
from 0 (transparent) to 1 (opaque) or from 0% to 100%.

Let’s examine the code line by line:

$('img').css('opacity',0.4);

This line makes the image blur at the beginning and when the mouse is moved away from the
button.

$('img').css('opacity',1.0);

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 3 ■ EVENT HANDLING

64

This makes the image bright (opaque) when the mouse is over the Bright Image button.

$('img').css('width',function(){ return $(this).width()+50;});

This increases the width of the image by 50px when the mouse is pressed on the Bright Image
button.

$('img').css('height',function(){ return $(this).height()+30;});

This increases the height of the image by 30px when the mouse is pressed on the Bright Image
button.

The image appears blurred initially when the mouse is away from the Bright Image button, as
shown in Figure 3-11.

Figure 3-11. The button and a blurred image appear when mouse is away from the button

The image becomes bright—that is, opaque—when the mouse pointer is moved over the Bright
Image button, as shown in Figure 3-12.

Figure 3-12. The image becomes bright (opaque) when the mouse is moved over the the Bright Image

button.

The width and height of the image are increased by 50 and 30 pixels, respectively, when the mouse
button is pressed on the Bright Image button, as shown in Figure 3-13.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 3 ■ EVENT HANDLING

65

Figure 3-13. The height and width of the image increase when the Bright Image button is clicked.

3-9. Finding When an Element Gains and Loses Focus

Problem
You have several text fields in a web page and you want to know when a specified field gets and loses the
focus.

Solution
Let’s make an HTML file consisting of two text fields—name and age—as shown here:

<body>
Name: <input class="name" type="text" />

Age: <input class="age" type="text" />
</body>

The jQuery code to deal with the focus event on the name text field is as shown here:

$(document).ready(function() {
 $('.name').focus(function(){
 alert('The focus currently is on name field');
 });
});

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 3 ■ EVENT HANDLING

66

Firing an Event on Losing Focus
The jQuery code to fire an event when the name text field loses the focus is as shown here:

$(document).ready(function() {
 $('.name').blur(function(){
 alert('The focus is lost from name field');
 });
});

How It Works
In the jQuery code, we will make use of the focus() method to know when the element gets the focus.
Let’s have a look at how this works.

focus()
This method binds the focus event to the specified element. It contains a function that is fired when the
specified element gains the focus:

.focus(handler)

Here handler is a function that contains the statements to be executed when the specified element
gains the focus, either via the pointing device or via tab navigation.

We can see that the focus() method is bound to the HTML element of the class name and, from the
HTML code, we can see that the text field to be used for inserting the name is assigned the class name.
That is, the focus event will be fired when the cursor enters the name text field. The focus() method has
an inline method attached that displays the alert message The focus currently is on name field, as shown
in Figure 3-14.

Figure 3-14. Alert message displayed when the name text field gains focus

The method to raise an event when the element loses the focus is called blur(). Let’s look at what
blur() does.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 3 ■ EVENT HANDLING

67

blur()
This is the event that is fired when the specified element loses the focus. It has an attached event handler
that is executed when the focus is moved away from the selected element. The focus can be lost from the
element when the user presses the Tab key or clicks the mouse elsewhere on the page.

.blur(handler)

Here handler is a function containing the statements to be executed when the focus is lost from the
specified element.

We can see in the jQuery code that this fires an event on losing focus so that the blur() method is
attached to the name text field, and attached to that is an inline function that will be invoked when the
focus is lost from the name text field. The inline function will display the alert message The focus is lost
from name field, as shown in Figure 3-15.

Figure 3-15. Alert message displayed when the focus is lost from the name text field

3-10. Applying Hover Effects on Buttons

Problem
Applying a hover effect means changing the style of an HTML element (such as the shape or color of
buttons or images) when the mouse is moved over it. You want the same effect on a few buttons.

Solution
To apply hover effect on buttons, we need to make some text for our HTML file to get the shape of the
button. So we will make use of the following HTML file:

<body>
Bold
Italic
</body>

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 3 ■ EVENT HANDLING

68

In the external style sheet we write the CSS class buttons to give the shape of a button to the text and
a class hover to apply properties when the buttons are hovered over (that is, when the mouse pointer
moves over them). The style sheet file may appear as shown here:

.buttons{
width: 100px;
float: left;
text-align: center;
margin: 5px;
border: 2px solid;
font-weight: bold;
}
.hover{
cursor: crosshair;
color: blue;
background-color:cyan
}

Let’s write the code to add a hover event to the buttons. We apply the hover style rule to the button
when the mouse pointer enters the button area, and we remove the hover style rule when the mouse
pointer leaves the button area:

$(document).ready(function() {
 $('.buttons').hover(
 function(){
 $(this).addClass('hover');
 },
 function(){
 $(this).removeClass('hover');
 }
);
});

How It Works
The hover() method attaches two event handlers to the specified element. One event handler fires when
the mouse pointer enters the element, and another handler fires when the mouse pointer leaves the
element.

.hover(handler1, handler2)

handler1 is a function that contains the statements we want to execute when the mouse enters the
specified element, and handler2 is the function that contains statements we want to execute when the
mouse leaves the specified element. So, both functions combine to give a hover effect.

In the jQuery code, the selector $('.buttons') selects all the elements in the document that have the
class name buttons and attaches the hover() method to them. The CSS class hover is applied when the
mouse is in the element that has a class of buttons, and the hover class is removed from the element
when the mouse comes out of that element.

Initially, the buttons may appear as shown in Figure 3-16.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 3 ■ EVENT HANDLING

69

Figure 3-16. Applying a hover style to the buttons class

When the mouse enters the HTML element of class buttons, the hover class is applied to it and it
may appear as shown in Figure 3-17.

Figure 3-17. The button changing color when the mouse is moved over it

The hover class will be removed from the buttons as the mouse pointer is moved away, and they will
appear as normal buttons.

3-11. Toggling the Application of a CSS Class

Problem
When an event occurs on an element, you want to apply the style properties defined in a CSS class on it,
and when the same event occurs on the same element, you want to remove the CSS class from the
element. That is, you want to toggle the application of the CSS class.

Solution
Let’s assume that we have an HTML file that has two pieces of text, Bold and Italic, enclosed in a span of
the class buttons to apply the class selector buttons, which gives the text the button shape. The HTML
file appears as shown here:

<body>
Bold
Italic
</body>

The class buttons is defined in the following style sheet. It also contains the style rule hover that
contains the style properties we want to apply and remove with each occurrence of the event.

.buttons{
width: 100px;
float: left;
text-align: center;
margin: 5px;

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 3 ■ EVENT HANDLING

70

border: 2px solid;
font-weight: bold;
}

.hover{
cursor: crosshair;
color: blue ;
background-color:cyan
}

Now we need to write the jQuery code for using the toggleClass() method to toggle the CSS class:

$(document).ready(function() {
 $('.buttons').click(function(){
 $(this).toggleClass('hover');
 });
});

How It Works
We use the toggleClass() method for applying hover class to and removing the hover class from the
buttons. Let’s have a look at this first.

toggleClass()
This method removes the class if it is already applied to the selected element and applies the class if it is
not already applied to the element.

.toggleClass(class)

Here class is the class that we want to apply (if it is not already applied) and remove (if it is already
applied) on the selected element.

We can see in the jQuery code that we have used toggleClass() to apply and remove the CSS class
hover from the buttons with the occurrence of the click event. That is, when the click event occurs for the
first time on a button, the style properties present in the hover class will be applied to the button,
changing its background color to cyan and its foreground color to blue, as shown in Figure 3-17. When
the button is clicked again—that is, when the click event occurs again on the same button—the CSS class
hover will be removed from the button, giving it the same appearance as it had at the beginning (shown
in Figure 3-16).

We can have the same output on application of another method, known as toggle().

toggle()
This method attaches two event-handling functions to the selected element. The first event-handling
function is executed with every even occurrence of the event, and the second event-handling function is
executed with every odd occurrence of the event, with the count starting at zero. In other words, the first

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 3 ■ EVENT HANDLING

71

time the event occurs on the element, the first event-handling function will be executed (because the
count starts at zero) and when the event occurs for the second time on the element, the second event-
handling function will be executed—that is, with every subsequent event, the event-handling functions
will cycle.

.toggle(handler1, handler2)

We can have the same effect of application and removal of the hover CSS class (with every click
event) as we had in the preceding jQuery code by using the toggle() method. Let’s have a look at the
following jQuery code:

$(document).ready(function() {
 $('.buttons').toggle(
 function(){
 $(this).addClass('hover');
 },
 function(){
 $(this).removeClass('hover');
 }
);
});

We can see that in the toggle() method, we have used two event-handling functions; the first one
applies the hover CSS class to the elements of the buttons class (that is, on the Bold and Italic buttons),
and the second one removes the CSS class from the buttons. Hence, when we click on either button, the
hover class will be applied to it, changing its background and foreground colors as shown in Figure 3-17.
When the click event occurs on the same button again, the hover class will be removed from it, making it
appear as a simple button (without any foreground or background color applied) as it was at the
beginning, as shown in Figure 3-16.

3-12. Creating Image-Based Rollovers

Problem
You want to create an image-based rollover. Image rollovers are those that change shape when the
mouse is moved over an image that designates a hyperlink to some web site.The image also changes if it
is clicked once, to designate that it has already been visited.

Solution
Let’s make an HTML file that contains a hyperlink element:

<body>

</body>

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 3 ■ EVENT HANDLING

72

In the style sheet we will write style rules called link, hover, and active. The style sheet also contains
a type selector img, the properties of which will be automatically applied to the img element without
using jQuery code. The style sheet file may appear as shown here:

.link{
display:block;
width:170px;
height:55px;
background-image:url(btn1.bmp);
background-repeat:no-repeat;
background-position: top left;
}

.hover{
display:block;
width:200px;
height:70px;
background-image:url(btn2.bmp);
background-repeat:no-repeat;
background-position: top left;
}

.active{
display:block;
width:170px;
height:55px;
background-image:url(btn3.bmp);
background-repeat:no-repeat;
background-position: top left;
}

img{
border:0;
}

The jQuery code to apply the style rules defined in the style sheet to the empty span element of the
class roll is as shown here:

$(document).ready(function() {
 $('.roll').addClass('link');
 $('.roll').hover(
 function(){
 $(this).addClass('hover');
 },
 function(){
 $(this).removeClass('hover');
 }
);

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 3 ■ EVENT HANDLING

73

 $('.roll').click(function(event){
 $(this).addClass('active');
 event.preventDefault();
 });
});

How It Works
The preceding HTML file contains a span element of the class roll, which will be filled with images
through style rules and jQuery code. We will be using three images in this solution: btn1.bmp, btn2.bmp,
and btn3.bmp, shown in Figure 3-18 to 3-20.

In the style sheet, the style rule link contains the properties that will be applied to the image when
the web page is loaded. It assigns the width and height of 130px and 35px, respectively, to the image.
Also the image btn1.bmp is loaded at the background and the value of the background-repeat property is
set to no-repeat so as to avoid repetition of the image and make it appear only once.

Since we want the button to become larger when the mouse pointer is moved over it, the hover style
rule contains the second image: btn2.bmp (shown in Figure 3-18). The rest of the properties in this style
rule are the same as those in the link style rule.

The third style rule designates the image when the link is visited once, so we use the image named
btn3.bmp. The only change between the two images btn1.bmp and btn3.bmp is in the color of the button
text. The color of the text on the button in btn3.bmp is set to maroon to represent that its link has been
visited.

The style sheet also contains a type selector img that has a single property border with its value set to
zero to remove the border from the three images that will be displayed.

In the jQuery code, the statement

$('.roll').addClass('link');

will apply the link style rule to the span element, making the image in btn1.bmp appear on the screen.

The statements

$('.roll').hover(
 function(){
 $(this).addClass('hover');
 },
 function(){
 $(this).removeClass('hover');
 }
);

add the hover event to the span element, with two inline functions attached to it. The first function
applies the style rule hover to the span element (when the mouse pointer is moved over the image),
making btn2.bmp (the enlarged image) appear in place of btn1.bmp. The btn1.bmp image will be hidden by
the image in btn2.bmp because the position of the images is set to top left via the background-position
property. The second inline function (applied when the mouse pointer is moved away from the image)
removes the style rule hover from the image, making it appear as it was previously—that is, just like
btn1.bmp.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 3 ■ EVENT HANDLING

74

The statement

$(this).addClass('active');

applies the property defined in the active style rule to the image, setting the background image btn3.bmp
to appear. This image has the button text set to maroon to make it appear different from the initial
image, so as to show that it has been visited already.

The statement

event.preventDefault();

prevents the browser from navigating to the hyperlinked web site. That is, it makes the hyperlink ignore
its default action (which is navigating to the linked web site). As a result, we remain at the same web
page even after clicking the image.

Initially the image may appear as shown in Figure 3-18.

Figure 3-18. The usual button that appears in default state

When the mouse pointer is moved over the image, the image becomes enlarged, as shown in
Figure 3-19.

Figure 3-19. The button in enlarged state when the mouse moves over it

The image changes if we click on the image link, as shown in Figure 3-20.

Figure 3-20. The color of the button text changes in active state (when it is clicked).

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 3 ■ EVENT HANDLING

75

3-13. Adding and Removing Text in Response to Events

Problem
You have two buttons on the web page with the text Add and Remove, respectively. You want to have
certain text be added to the web page when the user selects the Add button, and have the added text
removed when the user selects the Remove button.

Solution
Let’s begin with making an HTML file that contains the text Add and Remove enclosed in the span
element of class buttons so that the class selector buttons defined in the style sheet can be applied to
them:

<body>
Add
Remove

<div></div>
</body>

The style sheet file may appear as shown here:

.buttons{
width: 80px;
float: left;
text-align: center;
margin: 5px;
border: 2px solid;
font-weight: bold;
}

Following is the jQuery code to add click events to both the buttons along with their inline functions
to add and remove text:

$(document).ready(function() {
 $('.add').click(function(){
 $('div').prepend('<p>Styles make the formatting job much easier and more efficient. To
give
an attractive look to web sites, styles are heavily used. A person must have a good
knowledge of HTML and CSS and a bit of JavaScript. </p>');
 });

 $('.remove').click(function(){
 $('p').remove();
 });
});

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 3 ■ EVENT HANDLING

76

How It Works
We see that the HTML file has an empty div element. To this div element we will be adding a paragraph
element (with some text in it) when the Add button is clicked. Also the newly added paragraph element
will be removed from the div element when the Remove button is clicked. In order to add the paragraph
we use the prepend() method that you saw in Chapter 1. To remove the paragraph element, we will be
using the remove() method.

The remove() method removes the set of selected elements from the DOM and returns a jQuery
object. It also removes all event handlers and internally cached data. We don’t need to pass any
parameter with this method.

In the jQuery code, the statement

$('div').prepend('<p>Styles...</p>');

adds the paragraph element at the beginning of the div element when the Add button is clicked, while
the statement

$('p').remove();

accesses the paragraph element(s) in the HTML file and removes them. Since there is only a single
paragraph element in the HTML file (added via the Add button), it will be removed when the Remove
button is clicked.

On execution of the preceding jQuery code, we will initially get two buttons displayed with the text
Add and Remove on them, as shown in Figure 3-21.

Figure 3-21. Initial two buttons for adding and removing text

On selecting the Add button, the paragraph element with some text appears, as shown in
Figure 3-22.

Figure 3-22. The text appears on selecting the Add button.

On selecting the Remove button, the text disappears.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 3 ■ EVENT HANDLING

77

3-14. Applying Styles in Response to Events

Problem
You have two buttons on the web page, with the text Bold and Italic on them, respectively. Your page
also has some text. You want it to work such that when the Bold button is pressed, the text turns bold
and when the Italic button is pressed, the text turns italic. Along with all this, you also want a hover effect
on the buttons (to change the background and foreground colors of the buttons when the mouse pointer
is moved over the buttons).

Solution
Let’s make an HTML file that has two buttons and some text, as shown here:

<body>
Bold
Italic

<div id="info">Creating Rich Internet Applications

jQuery is an open source project

Manipulating DOM using jQuery

</div>
</body>

The contents of the style sheet may appear as follows:

.buttons{
width: 80px;
float: left;
text-align: center;
margin: 5px;
border: 2px solid;
font-weight: bold;
}

.hover{
cursor: crosshair;
color: blue ;
background-color:cyan
}

.boldmatter
{
 font-weight: bold;
}

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 3 ■ EVENT HANDLING

78

.italicmatter
{
 font-style: italic;
}

The jQuery code to make the buttons active is as follows:

$(document).ready(function() {
 $('.buttons').hover(
 function(){
 $(this).addClass('hover');
 },
 function(){
 $(this).removeClass('hover');
 }
);

 $('#boldbutton').bind('click', function(){
 $('#info').removeClass('italicmatter');
 $('#info').addClass('boldmatter');
 });

 $('#italicbutton').bind('click', function(){
 $('#info').removeClass('boldmatter');
 $('#info').addClass('italicmatter');
 });
});

How It Works
The span elements are assigned the ids boldbutton and italicbutton respectively, so as to make it
possible to apply the styles to convert the text into bold or italic when the appropriate button is clicked.
The text to which we will be applying styles, to make it bold or italic, is given an identification by
assigning it an id info. The div element consists of three lines of text.

In the jQuery code, we start by selecting all the elements in the document that have a class of
buttons, and to those elements the class specified via the hover() method is applied. With the help of
two functions, the hover() method applies the CSS class hover when the mouse enters those elements
and removes it when the mouse comes out of those elements (that is, the elements that have a class of
buttons).

The bind() method allows us to specify any JavaScript event and attach a function (to apply some
class) to any element. Using this technique, we select the elements with id boldbutton and bind the
click event to it—that is, when a click event occurs on such an element, the function is executed that
selects the element with id info (the body of the document other than the buttons), removes the CSS
class italicmatter, and applies the class boldmatter to make the selected matter (text) bold.

The final block selects the elements with the id italicbutton and uses bind() to bind the click event
to it. So, when anybody clicks on such an element, the function is executed that selects the element with
an id info in the document, removes the CSS class boldmatter, and applies the class italicmatter.

Initially, the output may be as shown in Figure 3-23.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 3 ■ EVENT HANDLING

79

Figure 3-23. Two buttons: Bold and Italic, with some matter

When we click on the Bold button, the hover effect appears on the button and the body of the
document turns bold, as shown in Figure 3-24.

Figure 3-24. When the mouse is moved over the Bold button, the hover style is applied to it and the bold

style is applied to the body of the document

Similarly, when the Italic button is clicked, the hover effect will appear on it and the body of the
document will turn italic.

3-15. Displaying Word Balloons

Problem
You have two buttons on the web page, with the text Bold and Italic on them, respectively. You want to
create a word-balloon effect when either of the buttons is clicked. If the Bold button is clicked, you want
the text This is Bold menu to appear in the word balloon (shown later in Figure 3-27) and if the Italic
button is clicked, you want the text This is Italic menu to appear in the word balloon (shown later in
Figure 3-28).

Solution
We use the following HTML file to display two buttons, Bold and Italic, as was shown in Figure 3-1:

<body>
Bold
Italic
</body>

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 3 ■ EVENT HANDLING

80

We will create a style sheet that will contain the class selector buttons to apply the properties to the
span elements so as to give them the shape of the buttons. Besides this, the style sheet also contains two
style rules, hover and showtip, to give the hover effect on the buttons and to display the text in the word
balloons. The style sheet file may appear as shown here:

.buttons{
width: 150px;
float: left;
text-align: center;
color:#000;
background-color:red;
margin: 5px;
font-weight: bold;
}

.hover{
color:red;
background:url(balloon.jpg);
background-repeat:no-repeat;
background-position:bottom;
}

.showtip{
display:block;
margin:25px;
}

The jQuery code to apply the style rules to the buttons is as shown here:

$(document).ready(function() {
 $('.buttons').hover(
 function(event){
 $(this).addClass('hover');
 var $txt=$(this).text();
 $(' This is '+$txt+' menu ').appendTo($(this));
 },
 function(){
 $(this).removeClass('hover');
 $('.showtip').remove();
 }
);
});

How It Works
The image file balloon.jpg used in the aforementioned style sheet contains the image shown in
Figure 3-25.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 3 ■ EVENT HANDLING

81

Figure 3-25. The balloon image in the file balloon.jpg

In the style sheet, we can see the hover style rule contains the following properties:

• color—Sets the foreground color of the button’s text to red

• background—Displays the word balloon image as the background

• background-repeat—Set to no-repeat to make the word balloon image appear only
once

• background-position—Makes the word balloon image appear at the bottom

In the style sheet file, the showtip style rule contains the display property with its value set to block
so as to treat the text (that will be displayed in the word balloon) as a block element having white space
at the beginning and at the end. It also contains the margin property that is set to 25px for setting the gap
between the text and the balloon boundaries.

In the jQuery code, we can see that the hover event is assigned to the class buttons—that is, to both
the buttons. So, when the mouse pointer enters either of the buttons, first the properties defined in the
style rule hover will be applied, creating a blank word balloon on the screen. Second, the text of the
button in question will be stored in the variable $txt. Also a span element will be appended before the
button.

The span element is assigned the class showtip (so that the properties defined in the class selector
showtip can be automatically applied to its text). The text content of the span element is set to

"This is $txt menu"

where $txt contains the text of the button over which the mouse pointer is hovering, hence making the
desired text appear inside the word balloon. The second inline function of the hover event removes the
properties defined in both the style rules hover and showtip.

Initially, the buttons appear as shown in Figure 3-26.

Figure 3-26. The Bold and Italic buttons when neither is selected

When the mouse pointer moves over the Bold button, the styles will be applied to change the
foreground and background color of the button and to display the word balloon along with the text This
is Bold menu, as shown in Figure 3-27.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 3 ■ EVENT HANDLING

82

Figure 3-27. The text This is Bold menu appears in a word balloon when the Bold button is moused over.

Similarly, when the mouse pointer is moved over the Italic button, its foreground and background
color will be changed and the word balloon with the text This is Italic menu will appear, as shown in
Figure 3-28.

Figure 3-28. The text This is Italic menu appears in a word balloon when the Italic button is moused over.

3-16. Creating “Return to Top” Links

Problem
You have a web page with lots of text. After every block of text, you want to display a link that says Return
to Top, which should navigate the user to the beginning of the web page.

Solution
Let’s make an HTML file that contains a few blocks of text in the form of paragraph elements, as shown
here:

<body>
<p>Styles make the formatting job much easier and more efficient.
To give an attractive look to web sites, styles are heavily used.
JQuery is a powerful JavaScript library that allows us to add dynamic elements to our web
sites. Not only it is easy to learn, but it's easy to implement too.</p>
<p> A person must have a good knowledge of HTML and CSS and a bit of JavaScript. jQuery is
an open source project that provides a wide range of features with cross-platform
compatibility</p>
</body>

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 3 ■ EVENT HANDLING

83

The jQuery code to create a hyperlink with the text Return to top after every paragraph element and
make that text navigate to the beginning of the web page is shown here:

$(document).ready(function() {
 $('Return to top').insertAfter('p');
 $('').prependTo('body');
});

How It Works
The statement

$('Return to top').insertAfter('p');

adds a hyperlink with the text Return to top after every paragraph element of the HTML file, and when
the link is selected by the user, he will be navigated to the element of id topofpage.

The statement

$('').prependTo('body');

adds an anchor element with name and id assigned to it as topofpage before the body of the HTML file. In
other words, an anchor element of id topofpage is created at the beginning of the web page.

The output that we may get on execution of the preceding jQuery code is as shown in Figure 3-29.

Figure 3-29. The text Return to top appears after every paragraph.

If we click any of the “Return to top” links we will be navigated to the beginning of the web page.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 3 ■ EVENT HANDLING

84

3-17. Offering “Read More...” links

Problem
You have a large chunk of text to display, but to keep the screen neat you want to display just a few lines
of it along with a link to “Read More…” attached to it. When the user selects this link, the rest of the text
(which was hidden) is displayed.

Solution
Let’s make an HTML file with two div elements and a span element of the class readmore in between
them, as shown here:

<body>
<div>
Styles make the formatting job much easier and more efficient.
</div>
Read More...
<div class="message">
To give an attractive look to web sites, styles are heavily used.
JQuery is a powerful JavaScript library that allows us to add dynamic elements to our web
sites. Not only it is easy to learn, but it's easy to implement too. A person must have a
good knowledge of HTML and CSS and a bit of JavaScript. jQuery is an open source project
that provides a wide range of features with cross-platform compatibility.
</div>
</body>

Let’s write the jQuery code to make the lower div element invisible and attach the click event to the
Read More… text along with an inline function that makes the lower div element visible on occurrence
of the click event:

$(document).ready(function() {
 $('.message').hide();
 $('span.readmore').click(function(){
 $('.message').show('slow');
 $(this).hide();
 });
});

How It Works
In the HTML file, the text of the upper div element will be displayed and the text of the div element of
the class message (the lower div element) will be hidden initially when the web page is loaded. Also,
immediately after the text of the upper div element, we will display the text Read More… that is enclosed
in the span element of the class readmore so that a click event can be applied to it.

We will make the text of the lower div element of the class message visible only when the user clicks
at the text: Read More….

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 3 ■ EVENT HANDLING

85

In the jQuery code, we have used two methods, show() and hide(), to make text visible and invisible.

■ Note We can use toggle() to make the matching element visible if it is hidden and vice versa on alternate
clicks.

show() makes the specified hidden element visible.

.show(speed, callback)

Here speed defines the duration of the animation effect—that is, whether the element has to be
displayed immediately or slowly. The speed can be defined in terms of milliseconds or as one of the
predefined strings: slow, normal, or fast (which indicate speed values of 600, 400, and 200 milliseconds,
respectively). That is, the speed defines how long the animation will run. If it is omitted, the default
speed normal is used. callback is the function that is called when the animation is complete.
hide()makes the specified element invisible:

.hide(speed, callback)

speed and callback have the same meanings here as they did with show().

In our jQuery code, the statement

$('.message').hide();

makes the div element of the class message invisible initially (that is, only half the text of the upper div
element will be displayed), and the statement

$('span.readmore').click(function(){

attaches the click event to the span element of class readmore (that is, to the text Read More...).

The statement

$('.message').show('slow');

makes the div element of class A visible when the Read More… text is clicked, hence displaying the
hidden text. The statement

$(this).hide();

hides the text message Read More…, as it is no longer required.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 3 ■ EVENT HANDLING

86

Initially, only half the text is displayed along with a text message Read More… at the bottom, as
shown in Figure 3-30.

Figure 3-30. The upper half of the text displayed with the Read More... link

When the text Read More... is selected, the hidden text is also displayed, as shown in Figure 3-31.

Figure 3-31. The complete text displayed after selecting the Read More… link

Reading Less
We can also slightly modify the jQuery code to convert the Read More… text to Read Less… on displaying
the hidden text. Also, we can make the displayed text get back to hidden mode when the Read Less… text
is selected. The jQuery code for doing so may be as shown here:

$(document).ready(function() {
 $('.message').hide();
 $('span.readmore').toggle(function(){
 $('.message').show('slow');
 $(this).text("Read Less…");
 },
 function(){
 $('.message').hide('slow');
 $(this).text("Read More…");
 });
});

We can see that in the preceding jQuery code, the toggle() method is used to apply the respective
event-handling function on each alternate click to the span element of the class readmore. The first event-
handling function will display the hidden text and convert the text Read More… to Read Less…. The
second event-handling function hides the displayed text and converts the text again to Read More….

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 3 ■ EVENT HANDLING

87

Applying an Animation Effect
In the preceding example, on selecting the text Read More... the hidden text is displayed. We can also
make the hidden text appear slowly, along with an animation effect to make it more attractive. The
method to make the hidden text visible with an animation effect is known as fadeIn() and the method to
make the visible text slowly invisible is known as fadeOut().

■ Note The fadeIn() and fadeOut() methods work by adjusting the opacity of the selected elements.

fadeIn() displays the selected elements by converting them to be opaque.

.fadeIn(speed, callback)

speed decides the duration of the animation. It can be specified in terms of predefined strings fast,
normal, and slow or in milliseconds. The higher the number of milliseconds, the longer the animation
takes. The default speed is normal.

callback is the function that is fired on completion of the animation.
fadeOut() is for making the selected element invisible by fading it out.

.fadeOut(speed, callback)

speed and callback have the same meaning here as for fadeIn().

The jQuery code to make the hidden text (the div element of the class message) appear slowly is

shown here:

$(document).ready(function() {
 $('.message').hide();
 $('span.readmore').click(function(){
 $('.message').fadeIn('slow');
 $(this).hide();
 });
});

3-18. Displaying Text with an Animation Effect

Problem
You have three buttons on the web page, namely Books, Movies, and Music. You want to display the
appropriate text when one of these buttons is clicked. You want the text that is displayed on clicking the
button to have an animation effect.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 3 ■ EVENT HANDLING

88

Solution
Let’s make an HTML file that has three buttons—Books, Movies, and Music—and three paragraphs with
class names assigned as books, movies, and music, respectively. These paragraphs contain the text to be
displayed when each button is clicked. Initially, the text of these paragraphs will be kept invisible and
will be displayed with an animation effect only when its button is clicked. The HTML file appears as
shown here:

<body>
 Books
 Movies
 Music

<p class="books">Books on a range of different subjects available at reasonable prices.
Ranging from web development, programming languages, and text books, all are available at
heavy discount. Shipping is free. Also available in stock are popular magazines, e-books,
and tutorial CDs at affordable prices.</p>
<p class="movies">Find new movie reviews & the latest Hollywood movie news. Includes new
movie trailers, latest Hollywood releases, movie showtimes, entertainment news, celebrity
interviews etc. Also find Hollywood actresses, actors, videos, biographies, filmography,
photos, wallpaper, music, jokes, and live TV channels at your doorstep.</p>
<p class="music">Find music videos, internet radio, music downloads and all the latest music
news and information. We have a large collection of music and songs classified by type,
language, and region. All downloads are streamed through RealAudio. You can also watch free
music videos, tune in to AOL Radio, and search for your favorite music artists.</p>
</body>
</body>

The contents of the style sheet are as follows:

.buttons{
width: 100px;
float: left;
text-align: center;
margin: 5px;
border: 2px solid;
font-weight: bold;
}

Following is the jQuery code to hide the paragraph text initially and display the contents of the
paragraph with an animation effect when its button is clicked:

$(document).ready(function() {
 $('.books').hide();
 $('.movies').hide();
 $('.music').hide();

 $('#booksbutton').click(function(){
 $('.books').show('slow');
 $('.movies').hide();
 $('.music').hide();
 });

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 3 ■ EVENT HANDLING

89

 $('#moviesbutton').click(function(){
 $('.movies').show('slow');
 $('.books').hide();
 $('.music').hide();
 });

 $('#musicbutton').click(function(){
 $('.music').show('slow');
 $('.books').hide();
 $('.movies').hide();
 });
});

How It Works
In the HTML file, we can see that the text Books, Movies, and Music is enclosed in the span element of the
class buttons so that the properties defined in the class selector buttons defined in the style sheet can be
automatically applied to it. The class selector buttons contains the properties to give the shape of the
button to this text. Also, we see that the buttons are assigned the unique IDs of booksbutton,
moviesbutton, and musicbutton so that we can attach click events to them individually and write code for
hiding the old text (information from an earlier button click) and for displaying the information related
to the clicked button.

In the jQuery code, we start by hiding the text of the paragraphs of class books, movies, and music—
that is, only the buttons will be visible initially when the web page is loaded. We then link the click event
to the HTML element of id booksbutton—that is, to the Books button. When the Books button is clicked,
the contents of the paragraph of the class books becomes visible slowly—giving it an animation effect (it
contains the information related to books) and the contents of the paragraph of the classes movies and
music are made invisible, hence displaying only the information for the button that is clicked on the
screen.

Initially only the three buttons Books, Movies, and Music will be displayed, as shown in Figure 3-32.

Figure 3-32. Thee buttons: Books, Movies, and Music

When the Books button is clicked, it will display the information related to it; that is, the paragraph
of the class books will be displayed as shown in Figure 3-33.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 3 ■ EVENT HANDLING

90

Figure 3-33. Information related to books is displayed when Books button is clicked

Similarly, if the Movies button is clicked, it will hide the information related to the books or music
and will make the information related to movies (that is, the paragraph of class movies) appear slowly on
the screen with an animation effect, as shown in Figure 3-34.

Figure 3-34. The information related to movies is displayed when the Movies button is clicked

Adding a Mouseover Event
Instead of applying click events to the buttons, we can also attach the mouseover event to them. The
mouseover event will make the appropriate information appear when the mouse pointer enters the
button (there is no need to click the button). The jQuery code for attaching the mouseover event may
appear as follows:

$(document).ready(function() {
 $('.books').hide();
 $('.movies').hide();
 $('.music').hide();

 $('#booksbutton').mouseover(function(){
 $('.books').show('slow');
 $('.movies').hide();
 $('.music').hide();
 });

 $('#moviesbutton').mouseover(function(){
 $('.movies').show('slow');
 $('.books').hide();
 $('.music').hide();
 });

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 3 ■ EVENT HANDLING

91

 $('#musicbutton').mouseover(function(){
 $('.music').show('slow');
 $('.books').hide();
 $('.movies').hide();
 });
});

3-19. Replacing Text with a Sliding Effect

Problem
You want one piece of text to be replaced by another; the first piece is slowly made invisible while the
other appears gradually.

Solution
In this solution, we will be applying CSS styles directly to the elements using css() instead of picking
them from the style sheet (see Recipe 3-6 for details of css()).

Let’s assume we have an HTML file that has two paragraph elements that are distinguished from
each other by assigning them the IDs message1 and message2, respectively.

<body>
<p id="message1">jQuery is an open source project</p>
<p id="message2">Manipulating DOM using jQuery</p>
</body>

Here is the jQuery code for applying the sliding effect:

$(document).ready(function() {
 $('p#message1').css({'border': '2px solid', 'text-align': 'center','font-
weight':'bold'}).hide();
 $('p#message2').css({'backgroundColor': '#f00','color':'#fff','text-align': 'center',
'font-weight':'bold'}).click(
 function(){
 $(this).slideUp('slow');
 $('p#message1').slideDown('slow');
 }
);
});

How It Works
To the paragraph of id message1, we assign a solid border of 2px thickness, align its text at the center of
the browser window, and set it to appear in bold. The background color of the paragraph of id message2
is set to red, and the foreground color of the text is set to white and is aligned at the center of the browser
window.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 3 ■ EVENT HANDLING

92

In the jQuery code, some text will gradually disappear using the slideDown() method and will be
replaced with some other text that slowly appears using the slideUp() method, so let’s take a look at the
workings of these two methods.

slideDown() displays the selected element with a sliding motion.

.slideDown(speed, callback)

speed decides the duration of the animation. It can be specified in terms of strings as fast, normal, or
slow, or in milliseconds. The higher the number of milliseconds, the longer the animation will take.

callback is the function that is fired on completion of the animation.
Conversely, slideUp() makes the selected element invisible with a sliding motion.

.slideUp(speed, callback)

speed and callback have the same meaning as they do for slideUp().
In the jQuery code, we can see that the paragraph of id message1 is hidden and only the paragraph of

id message2 is set to be visible. So, the output that we get initially is as shown in Figure 3-35. Also, a click
event is attached to the visible paragraph. In the inline function of the click event, we have written code
to make the visible paragraph (the paragraph of id message2) become slowly invisible by sliding up, and
the paragraph of id message1 (which was initially invisible) to become visible slowly by sliding down.

Figure 3-35. Applying slideUp() and slideDown()

On clicking the visible paragraph it will slowly become invisible and the paragraph that was initially
invisible will start becoming slowly visible, as shown in Figure 3-36.

Figure 3-36. One paragraph in the process of sliding down and another in the process of sliding up

The paragraph is totally replaced by another paragraph, as shown in Figure 3-37.

Figure 3-37. One paragraph totally removed and the other now visible

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 3 ■ EVENT HANDLING

93

3-20. Making an Image Scroll

Problem
You want an image to scroll from left to right when it is clicked.

Solution
Let’s make an HTML file that displays an image from the file cell.jpg, as shown here:

<body>

</body>

To make an element move from its current location, we have to apply the position property to it. So,
we apply the position property to the img element with its value set to relative using the type selector in
the style sheet file: style.css:

img{
position:relative;
}

The jQuery code to make the image animate from left to right is as shown here:

$(document).ready(function() {
 $('img').click(function(){
 $(this).animate({left:600}, 'slow')
 });
});

Hiding the Image After Scrolling
We want the image to scroll from left to right and on reaching the right side of the browser window, the
image should become invisible by using the slideUp() method.

The jQuery code will be modified as shown here:

$(document).ready(function() {
 $('img').click(function(){
 $('img').animate({left: 600}, 'slow')
 $('img').slideUp('slow');
 });
});

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 3 ■ EVENT HANDLING

94

Fading Out the Image After Scrolling
We want the image to scroll from left to right and on reaching the right side of the browser window, we
want it to become invisible—this time by using the fadeTo() method.

The jQuery code will be modified as follows:

$(document).ready(function() {
 $('img').click(function(){
 $('img').animate({left: 600}, 'slow')
 $('img').fadeTo('slow',0)
 });
});

Making the Image Grow While Scrolling to the Right
As the image scrolls from left to right, we want its width and height to increase. The jQuery code for
accomplishing that is as follows:

$(document).ready(function() {
 $('img').click(function(){
 $(this).animate({left:600, width:$(this).width()*2,height:$(this).height()*2},'slow');
 });
});

Making the Image Scroll to the Right and Again to the Left
We want the image to scroll to the right side of the browser window. On reaching the right side, we want
the image to fade out and fade in again (become invisible and visible slowly). After that we want the
image to scroll back to the starting location, at the left.

The jQuery code for accomplishing that is as shown:

$(document).ready(function() {
 $('img').click(function(){
 $('img').animate(
 {left: 600},
 'slow',
 function(){
 $('img').fadeTo('slow',0);
 $('img').fadeTo('slow',1);
 $('img').animate({left: 0}, 'slow')
 }
);
 });
});

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 3 ■ EVENT HANDLING

95

How It Works
In the jQuery code that we are going to use in this solution, we will be making use of the animate()
method. So let’s first understand how the animate() method works.

animate()
This method is used for applying custom animation to the selected elements. The custom animation is
controlled according to the specified CSS properties and easing parameters used.

.animate(properties, speed, easing, callback)

In this code

• properties refers to CSS properties (the end values) that the element will reach at
the end of animation.

• speed is in the form of a predefined string or a numerical value in milliseconds to
decide the duration of the effect or animation. The predefined strings are slow,
normal, and fast. If the speed parameter is not used, then the default speed normal
is used.

• easing is an optional function that controls how an animation progresses over
time. It requires a plug-in. There are two easing functions: linear and swing, and
swing is the default.

• callback is the function that is invoked when the animation is complete.

In the jQuery code, the statement:

$(this).animate({left:600}, 'slow')

makes the image move from its current position to 600px from the left side of the browser window. The
movement will be slow and will occur when the click event occurs on the image.

Initially, the image appears to the extreme left, as in Figure 3-38.

Figure 3-38. The image is on the extreme left at the beginning.

When the image is clicked, the image will move right and will stop at a distance of 600px from the
left side of the browser window, as shown in Figure 3-39.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 3 ■ EVENT HANDLING

96

Figure 3-39. The image scrolls to the right on being clicked.

We can that the jQuery code hides the image after scrolling, and that clicking the image makes it
animate from left to right and stop at the distance of 600px from the left of the browser window. After
that the slideUp() method hides the image slowly.

In the jQuery code that makes the image scroll to the right and to the left again, the statement

$('img').animate({left: 600}, 'slow', function(){

will make the image animate slowly from left to right and make it stop at a distance of 600px from the left
boundary of the browser window.

Finally, the statement

$('img').animate({left: 0}, 'slow')});

will make the image animate back (from right to left) to its starting location. The image will stop when its
distance becomes 0px from the left side of the browser window.

fadeTo()
This method adjusts the opacity of the selected elements.

.fadeTo(speed, opacity, callback)

speed decides the duration of the animation. It can be specified in terms of the predefined strings
fast, normal, and slow, or in milliseconds. The higher the number of milliseconds, the longer the
animation takes.

opacity is the number between 0 and 1 for deciding the opacity of the selected element at the end of
the animation. A value of 0 means the selected element will be invisible, 1 means it will appear sharp,
and 0.5 means the selected element will appear dim.

callback is the function that is fired on completion of the animation.
In the jQuery code that fades out the image after scrolling, we can see that when the image is

clicked, it moves to the right and stops at a distance of 600px from the left side of the browser window.
On reaching the right side, the image slowly vanishes, as its opacity is set to 0.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 3 ■ EVENT HANDLING

97

Let’s achieve the same effect using a callback function:

$(document).ready(function() {
 $('img').click(function(){
 $('img').animate(
 {left: 600},
 'slow',
 function(){
 $('img').fadeTo('slow',0)
 }
);
 });
});

In the jQuery code that makes the image grow in size while scrolling to the right, we can see that in
the event-handling function of the click event, we write the code to animate the image from left to right
and set it to stop at a distance of 600px from the left boundary of the browser window and also set its
width and height to become twice its original value on reaching the right end. This makes the image
slowly scroll to the right, with a gradual increase in its width and height.

At the beginning, the image may appear as shown in Figure 3-38. When the image is clicked, it starts
moving to the right, and on reaching the right edge it appears as shown in Figure 3-40.

Figure 3-40. The image becomes twice its original width and height on reaching the right side.

The statement

$('img').fadeTo('slow',0);

will make the image fade out slowly, as its opacity is set to 0.

Similarly, the statement

$('img').fadeTo('slow',1);

will make the image fade in—that is, become slowly visible again, as its opacity is set to 1.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 3 ■ EVENT HANDLING

98

3-21. Determining Which Key Was Pressed

Problem
You want to know which key the user pressed while entering data in an input field; that way it can be
used for validation checks, etc.

Solution
Let’s make an HTML file that contains an input text field and an empty paragraph element, as shown
here:

<body>
<input type="text" class="infobox" />
<p></p>
</body>

The jQuery code to display the numerical code of the key pressed by the user is as shown here:

$(document).ready(function() {
 $('.infobox').keypress(function(event){
 $('p').text('Character typed is: '+event.keyCode);
 });
});

The jQuery for converting numerical code for the key pressed into character format is as follows:

$(document).ready(function() {
 $('.infobox').keypress(function(event){
 $('p').text('Character typed is: '+String.fromCharCode(event.keyCode));
 });
});

How It Works
In the HTML file, we will be using the empty paragraph to display what key is pressed by the user. For
finding out the key pressed by the user, we will be using the keypress() method. So, before we go further
with the application of the keypress() method, let’s understand it and its related methods.

keypress()
keypress() binds the event handler to the specified element that fires when the user presses a key on the
keyboard. The difference between keydown() and keypress() is that if the user repeats any key by
pressing and holding a key, the keydown() event is executed only once whereas the keypress() event is
executed for each inserted character (keydown() is explained more in a moment). Also, the modifier keys
Shift, Ctrl, etc. are recognized by keydown(), but keypress() is not fired by these modifier keys.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 3 ■ EVENT HANDLING

99

.keypress(handler)

.keypress()

Here handler contains the statements that will be executed every time a key is pressed on the
keyboard.

The keypress() method with no parameters is used to trigger the keypress event manually. Like in
the following example, the keypress event on the input text field of the class infobox is invoked manually
when an HTML element of the class button is clicked:

$('.button').click(function(){
 $('.infobox').keypress();
});

To serve the keypress() event invoked by the preceding code, we need to write the event-handling
function to do the desired task.

In order to know which key was pressed, we need to use the event object that is passed to the event-
handler function. The event object contains information about the event. The keyCode attribute of the
event object holds the numerical code of the key pressed.

In the jQuery code, the statement

$('.infobox').keypress(function(event){

binds the keypress event to the input text field so as to listen to any key that is pressed.

The statement

$('p').text('Character typed is: '+event.keyCode);

makes use of the keyCode attribute of the event object (that is passed to the event handler function) on
occurrence of the key press event (in the input text field) to display the numerical code of the key
pressed in the paragraph element. The output that we get is shown in Figure 3-41.

Figure 3-41. The numerical code of the character typed in the text field displayed

We can see in the output that the numerical code of the character k is displayed in the paragraph
element.

To convert the numerical code of the key pressed into character format, we use the fromCharCode()
method of JavaScript’s String object. So let’s pass the keyCode attribute of the event object to the
fromCharCode() method to display the key pressed in character format. The output that we get is as
shown in Figure 3-42.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 3 ■ EVENT HANDLING

100

Figure 3-42. The character typed in the text field, displayed in character format

keydown()
keydown() binds the event handler to the specified element that fires when the user first presses a key on
the keyboard:

.keydown(handler)
.keydown()

Here handler contains the statements that we want to execute when a key is pressed on the
keyboard.

The keydown() method with no parameters is used to trigger the keydown event manually. In the
following example, the keydown event on the input text field of class infobox is invoked manually when
an HTML element of the class button is clicked:

$(' .button').click(function(){
 $('.infobox').keydown();
});

To serve the keydown() event invoked by the preceding code, we need to write the event-handling
function to do the desired task.

keyup()
keyup() binds the event handler to the specified element that fires when the user releases a key on the
keyboard.

.keyup(handler)
.keyup()

Here handler contains the statements that we want to execute when a key is released.
The keyup() method with no parameters is used to trigger the keyup event manually. In the

following example, the keyup event on the input text field of the class infobox is invoked manually when
an HTML element of the class button is clicked:

$(' .button').click(function(){
 $('.infobox').keyup();
});

To serve the keyup event invoked by the preceding code, we need to write the event-handling
function to do the desired task.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 3 ■ EVENT HANDLING

101

3-22. Preventing Event Bubbling

Problem
You are facing the problem of event bubbling and want to know how to stop it from giving unexpected
results.

Solution
In order to understand event bubbling we have to assume an HTML file that has a few elements nested
inside one another in the form of a hierarchy as is shown here:

<body>
<div>Div Element
<p>Paragraph Element

Span Element
</p>
</div>
</body>

To understand practically the concept of event bubbling, let’s see the following jQuery code that has
the click event attached to all three elements of the DOM:

$(document).ready(function() {
 $('div').click(function(event){
 alert('You have clicked the div element');
 });

 $('p').click(function(event){
 alert('You have clicked the paragraph element');
 });

 $('span').click(function(event){
 alert('You have clicked the span element');
 });
});

To stop event bubbling and to control where an event should take place, we will modify the jQuery
code as shown here:

$(document).ready(function() {
 $('div').click(function(event){
 var $target=$(event.target);
 if($target.is('div')){
 alert('You have clicked the div element');
 }

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 3 ■ EVENT HANDLING

102

 if($target.is('p')){
 alert('You have clicked the paragraph element');
 }
 if($target.is('span')){
 alert('You have clicked the span element');
 }
 });
});

How It Works
In the HTML file, we can see that the topmost element in the DOM (that is, the root element) is the div
element, followed by the paragraph element (as a child of the div element), and finally the span element.

When an event occurs on any element, the event-handling mechanism first checks whether the
element on which the event has occurred has an event method (with event-handling function) attached
to it. If it does, the statements in the event-handling function (of the attached event method) are
executed. After that, the event-handling mechanism continues to check the parent of the element to see
if it has an event method attached to it and, if so, its event handler is also executed. Again its parent
(parent of parent) is checked, and so on. In other words, event bubbling refers to the process in which
the event that is fired propagates upward in the DOM tree toward the root.

In the first jQuery example, we attach the click event to all three elements. Let's click on the span
element (lowest node in DOM) in that example; the event-handling function of the span element will be
executed. But the event-handling mechanism will not stop at that, but rather will propagate to its
parent—that is, the paragraph element will be checked and since it also has the click event attached to it,
the event-handling function of the paragraph element will also be executed. After the execution of the
event-handling function of the paragraph element, the event-handling function of the root of DOM—the
div element—will also be executed.

Now on execution of the jQuery code, if we click the span element, first we will get the alert message
because of the execution of the event-handler function of the span element, as shown in Figure 3-43.

Figure 3-43. Alert message of the span element displayed on clicking the span element

But after that, the event-handling function of the parent of the span element (that is, the paragraph
element) will also be executed, giving us the alert message shown in Figure 3-44.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 3 ■ EVENT HANDLING

103

Figure 3-44. Alert message of the paragraph element—executed on account of event bubbling

Since event bubbling stops at the root of DOM, the event-handling function of the root (that is, the
div element) will also be executed, giving us the output shown in Figure 3-45.

Figure 3-45. Alert message of the div element—executed on account of event bubbling

Suppose that we click the paragraph element; we will get the alert message of the paragraph
element followed by the alert message of the div element. When we click on the div element, only
the alert message of the div element will be displayed, as there is no parent of the div element to
propagate to.

Now run the jQuery code that stops event bubbling; we have made use of the target attribute of the
event object for controlling the events and to stop event bubbling. Using the target attribute we can
determine which DOM element first received the event and ensure that the event is not propagated to its
parent elements automatically.

We can see in the modified jQuery code that we determine the target (the element where the click
event has occurred) and store it in the $target variable. Then, using if statements, we check, one by
one, which element received the click event, and accordingly we send an alert message.

3-23. Chaining Multiple Activities

Problem
Chaining is a procedure for writing jQuery wrapper methods one after the other so as to perform several
activities in a single statement. You want to use this chaining ability.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 3 ■ EVENT HANDLING

104

Solution
Let’s assume we have an HTML file that has a few HTML elements, as shown here:

<body>
<div>Div Element
<p>Paragraph Element

Span Element
</p>
</div>
</body>

Also, we require a style sheet to apply some CSS style to those HTML elements, so let’s write a style
rule in the style sheet:

.hover{
color: blue ;
background-color:cyan
}

An example of chaining is as follows:

$(document).ready(function() {
 $('div').children().clone().prependTo('div').addClass('hover');
});

How It Works
We can see that the preceding HTML file contains three elements, and it will appear as shown in Figure
3-46.

Figure 3-46. Three elements: div, paragraph, and span

The preceding style sheet contains a style rule: hover to change the foreground and background
color of the HTML element to blue and cyan, respectively.

The preceding code selects the children of the div element—that is, the paragraph and span
elements—and makes their clone (copy). This copy of the paragraph and span element is then added
before the div element. Thereafter, the style rule hover is applied to these inserted (paragraph and span)
elements. So, we see that with chaining ability, we can do so many activities in a single statement. The
output of the preceding jQuery code will appear as shown in Figure 3-47.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 3 ■ EVENT HANDLING

105

Figure 3-47. The clone of children of div element inserted beforethe div element, with style applied

Removing Side Effects of Chaining
Chaining deals with the latest wrapped set. As in the preceding jQuery code, we see that the clone of the
children of the div element is made—the side effect is that there are two wrapped sets now; one is the
original child (of the div element) and the other is their clone. In this case, the clone of the children will
be inserted before the div element and the CSS class hover is applied to this cloned wrapped set only,
not to the original wrapped set. In order to consider the original wrapped set—that is, if we want to apply
the CSS style rule to the children of the div element (and not to its clone)—we make use of the end()
method.

The end() method, when used in a jQuery chain, backs up to the previous wrapped set and returns it
as a value so that the subsequent operations can be applied to it.

Let’s modify our earlier jQuery code to apply the hover style rule to the actual children of the div
element (and not to its clone):

$(document).ready(function() {
 $('div').children().clone().prependTo('div').end().addClass('hover');
});

We can see in the preceding jQuery code that the clone of the children of the div element is made—
a copy of the paragraph and span elements is made and is added at the beginning of the div element.
However, because of the end() command, the original wrapped set (the actual children of the div
element) is then returned (and not its clone), and the hover style is applied to that set instead of to the
clone. The output is shown in Figure 3-48.

Figure 3-48. The hover style rule applied to actual children of the div element instead of to their clone

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 3 ■ EVENT HANDLING

106

Summary
In this chapter we covered different mouse and keyboard events, such as click, dblclick keypress,
keydown, and keyup, and we applied various effects to images (e.g. fade in, fade out, slide up etc.). In the
next chapter, we will review Form validation Recipes which show how different fields of a form can be
validated. We’ll also go over the different techiques of finding which HTML element in the form is
selected (e.g. whether it is checked or unchecked by the user). Finally, we will be learning how to disable
or enable different form elements.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

C H A P T E R 4

■ ■ ■

107

Form Validation

In this chapter we’ll see different ways of validating forms. We will be covering following recipes, from
basic blank-field checking through to more complex password and field-disabling techniques:

• Confirming a required field is not left blank

• Validating a numerical field

• Validating phone numbers

• Validating a user ID

• Validating a date

• Validating an email address

• Checking whether a checkbox is checked

• Finding whether a radio button is selected

• Checking whether an option in a select element is selected

• Applying styles to options and a form button

• Checking and unchecking all checkboxes together

• Validating two fields

• Matching the password and confirm password fields

• Disabling certain fields

• Validating a complete form

• Serializing form data

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 4 ■ FORM VALIDATION

108

4-1. Confirming a Required Field Is Not Left Blank

Problem
You have a text-input field in a form and you want to ensure its not left blank. The user will get an error
message unless he enters the required data in the field.

Solution
Let’s make an HTML file that displays a form containing a label, a text field, an error message, and a
Submit button, as shown here:

<body>
<form id="signup" method="post" action="">
<div>User Id *<input type="text" class="infobox" name="userid"
/> This field cannot be blank</div>
<input class="submit" type="submit" value="Submit">
</form>
</body>

Since the purpose of the HTML form is to validate on the text-input field and not to send the entered
data to some other page for processing, the action attribute of the form is left blank. The form is
assigned an ID of signup and method is set to post—though it will have no effect on our validation
procedure.

The label message User Id is enclosed in a span element of the class label. The text-input field is
assigned a class name infobox and the error message (This field cannot be blank) is stored as a span
element of the class error. Finally, the Submit button is assigned the class submit.

The reasons for assigning the classes to all four items of the form is to apply the properties defined
in the class selectors label, infobox, error, and submit (defined in the style sheet style.css) to be
applied automatically to the respective four items of the form. The style sheet with the respective class
selectors is shown here:

style.css
.label {float: left; width: 120px; }
.infobox {width: 200px; }
.error { color: red; padding-left: 10px; }
.submit { margin-left: 125px; margin-top: 10px;}

The jQuery code to confirm that the text-input field is not left blank and to display an error message
if it is left blank is shown here:

$(document).ready(function() {
 $('.error').hide();
 $('.submit').click(function(event){
 var data=$('.infobox').val();
 var len=data.length;
 if(len<1)
 {

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 4 ■ FORM VALIDATION

109

 $('.error').show();
 event.preventDefault();
 }
 else
 {
 $('.error').hide();
 }
 });
});

How It Works
The class selector label has the float property set to left so that the next item (text-input field) may
appear to its right, and its width property is set to 120px to give enough space for the label to display. The
class selector infobox has its width property set to value 200px—the size of the text-input field. The class
selector error has its color property set to red to highlight it, and padding from left is set to 10px to
maintain a good distance from the text-input field. The class selector .submit has its margin-left and
margin-top properties set to 125px and 10px, respectively, to set the distance from the left boundary of
the browser window and from the text-input field, as we want the Submit button to appear below the
text-input field.

In the preceding jQuery code, we can see that initially the error message is hidden and a click event
is attached to the Submit button. In the event-handling function of the click event, we extract the data
entered by the user in the text-input field (assigned the class name infobox) and store it in a variable:
data. We find out the length of the data, and if it is less than 1 (which means the user has not entered
anything in the text field), we make the error message visible on the screen. The method
preventDefault() of the event object is used to keep the Submit button from sending to the server the
data entered by the user.

On execution of the jQuery code, we will get a form displayed with a text label, a text-input field, and
a Submit button. If we select the Submit button without entering anything in the text field, we will get an
error message—This field cannot be blank—displayed in red beside the text field, as shown in Figure 4-1.

Figure 4-1. Error message displayed when the text-input field is left blank

If we enter some name in the text field and select the Submit button, we will not get any error
message, as indicated here:

Figure 4-2. No error message appears if data is entered in the text-input field.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 4 ■ FORM VALIDATION

110

4-2. Validating a Numerical Field

Problem
You have a text field for entering the age of the person and you want to confirm that a numerical value is
entered in it and no character or symbol is entered.

Solution
The HTML code to display the form that contains a label, a text-input field, an error message, and a
Submit button is as shown here:

<body>
<form id="signup" method="post" action="">
 <div>Enter Age <input type="text" class="infobox" name="age"
/> Only numericals allowed</div>
<input class="submit" type="submit" value="Submit">
</form>
</body>

Since the purpose of the HTML form is to validate on the text-input field and not to send the entered
data to some other page for processing, the action attribute of the form is left blank. The form is
assigned an ID of signup and method is set to post—though it will have no effect on our validation
procedure.

The label message User Id is enclosed in a span element of the class label. The text-input field is
assigned a class name infobox and the error message (“This field cannot be blank”) is stored as a span
element of the class error. Finally, the Submit button is assigned the class submit.

The reasons for assigning the classes to all four items of the form is to apply the properties defined
in the class selectors label, infobox, error, and submit (defined in the style sheet style.css) to be
applied automatically to the respective four items of the form. The style sheet with the class selectors is
shown here:

style.css
.label {float: left; width: 120px; }
.infobox {width: 200px; }
.error { color: red; padding-left: 10px; }
.submit { margin-left: 125px; margin-top: 10px;}

Allowing Only Numerical Values
The jQuery code to check that the age entered in the text field contains only numerical values, and that
no text or symbols have been entered, is shown here:

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 4 ■ FORM VALIDATION

111

$(document).ready(function() {
 $('.error').hide();
 $('.submit').click(function(event){
 var data=$('.infobox').val();
 var len=data.length;
 var c;
 for(var i=0;i<len;i++)
 {
 c=data.charAt(i).charCodeAt(0);
 if(c <48 || c >57)
 {
 $('.error').show();
 event.preventDefault();
 break;
 }
 else
 {
 $('.error').hide();
 }
 }
 });
});

Allowing Negative Values
Sometimes while entering numerical values, we come across negative values. In the preceding jQuery
code, no symbol is allowed; that is, we cannot use a hyphen or minus sign. Hence we cannot enter a
negative value in the text field with the preceding code. Let’s modify our jQuery code to accept negative
values also:

$(document).ready(function() {
 $('.error').hide();
 $('.submit').click(function(event){
 var data=$('.infobox').val();
 var len=data.length;
 var c;
 for(var i=0;i<len;i++)
 {
 c=data.charAt(i).charCodeAt(0);
 if(c==45 && i==0)
 {
 continue;
 }
 if(c <48 || c >57)
 {
 $('.error').show();
 event.preventDefault();
 break;
 }

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 4 ■ FORM VALIDATION

112

 else
 {
 $('.error').hide();
 }
 }
 });
 });

Allowing a Range of Values
You want the allowable age range for your form to be 5 to 99; that is, if an age below or above the given
range is entered, you want an error message to be displayed on the screen.

The jQuery code for entering a numerical value between 5 and 99 is shown here:

$(document).ready(function() {
 $('.error').hide();
 $('.submit').click(function(event){
 var data=$('.infobox').val();
 var len=data.length;
 var c=0;
 var age=0;
 var flag=0;
 for(var i=0;i<len;i++)
 {
 c=data.charAt(i).charCodeAt(0);
 if(c <48 || c >57)
 {
 $('.error').show();
 flag=1;
 event.preventDefault();
 break;
 }
 else
 {
 $('.error').hide();
 }
 }

 if(flag==0)
 {
 age=parseInt(data);
 if(age<5 || age>99)
 {
 $('.error').show();
 $('.error').text('Invalid Age. Please enter the age within the range 5 to 99');
 event.preventDefault();
 }
 }
 });
 });

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 4 ■ FORM VALIDATION

113

How It Works
We can see in the first HTML file that the label is set to display the text Enter Age and an error message is
assigned the text: Only numerals allowed. Also, the label, text-input field, error message, and Submit
button are assigned different class names (label, infobox, error, and submit) so as to apply the
properties defined in the class selectors (defined in the style sheet style.css) to them. In this recipe, we
use the same external style sheet—style.css—that we used in Recipe 4-1.

We can see in the jQuery code in the section “Allowing Only Numerical Values” that the error
message is initially set to invisible. The click event is attached to the Submit button so as to execute its
event-handling function if the Submit button is clicked. In the event-handling function, we see that the
data in the text-input field (the text field is enclosed in the span element of class infobox) is retrieved and
is stored in a variable called data. Its length is calculated and a for loop is executed up till the length of
the input data to parse each of its individual characters.

In the for loop, we take one character at a time (of the input data), and with the help of
charCodeAt(), find its ASCII value. If the ASCII value of the character is below the numeral 0 (ASCII value
of 48) or more than the numeral 9 (ASCII value of 57), meaning it is not a numerical value, then we make
the error message visible on the screen and exit from the loop. The preventDefault() method of the
event object is used to prevent the data entered by the user from being sent to the server or the user
navigating to the target form.

On execution of the program, if we enter some characters after the age, we get the error message
“Only numerals allowed”, as shown in Figure 4-3.

Figure 4-3. Error message displayed if a character appears after the age

Even if the character appears in between the digits, the error will be displayed, as shown in
Figure 4-4.

Figure 4-4. Error message displayed if the character appears between the numerals

Also, if we add any symbol, like a minus sign or an underscore, we get the error message, as shown
in Figure 4-5.

Figure 4-5. Error message displayed on entering symbols

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 4 ■ FORM VALIDATION

114

We can see in the jQuery code in the “Allowing Negative Values” section that the error message is
hidden at the beginning. The event-handling function of the click event attached to the Submit button
extracts the data from the text-input field and stores it in variable data. Each individual character stored
in data is parsed with the help of a for loop. In the loop, we convert each character in the data variable to
its ASCII value and check whether the first character has an ASCII value of 45 (which is the ASCII value of
the minus sign), then continue checking the rest of the characters without displaying any error message.
The second condition in the for loop is the one we saw earlier: checking if the characters in the data
variable are numerical values and displaying the error message if not.

In the jQuery code in the “Allowing a Range of Values” section, we first make the error message
invisible. Then we attach the click event to the Submit button. The event-handling function of the click
event does several jobs, such as extracting the numerical value entered in the text-input field (assigned
the class name infobox) and storing it in the variable data. We then find out the length of the data and
execute the loop to parse each of its individual characters. If any of the contents in data has an ASCII
value lower than the numeral 0 (ASCII value of 48) or greater than the numeral 9 (ASCII value of 57), it
means the data variable contains some value other than a numerical value, so we make the error
message visible. Also, we set the value of a variable flag to 1 to indicate that only numbers are allowed,
and we exit from the for loop. If the value of the flag is set to 1, it means there is no point in checking the
range of the numerical value, as it is invalid data.

If the data is a number, we need to check the range of the numerical value; that is, whether it is
between 5 and 99. So, if the value of the flag variable is 0 (after the execution of the for loop; that is, after
inspecting all characters of the data variable), it means the data entered is valid and consist only of
numerals; we then apply the conditional statement that that the numeral may not be less than 5 or
greater than 99, then make the error message visible and set the error message to Invalid Age. The
preventDefault() method of the event object is used for preventing submission of the entered data in
case it is invalid. We may get the error message displayed in Figure 4-6 if the value is not within the range
of 5–99.

Figure 4-6. Error message displayed if the value is not within the range 5 to 99.

4-3. Validating Phone Numbers

Problem
You want to use a phone number field and you want the user to be able to enter only numerals and + or –
signs, and nothing else.

Solution
Let’s make an HTML file that displays a form that consists of label, a text-input field, an error message,
and a Submit button. The HTML appears here:

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 4 ■ FORM VALIDATION

115

<body>
<form id="signup" method="post" action="">
<div>Enter Phone number <input type="text" class="infobox"
name="phone" /> Phone number can contain only numbers, + and -
</div>
<input class="submit" type="submit" value="Submit">
</form>
</body>

All four items of the HTML file are assigned respective class names—label, infobox, error, and
submit—so that the style properties defined in the class selectors specified in the external style sheet
style.css can be automatically applied to these items.

The class selectors defined in the style sheet file are as shown here:

style.css
.label {float: left; width: 150px; }
.infobox {width: 200px; }
.error { color: red; padding-left: 10px; }
.submit { margin-left: 150px; margin-top: 10px;}

The jQuery code to confirm that the text-input field accepts only numerals along with – or + signs
and nothing else is shown here:

$(document).ready(function() {
 $('.error').hide();
 $('.submit').click(function(event){
 var data=$('.infobox').val();
 if(validate_phoneno(data))
 {
 $('.error').hide();
 }
 else
 {
 $('.error').show();
 event.preventDefault();
 }
 });
 });

function validate_phoneno(ph)
{
 var pattern=new RegExp(/^[0-9-+]+$/);
 return pattern.test(ph);
}

How It Works
The class selector label has the float property set to left so that the next item (text-input field) may
appear to its right, and its width property is set to 150px to give enough space for the label message Enter
Phone number to display. The class selector infobox has its width property set to 200px—that ultimately

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 4 ■ FORM VALIDATION

116

becomes the width of the text-input field. The class selector error has its color property set to red to
highlight it, and padding from left is set to 10px to keep the distance from the text-input field. The class
selector .submit has margin-left and margin-top properties set to 150px and 10px, respectively, to set
the distance from the left boundary of the browser window and from the text-input field, as we want the
Submit button to appear just below the text-input field.

We can see in the preceding jQuery code that the error message is made invisible at the beginning.
The click event is attached to the Submit button. In the event-handling function of the click event, the
phone number entered by the user in the text field (that is enclosed in the span element of class name
infobox) is retrieved and stored in the data variable. The data variable is passed to the
validate_phoneno() method for validation.

Here, the contents of the data variable are assigned to the ph parameter of the validate_phoneno()
method. In validate_phoneno(), an instance of the RegExp class is created. The regular expression passed
to the RegExp constructor is /^[0-9-+]+$/, which means the data in the text-input field may begin or end
(^ means beginning and $ means end) with any numerical value from 0 to 9 or with a – or + sign. The +
sign after closing bracket (]) means that this pattern can repeat one or more times; that is, we can enter
the numerals or a – or + sign any number of times in the phone number entered in the text-input field.

validate_phoneno() tests the contents of the ph parameter with the regular expression and returns
true if the contents of the ph variable match the regular expression supplied; otherwise it returns false.
On the basis of the Boolean value returned by validate_phoneno(), the error message is made visible or
invisible. If while entering the phone number we use a symbol other than the + or – sign, we get the error
message Phone number can contain only numbers, + and –, as shown in Figure 4-7.

Figure 4-7. Error message displayed when data other than numerals, +, or – is entered

If the phone number consists of numerals and a + or – sign, it will be considered a valid phone
number and be accepted without displaying any error message, as shown in Figure 4-8.

Figure 4-8. The phone number is considered valid if it consists of numerals and + or – signs

4-4. Validating a User ID

Problem
You want to validate a user ID that can consist of characters, numbers, and underscores, and no other
symbol.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 4 ■ FORM VALIDATION

117

Solution
Let’s make an HTML file that displays a form that contains a label, a text-input field, an error message,
and a Submit button. The text of the label is set to Enter User id and that of the error message is set to
User id can contain only letters, numbers or underscore. These four items are also assigned the class
names as label, infobox, error, and submit, respectively. For these class names, the respective class
selectors are written in the external style sheet. The HTML file will appear as shown here:

<body>
<form id="signup" method="post" action="">
<div>Enter User id <input type="text" class="infobox"
name="userid" /> User id can contain only letters, numbers or
underscore</div>
<input class="submit" type="submit" value="Submit">
</form>
</body>

The class selectors consist of style properties that are automatically applied to the HTML elements
and are defined in the style sheet style.css. We use the same style sheet file (style.css) that we used in
Recipe 4-3.

The jQuery code to accept the user ID that consists of numerals, characters, and underscores only is
shown here:

$(document).ready(function() {
 $('.error').hide();
 $('.submit').click(function(event){
 var data=$('.infobox').val();
 if(validate_userid(data))
 {
 $('.error').hide();
 }
 else
 {
 $('.error').show();
 event.preventDefault();
 }
 });
});

function validate_userid(uid)
{
 var pattern= new RegExp(/^[a-z0-9_]+$/);
 return pattern.test(uid);
}

How It Works
We can see in the preceding jQuery code that the error message is made invisible at the beginning. The
click event is attached to the Submit button. In the event-handling function of the click event, the user
ID entered by the user in the text field (that is enclosed in the span element of the class name infobox) is

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 4 ■ FORM VALIDATION

118

retrieved and stored in the data variable. The data variable is passed to the validate_userid() function
for validation. The contents of the data variable are assigned to the uid parameter of the
validate_userid() method.

In validate_userid(),an instance of the RegExp class is created. The regular expression passed to the
RegExp constructor is /^[a-z0-9_]+$/, which means the user ID entered in the text-input field may begin
or end (^ means beginning and $ means end) with any character from a to z, with a numerical value from
0 to 9, or with an underscore (_) symbol. The + sign after the closing bracket (]) means that this pattern
can repeat one or more times; that is, we can enter the characters, numerals, or underscore any number
of times in the user ID entered in the text-input field.

validate_userid() tests the contents of the uid parameter with the regular expression and returns
true if the contents of the uid variable match the regular expression supplied; otherwise it returns false.
On the basis of the Boolean value returned by the validate_userid() function, the error message is
made visible or invisible. If while entering the user ID we use a symbol other than the underscore,
we may get the error message: User id can contain only letters, numbers or underscore, as shown in
Figure 4-9.

Figure 4-9. Error message displayed if any symbol other than the underscore is used in the user ID

If the user ID consists of characters, numbers or an underscore, it is considered a valid user ID and
is accepted without any error message displayed, as shown in Figure 4-10.

Figure 4-10. The user ID is considered valid if it consists of characters, numerals, and the underscore

symbol.

4-5. Validating a Date

Problem
You want to validate a date in the format mm/dd/yyyy or mm-dd-yyyy. If the date entered does not
match either format, you want to display an error message.

Solution
Let’s make an HTML file that displays a form that contains a label, a text-input field, an error message,
and a Submit button. The text of the label is set to Enter Date of Birth and that of the error message is set

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 4 ■ FORM VALIDATION

119

to Invalid Date. These four items are also assigned the class names label, infobox, error, and submit,
respectively. For these class names, the respective class selectors are written in the external style sheet.
The HTML file may appear as shown here:

<body>
<form id="signup" method="post" action="">
 <div>Enter Date of Birth <input type="text" class="infobox"
name="dob" /> Invalid Date. Correct format is mm/dd/yyyy or mm-dd-yyyy
</div>
<input class="submit" type="submit" value="Submit">
</form>
</body>

The class selectors consist of style properties that are automatically applied to the HTML elements
and are defined in the style sheet style.css. We use the same style sheet file (style.css) that we used in
Recipe 4-3.

The jQuery code to accept the date in the format mm/dd/yyyy or mm-dd-yyyy is shown here:

$(document).ready(function() {
 $('.error').hide();
 $('.submit').click(function(event){
 var data=$('.infobox').val();
 if(validate_date(data))
 {
 $('.error').hide();
 }
 else
 {
 $('.error').show();
 event.preventDefault();
 }
 });
});

function validate_date(date)
{
 var pattern= new RegExp(/\b\d{1,2}[\/-]\d{1,2}[\/-]\d{4}\b/);
 return pattern.test(date);
}

How It Works
The error message is made invisible at the beginning. Then a click event is attached to the Submit
button. In the event-handling function of the click event, the date entered by the user in the text-input
field (that is enclosed in the span element of class name infobox) is retrieved and stored in the data
variable. The data variable is passed to the validate_date() function for validation. The contents of the
data variable are assigned to the date parameter of the validate_date() function. In the validate_date()
function, an instance of RegExp class is created. The regular expression passed to the RegExp constructor
is /\b\d{1,2}[\/-]\d{1,2}[\/-]\d{4}\b/.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 4 ■ FORM VALIDATION

120

The regular expression is explained as follows:

• * \b at the beginning and at the end of a regular expression denotes the word
boundary; that is, the pattern must match exactly .

• * \d{1,2} means there can be 1 or 2 digits.

• * [\/-] means the symbols / and – are allowed.

• * \d{4} means there must be exactly 4 digits.

Hence, the date entered in the text-input field must begin with 1 or 2 digits (month) followed by a /
or – symbol. Then once more there can be 1 or 2 digits (day), followed by a / or – symbol, and finally
there must be exactly 4 digits (year). The validate_date() function tests the contents of the date
parameter with the regular expression and returns true if the contents of the date variable match with
the regular expression supplied; otherwise it returns false. On the basis of the Boolean value returned
by the validate_date() function, the error message is made visible or invisible.

Suppose we make a mistake while entering the date—like instead of four digits, we enter a year of
two digits. We would get an error message Invalid Date, as shown in Figure 4-11.

Figure 4-11. Error message: Invalid Date is displayed if the date is entered incorrectly.

If the date is entered correctly, with either a / or – delimiter used between day, month, and year, it
will be accepted without any error message, as is shown in Figure 4-12

Figure 4-12. The date is accepted without any error message if it follows the specified pattern.

4-6. Validating an Email Address

Problem
You want to validate an email address; that is, you want to confirm that the email address consists of
characters and numbers along with the @ and . (period) symbols.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 4 ■ FORM VALIDATION

121

Solution
Let’s make an HTML file that displays a form that contains a label, a text-input field, an error message,
and a Submit button. The text of the label is set to Enter Email Id and that of error message is set to
Invalid Email Address. These four items are also assigned the class names label, infobox, error, and
submit, respectively. For these class names, the respective class selectors are written in the external style
sheet. The HTML file may appear as shown here:

<body>
<form id="signup" method="post" action="">
 <div>Enter Email Id <input type="text" class="infobox"
name="email" /> Invalid Email Address. Correct email address is the one
that essentially has an @ sign and a . (period) after @ sign. It should not have any other
special symbol except hyphen or underscore and must be terminated by any letter only
</div>
<input class="submit" type="submit" value="Submit">
</form>
</body>

The class selectors consist of style properties that are automatically applied to the HTML elements
and are defined in the style sheet style.css. We use the same style sheet file (style.css) that we used in
Recipe 4-3.

The jQuery code to accept the email address and validate it is shown here:

$(document).ready(function() {
 $('.error').hide();
 $('.submit').click(function(event){
 var data=$('.infobox').val();
 if(valid_email(data))
 {
 $('.error').hide();
 }
 else
 {
 $('.error').show();
 event.preventDefault();
 }
 });
});

function valid_email(email)
{
 var pattern= new RegExp(/^[\w-]+(\.[\w-]+)*@([\w-]+\.)+[a-zA-Z]+$/);
 return pattern.test(email);
}

How It Works
The error message is made invisible at the beginning. Then a click event is attached to the Submit
button. In the event-handling function of the click event, the email address entered by the user in the

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 4 ■ FORM VALIDATION

122

text-input field (that is, enclosed in the span element of class name infobox) is retrieved and is stored in
the data variable. The data variable is passed to the validate_email() function for validation. The
contents of the data variable are assigned to the email parameter of the validate_email() function. In
the validate_email() function, an instance of the RegExp class is created. The regular expression passed
to the RegExp constructor is /^[\w-]+(\.[\w-]+)*@([\w-]+\.)+[a-zA-Z]+$/ .

The regular expression is explained as follows:

• /^[\w-]+ means there can be a letter, number, underscore, or hyphen at the
beginning of the email address. ^ means at the beginning. \w refers to letter,
number, and underscore. The + sign after the closing bracket (]) means one or
more times.

• (\.[\w-]+)* means the pattern consisting of a . (period) followed by one or more
letters, numerals, underscores, and hyphens which can occur for zero or more
times. The symbol * at the end of the pattern means zero or more times.

• @ Means the symbol @ must occur exactly at this point in the email address we are
defining: right after the preceding parts of the expression, and right before the part
we define after it

• ([\w-]+\.)+ means the letter, numeral, underscore, and hyphen can occur one or
more times, followed by a . (period). And this combined sequence (character,
numeral, underscore, hyphen and period) can occur one or more times.

• [a-zA-Z]+$/ is where we define the end of the mail address; so our email address
must here be terminated by any uppercase or lowercase letter that may occur one
or more times. The $ means the end.

Hence, the email address entered in the text-input field must begin with letter(s), number(s),
underscore(s), or hyphen(s) followed by . (period) and again followed by letter(s), number(s),
underscore(s), or hyphen(s) one or more times. After that, there has to be an @ symbol, which is followed
by letter(s), number(s), underscore(s), or hyphen(s) followed by . (period). The email address must then
end with any uppercase or lowercase letter.

The validate_email() function tests the contents of the email parameter with the regular expression
and returns true if the contents of the email parameter matches with the regular expression supplied;
otherwise it returns false. On the basis of the Boolean value returned by the validate_email() function,
the error message is made visible or invisible.

Suppose in the email address we don’t enter . (period); we will get an error message Invalid Email
Address, as is shown in Figure 4-13.

Figure 4-13. Error message displayed in case of invalid email address

If the email address is correctly entered that contains @ and . (period), it will be accepted without
any error message displayed, as shown in Figure 4-14.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 4 ■ FORM VALIDATION

123

Figure 4-14. An email address will be accepted if it contains . and the @ symbol .

4-7. Checking Whether a Checkbox Is Checked

Problem
You have several checkboxes, where each designates an item being sold in a food court. You want to
confirm that at least one of the checkboxes is checked when selecting the Submit button. If none of the
checkboxes is selected, you want to display an error message.

Solution
Let us make an HTML file that displays four checkboxes, an error message, and an empty paragraph
element for displaying the result (total bill of the food items selected). The HTML file may appear as
shown here:

<body>
<form>
<input type="checkbox" id="pizza" name="pizza" value=5 class="infobox">Pizza $5

<input type="checkbox" id="hotdog" name="hotdog" value=2 class="infobox">HotDog $2

<input type="checkbox" id="coke" name="coke" value=1 class="infobox">Coke $1

<input type="checkbox" id="fries" name="fries" value=3 class="infobox">French Fries $3

<p class="error">Select at least one checkbox </p>
<p class="result"></p>
<input class="submit" type="submit" value="Submit">
</form>
</body>

The class selectors to apply the style properties automatically to the HTML elements are defined in
the external style sheet style.css, which may appear as shown here:

style.css
.infobox { margin-top: 15px; }
.error { color: red; }

The jQuery code to see whether a checkbox is checked or not is as shown here:

$(document).ready(function() {
 $('.error').hide();
 $('.submit').click(function(event){
 var count=0;
 var amt=0;

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 4 ■ FORM VALIDATION

124

 $('form').find(':checkbox').each(function(){
 if($(this).is(':checked'))
 {
 count++;
 amt=amt+parseInt($(this).val());
 }
 });
 if(count==0)
 {
 $('p.result').hide();
 $('.error').show();
 }
 else
 {
 $('.error').hide();
 $('p.result').show();
 $('p.result').text('Your bill is $ '+amt);
 }
 event.preventDefault();
 });
});

Checking checkboxes with the length Method
In the following jQuery code we confirm whether any of the checkboxes are checked before using the
loop to inspect each of them individually:

$(document).ready(function() {
 $('.error').hide();
 $('.submit').click(function(event){
 var amt=0;
 var count=$('input:checked').length;
 if(count==0)
 {
 $('p.result').hide();
 $('.error').show();
 }
 else
 {
 $('form').find(':checkbox').each(function(){
 if($(this).is(':checked'))
 {
 amt=amt+parseInt($(this).val());
 }
 });
 $('.error').hide();
 $('p.result').show();
 $('p.result').text('Your bill is $ '+amt);
 }

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 4 ■ FORM VALIDATION

125

 event.preventDefault();
 });
});

How It Works
In the HTML file, we can see that the four checkboxes are assigned the class name infobox and represent
the four items sold in a food court—pizza, hotdog, Coke, and French fries—along with their price. The
paragraph element to display the error message is assigned the class name error and its text displays the
error message Select at least one checkbox. There is one more paragraph element to display the bill of the
food items selected via checkboxes, and it is assigned the class name result and is currently empty. It
will be assigned the text to display the bill via jQuery code.

The style sheet defines two class selectors: infobox to be applied to the checkboxes, and the class
selector error to be applied to the paragraph element that is meant for displaying the error message. The
infobox class selector contains the property margin-top set to 15px to create a sufficient vertical gap
among the checkboxes being displayed. The class selector error contains the style property color set to
value red so that the error message appears in red (so that it appears highlighted)

In the jQuery code, we first set the error message to be invisible. Then we attach a click event to the
Submit button. On selecting the Submit button, its event-handling function will be executed that will do
several tasks. In the event-handling function, we first initialize a counter count set to value 0 (which will
be used for counting the number of checkboxes that are checked) and another variable amt set to 0 that
will be used for totaling the bill of the food items selected. Using the .each() function, we check all the
checkboxes of the form one by one and if any of the checkbox is found checked, we increment the value
of the counter variable count by 1 and the amount of that food item is added to the amt variable. That is,
we are setting the count of the checked checkboxes in the count variable and the total amount of the
selected checkboxes in the amt variable. After inspecting all the checkboxes, if we find that the value of
the count variable is 0, meaning none of the checkbox is selected, we make the paragraph element meant
for displaying the error message visible to display Select at least one checkbox on the screen. If the value of
the count variable is not 0 (meaning at least one of the checkboxes is selected), we make the paragraph
element of the class result visible (and hide the paragraph of the class error) and assign the following
text to it: Your bill is $ +amt, where amt is the variable in which the total amount for the food items
selected is stored.

If we select none of the checkboxes and select the Submit button, an error message Select at least
one checkbox will appear on the screen, as shown in Figure 4-15.

Figure 4-15. Error message displayed if no checkbox is selected

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 4 ■ FORM VALIDATION

126

If we select one checkbox, the error message will become invisible and the bill for the selected food
item will appear as shown in Figure 4-16.

Figure 4-16. The bill for the one food item selected is displayed.

If we select more than one checkbox, the total amount for the selected food items will be displayed
in the form of a bill, as shown in Figure 4-17.

Figure 4-17. The total bill amount of the three food items is displayed.

4-8. Checking Whether a Radio Button Is Selected

Problem
You have several radio buttons and each designates the credit card that the visitor may use to make
payments. You want to confirm that one of the radio buttons is selected by the user when selecting the
Submit button. If none of the radio button is selected, you want to display an error message.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 4 ■ FORM VALIDATION

127

Solution
What follows is an HTML file that displays three radio buttons. Each radio button is assigned a class
name infobox to be used for validation checks and to apply styles. The error message is displayed via a
paragraph element with the class name assigned as error, and the Submit button is assigned a class
name submit. The HTML code may appear as shown here:

<body>
<form>
<input type="radio" name="paymode" class="infobox" value="MasterCard">MasterCard

<input type="radio" name="paymode" class="infobox" value="ANZ Grindlay Card">ANZ Grindlay
Card

<input type="radio" name="paymode" class="infobox" value="Visa Card">Visa Card

<p class="error">Select at least one Option </p>
<p class="result"></p>
<input class="submit" type="submit" value="Submit">
</form>
</body>

The external style sheet may contain the following class selectors:

style.css
.infobox { margin-top: 15px; }
.error { color: red; }

The jQuery code to confirm that at least one radio button is selected is shown here:

1. $(document).ready(function() {
2. $('.error').hide();
3. $('.submit').click(function(event){
4. var amt=0;
5. var count=$('input:checked').length;
6. if(count==0)
7. {
8. $('p.result').hide();
9. $('.error').show();
10. }
11. else
12. {
13. $('.error').hide();
14. $('p.result').show();
15. $('p.result').text('You have selected
'+$('input:checked').attr("value"));
16. }
17. event.preventDefault();
18. });
19. });

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 4 ■ FORM VALIDATION

128

How It Works
In the style sheet file, the class selector infobox contains the margin-top property set to 15px to keep a
good amount of spacing between radio buttons, and the class selector error is for assigning the red color
to the error messages.

The explanation of the jQuery code statements is shown here line by line:

• Line 2. The error message in the paragraph element of the class error is made
hidden.

• Line 3. The click event is attached to the Submit button.

• Line 5. Here we’re finding out the count of the radio button that is checked (if any)
and storing it in the count variable.

• Line 8. If no radio button is selected, hide the paragraph element of the class
result (meant to display the name of the credit card selected).

• Line 9. An error message in the paragraph element of the class error is displayed if
no radio button is selected.

• Line 15. Assign the text You have selected n, where n is the value of the radio
button selected.

If we select the Submit button without selecting any radio button, we may get the error message
Select at least one Option, as shown in Figure 4-18.

Figure 4-18. Error message displayed if no radio button is selected

If we select a radio button and select the Submit button, a message confirms the name of the credit
card selected, as shown in Figure 4-19.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 4 ■ FORM VALIDATION

129

Figure 4-19. A message confirms selection of the radio button.

4-9. Checking Whether an Option in a Select Element Is
Selected

Problem
You have a drop-down list (select element) showing some food items. You want to confirm that the user
selected an option from the drop-down list when selecting the Submit button; if no option is selected, an
error message is displayed.

Solution
Following is a HTML file that displays a drop-down list box containing a few food items. The select
element, with the help of which the drop-down list is displayed, is assigned the class name infobox so as
to apply the style properties defined in the class selector infobox (written in the style sheet file
style.css). The label message Select the Food Item is displayed via the span element with the class name
label. The error message is displayed via the paragraph element with the class name assigned as error,
and the Submit button is assigned a class name submit. The HTML code may appear as shown here:

<body>
<form>
Select the Food Item
<select id="food" class="infobox">
<option value="0">Select a Food</option>
<option value="Pizza $5">Pizza $5</option>
<option value="HotDog $2">HotDog $2</option>
<option value="Coke $1">Coke $1</option>
<option value="French Fries $3">French Fries $3</option>
</select>
<p class="error">You have not selected any Option</p>
<p class="result"></p>
<input class="submit" type="submit" value="Submit">
</form>
</body>

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 4 ■ FORM VALIDATION

130

The external style sheet may contain the following class selectors that will be automatically applied
to the respective HTML elements of the specified class:

style.css
.label {float: left; width: 150px; }
.infobox {width: 150px; }
.error { color: red; padding-left: 10px; }
.submit { margin-left: 150px; margin-top: 10px;}

The jQuery code to confirm that the option from the drop-down list is selected is shown here:

$(document).ready(function() {
 $('.error').hide();
 $('.submit').click(function(event){
 var count=$('select option:selected').val();
 if(count==0)
 {
 $('p.result').hide();
 $('.error').show();
 }
 else
 {
 $('.error').hide();
 $('p.result').show();
 $('p.result').text('You have selected '+$('select
option:selected').text());
 }
 event.preventDefault();
 });
});

How It Works
In the style sheet file, the class selector label contains the float property set to left so as to make the
label appear on the left (creating space for the drop-down list to appear on the right). The width property
is set to 150px to define the width that the label can consume. The class selector infobox contains the
width property set to 150px to specify the width for the drop-down list, and the class selector error is for
assigning the red color to the error message and for making the error message appear at the distance of
10px from the left side of the browser window. The class selector submit contains the margin-left
property set to 150px to make the Submit button appear at the distance of 150px from the left side of the
browser window (so that it appears below the drop-down list), and margin-top property is set to 10px to
keep some spacing from the above element that may appear (error or result message).

In the jQuery code, we initially hide the paragraph element of the class error meant to display the
error message. Then we attach a click event to the Submit button. The statement

var count=$(select option:selected).val();

retrieves the value of the option selected from the select element and stores it in variable count. If the
value of count is 0, meaning the user has not selected any option, we make the error message appear on
the screen by making the paragraph element of the class error visible, and if the value of the count

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 4 ■ FORM VALIDATION

131

variable is nonzero, we make the paragraph element of the class result display the result using the
following statement:

You have selected +$(select option:selected).text());

which displays the text of the option that is selected from the select element.

On execution, if we press the Submit button without selecting any option from the select element,
we get an error message You have not selected any Option, as shown in Figure 4-20.

Figure 4-20. Error message displayed if no option is selected from the select element

If we select any option from the list and select the Submit button, we get the message showing the
option selected, as shown in Figure 4-21.

Figure 4-21. The text of the selected option is displayed.

Multiple Select
Let’s modify the preceding solution to allow visitors to select more than one option from the select
element. To select more than one option from the select element, use the MULTIPLE attribute along with
the select element as shown here:

<body>
<form>
Select the Food Item
<select id="food" class="infobox" MULTIPLE>
<option value="0" selected="0">Select a Food</option>
<option value="Pizza $5">Pizza $5</option>
<option value="HotDog $2">HotDog $2</option>
<option value="Coke $1">Coke $1</option>
<option value="French Fries $3">French Fries $3</option>
</select>
<p class="error">You have not selected any Option </p>

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 4 ■ FORM VALIDATION

132

<p class="result"></p>
<input class="submit" type="submit" value="Submit">
</form>
</body>

The MULTIPLE attribute when attached with select element will allow us to select more than one
option (making use of the Ctrl or Shift key). Using the same jQuery code and style sheet, we will get a
message displaying all the options selected by the user from the select element, as shown in Figure
4-22.

Figure 4-22. Text details all selected options, displayed with no space in between.

We can see that the options selected are displayed without any space in between. To separate the
options with a comma (,) in between, we modify the jQuery code as shown here:

$(document).ready(function() {
 $('.error').hide();
 $('.submit').click(function(event){
 var selectedopts="";
 var count=$('select option:selected').val();
 if(count==0)
 {
 $('p.result').hide();
 $('.error').show();
 }
 else
 {
 $('select option:selected').each(function(){
 selectedopts+=$(this).text()+",";
 });
 $('.error').hide();
 $('p.result').show();
 $('p.result').text('You have selected '+ selectedopts);
 }
 event.preventDefault();
 });
});

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 4 ■ FORM VALIDATION

133

We have defined a string variable selectedopts in the preceding jQuery code and all the options
selected from the select element are picked up by using the .each() method. We concatenate them to
the selectedopts variables along with a comma. When the text of all the selected options is added to the
selectedopts variable, we display its contents via the paragraph element of the class result. The output
that we may get is shown in Figure 4-23.

Figure 4-23. Text detalis all selected options, displayed with a comma in between.

In case we don’t select any option from the select element and we select the Submit button, we
may get the error message shown in Figure 4-24.

Figure 4-24. Error message displayed if no option is selected

4-10. Applying Styles to Options and a Form Button

Problem
You have a drop-down list (select element) showing food items and you want to apply styles to the
options of the select element.

Solution
For this recipe, we will be using the same HTML file that we created in Recipe 4-9. In the style sheet we
need to add one type selector, option, to apply its style properties to all the options of the select element
automatically, and also a CSS class .meal to apply style to the odd-numbered options of the select
element. The style sheet may appear as shown here:

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 4 ■ FORM VALIDATION

134

style.css
.label {float: left; width: 150px; }
.infobox {width: 150px; }
.error { color: red; padding-left: 10px; }
.submit { margin-left: 150px; margin-top: 10px;}

option{
background-color:red;
color:white;
}

.meal{
background-color:cyan;
color:blue;
}

To make the options appear colorful, we will be applying different styles to even-numbered and
odd-numbered options of the select element. The type selector option will apply style properties to all
the options of the select element, setting their background color to red and the foreground color to
white. The style rule meal will be applied to only odd-numbered options of the select elements via
jQuery code, setting their background color to cyan and foreground color to blue.

To apply the style rule meal to the odd-numbered options of the select element, we need to add the
following statement in jQuery code:
$('option:odd').addClass('meal');

The overall jQuery code may appear as shown here (for details of the validation logic, please see
Recipe 4-9):

$(document).ready(function() {
 $('.error').hide();
 $('option:odd').addClass('meal');
 $('.submit').click(function(event){
 var selectedopts="";
 var count=$('select option:selected').val();
 if(count==0)
 {
 $('p.result').hide();
 $('.error').show();
 }
 else
 {
 $('select option:selected').each(function(){
 selectedopts+=$(this).text()+",";
 });
 $('.error').hide();
 $('p.result').show();
 $('p.result').text('You have selected '+ selectedopts);
 }
 event.preventDefault();
 });
});

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 4 ■ FORM VALIDATION

135

How It Works
On execution of the preceding jQuery code, we find that even-numbered and odd-numbered options of
the select element appear in different foreground and background colors, as shown in Figure 4-25.

Figure 4-25. Styles applied to options of the select element

Styling the Form Button
Let us apply styles to the Submit button to make it appear attractive. For this, we need to modify the
style properties of the class selector .submit defined in the style sheet style.css, as shown here:

style.css
.label {float: left; width: 150px; }
.infobox {width: 150px; }
.error { color: red; padding-left: 10px; }
.submit { margin-left: 150px; margin-top: 10px;font-size:1.5em;background-
color:green;color:blue;}

option{
background-color:red;
color:white;
}

.meal{
background-color:cyan;
color:blue;
}

We can see that the class selector .submit contains several properties:

• The margin-left property is set to 150px to make it appear at the distance of 150px
from the left boundary of the browser window (below the select element).

• The margin-top property is set to 10px to create some space above the select
element.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 4 ■ FORM VALIDATION

136

• The font-size property is set to 1.5em to increase the font size to 150% of the
default font size.

• The background-color and color properties are set to green and blue, respectively,
to create text color over a green background.

The Submit button may appear as shown in Figure 4-26.

Figure 4-26. Styles applied to the Submit button

Creating an Image Submit Button
Let’s now replace the Submit button with an image that will act as Submit button. Before we go ahead
with this solution, we need to have an image file submit.jpg, as shown in Figure 4-27. We also need to
modify the class selector .submit as shown in the following stylesheet file, style.css.

style.css
.label {float: left; width: 150px; }
.infobox {width: 150px; }
.error { color: red; padding-left: 10px; }
.submit { margin-left: 150px; margin-top: 10px;width:150px;height:40px;}

option{
background-color:red;
color:white;
}

.meal{
background-color:cyan;
color:blue;
}

The class selector .submit defines the space of the image (the Submit button) from the left boundary
of the browser window as 150px , the distance from the top element to 10px, and the width and height of
the image itself to 150px and 40px, respectively.

To apply the image in submit.jpg at the place of Submit button, we need to modify the jQuery code
as shown here:

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 4 ■ FORM VALIDATION

137

<body>
<form>
Select the Food Item
<select id="food" class="infobox" MULTIPLE>
<option value="0">Select a Food</option>
<option value="Pizza $5">Pizza $5</option>
<option value="HotDog $2">HotDog $2</option>
<option value="Coke $1">Coke $1</option>
<option value="French Fries $3">French Fries $3</option>
</select>
<p class="error">You have not selected any Option </p>
<p class="result"></p>
<input class="submit" type="image" value="Submit" src="submit.jpg">
</form>
</body>

We can see in the boldface code that by specifying the type attribute as image and specifying the

image file name in the src attribute, we make the Submit button appear in the form of an image, as
shown in Figure 4-27.

Figure 4-27. Image applied to the Submit button

4-11. Checking and Unchecking All Checkboxes Together

Problem
You have several checkboxes, where each designates an item being sold in a food court. You want a
Check All checkbox, which, if checked, should check all the other checkboxes; if the Check All box is
unchecked, it must uncheck all the other checkboxes.

Solution
Let’s make an HTML file that displays five checkboxes (four for the food items and one for collectively
checking and unchecking them). The HTML file may appear as shown here:

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 4 ■ FORM VALIDATION

138

<body>
<form>
<div class="infobox"><input type="checkbox" id="checkall">Check/Uncheck all Checkboxes</div>
<div class="infobox"><input type="checkbox" id="pizza" name="pizza" value=5>Pizza $5</div>
<div class="infobox"> <input type="checkbox" id="hotdog" name="hotdog" value=2>HotDog
$2</div>
<div class="infobox"><input type="checkbox" id="coke" name="coke" value=1>Coke $1</div>
<div class="infobox"><input type="checkbox" id="fries" name="fries" value=3>French Fries
$3</div>
</form>
</body>

In the style sheet, we define the class selector: infobox that may appear as shown here:

.infobox{ padding: 5px; }

The padding property is set to 5px to create spacing among the checkboxes.
The jQuery code to check and uncheck all the checkboxes on selecting the Check All checkbox and

to display the bill for the selected food items is shown here:

$(document).ready(function() {
 $('#checkall').click(function(){
 $("input[type='checkbox']").attr('checked', $('#checkall').is(':checked'));
 });
 $('form').find(':checkbox').click(function(){
 var amt=0;
 $('div').filter(':gt(0)').find(':checkbox').each(function(){
 if($('div:gt(0)'))
 {
 if($(this).is(':checked'))
 {
 amt=amt+parseInt($(this).val());
 }
 }
 });
 $('p').remove();
 $('<p>').insertAfter('div:eq(4)');
 $('p').text('Your bill is $ '+amt);
 });
});

How It Works
In the HTML file, we can see that the five checkboxes are assigned the class name infobox, out of which
four checkboxes represent the four items sold in a food court: pizza hot dog, Coke, and French fries,
along with their prices.

In the jQuery code, we attach a click event to the Check All checkbox (checkall):
$("input[type='checkbox']").attr('checked', $('#checkall').is(':checked'));

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 4 ■ FORM VALIDATION

139

To understand the preceding statement, let’s look at the .attr() and .is() methods that are used in
this statement:

.attr()

The .attr() method is used for setting the attributes of the selected element(s).

Syntax:
.attr(attribute, value)
.is()

The .is() method checks the selected element(s) with a selector and returns true if the any of the
selected elements match with the selector; otherwise it returns false.

Syntax:
.is(selector)

The $(#checkall).is(:checked) part of the preceding statement checks if the checkbox of
id:checkall is checked. If the checkbox (id: checkall) is checked, the .is() method will return true;
otherwise it will return false. If the .is() method returns true, all the input elements of type:checkbox
(that is, all the checkboxes) are set to checked mode; all of them will be set to unchecked mode if the
.is() method returns false. Since the user is allowed to check any individual check box, we check the
status of each checkbox that has an index value greater than 0 (because the checkbox with index value 0
is the Check All checkbox). The value of all the checkboxes is added to the amt variable. To display the
bill, we create a paragraph element and add the text Your bill is amt (where amt is the numerical value
contained in the amt variable), and insert this paragraph element after the div element of index value 4;
that is, after the last checkbox.

If we select the Check All checkbox, all the following checkboxes will be checked and the sum of
their values is displayed in the form of a bill, as shown in Figure 4-28.

Figure 4-28. All checkboxes selected by selecting Check/Uncheck all Checkboxes

If the Check All checkbox is unchecked, all the following checkboxes will be unchecked and hence
the bill of amount $0 will be displayed, as shown in Figure 4-29.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 4 ■ FORM VALIDATION

140

Figure 4-29. All checkboxes unselected by unchecking Check/Uncheck all Checkboxes

Users can also select any of the individual checkboxes. The total amount of the selected checkboxes
will appear, as shown in Figure 4-30.

Figure 4-30. Bill of the individually selected food items

4-12. Validating Two Fields

Problem
You have two fields, User Id and Password, and you want to confirm that none of the fields are left blank.
If any of them are left blank, you want an error message to appear on the screen.

Solution
Let’s make an HTML file that displays two labels and two text fields, as shown here:

<body>
<div>User Id *<input type="text" class="infobox" name="userid"
/> This field cannot be blank</div>
<div>Password *<input type="password" class="infobox"
name="password" /> This field cannot be blank</div>
</body>

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 4 ■ FORM VALIDATION

141

The style sheet with the respective class selectors may appear as shown here:

style.css
.label {float: left; width: 120px; }
.infobox {width: 200px; }
.error { color: red; padding-left: 10px; }
div{padding: 5px; }

The jQuery code to test that none of the fields are left blank is as shown here:

$(document).ready(function() {
 $('.error').hide();
 $('.infobox').each(function(){
 $(this).blur(function(){
 var data=$(this).val();
 var len=data.length;
 if(len<1)
 {
 $(this).parent().find('.error').show();
 }
 else
 {
 $(this).parent().find('.error').hide();
 }
 });
 });
});

How It Works
In the HTML file, the label messages User Id* and Password * are enclosed in span elements that are
assigned the class name label. The text-input fields are assigned the class name infobox and the error
message (This field cannot be blank) is stored as a span element of the class error. The reasons for
assigning the classes to all the three items—the label, the text-input field, and the error message—is to
automatically apply the properties defined in the class selectors label, infobox, and error (defined in the
style sheet style.css).

In the style sheet file, the class selector label contains the float property set to left so as to make
the label appears on its left (creating space for the text-input field to appear on its right) and the width
property set to 120px to define the width that the label can consume. The class selector infobox contains
the width property set to 200px to specify the width for the drop-down list, and the class selector error
for assigning a red color to the error messages and for making the error message appear at the distance
of 10px from the left side of the element. The type selector div has the padding property set to 5px for
creating some space among the two div elements, where each div element contains a combination of
label, text-input field, and error message.

In the jQuery code, initially we hide all the error messages (span elements of the class error), then
with the use of the .each() method, we test that if a blur event occurs on any of the text fields, (that is, if
the user loses focus on that field), the value in that text-input field is retrieved and stored in the variable
data. If the data variable is empty—that is, if its length is less than 1—we display the error message
related to that field.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 4 ■ FORM VALIDATION

142

If we leave the focus from the first text field (User Id) and move on to the next field, we get the error
message on first field, as shown in Figure 4-31.

Figure 4-31. Error message displayed if the first field is left blank

And if the second text field is left blank and the focus is lost on it, the error message appears for it, as
shown in Figure 4-32.

Figure 4-32. Error message displayed if the second field is left blank

No error appears if data is provided in both the text-input fields, as shown in Figure 4-33.

Figure 4-33. No error message appears if data is provided in both the text-input fields.

Adding a Submit Button
In the preceding solution, we didn’t add a Submit button. So let’s add a Submit button now and validate
the text-input fields one by one when the user selects the Submit button. Let us add a Submit button to
the preceding HTML file as shown here:

<body>
<form>
<div>User Id *<input type="text" class="infobox" name="userid"
/> This field cannot be blank</div>
<div>Password *<input type="password" class="infobox"
name="password" /> This field cannot be blank</div>
<input class="submit" type="submit" value="Submit">
</form>
</body>

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 4 ■ FORM VALIDATION

143

We need to add a class selector .submit in the style sheet file (style.css) so as to apply the style
properties to the Submit button automatically to make it appear below the text-input fields with a small
bit of spacing from the element just above it. The style.css file may now appear as shown here:

style.css
.label {float: left; width: 120px; }
.infobox {width: 200px; }
.error { color: red; padding-left: 10px; }
.submit { margin-left: 125px; margin-top: 10px;}
div{padding: 5px; }

The jQuery code will be modified to perform validation on occurrence of the click event on the

Submit button, as shown here:

$(document).ready(function() {
 $('.error').hide();
 $('.submit').click(function(event){
 $('.infobox').each(function(){
 var data=$(this).val();
 var len=data.length;
 if(len<1)
 {
 $(this).parent().find('.error').show();
 }
 else
 {
 $(this).parent().find('.error').hide();
 }
 });
 event.preventDefault();
 });
});

Since we are interested in performing validation and not in sending the data (entered in the text-

input field) to the server on selecting the Submit button, we invoke the .preventDefault()method of the
event object to stop sending the data to the server . The event object is automatically sent by JavaScript
to the event-handling function of the click event.

If we leave both the fields blank and select the Submit button, we get two error messages displayed,
as shown in Figure 4-34.

Figure 4-34. Error messages for both the fields appear if both are left blank.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 4 ■ FORM VALIDATION

144

If one of the fields is left blank, its error message will be displayed on selecting the Submit button, as
shown in Figure 4-35.

Figure 4-35. An error message for the first text-input field appears if it is left blank.

4-13. Matching the Password and Confirm Password Fields

Problem
You want to assure that password entered in the Password and Confirm Password fields match exactly.

Solution
Let us make an HTML file that displays three labels and three text fields for Userid, Password, and
Confirm Password, as shown here:

<body>
<form>
<div >User Id <input type="text" class="userid" name="userid"
/></div>
<div >Password <input type="password" class="password"
name="password" /> Password cannot be blank</div>
<div >Confirm Password <input type="password" class="confpass"
name="confpass" /> Password and Confirm Password don't
match</div>
<input class="submit" type="submit" value="Submit">
</form>
</body>

The style sheet with the respective class selectors may appear as shown here:

style.css
.label {float: left; width: 120px; }
.error { color: red; padding-left: 10px; }
.submit { margin-left: 125px; margin-top: 10px;}
div{padding: 5px; }

The jQuery code to test that data entered in the Password and Confirm Password fields are exactly
same is as shown here:

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 4 ■ FORM VALIDATION

145

$(document).ready(function() {
 $('.error').hide();
 $('.submit').click(function(event){
 data=$('.password').val();
 var len=data.length;
 if(len<1)
 {
 $('.password').next().show();
 }
 else
 {
 $('.password').next().hide();
 }
 if($('.password').val() !=$('.confpass').val())
 {
 $('.confpass').next().show();
 }
 else
 {
 $('.confpass').next().hide();
 }
 event.preventDefault();
 });
});

How It Works
In the HTML file, the label messages User Id, Password, and Confirm Password are enclosed in span
elements that are assigned the class name label. The text-input fields are assigned the respective class
names userid, password, and confpass for retrieving the data entered in them via jQuery. Finally, all the
text-input fields are followed by the error message nested inside the span element of the class error.

The reasons of assigning the classes to all the items—label, error message, and Submit button—is to
automatically apply the properties defined in the class selectors label, error, and .submit (defined in the
style sheet style.css). Also, the combination of label, text-input field, and error are nested inside the div
element so that we can apply the style property to the div element to create spacing among each
combination of label, text-input field, and error message.

In the style sheet file, the class selector label contains the float property set to left so as to make
the label appears on the left side of the browser window (creating space for the text-input field to appear
on its right), and the width property is set to 120px to define the width that the label can consume. The
class selector error assigns the red color to the error messages and makes the error message appear at
the distance of 10px from the element on its left. The class selector .submit contains the margin-left
property set to 125px and the margin-top property set to 10px to make it appear at the distance of 125px
from the left border of the browser window (to appear below the text-input fields), and with a gap of
10px from the element just above it. The type selector div has the padding property set to 5px for creating
some space among the div elements, where each div element contains a combination of label, text-
input field, and error message.

Before you can understand the jQuery code, you must understand the usage of the .next() method
that is used in it, so we’ll look at that right now.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 4 ■ FORM VALIDATION

146

.next()
This method returns the very next sibling for each element, and not all next siblings like the nextAll()
method does.

Syntax:
.next(selector)

Here selector is an optional parameter used for specifying the selector expression for matching with
the specified elements.

In the jQuery code, initially we hide the error messages (elements nested inside the span element of
the class error). Thereafter, we attach a click event to the Submit button. In the event-handling function
of the click event, we retrieve the data in the Password field (text-input field of the class password) and
store it in variable data. If the length of the contents in variable data is found to be less than 1—that is, if
the user has not entered anything in the Password field—we make the element next to the password field
(which is the span element of the class error) appear on the screen; that is, we display the error message
Password cannot be blank on the screen.

If the user has not left the password empty, we check whether the data entered in the Password field
and the Confirm Password field (data in elements of class .password and .confpass) are exactly the same.
If the two don’t match, we display the error message (which is the element next to the Confirm Password
field) Password and Confirm Password don’t match. We also invoke the preventDefault() method of the
event object to prevent the data entered by the user from sending it to the server, as we are mainly
interested in confirming that the data entered in Password and Confirm Password fields match.

On execution of the jQuery code, if we leave the Password field blank and select the Submit button,
we get the error message Password cannot be blank, as shown in Figure 4-36.

Figure 4-36. The error message that appears if a password is not entered

If the contents of the Password and Confirm Password fields don’t match, we get the error message
Password and Confirm Password don’t match, as shown in Figure 4-37.

Figure 4-37. The error message that appears if Password and Confirm Password don’t match

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 4 ■ FORM VALIDATION

147

4-14. Disabling Certain Fields

Problem
You want the user to fill the User Id, Password, and Confirm Password fields. If the user enters invalid
data or leaves any field blank, you want not only to display the error message but also to disable the rest
of the fields until the error is corrected.

Solution
Let’s make use of the same HTML and style sheet file (style.css) that we used in Recipe 4-13. The only
change we will make in that HTML file is to remove the Submit button, as we are going to validate fields
in this example by using the blur() event rather than the click() event. The HTML code is provided
here for reference:

<body>
<form>
<div >User Id <input type="text" class="userid" name="userid"
/> User id cannot be blank</div>
<div >Password <input type="password" class="password"
name="password" /> Password cannot be blank</div>
<div >Confirm Password <input type="password" class="confpass"
name="confpass" /> Password and Confirm Password don't
match</div>
</form>
</body>

The style sheet file style.css will be exactly same as the one used in Recipe 4-13.
Following is the jQuery code that does these things:

• Validates the data entered by the user

• Displays the error messages

• Disables the rest of the fields if data is skipped or some invalid data is entered in
any field

$(document).ready(function() {
 $('.error').hide();
 $('.userid').blur(function(){
 data=$('.userid').val();
 var len=data.length;
 if(len<1)
 {
 $('.userid').next().show();
 $('.password').attr('disabled',true);
 $('.confpass').attr('disabled',true);
 }

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 4 ■ FORM VALIDATION

148

 else
 {
 $('.userid').next().hide();
 $('.password').removeAttr('disabled');
 $('.confpass').removeAttr('disabled');
 }
 });

 $('.password').blur(function(){
 data=$('.password').val();
 var len=data.length;
 if(len<1)
 {
 $('.password').next().show();
 $('.confpass').attr('disabled',true);
 }
 else
 {
 $('.password').next().hide();
 $('.confpass').removeAttr('disabled');
 }
 });

 $('.confpass').blur(function(){
 if($('.password').val() !=$('.confpass').val())
 {
 $('.confpass').next().show();
 }
 else
 {
 $('.confpass').next().hide();
 }
 });
});

How It Works
Initially we hide the error messages (elements nested inside the span element of the class error).
Thereafter, we check if the blur() event has occurred on the text-input field of class userid; that is,
whether the focus is lost on the User Id field. If yes, we retrieve the data entered by the user in that field
and store it in variable data. If the length of the contents in the variable data is found to be less than 1—
that is, if the User Id field is left blank—we make the element next to the User Id field (which is the span
element of the class error) appear on the screen; we display the error message User id cannot be blank
on the screen. Beside this, we also use the following two statements:

$('.password').attr('disabled',true);
$('.confpass').attr('disabled',true);

to disable the Password and Confirm Passwords fields (two input fields of the classes password and
confpass); that is, until and unless the user enters the User ID, both of the fields will be disabled. When

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 4 ■ FORM VALIDATION

149

the user enters some data in the User Id field, both of the disabled fields will be enabled with the
following two statements:

$('.password').removeAttr('disabled');
$('.confpass').removeAttr('disabled');

Similarly, we check if the Password field is left empty. If yes, again we see the error message

Password cannot be blank and the Confirm Password field will be disabled until the user enters some
data in the Password field.

Finally, we check if the data entered in the Password and Confirm Password fields (data in elements
of the.password and .confpass classes) are exactly same. If the two don’t match, we display the error
message (which is the element next to the Confirm Password field) Password and Confirm Password
don’t match.

On execution of the jQuery code, if we leave the User Id field blank and lose focus from it, we get the
error message User id cannot be blank, as shown in Figure 4-38. Also, the rest of the fields will be
disabled; the user will not be able to enter anything in them until the user enters something in the User
Id field:

Figure 4-38. If a user ID is not provided, an error message appears and the remaining fields are disabled.

If the Password field is left blank and we lose focus on it, we get the error message Password cannot
be blank on the screen and also the Confirm Password field will be disabled until something is entered in
the Password field, as shown in Figure 4-39.

Figure 4-39. An error message appers and the Confirm Password field is disabled if a password is not

entered.

4-15. Validating a Complete Form

Problem
You have a form where the user is supposed to provide a lot of information, including user ID, password,
and email address. The user also is supposed to select the food items he want to purchase and select the

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 4 ■ FORM VALIDATION

150

mode of payment (specify the credit card) and designate in which country he lives. You want each field
to be validated as follows:

• The user ID should consist of only characters, numerals, and underscores.

• The password cannot be left blank.

• The email address must contain a period and the @ symbol.

• At least one check box (food item) must be selected.

• The user must select one of the modes of payment.

• The country in which user lives must be selected.

Solution
Let’s make an HTML file that displays labels and fields, as shown in Figure 4-40. We can see that there
are six labels, three text-input fields, four checkboxes, three radio buttons, and one select element. The
HTML code may appear as shown here:

<body>
<form>
<div> User Id <input type="text" class="userid" name="userid"
/>User id can contain only numeral, character or
_(underscore)</div>
<div>Password <input type="password" class="password"
name="password" /> Password cannot be blank</div>
<div>Email Address <input type="text" class="emailadd"
name="emailid" /> Invalid email address</div>
<div>Select Food items
<input type="checkbox" id="pizza"
name="pizza" value=5 class="chkb">Pizza $5

<input type="checkbox" id="hotdog" name="hotdog" value=2 class="chkb">HotDog $2

<input type="checkbox" id="coke" name="coke" value=1 class="chkb">Coke $1

<input type="checkbox" id="fries" name="fries" value=3 class="chkb">French Fries $3

You have not selected any food item</div>
<div>Mode of Payment
<input type="radio" name="paymode"
class="radiobtn" value="MasterCard">MasterCard

<input type="radio" name="paymode" class="radiobtn" value="ANZ Grindlay Card">ANZ Grindlay
Card

<input type="radio" name="paymode" class="radiobtn" value="Visa Card">Visa Card

You have not selected any payment method</div>
<div>Country<select id="country" class="infobox">
<option value="0">Select a Country</option>
<option value="USA">USA</option>
<option value="United Kingdom">United Kingdom</option>
<option value="India">India</option>
<option value="China">China</option>
</select>

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 4 ■ FORM VALIDATION

151

 Please select the country</div>
<input class="submit" type="submit" value="Submit">
</form>
</body>
</html>

The style sheet file to apply style properties to the HTML elements may appear as shown here:

style.css
.label {float: left; width: 120px; }
.infobox {width: 120px; }
.error { color: red; padding-left: 10px; }
.submit { margin-left: 125px; margin-top: 10px;}
div{padding: 5px; }
.chkb { margin-left: 125px; margin-top: 10px;}
.radiobtn { margin-left: 125px; margin-top: 10px;}

The jQuery code to validate all of the fields is shown here:

$(document).ready(function() {
 $('.error').hide();
 $('.fooderror').addClass('error');
 $('.fooderror').hide();
 $('.payerror').addClass('error');
 $('.payerror').hide();

 $('.submit').click(function(event){
 var data=$('.userid').val();
 if(validate_userid(data))
 {
 $('.userid').next().hide();
 }
 else
 {
 $('.userid').next().show();
 }

 data=$('.password').val();
 var len=data.length;
 if(len<1)
 {
 $('.password').next().show();
 }
 else
 {
 $('.password').next().hide();
 }

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 4 ■ FORM VALIDATION

152

 data=$('.emailadd').val();
 if(valid_email(data))
 {
 $('.emailadd').next().hide();
 }
 else
 {
 $('.emailadd').next().show();
 }

 var count=0;
 $('div').find(':checkbox').each(function(){
 if($(this).is(':checked'))
 {
 count++;
 }
 });
 if(count==0)
 {
 $('.fooderror').css({'margin-left':250}).show();
 }
 else
 {
 $('.fooderror').hide();
 }

 count=0;
 $('div').find(':radio').each(function(){
 if($(this).is(':checked'))
 {
 count++;
 }
 });
 if(count==0)
 {
 $('.payerror').css({'margin-left':250}).show();
 }
 else
 {
 $('.payerror').hide();
 }

 count=$('select option:selected').val();
 if(count==0)
 {
 $('.infobox').next().show();
 }

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 4 ■ FORM VALIDATION

153

 else
 {
 $('.infobox').next().hide();
 }

 event.preventDefault();
 });
});

function valid_email(email)
{
 var pattern= new RegExp(/^[\w-]+(\.[\w-]+)*@([\w-]+\.)+[a-zA-Z]+$/);
 return pattern.test(email);
}

function validate_userid(uid)
{
 var pattern= new RegExp(/^[a-z0-9_]+$/);
 return pattern.test(uid);
}

How It Works
The meaning of the jQuery code statements is as follows, line by line:

• 2. Hides all the errors related to userid, password, email address, and country. All
these error messages are nested inside the span element of the class error.

• 3-4. Applies the style properties contained in the class selector error to the error
message related to the checkboxes displaying different food items. The style
properties in class selector error apply the red color to the error message. The
error message is made hidden for the time being.

• 5-6. Applies the style properties of the class selector error to the error related to
the radio buttons displaying different modes of payment (it will appear in red).
The error message is made invisible at the beginning.

• 7. Attaches the click event to the Submit button.

• 8. Retrieves the data entered in the User Id field (text-input field of class userid)
and stores it in the variable data.

• 9-16. Validates the user ID in the data variable by passing it to the
validate_userid() function to compare it with the regular expression that tests to
see that the user ID consists only of characters , numerals, or underscores and
nothing else. If the user ID matches with the regular expression supplied, no error
message will be displayed; otherwise, the error message (which is the element next
to the text-input field) User id can contain only numeral, character, or _
(underscore) will be displayed on the screen.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 4 ■ FORM VALIDATION

154

• 17-26. Retrieves the data entered in the Password field (text-input field of the class
password) and stores it in the variable data. We find out the length of the contents
in the data variable. If the length is less than 1—that is, if the Password field is left
empty—then the error message (which is the element next to the text-input field)
Password cannot be blank will be displayed on the screen; otherwise, the error
message is kept in hidden mode.

• 27-35. Retrieves the data entered in the email address field (text-input field of the
class emailadd) and stores it in the variable data. Then we validate the email
address in the data variable by passing it to the validate_email() function to
compare it with the regular expression that tests to see that the email address
begins with an alphanumeric character and contains a period and an @ symbol. If
the email address matches with the regular expression supplied, no error message
will be displayed; otherwise, the error message (which is the element next to the
text-input field) Invalid email address will be displayed on the screen.

• 36-42. Initializes a variable count to 0. Finds out all the checkboxes in the div
element that are checked by making use of the .each() function. The value of the
variable count is incremented by 1 on finding any checked checkbox. In other
words, we are counting the number of checked checkboxes.

• 43-50. If the value in the count variable is 0, meaning no checkbox is selected, the
error message defined by the span element of the class fooderror will be displayed
and the margin-left property will be applied to it with a value of 250px using the
.css() method to make it appear at the distance of 250px from the left border of
the browser window (below other error messages, if any). If the value in the count
variable is not zero, the error message is kept in hidden mode.

• 51-57. Initializes a variable count to 0. Finds out all the radio buttons in the div
element that are checked (selected) by making use of the .each() function. The
value of the variable count is incremented by 1 on finding any checked radio
button.

• 58-65. If the value in the count variable is 0, meaning no radio button is selected,
the error message defined by the span element of the class payerror will be
displayed and the margin-left property will be applied to it with the value 250px
using the .css() method to make it appear at the distance of 250px from the left
border of the browser window (below other error messages, if any). If the value in
the count variable is not zero, the error message is kept in hidden mode.

• 66-74. Finds the number of options that are selected in the select element. The
count of the selected options is stored in the variable count. If the value in the
count variable is 0—that is, if no option is selected from the select element—then
an error message (which is the element next to the select element of the class
infobox) Please select the country will be displayed on the screen; otherwise, the
error message is kept in hidden mode.

• 75. Invokes the preventDefault() method of the event object to prevent the data
entered or selected by the user from being sent to the server, as we are only
interested here in validation of data.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 4 ■ FORM VALIDATION

155

• 78-82. Validates the email address.

• 83-87. Validates the user ID.

On execution of the jQuery code, if we leave all the fields blank and select the Submit button, we will
get the error message shown in Figure 4-40.

Figure 4-40. Error messages appear if no field is filled.

If we enter an invalid user ID or email address and don’t select any checkbox or any option from the
select element, we will get error messages, as shown in Figure 4-41.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 4 ■ FORM VALIDATION

156

Figure 4-41. Error messages if no data or invalid data is provided

On entering all valid data and selecting all the essential options, the data will be accepted without
displaying any error message, as shown in Figure 4-42.

Figure 4-42. Valid data is accepted.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 4 ■ FORM VALIDATION

157

Highlighting the Input Fields and Grouping Common Form Elements
Let’s now group some related elements of the form and also highlight the input fields when they receive
focus. For grouping the form elements and applying captions to them, we need to use two HTML
elements: Fieldset and Legend:

• The <fieldset> tag is used for grouping a few form elements together. It draws a
box around the grouped elements.

• The <legend> tag is used for defining a caption for the form elements that are
grouped by fieldset element.

Let’s apply the fieldset elements to make three groups of the preceding form and apply the legend
element to add a caption Enter Your Information to the form. The modified HTML form may appear as
shown here:

<body>
<form>
<fieldset>
<legend>Enter Your Information</legend>
<div id="u"> User Id <input type="text" class="userid"
name="userid" />User id can contain only numeral, character, or
_(underscore)</div>
<div id="p">Password <input type="password" class="password"
name="password" /> Password cannot be blank</div>
<div>Email Address <input type="text" class="emailadd"
name="emailid" /> Invalid email address</div>
</fieldset>
<fieldset>
<div>Select Food items
<input type="checkbox" id="pizza"
name="pizza" value=5 class="chkb">Pizza $5

<input type="checkbox" id="hotdog" name="hotdog" value=2 class="chkb">HotDog $2

<input type="checkbox" id="coke" name="coke" value=1 class="chkb">Coke $1

<input type="checkbox" id="fries" name="fries" value=3 class="chkb">French Fries $3

You have not selected any food item</div>
<div>Mode of Payment
<input type="radio" name="paymode"
class="radiobtn" value="Master Card">Master Card

<input type="radio" name="paymode" class="radiobtn" value="ANZ Grindlay Card">ANZ Grindlay
Card

<input type="radio" name="paymode" class="radiobtn" value="Visa Card">Visa Card

You have not selected any payment method</div>
</fieldset>
<fieldset>
<div>Country<select id="country" class="infobox">
<option value="0">Select a Country</option>
<option value="USA">USA</option>
<option value="United Kingdom">United Kingdom</option>
<option value="India">India</option>
<option value="China">China</option>
</select>
</fieldset>
 Please select the country</div>

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 4 ■ FORM VALIDATION

158

<input class="submit" type="submit" value="Submit">
</form>
</body>

The <fieldset> marks the beginning of the group and </fieldset> marks the ending of the group.
To define a border for the grouped elements, we define a style property for the type selector

fieldset, and to apply border, foreground, and background color to the caption and to make it appear
bold, we define style properties for the type selector legend. To highlight the text-input field on gaining
focus, we define a style rule .inputs in the style sheet. The style sheet may appear as shown here:

style.css
.submit { margin-left: 125px; margin-top: 10px;}
.label {float: left; width: 120px; }
.infobox {width: 120px; }
.error { color: red; padding-left: 10px; }
div{padding: 5px; }
.chkb { margin-left: 125px; margin-top: 10px;}
.radiobtn { margin-left: 125px; margin-top: 10px;}
.inputs{background-color:cyan}

fieldset{
border:1px solid #888;
}

legend{
border:1px solid #888;
background-color:cyan;
color:blue;
font-weight:bold;
padding:.5em
}

To apply the style properties defined in the style rule inputs to the text-input fields User Id,
Password, and Email Address, we add few statements to the preceding jQuery code. Those statements
are shown in bold in the following jQuery code. The rest of the code is exactly the same.

$(document).ready(function() {
 $('.error').hide();
 $('.userid').focus(function(){
 $(this).addClass('inputs');
 });

 $('.password').focus(function(){
 $(this).addClass('inputs');
 });

 $('.emailadd').focus(function(){
 $(this).addClass('inputs');
 });

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 4 ■ FORM VALIDATION

159

 $('.fooderror').addClass('error');
 $('.fooderror').hide();
 $('.payerror').addClass('error');
 $('.payerror').hide();

 $('.submit').click(function(event){
 var data=$('.userid').val();
 if(validate_userid(data))
 {
 $('.userid').next().hide();
 }
 else
 {
 $('.userid').next().show();
 }

 data=$('.password').val();
 var len=data.length;
 if(len<1)
 {
 $('.password').next().show();
 }
 else
 {
 $('.password').next().hide();
 }

 data=$('.emailadd').val();
 if(valid_email(data))
 {
 $('.emailadd').next().hide();
 }
 else
 {
 $('.emailadd').next().show();
 }

 var count=0;
 $('div').find(':checkbox').each(function(){
 if($(this).is(':checked'))
 {
 count++;
 }
 });
 if(count==0)
 {
 $('.fooderror').css({'margin-left':250}).show();
 }

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 4 ■ FORM VALIDATION

160

 else
 {
 $('.fooderror').hide();
 }

 count=0;
 $('div').find(':radio').each(function(){
 if($(this).is(':checked'))
 {
 count++;
 }
 });
 if(count==0)
 {
 $('.payerror').css({'margin-left':250}).show();
 }
 else
 {
 $('.payerror').hide();
 }

 count=$('select option:selected').val();
 if(count==0)
 {
 $('.infobox').next().show();
 }
 else
 {
 $('.infobox').next().hide();
 }

 event.preventDefault();
 });
});

function valid_email(email)
{
 var pattern= new RegExp(/^[\w-]+(\.[\w-]+)*@([\w-]+\.)+[a-zA-Z]+$/);
 return pattern.test(email);
}

function validate_userid(uid)
{
 var pattern= new RegExp(/^[a-z0-9_]+$/);
 return pattern.test(uid);
}

On execution of preceding jQuery code, we may get the output shown in Figure 4-43.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 4 ■ FORM VALIDATION

161

Figure 4-43. Grouping common elements of the form

4-16. Serializing Form Data

Problem
You need to see how form elements are actually encoded in a project.

Solution
For this recipe, we will make use of an HTML file and style sheet file as shown here.

<body>
 <form>
 Enter user id
 <input type="text" name="userid" class="userid"/>

 Enter email address
 <input type="text" name="emailadd" class="emailadd"/>

 <input type="submit" id="submit"/>
 </form>

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 4 ■ FORM VALIDATION

162

<div id="message"></div>
</body>

You can see that the above form contains two labels, two input text fields, two span elements, a

submit button and an empty div element. We will expose how the data entered in the two input text
fields is encoded. The encoded data will be displayed in the div element message. To provide the width,
position, and margin spacing details of these HTML elements, we make use of the style sheet file
containing the style rules as shown here:

style.css
.label {float: left; width: 120px; }
.userid {width: 200px; }
.emailadd {width: 200px; }
.usrerror { color: red; padding-left: 10px; }
.emerror { color: red; padding-left: 10px; }
#submit { margin-left: 125px; margin-top: 10px;}

The jQuery code to invoke the serialize() method, and display the encoded data, looks like this:

$(document).ready(function() {
$('.usrerror').hide();
$('.emerror').hide();
 $('#submit').click(function () {
 var info = $("form").serialize();
$('#message').text('The format when input elements are serialized: '+info);
return false;
});
});

How It Works
First of all in our jQuery code we hide the errors related to userid and emailadd and then attach a click
event to the submit button. In the event handling function of the click event, we serialize all the form
elements (encode them in the form of a query string) and store that query string in the variable info. The
query string in info is then assigned to the div element message for display. We return false in the click
event because we don’t want the browser to send the information entered in the input text fields to the
server – instead, of course, we want to run the code assigned to its event handling function

The query string generated on entering the userid and email address should appear something
much like you see in Figure 4-44.

Figure 4-44. Serialized output of the input text box

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 4 ■ FORM VALIDATION

163

We can see in the query string generated:

userid=John_123&emailadd=johny%40yahoo.com

 Here we can see that userid and emailadd are the names assigned to the input text fields, and that
John_123 and johny%40yahoo.com are the values entered by the user. The value %40 in the email address
represents the @ symbol.

Serializing the Checkboxes, Radio Button and Select Element
In the above solution, we saw how the input text fields were encoded. Let’s now see how the options
selected in the checkboxes, radio buttons and select element, are encoded. The HTML file to display few
checkboxes, radio buttons and select element is as shown here:

<body>
 <form>
 <div>Select Food items
<input type="checkbox"
id="pizza" name="pizza" value=5 class="chkb">Pizza $5

<input type="checkbox" id="hotdog" name="hotdog" value="2" class="chkb">HotDog $2

<input type="checkbox" id="coke" name="coke" value="1" class="chkb">Coke $1

<input type="checkbox" id="fries" name="fries" value="3" class="chkb">French Fries $3

</div>h
<div>Mode of Payment
<input type="radio" name="paymode"
class="radiobtn" value="Master Card">Master Card

<input type="radio" name="paymode" class="radiobtn" value="ANZ Grindlay Card">ANZ Grindlay
Card

<input type="radio" name="paymode" class="radiobtn" value="Visa Card">Visa Card

</div>
<div>Country<select id="country" name="country">
<option value="0">Select a Country</option>
<option value="USA">USA</option>
<option value="United Kingdom">United Kingdom</option>
<option value="India">India</option>
<option value="China">China</option>
</select>

 <input type="submit" id="submit"/>
 </form>
<div id="message"></div>
</body>

A quick glance at Figure 4-5 below will give you the layout in a glance that this creates. Now the class
and ID selectors defined in style sheet file style.css should appear as shown here:

style.css
.label {float: left; width: 120px; }
#submit { margin-left: 125px; margin-top: 10px;}
div{padding: 5px; }
.chkb { margin-left: 125px; margin-top: 10px;}
.radiobtn { margin-left: 125px; margin-top: 10px;}

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 4 ■ FORM VALIDATION

164

The jQuery code to display the serialized information of the options selected in the checkboxes,
radio buttons and select element is as shown below:

$(document).ready(function() {
 $('#submit').click(function () {
 var info = $("form").serialize();
$('#message').text('The format when input elements are serialized: '+info);
return false;
});
});

How It Works
The key part of our code executes as a click event that is attached to the submit button: when it’s clicked
we access all the form elements and encode them in the form of a query string with the help of the
serialize() method, and store the query string in the variable info, which is then displayed to the user
by assigning it to the div element message. We return false in the click event because we don’t want the
browser to send the options selected to the server - but once again, to run the code assigned to our event
handling function

Depending on exactly what you select of course, you may see the encoded query string as shown in
Figure 4-45.

Figure 4-45. Serialized output of checkbox, radio button and select element

We can see the returned query string contains the names and value pairs of the selected options

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 4 ■ FORM VALIDATION

165

Using the serializeArray() Method
In above example, we have used .serialize() method for accessing form elements. Now, we will make use
of the .serializeArray() method, which allows us to access the form elements and returns them in the
form of an array of objects (that contains the names and values pairs) of the selected elements. The array
of objects appears somewhat like JSON data. The JSON data takes the following format of name, value
pair as shown below:

[
 {name: 'pizza', value: '5'},
 {name: 'hotdog', value: '2'},
 {name: 'paymode', value: ’ANZ Grindlay Card’}
]

Considering the same HTML file and style sheet that we used above, the jQuery code to return the
selected options in the form of an array of objects and displaying the values (of the selected options) is
as shown below:

$(document).ready(function() {
$('#submit').click(function () {
var selectedopts="";
var info = $("form").serializeArray();

$.each(info, function(i, d){
selectedopts+=d.value+" ";
});

$('#message').text('The options chosen are: '+selectedopts);
return false;
});
});

Let’s run through this code line by line now:

• Line 2. Attaches the click event to the submit button.

• Line 3. Initializes a variable selectedopts that we’ll use for storing the values of the
selected options.

• Line 4. This line collects all the options selected in the form as an array of objects,
using serializeArray() and stores the information about those selections in our
info variable, which is an array of objects where each element has two attributes:
name and value.

• Line 5. Using each function to parse each element in array info. In the call back
function, we use two parameters: i and d where i refers to index location of
element and d refers to data contained in it. The data will be in the form of name,
value pair. For example: { name: 'paymode', value: ’ANZ Grindlay Card’}.

• Line 6. Concatenates the value attribute of the data (that is, of the selected
checkbox, radio button or selected options) ready to be stored in the selectedopts
variable.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 4 ■ FORM VALIDATION

166

• Line 8. Displays the values of the selected options (in the selectedopts variable) in
the div element message.

• Line 9. We return ‘false’ in the click event because we don’t want the browser to
send the options selected to the server, but rather to run the code assigned to its
event handling function

The values of the selected options may appear as shown in Figure 4-46:

Figure 4-46. Displaying values of the checkbox, radio button and select element using serializeArray()

method

Summary
In this chapter, we saw simple validation checks like a field is not left blank, a numerical is entered
within a given range etc. We also saw the recipe confirming the validity of phone number, date, email
address etc. We also met the technique to establish via jQuery whether a checkbox or radio box is
selected or not. Finally, we learned how a complete form is validated and how to serialize form data. In
the next chapter we will be learning different navigation techniques, including how to make contextual
menus, accordion menus, dynamic visual menus, and so on.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

C H A P T E R 5

■ ■ ■

167

Page Navigation

In this chapter you’ll learn how to make different types of menus that you’ll find useful to let users
navigate your websites. The recipes we’ll cover in this chapter are as follows:

• Writing a breadcrumb menu

• Adding a hover effect to menu items

• Creating contextual menu

• Creating a navigation menu with access keys

• Creating a context menu on right-click

• Creating two menus with separate menu items

• Creating two menus with submenu items

• Making an accordion menu

• Making a dynamic visual menu

5-1. Writing a Breadcrumb Menu

Problem
You want to represent a menu of links in the form of breadcrumbs.

Solution
Let’s represent a few menu items: Web Development, Programming, and RDBMS of the menu Books in
the form of an unordered list element. The HTML file will appear as shown here:

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 5 ■ PAGE NAVIGATION

168

<body>
 <ul id="menu">
 Books

 Web Development
 Programming
 RDBMS

</body>

To give the shape of breadcrumbs to the list items, we define two style rules which are liststyle
and ulistyle, which contain a set of style properties, as shown in the following style sheet file,
style.css:

style.css
.liststyle {
background-image:url(arrow.jpg);
background-repeat:no-repeat;
background-position:left;
padding-left:30px;
display: inline;
}

.uliststyle {
list-style:none;
margin:0;
padding:0;
display: inline;
}

The jQuery code to apply the two style rules .uliststyle and .liststyle to unordered list and their
elements is a shown here:

$(document).ready(function() {
 $('ul').addClass('uliststyle');
 $('ul li ul li').addClass('liststyle');
});

How It Works
In the HTML file, you can see that the unordered list is assigned the ID menu and consists of a single list
item, Books, which itself is an unordered list of three elements: Web Development, Programming, and RDBMS.
Also, all the menu items point at a hypothetical web site, example.com, which is the target website where
the user will be navigated to on clicking any link in the breadcrumb.

In the style sheet file, the .liststyle rule contains the background-image property set to
url(arrow.jpg) to display the arrow images (refer to Figure 5-1). The background-repeat property is set
to no-repeat to make the image appear only once. The background-position property is set to left to
make the image appear on the left side of the element to which it is applied. The padding-left property

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 5 ■ PAGE NAVIGATION

169

is set to 30px to create the distance of 30px on the left, and the display property is set to inline to
remove any space in the block elements to make them appear in a row (without spaces).

The style rule uliststyle contains the list-style property set to value none to remove the
traditional bullets from the unordered list. The margin and padding properties are set to value 0 to
remove traditional white spaces. The display property is set to inline to make the block element appear
on the same line.

In the jQuery code, the style rule .ulistyle is applied to the unordered list element and .liststyle
is applied to the list items of the unordered list that is nested inside the first list item of the unordered
list.

On execution of the jQuery code, we get the output shown in Figure 5-1.

Figure 5-1. Anchor elements in the form of breadcrumbs

5-2. Adding a Hover Effect to Menu Items

Problem
You want to display a menu with a few menu items in it. You also want to have a hover effect over a
menu and its items.

Solution
Let’s make an HTML file to represent the menu heading and its menu items. We do so with the help of
two unordered lists, one nested inside the other. The HTML file may appear as shown here:

<body>

 Books

 Web Development
 Programming
 RDBMS

</body>

We can see in the preceding HTML file that there’s an unordered list element with a list item Books,
which itself is an unordered list element of three list items to represent hyperlinks of Web Development,
Programming, and RDBMS. These hyperlinks point at some hypothetical web site, http://example.com,
where the user will be navigated if any of the menu items are clicked.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 5 ■ PAGE NAVIGATION

170

To give the appearance of a menu to the unordered list element, we need to apply certain styles to
all three elements <u>, , and <a>. We write their type selectors in the style sheet file so that the
properties in it can be automatically applied to these three elements. The style sheet file may appear as
shown here:

style.css
ul {
 width: 200px;
}

ul li ul {
 list-style-type:none;
 margin: 5;
 width: 200px;
}

a {
 display:block;
 border-bottom: 1px solid #fff;
 text-decoration: none;
 background: #00f;
 color: #fff;
 padding: 0.5em;
}

li {
 display:inline;
}

.hover {
 background: #000;
}

The jQuery code to apply the hover event to anchor elements is shown here:

$(document).ready(function() {
 $('a').hover(
 function(event){
 $(this).addClass('hover');
 },
 function(){
 $(this).removeClass('hover');
 }
);
});

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 5 ■ PAGE NAVIGATION

171

How It Works
The type selector ul contains the width property set to 200px to define the width of the menu heading:
Books. The type selector ul li ul will be applied to the menu items. It contains the list-style-type
property set to none to remove the traditional bullets from the unordered list elements. The margin
property is set to 5 to make the menu items appear a bit indented as compared to the menu heading.
The width property is set to 200px to define the width of the menu item to accommodate.

The type selector a contains the display property set to block to make the anchor element appear as
a block and not as individual elements. The border-bottom property is set to 1px solid #fff to make a
solid white border of thickness 1px to appear below every anchor element (to act as a separator). The
text-decoration property is set to none to remove the traditional underline that appears below
hyperlinks. The background color is set to blue and the foreground color is set to white for all the anchor
elements. The padding property is set to .5em (that is, 50% of the default font size) to define the spacing
between the anchor text and its border.

The type selector li is set to inline to remove any white space between the list items. The CSS class
.hover contains the background property to set the background color of the menu item (anchor element)
to black when the user hovers on any anchor element.

In the jQuery code, we can see that the hover event is applied to the anchor elements. Recall the
hover event contains the two event-handling functions, one that is invoked when a mouse pointer is
moved over any anchor element and the other when a mouse pointer is moved away from the anchor
element. In the event-handling function that is invoked when a mouse is moved over the anchor
element, we apply the CSS class hover (defined in the style sheet file), making the background color of
the anchor element turn black. In the event-handling function that is invoked when the mouse pointer is
moved away from the anchor element, we remove the CSS class hover from the anchor element to make
it appear as it was initially.

On execution of the jQuery code, the menu may appear as shown in Figure 5-2.

Figure 5-2. Books menu with three menu items

When we hover on any menu item, its background color changes to black, as shown in Figure 5-3.

Figure 5-3. Menu item changes to black when hovered over

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 5 ■ PAGE NAVIGATION

172

5-3. Creating a Contextual Menu

Problem
You want to display a menu with a few menu items in it. When any menu item is hovered over (mouse
pointer is moved over it), you want to display the information related to it and also want that menu item
to be highlighted. When the menu item is clicked, the user is navigated to the related web site.

Solution
Let’s make an HTML file to represent the menu heading Books, along with three menu items. We create
the menu and its three menu items with the help of two unordered lists, one nested inside the other.
The list items contain the anchor elements to represent menu items and refer to the target web site,
http://example.com, where the user is supposed to be navigated on selecting any menu item. Also,
we will write information about the three menu items in three paragraphs. The HTML file appears as
shown here:

<body>
 <table>
 <td>

 Books

 Web Development
 Programming
 RDBMS

 </td>
 <td valign="top">
 <p class="web" >The wide range of books that includes how Web development can be done
 with ASP.NET, PHP, JSP etc.</p>
 <p class="prog" >The wide range of books that includes developing Programming skills
 in C, C++, Java etc.</p>
 <p class="rdbms" >The wide range of books that includes how Data Base Management is
 done via Oracle, MySQL, SQL Server etc.</p>
 </td>
 </table>
</body>

To make menus to appear on the left side and contents on the right side, we make a table and place
the menu in the first column, and the paragraphs containing information of the related menu items in
the second column.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 5 ■ PAGE NAVIGATION

173

To give the appearance of a menu to the unordered list element, we need to apply certain styles to
all the elements <u>, , and <a>. We write their type selectors in the style sheet file so that the
properties in it can be automatically applied to these three elements. The style sheet file may appear as
shown here:

style.css
ul {
 width: 200px;
}

ul li ul {
 list-style-type:none;
 margin: 5;
 width: 200px;
}

a {
 display:block;
 border-bottom: 1px solid #fff;
 text-decoration: none;
 background: #00f;
 color: #fff;
 padding: 0.5em;
}

li {
 display:inline;
}

.hover {
 background: #000;
}

The jQuery code to display information of the hovered-over menu item is shown here:

$(document).ready(function() {
 $('.web').hide();
 $('.prog').hide();
 $('.rdbms').hide();

 $('#webd').hover(function(event){
 $('.web').show();
 $('.prog').hide();
 $('.rdbms').hide();
 $('#webd').addClass('hover');
 }, function(){
 $('#webd').removeClass('hover');
 });

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 5 ■ PAGE NAVIGATION

174

 $('#pgmng').hover(function(event){
 $('.web').hide();
 $('.prog').show();
 $('.rdbms').hide();
 $('#pgmng').addClass('hover');
 }, function(){
 $('#pgmng').removeClass('hover');
 });

 $('#datab').hover(function(event){
 $('.web').hide();
 $('.prog').hide();
 $('.rdbms').show();
 $('#datab').addClass('hover');
 }, function(){
 $('#datab').removeClass('hover');
 });
});

How It Works
In the style sheet file, the type selector ul contains the width property set to 200px to define the width of
the menu heading: Books. The type selector ul li ul will be applied to the menu items. It contains the
list-style-type property set to none to remove the traditional bullets from the unordered list elements.
The margin property is set to 5 to make the menu items appear a bit indented compared to the menu
heading. The width property is set to 200px to define the width of the menu item to accommodate. The
type selector a contains the display property set to block to make the anchor element appear as a block
and not as individual elements. The border-bottom property is set to 1px solid #fff to make a solid
white border of thickness 1px to appear below every anchor element (to act as a separator). The text-
decoration property is set to none to remove the traditional underline that appears below hyperlinks. The
background color is set to blue and the foreground color is set to white for all the anchor elements. The
padding property is set to .5em (that is, 50% of the default font size) to define the spacing between the
anchor text and its border.

The type selector li is set to inline to remove any white space between the list items.
The CSS class .hover contains the background property to set the background color of the menu

item (anchor element) to black when the user clicks on it.
The meaning of the jQuery code statements is explored here: Initially, we hide the information

stored in all the three paragraphs (of the respective menu items). That is, we hide the information stored
in the three paragraph of the classes web, prog, and rdbms, as we will display them only when the related
menu item is hovered over.

We then attach a hover event to the first menu item: Web Development; that is, to the anchor element
of ID webd. In the first event-handling function of the hover event (which is executed when this menu
items is hovered over), we set the paragraph of the class web, which contains the information of the Web
Development element, to visible mode, thus displaying information related to the books on web
development. We keep the rest of the paragraph elements hidden. That is, the paragraph elements of the
classes prog and rdbms will be kept hidden. Also, we apply the properties defined in the style rule .hover
to the hovered-over menu item to highlight it, and we remove the hover style rule in the second event-
handling function of the hover event that is executed when mouse pointer is moved away from the
menu item.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 5 ■ PAGE NAVIGATION

175

We attach a hover event to the second menu item: Programming; that is, to the anchor element of ID
pgmng. In the first event-handling function of the hover event (that is executed when this menu items is
hovered over), we set the paragraph of the class prog (that contains the information of the programming
subject) to visible mode, displaying information related to the books about programming. We keep the
rest of the paragraph elements hidden. That is, the paragraph elements of the classes web and rdbms will
be kept hidden. Also, we apply the properties defined in the style rule .hover to the hovered-over menu
item to highlight it, and we remove the hover style rule in the second event-handling function of the
hover event that is executed when mouse pointer is moved away from the menu item.

Finally, we attach a hover event to the third menu item: rdbms; that is, to the anchor element of ID
datab. In the first event-handling function of the hover event (that is executed when this menu items is
hovered over), we set the paragraph of the class rdbms (that contains the information of the database
subject) to visible mode, displaying information related to the books about RDBMS. We keep the rest of
the paragraph elements hidden. That is, the paragraph elements of the classes web and prog will be kept
hidden. Also, we apply the properties defined in the style rule .hover to the hovered-over menu item to
highlight it, and we remove the hover style rule in the second event-handling function of the hover event
that is executed when mouse pointer is moved away from the menu item.

On execution of the preceding jQuery code, we will get a menu along with three menu items in it.
When we hover over any menu item, that menu item will be highlighted and the information related to it
will be displayed as shown in Figure 5-4.

Figure 5-4. Menu item remains highlighted on being hovered over, and related information is displayed

5-4. Creating a Navigation Menu with Access Keys

Problem
You want to display a menu with a few menu items in it. You want to display the access keys of the menu
items. Access keys represent the shortcut keys to represent any menu item. Also, you want to make sure
that when any menu item is hovered over, the information related to it is displayed. The information
must be displayed in both cases: when the menu item is hovered over as well as when the access key of
any menu item is pressed. When user clicks on any menu item, he should be navigated to the related
web site.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 5 ■ PAGE NAVIGATION

176

Solution
Let’s make an HTML file to represent the menu heading Books, along with three menu items. We create
the menu and its three menu items with the help of an unordered list. The list items contain the anchor
elements to represent menu items. Also, we will write information about the three menu items in terms
of three paragraphs. To make the character of the menu item (that we want to represent as an access
key) appear underlined, we nest it inside a span element of the class hot. The HTML file may appear as
shown here:

<body>
 <table>
 <td>

 Books

 Web
 Development
 P
 rogramming
 RDBMS

 </td>
 <td valign=top>
 <p class='web' >The wide range of books that includes how Web development can be
 done with ASP.NET, PHP, JSP etc.</p>
 <p class='prog' >The wide range of books that includes developing Programming
 skills in C, C++, Java etc.</p>
 <p class='rdbms' >The wide range of books that includes how Data Base Management
 is done via Oracle, MySQL, Sql Server etc.</p>
 </td>
 </table>
</body>

To give the appearance of a menu to the unordered list element, we need to apply certain styles to
all the three elements: <u>, , and <a>. We write their type selectors in the style sheet file so that the
properties in it can be automatically applied to these three elements. The style sheet file may appear as
shown here:

style.css
ul {
 width: 200px;
}

ul li ul {
 list-style-type:none;
 margin: 5;
 width: 200px;
}

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 5 ■ PAGE NAVIGATION

177

a {
 display:block;
 border-bottom: 1px solid #fff;
 text-decoration: none;
 background: #00f;
 color: #fff;
 padding: 0.5em;
}

li {
 display:inline;
}

.hover {
 background: #000;
}

.hot{
 text-decoration:underline;
}

The following jQuery code displays the information of the menu item whose access key is pressed or
when the menu item is hovered over. Also, the hovered-over menu item is highlighted by application of
certain style rules:

$(document).ready(function() {
 $('.web').hide();
 $('.prog').hide();
 $('.rdbms').hide();

$('body').keypress(function(event){
 if(String.fromCharCode(event.keyCode)=="w" || String.fromCharCode(event.keyCode)=="W")
 {
 $('#webd').hover();
 }
 if(String.fromCharCode(event.keyCode)=="p" || String.fromCharCode(event.keyCode)=="P")
 {
 $('#pgmng').hover();
 }
 if(String.fromCharCode(event.keyCode)=="r" || String.fromCharCode(event.keyCode)=="R")
 {
 $('#datab').hover();
 }
});

 $('#webd').hover(function(event){
 $('.web').show();
 $('.prog').hide();
 $('.rdbms').hide();

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 5 ■ PAGE NAVIGATION

178

 $('#webd').addClass('hover');
 }, function(){
 $('#webd').removeClass('hover');
 });

 $('#pgmng').hover(function(event){
 $('.web').hide();
 $('.prog').show();
 $('.rdbms').hide();
 $('#pgmng').addClass('hover');
 }, function(){
 $('#pgmng').removeClass('hover');
 });

 $('#datab').hover(function(event){
 $('.web').hide();
 $('.prog').hide();
 $('.rdbms').show();
 $('#datab').addClass('hover');
 }, function(){
 $('#datab').removeClass('hover');
 });
});

How It Works
In the HTML file, observe that the first character of the anchor element is to be highlighted and to act as
an access key. Like the access key for the anchor element, Web Development is set to the character w so
that this menu item can be directly accessed by just pressing the w key (or W). To make the user know
that w is the access key, it needs to be underlined. To underline the first character W of the menu item
Web Development, we nest it inside the span element and assign the class name hot to the span element to
identify it in the style sheet file. Similarly, all the characters that we want to be represented as access keys
are nested inside the span element of the class hot.

Also, to make menus appear on left side and contents on the right side, we create a table and place
the menu in the first column, and the paragraphs containing information about the related menu items
in the second column.

In the style sheet file, the type selector ul contains the width property set to 200px to define the
width of the menu heading Books. The type selector ul li ul will be applied to the menu items. It
contains the list-style-type property set to none to remove the traditional bullets from the unordered
list elements. The margin property is set to 5 to make the menu items appear a bit indented compared to
the menu heading. The width property is set to 200px to define the width of the menu item to
accommodate.

The type selector a contains the display property set to block to make the anchor element appear as
a block and not as individual elements. The border-bottom property is set to 1px solid #fff to make a
solid white border of thickness 1px to appear below every anchor element (to act as a separator). The
text-decoration property is set to none to remove the traditional underline that appears below
hyperlinks. The background color is set to blue and the foreground color is set to white for all the anchor
elements. The padding property is set to .5em (that is, 50% of the default font size) to define the spacing
between the anchor text and its border.

The type selector li is set to inline to remove any white space between the list items.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 5 ■ PAGE NAVIGATION

179

The CSS class .hover contains the background property to set the background color of the menu item
(anchor element) to black when user clicks on it.

The CSS class .hot contains the text-decorate property set to underline to make all the access
characters of each menu item (nested inside the span element of the class hot) appear underlined.

In the jQuery code, we see that initially the three paragraph elements are made hidden, as we want
to display the related information only when any access key is pressed or when any menu item is
hovered over. We also attached a keypress event on the body of the HTML file to sense if any key is
pressed. If any keypress event occurs, we use conditional statements to check if the pressed key is any of
the following characters: w, W, p, P, r, or R. If the any of the said character is pressed, we invoke the
hover event on the respective anchor element. For instance, if character w or W is pressed, the hover
event on the anchor element Web Development (ID webd) is invoked to display the related information. We
also attach a hover event to all the three menu items. We know that the hover event includes two event-
handling functions. In the first event-handling function of the hover event (that is executed when this
menu items is hovered over), we set the paragraph that contains the related information to visible mode,
displaying the desired information. We keep the rest of the paragraph elements hidden. Also, we apply
the properties defined in the style rule .hover to the hovered-over menu item to highlight it, and we
remove the hover style rule in the second event-handling function of the hover event that is executed
when mouse pointer is moved away from the menu item.

On execution, we find that each of the three menu item appears along with its access key
(underlined), as shown in Figure 5-5. On pressing the access key or on hovering over the menu item, the
information related to it will be displayed as shown in Figure 5-4.

Figure 5-5. Menu items with access keys underlined

5-5. Creating a Context Menu on Right-Click

Problem
You want to display a paragraph of text, and when you right-click on it, you want a context menu to
appear on the screen. Also, you want the menu items of the context menu to have a hovering effect (that
is, menu items get highlighted when the mouse pointer is moved over them). On pressing the Esc key,
you want the context menu to disappear.

Solution
Let’s make an HTML file that contains a paragraph element and an unordered list for the menu. The list
items of the unordered list represent the menu heading and the menu items. The menu items are

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 5 ■ PAGE NAVIGATION

180

written in the form of the anchor elements nested inside the list items. The anchor elements point at
some hypothetical web site http://example.com, where the user will be navigated if any menu item is
clicked. The HTML file may appear as shown here:

<body oncontextmenu="return false">
 <p class="info">
 Books are the world of information. Books are our best friends. A wise man
 always has a library of several books</p>
 <ul id="contextmenu">
 Books

 Web Development
 Programming
 RDBMS

</body>

We need to define few style rules in the style sheet to give the unordered list the shape of a menu
and also to highlight the menu items when the mouse pointer hovers over them. The style rules in the
style sheet may appear as shown here:

style.css
ul {
 width: 200px;
}

ul li ul {
 list-style-type:none;
 margin: 5;
 width: 200px;
}

a {
 display:block;
 border-bottom: 1px solid #fff;
 text-decoration: none;
 background: #00f;
 color: #fff;
 padding: 0.5em;
}

li {
 display:inline;
}

.hover {
 background: #000;
}

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 5 ■ PAGE NAVIGATION

181

The jQuery code to initially hide the menu and to display it when the user clicks the right mouse
button on the paragraph element is as shown below. The jQuery also makes the context menu disappear
when the Esc key is pressed:

$(document).ready(function() {
 $('#contextmenu').hide();
 $('.info').mousedown(function(event){
 if(event.button==2){
 $('#contextmenu').show();
 $('#contextmenu').css({'position': 'absolute', 'left':event.screenX,
 'top':event.screenY-70});
 }
 });
 $('a').hover(function(event){
 $(this).addClass('hover');
 },function(){
 $(this).removeClass('hover');
 });
 $('body').keypress(function(event){
 if(event.keyCode==27)
 {
 $('#contextmenu').hide();
 }
 });
});

How It Works
The usual problem while displaying a context menu is that when we right-click on the paragraph
element to display the context menu, the browser’s context menu also appears as default along with our
context menu. In order to disable the default browser’s context menu, we use the attribute
oncontextmenu="return false" in the body element. The paragraph element is assigned a class name
info so as to access it in jQuery with the help of selectors. The unordered list that will be used to display
the context menu is assigned the ID contextmenu . We can see that the first list item of the unordered list
represents the text Books (which will act as a menu heading). This list item will contain an unordered list
in itself, which will represent the menu items.

In the style sheet file, the type selector ul contains the width property set to 200px to define the
width of the menu heading Books. The type selector ul li ul will be applied to the menu items. It
contains the list-style-type property set to none to remove the traditional bullets from the unordered
list elements. The margin property is set to value 5 to make the menu items appear a bit indented as
compared to the menu heading. The width property is set to 200px to define the width of the menu item
to accommodate.

The type selector a contains the display property set to block to make the anchor element appear as
a block and not as individual elements. The border-bottom property is set to 1px solid #fff to make a
solid white border of thickness 1px appear below every anchor element (to act as a separator). The text-
decoration property is set to none to remove the traditional underline that appears below hyperlinks.
The background color is set to blue and the foreground color is set to white for all the anchor elements.
The padding property is set to .5em (that is, 50% of the default font size) to define the spacing between
the anchor text and its border. The type selector li is set to inline to remove any white space between

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 5 ■ PAGE NAVIGATION

182

the list items. The CSS class .hover contains the background property to set the background color of the
menu item (anchor element) to black when the user clicks on it.

In the jQuery code, we start by hiding the menu represented by the unordered list of ID contextmenu.
We then check if the mouse button is pressed on the paragraph element of the class info. Recall that we
have assigned the class name info to the paragraph element in the HTML file. If it has been pressed, we
check if the mouse button pressed is the right mouse button. The button attribute of the event object
contains the value 1 if the left mouse button is pressed, and the value 2 if the right mouse button is
pressed. If it is the right mouse button, we make the menu visible on the screen that is represented by
the unordered list element of ID contextmenu.

Using the css() method, we make the context menu appear at the location specified by the screenX
and screenY attributes of the event object that represents the location where the mouse button is
pressed. We subtract the value 70 from the coordinate values stored in the screenY attribute to make the
context menu appear closer to the paragraph; that is, we reduce the gap between the menu and the
paragraph.

Also, we attach the hover() event to the anchor elements (menu and menu items). We apply the
style properties defined in the style rule .hover to the anchor elements when the mouse pointer moves
over any menu item (making the background color of the menu item turn black). The style properties in
the style rule .hover will be removed from the anchor element, making them as they were initially when
the mouse pointer is moved away from the menu item.

Finally, we attach a keypress event to the body element to sense if any key is pressed. If any key is
pressed, we check if it is the Esc key (the key code of the Esc key is 27). If the Esc key is pressed, we hide
the context menu.

On right-clicking the mouse button on the paragraph text, the context menu will appear on the
screen. The menu items in the menu will have the hovering effect, as shown in Figure 5-6.

Figure 5-6. Context menu appears on right-clicking the paragraph text

5-6. Creating Two Menus with Separate Menu Items

Problem
You want to display two menus, each with respective menu items. You also want to have a hovering
effect over the menus and their items.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 5 ■ PAGE NAVIGATION

183

Solution
Let’s make an HTML file to represent two menu headings, along with their menu items. We do so with
the help of unordered lists, one nested inside the other. The HTML file may appear as shown here:

<body>
<ul id="dropdownmenu">
<li class="mainmenu">
 Books

 Web Development
 Programming
 RDBMS

 <li class="mainmenu">
 Movies

 Latest Movie Trailers
 Movie Reviews
 Celebrity Interviews

</body>

You can see in the preceding code that there is an unordered list of ID dropdownmenu with two list
items that are assigned the class name mainmenu. These two list items represent the menus Books and
Movies. Both the list items in turn consist of unordered list with three elements each. The Books menu
has three list items: Web Development, Programming, and RDBMS. Similarly, the list item Movies consists of
an unordered list of three elements: Latest Movie Trailers, Movie Reviews, and Celebrity Interviews.

The code apply the styles to the preceding unordered list to give them the appearance of two menus
along with menu items is shown here:

.mainmenu {float:left; width:200px; list-style-type:none; margin-right:5px;}
li.mainmenu ul {margin: 0; }
a {width: 200px;display:block; text-decoration: none; background: #00f; color:
#fff;padding: 0.5em; border-bottom: 1px solid #fff; }
ul#dropdownmenu li a:hover { background: #000;}

The jQuery code to display one set of menu items out of the two when the mouse pointer moves
over the respective menu heading is shown here:

$(document).ready(function(){
 $('li.mainmenu').hover(
 function() {
 $('ul', this).show();
 },

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 5 ■ PAGE NAVIGATION

184

 function() {
 $('ul', this).hide();
 }
);
});

How It Works
In the style sheet file, the class selector .mainmenu contains the properties that are to be automatically
applied to the two menu headings: Books and Movies. It contains the float property set to left to make
the first menu heading float to the left in the browser window (making space for the second menu
heading to appear on its right). The width property is set to 200px to make the menu headings 200px
wide, The margin-left property is set to 5px to create spacing of 5px between the two menu headings.

The type selector li.mainmenu ul contains the style property to be applied automatically to the
unordered list that is nested inside the list items of the class .mainmenu; that is, to the unordered lists
that acts as menu items of the list items with text Books and Movies. It contains the margin property set
to 0 to make the list items of the unordered list (menu items like Web development, Programming, etc. of
the menu headings Books and Movies) appear one below the other (without any hierarchical gap on the
left side).

The type selector a contains the properties that are to be applied to all the anchor elements; that is,
to the menus as well as to all the menu items. The width property is set to 200px to specify the width of
each menu item. The display property is set to block to make the anchor element act as an independent
block. The text-decoration property is set to none to remove the traditional underline from the
hyperlinks. The background property sets the background color of the menu headings and menu items to
blue and the color property sets the foreground color of the text on the menus (menu headings and
menu items) to white. The padding property is set to .5em to create the spacing of the 50% of the default
font size between the menu text and its border. The border-bottom property is set to 1px solid #fff to
create a solid white line of thickness 1px below every anchor element to act as a separator between the
menu items.

The type selector ul#dropdownmenu li a:hover contains the style property that will be automatically
applied to the menu headings as well as menu items on hovering on them. It contains the background
property that changes the background color of the menu headings as well as menu items to black when
the mouse pointer moves over them.

We can see in the jQuery code that when the mouse pointer moves over the list item of the class
mainmenu (that is, on any menu heading), the unordered list (containing the menu items) nested in that
list item will be displayed. Moving away the mouse pointer from a menu heading will make its menu
items invisible, as the unordered list of that list item is set to hidden mode.

Initially the two menu headings will appear as shown in Figure 5-7.

Figure 5-7. Two menu headings: Books and Movies

On moving the mouse pointer over the menu heading Books, its menu items (the unordered list that
is nested inside the list item with text Books) will be displayed as shown in Figure 5-8.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 5 ■ PAGE NAVIGATION

185

Figure 5-8. Menu items of the Books menu displayed with the hovering effect

On moving the mouse pointer over the menu heading Movies, its menu items will be displayed and
those of the menu heading Books will become invisible as shown in Figure 5-9.

Figure 5-9. Menu items of the Movies menu with a hovering effect

5-7. Creating Two Menus with Submenu Items

Problem
You want to display two menus, each with menu items, and attach submenu items to a few of the menu
items. You also want to have a hovering effect over the menu, its items, and its submenu items.

Solution
Let us make an HTML file to represent two menu headings along with their menu items. We will also
define the submenu items. We do so with the help of unordered lists, one nested inside the other. The
HTML file may appear as shown here:

<body>
 <ul class="dropdown">
 Books

 Programming
 Web Development

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 5 ■ PAGE NAVIGATION

186

 .Net
 JSP

 RDBMS
 Web Services
 Open Source

 Movies

 Movie Reviews
 Celebrity Interviews
 Latest Hollywood Movies

 Arnold Schwarzenegger
 Sylvester Stallone
 Bruce Willis

 Action Movies

 Casino Royale
 Rambo III

 Comedy Movies

</body>

The style properties to be assigned to the unordered list to make them appear in the form of menu
headings, menu items, and submenu items are shown here:

style.css
a{ text-decoration: none; color: #000;}
ul{ margin: 0; list-style: none; }
ul.dropdown li { float: left; background: cyan; }
ul.dropdown a:hover {background: #0f0; color: #00f; }
ul.dropdown li a { display: block; padding: 4px; border-right: 1px solid #000; }
ul.dropdown ul { width: 200px; visibility: hidden; position: absolute; }
ul.dropdown ul li {background: yellow; border-bottom: 1px solid #000; }
ul.dropdown ul li a { border-right: none; width: 100%; }
ul.dropdown ul ul { left: 100%; top: 0; }
.hover {position: relative; }

The jQuery code to apply to make the menu items and submenus appear on the screen is shown
here:

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 5 ■ PAGE NAVIGATION

187

$(document).ready(function(){
 $("ul.dropdown li").hover(function(){
 $(this).addClass("hover");
 $('ul:first',this).css('visibility', 'visible');
 }, function(){
 $(this).removeClass("hover");
 $('ul:first',this).css('visibility', 'hidden');
 });
 $("ul.dropdown li ul li:has(ul)").find("a:first").append(" >");
});

How It Works
Let’s look first and in detail at the HTML file, where you can see that an unordered list is created and is
assigned the class name dropdown. It contains two list items with text assigned as Books and Movies. These
two list items in turn contain unordered list items that are assigned the class name submenu. The
unordered list of the list item with text Books contains five list items with text: Programming, Web
Development, rdbms, Web Services, and Open Source. Out of these list items, the one with the text Web
Development contains an unordered list to represent submenu items that contain two submenu items
with text .Net and JSP.

Similarly, the unordered list contained in the list tem with text Movies contains four list items: Movie
Reviews, Celebrity Interviews, Latest Hollywood Movies, and Action Movies. Out of these list items, the
one with text Latest Hollywood Movies contains an unordered list to represent submenu items that
contain three submenu items: Arnold Schwarzenegger, Sylvester Stallone, and Bruce Willis. Also, the
list item with text Action Movies contains an unordered list to represent submenu items that contain
three submenu items: Casino Royale, Rambo III, and Comedy Movies.

In the style sheet file, the type selector a has the property text-decoration set to none to remove the
traditional underline from all the anchor elements; that is, from menu headings, menu items, and
submenu items. The color property is set to black to make the text on all menus to appear in black.

The type selector ul contains the margin property set to value 0 to remove the hierarchical margin
from the left side in the list items and to make the menu items appear one below the other. The list-
style property is set to none to remove the traditional bullets from the unordered list.

The styles defined in the type selector ul.dropdown li will be automatically applied to the list
items that belong to the unordered list of the class drop-down; that is, to the menu headings Books and
Movies. The float property is set to left to make one menu heading appear on the left side of the
browser window, creating space for the next menu heading to appear on its right. Its background color
is set to cyan.

The attribute selector ul.dropdown a:hover contains the background and color properties to set the
background and foreground color of the anchor elements (all menu items) that are been hovered over to
the colors green and blue, respectively.

The type selector : ul.dropdown li a contains the style properties that will be applied to the anchor
elements that represent the menu headings Books and Movies. It contains the display property set to
block to make the anchor element act as an independent block element; the padding property is set to
4px to create some spacing in between the menu text and its border. The border-right property is set to
1px solid #000 to make a black border of 1px on the right of each menu heading (to show them
separately).

The type selector ul.dropdown ul contains the styles that will be applied to the unordered list
containing menu items. The width property set to 200px will make each menu item be 200px wide. The
visibility property set to hidden will keep the whole menu-items block hidden and make it visible only

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 5 ■ PAGE NAVIGATION

188

when the menu headings are hovered over. The position property set to absolute makes the menu-
items block appear below the respective menu headings.

The type selector ul.dropdown ul li contains the properties that will be applied to all the list items
representing the menu items. The background property will set the background color of all menu items
and submenu items to yellow; the border-bottom property is set to 1px solid #000 to make a black
border of thickness 1px appear below each menu item to separate them.

The type selector ul.dropdown ul li a contains the properties that will be applied to all the anchor
elements representing the menu items and submenu items. The border-right property is set to none to
remove the border on right of the menu items, as we will be displaying submenu items on the right of
the menu items. The width property is set to 100% to make the anchor element take up all of the 200px
width assigned.

The type selector ul.dropdown ul ul will be applied to the unordered list representing the submenu
items. The left property is set to 100% to separate the submenu items by 100% of the width of the menu
items (otherwise there will be an overlap with the menu items). The top property is set to 0 to make the
submenu items the same distance from the top border of the browser as the menu item whose submenu
items are being displayed.

The style rule .hover is applied via jQuery code to the list items to make the submenu items appear
at a location relative to their menu items.

Next we’re going to look at the actual jQuery code in detail. But first, let’s establish what :first does,
as it appears in the code:

:first
This is the custom selector that returns the first instance of the specified element.

Example:
$(‘p:first)

Which will return the first paragraph element.

Now let’s look at the actual jQuery code for our solution. You’ll notice that when the mouse pointer
is moved over the menu heading Books or Movies (list items of the unordered list of ID dropdown), the
properties defined in the CSS class .hover (defined in the stylesheet file) will be applied to it and to the
first unordered list (menu items of the respective menu heading) in visible mode. Similarly, when any
menu item is hovered over (that has an unordered list in the form of submenu items), then that
unordered list will also be displayed (that is, submenu items will be displayed). The menu items or
submenu items are made hidden when the mouse pointer is away from the menu item or menu
heading. Also, for all the list items that have unordered lists nested in them, a symbol > is appended to
the anchor element to designate that it has submenu items attached.

Initially, the two menu headings Books and Movies may appear as shown in Figure 5-10.

Figure 5-10. Menu headings Books and Movies

On moving the mouse pointer on the menu heading Books, its menu items will be displayed as
shown in Figure 5-11.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 5 ■ PAGE NAVIGATION

189

Figure 5-11. Menu items of the Books menu (the menu items that have submeneu items appear with the >

symbol).

On moving the mouse pointer over the menu item that has submenu attached, its submenu items
will be displayed as shown in Figure 5-12.

Figure 5-12. The submenu item of the menu item (of the Books menu) being highlighted)

The same thing applies to second menu heading, Movies. Its menu items will be made visible when
the mouse is hovered over it. Also, the submenu items will be displayed when the mouse is hovered over
it ,as shown in Figure 5-13.

Figure 5-13. The submenu items of the Movies menu being highlighted)

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 5 ■ PAGE NAVIGATION

190

5-8. Making an Accordion Menu

Problem
You want to display two menus in the form of an accordion menu; that is, the submenu items of the
menu that is hovered over will be made visible, and the submenu items of other menu heading(s) will be
made invisible by using the slide-up or slide-down technique. You also want the menu items to
disappear when the mouse pointer is away from both the menus.

Solution
Let us make an HTML file to represent two menu headings, along with their menu items. We do so with
the help of unordered lists, one nested inside the other. The HTML file may appear as shown here:

<body>
 <p class="menus">Books</p>
 <div class="menuitems">

 Web Development
 Programming
 RDBMS

 </div>
 <p class="menus">Movies</p>
 <div class="menuitems">

 Latest Movie Trailers
 Movie Reviews
 Celebrity Interviews

 </div>
</body>

The code to apply the styles to the preceding unordered list to give them the appearance of an
accordion menu is shown here:

style.css
.menus{
 width: 200px;
 padding:5px;
 margin:1px;
 font-weight:bold;
 background-color: #0ff;
}

.menuitems{
 display:none;
}

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 5 ■ PAGE NAVIGATION

191

a{
 display:block;
 border-bottom: 1px solid #fff;
 text-decoration: none;
 background: #00f;
 color: #fff;
 padding:10px;
 font-weight:bold;
 width: 190px;
}

.menuitems a:hover {
 background: #000;
}

li {
 display:inline;
}

ul{display:inline;}

The jQuery code to display the menu items of the hovered-over menu headings and to hide the
menu items of other menu headings (from where the mouse pointer is moved away) with a sliding effect
is shown here:

$(document).ready(function() {
 $('p.menus').mouseout(function(){
 $("div.menuitems'").slideUp("slow");
 $('p').css({backgroundImage:""});
 });

 $('p.menus').mouseover(function(){
 $(this).css({'background-image':"url(down.png)", 'background-repeat':"no-repeat",
 'background-position':"right"}).next("div.menuitems").slideDown(500)
 .siblings("div.menuitems").slideUp("slow");
 $(this).siblings().css({backgroundImage:""});
 });
});

How It Works
In the HTML file, we can see that there are two paragraph elements of the class menus with the text Books
and Movies to represent the two menu headings. Each paragraph element is followed by a div element of
the class menuitems that contains an unordered list with three list items, each to represent submenu
items of each menu heading. The unordered list (below the paragraph element Books) has three list
items: Web Development, Programming, and RDBMS. Similarly, the unordered list that is below the paragraph
element Movies has three list items: Latest Movie Trailers, Movie Reviews, and Celebrity Interviews.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 5 ■ PAGE NAVIGATION

192

In the style sheet file, the properties defined in the class selector .menus will be automatically
applied to the paragraph elements of the class .menu to give them the shape of menu headings. The width
property is set to 200px to define the menu heading to be 200px wide, and the padding property is set to
5px to keep some space between the border and the menu text. The margin property is set to 1px to keep
space of 1px between the two menu headings. The font-weight property is set to bold to make the menu
headings appear in bold, and the background of the menu heading is set to cyan by applying the code
#0ff to the background-color property.

The properties in the class selector .menuitems will be applied to the div elements of the class
menuitems automatically. It contains the display property set to none to hide the menu items initially.

The properties defined in the type selector a will be applied to all anchor elements (to all menu
items). The display property is set to block to make the anchor element act as a block. The border bottom
property is set to value 1px solid #fff to create a solid white line of 1px thickness below every anchor
element to separate all menu items. The text-decoration property is set to none to remove the
traditional underline from the anchor elements. The background and color properties are used to set the
background and foreground colors of the menu items to blue and white, respectively. The padding
property is set to 10px to define the spacing between the menu-item text and its border. The font-weight
property is set to bold to make the menu items appear in bold, and the width property is set to 190px to
make the menu items 190px wide.

The properties defined in the attribute selector .menuitems a:hover will be automatically applied to
the anchor elements nested inside the div element of the class menu element when the mouse pointer
hovers over the menu items. It contains the background property that makes the background color of the
hovered-over menu items turn black.

The type selector li contains the display property set to value inline to remove any spacing
between the list items. Similarly, the type selector ul has the display property set to value inline to
remove the spacing above and below the unordered list.

Now let’s examine the actual jQuery code. We attach the mouseout event to the paragraph elements
of the class menus; that is, to the menu headings Books and Movies. The reason for doing so is that we
want to hide the menu items if the mouse pointer is away from both the menus.

Then we attach the mouseover event to the paragraph element of the class menus; that is, to the menu
headings Books and Movies. Next we display an image of a down pointer to the hovered-over menu
heading using the .css() method (to show that currently it is in expanded mode). The background-
repeat property is set to no-repeat to make it appear once, and the background-position property is set
to right to make the down pointer appear on the right end of the menu heading.

The contents of the next element (which matches the selector for us), is nothing but a div element of
the class menuitems, containing the menu items of the hovered-over paragraph element. This is made
visible with a slide-down effect. Its siblings (menu items of another menu heading: the div element of
the class menuitems) are made invisible by using slide-up effect. Finally, the background image is
removed from the menu item that has lost focus.

On execution of the preceding jQuery code, the menu headings will appear one below the other, as
shown in Figure 5-14.

Figure 5-14. Two menu headings: Books and Movies

On hovering over the first menu heading, Books, its menu items will be displayed with the slide-
down effect, as shown in Figure 5-15. We can see that the menu heading has a down pointer attached to

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 5 ■ PAGE NAVIGATION

193

it to designate that it is in expanded mode now. Also, these menu items will have a hovering effect; that
is, they will be highlighted on when the mouse pointer moves over them.

Figure 5-15. Menu Items of the Books menu appear with the slide-down effect

Similarly, on moving the mouse pointer over another menu heading, Movies we see that its menu
items appear and those of the Books menu disappear with the slide-up effect, as shown in Figure 5-16.

Figure 5-16. Submenu items of the Movies menu appear with the slide-up effect.

5-9. Making a Dynamic Visual Menu

Problem
You want to make a curved tab navigation menu that has three menus: Books, Movies, and Music. You
want the menu tabs to have a hovering effect (highlighted when the mouse moves over them). You also
want information related to the menu tab be displayed when a tab is hovered over.

Solution
Let’s make an HTML file to define the anchor elements with the text Books, Movies, and Music nested
inside the span element of the class buttons. The anchor elements are assigned the IDs booksbutton,
moviesbutton, and musicbutton, respectively (to be accessed via jQuery code) and point at some
hypothetical web site, http://example.com, where the user will be navigated if the menu item is selected.
The HTML file may appear as shown here:

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 5 ■ PAGE NAVIGATION

194

<body>
 Books
 Movies
 Music

<p class="books">Books of different subjects available at reasonable prices. Ranging from
web development to programming languages and text books, all are available at heavy
discount. Shipping is free. Also available in stock are popular Magazines, E-books and
Tutorial CDs at affordable prices.</p>
<p class="movies">Find new movie reviews & latest hollywood movie news. Includes new movie
trailers, latest hollywood releases, movie showtimes, entertainment news, celebrity
interviews etc. Also find Hollywood actresses, actors, videos, biographies, filmographies,
photos, wallpapers, music, jokes, and live tv channels at your doorstep</p>
<p class="music">Find music videos, internet radio, music downloads and all the latest music
news and information. We have a large collection of music and songs classified by type,
language and region. All downloads are streamed through RealAudio. You can also watch free
music videos, tune in to AOL Radio, and search for your favorite music artists.</p>
</body>

Below the span elements we find three paragraph elements with three different class names
assigned: Books, Movies, and Music. The paragraphs contain the information related to the three menu
tabs. For this solution, we will be requiring two tab images. One tab image is for the left side of the menu
tab to give it a curved slope as shown in Figure 5-17.

Figure 5-17. Image for the left side of the menu tab

The image for the left side is saved as tabl.jpg and the image for the right side of the menu tab is
saved as tabr.jpg and may appear as shown in Figure 5-18.

Figure 5-18. Image for the right side of the menu tab

The two images in Figures 5-17 and 5-18 are in black. We need the same two images in green too
(which will be used while hovering over the menu tabs). The two images with the green color are saved
as tablselect.jpg and tabrselect.jpg.

The style sheet file style.css contains several style rules to make the span element appear as a tab
navigation menu. The style.css file may appear as shown here:

style.css
.buttons{
background-image:url(tabl.jpg);
background-repeat:no-repeat;
background-position: left;

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 5 ■ PAGE NAVIGATION

195

background-color:#000;
width: 80px;
float: left;
text-align: center;
}

a{
display:block;
background-image:url(tabr.jpg);
background-repeat:no-repeat;
background-position: right;
padding:3px;
text-decoration:none;
font-weight:bold;
color:#fff;
}

.rightselectfig{
display:block;
background-image:url(tabrselect.jpg);
background-repeat:no-repeat;
background-position: right;
padding:3px;
text-decoration:none;
font-weight:bold;
color:#fff;
}

.leftselectfig{
background-image:url(tablselect.jpg);
background-repeat:no-repeat;
background-position: left;
background-color:#0f0;
width: 80px;
float: left;
text-align: center;
}

The jQuery code to apply a hovering effect to the menu tabs and to display their related information
is shown here:

$(document).ready(function() {
 $('.books').hide();
 $('.movies').hide();
 $('.music').hide();

 $('a').hover(
 function(event){
 $(this).addClass('rightselectfig');
 $(this).parent().addClass('leftselectfig');
 },

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 5 ■ PAGE NAVIGATION

196

 function(){
 $(this).removeClass('rightselectfig');
 $(this).parent().removeClass('leftselectfig');
 }
);

 $('#booksbutton').click(function(event){
 event.preventDefault();
 $('.books').show('slow');
 $('.movies').hide();
 $('.music').hide();
 });

 $('#moviesbutton').click(function(event){
 event.preventDefault();
 $('.movies').show('slow');
 $('.books').hide();
 $('.music').hide();
 });

 $('#musicbutton').click(function(event){
 event.preventDefault();
 $('.music').show('slow');
 $('.books').hide();
 $('.movies').hide();
 });
});

How It Works
The class selector .buttons contains the style properties that will be automatically applied to the span
elements of the class buttons; that is, to Books, Movies, and Music. The background image property is set
to url(tabl.jpg) to make the image shown in Figure 5-17 appear along with the menu text; the
background-repeat property is set to no-repeat to make the image appear only once; the background-
position property is set to left to make the image appear on the left side of the menu text to assign it a
slope on the left side.

The background color of the menu tab is set to black and the width assigned to the menu tab is
80px. The float property is set to left to make the menu tab appear on left side of the browser window,
making space on its right (for other menu tabs to appear on its right). The text-align property is set to
center to make the menu text appear at the center of the defined width of 80px.

The properties defined in the type selector a will be automatically applied to the anchor elements.
The display property is set to block to make the anchor element act as a block element instead of an
individual element. The background-image property is set to tabr.jpg to apply the image shown in Figure
5-18 on the right side of the menu tab. The background-repeat property is set to no-repeat to make the
image appear only once. The background-position is set to right to make the image appear on right side
to assign it a slope shape on its right. The padding property is set to 3px to have spacing of 3px between
the menu text and its border. The text-decoration property is set to none to remove the traditional
underline that appears below the anchor elements. The font-weight property is set to bold to make the
menu text appear in bold, and color is set to white to make the menu text appear in white.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 5 ■ PAGE NAVIGATION

197

The style rule .rightselectfig contains the properties will be applied to the anchor elements when
the mouse pointer is moved over them. It contains the display property set to value block to make the
anchor element act as a block element instead of an individual element. The background-image property
is set to tabrselect.jpg to apply the image shown in Figure 5-18 in green on the right side of the menu
tab. The background-repeat property is set to no-repeat to make the image appear only once. The
background-position is set to right to make the image appear on right side to assign it a slope shape on
its right. The padding property is set to 3px to have the spacing of 3px between the menu text and its
border. The text-decoration property is set to none to remove the traditional underline that appears
below the anchor elements. The font-weight property is set to bold to make the menu text appear in
bold, and color is set to white to make the menu text appear in white.

The style rule .leftselectfig contains the properties that will be applied to the menu tab buttons
when the mouse pointer is moved over them. It contains the background image property set to
url(tablselect.jpg) to make the image shown in Figure 5-17 in green appear along with the menu text.
The background-repeat property is set to no-repeat to make the image appear only once, and the
background-position property is set to left to make the image appear on the left side of menu text to
assign it a slope on left side. The background color of the menu tab is set to green to give it a hovering
effect. The width assigned to the menu tab is 80px. The float property is set to left to make the menu
tab appear on left side of the browser window, making space on its right (for other menu tabs to appear
on is right). The text-align property is set to center to make the menu text appear at the center of the
defined width of 80px.

Now in the jQuery code itself, all the paragraph elements of the classes Books, Movies, and Music are
made invisible, as we will be displaying them only when we hover over the respective menu tab. We then
attach the hover event to the anchor element and apply the properties defined in the style rule
.rightselectfig to the menu tab (that has been hovered over) to apply green to it. We also add the
image (tabrselect.jpg) on the right side for the right slope of the menu tab; we deal with the left side in
the same way.

When the mouse is no longer hovering over the tab, we remove the style properties of the style rules
.rightselectfig and .leftselectfig to make the menu tabs appear as they did initially when the mouse
is moved away from the menu tabs.

Next we have the click events for the tabs. In these, we prevent the form from being submitted to the
server. We also prevent the user from being navigated to the target web site on clicking the menu tab. We
then display the information associated with the tab that was clicked, and hide the contents of the
paragraph elements associated with the other tabs.

When we hover over the Books menu tab, its background color changes to green and the
information related to books will be displayed as shown in Figure 5-19.

Figure 5-19. The menu tab becomes highlighted when it’s hovered over, and the associated information is

displayed.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 5 ■ PAGE NAVIGATION

198

In order to give the animation effect to the text being displayed, we can use slideDown() and
slideUp() methods instead of simple show() and hide() methods, as shown in the following jQuery
code:

$(document).ready(function() {
 $('.books').hide();
 $('.movies').hide();
 $('.music').hide();

 $('#booksbutton').mouseover(function(){
 $('.books').slideDown('slow');
 $('.movies').slideUp('slow');
 $('.music').slideUp('slow');
 });

 $('#moviesbutton').mouseover(function(){
 $('.movies').slideDown('slow');
 $('.books').slideUp('slow');
 $('.music').slideUp('slow');
 });

 $('#musicbutton').mouseover(function(){
 $('.music').slideDown('slow');
 $('.books').slideUp('slow');
 $('.movies').slideUp('slow');
 });
});

Summary
In this chapter, you saw how to create different types of menus, such as breadcrumb menus, contextual
menus, accordion menus, and dynamic visual menus. You also saw how to access menu items using
access keys and how to make menus with hovering menu items.

The next chapter includes a wide variety of examples concerning animation effects. You will learn
how to make image sliders, horizontal and vertical image scrollers, image shufflers, etc. You will also see
how to make news scrollers and how to display images on a page.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

C H A P T E R 6

■ ■ ■

199

Visual Effects

In this chapter you’ll discover many recipes that deal with different animation effects. The solutions that
we’ll be covering in this chapter are as follows:

• Displaying images horizontally and vertically

• Creating a horizontal image slider

• Displaying an image that scrolls left and becomes invisible when clicked

• Creating an image that scrolls left, disappears, and reappears at the right

• Scrolling an image at the center of the browser window

• Showing an image one after the other on hover

• Scrolling an image vertically

• Scrolling an image horizontally

• Making a news scroller

• Displaying the enlarged image on mouse over

• Showing images pagewise

• Shuffling images in either direction

• Writing a pendulum scroller

• Scrolling images using arrays

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 6 ■ VISUAL EFFECTS

200

6-1. Displaying Images Horizontally and Vertically

Problem
You have five images and you want to display them horizontally, one after the other, with a small
distance between them.

Solution
Let’s start out by making an HTML file to display all the five images in the form of a hyperlink, so that if
any visitor clicks on the image, he will be navigated to the target web site (assuming any hypothetical
web site:). The HTML file should appear as shown here:

<body>
<div id="images">

</div>
</body>

All the images in the form of anchor elements are stored within a div element of ID images. We can
see in the preceding HTML file that the width and height of all images is set to 150px to give them a
uniform appearance.

The jQuery code to display the images one after the other in a row is shown here:

$(document).ready(function() {
 var $pic = $('#images a');
 $pic.hide();
 var imgs = $pic.length;
 var next;
 for (i=0;i<imgs;i++){
 next=$pic.eq(i);
 next.css({'position': 'absolute','left':160*i});
 next.show();
 }
});

How It Works
Before we examine the code statements, let’s first explore the two methods that are used in the
preceding code: .eq() and .length.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 6 ■ VISUAL EFFECTS

201

.eq()

.eq() is one of the filtering methods that retrieves the element at the specified index position from the
specified selection and returns it in the form of a jQuery object.

Syntax:
.eq(index)

Here index specifies the location in the selection (begins t 0 and goes to length –1). If an out-of-
range index is supplied, then an empty jQuery object is returned.

.length
This method returns the count of the matched elements.

Syntax:
.length

Looking now at the actual jQuery solution, we start by collecting and storing all the anchor elements
(a) of the div element of ID images in an array, $pic. Since all the images are part of the anchor element,
the information of all five images will be stored in the $pic array. We also hide all the images using
$pic.hide().They will be displayed one by one with the help of a for loop.

The length of the $pic array is then computed and is stored in the variable imgs. Since there are in all
five images that are stored in the $pic array, the value that is stored in the imgs variable will be 5. One
image at a time from the $pic array is then retrieved and stored in the next variable to display.

Finally, with the help of the .css() property, the image referred to by the next variable is assigned
the absolute position from the left boundary of the browser window. The first image is assigned the
position 0px from the left side, the second image is at a distance of 160px from the left, the third image is
at a distance of 320px from left, and so on. Hence all the images are assigned positions, keeping a gap of
10px between them.

On execution of preceding jQuery code, we may get the output shown in Figure 6-1.

Figure 6-1. All images displayed in a horizontal row

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 6 ■ VISUAL EFFECTS

202

Display Images Vertically
We can make the preceding jQuery code display the images vertically, one below the other, by just
altering a single statement. If we alter this statement,
next.css({'position': 'absolute','left':160*i});

to the following:

next.css({'position': 'absolute','top':160*i});

then the images will appear at the specified distance from the top boundary of the browser window
instead of the left boundary. The preceding statement, depending on the value of i, will make the image
appear at the distance of 0px, 160px, 320px, and so on from the top boundary of the browser window.
The overall code should appear as shown here:

$(document).ready(function() {
 var $pic = $('#images a');
 $pic.hide();
 var imgs = $pic.length;
 var next;
 for (i=0;i<imgs;i++){
 next=$pic.eq(i);
 next.css({'position': 'absolute','top':160*i});
 next.show();
 }
});

The output that you will get with this code is shown in Figure 6-2.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 6 ■ VISUAL EFFECTS

203

Figure 6-2. All images displayed vertically, one below the other

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 6 ■ VISUAL EFFECTS

204

6-2. Creating a Horizontal Image Slider

Problem
You want to make an image gallery (consisting of five images) in which initially three images will be
displayed. On using the horizontal scroll bar, you can scroll and see the rest of the images.

Solution
Let’s make an HTML file to define all five images of the image gallery in the form of a hyperlink. If we
click on any image, it is supposed to navigate us to the target web site that displays the complete
information about the image. Here we assume the target web site is some hypothetical web site. The
HTML file should appear as shown here:

<body>
<div id="scroller">
<div id="images">

</div>
</div>
</body>

We see that there are two div elements, nested one inside the other, with IDs scroller and images.
Inside the div element of ID images we define five anchor elements, each containing an image. All the
images are assigned the uniform width and height of 150px.

To the div element of ID scroller, we will apply the style rule .imageslider, and to the div element
of ID images we will apply the style rule .pics. The style rule .imageslider contains the style properties
to define a window of the specified width so as to display at most three images and a scroll bar—allowing
us to view the hidden images. The style rule .pics contains the width property for specifying the total
width required to display all five images. The width defined in this style rule decides the space in which
we can scroll. Both the style rules are defined in the external style sheet file style.css. The jQuery code
to apply the style.css properties to the div elements of ID scroller and images is shown here:

$(document).ready(function() {
$('#scroller').css({'margin':auto, 'width':'490px', 'height':'170px', 'overflow':'scroll'});
$('#images').css({'width':'790px'});
});

How It Works
In the style properties applied to the div element of ID scroller, we find that the value of the margin
property is set to auto to adjust the margin of the image-slider window automatically on the basis of the
size of the browser window; as a result, the window will appear at the center of the browser window. The

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 6 ■ VISUAL EFFECTS

205

width property is set to 490px to accommodate three images of 150px each, plus some distance in
between them. The height property is set to 170px. The value of the overflow property is set to scroll,
which makes a horizontal scroll bar appear in the window.

Similarly, the style properties applied to the div element of ID images has the width property set to
790px (to define the total width of all the five images). In other words, the style rule to be applied to the
outside div element (of ID scroller) is for specifying the width of the window (to define the number of
images that we want to see at in it), and the style rule of the internal div element (of ID images) is for
defining the complete width required to see all the images.

We get a window at the center of the browser window showing three images, with a horizontal scroll
bar to scroll and see the hidden images, as shown in Figure 6-3.

Figure 6-3. Images displayed in a window with a horizontal scroll bar

We can modify the values of the properties in the style rules to make the window scroll vertically
instead of horizontally. The modification in jQuery code may be as shown here:

$(document).ready(function() {
$('#scroller').css({'margin':auto, 'width':'170px', 'height':'490px', 'overflow':'scroll'});
$('#images').css({'height':'790px'});
});

We can see in the preceding style properties that the values of the width and height properties
are modified to reduce the width and increase the height. The image slider may appear as shown in
Figure 6-4.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 6 ■ VISUAL EFFECTS

206

Figure 6-4. All images displayed vertically, one below the other, with a vertical scroll bar

6-3. Displaying an Image that Scrolls Left and Becomes
Invisible When Clicked

Problem
You have an image that is displayed on the left side of the browser window. When the image is clicked, it
will scroll to the left and become invisible.

Solution
Let’s make an HTML file to define the image element to display the image that we want to appear on the
screen. The HTML file should appear as shown here:

<body>

</body>

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 6 ■ VISUAL EFFECTS

207

We can see in the preceding HTML code that the img element is assigned the class name image that
will be used to attach a click event to it. Also the width and height of the image are set to 150px. An
image is set to scroll by using its position property. By setting the value relative to the position
property, we can make an image scroll.

Now let’s write the class selector .image in the external style sheet file style.css to apply the
position property automatically to the HTML element of the class image; that is, to the img element. The
style sheet may appear as shown here:

style.css
.image{
position:relative;
}

We can see that the .image class selector assigns relative value to the position property. Let’s write
the jQuery code to attach the click event to the HTML element of the class image; that is, to the img
element. We also need to define the code for animating the image in the event-handling function of the
click event. The code may appear as shown here:

$(document).ready(function() {
 $('.image').click(function (event){
 $(this).animate({'left': -160}, 'slow');
 });
});

How It Works
We can see that the animate() method defined in the event-handling function (of the click event) makes
the images scroll to the left and stop at the distance of –160px from the left boundary of the browser
window so as to make the whole image of width 150px disappear completely. Thus the value assigned to
left represents to what end the image will be animated, and the image will be transitioned from its
current state to the value specified. Initially, the image will appear completely, as shown in Figure 6-5.

Figure 6-5. Image that appears on loading the web page

On clicking the image, it will start scrolling to the left and will disappear slowly, as shown in
Figure 6-6.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 6 ■ VISUAL EFFECTS

208

Figure 6-6. Image partially visible as it is being scrolled to the left

Making the Scrolling Image Appear at the Center of the Browser
Window
In the previous solution, we saw that the image initially appears at the left side of the browser window.
Now we want the image to appear at the center of the browser window. We also want the image to be
surrounded by an invisible window so that when the image is clicked, it scrolls to the left (in the
boundary of the invisible window) and disappears gradually.

The HTML file should be modified as shown here:

<body>
<div id=”scroller”>

</div>
</body>

In the HTML code, you can see that the img element is enclosed within a div element, which is
assigned the ID scroller. The reason of making use of the div element is to assign the width and height
to the invisible window for the image (within which we want it to scroll).

We write the ID selector #scroller in the style sheet so that the style properties defined in it can be
automatically applied to the div element of ID scroller without any need for jQuery code. The style
sheet will also contain the class selector .image to assign the relative property to the position property
of the img element, which is necessary to make the image scroll.

The style sheet style.css may appear as shown here:

style.css
#scroller{
width:155px;
height:155px;
margin:auto;
overflow:hidden;
position:relative;
}

.image{
position:relative;
}

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 6 ■ VISUAL EFFECTS

209

The jQuery code to attach the click event to the image, and the animate method (defined in the
event-handling function) to make the image scroll to the left and stop at the distance of –160px from the
left side of the enclosing window (to become completely invisible) are shown here:

$(document).ready(function() {
 $('.image').click(function (event){
 $(this).animate({'left': -160}, 'slow');
 });
});

How It Works – Part 2
We can see that the ID selector #scroller contains the width and height properties set to 155px to define
the width and height of the invisible window for the image. The margin property is set to auto so that
window takes the margin space from the browser window, automatically making the window appear at
the center of the width of the browser window. The value of the overflow property is set to hidden to
make the region of the image that has scrolled out of the boundary of the window become invisible. The
position property is assigned the value relative to make the image scroll relative to the enclosed
window.

The class selector .image contains the position property set to relative to make the image scroll
from its current position. Initially, the image will appear as shown in Figure 6-5, but of course it will
appear at the center of the browser window instead at the left side, and on clicking the image, it will
scroll to the left and will become invisible slowly, as shown in Figure 6-6.

6-4. Creating an Image that Scrolls Left, Disappears, and
Reappears at the Right

Problem
You have an image that is displayed at the center of the browser window (enclosed in an invisible
window). On clicking the image, it scrolls to the left (inside the enclosed window) and disappears. When
the image totally disappears, it reappears form the right side of the window and stops where it started.

Solution
We need to write the HTML code to display an image. We also need to enclose the image element within
a div element as shown here:

<body>
<div id="scroller">

</div>
</body>

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 6 ■ VISUAL EFFECTS

210

In the HTML code, we can see that the img element is enclosed within a div element, which is
assigned the ID scroller. The reason for making use of the div element is to assign the width and height
to the invisible window for the image (within which we want it to scroll).

We write the ID selector #scroller in the style sheet so that the style properties defined in it can be
automatically applied to the div element of ID scroller without using jQuery code. The style sheet will
also contain the class selector .image to assign the relative property to the position property of the img
element, which is very necessary to make the image scroll.

The style sheet style.css may appear as shown here:

style.css
#scroller{
width:155px;
height:155px;
margin:auto;
overflow:hidden;
position:relative;
}

.image{
position:relative;
}

The jQuery code to make the image scroll is shown here:

$(document).ready(function() {
 $('.image').click(function (event){
 $(this).animate(
 {'left': -160}, 'slow',
 function(){
 $(this).css('left',150);
 $(this).animate({'left': 0}, 'slow');
 }
);
 });
});

How It Works
We can see that the ID selector #scroller contains the width and height properties set to 155px to define
the width and height of the invisible window for the image. The margin property is set to auto so that
window takes the margin space from the browser window, automatically making the window appear at
the center of the width of the browser window. The overflow property is set to hidden to make the area of
the image that has scrolled out of the boundary of the window become invisible. The position property
is assigned the value relative to make the image scroll relative to the enclosed window. The class
selector .image contains the position property set to relative to make the image scroll from its current
position.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 6 ■ VISUAL EFFECTS

211

We can see in the preceding jQuery code that a click event is attached to the image. In the event-
handling function of the click event, the animate method is used to make the image scroll to the left
slowly (in the boundary of the window in which the image is enclosed) and stop at the distance of –160px
from the left side of the window; that is, the image completely disappears. In the callback function of the
animate method (which is invoked when the animate method is over; that is, when the image is
completely invisible), we use the .css() method to make the image appear at the distance of 150px from
the left side of the invisible window, making a small portion of the left edge of the image appear. In the
same callback function, we again make use of the animate method to make the image scroll to the left
and stop at the distance of 0px (from the left side of the invisible window); that is, the image will stop
where it started.

Initially, the image will appear as shown in Figure 6-7.

Figure 6-7. Image on loading the web page

And upon clicking the image, it will scroll to the left and will become invisible slowly, as shown in
Figure 6-8.

Figure 6-8. Image scrolling to the left

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 6 ■ VISUAL EFFECTS

212

After the image completely disappears, it appears again at the right side of the window and scrolls
left, as shown in Figure 6-9:

Figure 6-9. Image appearing from the right border of the invisible window

6-5. Scrolling an Image at the Center of the Browser Window

Problem
You have an image that is displayed at the center of the browser window (enclosed in an invisible
window). You want the image to keep scrolling; that is, it should scroll toward the left boundary of the
window and disappear, then reappear from the right side of the window, and again scroll toward the left,
and so on.

Solution
We need to write the HTML code to display an image. We also need to enclose the image element within
a div, as shown here:

<body>
<div id="scroller">

</div>
</body>

In the HTML code, we can see that the img element is enclosed within a div element, which is
assigned the ID scroller. The reason for making use of the div element is to assign the width and height
to the invisible window for the image (within which we want it to scroll).

We write the ID selector #scroller in the style sheet so that the style properties defined in it can be
automatically applied to the div element of ID scroller without using jQuery code. The style sheet will
also contain the class selector .image to assign the relative property to position property of the img
element, which is necessary to make the image scroll.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 6 ■ VISUAL EFFECTS

213

The style sheet style.css may appear as shown here:

style.css
#scroller{
width:155px;
height:155px;
margin:auto;
overflow:hidden;
position:relative;
}

.image{
position:relative;
}

The jQuery code to make the image scroll is shown here:

$(document).ready(function() {
 scroll();
});

function scroll()
{
 $('.image').animate(
 {'left': -160}, 'slow',
 function(){
 $('.image').css('left',150);
 $('.image').animate({'left': 0}, 'slow');
 }
);
 setTimeout(scroll, 1200);
}

How It Works
We can see that the ID selector #scroller contains the width and height properties set to 155px to define
the width and height of the invisible window for the image. The margin property is set to auto so that
window takes the margin space from the browser window, automatically making the window appear at
the center of the width of the browser window. The value of the overflow property is set to hidden to
make the area of the image that has scrolled out of the boundary of the window to become invisible. The
position property is assigned the value relative to make the image scroll relative to the enclosed
window. The class selector .image contains the position property set to relative to make the image
scroll from its current position.

Before we explore the workings of the preceding jQuery code, let’s first examine the method
setTimeout(), which is used in the following section.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 6 ■ VISUAL EFFECTS

214

setTimeout()
This method is used to make an event appear after a certain amount of time has passed.

Syntax:
setTimeout(action, time)

The setTimeout() method takes two arguments: the action that we want to take, and the time in
milliseconds that we want to wait before taking the specified action.

We can see in the preceding jQuery code that a function scroll is defined that contains an animate
method used to make the image to scroll to the left slowly (in the boundary of the window in which the
image is enclosed) and stop at the distance of –160px from the left side of the window; that is, the image
completely disappears. In the callback function of the animate method (which is invoked when the
animate method is over (that is, when the image is completely invisible), we use the .css() method to
make the image appear at the distance of 150px from the left side of the invisible window, making a
small portion of the left edge of the image appear. In the same callback function, we again make use of
the animate method to make the image scroll to the left and stop at the distance of 0px (from the left side
of the invisible window); that is, the image will stop where it started.

The function scroll doing all the aforementioned things is invoked when the web page is loaded,
making the image have one complete round in the window. After that, within the scroll function we call
it again (recursively) after the delay of 1200 milliseconds. In other words, the image will keep scrolling
infinitely after a gap of 1200 milliseconds after each round. Initially, the image will appear as shown in
Figure 6-7. The image will scroll to the left and will become invisible slowly, as shown in Figure 6-8.
When the image completely disappears, it reappears from the right side of the window and scrolls left as
shown in Figure 6-9, and so the process continues.

6-6. Showing Images One After the Other on Hover

Problem
You have several images to be displayed and you want to display them one by one. The first image is
displayed and when you hover over it, and you want it to fade out and another image to fade in. Then
you want the second image to fade out on hover and the third image to fade in, and so on. After the last
image, you want the first image to reappear.

Solution
Let’s make an HTML file to display all the five images in the form of a hyperlink, so that if any visitor
clicks on the image, he will be navigated to the target web site displaying complete information of the
object that image represents. Currently we assume the target web site as any hypothetical web site. The
HTML file should appear as shown here:

<body>
<img src="image1.jpg" width=300px
height=300px>
<img src="image2.jpg" width=300px
height=300px>

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 6 ■ VISUAL EFFECTS

215

<img src="image3.jpg" width=300px
height=300px>
<img src="image4.jpg" width=300px
height=300px>
<img src="image5.jpg" width=300px
height=300px>
</body>

All the anchor elements are assigned the class name imge so as to automatically apply to them the
style properties that are defined in the class selector .imge defined in the external style sheet (style.css).
The class names are also used to identify the elements to which we want to apply jQuery code. Also, all
the images are assigned an identical width and height of 300px to give them a uniform appearance.

The style sheet style.css may appear as shown here:

style.css
.imge{
position:absolute;
top:10px;
left:10px;
}

The jQuery code for making an image fade out (become invisible) slowly and replacing it with
another image that fades in (becomes visible) slowly is shown here:

$(document).ready(function() {
 $(".imge").hide();
 $('.imge:first').fadeIn('slow');
 $('.imge').hover(
 function(){
 $(this).fadeIn('slow');
 },
 function(){
 var next = ($(this).next().length) ? $(this).next() :$('.imge:first');
 $(this).fadeOut('slow');
 next.fadeIn('slow');
 }
);
});

How It Works
We want it so that when we hover on one image, it will be replaced by another image at the same place,
so we have used the position property and set the class selector .imge to absolute to define the exact
location of the image to appear on the web page. Also, the top and left properties are set to 10px to
assure that the image appears at the distance of 10px from the top and left boundaries of the browser
window.

Now looking at the jQuery code itself, we make all the images disappear initially, as we want them to
appear one by one. We then make the first element of all the HTML elements of the class imge to appear
slowly on the web page. That is, the first image (of all the images) will appear slowly on opening the web

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 6 ■ VISUAL EFFECTS

216

page. This is the initial image that will appear first on the web page. Once this is complete, we attach the
hover event to all the images (all HTML elements of the class imge).

In the hover event, we make the current image appear slowly when the mouse is over the image.
When the mouse pointer is moved away from the image being displayed, we see the next image to be
displayed. We first check that we are not on the last image (of elements of the class imge), then we assign
the next image in sequence to the variable next. And if we are at the last image, the first image (of the
HTML elements of the class imge) is assigned to the variable next. In other words, the variable next will
be set to refer either to the next image in sequence or to the first image (if we have reached the last image
of the class imge).

Once we have decided on the image to display next, the image that is currently visible is made to
fade out slowly. Finally, the image in the variable next (referring to the next image in sequence) is set to
appear slowly on the web page (fade in).

Initially, we get the first image of the five images on the screen, as shown in Figure 6-10.

Figure 6-10. The first image displayed on loading the web page

On hovering over the image (that is, on moving the mouse over the image and taking it away), the
next image in sequence will appear slowly, as shown in Figure 6-11. Similarly, all the images will be
displayed one by one. When the last image is reached, the first image will reappear:

Figure 6-11. The first image is replaced by the next image in sequence on hover.

Making a Slide Show
So let’ make a slide show. We’ll display an image that, when clicked, will be replaced by another image in
sequence, and so on. The only modification that we will make to the preceding jQuery code is that
instead of the hover event, we will attach the click event to the images. The Query code may appear as
shown here:

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 6 ■ VISUAL EFFECTS

217

$(document).ready(function() {
 $(".imge").hide();
 var next;
 $('.imge:first').fadeIn('slow');
 $('.imge').click(function(event){
 $(this).fadeIn('slow');
 next = ($(this).next().length) ? $(this).next() :$('.imge:first');
 $(this).fadeOut('slow');
 next.fadeIn('slow');
 event.preventDefault();
 });
});

We can see that all the images are initially made invisible. The first image is made visible by a fade-
in effect. A click event is attached to the images and if the click event occurs on any of the image, the next
image in sequence is retrieved and stored in the variable next. The image that was visible earlier is made
invisible slowly with a fadeout effect, and the next image in sequence (which is retrieved in the next
variable) is made visible with the fade-in effect. To stop from migrating to the target web page on
clicking the image, the preventDefault method of the event object (that is automatically passed to the
event-handling function by JavaScript) is used.

6-7. Scrolling an Image Vertically

Problem
You have several images, one below the other, which you want to scroll down the browser window
slowly. When all of an image disappears, you want it to reappear from the top border of the browser
window and continue scrolling downward.

Solution
Let’s make an HTML file to define all five images that we want to scroll, in the form of a hyperlink. If we
click on any image, it will navigate us to the target web site that displays the complete information about
the image. Here we assume the target web site as some hypothetical web site. The HTML file should
appear as shown here:

<body>
<div id="scroller">

</div>
</body>

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 6 ■ VISUAL EFFECTS

218

All the anchor elements are enclosed within the div element of ID : scroller so as to apply the
style properties defined in the ID selector #scroller to all the anchor elements and images. The ID
selector is defined in the external style sheet style.css. Also, all the images are assigned an identical
width and height of 150px to give them a uniform appearance. The style sheet style.css may appear as
shown here:

style.css
#scroller {
 position: relative;
 height: 760px;
 width: 150px;
}

#scroller a img { border:0; }

The jQuery code for making the images scroll is shown here:

$(document).ready(function() {
 var $wrapper=$('#scroller');
 $wrapper.css({overflow: 'hidden'});
 var animator = function(imgblock) {
 imgblock.animate(
 {bottom:"-" + imgblock.height() + "px"}, 5000,
 function() {
 $(this).css({ bottom:imgblock.height()});
 animator($(this));
 }
);
 }
 animator($wrapper);
});

How It Works
We can see in the style.css file that the ID selector #scroller contains a position property set to
relative—a necessary condition to make the image scroll (images scroll by assigning them some
position relative to their current location). The height and width are set to 760px and 150px, respectively.
The height of 760px is required to display all five images of height 150px each (one below the other), plus
some distance between them.

Also, the style sheet contains a type selector #scroller a img to apply the style properties to the img
element nested inside the anchor element, which in turn is enclosed with an HTML element of ID
scroller. That is, the style property with value 0 will be applied to the img elements to make the borders
of the images invisible.

Now in the jQuery code itself, we see that all the contents in the div element of ID scroller are
retrieved and stored in a variable wrapper. That is, all the images are now contained in the wrapper
variable. Using the .css() method, we apply the overflow property set to hidden to the wrapper variable
(to the block of images) so as to make the images that scroll down the browser window invisible. Also, a
function named animator is defined, which is invoked by the statement

animator($wrapper);

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 6 ■ VISUAL EFFECTS

219

This statement invokes the animator function, and the wrapper variable containing the block of
images is passed to it that will be assigned to its parameter imgblock. In the animator function itself, the
code animates the image block toward the bottom of the browser window and stops it at the height of –
760px from the bottom of the browser window. Since 760px is the total height of the image block, the
whole image block will disappear. The image block will scroll down slowly, as we have defined the
duration of animation as 5000 milliseconds. In the callback function of the animate method (that is
invoked when the animate method is over), we make use of the .css() method to make the image block
appear at the distance of 760px from the bottom border of the browser window, making the whole block
visible. After that the animator function is recursively called to invoke itself to make the image block
again scroll down toward the bottom of the browser window, and the process is repeated.

The part of the image block visible while scrolling may appear as in Figure 6-12.

Figure 6-12. Block of images scrolling vertically

Making the Images Scroll in a Small Window at the Center of the
Browser Window
The solution that we just saw makes the images scroll to take up the whole browser window. We can
make the images appear within a smaller invisible window so as to take less space. Also, we can make
them appear at the center of the browser window’s width instead of being left-aligned.

We’ll use the HTML file the same as the one we created at the beginning of this recipe. We need to
add some more properties to the ID selector #scroller and to the type selector #scroller a img, as
shown here:

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 6 ■ VISUAL EFFECTS

220

style.css
#scroller {
 height: 460px;
 width: 150px;
 overflow:hidden;
 position: relative;
 margin:auto;
}

#scroller a img { border:0; position:relative;}

The jQuery code to make the vertical scroller scroll in the window of width and height 150px and
460px, respectively, is as shown here:

$(document).ready(function() {
 var $wrapper=$('#scroller a img');
 $wrapper.css({bottom:750});
 var animator = function(imgblock) {
 imgblock.animate(
 {bottom:-460}, 5000,
 function() {
 imgblock.css({bottom:750});
 animator($(this));
 }
);
 }
 animator($wrapper);
});

How It Works
The ID selector #scroller contains the height property set to 460px, which is sufficient to display three
images of height 150px, one below the other (we want to see at most three images at a time). The width
property is set to 150px (that is the width of an image). The overflow property is set to hidden to make
invisible those images that cross this window boundary. The value of the position property is set to
relative to make it possible for the images to scroll, and the margin property is set to auto to make the
invisible window (displaying a vertical scroller) appear a the center of the browser window’s width.

The style properties defined in the type #scroller a img will be automatically applied to the img
element (images of the HTML file). It contains the border property set to 0 (to make the borders of the
images invisible), and the position property is set to relative to make the images scroll.

Looking now at the jQuery code itself, first up all the img elements of the HTML file enclosed in the
anchor element of the div element of ID scroller are retrieved, and stored, in the variable wrapper. Then
the block of these images stored in wrapper is set to appear at the distance of 750px from the bottom of
the invisible window (it makes the bottom edge of the last image of the image block appear within the
invisible window.

Next, in the animator method the image block is set to animate toward the bottom of the invisible
window and stop at the distance of –460px; that is, when the image block disappears. The image block
will animate slowly, as the duration of animation is set to 5000 milliseconds.

In the callback function of the animator method (that executes when animation is done), we set the
image block to appear at the distance of 750 pixels from the bottom of the invisible window, making the

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 6 ■ VISUAL EFFECTS

221

bottom edge of the last image appear. The animator method is then called recursively to make the
vertical scroller scroll infinitely.

Finally, the animator method is invoked and all the images that were stored in the variable wrapper
are passed to it.

Making the Scroller Scroll Upward
The preceding scroller was moving downward. We can alter the jQuery code to make it scroll upward;
that is, toward the top border of the invisible window. The jQuery code to accomplish that is as follows:

$(document).ready(function() {
 var $wrapper=$('#scroller a img');
 $wrapper.css({top:0});
 var animator = function(imgblock) {
 imgblock.animate(
 {top:-770}, 5000,
 function() {
 imgblock.css({top:450});
 animator($(this));
 }
);
 }
 animator($wrapper);
});

All the images (img elements nested inside the anchor element, which in turn is nested inside the div
element of ID scroller) are retrieved and stored in the variable $wrapper. Using the .css() method, the
images are set at the distance of 0px from top border; that is, three images of height 150px each will
appear initially, one below the other. The animator function is invoked and all the images stored in the
$wrapper variable are sent to it and are assigned to its imgblock parameter. The image block is then set to
animate toward the top border of the invisible window. The animation will stop at the distance of –
770px; that is, it will stop when whole of the image block disappears! The scrolling will be slow, as the
delay is set to 5000 milliseconds. After the animation effect, the block is then set to appear at the distance
of 450px from the top border; that is, the top edge of the first image in the image block will reappear from
the bottom border of the invisible window. The animator function is called recursively to continue the
scrolling…

6-8. Scrolling an Image Horizontally

Problem
You have several images and you want them to be displayed in the form of a scroller. That is, you want
the images to scroll from right to left one by one in an invisible window. When all the images are scrolled
to the left, you want the first image to reappear from the right side of the window and scroll toward the
left side, followed by other images behind it.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 6 ■ VISUAL EFFECTS

222

Solution
Let’s make an HTML file to define the five images that we want to scroll, in the form of a hyperlink. If we
click on any image, it is supposed to navigate us to the target web site that displays the complete
information about the image. Here we assume the target web site as some hypothetical web site. The
HTML file should appear as shown here:

<div id="scroller">
<div id="images">

</div>
</div>
</body>

We can see that the anchor elements containing the img elements are enclosed within two div
elements, one inside the other. The outer div element is assigned the ID scroller and the inner div
element is assigned the ID images. To the outer div element we will apply the style properties to define
the width of the invisible window; it decides how many images we want to see at a time. To the inner div
element, we will apply the style properties that decide the total width of the complete image block. All
the images are assigned an identical width and height of 150px to give them a uniform appearance. We
define the style properties for the div elements and the img elements in the style sheet style.css that
may appear as shown here:

style.css
#scroller {
 position: relative;
 height:150px;
 width: 460px;
 overflow:hidden;
 margin:auto;
}

#images{
 width: 770px;
}

#images a img {border:0; position:relative;}

The jQuery code to make the horizontal scroller appear at the center of the browser window is as
shown here:

$(document).ready(function() {
 var $wrapper=$('#scroller a img');
 $wrapper.css({left:0});
 var animator = function(imgblock) {
 imgblock.animate(
 {left:-770}, 5000,

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 6 ■ VISUAL EFFECTS

223

 function() {
 imgblock.css({left:450});
 animator($(this));
 }
);
 }
 animator($wrapper);
});

How It Works
We can see in the style.css file that the ID selector #scroller contains a position property set to
relative—a necessary condition to make the image scroll (images scroll when we assign them some
position relative to their current location). The height and width are set to 150px and 460px, respectively.
The width of 460px is required to display at most three images at a time (the width includes the width of
three images of 150px width, with some space in between). The overflow property is set to hidden to
make the region of the images invisible that falls outside the width of this invisible window. The margin
property is set to auto to make the horizontal scroller appear at the center of the width of browser
window.

The ID selector #images contains the width property that will be applied to the inner div element.
The width property is set to770px, which is the total of the width of all the images that we want to be
displayed in the scroller (with some distance in between the images). The width property here decides
the number of images that we want to see in the horizontal scroller. Also, the style sheet contains a type
selector #images a img to apply the style properties to the img element nested inside the anchor element,
which in turn is enclosed with an HTML element of ID images. It contains the border property set to 0 (to
make the borders of the images invisible) and the position property is set to relative to make the images
scroll.

Looking now at the jQuery code itself, all the img elements of the HTML file that are enclosed in the
anchor element of the div element of ID scroller are retrieved and stored in the variable wrapper. The
block of images stored in the wrapper variable is then set to appear at the distance of 0px from the left
boundary of the invisible window (it makes the first three image of the image block appear within the
invisible window initially).

Then, in the animator method, the image block is set to animate toward the left edge of the invisible
window and stop at the distance of –770px; that is, when all five images in the image block have scrolled
to the left. The image block will animate slowly, as the duration of animation is set to 5000 milliseconds.

In the callback function of the animator method (that executes when the animation is done), we set
the image block to appear at the distance of 450px from the left boundary of the invisible window,
making the left edge of the first image (in the image block) appear from the right boundary of the
invisible window. The animator method is then called recursively to make the horizontal scroller scroll
infinitely. When all the images are scrolled to the left side, the first image reappears from the right
boundary of the invisible window.

Finally, the animator method is invoked and all the images that were stored in the variable
wrapper are passed to it. On execution of the preceding jQuery code, three images appear, as shown in
Figure 6-13.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 6 ■ VISUAL EFFECTS

224

Figure 6-13. Images that appear on loading the web page

These images start scrolling to the left, making the rest of the images (that were hidden behind the
invisible window) appear as shown in Figure 6-14.

Figure 6-14. Images scrolling to the left, and the hidden images appearing from the right

Pausing the Scroll on Hover
Say we also want the image scroller to pause when the mouse pointer moves over any of its images, and
resume scrolling when the mouse pointer moves away from the images. We can modify the jQuery code
as shown here:

$(document).ready(function() {
 var $wrapper=$('#scroller a img');
 $wrapper.css({left:0});
 var animator = function(imgblock) {
 imgblock.animate(
 {left:-770}, 5000,
 function() {
 imgblock.css({left:450});
 animator($(this));
 }
);
 }
 animator($wrapper);

 $wrapper.hover(
 function(){
 $wrapper.stop();
 },

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 6 ■ VISUAL EFFECTS

225

 function(){
 animator($wrapper);
 }
);
});

Before we explore what this jQuery code is doing, please note the stop() method that we have used

in this code, which stops all the currently running animations on all the specified elements.
So in the jQuery code itself, all the images (img elements nested inside the anchor element, which in

turn is nested inside div element of ID scroller) are retrieved and stored in the variable $wrapper. Using
the .css() method, the images are set at the distance of 0px from left border; that is, three images of
width 150px each will appear initially, one after the other, in the invisible window (the width of the
invisible window is set to 360px in style sheet).

 The animator function is invoked and all the images stored in the $wrapper variable are sent to it
and are assigned to its imgblock parameter. The image block is set to animate toward the left border of
the invisible window. The animation will stop at the distance of –770px; that is, it will stop when whole of
the image block disappears into the left border of the window. The scrolling will be slow, as the delay is
set to 5000 milliseconds. After the animation effect, the block is set to appear at the distance of 450px
from the left border; that is, the left edge of the first image in the image block will reappear from the right
border of the invisible window. The animator function is called recursively to continue the scrolling.

To the image block—that is, to the $wrapper variable—we attach the hover event. Recall that the
hover event has two event-handling functions: one is invoked when the mouse pointer is over the object,
and the other is invoked when the mouse pointer is moved away from the object. In the event-handling
function that is invoked when the mouse pointer is moved over the image block, it invokes the .stop()
method to stop the scrolling; and in the event-handling function that is invoked when the mouse pointer
is moved away from the image block, the animator function is invoked to resume scrolling.

Scrolling to the Right
The preceding scroller is scrolling to the left. To make the scroller scroll to the right, we have to alter the
jQuery code as shown here:

$(document).ready(function() {
 var $wrapper=$('#scroller a img');
 $wrapper.css({right:0});
 var animator = function(imgblock) {
 imgblock.animate({
 right:-460}, 5000,
 function() {
 imgblock.css({ right:770});
 animator($(this));
 }
);
 }
 animator($wrapper);
});

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 6 ■ VISUAL EFFECTS

226

All the images (img elements nested inside the anchor element, which in turn is nested inside the div
element of ID scroller) are retrieved and stored in the variable $wrapper. Using the .css() method, the
images are set at a distance of 0px from right border; that is, the first three images of width 150px each
will appear, one after the other, in the invisible window (the width of the invisible window is of 360px).

The animator function is invoked and all the images stored in $wrapper variable are sent to it that are
assigned to its imgblock parameter. The image block is set to animate toward the right border of the
invisible window. The animation will stop at the distance of –460px; that is, it will stop when whole of the
image block disappears into the right border of the window. The scrolling will be slow as the delay is
provided of 5000 milliseconds.

After the animation effect the block is set to appear at the distance of 770px from the right border;
that is, the right edge of the last image in the image block will reappear from the left border of the
invisible window. The animator function is called recursively to continue the scrolling.

6-9. Making a News Scroller

Problem
You have some news in the form of text to be displayed to the visitor of your web site. You want the news
to scroll upward in an invisible window. When the news is completely scrolled up, you want it to appear
again at the bottom of the window and continue scrolling upward. We will be writing the solution of this
problem using two methods: first we’ll use the .animate() method and then we’ll use the .css() method.

Solution
Let’s start out with an HTML file to display the news in the form of a paragraph element. The paragraph
element is enclosed within the div element of ID scroller. The HTML file should appear as shown here:

<body>
<div id="scroller">
<p>Styles make the formatting job much easier and more more efficient. To give an attractive
look to web sites, styles are heavily used. A person must have a good knowledge of HTML and
CSS and a bit of JavaScript.
jQuery is a powerful JavaScript library that allows us to add dynamic elements to our web
sites. Not only is it easy to learn, but it’s easy to implement too.
jQuery is an open source project that provides a wide range of features with cross-platform
compatibility. jQuery has hundreds of plug-ins to extend its features. jQuery helps in
increasing interactions with a web site.
</div>
</body>

The idea of defining the div element is to apply certain style properties to it automatically via the ID
selector #scroller to define the size of the news window within which the news will scroll. This ID
selector #scroller is defined in the style sheet style.css. Also, the style sheet contains the type selector
#scroller p that contains the style properties to be applied to the text of the paragraph element
representing the news text. The style sheet style.css file may appear as shown here:

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 6 ■ VISUAL EFFECTS

227

style.css
#scroller {
height: 250px;
width: 230px;
overflow:hidden;
position: relative;
margin:auto;
border:2px solid ;
padding:10px;
}

#scroller p {font-weight:bold;position:relative;}

The jQuery code to make the news scroll is shown here:

$(document).ready(function() {
 var $wrapper=$('#scroller p');
 $wrapper.css({top:0});
 var animator = function(imgblock) {
 imgblock.animate(
 {top:-350}, 5000,
 function() {
 imgblock.css({top:250});
 animator($(this));
 }
);
 }
 animator($wrapper);
});

How It Works
The ID selector #scroller contains the properties height and width set to 250px and 230px, respectively,
to define the height and width of the news window (within which we want the news text to scroll). By
setting the value hidden to the overflow property, we make the text that falls outside the height of the
news box become invisible. The value of the position property is set to relative—it is a necessary
condition for any text or image to scroll, as scrolling happens on positioning an element relative to its
current position. The margin property is set to auto to make the news scroller appear at the center of the
width of the browser window. The border property will create a solid border of 2px thickness around the
news text, and the padding property is set to 10px to define some spacing between the text and the news
box’s border. The type selector #scroller p contains the font-weight property set to bold to make the
paragraph text appear in bold, and the position property is set to relative to make the paragraph text
scroll.

In the jQuery code itself, you can see that the whole of the paragraph text that is enclosed in the div
element of ID scroller is retrieved and is stored in the variable $wrapper. The text is initially set to
appear at the distance of 0px from the top border of the window; that is, the upper region of the text is
made visible. The overflow text (that goes beyond the height of the news box) will not be visible. An
animator function is defined and all the paragraph text (stored in the variable $wrapper) is passed to this
function and is assigned to its imgblock parameter. The imgblock—that is, all the paragraph text—is set
to animate toward the top boundary of the window and is set to stop at the distance of –350px from the

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 6 ■ VISUAL EFFECTS

228

top boundary of the news box, when all the paragraph text is scrolled up (becomes invisible). This
scrolling will happen quite slowly, as the duration of animation is set to 5000 milliseconds. In the
callback function of the animate method (that is executed when the animation is over), we make the
paragraph text appear at the distance of 250px from the top border of the window, making only the first
line of the paragraph text appear from the bottom boundary of the window. After that, the animator
function is called recursively to make the paragraph text scroll infinitely.

Initially the paragraph text that is able to fit in the height and width of the window will be visible, as
shown in Figure 6-15.

Figure 6-15. The news text scrolling toward the top border of the news box

Then the news will start scrolling toward the top border of the news box slowly, and vanish as it
crosses the top border, as shown in Figure 6-16.

Figure 6-16. The news text that is scrolled up disappears

When all the news text is scrolled up, the first line of the news will appear at the bottom border of
the window and will continue scrolling upward.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 6 ■ VISUAL EFFECTS

229

News Scroller Using the .css() Method
In this second approach to our solution, we will make use of .css() method in a loop to create an
animation effect. We will be making a new HTML file for trying out this method. So, let’s make an HTML
file to display the news in the form of a paragraph element. The paragraph element is enclosed within
the div element of ID news_scroller to define the width and height of the news box window in which we
want the news to scroll. The HTML file should appear as shown here:

<body>
<div id="news_scroller">
<p>Styles make the formatting job much easier and more efficient. To give an attractive look
to web sites, styles are heavily used. A person must have a good knowledge of HTML and CSS
and a bit of JavaScript.
jQuery is a powerful JavaScript library that allows us to add dynamic elements to our web
sites. Not only it is easy to learn, but it’s easy to implement too.
jQuery is an open source project that provides a wide range of features with cross-platform
compatiblity. jQuery has hundreds of plug-ins to extend its features. jQuery helps in
increasing interactions with a web site.
</div>
</body>

We will write an ID selector #news_scroller and a type selector p to apply the style properties
automatically to the div element and the text of paragraph element. The contents of the external style
sheet style.css should look like this:

style.css
#news_scroller{position:relative; height:200px; width:200px; overflow:hidden; border:2px
solid ; padding:10px;}
p{position:relative;}

The jQuery code to make the text scroll is as shown here:

$(document).ready(function() {
 ticker_height = $('#news_scroller').height();
 news_height=$('#news_scroller p').height();
 no_oflines = 0;
 scroll();
});

function scroll() {
 no_oflines -= 2;
 $('#news_scroller p').css('top', ''+no_oflines+"px");
 if(no_oflines<-1*news_height) no_oflines = ticker_height;
 setTimeout(scroll, 50);
}

How It Works
The ID selector #news_scroller contains the position property set to relative to make the text inside it
scroll. The height and width properties are set to 200px each to define height and width of the news box,

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 6 ■ VISUAL EFFECTS

230

and the value of over flow property is set to hidden to make the text that is not able to fit in the given
width and height of the news box disappear. The border property is set to display the solid border of 2px
thickness. The padding property is set to 10px to keep some spacing between the paragraph text and the
news box’s boundary. The property in the type selector p contains the position property set to
relative—a necessary condition to make the text (inside the news box) scroll.

In the jQuery code itself, we first find out the total height of the news_scroller (div element) and the
height of the text (paragraph) element, and store them in variables ticker_height and news_height,
respectively. In this solution, we are going to scroll the text toward the top border of the news box by
using the .css() method repetitively instead of using the animate() method. That is, we initially set
some lines to scroll and then gradually increment the quantity of lines to scroll; for doing so, we need the
help of the variable no_oflines. We initialize it to 0. Then we invoke the scroll function.

In the scroll function, we decrement the value of no_oflines variable by 2 (every time we call this
function). Assuming the value of no_oflines =–2, we use the .css() method to make the paragraph text
(enclosed in the div element of ID news_scroller) to be set at the distance of -2 pixels from the top
boundary of the news box; that is, the paragraph text will scroll up the top border by 2px and will not be
visible now (as the overflow property is set to hidden). In the next call of the scroll function, the value of
the no_oflines variable will become –4 (decremented by 2 every time), making the text to go inside the
top border by 4px (that is, 2px more of paragraph text is scrolled up and made invisible), and the process
is repeated. When the value of the variable no_oflines becomes equal to the size of news_height—that is,
when the whole news text is scrolled up—we set the value of the no_oflines variable equal to the size of
the ticker_height—the height of the news_scroller box—to make the text again appear from the
bottom border of the news box.

The scroll function is set to call itself recursively at the time delay of 50 milliseconds to make the
text scroll infinitely.

Making the News Scroller Pause on Hover
Let’s add a bit more jQuery code this time to pause the news scroller when the mouse is moved over the
text and to resume scrolling when the mouse is moved away from the news scroller. We need to add one
Boolean variable, rotate, that decides when to stop scrolling and when to begin scrolling. Initially the
value of the rotate variable is set to true, as shown in the following jQuery code:

$(document).ready(function() {
 ticker_height = $('#news_scroller').height();
 news_height=$('#news_scroller p').height();
 no_oflines = 0;
 rotate = true;

 $('#news_scroller').hover(
 function(){
 rotate = false;
 },
 function(){
 rotate = true;
 }
);

 scroll();
});

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 6 ■ VISUAL EFFECTS

231

function scroll() {
 no_oflines += rotate ? -2 : 0;
 $('#news_scroller p').css('top', ''+no_oflines+"px");
 if(no_oflines<-1*news_height) no_oflines = ticker_height;
 setTimeout(scroll, 50);
}

In this jQuery code, as we have done before, we first find out the total height of the news_scroller

(div element) and the height of the text (paragraph) element and store them in the variables
ticker_height and news_height, respectively. We also initialize the value of the variable no_oflines to 0
(which we are going to use in scrolling the text). We’ll set the news text to scroll by gradually decreasing
the value in the no_oflines variable). We also make use of the Boolean variable rotate, which is initially
set to true. We will stop scrolling the news text when the value of the rotate variable is set to false, and
resume scrolling when its value is true. Also, we apply the hover() event to the div element of
IDnews_scroller so that when the mouse is over the news box, we set the value of the rotate variable to
false so as to pause the news scroller; when the mouse pointer is moved away from the news box, we set
the value of the Boolean variable rotate to true to resume the scrolling. Then we invoke the scroll
function.

Now in the scroll function, we decrement the value of the no_oflines variable by 2 if the value of the
rotate variable is true; otherwise, we don’t change its value (in which case the news text will remain at
its current position and will not scroll). Assuming the value of no_oflines =–2, we use the .css() method
to set the paragraph text (enclosed in the div element of ID news_scroller) at the distance of –2 pixels
from the top boundary of news box,; that is, the paragraph text will scroll up the top border by 2px and
will disappear (as the overflow property is set to hidden).

In the next call of the scroll function, the value of the no_oflines variable will become –4
(decremented by 2 every time), making the text to go inside the top border by 4px (that is, 2px more of
the paragraph text will be scrolled up and hence disappear), and the process is repeated. When the value
of the variable no_oflines becomes equal to the size of news_height—that is, when the whole news text is
scrolled up—we set the value of the no_oflines variable equal to the size of the ticker_height—the
height of the news_scroller box—to make the news text again appear from the bottom border of the
news box.

The scroll function is set to call itself recursively at the time delay of 50 milliseconds to make the
text scroll infinitely.

6-10. Displaying an Enlarged Image on Mouseover

Problem
You want to display several items to be sold on your web page and to efficiently use the space, so you
plan to display the images of these items in the form of icons. You want things to work so that when the
mouse pointer is moved over the icons, an enlarged image of the item itself is displayed to give a better
view to the visitor.

Solution
Let’s start out with an HTML file to display four icons of the items that we want to display. The icons, as
usual, will be displayed via img elements and will be enclosed in the anchor element. The anchor

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 6 ■ VISUAL EFFECTS

232

element refers to the enlarged view of the icon. That is, if the visitor clicks on any icon, he will be
navigated to the web page that displays the enlarged view of the icon. Also, all the anchor elements will
be written within a div element of the class small so that styles can be applied via jQuery code or style
sheet to the whole collection. The HTML file should appear as shown here:

<body>
 <div class="small">

 </div>

</body>

In the preceding HTML file, we can also see that anchor elements and img elements both refer to the
same image file; that is, the anchor element and the img element will display the image of the same size,
whereas we want the img element to display the small image (in the form of an icon) and the anchor
element to display an enlarged view. Though images in the anchor elements and in img elements are
actually of the same size, by applying style properties to the img element (of div element of the class
small), we will reduce the images’ width and height to make them appear as icons. The image displayed
via the img element of the class large will be displayed in its actual size, so it will be used to display the
enlarged view. By default it will show the enlarged view of the first icon.

The style properties applied to the img element enclosed in the div element of the class small can be
written in the external style sheet file style.css that may appear as shown here:

style.css
.small img { border:none;margin:10px;width:60px; height:60px; }

The jQuery code to display the enlarged view of the icon when the mouse is moved over it is shown
here:

$(document).ready(function() {
 $(".small a").hover(
 function(){
 var imgname = $(this).attr('href');
 $(".large").fadeTo(
 "slow", 0,
 function() {
 $('.large').attr('src',imgname);
 }
).fadeTo("slow", 1);
 }
);
});

How It Works
You can see that the properties defined in the type selector .small img will be automatically applied to
the img elements enclosed in the div element of the class small. The border property set to none will

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 6 ■ VISUAL EFFECTS

233

make the border of the images invisible; the margin property set to 10px will create the spacing of 10px
between icons; the width and height properties are set to 60px to reduce the width and height of the
images to make them appear as icons.

Looking now at the jQuery code itself, we first we attach the hover event to all the anchor elements
enclosed in the div element of the class small. Then in the hover event, the value of the href attribute of
the anchor element being hovered over is retrieved and stored in the variable imgname; that is, the
respective image file name (whether it is a1.jpg, a2.jpg, etc.) of the icon (on which the mouse pointer is
hovering) will be stored in the imgname variable. The current enlarged image (assigned to the img element
of the class large) is then made invisible slowly with the help of the .fadeTo() method.

In the callback function of the .fadeTo() method (that is called when the animation effect is over),
we set the value of the src attribute (the image source value of the img element of the class large) equal
to the value stored in the variable imgname. Thus the image file name stored in the variable imgname (on
which the mouse pointer is hovering) is assigned to the img element of the class large to display the
enlarged view of the icon. In the second fadeTo() call, the enlarged view of the image is made to appear
gradually on the screen. Finally, the second function of the hover event (which is invoked when the
mouse pointer moves away from the icon) is left empty, as we don’t want to take any action but to make
the enlarged view of the icon persist on the screen.

On execution of the jQuery code, if we take the mouse pointer on the first icon, its enlarged view will
be displayed as shown in Figure 6-17.

Figure 6-17. The list of icons, along with the enlarged image of the first icon

Similarly, if we take the mouse pointer to some other icon, again its enlarged view will be displayed
as shown in Figure 6-18.

Figure 6-18. Enlarged image of the icon over which the mouse pointer is moved

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 6 ■ VISUAL EFFECTS

234

Enlarging the Icon Itself on Hover
What if you only want to enlarge the icon itself? Let’s modify the preceding solution so that we enlarge
the icon in place when the mouse pointer is over it. When the mouse pointer is moved away from the
icon, we want it to return to its original size. The HTML file will be modified to display only the icons and
the div block to show that the large image below the small ones is removed, as shown here:

<body>
 <div class="small">

 </div>
</body>

You can see that the four icon images are displayed via img elements that are nested inside the div
element of the class small. To define the width, height, and border properties of the img element, we
define a type selector in the style sheet file style.css, which may appear as shown here:

style.css
.small img { border:none;margin:10px;width:60px; height:60px; }

The jQuery code to enlarge the icon in place when the mouse pointer is over it is shown here:

$(document).ready(function() {
 $(".small a").hover(
 function(){
 $(this).find('img').css({'width':200,'height': 200});
 },
 function(){
 $(this).find('img').css({'width':60,'height': 60});
 }
);
});

How It Works – Enlarging the Icon Itself
We can see that the preceding style sheet file contains the type selector img, the properties of which will
be automatically applied to the element of the class small. The type selector contains the border
property set to none to make the border of the images invisible, the margin property is set to 10px to
create the spacing of 10px among icons, and the width and height properties are set to 60px each to
reduce the width and height of the images to make them appear as icons.

In the jQuery code itself, we attach the hover event to all the anchor elements (and the img elements)
that are nested inside the div element of the class small. In the event-handling function (that is executed
when the mouse pointer moves over the images), we use the .css() method to enlarge the icon’s width
and height to 200px, and in the event-handling function (that is executed when mouse pointer is moved
away from the image block), we again make use of the .css() method to reduce the icon’s size back to its
original width and height of 60px each.

Initially the icons will appear as shown in Figure 6-19.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 6 ■ VISUAL EFFECTS

235

Figure 6-19. All icons that appear initially on loading the web page

When the mouse pointer moves over any icon, it will be enlarged in place, as shown in Figure 6-20.
The icon will regain its original shape when the mouse pointer is moved away from it.

Figure 6-20. The icon turns into the enlarged image on hovering over it.

Making a Content Slider
Let’s now go a step further and modify the preceding solution to use a content slider. That is, a few items
in the form of icons will be displayed, one below the other, and when the mouse pointer is moved over
any icon, its enlarged view will appear on the right side, as shown in Figure 6-21.

<body>
<table border="1">
<tr><td width=150 align=center> <p>
"Model: M1001. Price 100$"</td><td rowspan="4" width=350 align=center><img src="a1.jpg"
class="large" /></td></tr>
<td width=150 align=center><p>
"Model: M1002. Price 150$"</p></td></tr>
 <td width=150 align=center><p>
"Model: M1003. Price 90$"</td></tr>
<td width=150 align=center> <p>
"Model: M1004. Price 200$"</td></tr>
</table>
</body>

In the preceding HTML file, we see that anchor elements and img elements (both refer to the same
image files) are both nested inside the <td> element to make them appear in the form of a column of a
table element. Also in the column, below the icons, we have included a paragraph element to display the
model number and price of the product that it represents. The second column of the table is set to take
the size equal to the size of all four rows; that is, the image that will be displayed in the second column of
the table will be as large as the size of all four rows together. The border of the table element is set to 1 to

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 6 ■ VISUAL EFFECTS

236

make it appear as shown in Figure 6-21. The image displayed via the img element of the class large will
display the enlarged image of the icon that is hovered over.

The style properties applied to the img element enclosed in the div element of the class small can be
written in the external style sheet file style.css. Also, the style sheet file contains the CSS class that we
want to be applied to the enlarged image and to the icons when they are hovered over. The style sheet
file may appear as shown here:

style.css
.small img { border:none;margin:10px;width:60px; height:60px; }
.large{width:200px; height:200px;}
.hover{color: blue ; background-color:cyan }

The jQuery code to apply the hover effect and to display the enlarged view of the icon when the
mouse is moved over it is shown here:

$(document).ready(function() {
 $('td').find('p').css({'font-size':12, 'font-weight':'bold'});
 $(".small").hover(
 function(){
 $(this).parent().addClass('hover');
 var imgname = $(this).attr('href');
 $(".large").fadeTo(
 "slow", 0,
 function() {
 $('.large').attr('src',imgname);
 }
).fadeTo("slow", 1);
 },
 function(){
 $(this).parent().removeClass('hover');
 }
);
});

How It Works – The Content Slider
The properties defined in the type selector .small img (to be automatically applied to the img elements
nested inside the div element of the class small) includes the border property set to none to remove the
border of the images, the margin property set to 10px to create spacing of 10px between the icons, and
width and height properties set to 60px each to reduce the width and height of the images to make them
appear as icons. The class selector .large contains the width and height properties set to 200px to
display the enlarged view of the image being displayed via the img element of the class .large. The CSS
class hover contains the background-color and color properties set to cyan and blue, respectively, to
apply the background and foreground colors to the element that is hovered over.

Now let’s take a look at the jQuery code itself. We start by finding the paragraph elements in the td
elements and applying to them the font-size property set to 12px, and the font-weight property set to
bold with the help of the .css() method. Next we attach the hover event to all the elements of the class
small; that is, to all the anchor elements (and subsequently to the nested img element).

In the hover event handler, the CSS class hover is applied to the element that is hovered over; that is,
the foreground and background colors of the image and paragraph element change. The value of the

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 6 ■ VISUAL EFFECTS

237

href attribute of the anchor element is then retrieved and stored in the variable imgname; that is, the
respective image file name (whether it is a1.jpg, a2.jpg, etc.) of the icon on which the mouse pointer is
hovering will be stored in the imgname variable. With that done, the enlarged image (assigned to the img
element of the class large) is made invisible slowly with the help of the .fadeTo() method.

In the callback function of the .fadeTo() method (that is called when the animation effect is over),
we set the value of the src attribute (image source value of the img element of the class large) equal to
the value stored in the variable imgname. In other words, the image file name stored in the variable
imgname (on which the mouse pointer is hovering) is assigned to the img element of the class large to
display the enlarged view of the icon. The second fadeTo() method makes the enlarged view of the
image appear gradually on the screen.

 The second function of the hover event, which is invoked when the mouse pointer moves away
from the icon, is used for removing the hover class from the image and paragraph element to make them
appear as they were before the mouse pointer moved over them. On execution of the jQuery code, if we
take the mouse pointer on the first icon, its background and foreground color change and its enlarged
view is displayed, as shown in Figure 6-21.

Figure 6-21. Enlarged image of the hovered-over item

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 6 ■ VISUAL EFFECTS

238

6-11. Showing Images Pagewise

Problem
You have several images on the web page and you want to display them pagewise, where a page may
contain one or more images (depending on the space on the web page). At the top of the image, you
want the numbers to represent the page numbers. You want the image of the selected page number to
be displayed on the screen.

Solution
Let’s create an HTML file to define five images that we want to be displayed. Also, since we want the
images to act as hyperlinks that navigate the visitor to the target web page (one that will display more
detailed information of the image that’s been selected) we need to nest the image elements inside the
anchor elements. The HTML file should appear as shown here:

<body>
<div id="images">

</div>
</body>

We can see in the HTML page that all the img elements are assigned the same width and height of
150px to give them a uniform appearance, and the anchor elements target at some hypothetical website
to which the visitor will be navigated on selecting any image.

Now let’s define the CSS classes in the external style sheet file style.css, as shown here:

style.css
.page{
margin:5px;
}
.hover{
color: blue ;
background-color:cyan
}

The jQuery code to divide the images into pages and display the image of the selected pages is
shown here:

$(document).ready(function() {
 var $pic = $('#images a');
 $pic.hide();
 var imgs = $pic.length;
 var next=$pic.eq(0);

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 6 ■ VISUAL EFFECTS

239

 next.css({'position': 'absolute','left':10});
 next.show();
 var $pagenumbers=$('<div id="pages"></div>');
 for(i=0;i<imgs;i++)
 {
 $(''+(i+1)+'').appendTo($pagenumbers);
 }
 $pagenumbers.insertBefore(next);

 $('.page').hover(
 function(){
 $(this).addClass('hover');
 },
 function(){
 $(this).removeClass('hover');
 }
);

 $('span').click(function(event){
 $pic.hide();
 next=$pic.eq($(this).text()-1);
 next.show();
 });
});

How It Works
We find that the CSS class page contains the style property margin set to 5px to define the space between
the page numbers, and the class hover contains two properties, color and background-color, set to blue
and cyan, respectively, to change the background and foreground colors of the page numbers when
mouse pointer moves over them.

Now let’s look at the jQuery code itself. First, all the anchor elements (that is, all the images enclosed
in the anchor elements) nested in the div element of ID images are retrieved and stored in the variable
$pic. The object $pic will contain all the images. We then hide all the images and set some variables; the
count of the images is stored in the variable imgs, and the first image in the $pic object is stored in the
variable next.

To the first image stored in variable next, some style properties are applied using the.css() method.
The position property is set to absolute and the left property is set to 10px to make the image stored in
the variable next to appear at the distance of 10px from the left boundary of the browser window. With
that done, the image in the next variable is made visible on the screen and we define a variable
$pagenumbers, and a div element of ID pages is assigned to it.

A for loop is then used to create several span elements (equal to the number of images) of the class
pages. The text in the span element will be 1,2... (to serve as page numbers). The span elements are
assigned the class name pages so that the properties defined in the class selector .pages (in style.css
file) can be applied to them automatically. The span elements are appended to the div element of ID
pages that we assigned to the variable $pagenumbers.

The whole div element of ID pages containing the span elements (which contain the page numbers)
is inserted before the first image displayed via the variable next, and we apply and remove the CSS class
hover to the page numbers (span elements of the class page) when the mouse pointer is moved over the

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 6 ■ VISUAL EFFECTS

240

page numbers. We then need to attach the click event to the span elements (that is, to the page
numbers).

Here we make all the images invisible, including the current one that is displayed if the user selects
any of the page numbers. Finally, we retrieve the image from the $pic object (containing an array of
images), depending on the value of the page number selected; we store it in variable next and display the
image retrieved in the variable next.

On execution of the jQuery code, initially the first image will be displayed with page numbers at its
top, as shown in Figure 6-22.

Figure 6-22. The first image, along with the page-number list above it

On selecting the page number, the image of that page number will be displayed as shown in Figure
6-23.

Figure 6-23. The image that appears on clicking the page number 4

6-12. Shuffling Images in Either Direction

Problem
You want to display a few images on the web page within an invisible window, along with left and right
arrow buttons below them. You want it to work so that when the left arrow button is pressed, the images
shuffle toward the left side (making the images that were hidden scroll left), and when the right arrow
button is selected, all the images scroll right to display any hidden images.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 6 ■ VISUAL EFFECTS

241

Solution
Let’s create an HTML file to define the images that we want to be displayed. The images are nested
inside the div element of ID images (to apply styles and codes via jQuery code), which in turn is nested
inside the div element of ID scroller. The HTML file you want to create is shown here:

<body>
<div id="scroller">
<div id="images">

</div>
</div>
<div id="direction">

</div>
</body>

The images are enclosed within the anchor elements so as to navigate the visitor to the target web
page to display the detailed information about the image that’s been selected. For the time being, we
assume the target web site as some hypothetical web site. The anchor elements containing the img
elements are enclosed within the two div elements, one inside the other. The outer div element is
assigned the ID scroller and the inner div element is assigned the ID images. To the outer div element,
we will apply the style properties to define the width of the invisible window; that is, it decides how
many images we want to see at a time. To the inner div element, we will apply the style properties that
decide the total width of the complete image block. All the images are assigned an identical width and
height of 150px to give them a uniform appearance.

Also, we make use of the img element to display the two left and right arrow buttons. These img
elements are assigned the class names leftarrow and rightarrow, respectively, so that the style
properties defined in the class selectors can be applied to them respectively. The two arrows are nested
inside the div element that is assigned the ID direction. We define the style properties for the div
elements and the img elements in the style sheet style.css, which may appear as shown here:

style.css
#scroller {
 position: relative;
 height:150px;
 width: 460px;
overflow:hidden;
margin:auto;
}

#images{
 width: 770px;
}

#images a img { border:0; position:relative;}

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 6 ■ VISUAL EFFECTS

242

#direction
{
width: 460px;
margin:auto;
}

.leftarrow{margin-top:10px;}
.rightarrow{margin-left:390px;margin-top:10px;}

The jQuery code to make the images scroll on selecting the left and right arrow images is shown

here:

$(document).ready(function() {
 var $wrapper=$('#scroller a img');

 var leftanimator = function(imgblock) {
 imgblock.animate({left:-310 }, 2000);
 }

 var rightanimator = function(imgblock) {
 imgblock.animate({left:0 }, 2000);
 }

 $('.leftarrow').click(function(event){
 leftanimator($wrapper);
 event.preventDefault();
 });

 $('.rightarrow').click(function(event){
 rightanimator($wrapper);
 event.preventDefault();
 });
});

How It Works
You can see in the style.css file that the ID selector #scroller contains the position property set to
relative—a necessary condition to make the image scroll (images scroll when you assign them some
position relative to their current location). The height and width are set to 150px and 460px, respectively.
The width of 460px is required to display at most three images at a time (the width includes the width of
three images of 150px each, with some space in between). The overflow property is set to hidden to make
invisible the region of the images that falls outside the width of this invisible window. The margin
property is set to auto to make the horizontal scroller appear at the center of the width of the browser
window.

The ID selector #images contains the width property that will be applied to the inner div element.
The width property is set to 770px, which is the total of the width of all the images that we want to be
displayed in the scroller (with some distance in between the images). The width property here decides
the number of images that we want to see in the horizontal scroller. Also, the style sheet contains a type
selector #images a img to apply the style properties to the img element nested inside the anchor element,
which in turn is enclosed with an HTML element of ID images. As you’ll notice, images contains the

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 6 ■ VISUAL EFFECTS

243

border property set to 0 (to make the borders of the images invisible) and the position property is set to
relative to make the images scroll.

The ID selector #direction contains the style properties that will be applied to the block of left and
right arrow images. The width property set to 460px assigns the maximum width that this block (of the
two arrow images) can occupy, and the margin value set to auto makes the block (of two images) appear
at the center of the browser window, just below the images block.

The class selector .leftarrow contains the properties that will be automatically applied to the left
arrow image. It has margin-top property set to 10px to keep the left arrow at a distance of 10px from the
images block at its top. Meanwhile, the class selector .rightarrow contains the style properties that will
be automatically applied to the right arrow image. It contains the margin-left property set to 390px to
make the right arrow image be right-justified in the assigned width of 460px, and the margin-top
property is set to 10px to keep it 10px from the images block at its top.

Now turning to the jQuery code in our solution, you’ll notice that all the images that are nested
inside the anchor element of the div element of ID scroller, are retrieved and stored in a variable
$wrapper.

We continue by defining a function leftanimator that takes in the parameter imgblock, which it
animates toward the left slowly and stops at the distance of –310px from the left border (310px inside the
left border). As a result, the two images on the left of the image block will disappear inside the left border
of the invisible window, making two images on the right (which were hidden earlier) become visible.

The rightanimator method takes in the parameter imgblock, which it animates toward the right
slowly and stops at the distance of 0px from the left border. That is, it will make the image block scroll
toward the right border and stop when the first image of the block becomes visible—the scrolling will
stop when the first three images are visible in the invisible window. It will make the two images on the
right side become invisible.

Next we attach a click event to the left arrow image, and when the click event occurs on it, the
leftanimator function is invoked and the $wrapper variable containing the block of all five images is sent
to it, which will be assigned to its parameter imgblock. The function will make the image block scroll to
the left, displaying last three images. The preventDefault method is invoked of the event object to avoid
navigating to the target web site to which the image (nested inside the anchor element) is pointing.

Finally, we attach a click event to the right arrow image, and when the click event occurs on it, the
rightanimator function is invoked and the $wrapper variable containing the block of all five images is
sent to it and will be assigned to its parameter imgblock. The function will make the image block scroll
toward the right, making the first three images reappear on the screen. The preventDefault method of
the event object is invoked to avoid navigating to the target web site to which the image (nested inside
the anchor element) is pointing.

So how does all this look? Well initially, the first three images will be displayed along with the left
and right arrows below them, as shown in Figure 6-24.

Figure 6-24. Three images appear initially, along with the left and right arrows at the bottom.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 6 ■ VISUAL EFFECTS

244

On selecting the left arrow button, the images will scroll left and we will be able to see the last three
images (of the five-image block), as shown in Figure 6-25.

Figure 6-25. Images scrolled to the left on selecting the left arrow

Similarly, if we select the right arrow button, the images will scroll right, making the first three
images reappear.

6-13. Writing a Pendulum Scroller

Problem
You have a block of five images and you want it to work so that initially three of the five images appear in
an invisible window. Then these images should scroll left and disappear out of the window, as if they’re
swinging on a pendulum. When the last image also disappears, you want the images to appear from the
left border and scroll toward the right border (making the last image appear first, followed by the fourth,
and so on). All the images will scroll toward the right border and disappear from the window. When the
first image disappears, you want the images to again scroll toward the left border, and the process
continues.

Solution
Let’s set up an HTML file to define the images that we want to be displayed. The images are nested
inside the div element of ID images (to apply styles and codes via jQuery code), which in turn is nested
inside the div element of ID scroller. The HTML file should appear as shown here:

<body>
<div id="scroller">
<div id="images">

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 6 ■ VISUAL EFFECTS

245

</div>
</div>
</body>

The images are enclosed within the anchor elements so as to navigate the visitor to the target web
page to display the detailed information of the image that’s been selected. For the time being, we
assume the target web site as some hypothetical web site.

The anchor elements containing the img elements are enclosed within the two div elements, one
inside the other. The outer div element is assigned the ID scroller and the inner div element is assigned
the ID images. To the outer div element, we will apply the style properties to define the width of the
invisible window; that is, it decides how many images we want to see at a time. To the inner div element,
we will apply the style properties that decide the total width of the complete image block. All the images
are assigned an identical width and height of 150px to give them a uniform appearance.

We define the style properties for the div elements and the img elements in the style sheet style.css
that may appear as shown here:

style.css
#scroller {
 position: relative;
 height:150px;
 width: 460px;
overflow:hidden;
margin:auto;
}

#images{
 width: 770px;
}

#images a img { border:0; position:relative;}

The jQuery code to make the images scroll as if on a pendulum is shown here:

$(document).ready(function() {
 var $wrapper=$('#scroller a img');

 var left_rightanimator = function() {
 $wrapper.animate(
 {left:-770}, 5000,
 function() {
 $wrapper.animate({left:465 }, 5000);
 left_rightanimator();
 }
);
 }

 left_rightanimator();
});

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 6 ■ VISUAL EFFECTS

246

How It Works
You can see in the style.css file that the ID selector #scroller contains a position property set to
relative—a necessary condition to make the image scroll (images scroll when you assign them some
position relative to their current location). The height and width are set to 150px and 460px, respectively.
The width of 460px is required to display at most three images at a time (the width includes the width of
three images of 150px width, with some space in between). The overflow property is set to hidden to
make invisible the region of the images that falls outside the width of this invisible window. The margin
property is set to auto to make the horizontal scroller appear at the center of the width of browser
window.

The ID selector #images contains the width property that will be applied to the inner div element.
The width property is set to 770px, which is the total of the width of all the images that we want to be
displayed in the scroller (with some distance in between the images). The width property here decides
the number of images that we want to see in the horizontal scroller.

Also, the style sheet contains a type selector #images a img to apply the style properties to the img
element nested inside the anchor element, which in turn is enclosed with an HTML element of ID
images.

It contains the border property set to 0 (to make the borders of the images invisible) and the
position property set to relative to make the images scroll.

Looking now at our jQuery code, all images that are nested inside the anchor element and the div
element of ID scroller are retrieved and stored in the $wrapper variable. That is, the $wrapper variable
contains the whole block of five images.

Next we define a function left_rightanimator, which animates the images block toward the left
border (of the invisible window) and stops at the distance of –770px from the left border—that is, 770px
inside the left border—which will make the whole block of vive images disappear (recall that each image
is 150px wide and there is some space between images). So again, the image block is set to appear from
the left border and set to animate toward the right (making the last image appear first), and scrolling will
stop when the first image also disappears out of the window (from the right border) at the distance of
465px from the left border, which is when the first image also disappears in the right border of the
invisible window.

The last action of this method is to make a recursive call to the left_rightanimator() function to
make the image block keep scrolling left and right. Finally, we invoke the left_rightanimator() function
to get the process going.

The images scroll toward the left border, disappear, reappear from the left border, and scroll toward
the right border. The last two images may appear as shown in Figure 6-26 while scrolling left.

Figure 6-26. Images scrolling to the left and disappearing

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 6 ■ VISUAL EFFECTS

247

6-14. Scrolling Images Using Arrays

Problem
You have a block of five images and you want it to work so that initially three of the five images appear in
the invisible window. Then these images should scroll toward the left border (making the last two
hidden images appear in the invisible window). All the images should disappear out of the left border.
You want to do this with the help of arrays.

Solution
We will be making use of the same HTML file and style sheet file (style.css) that we used in Recipe 6-13.
The jQuery code to make each image scroll toward the left border and become invisible one by one is
shown here:

$(document).ready(function() {
 var $pic = $('#scroller a img');
 var imgs = $pic.length;
 var next;
 for (var i=0;i<imgs;i++){
 next=$pic.eq(i);
 scroll(next);
 };
});

function scroll(im)
{
 im.animate({'left': -770}, 5000);
};

Here, we start by retrieving all the images nested inside the anchor elements, which are in turn
nested inside the div element of ID scroller, and storing them in the variable $pic. $pic is now an array
of five images. We then find out the number of images in $pic array and store the count in the imgs
variable.

In the for loop we get one image from the $pic array and store it in the variable next. That is, all the
images will be assigned to the variable next one by one. To scroll, we invoke the function scroll, and the
image stored in the variable next is passed to it (that is, the variable next is assigned to its parameter im).

In the scroll() method, the image is set to animate toward the left and stop at a distance of –770px
from the left border—that is, 770px inside the left border—to make even the last (fifth) image disappear.

The image while scrolling may appear as in Figure 6-27.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 6 ■ VISUAL EFFECTS

248

Figure 6-27. All images scrolling to the left

Scrolling an Image over Other Images
Say you want to adapt the solution above, because you want three images to appear stationary and one
image (the fourth) to scroll over this block of three images. The jQuery code for that solution is here:

$(document).ready(function() {
 var $pic = $('#scroller a img');
 var next;
 next=$pic.eq(3);
 scroll(next);
});

function scroll(im)
{
 im.animate({'left': -770}, 5000);
};

We can see that the variable next is assigned to the fourth image (at index location 3) in the $pic
array in the fourth statement, and is passed to the scroll function for scrolling over the images. Initially,
we have three images that appear in the invisible window, as shown in Figurer 6-28.

Figure 6-28. Initial images on loading the web page

The fourth image will begin from the right border and will scroll toward the left border (of the
invisible window) over the three images, as shown in Figure 6-29, where that fourth image is over the
second and third images.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 6 ■ VISUAL EFFECTS

249

Figure 6-29. An image scrolling to the left on top of the other images

Scrolling Only the Image that Is Hovered Over
You have three images that appear initially in the invisible window, and you want functionality so that
any image that is hovered over will scroll toward the left border and disappear. The jQuery code may
appear as shown here:

$(document).ready(function() {
 var $pic = $('#scroller a img');
 $pic.hover(
 function(){
 $(this).animate({'left': -770}, 5000);
 },
 function(){
 }
);
});

We can see that the third statement attaches the hover event to the block of images (stored in the
$pic array) and in its event-handling function we are animating the hovered image toward the left
border and making it stop at the distance of –770px from the left border; that is, 770px inside the left
border (to make it completely invisible). If we hover over the middle image, it will start scrolling toward
the left, as shown in Figure 6-30.

Figure 6-30. An image that is hovered over starts scrolling left.

When the middle image is completely scrolled in the left border, we’re left with a blank space in the
middle of the image block, as shown in Figure 6-31.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 6 ■ VISUAL EFFECTS

250

Figure 6-31. The middle image scrolled to the left, creating an empty space.

Fading Out and Replacing an Image
You have three image that appear initially in the invisible window, and you want any image that is
hovered over to slowly become invisible with a fadeout effect, and its space to be filled by the next image
(making a hidden image visible). The jQuery code may appear as shown here:

$(document).ready(function() {
 var $pic = $('#scroller a img');
 $pic.hover(
 function(){
 $(this).fadeOut(5000);
 },
 function(){
 }
);
});

A hover event is attached to the $pic variable, which is nothing but the array of five images. In the
event-handling function of the hover event, we make the image that is being hovered on fade out in 500
milliseconds. The moment the image becomes completely invisible, the next image in the $pic array will
fill up the vacant space.

Initially, we have three images visible in the window, as was shown in Figure 6-28. When the first
image is hovered over, it will fade out slowly and its place will be occupied by the next image in
sequence.

Scrolling One Image Left and One Image Right, and Fading Out the
Middle
Okay so we’ll end this set of recipes with a final rather fancy modification on our current recipe – just to
give you more ideas of what’s possible now you have the core solutions around scrolling and fading!

Now let’s say you have three images that appear initially in the invisible window, and you want the
first image to scroll toward the left border and disappear, the third image to scroll toward the right
border of the invisible window and disappear, and the middle image to remain at its position and slowly
fade out. This time, the jQuery code would appear as shown here:

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 6 ■ VISUAL EFFECTS

251

$(document).ready(function() {
 var $pic = $('#scroller a img');
 $pic.eq(0).animate(
 {'left': -155}, 5000,
 function(){
 $pic.eq(2).animate(
 {'right': -155}, 5000,
 function(){
 $pic.fadeOut(5000);
 }
);
 }
);
});

All the image elements that are nested inside the anchor elements of ID scroller are retrieved and
stored in the variable $pic. The first image (the image at the index location 0 in the $pic array) is set to
animate toward the left border and stop at a distance of –155px from the left border; that is, 155px inside
the left border (which is sufficient for the image of 150px width to disappear). Similarly, the third image
is set to animate toward the right border and stop at a distance of –155px from the right border; that is,
155px inside the right border (to make the image disappear). The middle image that is left behind is set
to fade out slowly, in 5000 milliseconds. The code is probably now very familiar to you if you’ve followed
the earlier recipes, but the sky is the limit to what you can do to keep your user’s attention where you
want it on your web site.

Summary
In this chapter we covered the recipes for applying visual effects to our web site, including developing
image sliders, horizontal and vertical image scrollers, and news scrollers. We also explored the technique
of displaying images pagewise and enlarging images on hovering over their icons.

The next chapter will present recipes dealing with tables, such as highlighting table rows and
columns, filtering out the desired rows, erasing the contents of selected columns, and expanding and
collapsing rows of the tables. You will also see how a table is sorted on the basis of the selected column
and how the rows of tables can be paginated.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

C H A P T E R 7

■ ■ ■

253

Dealing with Tables

In this chapter, we’ll explore the following recipes, which are useful when you’re dealing with tables:

• Highlighting a table row on hover

• Highlighting alternate columns

• Filtering rows

• Hiding the selected column

• Paginating a table

• Expanding and collapsing list items

• Expanding and collapsing table rows

• Sorting list items

• Sorting a table

• Filtering rows from a table

7-1. Highlighting a Table Row on Hover

Problem
You have a table consisting of a few rows and columns. You want a row to be highlighted when the
mouse pointer is moved over it.

Solution
Let’s make an HTML file that contains a table element with some rows and columns elements (th, td, tr)
defined in it. The HTML file appears as shown here:

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 7 ■ DEALING WITH TABLES

254

<body>
<table border="1">
<thead>
<tr><th>Roll</th><th>Name</th><th>Marks</th></tr>
</thead>
<tbody>
<tr><td>101</td><td>John</td><td>87</td></tr>
<tr><td>102</td><td>Naman</td><td>90</td></tr>
<tr><td>103</td><td>Chirag</td><td>85</td></tr>
</tbody>
</table>
</body>

Let’s define a style rule .hover in the style sheet file style.css to apply style properties to the
hovered-on row. The style rule may appear as shown here:

style.css
.hover { background-color: #00f; color: #fff; }

The jQuery code to apply the hovering effect to the table rows is shown here:

$(document).ready(function() {
 $('tbody tr').hover(
 function(){
 $(this).find('td').addClass('hover');
 },
 function(){
 $(this).find('td').removeClass('hover');
 }
);
});

How It Works
In the preceding HTML file we see that a table with a border of 1px is defined that has three column
headings (defined using the th element): Roll, Name, and Marks. Also it contains three rows of student
records. The table headings are nested inside the thead element and the body of the table (the rows that
contain information) is nested inside tbody element

In the style sheet file, the .hover style rule contains the background-color property set to #00f and
the color property set to #fff to change the background and foreground color of the hovered-on row to
blue and white, respectively.

In the jQuery code, we attach the hover() event to the tr (row elements) that are nested inside the
tbody element, as we want only the rows that contain student information to be hovered on, and not the
row that contains column headings. In the event-handling function of the hover event, we search for the
td elements of the hovered-on row and apply the properties defined in the style rule .hover (that exists
in the style sheet file style.css) to change their background and foreground colors to blue and white,
respectively, so as to highlight them.

Initially, the table may appear as shown in Figure 7-1

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 7 ■ DEALING WITH TABLES

255

Figure 7-1. Table consisting of a few rows and columns

When the mouse pointer moves over any row, that row will be highlighted as shown in Figure 7-2.

Figure 7-2. The highlighted row on being hovered on

7-2. Highlighting Alternate Columns

Problem
You have a table consisting of a few rows and columns. You want alternate columns of the table to be
highlighted.

Solution
For this solution, we will make use of the same HTML and style sheet file (style.css) that we used in the
Recipe 7-1.

The jQuery code to apply style properties defined in the style rule .hover to the alternate columns of
the table is shown here:

$(document).ready(function() {
 $('td:nth-child(odd)').addClass('hover');
});

How It Works
Since we use the :nth-child() method in the jQuery code, let’s take a quick look at what it does and how
you can use it.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 7 ■ DEALING WITH TABLES

256

:nth-child()
This method is used for retrieving all elements that are the nth child of their parent. This method is one-
based; that is, it begins counting from 1, and not 0. This method is different from the :eq() method in
the following two ways:

• The :eq() method matches only a single element, whereas :nth-child() matches
one for each parent with the specified index.

• The :eq() method is zero-based; that is, it begins counting from zero, whereas
:nth-child() is one-based (it begins counting from one).

For example,

$('tr:nth-child(3)');

will select all the tr elements that are third child of their parent (which may be the tbody or table
element); that is, it will select the third row of the table.

Similarly, the statement

$('tr:nth-child(even)');

will select all the even rows of the table.

In the preceding jQuery code, the statement

$('td:nth-child(odd)').addClass('hover');

will select all the odd columns of the table (in other words, each td that is an odd child of its parent) and
apply the style properties defined in the style rule hover to them, changing their background color to
blue and their foreground color to white, as shown in Figure 7-3.

Figure 7-3. Table with odd-numbered columns highlighted

Highlighting Alternate Rows
To highlight alternate rows of the table, we will modify the jQuery code as shown here:

$(document).ready(function() {
 $('table tr:odd').addClass('hover');
});

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 7 ■ DEALING WITH TABLES

257

The preceding jQuery code will select all the odd rows of the table and apply the style properties
defined in the style rule .hover to them so as to highlight them as shown in Figure 7-4.

Figure 7-4. Table with alternate rows highlighted

Highlighting the Column that Is Hovered On
You want to highlight only columns whose headings are hovered on; that is, when the mouse pointer
moves over any column heading, you want that column to be highlighted. The jQuery code may appear
as shown here:

$(document).ready(function() {
 $('th').hover(
 function(){
 var colindex=$(this).parent().children().index(this);
 $('table td:nth-child('+(colindex+1)+')').addClass('hover');
 },
 function(){
 $('table tr').children().removeClass('hover');
 }
);
});

Before we delve into the jQuery code, let’s look at the .index() method that is used in the code:

.index()

This method searches every matched element for the element that’s passed within its parameter, and
returns the ordinal index of that passed element, if found, starting with 0. The index() function returns –
1 if the passed element is not found in the matched set. If a jQuery object is passed as a parameter to
index(), then only the first element of that object is checked.

Syntax:
.index(element)

Now let’s look at the jQuery code itself. We first attach the hover event to the table heading (th)
elements. When the user hovers over a table heading, we find out the index (column number) of its
column and store that index location in a variable colindex. The .index() method uses zero-based
counting, which means it begins counting from zero. So an index of 0 means the first column heading is
hovered over, an index of 1 means the second column heading is hovered over, and so on.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 7 ■ DEALING WITH TABLES

258

We can then apply the style properties defined in the style rule .hover to the column whose index
location is stored in the variable colindex. Since the :nth-child() method is one-based; that is, it begins
counting from one (as compared to the .index() method, which begins from zero), we need to
increment the value stored in variable colindex by one before applying the style rule .hover to the
column represented by colindex in the event-handling function of the hover event.

In the event-handling function, which is invoked when the mouse pointer is moved away from the
column heading, we remove the style properties defined in the style rule .hover from all the rows of the
table.

The contents of the hovered-over column are highlighted as shown in Figure 7-5.

Figure 7-5. Contents of the hover-over column are highlighted.

Highlighting the Column Heading While Hovering
In the preceding example, we see that the column contents are highlighted when the column heading is
hovered over, but the column heading is not highlighted; it appears as it was initially. We need to add
one more statement (shown in bold in the jQuery code) to highlight the column heading as well:

$(document).ready(function() {
 $('th').hover(
 function(){
 var colindex=$(this).parent().children().index(this);
 $(this).addClass('hover');
 $('table td:nth-child('+(colindex+1)+')').addClass('hover');
 },
 function(){
 $('table tr').children().removeClass('hover');
 }
);
});

The statement

$(this).addClass('hover');

will apply the style properties defined in the style rule .hover to the column heading too when it is
hovered over, as shown in Figure 7-6.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 7 ■ DEALING WITH TABLES

259

Figure 7-6. Column contents and column heading are highlighted when the heading is hovered over.

Highlighting Individual Cells of the Table When Hovered On
When any cell of the table except a column heading is hovered over, you want it to be highlighted. The
jQuery code for doing this appears as shown here:

$(document).ready(function() {
 $('td').hover(
 function(){
 $(this).addClass('hover');
 },
 function(){
 $('table tr').children().removeClass('hover');
 }
);
});

We can see that this time the hover event is attached to the td elements so that if any cell is hovered
over (except the column headings), the properties defined in the style rule .hover are applied to it to
highlight it as shown in Figure 7-7.

Figure 7-7. Table cell highlighted on being hovered over

7-3. Filtering Rows

Problem
You have a table consisting of a few rows and columns. You want to make it so that when the mouse
pointer moves over any row, that row is highlighted, and when the user clicks on any row, all the other
rows disappear.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 7 ■ DEALING WITH TABLES

260

Solution
For this solution we will use the same HTML and style sheet file (style.css) that we used in Recipe 7-1.
The jQuery code to highlight the row that is hovered over and to make all the rows become invisible
(except the one that is clicked) is shown here:

$(document).ready(function() {

 $('tbody tr').hover(
 function(){
 $(this).find('td').addClass('hover');
 },
 function(){
 $(this).find('td').removeClass('hover');
 }
);

 $('tbody tr').click(function(){
 $('table').find('tbody tr').hide();
 $(this).show();
 });
});

How It Works
In the first half of the jQuery code, we attach the hover() event to the tr (row elements) that are nested
inside the tbody element, as we want only the rows that contain student information to exhibit the hover
behavior, and not the row that contains column headings. In the event-handling function of the hover
event, we search for the td elements of the hovered-over row and apply the properties defined in the
style rule .hover (that exists in the style sheet file style.css) to change their background and foreground
colors to blue and white, respectively, to highlight them.

In the second half of the jQuery code, we attach the click event to all the tr elements (nested inside
the tbody element), and in its event-handling function, we search for all the tr elements (that are nested
inside the tbody element) and make all of them invisible; that is, all the rows of the table except the
column headings will be invisible. Thereafter, we make the contents of the row that was clicked visible,
hence making only the clicked row appear in the table.

On hovering over any row of the table, the table may appear as shown in Figure 7-8.

Figure 7-8. A row gets highlighted when hovered over.

On clicking any row, all rows will become invisible except the one that was clicked, as shown in
Figure 7-9.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 7 ■ DEALING WITH TABLES

261

Figure 7-9. The selected row is left behind in the table.

Hiding the Selected Row
We can modify the preceding jQuery code to reverse the process; that is, instead of keeping the selected
row, we can hide it. The jQuery code is as follows:

$(document).ready(function() {

 $('tbody tr').hover(
 function(){
 $(this).find('td').addClass('hover');
 },
 function(){
 $(this).find('td').removeClass('hover');
 }
);

 $('tbody tr').click(function(){
 $(this).hide();
 });
});

We can see in the jQuery code that the selected row is hidden with the hide() method. On hovering
over the last row, the table may appear as shown in Figure 7-8, and on clicking on that row, it is erased
and the remaining table will appear as shown in Figure 7-10.

Figure 7-10. The selected row is erased from the table.

7-4. Hiding the Selected Column

Problem
You have a table consisting of a few rows and columns. When the mouse pointer moves on any column
heading, you want that column (including the column heading) to get highlighted. Also, when the user
clicks on any column heading, the complete column along with its heading should become hidden.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 7 ■ DEALING WITH TABLES

262

Solution
For this solution, we will use the same HTML and style sheet file (style.css) that we used in Recipe 7-1.

The jQuery code to highlight the column (when its column heading is hovered over) and to make its
contents invisible on being clicked is shown here:

$(document).ready(function() {
 $('th').hover(
 function(){
 var colindex=$(this).parent().children().index(this);
 $(this).addClass('hover');
 $('table td:nth-child('+(colindex+1)+')').addClass('hover');
 },
 function(){
 $('table tr').children().removeClass('hover');
 }
);

 $('th').click(function(){
 $(this).hide();
 colindex=$(this).parent().children().index(this);
 $('table td:nth-child('+(colindex+1)+')').hide();
 });
});

How It Works
In the jQuery code, we start by attaching the hover event to all the column headings of the table. In the
event handler we find out the index location of the column heading that is being hovered over, and store
it in the variable colindex. The index() method use zero-based counting; that is, it begins from zero.

We then apply the style properties defined in the style rule .hover to the highlighted column
heading and to the column whose index location is stored in the colindex variable (the one that is
hovered over) to highlight them. Since the :nth-child() method is one-based, we increment the value of
colindex by one before highlighting it.

When the mouse pointer is moved away from the column headings, we remove the properties
defined in the style rule .hover from all the rows of the table. In the click event handler we hide the
column heading that has been clicked and find out its index, which we store in the colindex variable.

Finally, we hide the column contents whose value is stored in the colindex variable (the index
location of the column heading that is clicked). Hence, the column heading and the complete column
contents will be made invisible when any of the column headings are clicked. On hovering over a
column heading, it will be highlighted, along with the contents of the column, as shown in Figure 7-11.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 7 ■ DEALING WITH TABLES

263

Figure 7-11. A column’s contents and heading get highlighted when the heading is hovered over.

When the column heading is clicked, it will be erased, along with the contents of the column, as
shown in Figure 7-12.

Figure 7-12. The selected column is erased from the table.

Filtering out Columns
You want to make all the columns of the table invisible except the one whose column heading is clicked.
That is, you want to keep the clicked column (along with its heading), making the rest of the columns
invisible.

The modified jQuery code to highlight the column (when its column heading is hovered over) and to
hide all the columns except the one that has been clicked is shown here:

$(document).ready(function() {
 $('th').hover(
 function(){
 var colindex=$(this).parent().children().index(this);
 $(this).addClass('hover');
 $('table td:nth-child('+(colindex+1)+')').addClass('hover');
 },
 function(){
 $('table tr').children().removeClass('hover');
 }
);

 $('th').click(function(){
 colindex=$(this).parent().children().index(this);
 $('table th:not(:nth-child('+(colindex+1)+'))').hide();
 $('table td:not(:nth-child('+(colindex+1)+'))').hide();
 });
});

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 7 ■ DEALING WITH TABLES

264

How It Works
Looking at the jQuery code, first notice that the :not() selector selects all the elements that do not match
the specified selector. It works like this, for example, which will select all the elements of the table that
do not belong to the class student: $('table :not(.student)').

In the hover event handler, we find the index location of the column heading that is hovered over
and store it in the variable colindex. The .index() method uses zero-based counting. We then apply the
style properties defined in the style rule .hover to the highlighted column heading and to the column
whose index location is stored in the colindex variable (the one that is hovered over) to highlight it. Since
the :nth-child() method is one-based, we increment the value of colindex by one before highlighting it.

When the mouse pointer is moved away from the column headings, we remove the properties
defined in the style rule .hover from all the rows of the table. In the click event handler, we find out the
index of the column heading that has been clicked and store the value in the colindex variable. We then
hide all the column headings that are not clicked, using the not selector; that is, we keep the column
heading whose index location is stored in the colindex variable, and the rest of the column headings are
made invisible.

Finally, we hide all the column contents whose value is not equal to the index location stored in the
colindex variable (the index location of the column heading that is clicked). The only column to remain
visible is the one whose column heading is clicked. On hovering over the column heading, it will be
highlighted, along with the contents of the column, as shown in Figure 7-13.

Figure 7-13. The column heading and column contents get highlighted when the column heading is

hovered over.

When any column heading is clicked, that heading (along with its column contents) will be filtered
out, making all of the rest of the columns of the table invisible as in Figure 7-14.

Figure 7-14. The selected column is filtered out.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 7 ■ DEALING WITH TABLES

265

7-5. Paginating a Table

Problem
You have a table consisting of a few rows and columns. You want the rows of the table to be displayed
pagewise. That is, on the top of the table, you want the page numbers to appear and when any page
number is clicked, the rows that belong to that page number will be displayed.

Solution
For this solution, we will make use of the same HTML file that we used in Recipe 7-1. We need to define
style rules to highlight the page numbers when they’re hovered over and to keep some spacing between
page numbers. The two style rules that we define are .hover and .page, as shown in the following style
sheet file:

style.css
.hover { background-color: #00f; color: #fff; }
.page{ margin:5px; }

The jQuery code to divide the rows of the table in to pages (depending on the number of rows that
we want to see per page) and to display the respective rows when a page number is clicked is shown
here:

$(document).ready(function() {
 var rows=$('table').find('tbody tr').length;
 var no_rec_per_page=1;
 var no_pages= Math.ceil(rows/no_rec_per_page);
 var $pagenumbers=$('<div id="pages"></div>');
 for(i=0;i<no_pages;i++)
 {
 $(''+(i+1)+'').appendTo($pagenumbers);
 }
 $pagenumbers.insertBefore('table');

 $('.page').hover(
 function(){
 $(this).addClass('hover');
 },
 function(){
 $(this).removeClass('hover');
 }
);

 $('table').find('tbody tr').hide();
 var tr=$('table tbody tr');

 $('span').click(function(event){
 $('table').find('tbody tr').hide();

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 7 ■ DEALING WITH TABLES

266

 for(var i=($(this).text()-1)*no_rec_per_page;
 i<=$(this).text()*no_rec_per_page-1;
 i++)
 {
 $(tr[i]).show();
 }
 });
});

How It Works
The style rule hover contains the background-color and color properties set to #00f and #fff,
respectively, to turn the background color of the hovered-over page number to blue and its foreground
color to white. The style rule .page contains the margin property set to 5px to create the space of 5px
among page numbers

Our jQuery code starts by counting the number of rows (tr elements nested inside the tbody
element) and storing the count in variable rows. For this example, we'll assume that we want to see only
one row per page, so we initialize the value of the variable no_rec_per_page equal to 1. We next have to
find out the total number of pages by dividing the total count of the rows by the number of records that
we want to see per page. The count of the pages is assigned to the variable no_pages. The final action to
take before we start on the event handlers is to set up the page-number display. We start this by defining
a div element of ID pages and assigning it to the variable $pagenumbers.

 With the help of a for loop, we create a few span elements (equal to the number of pages) that
contain the sequence of page numbers 1,2… and the span element is assigned the class name page so
that the style properties defined in the class selector .page are automatically applied to all the page
numbers. Finally, all the span elements containing the page numbers are appended to the div element of
ID pages. To finish the job we insert the div element of ID pages that was stored in the variable
$pagenumbers before the table element, which makes the page numbers appear above the table.

Next we attach the hover() event to the page numbers (span element of the class .pages). In the
event handler, and we highlight the page numbers when the mouse pointer moves over them. (The
properties defined in the style rule .hover are applied to the page numbers, changing their background
and foreground color to blue and white respectively.) Conversely, when the mouse pointer moves away
from them we remove the style properties of the style rule .hover.

After the hover event handler, because we don't want to see any of the data when the page first
loads, we hide all the rows (tr elements nested inside the tbody element) of the table, keeping only the
column headings visible. Only when the user selects a page number will the rows that belongs to that
page number be displayed. We then retrieve all the rows of the table and store them in the variable tr;
that is, now tr is an array containing all the rows of the table.

In the click event handler of the page numbers, we hide all the rows of the table (keeping only the
column visible). We then display the rows that fall within the clicked page number using the tr array.

Initially, we get a blank table with only column headings and page numbers at the top, as shown in
Figure 7-15.

Figure 7-15. Table with column headings and page numbers

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 7 ■ DEALING WITH TABLES

267

On hovering on any page number, the number will be highlighted; on clicking on the page number,
the rows of that page number will be displayed as shown in Figure 7-16.

Figure 7-16. Displaying rows of page one (assuming one row per page)

We see only one row displayed here because we have set the value of the variable no_rec_per_page
(which decides the number of rows to be displayed per page) to 1 (refer to the third statement of the
code). Let us set its value to 5. Assuming the HTML file has some more rows added in its table element,
we will now see a group of five rows when we select any page number, as shown in Figure 7-17.

Figure 7-17. Displaying rows of page one (assuming five rows per page)

Also, we can modify the jQuery code to display the rows that belong to page one at the beginning
(instead of showing only the column headings as we did in Figure 7-15). The jQuery code that displays
the rows of the first page by default is as follows:

$(document).ready(function() {
 var rows=$('table').find('tbody tr').length;
 var no_rec_per_page=1;
 var no_pages= Math.ceil(rows/no_rec_per_page);
 var $pagenumbers=$('<div id="pages"></div>');
 for(i=0;i<no_pages;i++)
 {
 $(''+(i+1)+'').appendTo($pagenumbers);
 }
 $pagenumbers.insertBefore('table');

 $('.page').hover(
 function(){
 $(this).addClass('hover');
 },

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 7 ■ DEALING WITH TABLES

268

 function(){
 $(this).removeClass('hover');
 }
);

 $('table').find('tbody tr').hide();
 var tr=$('table tbody tr');

 for(var i=0;i<=no_rec_per_page-1;i++)
 {
 $(tr[i]).show();
 }

 $('span').click(function(event){
 $('table').find('tbody tr').hide();
 for(i=($(this).text()-1)*no_rec_per_page;i<=$(this).text()*no_rec_per_page-1;i++)
 {
 $(tr[i]).show();
 }
 });
});

We can see that a for loop is added to make the rows of the first page number (depending on the
value assigned to the variable no_rec_per_page) visible on the screen.

7-6. Expanding and Collapsing List Items

Problem
You have an unordered list with two list items, and both these list items contain a nested unordered list.
You want the two list items to appear with a plus (+) icon to their left (indicating that some items are
hidden). When the user selects the plus icon, you want that list item to expand to display all the elements
that were hidden, and you want the plus icon to be replaced with a minus (–)icon when in expanded
mode.

Solution
Let’s start with an HTML file that contains an unordered list with two list items: Tea and Coffee. Both the
list items are assigned the class name drink so as to identify and access them via jQuery code. The first
list item (Tea) contains an unordered list of three list items: Darjeeling, Assam, and Kerala. The list item
Assam has the class name drink and contains an unordered list item with two list items in it: Green Leaves
and Herbal.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 7 ■ DEALING WITH TABLES

269

The second list item, Coffee, contains an unordered list element with two list items: Cochin and
Kerala. The HTML file is shown here:

<body>

 <li class="drink">Tea

 Darjeeling
 <li class="drink">Assam

 Green Leaves
 Herbal

 Kerala

 <li class="drink">Coffee

 Cochin
 Kerala

</body>

Without applying any style or jQuery code, the HTML file on execution displays the unordered list

with its respective list items, as shown in Figure 7-18.

Figure 7-18. Unordered list with its list items

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 7 ■ DEALING WITH TABLES

270

To add the plus and minus icons to the list items, we need to apply certain style rules. The style
sheet file style.css may contain the following style rules:

style.css
.plusimageapply{list-style-image:url(plus.jpg);}
.minusimageapply{list-style-image:url(minus.jpg);}
.noimage{list-style-image:none;}

In order to apply the preceding style rules to the list items and to make them expand and collapse
on selecting the plus and minus icons on their left, we need to write the following jQuery code:

$(document).ready(function() {
 $('li.drink').addClass('plusimageapply');
 $('li.drink').children().addClass('noimage');
 $('li.drink').children().hide();
 $('li.drink').each(
 function(column) {
 $(this).click(function(event){
 if (this == event.target) {
 if($(this).is('.plusimageapply')) {
 $(this).children().show();
 $(this).removeClass('plusimageapply');
 $(this).addClass('minusimageapply');
 }
 else
 {
 $(this).children().hide();
 $(this).removeClass('minusimageapply');
 $(this).addClass('plusimageapply');
 }
 }
 });
 }
);
});

How It Works
The style rule plusimageapply will be applied to all the list items (in collapsed mode) that have a nested
unordered list in them, and it contains the list-style-image property set to url(plus.jpg) to replace the
traditional bullets symbol with a plus icon (that we assume to exist in an image file named plus.jpg).
Similarly, the style rule minusimageapply will be applied to all the list items in expanded mode, and it
contains the list-style-image property set to url(minus.jpg) to display a minus icon on the left of the
list items. We assume that the image file minus.jpg contains a minus icon in it. The style rule noimage will
be applied to all of the list items that do not have unordered list nested in them, and it contains the list-
style-image property set to none to display them with their traditional bullet symbols.

Now looking at our jQuery code, all the list items of the class drink (those that have unordered list
items nested in them) the style rule plusimageapply will be applied, making a plus icon to appear on
their left. To all the rest of the list items (that do not have nested list items in them), the style rule noimage
will be applied to make them appear with their traditional bullet symbols. We initially make all the

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 7 ■ DEALING WITH TABLES

271

nested elements of the list items (that have unordered list items in them) invisible. That is, we make all
the list items that have unordered list items in them appear in collapsed mode.

To apply the expansion functionality, we attach a click event to each of the list items (that has an
unordered list item in it), one by one. In the event handler, we check whether the list item on which the
click event has occurred has the style rule plusimageapply applied to it. If it does, we display the hidden
contents of the list item.

We then remove the style properties of style rule plusimageapply and apply the style properties of
the style rule minusimageapply to replace the plus icon with the minus icon for the expanded list items. If
the list item that was clicked has a minus icon on its left—that is, if the style rule plusimageapply is not
applied to it—we hide the nested contents. We also remove the style properties of style rule
minusimageapply and apply the style properties of the style rule plusimageapply to replace the minus icon
with the plus icon for the list items that is in collapsed mode (we need to collapse the list item that has
the minusimageapply style rule applied on it and is clicked).

Initially, the list items will appear in collapsed mode with a plus icon on their left, as shown in
Figure 7-19.

Figure 7-19. Two list items in collapsed mode

When you select the plus icon (or the list item itself), it will be expanded to show the nested
unordered list in it, and the plus icon will be replaced with the minus icon, as shown in Figure 7-20. The
list item Assam has an unordered list item in it, and that is why it has a plus icon on its left.

Figure 7-20. Contents of first list item displayed when clicked

When you select the plus icon of the Assam list item, it will be expanded to show the hidden list items
in it, and the plus icon will be replaced with the minus icon.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 7 ■ DEALING WITH TABLES

272

Figure 7-21. The contents of the nested list item (collpased list item) are displayed when the item is

clicked.

When you select the plus icon (or the list item itself) of the list item Coffee, it will be expanded to
show the list items in it, and the plus icon will be replaced with the minus icon, as shown in Figure 7-22.

Figure 7-22. The contents of the second list item are displayed when that item is clicked.

7-7. Expanding and Collapsing Table Rows

Problem
You have a table consisting of 15 rows where each row has 3 columns. The table represents student
records. It initially displays three rows: Roll 101-105, Roll 106-110, and Roll 111-115. You want to see
at most 5 records at a time; that is, if you hover over the Roll 101-105 row, it must be expanded to show
the student records with roll numbers between 101 and 105.

Solution
Start off by making an HTML file with a table element that has table headings and a table body
consisting of 15 row (tr) elements, as shown here:

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 7 ■ DEALING WITH TABLES

273

<body>
<table border="1">
<thead>
<tr><th>Roll</th><th>Name</th><th>Marks</th></tr>
</thead>
<tbody>
<tr><td colspan=3 class="studgroup" align="center">Roll 101-105</td></tr>
<tr><td>101</td><td>John</td><td>87</td></tr>
<tr><td>102</td><td>Naman</td><td>90</td></tr>
<tr><td>103</td><td>Chirag</td><td>85</td></tr>
<tr><td>104</td><td>David</td><td>92</td></tr>
<tr><td>105</td><td>Kelly</td><td>81</td></tr>
<tr><td colspan=3 class="studgroup" align="center">Roll 106-110</td></tr>
<tr><td>106</td><td>Charles</td><td>77</td></tr>
<tr><td>107</td><td>Jerry</td><td>91</td></tr>
<tr><td>108</td><td>Beth</td><td>75</td></tr>
<tr><td>109</td><td>Caroline</td><td>82</td></tr>
<tr><td>110</td><td>Hanen</td><td>71</td></tr>
<tr><td colspan=3 class="studgroup" align="center">Roll 111-115</td></tr>
<tr><td>111</td><td>Douglas</td><td>57</td></tr>
<tr><td>112</td><td>Tim</td><td>86</td></tr>
<tr><td>113</td><td>Michael</td><td>68</td></tr>
<tr><td>114</td><td>Kimbley</td><td>88</td></tr>
<tr><td>115</td><td>Christina</td><td>72</td></tr>
</tbody>
</table>
</body>

The table headings are represented by th elements nested inside the thead element, and student
records are represented by tr elements nested inside the tbody element. To designate a block of five
rows, we define three rows (consisting of a td element spanning three columns): Roll 101-105, Roll
106-110, and Roll 111-115. These rows (td element spanning three columns) are assigned the class
name studgroup so as to identify and use them in jQuery.

To highlight the rows, we define a style rule .hover in the style sheet file. The style sheet file
style.css is shown here:

style.css
.hover { background-color: #00f; color: #fff; }

The jQuery code to expand hidden rows when their corresponding row is hovered over is
shown here:

$(document).ready(function() {
 $('table tbody tr').hide();
 $('table tbody').find('.studgroup').parent().show();
 $('tbody tr').hover(
 function(){
 var tr=$('table tbody tr');
 var rindex=$(this).parent().children().index(this);
 for(var i=rindex;i<=rindex+5;i++)
 {

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 7 ■ DEALING WITH TABLES

274

 $(tr[i]).show();
 }
 $(this).addClass('hover');
 },
 function(){
 $('table tbody tr').hide();
 $('table tbody').find('.studgroup').parent().show();
 $(this).removeClass('hover');
 }
);
});

How It Works
The .hover style rule contains the background-color property set to #00f and the color property set to
#fff to change the background and foreground colors of the hovered-over row to blue and white,
respectively.

The meaning of the jQuery code statements is as follows:
We begin by hiding all the rows that are nested inside the tbody element of the table; that is, except

the table headings, we hide all the rows.
Then we display the three rows that each represent a block of the five rows, consisting of a td

element spanning three columns): Roll 101-105, Roll 106-110, and Roll 111-115, respectively). Recall
these three rows are assigned the class name studgroup.

We then attach the hover event to the visible rows of the table. In the event handler, we highlight the
row when the mouse pointer moves over it (the properties defined in the style rule .hover are applied to
that row, changing its background and foreground colors to blue and white, respectively). Conversely,
when the mouse pointer moves away from the row, we remove the style properties (of the style rule
.hover). Also, in the hover event handler, we retrieve all the rows of the table and store them in the
variable tr—now tr is an array containing all the rows of the table—and we find out the index number of
the row that is hovered over, and store it in a variable rindex. Then, with the help of a for loop we display
the next five rows; that is, the rows underlying the row heading of the class name studgroup are
displayed.

In the event handler of the hover event that is executed when the mouse pointer is moved away
from the rows, besides removing the properties of the hover style rule, we hide all the rows of the table
except the heading rows.

On execution of the preceding jQuery code, we find three rows—Roll 101-105, Roll 106-110, and
Roll 111-115—that designate the group of records underneath them, as shown in Figure 7-23.

Figure 7-23. Table with rows designating groups of rows underneath them

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 7 ■ DEALING WITH TABLES

275

On hovering over any row, the group of five records nested inside that row will be displayed. For
instance, on hovering over the Roll 101-105 row, we may get the rows shown in Figure 7-24, and the
hovered-over row will be highlighted:

Figure 7-24. Student records are displayed when the row designating their group is hovered over.

Similarly, when the Roll 111-115 row is hovered over, the row will be highlighted and the student
records that belong to that range of roll numbers will be displayed, as shown in Figure 7-25:

Figure 7-25. Once again, student records are displayed when the row designating their group is hovered

over.

Rows with + and – Icons
When the rows shown in Figure 7-23 are hovered over, you want a plus icon to be displayed on their left.
When the row is expanded, it should display the records in the respective range and the plus icon should
be replaced with a minus icon.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 7 ■ DEALING WITH TABLES

276

To accomplish this, the jQuery code would be modified as shown here:

$(document).ready(function() {
 $('.studgroup').css(
 {'background-image':"url(plus.jpg)",
 'background-repeat':"no-repeat",
 'background-position':"left"}
);
 $('table tbody tr').hide();
 $('table tbody').find('.studgroup').parent().show();
 $('tbody tr').hover(
 function(){
 $(this).find('.studgroup').css(
 {'background-image':"url(minus.jpg)",
 'background-repeat':"no-repeat",
 'background-position':"left"}
);
 var tr=$('table tbody tr');
 var rindex=$(this).parent().children().index(this);
 for(var i=rindex;i<=rindex+5;i++)
 {
 $(tr[i]).show();
 }
 $(this).addClass('hover');
 },
 function(){
 $(this).find('.studgroup').css(
 {'background-image':"url(plus.jpg)",
 'background-repeat':"no-repeat",
 'background-position':"left"}
);
 $('table tbody tr').hide();
 $('table tbody').find('.studgroup').parent().show();
 $(this).removeClass('hover');
 }
);
});

Here, in the rows that display the range of roll numbers (td element spanning three columns and
assigned the class name .studgroup), we display a plus icon that is assumed to exist in the image file
plus.jpg. We use the background-repeat and background-position properties in the .css() method to
make the icon appear only once, on the left side of the row.

We then hide all the rows that are nested inside the tbody element of the table. That is, we hide all
the student records (except the table headings), as we want to display them only when the plus icon of
the associated row is hovered over. Then we display the three rows that display the range of roll numbers
(rows that are assigned the class name studgroup and that have plus icon next to them).

When any row is hovered over, its plus icon is replaced with a minus icon using the .css() method,
and the background-repeat and background-position properties are set to no-repeat and left,
respectively, to make the minus icon appear only once, on left side of the row. Also, in the hover event
handler, we retrieve all the rows of the table and store them in the variable tr (now tr is an array
containing all the rows of the table), and we find out the index number of the row that is hovered over

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 7 ■ DEALING WITH TABLES

277

and store it in a variable rindex. Then, with the help of a for loop we display the next five rows; that is,
the rows underlying the row heading (of the class name studgroup) are displayed. Finally, for the hover
event we apply the properties defined in the style rule hover to highlight the hovered-over row.

When the mouse pointer is moved away from the hovered-over row, its minus icon is replaced with
a plus icon using the .css() method, and the background-repeat and background-position properties are
set to no-repeat and left, respectively, to make the plus icon appear only once, on left side of the row.
We then hide all of the rows of the table except the rows that show the range of roll numbers, along with
a plus icon (this is what we want when the mouse pointer is moved away from the hovered-over row).
Finally, we remove the properties defined in the .hover style rule to make the row appear as it was
initially when mouse pointer is moved away.

On execution of the preceding jQuery code, we find three rows—Roll 101-105, Roll 106-110, and
Roll 111-115—that designate the group of records underneath them. Also, we will find that on left of
each row is a minus icon indicating that the rows are currently collapsed, as shown in Figure 7-26.

Figure 7-26. Rows designating a group of records underneath them, along with a plus icon on their left

When we hover on any row, that row will be highlighted, the associated student records will be
displayed, and the plus icon will be replaced by a minus icon in the hovered-over row, as shown in
Figure 7-27.

Figure 7-27. The hovered-over row displays its records, and the plus icon is replaced by the minus icon.

Similarly, if we hover over the row Roll 106-110, it will be highlighted, the associated student
records will be displayed, and the plus icon will be replaced by a minus icon in the hovered-over row; at
the same time, the row we hovered over previously (which has now lost focus) will get its plus icon back
(see Figure 7-28).

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 7 ■ DEALING WITH TABLES

278

Figure 7-28. The row gets is plus icon back when it returns to collapsed mode

7-8. Sorting List Items

Problem
You have an unordered list consisting of a few list items, which you want to sort.

Solution
Let’s make an HTML file that consists of an unordered list:

<body>

 Tea
 Coffee
 Pepsi
 Energy Drink
 Soup

</body>

The HTML file, when opened in a browser, will show the list items as in Figure 7-29.

Figure 7-29. Unsorted list items

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 7 ■ DEALING WITH TABLES

279

The jQuery code to sort the list items is shown here:

$(document).ready(function() {
 var drinks = $('ul').children('li').get();

 drinks.sort(function(a, b) {
 var val1 = $(a).text().toUpperCase();
 var val2 = $(b).text().toUpperCase();
 return (val1 < val2) ? -1 : (val1 > val2) ? 1 : 0;
 });

 $.each(drinks, function(index, row) {
 $('ul').append(row);
 });
});

How It Works
Looking at our jQuery code, we first get all the list items that are children of the unordered list and store
them in a variable drinks. That is, drinks will become an array containing the list item's text. We then
invoke the .sort() function on the drinks array, which repeatedly takes two elements of the array at a
time and assigns them to its parameters a and b for comparison. The sort function will return a value
depending on the values assigned to the parameters drinks and b. Note the following details of th
function:

• When the function returns <0, it means the second value is larger than the first and
is hence pushed down.

• When the function returns =0, it means both values are equal and there's no need
to change the sort order.

• When the function returns >0, it means the first value is larger than the second and
must be pushed down.

Before we invoke the sorting algorithm, we convert the two array elements passed to the sort
function to uppercase. We then use the sorting algorithm to return the values in the bulleted list, which
will sort the list items in alphabetical (ascending) order. Finally, the each() function operates on the
array drinks (that contains sorted list items); we extract each element stored in the array and append it
to the unordered list element. That is, we’re appending the sorted list items to the unordered list
element for display.

On execution of the preceding jQuery code, we get the sorted list items shown in Figure 7-30.

Figure 7-30. Sorted list items

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 7 ■ DEALING WITH TABLES

280

7-9. Sorting a Table

Problem
You have a table consisting of a few rows and columns. When a user selects any column of the table, its
contents must be sorted in ascending order.

Solution
Let’s make an HTML file that contains a table element with some rows and columns defined in it:

<body>
<table border="1">
<thead>
<tr><th>Roll</th><th>Name</th><th>Marks</th></tr>
</thead>
<tbody>
<tr><td>103</td><td>Chirag</td><td>85</td></tr>
<tr><td>102</td><td>Naman</td><td>90</td></tr>
<tr><td>101</td><td>John</td><td>87</td></tr>
</tbody>
</table>
</body>

We define a table with a border of 1pxand with three column headings (defined using the th
element): Roll, Name, and Marks. Also, it contains three rows of student records. The table headings are
nested inside the thead element and the body of the table (rows that contain information) is nested
inside the tbody element.

We will approach this recipe in three steps:

1. Determining which column heading is clicked

2. Sorting a column in ascending order

3. Sorting a column in both ascending and descending order

Determining Which Column Heading Is Clicked
Before sorting a column in ascending or descending order, you need to know which of the table’s
column headings is selected. To highlight the column heading that’s selected by the user, we need to
define a style rule .hover in the style sheet file. The style sheet file style.css may appear as shown here:

style.css
.hover{
cursor: default;
color: blue ;
background-color:cyan
}

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 7 ■ DEALING WITH TABLES

281

Here’s the jQuery code to display which of the column heading is selected:

$(document).ready(function() {
 $('th').each(function() {
 $(this).hover(
 function(){
 $(this).addClass('hover');
 },
 function(){
 $(this).removeClass('hover');
 }
);

 $(this).click(function(){
 alert($(this).text()+' column is selected');
 });
 });
});

How It Works
In the style sheet file, the style rule .hover contains the cursor property set to default to make the mouse
pointer appear as it normally does (in the form of a pointer). The color and background-color properties
are set to blue and cyan, respectively, to turn the background color of the highlighted column heading
cyan and its foreground color blue.

We can see in the preceding jQuery code that each of the table headings is checked to see if it’s been
hovered over. If any of the table heading is hovered over, the style properties defined in the style rule
.hover will be applied to it to highlight it (its background color will change to cyan and its foreground
color to blue). When the mouse pointer is moved away from the column heading, the style properties of
the .hover style rule will be removed, making the column heading appear as it was initially. Also, we
check if any table heading is clicked; if so, we display the text of the column heading using the alert()
method.

On moving the mouse pointer over any column heading, that heading will be highlighted and its
name will be displayed via the alert() method, as shown in Figure 7-31.

Figure 7-31. Column name displayed when column heading is hovered over

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 7 ■ DEALING WITH TABLES

282

Sorting a Column in Ascending Order
The jQuery code to sort a column in ascending order is shown here:

$(document).ready(function() {
 $('th').each(function(column) {
 $(this).hover(
 function(){
 $(this).addClass('hover');
 },
 function(){
 $(this).removeClass('hover');
 }
);

 $(this).click(function(){
 var rec=$('table').find('tbody >tr').get();
 rec.sort(function(a, b) {
 var val1 = $(a).children('td').eq(column).text().toUpperCase();
 var val2 = $(b).children('td').eq(column).text().toUpperCase();
 return (val1 < val2) ? -1 : (val1 > val2) ? 1 : 0;
 });

 $.each(rec, function(index, row) {
 $('tbody').append(row);
 });
 });
 });
});

Before we move on, let’s discuss the significance of the > symbol in our code.

The > Symbol
The > symbol is a selector that represents the children of the selected element; for example, in the
following example, it selects all the children of the element E1 that are matched by element E2:

Syntax:
E1>E2

Now looking at our jQuery code in action, each table heading is checked to see if it is hovered over.
If any of the table headings are hovered over, the style properties defined in the style rule .hover will be
applied to that heading to highlight it. Also when the mouse pointer is moved away from the heading the
style properties of the .hover style rule will be removed, making the column heading appear as it was
initially.

Then we attach a click event to each of the table headings. In the click event handler, we retrieve
all the table rows (nested in the tbody element) and store them in the variable rec. rec will be now an
array containing all the table rows. By invoking the sort() function on the rec array, we repeatedly take
two elements (rows) of the array at a time and arrange them in ascending order. To do so, the column

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 7 ■ DEALING WITH TABLES

283

contents of the first and second parameters (rows) passed to the sort() function are extracted and
converted to uppercase before they’re compared.

The sort() function then returns any of the values <0, =0, or >0, which helps in deciding which
column contents should be moved up in the sort order and which should be pushed down in the sort
order. When this sort function is finished, the rec array will have all the rows of the selected column
sorted in ascending order. Finally, the sorted rows from the rec array are retrieved and appended to the
tbody element of the table for display.

Initially, the table may appear as shown in Figure 7-32.

Figure 7-32. Unsorted table

On selecting the Roll column, it will be highlighted and the table rows will be sorted in ascending
order by roll number, as shown in Figure 7-33.

Figure 7-33. Table sorted in ascending order by roll number

Similarly, on selecting the Name column, it will be highlighted and the table rows will be sorted in
ascending (alphabetical) order by name, as shown in Figure 7-34.

Figure 7-34. Table sorted in ascending order by name

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 7 ■ DEALING WITH TABLES

284

Sorting a Column in both Ascending and Descending Order
If any of the column heading is clicked for the first time, the table must be sorted in ascending order by
that column, and if the column is clicked again, the table must be sorted in descending order by that
column. In other words, we want the sort order to toggle on each click. In order to inform the user which
sorting order is currently applied on a column, we need to display an up or down arrow in the column
heading. The up arrow will denote that the table is sorted in ascending order by that column, and the
down arrow will indicate that the table is sorted in descending order by the column.

To display the up and down arrows in the column headings, we need to define two style rules in the
style sheet file style.css, as shown here:

style.css
.asc{
background:url('up.png') no-repeat; padding-left:20px;
}

.desc{
background:url('down.png') no-repeat; padding-left:20px;
}

Let’s now modify the jQuery code to sort the table in ascending as well as in descending order by the
selected column:

$(document).ready(function() {
 $('th').each(function(column) {
 $(this).hover(
 function(){
 $(this).addClass('hover');
 },
 function(){
 $(this).removeClass('hover');
 }
);

 $(this).click(function(){
 if($(this).is('.asc'))
 {
 $(this).removeClass('asc');
 $(this).addClass('desc');
 sortdir=-1;
 }
 else
 {
 $(this).addClass('asc');
 $(this).removeClass('desc');
 sortdir=1;
 }
 $(this).siblings().removeClass('asc');
 $(this).siblings().removeClass('desc');

 var rec=$('table').find('tbody >tr').get();

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 7 ■ DEALING WITH TABLES

285

 rec.sort(function(a, b) {
 var val1 = $(a).children('td').eq(column).text().toUpperCase();
 var val2 = $(b).children('td').eq(column).text().toUpperCase();
 return (val1 < val2) ? -sortdir : (val1 > val2) ? sortdir : 0;
 });

 $.each(rec, function(index, row) {
 $('tbody').append(row);
 });
 });
 });
});

How It Works
The style rule .asc contains the background property set to url(up.png) to display an up arrow pointer
in the column heading. The value no-repeat will make the pointer appear only once in the column
heading, and the padding-left property is set to 20px to create some space on the left. Similarly, the style
rule desc contains the background property to display the down arrow pointer in the column headings.

Then our jQuery code begins by checking each of the table headings to see any of them are hovered
over. If any of the table headings are in fact hovered over, the style properties defined in the style rule
.hover will be applied to it to highlight it. Also, when the mouse pointer is moved away from the column
heading, the style properties of the .hover style rule will be removed, making the column heading appear
as it did initially.

We then attach a click event to each of the table headings and check if the selected column heading
has the style rule .asc applied to it. That is, we check if the table is already sorted in ascending order by
the selected column heading. If it is, we remove the style properties defined in the style rule asc and
apply the style properties defined in the style rule desc (when a column heading that’s been sorted in
ascending order is clicked again). As a result, the column heading will display a down arrow on its left.
Also, the value of the variable sortdir is set to –1, which will be used to manipulate the return values of
the sort function to perform sorting in descending order.

If the selected column had the desc style rule already applied to it—that is, if the table is sorted in
descending order by the selected column—we remove the style properties defined in the style rule desc
and apply the properties defined in the style rule asc, which will place an up arrow to the left of the
column heading. Also, the value of the variable sortdir is 1 to make the sort function sort in ascending
order.

Once we've sorted the column, we need to remove the properties of the style rules .asc and .desc
from all the column headings except the one that is selected by the user. We also need to retrieve all the
table rows (nested in the tbody element) and store them in the variable rec, which will be now be an
array containing all the table rows.

We can then invoke the sort function on the rec array. The sort function will repeatedly take two
elements (rows) of the array at a time and arrange them in sort order as decided by the value in the
variable sortdir. The sort function begins by extracting the column contents of the first and second
parameters (rows) passed to the sort function, then converts them to upper case before comparing
them.

The function returns any of the values <0, =0, or >0, which helps in deciding which column contents
should be moved up in the sort order and which should be pushed down in the sort order. When this
sort function is complete, the rec array will have all the rows sorted in either ascending or descending
order by the selected column, depending on the value assigned to the variable sortdir. Finally, the
sorted rows from the rec array are retrieved and appended to the tbody element of the table for display.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 7 ■ DEALING WITH TABLES

286

Initially, the table may appear as shown in Figure 7-35.

Figure 7-35. Unsorted table consisting of a few rows and columns

If we select the column heading Name once, an up arrow will appear on its left (indicating that sorting
will be done in ascending order) and the table will be sorted in ascending alphabetical order by name, as
shown in Figure 7-36.

Figure 7-36. Table sorted in ascending order by name

On selecting the Name column heading again, a down arrow will appear on its left (indicating that
sorting will be done in descending order) and the table will be sorted in descending alphabetical order
by name, as shown in Figure 7-37.

Figure 7-37. Table sorted in descending order by name

7-10. Filtering Rows from a Table

Problem
You have a table consisting of few rows and columns, along with a text-input field preceding the table.
You want to filter the rows of the table on the basis of the characters typed in the text-input field. For
instance, if the user enters the character c, all the rows in the table that have names beginning with c will
be displayed and the rest of the rows will be filtered out.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 7 ■ DEALING WITH TABLES

287

Solution
We’ll start with an HTML file that contains a table element with some rows and columns. Before the
table, let’s display the message Enter the character, followed by a text-input field. Below the text-input
field, we will display a Submit button, which on being clicked will display the filtered information of the
table. The HTML file may appear as shown here:

<body>
<div>Enter a character <input type="text" class="infobox"
/></div>
<input class="submit" type="submit" value="Submit"/>

<table border="1">
<thead>
<tr><th>Roll</th><th>Name</th><th>Marks</th></tr>
</thead>
<tbody>
<tr><td>101</td><td>John</td><td>87</td></tr>
<tr><td>102</td><td>Naman</td><td>90</td></tr>
<tr><td>103</td><td>Chirag</td><td>85</td></tr>
<tr><td>104</td><td>David</td><td>92</td></tr>
<tr><td>105</td><td>Kelly</td><td>81</td></tr>
<tr><td>106</td><td>Charles</td><td>77</td></tr>
<tr><td>107</td><td>Jerry</td><td>91</td></tr>
<tr><td>108</td><td>Beth</td><td>75</td></tr>
<tr><td>109</td><td>Caroline</td><td>82</td></tr>
<tr><td>110</td><td>Hanen</td><td>71</td></tr>
<tr><td>111</td><td>Douglas</td><td>57</td></tr>
<tr><td>112</td><td>Tim</td><td>86</td></tr>
<tr><td>113</td><td>Michael</td><td>68</td></tr>
<tr><td>114</td><td>Kimbley</td><td>88</td></tr>
<tr><td>115</td><td>Christina</td><td>72</td></tr>
</tbody>
</table>
</body>

You can see that the text message is nested inside the span element of the class label, the text-input
field is assigned the class name infobox, and the Submit button is assigned the class name submit so that
the style properties defined in the class selectors .label, .infobox, and .submit (defined in the style
sheet file) can be applied to them automatically. The style sheet is shown here:

style.css
.label {float: left; width: 120px; }
.infobox {width: 200px; }
.submit { margin-left: 125px; margin-top: 10px;}

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 7 ■ DEALING WITH TABLES

288

The jQuery code to filter the table rows to display the names that begin with the character supplied
in the text-input field is shown here:

$(document).ready(function() {
 var rows;
 var coldata;

 $('.submit').click(function(event){
 $('table').find('tbody tr').hide();
 var data=$('.infobox').val();
 var len=data.length;
 if(len>0)
 {
 $('table tbody tr').each(function(){
 coldata=$(this).children().eq(1);
 if(coldata.text().charAt(0).toUpperCase()==data.charAt(0).toUpperCase())
 {
 $(this).show();
 }
 });
 }
 event.preventDefault();
 });
});

How It Works
The properties defined in the class selector .label include a float property set to left to make the label
appear on the left of the browser window (making space for the next element to appear on its right). The
width property is set to 200px to make the label fit within the width of 200px. The class selector .infobox
contains the width property set to 200px to make the text-input field 200px wide, and the class selector
.submit contains the margin-left property set to 125px to make the Submit button appear at the
distance of 125px from the left border of the browser window (so that it appears below the text-input
field). The margin-top property is set to 10px to make the Submit button appear 10px from the text-input
field at its top.

Our jQuery code kicks off by attaching a click event to the Submit button, where we hide all the
rows of the table (tr elements nested inside the tbody element), displaying only the column headings.
We then retrieve the contents typed in the text-input field (that is assigned the class name infobox) and
store them in a variable data.

Next we find the length of the variable data and scan each row of the table (tr element nested inside
the tbody element). For each row, we get the contents of the children of the row element with an index of
1 (that is, the index of the Name column) and store them in the variable coldata.

Then we start filtering by comparing the first character of the column content (in coldata) with that
of the character typed in the text-input field (after converting both of them to uppercase). If they match,
we display the row.

Finally, we invoke the .preventDefault()method of the event object so as to avoid the submission to
the server of information entered by the user; that is, avoiding the default behavior of the browser when
a button is clicked.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 7 ■ DEALING WITH TABLES

289

On execution of the preceding jQuery code, we get a text-input field with a Submit button. If we
enter a character—say c—in the text-input field, all the names in the table that begin with character c
will be displayed, and the rest of the rows will be filtered out, as shown in Figure 7-38.

Figure 7-38. Table displaying rows that contain a name beginning with the character entered in the text-

input field

Summary
In this chapter, you learned different recipes that perform different functions on tables, including
highlighting rows and columns, filtering out a selected row, erasing a selected column, and displaying
the rows of a table pagewise. You also saw the method involved in expanding and collapsing rows of a
table, and learned how a table can be sorted in a ascending or descending order by a selected column.

In the next chapter, you will see how to make web pages highly responsive by applying AJAX
techniques. You’ll see how to display a welcome message and perform authentication using Ajax. We’ll
also look into validating user names and email address with AJAX, and paginating a table using AJAX.
You’ll also learn to employ an autocomplete feature using Ajax. Finally, you’ll see how to get serialized
information, JSON data, and XML data using AJAX.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

C H A P T E R 8

■ ■ ■

291

Ajax

Ajax is a technique that makes a web page highly responsive because it allows asynchronous requests to
be made back to the server without the need to reload pages. In this chapter, you will learn some recipes
that make use of Ajax to improve the user experience:

• Displaying a welcome message

• Performing authentication

• Validating a user name

• Validating an email address

• Using auto complete

• Importing HTML

• Getting JSON data

• Getting XML data

• Paginating tables

8-1. Displaying a Welcome Message

Problem
You have a label, an input text field, and a submit button on a form, and you want a welcome message be
displayed to the user when they select the submit button – once they have entered their name in the
input text field.

Solution
Let’s create an HTML file that contains a label element, an input text field, a submit button, and an
empty div element. The HTML file should look like this:

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 8 ■ AJAX

292

<body>
 <form>
 <label>Enter your Name</label>
 <input type="text" name="uname" class="uname"/>

 <input type="submit" id="submit"/>
 </form>
 <div id="message"></div>
</body>

You can see that the HTML file contains a label, an input text field, and a submit button nested in a
form. The input text field is given the class name uname for the purpose of accessing it via our jQuery
code that we’re about to write. Below the form is an empty div element of id message which we will use
for displaying the welcome message to the user.

The jQuery code for our solution looks like this:

$(document).ready(function() {
 $('#submit').click(function () {
 var name = $('.uname').val();
 var data = 'uname=' + name;
 $.ajax({
 type:"POST",
 url:"welcome.php",
 data: data,
 success: function (html) {
 $('#message').html(html);
 }
 });
 return false;
 });
});

The script file welcome.php on the server is as follows:

<?php
$name = $_POST['uname'];
echo "Welcome ". $name;
?>

How It Works
The ajax() method loads a remote page using an HTTP request. It creates and returns the
XMLHttpRequest object. It takes one argument: an object of key/value pairs, which are used to initialize
and handle the request.

.ajax(object of key/value pairs)

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 8 ■ AJAX

293

A few key/value pairs that we’ll be using in this solution are:

• type – is a string that defines the HTTP method we will use for the request; that is,
whether it is GET or POST. Default type is the GET method.

• url – is a string containing the URL of the web page to which we want to send the
request

• data – is a map or string that we want to be sent to the server along with the
request

• success – is a callback function that is executed if the request sent to the server
succeeds. The returned data (from the server) is assigned to this callback
function’s parameter

You can look at all these key/value pair options at the following address: http://docs.jquery.com/
Ajax/jQuery.ajax#options

In the jQuery code itself, we retrieve the name entered by the user in the input text field (of class
uname) and store it in a variable name. We also define a variable data that will store a pair uname=name
where name is the name entered by the user. This data variable is sent to the server to be assigned to the
script file welcome.php (which is assumed to already exist on the server in this solution) for generating a
response.

We invoke the request through ajax() method. In the ajax() method, we specify that the method of
request that we are going to use is POST and the name of the script file that will be executed on the server
(welcome.php). The parameter to be passed to the script file is contained in the string
data(uname=name).welcome.php, and after processing the passed-in data, our solution generates the
output which is received by the JavaScript file in the parameter html of the callback function.

The contents of html will be then assigned to the div element of id message so as to display the
response (generated by the script file on the server) to the user. We return false in the click event to
suppress the default browser click behavior; that is, we want it to take the action specified via jQuery
code and not the default action.

The welcome.php script file retrieves the element uname from the $_POST array and stores it in variable
$name. Then the string Welcome $name is returned to the jQuery code as the response from the server
where $name is the name entered by the user. The HTML file generates the output consisting of label,
input text field and a submit button as shown in Figure 8-1:

Figure 8-1. Screen to enter name of the user

If we enter some name in the input text field and select the Submit button, we will get a welcome
message generated from the server as shown in Figure 8-2:

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 8 ■ AJAX

294

Figure 8-2. Welcome message displayed on selecting Submit Query button

Using the GET HTTP method of request
If you want to load data from the server using a GET HTTP request, you have two options: either set the
value of the type key to GET in the ajax() method (or don’t define this key at all as the default request
method is GET) or use the $.get() method. Let’s try each option in turn now, the first by setting type key
to GET:

$(document).ready(function() {
 $('#submit').click(function () {
 var name = $('.uname').val();
 var data = 'uname=' + name;
 $.ajax({
 type:"GET",
 url:"welcome.php",
 data: data,
 success: function (html) {
 $('#message').html(html);
 }
 });
 return false;
 });
});

We can see that except for the type key, there is no other modification in the JavaScript file. This
type key helps when you want to load the data from the server using the GET HTTP request. To make the
script on the server retrieve data from the $_GET array, we need to make following alterations in the
welcome.php file:

<?php
$name = $_GET['uname'];
echo "Welcome ". $name;
?>

You can see that instead of the $_POST array, the data will be retrieved from the $_GET array. Let’s use
the $.get() method now for using GET HTTP request. This method invokes the GET request to the server to
fetch data. It executes the script whose URL is specified, along with the parameters passed (if any):

$.get(url, parameters, callback)

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 8 ■ AJAX

295

These parameters are as follows:

• url is the server-side script that you want to execute via GET method

• parameters is key/value pair that you want to be passed to the server-side script
for processing

• callback is the function that is invoked on completion of the request. It contains
two parameters, the first is the response from the server side script and the second
parameter is the status of execution

So let’s modify the JavaScript that we saw above to now use the $.get() method. Your code should
look something like this:

$(document).ready(function() {
 $('#submit').click(function () {
 var name = $('.uname').val();
 var data = 'uname=' + name;
 $.get(
 "welcome.php",
 data,
 function (html) {
 $('#message').html(html);
 }
);
 return false;
 });
});

You can see that the $.get() method invokes the welcome.php file on the server and passes
uname=name to it as a parameter (where name stores the name entered by the user) and the callback
function displays the response (from the server) by assigning it to the div element of id message. The
output we will get the same as shown in Figure 8-1 and 8-2 above.

Making POST requests
For making POST requests to the server, we make use of the $.post() method, which you’ll use most
generally when you want to make some modification in the information stored on the server. It fetches
the data onto the server using POST HTTP request. It executes the script whose URL is specified along with
the parameters passed (if any). This function also allows a single callback function to be specified that
will be executed when the request is complete. Here’s the method and parameters:

$.post(url, parameters, callback)

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 8 ■ AJAX

296

These parameters are as follows:

• url is the server-side script to which we want to send request (via the POST
method)

• parameters is key/value pair that we want to be passed to the server-side script for
processing

• callback is the function that is invoked on completion of the request. It contains
two parameters, the first is the response from the server side script and the second
parameter is the status of execution

The previous JavaScript file can therefore be modified to use the $.post() method as follows:

$(document).ready(function() {
 $('#submit').click(function () {
 var name = $('.uname').val();
 var data = 'uname=' + name;
 $.post(
 "welcome.php",
 data,
 function (html) {
 $('#message').html(html);
 }
);
 return false;
 });
});

You can see that the $.post() method invokes the welcome.php file on the server and passes
uname=name to it as a parameter (where name stores the name entered by the user) and the callback
function displays the response (from the server) by assigning it to the div element of id message. The
output that you will get is the same as shown in Figure 8-1 and 8-2.

Finally, please do remember that the server side script welcome.php must access the data from the
$_POST array and not from the $_GET array beacuse the request sent this time is via the POST method:

<?php
$name = $_POST['uname'];
echo "Welcome ". $name;
?>

8-2. Performing Authentication

Problem
You want to ask the user to enter a name and password in a login form. If the name and password
entered by the user matches with the contents in the server side script, your user should get a welcome
message, otherwise a message should declare that they are an ‘Unauthorized user’.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 8 ■ AJAX

297

Solution
Let’s create an HTML file that displays two labels: ‘Enter your Name’ and ‘Enter your Password’ and two
input text fields and a submit button and an empty div element. The HTML file should appear like this:

<body>
 <form>
 <label>Enter your Name</label>
 <input type="text" name="uname" class="uname"/>

 <label>Enter your Password</label>
 <input type="password" name="password" class="passwd"/>

 <input type="submit" id="submit"/>
 </form>
 <div id="message"></div>
</body>

You can see that the HTML file contains the two input text fields that are assigned class names uname
and passwd for the purpose of accessing them via jQuery code. Below the form is an empty div element
of id message which we will be using for displaying the response generated by the server side script.

The jQuery code can now appear as shown here:

$(document).ready(function() {
 $('#submit').click(function () {
 var name = $('.uname').val();
 var pwd = $('.passwd').val();
 var data='uname='+name+'&password='+pwd;
 $.ajax({
 type:"GET",
 url:"logincheck.php",
 data:data,
 success:function(html) {
 $("#message").html(html);
 }
 });
 return false;
 });
});

The script file logincheck.php on the server validates the name and password entered by the user,
and looks like this:

<?php
$name = trim($_GET['uname']);
$pswd = trim($_GET['password']);
if(($name=="guest") && ($pswd=="jquery"))
 echo "Welcome ". $name;
else
 echo "Sorry you are not authorized";
?>

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 8 ■ AJAX

298

How It Works
We start our jQuery code by attaching a click event to the submit button that is assigned the id submit. In
this event we retrieve the name and password entered by the user in those input text fields, of class uname
and passwd, and store them in the variables name and pwd respectively.

We then define a variable data that will store uname=name&password=pwd where name holds the name
entered by the user and pwd contains the password entered by the user. This data variable is sent to the
server to be assigned to the script file logincheck.php for validating the name and password and
accordingly generating response.

In the ajax() method, we specify that the method of request that we are going to use is GET and the
name of the script file that will be executed on the server is logincheck.php and the parameter to be
passed to the script file is contained in the string data.

After logincheck.php processes the data sent to it, it generates the output which is received by the
JavaScript file in the parameter html of the callback function. The response returned by the script file will
be then assigned to the div element of id message so as to display the response to the user.

Finally, we return false in the click event to suppress the default browser click behavior i.e. we want
it to take action that is specified via jQuery code and not its default action.

In logincheck.php we can see that the parameters sent are accessed through the $_GET array i.e. the
information stored in the elements uname and password of the $_GET array are retrieved and stored in
variables $name and $pswd respectively. Then, we check if the name entered by the user is guest and
password is jquery, then send back the ‘Welcome name’ message or else send the ‘Sorry you are not
authorized’ message.

On execution, the HTML file will display a login form to enter name and password. If the name and
password entered by the user doesn’t matches with what we discussed in the server side script file:
logincheck.php, the user gets the message Sorry you are not authorised as response from the server as
shown in Figure 8-3:

Figure 8-3. Message displayed when the wrong name or password is entered

If the name and password entered are ‘guest’ and ‘jquery’ respectively, the user is greeted with a
welcome message as shown in Figure 8-4:

Figure 8-4. Welcome message displayed when the correct name and password are entered

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 8 ■ AJAX

299

8-3. Validating a User Name

Problem
You want to ask the user to enter a name and you want to use a server-side script to confirm that the
field is not left blank. If the user does not enter anything in the name field, then he should get an error
message.

Solution
Let’s start by creating an HTML file that displays a label: ‘Enter your Name’ and an input text field and a
submit button. The HTML file may appear as shown below:

<body>
 <form>
 Enter your Name
 <input type="text" name="uname" class="uname"/>

 <input type="submit" id="submit"/>
 </form>
</body>

You can see here that the input text field is assigned class name uname for the purpose of accessing it
via jQuery code. Following the input text field is an empty span element of class error. The text to this
span element will be assigned from the server generated response – if the user leaves the input text field
blank.

In order to specify a width to the input text field label, and a color to the error message, we need to
write some style rules in the style sheet file:

.label {float: left; width: 120px; }
.uname {width: 200px; }
.error { color: red; padding-left: 10px; }
#submit { margin-left: 125px; margin-top: 10px;}

The jQuery code to invoke the server side script is below, which passes to validateuser.php. the
name entered by the user as a parameter, and displays an error message if the name is left blank by
the user:

$(document).ready(function() {
 $('.error').hide();
 $('#submit').click(function () {
 var name = $('.uname').val();
 var data='uname='+name;
 $.ajax({
 type:"POST",
 url:"validateuser.php",
 data:data,

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 8 ■ AJAX

300

 success:function(html) {
 $('.error').show();
 $('.error').text(html);
 }
 });
 return false;
 });
});

The script file validateuser.php itself, is on the server, and is meant for checking whether the name
of the user is not left blank. This code looks like this:

<?php
if($_POST['uname'] == '')
{
 echo "This field cannot be blank";
}
?>

Validating user name using a regular expression
In the above solution, the user could enter anything when they were meant to be entering their user
name – including symbols. So let’s improve the server side script so we will only accept names that
consist of alphanumerical and underscore only. The script file validateuser.php can be modified as
shown here to achieve this for us:

<?php
$name = $_POST['uname'];
if (!eregi("^[a-z0-9_]+$", $name))
{
 echo "Invalid User name";
}
?>

How It Works
We start our jQuery code, that you see above, by hiding the span element of class error and attaching a
click event to the submit button that is assigned the id submit. We then retrieve the name entered by the
user in the input text fields (of class uname) and store it in variable name.

The variable data will store a string, uname=name, where name holds the name entered by the user.
This data variable is sent to the server to be assigned to the script file validateuser.php (which is
assumed to already exist on the server) for confirming that the name is not left blank.

We invoke the request through the ajax() method, in which we specify that the method of request
that we are going to use is POST and that the name of the script file that will be executed on the server is
validateuser.php. We also specify that the parameter we’re passing to the script file is contained in the
string data.

Now the code we have in validateuser.php, after processing the passed data, generates the output
which is received by the JavaScript file in the parameter html of the callback function. The response
returned by the script file (stored in html) will be then assigned to the span element of class error so as to

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 8 ■ AJAX

301

display the error response to the user, which will be generated by the script file on the server. Before
assigning the response html to the span element of class error, however, we first make it visible, because
we made it hidden at the beginning of the code. Finally, we return false in the click event to suppress
the default browser click behavior; that is, we want it to take action that is specified via jQuery code and
not its default action.

You can see also how the above PHP script retrieves the name passed via the parameter data
through the $_POST array and, on finding it blank, responds back with an error message This field
cannot be blank which will be displayed in the span element of class error. No response is generated if
the name is not blank.

On leaving the input text field blank, if we select the Submit button, we get the error message
displayed as shown in Figure 8-5:

Figure 8-5. Error message displayed when name field is left blank

If a valid name is entered, the name will be accepted without displaying any error message as shown
in Figure 8-6:

Figure 8-6. Name accepted and no error message displayed

When using a regular expression, you can see that eregi() method is used to specify the regular
expression for validating the user name. The ^ and $ symbol in regular expression represents ‘beginning’
and ‘at end’ respectively. Regular expressions are explained in Chapter 4 – Form Validation.

The ‘+’ symbol means one or more times. Hence the complete regular expression denotes that the
name may consists of any character from a to z, number from 0 to 9 and an underscore. These can
appear at the beginning or at the end and for one or more times. So if we enter a symbol other than
underscore in the user name, we will get the error Invalid User name as shown in Figure 8-7:

Figure 8-7. Error message appears on entering an invalid name

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 8 ■ AJAX

302

No error message will appear and the name will be accepted, if it consists of alphanumerical and
underscore only as shown in Figure 8-8:

Figure 8-8. Name accepted and no error message is displayed if it consists of alphanumericals and

underscores only

8-4. Validating an Email Address

Problem
You want the user to enter his email address and you want to use a server-side script to confirm that it is
a valid email address. This means that it must consist of alphanumericals, no symbols other than - and _
, plus it must contain both symbols . and @. If the email address is invalid, an error message should be
displayed to the user.

Solution
Let’s make an HTML file that displays a label: ‘Enter email address’ and an input text field and a submit
button. The HTML file may appear as shown below:

<body>
 <form>
 Enter email address
 <input type="text" name="emailadd" class="emailadd"/>

 <input type="submit" id="submit"/>
 </form>
</body>

We can see in above HTML file that the input text field is assigned the class name emailadd for the
purpose of accessing it via jQuery code. Following the input text field, is an empty span element of class
error. The text to this span element will be assigned from the server generated response, if the user
enters an invalid email address.

In order to specify width to the label, input text field and color to the error message, we will make
use of the style rules written in the style sheet file from the solution we used in 8-3.

The jQuery code to invoke the server side script: validatemail.php for validating the email address
entered by the user is as shown below:

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 8 ■ AJAX

303

$(document).ready(function() {
 $('.error').hide();
 $('#submit').click(function () {
 var em = $('.emailadd').val();
 var data='emailadd='+em;
 $.ajax({
 type:"POST",
 url:"validatemail.php",
 data:data,
 success:function(html) {
 $('.error').show();
 $('.error').text(html);
 }
 });
 return false;
 });
});

The script file validatemail.php, on the server, is designed to check whether the email address of
the user is valid or not:

<?php
$emid = $_POST['emailadd'];
if (!eregi("^[_a-z0-9-]+(\.[_a-z0-9-]+)*@[a-z0-9-]+(\.[a-z0-9-]+)*(\.[a-z]{2,3})$", $emid))
{
 echo "Invalid email address";
}
?>

Validating two fields together
Now, let’s combine the two recipes together to see how more than one field can be validated through
Ajax. We’ll make an HTML file that displays two labels: ‘Enter user id’ and ‘Enter email address’ and two
input text fields for entering a userid and email address respectively, plus a submit button. The HTML
file looks like this:

<body>
 <form>
 Enter user id
 <input type="text" name="userid" class="userid"/>

 Enter email address
 <input type="text" name="emailadd" class="emailadd"/>

 <input type="submit" id="submit"/>
 </form>
</body>

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 8 ■ AJAX

304

In order to specify a width to the label and input text fields, and a color to the error messages, we’ll
make use of style rules. So let’s write following style rules in the external style sheet file style.css:

.label {float: left; width: 120px; }
.userid {width: 200px; }
.emailadd {width: 200px; }
.usrerror { color: red; padding-left: 10px; }
.emerror { color: red; padding-left: 10px; }
#submit { margin-left: 125px; margin-top: 10px;}

The jQuery code to invoke the server side script validatedata.php for validating the userid and
email address entered by the user is as shown here:

$(document).ready(function() {
 $('.usrerror').hide();
 $('.emerror').hide();
 $('#submit').click(function () {
 var uid = $('.userid').val();
 var em = $('.emailadd').val();
 var data='userid='+uid+'&emailadd='+em;
 $.ajax({
 type:"POST",
 url:"validatedata.php",
 data:data,
 success:function(html) {
 var twomsgs = html.split("\n");
 for (var i in twomsgs)
 {
 var errmsg = twomsgs[i].split("|");
 if(errmsg[0]=='user')
 {
 $('.usrerror').show();
 $('.usrerror').text(errmsg[1]);
 }
 if(errmsg[0]=='email')
 {
 $('.emerror').show();
 $('.emerror').text(errmsg[1]);
 }
 }
 }
 });
 return false;
 });
});

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 8 ■ AJAX

305

The script file validatedata.php, on the server, is used to validate the userid as well as the email
address, and looks like this:

<?php
$errors = null;
$name = $_POST['userid'];
if (!eregi("^[a-z0-9_]+$", $name))
{
 $errors .= "user|Invalid User id\n";
}
else
{
 $errors .= "user|\n";
}
$emid = $_POST['emailadd'];
if (!eregi("^[_a-z0-9-]+(\.[_a-z0-9-]+)*@[a-z0-9-]+(\.[a-z0-9-]+)*(\.[a-z]{2,3})$", $emid))
{
 $errors .= "email|Invalid email address\n";
}
else
{
 $errors .= "email|\n";
}
echo $errors;
?>

How It Works
We begin by hiding the span element of class error and attaching a click event to the submit button that
is assigned the id submit. We then retrieve the email address entered by the user in the input text field (of
class emailadd) and store it in the variable em.

The variable data stores a string emailadd=em where em holds the email address entered by the user.
This data variable is then sent to the server to be assigned to the script file validatemail.php (which is
assumed to already exist on the server) for confirming that the email address is valid.

Next we invoke the request through the ajax() method, where we specify that the method of
request that we are going to use is POST and the name of the script file that will be executed on the server
is validatemail.php. We also assert that the parameter to be passed to the script file is contained in the
string data (which of course contains the string emailadd=em).

Next up, validatemail.php, after processing data generates the output, received by the JavaScript
file in the parameter html of the callback function. The response returned by the script file (stored in
html) will then be assigned to the span element of class error to display the error response, which is
generated by the script file on the server, to the user. But before assigning the response, here html, to the
span element of class error, we make it visible – because if you note, we made it hidden at the beginning
of the code.

We return false in the click event to suppress the default browser click behavior; we do this
because we want to take action that is specified via our jQuery code, and not the default click action.

In the PHP script, we can see that eregi() method is used to specify the regular expression for
validating the email address. The ^ and $ symbols in regular expressions represent ‘beginning’ and ‘at
end’ respectively. The + symbol means one or more times, and the * symbol means 0 or more times.
Let’s break down the regular expression to understand it better:

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 8 ■ AJAX

306

• [_a-z0-9-]+ means that our email address can have _ (underscore), alphabets from
a to z, numerical from 0 to 9 and a – (hyphen) for 1 or more time

• (\.[_a-z0-9-]+)* means the email address can have a . (period) followed by _
(underscore), alphanumerical, - (hyphen) for 0 or more times

• @[a-z0-9-]+ means the email address must have @ symbol followed by
alphanumerical and - (hyphen) for 1 or more times

• (\.[a-z]{2,3})$ means the email address must terminate with a . (period) and any
alphabet from a to z which should be between 2 to 3 (in count) i.e. after the
.(period) we cannot have less than 2 alphabet or more than 3 alphabet

So if we enter the email address that does not match with the regular expression supplied above, we
will get the error: ‘Invalid email address’ as shown in Figure 8-9:

Figure 8-9. Error message displayed if invalid email address is entered

Now if we enter a valid email address that follows the regular expression specified in the server side
script file, validatemail.php, then it will be accepted without displaying any error message as shown in
Figure 8-10:

Figure 8-10. Email address accepted and no error message displayed if it is valid

So in our HTML we have two input text fields assigned class names userid and emailadd respectively
for the purpose of accessing them via jQuery code. After each of these input text fields, we have an empty
span element that will be used for displaying error messages. The span element is to display the error
message in case an invalid user id is entered; in which case the span element is assigned the class
usrerror and the span element intended for displaying our error message related to invalid email
addresses, is assigned the class name: emailadd. The text to these span elements will be assigned from the
response generated by the server side script.

In the style sheet file, we give the class selector label a float property set to value left so that the
next item (the input text field) may appear to its right, and its width property is set to value 120px to give
enough space for the label to display. The class selector userid has width property set to value 200 px –
to define the size of the input text field for entering userid. Similarly, the class selector emailadd has
width property set to value 200 px – to define the size of the input text field for entering email address.
The class selectors usrerror and emerror have color property set to red to highlight them, padding from
left is set to 10px to keep the distance from their respective input text field. Finally, the class selector
submit has margin-left and margin-top property set to 125px and 10px respectively, to set the distance

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 8 ■ AJAX

307

from the left boundary of the browser window and from the input text field, because we want the submit
button to appear below the input text fields.

In the jQuery code itself, we begin by hiding the span element of class usrerror and emerror at the
beginning. We will display them when some invalid data is entered. We then attach a click event to the
submit button that is assigned the id submit.

We next retrieve the user id and email address entered by the user in the input text field (of class
userid and emailadd respectively), and store them in variables uid and em. To send these to the server, we
define a variable data that will store a string userid=uid&emailadd=em where uid and em hold the userid
and email address entered by the user. This data variable is sent to the server to be assigned to the script
file validatedata.php (which is assumed to already exist on the server) for validating our userid and
email address.

We next invoke the request through the ajax() method, where we specify that the method of
request that we are going to use is POST and the name of the script file that will be executed on the server
is validatedata.php. Meanwhile the parameter to be passed to the script file is contained in the string
data, which contains the string userid=uid&emailadd=em).

The script file (validatedata.php on server), after it has processed the passed data generates the
output which is received by the JavaScript file in the parameter html of the callback function.

The response returned by the script file (stored in html) is split wherever line feed character (‘\n’)
has occurred (assuming that the two error message generated by the script file are separated by ‘\n’) and
the result is stored in variable twomsgs. Our variable twomsgs is an array of two elements, containing the
error message related to userid and the email address itself. We then split each element of the twomsgs
array (containing data in format: “field|error_message”) one by one wherever ‘|’ has occurred, and store
the result in another array errmsg. The result is that the first element of the errmsg array contains either
‘user’ or ‘email’ and the errmsg[1] contains the respective error message.

If the errmsg [0] contains the string ‘user’, then we assign the contents of errmsg [0] (which
contains the error message of userid) to the span element of class usrerror for displaying the error
message to the user. The span element of class usrerror is made visible first before assigning the error
message

If the errmsg [0] contains the string ‘email’, then we assign the contents of errmsg [1] (which
contains the error message of email address) to the span element of class emerror for displaying the error
message to the user. The span element of class emerror is made visible first before assigning the error
message. We return ‘false’ in the click event to suppress the default browser click behavior, because we
want it to take action that is specified via our jQuery code and not the default click default action

In the PHP code, we access the userid and email address sent by the Java Script file via parameter
data containing the information in the format userid=uid&emailadd=em through the $_POST array (since
the data is sent via the HTTP POST request) and store them in variables: $name and $emid respectively.
Then with the help of the eregi() method, the regular expressions for both userid and the email address
are specified as we’ve seen above. If the userid does not match the specified regular expression –
meaning the userid is invalid – then we display the text user|Invalid User id by assigning it to our
$errors variable. The contents after the symbol | are designed to be displayed as an error message in the
span element that exists after the input text fields. If the userid is valid (that is, it matches with our
regular expression), then the text user| is assigned to our $errors variable. Thus, no error message is
supplied after the |symbol, and so no error message will be displayed for a valid userid – just as we wish.
The same thing is then repeated with the email address: if it is invalid, then the text email|Invalid email
address is concatenated to the $errors variable.

So, if we enter invalid userid and email address (one that does not match with the regular
expressions supplied in the server side script file), we will get the errors shown in Figure 8-11:

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 8 ■ AJAX

308

Figure 8-11. Error messages of both userid and email address displayed

If the userid is valid, then its error message will disappear, leaving behind the error message related
to email address only as shown in Figure 8-12:

Figure 8-12. Error message for invalid email address appears

Finally, if both the userid and the email address entered are valid, then they will be accepted
without displaying any error message as shown in Figure 8-13:

Figure 8-13. No Error message appears when both userid and email address are valid

8-5. Using Auto complete

Problem
You want to ask the user to enter a name in the input text field, so that the moment the user types the
first character of a name, a suggestion box will appear that displays all the names beginning with the
character typed. You also want the names displayed in the suggestion box to have a hovering effect – so
that they become highlighted on moving the mouse pointer over them – and the clicked name to be
inserted in the input text field.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 8 ■ AJAX

309

Solution
Let’s create an HTML file that displays a label: ‘Enter userid’ and an input text field. Below the input text
field, we create two empty div elements that are assigned the class names: listbox and nameslist
respectively. The HTML file may appear as shown below:

<body>
 <form>
 Enter user id
 <input type="text" name="userid" class="userid"/>
 <div class="listbox">
 <div class="nameslist">
 </div>
 </div>
 </form>
</body>

The div element of class listbox will be used for displaying a box and the div element nameslist will
be used for displaying the names with hovering effect. We define the style rules to be applied to the two
div elements in the style sheet file: style.css as shown here:

.listbox {
position: relative;
left: 10px;
margin: 10px;
width: 200px;
background-color: #000;
color: #fff;
border: 2px solid #000;
}

.nameslist {
margin: 0px;
padding: 0px;
list-style:none;
}

.hover {
background-color: cyan;
color: blue;
}

The jQuery code to now make our suggestion box appear when the user types the first character in
the input text field, and to make the clicked name (in the suggestion box) to appear in the input text field
automatically, is as shown here:

$(document).ready(function() {
 $('.listbox').hide();
 $('.userid').keyup(function () {
 var uid = $('.userid').val();
 var data='userid='+uid;

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 8 ■ AJAX

310

 $.ajax({
 type:"POST",
 url:"autocomplete.php",
 data:data,
 success:function(html) {
 $('.listbox').show();
 $('.nameslist').html(html);
 $('li').hover(function(){
 $(this).addClass('hover');
 },function(){
 $(this).removeClass('hover');
 });
 $('li').click(function(){
 $('.userid').val($(this).text());
 $('.listbox').hide();
 });
 }
 });
 return false;
 });
});

The script file autocomplete.php, on the server, is designed to send the list of names as response, and
it should look like this:

<?php
echo 'Jackub';
echo 'Jenny';
echo 'Jill';
echo 'John';
?>

Getting names generated from the database
One drawback in the above server side script is that it only returns the names beginning with character
‘j’. Even if the user types any other character, it will still generate names beginning with character ‘j’. We
want to instead generate names beginning with any character typed by the user. For this, we need to
create a database and a table containing hundreds of names in it. I have created a database called
autofill (using MySQL server) and a table by name info in it. The table info contains a field name and
we’ll insert a few names in it beginning with characters a to z…

<?php
$name = $_POST['userid'];
$connect =
 mysql_connect("localhost", "root", "mce") or die("Please, check your server connection.");
mysql_select_db("autofill");
$query = "SELECT name FROM info WHERE name LIKE '$name%'";
$results = mysql_query($query) or die(mysql_error());

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 8 ■ AJAX

311

if($results)
{
 while ($row = mysql_fetch_array($results)) {
 extract($row);
 echo '' . $name. '';
 }
}
?>

How It Works
In the style sheet file, the style rule .listbox includes the position property set to value relative so as to
assign it a position in relation with its container (which is usually the browser window when not
defined). The left property is set to ‘10px’ to make the suggestion box appear at the distance of 10px
from the left border of the browser window. The Margin property is set to value 10px to keep the distance
of 10px from the input text field above it. The Width property is set to 200px to make the names (that will
be displayed in this box) occupy 200px. The background-color and color properties are set to value #000
and #fff respectively to make the background color of the box to turn black, and the names to appear in
white color. The border property is set to value 2px solid #000 to make a solid black border of 2px
thickness appear around the names displayed in the suggestion box.

Moving along to our jQuery code, we hide the div element of class listbox at the beginning, because
we only want to display it when user types a character in the input text field. We attach the keyup() event
to the input text field, which is assigned the class name userid, so that its event handling function is
fired when the user releases a key on the keyboard

We then retrieve the character typed by the user in the input text field of class userid and store it the
variable uid; then define a variable data that will store a string userid=uid where uid holds the first
character (of the name) entered by the user. This data variable is sent to the server to be assigned to the
script file autocomplete.php (which is assumed to already exist on the server) for displaying the
suggestion box to the user.

We invoke the actual request through the ajax() method, where we specify that the method of
request that we are going to use is POST and the name of the script file that will be executed on the server
is autocomplete.php. The parameter to be passed to the script file is contained in the string data, which
itself contains the string userid=uid. The script file (autocomplete.php on server) will, after processing
the passed data, generate the output which is received by the JavaScript file in the parameter html of the
callback function. We then make the div element of class listbox visible so as to display the names in it.
We also assign the response returned by the script file (stored in html) to the div element of class
nameslist. The script file will then return few names in the form of list items

We next attach the hover event to the names returned by the script file (which are in form of list
items). In this event, we add the style properties defined in the style rule hover to the names (in the form
of list items) when the mouse pointer moves over them, making them appear in blue color over the cyan
background. We also remove the style properties defined in style rule hover from the names when mouse
pointer is moved away from them.

We attach the click event to the names that exist in the form of list items, and make the clicked name
appear in the input text field of class: userid and hide the suggestion box containing names. We return
false in the click event to suppress the default browser click behavior, because we want it to take action
that is specified via jQuery code and not its default action

We can see that the above PHP code just generates a few names in the form of list items to be sent
back to the JavaScript file. The script sends a few names beginning with character ‘j’, assuming that user
will enter only this character (as the first character) of course! In order to make this script generate

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 8 ■ AJAX

312

names beginning with any character typed by the user (from a to z), we will need a database with
hundreds of names in it. We’ll take a look at interacting with such a database soon, but for now, upon
execution, we find an input text field with label Enter userid on its left … and the moment user types a
character (any character!), the names sent by the server will be displayed in the form of a suggestion box
as shown in Figure 8-14:

Figure 8-14. A suggestion box appears on entering a single character in input text field

We can hover on any name with the mouse pointer. You might also observe that the hovered name
gets highlighted as shown in Figure 8-15:

Figure 8-15. The available options get highlighted on hovering over them

On clicking on any name, it appears in the input text field as shown in Figure 8-16:

Figure 8-16. The clicked option appears in the input text field

Let's examine the database solution. We start by retrieving the character sent from the JavaScript file
(though data parameter) with the help of the $_POST array (since the request was sent via HTTP POST
method) and storing it in variable $name. I'll skip the DB connection code, as that will vary according to
your setup. The interesting part comes when writing a SQL query to retrieve all the names from the info
table that begins with the character stored in $name (which was typed by the user in the input text field).

We execute the SQL query, and the rows returned by the table as the outcome of the query are
stored in the $results array. We then retrieve each name stored in the $results array, one by one, using
a while loop and sending each nane to the JavaScript file after enclosing them in tags, because of
course we want to generate names in the form of list items.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 8 ■ AJAX

313

■ Note We can also cache the results, and filter on the cache, for each user session.

Now, we get the names beginning with any character that we type in the input text field. So, if we
type character ‘k’, we get all the names beginning with character ‘k’ as shown in Figure 8-17:

Figure 8-17. The options in the suggestion box change on the basis of first character typed in input text

field

8-6. Importing HTML

Problem
You want to import some HTML contents from another file into the current web page.

Solution
Let’s create an HTML file that contains a paragraph element and a hyper link. We want the contents to
be imported only when user selects the hyperlink. The HTML file may appear as shown below:

<body>
<p>We are going to organize the Conference on IT on 2nd Feb 2010</p>
Participants
<div id="message"></div>
</body>

The hyperlink is assigned the class name list so that we can access it via jQuery code. Below that
hyperlink is an empty div element called message which we will use for displaying the imported HTML
contents. The file from where we want to import HTML contents is named, for example, namesinfo.htm
and it will likely have the following contents:

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 8 ■ AJAX

314

<p>The list of the persons taking part in conference</p>

Jackub
Jenny
Jill
John

<p>We wish them All the Best</p>

We can see that the above HTML file contains two paragraph elements and a list item. The jQuery
code to import the HTML contents is as shown below:

$(document).ready(function() {
 $('.list').click(function () {
 $('#message').load('namesinfo.htm');
 return false;
 });
});

Importing only desired elements
We can also import only the desired HTML elements from the imported file. So in the following jQuery
code, we import only the list items (and no paragraph elements) from the namesinfo.htm file :

$(document).ready(function() {
 $('.list').click(function () {
 $('#message').load('namesinfo.htm li');
 return false;
 });
});

How It Works
Before we begin understanding the above jQuery code, let’s first see what the load() method does, and
how it is used in above code. Essentially, this function adds the specified file from the server and returns
its HTML contents, like this:

Syntax:

.load(url, parameters, callback function)

• url is the string defining the location of the server side script file

• parameters contains the data that we want to be passed to the server side script
file for some processing

• callback function is the one that is executed when the request succeeds

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 8 ■ AJAX

315

■ Note With Internet Explorer, the load() method caches the loaded file.

Looking now at our jQuery code, it beings by attaching the click event to the hyper link of class list
and in its event handling function, we load the HTML contents of the file namesinfo.htm, and assign it to
the div element message. We return false in the click event so as to suppress the default browser click
behavior, because we want it to take action that is specified via jQuery code and not its default action.

Initially our web page may appear as shown in Figure 8-18 containing a paragraph element and a
hyperlink with text: ‘Participants’:

Figure 8-18. Original web page with hyperlink

On selecting the hyperlink, the contents (consisting of two paragraph elements and list items) gets
imported from the namesinfo.htm file into the current web page as shown in Figure 8-19:

Figure 8-19. Web page after contents imported from other html file

When importing only the desired elements, we can see that in the load() method; the namesinfo.htm
file is followed by li to declare that we want to import only the list items present in the file
namesinfo.htm. As a result, when we select the hyperlink Participants we find only the list items
imported in the div element message as shown in Figure 8-20:

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 8 ■ AJAX

316

Figure 8-20. The web page after list items are imported from other HTML file

8-7. Getting JSON Data

Problem
You have a JSON file with some information stored in it. You want to import that information from the
JSON file into the current web page asynchronously. The JSON file is a file that contains information
regarding ‘name’ and ‘value’ pairs.

Solution
We’ll start by creating an HTML file that contains a paragraph element, a submit button, and an empty
div element. The HTML file should look like this:

<body>
<p>For information from JSON file click the button given below :

<input type="submit" id="submit"/>
<div id="message"></div>
</body>

The paragraph element just displays a message; our intention is that when the user selects the
submit button, the information from the JSON file will be imported and displayed in the div element
message. For this example, let’s assume that the name of the JSON file is drinkinfo.json , and that it can
have information like this:

[
{"optiontext" : "Tea", "optionvalue" : "Tea"},
{"optiontext" : "Coffee", "optionvalue" : "Coffee"},
{"optiontext" : "Juice", "optionvalue" : "Juice"}
]

We can see information is stored here in the form of two attributes optiontext and optionvalue. The
jQuery code to import the information from JSON file, and display it in the form of list items in the
current web page, is as follows:

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 8 ■ AJAX

317

$(document).ready(function() {
 $('#submit').click(function () {
 $.ajax({
 type:"GET",
 url:"drinkinfo.json",
 dataType:"json",
 success: function (data) {
 var drinks="";
 $.each(data, function(i,n){
 drinks+=""+n["optiontext"]+"";
 });
 drinks+="";
 $('#message').append(drinks);
 }
 });
 return false;
 });
});

How It Works
In the above jQuery code we attach a click event to the submit button that is assigned the id submit and
we invoke the request through the ajax() method, where we specify that the method of request that we
are going to use is GET and the url of the JSON file on the server is drinkinfo.json. We also assert that the
value of the dataType key is set to json to signal that the url contains the data in JSON encoded form.

The information loaded from the JSON file (which is assumed to be present on the server) is
returned to the JavaScript file, in the form of response generated from the server, and then received in
the parameter data of the callback function. Here of course, data is an array of objects where each
element has the attributes optiontext and optionvalue, which match the attributes in JSON file we’re
working with.

We next initialize a variable drinks and assign it a tag because we want to send the response to
the web page in the form of an unordered list.

The information received in data contains two attributes: optiontext and optionvalue, and we want
to return only the contents of the optiontext attribute to the web page, in the form of a list. We therefore
make use of the each() method to parse each object stored in data. In the callback function of each()
method, we use two parameters: i and n where i refers to the index location of the object in data and n
refers to object containing information (in terms of attributes optiontext and optionvalue). We extract
the information in attribute optiontext from the n object one by one, and nest it in between the and
 tags (to make them appear as list items) and concatenate them in the drinks variable.

Once that's done, we assign the contents to the drinks variable, so it contains the information
stored in the optionvalue attribute of the objects in our JSON file). This is now in the form of list items
and goes to the div element of message for display. Finally, we return false in the click event to suppress
the default browser click behavior, because we want that click event to take action that is specified via
our jQuery code rather than its default action. On execution, our web page will initially display the
paragraph element and a submit button as shown in Figure 8-21.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 8 ■ AJAX

318

Figure 8-21. Initial web page with text message and a Submit button

On clicking the submit button, the information stored in optionvalue, in the JSON file is displayed in
the form of list items as shown in Figure 8-22:

Figure 8-22. JSON data imported in the form of list items in the web page

We can also simplify the above jQuery code by making use of the $.getJSON() method, which is
particularly designed for retrieving data from a JSON file. This method makes a GET request to the
specified url address (on the server), along with its passed parameters, and returns information in the
form of JSON encoded data. Its syntax looks like this:

$.getJSON(url, parameters, callbackfuncton)

And the parameters are:

• url is name of the file along with its address on the server

• parameters is a string containing information in the form of name and value pairs
to be passed to the url

• callbackfunction is the response generated from the server , when the request
succeeds

The jQuery code to use the $.getJSON() method is as shown here, and it works much the same way
as our previous solution but as you can see, leads to some neater code:

$(document).ready(function() {
 $('#submit').click(function () {
 $.getJSON('drinkinfo.json', function (data){
 var drinks="";
 $.each(data, function(i,n){
 drinks+=""+n["optiontext"]+"";
 });
 drinks+="";
 $('#message').append(drinks);
 });
 return false;
 });
});

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 8 ■ AJAX

319

8-8. Getting XML data

Problem
You have an XML file that contains information about some students. You want to import that
information from an XML file into the current web page asynchronously. The XML file contains some
user defined tags to organize its information.

Solution
Let’s first create an HTML file that contains a paragraph element, a submit button, and an empty div
element. The HTML file should look like this:

<body>
<p>To see the Names of the students extracted from XML file click the button given below
:</p>
<input type="submit" id="submit"/>
<div id="message"></div>
</body>

The paragraph element just displays a message to our user in friendly fashion and, of course, we
want the user to select the submit button when they are ready. We then want the information from the
XML file to be imported and displayed in the div element message. Assuming the name of XML file be
student.xml, its XML content can look like this:

<?xml version="1.0" encoding="utf-8" ?>
<school>
 <student>
 <roll>101</roll>
 <name>
 <first-name>Anil</first-name>
 <last-name>Sharma</last-name>
 </name>
 <address>
 <street>
 22/10 Sri Nagar Road
 </street>
 <city>
 Ajmer
 </city>
 <state>
 Rajasthan
 </state>
 </address>
 <marks>
 85
 </marks>
 </student>

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 8 ■ AJAX

320

 <student>
 <roll>102</roll>
 <name>
 <first-name>Manoj</first-name>
 <last-name>Arora</last-name>
 </name>
 <address>
 <street>
 H.No 11-B Alwar Gate
 </street>
 <city>
 Ajmer
 </city>
 <state>
 Rajasthan
 </state>
 </address>
 <marks>
 92
 </marks>
 </student>
</school>

The jQuery code to import the information stored in the XML tag first-name and display it in the
form of list items, in the current web page, then looks like this:

$(document).ready(function() {
 $('#submit').click(function () {
 $.ajax({
 type:"GET",
 url:"student.xml",
 dataType:"xml",
 success: function (sturec) {
 var stud="";
 $(sturec).find('student').each(function(){
 var name = $(this).find('first-name').text()
 stud+=""+name+"";
 });
 stud+="";
 $('#message').append(stud);
 }
 });
 return false;
 });
});

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 8 ■ AJAX

321

Displaying roll, first name and marks from XML file
Before we look at how the code above works, it’s worth noticing briefly that we can modify the above
jQuery code to retrieve text from other tags very easily – here’s some code that retrieves text from <roll>,
<first-name>, <last-name> and <marks> tags:

$(document).ready(function() {
 $('#submit').click(function () {
 $.ajax({
 type:"GET",
 url:"student.xml",
 dataType:"xml",
 success: function (sturec) {
 var stud="<table border='1'>";
 $(sturec).find('student').each(function(){
 var roll = $(this).find('roll').text()
 var fname = $(this).find('first-name').text()
 var lname = $(this).find('last-name').text()
 var marks = $(this).find('marks').text()
 stud+="<tr><td>"+roll+"</td><td>"+fname+" "+lname+"</td><td>"+marks+"</td></tr>";
 });
 stud+="</table>";
 $('#message').append(stud);
 }
 });
 return false;
 });
});

How It Works
We start by attaching a click event to the submit button, and we then invoke the request through the
ajax() method, where we specify that the method of request that we are going to use is GET and the url of
the XML file on the server is student.xml.We also assert that the value of the dataType key is set to xml to
signal that the url contains the data in XML form.

The information loaded from the XML file (which is assumed to be present on the server) is returned
to the JavaScript file in the form of response generated from the server, and is received in the parameter
sturec of the callback function. Here sturec is an array of objects, where each element contains
following tags: <school>, <student>, <roll>, <name>, <first-name>, <last-name>, <address>, <street>,
<city>, <state>, and <marks>. These correspond to the tags in XML file of course.

We initialize a variable stud and assign it a tag because we want to send the response (the first
names of the students) to the web page in the form of unordered list. The information received in sturec
contains several tags and we want to return only the contents in the <first-name> tag to the web page, in
the form of list items. So, we first find the <student> tag in sturec and make use of an each() method to
parse each student record in sturec one by one. In the <student> tag, we search for the <first-name> tag
and its text is retrieved and stored in the name variable. The upshot of all this, is that the text in the
<first-name> tag is extracted for each student, one by one, and that first name is nested inbetween the
 and tags , to make them appear as list items, having been concatenated in the stud variable.
Finally, we assign the contents in the stud variable to the div element of message for display.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 8 ■ AJAX

322

We do as usual return false in the click event to suppress the default browser click behavior,
because we want that event to take action specified via our jQuery code and not by its default action On
execution, our web page will initially display the paragraph element and a submit button as shown in
Figure 8-23:

Figure 8-23. Initial web page with text message and a submit button to import XML contents

On selecting the submit button, the first names of all the students (in the XML file) will be displayed
in the form of list items as shown in Figure 8-24:

Figure 8-24. The contents of first-name tag of XML file imported in the form of list items

When we modified the code, also, the content text from <roll>, <first-name>, <last-name> and
<marks> tags is retrieved and nested inside <tr> and <td> tags so as to make them appear in the form of a
table. On execution, we get the roll numbers, first and last names, and marks of all students in the form
of table as shown in Figure 8-25:

Figure 8-25. The tags: roll, first-name, last-name and marks imported from XML file in the form of table

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 8 ■ AJAX

323

8-9. Paginating tables

Problem
You want to retrieve some student information from a table from a MySQL server, and you want to
display them pagewise. You’’ve been asked to display five records per page.

Solution
We’ll begin by creating an HTML file that contains an empty div element message which will be used to
display the table of student records pagewise. The HTML file should appear as shown below:

<body>
<div id="message"></div>
</body>

The jQuery code to divide the rows of the table in pages, with five rows per page, and to display the
respective rows when a page number is clicked, is as shown right here:

$(document).ready(function() {
 $.ajax({
 type:"POST",
 url:"getstudrec.php",
 success:function(html) {
 $('#message').html(html);
 var rows=$('table').find('tbody tr').length;
 var no_rec_per_page=5;
 var no_pages=Math.ceil(rows/no_rec_per_page);
 var $pagenumbers=$('<div id="pages"></div>');
 for(i=0;i<no_pages;i++)
 {
 $(''+(i+1)+'').appendTo($pagenumbers);
 }
 $pagenumbers.insertBefore('table');
 $('.page').hover(function(){
 $(this).addClass('hover');
 }, function(){
 $(this).removeClass('hover');
 });

 $('table').find('tbody tr').hide();
 var tr=$('table tbody tr');
 for(var i=0;i<=no_rec_per_page-1;i++)
 {
 $(tr[i]).show();
 }

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 8 ■ AJAX

324

 $('span').click(function(event){
 $('table').find('tbody tr').hide();
 for(i=($(this).text()-1)*no_rec_per_page;i<=$(this).text()*no_rec_per_page-1;i++)
 {
 $(tr[i]).show();
 }
 });
 }
 });
});

You can see that we are invoking the request through the ajax() method, in which we specify that
the method of request is POST and the url of the server side script file is getstudrec.php. The response
generated from that server side script file – all the records of students – is returned to the JavaScript file
and received in the parameter html of the callback function. We then assign the server response (html) to
the div element message for display. Here is the code four our getstudrec.php script file:

<?php
$connect =
 mysql_connect("localhost", "root", "mce") or die("Please, check your server connection.");
mysql_select_db("college");
$query = "SELECT roll, name, marks from student";
$results = mysql_query($query) or die(mysql_error());
if($results)
{
 echo '<table border="1">';
 echo '<thead>';
 echo '<tr><th>Roll</th><th>Name</th><th>Marks</th></tr>';
 echo '</thead>';
 echo '<tbody>';
 while ($row = mysql_fetch_array($results)) {
 extract($row);
 echo '<tr><td>' . $roll . '</td><td>' . $name . '</td><td>' . $marks . '</td></tr>';
 }
 echo '</tbody>';
 echo '</table>';
}
?>

And to apply a hover effect to the page numbers, and assign spacing around those page numbers,
you need to define two style rules in the style sheet file which may appear as shown below:

.hover { background-color: #00f; color: #fff; }
.page{ margin:5px; }

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 8 ■ AJAX

325

How It Works
In the server side script we begin by establishing a connection with the MySQL server and selecting the
database college. We then write an SQL query to retrieve roll, name, and marks of all students from the
student table. We then execute the SQL query and the rows returned by the table as outcome of the
query are stored in the $results array.

The style rule hover contains the background-color and color property set to value ‘#00f’ and ‘#fff’
respectively to turn the background color of the hovered page number to blue, and its foreground color
to white. The style rule page contains the margin property set to value 5px to create the space of 5px
among page numbers.

In the jQuery code itself, we invoke the request through the ajax() method, where we specify that
the method of request that we are going to use is POST and the url of the server side script is
getstudrec.php. The response generated by the server side script file is returned to the JavaScript file,
and received in the parameter html of the callback function. Note here of course that html is an array of
student rows, so it is a table of student records (containing student data regarding their ‘Roll’, ‘Name’
and ‘Marks’).

The response generated by the server side script is assigned to the div element message for
displaying the table of records on the screen. To do so, we count the number of rows (tr elements nested
inside the tbody element) and store the count in variable rows. We assume that we want to see five rows
per page, and we initialize the value of the variable no_rec_per_page equal to 5.

We find out the total count of the page numbers by dividing the total count of the rows by the
number of records that we want to see per page. The count of the pages is assigned to variable no_pages
and we define a div element pages and assign it to the variable $pagenumbers. Then with the help of a for
loop, we create few span elements (equal to the number of pages) that contain the sequence of page
numbers (so 1,2,3…) and the span element is assigned the class name page so that the style properties
defined in the class selector page be automatically applied to all the page numbers. Finally, all the span
elements containing the page numbers are appended to the div element of id pages.

Presentationally, we insert the div element pages that was stored in variable $pagenumbers before the
table element, so that the page numbers will appear above the table

In the hover event to the page numbers (span element of class pages) you’ll see that we highlight the
page numbers when the mouse pointer moves over them by manipulating the properties defined in the
style rule hover, which apply to the page numbers. We change their background and foreground color to
‘blue’ and ‘white’ respectively in that event – and when there is no hover, we remove those style
properties and the associated visual effect.

We then hide all the rows (that is, tr elements nested inside tbody element) of the table, keeping
only the column headings visible, and retrieve all the rows of the table and store them in variable tr. As
you’ll remember, tr is an array containing all the rows of the table, so we use the for loop to display the
first five rows of the table.

We attach the click event to the span elements, so that all the page numbers and hidden rows of the
table are displayed displayed, leaving only the column headings of course. Finally, we display the rows
that actually fall within the page number that the user clicks, using the tr array. On execution, we get
first five rows of the table and page numbers at the top as shown in Figure 8-26:

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 8 ■ AJAX

326

Figure 8-26. A table displayed along with page numbers at the top

Summary
In this chapter, you saw how AJAX techniques can be applied to bring highly responsive web pages to
your user experience. You saw how to display a welcome message, perform dynamic authentication,
validate a user name and email address using AJAX techniques to create very responsive user
experiences. Then you learned some recipe solutions for importing HTML, getting JSON data and XML
data, and how to create table pagination presentations.

In the next chapter, we’ll deal with several plugins that help us create recipes without writing jQuery
code of our own, such as how to filter on any column of table, how to annotate an image with
comments, plus dragging and dropping table rows. You will also discover how to get, serialize, and clear
form controls, and how to find the exact position and dimension of elements using the Dimension
plugin. You’ll use the 3D Image Carousel plugin, a select date with Datepicker plugin, and sort a table
with tablesorter plugin. So now you know the next chapter is about plugins, I’ll see you there.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

C H A P T E R 9

■ ■ ■

327

Using Plugins

The jQuery library is rich enough to perform a wide variety of tasks, but additional functionality can also
be added by using different plugins. There is an immense collection of jQuery plugins that we can see at
plugins.jquery.com. It’s impossible to try all the jQuery plugins in this book, so I have chosen few of
them in the following recipes. In this chapter, we will be trying following recipes:

• Filtering on any column of a table with a limit on rows

• Annotating an image with comments

• Dragging and dropping table rows

• Getting, serializing and clearing form controls

• Submitting the form via Ajax

• Finding the exact position and dimension of an element

• Displaying images in a carousel

• Selecting a date with a datepicker

• Sorting tables

9-1. Filtering on any column of a table with a limit on rows

Problem

You have a text box followed by a table and you want to perform filtering on any column of the table to
find instances of a specific character in that column. So, in the text box if you type in any character, only
those entries that contain that character are shown. Similarly, if any numerical value is entered in the
text box, only those entries that match with the value entered in the textbox are displayed. Also you want
to limit the number of rows displayed in the table via a drop down list control. That is, you want to limit
the number of rows of the tables to 10, 25, 50 or 100 depending on the value chosen from the drop down
control.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 9 ■ USING PLUGINS

328

Solution
I have used the ‘DataTables’ plugin for this recipe. Let’s download its JavaScript file by name:
jquery.dataTables.js from datatables.net. For this recipe, we need to create a HTML file that displays a
table element displaying information about the students. The table will display Roll number, Name and
Marks of 15 students. We will include the downloaded JavaScript file in the HTML file. The HTML file
may appear as shown below:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>
 <title>JQuery Examples</title>
 <script src="jquery-1[1].3.2.js" type="text/javascript"></script>
 <script src="jquery.dataTables.js" type="text/javascript"></script>
 <script src="d1.js" type="text/javascript"></script>

 </head>
</head>
<body>
<table border="1" class="studrec">
<thead>
<tr><th>Roll</th><th>Name</th><th>Marks</th></tr>
</thead>
<tbody>
<tr><td>101</td><td>John</td><td>87</td></tr>
<tr><td>102</td><td>Naman</td><td>90</td></tr>
<tr><td>103</td><td>Chirag</td><td>85</td></tr>
<tr><td>104</td><td>David</td><td>92</td></tr>
<tr><td>105</td><td>Kelly</td><td>81</td></tr>
<tr><td>106</td><td>Charles</td><td>77</td></tr>
<tr><td>107</td><td>Jerry</td><td>91</td></tr>
<tr><td>108</td><td>Beth</td><td>75</td></tr>
<tr><td>109</td><td>Caroline</td><td>82</td></tr>
<tr><td>110</td><td>Hanen</td><td>71</td></tr>
<tr><td>111</td><td>Douglas</td><td>57</td></tr>
<tr><td>112</td><td>Tim</td><td>86</td></tr>
<tr><td>113</td><td>Michael</td><td>68</td></tr>
<tr><td>114</td><td>Kimbley</td><td>88</td></tr>
<tr><td>115</td><td>Christina</td><td>72</td></tr>
</tbody>
</table>
</body>
</html>

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 9 ■ USING PLUGINS

329

To apply the filtering to the above table and limit the number of rows displayed, the jQuery code
may appear as shown below:

$(document).ready(function() {
 $('.studrec').dataTable();
});

How It Works
We can see that the dataTable() method (from the JavaScript file jquery.dataTables.js) will be applied
to the table element of class ‘studrec’. The output may appear as shown in Figure 9-1.

Figure 9-1. Displaying 10 rows of the table

We can see that a drop down list control and a text box appear before the table and a label appears
after the table. The label represents the number of rows (of the table) being displayed. The drop down
list control displays four options: 10, 25, 50 and 100 to decide the number of rows of the table to be
displayed as shown in Figure 9-2.

Figure 9-2. Options available in drop down list control

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 9 ■ USING PLUGINS

330

If we type character ‘c’ in the textbox, all the names of the students having the character ‘C’ or ‘c’
(anywhere – in the beginning or in middle) will be displayed as shown in Figure 9-3.

Figure 9-3. Names having character ‘c’ are displayed

Similarly, we can enter any numerical value in the textbox to see the rows with the specified roll
number or marks.

9-2. Annotating an image with comments

Problem
You start with a large image. The idea is that when you scroll the mouse pointer over different regions of
the image, annotations appear automatically over the important regions of the image telling the user
what that region of image irepresents.

Solution
I have used the ‘jQuery Image Annotation’ plugin for this recipe. Let’s download its JavaScript file,
jquery.annotate.js along with its CSS style sheet file named annotation.css from
blog.flipbit.co.uk/2009/03/jquery-image-annotation-plugin.html. Let’s make an HTML file that displays
an image shopcart.jpg (any image). The HTML file includes the downloaded JavaScript file and links to
the style sheet file. The HTML file may appear as shown below:

<head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>
 <title>JQuery Examples</title>
 <link rel="stylesheet" href="annotation.css" type="text/css" media="screen" />
 <script src="jquery-1[1].3.2.js" type="text/javascript"></script>
 <script src="jquery.annotate.js" type="text/javascript"></script>
 <script src="d1.js" type="text/javascript"></script>
 </head>
<body>

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 9 ■ USING PLUGINS

331

</body>

Let’s write the jQuery code to make the annotations appear at the specific places on the image along
with text that represents what those places on the image are meant for. The jQuery code may appear as
shown below:

d1.js
$(document).ready(function() {
 $('.shop').annotateImage({
 editable: true,
 useAjax: false,
 notes: [{ "top": 60,
 "left": 300,
 "width": 50,
 "height": 50,
 "text": "Header",
 "id": "h1",
 "editable": false },
 { "top": 200,
 "left": 600,
 "width": 50,
 "height": 50,
 "text": "Picture of Product",
 "id": "s1",
 "editable": false },
 { "top": 200,
 "left": 150,
 "width": 50,
 "height": 50,
 "text": "Menu",
 "id": "m1",
 "editable": false }]
 });
});

How It Works
In the above code, we have created three annotations with width and height of 50px each at the specific
places on the image dictated by the value entered in the 'top' and 'left' attributes. The three annotations
are assigned text as "Header", "Picture of Product" and “Menu" respectively to define what the three
places on the image represent. Also, these annotations are assigned unique id’s as h1, s1and m1
respectively. The editable attribute is set to false as we don’t want the user to edit the text. Initially, the
shopcart.jpg file (without application of jQuery code) may appear as shown in Figure 9-4.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 9 ■ USING PLUGINS

332

Figure 9-4. Original image without annotations

Upon application of the jQuery code, we find three regions marked with rectangles on the image as
shown in Figure 9-5. These rectangles indicate that these regions of the image are annotated.

Figure 9-5. Image with annotations applied

We can see the text ‘Picture of the Product’ displayed when the mouse pointer is moved over the
marked region.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 9 ■ USING PLUGINS

333

9-3. Dragging and dropping table rows

Problem
You have a table that displays information and you want the user to be able to drag and drop any row (in
any order).

Solution
I will use the ‘Table Drag and Drop JQuery’ plugin for this recipe. Let’s download its JavaScript file
jquery.tablednd_0_5.js from isocra.com/2008/02/table-drag-and-drop-jquery-plugin/. Let’s create an
HTML file that includes the downloaded JavaScript file and that contains a table element to display Roll
number, Name and Marks of 15 students. The HTML file may appear as shown below:

<head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>
 <title>JQuery Examples</title>
 <script src="jquery-1[1].3.2.js" type="text/javascript"></script>
 <script src="jquery.tablednd_0_5.js" type="text/javascript"></script>
 <script src="d1.js" type="text/javascript"></script>
 </head>
<body>
<table border="1" class="studrec">
<thead>
<tr><th>Roll</th><th>Name</th><th>Marks</th></tr>
</thead>
<tbody>
<tr><td>101</td><td>John</td><td>87</td></tr>
<tr><td>102</td><td>Naman</td><td>90</td></tr>
<tr><td>103</td><td>Chirag</td><td>85</td></tr>
<tr><td>104</td><td>David</td><td>92</td></tr>
<tr><td>105</td><td>Kelly</td><td>81</td></tr>
<tr><td>106</td><td>Charles</td><td>77</td></tr>
<tr><td>107</td><td>Jerry</td><td>91</td></tr>
<tr><td>108</td><td>Beth</td><td>75</td></tr>
<tr><td>109</td><td>Caroline</td><td>82</td></tr>
<tr><td>110</td><td>Hanen</td><td>71</td></tr>
<tr><td>111</td><td>Douglas</td><td>57</td></tr>
<tr><td>112</td><td>Tim</td><td>86</td></tr>
<tr><td>113</td><td>Michael</td><td>68</td></tr>
<tr><td>114</td><td>Kimbley</td><td>88</td></tr>
<tr><td>115</td><td>Christina</td><td>72</td></tr>
</tbody>
</table>
</body>
</html>

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 9 ■ USING PLUGINS

334

The jQuery code to invoke the table drag and drop plugin is shown below:

$(document).ready(function() {
 $('.studrec').tableDnD();
});

How It Works
We can see that the method tableDnD() is invoked from the JavaScript file jquery.tablednd_0_5.js and
is applied on the table element of class studrec. Initially, we get a table as shown in Figure 9-6.

Figure 9-6. Table with original placement of rows

We can click on any row and drag it over any other row to shift it. The first row is clicked and
dropped after fifth row in Figure 9-7.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 9 ■ USING PLUGINS

335

Figure 9-7. Table rows after dragging and dropping first row after fifth row

9-4. Getting, serializing and clearing form controls

Problem
You have a form with controls and you want to retrieve the values entered in those controls, serialize
them and also want to clear the controls upon clicking the respective buttons.

Solution
I have used ‘Form plugin’ for this recipe. Let’s download its JavaScript file jquery.form.js from
jquery.com/plugins/project/form. Let’s create an HTML file that contains a form with two controls to
enter the userid and email address. The HTML file will include the downloaded JavaScript file and may
appear as shown below:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>
 <title>JQuery Examples</title>
 <link rel="stylesheet" href="style.css" type="text/css" media="screen" />
 <script src="jquery-1[1].3.2.js" type="text/javascript"></script>

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 9 ■ USING PLUGINS

336

 <script src="jquery.form.js" type="text/javascript"></script>
 <script src="d1.js" type="text/javascript"></script>
 </head>
<body>
<form id="myForm">
<div>User Id *<input type="text" class="infobox" name="userid"
/> This field cannot be blank</div>
<div>Email address *<input type="text" class="infobox"
name="emailid" /> Invalid Email address </div>
<input class="submit" type="submit" value="Submit"/>
<input class="clear" type="submit" value="Clear Form"/>
</form>
</body>
</html>

The form is assigned an id named ‘myForm’ so that it can be accessed via jQuery code. The label
messages: User Id * and Email address * are enclosed in span elements that are assigned the class
names label. The input text fields are assigned the class name infobox and the error messages ’This field
cannot be blank’ and ‘Invalid Email address’ respectively are stored as a span element of class error.

The reasons for assigning the classes to all three items: label, input text field and error message is to
automatically apply the properties defined in the class selectors .label, .infobox, and .error (defined in
the style sheet style.css). The two buttons with value ‘Submit’ and ‘Clear Form’ are assigned the class
names submit; and clear to apply the properties defined in the class selectors .submit and .clear. The
controls are nested inside a div element so as to apply some spacing among them. The style sheet with
the respective class selectors may appear as shown below:

.label {float: left; width: 120px; }
.infobox {width: 200px; }
.error { color: red; padding-left: 10px; }
.submit { margin-left: 50px; margin-top: 10px;}
.clear { margin-left: 125px; margin-top: 10px;}
div{padding: 5px; }

The class selector .label contains the float property set to left so as to make the label appear on its
left (creating space for the input text field to appear on its right) and the width property is set to 120px to
define the width that the label can consume. The class selector .infobox contains the width property set
to 200px to specify the width of the input text fields and the class selector .error is used to assign red
color to the error messages and to make the error message appear at a distance of 10px from the element
on its left. The class selectors .submit and .clear contain the margin-left and margin-top property set to
different values to place the two buttons ‘Submit’ and ‘Clear Form’ at the proper distance from the left
border of the browser window and the element above it. The type selector div has the padding property
set to 5px to create some space among the two div elements where each div element contains a
combination of label, input text field and error message.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 9 ■ USING PLUGINS

337

The jQuery code to retrieve and serialize the data entered in the two controls of the form is as shown
below:

$(document).ready(function() {
 $('.error').hide();
 $('.submit').click(function(event){
 alert($('#myForm *').fieldValue());
 alert($('#myForm *').fieldSerialize());
 event.preventDefault();
 });
 $('.clear').click(function(event){
 $('#myForm').clearForm();
 event.preventDefault();
 });
});

In the above jQuery code, we have used three methods: fieldValue(), fieldSerialize() and
clearForm(). Let’s understand what these methods do:

fieldValue()
The fieldValue() method collects the data entered in all of the controls and returns them as an array of
strings. Only the contents of controls that are active (controls that have ‘name’ attributes and are not
disabled) are retrieved by this method.

fieldSerialize()
The fieldSerialize() method retrieves the contents in the controls and returns them after encoding
them in the form of a query string. The query string is encoded in the format:
control1=value1&control2=value2…..

clearForm()
The clearForm() method clears the values entered in any control of the form.

How It Works
In the above jQuery code, we initially hide all the errors. When the Submit button, is clicked, contents of
all the controls are retrieved and displayed in the form of an array of strings (making use of fieldValue()
method) as shown in Figure 9-8.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 9 ■ USING PLUGINS

338

Figure 9-8. The data entered in the controls displayed in the form of array of strings

Also, the contents in the controls are serialized and displayed with the help of the fieldSerialize()
method. We can see the data entered in the controls is encoded in the form of a query string and
displayed as shown in Figure 9-9.

Figure 9-9. The data entered in the controls displayed in serialized form.

On selecting the ‘Clear Form’ button, the data entered in the controls will be erased.

9-5. Submitting the Form via Ajax

Problem
You have a form with controls and you want to submit the form as an AJAX request.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 9 ■ USING PLUGINS

339

Solution
I have again used ‘Form plugin’ for this recipe. It can be downloaded under jquery.form.js from
jquery.com/plugins/project/form. Let’s make an HTML file that contains a form with two controls to
enter the userid and email address. The HTML file will include the downloaded JavaScript file and may
appear as shown below:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>
 <title>JQuery Examples</title>
 <link rel="stylesheet" href="style.css" type="text/css" media="screen" />
 <script src="jquery-1[1].3.2.js" type="text/javascript"></script>
 <script src="jquery.form.js" type="text/javascript"></script>
 <script src="d1.js" type="text/javascript"></script>
 </head>
<body>
<form id="myForm">
<div>User Id *<input type="text" class="infobox" name="userid"
/> This field cannot be blank</div>
<div>Email address *<input type="text" class="infobox"
name="emailid" /> Invalid Email address </div>
<input class="submit" type="submit" value="Submit"/>
<input class="clear" type="submit" value="Clear Form"/>
</form>
</body>
</html>

The style sheet with the respective class selectors may appear as shown below:

.label {float: left; width: 120px; }
.infobox {width: 200px; }
.error { color: red; padding-left: 10px; }
.submit { margin-left: 50px; margin-top: 10px;}
.clear { margin-left: 125px; margin-top: 10px;}
div{padding: 5px; }

The jQuery code to submit the form as an AJAX request is as shown below:

$(document).ready(function() {
 $('.error').hide();
 $('#myForm').ajaxForm(function() {
 alert("Thank you for your comment!");
 });
});

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 9 ■ USING PLUGINS

340

Performing validation before submitting the form (in form of AJAX request)
Let’s validate the two controls userid and email address in the above form before submitting the form.
We must write the validation function that confirms that the userid control is not left blank and that
email address contains the necessary ‘@’ and ‘.’ symbols. The HTML file is a bit modified as shown
below:

<body>
<form id="myForm">
<div>User Id *<input type="text" class="usrinfo" name="userid"
/> This field cannot be blank</div>
<div>Email address *<input type="text" class="emailinfo"
name="emailid" />Invalid Email address</div>
<input class="submit" type="submit" value="Submit"/>
</form>
</body>

The style sheet containing class selectors (to automatically apply the properties defined in them to
different controls) may appear as shown below:

.label {float: left; width: 120px; }
.usrinfo {width: 200px; }
.emailinfo {width: 200px; }
.usrerror { color: red; padding-left: 10px; }
.emailerror { color: red; padding-left: 10px; }
.submit { margin-left: 125px; margin-top: 10px;}
div{padding: 5px; }

The jQuery code that validates the controls of the form and submits the form in AJAX is as shown

below:

$(document).ready(function() {
 $('.usrerror').hide();
 $('.emailerror').hide();

 function validate_data()
 {
 var data=$('.usrinfo').val();
 var len=data.length;
 var pattern= new RegExp(/^[\w-]+(\.[\w-]+)*@([\w-]+\.)+[a-zA-Z]+$/);
 var flag=true;
 if(len<1)
 {
 $('.usrerror').show();
 flag=false;
 }
 else
 {
 $('.usrerror').hide();
 }
 var email=$('.emailinfo').val();

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 9 ■ USING PLUGINS

341

 if(pattern.test(email))
 {
 $('.emailerror').hide();
 }
 else
 {
 $('.emailerror').show();
 flag=false;
 }
 if(flag==false)
 {
 return false;
 }
 else
 {
 $('.usrinfo').val("");
 $('.emailinfo').val("");
 }
 };

 $('#myForm').ajaxForm({
 beforeSubmit: validate_data,
 success: function(){
 alert("Thank you for your comment!");
 }
 });
});

How It Works
The form is assigned an id myForm sothat it may be accessed via jQuery code. The label messages User Id
* and Email address * are enclosed in span elements that are assigned the class name label. The input
text fields are assigned the class name infobox and the error messages ’This field cannot be blank’ and
‘Invalid Email address’ respectively are stored as a span element of class error.

The reason for assigning the classes to all three items (label, input text field and error message) is to
automatically apply the properties defined in the class selectors .label, .infobox, and .error (defined in
the style sheet style.css). The two buttons‘Submit’ and ‘Clear Form’ are assigned the class names:
submit; and clear to apply the properties defined in the class selectors .submit and .clear. The controls
are nested inside a div element so as to apply some spacing among them.

We can see that the .ajaxForm() method is used to submit the form in AJAX (without the need of
refreshing the current page). With the help of its beforeSubmit option, the validate_data function is
invoked to validate the contents in the two controls (userid and email address). The success option of
the method will display a Thanks message via the alert() method if the form is successfully submitted.

This method submits the form as an AJAX request i.e. the form is submitted without having to
refresh the page.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 9 ■ USING PLUGINS

342

Here is the syntax:

.ajaxForm({
target:,
beforeSubmit:,
success:
});

where target refers to the element that we want to be updated by the server response. The
beforeSubmit option performs the tasks before the form is submitted and the success option performs
the tasks when the form is successfully submitted.

We are displaying an alert message saying: ‘Thank you for your comment!’ to the user on successful
submission of the form (in the form of an AJAX request). After entering some data in the two controls, if
we select the ‘Submit’ button, the alert message will be displayed as shown in Figure 9-10.

Figure 9-10. Alert message displayed on successful form submission

■ Note The Clear Form button was removed from the HTML form (above) as it was not required.

In the second solution, the form is assigned an id myForm sothat it may be accessedt via jQuery code.
The label messages User Id * and Email address * are enclosed in span elements that are assigned the
class name label. The input text fields are assigned the class names ‘usrinfo’ and emailinfo to access
their contents individually for validation. The respective error messages ’This field cannot be blank’ and
‘Invalid Email address’ are stored as a span element with class names usrerror and emailerror so that
only the error message of the related control will be displayed. The controls are nested inside a div
element so as to apply some spacing among them.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 9 ■ USING PLUGINS

343

The validate_data method retrieves the userid entered in the input text field of class usrinfo and
computes its length. If the length of the userid is less than 1 i.e. nothing is entered in the input text field,
then the error message of class usrerror will be displayed and the value of the variable flag is set to
false so that the form cannot be submitted. Similarly, the email address entered in the input text field of
class emailinfo is retrieved and tested to see if it matches the regular expression ‘/^[\w-]+(\.[\w-
]+)*@([\w-]+\.)+[a-zA-Z]+$/’. If the email address doesn’t match with the regular expression supplied,
the error message related to the email address of class emailerror is displayed and the variable flag is
set to false so that the form cannot be submitted.

If the userid is not left blank and a valid email address is entered, then the validate_data() method
will return true (by default) and the form will be submitted. We clear the fields to show that the data is
accepted and submitted. When both of the fields, userid and email address, are left blank, we get the two
respective error messages as shown in Figure 9-11.

Figure 9-11. Error message if both text box left blank

If an invalid email address is entered, then the error message displaying ‘Invalid Email address’ will
be displayed as shown in Figure 9-12.

Figure 9-12. Error message: Invalid Email Address appears

If the data in both of the controls are valid, the form is successfully submitted in the form of an AJAX
request and a message: ‘Thank you for your comment!’ will be displayed as shown in Figure 9-13.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 9 ■ USING PLUGINS

344

Figure 9-13. Alert message displayed in case the valid data is entered in both text boxes and the boxes are

cleared to show that the data is submitted

9-6. Finding the exact position and dimension of an element

Problem
You have an image and you want to know its width, height, inner width, offsets etc.

Solution
I have used ‘Dimension’ plugin for this recipe. Let’s download its JavaScript file jquery.dimension.js
from plugins.jquery.com/project/dimensions. Let’s make an HTML file that displays an image whose
dimensions we want to find. The file includes the downloaded JavaScript file and may appear as shown
below:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>
 <title>JQuery Examples</title>
 <link rel="stylesheet" href="style.css" type="text/css" media="screen" />
 <script src="jquery-1[1].3.2.js" type="text/javascript"></script>
 <script src="jquery.dimensions.js" type="text/javascript"></script>
 <script src="d1.js" type="text/javascript"></script>
 </head>

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 9 ■ USING PLUGINS

345

<body>
<div class="pic">

</div>
</body>
</html>

We can see that the image is nested inside the div element of class pic so that we can apply desired
style properties to it via a class selector. The class selector defined in the style sheet file may appear as
shown below:

.pic {
height: 150px;
width: 100px;
margin: 5px;
border: 5px solid #000000;
overflow: auto;
}

We can see that the class selector .pic contains the height, width and margin property set to the
values 150px, 100px and 5 px respectively (to make the image appear within the given area while keeping
some space from the boundary) and also the border property is set to display a solid black border of 5px
thickness around the image. The overflow property is set to auto to make the scroll bars appear if the
image is larger than the specified width and height.

The jQuery code to display the width, height and innerwidth of the image is as shown below:

$(document).ready(function() {
 alert("Width: " +$('.pic').width()+" Height :"+$('.pic').height()
 +" Inner Width :"+$('.pic').innerWidth());
});

Finding offset and position
Before we find out the offset and position of the image within its parent element (body element if none),
let’s take a brief look at the offset() and position() methods.

offset()
The offset() method helps in locating the top and left positions of an element anywhere in the page
regardless of the value of its ‘position’ and ‘overflow’ property i.e. whether the position property is set to
static, relative or absolute or the overflow property is set to auto.

position()
This method returns the position of the element in relation to its offset parent. It has two attributes, top
and left, to return the top and left positions of the element. The offset parent means the first element in
the wrapped set (closest ancestor).

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 9 ■ USING PLUGINS

346

In the following jQuery code, we will be also be scrolling the image. The two methods to scroll the
element are: scrollTop() and scrollLeft() :

scrollTop() and scrollLeft()
These two methods scroll the element to the top and left with the specified value; they work for both
visible and hidden elements.

The jQuery code to display the offset of the image (i.e. its position in relation to the window origin or
body element) and its position in relation to its offset parent is as shown below:

$(document).ready(function() {
 alert("Offset top: " +$('.pic').offset().top+", Offset left : "
 +$('.pic').offset().left+", Position top: "+$('.pic').position().top+", Position left: "
 +$('.pic').position().left);
 $('.pic').scrollTop(50);
 $('.pic').scrollLeft(50);
});

How It Works
Let’s have a look at the different methods for Dimension plugin:

• width() It returns the width of window, the document object or element.

• height() It returns the height of window, the document object or element.

• innerWidth() & innerHeight() It returns the width and height of the element
including the padding space applied to it.

• outerWidth() & outerHeight() It returns the width and height of the element
including the padding space as well as borders applied to it.

With the help of the alert message, we display the assigned width and height to the image along with
its inner width (excluding the space consumed by scrollbars and border) as shown in Figure 9-14.

Figure 9-14. Width, Height and Inner width that is assigned to the image is displayed

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 9 ■ USING PLUGINS

347

When finding the offset and position, from the output shown in Figure 9-15, we can see that the
image is located at a distance of 20px (from top) and 15 px (from left) from the window origin and at 0 px
in relation to the offset parent.

Figure 9-15. Offset and Position of the image is displayed

Also on selecting the OK button, the image will be scrolled to the top and left side by 50px
respectively (with the help of the scrollTop() and scrollLeft() methods) as shown in Figure 9-16.

Figure 9-16. Image after being scrolled up and to the left

9-7. Displaying images in a carousel

Problem
You want some images to be arranged and displayed in a 3D circle along with left and right arrows.
When the mouse is moved over the left arrow, you want the images to scroll in a counter-clockwise
direction and when the mouse pointer is moved over the right arrow, the image should rotate in a
clockwise direction. Also when any image is selected it should be zoomed.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 9 ■ USING PLUGINS

348

Solution
I have used the ‘3D Image carousel’ plugin for this recipe. Let’s download its JavaScript files
jquery.carousel3d.js and Tween.js along with its CSS style sheet file (from the documentation). All files
comes in a single zip file downloadable from plugins.jquery.com/project/carousel3d (you'll need the
images folder as well). Let’s make an HTML file that displays a few images nested in the div elements of
ids carousel and holder_images respectively. The HTML file includes the two downloaded JavaScript
files and links to the style sheet file and may appear as shown below:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>
 <title>JQuery Examples</title>
 <link rel="stylesheet" href="style.css" type="text/css" media="screen" />
 <script src="jquery-1[1].3.2.js" type="text/javascript"></script>
 <script type="text/javascript" src="Tween.js"></script>
 <script src="jquery.carousel3d.js" type="text/javascript"></script>
 <script src="d1.js" type="text/javascript"></script>
 </head>
<body>
<div id="carousel"></div>
 <div id="holder_images">

 </div>
</body>
</html>

The style sheet contains the id selectors as shown below:

#buttonwrapper
{
width: 100px;
height: 50px;
position: relative;
}

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 9 ■ USING PLUGINS

349

#left
{
background: url(left.gif) bottom left no-repeat;
width: 39px;
height: 50px;
float: left;
}

#right
{
background: url(right.gif) bottom left no-repeat;
width: 39px;
height: 50px;
float: right;
}

#left:hover, #right:hover
{
cursor: pointer;
background-position: top left;
}

#holder_images { display: none; }
#carousel img { border: 2px solid #ddd; }
#carousel img.link:hover { border: 4px solid #0e0893; }

The jQuery code to invoke the carousel is shown below. The code makes the images scroll when
hovering over the left and right arrow buttons and it also zooms in on the selected image.

$(document).ready(function() {
 $("#carousel").html($("#holder_images").html()).carousel3d(
 {control: 'buttons', centerX: $('#carousel').offset().left + $('#carousel').width()/2 }
);
});

How It Works
Initially, the images appear in the form of a 3D circle along with left and right arrows at the top as shown
in Figure 9-17. The images will rotate in clockwise and counter-clockwise directions when the mouse is
moved over the right and left arrow buttons respectively.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 9 ■ USING PLUGINS

350

Figure 9-17. Images displayed in a 3D circle with left and right arrows

When any image is selected, it is zoomed as shown in Figure 9-18.

Figure 9-18. Selected image is zoomed

9-8. Selecting a Date with a Datepicker

Problem
You have an input text field where you want to enter a particular date. When you click on the input text
field, you want the calendar of the current month be displayed with the facility to move forward and
backward to see the calendar of the next and previous months. When any day is selected from the
calendar, you want the selected date to be inserted in the input text field.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 9 ■ USING PLUGINS

351

Solution
I have used the ‘Datepicker’ plugin for this recipe. Let’s download its JavaScript file ui.datepicker.js
and its CSS style sheet file ui.datepicker.css from jqueryui.com/demos/datepicker/. Let’s create an
HTML file that displays an input text field nested inside the div element class ‘demo’. The input text field
is assigned the id datepicker. The HTML file includes the downloaded JavaScript file and links the CSS
style sheet file. The HTML file may appear as shown below:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>
 <title>JQuery Examples</title>
 <link rel="stylesheet" href="ui.datepicker.css" type="text/css" media="screen" />
 <script src="jquery-1[1].3.2.js" type="text/javascript"></script>
 <script src="ui.datepicker.js" type="text/javascript"></script>
 <script src="d1.js" type="text/javascript"></script>
 </head>
<body>
<div class=demo>
<p>Date: <input id="datepicker"/></p></div>
</body>
</html>

The jQuery code to invoke the datepicker() method of the Datepicker plugin is as shown below:

$(document).ready(function() {
 $("#datepicker").datepicker();
});

How It Works
On clicking inside the text box, the calendar of the current month will appear as shown in Figure 9-19.
We can select the Next or Prev link to see the calendar of the next or previous month.

Figure 9-19. Calendar of current month displayed

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 9 ■ USING PLUGINS

352

On selecting a date, it will be automatically entered in the input text field as shown in Figure 9-20.
The date is entered in format: mm/dd/yyyy.

Figure 9-20. Selected date appears in the text box

To get the date in the desired format, we make use of the dateFormat option. The jQuery code to get
the date in the format ‘yy-mm-dd’ is as shown below:

$(document).ready(function() {
 $("#datepicker").datepicker({dateFormat: 'yy-mm-dd'});
});

Now, the selected date will appear in the specified format as shown in Figure 9-21.

Figure 9-21. Date in the selected format

9-9. Sorting tables

Problem
You have a table and you want the table be sorted on the basis of a selected column.

Solution
I have used ‘Tablesorter’ plugin for this recipe. Let’s download its JavaScript file jquery.tablesorter.js
from tablesorter.com. Let’s create an HTML file that includes the downloaded JavaScript file and that
contains a table element to display Roll number, Name and Marks of 15 students. The HTML file may
appear as shown below:

<head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>
 <title>JQuery Examples</title>
 <script src="jquery-1[1].3.2.js" type="text/javascript"></script>
 <script src="jquery.tablesorter.js" type="text/javascript"></script>
 <script src="d1.js" type="text/javascript"></script>
</head>
</head>
<body>

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 9 ■ USING PLUGINS

353

<table border="1" class="studrec">
<thead>
<tr><th>Roll</th><th>Name</th><th>Marks</th></tr>
</thead>
<tbody>
<tr><td>101</td><td>John</td><td>87</td></tr>
<tr><td>102</td><td>Naman</td><td>90</td></tr>
<tr><td>103</td><td>Chirag</td><td>85</td></tr>
<tr><td>104</td><td>David</td><td>92</td></tr>
<tr><td>105</td><td>Kelly</td><td>81</td></tr>
<tr><td>106</td><td>Charles</td><td>77</td></tr>
<tr><td>107</td><td>Jerry</td><td>91</td></tr>
<tr><td>108</td><td>Beth</td><td>75</td></tr>
<tr><td>109</td><td>Caroline</td><td>82</td></tr>
<tr><td>110</td><td>Hanen</td><td>71</td></tr>
<tr><td>111</td><td>Douglas</td><td>57</td></tr>
<tr><td>112</td><td>Tim</td><td>86</td></tr>
<tr><td>113</td><td>Michael</td><td>68</td></tr>
<tr><td>114</td><td>Kimbley</td><td>88</td></tr>
<tr><td>115</td><td>Christina</td><td>72</td></tr>
</tbody>
</table>
</body>
</html>

We can see that the above HTML code includes the table element of class studrec that displays
information concerning the fifteen students. The jQuery code invokes the tablesorter() method on the
table element of id studrec:

$(document).ready(function() {
 $('.studrec').tablesorter();
});

How It Works
On execution of the above jQuery code, initially the table will be appear with rows in its original
sequence as shown in Figure 9-22.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 9 ■ USING PLUGINS

354

Figure 9-22. Original table

On selecting a column heading, the table will be sorted on the basis of the selected column. If we
select the ‘Name’ column heading, the table will be sorted in the alphabetical order of the names as
shown in Figure 9-23.

Figure 9-23. Table sorted on name

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 9 ■ USING PLUGINS

355

Summary
In this chapter we have seen different plugins that help in performing so many tasks without writing any
code like filtering on any column of a table, annotating an image with comments, dragging and dropping
table rows, getting, serializing and clearing form controls, submitting a form via Ajax, finding the exact
position and dimension of an element, displaying images in a carousel, selecting a date with a
datepicker and sorting tables. In the next chapter, we will see several recipes that rely heavily on CSS. We
will learn about distinguishing HTML elements, applying styles to an element nested inside another
element, indenting paragraphs, applying an initial cap to a paragraph, removing the gap between a
heading and paragraph, applying styles to heading text and more.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

C H A P T E R 10

■ ■ ■

357

Using CSS

In this final chapter I provide a set of recipes that rely heavily on CSS. These recipes are a complement to
the others in this book, as CSS is never far away from a JavaScript developer's work. These are some of
the CSS techniques I use most often, so I've included them here for your quick reference while
developing your own web applications.

In this chapter I provide the following recipes:

• Distinguishing HTML elements

• Applying styles to an element nested inside another element

• Indenting paragraphs

• Applying an initial cap to a paragraph

• Removing the gap between heading and paragraph

• Applying styles to heading text

• Indenting the first line of multiple paragraphs

• Creating paragraphs with hanging indents

• Creating a bordered pull quote

• Creating a pull quote with images

• Applying list properties to list items

• Applying styles to only selected list items

• Placing dividers between list items

• Applying image markers to the list

• Creating inline lists

• Applying styles to hyperlinks and mailto

• Assigning different dimensions to HTML elements

• Placing HTML elements

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 10 ■ USING CSS

358

• Creating a multicolumn layout

• Wrapping text around images

• Placing a drop shadow behind an image

• Changing the cursor when the mouse moves over a link

• Displaying a long piece of text within a specific area

• Making a rounded corner column

• Applying text decorations

• Scaling images

• Setting a background image

• Centering a background image in the browser

• Making the background image stationary

10-1. Distinguishing HTML Elements

Problem
When you want to apply different styles to two different paragraphs or two different h1 elements of an
HTML file, you have to differentiate them by assigning different classes to them. Also, we need to write
style rules that can be individually applied to these classes.

Solution
We will first write an HTML file consisting of two paragraph and two h1 elements. To differentiate them,
we assign them different classes. The paragraph elements are assigned the classes feature1 and
feature2, respectively, and the h1 elements are assigned the classes feature2 and feature3, respectively.

<body>
<p class="feature1">Styles make the formatting job much easier and efficient.</p>
<p class="feature2">To give an attractive look to web sites, styles are heavily used.</p>
<h1 class="feature2">Using jQuery</h1>
<h1 class="feature3">Power of selectors</h1>
</body>
</html>

To apply styles to these HTML elements of different classes, we write the following style rules in the
style sheet:

.greencolor{color:green;font-style:italic}
.highlight{background-color:aqua;color:blue;font-family:arial;}
.redandbold{color:red;font-family:arial;font-weight:bold}

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 10 ■ USING CSS

359

To apply the style rules to the paragraphs and h1 elements, the jQuery code is as follows:

$(document).ready(function() {
 $('p.feature1').addClass('greencolor');
 $('.feature2').addClass('highlight');
 $('h1.feature3').addClass('redandbold');
});

How It Works
The first statement applies the properties defined in the style rule greencolor to only the paragraph
elements that also belong to the class feature1; that is, those that begin with the <p class="feature1">
tag. The second statement applies the properties defined in the style rule highlight to any HTML
element that belongs to the class feature2. In the HTML file, one paragraph element and one h1 element
belong to the class feature2 (represented by <p class="feature2"> and <h1 class="feature2"> tags), so
the properties defined in this rule will be applied to both of them. The third statement applies the
properties defined in the style rule feature3 to only the h1 element(s) that belongs to the class feature3.
The output is shown in Figure 10-1.

Figure 10-1. Different classes applied to <p> and <h1> tags

10-2. Applying Styles to an Element Nested Inside another
Element

Problem
Sometimes the span element is nested inside another HTML element of a specific ID or a class, and we
need to apply styles to that nested span element.

Solution
In the following HTML file, we define a paragraph element of the class feature. In this paragraph
element, we define a span element:

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 10 ■ USING CSS

360

<body>
<p class="feature">Styles make the formatting job much easier and efficient. To give
an attractive look to web sites, styles are heavily used.</p>.
</body>

The style rules to be applied to the paragraph element of the class feature and to the span element
nested inside it are written in the style sheet as shown here:

.greencolor{color:green;font-style:italic}
.highlight{background-color:aqua;color:blue;font-family:arial;}

 To apply styles to the paragraph element of the class feature1 and to the span element nested
inside the paragraph element of the class feature, the jQuery code appears as shown here:

$(document).ready(function() {
 $('p.feature').addClass('greencolor');
 $('p.feature span').addClass('highlight');
});

How It Works
First, let's look at how we define CSS styles.

This defines a style that can be applied to any HTML elements with class="feature":

.feature{property:value; property:value;...}

This defines a style that can be applied to the span element nested inside any HTML elements with
class="feature":

.feature span {property:value; property:value;...}

The following defines a style that can be applied to the span element nested inside the paragraph
element with class="feature":

p.feature span {property:value; property:value;...}

This defines a style that can be applied to the span element with class="feature2" nested inside the
any HTML elements with class="feature1":

feature1 span.feature2 {property:value; property:value;...}

The following defines a style that can be applied to the span element with class="feature2" nested
inside the paragraph element with class="feature1":

p.feature1 span.feature2 {property:value; property:value;...}

The first jQuery statement applies the style properties defined in the style rule greencolor to the
paragraph element with class="feature". The second statement applies the properties defined in the
style rule highlight to the span element that is defined within the paragraph element with
class="feature". In other words, the styles will be applied to the region of text enclosed between the

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 10 ■ USING CSS

361

 and tags that are defined within the paragraph element with class="feature". The
output after the application of styles is shown in Figure 10-2.

Figure 10-2. Applying style to the span element nested in another HTML element

10-2. Indenting Paragraphs

Problem
You have three paragraphs in an HTML file and you want to indent them at three different levels.

Solution
The HTML containing the three paragraphs is shown here:

<body>
<p class="feature1">Styles make the formatting job much easier and efficient. To give an
attractive look to web sites, styles are heavily used. Styles can be written within the HTML
document or can be attached externally. External styles are considered better</p>
<p class="feature2">jQuery is a powerful JavaScript library that allows us to add dynamic
elements to our web sites. Not only it is easy to learn, but it's easy to implement too.</p>
<p class="feature3"> jQuery Selectors are used for selecting the area of the document where
we want to apply styles. jQuery has the power of handling events also, meaning we can apply
styles when a particular action takes place</p>
</body>

We can see that the three paragraphs are assigned three different class names: feature1, feature2,
and feature3, respectively. We will be using the margin property to indent these paragraphs. The style
rules written in the external style sheet are as follows:

.indent1{
margin-left:10%;
}
.indent2{
margin-left:20%;
}
.indent3{
margin-left:30%;
}

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 10 ■ USING CSS

362

To apply the style rules to the three paragraphs, we write the following jQuery code:

$(document).ready(function() {
 $('p.feature1').addClass('indent1');
 $('p.feature2').addClass('indent2');
 $('p.feature3').addClass('indent3');
});

How It Works
The first statement selects the paragraph element of the class feature1 from the HTML file and applies
the properties defined in the style rule indent1 to it. Similarly, the second and third statements select the
paragraph elements of the class feature2 and feature3 and apply the properties defined in the style
rules indent2 and indent3, respectively. The output appears as shown in Figure 10-3.

 Figure 10-3. Three paragraphs indented at three different levels

10-3. Applying an Initial Cap to a Paragraph

Problem
You want to make the first character of a paragraph an initial cap. Initial caps could be in a different font
or a different color, or you could even use images for the initial caps.

Solution
Let us consider the following HTML file with a single paragraph element:

<body>
<p>Styles make the formatting job much easier and efficient. To
give an attractive look to web sites, styles are heavily used. Styles can be written within
the HTML document or can be attached externally. External styles are considered better
</body>

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 10 ■ USING CSS

363

The style rule that we will apply is written in the style sheet as follows:

.initialcap{
font-size: 2em;
}

The jQuery code to apply the style rule to the span element with the class name cap is as shown here:

$(document).ready(function() {
 $('span.cap').addClass('initialcap');
});

How It Works
We can see in the HTML that to distinguish the first character of the paragraph from the rest of the body
of the paragraph, it is enclosed in a span tag and is assigned a class cap. To this cap class we apply the
style rule via jQuery code. We can see that the font size of the first character is made double the size of
the default font (of the rest of the paragraph), as is shown in Figure 10-4.

Figure 10-4. The first character of the paragraph is set to be an initial cap.

We can also change the foreground and background colors of the first character, as shown in the
following style rule:

.initialcap{
font-size:2em;
background-color:black;
color:white;
}

10-4. Removing the Gap between Heading and Paragraph

Problem
Whenever we apply a heading to any paragraph, there is a gap between the heading and the paragraph.
You want to remove this gap.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 10 ■ USING CSS

364

Solution
The HTML of the heading and the paragraph are as follows:

<body>
<h3>Formatting Makes Attractive</h3>
<p>Styles make the formatting job much easier and efficient. To give an attractive look to
web sites, styles are heavily used. Styles can be written within the HTML document or can be
attached externally. External styles are considered better</p>
</body>

The style rule to remove the gap between the paragraph and the heading is shown here:

.heading{
margin:0;
padding:0;
}

p{
margin:0;
padding:0;
}

The jQuery code to apply the style to the h3 element is as follows:

$(document).ready(function() {
 $('h3').addClass('heading');
});

How It Works
The original output of the HTML without applying any jQuery code is as shown in Figure 10-5. We can
see that there is a large gap between the heading and the paragraph.

Figure 10-5. The paragraph and heading, along with the usual gap in between

In preceding style sheet, we have applied the class selector .heading to the h3 element, and the type
selector p{} to the paragraph element.

On application of styles to the paragraph and heading, the gap between them is removed, as shown
in Figure 10-6.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 10 ■ USING CSS

365

Figure 10-6. The usual gap between the paragraph and heading is removed.

10-5. Applying Styles to Heading Text

Problem
You want to apply styles to a heading.

Solution
We will use the same HTML that we used in Recipe 10-5, which contains a paragraph and a heading. To
highlight the heading, we first need to remove the usual gap between the heading and the paragraph.
Then we make it italic and apply borders to it. We write the following style rules in the style sheet:

.heading{
margin:0;
padding:0;
font-style: italic;
border-top:5px solid black;
border-bottom:5px solid black;
}

p{
margin:0;
padding:0;
}

Let us apply the style to the h3 element with the following jQuery code:

$(document).ready(function() {
 $('h3').addClass('heading');
});

How It Works
The margin and padding properties in the preceding style rules remove the usual gap between the
heading and paragraph, and the font-style makes the heading appear in italic. The border property
attaches a top and a bottom border to the heading.

On application of the styles, the heading of the paragraph appears as in Figure 10-7.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 10 ■ USING CSS

366

Figure 10-7. The paragraph with a styled heading

10-6. Indenting the First Line of Multiple Paragraphs

Problem
You want to indent the first line of the paragraphs in your document.

Solution
Let us write some HTML with a few paragraphs in it, as shown here:

<body>
<p>Styles make the formatting job much easier and efficient. To give an attractive look to
web sites, styles are heavily used. Styles can be written within the HTML document or can be
attached externally. External styles are considered better</p>
<p>jQuery is a powerful JavaScript library that allows us to add dynamic elements to our web
sites. Not only it is easy to learn, but it's easy to implement too.</p>
<p> jQuery Selectors are used for selecting the area of the document where we want to apply
styles. jQuery has the power of handling events also, meaning we can apply styles when a
particular action takes place</p>
</body>

This HTML will display three paragraphs without any indentation. To apply the indentation in the
first line of the paragraphs, we need to use the text-indent property. The style rule in the style sheet
appears as follows:

.firstindent{
text-indent:10%;
}

The jQuery code to apply the style rule firstindent to all the paragraph elements of the HTML file is
as follows:

$(document).ready(function() {
 $('p').addClass('firstindent');
});

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 10 ■ USING CSS

367

How It Works
On application of the style, the paragraphs of the HTML file have the first line indented as shown in
Figure 10-8.

Figure 10-8. The paragraphs with the first line indented

10-7. Creating Paragraphs with Hanging Indents

Problem
You want to have hanging indents in the first line of the paragraphs in your document.

Solution
In this recipe, we will make use of the same HTML that we used in Recipe 10-6. The HTML has three
paragraph elements.

We will make use of the text-indent and margin-left properties for creating hanging indents. The
style rule is written as follows:

.hangingindent{
text-indent:-10%;
margin-left:10%;
}

The jQuery code to apply the hangingindent style rule to the paragraphs is as follows:

$(document).ready(function() {
 $('p').addClass('hangingindent');
});

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 10 ■ USING CSS

368

How It Works
By setting the margin-left property to 10%, we set the paragraph to a distance of 10% of the browser
window’s width from the left side of the browser window; that is, the whole paragraph is shifted right by
10% of the browser window’s width. By making the value of text-indent –10%, we make the first line of
the paragraph shift toward the left by 10% of the width of the browser window, giving it a hanging
indentation as shown in Figure 10-9.

Figure 10-9. The paragraphs with the hanging indent on the first line

10-8. Creating a Bordered Pull Quote

Problem
In the middle of a large piece of text, you want to highlight certain text to catch the reader’s eye. You
need to make a bordered pull quote.

Solution
Let us write some HTML with three paragraphs, and differentiate the paragraph that we want to
highlight by assigning it a class name of feature. The HTML is shown here:

<body>
<p>Styles make the formatting job much easier and efficient. To give an attractive look to
web sites, styles are heavily used. Styles can be written within the HTML document or can be
attached externally. External styles are considered better
<p class="feature">jQuery is a powerful JavaScript library that allows us to add dynamic
elements to our web sites. Not only it is easy to learn, but it's easy to implement too.
<p> jQuery Selectors are used for selecting the area of the document where we want to apply
styles. jQuery has the power of handling events also meaning we can apply styles when a
particular action takes place
</body>

We will make use of the margin, color, and font-style properties to highlight the text. The style rules
that we will write in the external style sheet are as follows:

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 10 ■ USING CSS

369

.quote{
margin:5%;
color:#00a;
font-style: italic;
border:5px solid black;
padding: .5em;
}

The jQuery code to apply the style rule quote to the paragraph with the class name feature is as
follows:

$(document).ready(function() {
 $('p.feature').addClass('quote');
});

How It Works
The margin property indents the paragraph 5% from all four boundaries, the color property will make
the color of the paragraph blue, and the font-style property will give it an italic appearance. To make a
border around the pull quote, we add two more properties to the quote style rule: border creates a border
of a specified width around the paragraph, and padding creates a gap between the border and the
paragraph text.

On application of the style rule, the paragraph will appear as a bordered pull quote, as shown in
Figure 10-10.

Figure 10-10. The paragraph distinguished as a bordered pull quote

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 10 ■ USING CSS

370

10-9. Creating a Pull Quote with Images

Problem
In order to make text appear attractive and dynamic within a larger piece of text, you want to make a pull
quote act like an image to give text-heavy documents something to focus on without needing full
graphics.

Solution
For this recipe, we will make use of the same HTML that we used in Recipe 10-7. We know that in that
HTML, the paragraph that we want to distinguish from the rest of the text is assigned a class name
feature.

To apply images at the two opposite corners of the pull quote, we make two figures: leftfig.jpg
and rightfig.jpg. The image to be placed at the bottom-right corner of the pull quote, leftfig.jpg,
appears as shown in Figure 10-11.

Figure 10-11. leftfig.jpg

The image to be placed at the bottom-right corner of the pull quote appears as shown in Figure
10-12.

Figure 10-12. rightfig.jpg

We need to apply two images to the pull quote. We can apply only one style to an element, so to
apply two images to the paragraph element, we will enclose it in a div element. Now we can apply one
style to the paragraph element to add one image, and another style to the div element to add the other
image. The HTML file after enclosing the paragraph of the class feature in the div element is shown
here:

<body>
<p>Styles make the formatting job much easier and efficient. To give an attractive look to
web sites, styles are heavily used. Styles can be written within the HTML document or can be
attached externally. External styles are considered better</p>
<div>

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 10 ■ USING CSS

371

<p class="feature">jQuery is a powerful JavaScript library that allows us to add dynamic
elements to our web sites. Not only it is easy to learn, but it's easy to implement too.</p>
</div>
<p> jQuery Selectors are used for selecting the area of the document where we want to apply
styles. jQuery has the power of handling events also, meaning we can apply styles when a
particular action takes place</p>
</body>

The style rules to apply two images to the pull quote are as follows:

.quote{
background-image:url(leftfig.jpg);
background-repeat: no-repeat;
margin:5%;
color:#00a;
font-style: italic;
padding:20px 5px 5px 20px;
}

.closing{
background-image:url(rightfig.jpg);
background-repeat: no-repeat;
background-position: bottom right;
}

The jQuery code to add the style rules quote and closing to the paragraph of the class name feature
and to the div element is shown here:

$(document).ready(function() {
 $('p.feature').addClass('quote');
 $('div').addClass('closing');
});

How It Works
The style rule quote applies leftfig.jpg at the top-left corner of the paragraph. The value of background-
repeat is set to no-repeat to display the image only once. The margin property makes the paragraph
indented from all four sides at 5% of the browser window’s width. The font-style property makes the
paragraph appear in italic, and the padding property sets the distance between the paragraph text and
the images. The style rule closing applies rightfig.jpg at the bottom-right corner of the paragraph.
On application of styles, the pull quote is displayed as shown in Figure 10-13.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 10 ■ USING CSS

372

Figure 10-13. The paragraph distinguished as a pull quote with images

10-10. Applying List Properties to List Items

Problem
List items are used heavily in displaying drop-down menus, displaying a hierarchy of items, and so on.
You want to apply list properties to list items.

Solution
Let us make HTML that contains certain list items. The HTML file is shown here:

<body>

 Tea

 Darjeeling
 Assam

 Green Leaves
 Herbal

 Kerala

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 10 ■ USING CSS

373

 Coffee

 Cochin
 Kerala

</body>

The list items appear as shown in Figure 10-14 before applying list properties to them.

Figure 10-14. Unordered list items before applying any style

Let us a define style rule as shown here:

.dispdisc{list-style-type:disc}

The style rule dispdisc will make a disc appear before list items. The jQuery code to apply the style
rule dispdisc to the list items is shown here:

$(document).ready(function() {
 $('li').addClass('dispdisc');
});

How It Works
The list style type is set to disc, and we can see in Figure 10-15 that all list items are preceded with a disc
shape.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 10 ■ USING CSS

374

Figure 10-15. Unordered list items after applying the list style

10-11. Applying Styles to Only Selected List Items

Problem
In order to highlight them, you want to apply styles to some of the list items.

Solution
To apply a style to only the selected list items, we need to distinguish them from the rest. For selecting a
part of a list, we assign it a class name or an ID. In this solution, we assign the ID intro to the list item
that we want to highlight:

<body>

 Tea
 <ul id="intro">
 Darjeeling
 Assam

 Green Leaves
 Herbal

 Kerala

 Coffee

 Cochin
 Kerala

</body>

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 10 ■ USING CSS

375

Let us define a style rule to be applied to the list items with the ID intro in the style sheet file:

.dispdisc{color:green;font-style:italic}

To apply the properties defined in the style rule to the list items of ID intro, we write the jQuery
code shown here:

$(document).ready(function() {
 $('#intro').addClass('dispdisc');
});

Applying Styles to the List Items Selected with a Child Selector
The symbol > is a child combinatory that finds each list item that is child of the element that has the
specified ID (or class) and applies the given style rule to it. Let’s assign the ID drink to an unordered list
as shown here:

<body>

 Tea
 <ul id="drink">
 Darjeeling
 Assam

 Green Leaves
 Herbal

 Kerala

 Coffee

 Cochin
 Kerala

</body>

Let us assume that the style sheet contains a style rule highlight that applies a green color and
makes the text appear in italic:

.highlight {
 font-style: italic;
 background-color: #0f0;
}

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 10 ■ USING CSS

376

The jQuery code to apply the style rule highlight to the child of the unordered list with ID drink is
shown here:

$(document).ready(function() {
 $('#drink >li').addClass('highlight');
});

Applying Styles to List Items to Which a CSS Class Is Not Applied
We can also apply styles to the elements to which a particular CSS class is not applied. Let us write the
following jQuery code in the JavaScript file:

$(document).ready(function() {
 $('#drink >li').addClass('highlight');
 $('#drink li:not(.highlight)').addClass('redandbold');
});

The style sheet file is assumed to contain two style rules: highlight and redandbold, as shown here:

.highlight {
font-style: italic;
background-color: #0f0;
}
.redandbold{
color:red;
font-family:arial;
font-weight:bold
}

How It Works
The preceding style rule applies the color and font-style properties to the list items with ID intro.
Figure 10-16 shows that only a part of the list is highlighted.

Figure 10-16. Applying style properties to list items with ID intro

When we work with the child selector, it simply finds each list item that is a child of the element with
ID drink and applies the highlight class to it.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 10 ■ USING CSS

377

Figure 10-17 illustrates finding all list items to which highlight is not applied, and applying to them
the properties defined in the redandbold class.

Figure 10-17. Applying two different styles

10-12. Placing Dividers between List Items

Problem
You want list items to be displayed in a straight line (without indentation), and every list item to be
separated by a line.

Solution
For this recipe, we will use the same HTML that we used in Recipe 10-10. The HTML displays certain list
items, as shown in Figure 10-14.

The style rules are as shown here:

.applytopborders
{
border-top: 1px solid black;
}

.applybottomborder
{
border-bottom: 1px solid black;
}

.liststyle {
list-style-type:none;
margin: 0;
}

We apply one style rule to the unordered list, one to all list items except the last, and a third to the
last item:

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 10 ■ USING CSS

378

$(document).ready(function() {
 $('ul').addClass('liststyle');
 $('li').addClass('applytopborder');
 $('li:last').addClass('applybottomborder');
});

How It Works
We will use three style rules for this recipe:

• liststyle—We use this on the unordered list to remove the traditional bullets
from the list items and to remove the hierarchical indentation.

• applytopborder—We apply this to all the list items except the last one to apply the
top border to each of them.

• applybottomborder—Using this on the last list item lets us apply the bottom
border to it.

The output that we get by applying the preceding styles is shown in Figure 10-18.

Figure 10-18. List items in a straight line, with dividers in between

10-13. Applying Image Markers to the List

Problem
You want to use images to replace the traditional bullets in a list.

Solution
For this recipe, we will create HTML that displays certain list items, as shown here:

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 10 ■ USING CSS

379

<body>

 Tea

 Darjeeling
 Assam

 Green Leaves
 Herbal

 Kerala

 Coffee

 Cochin
 Kerala

</body>

In this recipe, the style rule will make use of two properties: list-style-type and list-style-image.
The former will be used for removing the traditional bullets from the list items, and the latter will apply
the specified image instead of the bullets.

The image that we want to apply instead of bullets is flower.jpg. The style rule in the style sheet is
as shown here:

.liststyle {
list-style-type: none;
list-style-image:url(flower.jpg);
}

The jQuery code to apply the style rule liststyle to the unordered list is shown here:

$(document).ready(function() {
 $('ul').addClass('liststyle');
});

How It Works
Assigning none to the list-style-type property makes the bullets disappear from the list items, and
assigning flower.jpg to the list-style-image property applies the image stored in this file to the list
items.

On application of the style rule, the traditional bullets from the list items will be replaced by the
image stored in flower.jpg and we will get the output shown in Figure 10-19.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 10 ■ USING CSS

380

Figure 10-19. List items with images used in place of traditional bullets

10-14. Creating Inline Lists

Problem
You want list items to appear in a horizontal row without any hierarchical levels.

Solution
For this recipe, we will create HTML that displays certain list items, as shown here:

<body>

 Tea

 Darjeeling
 Assam

 Green Leaves
 Herbal

 Kerala

 Coffee

 Cochin
 Kerala

</body>

In this recipe, the style rule will make use of properties like display, list-style, margin, and
padding, as shown in the style sheet:

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 10 ■ USING CSS

381

.liststyle {
display: inline;
list-style:none;
margin:0;
padding:0;
}

The jQuery code to apply the style rule liststyle to the unordered list and its list items is as follows:

$(document).ready(function() {
 $('ul').addClass('liststyle');
 $('li').addClass('liststyle');
});

How It Works
The inline value of the display property will make the list items display in a row; that is, on the same
line. Setting the value of list-style to none will remove the traditional bullets from the list items. Finally,
the value 0 assigned to margin and padding will remove the hierarchical indentation in the list items.

On application of the style properties, the list items will be displayed in a row without any
traditional bullets, as shown in Figure 10-20.

Figure 10-20. List items displayed in a row

10-15. Applying Styles to Hyperlinks

Problem
Traditionally, hyperlinks carry an underline to distinguish them from static text. You want to remove
that underline and apply a different style to these links.

Solution
To apply styles to the hyperlinks, let us make an HTML file that has a hyperlink, as is shown here:

<body>
<div>Styles make the formatting job much easier and efficient. To give an attractive look to
web sites, styles are heavily used. A person must have a good knowledge of HTML and CSS and
a bit of JavaScript.
jQuery is a powerful JavaScript library that allows us to add dynamic elements to our web
sites. Not only it is easy to learn, but it's easy to implement too.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 10 ■ USING CSS

382

jQuery is an open source project. Click Here for more information
</div>
</body>

We can see that the text Click Here is a hyperlink and will appear as underlined on the web page.
When the visitor selects this link, he will be navigated to www.abc.com.

To remove the underline from the hyperlink and to apply other style properties to it, we write the
following style rule in the external style sheet file:

.linkstyle{
font-weight:bold;
background-color: #00f;
color:#fff;
text-decoration:none;
}

To apply the style rule linkstyle to the hyperlink, the jQuery code is as follows:

$(document).ready(function() {
$('a[@href]').addClass('linkstyle');
});

Now let's see how to apply styles to a mailto hyperlink. Here is an HTML file that has a mailto
hyperlink, which, when selected, opens an email client:

<body>
<div>Styles make the formatting job much easier and efficient. To give an attractive look to
web sites, styles are heavily used. A person must have a good knowledge of HTML and CSS and
a bit of JavaScript.
jQuery is a powerful JavaScript library that allows us to add dynamic elements to our web
sites. Not only it is easy to learn, but it’s easy to implement too.
jQuery is an open source project. Contact Us for
more information </div>
</body>

The content of the JavaScript file containing jQuery code is as follows:

$(document).ready(function() {
 $('a[@href^="mailto:"]').addClass('linkstyle');
});

How It Works
Our CSS style rule uses the font-weight property to make the hyperlink appear in bold, the background-
color property to set the background color of the hyperlink to blue, and the color property to make the
text white. The value of the text-decoration property is set to none to remove the traditional underline
from the hyperlink.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 10 ■ USING CSS

383

The following jQuery statement

$('a[@href]').addClass('linkstyle');

selects all the anchor elements (a) that have a href attribute in the document and applies the linkstyle
class to them. The output is shown in Figure 10-21.

Figure 10-21. Removing the traditional underline from the hyperlink

The following statement selects all the anchor elements (a) that have the href attribute and begin
with mailto, and applies the linkstyle class to them:

$('a[@href^="mailto:"]').addClass('linkstyle');

The output may is shown in Figure 10-22.

Figure 10-22. Applying the linkstyle class to the mailto option

10-16. Assigning Different Dimensions to HTML Elements

Problem
You want to constrain the size of certain paragraph elements.

Solution
For this solution, we create an HTML file that contains two paragraph elements that are assigned class
names feature1 and feature2, as shown here:

<body>
<p class="feature1">Styles make the formatting job much easier and efficient. To give an
attractive look to web sites, styles are heavily used. A person must have a good knowledge
of HTML and CSS and a bit of JavaScript. </p>

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 10 ■ USING CSS

384

<p class="feature2">jQuery is a powerful JavaScript library that allows us to add dynamic
elements to our web sites. Not only it is easy to learn, but it’s easy to implement too.
jQuery is an open source project that provides a wide range of features with cross-platform
compatiblity. jQuery has hundreds of plug-ins to extend its features. jQuery helps in
increasing interactions with a web site </p>
</body>

To apply the width property to the paragraph elements with the class names feature1 and feature2,
we write the following jQuery code:

$(document).ready(function() {
 $('.feature1').css({'width':'50%', 'padding':'10px', 'border':'1px dashed'});
 $('.feature2').css({'padding':'30px', 'border':'2px solid'});
});

How It Works
In the preceding solution, we have made use of the css() method (described in Recipe 3-7, from Chapter
3). In the jQuery code, the first statement confines the first paragraph to 50% of the width of the browser
window. The border property creates a border of dashes 1px thick, and the padding property creates a
spacing of 10px between the paragraph text and the border. The second statement makes the paragraph
text use up the whole width of the browser window. The border property creates a solid border of 2px
thickness, and the padding property creates a spacing of 30px between the paragraph text and the
border. The output appears as shown in Figure 10-23.

Figure 10-23. Specifying the width attribute as a percentage

We can also specify the width in terms of pixels, as shown in the following jQuery code:

$('.feature1').css({'width':'300px', 'padding':'10px', 'border':'1px dashed'});
$('.feature2').css({'padding':'30px', 'border':'2px solid'});

The width of the first paragraph will be limited to 300px, as shown in Figure 10-24.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 10 ■ USING CSS

385

Figure 10-24. Specifying the width attribute in pixels

10-17. Placing HTML Elements

Problem
You want to make a paragraph element appear to the right or left of another paragraph element.

Solution
Let us create an HTML file that contains two paragraph elements that are assigned class names feature1
and feature2, as shown here:

<body>
<p class="feature1">Styles make the formatting job much easier and efficient. To give an
attractive look to web sites, styles are heavily used. A person must have a good knowledge
of HTML and CSS and a bit of JavaScript. </p>
<p class="feature2">jQuery is a powerful JavaScript library that allows us to add dynamic
elements to our web sites. Not only it is easy to learn, but it’s easy to implement too.
jQuery is an open source project that provides a wide range of features with cross-platform
compatiblity. jQuery has hundreds of plug-ins to extend its features. jQuery helps in
increasing interactions with a web site </p>
</body>

To apply the float property to the paragraph elements with the class names feature1 and feature2,
we write the following jQuery code:

$(document).ready(function() {
 $('.feature1').css({'width':'50%', 'border':'1px dashed', 'float':'left'});
 $('.feature2').css({'border':'2px solid'});
});

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 10 ■ USING CSS

386

Making a Two-Column Layout
We can also make the first paragraph float left and the second paragraph float right. Let us modify the
jQuery code as shown here:

$(document).ready(function() {
 $('.feature1').css({'width':'50%', 'border':'1px dashed', 'float':'left'});
 $('.feature2').css({'border':'2px solid', 'float':'right'});
});

Reversing the Columns
We can also interchange the positions of the columns. That is, the first paragraph can be set to float right
and the second paragraph to float left. The jQuery code for that purpose is as shown here:

$(document).ready(function() {
 $('.feature1').css({'width':'50%', 'border':'1px dashed', 'float':'right'});
 $('.feature2').css({'border':'2px solid', 'float':'left'});
});

How It Works
In the jQuery code, the first statement specifies the property float:left that makes the first paragraph
appear on the left side of the browser window, creating a space of 50% on the right side, which will be
then occupied by the second paragraph, as shown in Figure 10-25. The border property creates a border
of dashes 1px thick around the first paragraph. The second statement creates a solid border 2px thick
around the second paragraph.

Figure 10-25. Applying the float property

In the two-column layout, when the first paragraph is set to float:left, it creates a space on its right
(which will be used by the second paragraph). Similarly, when the property float:right is applied in the
second paragraph, it creates a space on the left of the browser window that can be used by the first
paragraph. Figure 10-26 shows the output of these styles.

Figure 10-26. The output of the styles

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 10 ■ USING CSS

387

The reversed layout is shown in Figure 10-27.

Figure 10-27. Interchanging the two columns

10-18. Creating a Multicolumn Layout

Problem
You want to create a three-column layout; that is, three paragraphs positioned at particular locations on
the page.

Solution
We will create a three-column layout by positioning the columns at three different positions of the web
page. Let us make an HTML file with three paragraph elements with the class names assigned as
leftalign, centeralign, and rightalign. The HTML file appears as shown here:

<body>
<p class="leftalign">Styles make the formatting job much easier and efficient. To give an
attractive look to web sites, styles are heavily used. A person must have a good knowledge
of HTML and CSS and a bit of JavaScript. </p>
<p class="centeralign">jQuery is a powerful JavaScript library that allows us to add dynamic
elements to our web sites. Not only it is easy to learn, but it’s easy to implement too.
</p>
<p class="rightalign">jQuery is an open source project that provides a wide range of
features with cross-platform compatiblity. jQuery has hundreds of plug-ins to extend its
features. jQuery helps in increasing interactions with a web site. </p>
</body>

The jQuery code to place the three paragraph elements at the respective positions is as follows:

$(document).ready(function() {
 $('.leftalign').css({'position':'absolute', 'left':'50px', 'width':'300px'});
 $('.centeralign').css({'position':'absolute', 'left':'400px', 'width':'300px'});
 $('.rightalign').css({'position':'absolute', 'left':'750px', 'width':'300px'});
});

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 10 ■ USING CSS

388

Applying Floats
We can have the same output (three-column layout) by applying the float property as is demonstrated
in the following solution. In this HTML file, we just define three paragraph elements (without assigning
any class names):

<body>
<p>Styles make the formatting job much easier and efficient. To give an attractive look to
web sites, styles are heavily used. A person must have a good knowledge of HTML and CSS and
a bit of JavaScript. </p>
<p>jQuery is a powerful JavaScript library that allows us to add dynamic elements to our web
sites. Not only it is easy to learn, but it’s easy to implement too. </p>
<p>jQuery is an open source project that provides a wide range of features with cross-
platform compatiblity. jQuery has hundreds of plug-ins to extend its features. jQuery helps
in increasing interactions with a web site. </p>
</body>

We then write the following jQuery code:

$(document).ready(function() {
 $('p').css({'float':'left', 'width':'300px','margin':'5px'});
});

Increasing Gutter Size between Columns
Gutter means the spacing between the columns. By reducing the width of columns and increasing the
size of the margin, we can increase the spacing (gutter size) between columns.

Let us reduce the width property and increase the margin value by a small amount, as shown in the
following jQuery code:

$('p').css({'float':'left', 'width':'375px','margin':'15px'});

How It Works
In the first set of jQuery code under the “Solution” heading, we see that the first statement set the CSS
properties of the HTML element of class="leftalign". It displays the paragraph element with a width of
300px and positions it at a distance of 50px from the left in its containing element (the browser window
in this case). Similarly, the second statement positions the HTML element of class="centeralign" at a
distance of 400px from the left of the browser window, and the third statement positions the HTML
element of class="rightalign" at a distance of 750px from the left of the browser window. The output is
shown in Figure 10-28.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 10 ■ USING CSS

389

Figure 10-28. Three-column layout using the position property

In the float example, we give each paragraph element a width of 300px and make them float to the
left of the browser window, one after the other. The first paragraph will appear first and have a width of
300px. After a margin of 5px, the second paragraph will appear; that is, after 305px from the left of the
browser window. The second paragraph also has a width of 300px. Finally, the third paragraph will
appear after keeping the margin of 5px for the second paragraph; that is, to the rightmost of the browser
window, as shown in Figure 10-29.

Figure 10-29. Three-column layout using the float property

Finally, Figure 10-30 shows the example after increasing the gutter size.

Figure 10-30. Three columns with increased gutter size

10-19. Wrapping Text around Images

Problem
Usually when we display an image and text on a web page, either image follows text or text follows image
(depending upon their placement in the HTML file); the two don’t appear adjacent to each other by
default. Sometimes you want the image to have text wrapped all the way around it.

Solution
Let us place an image in an HTML file, as shown here:

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 10 ■ USING CSS

390

<body>

</body>

We will now write jQuery code to wrap the img element within a div element and then append a
paragraph element with some text to the div element. The jQuery code appears as shown here:

$(document).ready(function() {
 $('img').wrap('<div></div>');
 $('<p>Styles make the formatting job much easier and efficient. To give an attractive look
to web sites, styles are heavily used. A person must have a good knowledge of HTML and CSS
and a bit of JavaScript. jQuery is a powerful JavaScript library that allows us to add
dynamic elements to our web sites. Not only it is easy to learn, but it’s easy to implement
too. jQuery is an open source project that provides a wide range of features with cross-
platform compatiblity. jQuery has hundreds of plug-ins to extend its features. jQuery helps
in increasing interactions with a web site. </p>').appendTo('div');
 $('img').css({'float':'left', 'width':'200px','height':'200px'});
 $('p').css({'clear':'right'});
});

How It Works
The CSS properties applied to the image makes use of the float property to make the image float to
the left in the browser window (allowing the text to appear on its right); the width property is used to
confine the image to the size of 200px (any size less than the browser window’s total width), so there's
space for the text to wrap around the image. The height property is used to limit the image height to a
particular size.

When right is assigned to the clear property, it will make the extra paragraph text move to the left.
That is, it tries to make the space on the right side clear but fill the space on the left. Hence, the extra text
of the paragraph that extends beyond the image height moves to the left side, wrapping text around the
image.

When we apply the preceding CSS properties to the image and paragraph elements, we get the
output shown in Figure 10-31.

Figure 10-31. Wrapping the text around the image

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 10 ■ USING CSS

391

10-20. Placing a Drop Shadow behind an Image

Problem
You want to place a drop shadow behind an image.

Solution
In order to create a drop shadow, we need to make two images: one to server as a drop shadow on the
right side of the image, and the other to create a shadow effect at the bottom of the image. Let us name
the drop shadow on the right of the image shadowright.jpg , as shown in Figure 10-32.

Figure 10-32. The background shadow image for the right side

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 10 ■ USING CSS

392

Similarly, the drop shadow at the bottom of the image is named shadowbottom.jpg and appears as
shown in Figure 10-33.

Figure 10-33. The background shadow image for the bottom

Assuming that an image file called image4.jpg exists, the HTML code to display the image is as
shown here:

<body>

</body>

The style rules to be applied to the img element and the span element are applied via the css()
method, as shown in the following jQuery code:

$(document).ready(function() {
 $('span').css({'background':'url(shadowright.jpg)', 'background-repeat':'no-
repeat','background-position':'bottom right', 'padding':'0 10px 0 0'});
 $('img').css({'width':'200px','height':'200px','background':'url(shadowbottom.jpg)',
'background-repeat':'no-repeat','background-position':'bottom', 'padding':'0 0 10px 0' });
});

How It Works
In the preceding HTML file, the img element is enclosed within a span element because we need to apply
two style rules to the img element: one for the drop shadow on the right side of the image and the other
for the drop shadow at the bottom of the image. But we cannot apply more than one style rule to an
element. So, to apply two style rules to the img element, we’ll enclose it with a span element so that one
style rule can be applied to the span element (which will eventually be applied to the img element), and
the other style rule can be applied to the img element itself.

The first css() call contains four properties:

• The background:url property is set to display the image stored in the file
shadowright.jpg at the background of the image.

• The background-repeat property is set to no-repeat to display the shadow image
only once.

• The background-position property is set to bottom right to display the shadow
image at right side of the image, aligned with the bottom.

• The padding property is used to set the distance of the shadow image from the
actual image. This helps in deciding the width of the shadow.

Similarly, the second css() call contains six properties:

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 10 ■ USING CSS

393

• The width and height properties are set to 200px to constrain the width and height
of the actual image being displayed to 200 pixels.

• The background:url property is set to display the image stored in the file
shadowbottom.jpg in the background of the image.

• The background-repeat property is set to no-repeat to display the shadow image
only once.

• The background-position property is set to bottom to display the shadow image at
the bottom of the actual image.

• The padding property is used to set the distance of the shadow image from the
actual image.

On application of the preceding properties to the image in the HTML file, the image will appear with
the drop shadows on the right and bottom, as in Figure 10-34.

Figure 10-34. An image casting a shadow

10-21. Changing the Cursor When the Mouse Moves
over a Link

Problem
You want to change the style of the cursor when it moves over a link.

Solution
For this problem, we make an HTML file that contains some information in a div element, along with a
hyperlink (Click Here), which, when selected, navigates us to www.abc.com. The HTML appears as shown
here:

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 10 ■ USING CSS

394

<body>
<div>Styles make the formatting job much easier and efficient. To give an attractive look to
web sites, styles are heavily used. A person must have a good knowledge of HTML and CSS and
a bit of JavaScript.
jQuery is a powerful JavaScript library that allows us to add dynamic elements to our web
sites. Not only it is easy to learn, but it’s easy to implement too.
jQuery is an open source project. Click Here for more information
</div>
</body>

To apply different cursor property to the hyperlink, we write the following jQuery code:

$(document).ready(function() {
 $(a).hover(
 function(){
 $(this).css({'cursor': 'wait', 'color': 'blue' , 'background-color':'cyan'});
 },
 function(){
 $(this).css({'cursor': 'default', 'color': '#000000' , 'background-color':'#ffffff'});
 });
});

How It Works
The hover() method contains two functions: one is executed when the mouse pointer hovers over the
selected element, and the other is executed when the mouse pointer is moved away from the selected
element. Initially, the output will be as shown in Figure 10-35. We can see that the hyperlink is
underlined and the typical arrow mouse pointer is the default pointer.

Figure 10-35. Default cursor when the link is not hovered over

On moving the mouse over the link, the CSS properties defined in hover() are applied to it,
changing the shape of the mouse pointer to an hourglass, and changing the background color of the link
to cyan and its foreground to blue, as shown in Figure 10-36.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 10 ■ USING CSS

395

Figure 10-36. The cursor changes when the mouse hovers over the link.

10-22. Displaying a Long Piece of Text within a Specific Area

Problem
You want to display a long piece of text within a specific area.

Solution
In the HTML file shown here, we define a paragraph element that we want to confine to a certain area of
the page:

<body>
<p>Styles make the formatting job much easier and efficient. To give an attractive look to
web sites, styles are heavily used. A person must have a good knowledge of HTML and CSS and
a bit of JavaScript.

jQuery is a powerful JavaScript library that allows us to add dynamic elements to our web
sites. Not only it is easy to learn, but it’s easy to implement too. jQuery is an open
source project that provides a wide range of features with cross-platform compatiblity.
jQuery has hundreds of plug-ins to extend its features. jQuery helps in increasing
interactions with a web site </p>
</body>

To confine the text and apply the overflow property to the paragraph element, we use the following
jQuery:

$('p').css({'width':'50%', 'height':'100px','overflow':'scroll'});

How It Works
We assign 50% of the browser window’s size and a height of 100 pixels to the paragraph. By setting the
value of overflow to scroll, we make scroll bars appear if the text of the paragraph element is not
completely visible in the specified height and width. The output is as shown in Figure 10-37.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 10 ■ USING CSS

396

Figure 10-37. Applying the overflow element with the scroll option

Let us see what happens when we set the value of the overflow property to hidden. The paragraph
text that does not fit within the assigned area becomes invisible, as shown in Figure 10-38.

Figure 10-38. Applying the overflow element with the hidden option

Let us set the value of the overflow property to auto. The scroll bar will appear only for the height
and not for the width (unlike with the value scroll); that is, the scroll bar will appears only where it is
required. The output on application of this style is shown in Figure 10-39.

Figure 10-39. Applying the overflow element with the auto option

Now let us set the value of the overflow property to visible. The text of the paragraph will be
entirely visible; that is, it will not be confined to the region assigned to it (see Figure 10-40).

Figure 10-40. Applying the overflow element with the visible option

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 10 ■ USING CSS

397

10-23. Making a Rounded-Corner Column

Problem
You want to make a single column with rounded corners.

Solution
To give a rounded-rectangle shape to the column, we need to make a rectangle with rounded corners
and paste it as the background of the text. Let us make a rounded-corner rectangle like the one in Figure
10-41 and name it columnfig.jpg.

Figure 10-41. Rounded-corner rectangle

This image will be set as the background of the text. Let us make an HTML file with a paragraph
element that has some text, as shown here:

<body>
<p>Styles make the formatting job much easier and efficient. To give an attractive look to
web sites, styles are heavily used. A person must have a good knowledge of HTML and CSS and
a bit of JavaScript.
jQuery is powerful JavaScript library used to make dynamic sites.</p>
</body>

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 10 ■ USING CSS

398

In the style sheet, let us write a style rule to paste the rounded rectangle as the background of the
paragraph element. The style rule will include the properties width, padding, background, and
background-repeat, as shown here:

.backfig{
width:150px;
padding:10px;
background:url(columnfig.jpg);
background-repeat:no-repeat;
}

Let us write jQuery code to apply the backfig style rule to the paragraph element. The jQuery code
appears as shown here:

$(document).ready(function() {
 $('p').addClass('backfig');
});

How It Works
The backfig style rule assigns a width to the paragraph text that is equal to the width of the rounded
rectangle, so that the text of the paragraph remains confined within the boundaries of that rectangle.
The padding property is used to keep some gap between the rectangle boundary and the paragraph text.
The background property is for setting the rounded rectangle image stored in columnfig.jpg as the
background of the paragraph text, and the value of background-repeat is set to no-repeat to make the
rounded rectangle appear just once.

On application of the rounded rectangle image to its background, the paragraph text appears as
shown in Figure 10-42.

Figure 10-42. A single column with rounded corners

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 10 ■ USING CSS

399

10-24. Applying Text Decorations

Problem
You want to apply text decorations, such as overline and underline styles, to certain text to draw
attention to it. Additionally, you need to apply effects such as strike-through for comparison purposes—
for example, to demonstrate the previous discount and the current discount on a certain item.

Solution
The following is HTML that contains three paragraph elements that are assigned three class names:
feature1, feature2, and feature3.

<body>
<p class="feature1">jQuery is powerful</p>
<p class="feature2">Styles make the formatting job much easier and efficient. To give an
attractive look to web sites, styles are heavily used. A person must have a good knowledge
of HTML and CSS and a bit of JavaScript. jQuery is powerful JavaScript library used to make
dynamic sites.</p>
<p class="feature3">10% Discount on all products</p>
<p>20% Discount on all products</p>
</body>

The jQuery to apply text decoration to the paragraph elements is as follows:

$(document).ready(function() {
 $('p.feature1').css({'text-decoration':'underline'});
 $('p.feature2').css({'text-decoration':'overline'});
 $('p.feature3').css({'text-decoration':'line-through'});
});

We can also apply both overline and underline values to the heading—that is, to the paragraph of
the class feature1—to highlight it.

<div>
<p class="feature1">jQuery is powerful</p>
</div>

The style rules now change:

$(document).ready(function() {
 $('p.feature1').css({'text-decoration':'underline'});
 $('div').css({'text-decoration':'overline'});
 $('p.feature3').css({'text-decoration':'line-through'});
});

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 10 ■ USING CSS

400

How It Works
The first call to css() displays the paragraph of class="feature1" as underlined text. The second call
displays the paragraph of class="feature2" with a line over it. The third call displays the paragraph of
class="feature3" with a line through it. The output is as shown in Figure 10-43.

Figure 10-43. Applying different text-decoration options with the class

The advantage of using line-through is that the visitor can know what the earlier offers were and
can compare with the current offers. Like the preceding solution shows, the earlier discount rate was
10%, but has now increased to 20%.

To highlight the heading, since we cannot apply two style rules to the same element, we enclose the
paragraph of the class feature1 inside a div element so that we can apply one style rule to the div and
another style rule to the paragraph element. The first style rule makes the paragraph of the class
feature1 appear underlined. The second style rule makes an overline appear on the contents of the div
element; that is, on the paragraph of the class feature2. The third style rule, as you have already seen,
makes the paragraph of the class feature2 appear crossed out. The output is shown in Figure 10-44.

Figure 10-44. Applying overline and underline to the heading

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 10 ■ USING CSS

401

10-25. Scaling Images

Problem
You want an image to be scalable; that is, if the size of the block in which the image is placed is reduced,
the size of the image should also be reduced automatically. Similarly, if the size of the enclosing block is
increased, you want the image size to increase automatically.

Solution
We’ll use the same HTML that we used in Recipe 10-19 (refer to Figure 10-30 for the final results of that
recipe). This time, we define the width of the image in terms of % (percentage) of the containing block
element. Since the containing block of the image is the browser window, the width of the image will
increase or decrease in response to the changes made to the size of the browser window. The modified
style rules are shown here:

.moveleft
{
width:40%;
float:left;
}

.imagewrap {
clear:right;
}

The jQuery code to apply these style rules to the image and the paragraph element is as follows:

$(document).ready(function() {
 $('img').addClass('moveleft');
 $('p').addClass('imagewrap');
});

How It Works
If we increase the width of the browser window from Recipe 10-19, the image size remains the same, as
is shown in Figure 10-45.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 10 ■ USING CSS

402

Figure 10-45. The image is not scaled when we increase the width of the browser window.

The reason the image is not scaled lies in the original styles applied to it. The styles have been added
to the following style rule for your reference:

.moveleft
{
width:200px;
height:200px;
float:left;
}

The width of the image is fixed to 200px, so the width of the image remains fixed despite any change
in the browser window’s size.

The new moveleft style rule contains two properties:

• The width property, which is set equal to 40% of the width of the browser window
(that is, whenever the width of the browser window changes, the width of the
image also changes to maintain the 40% ratio).

• The float property is set to left to keep the image on the left of the browser
window, making space for the paragraph text to appear on its right side.

The style rule imagewrap will be applied to the paragraph text and contains a single property clear to
make the extra paragraph text (the text that extends the size of the image) appear below the image so
that the image is wrapped in text. The impact of this property is visible only when the size of the browser
window is adjusted so that the paragraph text extends the full height of the image.

On application of the styles, the image becomes scalable with the size of the browser window, as
shown in Figure 10-46.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 10 ■ USING CSS

403

Figure 10-46. The image is scaled in conjunction with the width of the browser window.

10-26. Setting a Background Image

Problem
You want an image to appear as the background of your text.

Solution
Let us assume that we have the following HTML, which contains a paragraph element to display simple
text:

<body>
<p>Styles make the formatting job much easier and efficient. To give an attractive look to
web sites, styles are heavily used. A person must have a good knowledge of HTML and CSS and
a bit of JavaScript.
jQuery is a powerful JavaScript library that allows us to add dynamic elements to our web
sites. Not only it is easy to learn, but it’s easy to implement too.
jQuery is an open source project that provides a wide range of features with cross-platform
compatiblity. jQuery has hundreds of plug-ins to extend its features. jQuery helps in
increasing interactions with a web site. </p>
</body>

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 10 ■ USING CSS

404

In order to apply an image as the background of this text, we need to write the style rule shown here:

.placeimage
{
background-image:url(cell.jpg);
background-repeat:no-repeat;
}

We now need to write the jQuery code to apply the style rule placeimage to the body tag. The jQuery
code appears as shown here:

$(document).ready(function() {
 $('body').addClass('placeimage');
});

How It Works
We assume that the image file cell.jpg exists. In the style rule placeimage, we have used two properties:
background-image and background-repeat. With the help of background-image, we make the image stored
in cell.jpg appear as the background of the text. By default, the image is repeated several times to fill up
the containing block. So, we set the value of the background-repeat property to no-repeat so that the
image appears only once as the background.

On application of the placeimage style rule to the body of the HTML file, the image stored in
cell.jpg appears as the background of the text, as shown in Figure 10-47.

Figure 10-47. The image is set as the background of the text.

10-27. Centering a Background Image in the Browser

Problem
Usually when you set an image as the background, it is aligned to the left of the browser window. You
want the background image to appear at the center of the browser window.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 10 ■ USING CSS

405

Solution
In this recipe, we will make use of the same HTML file that we used in Recipe 10-26, which displays an
image as the background (which is left-aligned). To make the left-aligned background image appear at
the center of the screen, we will use the background-position property. By setting the value of the
background-position property to center, the background image will appear at the center of the browser
screen.

So, let us add background-position to the style rule placeimage (from Recipe 10-26) as shown here:

.placeimage
{
background-image:url(cell.jpg);
background-repeat:no-repeat;
background-position:center;
}

The jQuery code to apply the placeimage style rule to the body of the HTML is shown here:

$(document).ready(function() {
 $('body').addClass('placeimage');
});

How It Works
Recall that the background-image property makes the image in cell.jpg appear as the background. To
make the background image appear only once—that is, to stop it from repeating itself and filling up the
block—we set the value of the background-repeat property to no-repeat. Finally, by assigning the value
center to the background-position property, we make sure that the background image appears at the
center of the browser window.

On application of the placeimage style rule to the body of the HTML file, the image stored in
cell.jpg appears as the background at the center of the browser window, as shown in Figure 10-48.

Figure 10-48. The background image is placed at the center of the browser window.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 10 ■ USING CSS

406

10-28. Making the Background Image Stationary

Problem
When we browse any web page, the image and text scroll when we scroll down or up the page. You want
the background image to remain stationary even when you scroll.

Solution
In this recipe, we make use of the same HTML file that we used in the Recipe 10-26. Here we will add
some more text to the paragraph to make it large enough that we can apply scrolling to it. To keep the
background image stationary while scrolling the web page, we use the background-attachment property.
By setting the value fixed to the background-attachment property, we keep the background image
stationary. So, let us add the background-attachment property to the style sheet that we used in the
previous recipe:

.placeimage
{
background-image:url(cell.jpg);
background-repeat:no-repeat;
background-position:center;
background-attachment: fixed;
}

The jQuery code to apply the placeimage style rule to the body of the HTML file is shown here:

$(document).ready(function() {
 $('body').addClass('placeimage');
});

How It Works
The function of each of the properties used in the style rule placeimage is as follows:

• The background-image property makes the image in the file cell.jpg appear as the
background.

• The background image is set to appear only once by assigning the value no-repeat
to the background-repeat property.

• The background-position property is set to center to make the background image
appear at the center of the browser window.

• The background-attachment property is set to fixed to make the background image
remain stationary when we scroll the web page.

On application of the placeimage style rule to the body of the HTML file, the background image
appears at the background, as shown in Figure 10-49.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

CHAPTER 10 ■ USING CSS

407

Figure 10-49. The scroll bar appears when the text is larger than the browser window.

Now, when we scroll the web page down (via the scroll bar on the right), the background image
remains at the center of the browser screen, whereas the text scrolls (see Figure 10-50).

Figure 10-50. The background image remains stationary even when the text is scrolled.

Summary
In this chapter we saw recipes that explain different CSS techniques that are frequently applied to web
pages like distinguishing HTML elements, applying styles to an element nested inside another element,
indenting paragraphs, applying an initial cap to a paragraph, removing the gap between heading and
paragraph, applying styles to heading text and indenting the first line of multiple paragraphs. Besides
this, we have also seen the process for creating paragraphs with hanging indents, creating a bordered
pull quote, creating a pull quote with images, applying list properties to list items, applying styles to only
selected list items, placing dividers between list items, applying image markers to a list and creating
inline lists. Finally, we also saw how to apply styles to hyperlinks and mailto, assign different dimensions
to HTML elements, place HTML elements, create a multicolumn layout, wrap text around images, place
a drop shadow behind an image, change the cursor when the mouse moves over a link, display a long
piece of text within a specific area, make a rounded corner column, apply text decorations, scale images,
set a background image, center a background image in the browser and make the background image
stationary.

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

409

Index

■Symbols
* symbol, in regular expressions, 305

^ symbol, in regular expressions, 305

$ symbol, in regular expressions, 305

$() function, 3

 – icon for collapsible items, 275

> selector, 282, 375

+ icon for expanding items, 275

+ symbol, in regular expressions, 301, 305

■A
accelerator keys for menu items, 175–79

accessing DOM nodes, 2, 5

accordion menus, 190–93

addClass() method, 4

after() method, 12

Ajax, 291–326

auto-complete, 308–13

displaying welcome message, 291–96

importing HTML, 313–16

paginating tables, 323–26

performing authentication, 296–98

to submit forms, 338–44

validating email address, 302–8

validating user name, 299–302

XML data, getting, 319–22

ajax() method, 292

ajaxForm() method, 341

alert() method, 49, 281, 341

alphabetizing

list items, 278–79

string array elements, 31

table rows, 280–86

anchor elements. See hyperlinks

animate() method, 95, 207, 211

animation effects with text, 82–83

sliding (fading transition), 91–92

animator() method, 218, 221, 223

annotating images with comments, 330–32

append() method, 12

appendTo() method, 12

arranging images, 200–203

arrays

counting length of, 19

combining multiple, 35–36

filtering to show desired data, 24–29

manipulating elements of, 21–24

of names, displaying in lists, 17–21

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

■ INDEX

410

of numbers, converting into strings, 37–
38

of objects

creating, 38–40

sorting, 40–43

scrolling images using, 247–51

sorting, 30–33

elements of object arrays, 40–43

splitting into two parts, 33–35

ascending order, sorting in, 282

ASCII sorting, 32

* symbol, in regular expressions, 305

attr() method, 139

authentication, performing (Ajax), 296–98

auto-complete, 308–13

auto value, margin property, 209

■B
background images

centering, 404–5

creating, 403–4

stationary, 406–7

before() method, 12

bind() method, 46, 48, 78. See also
unbind() method

blank form fields, avoiding, 108–9

blur() method, 67, 147

blurring images with mouse movements,
62–65

borders

around pull quotes, 368–69

dividers between list items, 377–78

breadcrumb menus, 167–69

brightening images with mouse
movements, 62–65

bubbling events, preventing, 101–3

button attribute (event objects), 58

button events

adding or removing text after, 75–76

applying styles after, 77–79

determining which button is clicked,
46–50

disabling button after one click, 52–54

displaying word balloons upon, 79–82

hover effects, 67–69, 78

text animation effects, 87–91

triggering automatically, 50–52

■C
capitalization, initial, for paragraphs, 362–

63

captions for form elements, 157

^ symbol, in regular expressions, 305

carousel, displaying images in, 347–50

case of names, converting, 22

cells (table), highlighting on hover, 259

chaining activities, 103–5

charCodeAt() method, 113

checkboxes (forms), 123–26, 137–40

serializing, 163

child selectors, 282, 375

children() method, 7

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

■ INDEX

411

classes, CSS

assigning to HTML elements, 4, 14,
358–59

with nested elements, 359–61

toggling application of, 69–71

clearForm() method, 337

clearing form controls, 335–38

click() method, 49

clicks. See button events; mouse events

clone() method, 12, 14

collapsing

list items, 268–72

table rows, 272–78

column headings

determining which is selected, 280

highlighting on hover, 258

columns, page, 387–89

columns, table

filtering on, with limit, 327–30

hiding selected, 261–64

highlighting alternate, 255–59

with rounded corners, 397–98

combining arrays into one, 35–36

comments for images (annotations), 330–
32

concat() method, 36

concatenating arrays, 35–36

confirm-password field (forms), 144–46

context menus (for right-click), 179–82

contextual menus, 172–75

counting nodes in DOM, 5

CSS (Cascading Style Sheets), 357–407

applying styles dynamically, 77–79

containing text within specific area,
395–96

with form options and buttons, 133–37

heading text, 365–66

with HTML elements

applying classes to, 4, 14, 358–59

dimensions, assigning, 383–85

placing, 383–85

with nested elements, 359–61

toggling classes dynamically, 69–71

with hyperlinks, 381–83

changing cursor on hover, 393–95

with images

background images, 403–7

drop shadows, 391–93

scaling, 401–3

wrapping text, 389–90

with lists

applying properties to list items,
372–74, 374–77

dividers between items, 377–78

inline lists, creating, 380–81

using image markers, 378–80

multicolumn layouts, 387–89

with paragraphs

gap beneath headings, 363–65

indenting, 361–62, 366–68

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

■ INDEX

412

initial capitalization, 362–63

with pull quotes

bordered, 368–69

with images, 370–72

rounded corner columns, 397–98

text decorations, 399–400

css() method, 61, 91, 154, 384

CSS selectors, 2

css() method, 234

news scroller using, 229

cursor, changing over hyperlinks, 393–95

cursor events, 54–57

■D
dataTable() method, 329

DataTables plugin, 327–30

date selection with datepickers, 350–52

datepicker() method, 351

Datepicker plugin, 350–52

dates, validating in forms, 118–20

dblclick() method, 50

delaying execution of JavaScript, 3

descending order, sorting in, 284

Dimension plugin, 344–47

dimensions of form elements, finding,
344–47

disabling buttons after one click, 52–54

dividers between list items, 377–78

dividing arrays into two parts, 33–35

$ symbol, in regular expressions, 305

DOM nodes

accessing (selecting), 2, 5

changing content of, 9

counting number of, 5

creating on the fly, 11

obtaining HTML of, 8

double-click events, 50

drop shadows behind images, 391–93

dynamic behavior. See event handling

dynamic visual menus, 193–98

■E
each() method, 7, 39, 125, 133, 154, 279

elements, array. See arrays

elements, forms. See forms

elements, HTML. See HTML elements

email addresses, validating

in requests, 302–8

in forms, 120–23

end() method, 105

eq() method, 201, 256

eregi() method, 301, 305

:even selector, 5

event handling, 45–106

applying styles dynamically, 77–79

button events

determining which button is
clicked, 46–50

disabling button after click, 52–54

triggering automatically, 50–52

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

■ INDEX

413

chaining activities, 103–5

focus changes, recognizing, 65–67

image changes

associated with mouse movements,
62–65

hover effects, 67–69, 78

rollovers, 71–74

scrolling upon click, 93–97

keyboard presses, recognizing

mouse events, 54–57

determining which button is
pressed, 57–59

screen coordinates, finding, 59–60

preventing event bubbling, 101–3

read-less links, 86

read-more links, 84–87

return-to-top links, 82–83

text changes

adding and removing text, 75–76

animation effects, 87–91

highlighting text dynamically, 60–62

sliding (fading transition) effects,
91–92

toggling CSS class application, 69–71

word balloons, displaying, 79–82

execution of JavaScript, delaying, 3

expanding

list items, 268–72

table rows, 272–78

■F

fadeIn() method, 87

fadeOut() method, 87

fadeTo() method, 94, 96, 233, 237

fading effect (text), 91–92

fading out images, 250

fields in forms. See forms

fieldSerialize() method, 337

<fieldset> tag, 157

fieldValue() method, 337

filtering

arrays for desired data, 24–29

on table columns, 327–30

table rows (from display), 286–89

table rows (unselected), 259–61

:first selector, 188

floats, 388

focus changes, recognizing, 65–67

focus() method, 66

Form plugin, 335–38, 338–44

forms, 107–66

auto-complete for text fields, 308–13

button events

determining which button is
clicked, 46–50

disabling button after click, 52–54

triggering automatically, 50–52

checkboxes

checking/unchecking together, 137–
40

determining if checked, 123–26

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

■ INDEX

414

date selection with datepickers, 350–52

disabling fields, 147–49

grouping common elements, 157

options in select elements, 129–33

radio buttons, 126–29

serializing data, 161–66

styles, applying, 133–37

validating fields, 302–8

confirming field not blank, 108–9

dates, 118–20

email addresses, 120–23

numerical fields, 110–14

password and confirm-password
fields, 144–46

phone numbers, 114–16

simultaneously, 140–44

user IDs, 116–18

validating complete forms, 149–61

welcome message, displaying on
submit, 291–96

fromCharCode() method, 99

function keyword, 3

■G
GET HTTP requests, 294

get() method, 21

$.get() method, 294

$.getJSON() method, 318

graphics. See images

grep() method, 25

parameters of, 26

grouping form elements, 157

gutter size between columns, 388

■H
headings (page)

applying styles to, 365–66

gap between paragraphs and, 363–65

headings (table columns)

determining which is selected, 280

highlighting on hover, 258

height() method (Dimension plugin), 346

hidden property, overflow property, 209

hide() method, 85, 201, 261

hiding table columns, 261–64

highlighting

table columns, 255–59

table rows. See rows, table

text dynamically, 60–62

horizontal image sliders, 204–6

horizontally arranging images, 200–203

horizontally scrolling images, 221–26

hover effects, 67–69, 78

cursor changes over hyperlinks, 393–95

highlighting table rows, 253–55

on menu items, 169–71, 193–98

pausing scroll on, 224, 230

showing series of images, 214–17

hover() method, 68, 78, 182, 231, 254, 266,
394

HTML, importing with Ajax, 313–16

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

■ INDEX

415

HTML buttons. See button events

HTML elements

anchors. See hyperlinks

applying CSS classes to, 4, 14, 358–59

with nested elements, 359–61

assigning dimensions to, 383–85

changing content of, 9

focus changes with, recognizing, 65–67

lists. See hyperlinks

obtaining, 8

placing, 385–87

selecting nonstandard series of, 4

html() method, 8

changing element contents, 10

hyperlinks

applying styles to, 381–83

changing cursor when over, 393–95

clicking to import HTML, 313–16

read-less links, 86

read-more links, 84–87

return-to-top links, 82–83

horizontal image sliders with image
enlargement, 235

■I
icons, enlarging on hover, 234

images

annotating with comments, 330–32

arranging horizontally or vertically,
200–203

background images

centering, 404–5

creating, 403–4

stationary, 406–7

cursor, changing over hyperlinks, 393–
95

displaying in carousel, 347–50

drop shadows behind, 391–93

enlarged on mouseover, 231–37

event-driven changes

applying styles dynamically, 77–79

hover effects, 67–69, 78

responding to mouse movements,
62–65

rollovers, 71–74

scrolling when clicked, 93–97

horizontal image sliders, 204–6, 235

as markers for list items, 378–80

pull quotes with, 370–72

rounded corners on columns, 397–98

scaling, 401–3

scrolling

at center of window, 209–12

horizontally, 221–26

to invisibility when clicked, 206–12

over other images, 248

using arrays, 247–51

vertically, 217–21

showing multiple on hover, 214–17

showing pagewise, 238–40

shuffling in either direction, 240–44

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

■ INDEX

416

slide shows, building, 216

for Submit buttons, 136

wrapping text around, 389–90

importing HTML with Ajax, 313–16

indenting paragraphs, 361–62, 366–67

with hanging indents, 367–68

index() method, 257, 262

initial capitalization, for paragraphs, 362–
63

inline lists, creating, 380–81

innerHeight() method (Dimension plugin),
346

innerWidth() method (Dimension plugin),
346

insertAfter() method, 12

insertBefore() method, 12

installing jQuery, 1

is() method, 139

■J
JavaScript, delaying execution of, 3

join() method, 19

jQuery, installing, 1

jQuery Image Annotation plugin, 330–32

jQuery plugins. See plugins

■K
key presses, recognizing, 98–100

keydown() method, 98, 100

keypress() method, 98

keyup() method, 100

■L
left_rightanimator() method, 246

leftanimator() method, 243

<legend> tag, 157

length() method, 201

line feed character, 307

lining up images, 200–203

links. See hyperlinks

list items

applying properties to, 372–74

selected items only, 374–77

dividers between, 377–78

expanding/collapsing, 268–72

image markers for, 378–80

inline lists, creating, 380–81

sorting, 278–79

list-style property, 169, 174

list-style-type property, 171

lists. See arrays

load() method, 314

lowercase, converting names from, 22

■M
mailto links, styles for, 381–83

map() method, 23

margin property, 209

match() method, 25, 27

menus, 167–98

access keys for menu items, 175–79

accordion menus, 190–93

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

■ INDEX

417

breadcrumb menus, 167–69

contextual, 172–75, 179–82

dynamic visual menus, 193–98

hover effects on, 169–71, 193–98

multiple, 182–85

submenus, 185–89

— icon for collapsible items, 275

> selector, 282, 375

mouse buttons

recognizing when pressed, 57–59

screen coordinates of, finding, 59–60

mouse events, 54–57

applying styles after, 77–79

changing images with, 62–65

determining which button is pressed,
57–59

image-based rollovers, 71–74

with menus

accordion menus, 190–93

dynamic visual menus, 193–98

right-click context menus, 179–82

screen coordinates, finding, 59–60

scrolling images to invisibility when
clicked, 206–9

reappearing image at right, 209–12

mousedown() method, 55

mouseout() method, 57

mouseover() method, 55, 56, 90

showing enlarged images on, 231–37

mouseup() method, 55, 56

multicolumn page layouts, 387–89

MULTIPLE attribute, select element, 131

■N
\n (line feed character), 307

navigation. See hyperlinks; menus

negative values in form fields, 111

nested HTML elements, styles for, 359–61

news scrollers, 226–31

next() method, 146

nodes, DOM

accessing (selecting), 2, 5

changing content of, 9

counting number of, 5

creating on the fly, 11

obtaining HTML of, 8

:not() selector, 264

:nth-child() method, 256, 262

numerical arrays

converting into string, 37–38

sorting, 30–33

numerical fields, validating, 110–14

■O
objects, arrays of

creating, 38–40

sorting, 40–43

:odd selector, 5

offset() method, 345

opacity property (CSS), 63

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

■ INDEX

418

options in select elements, 129–33

ordered lists. See also lists

converting names to uppercase, 22

displaying names in, 17–21

outerHeight() method (Dimension plugin),
346

outerWidth() method (Dimension plugin),
346

overflow property, 209, 395

■P
page layouts, multicolumn, 387–89

page navigation. See hyperlinks; menus

hover effect on menu items, 169–71,
193–98

table pagination, adding, 265–68, 323–
26

pagewise display of images, 238–40

paragraphs

gap between headings and, removing,
363–65

indenting, 361–62, 366–67

hanging indents, 367–68

initial capitalization for, 362–63

parent() method, 8

password authentication, 296–98

password field (forms), 144–46

pausing scroll on hover, 224, 230

pendulum scrollers, 244–46

phone numbers, validating in forms, 114–
16

placing HTML elements, 385–87

plugins, 327–55

DataTables plugin, 327–30

Datepicker plugin, 350–52

Dimension plugin, 344–47

Form plugin, 335–38, 338–44

jQuery Image Annotation plugin, 330–
32

Table Drag and Drop Jquery plugin,
333–35

Tablesorter plugin, 352–54

3D Image Carousel plugin, 347–50

+ icon for expanding items, 275

+ symbol, in regular expressions, 301, 305

position() method, 345

position in array, displaying, 18

position property (CSS), 93

position property (images), 207

positions for form elements, finding, 344–
47

POST HTTP requests, 295

$.post() method, 296

prepend() method, 12, 76

prependTo() method, 12, 14

preventDefault() method, 109, 113, 114,
143, 243, 288

pull quotes

bordered, 368–69

with images, 370–72

■R
radio buttons (forms), 126–29

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

■ INDEX

419

serializing, 163

range of allowable values (form fields), 112

read-less links, 86

read-more links, 84–87

ready() method, 3

RegExp class, 119, 122

regular expressions, 27

validating user names with, 300

relative value, position property, 207

remove() method, 76

required fields, confirming not blank, 108–
9

return-to-top links, 82–83

reversing order of page columns, 386

rightanimator() method, 243

right-click context menus, 179–82

rollovers, image-based, 71–74. See also
mouse events

rounded corners on columns, 397–98

rows, table

dragging and dropping, 333–35

expanding/collapsing, 272–78

filtering from tables, 286–89

hiding unselected, 259–61

highlighting on hover, 253–55

limiting queries by number of, 327–30

sorting, 280–86, 352–54

■S
scaling images, 401–3

screenX property (event objects), 59, 182

screenY property (event objects), 59, 182

scroll() method, 247

scrolling

images

at center of window, 209–12

horizontally, 221–26

over other images, 248

using arrays, 247–51

vertically, 217–21

when clicked, 93–97, 206–12

news scrollers, 226–31

pendulum scrollers, 244–46

scrollLeft() method, 346

scrollTop() method, 346

searching

among array elements, 24–29

in numerical arrays, 37

with regular expressions, 27

select elements in forms, 129–33

serializing, 163

selectors

accessing elements in DOM, 2

custom, for unconventional HTML
elements, 4

serialize() method, 164

serializeArray() method, 165

serializing form controls, 335–38

serializing form data, 161–66

setTimeout() method, 214

shadows behind images, 391–93

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

■ INDEX

420

show() method, 85

shuffling images in either direction, 240–44

slide shows, building, 216

slideDown() method, 92, 197

slideUp() method, 92, 93, 197

sliding effect (text), 91–92

sort() method, 31, 279, 282

sorting object array elements, 42

sorting

array elements, 30–33

arrays of objects, 40–43

list items, 278–79

tables, 352–54

table rows, 280–86

splice() method, 34

splitting arrays into two parts, 33–35

strings

converting numerical arrays into, 37–38

sorting arrays of, 30–33

styles. See CSS

submenus, 185–89

Submit button, image for, 136

submitting forms

displaying welcome message, 291–96

using Ajax, 338–44

substr() method, 37–38

substrings, finding, 37

■T
Table Drag and Drop Jquery plugin, 333–

35

tableDnD() method, 334

tables, 253–89

expanding/collapsing list items with,
268–72

expanding/collapsing rows, 272–78

filtering on columns of, 327–30

filtering rows from, 286–89

hiding selected columns, 261–64

hiding unselected rows, 259–61

highlighting alternate columns, 255–59

highlighting rows on hover, 253–55

multicolumn page layouts, 387–89

paginating, 265–68, 323–26

rounded corner columns, 397–98

sorting, 280–86

sorting list items with, 278–79

tablesorter() method, 353

Tablesorter plugin, 352–54

target attributes (event objects), 47

telephone numbers, validating in forms,
114–16

text

containing within specific area, 395–96

decorations, applying, 399–400

event-driven changes

adding or removing text, 75–76

animation effects, 87–91

applying styles dynamically, 77–79

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

■ INDEX

421

displaying read-less links, 86

displaying read-more links, 84–87

displaying return-to-top links, 82–83

highlighting dynamically, 60–62

sliding (fading transition) effects,
91–92

word balloons, displaying, 79–82

wrapping around images, 389–90

text-decoration property, 171, 174

text() method, 7, 131

changing element contents, 10

html() method vs., 8

3D Image Carousel plugin, 347–50

toggle() method, 70, 86

toggleClass() method, 70

toUpperCase() method, 22

transitional effect (text), 91–92

trigger() method, 51, 52

triggering events automatically, 50–52

two-column page layouts, 386

typed input. See input; keyboard events

■U
unbind() method, 53

unconventional HTML elements,
selecting, 4

unordered lists

applying properties to list items, 372–74

selected items only, 374–77

collapsing/expanding list items, 268–72

creating inline lists with, 380–81

dividers between list items, 377–78

sorting list items, 278–79

using image markers, 378–80

uppercase, converting names to, 22

upward scrolling, 221

user IDs, validating in forms, 116–18

user name, validating, 299–302

■V
val() method, 130

validate_data() method, 341, 343

validate_date() method, 119

validate_email() method, 122

validate_phoneno() method, 116

validate_userid() method, 118, 153

validate_email() method, 154

validating

email addresses, 302–8

performing authentication, 296–98

user names, 299–302

validating forms, 107–66. See also forms

checkboxes, 123–26

as complete form, 149–61

dates, 118–20

disabling certain fields, 147–49

email addresses, 120–23

multiple fields simultaneously, 140–44

numerical fields, 110–14

options in select elements, 129–33

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

■ INDEX

422

password and confirm-password fields,
144–46

phone numbers, 114–16

radio buttons, 126–29

required fields, confirming not blank,
108–9

user IDs, 116–18

vertically arranging images, 200–203

vertically scrolling images, 217–21

visual effects, 199–251. See also images

arranging images, 200–203

changing cursor over hyperlinks, 393–
95

displaying images in carousel, 347–50

dynamic visual menus, 193–98

enlarging image on mouse over, 231–37

horizontal image sliders, 204–6

with image enlargement, 235

news scrollers, 226–31

pendulum scrollers, 244–46

scrolling images

at center, 212–14

horizontally, 221–26

to invisibility when clicked, 206–12

using arrays, 247–51

vertically, 217–21

showing images pagewise, 238–40

showing multiple images on hover,
214–17

shuffling images in either direction,
240–44

■W
welcome message, displaying, 291–96

width() method (Dimension plugin), 346

word balloons, displaying, 79–82

wrapping text around images, 389–90

■X
XML data, getting, 319–22

XMLHttpRequest object, 292

Xpath selectors, 2

■Z
zero-based counting, 256, 257

More Free Ebook:
www.latestebook.com

More Free Ebook:
www.latestebook.com

	Apress - jQuery Recipes (January 2010) (ATTiCA)
	Books for Professionals
	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	What the book is about
	Who the book is for
	What you will learn from this book

	jQuery Basics
	1-1. Installing jQuery
	Problem
	Solution
	How It Works

	1-2. Selecting Nodes in the DOM
	Problem
	Solution
	How It Works

	1-3. Delaying the Execution of JavaScript
	Problem
	Solution
	How It Works

	1-4. Applying CSS to Elements
	Problem
	Solution
	How It Works

	1-5. Selecting a Non-Standard Series of HTML Elements
	Problem
	Solution
	How It Works

	1-6. Counting the Number of Nodes in the DOM and Displaying Their Text
	Problem
	Solution
	How It Works
	children()
	each()
	text()
	parent()

	1-7. Obtaining the HTML of an Element
	Problem
	Solution
	How It Works

	1-8. Changing the Content of a DOM Node
	Problem
	Solution
	text(text)
	html(HTML)
	How It Works

	1-9. Creating a DOM Node on the Fly
	Problem
	Solution
	prepend()
	prependTo()
	clone()
	How It Works

	1-10. Assigning the Same Class Name to Different HTML Elements and Applying Styles to Them
	Problem
	Solution
	How It Works

	Summary

	Arrays and Strings
	2-1. Displaying Names in a List Using Arrays
	Problem
	Solution
	Displaying Names One Below the Other
	Displaying Names with Their Position in the Array
	Making the Array from HTML Elements and Counting the Array Length
	How It Works

	2-2. Manipulating Array Elements
	Problem
	Solution
	Converting Names to Uppercase
	Using an Ordered List
	How It Works

	2-3. Filtering Arrays to Show Desired Data Only
	Problem
	Solution
	Using grep()
	Using match()
	How It Works

	2-4. Sorting String and Numerical Arrays
	Problem
	Solution
	Sorting String Arrays
	Sorting Numerical Arrays
	How It Works

	2-5. Splitting an Array
	Problem
	Solution
	How It Works

	2-6. Combining Two Arrays
	Problem
	Solution
	How It Works

	2-7. Converting a Numerical Array into a String and Finding Its Substring
	Problem
	Solution
	How It Works

	2-8. Creating an Array of Objects
	Problem
	Solution
	How It Works

	2-9. Sorting an Array of Objects
	Problem
	Solution
	How It Works

	Summary

	Event Handling
	3-1. Finding Out Which Button Is Clicked
	Problem
	Solution
	Applying Click Events to Both the Buttons
	Attaching the Event Directly
	Using the Target Attribute of the Event Object
	Attaching a Double-Click Event
	How It Works
	bind()
	click()
	dblclick()

	3-2. Triggering Events Automatically
	Problem
	Solution
	How It Works
	trigger()

	3-3. Disabling a Button After It Is Clicked Once
	Problem
	Solution
	How It Works

	3-4. Handling Mouse Events
	Problem
	Solution
	Responding to the Mouseup Event
	Responding to the Mouseover Event
	How It Works
	mousedown()
	mouseup()
	mouseover()
	mouseout()

	3-5. Finding Out Which Mouse Button Is Pressed
	Problem
	Solution
	How It Works

	3-6. Finding the Screen Coordinates of a Mouse-Button Press
	Problem
	Solution
	How It Works

	3-7. Highlighting Text Dynamically
	Problem
	Solution
	How It Works

	3-8. Making an Image Bright and Blurred with Mouse Movements
	Problem
	Solution
	How It Works

	3-9. Finding When an Element Gains and Loses Focus
	Problem
	Solution
	Firing an Event on Losing Focus
	How It Works
	focus()
	blur()

	3-10. Applying Hover Effects on Buttons
	Problem
	Solution
	How It Works

	3-11. Toggling the Application of a CSS Class
	Problem
	Solution
	How It Works
	toggleClass()
	toggle()

	3-12. Creating Image-Based Rollovers
	Problem
	Solution
	How It Works

	3-13. Adding and Removing Text in Response to Events
	Problem
	Solution
	How It Works

	3-14. Applying Styles in Response to Events
	Problem
	Solution
	How It Works

	3-15. Displaying Word Balloons
	Problem
	Solution
	How It Works

	3-16. Creating “Return to Top” Links
	Problem
	Solution
	How It Works

	3-17. Offering “Read More...” links
	Problem
	Solution
	How It Works
	Reading Less
	Applying an Animation Effect

	3-18. Displaying Text with an Animation Effect
	Problem
	Solution
	How It Works
	Adding a Mouseover Event

	3-19. Replacing Text with a Sliding Effect
	Problem
	Solution
	How It Works

	3-20. Making an Image Scroll
	Problem
	Solution
	Hiding the Image After Scrolling
	Fading Out the Image After Scrolling
	Making the Image Grow While Scrolling to the Right
	Making the Image Scroll to the Right and Again to the Left
	How It Works
	animate()
	fadeTo()

	3-21. Determining Which Key Was Pressed
	Problem
	Solution
	How It Works
	keypress()
	keydown()
	keyup()

	3-22. Preventing Event Bubbling
	Problem
	Solution
	How It Works

	3-23. Chaining Multiple Activities
	Problem
	Solution
	How It Works
	Removing Side Effects of Chaining

	Summary

	Form Validation
	4-1. Confirming a Required Field Is Not Left Blank
	Problem
	Solution
	How It Works

	4-2. Validating a Numerical Field
	Problem
	Solution
	Allowing Only Numerical Values
	Allowing Negative Values
	Allowing a Range of Values
	How It Works

	4-3. Validating Phone Numbers
	Problem
	Solution
	How It Works

	4-4. Validating a User ID
	Problem
	Solution
	How It Works

	4-5. Validating a Date
	Problem
	Solution
	How It Works

	4-6. Validating an Email Address
	Problem
	Solution
	How It Works

	4-7. Checking Whether a Checkbox Is Checked
	Problem
	Solution
	Checking checkboxes with the length Method
	How It Works

	4-8. Checking Whether a Radio Button Is Selected
	Problem
	Solution
	How It Works

	4-9. Checking Whether an Option in a Select Element Is Selected
	Problem
	Solution
	How It Works
	Multiple Select

	4-10. Applying Styles to Options and a Form Button
	Problem
	Solution
	How It Works
	Styling the Form Button
	Creating an Image Submit Button

	4-11. Checking and Unchecking All Checkboxes Together
	Problem
	Solution
	How It Works

	4-12. Validating Two Fields
	Problem
	Solution
	How It Works
	Adding a Submit Button

	4-13. Matching the Password and Confirm Password Fields
	Problem
	Solution
	How It Works
	.next()

	4-14. Disabling Certain Fields
	Problem
	Solution
	How It Works

	4-15. Validating a Complete Form
	Problem
	Solution
	How It Works
	Highlighting the Input Fields and Grouping Common Form Elements

	4-16. Serializing Form Data
	Problem
	Solution
	How It Works
	Serializing the Checkboxes, Radio Button and Select Element
	How It Works
	Using the serializeArray() Method

	Summary

	Page Navigation
	5-1. Writing a Breadcrumb Menu
	Problem
	Solution
	How It Works

	5-2. Adding a Hover Effect to Menu Items
	Problem
	Solution
	How It Works

	5-3. Creating a Contextual Menu
	Problem
	Solution
	How It Works

	5-4. Creating a Navigation Menu with Access Keys
	Problem
	Solution
	How It Works

	5-5. Creating a Context Menu on Right-Click
	Problem
	Solution
	How It Works

	5-6. Creating Two Menus with Separate Menu Items
	Problem
	Solution
	How It Works

	5-7. Creating Two Menus with Submenu Items
	Problem
	Solution
	How It Works
	:first

	5-8. Making an Accordion Menu
	Problem
	Solution
	How It Works

	5-9. Making a Dynamic Visual Menu
	Problem
	Solution
	How It Works

	Summary

	Visual Effects
	6-1. Displaying Images Horizontally and Vertically
	Problem
	Solution
	How It Works
	.eq()
	.length
	Display Images Vertically

	6-2. Creating a Horizontal Image Slider
	Problem
	Solution
	How It Works

	6-3. Displaying an Image that Scrolls Left and Becomes Invisible When Clicked
	Problem
	Solution
	How It Works
	Making the Scrolling Image Appear at the Center of the Browser Window
	How It Works – Part 2

	6-4. Creating an Image that Scrolls Left, Disappears, and Reappears at the Right
	Problem
	Solution
	How It Works

	6-5. Scrolling an Image at the Center of the Browser Window
	Problem
	Solution
	How It Works
	setTimeout()

	6-6. Showing Images One After the Other on Hover
	Problem
	Solution
	How It Works
	Making a Slide Show

	6-7. Scrolling an Image Vertically
	Problem
	Solution
	How It Works
	Making the Images Scroll in a Small Window at the Center of the Browser Window
	How It Works
	Making the Scroller Scroll Upward

	6-8. Scrolling an Image Horizontally
	Problem
	Solution
	How It Works
	Pausing the Scroll on Hover
	Scrolling to the Right

	6-9. Making a News Scroller
	Problem
	Solution
	How It Works
	News Scroller Using the .css() Method
	How It Works
	Making the News Scroller Pause on Hover

	6-10. Displaying an Enlarged Image on Mouseover
	Problem
	Solution
	How It Works
	Enlarging the Icon Itself on Hover
	How It Works – Enlarging the Icon Itself
	Making a Content Slider
	How It Works – The Content Slider

	6-11. Showing Images Pagewise
	Problem
	Solution
	How It Works

	6-12. Shuffling Images in Either Direction
	Problem
	Solution
	How It Works

	6-13. Writing a Pendulum Scroller
	Problem
	Solution
	How It Works

	6-14. Scrolling Images Using Arrays
	Problem
	Solution
	Scrolling an Image over Other Images
	Scrolling Only the Image that Is Hovered Over
	Fading Out and Replacing an Image
	Scrolling One Image Left and One Image Right, and Fading Out the Middle

	Summary

	Dealing with Tables
	7-1. Highlighting a Table Row on Hover
	Problem
	Solution
	How It Works

	7-2. Highlighting Alternate Columns
	Problem
	Solution
	How It Works
	:nth-child()
	Highlighting Alternate Rows
	Highlighting the Column that Is Hovered On
	Highlighting the Column Heading While Hovering
	Highlighting Individual Cells of the Table When Hovered On

	7-3. Filtering Rows
	Problem
	Solution
	How It Works
	Hiding the Selected Row

	7-4. Hiding the Selected Column
	Problem
	Solution
	How It Works
	Filtering out Columns
	How It Works

	7-5. Paginating a Table
	Problem
	Solution
	How It Works

	7-6. Expanding and Collapsing List Items
	Problem
	Solution
	How It Works

	7-7. Expanding and Collapsing Table Rows
	Problem
	Solution
	How It Works
	Rows with + and – Icons

	7-8. Sorting List Items
	Problem
	Solution
	How It Works

	7-9. Sorting a Table
	Problem
	Solution
	Determining Which Column Heading Is Clicked
	How It Works
	Sorting a Column in Ascending Order
	The > Symbol
	Sorting a Column in both Ascending and Descending Order
	How It Works

	7-10. Filtering Rows from a Table
	Problem
	Solution
	How It Works

	Summary

	Ajax
	8-1. Displaying a Welcome Message
	Problem
	Solution
	How It Works
	Using the GET HTTP method of request
	Making POST requests

	8-2. Performing Authentication
	Problem
	Solution
	How It Works

	8-3. Validating a User Name
	Problem
	Solution
	Validating user name using a regular expression
	How It Works

	8-4. Validating an Email Address
	Problem
	Solution
	Validating two fields together
	How It Works

	8-5. Using Auto complete
	Problem
	Solution
	Getting names generated from the database
	How It Works

	8-6. Importing HTML
	Problem
	Solution
	Importing only desired elements
	How It Works

	8-7. Getting JSON Data
	Problem
	Solution
	How It Works

	8-8. Getting XML data
	Problem
	Solution
	Displaying roll, first name and marks from XML file
	How It Works

	8-9. Paginating tables
	Problem
	Solution
	How It Works

	Summary

	Using Plugins
	9-1. Filtering on any column of a table with a limit on rows
	Problem
	Solution
	How It Works

	9-2. Annotating an image with comments
	Problem
	Solution
	How It Works

	9-3. Dragging and dropping table rows
	Problem
	Solution
	How It Works

	9-4. Getting, serializing and clearing form controls
	Problem
	Solution
	fieldValue()
	fieldSerialize()
	clearForm()
	How It Works

	9-5. Submitting the Form via Ajax
	Problem
	Solution
	Performing validation before submitting the form (in form of AJAX request)
	How It Works

	9-6. Finding the exact position and dimension of an element
	Problem
	Solution
	Finding offset and position
	offset()
	position()
	scrollTop() and scrollLeft()
	How It Works

	9-7. Displaying images in a carousel
	Problem
	Solution
	How It Works

	9-8. Selecting a Date with a Datepicker
	Problem
	Solution
	How It Works

	9-9. Sorting tables
	Problem
	Solution
	How It Works

	Summary

	Using CSS
	10-1. Distinguishing HTML Elements
	Problem
	Solution
	How It Works

	10-2. Applying Styles to an Element Nested Inside another Element
	Problem
	Solution
	How It Works

	10-2. Indenting Paragraphs
	Problem
	Solution
	How It Works

	10-3. Applying an Initial Cap to a Paragraph
	Problem
	Solution
	How It Works

	10-4. Removing the Gap between Heading and Paragraph
	Problem
	Solution
	How It Works

	10-5. Applying Styles to Heading Text
	Problem
	Solution
	How It Works

	10-6. Indenting the First Line of Multiple Paragraphs
	Problem
	Solution
	How It Works

	10-7. Creating Paragraphs with Hanging Indents
	Problem
	Solution
	How It Works

	10-8. Creating a Bordered Pull Quote
	Problem
	Solution
	How It Works

	10-9. Creating a Pull Quote with Images
	Problem
	Solution
	How It Works

	10-10. Applying List Properties to List Items
	Problem
	Solution
	How It Works

	10-11. Applying Styles to Only Selected List Items
	Problem
	Solution
	Applying Styles to the List Items Selected with a Child Selector
	Applying Styles to List Items to Which a CSS Class Is Not Applied
	How It Works

	10-12. Placing Dividers between List Items
	Problem
	Solution
	How It Works

	10-13. Applying Image Markers to the List
	Problem
	Solution
	How It Works

	10-14. Creating Inline Lists
	Problem
	Solution
	How It Works

	10-15. Applying Styles to Hyperlinks
	Problem
	Solution
	How It Works

	10-16. Assigning Different Dimensions to HTML Elements
	Problem
	Solution
	How It Works

	10-17. Placing HTML Elements
	Problem
	Solution
	Making a Two-Column Layout
	Reversing the Columns
	How It Works

	10-18. Creating a Multicolumn Layout
	Problem
	Solution
	Applying Floats
	Increasing Gutter Size between Columns
	How It Works

	10-19. Wrapping Text around Images
	Problem
	Solution
	How It Works

	10-20. Placing a Drop Shadow behind an Image
	Problem
	Solution
	How It Works

	10-21. Changing the Cursor When the Mouse Moves over a Link
	Problem
	Solution
	How It Works

	10-22. Displaying a Long Piece of Text within a Specific Area
	Problem
	Solution
	How It Works

	10-23. Making a Rounded-Corner Column
	Problem
	Solution
	How It Works

	10-24. Applying Text Decorations
	Problem
	Solution
	How It Works

	10-25. Scaling Images
	Problem
	Solution
	How It Works

	10-26. Setting a Background Image
	Problem
	Solution
	How It Works

	10-27. Centering a Background Image in the Browser
	Problem
	Solution
	How It Works

	10-28. Making the Background Image Stationary
	Problem
	Solution
	How It Works

	Summary

	Index
	¦Symbols
	¦A
	¦B ¦C
	¦E
	¦D
	¦F
	¦H
	G
	¦
	¦I
	¦L
	¦J
	M
	¦
	¦K
	¦N
	O
	¦
	¦P
	¦R
	S
	¦
	¦T
	V
	¦
	¦U
	¦W
	¦X
	¦Z

