
www.allitebooks.com

http://www.allitebooks.org

jQuery Tools UI Library

Learn jQuery Tools with clear, practical examples
and get inspiration for developing your own ideas
with the library

Alex Libby

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

jQuery Tools UI Library

Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: February 2012

Production Reference: 1160212

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84951-780-5

www.packtpub.com

Cover Image by Mudimo Okondo (mudimo@okhabitat.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Alex Libby

Reviewers
Jake Kronika

Deepak Vohra

Mudimo Okondo

Acquisition Editor
Kartikey Pandey

Technical Editors
Vanjeet D'souza

Pramila Balan

Project Coordinator
Joel Goveya

Proofreader
Kevin McGowan

Indexer
Tejal Daruwale

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

www.allitebooks.com

http://www.allitebooks.org

About the Author

Alex Libby holds a Masters' degree in e-commerce from Coventry University,
and currently works as a Sharepoint Technical Analyst for a well-known parts
distributor based in the UK. Alex has used jQuery Tools as part of his daily work
for the last 18 months, and enjoys the challenge of working out simple solutions
to common issues using jQuery and jQuery Tools, particularly using a progressive
enhancement methodology.

Prior to this, he spent a number of years in IT Support, working in the banking,
health, and defense publishing industries. Alex has also been instrumental in
releasing the current version of jQuery Tools as featured in jQuery Tools UI Library,
and enjoys helping out others in the forums to figure out solutions to their issues
when using the software.

I would like to thank my family and friends for their support
while writing the book. I would also like to thank Tero Piiranen
for releasing such an awesome library, and to Brad Robertson and
Mudimo Okondo for helping with tips, bug fixes for the current
release of jQuery Tools, the awesome flower pictures used in the
demos, and inspiration for the book.

I would particularly like to thank Joy Jones, without whom I
probably would never have considered writing—you've done more
than you probably could ever realize, Joy!

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Jake Kronika, a web designer and developer with over 15 years of experience,
brings to this book a strong background in front-end development with JavaScript
and jQuery, as well as significant training in server-side languages and frameworks.

Having earned a Bachelors of Science degree in Computer Science from Illinois
Wesleyan University in 2005, with a minor in Business Administration, Jake went
on to become Senior User Interface (UI) Specialist for Imaginary Landscape LLC, a
small web development firm in the Ravenswood neighborhood on the north side of
Chicago. In this role, the foundations of his strengths in Cascading Style Sheets (CSS)
and JavaScript (JS) were honed and finely tuned.

From there, Jake went on to work for the Sun-Times News Group, owner of the
Chicago Sun-Times and numerous suburban newspapers in Chicago. It was in this
role that he was initially exposed and rapidly gained expert skills with the jQuery
framework for JS.

Following intermediate positions as Technology Consultant with Objective Arts,
Inc, and as UI Prototyper for JP Morgan Chase, Jake moved across the United States
to Seattle, WA, where he assumed his current role of Senior UI Software Engineer
with the Cobalt Group, an online marketing division of Automatic Data Processing
Inc (ADP) Dealer Services. Since 1999, he has also operated Gridline Design &
Development (so named in 2009), a sole proprietorship for web design, development,
and administration.

Jake has reviewed two other books by Packt Publishing, namely, Django JavaScript
Integration: AJAX and jQuery, authored by Jonathan Howard (2011) and JQuery UI 1.8:
The User Interface Library for jQuery, authored by Dan Wellman (2011).

www.allitebooks.com

http://www.allitebooks.org

Deepak Vohra is a consultant and a principal member of the NuBean.com
software company. Deepak is a Sun Certified Java Programmer and Web Component
Developer. He has worked in the fields of XML and Java programming and J2EE for
over five years.

Deepak is the co-author of Pro XML Development with Java Technology published by
Apress and was the technical reviewer for WebLogic: The Definitive Guide published
by O'Reilly. Deepak was also the technical reviewer for the Course Technology PTR
book Ruby Programming for the Absolute Beginner, and the technical editor for the
Manning Publications book Prototype and Scriptaculous in Action.

Deepak is also the author of the Packt Publishing books JDBC 4.0 and Oracle
JDeveloper for J2EE Development, Processing XML Documents with Oracle JDeveloper 11g,
and EJB 3.0 Database Persistence with Oracle Fusion Middleware 11g.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: Getting Started	 7

jQuery Tools basics and rules: a primer	 8
The role of HTML	 8
The role of JavaScript and jQuery	 8
The role of CSS	 9

Using tools for graphic design and presentation	 10
Using tools for development	 10
Downloading the library	 12

But I want more… using the CDN links	 13
Rolling your own tools – using the download builder	 14

Using Firebug	 14
Including and initializing the tools	 16

Using global configurations	 16
Best practices for events and API calls	 17

Application Programming Interface (API)	 18
jQuery Tools events	 19

Before and after events	 19
Supplying events	 20

The event object	 22
Creating jQuery Tools plugins	 22
Using jQuery Tools plugins and effects	 23

Effects	 24
Performance of jQuery Tools	 24

Reduce the number of HTTP requests	 25
jQuery Tools are available through CDN	 25
Adding an expires header	 25
GZIP components	 25

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Minifying JavaScript	 26
Summary	 26

Chapter 2: Getting along with your UI Tools	 27
UI tools – a template	 28
What is an overlay?	 28

Overlay for the perfect eye candy	 28
Usage	 29
Project: building a viewer for Google Maps	 29

Creating the basic HTML structure	 29
Adding in the overlay	 30
Setting up and configuring the overlay JavaScript	 30
Adding the styling and visual effects	 31

Tooltips – the only web fundamentals you need	 34
Usage	 34
Impress everyone with slide effect and dynamic plugins	 35
Project: building a book "buy now" using tooltip	 35

Setting up the basic HTML	 36
Adding in the tooltip CSS styles	 36
Configuring the Tooltip	 37

For everything else – there's Scrollable	 39
Usage	 39
Project: building a mini gallery	 40

Setting up the basic HTML	 40
Time for some JavaScript magic	 42
Time for some styles	 44

Tabs in action	 46
Usage	 46
Project: building a rolling slideshow	 47

Setting up the basic HTML	 47
Adding the visual effects	 48
Configuring the Tab effects	 51

Summary	 53
Chapter 3: Form Tools	 55

Using Validator	 55
Why basic Validator?	 56
Usage	 56
Project: improving styling, and adding custom field validators	 57

Creating the basic HTML structure	 57
Adding in the form details	 58
Styling the form	 59
The final part – the script	 61

Table of Contents

[iii]

"It seems very negative, this onFail…"	 65
Validator – a final thought	 66

Making your HTML5 date input look and behave the way
you want with Dateinput	 66

Usage	 66
Project: styling and localization	 67

Creating the basic HTML	 67
Setting up the JavaScript	 68
Adding the styling	 69

A final thought	 71
Controlling your HTML5 range input with RangeInput	 71

Why basic RangeInput?	 72
Usage	 72
Project: building a product gallery	 73

Setting up the basic HTML structure	 73
Adding in the book images	 74
Adding in the JavaScript functionality	 75
Styling the gallery	 75

Some final comments	 78
Summary	 78

Chapter 4: jQuery Tools Toolbox	 79
Using FlashEmbed to include Flash movies	 80

Usage	 80
HTML setup	 80
JavaScript setup	 81

Demo: let's embed a Flash movie	 81
Space for the video	 81
Styling for the video	 82
Script to make the video work	 82

Some final comments	 83
Going backwards with history	 83

Usage	 83
Showing off content with Expose	 85

Usage	 85
Demo: using Expose to display video content	 86

Setting up the basic HTML structure	 87
Adding the video content	 87
Adding the styling	 88
Getting the player to work	 89

Take control of your mouse with mousewheel	 90
Usage	 90

Summary	 91
Index	 93

Preface
"Let's face it—do you really need drag and drop, resizable windows, or sortable
lists on your website…?"

If the answer is no, then welcome to "jQuery Tools UI Library"!

jQuery Tools is a compact, powerful library that contains enough components to
provide the most important functionality on any website. Many UI libraries contain
a myriad of components, such as list boxes, ranges, sortable lists, and the like. While
this can be used to build a range of online-based applications that are useful in
company intranets, for example, it is not so useful when building normal websites.

Websites are built to present information and to look good—jQuery Tools is
designed to enhance any site that uses them, while harnessing the power that
modern JavaScript techniques can offer. With jQuery Tools, you are not tied to any
predefined HTML, CSS structures, or strict programming rules—you can include
the library in your pages and start to use its functionality immediately. The tools are
designed to be customized to your liking, while maintaining the core functionality
that goes to make up JQuery Tools.

If you're a newcomer to jQuery Tools, and want to explore the functionality
available, this is the book for you. With easy to follow step-by-step instructions,
you'll find what you need to get you going with using this library, and discover how
you can implement some complex functionality, with just a few lines of code.

So let's get on with it...

Preface

[2]

What this book covers
Chapter 1, Getting Started with jQuery Tools UI Library, introduces you as the
reader to the library billed as the "missing UI library for the Web". It explains how
to get hold of jQuery Tools, outlines the tools you will need to develop webpages
which use this functionality, and outlines some of the best practices to use with
jQuery Tools.

Chapter 2, Getting Along with your UI Tools, delves into each part of the jQuery Tools
UI library, and how to implement the basic tools into your website. Within each
part of the UI library, a walk-through demonstration is included, as well as a more
advanced example of what can be achieved using the library.

Chapter 3, Form Tools, introduces the form functionality within jQuery Tools. It
outlines how to submit and validate content in a form, as well as entering numbers
using RangeInput and dates using DateInput. It also demonstrates how to ensure
all content is validated correctly, using HTML5 standards.

Chapter 4, jQuery Tools Toolbox, introduces a small collection of tools which, in most
cases, can either be used on their own, or as part of one of the main tools from the
Library. It notes that although some of the technologies are becoming outdated
(thanks to the modern advances of HTML, CSS3 and JavaScript), they can still
perform some useful functions within your projects.

Using jQuery Tools in WordPress is an additional PDF available for download from
Packt's website, which accompanies this book. It contains some useful ideas and
examples for using jQuery Tools within the confines of a content management
system. Although the examples are based around the well-known and popular
WordPress™ system, the principles could easily be applied to other, similar systems.

Who this book is for
This book is great for those new to the jQuery Tools library. It is assumed that you
won't have any prior knowledge of the library, but will likely have a basic knowledge
of JavaScript syntax and concepts. This book will allow you grasp the basics of using
the library, and how to use it to build striking, customisable webpages.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Preface

[3]

Code words in text are shown as follows: "We will now build a custom effect called
myEffect, which we will add to the overlay code."

A block of code is set as follows:

<!-- first overlay. id attribute matches our selector -->
<div class="simple_overlay" id="mies1">
 <!-- large image -->

 <!-- image details -->
 <div class="details">
 <h3>The Barcelona Pavilion</h3>
 <h4>Barcelona, Spain</h4>
 <p>The content ...</p>
 </div>
</div>

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

<!-- first overlay. id attribute matches our selector -->
<div class="simple_overlay" id="mies1">
 <!-- large image -->

 <!-- image details -->
 <div class="details">
 <h3>The Barcelona Pavilion</h3>
 <h4>Barcelona, Spain</h4>
 <p>The content ...</p>
 </div>
</div>

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Clicking
the Next button moves you to the next screen."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[4]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded to our website, or added to any list
of existing errata, under the Errata section of that title.

Preface

[5]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Getting Started
If you've built web pages, or developed websites using HTML over the last few
years, you will most likely have heard of jQuery—you may not have heard of
jQuery Tools.

Web professionals all over the world have been trying to make the Internet a more
usable place to visit, using JavaScript to try to overcome some of the shortcomings
of HTML and CSS. jQuery's power and flexibility lie in its deceptive simplicity,
making navigating a document, selecting elements on a page, and handling events,
straightforward, while smoothing out any browser differences. There are a number
of UI libraries available on the Internet that offer functionality based on jQuery.
jQuery Tools is one of them—while although many libraries were designed to
offer a wide variety of functionality, jQuery Tools was designed to offer only the
functionality that is most useful on a normal website, in other words not a JavaScript
application based site. Its small size belies its power and flexibility, offering a huge
amount of functionality in just 4 KB.

In this chapter we shall learn:

•	 A little of the history of jQuery Tools, and some of its guiding principles
•	 How to download and install the library, or use the CDN links
•	 Some best practices for writing events and using the API

So let's begin...

www.allitebooks.com

http://www.allitebooks.org

Getting Started

[8]

jQuery Tools basics and rules: a primer
"Let's face it—do you really need drag-and-drop, resizable windows, or sortable
lists in your web applications…?"

If the answer is no, then welcome to jQuery Tools! jQuery Tools were designed to
provide a number of Web 2.0 goodies found on websites around the Internet, that
can be extended, customized, and styled the way you desire. The principle aim of
the tools is to provide a bare bones framework of functionality, that offers just the
functionality needed, and nothing else—the API framework can then be used to
extend the tools in a myriad of ways. With this in mind, let's take a look at the ethos
of jQuery Tools in a little more detail.

The role of HTML
The jQuery Tools library was designed with a high degree of flexibility, where you
can progressively enhance the functionality of a normal website, while still allowing
for browsers that don't support JavaScript. When using the toolset, you are not
limited to any particular HTML structure; you are free to use any suitable elements
such as ul, ol, div, or dl at will. It is crucial to understand what you are doing, and
how to choose the right element for your specific requirement. A root element, such
as a div can equally be used, although this is not obligatory. For example, you could
have an overlay's root element that contains a mix of HTML, images, forms, and
Flash objects, as your overlaid information.

The role of JavaScript and jQuery
Although the JQuery Tools library was built using jQuery, it is, with the exception
of FlashEmbed, not a prerequisite to using the Tools. While you can use the tools
without any prior knowledge of jQuery, it can help with extending or enhancing the
functionality within the library, and on your site. If you would like to delve more
into using jQuery with the tools, then a useful place to start is by looking at selectors
and object literals, such as in the following example:

// two jQuery selectors and a configuration given as an object literal
$("#content ul.tabs").tabs("div.panes > div", {
 // configuration variables
 current: 'current',
 effect: 'fade'
});

Chapter 1

[9]

The preceding code can be split into two parts—the first part selects all ul elements
with the class name of tabs, contained in a div called content, in a similar manner
to CSS. The tabs functionality is then set to operate on all div elements held directly
within the div with a CSS style class of panes. You can use a similar format of syntax
when configuring any of the tools, although it would be wise to take care over typing
the right number of brackets! Irrespective of which tool you use, you will need to
encompass any script within a $(document).ready() block, so that the script can be
loaded at the appropriate time—you may find it preferable to load the script into the
footer of your website (this is required for some of the tools).

The role of CSS
jQuery Tools was designed to allow website designers to abstract code away from
the main "block", and into separate style sheets. You will notice that CSS style names
have been used where possible. This makes styling the code more flexible, as styles
can be changed at will, without needing to change the main code—though it is not
a recommended practice to mix CSS styles within JavaScript or HTML code. As an
example, you can style an instance of an active tab within tabs:

$("ul.tabs").tabs("div.panes > div", {current: 'active'});

After that you can style the current tab with CSS as follows:

ul.tabs .active {
 color: '#fff';
 fontWeight: bold;
 background-position: 0 -40px;
}

This allows you to control the appearance of an instance of tabs completely, even
down to changing the default style names used. This is useful if you already have
existing styles which would otherwise conflict, or if you need to follow a particular
CSS naming convention.

The jQuery Tools website hosts a number of demos, which
contain CSS style files that are available for you to use—it is
worth checking these out to get a feel for the basics on styling the
Tools. All of the demos are fully documented and use good CSS
styling practices.

Getting Started

[10]

Using tools for graphic design and presentation
As a developer using jQuery Tools, you have a high degree of freedom when it
comes to styling the Tools on your site. This means you can use pure CSS, images,
or a mix of both within your designs.

CSS-based design
Using pure CSS within your design means a reduced reliance on images, as most
(if not all) of the styles can be handled by using pure CSS. This is particularly true
with the advent of CSS3, which can handle styles such as gradients in backgrounds,
that would otherwise require images. However, it does mean that while pages are
lightweight and easy to maintain, it is not possible to achieve everything using
just CSS, at least up to version 2. The advent of CSS3 is beginning to change this,
although your latest stunning design may not work in older browsers!

Image-based design
If images are more to your style, then the best method is to use an image sprite,
which is the favored method within jQuery Tools. Sprites can be positioned exactly,
using CSS, and as long as an appropriate image format is used, will display in most
(if not all) browsers. This allows you to achieve exactly the look and feel you are
after, without any compromise, although it will make pages heavier, and it could
mean more use of scrollbars, if you have a large amount of content within a Tool
(such as an Overlay).

CSS and image-based design
This method gives you the best of everything—CSS can be used to keep the page
download times low, while images can be used where CSS styles are inappropriate
in your environment. jQuery Tools uses both within its demos, you are equally
free to use both within your own designs, with no restriction on CSS coding or the
requirement to use frameworks.

Using tools for development
For the purposes of completing the exercises in this book, you will need a text editor.
Most PCs will come with one—usually Notepad on Microsoft Windows, or TextEdit
on Mac OS X. There are literally thousands available for free or low cost, with
varying degrees of features.

Chapter 1

[11]

If you are an existing developer, you will likely have your editor of choice already;
for those of you who are new to editing, it is a matter of trying a few, and seeing
which you prefer. There are some features I would recommend you enable or use:

•	 View line numbers: This feature is handy during validating and debugging
any scripts that you write. This can be of particular help when requesting
assistance in the forums, as others can indicate any line(s) at fault, and help
provide a fix or workaround.

•	 View syntax colors: Most editors will have this feature switched on by
default. This feature displays code using different colors, which helps
you to identify different syntax, or broken mark-up or CSS rules.

•	 Text wrapping: This allows the editor to wrap code lines around onto the
next line, which reduces the need to scroll through long lines of code when
editing. It makes it easier to scroll through a nice, correctly indented, block
of code.

You may also want an editor which allows you to upload files using FTP, or view
your local directories. This avoids the need to go hunting for files in your OS's file
explorer, or using an external FTP application to get copies of files, and cuts down the
time it takes to edit files. To view the results of the experiments and samples, you will
need a browser—jQuery Tools uses CSS3 styling, so a modern browser will provide
the most feature-rich and design-rich experience. This includes the following:

•	 Firefox 2.0+
•	 Internet Explorer 7+
•	 Safari 3+
•	 Opera 9+
•	 Chrome 1+

Any of these browsers can be downloaded for free from the Internet. If you are
using Internet Explorer or Firefox and if you do not already have them installed, it
is strongly recommended that you also install or activate the appropriate developer
toolbar for your chosen browser:

•	 IE Developer Toolbar: It is available from http://www.microsoft.com/
download/en/details.aspx?id=18359

•	 Firebug: Developer tool for Firefox, which can be downloaded from
http://www.getfirebug.com

•	 Chrome: This is already built in, and can be activated by right-clicking an
element and selecting Inspect element

Getting Started

[12]

•	 Safari: You can activate its developer toolbar under the Advanced tab in
Safari Preferences

•	 Opera: You can download its developer toolbar from http://www.opera.
com/dragonfly/

All will be very useful in helping you debug your scripts, when designing sites that
use jQuery Tools.

Downloading the library
The first thing we need to do is to get a copy of the jQuery Tools library, from the
official website (http://www.flowplayer.org/tools).

The modular nature of jQuery Tools means that you can choose the components you
want to download, or you can choose to download a copy of the entire library. This
is important if you want to keep your pages as light as possible.

There are several options available for the purpose of downloading the jQuery Tools
library: you can use the free CDN links (even for production use), download
a custom version, or download an uncompressed version from the Github area.

If you include this statement in your code:

<script src=
 "http://cdn.jquerytools.org/1.2.6/jquery.tools.min.js">
</script>

You will have the following tools available:

•	 jQuery 1.6.4
•	 Tabs
•	 Tooltip
•	 Scrollable
•	 Overlay

The tools will be loaded with maximum performance no matter where your user
is located on the globe. If you already have jQuery included on your page, you
can simply remove it and use only the script src statement (as it already includes
jQuery), or, if you prefer, insert the tools without jQuery link, for example:

<script src=
 "http://cdn.jquerytools.org/1.2.6/all/jquery.tools.min.js">
</script>

http://flowplayer.org/tools/documentation/performance.html

Chapter 1

[13]

Then reference jQuery separately; the best practice is to use Google's CDN link,
which is (at time of writing):

<script src=
 "http://ajax.googleapis.com/ajax/libs/jquery/1.6.4/jquery.min.js>
</script>

But I want more… using the CDN links
If you prefer, you can use one of the other CDN links provided for referencing
jQuery Tools—CDN stands for Content Delivery Network, which is a high-speed
network that allows fast provision of content around the world.

There are several advantages to using this method:

•	 If you've already been to a site where jQuery Tools have been used, then it
will already be cached, and this means you don't have to download it again.

•	 Content is made available through local servers around the world, which
reduces the download time, as you will get a copy of the code from the
nearest server.

The following are some of the links available for you to use, more are available on
the jQuery Tools website:

<!-- UI Tools: Tabs, Tooltip, Scrollable and Overlay -->
<script src=
 "http://cdn.jquerytools.org/1.2.6/tiny/jquery.tools.min.js">
</script>

<!-- ALL jQuery Tools. No jQuery library -->
<script src=
 "http://cdn.jquerytools.org/1.2.6/all/jquery.tools.min.js">
</script>

<!-- jQuery Library + ALL jQuery Tools -->
<script src=
 "http://cdn.jquerytools.org/1.2.6/full/jquery.tools.min.js">
</script>

For the purpose of this book, you should use the main CDN link, so that we can
make sure we're all on the same page.

Getting Started

[14]

Rolling your own tools – using the
download builder
The modular design of jQuery Tools allows you to pick and choose which
components you need for your projects. If your project doesn't need all of the
components, then it's good practice to only download those that you need, to
reduce the page weight and keep page response time as low as possible.

The download builder (http://flowplayer.org/tools/download/index.html)
produces minified versions of the tools you choose, into one file—this can include
jQuery if desired. The default download (shown overleaf) includes the major tools,
which are Overlay, Tabs, Scrollable, and Tooltips—you can change these selections
to only download those components you need for a specific project. You can also
choose to include jQuery 1.6.4 at the same time, which helps to cut down page load
times, as explained earlier in this chapter.

Using Firebug
If you are using a debugger such as Firebug, you can test which tools are included
and what are their versions by running the following command from the console:

console.dir($.tools);

You'll see something similar to the following screenshot:

You can see each tool you have included and the version number. If you drill down
a little deeper into these global settings you will see each tool's default configuration
values (a good source for documentation!), which are discussed more extensively in
the important Using Global Configuration section of this chapter.

http://flowplayer.org/tools/documentation/basics.html#global_configuration
http://flowplayer.org/tools/documentation/basics.html#global_configuration

Chapter 1

[15]

Getting Started

[16]

Including and initializing the tools
The next step is to include the Tools on your page—you can either use one of the
CDN links as shown earlier, or include a custom version using the download builder.

Then you need to initialize the tools—they all follow the same pattern, which starts
with a jQuery selector, followed by the initialization function (or constructor), and its
configuration object. Here is an example using the scrollable tool, where elements are
contained within an element whose ID is scroll:

$("#gallery").overlay({
 fixed: true,
 closeOnClick: false
})

When using the API format, the constructor will always return the jQuery object that
is a collection of the elements that are selected by the selector, which you can then
continue to work with, as shown in the following code snippet:

// return elements specified in the selector as a jQuery object
 var elements = $("div.scrollable").scrollable();

elements.someOtherPlugin().Click(function() {
 // do something when this element is clicked
});

Using global configurations
Sometimes you may find that you want to specify a default configuration value, so
that you can avoid the need to set the same settings repeatedly in your code. jQuery
Tools has a global configuration option, $.tools.[TOOL_NAME].conf, which is:

// all overlays use the "apple" effect by default
$.tools.overlay.conf.effect = "apple";

This means you then don't need to include it in your JavaScript code for Overlay:

// "apple" effect is now our default effect
$("a[rel]").overlay();

You can then override it if you need to:

$("a[rel]").overlay({effect: 'default'});

Chapter 1

[17]

If you want to change multiple configuration options at a global level, you can use
the jQuery built-in $.extend method:

$.extend($.tools.overlay.conf, {
 speed: 400,
 effect: 'apple'
});

The list of various configuration settings can be found on each
individual tool's documentation page.

You can use something like Firebug to get more details of the global configuration,
by typing in this command console.dir($.tools.overlay.conf); which will
produce images similar to this:

Best practices for events and API calls
In this section we will look at some of the best practices for each of the tools,
including how to use the API, write events, and design plug-ins using jQuery
Tools functionality.

www.allitebooks.com

http://www.allitebooks.org

Getting Started

[18]

Application Programming Interface (API)
As time goes by, you will want to extend your skills with jQuery Tools—you can do
this by using its API, which was built to expose methods and access properties for
each tool in the library. The API hides the internal values from the outside world,
which is good programming practice.

To begin with, you need to create an instance of the API for that tool, such as:

//get access to the API
Var api = $("#scroller").data("scrollable")

You will notice that the argument passed to data in brackets is that of the tool
name—this could be changed to overlay, for example. When you have the API
instance created, you can start using it, by calling its methods:

//do something upon scroll
 api.onSeek(function() {
 // inside callbacks the "this" variable is a reference
 // to the API
 console.info("current position is: " + this.getIndex())
 });

You can easily see the available API methods a jQuery Tool is using with Firebug,
which can act as a good source of information:

Using the API means that you are less likely to need all of jQuery's DOM methods,
as most of the methods you need will be available from within the tool. This includes
methods to retrieve information, as well as set values or invoke actions.

http://getfirebug.com/

Chapter 1

[19]

You can even chain methods onto an API instance of a tool, as the method will
always return the API:

// normal API coding that programmers are accustomed to
var index = $("#example").data("tabs").click(1).getIndex();

If your selector returns multiple instances and you want to access a particular API,
you can do following:

// select the correct instance with a jQuery selector
var api = $(".scrollable:eq(2)").data("scrollable");

//or with traversing methods. it is just a matter of taste
api = $(".scrollable").eq(2).data("scrollable");

jQuery Tools events
Within the API, each tool can respond to events as specific points in time where an
action needs to be completed. A good example of this is Scrollable—each time you
scroll through images, for example, you could fire the onSeek event. You could add
your own custom responses (or listeners) each time this happens—this is particularly
useful if you want to extend the default behavior of the tools.

Event listeners are often referred to as callbacks—both terms
are equally valid.

Before and after events
You can add your own custom functionality to any of the Tools, as they provide
the before and after event methods for this purpose. These actions can equally
be cancelled using the onBefore event, such as in this example, which uses the
onBeforeClick callback for tabs:

$("#example").tabs(".panes > div", {

 // here is a "normal" configuration variable
 current: 'active',

 // here is a callback function that is called before the
 // tab is clicked
 onBeforeClick: function(event, tabIndex) {

 // the "this" variable is a pointer to the API. You can do
 // a lot with it.
 var tabPanes = this.getPanes();

Getting Started

[20]

 /*
 By returning false here the default behavior is cancelled.
 This time another tab cannot be clicked when "terms" are not
 accepted
 */
 return $(":checkbox[name=terms]").is(":checked");$(
 ":checkbox[name=terms]").is(":checked");
 }

});

Supplying events
There are three different ways of supplying event listeners in the tools:

Within the configuration
The first, and easiest, option is to include event listeners as part of your code directly:

$(".tabs").tabs({
 // do your own stuff here
 onClick: function() {
 ...
 var tabPanes = this.getPanes();
 }
});

A downside of using this option means that you can't specify multiple instances
of the same callback in the code. For example, including two different onClick
methods in the same configuration would result in an error.

In the previous example, the this variable is a reference to
the Tabs API.

Using jQuery's bind method
The second method follows that used within jQuery, where you can assign multiple
listeners consecutively, in a chain:

// first callback
$(".tabs").bind("onClick", function() {
 // "this" is a reference to the DOM element
 var ulElement = this;
 ...
 // another one
}).bind("onClick", function() {
 // another one
 ...
});

http://flowplayer.org/tools/tabs/index.html#api

Chapter 1

[21]

Using this method offers greater flexibility, as it allows you to remove specific event
listeners within the code, or to bind several instances of the same event listener
within the same call. In the preceding example, the CSS .tabs selector is set to
perform two actions when the onClick event is triggered by any of the tabs using
that selector. The tools also allow you to bind the same event listener to multiple
event trigger types in a single call:

// the same event listener is called before and after
// a tab is clicked
$(".tabs").bind("onBeforeClick onClick", function() {
});

It is strongly recommended that you try to familiarize yourself with this functionality
in some depth, if you aren't already familiar with event binding—there is plenty of
good reference material available in this area.

Supplying listeners from the API
The tools also allow you to supply one or more callbacks from within the API:

// grab the API with jQuery's data method
var api = $(".tabs").data("tabs");

// supply an event listener
api.onBeforeClick(function() {
 // supply another
}).onClick(function() {
 ...
});

You can use the internal this variable as a reference to any of the Tools APIs, which
will allow you to chain multiple event listeners together; this is more suitable for
developers who are not already familiar with jQuery:

// loop through each instances
$(".tabs").each(function() {
 ...
 // assign the onClick listener to a single instance
 $(this).data("tabs").onClick(function() {
 ...
 });
});

Getting Started

[22]

The event object
If you are using callbacks, it is worth noting that the Tools adhere to the current
W3C standards, when passing the event object as the first argument for each
callback function:

// the event object is the first argument for *all* callbacks
// in jQuery Tools
api.onClick(function(event) {

 /* If you have multiple callbacks of the same type this prevents
 the rest of the callbacks from being executed. */
 event.stopImmediatePropagation();
 ...
 // retrieve the value returned by the previous callback function
 event.result;
 event.result;
 ...
 // whether CTRL, ALT, SHIFT, or ESC was being pressed
 var alt = event.altKey,
 ctrl = event.ctrlKey,
 shift = event.shiftMey,
 esc = event.metaKey;
 ...
 // this is how to get the original triggering element, such
 // as a handle to the scrollable navigator item that was clicked
 // inside an onSeek event
 var element = e.originalTarget || e.srcElement;
});

Within the scope of jQuery Tools, the preventDefault() is identical to returning
false from the callback; this is considered to be the accepted practice for cancelling
the default event.

Creating jQuery Tools plugins
The Tools were designed to work in tandem with jQuery, which allows you to create
jQuery Tools-based plugins. Using jQuery, you can easily alter or extend the default
behavior of the tools, with the added benefit of being able to reference the Tools API,
and use any number of callback functions. To give you some idea, here's a simple
example of a plugin that uses Google Analytics to track each click, every time a tab
is selected:

// create jQuery plugin called "analytics"
$.fn.analytics = function(tracker) {

Chapter 1

[23]

 // loop through each tab and enable analytics
 return this.each(function() {

 // get handle to tabs API.
 var api = $(this).data("tabs");

 // setup onClick listener for tabs
 api.onClick(function(event, index) {
 tracker.trackEvent("tabs", "foo", index);
 });

 });
};

For those of you not familiar with writing jQuery plugins,
you may like to look at the jQuery 1.4. Plugin Development
Beginner's Guide, by Giulio Bai, published by Packt Publishing.

After you have included the plugin on your page, you can use the plugin in the
following manner, which follows the standard format for developing the plugins:

// initialize tabs and the analytics plugin.
$("ul.tabs").tabs("div.panes > div").analytics(tracker);

jQuery Tools require that the tabs be initialized before the analytics plugin, so you
cannot write:

$("ul.tabs").analytics(tracker).tabs("div.panes > div");

Using jQuery Tools plugins and effects
The design of jQuery Tools allows you to make full use of jQuery's chaining
capabilities, which means you can create chain patterns, such as the following:

// initialize a few scrollables and add more features to them
$(".scroller").scrollable({circular: true}).navigator("#myNavi").
autoscroll({interval: 4000});

Here, the base Scrollable call will turn any element with the .scroller class into a
scrollable and the Tools' minimalist design means you are free to then extend or alter
the behavior by use of additional code or plugins, such as adding the navigator or
autoscroll, whilst keeping code easier to read and file sizes smaller. The net result is
that you can then set up a number of scrollables on a page, which are all activated
using the same single line of code, but which contain their own local configuration
values (this could equally be global). This decorator philosophy forms part of the
whole ethos of jQuery Tools (and indeed jQuery as a whole). Most tools come with
a number of plugins that are available for download, or you can add your own
custom-built ones if desired.

Getting Started

[24]

Effects
Coupled with the plugin architecture available with most tools, you can also design
your own effects for use with some of the tools. This will allow you to change the
default behavior of the tool being used, whereas plugins would be used to extend
that behavior. For example, you can add an effect to control how overlay opens or
closes—an example of this is the apple effect, which comes with overlay:

// use the "apple" effect for the overlays
$("a[rel]").overlay({effect: 'apple'});

The use of additional effects means that you can hive off code into separate files,
which makes the base overlay code smaller and more organized. You can then take
this a step further by creating more effects that can be referenced from separate files,
and dropped into your code as necessary. You could also set a specific effect to be
used as your default effect, from within a global configuration; this reduces the need
to specify in each instance it is used in your code. You can also achieve the same effect
with configuration values—if you have a number of values that are set as part within
an effect, you can then set these to apply by default at a global level, for every instance
where this effect is used. For example, you may have an explosionSpeed value set in
your effect—the following would turn it into a global configuration variable:

$.tools.overlay.conf.explosionSpeed = 500;

It is worth having a look at http://gsgd.co.uk/sandbox/jquery/easing/, the
home of the jQuery Easing plugin; there are a number of effects there, that can be
adapted for use within jQuery Tools.

Performance of jQuery Tools
A key design facet of jQuery Tools, as outlined by Yahoo's five rules of best practice,
is that designers should try to reduce the number of images, stylesheets, and scripts
that have to be downloaded. Yahoo argues that this is the key to improving the
speed of your site, as most of the time spent looking at a site is from the front-end.
The five rules created by Yahoo!, and to which jQuery Tools adheres, are:

1.	 Reduce the number of HTTP requests.
2.	 Use a CDN link, for incorporating scripts into your code where possible.
3.	 Add an expires header.
4.	 GZIP components where possible.
5.	 Minimize the JavaScript by compressing the code.

http://gsgd.co.uk/sandbox/jquery/easing/
http://gsgd.co.uk/sandbox/jquery/easing/

Chapter 1

[25]

If you include the following script link in your code, you will be able to respect these
five rules:

<script src="http://cdn.jquerytools.org/1.2.6/jquery.tools.min.js">
</script>

They can help to improve the performance of your site significantly and improve
your website performance roughly by 70 to 80 percent! You are encouraged to use
the CDN links that are made available, especially for production use; if you are
concerned about the file size you should download a combined script that contains
only those tools that you really need and follow the principles that are mentioned in
this chapter.

Reduce the number of HTTP requests
A good practice is to minimize the number of separate JavaScript or CSS files
used in a site—this helps to reduce the amount of time taken to fetch content from
different sources. This is allowed for within jQuery Tools, which uses one combined
JavaScript file when either downloading a custom build of the library, or using the
CDN links.

jQuery Tools are available through CDN
There are a number of CDN links that are available for use—using these can result in
a 15 to 20 percent increase in efficiency, in comparison to using manual, static links.

Adding an expires header
JQuery Tools are built with expires headers set on all of the tools, which makes
them cacheable; this will reduce subsequent response times from each visit to a site
by as much as 50 percent.

GZIP components
If gzipping has been enabled on a server, then this can help cut file sizes by as much
as 65 percent; most modern browsers claim to be able to handle gzipping, when it
has been enabled on a server. All jQuery Tools downloads available through the
CDN links are gzipped, to help reduce download times.

http://flowplayer.org/download/index.html#combine

Getting Started

[26]

Minifying JavaScript
jQuery Tools scripts are minified using Google Closure Compiler to reduce the file
sizes and increase performance, as this yields a higher compression ratio than simply
packing the same files.

Summary
In this chapter, we learned about:

•	 The basics of jQuery Tools, and some of the rules that it follows
•	 How to download a copy of the library or to use the CDN links provided
•	 Some of the best practices for writing events and API calls when using

jQuery Tools

We discussed how you can leverage jQuery Tool's modular nature, to download
only those components you need for your projects. We also looked at some of the
rules and best practices that should be used when designing pages or projects that
use jQuery Tools.

Now that we've learned about the basics of jQuery Tools, and how to install it, we're
ready to start delving into using it, which is the subject of the next chapter.

Getting along with your
UI Tools

"Actions speak louder than words…"

The sixteenth century writer, Michel de Montaigne, is often quoted with inventing
this phrase, which the author believes is quite apt for jQuery Tools—after all, the
best way to learn about new tools is to try to use them, right?

In the previous chapter, we learned a little about the whole ethos of jQuery Tools,
and that the emphasis is placed less on the JavaScript code, but more on the ability
of tools to be styled in lots of different ways, by changing the CSS and altering some
of the configuration options of the tool being used.

It is time now to look at some of these tools in detail—this chapter (and the next)
contains a number of projects which use various tools and showcase a bit of what
can be achieved by using CSS and minimal JavaScript.

In this chapter we shall learn how to:

•	 Build a map lightbox effect using Google™ Maps
•	 Build a simple gallery, that showcases a number of images
•	 Construct a quicklink tooltip, to allow the purchase of a book
•	 Display images in a Polaroid-styled slideshow

So, as someone once said…"What are we waiting for..?" Let's get on with it...

All of the images listed in this chapter's examples are
available in the code download that accompanies this
book.

www.allitebooks.com

http://www.allitebooks.org

Getting along with your UI Tools

[28]

UI tools – a template
Before we look at the examples in detail, let's set up the basic framework that will be
used in each project. Open up your favorite text editor, and copy the following code:

<!DOCTYPE html>
<html>
 <head>
 <title>jQuery Tools standalone demo</title>
 <!-- include the Tools -->
 <script src=
 "http://ajax.googleapis.com/ajax/libs/jquery/1.6.4/jquery.min.js">
 </script>
 <script src=
 "http://cdn.jquerytools.org/1.2.6/all/jquery.tools.min.js">
 </script>
 </head>
 <body>
 </body>
</html>

Save this as a template—the demos in this book use a similar format, so this will help
you save time later, when we look at some of the other tools available as part of the
jQuery Tools UI library. Let's begin with overlays.

What is an overlay?
Overlays are a significant part of the JavaScript landscape—if you want to direct a
visitor's attention to a specific element on your site, then this tool will achieve this
to great effect. Overlays can be used to display virtually anything, such as different
styles of overlays for displaying products, showing information or warning boxes,
or to display complex information—these are all possible with jQuery Tools' Overlay.

Overlay for the perfect eye candy
jQuery Tools' Overlay can contain all sorts of information, such as videos, images,
maps, and the like—everything can be styled using CSS. It has a variety of features,
such as a scripting framework, event model (to perform an action when an event is
triggered), as well as adding custom effects.

Chapter 2

[29]

Usage
The general way to set up an overlay is as follows:

// select one or more elements to be overlay triggers
$(".my_overlay_trigger").overlay({

 // one configuration property
 color: '#ccc',

 // another property
 top: 50

 // ... the rest of the configuration properties
});

When you click on one of the triggers it will open an overlay that is being specified
by the trigger's rel attribute.

It is worth having a look at http://flowplayer.org/
tools/overlay/index.html, which details all of the
possible configuration options available for use with an overlay.

Let's see how this works in practice—we will build a simple map viewer that uses
Google™ Maps, and the Apple effect from overlay.

Project: building a viewer for Google Maps
We're going to use this concept to develop a lightbox effect, which uses Google™
Maps, for a client who needs to provide a map of where his office is, but doesn't
want to settle for a plain map on a page!

Creating the basic HTML structure
This example will use the Overlay tool from jQuery Tools, but with the "Apple"
theme. All of the images used in the example are available in the code download
that accompanies this book.

Remember the code template we set up at the beginning of this chapter? Grab a copy
of it now and save this as your overlay project file, so that we can then add in the
meat of the overlay demo. We will make one small change to it though—alter the
<body> tags to read as this:

<body class="no-js">
...
</body>

The reasons for this will become clearer as we progress through the demonstration.

Getting along with your UI Tools

[30]

Adding in the overlay
Next, let's add the code for the overlay trigger and overlay to the <body>:

<!-- trigger elements -->
Location of Packt's Office

<!-- overlayed element -->
<div class="apple_overlay" id="link1">
 <iframe width="675" height="480" frameborder="0" scrolling="no"
 marginheight="0" marginwidth="0"
 src="http://maps.google.co.uk/maps?q=B3+2PB&hl=en&
sll=52.483277,-1.900152&sspn=0.003679,0.009645&vpsrc=0&
t=m&ie=UTF8&hq=&hnear=Birmingham,+West+Midlands+B3+2PB,
+United+Kingdom&ll=52.484296,-1.90115&
spn=0.015681,0.025749&z=14&iwloc=A&output=embed">
 </iframe>
 <p>Packt's office in Birmingham</p>
</div>

This follows the normal overlay and trigger structure required for an overlay, but
with the addition of the <iframe> markup, to handle external content. The trigger
here is the <a> markup which, when clicked, opens the map showing the location of
Packt's office and displays it in the overlay.

Setting up and configuring the overlay JavaScript
The next part to add in is the all-important script—although the code that calls the
overlay functionality is only one line, we have to add a block of configuration code
that tells it to use expose to hide the page contents, then show the overlay itself, and
finally to find the URL given in the overlay HTML, and show this on screen.

Add the following code at the bottom of your web page, before the </body> tag:

<script>
$(function() {

 $("a[rel][href!='']").overlay({

 // some mask tweaks suitable for modal dialogs
 mask: {
 color: '#000',
 loadSpeed: 200,
 opacity: 0.8
 },

Chapter 2

[31]

 effect: 'apple',

 onBeforeLoad: function() {
 var overlaid = this, overEl = this.getOverlay();

 // grab wrapper element inside content
 overEl.find(".contentWrap").load(
 this.getTrigger().attr("href"));

 overEl.appendTo("body");
 $(".close", this.getOverlay()).click(function(e){
 overlaid.close();
 });
 }

 });
});
</script>

Adding the styling and visual effects
Finally, we need to add some styling, as the resulting page won't look very pretty!
The following code is crucial for showing the overlay, you can always change the
backgrounds being used, if you want to have a different color of overlay:

<style>
 /* body, a:active and : focus only needed for demo; these
 can be removed for production use */

 body { padding: 50px 80px; }
 a:active { outline: none; }
 :focus { -moz-outline-style: none; }

 .apple_overlay {

 /* initially overlay is hidden */
 display: none;

 /* growing background image */
 background-image: url(white.png);

 /* width after animation - height is auto-calculated */
 width: 675px;

 /* some padding to layout nested elements nicely */
 padding: 25px;

 margin: 20px;
 }

Getting along with your UI Tools

[32]

 /* default close button positioned on upper right corner */
 .apple_overlay .close {
 background-image: url(close.png);
 position: absolute;
 right: -10px;
 top: -10px;
 cursor: pointer;
 height: 35px;
 width: 35px;
 }

 #overlay {
 height: 526px;
 width: 675px;
 }

 div.contentWrap {
 height: 526px;
 width: 675px;
 overflow: hidden;
 }

 a, body {
 font-family: Arial, Tahoma, Times New Roman;
 }

 body.no-js a[rel] {
 /* initially overlay is hidden if JavaScript is disabled */
 display: none;
 }
 body.js .apple_overlay {
 /* initially overlay is hidden if JavaScript is enabled */
 display: none;
 }
</style>

It is worth noting that if you want to change the background,
there are some additional backgrounds available from the jQuery
Tools website at http://flowplayer.org/tools/overlay/
index.html, or in the code download that accompanies this
book. You can always add your own instead—have a look at
some of the demos on the site to see how to do this.

Chapter 2

[33]

Notice how we used no-js in the original HTML markup? The reason for this is
simple: it maintains progressive enhancement, which means that if someone has
JavaScript turned off, the overlay will still be hidden until you click on the trigger link!

The overlay will work now, you will see something similar to the following image:

This only scratches the surface of what can be done with an overlay. You could add
your own custom effects, set to show as a modal dialog, or even show different
images as your "overlay", which could be enlarged versions of smaller images,
such as a book.

Getting along with your UI Tools

[34]

Tooltips – the only web fundamentals
you need
Arguably the second most important UI widget, the tooltip serves a similar purpose
to the overlay, in that it can be used to highlight important pieces of information
which relates to an element on screen, such as hints on how to fill in a form, a
quicklink prompt to purchasing something, or highlighting information about a
concept being discussed on site (in a similar fashion to having footnotes in a book).
jQuery Tools' Tooltip is no different in operation to others, but its design makes it
very powerful and flexible. Let's have a look at it in a little more detail.

Usage
Tooltips are very easy to set up, the basic version uses the folowing structure:

<!-- elements with tooltips -->
<div id="demo">

</div>

The trick to note with tooltips is that you can generate them in one of two ways,
by using the title attribute or by including the tooltip block directly after the
tooltip trigger.

Tooltips that just need to display normal text are best
achieved by using the [title] attribute. If you need to
display more, or include HTML formatting, then use the
manual method, with an individual CSS style class or ID
selector.

Calling a tooltip can be as easy as simply using the selector element, which is
normally the [title] attribute, which contains the text displayed as the tooltip:

$("[title]").tooltip();

If you need to display HTML elements, then you can use the manual format, which
can contain any amount of HTML, but will use the element immediately after the
trigger instead:

$(".trigger").tooltip();

Chapter 2

[35]

We can take this even further by adding in some additional options—the slide and
dynamic plugins.

Using the [title] attribute on its own is not advisable; this will cause a
performance hit as jQuery Tools will need to iterate through each instance
to see if it should be converted to a tooltip. It is strongly recommended
that a style class or ID should be used to improve performance.

Impress everyone with slide effect and
dynamic plugins
The standard Tools' tooltips will serve a purpose, but have at least one inherent
limitation—what happens if the browser window is resized? The tooltip doesn't
allow for this by default, unless you add in the "dynamic" plugin; the dynamic
plugin takes into account where the edges of the viewport are, and "dynamically"
positions the tooltip accordingly. For extra functionality, you can also get the tooltip
to slide in from the top, left, right, or bottom, rather than just appear in the same
direction (from bottom to top). There are more details on the site on how to set up
this additional feature.

In the meantime, let's have a look at a project that wouldn't be out of place on a
website belonging to a bookshop or publisher, where you can use a "quicklink"
to get more information and prices on a book, as well as buy a copy.

Project: building a book "buy now" using
tooltip
You know the drill, you surf to a website where you see a book you want. You don't
want to drill down lots of pages, just to buy it, right? I thought so—enter the Tooltip
"quicklink". We're going to build in a little tooltip that pops up when you hover over
a book, so that you can hit the Buy button directly.

All of the images are available as part of the code download
that accompanies the book, or can be obtained directly from
the jQuery Tools website.

Getting along with your UI Tools

[36]

Setting up the basic HTML
Go grab a copy of the HTML template we set up at the beginning of this chapter,
so that we can then copy in the basic trigger and tooltip HTML required to make
this work:

<!-- trigger element. a regular workable link -->

<!-- tooltip element -->
<div class="tooltip">

 <p class="bookavail">Book and eBook available now</p>

 <dl>
 <dt class="label">Book only price:</dt>
 <dt class="price">£25.19 save 10%</dt>

 <dt class="label">eBook only price:</dt>
 <dt class="price">£16.14 save 15%</dt>

 <dt class="buynow">

 </dt>
 </dl>
</div>

It's worth noting that, although the code isn't connected to an e-commerce system,
you can easily adapt it:

 <tr>
 <td></td>
 <td>
 </td>
 </tr>

Adding in the tooltip CSS styles
Now, here comes the crucial part—the styling. jQuery Tools follow the principle of
minimal JavaScript coding, preferring to let most of the work be done by CSS. The
Tooltip feature is no different, so let's add it to the code below the <head> section,
to see the tooltip work:

<style>
 .tooltip { display: none; background: url(black_big.png);
 height: 145px; padding: 35px 30px 10px 30px;

Chapter 2

[37]

 width: 310px; font-size: 11px; color: #fff; }

 .tooltip img { float: left; margin: 0 5px 10px 0; }

 .bookavail { margin-top: -5px; color: #f00; font-weight: bold;
 font-size: 14px; }

 dt.label { float: left; font-weight: bold; width: 100px; }

 dt.price { margin-left: 210px; }

 dt.buynow a img { margin-top: 10px; margin-left: 110px; }
</style>

It is important to note that the .tooltip class provides the
base CSS required for any Tooltip to work; the rest of the CSS is
specific to this demonstration.

We need some more styles though..!
Whilst the styles above will produce a workable demo, the presentation will not be
perfect; we need to add additional styles to tweak the positioning of some of the
elements, and fine tune the overall view. Add the following to your earlier stylesheet:

body { margin-top: 100px; margin-left: 200px; }

#booktip img { padding: 10px; opacity: 0.8;
 filter: alpha(opacity=80); -moz-opacity: 0.8; }

.bookavail { margin-top: -5px; color: #f00; font-weight: bold;
 font-size: 14px; }

Configuring the Tooltip
Last but by no means least, here's the JavaScript code required for the Tooltip to
work. This is split into three parts:

•	 The first part configures the tooltip appearance on screen
•	 The second controls the fade in and out of the tooltip
•	 The final part adjusts the position of the tooltip on screen, to allow for the

current browser window dimensions (that is, if it has been resized or is being
displayed in full)

<script>
 $(document).ready(function() {

www.allitebooks.com

http://www.allitebooks.org

Getting along with your UI Tools

[38]

 $("#booktip").tooltip({
 effect: 'slide',
 position: 'top right',
 relative: true,

 // change trigger opacity slowly to 1.0
 onShow: function() {
 this.getTrigger().fadeTo("slow", 1.0);
 },

 // change trigger opacity slowly to 0.8
 onHide: function() {
 this.getTrigger().fadeTo("slow", 0.8);
 }
 }).dynamic({ bottom: { direction: 'down', bounce: true }});
 });
</script>

For a simple project, the effect can be very striking—here's how it should look:

You can really go to town on the effects when using Tooltip—one such effect I have
seen in use is that of a div that slides out, when hovering over an image; it may seem
a little strange, but if you think about it, it is the same effect as used here. It still uses
the Tooltip functionality from the Tools library, the only difference (which highlights
the true power of jQuery Tools), is the CSS styling used!

Chapter 2

[39]

For everything else – there's Scrollable
If you have a need to scroll through information on your site, then you will want to
take a look at another component available within jQuery Tools: Scrollable. This tool
can be used in many different ways, such as video galleries, product catalogues and
news tickers—the structure is essentially the same throughout, but jQuery Tools'
flexibility allows you to produce different designs, using the power of CSS.

Usage
This is the basic structure of Scrollable:

<!-- "previous page" action -->
next
<!-- root element for scrollable -->
<div class="scrollable">
 <!-- root element for the items -->
 <div class="items">

 <!-- 1-3 -->
 <div>

 </div>

 <!-- 4-6 -->
 <div>

 </div>

 <!-- 7-9 -->
 <div>

 </div>
 </div>
</div>

<!-- "next page" action -->
previous

Getting along with your UI Tools

[40]

You will see that the structure is made up of a number of images grouped together,
encased in a number of div tags, with additional div tags to look after the navigation
elements. Although the demo only shows three images per group, you can easily add
more images to each group, if desired.

To really show how this could work, let's have a look at an example, which would
not be out of place on a hypothetical client's site, such as that of a photographer.

Project: building a mini gallery
The client has a number of images which need to be displayed on his site—he wants
to be able to scroll through each group of images, and then click on one to show it in
an enlarged viewer. Sounds simple enough, huh?

Setting up the basic HTML
To get started, let's put together the basic HTML structure. Open up your favorite
text editor, and paste in the following:

<html>
 <head>
 </head>
 <body>
 <div id="swapframe">
 <div id="viewer">
 <div class="loadingspin">

 </div>
 </div>
 <div id="caption">x</div>
 <div id="scrollablecontainer">

 <div id="overscroll">
 <div class="items">
 <div class="item">
 <div>
 <a rel="odontoglossum"
 href="images/odontoglossum.jpg">
 <img src="thumbnails/odontoglossum_tn.jpg"
 align="middle" />

 </div>
 <div>
 <a rel="forest orchid"

Chapter 2

[41]

 href="images/forest%2520orchid.jpg">
 <img src="thumbnails/forest%2520orchid_tn.jpg"
 align="middle" />

 </div>
 <div>

 <img src="thumbnails/brassia_tn.jpg"
 align="middle" />

 </div>
 <div>
 <a rel="paphiopedilum"
 href=" images/paphiopedilum.jpg">
 <img src="thumbnails/paphiopedilum_tn.jpg"
 align="middle" />

 </div>
 <div>
 <a rel="zygopetalum"
 href=" images/zygopetalum.jpg">
 <img src="thumbnails/zygopetalum_tn.jpg"
 align="middle" />

 </div>
 </div>
 <div class="item">
 <div>
 <a rel="cactus flower"
 href=" images/cactus%2520flower.jpg">
 <img src="thumbnails/cactus%2520flower_tn.jpg"
 align="middle" />

 </div>
 <div>
 <a rel="african violet"
 href=" images/african%2520violet.jpg">
 <img src="thumbnails/african%2520violet_tn.jpg"
 align="middle" />

 </div>
 <div>
 <a rel="pink camelia"

Getting along with your UI Tools

[42]

 href=" images/pink%2520camelia.jpg ">
 <img src="thumbnails/pink%2520camelia_tn.jpg"
 align="middle" />

 </div>
 <div>
 <a rel="red camelia"
 href=" images/red%2520camelia.jpg ">
 <img src="thumbnails/red%2520camelia_tn.jpg"
 align="middle" />

 </div>
 <div>
 <a rel="white camelia"
 href=" images/white%2520camelia.jpg ">
 <img src="thumbnails/white%2520camelia_tn.jpg"
 align="middle" />

 </div>
 </div>
 </div>
 </div>

 </div>
 </div>
 </body>
</html>

In previous examples, we used the template file that we created at the beginning of
this chapter. This time around, I've provided the whole example, as there is some
additional HTML included here. I've included a loading animated GIF, as well as space
for an image caption.

It looks complicated, but in reality it isn't—it's following the same structure shown
above, but has a number of additional DIVs enclosing the HTML code; this is largely
to allow us to position the results on screen correctly, while still maintaining each
element in the right place .

Time for some JavaScript magic
Okay, now that we have the structure in place, let's add in the JavaScript code. Copy
in these two lines into your <head> area:

<script src=
 "http://ajax.googleapis.com/ajax/libs/jquery/1.6.4/jquery.min.js">

Chapter 2

[43]

</script>
<script src=
 "http://cdn.jquerytools.org/1.2.6/all/jquery.tools.min.js">
</script>

This initiates the calls to the jQuery and jQuery Tools libraries, so you can start to use
both. Here comes the critical part of this example, which you can copy in just below
the previous lines:

<script>
$(function(){
 $.ajaxSetup({
 cache: false,
 dataType: "text html"
 });

 $(".loadingspin").bind('ajaxStart', function(){
 $(this).show();
 }).bind('ajaxComplete', function(){
 $(this).hide();
 });

 $.fn.loadimage = function(src, f){
 return this.each(function(){
 $("").attr("src", src).appendTo(this).each(function(){
 this.onload = f;
 });
 });
 }

 $(".item img:first").load(function(){
 var firstpic = $(".item a:first").attr("rel");
 $("#caption").text(firstpic);
 $("#viewer").empty().loadimage("images/" + firstpic +
 ".jpg").hide().fadeIn('fast');
 });

 $(".item a").unbind('click.pic').bind('click.pic', function(e){
 e.preventDefault();
 var picindex = $(this).attr("rel");
 $("#caption").text(picindex);
 $("#viewer").empty().loadimage("images/" + picindex +
 ".jpg").hide().fadeIn('fast');
 });

 $("#overscroll").scrollable();

 $("a.browse").click(function(){

Getting along with your UI Tools

[44]

 $("#swapframe").load("ajax/" + state +
 ".html").hide().fadeIn('fast');
 });
</script>

This code provides the gallery and scrollable effect, it loads in each image as you
click on the thumbnail in the Scrollable. You can even add in an option effect that
fades out images, if you are hovering over one:

<script type="text/javascript">
$(function(){
 $('.item').children().hover(function() {
 $(this).siblings().stop().fadeTo(500,0.5);
 }, function() {
 $(this).siblings().stop().fadeTo(500,1);
 });
});

Time for some styles
If you try to run the previous code, it will work, but will look terrible—there will
be missing images, and you won't be able to navigate through the Scrollable, for
example. This is where the true power of jQuery Tools comes into play, most of the
real work is actually done in the CSS styling:

<style>
 #scrollablecontainer { position: relative; top: -30px;
 height: 52px; }

 /* prev, next, up and down buttons */
 a.browse { background:url(hori_large.png) no-repeat;
 display: block; float: left; width: 30px; height: 30px;
 float: left; margin: 10px; cursor: pointer;
 font-size: 1px;
 }

 /* right */
 a.right { background-position: 0 -30px; clear: right;
 margin-right: 0px;}
 a.right:hover { background-position: -30px -30px; }
 a.right:active { background-position: -60px -30px; }

 /* left */
 a.left { margin-left: 0; }
 a.left:hover { background-position: -30px 0; }
 a.left:active { background-position: -60px 0; }

Chapter 2

[45]

 /* disabled navigational button */
 a.disabled { visibility: hidden !important; }

 #overscroll { position: relative; float: left; width:
 550px; height: 50px; border: 1px solid #ccc;
 overflow: hidden; }

 .items { position: absolute; clear: both; width: 20000em; }
 .item { float: left; width: 550px; }
 .item div { float: left; width: 100px; height: 40px;
 margin: 5px; background: #ccc; }
</style>

These styles are crucial for setting up basic effects, such as providing navigation
buttons and the scrollable container.

Some extra styling
However, it could use some additional tweaks to make it really stand out. Let's add
those in now:

<link href=
 'http://fonts.googleapis.com/css?family=Cedarville+Cursive'
 rel='stylesheet' type='text/css'>

<style>
 #swapframe { height: 540px; width: 640px;
 padding: 25px 25px 0 20px; margin: 0 auto;
 background: transparent url(slideshow-bg.gif)
 no-repeat; background-size: 680px 540px;}

 #viewer { height: 355px; background: #000; }

 .loadingspin { float: center; margin-top: auto;
 margin-bottom: auto; }

 #caption { position: relative; top: -10px; width: 200px;
 margin: 0 auto; color: #000; text-align: center;
 font-size: 30px; font-family: 'Cedarville Cursive',
 cursive; padding-bottom: 35px; }
</style>

Getting along with your UI Tools

[46]

The code will transform the gallery into something useable; it even includes a
handwritten font for the caption, which uses Google™ Fonts. If all is well, you
should see something like the following:

This is just a small part of what you can do with Scrollable. You can go further, or
even combine Scrollable with other elements of Tools, such as an Overlay, which
would show a really impressive effect!

Tabs in action
It's time to take a look at the fourth and final part of the UI Tools section of jQuery
Tools—that of Tabs.

Tabs can be described as one of the most popular user interfaces on the Internet.
This is for good reason since they are easy to use and contain lots of information in
a confined space, which you can then organize in a more user-friendly manner. Let's
have a look at them in a little more detail.

Usage
The basic structure of Tabs is as follows:

<!-- the tabs -->
<ul class="tabs">
 Tab 1

Chapter 2

[47]

 Tab 2
 Tab 3

<!-- tab "panes" -->
<div class="panes">
 <div>pane 1 content</div>
 <div>pane 2 content</div>
 <div>pane 3 content</div>
</div>

These would then be activated as Tabs, by using the following JavaScript call:

$("ul.tabs").tabs("div.panes > div");

But, hold on; isn't this the basic code for Scrollable? Well, yes, there are some
similarities. But no, this is definitely the code for Tabs! There are some similarities
between the two tools, but it is important to note that they are not interchangeable.

This said, it's time to start building our next project.

Project: building a rolling slideshow
We're going to use the power of Tab's Slideshow plugin, to build a demo that could
be used on a photo gallery website. It's a slideshow styled as a Polaroid, but with
some additional functionality. It will use similar images to the Scrollable, but in a
different format—one that can easily be put on most websites. Similar effects are
used by some well-known companies with an Internet presence.

Setting up the basic HTML
To begin with, let's get out our text editor. Grab a copy of the template code from the
start of this chapter, and add the following lines to create the HTML base:

<div id="caption"></div>
<!-- container for the slides -->
<div class="images">
 <div>
 <img class="slides" src="images/odontoglossum.jpg"
 rel="odontoglossum" />
 </div>
 <div>
 <img class="slides" src="images/forest orchid.jpg"
 rel="forest orchid" />
 </div>

www.allitebooks.com

http://www.allitebooks.org

Getting along with your UI Tools

[48]

 <div>
 <img class="slides" src="images/brassia.jpg"
 rel="brassia" />
 </div>
 <div>
 <img class="slides" src="images/paphiopedilum.jpg"
 rel="paphiopedilum" />
 </div>
</div>

<div id="galprevnext">
 <div class="galleft">

 </div>

 <div class="galright">

 </div>
</div>

<!-- the tabs -->
<div class="slidetabs">
 1
 2
 3
 4
</div>

<div id="playcontrols">

</div>

This can be broken down into five distinct sections, namely the header, the container
for the pictures, the gallery controls, the tabs, and finally the player controls.

Adding the visual effects
The next section is the all-important styling—this comes in two parts, beginning with
the compulsory code for the Polaroid effect and the slideshow:

<link href=
 'http://fonts.googleapis.com/css?family=Cedarville+Cursive'
 rel='stylesheet' type='text/css'>

Chapter 2

[49]

<style type="text/css">

 body { padding-left:400px; padding-top: 50px; }

 /* container for slides */
 .images { border: 1px solid #ccc; position: relative;
 height: 450px; width: 502px; float: left; margin: 15px;
 cursor: pointer;

 /* CSS3 tweaks for modern browsers */
 -moz-border-radius: 5px;
 -webkit-border-radius: 5px;
 border-radius: 5px;
 -moz-box-shadow: 0 0 25px #666;
 -webkit-box-shadow: 0 0 25px #666;
 box-shadow: 0 0 25px #666; }

 /* single slide */
 .images div { display: none; position: absolute; top: 0; left: 0;
 margin: 3px; padding: 15px 30px 15px 15px;
 height: 256px; font-size: 12px; }

 /* tabs (those little circles below slides) */
 .slidetabs { position: absolute; margin: 350px 600px 0 440px;
 width: 100px; }

 /* single tab */
 .slidetabs a { width: 8px; height: 8px; float: left; margin: 3px;
 background: url(navigator.png) 0 0 no-repeat;
 display: block; font-size: 1px; color: #fff; }

 /* mouseover state */
 .slidetabs a:hover { background-position: 0 -8px; }

 /* active state (current page state) */
 .slidetabs a.current { background-position: 0 -16px; }

 /* prev and next buttons */
 .forward, .backward { float: left; margin-top: 120px;
 background: #fff url(nav.png) no-repeat;
 width: 35px; 	 height: 35px;
 cursor: pointer; z-index: 2; }

 /* next */
 .forward { background-position: -36px 0px ; }
 .forward:hover,
 .forward:active { background-position: -36px -36px; }

Getting along with your UI Tools

[50]

 /* prev */
 .backward:hover,
 .backward:active { background-position: 0 -36px; }

 /* disabled navigational button. is not needed when tabs
 are configured with rotate: true */
 .disabled { visibility: hidden !important; }

 #caption { color: black; margin-left: 35px; margin-top: 345px;
 position: absolute; width: 200px;
 font-family: 'Cedarville Cursive', cursive;
 font-size: 26px; }

 .slides { border-width: 0; height:310px; width:466px; }
</style>

Phew, there's a lot of style code there! Most of it relates to positioning the slides,
as well as providing the navigator buttons and caption.

You will see the real power of CSS styling here, as the Polaroid
effect is generated entirely using CSS3 code; it is for this
reason it won't look so spectacular in older browsers. However
jQuery Tools is about using HTML5 (and CSS3), and less for
older browsers. You could still get around this by adding the
appropriate styles for a suitable background image if desired.

"Mmm…I want more!"
When it came to writing the project for this book, I wasn't entirely happy—I wanted
more. It took a little rearranging and tweaking, but finally with some help from a
fellow user of jQuery Tools, Mudimo, I managed to put together a little something
extra, based on one of his excellent demos.

The first part is to add some buttons to control the slideshow, which replace the
standard ones that could be added, that are available from the jQuery Tools site.
Add the following in as an additional set of styles:

<style>
 #galprevnext { position: absolute; width: 640px; height: 539px; }

 .galleftpic, .galrightpic { width: 270px; height: 539px;
 cursor: pointer; }

 .galleftpic { float: left; }

 .galrightpic { float: right; }

Chapter 2

[51]

 .galprevpic, .galnextpic { display: block; position: absolute;
 top: 140px; width: 30px; height: 30px;
 margin: 0 10px; }

 .galprevpic { float: left; background: url(prevnext.png) 0 0
 no-repeat; margin-left: 9px; }

 .galnextpic { float: right; background: url(prevnext.png)
 –30px 0 no-repeat; margin-left: 100px; }

 .hideit { visibility: hidden; cursor: arrow; }

 .showit { visibility: visible; cursor: pointer; }

 #galprevnext a { text-decoration: none; }

 #galprevnext a:hover { color: #f00; }

 #galprevnext a.current { color: #00f; }

 #galprevnext .disabled { visibility: hidden; }

 .galleft, .galright { height: 310px; margin-top: 35px;
 position: absolute; width: 150px; }
 .galleft { margin-left: 35px; }
 .galright { margin-left: 360px; }

 #playcontrols { clear: both; margin-left: 375px;
 margin-top: 350px; padding-right: 40px;
 position: absolute; }
</style>

You'll notice that this tries where possible to keep to the standards of abstracting
images out of the main code, which is one of the main tenets of jQuery Tools. The
second part of his code was to add a little additional jQuery, which alters the CSS
style of hideit to showit and back again, depending on whether the mouse is
hovering over either of the buttons (the two styles control visibility of the buttons).
As a final tweak, we add some additional styling to the player controls, by replacing
the original buttons with styled icons, and using a little CSS to place these next to the
navigator "dots" just below the pictures.

Configuring the Tab effects
We move onto the final part of the code, which is to add in the JavaScript required to
make this all work. Add this at the bottom of your page:

$(function() {

 $(".slidetabs").tabs(".images > div", {

 // enable "cross-fading" effect

Getting along with your UI Tools

[52]

 effect: 'fade',
 fadeOutSpeed: "slow",

 // start from the beginning after the last tab
 rotate: true,

 // here is a callback function that is called before the
 // tab is clicked
 onClick: function(event, tabIndex) {
 var str = $("img").eq(tabIndex).attr("rel");
 $("#caption").html(str);
 }

 // use the slideshow plugin, which has its own config
 })
 .slideshow({
 prev: ".galleft",
 next: ".galright"
 });
});

This is the all-important part of the code—it configures the Tabs effect to use the
slideshow plugin, and extract the text from the rel tag in the code, which is used
as the caption. Note how, as the next and back buttons use non-default CSS class
names, these need to be set in the configuration options for the slideshow plugin,
so it knows how to operate correctly.

Setting the button visibility
Remember the two buttons I decided to add in earlier, as extras? The next two
sections of code achieve two goals; the first controls the visibility of those two
buttons, the second allows you to stop and start the slideshow.

If we take a look at the first section, which controls the visibility—jQuery changes the
style from hideit to showit, which in turn alters the visibility from hidden to visible
and back again, when hovering over either of the buttons:

$(".galleft").mouseover(function(){
 $(".galprevpic").removeClass('hideit').addClass('showit');
}).mouseout(function(){
 $(".galprevpic").removeClass('showit').addClass('hideit');
});

$(".galright").mouseover(function(){
 $(".galnextpic").removeClass('hideit').addClass('showit');
}).mouseout(function(){
 $(".galnextpic").removeClass('showit').addClass('hideit');
});

Chapter 2

[53]

We then need to be able to control the playback of the slideshow. We can do this by
adding event handlers to both image buttons, like so:

$("#playbutton").click(function(){
 $(".slidetabs").data("slideshow").play();
});

$("#stopbutton").click(function(){
 $(".slidetabs").data("slideshow").stop();
});

And there you have it, if all is well, you should have something looking like
the following screenshot. The tools available in jQuery Tools are all infinitely
customizable, this demo is just one small example of what we can possibly achieve
within the confines of this book:

Summary
In this chapter, we looked at some examples of what is possible with the main
components of jQuery Tools, namely Scrollable, Overlay, Tooltips, and Tabs. All are
infinitely customizable, the examples discussed in the chapter outline how, while the
basic functionality of each tool may be minimal, the overall architecture of each tool
allows for heavy customization using CSS as desired, and hopefully it has given you
some inspiration for your own projects.

Now that we've learned about the four main tools, it is time to turn our attention to
the second group of tools available as part of the Tools Library, namely Validator,
DateInput, and RangeInput, which will be the subject of the next chapter.

Form Tools
Ask yourself a question: do you like filling in forms? If, as I suspect, the answer is
no, then join the masses—there is nothing worse than filling in a form online, only
to find you've entered in something incorrectly, and you have to go back and
change it…

Enter jQuery Tools' Form Tools!

This group of 3 useful tools may not be as popular as some of the other tools in the
library, but they still serve a useful function.

In this chapter we will learn about the following:

•	 How to use Validator to ensure a form is correctly filled out, or to display
errors when this is not the case

•	 How to update the basic style of DateInput, using elements of jQuery
UI's themes

•	 How to turn RangeInput into a browser, so you can scroll through a number
of products, and some tips on how to combine it with other tools

So…what are you waiting for? Let's get started with looking at Validator.

Using Validator
Validators can be used to ensure whether a form is correctly filled out. Validators can
also be used to display the errors.

Form Tools

[56]

Why basic Validator?
The art of form filling, as defined by Wikipedia, means that you cannot simply
submit forms with any old rubbish, or saying "put rubbish in, and you get rubbish
out" will definitely be true. It is crucial to ensure that the content you enter at least
conforms to some form of minimum standard—one of the tools that can help with
this is Validator. Let's have a look at this component of the Tools library in a little
more detail.

Data validation is the process of ensuring that a program
operates on clean, correct and useful data.

Usage
The basic code for Validator is in two parts—the first part is the HTML structure,
with the second part a single line call to the Validator tool:

<form id="myform" novalidate="novalidate">
 <fieldset>
 <h3>Sample registration form</h3>
 <p> Enter bad values and then press the submit button. </p>
 <p>
 <label>email *</label>
 <input type="email" name="email" required="required" />
 </p>
 <p>
 <label>website *</label>
 <input type="url" name="url" required="required" />
 </p>
 <p>
 <label>name *</label>
 <input type="text" name="name" pattern="[a-zA-Z]{5,}"
 maxlength="30" />
 </p>
 <p>
 <label>age</label>
 <input type="number" name="age" size="4" min="5" max="50" />
 </p>
 <p id="terms">
 <label>I accept the terms</label>
 <input type="checkbox" required="required" />
 </p>

Chapter 3

[57]

 <button type="submit">Submit form</button>
 <button type="reset">Reset</button>
 </fieldset>
</form>

Once you have the form set up, then you need to add the call for Validator—here's
the basic code:

$("#myform").validator();

Notice that this includes the novalidate attribute on
the form—this is to force IE not to try to use the HTML5
validator that works in more modern browsers, but to use
that from jQuery Tools instead.

With this in mind, let's put it into practice, by setting up a demonstration of how we
can use Validator in a form.

Project: improving styling, and adding
custom field validators
We're going to use an existing form, available from the jQuery Tools site, and add
some tweaks in the form of additional validators, and changes to the configuration.

Creating the basic HTML structure
Open up the text editor of your choice, and copy in the following code—you will
notice that it follows a similar pattern to most of the projects in this book:

<!DOCTYPE html>
<html>
 <head>
 <title>jQuery Tools standalone demo</title>
 <!-- include the Tools -->
 <script src="http://cdn.jquerytools.org
 /1.2.6/full/jquery.tools.min.js"></script>
 </head>
 <body>
 </body>
</html>

www.allitebooks.com

http://www.allitebooks.org

Form Tools

[58]

Adding in the form details
Okay. Now we have the basic structure in place, let's start filling it out with a little
detail. First up is the form content, with the fields that we are going to validate—so
copy in the code below in between the <body> tags:

<form id="myform">
 <fieldset>
 <h3>Sample registration form</h3>
 Oops - it seems there are some errors!
 Please check and correct them.

 <p> Enter bad values and then press the submit button. </p>

 <p>
 <label>email *</label>
 <input type="email" name="email" id="email"
 required="required" />
 </p>
 <p>
 <label>website *</label>

 <input type="url" name="url" required="required" />
 </p>
 <p>
 <label>name *</label>
 <input type="text" name="name" pattern="[a-zA-Z]{5,}"
 maxlength="30" />
 </p>
 <p>
 <label>time *</label>
 <input type="time" name="time" required="required" data-
 message="Please enter a valid time"/>
 </p>
 <p>
 <label>age</label>
 <input type="number" name="age" size="4" min="5" max="50" />
 </p>
 <p>
 <label>password</label>
 <input type="password" name="password" minlength="4" />
 </p>
 <p>
 <label>password check</label>

Chapter 3

[59]

 <input type="password" name="check" data-equals="password" />
 </p>
 <p>
 <label>filename *</label>
 <input type="file" name="uploadfile" required="required" />
 </p>
 <p>
 <input type="phone" name="phone" data-message="Please
 enter a valid US telephone number." required="required"
 pattern="(?:1-?)?(d{3})[-.]?(d{3})[-.]?(d{4})" />
 </p>
 <p>
 <label>Gender</label>
 <select value="" required="required" name="sex">
 <option></option>
 <option value="male">Male</option>
 <option value="female">Female</option>
 </select>
 </p>
 <p id="terms">
 <label>I accept the terms</label>
 <input type="checkbox" required="required" />
 </p>
 <button type="submit">Submit form</button>
 <button type="reset" id="clearform">Reset</button>
 </fieldset>
</form>

Notice that there are a number of additional parameters that pop
up in the code, such as the pattern attribute in the Telephone input
field. These are used by Validator and/or its additional custom
validators, as a basis for validating text entered by the person
visiting the site.

Styling the form
Now that is done, we need to add in the all important styling—note that this does
include some additional styles for the purposes of this demo, but are not necessarily
required in your live projects:

<style>
/* body, a:active and : focus only needed for demo; these can be
removed for production use */
 body { padding: 50px 80px; }
 a:active { outline: none; }

Form Tools

[60]

 :focus { -moz-outline-style: none; }
 /* form style */
 #myform { background: #333 0 0; padding: 15px 20px; color:
 #eee; width: 440px; margin: 0 auto; position: relative;
 -moz-border-radius: 5px; -webkit-border-radius: 5px; border-
 radius: 5px; }
 /* nested fieldset */
 #myform fieldset { border: 0; margin: 0; padding: 0;
 background: #333 url(logo-medium.png) no-repeat scroll
 215px 40px; }
 /* typography */
 #myform h3 { color: #eee; margin-top: 0px; }
 #myform p { font-size: 11px; }
 /* input field */
 #myform input { border: 1px solid #444; background-
 color: #666; padding: 5px; color: #ddd; font-size: 12px;
 text-shadow: 1px 1px 1px #000; -moz-border-radius: 4px;
 -webkit-border-radius: 4px; border-radius: 4px; }
 /* take care here: support for :focus and :active limited in some
 browsers!
 #myform input:focus { color: #fff; background-color: #777; }
 #myform input:active { background-color: #888; }
 /* button */
 #myform button { outline: 0; border: 1px solid #666; }
 /* error message */
 .error { font-size: 11px; color: #f00; display: none; }
 .error p { margin:15px; margin-left: 20px; font-weight: bold;
 background-color: #fff; -moz-border-radius:4px;
 -webkit-border-radius: 4px; padding: 2px; border-radius: 4px;}
 /* field label */
 label { display:block; font-size:11px; color:#ccc; }
 #terms label { float: left; }
 #terms input { margin: 0 5px; }
 .invalid { -moz-box-shadow: 0 0 2px 2px #f00; -webkit-box-shadow:
 0 0 2px 2px #f00; box-shadow: 0 0 2px 2px #f00; }
 .errorlabel { display: none; font-size: 14px; font-weight: bold;
 color: #f00; }
 .error img { position: absolute; margin: 15px 15px 15px 0;}
 .errorhilite { border: 3px solid #f00; }
 </style>
</head>

Chapter 3

[61]

The final part – the script
The final part required is the all important script, to make it all work – as this is
a reasonably long script, we will break it down into sections, starting with the
validators.

Custom Validators
While Validator will use standard HTML4 and HTML5 validators, the functionality
only really comes into its own when you add in custom validators, that are not
available as a part of the normal library. We have five examples of custom validators
in this demo, so copy the following code into your site—this should be the last stage
on your page, or in the <head> area, as long as the document.ready() function is
used accordingly:

<script>

This validator performs a check on <select> drop downs:

// custom Validator for <select> dropdowns
$.tools.validator.fn("select", "Select a value", function(input,
value) {
 return (value == 'none') ? false : true;
});

If you want to use radio buttons, then this is the validator code you need to use:

// custom Validator for radio buttons
$.tools.validator.fn("[group-required]", "At least one option needs to
be selected.", function(input) {
 var name = input.attr("group-required");
 var group_members = $('input[name=' + name + ']');
 var checked_count = group_members.filter(':checked').length;
 if((checked_count == 0) && (group_members.first().attr('id') ==
 input.attr('id'))) {
 $('input[name=' + name + ']').click(function() {
 validate_form.data("validator").reset($('input[name=' + name +
 ']'));
 });
 return false;
 } else {
 return true;
 }
});

Form Tools

[62]

The validator below will do a pattern match for a valid time:

// custom Validator for "time" input type
$.tools.validator.fn("[type=time]", function(el, value) {
 return /^(2[0-4]|[01]?\d):[0-6]\d$/.test(value) ? true : "Please
 provide a valid time, using military format";
});

This validator will flag an error if the minimum character length is not obeyed:

// custom alidator based on minimum required length
$.tools.validator.fn("[minlength]", function(input, value) {
 var min = input.attr("minlength");

 if (isNaN(min)) {
 return true; // not a valid minlength, so skip validation
 } else {
 return value.length >= min ? true : {
 en: "Please provide at least " +min+ "
 character" + (min > 1 ? "s" : ""),
 fi: "Kentän minimipituus on " +min+ " merkkiä"
 };
 }
});

This validator will show an error if the uploaded file type is not one of the
pre-determined types:

// custom validator based on a required filetype
$.tools.validator.fn("[type=file]", "Please choose a file with an
allowed extensions", function(input, value) {
 if ($(":file").val() != "") {
 return /\.jpg\png\gif\pdf\doc\txt)$/.test(value);
 } else {
 return true;
 }
});

The real heart of the validator script is as given below, it contains the call to jQuery
Tools' Validator functionality, with a number of additional configuration options.
In order, they do the following:

•	 position: It controls the location on screen where the text will appear
•	 speed: It determines how fast or slow the error message appears
•	 offset: It is used in conjunction with position to fine-tune the location

on screen

Chapter 3

[63]

•	 errorClass and errorInputEvent: The CSS style to use on the error
message, and the trigger for the input validity check

•	 message: The text of the error message, including any images (as shown
here)

•	 inputEvent: It revalidates text each time the user "blurs" or moves away
from the element—this is used particularly on the checking of <select> tags

Copy this into your script section:

$(document).ready(function () {
 $("#myform").validator({
 position: 'center right',
 speed: 'slow',
 offset: [0, 10],
 errorClass: 'invalid',
 errorInputEvent: 'keyup change',
 message: '<div></div>',
 inputEvent: "blur"
 });
})

This next section performs two functions – the first one is to set Validator to
automatically reposition the error message text, if the window is resized; the
second one adds a red border on fields that do not validate properly, on a trigger
of "onFail", when the submit button is pressed:

// get handle to the Validator API
 var myForm = $("#myform"),
 api = myForm.data("validator");

 api.reflow();

 myForm.bind("onFail", function(e, errors) {

 // we are only doing stuff when the form is submitted
 if (e.originalEvent.type == 'submit') {
 $(".errorlabel").css({ display: 'block'});

 // loop through Error objects and add the border color
 $.each(errors, function() {
 var input = this.input;
 input.css('errorhilite').focus(function() {
 input.css('errorhilite');
 });
 });
 }
});

Form Tools

[64]

The final part of this script is a reset function that clears the red border set against
any field that doesn't validate correctly:

$("#clearform").click(function() {
 myForm.reset();
 $(".errorlabel").css({ display: 'none' });

 // loop through Error objects and add the border color
 $("input, select").each(function(index) {
 $(this).css({ border: '' });
 });
 });
})
</script>

If all has worked correctly, then you should see something like the form shown in the
next screenshot:

Chapter 3

[65]

"It seems very negative, this onFail…"
Yes, it is true—a potential downside of Validator is that it does feel very one-sided in
that it concentrates on only when input entries fail. However, it is possible to include
code to display a confirmation or message if the validator deems that the entry
concerned does match the required pattern.

You should note that,this is a concept only at the moment;
it is meant as a starting point for your own development,
and would need thorough testing before putting into
production use.

To do this, you can try the following:

1.	 Add the following into your style sheet:
input.valid {
 background-image: url(images/accept.png);
 background-position: right top;
 background-repeat: no-repeat;
}

input.valid.invalid {
 background-image: none;
}

2.	 Add this to your JavaScript call to jQuery:
// use API to assign an event listener
api.onSuccess(function(e, els) {
 $("input[required]").addClass('valid');

 // we don't want to submit the form. just show events.
 return false;
});

3.	 Add this to the bottom of your reset method:
$('input').removeClass("valid");

4.	 Add this line to the configuration set up for Validator:
errorInputEvent: 'keyup change',

Form Tools

[66]

The code is not perfect – it has some bugs in it, so should only be treated as a starting
point for your own ideas. If you do implement the code above, then you should see
something like the following screenshot:

Validator – a final thought
This demo scratches just the surface of what can be done with Validator—Validator
will happily work with jQuery Tools' Overlay functionality, so that you could show
the errors in a dialog box, with the overlay mask behind, for example. You can even
use jQuery UI to provide that dialog box effect as well—the key to using jQuery UI is
to declare the call to jQuery Tools first, then reassign the Tabs object in Tools to use a
different naming convention, otherwise it will conflict with UI.

In the next section, we will take a look at another important tool in the library –
DateInput.

Making your HTML5 date input look and
behave the way you want with Dateinput
The advent of HTML5 has brought the ability to use <input type=date>, which
removes the need for additional functionality. However, this is only available in a
limited capacity, as it only works on Safari—jQuery Tools seeks to redress this with
DateInput, which makes the HTML5 functionality available now, across all modern
browsers. Let's take a peek at how to use it.

Usage
If there was an example of where minimal JavaScript was needed, then this is
arguably one of them; DateInput only needs two words to work, with the exception
of the call to the library, of course! Below is the basic framework required to get
jQuery Tools' DateInput working:

<!-- include jQuery FORM Tools (or any other combination) -->
<script src="http://cdn.jquerytools.org/1.2.6/form/
jquery.tools.min.js">

Chapter 3

[67]

</script>
<!-- dateinput styling -->
<link rel="stylesheet" type="text/css" href="dateinput.css"/>

<!-- HTML5 date input -->
<input type="date" />

<!-- make it happen -->
<script>
 $(":date").dateinput();
</script>

With this in mind, it's time to look at a project using DateInput – this time though,
this will be a project with a difference.

Project: styling and localization
When preparing the demos for this book, I originally had in mind something
that would try to showcase some of the functionality of DateInput. However, on
reflection, I wanted to do something else, which was to answer the question – "is it
possible to combine elements from jQuery UI's themes into jQuery Tools?"

The inspiration for this came from the themes that are available with jQuery
UI—themes are one area where DateInput is lacking. In this project, we're going to
look at styling DateInput using the original skin, but making a number of tweaks
to first add some color and then localization.

Creating the basic HTML
To begin with, let's create the basic HTML structure – open up your text editor, and
copy in the following lines as a starting point:

<!DOCTYPE html>
<html>
 <head>
 <title>jQuery Tools standalone demo</title>

 <!-- include the Tools -->
 <script src="http://cdn.jquerytools.org/1.2.6/full/
 jquery.tools.min.js"></script>

 <!-- standalone page styling (can be removed) -->
 <link rel="stylesheet" type="text/css" href="http://
 static.flowplayer.org/tools/css/standalone.css"/>
 <link rel="stylesheet" type="text/css" href="skin1.css">

Form Tools

[68]

 <style>
 </style>
 </head>

 <body>
 <!-- HTML5 date input -->
 <input type="date" name="mydate" data-value: "Today" />

 <!-- make it happen -->

 <script>
 </script>
 </body>

</html>

Okay, there is nothing complicated here; save a copy of this as your base HTML
file, ready for adding the CSS and JavaScript code. You will notice the similarities
to other projects in this book, where minimal HTML is required to build a usable
structure—DateInput is no different.

Notice that the <input type="date"> tag is used here—
whilst this is valid HTML5, the beauty of jQuery Tools lies in
making this available to all modern browsers, not just ones that
accept HTML5. If JavaScript is not available for any reason, this
will actually degrade nicely for those using Safari!

Setting up the JavaScript
Moving on, let's add in the JavaScript we're going to use for DateInput:

// the french localization
$.tools.dateinput.localize("fr", {
 months: 'janvier,février,mars,avril,
 mai,juin,juillet,août,' +
 'septembre,octobre,novembre,décembre',
 shortMonths: 'jan,fév,mar,avr,mai,jun,
 jul,aoû,sep,oct,nov,déc',
 days: 'dimanche,lundi,mardi,mercredi,
 jeudi,vendredi,samedi',
 shortDays: 'dim,lun,mar,mer,jeu,ven,sam'
});

$(":date").dateinput({
 format: 'dddd, ddth mmmm yyyy',

Chapter 3

[69]

 lang: 'fr',
 offset: [0, 30],
 yearRange: [-20, 20]
});

This comes in two parts – the first part is the localization code for DateInput, which
gives the French language equivalents for the months and days of the year. This is
used by DateInput—to activate it, the lang attribute needs to be used, along with
the correct two letter code for the appropriate language.

The second part of the code is the call to DateInput, where the format and desired
language is specified (the latter using the same code from the localization code).

Adding the styling
This is arguably the most important part of DateInput – the styling. You will
notice that the original skin1.css link has been included in the code at the
beginning of this project; this is to illustrate that the original skin can be overridden,
and that it is not necessary to always try to reinvent the wheel. You will also need to
download the "Start" theme from the jQueryUI site at http://www.jqueryui.com; if
using this styling technique, you will need to refer to this, to extract the relevant CSS
that make up your custom styles. Copy the code given below into the style tags in
your webpage:

// body, a:active and : focus only needed for demo; these can be
// removed for production use
 body { padding:50px 80px; }
 a:active { outline:none; }
 :focus { -moz-outline-style:none; }
 .date { width: 260px; }

 #calroot { width:210px; }
 #calhead { background: url("ui-bg_gloss-
 wave_75_2191c0_500x100.png") repeat-x scroll 50% 50% #2191C0;
 border: 1px solid #4297D7; color: #EAF5F7; font-weight:
 bold; -moz-border-radius: 4px; -webkit-border-radius:
 4px; border-radius: 4px; }

 #caltitle { font-size:14px; float:left; text-align:center;
 width: 155px; line-height: 20px; color: #EAF5F7; font-
 weight: bold; }

 #calnext, #calprev { display:block; width: 16px; height:
 20px; float:left; cursor:pointer; margin-top: 2px; }

http://www.jqueryui.com

Form Tools

[70]

 #calnext {
 background:transparent url(ui-icons_056b93_256x240.png)
 no-repeat scroll center center; background-position:
 -48px -192px; float:right; margin-right: 4px; }

 #calprev {
 background:transparent url(ui-icons_056b93_256x240.png)
 no-repeat scroll center center; background-position:
 -78px -192px; margin-left: 4px; }

 #caldays { margin-top: 3px; }

 #caldays span { display: block; float: left; width: 30px;
 text-align: center; }

 /* single day */
 .calweek a { background: url("ui-bg_gloss-
 wave_75_2191c0_500x100.png") repeat-x scroll 50% 50% #0078AE;
 border: 1px solid #77D5F7; -moz-border-radius: 3px;
 -webkit-border-radius: 3px; border-radius: 3px;
 color: #FFFFFF; display: block; float: left; font-size: 11px;
 font-weight: normal; height: 18px; line-height: 20px;
 margin-left: 2px; outline: medium none; text-align:
 center; text-decoration: none; width: 26px; }

 /* current day */
 #calcurrent, #caltoday {
 background: url("ui-bg_gloss-wave_50_6eac2c_500x100.png")
 repeat-x scroll 50% 50% #6EAC2C; border: 1px solid #ACDD4A;
 color: #FFF; font-weight: normal; outline: medium none;
 z-index:9999; }

 /* today */
 #caltoday {
 background: url("images/ui-bg_gloss-
 wave_45_e14f1c_500x100.png") repeat-x scroll 50% 50% #6EAC2C;
 border: 1px solid #ACDD4A; color: #000;
 }

Chapter 3

[71]

If all is well, you will have a calendar that is similar in appearance to that of jQuery
UI's version, but perhaps without the same amount of code! Here's a screenshot of
what you should see:

A final thought
The code above is not perfect—it was designed as a concept of what could be
possible when using elements from jQuery UI's themes in DateInput. The jQuery
UI has a number of themes available, from which elements could easily be used to
provide similar effects within your code. It is key to understand that I am not using
jQuery UI's Javascript, as this will add a large amount of additional code to your
site, which is against the whole ethos of jQuery Tools. That all said, there is nothing
stopping you from using elements from the themes!

There is a barebones version of the skin file available to download from the main
jQuery Tools site—in some respects, you may find it more desirable to work from
this, rather than try to adjust an existing theme. However, a lot of this will depend on
the changes you want to make—if you are not making many, then it might be more
sensible to simply override the existing skin file, rather than create additional work
for yourself.

Controlling your HTML5 range input with
RangeInput
The advent of HTML5 is bringing with it a number of additional types that can be
used with the <input> command, such as <input type="range">. Whilst this may
be good news for developers, it is not so good for those who still have to work with
older browsers, as this effect will only work natively in the most recent browsers.

Form Tools

[72]

Enter jQuery Tools' RangeInput, which makes the same effect available to all
browsers (with the exception of IE5 and IE6, as the market share for these browsers
is now so small that the lack of support for these two browsers will not affect the
majority of your website audiences).

Why basic RangeInput?
The jQuery Tools is designed to standardize the HTML5 functionality of <input
type="range"> across all modern browsers, ready for when it is officially released,
and the majority of browsers support it by default. As jQuery Tools abstracts a lot of
the styling and inherent power away into its CSS, it will just be a matter of removing
this, to allow the HTML5 functionality to work.

Let's dive into this a little more, to see how it would work in a normal environment.

Usage
All of the Tools follow the same basic principle of requiring minimal JavaScript to
operate, with CSS styling providing the real power—RangeInput is no exception.
The basic format falls into three parts – the first is the link to the CSS that provides
the styling required by RangeInput, the second is at least one <input> statement (the
following code shows two—the same principle applies for both), followed by the call
to RangeInput from the Tools library:

<!-- styling for the range -->
<link rel="stylesheet" type="text/css" href="range.css"/>

<!-- a couple of HTML5 range inputs with standard attributes -->
<input type="range" name="range1" min="50" max="500" step="20"
value="100" />
<input type="range" name="range2" min="0" max="1500" step="50"
value="450" />

<!-- select all range inputs and make them ranges -->
<script>
 $(":range").rangeinput();
</script>

Now, most of the people might think that a RangeInput should really be used to
obtain a value from a preset scale, displayed on a website. This is a perfectly valid
assumption, but only a small part of what RangeInput could be used to do. To prove
this, let's have a look at the project to build a scrollable product gallery—this one
will display a number of books, and could easily be used on a retail website, such
as Packt's.

Chapter 3

[73]

Project: building a product gallery
We're going to build a basic scrollable product gallery, in a style used by the PC
manufacturer Apple™ some years ago. The inspiration for this project came from
a tutorial available online, from http://jqueryfordesigners.com/slider-
gallery/ , that explains how to create a similar effect using jQuery—which is a
perfect excuse to show off how versatile jQuery Tools' RangeInput really is, and how
it can be used to produce the same effect!

Although the basic framework will remain the same, this is something for which you
could easily alter the styles at a later date, as you see fit. Let's begin with setting up
the basic structure.

Setting up the basic HTML structure
Open up the text editor of your choice, and insert the following lines Then save this
as your HTML page:

<!DOCTYPE html>
<html>
 <head>
 <title>jQuery Tools standalone demo</title>

 <!-- include the Tools -->
 <script src="http://ajax.googleapis.com/
 ajax/libs/jquery/1.6.4/jquery.min.js">
 </script>
 <script src="https://raw.github.com/jquerytools/jquerytools/
 master/src/rangeinput/rangeinput.js"></script>
 </head>
 <body>
 <div id="wrap">
 <!-- our scrollable element -->
 <div id="scrollwrap">
 <div id="scroll">

 </div>
 </div>
 <!-- rangeinput that controls the scroll -->
 <input type="range" max="2600" step="10" />
 </div>
 <script>
 </script>
 </body>
</html>

Now, we have our basic framework, let's start adding the content.

http://jqueryfordesigners.com/slider-gallery/

Form Tools

[74]

You will note that in the demo, we have linked directly to the
source file for Tools, that is hosted in Github. This is acceptable,
but should only be for the purposes of development; if you
are using this in a production environment, you will need to
change to using one of the CDN links, or a downloaded copy
of the library.

Adding in the book images
Next come the images of the books we need to add in; we're using 30 in all. If you
want to use fewer, then this is possible, but you will need to alter the styling around
the slider, to allow for the change in the number of images used.

Add the following in between the tags in your code:
Test Book 1

Test Book 2
Test Book 3
Test Book 4
Test Book 5
Test Book 6
Test Book 7
Test Book 8
Test Book 9
Test Book 10
Test Book 11
Test Book 12
Test Book 13
Test Book 14
Test Book 15
Test Book 16
Test Book 17
Test Book 18
Test Book 19
Test Book 20
Test Book 21
Test Book 22
Test Book 23
Test Book 24
Test Book 25
Test Book 26
Test Book 27
Test Book 28
Test Book 29
Test Book 30

Chapter 3

[75]

In this example, we're using images from Packt's website—you
are free to use other images if you desire, although you will
need to keep to a similar size, or adjust the styling to suit.

Adding in the JavaScript functionality
Let's move onto adding the JavaScript functionality:

// get handle to the scrollable DIV
var scroll = $("#scroll");

 // initialize rangeinput
 $(":range").rangeinput({

 // slide the DIV along with the range using jQuery's css() method
 onSlide: function(ev, step) {
 scroll.css({left: -step + "px"});
 },

 // display progressbar
 progress: true,

 // the DIV is animated when the slider is clicked: function(e, i)
 {
 scroll.animate({left: -i + "px"}, "fast");
 },

 // disable drag handle animation when slider is clicked
 speed: 0
 });

The code above creates an instance of the internal "scrolling" DIV (that is #scroll),
then use CSS to move it to the appropriate amount either left or right; this is
animated by using jQuery's .animate() function to provide smoother movement.

Styling the gallery
At this stage, if you run the code, you will not see an awful lot working—that is
because the true power of jQuery Tools actually lies in the CSS styling that
is applied.

<style>
 // body, a:active and : focus only needed for demo; these can be
 // removed for production use
 body { padding:50px 80px; }

Form Tools

[76]

 a:active { outline:none; }

 focus { -moz-outline-style:none; }

 #wrap {
 background:url("images/productbrowser.jpg") no-repeat scroll 0
 0 transparent;
 }

 /* outermost element for the scroller (stays still) */
 #scrollwrap {
 position: relative;
 overflow: hidden;
 width: 620px;
 height: 150px;
 margin-bottom: 15px;
 -moz-box-shadow: 0 0 20px #666;
 -webkit-box-shadow: 0 0 20px #666;
 border-radius: 4px 4px 0 0;
 }

 /* the element that moves forward/backward */
 #scroll {
 position:relative;
 width:20000em;
 overflow: hidden;
 padding: 20px 100px;
 height: 160px;
 color: #fff;
 text-shadow: 5px 1px 1px #000;
 left: -100px;
 }

 #scroll span {
 font-weight:bold;
 font-family: sans-serif;
 font-size: 12px;
 float: left;
 padding-right: 72px;
 width: 30px;
 }

 slider {
 background: transparent url("images/bkgrdhandle.png") no-repeat
 scroll 0 0 transparent;
 position: relative;
 cursor: pointer;
 height: 17px;
 width: 580px;

Chapter 3

[77]

 -moz-border-radius: 2px;
 -webkit-border-radius: 2px;
 border-radius: 2px
 margin-top: -10px;
 padding: 3px;
 margin-left: 16px;
 background-size: 581px auto;
 }

 handle {
 -moz-border-radius: 14px;
 -webkit-border-radius: 14px;
 border-radius: 14px;
 cursor: move;
 display: block;
 height: 18px;
 position: absolute;
 top: 0;  width: 181px;
 background: url("images/scroller.png") no-repeat scroll
 0 0 transparent;
 }

 handle:active {
 background-color: #00f;
 }

 range {
 display:none;
 }

 #scroll ul {
 list-style: none outside none;
 margin: 0;
 padding: 0;
 position: absolute;
 white-space: nowrap;
 left: 40px;
 }

 #scroll ul li {
 display: inline;
 width: 80px;
 }

 #scroll ul li img {
 padding-right: 20px;
 }
</style>

Form Tools

[78]

If all is well, then you should see something similar to this, once you have added in
the styling:

Some final comments
Whilst this was built for 30 book images, this could easily have been any product
images—the key to it is ensuring that either the images used are of the same size, or
that the CSS is adjusted to ensure an even width. The beauty of jQuery Tools is that
whilst JavaScript is kept to a minimum, just about every element can be tweaked
using CSS—RangeInput is no exception. It is important to note that though there
are some CSS3 styles used in this demo, which you may find won't work in some of
the older browsers; this is something to bear in mind when using this effect in your
websites. After all, the very ethos of jQuery Tools is to push forward to using more
and more CSS3

Summary
In this chapter, we looked at three of the lesser known, yet still important
components of jQuery Tools, namely Validator, DateInput and RangeInput.
Although these may not be so well known or used as the other components, they are
still equally as powerful, particularly when you allow for the level of customisability
available using CSS, and where they can also be extended using jQuery (as can the
other components). We took a more theoretical peek at how you can style DateInput
using elements from jQuery UI—the effect here probably needs some tweaking; it is
still a useful way to show off what could be done, if elements from other jQuery UI
themes were also used.

In the fourth and final chapter of this book, we will be delving into the world of
Expose and FlashEmbed, which in themselves are not necessarily used on their
own, but are still important parts of the jQuery Tools library.

jQuery Tools Toolbox
Phew! We've taken a real whistle-stop tour through the jQuery Tools library, and
looked at some exciting features that you can use in your own projects.

Time for a rest, methinks…Not so fast, my friend! We still have one more section
to look at, Toolbox.

Toolbox? What's this all about then?

It's a small collection of tools that can be used with the main tools from the
library—think of it as using an extension arm on a socket set, for example. This
Toolbox includes functionality that allows embedding of Flash movies, as well as
being able to go backwards in your browser, or control your mousewheel within
your pages.

Let's get started and look at each in a little more detail, beginning with FlashEmbed.

It is very likely that there will be significant changes to this
section of the jQuery Tools library in future versions—as
you will see, it contains functionality that is fast becoming
superseded by advances in HTML5, CSS3, and jQuery.
I've included it in this book to make you aware of what is
still possible, although most likely, it will not be backward
compatible with version 2 of jQuery Tools when that becomes
available on general release.

jQuery Tools Toolbox

[80]

Using FlashEmbed to include Flash
movies
Adobe's Flash™ technology became the de facto standard for embedding
Flash-based movies into web pages, and since its introduction in 1996, it has been
developed for use on a wide variety of platforms, including Linux, Tablet PC,
Blackberries, and of course, Windows.

The downside of this capability is that not every browser works with the same
embedding code – enter jQuery Tools' FlashEmbed, which allows you to embed
Flash using the same configuration options, while the library handles the backend
embedding code.

Note: The advances in JavaScript and HTML5 technology are beginning
to make the use of Flash embedding technology redundant, as most
modern CSS3-based browsers are able to handle videos using the
<video> tag, without the need for additional software. It is very likely
that FlashEmbed may disappear from future versions of this library,
once HTML5 and CSS3 become more widespread and older browsers
such as IE5 and IE6 disappear from use.

Usage
Embedding Flash files is simplicity itself; there are three parts to set up a basic Flash
capability in your web pages.

HTML setup
First you need to include the FlashEmbed script on your page:

<script type="text/javascript" src="toolbox.flashembed.min.js">
</script>

In keeping with the principle ethos of jQuery Tools, it is recommended that you use
the minified version of the library to keep the download times as low as possible.
You then need to have a HTML container for the object; we are using a DIV element
in our example. This has an id attribute to reference this container later in the
embedding:

<div id="clock"></div>

Chapter 4

[81]

JavaScript setup
We then use FlashEmbed to place a Flash object in the previous container, copy this
into your web page:

flashembed("clock", "/swf/clock.swf");

The call must be placed after the DIV element or you must place it inside a
$(document).ready() block with jQuery.

Demo: let's embed a Flash movie
Unlike other projects in this book, we are not going to try to build something useful
for a potential client, but have a look at FlashEmbed, and how you could use it to
embed Flash, while still maintaining support for older browsers.

With this in mind, let's set up a basic HTML structure, using the following code:

<!DOCTYPE html>
<html>
<head>
 <title>jQuery Tools standalone demo</title>

 <!-- include the Tools -->
 <script src=
 "http://cdn.jquerytools.org/1.2.6/full/jquery.tools.min.js">
 </script>

 <!-- standalone page styling (can be removed) -->
 <link rel="stylesheet" type="text/css"
 href="http://static.flowplayer.org/tools/css/standalone.css"/>
</head>
<body>
</body>
</html>

Space for the video
We need to include a space on the page for the video, so copy in the following code
to your webpage:

<div id="flash2">

</div>

jQuery Tools Toolbox

[82]

Styling for the video
We need to add a little extra styling, the following code will reset the fonts used, and
centre the video on the page; the styling for #flash2 will add a play button in the
middle of the image:

 <style>

 #flash2 { width: 787px; height: 300px; background-
 image: url(splash.jpg); text-align:center;
 cursor:pointer; }

 #flash2 img { margin-top: 110px; }
 </style>

Script to make the video work
The FlashEmbed tool available in jQuery Tools does not require the use of jQuery to
function, although it is supported if you need it; this is an example of how you could
use it. Copy the following script into the <head> section:

<script>
// use the jQuery alternative for flashembed.domReady
$(function() {

 // bind an onClick event for this second Flash container
 $("#flash2").click(function() {

 // same as in previous example
 $(this).flashembed("http://static.flowplayer.org/swf/flash10.
swf");
 });
});
</script>

If everything worked fine, then you should see a video play, as follows:

Chapter 4

[83]

Some final comments
While Flash is still very useful, it is fast becoming an old technology; early iPads
and other products did not support it, although this is changing for later models.
However, HTML5 and JavaScript are taking over—HTML5 includes support for the
<canvas> and <video> tags, without the need for additional support. This allows
for many Flash-like behaviors and visualizations to be built with simple HTML, CSS,
and JavaScript; images could equally be used, although in many cases, they won't
be required. Support for both tags is still mixed, with better support in WebKit and
Mozilla-based browsers than in Internet Explorer; FlashEmbed comes into its own
by allowing Flash to be played in older browsers, using a common standard—the
library handles the different embedding code required.

On a different note, you can also use FlashEmbed to embed fonts, using the SIFR
technology; this should be used with caution, as the technology hasn't been updated
for quite some time. Browsers contain support for @font-face, which allows the
display of fonts in all major browsers including IE6-9, Firefox, Chrome, and Safari,
without the need for additional external libraries. SIFR will only work for embedding
small Flash files, as it is processor-intensive and carries a big overhead for very little
extra benefit—you should use it with care!

Moving on, let's now take a look at the history plugin, that is available as part of
jQuery Tools.

Going backwards with history
A key part of navigating around the web is the ability to control the direction we
travel. While this may sound a little odd, there are occasions when we need to go
backwards, to revisit something we've already viewed. This doesn't always work,
depending on the environment—this is where the history plugin can help.

Usage
This is a simple plugin tool that allows you to take control of the browser's history.
This means that as and when you navigate back and forth through pages, the
browser's buttons will be notified, so you can use them to navigate correctly.

It should be noted though that while the history function can be called using code
such as the following, it is more likely that you will use this as a configuration option
within one of the tools, such as Tabs or Scrollable:

$("a.links_with_history").history(function(event, hash) {

});

jQuery Tools Toolbox

[84]

To illustrate how this could be used with something such as Tabs, have a look at the
following code:

$(function() {
 $("#flowtabs").tabs("#flowpanes > div", { history: true });
});

This will reference the same history functionality that is available separately within
the jQuery Tools library. If used correctly, you will be able to navigate backward and
forward using the browser's buttons—if you navigate through each tab of a Tab, for
example, then using the Back button will take you back through each tab that you've
visited, in the order of visit:

The URLs that are generated will look similar to the following:

http://flowplayer.org/tools/demos/tabs/history.html#streaming_tab

You can bookmark these URLs in the normal manner; if you bookmark one of these
links, and return to it later, you will be able to load that specific "section". In this
example, it will load the specific tab that has been referenced by the requested URL.

http://flowplayer.org/tools/demos/tabs/history.html#streaming_tab
http://flowplayer.org/tools/demos/tabs/history.html#streaming_tab

Chapter 4

[85]

It is important to note that although this is described as an HTML5
library, the current release of Tools (version 1.2.6, at the time of writing) is
not able to handle certain formats that are otherwise standard for HTML5.
For example, you can use http://flowplayer.org/tools/demos/
tabs/history.html#123, but you won't be able to use something like:
http://flowplayer.org/tools/demos/tabs/history.html/#/
page/#SecondTab.

Let's now have a look at another component of the Toolbox, Expose.

Showing off content with Expose
If you run a website where it is necessary to highlight information or content, such
as displaying a video, then you will most likely find a need to make the background
less of a distraction. Such an effect is used very well by some TV companies, when
they display content for playback via the Internet—it's akin to switching the lights off,
when you want to watch a good movie.

Expose is a tool that can help here. It exposes or highlights a particular element, and
fades out the others, so that you can only see what the website owner intended.
There is a quirk though with this tool. Normally you would not use this on its own,
but as part of the Overlay tool featured earlier in this book. However, Expose has
been developed to take this concept further, and work as a standalone tool or one
integrated into Overlay. It doesn't matter in which mode it is used but you can use it to
expose all manner of objects, such as images, forms, or Flash objects. We're going to
use it to show off a video. Before doing so, lets take a look at it in a little more detail.

Usage
jQuery Tools' Expose is very easy to configure, although its versatility means that
you can use it to great effect in a number of ways:

// place a white mask over the page
$(document).mask();

// place a custom colored mask over the page
$(document).mask("#789");

// place a non-closable mask – this effectively makes it a modal mask
$(document).mask{ closeOnEsc: false, closeOnClick: false });

http://flowplayer.org/tools/demos/tabs/history.html#123
http://flowplayer.org/tools/demos/tabs/history.html#123
http://flowplayer.org/tools/demos/tabs/history.html/#/page/#SecondTab
http://flowplayer.org/tools/demos/tabs/history.html/#/page/#SecondTab

jQuery Tools Toolbox

[86]

// place a mask but let selected elements show through (expose)
$("div.to_be_exposed").expose();

// close the mask
$.mask.close();

The default color for .mask is white, this can be
overridden by specifying a HTML color as shown in the
preceding second example, or you can use the color
attribute within your call to Expose/Mask.

Now, the observant among you will notice that there were calls to two different
functions in the preceding code; this is because there are effectively two different
ways to expose content: using mask and expose.

The mask function will only be available for the document object. It does not work
with any other selector. This means that if you want to use it to show off elements
contained in a DIV, for example, then you will need to use the expose function. All
elements returned by the expose selector will be placed on top of the mask.

The mask function (which loads immediately after the expose or mask call) can use
different configurations on each call; if a configuration is not specified, then it will
automatically use the last configuration supplied in the previous call. By default, the
tool is set to use any element if its ID is set to exposeMask, although you can alter the
configuration to specify your own if you are using this ID for some other purpose.

As we will see in the demo, mask and expose both need to be closed and their
configurations destroyed, before a new one can be created with new attributes
that are different to the existing mask or expose.

Demo: using Expose to display video content
One of the great features of jQuery Tools is that its components can easily be
combined with others in the library, or be extended with the use of additional
jQuery. One such example, which we are going to look at, is the use of Expose with
Overlay. This demo will take you through how you can combine the two to great
effect. This borrows from a fine example, which is available from the main jQuery
Tools website.

This demo will use the Overlay functionality, similar to that used in Chapter 2,
Getting along with your UI Tools, along with the "Flowplayer" video tool, available
from http://www.flowplayer.org.

Chapter 4

[87]

Setting up the basic HTML structure
Lets begin by setting up the basic structure for the video content. This is very similar
to the projects we looked at earlier in the book, although you will note the inclusion
of "Flowplayer":

<!DOCTYPE html>
<html>
<head>
 <title>jQuery Tools standalone demo</title>

 <!-- include the Tools -->
 <script src="http://cdn.jquerytools.org/1.2.6/full/jquery.tools.
min.js"></script>

 <script src="flowplayer-3.2.6.min.js"></script>

 <!-- standalone page styling (can be removed) -->
 <link rel="stylesheet" type="text/css" href="http://static.
flowplayer.org/tools/css/standalone.css"/>

 <script>
 </script>
</head>
<body>
</body>
</html>

Flowplayer is written by Tero Piirainen, who is also the main
developer of jQuery Tools. You can download a free version of the
excellent video tool from http://flowplayer.org/download/
index.html.

Adding the video content
Now that we have a basic structure in place, we need to start adding in some content.
The following code sets up the trigger that fires off the overlay, followed by the
overlay that contains the video to be displayed. Note that you can include multiple
examples on the same page, while the Overlay tool can be customised to use
different overlay backgrounds; the Expose tool is known as a singleton. This means
that a single instance and configuration is shared for every usage, no matter how
many times it is used.

<h2>Multiple overlay demo</h2>

<p>
 <button rel="#overlay1">Video 1</button>

jQuery Tools Toolbox

[88]

 <button rel="#overlay2">Video 2</button>
</p>

<!-- overlays for both videos -->
<div class="overlay" id="overlay1">
 <a class="player" href="http://pseudo01.hddn.com/vod/demo.
flowplayervod/flowplayer-700.flv">

</div>

<div class="overlay" id="overlay2">
 <a class="player" href="http://pseudo01.hddn.com/vod/demo.
flowplayervod/flowplayer-700.flv">

</div>

Adding the styling
The next stage is to add in the all-important styling—there is no great deal needed,
and most of it is needed for the Overlay to function properly:

 <style>
 .overlay { background:url(white.png) no-repeat; padding:40px;
 width:576px; display:none; }

 .close {
 background: url(close.png) no-repeat;
 position: absolute;
 top: 2px;
 display: block;
 right: 5px;
 width: 35px;
 height: 35px;
 cursor: pointer;
 }

 a.player { display:block; height: 450px; }
 </style>

Chapter 4

[89]

Getting the player to work
The final step involved is to add the script that makes the overlay and video work:

 $(function() {

 // setup overlay actions to buttons
 $("button[rel]").overlay({

 // use the Apple effect for overlay
 effect: 'apple',

 expose: '#789',

 onLoad: function(content) {
 // find and load the player contained in the overlay
 this.getOverlay().find("a.player").flowplayer(0).load();
 },

 onClose: function(content) {
 $f().unload();
 }
 });

 // install flowplayers
 $("a.player").flowplayer(
"http://releases.flowplayer.org/swf/flowplayer-3.2.7.swf");
 });

If all is well, you should see something like this:

jQuery Tools Toolbox

[90]

Let's now have a look at the final component in the Toolbox part of the library, which
is mousewheel.

Take control of your mouse with
mousewheel
The final part of the Toolbox group of components is mousewheel – this allows you
to take control of the mouse wheel, when navigating around a page using a jQuery
Tools tool.

Usage
The code for enabling mousewheel is very simple. It involves one call to the
mousewheel library, where event is the jQuery event object being controlled, and
delta is the amount of movement in the mousewheel. A positive value means that
the wheel is being moved up, while a negative value means that the wheel is being
moved downwards:

// make #myelement listen for mousewheel events
$("#myelement").mousewheel(function(event, delta) {

});

However, you should note that mousewheel really comes into its own when used
as a configuration option in the main UI Toolset, such as Scrollable. While it exists
as a separate library, it is more likely that you won't reference it using the preceding
method, but as part of the configuration of another tool.

To demonstrate, lets have a look at the code for a basic scroll, which has mousewheel
enabled:

Chapter 4

[91]

Now, from looking at the previous screenshot, you would not immediately be able to
tell if it had the mousewheel functionality, correct? Yes, that is correct, it doesn't add
anything to the visual appearance of the tool being used. The only way to tell is by
looking at the code, which would probably look similar to the following:

$("#chained").scrollable({circular: true, mousewheel: true}).
navigator().autoscroll({
 interval: 3000
});

Although it is a configuration option here, it is actually referencing the mousewheel
library, which may or may not already be included in your projects, depending on
the version of jQuery Tools you have downloaded (by default, it is not included in
some of the CDN links, for example, so this would either require a change of link, or
an additional call to the mousewheel functionality, as a separate custom download).

Summary
In this chapter, we had a look at the third and final part of jQuery Tools, in the form
of Toolbox. We've learnt how to expose objects on a page, using Expose, and that
this is actually used as a basis for the main Overlay functionality from Chapter 2,
Getting along with your UI Tools. We also looked at FlashEmbed—even though the
technology is arguably being superseded by the advances of HTML5 functionality
in newer browsers, it can still play a vital role in older browsers for as long as they
still exist. Then we learned about mousewheel and history, and how although you
may use them separately in your projects, it is more likely that you will use them as a
configuration option in one of the many tools that make up the jQuery Tools library.

In the meantime, I hope you've enjoyed reading this book, as much as I have
enjoyed writing it, and that you've found something useful that you can use
for your future projects.

If I've piqued your interest, and you would like to see how jQuery
Tools could be used in a real environment, such as a CMS, then
don't forget to download the PDF that comes with this book. It
contains some good examples of using Tools within a CMS, using
the popular WordPress system. Enjoy!

Index
Symbols
$(document).ready() block 81
<a> markup 30
<canvas> tag 83
<head> area 61
<head> section 82
<iframe> markup 30
<input> command 71
 jQuery, toolbox 79
[title] attribute 35
 tag 74
<video> tag 80, 83

A
Application Programming Interface (API)

best practices 18, 19
event listeners, supplying from 21

B
basic HTML structure

setting up 87
bind method

using 20
buttons

adding, to slideshow 50, 51
button visibility

setting 52, 53

C
callbacks 19
CDN 13
CDN links

about 91

using 13
Chrome 83
code

adding, for overlay trigger 30
color attribute 86
CSS3 79
CSS role, jQuery Tools 9
custom field validators

adding 57
custom validators 61-64

D
data validation 56
DateInput

about 66
basic HTML structure, creating 67, 68
JavaScript, setting up 68, 69
localization 67
overview 71
styling 67
styling, adding 69, 71
usage 66, 67

div element 8, 81
dl element 8
document.ready() function 61
download builder

about 14
using 14

downloading
jQuery Tools library 12

E
errorClass option 63
errorInputEvent option 63

[94]

event listeners
about 19
supplying, from API 21
supplying, in jQuery Tools 20

event listeners, supplying
within, configuration 20

event object 22
events

best practices 19
expires header 24, 25
Expose

about 85
basic HTML structure, setting up 87
players, working 89
styling, adding 88
used, for displaying video content 86
uses 85, 86
video content, adding 87

expose function 86

F
Firebug

about 14
using 14

Firefox 83
FlashEmbed

about 8
final comments 83
HTML, setting up 80
JavaScript, setting up 81
used, for including Flash movies 80

FlashEmbed script
including, on page 80

Flash movie, embedding
about 81
script, for making video work 82
space, for video 81
styling, for video 82

Flash movies
embedding 81
including, FlashEmbed used 80

Flowplayer 86, 87
form

styling 59, 61
form details

adding 58, 59

Form Tools
DateInput 66
RangeInput 72
Validators 55

G
global configurations

using 16, 17
Google Maps

used, for creating map lightbox effect 29
viewer, building for 29

graphic design and presentation
jQuery, using for 10

graphic design and presentation, jQuery
Tools

CSS and image-based design 10
CSS-based design 10
image-based design 10

GZIP components 25

H
history plugin

about 83
uses 83, 84

HTML5 79
HTML role, jQuery Tools 8

I
id attribute 80
IE6-9 83
IE Developer Toolbar

URL 11
images

displaying, in Polaroid-styled slideshow
47-50

inputEvent option 63

J
JavaScript

minifying 26
JavaScript role, jQuery Tools 8, 9
jQuery

about 79
bind method, using 20

[95]

toolbox 79
jQuery, toolbox

Expose 85-89
FlashEmbed 80-83
history plugin 83, 84
mousewheel 90

jQuery Tools
about 8
APIs, best practices 18, 19
CSS role 9
event listeners, supplying in 20
events, best practices 19
global configurations, using 16, 17
HTML role 8
including, on page 16
initializing 16
JavaScript role 8, 9
performance 24
plugins, creating 22
plugins, using 23
used, for development 10-12
used, for graphic design and presentation

10
jQuery Tools events

about 19
best practices 19
onBeforeClick 19
onBefore event 19

jQuery Tools library
downloading 12

jQuery Tools, performance
about 24
availability, through CDN 25
expires header, adding 25
GZIP components 25
HTTP requests, reducing 25
JavaScript, minifying 26

jQuery Tools plugins
creating 22
effects 23, 24
using 23

jQueryUI
URL, for site 69

L
lang attribute 69
Linux 80

M
map lightbox effect

creating, Google Maps used 29
mask function 86
message option 63
mini gallery

building 40
mousewheel

about 90
uses 90

Mudimo 50

N
novalidate attribute 57

O
offset option 62
ol element 8
onBeforeClick callback 19
onBefore event 19
onClick event 21
onClick methods 20
onSeek event 19
Opera

URL 12
overlay

about 28
adding, to <body> 30
basic HTML structure, creating 29
setting up 29
styling, adding 31-33
usage 28
viewer, building for Google Maps 29
verlayvisual effects, adding 31-33

overlay JavaScript
configuring 30
setting up 30

Overlay tool 87

P
Polaroid effect 48
Polaroid-styled slideshow

buttons, adding to 50, 51
images, displaying in 47-50

[96]

position option 62
preventDefault() method 22
product gallery

building 73
styling 75, 78

R
RangeInput

about 71
basic HTML structure, setting up 73
book images, adding 74, 75
JavaScript, setting up 75
need for 72
overview 78
product gallery, building 73
product gallery, styling 75, 78
usage 72

rel attribute 29
rel tag 52
reset method 65
rolling slideshow

building 47-50

S
Safari 66, 83
Scrollable

about 39
basic HTML structure, setting up 40-42
basic structure 39, 40
JavaScript, setting up 42-44
mini gallery, building 40
styles 44, 45

speed option 62

T
Tab effects

configuring 51
Tablet PC 80
Tabs

about 46
basic HTML structure, setting up 47, 48
basic structure 46
button visibility, setting 52, 53
visual effects, adding 48

tabs functionality 9
this variable 20, 21
title attribute 34
tooltip CSS styles

adding 36
Tooltips

about 34
basic HTML, setting up 36
configuring 37, 38
creating, for allowing purchase of books 35
dynamic plugins 35
setting up 34
slide effects 35
usage 34

U
UI tools

about 28
overlays 28
Scrollable 39, 40
Tabs 46
Tooltips 34

ul element 8

V
Validators

about 55
basic HTML structure, creating 57
form details, adding 58, 59
form, styling 59, 61
limitations 65
need for 56
overview 66
usage 56, 57

video content
adding 87
displaying, Expose used 86

viewer
building, for Google Maps 29

W
Web 2.0 8

Thank you for buying
jQuery Tools UI Library

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

jQuery UI Themes Beginner's
Guide
ISBN: 978-1-84951-044-8 Paperback: 268 pages

Create new themes for your jQuery site with this
step-by-step guide

1.	 Learn the details of the jQuery UI theme
framework by example

2.	 No prior knowledge of jQuery UI or theming
frameworks is necessary

3.	 The CSS structure is explained in an easy-to-
understand and approachable way

4.	 Numerous examples, no unnecessary long
explanations, lots of screenshots and diagrams

jQuery 1.4 Animation Techniques:
Beginners Guide
ISBN: 978-1-849513- 30-2 Paperback: 344 pages

Quickly master all of jQuery’s animation methods
and build a toolkit of ready-to-use animations using
jQuery 1.4

1.	 Create both simple and complex animations
using clear, step-by-step instructions,
accompanied with screenshots

2.	 Walk through each of jQuery’s built-in
animation methods and see in detail how each
one can be used

3.	 Over 50 detailed examples of different types of
web page animations

Please check www.PacktPub.com for information on our titles

Learning jQuery, Third Edition
ISBN: 978-1-84951-654-9 Paperback: 428 pages

Create better interaction, design, and web
development with simple JavaScript techniques

1.	 An introduction to jQuery that requires
minimal programming experience

2.	 Detailed solutions to specific client-side
problems

3.	 Revised and updated version of this popular
jQuery book

jQuery UI 1.7: The User Interface
Library for jQuery
ISBN: 978-1-847199-72-0 Paperback: 392 pages

Build highly interactive web applications with
ready-to-use widgets from the jQuery User
Interface library

1.	 Organize your interfaces with reusable widgets:
accordions, date pickers, dialogs, sliders, tabs,
and more

2.	 Enhance the interactivity of your pages by
making elements drag-and-droppable, sortable,
selectable, and resizable

3.	 Packed with examples and clear explanations
of how to easily design elegant and powerful
front-end interfaces for your web applications

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	What this book covers
	Who this book is for
	Conventions
	Reader feedback
	Customer support

	Chapter 1: Getting Started
	jQuery Tools basics and rules: a primer
	The role of HTML
	The role of JavaScript and jQuery
	The role of CSS
	Using tools for graphic design and presentation

	Using tools for development
	Downloading the library
	But I want more… using the CDN links

	Rolling your own tools—using the download builder
	Using Firebug
	Including and initializing the tools
	Using global configurations

	Best practices for events and API calls
	Application Programming Interface (API)
	jQuery Tools events
	Before and after events
	Supplying events

	The event object
	Creating jQuery Tools plugins
	Using jQuery Tools plugins and effects
	Effects

	Performance of jQuery Tools
	Reduce the number of HTTP requests
	jQuery Tools are available through CDN
	Adding an expires header
	GZIP components
	Minifying JavaScript

	Summary

	Chapter 2: Getting along with your UI Tools
	UI tools – a template
	What is an overlay?
	Overlay for the perfect eye candy
	Usage
	Project: building a viewer for Google Maps
	Creating the basic HTML structure
	Adding in the overlay
	Setting up and configuring the overlay JavaScript
	Adding the styling and visual effects

	Tooltips—the only web fundamentals you need
	Usage
	Impress everyone with slide effect and dynamic plugins
	Project: building a book "buy now" using tooltip
	Setting up the basic HTML
	Adding in the tooltip CSS styles
	Configuring the Tooltip

	For everything else—there's Scrollable
	Usage
	Project: building a mini gallery
	Setting up the basic HTML
	Time for some JavaScript magic
	Time for some styles

	Tabs in action
	Usage
	Project: building a rolling slideshow
	Setting up the basic HTML
	Adding the visual effects
	Configuring the Tab effects

	Summary

	Chapter 3: Form Tools
	Using Validator
	Why basic Validator?
	Usage
	Project: improving styling, and adding custom field validators
	Creating the basic HTML structure
	Adding in the form details
	Styling the form
	The final part – the script

	"It seems very negative, this onFail…"
	Validator – a final thought

	Making your HTML5 date input look and behave the way you want with Dateinput
	Usage
	Project: styling and localization
	Creating the basic HTML
	Setting up the JavaScript
	Adding the styling

	A final thought

	Controlling your HTML5 range input with RangeInput
	Why basic RangeInput?
	Usage
	Project: building a product gallery
	Setting up the basic HTML structure
	Adding in the book images
	Adding in the JavaScript functionality
	Styling the gallery

	Some final comments

	Summary

	Chapter 4: jQuery Tools Toolbox
	Using FlashEmbed to include Flash movies
	Usage
	HTML setup
	JavaScript setup

	Demo: lets embed a Flash movie
	Space for the video
	Styling for the video
	Script to make the video work

	Some final comments

	Going backwards with history
	Usage

	Showing off content with Expose
	Usage
	Demo: using Expose to display video content
	Setting up the basic HTML structure
	Adding the video content
	Adding the styling
	Getting the player to work

	Take control of your mouse with mousewheel
	Usage

	Summary

	Index

