
M A N N I N G

Bear Bibeault
Yehuda Katz

IN ACTION
SECOND EDITION

Covers jQuery 1.4 and jQuery UI 1.8

www.allitebooks.com

http://www.allitebooks.org

Praise for the First Edition

This is an excellent work, a worthy successor to others in Manning’s “In Action” series. It is
highly readable and chock-full of working code. The Lab pages are a marvelous way to explore
the library, which should become an important part of every web developer’s arsenal. Five stars
all ‘round!

—David Sills, JavaLobby, Dzone

I highly recommend the book for learning the fundamentals of jQuery and then serving as a good
reference book as you leverage the power of jQuery more and more in your daily development.

—David Hayden, MVP C#, Codebetter.com

The Elements of Style for JavaScript.
—Joshua Heyer, Trane Inc.

For those new to jQuery, this book is a good primer that covers a range of common uses of the
framework.... The examples throughout the book are relevant, and make the point effectively.
The code snippets are easily distinguishable from the rest of the text, and the text is clear and
easy to follow.

—Grant Palin, Blogger

It works and makes for a very readable book that you can just breeze through very quickly and
pick up and retain a lot of information.

—Rich Strahl, Blogger

Thanks to the authors Bear Bibeault and Yehuda Katz and their exemplary style, this compre-
hensive book, or operating manual as it might be called, can be taken in a front-to-back approach
to learn from scratch, or as a reference to those already dabbling in jQuery and needing verifica-
tion of best practices.

—Matthew McCullough,
—Denver Open Source Users Group

With its capable technical coverage, extensive use of sample code, and approachable style,
jQuery in Action is a valuable resource for any Web developer seeking to maximize the power
of JavaScript, and a must-have for anyone interested in learning jQuery.

—Michael J. Ross,
—Web Developer, Slashdot Contributor
Download from Library of Wow! eBook <www.wowebook.com>
www.allitebooks.com

http://www.allitebooks.org

More Praise for the First Edition

An 8 out of 10—buy it! If you want to learn jQuery then this is an excellent book...
—John Whish, Founder,

—Adobe ColdFusion User Group for Devon

I highly recommend this book to any novice or advanced JavaScript developers who finally want
to get serious about JavaScript and start writing optimized and elegant code without all the
hassle of traditional JavaScript code authoring.

—Val’s Blog

jQuery in Action offers a rich investigation of the up-and-coming jQuery library for client-side
JavaScript.

—www.DZone.com

I think that jQuery in Action is an excellent book that will help you learn and understand
jQuery. I certainly enjoyed reading the book.

—Gunnar Hillert,
—Atlanta Java User Group
Download from Library of Wow! eBook <www.wowebook.com>
www.allitebooks.com

http://www.allitebooks.org

jQuery in Action
Second Edition

BEAR BIBEAULT
YEHUDA KATZ

M A N N I N G
Greenwich

(74° w. long.)
Download from Library of Wow! eBook <www.wowebook.com>
www.allitebooks.com

http://www.allitebooks.org

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
180 Broad St.
Suite 1323
Stamford, CT 06901
Email: orders@manning.com

©2010 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editor: Lianna Wlasiuk
180 Broad St. Copyeditor: Andy Carroll
Suite 1323 Typesetter: Dottie Marsico
Stamford, CT 06901 Cover designer: Marija Tudor

ISBN 978-1-935182-32-0
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – MAL – 15 14 13 12 11 10
Download from Library of Wow! eBook <www.wowebook.com>
www.allitebooks.com

http://www.allitebooks.org

brief contents
PART 1 CORE JQUERY.. 1

1 ■ Introducing jQuery 3

2 ■ Selecting the elements upon which to act 18

3 ■ Bringing pages to life with jQuery 55

4 ■ Events are where it happens! 93

5 ■ Energizing pages with animations and effects 138

6 ■ Beyond the DOM with jQuery utility functions 169

7 ■ Expand your reach by extending jQuery 204

8 ■ Talk to the server with Ajax 235

PART 2 JQUERY UI .. 279

9 ■ Introducing jQuery UI: themes and effects 281

10 ■ jQuery UI mouse interactions: Follow that mouse! 305

11 ■ jQuery UI widgets: Beyond HTML controls 346

appendix ■ JavaScript that you need to know but might not! 415
v

Download from Library of Wow! eBook <www.wowebook.com>
www.allitebooks.com

http://www.allitebooks.org

Download from Library of Wow! eBook <www.wowebook.com>
www.allitebooks.com

http://www.allitebooks.org

contents
list of lab pages xiii
foreword to the first edition xv
preface to the second edition xvii
preface to the first edition xix
acknowledgments xxii
about this book xxv
about the authors xxx
about the cover illustration xxxii

PART 1 CORE JQUERY .. 1

1 Introducing jQuery 3
1.1 Power in the economy of code 4
1.2 Unobtrusive JavaScript 6

Separating behavior from structure 6 ■ Segregating the script 7

1.3 jQuery fundamentals 8
The jQuery wrapper 8 ■ Utility functions 11 ■ The document
ready handler 11 ■ Making DOM elements 13 ■ Extending
jQuery 14 ■ Using jQuery with other libraries 16

1.4 Summary 16
vii

Download from Library of Wow! eBook <www.wowebook.com>
www.allitebooks.com

http://www.allitebooks.org

viii CONTENTS
2 Selecting the elements upon which to act 18
2.1 Selecting elements for manipulation 19

Controlling the context 20 ■ Using basic CSS selectors 22
Using child, container, and attribute selectors 23 ■ Selecting by
position 27 ■ Using CSS and custom jQuery filter selectors 29

2.2 Generating new HTML 32
2.3 Managing the wrapped element set 35

Determining the size of a wrapped set 37 ■ Obtaining elements from a
wrapped set 37 ■ Slicing and dicing a wrapped element
set 41 ■ Getting wrapped sets using relationships 49 ■ Even more
ways to use a wrapped set 51 ■ Managing jQuery chains 52

2.4 Summary 54

3 Bringing pages to life with jQuery 55
3.1 Working with element properties and attributes 56

Manipulating element properties 58 ■ Fetching attribute
values 58 ■ Setting attribute values 60 ■ Removing
attributes 62 ■ Fun with attributes 62 ■ Storing custom data on
elements 64

3.2 Changing element styling 65
Adding and removing class names 66 ■ Getting and
setting styles 70

3.3 Setting element content 77
Replacing HTML or text content 77 ■ Moving and copying
elements 78 ■ Wrapping and unwrapping elements 84
Removing elements 86 ■ Cloning elements 87 ■ Replacing
elements 88

3.4 Dealing with form element values 89
3.5 Summary 92

4 Events are where it happens! 93
4.1 Understanding the browser event models 95

The DOM Level 0 Event Model 95 ■ The DOM Level 2 Event
Model 101 ■ The Internet Explorer Event Model 106

4.2 The jQuery Event Model 106
Binding event handlers with jQuery 107 ■ Removing event
handlers 111 ■ Inspecting the Event instance 112 ■ Proactively
managing event handlers 115 ■ Triggering event handlers 117
Other event-related methods 119
Download from Library of Wow! eBook <www.wowebook.com>
www.allitebooks.com

http://www.allitebooks.org

ixCONTENTS
4.3 Putting events (and more) to work 124
Filtering large data sets 124 ■ Element creation by template
replication 126 ■ Setting up the mainline markup 129
Adding new filters 130 ■ Adding the qualifying controls 133
Removing unwanted filters and other tasks 134 ■ There’s always
room for improvement 135

4.4 Summary 136

5 Energizing pages with animations and effects 138
5.1 Showing and hiding elements 139

Implementing a collapsible “module” 140 ■ Toggling the display state
of elements 143

5.2 Animating the display state of elements 144
Showing and hiding elements gradually 144 ■ Fading elements into
and out of existence 149 ■ Sliding elements up and down 152
Stopping animations 153

5.3 Creating custom animations 154
A custom scale animation 156 ■ A custom drop animation 156
A custom puff animation 157

5.4 Animations and Queuing 159
Simultaneous animations 159 ■ Queuing functions for
execution 162 ■ Inserting functions into the effects queue 166

5.5 Summary 167

6 Beyond the DOM with jQuery utility functions 169
6.1 Using the jQuery flags 170

Disabling animations 170 ■ Detecting user agent support 171
The browser detection flags 175

6.2 Using other libraries with jQuery 177
6.3 Manipulating JavaScript objects and collections 180

Trimming strings 180 ■ Iterating through properties and
collections 181 ■ Filtering arrays 183 ■ Translating arrays 184
More fun with JavaScript arrays 186 ■ Extending objects 187
Serializing parameter values 189 ■ Testing objects 193

6.4 Miscellaneous utility functions 194
Doing nothing 194 ■ Testing for containment 194 ■ Tacking
data onto elements 195 ■ Prebinding function contexts 195
Parsing JSON 198 ■ Evaluating expressions 199
Dynamically loading scripts 199

6.5 Summary 202
Download from Library of Wow! eBook <www.wowebook.com>
www.allitebooks.com

http://www.allitebooks.org

x CONTENTS
7 Expand your reach by extending jQuery 204
7.1 Why extend jQuery? 205
7.2 The jQuery plugin authoring guidelines 205

Naming files and functions 206 ■ Beware the $ 207 ■ Taming
complex parameter lists 208

7.3 Writing custom utility functions 210
Creating a data manipulation utility function 211 ■ Writing a date
formatter 212

7.4 Adding new wrapper methods 216
Applying multiple operations in a wrapper method 218
Retaining state within a wrapper method 223

7.5 Summary 233

8 Talk to the server with Ajax 235
8.1 Brushing up on Ajax 236

Creating an XHR instance 237 ■ Initiating the request 239
Keeping track of progress 240 ■ Getting the response 240

8.2 Loading content into elements 241
Loading content with jQuery 243 ■ Loading dynamic HTML
fragments 245

8.3 Making GET and POST requests 250
Getting data with GET 252 ■ Getting JSON data 254
Making POST requests 254 ■ Implementing cascading
dropdowns 255

8.4 Taking full control of an Ajax request 261
Making Ajax requests with all the trimmings 261 ■ Setting request
defaults 264 ■ Handling Ajax events 265

8.5 Putting it all together 268
Implementing the Termifier 270 ■ Putting the Termifier to the
test 274 ■ Improving the Termifier 277

8.6 Summary 278

PART 2 JQUERY UI... 279

9 Introducing jQuery UI: themes and effects 281
9.1 Configuring and downloading the UI library 282

Configuring and downloading 283 ■ Using the UI library 284
Download from Library of Wow! eBook <www.wowebook.com>

xiCONTENTS
9.2 jQuery themes and styling 285
Overview 286 ■ Using the ThemeRoller tool 288

9.3 jQuery UI Effects 291
The jQuery UI effects 291 ■ Extended core animation
capabilities 296 ■ Augmented visibility methods 296
Animating class transitions 297 ■ Easings 299

9.4 Advanced positioning 300
9.5 Summary 303

10 jQuery UI mouse interactions: Follow that mouse! 305
10.1 Dragging things around 307

Making elements draggable 308 ■ Draggability events 312
Controlling draggability 313

10.2 Dropping dragged things 314
Making elements droppable 315 ■ Droppability events 318

10.3 Sorting stuff 322
Making things sortable 323 ■ Connecting sortables 327
Sortability events 327 ■ Fetching the sort order 329

10.4 Changing the size of things 330
Making things resizable 331 ■ Resizability events 334
Styling the handles 335

10.5 Making things selectable 336
Creating selectables 340 ■ Selectable events 342 ■ Finding the
selected and selectable elements 344

10.6 Summary 345

11 jQuery UI widgets: Beyond HTML controls 346
11.1 Buttons and buttonsets 347

Button appearance within UI themes 348 ■ Creating themed
buttons 349 ■ Button icons 352 ■ Button events 352
Styling buttons 353

11.2 Sliders 354
Creating slider widgets 354 ■ Slider events 358 ■ Styling tips for
sliders 359

11.3 Progress bars 360
Creating progress bars 361 ■ Progress bar events 362
An auto-updating progress bar plugin 363 ■ Styling
progress bars 369
Download from Library of Wow! eBook <www.wowebook.com>

xii CONTENTS
11.4 Autocompleters 369
Creating autocomplete widgets 370 ■ Autocomplete sources 372
Autocomplete events 375 ■ Autocompleting in style 376

11.5 Date pickers 377
Creating jQuery datepickers 377 ■ Datepicker date formats 385
Datepicker events 387 ■ Datepicker utility functions 387

11.6 Tabs 389
Creating tabbed content 389 ■ Tab events 396 ■ Styling
tabs 397

11.7 Accordions 397
Creating accordion widgets 398 ■ Accordion events 402
Styling classes for accordions 403 ■ Loading accordion panels using
Ajax 404

11.8 Dialog boxes 405
Creating dialog boxes 405 ■ Dialog events 410 ■ Dialog box class
names 411 ■ Some dialog box tricks 412

11.9 Summary 413
11.10 The end? 414

appendix JavaScript that you need to know but might not! 415

index 433
Download from Library of Wow! eBook <www.wowebook.com>

list of lab pages
Selectors 20
Operations 35
Move and Copy 81
Effects. 148
$.param(). 192
Rounded Corners 288
UI Effects 291
UI Easings 299
Positioning 301
Draggables 308
Droppables. 315
Sortables. 324
Resizables 331
Selectables 338
Buttons . 350
Sliders. 356
Autocompleters 372
Datepickers 379
Tabs . 392
Accordions 401
Dialogs . 408
xiii

Download from Library of Wow! eBook <www.wowebook.com>

Download from Library of Wow! eBook <www.wowebook.com>

foreword to the first edition

It’s all about simplicity. Why should web developers be forced to write long, complex,
book-length pieces of code when they want to create simple pieces of interaction?
There’s nothing that says that complexity has to be a requirement for developing web
applications.

 When I first set out to create jQuery I decided that I wanted an emphasis on small,
simple code that served all the practical applications that web developers deal with
day to day. I was greatly pleased as I read through jQuery in Action to see in it an excel-
lent manifestation of the principles of the jQuery library.

 With an overwhelming emphasis on practical, real-world code presented in a terse,
to-the-point format, jQuery in Action will serve as an ideal resource for those looking
to familiarize themselves with the library.

 What’s pleased me the most about this book is the significant attention to detail
that Bear and Yehuda have paid to the inner workings of the library. They were thor-
ough in their investigation and dissemination of the jQuery API. It felt like nary a day
went by in which I wasn’t graced with an email or instant message from them asking
for clarification, reporting newly discovered bugs, or recommending improvements to
the library. You can be safe knowing that the resource that you have before you is one
of the best thought-out and researched pieces of literature on the jQuery library.

 One thing that surprised me about the contents of this book is the explicit inclu-
sion of jQuery plugins and the tactics and theory behind jQuery plugin development.
The reason why jQuery is able to stay so simple is through the use of its plugin
xv

Download from Library of Wow! eBook <www.wowebook.com>

xvi FOREWORD TO THE FIRST EDITION
architecture. It provides a number of documented extension points upon which plu-
gins can add functionality. Often that functionality, while useful, is not generic
enough for inclusion in jQuery itself—which is what makes the plugin architecture
necessary. A few of the plugins discussed in this book, like the Forms, Dimension, and
LiveQuery plugins, have seen widespread adoption and the reason is obvious: They’re
expertly constructed, documented, and maintained. Be sure to pay special attention
to how plugins are utilized and constructed as their use is fundamental to the jQuery
experience.

 With resources like this book, the jQuery project is sure to continue to grow and
succeed. I hope the book will end up serving you well as you begin your exploration
and use of jQuery.

 JOHN RESIG

 CREATOR OF jQUERY

Download from Library of Wow! eBook <www.wowebook.com>

preface to the second edition
It’s been two years since the first edition of jQuery in Action was published. Was it really
necessary to update the book so soon?

 Absolutely!
 Compared to the steady world of server-side languages such as Java, the client-side

technologies of the web move at a mighty fast clip. And jQuery isn’t eating anyone’s
dust; rather, it’s at the forefront of the rush!

 The jQuery team releases a major new version of the library just about every year
(lately, striving for every January), in addition to the minor updates that are made
throughout the calendar year. That means that there have been numerous minor
releases, and two major versions since the publication of the first edition, which was
written against jQuery 1.2. And what updates jQuery 1.3 and jQuery 1.4 have been!

 With each major release, the capabilities of jQuery have been extended and
enhanced in significant ways. Whether it be the addition of custom events, event
namespaces, function and effect queuing, or simply the large handful of really useful
methods and functions that have been added, the range of capabilities that jQuery
spans has increased significantly since the first edition hit the stands.

 And that doesn’t even consider jQuery UI! In its nascent stages two years ago,
jQuery UI merited a few sections in one chapter of the first edition. Since then, jQuery
UI has grown in scope and maturity and warrants a complete book part in this edition,
consisting of three full chapters.

 So it should come as no surprise that this second edition has made its way onto
the shelves covering the advances that jQuery and jQuery UI have made over the past
two years.
xvii

Download from Library of Wow! eBook <www.wowebook.com>

xviii PREFACE TO THE SECOND EDITION
What’s new in the second edition?

When we decided to go ahead with creating a second edition of jQuery in Action, I
remember someone saying to me, “Should be a piece of cake. After all, you just need
to make some updates to the first edition.”

 How wrong they were! It actually took longer to complete this second edition than
to write the book in the first place. You see, we didn’t want to fall into the trap of
“phoning it in” by just adding updates here and there and calling it done. We wanted
this second edition to be much more than a warmed over version of the first edition.

 Anyone comparing the table of contents of the first and second editions of this
book will note that the structure of chapters 1 through 8 hasn’t changed all that
much. But that’s pretty much where the similarities stop.

 This second edition isn’t just a tepid rehash of the first edition with some extra
information sprinkled here and there. Each and every paragraph in the text, and each
and every line in the example code, has undergone a careful inspection. Not only
have the additions and changes made to jQuery between versions 1.2 and 1.4 been
taken into account, the information in the chapters and the example code have been
updated to reflect current best practices regarding page scripting and the use of
jQuery. After all, as a community, we’ve got two more years of experience writing
highly interactive scripted pages using jQuery under our belts.

 Every example has been examined and either updated to better show how to use
jQuery 1.4 in practice, or replaced with an example that is better suited to showcasing
the concepts being discussed. For example, readers of the first edition may remember
the comprehensive Bamboo Grille example at the end of chapter 4 that highlighted
jQuery event handling. Try as we might, we were unable to reshape that example to
flaunt the newest jQuery event handling concepts, such as “live” and custom events.
So it has been completely replaced with the DVD Ambassador example that serves as a
better vehicle for demonstrating the advanced event-handling concepts.

 The second part of the book, focusing on jQuery UI, is completely new material,
covering the extensive changes that jQuery UI has undergone since the first edition
was published.

 We’d estimate that, counting the additions, replacements, and updates of the
material presented throughout the first part of the book, as well as the completely new
content of part 2, that at least 50 percent of this second edition is brand new material.
The other 50 percent has undergone extensive rework to ensure that it is up to date
and reflective of modern best practices.

 So much for the “piece of cake”!
Download from Library of Wow! eBook <www.wowebook.com>

preface to the first edition
One of your authors is a grizzled veteran whose involvement in programming dates
back to when FORTRAN was the bomb, and the other is an enthusiastic domain
expert, savvy beyond his years, who’s barely ever known a world without an Internet.
How did two people with such disparate backgrounds come together to work on a
joint project?

 The answer is, obviously, jQuery.
 The paths by which we came together over our affection for this most useful of cli-

ent-side tools are as different as night and day.
 I (Bear) first heard of jQuery while I was working on Ajax in Practice. Near the end

of the creation cycle of a book is a whirlwind phase known as the copyedit when the
chapters are reviewed for grammatical correctness and clarity (among other things)
by the copyeditor and for technical correctness by the technical editor. At least for me,
this is the most frenetic and stressful time in the writing of a book, and the last thing I
want to hear is “you really should add a completely new section.”

 One of the chapters I contributed to Ajax in Practice surveys a number of Ajax-
enabling client-side libraries, one of which I was already quite familiar with (Proto-
type) and others (the Dojo Toolkit and DWR) on which I had to come up to speed
pretty quickly.

 While juggling what seemed like a zillion tasks (all the while holding down a day
job, running a side business, and dealing with household issues), the technical editor,
Valentin Crettaz, casually drops this bomb: “So why don’t you have a section on
jQuery?”
xix

Download from Library of Wow! eBook <www.wowebook.com>
www.allitebooks.com

http://www.allitebooks.org

xx PREFACE TO THE FIRST EDITION
 “J who?” I asked.
 I was promptly treated to a detailed dissertation on how wonderful this fairly new

library was and how it really should be part of any modern examination of Ajax-
enabling client-side libraries. I asked around a bit. “Have any of you ever heard of this
jQwerty library?”

 I received a large number of positive responses, all enthusiastic and all agreeing
that jQuery really was the cat’s pajamas. On a rainy Sunday afternoon, I spent about
four hours at the jQuery site reading documentation and writing little test programs to
get a feel for the jQuery way of doing things. Then I banged out the new section and
sent it to the technical editor to see if I had really gotten it.

 The section was given an enthusiastic thumb’s up, and we went on to finally com-
plete the Ajax in Practice book. (That section on jQuery eventually went on to be pub-
lished in the online version of Dr. Dobb’s Journal.)

 When the dust had settled, my frenzied exposure to jQuery had planted relentless
little seeds in the back of my mind. I’d liked what I’d seen during my headlong
research into jQuery, and I set out to learn more. I started using jQuery in web proj-
ects. I still liked what I saw. I started replacing older code in previous projects to see
how jQuery would simplify the pages. And I really liked what I saw.

 Enthusiastic about this new discovery and wanting to share it with others, I took
complete leave of my senses and submitted a proposal for jQuery in Action to Manning.
Obviously, I must’ve been convincing. (As penance for causing such mayhem, I asked
the technical editor who started all the trouble to also be the technical editor for this
book. I’ll bet that taught him!)

 It’s at that point that the editor, Mike Stephens, asked, “How would you like to
work with Yehuda Katz on this project?”

 “Yehenta who?” I asked…

Yehuda came to this project by a different route; his involvement with jQuery predates
the days when it even had version numbers. After he stumbled on the Selectables
Plugin, his interest in the jQuery core library was piqued. Somewhat disappointed by
the (then) lack of online documentation, he scoured the wikis and established the
Visual jQuery site (visualjquery.com).

 Before too long, he was spearheading the push for better online documents, con-
tributing to jQuery, and overseeing the plugin architecture and ecosystem, all while
evangelizing jQuery to the Ruby community.

 Then came the day when he received a call from Manning (his name having been
dropped to the publisher by a friend), asking if he’d be interested in working with this
Bear guy on a jQuery book…

Despite the differences in our backgrounds, experiences, and strengths, and the man-
ner in which we came together on this project, we’ve formed a great team and have
Download from Library of Wow! eBook <www.wowebook.com>

xxiPREFACE TO THE FIRST EDITION
had a lot of fun working together. Even geographic distance (I’m in the heart of
Texas, and Yehuda is on the California coast) proved no barrier. Thank goodness for
email and instant messaging!

 We think that the combination of our knowledge and talents brings you a strong
and informative book. We hope you have as much fun reading this book as we had
working on it.

 We just advise you to keep saner hours.
Download from Library of Wow! eBook <www.wowebook.com>

acknowledgments
Have you ever been surprised, or even bewildered, by the seemingly endless list of
names that scrolls up the screen during the ending credits of a motion picture? Do
you ever wonder if it really takes that many people to make a movie?

 Similarly, the number of people involved in the writing of a book would probably
be a big surprise to most people. It takes a large collaborative effort on the part of
many contributors with a variety of talents to bring the volume you are holding (or
ebook that you are reading onscreen) to fruition.

 The staff at Manning worked tirelessly with us to make sure that this book
attained the level of quality that we hoped for, and we thank them for their efforts.
Without them, this book would not have been possible. The “end credits” for this
book include not only our publisher, Marjan Bace, and editor Mike Stephens, but
also the following contributors: Lianna Wlasiuk, Karen Tegtmayer, Andy Carroll,
Deepak Vohra, Barbara Mirecki, Megan Yockey, Dottie Marsico, Mary Piergies,
Gabriel Dobrescu, and Steven Hong.

 Enough cannot be said to thank our peer reviewers who helped mold the final
form of the book, from catching simple typos to correcting errors in terminology and
code and even helping to organize the chapters within the book. Each pass through a
review cycle ended up vastly improving the final product. For taking the time to help
review the book, we’d like to thank Tony Niemann, Scott Sauyet, Rich Freedman,
Philip Hallstrom, Michael Smolyak, Marion Sturtevant, Jonas Bandi, Jay Blanchard,
Nikander Bruggeman, Margriet Bruggeman, Greg Donald, Frank Wang, Curtis Miller,
Christopher Haupt, Cheryl Jerozal, Charles E. Logston, Andrew Siemer, Eric
xxii

Download from Library of Wow! eBook <www.wowebook.com>

xxiiiACKNOWLEDGMENTS
Raymond, Christian Marquardt, Robby O’Connor, Marc Gravell, Andrew Grothe, Anil
Radhakrishna, Daniel Bretoi, and Massimo Perga.

 Very special thanks go to Valentin Crettaz, who served as the book’s technical edi-
tor. In addition to checking each and every sample of example code in multiple envi-
ronments, he also offered invaluable contributions to the technical accuracy of the
text, located information that was originally missing, kept abreast of rapid changes to
the libraries while we were writing to make sure that the book represented an up-to-
date and accurate view of jQuery and jQuery UI, and even provided the PHP versions
of the examples requiring server-side code.

Bear Bibeault

For this, my fourth published tome, the cast of characters I’d like to thank has a long
list of “usual suspects,” including, once again, the membership and staff at
javaranch.com. Without my involvement in JavaRanch, I’d never have gotten the
opportunity to start writing in the first place, and so I sincerely thank Paul Wheaton
and Kathy Sierra for starting the whole thing, as well as fellow staffers who gave me
encouragement and support, including (but probably not limited to) Eric Pascarello,
Ben Souther, Ernest Friedman Hill, Mark Herschberg, Andrew Munkhouse, Jeanne
Boyarski, Bert Bates, and Max Habbibi.

 Thanks go out to Valentin Crettaz, not only for serving as a superb technical editor
and code contributor (as noted above), but also for introducing me to jQuery in the
first place.

 My partner Jay, and my dogs, Little Bear and Cozmo (whose visages grace the
pages of this book), get the usual warm thanks for putting up with the shadowy pres-
ence who shared their home but who rarely looked up from his MacBook Pro key-
board for all the months it took to write this book.

 And finally, I’d like to thank my coauthor, Yehuda Katz, without whom this project
would not have been possible, as well as John Resig and the rest of the jQuery and
jQuery UI contributors.

Yehuda Katz

To start, I’d like to thank Bear Bibeault, my coauthor, for the benefit of his exten-
sive writing experience. His talented writing and impressive abilities to navigate the
hurdles of professional publishing were a tremendous part of what made this book
possible.

 While speaking of making things possible, it’s necessary that I thank my lovely wife
Leah, who put up with the long nights and working weekends for far longer than I
would have felt comfortable asking. Her dedication to completing this book rivaled
even my own; and, as in all things, she made the most difficult part of this project
bearable. I love you, Leah.

 Obviously, there would be no jQuery in Action without the jQuery library itself. I’d
like to thank John Resig, the creator of jQuery, for changing the face of client-side
Download from Library of Wow! eBook <www.wowebook.com>

xxiv ACKNOWLEDGMENTS
development and easing the burden of web developers across the globe (believe it or
not, we have sizable user groups in China, Japan, France, and many other countries). I
also count him as a friend who, as a talented author himself, helped me to prepare for
this tremendous undertaking.

 There would be no jQuery without the incredible community of users and core
team members, including Brandon Aaron and Jörn Zaefferer on the development
team; Rey Bango and Karl Swedberg on the evangelism team; Paul Bakaus, who heads
up jQuery UI; and Klaus Hartl and Mike Alsup, who work on the plugins team with
me. This great group of programmers helped propel the jQuery framework from a
tight, simple base of core operations to a world-class JavaScript library, complete with
user-contributed (and modular) support for virtually any need you could have. I’m
probably missing a great number of jQuery contributors; there are a lot of you guys.
Suffice it to say that I would not be here without the unique community that has come
up around this library, and I can’t thank you enough.

 Lastly, I want to thank my family, whom I don’t see nearly enough since my recent
move across the country. Growing up, my siblings and I shared a tight sense of camara-
derie, and the faith my family members have in me has always made me imagine I can
do just about anything. Mommy, Nikki, Abie, and Yaakov: thank you, and I love you.
Download from Library of Wow! eBook <www.wowebook.com>

about this book
Do more with less.

 Stated plainly and simply, that is the purpose of this book: to help you learn how to
do more on your web application pages with less script. Your authors, one an avid and
enthusiastic user, and the other a jQuery contributor and evangelist, believe that
jQuery is the best library available today to help you do just that.

 This book is aimed at getting you up and running with jQuery quickly and effec-
tively while having some fun along the way. All the APIs for the core jQuery library and
its companion jQuery UI library are discussed, and each API method is presented in
an easy-to-digest syntax block that describes the parameters and return values of the
method. Many examples of effective use of the APIs are included; and, for those big
concepts, we provide what we call Lab pages. These comprehensive and fun pages are
an excellent way for you to see the nuances of the jQuery methods in action, without
the need to write a slew of code yourself.

 All example code and Lab pages are available for download at http://www.manning.
com/jQueryinActionSecondEdition or http://www.manning.com/bibeault2.

 We could go on and on with some marketing jargon telling you how great this
book is, but you don’t want to waste time reading that, do you? What you really want is
to get into the bits and bytes up to your elbows, isn’t it? Well, that’s exactly the inten-
tion of this book.

 What’s holding you back? Read on!
xxv

Download from Library of Wow! eBook <www.wowebook.com>

http://www.manning.com/jQueryinActionSecondEdition
http://www.manning.com/jQueryinActionSecondEdition
http://www.manning.com/jQueryinActionSecondEdition
http://www.manning.com/bibeault2

xxvi ABOUT THIS BOOK
Audience

This book is aimed at web developers, from novice to advanced, who want to take con-
trol of the JavaScript on their pages and produce great, interactive web applications
without the need to write all the raw, browser-dependent client-side code necessary to
achieve such applications from scratch.

 All web developers who wish to leverage the power of jQuery to create highly inter-
active and usable web applications that delight rather than annoy their users will ben-
efit from this book.

 Although novice web developers may find some sections a tad involved, this should
not deter them from diving into this book. We’ve included an appendix on essential
JavaScript concepts that will help in using jQuery to its fullest potential, and such
readers will find that the jQuery library itself is novice-friendly once they understand a
few key concepts. And even though jQuery is friendly to novices, it makes plenty of
power available to more advanced web developers.

 Whether novices or veterans of web development, client-side programmers will
benefit greatly from adding jQuery to their repertoire of development tools. We know
that the lessons within this book will help add this knowledge to your toolbox quickly.

Roadmap

This book is organized to help you wrap your head around jQuery and jQuery UI in
the quickest and most efficient manner possible. It starts with an introduction to the
design philosophies on which jQuery was founded and quickly progresses to funda-
mental concepts that govern the jQuery API. We then take you through the various
areas in which jQuery can help you write exemplary client-side code, from the han-
dling of events all the way to making Ajax requests to the server. To top it all off, we
take an extensive tour through the jQuery UI companion library.

 The book is divided into two parts: the first covering the core jQuery library, and
the second dealing with jQuery UI. Part 1 consists of eight chapters.

 In chapter 1, we’ll learn about the philosophy behind jQuery and how it adheres
to modern principles such as Unobtrusive JavaScript. We examine why we might want
to adopt jQuery, and we run through an overview of how it works. We delve into key
concepts such as document-ready handlers, utility functions, Document Object
Model (DOM) element creation, and how jQuery extensions are created.

 Chapter 2 introduces us to the jQuery wrapped set—the core concept around
which jQuery operates. We’ll learn how this wrapped set-a collection of DOM elements
that’s to be operated upon—can be created by selecting elements from the page doc-
ument using the rich and powerful collection of jQuery selectors. We’ll see that these
selectors use standard CSS notation, which makes them quite powerful even as they
leverage the CSS knowledge we most likely already possess.

 In chapter 3, we’ll learn how to use the jQuery wrapped set to manipulate the page
DOM. We’ll cover changing the styling and attributes of elements, setting element
Download from Library of Wow! eBook <www.wowebook.com>

xxviiABOUT THIS BOOK
content, moving elements around, creating elements from scratch, and dealing with
form elements.

 Chapter 4 shows us how we can use jQuery to vastly simplify the handling of events
on our pages. After all, handling user events is what makes interactive web applica-
tions possible, and anyone who’s had to deal with the intricacies of event handlers
across the differing browser implementations will certainly appreciate the simplicity
that jQuery brings to this particular area. Advanced event-handling concepts, such as
event namespacing, custom event triggering and handling, and even establishing of
proactive “live” handlers, are examined in detail and brought together in a compre-
hensive example project.

 The world of animations and effects is the subject of chapter 5. We’ll see how
jQuery makes creating animated effects not only painless but also efficient and fun.
Function queuing, for serially running effects as well as general functions, is covered
in detail.

 In chapter 6, we’ll learn about the utility functions and flags that jQuery provides,
not only for page authors, but also for those who will write extensions and plugins for
jQuery.

 We’ll focus on writing such extensions and plugins in chapter 7. We’ll see how
jQuery makes it extraordinarily easy for anyone to write such extensions without intri-
cate JavaScript or jQuery knowledge and why it makes sense to write any reusable code
as a jQuery extension.

 Chapter 8 concerns itself with one of the most important areas in the development
of modern web applications: making Ajax requests. We’ll see how jQuery makes it
almost brain-dead simple to use Ajax on our pages, shielding us from all the usual pit-
falls, while vastly simplifying the most common types of Ajax interactions (such as
returning JSON constructs). Another comprehensive example project brings all that
we’ve learned about jQuery into focus.

 In part 2, which consists of three chapters, we’ll explore jQuery’s essential compan-
ion library: jQuery UI.

 Chapter 9 introduces jQuery UI, and explains how to configure and obtain a cus-
tomized version of the library code, as well as the visual themes used to style the ele-
ments of the UI library. The visual themes are dissected so that we can learn not only
how they’re constructed, but also how we can modify them to our own needs. Round-
ing out the chapter is a discussion of the extended effects that jQuery UI adds to the
jQuery core, as well as how core methods are augmented to take advantage of those
extensions.

 In chapter 10, we explore the mouse interaction capabilities that jQuery UI pro-
vides. This extends from dragging and dropping to handling the sorting, selection,
and resizing of elements.

 Finally, chapter 11 wraps up with a thorough examination of the widget set pro-
vided by jQuery UI to extend the available set of input mechanisms we can present on
Download from Library of Wow! eBook <www.wowebook.com>

xxviii ABOUT THIS BOOK
our pages. This includes such simple controls as buttons through to more sophisti-
cated controls such as date pickers, autocompleters, tabbed panes, and dialog boxes.

 To top it all off, we have provided an appendix highlighting key JavaScript con-
cepts such as function contexts and closures—essential to making the most effective
use of jQuery on our pages—for readers who are unfamiliar with, or who would like a
refresher on, these concepts.

Margin icons

Throughout this book, unique Lab pages are introduced to help illustrate jQuery and
jQuery UI concepts. These labs pages are interactive web pages, provided with the
downloaded example code, that you can run on your own local system.

 When a new Lab page is introduced, a Labs Icon (the flask icon show at left) is
placed in the left margin. This makes it easy for you to find the location within the text
where a lab is first described. A handy list of the Lab pages is also included right after
the Table of Contents, and links to the labs are provided in the index page of the
downloaded example code.

 You can also access the Labs, as well as the rest of the example code, remotely by
pointing your browser at http://www.bibeault.org/jqia2 or from the publisher’s web-
site at http://www.manning.com/jQueryinActionSecondEdition.

 Another margin icon you will find sprinkled throughout the book is the Exercises
Icon (the triangle and pencil), which pinpoints text passages where exercises that you
should work through are presented. Frequently, these exercises will be related to a par-
ticular Lab page, but sometimes they are logical extensions of other code examples
described throughout the book, or simply standalone exercises that you should solve
to make sure that the concepts are gelling in your mind.

Code conventions

All source code in listings or in the text is in a fixed-width font like this to sepa-
rate it from ordinary text. Method and function names, properties, XML elements,
and attributes in the text are also presented in this same font.

 In some cases, the original source code has been reformatted to fit on the pages.
In general, the original code was written with page-width limitations in mind, but
sometimes you may find a slight formatting difference between the code in the book
and that provided in the source download. In a few rare cases, where long lines could
not be reformatted without changing their meaning, the book listings contain line-
continuation markers.

 Code annotations accompany many of the listings, highlighting important con-
cepts. In many cases, numbered bullets link to explanations that follow in the text.

Code downloads

Source code for all the working examples in this book (along with some extras that
never made it into the text) is available for download from the book’s web page at
Download from Library of Wow! eBook <www.wowebook.com>

http://www.bibeault.org/jqia2
http://www.manning.com/jQueryinActionSecondEdition

xxixABOUT THIS BOOK
http://www.manning.com/jQueryinActionSecondEdition. For the convenience of
those who may not be able to run the examples locally for whatever reason, a working
version of the examples is available online at http://www.bibeault.org/jqia2/.

 The code examples for this book are organized into a web application, with sepa-
rate sections for each chapter, ready to be easily served by a local web server such as
the Apache HTTP Server. You can simply unzip the downloaded code into a folder of
your choice, and make that folder the document root of the application. A launch
page is set up at the application root in the index.html file.

 With the exception of the examples for the Ajax chapter (chapter 8) and a handful
from the jQuery UI chapters, most of the examples don’t require the presence of a
web server at all and can be loaded directly into a browser for execution, if you so
desire. The Ajax examples require more backend interaction than Apache can deliver,
so running them locally requires either setting up PHP for Apache, or running a web
server capable of executing Java servlets and JavaServer Pages (JSP), such as Tomcat.
Instructions for easily setting up Tomcat to use as the web server for the Ajax examples
are provided in the chapter8/tomcat.pdf file.

 All examples were tested in a variety of browsers that include Internet Explorer 7
and 8, Firefox 3, Safari 3 and 4, and Google Chrome.

Author Online

The purchase of jQuery in Action, Second Edition includes free accessto a private forum
run by Manning Publications where you can make comments about the book, ask
technical questions, and receive help from the authors and other users. To access and
subscribe to the forum, point your browser to http://www.manning. com/jQueryin-
ActionSecondEdition, and click the Author Online link. This page provides informa-
tion on how to get on the forum once you are registered, what kind of help is
available, and the rules of conduct in the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the authors can take
place. It’s not a commitment to any specific amount of participation on the part of the
authors, whose contribution to the book’s forum remains voluntary (and unpaid). We
suggest you try asking the authors some challenging questions, lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

Download from Library of Wow! eBook <www.wowebook.com>
www.allitebooks.com

http://www.manning.com/jQueryinActionSecondEdition
http://www.bibeault.org/jqia2/
http://www.manning.com/jQueryinActionSecondEdition
http://www.manning.com/jQueryinActionSecondEdition
http://www.manning.com/jQueryinActionSecondEdition
http://www.allitebooks.org

about the authors
BEAR BIBEAULT has been writing software for over three decades,
starting with a Tic-Tac-Toe program written on a Control Data
Cyber supercomputer via a 100-baud teletype. Because he has
two degrees in Electrical Engineering, Bear should be designing
antennas or something; but, since his first job with Digital Equip-
ment Corporation, he has always been much more fascinated
with programming.

Bear has also served stints with companies such as Lightbridge Inc., BMC Software,
Dragon Systems, Works.com, and a handful of other companies. Bear even served in
the U.S. Military teaching infantry soldiers how to blow up tanks; skills that come in
handy during those daily scrum meetings. Bear is currently a Software Architect for a
leading provider of cloud management software.

 In addition to his day job, Bear also writes books (duh!), runs a small business that
creates web applications and offers other media services (but not wedding videogra-
phy, never, ever wedding videography), and helps to moderate JavaRanch.com as a
“sheriff” (senior moderator). When not planted in front of a computer, Bear likes to
cook big food (which accounts for his jeans size), dabble in photography and video,
ride his Yamaha V-Star, and wear tropical print shirts.

 He works and resides in Austin, Texas; a city he dearly loves except for the com-
pletely insane drivers.
xxx

Download from Library of Wow! eBook <www.wowebook.com>

xxxiABOUT THE AUTHORS
YEHUDA KATZ has been involved in a number of open source proj-
ects over the past several years. In addition to being a core team
member of the jQuery project, he is also a contributor to Merb,
an alternative to Ruby on Rails (also written in Ruby).

 Yehuda was born in Minnesota, grew up in New York, and
now lives in sunny Santa Barbara, California. He has worked on
websites for the New York Times, Allure Magazine, Architectural
Digest, Yoga Journal, and other similarly high-profile clients. He has programmed
professionally in a number of languages including Java, Ruby, PHP, and JavaScript.

 In his copious spare time, he maintains VisualjQuery.com and helps answer ques-
tions from new jQuery users in the IRC channel and on the official jQuery mailing list.

Download from Library of Wow! eBook <www.wowebook.com>

about the cover illustration
The figure on the cover of jQuery in Action, Second Edition is called “The Watchman.”
The illustration is taken from a French travel book, Encyclopédie des Voyages by J. G. St.
Saveur, published almost 200 years ago. Travel for pleasure was a relatively new phe-
nomenon at the time and travel guides such as this one were popular, introducing
both the tourist as well as the armchair traveler to the inhabitants of other regions of
the world, as well as to the regional costumes and uniforms of French soldiers, civil
servants, tradesmen, merchants, and peasants.

 The diversity of the drawings in the Encyclopédie des Voyages speaks vividly of the
uniqueness and individuality of the world’s towns and provinces just 200 years ago.
Isolated from each other, people spoke different dialects and languages. In the
streets or in the countryside, it was easy to identify where they lived and what their
trade or station in life was just by how they were speaking or what they were wearing.

 Dress codes have changed since then and the diversity by region, so rich at the
time, has faded away. It is now often hard to tell the inhabitant of one continent from
another. Perhaps, trying to view it optimistically, we have traded a cultural and visual
diversity for a more varied personal life. Or a more varied and interesting intellectual
and technical life.

 We at Manning celebrate the inventiveness, the initiative, and the fun of the com-
puter business with book covers based on the rich diversity of regional life two centu-
ries ago brought back to life by the pictures from this travel guide.
xxxii

Download from Library of Wow! eBook <www.wowebook.com>

Part 1

Core jQuery

When someone hears the name jQuery, they inevitably think of the core
jQuery library. But one could also argue that outside of the core, jQuery has cre-
ated an entire ecosystem around itself consisting of companion libraries such as
jQuery UI (the subject of the second part of this book), the official plugins (see
http://plugins.jquery.com/), and the myriad unofficial plugins that people have
created that can easily be found with a web search. (Googling the term “jQuery
plugin” results in over 4 million entries!)

 But just as the extensive market for third-party add-on products for Apple’s
iPod would not exist if the iPod itself did not, the core jQuery library is the heart
of it all.

 In the eight chapters in part 1 of this book, we’ll cover the core library from
stem to stern. When you finish these chapters, you’ll know the jQuery library
soup to nuts and be ready to tackle any web project armed with one of the most
powerful client-side tools available. You’ll also be prepared to use the jQuery
companions, which, much like an iPod accessory, are useless without their core
reason for being.

 So turn the page, dig in, and get ready to learn how to make breathing life
into your web applications not only easy, but fun!

Download from Library of Wow! eBook <www.wowebook.com>

http://plugins.jquery.com/

Download from Library of Wow! eBook <www.wowebook.com>

Introducing jQuery
Sneered at as a “not-very-serious” language by many web developers for much of its
lifetime, JavaScript has regained its prestige in the past few years as a result of the
renewed interest in highly interactive, next-generation web applications (which you
might also have heard referred to as rich internet applications or DOM-scripted applica-
tions) and Ajax technologies. The language has been forced to grow up quickly as
client-side developers have tossed aside cut-and-paste JavaScript for the conve-
nience of full-featured JavaScript libraries that solve difficult cross-browser prob-
lems once and for all, and provide new and improved patterns for web
development.

 A relative latecomer to this world of JavaScript libraries, jQuery has taken the
web development community by storm, quickly winning the support of major com-
panies for use in mission-critical applications. Some of jQuery’s prominent users
include the likes of IBM, Netflix, Amazon, Dell, Best Buy, Twitter, Bank of America,

This chapter covers
Why you should use jQuery

What Unobtrusive JavaScript means

The fundamental elements and concepts of jQuery

Using jQuery in conjunction with other JavaScript libraries
3

Download from Library of Wow! eBook <www.wowebook.com>

4 CHAPTER 1 Introducing jQuery
and scores of other prominent companies. Microsoft has even elected to distribute
jQuery with its Visual Studio tool, and Nokia uses jQuery on all its phones that include
their Web Runtime component.

 Those are not shabby credentials!
 Compared with other toolkits that focus heavily on clever JavaScript techniques,

jQuery aims to change the way that web developers think about creating rich function-
ality in their pages. Rather than spending time juggling the complexities of advanced
JavaScript, designers can leverage their existing knowledge of Cascading Style Sheets
(CSS), Hypertext Markup Language (HTML), Extensible Hypertext Markup Language
(XHTML), and good old straightforward JavaScript to manipulate page elements
directly, making rapid development a reality.

 In this book, we’re going to take an in-depth look at what jQuery has to offer us as
developers of highly interactive web applications. Let’s start by finding out exactly
what jQuery brings to the web development party.

 You can obtain the latest version of jQuery from the jQuery site at http://
jquery.com/. Installing jQuery is as easy as placing it within your web application and
using the HTML <script> tag to include it in your pages, like this:

<script type="text/javascript"
 src="scripts/jquery-1.4.js"></script>

The specific version of jQuery that the code in this book was tested against is included
as part of the downloadable code examples (available at http://www.manning.com/
bibeault2).

1.1 Power in the economy of code
If you’ve spent any time at all trying to add dynamic functionality to your pages, you’ve
found that you’re constantly following a pattern of selecting an element (or group of
elements) and operating upon those elements in some fashion. You could be hiding
or revealing the elements, adding a CSS class to them, animating them, or inspecting
their attributes.

 Using raw JavaScript can result in dozens of lines of code for each of these tasks,
and the creators of jQuery specifically created that library to make common tasks triv-
ial. For example, anyone who has dealt with radio groups in JavaScript knows that it’s
a lesson in tedium to discover which radio element of a radio group is currently
checked and to obtain its value attribute. The radio group needs to be located, and
the resulting array of radio elements must be inspected, one by one, to find out which
element has its checked attribute set. This element’s value attribute can then be
obtained.

 Such code might be implemented as follows:

var checkedValue;
var elements = document.getElementsByTagName('input');
for (var n = 0; n < elements.length; n++) {
 if (elements[n].type == 'radio' &&
 elements[n].name == 'someRadioGroup' &&
Download from Library of Wow! eBook <www.wowebook.com>

http://jquery.com/
http://www.manning.com/bibeault2
http://jquery.com/
http://www.manning.com/bibeault2

5Power in the economy of code
 elements[n].checked) {
 checkedValue = elements[n].value;
 }
}

Contrast that with how it can be done using jQuery:

var checkedValue = $('[name="someRadioGroup"]:checked').val();

Don’t worry if that looks a bit cryptic right now. In short order, you’ll understand how
it works, and you’ll be whipping out your own terse—but powerful—jQuery state-
ments to make your pages come alive. Let’s briefly examine how this powerful code
snippet works.

 We identify all elements that possess a name attribute with the value someRadio-
Group (remember that radio groups are formed by naming all their elements using
the same name), then filter that set to only those that are in checked state, and find
the value of that element. (There will be only one such element, because the browser
will only allow a single element of the radio group to be checked at a time.)

 The real power in this jQuery statement comes from the selector, which is an expres-
sion used to identify target elements on a page. It allows us to easily locate and grab
the elements that we need; in this case, the checked element in the radio group.

 If you haven’t downloaded the example code yet, now would be a great time to do
so. It can be obtained from a link on this book’s web page at http://www.man-
ning.com/bibeault2 (don’t forget the 2 at the end). Unpack the code and either navi-
gate to the files individually, or use the nifty index page at index.html in the root of
the unpacked folder hierarchy.

 Load the HTML page that you find in file chapter1/radio.group.html into your
browser. This page, shown in figure 1.1, uses the jQuery statement that we just exam-
ined to determine which radio button has been checked.

 Even this simple example ought to convince you that jQuery is the hassle-free way
to create the next generation of highly interactive web applications. But just wait until
we show you how much power jQuery offers for taming your web pages as we progress
through this book’s chapters.

 We’ll soon study how to easily create the jQuery selectors that made this example
so easy, but first let’s examine how the inventors of jQuery think JavaScript can be
most effectively used on our pages.

Figure 1.1 Determining
which radio button is
checked is easy to
accomplish in one
statement with jQuery!
Download from Library of Wow! eBook <www.wowebook.com>

http://www.manning.com/bibeault2
http://www.manning.com/bibeault2

6 CHAPTER 1 Introducing jQuery
1.2 Unobtrusive JavaScript
You may recall the bad old days before CSS, when we were forced to mix stylistic
markup with the document structure markup in our HTML pages. Anyone who’s
been authoring pages for any amount of time surely does, most likely with less than
fondness.

 The addition of CSS to our web development toolkits allows us to separate stylistic
information from the document structure and gives travesties like the tag the
well-deserved boot. Not only does the separation of style from structure make our doc-
uments easier to manage, it also gives us the versatility to completely change the stylis-
tic rendering of a page by simply swapping out different style sheets.

 Few of us would voluntarily regress back to the days of applying styles with HTML
elements; yet markup such as the following is still all too common:

<button
 type="button"
 onclick="document.getElementById('xyz').style.color='red';">
 Click Me
</button>

You can easily see that the style of this button ele-
ment, including the font of its caption, isn’t
applied via the use of the tag and other
deprecated style-oriented markup, but is deter-
mined by whatever CSS rules (not shown) are in
effect on the page. But although this declaration
doesn’t mix style markup with structure, it does
mix behavior with structure by including the
JavaScript to be executed when the button is clicked
as part of the markup of the button element via the
onclick attribute (which, in this case, turns some
Document Object Model (DOM) element with the
id value of xyz red).

 Let’s examine how we might improve this
situation.

1.2.1 Separating behavior from
structure

For all the same reasons that it’s desirable to seg-
regate style from structure within an HTML docu-
ment, it’s just as beneficial (if not more so) to
separate the behavior from the structure.

 Ideally, an HTML page should be structured as
shown in figure 1.2, with structure, style, and
behavior each partitioned nicely in its own niche.

<html>
 <head>

 </head>

 <body>

 </body>
</html>

STYLE
Local style elements

and imported style sheets

BEHAVIOR
Local script elements

and imported script files

STRUCTURE
 HTML structural elements

Figure 1.2 With structure, style, and
behavior each neatly tucked away
within a page, readability and
maintainability are maximized.
Download from Library of Wow! eBook <www.wowebook.com>

7Unobtrusive JavaScript
 This strategy, known as Unobtrusive JavaScript, was brought into the limelight by the
inventors of jQuery and is now embraced by every major JavaScript library, helping
page authors achieve this useful separation on their pages. As the library that popular-
ized this movement, jQuery’s core is well optimized for producing Unobtrusive
JavaScript quite easily. Unobtrusive JavaScript considers any JavaScript expressions or
statements embedded in the <body> of HTML pages, either as attributes of HTML ele-
ments (such as onclick) or in script blocks placed within the body of the page, to be
incorrect.

 “But how can I instrument the button without the onclick attribute?” you might
ask. Consider the following change to the button element:

<button type="button" id="testButton">Click Me</button>

Much simpler! But now, you’ll note, the button doesn’t do anything. We can click it all
day long, and no behavior will result.

 Let’s fix that.

1.2.2 Segregating the script

Rather than embedding the button’s behavior in its markup, we’ll segregate the script
by moving it to a script block in the <head> section of the page, outside the scope of the
document body (see note below), as follows:

<script type="text/javascript">
 window.onload = function() {
 document.getElementById('testButton').onclick = function() {
 document.getElementById('xyz').style.color = 'red';
 };
 };
</script>

We place the script in the onload handler for the page to assign an inline function to
the onclick attribute of the button element.

 We add this script in the onload handler (as opposed to within an inline script
block) because we need to make sure that the button element exists before we attempt
to augment it. (In section 1.3.3 we’ll see how jQuery provides a better place for us to
put such code.)

NOTE For performance reasons, script blocks can also be placed at the bot-
tom of the document body, though modern browsers make the performance
difference rather moot. The important concept is to avoid embedding behav-
ioral elements within the structural elements.

If any of the code in this example looks odd to you (such as the concept of function
literals and inline functions), fear not! The appendix to this book provides a look at
the important JavaScript concepts that you’ll need to use jQuery effectively. We’ll also
examine, in the remainder of this chapter, how jQuery makes writing this code easier
and quicker and makes the code more versatile all at the same time.
Download from Library of Wow! eBook <www.wowebook.com>
www.allitebooks.com

http://www.allitebooks.org

8 CHAPTER 1 Introducing jQuery
 Unobtrusive JavaScript, though a powerful technique to add to the clear separa-
tion of responsibilities within a web application, doesn’t come without a price. You
might already have noticed that it took a few more lines of script to accomplish our
goal than when we placed it into the button markup. Unobtrusive JavaScript may
increase the line count of the script that needs to be written, and it requires some dis-
cipline and the application of good coding patterns to the client-side script.

 But none of that is bad; anything that persuades us to write our client-side code
with the same level of care and respect usually allotted to server-side code is a good
thing! But it is extra work—without jQuery, that is.

 As mentioned earlier, the jQuery team has specifically focused jQuery on the task
of making it easy and delightful for us to code our pages using Unobtrusive JavaScript
techniques, without paying a hefty price in terms of effort or code bulk. We’ll find that
making effective use of jQuery will enable us to accomplish much more on our pages
while writing less code.

 Without further ado, let’s start looking at how jQuery makes it so easy for us to add
rich functionality to our pages without the expected pain.

1.3 jQuery fundamentals
At its core, jQuery focuses on retrieving elements from HTML pages and performing
operations upon them. If you’re familiar with CSS, you’re already well aware of the
power of selectors, which describe groups of elements by their type, attributes, or
placement within the document. With jQuery, we can employ that knowledge, and
that degree of power, to vastly simplify our JavaScript.

 jQuery places a high priority on ensuring that code will work consistently across all
major browsers; many of the more difficult JavaScript problems, such as waiting until
the page is loaded before performing page operations, have been silently solved for us.

 Should we find that the library needs a bit more juice, jQuery has a simple but
powerful built-in method for extending its functionality via plugins. Many new jQuery
programmers find themselves putting this versatility into practice by extending jQuery
with their own plugins on their first day.

 Let’s start by taking a look at how we can leverage our CSS knowledge to produce
powerful, yet terse, code.

1.3.1 The jQuery wrapper

When CSS was introduced to web technologies in order to separate design from con-
tent, a way was needed to refer to groups of page elements from external style sheets.
The method developed was through the use of selectors, which concisely represent
elements based upon their type, attributes, or position within the HTML document.

 Those familiar with XML might be reminded of XPath as a means to select ele-
ments within an XML document. CSS selectors represent an equally powerful concept,
but are tuned for use within HTML pages, are a bit more concise, and are generally
considered easier to understand.
Download from Library of Wow! eBook <www.wowebook.com>

9jQuery fundamentals
For example, the selector

p a

refers to the group of all links (<a> elements) that are nested inside a <p> element.
jQuery makes use of the same selectors, supporting not only the common selectors
currently used in CSS, but also some that may not yet be fully implemented by all
browsers, including some of the more powerful selectors defined in CSS3.

 To collect a group of elements, we pass the selector to the jQuery function using
the simple syntax

$(selector)

or

jQuery(selector)

Although you may find the $() notation strange at first, most jQuery users quickly
become fond of its brevity. For example, to wrap the group of links nested inside any
<p> element, we can use the following:

$("p a")

The $() function (an alias for the jQuery() function) returns a special JavaScript
object containing an array of the DOM elements, in the order in which they are defined
within the document, that match the selector. This object possesses a large number of
useful predefined methods that can act on the collected group of elements.

 In programming parlance, this type of construct is termed a wrapper because it
wraps the collected elements with extended functionality. We’ll use the term jQuery
wrapper or wrapped set to refer to this set of matched elements that can be operated on
with the methods defined by jQuery.

 Let’s say that we want to hide all <div> elements that possess the class notLongFor-
ThisWorld. The jQuery statement is as follows:

$("div.notLongForThisWorld").hide();

A special feature of a large number of these methods, which we often refer to as
jQuery wrapper methods, is that when they’re done with their action (like a hide opera-
tion), they return the same group of elements, ready for another action. For example,
say that we want to add a new class, removed, to each of the elements in addition to
hiding them. We would write

$("div.notLongForThisWorld").hide().addClass("removed");

These jQuery chains can continue indefinitely. It’s not uncommon to find examples in
the wild of jQuery chains dozens of methods long. And because each method works
on all of the elements matched by the original selector, there’s no need to loop over
the array of elements. It’s all done for us behind the scenes!

 Even though the selected group of objects is represented as a highly sophisticated
JavaScript object, we can pretend it’s a typical array of elements, if necessary. As a
result, the following two statements produce identical results:
Download from Library of Wow! eBook <www.wowebook.com>

10 CHAPTER 1 Introducing jQuery
$("#someElement").html("I have added some text to an element");

and

$("#someElement")[0].innerHTML =
 "I have added some text to an element";

Because we’ve used an ID selector, only one element will match the selector. The first
example uses the jQuery html() method, which replaces the contents of a DOM ele-
ment with some HTML markup. The second example uses jQuery to retrieve an array
of elements, selects the first one using an array index of 0, and replaces the contents
using an ordinary JavaScript property assignment to innerHTML.

 If we wanted to achieve the same results with a selector that results in multiple
matched elements, the following two fragments would produce identical results
(though the latter example is not a recommended way of coding using jQuery):

$("div.fillMeIn")
 .html("I have added some text to a group of nodes");

and

var elements = $("div.fillMeIn");
for(var i=0;i<elements.length;i++)
 elements[i].innerHTML =
 "I have added some text to a group of nodes";

As things get progressively more complicated, making use of jQuery’s chainability will
continue to reduce the lines of code necessary to produce the results we want. Addi-
tionally, jQuery supports not only the selectors that you have already come to know
and love, but also more advanced selectors—defined as part of the CSS specifica-
tion—and even some custom selectors.

 Here are a few examples:

That’s powerful stuff!
 You’ll be able to leverage your existing knowledge of CSS to get up and running

fast, and then learn about the more advanced selectors that jQuery supports. We’ll be
covering jQuery selectors in great detail in chapter 2, and you can find a full list on
the jQuery site at http://docs.jquery.com/Selectors.

Selector Results

$("p:even") Selects all even <p> elements

$("tr:nth-child(1)") Selects the first row of each table

$("body > div") Selects direct <div> children of <body>

$("a[href$= 'pdf ']") Selects links to PDF files

$("body > div:has(a)") Selects direct <div> children of <body>-containing links
Download from Library of Wow! eBook <www.wowebook.com>

http://docs.jquery.com/Selectors

11jQuery fundamentals
 Selecting DOM elements for manipulation is a common need in web pages, but
some things that we’ll also need to do don’t involve DOM elements at all. Let’s take a
brief look at what jQuery offers beyond element manipulation.

1.3.2 Utility functions

Even though wrapping elements to be operated upon is one of the most frequent uses
of jQuery’s $() function, that’s not the only duty to which it’s assigned. One of its
additional duties is to serve as the namespace prefix for a handful of general-purpose
utility functions. Because so much power is given to page authors by the jQuery wrap-
per created as a result of a call to $() with a selector, it’s somewhat rare for most page
authors to need the services provided by some of these functions. In fact, we won’t be
looking at the majority of these functions in detail until chapter 6 as a preparation for
writing jQuery plugins. But you will see a few of these functions put to use in the
upcoming sections, so we’ll briefly introduce them here.

 The notation for these functions may look odd at first. Let’s take, for example, the
utility function for trimming strings. A call to it could look like this:

var trimmed = $.trim(someString);

If the $. prefix looks weird to you, remember that $ is an identifier like any other in
JavaScript. Writing a call to the same function using the jQuery identifier, rather than
the $ alias, may look a bit less odd:

var trimmed = jQuery.trim(someString);

Here it becomes clear that the trim() function is merely namespaced by jQuery or its
$ alias.

NOTE Even though these elements are called the utility functions in jQuery
documentation, it’s clear that they’re actually methods of the $() function (yes,
in JavaScript, functions can have their own methods). We’ll put aside this
technical distinction and use the term utility function to describe these meth-
ods so as not to introduce terminology that conflicts with the online docu-
mentation.

We’ll explore one of these utility functions that helps us to extend jQuery in
section 1.3.5, and one that helps jQuery peacefully coexist with other client-side
libraries in section 1.3.6. But first, let’s look at another important duty that jQuery’s
$() function performs.

1.3.3 The document ready handler

When embracing Unobtrusive JavaScript, behavior is separated from structure, so
we’re performing operations on the page elements outside of the document markup
that creates them. In order to achieve this, we need a way to wait until the DOM ele-
ments of the page are fully realized before those operations execute. In the radio
group example, the entire body must load before the behavior can be applied.
Download from Library of Wow! eBook <www.wowebook.com>

12 CHAPTER 1 Introducing jQuery
 Traditionally, the onload handler for the window instance is used for this purpose,
executing statements after the entire page is fully loaded. The syntax is typically some-
thing like

window.onload = function() {
 // do stuff here
};

This causes the defined code to execute after the document has fully loaded. Unfortu-
nately, the browser not only delays executing the onload code until after the DOM tree
is created, but also waits until after all external resources are fully loaded and the page
is displayed in the browser window. This includes not only resources like images, but
QuickTime and Flash videos embedded in web pages, and there are more and more
of them these days. As a result, visitors can experience a serious delay between the
time that they first see the page and the time that the onload script is executed.

 Even worse, if an image or other resource takes significant time to load, visitors will
have to wait for the image loading to complete before the rich behaviors become
available. This could make the whole Unobtrusive JavaScript proposition a non-starter
for many real-life cases.

 A much better approach would be to wait only until the document structure is fully
parsed and the browser has converted the HTML into its resulting DOM tree before
executing the script to apply the rich behaviors. Accomplishing this in a cross-browser
manner is somewhat difficult, but jQuery provides a simple means to trigger the exe-
cution of code once the DOM tree has loaded (without waiting for external resources).
The formal syntax to define such code (using our hiding example) is as follows:

jQuery(document).ready(function() {
 $("div.notLongForThisWorld").hide();
});

First, we wrap the document instance with the jQuery() function, and then we apply
the ready() method, passing a function to be executed when the document is ready
to be manipulated.

 We called that the formal syntax for a reason; a shorthand form, used much more
frequently, is as follows:

jQuery(function() {
 $("div.notLongForThisWorld").hide();
});

By passing a function to jQuery() or $(), we instruct the browser to wait until the
DOM has fully loaded (but only the DOM) before executing the code. Even better,
we can use this technique multiple times within the same HTML document, and the
browser will execute all of the functions we specify in the order that they are
declared within the page. In contrast, the window’s onload technique allows for
only a single function. This limitation can also result in hard-to-find bugs if any
included third-party code uses the onload mechanism for its own purpose (not a
best-practice approach).
Download from Library of Wow! eBook <www.wowebook.com>

13jQuery fundamentals
 That’s another use of the $() function; now let’s look at yet something else it can
do for us.

1.3.4 Making DOM elements

As you can see by now, the authors of jQuery avoided introducing a bunch of global
names into the JavaScript namespace by making the $() function (which you’ll recall
is merely an alias for the jQuery() function) versatile enough to perform many
duties. Well, there’s one more duty that we need to examine.

 We can create DOM elements on the fly by passing the $() function a string that
contains the HTML markup for those elements. For example, we can create a new
paragraph element as follows:

$("<p>Hi there!</p>")

But creating a disembodied DOM element (or hierarchy of elements) isn’t all that use-
ful; usually the element hierarchy created by such a call is then operated on using one
of jQuery’s DOM manipulation functions. Let’s examine the code of listing 1.1 as an
example.

<html>
 <head>
 <title>Follow me!</title>
 <link rel="stylesheet" type="text/css"
 href="../styles/core.css"/>
 <script type="text/javascript" src="../scripts/jquery-1.4.js">
 </script>
 <script type="text/javascript">
 $(function(){
 $("<p>Hi there!</p>").insertAfter("#followMe");
 });
 </script>
 </head>

 <body>
 <p id="followMe">Follow me!</p>
 </body>
</html>

This example establishes an existing HTML paragraph element named followMe C in
the document body. In the script element within the <head> section, we establish a
ready handler B that uses the following statement to insert a newly created paragraph
into the DOM tree after the existing element:

$("<p>Hi there!</p>").insertAfter("#followMe");

The result is shown in figure 1.3.
 We’ll be investigating the full set of DOM manipulation functions in chapter 3,

where we’ll see that jQuery provides many means to manipulate the DOM to create
nearly any structure that we may desire.

Listing 1.1 Creating HTML elements on the fly

Ready handler that
creates HTML element

B

Existing element
to be followed

C

Download from Library of Wow! eBook <www.wowebook.com>

14 CHAPTER 1 Introducing jQuery
Now that you’ve seen the basic syntax of jQuery, let’s take a look at one of the most
powerful features of the library.

1.3.5 Extending jQuery

The jQuery wrapper function provides a large number of useful methods we’ll use
again and again in these pages. But no library can anticipate everyone’s needs. It
could be argued that no library should even try to anticipate every possible need;
doing so could result in a large, clunky mass of code that contains little-used features
that merely serve to gum up the works!

 The authors of the jQuery library recognized this concept and worked hard to iden-
tify the features that most page authors would need and included only those in the
core library. Recognizing also that page authors would each have their own unique
requirements, jQuery was designed to be easily extended with additional functionality.

 We could write our own functions to fill in any gaps, but once we’ve been spoiled
by the jQuery way of doing things, we’ll find that doing things the old-fashioned way is
beyond tedious. By extending jQuery, we can use the powerful features it provides,
particularly in the area of element selection.

 Let’s look at a specific example: jQuery doesn’t come with a predefined function
to disable a group of form elements. If we’re using forms throughout an application,
we might find it convenient to be able to write code such as the following:

$("form#myForm input.special").disable();

Fortunately, and by design, jQuery makes it easy to extend its set of methods by
extending the wrapper returned when we call $(). Let’s take a look at the basic idiom
for how that’s accomplished by coding a new disable() function:

$.fn.disable = function() {
 return this.each(function() {
 if (this.disabled == null) this.disabled = true;
 });
}

A lot of new syntax is introduced here, but don’t worry about it too much yet. It’ll be
old hat once you’ve made your way through the next few chapters; it’s a basic idiom
that you’ll use over and over again.

Figure 1.3 Dynamically
creating and inserting
elements, usually
requiring many lines of
code, can be
accomplished in a single
line of jQuery code.
Download from Library of Wow! eBook <www.wowebook.com>

15jQuery fundamentals
 First, $.fn.disable means that we’re extending the $ wrapper with a method
named disable. Inside that function, the this keyword is the collection of wrapped
DOM elements that are to be operated upon.

 Then, the each() method of this wrapper is called to iterate over each element in
the wrapped collection. We’ll be exploring this and similar methods in greater detail
in chapter 3. Inside of the iterator function passed to each(), this is a reference to
the specific DOM element for the current iteration. Don’t be confused by the fact that
this resolves to different objects within the nested functions. After writing a few
extended functions, it becomes natural to remember that this refers to the function
context of the current function. (The appendix is also there to explain the JavaScript
concept of the this keyword.)

 For each element, we check whether the element has a disabled attribute, and if it
does, we set it to true. We return the result of the each() method (the wrapper) so
that our brand new disable() method will support chaining, like many of the native
jQuery methods. We’ll be able to write

$("form#myForm input.special").disable().addClass("moreSpecial");

From the point of view of our page code, it’s as though our new disable() method
was built into the library itself! This technique is so powerful that most new jQuery
users find themselves building small extensions to jQuery almost as soon as they start
to use the library.

 Moreover, enterprising jQuery users have extended jQuery with sets of useful func-
tions that are known as plugins. We’ll be talking more about extending jQuery in this
way in chapter 7.

Testing for existence
You might have seen this common idiom for testing the existence of an item:

if (item) {
 //do something if item exists
}
else {
 //do something if item doesn't exist
}

The idea here is that if the item doesn’t exist, the conditional expression will evaluate
to false.

Although this works in most circumstances, the framers of jQuery feel that it’s a bit
too sloppy and imprecise and recommend the more explicit test used in the
$.fn.disable example:

if (item == null) ...

This expression will correctly test for null or undefined items.

For a full list of the various coding styles recommended by the jQuery team, visit the
jQuery documentation page at http://docs.jquery.com/JQuery_Core_Style_Guidelines.
Download from Library of Wow! eBook <www.wowebook.com>

http://docs.jquery.com/JQuery_Core_Style_Guidelines

16 CHAPTER 1 Introducing jQuery
 Before we dive into using jQuery to bring life to our pages, you may be wondering
if we’re going to be able to use jQuery with Prototype or other libraries that also use
the $ shortcut. The next section reveals the answer to this question.

1.3.6 Using jQuery with other libraries

Even though jQuery provides a set of powerful tools that will meet most of our needs,
there may be times when a page requires that multiple JavaScript libraries be
employed. This situation could come about when we’re transitioning an application
from a previously employed library to jQuery, or we might want to use both jQuery
and another library on our pages.

 The jQuery team, clearly revealing their focus on meeting the needs of their user
community rather than any desire to lock out other libraries, have made provisions
for allowing jQuery to cohabitate with other libraries.

 First, they’ve followed best-practice guidelines and have avoided polluting the
global namespace with a slew of identifiers that might interfere not only with other
libraries, but also with names we might want to use on our pages. The identifier
jQuery and its alias $ are the limit of jQuery’s incursion into the global namespace.
Defining the utility functions that we referred to in section 1.3.2 as part of the jQuery
namespace is a good example of the care taken in this regard.

 Although it’s unlikely that any other library would have a good reason to define a
global identifier named jQuery, there’s that convenient but, in this particular case,
pesky $ alias. Other JavaScript libraries, most notably the Prototype library, use the $
name for their own purposes. And because the usage of the $ name in that library is
key to its operation, this creates a serious conflict.

 The thoughtful jQuery authors have provided a means to remove this conflict with
a utility function appropriately named noConflict(). Anytime after the conflicting
libraries have been loaded, a call to

jQuery.noConflict();

will revert the meaning of $ to that defined by the non-jQuery library.
 We’ll cover the nuances of using this utility function in chapter 7.

1.4 Summary
We’ve covered a great deal of material in this whirlwind introduction to jQuery, in
preparation for diving into using jQuery to quickly and easily enable the development
of next-generation web applications.

 jQuery is generally useful for any page that needs to perform anything but the
most trivial of JavaScript operations, but it’s also strongly focused on enabling page
authors to employ the concept of Unobtrusive JavaScript within their pages. With this
approach, behavior is separated from structure in the same way that CSS separates
style from structure, achieving better page organization and increased code versatility.

 Despite the fact that jQuery introduces only two new names in the JavaScript
namespace—the self-named jQuery function and its $ alias—the library provides a
Download from Library of Wow! eBook <www.wowebook.com>

17Summary
great deal of functionality by making that function highly versatile, adjusting the oper-
ation that it performs based upon the parameters passed to it.

 As we’ve seen, the jQuery() function can be used to do the following:

Select and wrap DOM elements to be operated upon by wrapper methods
Serve as a namespace for global utility functions
Create DOM elements from HTML markup
Establish code to be executed when the DOM is ready for manipulation

jQuery behaves like a good on-page citizen not only by minimizing its incursion into
the global JavaScript namespace, but also by providing an official means to reduce
that minimal incursion in circumstances when a name collision might still
occur—namely when another library, such as Prototype, requires use of the $ name.
How’s that for being user friendly?

 In the chapters that follow, we’ll explore all that jQuery has to offer us as develop-
ers of rich internet applications. We’ll begin our tour in the next chapter as we learn
how to use jQuery selectors to quickly and easily identify the elements that we wish to
act upon.
Download from Library of Wow! eBook <www.wowebook.com>
www.allitebooks.com

http://www.allitebooks.org

Selecting the elements
upon which to act
In the previous chapter, we discussed the many ways that the jQuery function can
be used. Its capabilities range from the selection of DOM elements to defining func-
tions to be executed when the DOM is loaded.

 In this chapter, we’ll examine (in great detail) how the DOM elements to be
acted upon are identified by looking at two of the most powerful and frequently
used capabilities of jQuery’s $() function: the selection of DOM elements via selec-
tors and the creation of new DOM elements.

 A good number of the capabilities required by interactive web applications are
achieved by manipulating the DOM elements that make up the pages. But before
they can be manipulated, they need to be identified and selected. Let’s begin our
detailed tour of the many ways that jQuery lets us specify which elements are to be
targeted for manipulation.

This chapter covers
Selecting elements to be wrapped by jQuery using selectors

Creating and placing new HTML elements in the DOM

Manipulating the wrapped element set
18

Download from Library of Wow! eBook <www.wowebook.com>

19Selecting elements for manipulation
2.1 Selecting elements for manipulation
The first thing we need to do when using virtually any jQuery method (frequently
referred to as jQuery wrapper methods) is to select some document elements to act
upon. Sometimes, the set of elements we want to select will be easy to describe, such as
“all paragraph elements on the page.” Other times, they’ll require a more complex
description like “all list elements that have the class listElement, contain a link, and
are first in the list.”

 Fortunately, jQuery provides a robust selector syntax we can use to easily specify sets
of elements elegantly and concisely. You probably already know a big chunk of the syn-
tax: jQuery uses the CSS syntax you already know and love, and extends it with some
custom means to perform both common and complex selections.

Figure 2.1 The jQuery Selectors Lab Page allows you to observe the behavior of any selector you choose
in real time.
Download from Library of Wow! eBook <www.wowebook.com>

20 CHAPTER 2 Selecting the elements upon which to act
 To help you learn about element selection, we’ve put together a jQuery Selectors
Lab Page that’s available within the downloadable code examples for this book (in file
chapter2/lab.selectors.html). The Selectors Lab allows you to enter a jQuery selector
string and see (in real time!) which DOM elements get selected. When displayed, the
Lab should look as shown in figure 2.1 (if the panes don’t appear correctly lined up,
you may need to widen your browser window).

TIP If you haven’t yet downloaded the example code, you really ought to do
so now—the information in this chapter will be much easier to absorb if you
follow along with the Lab exercises. Visit this book’s web page at http://
www.manning.com/bibeault2 to find the download link.

The Selector pane at top left contains a text box and a button. To run a Lab “experi-
ment,” type a selector into the text box and click the Apply button. Go ahead and type
the string li into the box, and click the Apply button.

 The selector that you type (in this case li) is applied to the HTML fragment loaded
into the DOM Sample pane at upper right. The Lab code that executes when Apply is
clicked adds a class named wrappedElement to be applied to all matching elements. A
CSS rule defined for the page causes all elements with that class to be highlighted with
a red border and pink background. After clicking Apply, you should see the display
shown in figure 2.2, in which all elements in the DOM sample are highlighted.

 Note that the elements in the sample fragment have been highlighted and
that the executed jQuery statement, as well as the tag names of the selected elements,
have been displayed below the Selector text box.

 The HTML markup used to render the DOM sample fragment is displayed in the
lower pane, labeled DOM Sample Code. This should help you experiment with writing
selectors targeted at the elements in this sample.

 We’ll talk more about using this Lab as we progress through the chapter. But first,
your authors must admit that they’ve been blatantly over-simplifying an important
concept, and that’s going to be rectified now.

2.1.1 Controlling the context

Up to this point, we’ve been acting as if there were only one argument passed to
jQuery’s $() function, but this was just a bit of hand waving to keep things simple at
the start. In fact, for the variants in which a selector or an HTML fragment is passed to
the $() function, a second argument is accepted. When the first argument is a selec-
tor, this second argument denotes the context of the operation.

 As we’ll see with many of jQuery’s methods, when an optional argument is omit-
ted, a reasonable default is assumed. And so it is with the context argument. When a
selector is passed as the first argument (we’ll deal with passing HTML fragments later),
the context defaults to applying that selector to every element in the DOM tree.

 That’s quite often exactly what we want, so it’s a nice default. But there may be
times when we want to limit our search to a subset of the entire DOM. In such cases, we
Download from Library of Wow! eBook <www.wowebook.com>

http://www.manning.com/bibeault2
http://www.manning.com/bibeault2

21Selecting elements for manipulation
can identify a subset of the DOM that serves as the root of the sub-tree to which the
selector is applied.

 The Selectors Lab offers a good example of this scenario. When that page applies
the selector that you typed into the text field, the selector is applied only to the subset
of the DOM that’s loaded into the DOM Sample pane.

 We can use a DOM element reference as the context, but we can also use either a
string that contains a jQuery selector, or a wrapped set of DOM elements. (So yes, that
means that we can pass the result of one $() invocation to another—don’t let that
make your head explode just yet; it’s not as confusing as it may seem at first.)

 When a selector or wrapped set is provided as the context, the identified elements
serve as the contexts for the application of the selector. As there can be multiple such
elements, this is a nice way to provide disparate sub-trees in the DOM to serve as the
contexts for the selection process.

Figure 2.2 A selector value of li matches all elements when applied, as shown by the
displayed results.
Download from Library of Wow! eBook <www.wowebook.com>

22 CHAPTER 2 Selecting the elements upon which to act
 Let’s take the Lab Page as an example. We’ll assume that the selector string is
stored in a variable conveniently named selector. When we apply this submitted
selector, we only want to apply it to the sample DOM, which is contained within a
<div> element with an id value of sampleDOM.

 Were we to code the call to the jQuery function like this,

$(selector)

the selector would be applied to the entire DOM tree, including the form in which the
selector was specified. That’s not what we want. What we want is to limit the selection
process to the sub-tree of the DOM rooted at the <div> element with the id of sample-
DOM; so instead we write

$(selector,'div#sampleDOM')

which limits the application of the selector to the desired portion of the DOM.
 OK, now that we know how to control where to apply selectors, let’s see how to

code them beginning with familiar territory: traditional CSS selectors.

2.1.2 Using basic CSS selectors

For applying styles to page elements, web developers have become familiar with a
small, but powerful and very useful, group of selection expressions that work across all
browsers. Those expressions can select by an element’s ID, by CSS class names, by tag
names, and by the hierarchy of the page elements within the DOM.

 Table 2.1 provides some examples to give you a quick refresher. We can mix and
match these basic selector types to identify fairly fine-grained sets of elements.

 With jQuery, we can easily select elements using the CSS selectors that we’re
already accustomed to using. To select elements using jQuery, wrap the selector in
$(), like this:

$("p a.specialClass")

With a few exceptions, jQuery is fully CSS3 compliant, so selecting elements this way
will present no surprises; the same elements that would be selected in a style sheet by a

Table 2.1 Some simple CSS selector examples

Example Description

a Matches all anchor (<a>) elements

#specialID Matches the element with the id value of specialID

.specialClass Matches all elements with the class specialClass

a#specialID.specialClass Matches the element with the id value specialID if it’s an
anchor tag and has class specialClass

p a.specialClass Matches all anchor elements with the class specialClass
that are descendants of <p> elements
Download from Library of Wow! eBook <www.wowebook.com>

23Selecting elements for manipulation
standards-compliant browser will be selected by jQuery’s selector engine. Note that
jQuery does not depend upon the CSS implementation of the browser it’s running
within. Even if the browser doesn’t implement a standard CSS selector correctly,
jQuery will correctly select elements according to the rules of the World Wide Web
Consortium (W3C) standard.

 jQuery also lets us combine multiple selectors into a single expression using the
comma operator. For example, to select all <div> and all elements, you could
do this:

$('div,span')

For some practice, play with the Selectors Lab and run some experiments with some
basic CSS selectors until you feel comfortable with them.

 These basic selectors are powerful, but sometimes we’ll need even finer-grained
control over which elements we want to match. jQuery meets this challenge and steps
up to the plate with even more advanced selectors.

2.1.3 Using child, container, and attribute selectors

For more advanced selectors, jQuery uses the most up-to-date generation of CSS sup-
ported by Mozilla Firefox, Internet Explorer 7 and 8, Safari, Chrome and other mod-
ern browsers. These advanced selectors allow us to select the direct children of some
elements, elements that occur after other elements in the DOM, and even elements
with attributes matching certain conditions.

 Sometimes, we’ll want to select only the direct children of a certain element. For
example, we might want to select list elements directly under some list, but not list ele-
ments belonging to a sublist. Consider the following HTML fragment from the sample
DOM in the Selectors Lab:

<ul class="myList">
 jQuery supports

 CSS1
 CSS2
 CSS3
 Basic XPath

 jQuery also supports

 Custom selectors
 Form selectors

Suppose that we wanted to select the link to the remote jQuery site, but not the links
to various local pages describing the different CSS specifications. Using basic CSS
selectors, we might try something like ul.myList li a. Unfortunately, that selector
would grab all links because they all descend from a list element.
Download from Library of Wow! eBook <www.wowebook.com>

24 CHAPTER 2 Selecting the elements upon which to act
You can verify this by entering the selector ul.myList li a into the Selectors Lab and
clicking Apply. The results will be as shown in figure 2.3.

 A more advanced approach is to use child selectors, in which a parent and its direct
child are separated by the right angle bracket character (>), as in

p > a

This selector matches only links that are direct children of a <p> element. If a link were
further embedded, say within a within the <p>, that link would not be selected.

 Going back to our example, consider a selector such as

ul.myList > li > a

This selector selects only links that are direct children of list elements, which are in
turn direct children of elements that have the class myList. The links contained
in the sublists are excluded because the elements serving as the parent of the
sublists’ elements don’t have the class myList, as shown in the Lab results in fig-
ure 2.4.

 Attribute selectors are also extremely powerful. Say that we want to attach a special
behavior only to links that point to locations outside your site. Let’s take another look
at that portion of the Lab example that we previously examined:

jQuery supports

 CSS1

Figure 2.3 All anchor tags that are descendants, at any depth, of an element are selected by
ul.myList li a.
Download from Library of Wow! eBook <www.wowebook.com>

25Selecting elements for manipulation
 CSS2
 CSS3
 Basic XPath

What makes the link pointing to an external site unique is the http:// at the begin-
ning of the string value for the link’s href attribute. We could select links that have an
href value starting with http:// with the following selector:

a[href^='http://']

This matches all links with an href value beginning with the exact string http://. The
caret character (^) is used to specify that the match is to occur at the beginning of a
value. As this is the same character used by most regular expression processors to sig-
nify matching at the beginning of a candidate string, it should be easy to remember.

 Visit the Lab page again (from which the previous HTML fragment was lifted), type
a[href^='http://'] into the text box, and click Apply. Note how only the jQuery
link is highlighted.

 There are other ways to use attribute selectors. To match an element that possesses
a specific attribute, regardless of its value, we can use

form[method]

This matches any <form> element that has an explicit method attribute.
 To match a specific attribute value, we use something like

input[type='text']

Figure 2.4 With the selector ul.myList > li > a, only the direct children of parent nodes are matched.
Download from Library of Wow! eBook <www.wowebook.com>

26 CHAPTER 2 Selecting the elements upon which to act
This selector matches all input elements with a type of text.
 We’ve already seen the “match attribute at beginning” selector in action. Here’s

another:

div[title^='my']

This selects all <div> elements with a title attribute whose value begins with my.
 What about an “attribute ends with” selector? Coming right up:

a[href$='.pdf']

This is a useful selector for locating all links that reference PDF files.
 And here’s a selector for locating elements whose attributes contain arbitrary

strings anywhere in the attribute value:

a[href*='jquery.com']

As we’d expect, this selector matches all <a> elements that reference the jQuery site.
 Table 2.2 shows the basic CSS selectors that we can use with jQuery.
 With all this knowledge in hand, head over to the Selectors Lab page, and spend

some more time running experiments using selectors of various types from table 2.2.
Try to make some targeted selections like the elements containing the text
Hello and Goodbye (hint: you’ll need to use a combination of selectors to get the job
done).

 As if the power of the selectors that we’ve discussed so far isn’t enough, there are
some more options that offer an even finer ability to slice and dice the page.

Table 2.2 The basic CSS selectors supported by jQuery

Selector Description

* Matches any element.

E Matches all elements with tag name E.

E F Matches all elements with tag name F that are descendants of E.

E>F Matches all elements with tag name F that are direct children of E.

E+F Matches all elements with tag name F that are immediately preceded by sibling E.

E~F Matches all elements with tag name F preceded by any sibling E.

E.C Matches all elements with tag name E with class name C. Omitting E is the same as
*.C.

E#I Matches all elements with tag name E with the id of I. Omitting E is the same as *#I.

E[A] Matches all elements with tag name E that have attribute A of any value.

E[A=V] Matches all elements with tag name E that have attribute A whose value is exactly V.

E[A^=V] Matches all elements with tag name E that have attribute A whose value starts with V.

E[A$=V] Matches all elements with tag name E that have attribute A whose value ends with V.

E[A!=V] Matches all elements with tag name E that have attribute A whose value doesn’t match
the value V, or that lack attribute A completely.

E[A*=V] Matches all elements with tag name E that have attribute A whose value contains V.
Download from Library of Wow! eBook <www.wowebook.com>

27Selecting elements for manipulation
2.1.4 Selecting by position

Sometimes, we’ll need to select elements by their position on the page or in relation
to other elements. We might want to select the first link on the page, or every other
paragraph, or the last list item of each list. jQuery supports mechanisms for achieving
these specific selections.

 For example, consider

a:first

This format of selector matches the first <a> element on the page.
 What about picking every other element?

p:odd

This selector matches every odd paragraph element. As we might expect, we can also
specify that evenly ordered elements be selected with

p:even

Another form,

ul li:last-child

chooses the last child of parent elements. In this example, the last child of each
 element is matched.

 There are a whole slew of these selectors, some defined by CSS, others specific to
jQuery, and they can provide surprisingly elegant solutions to sometimes tough prob-
lems. The CSS specification refers to these types of selectors as pseudo-classes, but
jQuery has adopted the crisper term filters, because each of these selectors filter a base
selector. These filter selectors are easy to spot, as they all begin with the colon (:)
character. And remember, if you omit any base selector, it defaults to *.

 See table 2.3 for a list of these positional filters (which the jQuery documentation
terms the basic and child filters).

Table 2.3 The positional filter selectors supported by jQuery

Selector Description

:first Matches the first match within the context. li a:first returns the
first link that’s a descendant of a list item.

:last Matches the last match within the context. li a:last returns the last
link that’s a descendant of a list item.

:first-child Matches the first child element within the context. li:first-child
returns the first list item of each list.

:last-child Matches the last child element within the context. li:last-child
returns the last list item of each list.

:only-child Returns all elements that have no siblings.
Download from Library of Wow! eBook <www.wowebook.com>
www.allitebooks.com

http://www.allitebooks.org

28 CHAPTER 2 Selecting the elements upon which to act
There is one quick gotcha (isn’t there always?). The :nth-child filter starts counting
from 1 (for CSS compatibility), whereas the other selectors start counting from 0 (fol-
lowing the more common programming convention). This becomes second nature
with practice, but it may be a bit confusing at first.

 Let’s dig in some more.
 Consider the following table from the Lab’s sample DOM. It contains a list of pro-

gramming languages and some basic information about them:

<table id="languages">
 <thead>
 <tr>
 <th>Language</th>
 <th>Type</th>
 <th>Invented</th>
 </tr>
 </thead>
 <tbody>
 <tr>
 <td>Java</td>
 <td>Static</td>
 <td>1995</td>
 </tr>
 <tr>
 <td>Ruby</td>
 <td>Dynamic</td>
 <td>1993</td>

:nth-child(n) Matches the nth child element within the context. li:nth-child(2)
returns the second list item of each list.

:nth-child(even|odd) Matches even or odd children within the context. li:nth-
child(even) returns the even list items of each list.

:nth-child(Xn+Y) Matches the nth child element computed by the supplied formula. If Y
is 0, it may be omitted. li:nth-child(3n) returns every third list
item, whereas li:nth-child(5n+1) returns the item after every fifth
element.

:even Matches even elements within the context. li:even returns every even
list item.

:odd Matches odd elements within the context. li:odd returns every odd
list item.

:eq(n) Matches the nth matching element.

:gt(n) Matches matching elements after and excluding the nth matching
element.

:lt(n) Matches matching elements before and excluding the nth matching
element.

Table 2.3 The positional filter selectors supported by jQuery (continued)

Selector Description
Download from Library of Wow! eBook <www.wowebook.com>

29Selecting elements for manipulation
 </tr>
 <tr>
 <td>Smalltalk</td>
 <td>Dynamic</td>
 <td>1972</td>
 </tr>
 <tr>
 <td>C++</td>
 <td>Static</td>
 <td>1983</td>
 </tr>
 </tbody>
</table>

Let’s say that we wanted to get all of the table cells that contain the names of program-
ming languages. Because they’re all the first cells in their rows, we could use

table#languages td:first-child

We could also easily use

table#languages td:nth-child(1)

but the first syntax would be considered pithier and more elegant.
 To grab the language type cells, we’d change the selector to use :nth-child(2),

and for the year they were invented, we’d use :nth-child(3) or :last-child. If we
wanted the absolute last table cell (the one containing the text 1983), we’d use
td:last. Also, whereas td:eq(2) returns the cell containing the text 1995, td:nth-
child(2) returns all of the cells giving programming language types. Again, remem-
ber that :eq is zero-based, but :nth-child is one-based.

 Before we move on, head back over to the Selectors Lab and try selecting entries
two and four from the list. Then, try to find three different ways to select the cell con-
taining the text 1972 in the table. Also, try and get a feel for the difference between
the :nth-child type of filters and the absolute position selectors.

 Even though the CSS selectors we’ve examined so far are incredibly powerful, let’s
discuss ways of squeezing even more power out of jQuery’s selectors.

2.1.5 Using CSS and custom jQuery filter selectors

The CSS selectors that we’ve seen so far give us a great deal of power and flexibility to
match the desired DOM elements, but there are even more selectors that give us fur-
ther ability to filter the selections.

 As an example, we might want to match all checkboxes that are in checked state.
You might be tempted to try something along these lines:

$('input[type=checkbox][checked]')

But trying to match by attribute will only check the initial state of the control as speci-
fied in the HTML markup. What we really want to check is the real-time state of the
controls. CSS offers a pseudo-class, :checked, that matches elements that are in a
checked state. For example, whereas the input selector selects all <input> elements,
Download from Library of Wow! eBook <www.wowebook.com>

30 CHAPTER 2 Selecting the elements upon which to act
the input:checked selector narrows the search to only <input> elements that are
checked.

 As if that wasn’t enough, jQuery provides a whole handful of powerful custom
filter selectors, not specified by CSS, that make identifying target elements even eas-
ier. For example, the custom :checkbox selector identifies all check box elements.
Combining these custom selectors can be powerful; consider :checkbox:checked or
:radio:checked.

 As we discussed earlier, jQuery supports the CSS filter selectors and also defines a
number of custom selectors. They’re described in table 2.4.

Table 2.4 The CSS and custom jQuery filter selectors

Selector Description In CSS?

:animated Selects only elements that are currently under animated con-
trol. Chapter 5 will cover animations and effects.

:button Selects only button elements (input[type=submit],
input[type=reset], input[type=button], or button).

:checkbox Selects only checkbox elements (input[type=checkbox]).

:checked Selects only checkboxes or radio elements in checked state. ✓

:contains(food) Selects only elements containing the text food.

:disabled Selects only elements in disabled state. ✓

:enabled Selects only elements in enabled state. ✓

:file Selects only file input elements (input[type=file]).

:has(selector) Selects only elements that contain at least one element that
matches the specified selector.

:header Selects only elements that are headers; for example, <h1>
through <h6> elements.

:hidden Selects only elements that are hidden.

:image Selects only image input elements (input[type=image]).

:input Selects only form elements (input, select, textarea,
button).

:not(selector) Negates the specified selector. ✓

:parent Selects only elements that have children (including text), but
not empty elements.

:password Selects only password elements (input[type=password]).

:radio Selects only radio elements (input[type=radio]).

:reset Selects only reset buttons (input[type=reset] or
button[type=reset]).
Download from Library of Wow! eBook <www.wowebook.com>

31Selecting elements for manipulation
Many of these CSS and custom jQuery filter selectors are form-related, allowing us to
specify, rather elegantly, a specific element type or state. We can combine selector fil-
ters too. For example, if we want to select only enabled and checked checkboxes, we
could use

:checkbox:checked:enabled

Try out as many of these filters as you like in the Selectors Lab until you feel that you
have a good grasp on their operation.

 These filters are an immensely useful addition to the set of selectors at our dis-
posal, but what about the inverse of these filters?

USING THE :NOT FILTER

If we want to negate a selector, let’s say to match any input element that’s not a check-
box, we can use the :not filter.

 For example, to select non-checkbox <input> elements, you could use

input:not(:checkbox)

But be careful! It’s easy to go astray and get some unexpected results!
 For example, let’s say that we wanted to select all images except for those whose src

attribute contained the text “dog”. We might quickly concoct the following selector:

$(':not(img[src*="dog"])')

But if we used this selector, we’d find that not only did we get all the image elements
that don’t reference “dog” in their src, we’d also get every element in the DOM that
isn’t an image element!

 Whoops! Remember that when a base selector is omitted, it defaults to *, so our
errant selector actually reads as “fetch all elements that aren’t images that reference
‘dog’ in their src attributes.” What we really intended was “fetch all image elements
that don’t reference ‘dog’ in their src attributes,” which would be expressed like this:

$('img:not([src*="dog"])')

Again, use the Lab page to conduct experiments until you’re comfortable with how to
use the :not filter to invert selections.

 jQuery also adds a custom filter that helps when making selections using parent-
child relationships.

:selected Selects only <option> elements that are in selected state.

:submit Selects only submit buttons (button[type=submit] or
input[type=submit]).

:text Selects only text elements (input[type=text]).

:visible Selects only elements that are visible.

Table 2.4 The CSS and custom jQuery filter selectors (continued)

Selector Description In CSS?
Download from Library of Wow! eBook <www.wowebook.com>

32 CHAPTER 2 Selecting the elements upon which to act
WARNING If you’re still using jQuery 1.2, be aware that filter selectors such as
:not() and :has() can only accept other filter selectors. They can’t be passed
selectors that contain element expressions. This restriction was lifted in
jQuery 1.3.

USING THE :HAS FILTER

As we saw earlier, CSS defines a useful selector for selecting elements that are descen-
dants of particular parents. For example, this selector,

div span

would select all elements that are descendants of <div> elements.
 But what if we wanted the opposite? What if we wanted to select all <div> elements

that contained elements?
 That’s the job of the :has() filter. Consider this selector,

div:has(span)

which selects the <div> ancestor elements, as opposed to the descendant
elements.

 This can be a powerful mechanism when we get to the point where we want to
select elements that represent complex constructs. For example, let’s say that we want
to find which table row contains a particular image element that can be uniquely iden-
tified using its src attribute. We might use a selector such as this,

$('tr:has(img[src$="puppy.png"])')

which would return any table row element containing the identified image anywhere
in its descendant hierarchy.

 You can be sure that this, along with the other jQuery filters, will play a large part
in the code we examine going forward.

 As we’ve seen, jQuery offers a large toolset with which to select existing elements
on a page for manipulation via the jQuery methods, which we’ll begin to examine in
chapter 3. But before we look at the manipulation methods, let’s look at how to use
the $() function to create new HTML elements.

2.2 Generating new HTML
Sometimes, we’ll want to generate new fragments of HTML to insert into the page.
Such dynamic elements could be as simple as extra text we want to display under cer-
tain conditions, or something as complicated as creating a table of database results
we’ve obtained from a server.

 With jQuery, creating dynamic elements is a simple matter, because, as we saw in
chapter 1, the $() function can create elements from HTML strings in addition to
selecting existing page elements. Consider this line:

$("<div>Hello</div>")

This expression creates a new <div> element ready to be added to the page. Any
jQuery methods that we could run on wrapped element sets of existing elements can
Download from Library of Wow! eBook <www.wowebook.com>

33Generating new HTML
be run on the newly created fragment. This may not seem impressive on first glance,
but when we throw event handlers, Ajax, and effects into the mix (as we will in the
upcoming chapters), you’ll see that it could come in mighty handy.

 Note that if we want to create an empty <div> element, we can get away with this
shortcut:

$("<div>")

This is identical to $("<div></div>") and $("<div/>"), though it is recommended
that you use well-formed markup and include the opening and closing tags for any
element types that can contain other elements.

 It’s almost embarrassingly easy to create such simple HTML elements, and thanks
to the chainability of jQuery methods, creating more complex elements isn’t much
harder. We can apply any jQuery method to the wrapped set containing the newly cre-
ated element. For example, we can apply styles to the element with the css() method.
We could also create attributes on the element with the attr() method, but jQuery
provides an even better means to do so.

 We can pass a second parameter to the element-creating $() method that speci-
fies the attributes and their values. This parameter takes the form of a JavaScript
object whose properties serve as the name and value of the attributes to be applied to
the element.

 Let’s say that we want to create an image element complete with multiple attri-
butes, some styling, and let’s make it clickable to boot! Take a look at the code in
listing 2.1.

$('',
 {
 src: 'images/little.bear.png',
 alt: 'Little Bear',
 title:'I woof in your general direction',
 click: function(){
 alert($(this).attr('title'));
 }
 })
 .css({
 cursor: 'pointer',
 border: '1px solid black',
 padding: '12px 12px 20px 12px',
 backgroundColor: 'white'
 })
 .appendTo('body');

The single jQuery statement in listing 2.1 creates the basic element B, gives it
important attributes, such as its source, alternate text, and flyout title C, styles it to
look like a printed photograph E, and attaches it to the DOM tree F.

Listing 2.1 Dynamically creating a full-featured element

Creates the basic elementB

Assigns various
attributesC

Establishes click
handlerD

Styles the imageE

Attaches the element
to the document

F

Download from Library of Wow! eBook <www.wowebook.com>

34 CHAPTER 2 Selecting the elements upon which to act
We also threw a bit of a curve ball at you here. We used the attribute object to estab-
lish an event handler that issues an alert (garnered from the image’s title) when the
image is clicked D.

 jQuery not only lets us specify attributes in the attribute parameter; we can also
establish handlers for all the event types (which we’ll be exploring in depth in
chapter 4), as well as supply values for handful of jQuery methods whose purpose is to
set various facets of the element. We haven’t examined these methods yet, but we can
set values for the following methods (which we’ll mostly discuss in the next chapter):
val, css, html, text, data, width, height, and offset.

 So, in listing 2.1 we could omit the call to the chained css() method, replacing it
with the following property in the attribute parameter:

css: {
 cursor: 'pointer',
 border: '1px solid black',
 padding: '12px 12px 20px 12px',
 backgroundColor: 'white'
}

Regardless of how we arrange the code, that’s a pretty hefty statement—which we
spread across multiple lines, and with logical indentation, for readability—but it also
does a heck of a lot. Such statements aren’t uncommon in jQuery-enabled pages, and
if you find it a bit overwhelming, don’t worry, we’ll be covering every method used in
this statement over the next few chapters. Writing such compound statements will be
second nature before much longer.

 Figure 2.5 shows the result of this code, both when the page is first loaded (2.5a),
and after the image has been clicked upon (2.5b).

Figure 2.5a Creating complex elements on the fly, including this image,
which generates an alert when it’s clicked upon, is easy as pie.
Download from Library of Wow! eBook <www.wowebook.com>

35Managing the wrapped element set
The full code for this example can be found in the book’s project code at chapter2/
listing-2.1.html.

 Up until now, we’ve applied wrapper methods to the entire wrapped set as created
by the jQuery function when we pass a selector to it. But there may be times when we
want to further manipulate that set before acting upon it.

2.3 Managing the wrapped element set
Once we’ve got a set of wrapped elements, whether identified from existing DOM ele-
ments with selectors, or created as new elements using HTML snippets (or a combina-
tion of both), we’re ready to manipulate those elements using the powerful set of
jQuery methods. We’ll start looking at those methods in the next chapter, but what if
we want to further refine the set of elements wrapped by the jQuery function? In this
section, we’ll explore the many ways that we can refine, extend, or subset the set of
wrapped elements that we wish to operate upon.

 In order to help you in this endeavor, we’ve included another Lab in the down-
loadable project code for this chapter: the jQuery Operations Lab Page (chapter2/
lab.operations.html). This page, which looks a lot like the Selectors Lab we employed
earlier in this chapter, is shown in figure 2.6.

 This new Lab page not only looks like the Selectors Lab, it also operates in a simi-
lar fashion. Except in this Lab, rather than typing a selector, we can type in any complete
jQuery operation that results in a wrapped set. The operation is executed in the con-
text of the DOM Sample, and, as with the Selectors Lab, the results are displayed.

 In a sense, the jQuery Operations Lab is a more general case of the Selectors Lab.
Where the latter only allowed us to enter a single selector, the jQuery Operations Lab
allows us to enter any expression that results in a jQuery wrapped set. Because of the

Figure 2.5b The dynaimcally-generated image possesses all expected styles and
attributes, including the mouse click behavior of issuing an alert
Download from Library of Wow! eBook <www.wowebook.com>

36 CHAPTER 2 Selecting the elements upon which to act
way jQuery chaining works, this expression can also include wrapper methods, mak-
ing this a powerful Lab for examining the operations of jQuery.

 Be aware that you need to enter valid syntax, as well as expressions that result in a
jQuery wrapped set. Otherwise, you’re going to be faced with a handful of unhelpful
JavaScript errors.

 To get a feel for the Lab, display it in your browser and enter this text into the
Operation field:

$('img').hide()

Then click the Execute button.

Figure 2.6 The jQuery Operations Lab Page lets us compose wrapped sets in real time to help us see
how wrapped sets can be created and managed.
Download from Library of Wow! eBook <www.wowebook.com>

37Managing the wrapped element set
 This operation is executed within the context of the DOM Sample, and you’ll see
how the images disappear from the sample. After any operation, you can restore the
DOM Sample to its original condition by clicking the Restore button.

 We’ll see this new Lab in action as we work our way through the sections that follow,
and you might even find it helpful in later chapters to test various jQuery operations.

2.3.1 Determining the size of a wrapped set

We mentioned before that the set of jQuery wrapped elements acts a lot like an array.
This mimicry includes a length property, just like JavaScript arrays, that contains the
number of wrapped elements.

 Should we wish to use a method rather than a property, jQuery also defines the
size() method, which returns the same information.

 Consider the following statement:

$('#someDiv')
 .html('There are '+$('a').size()+' link(s) on this page.');

The jQuery expression embedded in the statement matches all elements of type <a>
and returns the number of matched elements using the size() method. This is used
to construct a text string, which is set as the content of an element with id of someDiv
using the html() method (which we’ll see in the next chapter).

 The formal syntax of the size() method is as follows:

OK, so now we know how many elements we have. What if we want to access them
directly?

2.3.2 Obtaining elements from a wrapped set

Usually, once we have a wrapped set of elements, we’ll use jQuery methods to perform
some sort of operation upon them as a whole; for example, hiding them all with the
hide() method. But there may be times when we want to get our grubby little hands
on a direct reference to an element or elements to perform raw JavaScript operations
upon them.

 Let’s look at some of the ways that jQuery allows us to do just that.

Method syntax: size

size()

Returns the count of elements in the wrapped set.

Parameters
none

Returns
The element count.
Download from Library of Wow! eBook <www.wowebook.com>
www.allitebooks.com

http://www.allitebooks.org

38 CHAPTER 2 Selecting the elements upon which to act
FETCHING ELEMENTS BY INDEX

Because jQuery allows us to treat the wrapped set as a JavaScript array, we can use sim-
ple array indexing to obtain any element in the wrapped list by position. For example,
to obtain the first element in the set of all elements with an alt attribute on the
page, we could write

var imgElement = $('img[alt]')[0]

If you prefer to use a method rather than array indexing, jQuery defines the get()
method for that purpose:

The fragment

var imgElement = $('img[alt]').get(0)

is equivalent to the previous example that used array indexing.
 The get() method will also accept a negative index value as a parameter. In this

case, it fetches the element relative to the end of the wrapped set. For example
.get(-1) will retrieve the last element in the wrapped set, .get(-2) the second to
last, and so on.

 In addition to obtaining a single element, get() can also return an array.
 Although the toArray() method (discussed in the next section) is the preferred

way to obtain a JavaScript array of the elements within a wrapped set, the get()
method can also be used to obtain a plain JavaScript array of all the wrapped elements.

 This method of obtaining an array is provided for backward compatibility with pre-
vious versions of jQuery.

 The get() method returns a DOM element, but sometimes we’ll want a wrapped
set containing a specific element rather than the element itself. It would look really
weird to write something like this:

$($('p').get(23))

So jQuery provides the eq() method, that mimics the action of the :eq selector filter:

Method syntax: get

get(index)
Obtains one or all of the matched elements in the wrapped set. If no parameter is specified, all
elements in the wrapped set are returned in a JavaScript array. If an index parameter is provided,
the indexed element is returned.

Parameters
index (Number) The index of the single element to return. If omitted, the entire set is

returned in an array.

Returns
A DOM element or an array of DOM elements.
Download from Library of Wow! eBook <www.wowebook.com>

39Managing the wrapped element set

Obtaining the first element of a wrapped set is such a common operation that there’s
a convenience method that makes it even easier: the first() method.

As you might expect, there’s a corresponding method to obtain the last element in a
wrapped set as well.

Now let’s examine the preferred method of obtaining an array of wrapped elements.

Method syntax: eq

eq(index)
Obtains the indexed element in the wrapped set and returns a new wrapped set containing just
that element.

Parameters
index (Number) The index of the single element to return. As with get(), a negative index

can be specified to index from the end of the set.

Returns
A wrapped set containing one or zero elements.

Method syntax: first

first()
Obtains the first element in the wrapped set and returns a new wrapped set containing just that
element. If the original set is empty, so is the returned set.

Parameters
none

Returns
A wrapped set containing one or zero elements.

Method syntax: last

last()
Obtains the last element in the wrapped set and returns a new wrapped set containing just that
element. If the original set is empty, so is the returned set.

Parameters
none

Returns
A wrapped set containing one or zero elements.
Download from Library of Wow! eBook <www.wowebook.com>

40 CHAPTER 2 Selecting the elements upon which to act
FETCHING ALL THE ELEMENTS AS AN ARRAY

If we wish to obtain all of the elements in a wrapped set as a JavaScript array of DOM
elements, jQuery provides the toArray() method:

Consider this example:

var allLabeledButtons = $('label+button').toArray();

This statement collects all the <button> elements on the page that are immediately
preceded by <label> elements into a jQuery wrapper, and then creates a JavaScript
array of those elements to assign to the allLabeledButtons variable.

FINDING THE INDEX OF AN ELEMENT

While get() finds an element given an index, we can use an inverse operation,
index(), to find the index of a particular element in the wrapped set. The syntax of
the index() method is as follows:

Let’s say that for some reason we want to know the ordinal index of an image with the
id of findMe within the entire set of images in a page. We can obtain this value with
this statement:

var n = $('img').index($('img#findMe')[0]);

We can also shorten this:

var n = $('img').index('img#findMe');

Method syntax: toArray

toArray()
Returns the elements in the wrapped set as an array of DOM elements.

Parameters
none

Returns

A JavaScript array of the DOM elements within the wrapped set.

Method syntax: index

index(element)

Finds the passed element in the wrapped set and returns its ordinal index within the set, or finds
the ordinal index of the first element of the wrapped set within its siblings. If the element isn’t
found, the value -1 is returned.

Parameters
element (Element|Selector) A reference to the element whose ordinal value is to be

determined, or a selector that identifies the element. If omitted, the first element of
the wrapped set is located within its list of siblings.

Returns
The ordinal value of the passed element within the wrapped set or its siblings, or -1 if not found.
Download from Library of Wow! eBook <www.wowebook.com>

41Managing the wrapped element set
The index() method can also be used to find the index of an element within its par-
ent (that is, among its siblings). For example,

var n = $('img').index();

This will set n to the ordinal index of the first element within its parent.
 Now, rather than obtaining direct references to elements or their indexes, how

would we go about adjusting the set of elements that are wrapped?

2.3.3 Slicing and dicing a wrapped element set

Once you have a wrapped element set, you may want to augment that set by adding to
it or by reducing the set to a subset of the originally matched elements. jQuery offers a
large collection of methods to manage the set of wrapped elements. First, let’s look at
adding elements to a wrapped set.

ADDING MORE ELEMENTS TO A WRAPPED SET

We may often find ourselves wanting to add more elements to an existing wrapped set.
This capability is most useful when we want to add more elements after applying some
method to the original set. Remember, jQuery chaining makes it possible to perform
an enormous amount of work in a single statement.

 We’ll look at some concrete examples of such situations in a moment, but first,
let’s start with a simpler scenario. Let’s say that we want to match all elements
that have either an alt or a title attribute. The powerful jQuery selectors allow us to
express this as a single selector, such as

$('img[alt],img[title]')

But to illustrate the operation of the add() method, we could match the same set of
elements with

$('img[alt]').add('img[title]')

Using the add() method in this fashion allows us to chain a bunch of selectors
together, creating a union of the elements that satisfy either of the selectors.

 Methods such as add() are also significant (and more flexible than aggregate
selectors) within jQuery method chains because they don’t augment the original
wrapped set, but create a new wrapped set with the result. We’ll see in just a bit how
this can be extremely useful in conjunction with methods such as end() (which we’ll
examine in section 2.3.6) that can be used to “back out” operations that augment orig-
inal wrapped sets.

 This is the syntax of the add() method:
Download from Library of Wow! eBook <www.wowebook.com>

42 CHAPTER 2 Selecting the elements upon which to act

Bring up the jQuery Operations Lab page in your browser, and enter this expression:

$('img[alt]').add('img[title]')

Then click the Execute button. This will execute the jQuery operation and result in
the selection of all images with either an alt or title attribute.

 Inspecting the HTML source for the DOM Sample reveals that all the images depict-
ing flowers have an alt attribute, the puppy images have a title attribute, and the cof-
fee pot image has neither. Therefore, we should expect that all images but the coffee
pot will become part of the wrapped set. Figure 2.7 shows a screen capture of the results.

 We can see that five of the six images (all but the coffee pot) were added to the
wrapped set. The red outline may be a bit hard to see in the print version of this book
with grayscale figures, but if you have downloaded the project (which you should
have) and are using it to follow along (which you should be), it’s very evident.

 Now let’s take a look at a more realistic use of the add() method. Let’s say that we
want to apply a thick border to all elements that have an alt attribute, and then
apply a level of transparency to all elements that have either an alt or title
attribute. The comma operator (,) of CSS selectors won’t help us with this one
because we want to apply an operation to a wrapped set and then add more elements
to it before applying another operation. We could easily accomplish this with multiple
statements, but it would be more efficient and elegant to use the power of jQuery
chaining to accomplish the task in a single expression, such as this:

$('img[alt]')
 .addClass('thickBorder')
 .add('img[title]')
 .addClass('seeThrough')

Method syntax: add

add(expression,context)

Creates a copy of the wrapped set and adds elements, specified by the expression parameter,
to the new set. The expression can be a selector, an HTML fragment, a DOM element, or an array
of DOM elements.
Parameters

expression (Selector|Element|Array) Specifies what is to be added to the matched set.
This parameter can be a jQuery selector, in which case any matched
elements are added to the set. If the parameter is an HTML fragment, the
appropriate elements are created and added to the set. If it is a DOM
element or an array of DOM elements, they’re added to the set.

context (Selector|Element|Array|jQuery) Specifies a context to limit the search for
elements that match the first parameter. This is the same context that can
be passed to the jQuery() function. See section 2.1.1 for a description of
this parameter.

Returns
A copy of the original wrapped set with the additional elements.
Download from Library of Wow! eBook <www.wowebook.com>

43Managing the wrapped element set
In this statement, we create a wrapped set of all elements that have an alt attri-
bute, apply a predefined class that applies a thick border, add the elements that
have a title attribute, and finally apply a class that establishes a level of transparency
to the newly augmented set.

 Enter this statement into the jQuery Operations Lab (which has predefined the
referenced classes), and view the results as shown in figure 2.8.

 In these results, we can see that the flower images (those with alt) have thick bor-
ders, and all images but the coffee pot (the only one with neither an alt nor a title)
are faded as a result of applying an opacity rule.
The add() method can also be used to add elements to an existing wrapped set, given
direct references to those elements. Passing an element reference, or an array of

Figure 2.7 The expected image elements, those with an alt or title attribute, have been matched
by the jQuery expression.
Download from Library of Wow! eBook <www.wowebook.com>

44 CHAPTER 2 Selecting the elements upon which to act
element references, to the add() method adds the elements to the wrapped set. If we
had an element reference in a variable named someElement, it could be added to the
set of all images containing an alt property with this statement:

$('img[alt]').add(someElement)

As if that wasn’t flexible enough, the add() method not only allows us to add existing
elements to the wrapped set, but we can also use it to add new elements by passing it a
string containing HTML markup. Consider

$('p').add('<div>Hi there!</div>')

This fragment creates a wrapped set of all <p> elements in the document, and then
creates a new <div>, and adds it to the wrapped set. Note that doing so only adds the
new element to the wrapped set; no action has been taken in this statement to add the
new element to the DOM. We might then use the jQuery appendTo() method
(patience, we’ll be talking about such methods soon enough) to append the elements
we selected, as well as the newly created HTML, to some part of the DOM.

 Augmenting the wrapped set with add() is easy and powerful, but now let’s look at
the jQuery methods that let us remove elements from a wrapped set.

HONING THE CONTENTS OF A WRAPPED SET

We saw that it’s a simple matter to augment wrapped sets from multiple selectors
chained together with the add() method. It’s also possible to chain selectors together
to form an except relationship by employing the not() method. This is similar to the
:not filter selector we discussed earlier, but it can be employed in a similar fashion to
the add() method to remove elements from the wrapped set anywhere within a
jQuery chain of methods.

 Let’s say that we want to select all elements in a page that sport a title attri-
bute except for those that contain the text “puppy” in the title attribute value. We
could come up with a single selector that expresses this condition (namely
img[title]:not([title*=puppy])), but for the sake of illustration, let’s pretend that
we forgot about the :not filter. By using the not() method, which removes any ele-
ments from a wrapped set that match the passed selector expression, we can express
an except type of relationship. To perform the described match, we can write

$('img[title]').not('[title*=puppy]')

Type this expression into the jQuery Operations Lab Page, and execute it. You’ll see
that only the tan puppy image has the highlight applied. The black puppy, which is

Figure 2.8 jQuery chaining allows
us to perform complex operations
in a single statement, as seen in
these results.
Download from Library of Wow! eBook <www.wowebook.com>

45Managing the wrapped element set
included in the original wrapped set because it possesses a title attribute, is removed
by the not() invocation because its title contains the text “puppy”.

The not() method can be used to remove individual elements from the wrapped set
by passing a reference to an element or an array of element references. The latter is
interesting and powerful because, remember, any jQuery wrapped set can be used as
an array of element references.

 When maximum flexibility is needed, a function can be passed to not(), and a
determination of whether to keep or remove the element can be made on an element-
by-element basis. Consider this example:

$('img').not(function(){ return !$(this).hasClass('keepMe'); })

This expression will select all elements and then remove any that don’t have the
class “keepMe”.

 This method allows us to filter the wrapped set in ways that are difficult or impossi-
ble to express with a selector expression by resorting to programmatic filtering of the
wrapped set items.

 For those times when the test applied within the function passed to not() seems to
be the opposite of what we want to express, not() has an inverse method, filter(),
that works in a similar fashion, except that it removes elements when the function
returns false.

 For example, let’s say that we want to create a wrapped set of all <td> elements that
contain a numeric value. As powerful as the jQuery selector expressions are, such a
requirement is impossible to express using them. For such situations, the filter()
method can be employed, as follows:

$('td').filter(function(){return this.innerHTML.match(/^\d+$/)})

This jQuery expression creates a wrapped set of all <td> elements and then invokes
the function passed to the filter() method for each, with the current matched

Method syntax: not

not(expression)

Creates a copy of the wrapped set and removes elements from the new set that match criteria
specified by the value of the expression parameter.

Parameters

expression (Selector|Element|Array|Function) Specifies which items are to be removed.
If the parameter is a jQuery selector, any matching elements are removed.
If an element reference or array of elements is passed, those elements are
removed from the set.
If a function is passed, the function is invoked for each item in the wrapped
set (with this set to the item), and returning true from the invocation
causes the item to be removed from the wrapped set.

Returns
A copy of the original wrapped set without the removed elements.
Download from Library of Wow! eBook <www.wowebook.com>

46 CHAPTER 2 Selecting the elements upon which to act
elements as the this value for the invocation. The function uses a regular expression
to determine whether the element content matches the described pattern (a
sequence of one or more digits), returning false if not. Elements whose filter func-
tion invocation returns false aren’t included in the returned wrapped set.

Again, bring up the jQuery Operations Lab, type the previous expression in, and exe-
cute it. You’ll see that the table cells for the “Invented” column are the only <td> ele-
ments that end up being selected.

 The filter() method can also be used with a passed selector expression. When
used in this manner, it operates in the inverse manner than the corresponding
not() method, removing any elements that don’t match the passed selector. This
isn’t a super-powerful method, as it’s usually easier to use a more restrictive selector
in the first place, but it can be useful within a chain of jQuery methods. Consider,
for example,

$('img')
 .addClass('seeThrough')
 .filter('[title*=dog]')
 .addClass('thickBorder')

This chained statement selects all images, applies the seeThrough class to them, and
then reduces the set to only those image elements whose title attribute contains the
string dog before applying another class named thickBorder. The result is that all the
images end up semi-transparent, but only the tan dog gets the thick border treatment.

 The not() and filter() methods give us powerful means to adjust a set of
wrapped elements on the fly, based on just about any criteria concerning the wrapped
elements. But we can also subset the wrapped set, based on the position of the ele-
ments within the set. Let’s look at those methods next.

Method syntax: filter

filter(expression)

Creates a copy of the wrapped set and removes elements from the new set that don’t match
criteria specified by the value of the expression parameter.

Parameters
expression (Selector|Element|Array|Function) Specifies which items are to be removed.

If the parameter is a jQuery selector, any elements that don’t match are
removed.
If an element reference or array of elements is passed, all but those
elements are removed from the set.
If a function is passed, the function is invoked for each element in the
wrapped set (with this referencing the element), and returning false
from the invocation causes the element to be removed from the wrapped
set.

Returns
A copy of the original wrapped set without the filtered elements.
Download from Library of Wow! eBook <www.wowebook.com>

47Managing the wrapped element set
OBTAINING SUBSETS OF A WRAPPED SET

Sometimes you may wish to obtain a subset of a wrapped set based upon the position
of the elements within the set. jQuery provides a slice() method to do that. This
method creates and returns a new set from any contiguous portion, or a slice, of an
original wrapped set.

If we want to obtain a wrapped set that contains a single element from another set,
based on its position in the original set, we can employ the slice() method, passing
the zero-based position of the element within the wrapped set.

 For example, to obtain the third element, we could write

$('*').slice(2,3);

This statement selects all elements on the page and then generates a new set contain-
ing the third element in the matched set.

 Note that this is different from $('*').get(2), which returns the third element in
the wrapped set, not a wrapped set containing the element.

 Therefore, a statement such as

$('*').slice(0,4);

selects all elements on the page and then creates a set containing the first four ele-
ments.

 To grab elements from the end of the wrapped set, the statement

$('*').slice(4);

matches all elements on the page and then returns a set containing all but the first
four elements.

 Another method we can use to obtain a subset of a wrapped set is the has()
method. Like the :has filter, this method tests the children of the wrapped elements,
using this check to choose the elements to become part of the subset.

Method syntax: slice

slice(begin,end)

Creates and returns a new wrapped set containing a contiguous portion of the matched set.

Parameters
begin (Number) The zero-based position of the first element to be included in the

returned slice.

end (Number) The optional zero-based index of the first element not to be included in
the returned slice, or one position beyond the last element to be included. If
omitted, the slice extends to the end of the set.

Returns
The newly created wrapped set.
Download from Library of Wow! eBook <www.wowebook.com>

48 CHAPTER 2 Selecting the elements upon which to act

For example, consider this line:

$('div').has('img[alt]')

This expression will create a wrapped set of all <div> elements, and then create and
return a second set that contains only those <div> elements that contain at least one
descendent element that possess an alt attribute.

TRANSLATING ELEMENTS OF A WRAPPED SET

We’ll often want to perform transformations on the elements of a wrapped set. For
example, what if we wanted to collect all the id values of the wrapped elements, or
perhaps collect the values of a wrapped set of form elements in order to create a query
string from them? The map() method comes in mighty handy for such occasions.

For example, the following code will collect all the id values of all images on the page
into a JavaScript array:

var allIds = $('div').map(function(){
 return (this.id==undefined) ? null : this.id;
}).get();

If any invocation of the callback function returns null, no corresponding entry is
made in the returned set.

Method syntax: has

has(test)
Creates and returns a new wrapped set containing only elements from the original wrapped set
that contain descendents that match the passed test expression.

Parameters
test (Selector|Element) A selector to be applied to all descendents of the wrapped

elements, or an element to be tested. Only elements possessing an element
that matches the selector, or the passed element, are included in the returned
wrapped set.

Returns
The resulting wrapped set.

Method syntax: map

map(callback)
Invokes the callback function for each element in the wrapped set, and collects the returned
values into a jQuery object instance.

Parameters
callback (Function) A callback function that’s invoked for each element in the wrapped

set. Two parameters are passed to this function: the zero-based index of the
element within the set, and the element itself. The element is also established
as the function context (the this keyword).

Returns
The wrapped set of translated values.
Download from Library of Wow! eBook <www.wowebook.com>

49Managing the wrapped element set
TRAVERSING A WRAPPED SET’S ELEMENTS

The map() method is useful for iterating over the elements of a wrapped set in order
to collect values or translate the elements in some other way, but we’ll have many occa-
sions where we’ll want to iterate over the elements for more general purposes. For
these occasions, the jQuery each() method is invaluable.

An example of using this method could be to easily set a property value onto all ele-
ments in a matched set. For example, consider this:

$('img').each(function(n){
 this.alt='This is image['+n+'] with an id of '+this.id;
});

This statement will invoke the passed function for each image element on the page,
modifying its alt property using the order of the element and its id value.

 As a convenience, the each() method will also iterate over arrays of JavaScript
objects and even individual objects (not that the latter has a lot of utility). Consider
this example:

$([1,2,3]).each(function(){ alert(this); });

This statement will invoke the iterator function for each element of the array that’s
passed to $(), with the individual array items passed to the function as this.

 And we’re not done yet! jQuery also gives us the ability to obtain subsets of a
wrapped set based on the relationship of the wrapped items to other elements in the
DOM. Let’s see how.

2.3.4 Getting wrapped sets using relationships

jQuery allows us to get new wrapped sets from an existing set, based on the hierarchical
relationships of the wrapped elements to the other elements within the HTML DOM.

 Table 2.5 shows these methods and their descriptions. Most of these methods
accept an optional selector expression that can be used to choose the elements to be
collected into the new set. If no such selector parameter is passed, all eligible ele-
ments are selected.

Method syntax: each

each(iterator)
Traverses all elements in the matched set, invoking the passed iterator function for each.

Parameters
iterator (Function) A function called for each element in the matched set. Two parameters

are passed to this function: the zero-based index of the element within the set,
and the element itself. The element is also established as the function context
(the this reference).

Returns
The wrapped set.
Download from Library of Wow! eBook <www.wowebook.com>

50 CHAPTER 2 Selecting the elements upon which to act
 All of the methods in table 2.5, with the exception of contents() and offset-
Parent() accept a parameter containing a selector string that can be used to filter
the results.

Table 2.5 Methods for obtaining a new wrapped set based on relationships to other HTML DOM
elements

Method Description

children([selector]) Returns a wrapped set consisting of all unique children of the
wrapped elements.

closest([selector]) Returns a wrapped set containing the single nearest ancestor that
matches the passed expression, if any.

contents() Returns a wrapped set of the contents of the elements, which may
include text nodes, in the wrapped set. (This is frequently used to
obtain the contents of <iframe> elements.)

next([selector]) Returns a wrapped set consisting of all unique next siblings of the
wrapped elements.

nextAll([selector]) Returns a wrapped set containing all the following siblings of the
wrapped elements.

nextUntil([selector]) Returns a wrapped set of all the following siblings of the elements
of the wrapped elements until, but not including, the element
matched by the selector. If no matches are made to the selector, or
if the selector is omitted, all following siblings are selected.

offsetParent() Returns a wrapped set containing the closest relatively or absolutely
positioned parent of the first element in the wrapped set.

parent([selector]) Returns a wrapped set consisting of the unique direct parents of all
wrapped elements.

parents([selector]) Returns a wrapped set consisting of the unique ancestors of all
wrapped elements. This includes the direct parents as well as the
remaining ancestors all the way up to, but not including, the docu-
ment root.

parentsUntil([selector]) Returns a wrapped set of all ancestors of the elements of the
wrapped elements up until, but not including, the element matched
by the selector. If no matches are made to the selector, or if the
selector is omitted, all ancestors are selected.

prev([selector]) Returns a wrapped set consisting of all unique previous siblings of
the wrapped elements.

prevAll([selector]) Returns a wrapped set containing all the previous siblings of the
wrapped elements.

prevUntil([selector]) Returns a wrapped set of all preceding siblings of the elements of
the wrapped elements until, but not including, the element matched
by the selector. If no matches are made to the selector, or if the
selector is omitted, all previous siblings are selected.

siblings([selector]) Returns a wrapped set consisting of all unique siblings of the
wrapped elements.
Download from Library of Wow! eBook <www.wowebook.com>

51Managing the wrapped element set
 Consider a situation where a button’s event handler (which we’ll be exploring in
great detail in chapter 4) is triggered with the button element referenced by the this
keyword within the handler. Further, let’s say that we want to find the <div> block
within which the button is defined. The closest() method makes it a breeze:

$(this).closest('div')

But this would only find the most immediate ancestor <div>; what if the <div> we seek
is higher in the ancestor tree? No problem. We can refine the selector we pass to
closest() to discriminate which elements are selected:

$(this).closest('div.myButtonContainer')

Now the ancestor <div> with the class myButtonContainer will be selected.
 The remainder of these methods work in a similar fashion. Take, for example, a sit-

uation in which we want to find a sibling button with a particular title attribute:

$(this).siblings('button[title="Close"]')

These methods give us a large degree of freedom to select elements from the DOM
based on their relationships to the other DOM elements. But we’re still not done. Let’s
see how jQuery deals further with wrapped sets.

2.3.5 Even more ways to use a wrapped set

As if all that were not enough, there are still a few more tricks that jQuery has up its
sleeve to let us refine our collections of wrapped objects.

 The find() method lets us search through the descendants of the elements in a
wrapped set and returns a new set that contains all elements that match a passed selec-
tor expression. For example, given a wrapped set in variable wrappedSet, we can get
another wrapped set of all citations (<cite> elements) within paragraphs that are
descendants of elements in the original wrapped set:

wrappedSet.find('p cite')

Like many other jQuery wrapper methods, the find() method’s power comes when
it’s used within a jQuery chain of operations.

Method syntax: find

find(selector)

Returns a new wrapped set containing all elements that are descendants of the elements of the
original set that match the passed selector expression.

Parameters
selector (String) A jQuery selector that elements must match to become part of the

returned set.

Returns
The newly created wrapped set.
Download from Library of Wow! eBook <www.wowebook.com>

52 CHAPTER 2 Selecting the elements upon which to act
This method becomes very handy when we need to constrain a search for descendant
elements in the middle of a jQuery method chain, where we can’t employ any other
context or constraining mechanism.

 The last method that we’ll examine in this section is one that allows us to test a
wrapped set to see if it contains at least one element that matches a given selector
expression. The is() method returns true if at least one element matches the selec-
tor, and false if not. For example,

var hasImage = $('*').is('img');

This statement sets the value of the hasImage variable to true if the current DOM has
an image element.

This is a highly optimized and fast operation within jQuery and can be used without
hesitation in areas where performance is of high concern.

2.3.6 Managing jQuery chains

We’ve made a big deal about the ability to chain jQuery wrapper methods together to
perform a lot of activity in a single statement, and we’ll continue to do so, because it is
a big deal. This chaining ability not only allows us to write powerful operations in a
concise manner, but it also improves efficiency because wrapped sets don’t have to be
recomputed in order to apply multiple methods to them.

 Depending upon the methods used in a method chain, multiple wrapped sets
may be generated. For example, using the clone() method (which we’ll explore in
detail in chapter 3) generates a new wrapped set, which creates copies of the ele-
ments in the first set. If, once a new wrapped set was generated, we had no way to ref-
erence the original set, our ability to construct versatile jQuery method chains would
be severely curtailed.

 Consider the following statement:

$('img').filter('[title]').hide();

Two wrapped sets are generated within this statement: the original wrapped set of all
the elements in the DOM, and a second wrapped set consisting of only those
wrapped elements which also possess title attributes. (Yes, we could have done this

Method syntax: is

is(selector)

Determines if any element in the wrapped set matches the passed selector expression.

Parameters
selector (String) The selector expression to test against the elements of the wrapped set.

Returns
true if at least one element matches the passed selector; false if not.
Download from Library of Wow! eBook <www.wowebook.com>

53Managing the wrapped element set
with a single selector, but bear with us for illustration of the concept. Imagine that we
do something important in the chain before the call to filter().)

 But what if we subsequently want to apply a method, such as adding a class name,
to the original wrapped set after it’s been filtered? We can’t tack it onto the end of the
existing chain; that would affect the titled images, not the original wrapped set of
images.

 jQuery provides for this need with the end() method. This method, when used
within a jQuery chain, will “back up” to a previous wrapped set and return it as its
value so that subsequent operations will apply to that previous set.

 Consider

$('img').filter('[title]').hide().end().addClass('anImage');

The filter() method returns the set of titled images, but by calling end() we back up
to the previous wrapped set (the original set of all images), which gets operated on by
the addClass() method. Without the intervening end() method, addClass() would
have operated on the set of clones.

It might help to think of the wrapped sets generated during a jQuery method chain as
being held on a stack. When end() is called, the top-most (most recent) wrapped set is
popped from the stack, leaving the previous wrapped set exposed for subsequent
methods to operate upon.

 Another handy jQuery method that modifies the wrapped set “stack” is andSelf(),
which merges the two topmost sets on the stack into a single wrapped set.

Method syntax: end

end()

Used within a chain of jQuery methods to back up the current wrapped set to a previously returned
set.

Parameters
none

Returns
The previous wrapped set.

Method syntax: andSelf

andSelf()

Merges the two previous wrapped sets in a method chain.

Parameters
none

Returns
The merged wrapped set.
Download from Library of Wow! eBook <www.wowebook.com>

54 CHAPTER 2 Selecting the elements upon which to act
Consider

$('div')
 .addClass('a')
 .find('img')
 .addClass('b')
 .andSelf()
 .addClass('c');

This statement selects all <div> elements, adds class a to them, creates a new wrapped
set consisting of all elements that are descendants of those <div> elements,
applies class b to them, creates a third wrapped set that’s a merger of the <div> ele-
ments and their descendant elements, and applies class c to them.

 Whew! At the end of it all, the <div> elements end up with classes a and c, whereas
the images that are descendants of those elements are given classes b and c.

 We can see that jQuery provides the means to manage wrapper sets for just about
any type of operations that we want to perform upon them.

2.4 Summary
This chapter focused on creating and adjusting sets of elements (referred in this chap-
ter and beyond as the wrapped set) via the many means that jQuery provides for identi-
fying elements on an HTML page.

 jQuery provides a versatile and powerful set of selectors, patterned after the selec-
tors of CSS, for identifying elements within a page document in a concise but powerful
syntax. These selectors include the CSS3 syntax currently supported by most modern
browsers.

 The creation and augmentation of wrapped sets using HTML fragments to create
new elements on the fly is another important feature that jQuery provides. These
orphaned elements can be manipulated, along with any other elements in the
wrapped set, and eventually attached to parts of the page document.

 A robust set of methods to adjust the wrapped set in order to refine the contents of
the set, either immediately after creation, or midway through a set of chained meth-
ods, is available. Applying filtering criteria to an already existing set can also easily cre-
ate new wrapped sets.

 All in all, jQuery offers a lot of tools to make sure that you can easily and accurately
identify the page elements we wish to manipulate.

 In this chapter, we covered a lot of ground without really doing anything to the
DOM elements of the page. But now that we know how to select the elements that we
want to operate upon, we’re ready to start adding life to our pages with the power of
the jQuery DOM manipulation methods.

Download from Library of Wow! eBook <www.wowebook.com>

Bringing pages to life
with jQuery
Remember those days (luckily, now fading into memory) when fledgling page
authors would try to add pizzazz to their pages with counterproductive abomina-
tions such as marquees, blinking text, loud background patterns (that inevitably
interfered with the readability of the page text), annoying animated GIFs, and, per-
haps worst of all, unsolicited background sounds that would play upon page load
(and only served to test how fast a user could close down the browser)?

This chapter covers
Getting and setting element attributes

Storing custom data on elements

Manipulating element class names

Setting the contents of DOM elements

Storing and retrieving custom data on elements

Getting and setting form element values

Modifying the DOM tree by adding, moving, or
replacing elements
55

Download from Library of Wow! eBook <www.wowebook.com>

56 CHAPTER 3 Bringing pages to life with jQuery
 We’ve come a long way since then. Today’s savvy web developers and designers
know better, and use the power given to them by DOM scripting (what us old-timers
might once have called Dynamic HTML, or DHTML) to enhance a user’s web experi-
ence, rather than showcase annoying tricks.

 Whether it’s to incrementally reveal content, create input controls beyond the basic
set provided by HTML, or give users the ability to tune pages to their own liking, DOM
manipulation has allowed many a web developer to amaze (not annoy) their users.

 On an almost daily basis, many of us come across web pages that do something that
makes us say, “Hey! I didn’t know you could do that!” And being the commensurate
professionals that we are (not to mention being insatiably curious about such things),
we immediately start looking at the source code to find out how they did it.

 But rather than having to code up all that script ourselves, we’ll find that jQuery
provides a robust set of tools to manipulate the DOM, making those types of “Wow!”
pages possible with a surprisingly small amount of code. Whereas the previous chapter
introduced us to the many ways jQuery lets us select DOM elements into a wrapped set,
this chapter puts the power of jQuery to work performing operations on those ele-
ments to bring life and that elusive “Wow!” factor to our pages.

3.1 Working with element properties and attributes
Some of the most basic components we can manipulate, when it comes to DOM ele-
ments, are the properties and attributes assigned to those elements. These properties
and attributes are initially assigned to the JavaScript object instances that represent
the DOM elements as a result of parsing their HTML markup, and they can be changed
dynamically under script control.

 Let’s make sure that we have our terminology and concepts straight.
 Properties are intrinsic to JavaScript objects, and each has a name and a value. The

dynamic nature of JavaScript allows us to create properties on JavaScript objects under
script control. (The Appendix goes into great detail on this concept if you’re new to
JavaScript.)

 Attributes aren’t a native JavaScript concept, but one that only applies to DOM
elements. Attributes represent the values that are specified on the markup of DOM
elements.

 Consider the following HTML markup for an image element:

<img id="myImage" src="image.gif" alt="An image" class="someClass"
 title="This is an image"/>

In this element’s markup, the tag name is img, and the markup for id, src, alt, class,
and title represents the element’s attributes, each of which consists of a name and a
value. This element markup is read and interpreted by the browser to create the
JavaScript object instance that represents this element in the DOM. The attributes are
gathered into a list, and this list is stored as a property named, reasonably enough,
attributes on the DOM element instance. In addition to storing the attributes in this
list, the object is given a number of properties, including some that represent the attri-
butes of the element’s markup.
Download from Library of Wow! eBook <www.wowebook.com>

57Working with element properties and attributes
 As such, the attribute values are reflected not only in the attributes list, but also
in a handful of properties.

 Figure 3.1 shows a simplified overview of this process.
 There remains an active connection between the attribute values stored in the

attributes list, and the corresponding properties. Changing an attribute value
results in a change in the corresponding property value and vice versa. Even so, the
values may not always be identical. For example, setting the src attribute of the image
element to image.gif will result in the src property being set to the full absolute URL
of the image.

 For the most part, the name of a JavaScript property matches that of any corre-
sponding attribute, but there are some cases where they differ. For example, the
class attribute in this example is represented by the className property.

 jQuery gives us the means to easily manipulate an element’s attributes and gives us
access to the element instance so that we can also change its properties. Which of these
we choose to manipulate depends on what we want to do and how we want to do it.

 Let’s start by looking at getting and setting element properties.

HTML markup

img element

id:'myImage'

src:'http://localhost/image.gif'

alt:'An image'

className:'someClass'

title:'This is an image'

attributes

other
properties

...

NodeList

id='myImage'

src='image.gif'

alt='An image'

class='someClass'

title='This is an image'

other
implicit or defaulted

attributes
...

direct reference
value correspondence

Legend

Figure 3.1 HTML markup is translated into DOM elements, including the attributes of the
tag and properties created from them. The browser creates a correspondence between the
attributes and properties of the elements.
Download from Library of Wow! eBook <www.wowebook.com>

58 CHAPTER 3 Bringing pages to life with jQuery
3.1.1 Manipulating element properties

jQuery doesn’t possess a specific method to obtain or modify the properties of ele-
ments. Rather, we use the native JavaScript notation to access the properties and their
values. The trick is in getting to the element references in the first place.

 But it’s not really tricky at all, as it turns out. As we saw in the previous chapter,
jQuery gives us a number of ways to access the individual elements of the wrapped set.
Some of these are

Using array indexing on the wrapped set, as in $(whatever)[n]
Using the get() method, which returns either an individual element by index,
or toArray(), which returns an array of the entire set of elements
Using the each() or map() methods, where the individual elements are made
available in the callback functions
Using the eq() method or :eq() filter
Via callback functions to some methods (like not() and filter(), for exam-
ple) that set elements as the function context of the callback

As an example of using the each() method, we could use the following code to set the
id property of every element in the DOM to a name composed of the element’s tag
name and position within the DOM:

$('*').each(function(n){
 this.id = this.tagName + n;
});

In this example, we obtain element references as the function context (this) of the
callback function, and directly assign values to their id properties.

 Dealing with attributes is a little less straightforward than dealing with properties
in JavaScript, so jQuery provides more assistance for handling them. Let’s look at how.

3.1.2 Fetching attribute values

As we’ll find is true with many jQuery methods, the attr() method can be used either
as a read or as a write operation. When jQuery methods can perform such bilateral
operations, the number and types of parameters passed into the method determine
which variant of the method is executed.

 As one of these bilateral methods, the attr() method can be used to either fetch
the value of an attribute from the first element in the matched set, or to set attribute
values onto all matched elements.

 The syntax for the fetch variant of the attr() method is as follows:

Method syntax: attr

attr(name)
Obtains the value assigned to the specified attribute for the first element in the matched set.

Parameters
name (String) The name of the attribute whose value is to be fetched.

Returns
The value of the attribute for the first matched element. The value undefined is returned if the
matched set is empty or the attribute doesn’t exist on the first element.
Download from Library of Wow! eBook <www.wowebook.com>

59Working with element properties and attributes
Even though we usually think of element attributes as those predefined by HTML, we
can use attr() with custom attributes set through JavaScript or HTML markup. To illus-
trate this, let’s amend the element of our previous example with a custom
markup attribute (highlighted in bold):

<img id="myImage" src="image.gif" alt="An image" class="someClass"
title="This is an image" data-custom ="some value"/>

Note that we’ve added a custom attribute, unimaginatively named data-custom, to
the element. We can retrieve that attribute’s value, as if it were any of the standard
attributes, with

$("#myImage").attr("data-custom")

Attribute names aren’t case sensitive in
HTML. Regardless of how an attribute
such as title is declared in the
markup, we can access (or set, as we
shall see) attributes using any variants
of case: Title, TITLE, TiTlE, and any
other combinations are all equivalent.
In XHTML, even though attribute
names must be lowercase in the
markup, we can retrieve them using
any case variant.

 At this point you may be asking,
“Why deal with attributes at all when
accessing the properties is so easy (as
seen in the previous section)?”

 The answer to that question is that
the jQuery attr() method is much
more than a wrapper around the
JavaScript getAttribute() and set-
Attribute() methods. In addition to
allowing access to the set of element
attributes, jQuery provides access to
some commonly used properties that, traditionally, have been a thorn in the side of
page authors everywhere due to their browser dependency.

 This set of normalized-access names is shown in table 3.1.

Table 3.1 jQuery attr() normalized-access names

jQuery normalized name DOM name

cellspacing cellSpacing

class className

colspan colSpan

cssFloat styleFloat for IE, cssFloat for others

Custom attributes and HTML
Under HTML 4, using a nonstandard
attribute name such as data-custom,
although a common sleight-of-hand trick,
will cause your markup to be considered
invalid, and it will fail formal validation
testing. Proceed with caution if valida-
tion matters to you.

HTML 5, on the other hand, formally rec-
ognizes and allows for such custom attri-
butes, as long as the custom attribute
name is prefixed with the string data-.
Any attributes following this naming con-
vention will be considered valid accord-
ing to HTML 5’s rules; those that don’t
will continue to be considered invalid.
(For details, see the W3C’s specification
for HTML 5: http://www.w3.org/TR/
html5/dom.html#attr-data.)

In anticipation of HTML 5, we’ve adopted
the data- prefix in our example.
Download from Library of Wow! eBook <www.wowebook.com>

http://www.w3.org/TR/html5/dom.html#attr-data
http://www.w3.org/TR/html5/dom.html#attr-data

60 CHAPTER 3 Bringing pages to life with jQuery
In addition to these helpful shortcuts, the set variant of attr() has some of its own
handy features. Let’s take a look.

3.1.3 Setting attribute values

There are two ways to set attributes onto elements in the wrapped set with jQuery.
Let’s start with the most straightforward, which allows us to set a single attribute at a
time (for all elements in the wrapped set). Its syntax is as follows:

This variant of attr(), which may at first seem simple, is actually rather sophisticated
in its operation.

 In its most basic form, when the value parameter is any JavaScript expression that
results in a value (including an array), the computed value of the expression is set as
the attribute value.

 Things get more interesting when the value parameter is a function reference. In
such cases, the function is invoked for each element in the wrapped set, with the
return value of the function used as the attribute value. When the function is invoked,
it’s passed two parameters: one that contains the zero-based index of the element
within the wrapped set, and one that contains the current value of the named attri-
bute. Additionally, the element is established as the function context (this) for the

float styleFloat for IE, cssFloat for others

for htmlFor

frameborder frameBorder

maxlength maxLength

readonly readOnly

rowspan rowSpan

styleFloat styleFloat for IE, cssFloat for others

tabindex tabIndex

usemap useMap

Method syntax: attr

attr(name,value)
Sets the named attribute to the passed value for all elements in the wrapped set.

Parameters
name (String) The name of the attribute to be set.
value (Any|Function) Specifies the value of the attribute. This can be any JavaScript

expression that results in a value, or it can be a function. The function is invoked for
each wrapped element, passing the index of the element and the current value of
the named attribute. The return value of the function becomes the attribute value.

Returns
The wrapped set.

Table 3.1 jQuery attr() normalized-access names (continued)

jQuery normalized name DOM name
Download from Library of Wow! eBook <www.wowebook.com>

61Working with element properties and attributes
function invocation, allowing the function to tune its processing for each specific ele-
ment—the main power of using functions in this way.

 Consider the following statement:

$('*').attr('title',function(index,previousValue) {
 return previousValue + ' I am element ' + index +
 ' and my name is ' + (this.id || 'unset');
});

This method will run through all elements on the page, modifying the title attribute
of each element by appending a string (composed using the index of the element
within the DOM and the id attribute of each specific element) to the previous value.

 We’d use this means of specifying the attribute value whenever that value is depen-
dent upon other aspects of the element, when we need the orginal value to compute
the new value, or whenever we have other reasons to set the values individually.

 The second set variant of attr() allows us to conveniently specify multiple attri-
butes at a time.

This format is a quick and easy way to set multiple attributes onto all the elements of a
wrapped set. The passed parameter can be any object reference, commonly an object
literal, whose properties specify the names and values of the attributes to be set. Con-
sider this:

$('input').attr(
 { value: '', title: 'Please enter a value' }
);

This statement sets the value of all <input> elements to the empty string, and sets the
title to the string Please enter a value.

 Note that if any property value in the object passed as the value parameter is a
function reference, it operates similarly to the previous format of attr(); the function
is invoked for each individual element in the matched set.

WARNING Internet Explorer won’t allow the name or type attributes of
<input> elements to be changed. If you want to change the name or type of
<input> elements in Internet Explorer, you must replace the element with a
new element possessing the desired name or type. This also applies to the
value attribute of file and password types of <input> elements.

Method syntax: attr

attr(attributes)
Uses the properties and values specified by the passed object to set corresponding attributes
onto all elements of the matched set.

Parameters
attributes (Object) An object whose properties are copied as attributes to all elements in

the wrapped set.

Returns
The wrapped set.
Download from Library of Wow! eBook <www.wowebook.com>

62 CHAPTER 3 Bringing pages to life with jQuery
Now that we know how to get and set attributes, what about getting rid of them?

3.1.4 Removing attributes

In order to remove attributes from DOM elements, jQuery provides the removeAttr()
method. Its syntax is as follows:

Note that removing an attribute doesn’t remove any corresponding property from the
JavaScript DOM element, though it may cause its value to change. For example,
removing a readonly attribute from an element would cause the value of the ele-
ment’s readOnly property to flip from true to false, but the property itself isn’t
removed from the element.

 Now let’s look at some examples of how we might use this knowledge on our pages.

3.1.5 Fun with attributes

Let’s see how these methods can be used to fiddle with the element attributes in vari-
ous ways.

EXAMPLE #1—FORCING LINKS TO OPEN IN A NEW WINDOW

Let’s say that we want to make all links on our site that point to external domains open
in new windows. This is fairly trivial if we’re in total control of the entire markup and
can add a target attribute, as shown:

Some External Site

That’s all well and good, but what if we’re not in control of the markup? We could be
running a content management system or a wiki, where end users will be able to add
content, and we can’t rely on them to add the target="_blank" to all external links.
First, let’s try and determine what we want: we want all links whose href attribute
begins with http:// to open in a new window (which we’ve determined can be done
by setting the target attribute to _blank).

 Well, we can use the techniques we’ve learned in this section to do this concisely, as
follows:

$("a[href^='http://']").attr("target","_blank");

First, we select all links with an href attribute starting with http:// (which indicates
that the reference is external). Then, we set their target attribute to _blank. Mission
accomplished with a single line of jQuery code!

Method syntax: removeAttr

removeAttr(name)
Removes the specified attribute from every matched element.

Parameters
name (String) The name of the attribute to be removed.

Returns
The wrapped set.
Download from Library of Wow! eBook <www.wowebook.com>

63Working with element properties and attributes
EXAMPLE #2—SOLVING THE DREADED DOUBLE-SUBMIT PROBLEM

Another excellent use for jQuery’s attribute functionality is helping to solve a long-
standing issue with web applications (rich and otherwise): the Dreaded Double-Submit
Problem. This is a common dilemma for web applications when the latency of form
submissions, sometimes several seconds or longer, gives users an opportunity to press
the submit button multiple times, causing all manner of grief for the server-side code.

 For the client side of the solution (the server-side code should still be written in a
paranoid fashion), we’ll hook into the form’s submit event and disable the submit
button after its first press. That way, users won’t get the opportunity to click the submit
button more than once and will get a visual indication (assuming that disabled but-
tons appear so in their browser) that the form is in the process of being submitted.
Don’t worry about the details of event handling in the following example (we’ll get
more than enough of that in chapter 4), but concentrate on the use of the attr()
method:

$("form").submit(function() {
 $(":submit",this).attr("disabled", "disabled");
});

Within the body of the event handler, we grab all submit buttons that are inside our
form with the :submit selector and modify the disabled attribute to the value "dis-
abled" (the official W3C-recommended setting for the attribute). Note that when
building the matched set, we provide a context value (the second parameter) of this.
As we’ll find out when we dive into event handling in chapter 4, the this pointer
always refers to the page element for which the event was triggered while operating
inside event handlers; in this case, the form instance.

WARNING Disabling the submit button(s) in this way doesn’t relieve the
server-side code from its responsibility to guard against double submission
or to perform any other types of validation. Adding this type of feature to
the client code makes things nicer for the end user and helps prevent the

When is “enabled” not enabling?
Don’t be fooled into thinking that you can substitute the value enabled for disabled
as follows:

$(whatever).attr("disabled","enabled");

and expect the element to become enabled. This code will still disable the element!

According to W3C rules, it’s the presence of the disabled attribute, not its value,
that places the element in disabled state. So it really doesn’t matter what the value
is; if the disabled attribute is present, the element is disabled.

So, to re-enable the element, we’d either remove the attribute or use a convenience
that jQuery provides for us: if we provide the Boolean values true or false as the
attribute value (not the strings “true” or “false”), jQuery will do the right thing under
the covers, removing the attribute for false, and adding it for true.
Download from Library of Wow! eBook <www.wowebook.com>

64 CHAPTER 3 Bringing pages to life with jQuery
double-submit problem under normal circumstances. It doesn’t protect
against attacks or other hacking attempts, and server-side code must con-
tinue to be on its guard.

Element attributes and properties are useful concepts for data as defined by HTML
and the W3C, but in the course of page authoring, we frequently need to store our
own custom data. Let’s see what jQuery can do for us on that front.

3.1.6 Storing custom data on elements

Let’s just come right out and say it: global variables suck.
 Except for the infrequent, truly global values, it’s hard to imagine a worse place to

store information that we’ll need while defining and implementing the complex
behavior of our pages. Not only do we run into scope issues, they also don’t scale well
when we have multiple operations occurring simultaneously (menus opening and
closing, Ajax requests firing, animations executing, and so on).

 The functional nature of JavaScript can help mitigate this through the use of clo-
sures, but closures can only take us so far and aren’t appropriate for every situation.

 Because our page behaviors are so element-focused, it makes sense to make use of
the elements themselves as storage scopes. Again, the nature of JavaScript, with its
ability to dynamically create custom properties on objects, can help us out here. But
we must proceed with caution. Being that DOM elements are represented by
JavaScript object instances, they, like all other object instances, can be extended with
custom properties of our own choosing. But there be dragons there!

 These custom properties, so-called expandos, aren’t without risk. Particularly, it can
be easy to create circular references that can lead to serious memory leaks. In tradi-
tional web applications, where the DOM is dropped frequently as new pages are
loaded, memory leaks may not be as big of an issue. But for us, as authors of highly
interactive web applications, employing lots of script on pages that may hang around
for quite some time, memory leaks can be a huge problem.

 jQuery comes to our rescue by providing a means to tack data onto any DOM ele-
ment that we choose, in a controlled fashion, without relying upon potentially prob-
lematic expandos. We can place any arbitrary JavaScript value, even arrays and objects,
onto DOM elements by use of the cleverly named data() method. This is the syntax:

Method syntax: data

data(name,value)
Adds the passed value to the jQuery-managed data store for all wrapped elements.

Parameters
name (String) The name of the data to be stored.
value (Object|Function) The value to be stored. If a function, the function is invoked for

each wrapped element, passing that element as the function context. The
function's returned value is used as the data value.

Returns
The wrapped set.
Download from Library of Wow! eBook <www.wowebook.com>

65Changing element styling
Data that’s write-only isn’t particularly useful, so a means to retrieve the named data
must be available. It should be no surprise that the data() method is once again used.
Here is the syntax for retrieving data using the data() method:

In the interests of proper memory management, jQuery also provides the remove-
Data() method as a way to dump any data that may no longer be necessary:

Note that it’s not necessary to remove data “by hand” when removing an element from
the DOM with jQuery methods. jQuery will smartly handle that for us.

 The capability to tack data onto DOM elements is one that we’ll see exploited to
our advantage in many of the examples in upcoming chapters, but for those who have
run into the usual headaches that global variables can cause, it’s easy to see how stor-
ing data in-context within the element hierarchy opens up a whole new world of possi-
bilities. In essence, the DOM tree has become a complete “namespace” hierarchy for
us to employ; we’re no longer limited to a single global space.

 We mentioned the className property much earlier in this section as an example
of a case where markup attribute names differ from property names; but, truth be
told, class names are a bit special in other respects as well, and are handled as such by
jQuery. The next section will describe a better way to deal with class names than by
directly accessing the className property or using the attr() method.

3.2 Changing element styling
If we want to change the styling of an element, we have two options. We can add or
remove a class, causing any existing style sheets to restyle the element based on its new
classes. Or we can operate on the DOM element itself, applying styles directly.

 Let’s look at how jQuery makes it simple to make changes to an element’s style via
classes.

Method syntax: data

data(name)
Retrieves any previously stored data with the specified name on the first element of the wrapped
set.

Parameters
name (String) The name of the data to be retrieved.

Returns
The retrieved data, or undefined if not found.

Method syntax: removeData

removeData(name)
Removes any previously stored data with the specified name on all elements of the wrapped set.

Parameters
name (String) The name of the data to be removed.

Returns
The wrapped set.
Download from Library of Wow! eBook <www.wowebook.com>

66 CHAPTER 3 Bringing pages to life with jQuery
3.2.1 Adding and removing class names

The class attribute of DOM elements is unique in its format and semantics and is cru-
cially important to the creation of interactive interfaces. The addition of class names
to and removal of class names from an element are the primary means by which their
stylistic rendering can be modified dynamically.

 One of the aspects of element class names that make them unique—and a chal-
lenge to deal with—is that each element can be assigned any number of class names.
In HTML, the class attribute is used to supply these names as a space-delimited string.
For example,

<div class="someClass anotherClass yetAnotherClass"></div>

Unfortunately, rather than manifesting themselves as an array of names in the DOM ele-
ment’s corresponding className property, the class names appear as that same space-
delimited string. How disappointing, and how cumbersome! This means that when-
ever we want to add class names to or remove class names from an element that
already has class names, we need to parse the string to determine the individual
names when reading it and be sure to restore it to valid space-delimited format when
writing it.

NOTE The list of class names is considered unordered; that is, the order of
the names within the space-delimited list has no semantic meaning.

Although it’s not a monumental task to write code to handle all that, it’s always a good
idea to abstract such details behind an API that hides the mechanical details of such
operations. Luckily, jQuery has already done that for us.

 Adding class names to all the elements of a matched set is an easy operation with
the following addClass() method:

Removing class names is just as straightforward with the following removeClass()
method:

Method syntax: addClass

addClass(names)
Adds the specified class name or class names to all elements in the wrapped set.

Parameters
names (String|Function) Specifies the class name, or a space-delimited string of names,

to be added. If a function, the function is invoked for each wrapped element, with
that element set as the function context, and passing two parameters: the
element index and the current class value. The function’s returned value is used
as the class name or names.

Returns
The wrapped set.
Download from Library of Wow! eBook <www.wowebook.com>

67Changing element styling

Often, we may want to switch a set of styles back and forth, perhaps to indicate a
change between two states or for any other reasons that make sense with our inter-
face. jQuery makes this easy with the toggleClass() method.

One situation where the toggleClass() method is most useful is when we want to
switch visual renditions between elements quickly and easily. Let’s consider a “zebra-
striping” example in which we want to give alternating rows of a table different colors.
And imagine that we have some valid reason to swap the colored background from
the odd rows to the even rows (and perhaps back again) when certain events occur.
The toggleClass() method would make it almost trivial to add a class name to every
other row, while removing it from the remainder.

 Let’s give it a whirl. In the file chapter3/zebra.stripes.html, you’ll find a page that
presents a table of vehicle information. Within the script defined for that page, a func-
tion is defined as follows:

function swapThem() {
 $('tr').toggleClass('striped');
}

This function uses the toggleClass() method to toggle the class named striped for
all <tr> elements. We also defined the following ready handler:

Method syntax: removeClass

removeClass(names)
Removes the specified class name or class names from each element in the wrapped set.

Parameters
names (String|Function) Specifies the class name, or a space-delimited string of names,

to be removed. If a function, the function is invoked for each wrapped element,
setting that element as the function context, and passing two parameters: the
element index, and the class value prior to any removal. The function’s returned
value is used as the class name or names to be removed.

Returns
The wrapped set.

Method syntax: toggleClass

toggleClass(names)
Adds the specified class name if it doesn’t exist on an element, or removes the name from
elements that already possess the class name. Note that each element is tested individually, so
some elements may have the class name added, and others may have it removed.

Parameters
names (String|Function) Specifies the class name, or a space-delimited string of names,

to be toggled. If a function, the function is invoked for each wrapped element,
passing that element as the function context. The function’s returned value is
used as the class name or names.

Returns
The wrapped set.
Download from Library of Wow! eBook <www.wowebook.com>

68 CHAPTER 3 Bringing pages to life with jQuery
$(function(){/

 $("table tr:nth-child(even)").addClass("striped");
 $("table").mouseover(swapThem).mouseout(swapThem);
});

The first statement in the body of this
handler applies the class striped to
every other row of the table using the
nth-child selector that we learned
about in the previous chapter. The sec-
ond statement establishes event han-
dlers for mouseover and mouseout
events that both call the same swapThem
function. We’ll be learning all about
event handling in the next chapter, but
for now the important point is that
whenever the mouse enters or leaves the
table, the following line of code ends up
being executed:

$('tr').toggleClass('striped');

The result is that every time the mouse
cursor enters or leaves the table, all <tr>
elements with the class striped will
have the class removed, and all <tr> ele-
ments without the class will have it
added. This (somewhat annoying) activ-
ity is shown in the two parts of figure 3.2.

 Toggling a class based upon whether
the elements already possess the class or not is a very common operation, but so is tog-
gling the class based on some other arbitrary condition. For this more general case,
jQuery provides another variant of the toggleClass() method that lets us add or
remove a class based upon an arbitrary Boolean expression:

Method syntax: toggleClass

toggleClass(names,switch)
Adds the specified class name if the switch expression evaluates to true, and removes the
class name if the switch expression evaluates to false.

Parameters
names (String|Function) Specifies the class name, or a space-delimited string of names,

to be toggled. If a function, the function is invoked for each wrapped element,
setting that element as the function context, and passing two parameters: the
element index and the current class value. The function’s returned value is used
as the class name or names.

switch (Boolean) A control expression whose value determines if the class will be added
to the elements (if true) or removed (if false).

Returns
The wrapped set.

Figure 3.2 The presence or absence of the striped
class is toggled whenever the mouse cursor enters
or leaves the table.
Download from Library of Wow! eBook <www.wowebook.com>

69Changing element styling
It’s extremely common to need to determine whether an element has a particular class.
We may want to conditionalize our activity based upon whether an element has a cer-
tain class or not, or we may just be using it to identify a certain type of element by class.

 With jQuery, we can do that by calling the hasClass() method:

$("p:first").hasClass("surpriseMe")

This method will return true if any element in the matched set has the specified class.
The syntax of this method is as follows:

Recalling the is() method from chapter 2, we could achieve the same thing with

$("p:first").is(".surpriseMe")

But arguably, the hasClass() method makes for more readable code, and internally,
hasClass() is more efficient.

 Another commonly desired ability is to obtain the list of classes defined for a par-
ticular element as an array instead of the cumbersome space-separated list. We could
try to achieve that by writing

$("p:first").attr("className").split(" ");

Recall that the attr() method will return undefined if the attribute in question
doesn’t exist, so this statement will throw an error if the <p> element doesn’t possess
any class names.

 We could solve this by first checking for the attribute, and if we wanted to wrap the
entire thing in a repeatable, useful jQuery extension, we could write

$.fn.getClassNames = function() {
 var name = this.attr("className");
 if (name != null) {
 return name.split(" ");
 }
 else {
 return [];
 }
};

Don’t worry about the specifics of the syntax for extending jQuery; we’ll go into that
in more detail in chapter 7. What’s important is that once we define such an exten-
sion, we can use getClassNames() anywhere in our script to obtain an array of class
names or an empty array if an element has no classes. Nifty!

Method syntax: hasClass

hasClass(name)
Determines if any element of the matched set possesses the passed class name.

Parameters
name (String) The class name to be checked.

Returns
Returns true if any element in the wrapped set possesses the passed class name; false
otherwise.
Download from Library of Wow! eBook <www.wowebook.com>

70 CHAPTER 3 Bringing pages to life with jQuery
 Manipulating the stylistic rendition of elements via CSS class names is a powerful
tool, but sometimes we want to get down to the nitty-gritty styles themselves as
declared directly on the elements. Let’s see what jQuery offers us for that.

3.2.2 Getting and setting styles

Although modifying the class of an element allows us to choose which predetermined
set of defined style sheet rules should be applied, sometimes we want to override the
style sheet altogether. Applying styles directly on the elements (via the style property
available on all DOM elements) will automatically override style sheets, giving us more
fine-grained control over individual elements and their styles.

 The jQuery css() method allows us to manipulate these styles, working in a similar
fashion to the attr() method. We can set an individual CSS style by specifying its
name and value, or a series of styles by passing in an object. First, let’s look at specify-
ing a single style name and value.

As described, the value argument accepts a function in a similar fashion to the
attr() method. This means that we can, for instance, expand the width of all ele-
ments in the wrapped set by 20 pixels as follows:

$("div.expandable").css("width",function(index, currentWidth) {
 return currentWidth + 20;
});

One interesting side note—and yet another example of how jQuery makes our lives
easier—is that the normally problematic opacity property will work perfectly across
browsers by passing in a value between 0.0 and 1.0; no more messing with IE alpha fil-
ters, -moz-opacity, and the like!

 Next, let’s look at using the shortcut form of the css() method, which works
exactly as the shortcut version of attr() worked.

Method syntax: css

css(name,value)
Sets the named CSS style property to the specified value for each matched element.

Parameters
name (String) The name of the CSS property to be set.
value (String|Number|Function) A string, number, or function containing the property

value. If a function is passed as this parameter, it will be invoked for each
element of the wrapped set, setting the element as the function context, and
passing two parameters: the element index and the current value. The returned
value serves as the new value for the CSS property.

Returns
The wrapped set.
Download from Library of Wow! eBook <www.wowebook.com>

71Changing element styling

We’ve already seen how useful this variant of this method can be in the code of
listing 2.1, which we examined in the previous chapter. To save you some page-flip-
ping, here’s the relevant passage again:

$('',
 {
 src: 'images/little.bear.png',
 alt: 'Little Bear',
 title:'I woof in your general direction',
 click: function(){
 alert($(this).attr('title'));
 }
 })
 .css({
 cursor: 'pointer',
 border: '1px solid black',
 padding: '12px 12px 20px 12px',
 backgroundColor: 'white'
 })
 ...

As in the shortcut version of the attr() method, we can use functions as values to any
CSS property in the properties parameter object, and they will be called on each ele-
ment in the wrapped set to determine the value that should be applied.

 Lastly, we can use css() with a name passed in to retrieve the computed style of
the property associated with that name. When we say computed style, we mean the style
after all linked, embedded, and inline CSS has been applied. Impressively, this works
perfectly across all browsers, even for opacity, which returns a string representing a
number between 0.0 and 1.0.

Method syntax: css

css(properties)
Sets the CSS properties specified as keys in the passed object to their associated values for all
matched elements.

Parameters
properties (Object) Specifies an object whose properties are copied as CSS properties to

all elements in the wrapped set.

Returns
The wrapped set.

Method syntax: css

css(name)
Retrieves the computed value of the CSS property specified by name for the first element in the
wrapped set.

Parameters
name (String) Specifies the name of a CSS property whose computed value is to be

returned.

Returns
The computed value as a string.
Download from Library of Wow! eBook <www.wowebook.com>

72 CHAPTER 3 Bringing pages to life with jQuery
Keep in mind that this variant of the css() method always returns a string, so if you
need a number or some other type, you’ll need to parse the returned value.

 That’s not always convenient, so for a small set of CSS values that are commonly
accessed, jQuery thoughtfully provides convenience methods that access these values
and convert them to the most commonly used types.

GETTING AND SETTING DIMENSIONS

When it comes to CSS styles that we want to set or get on our pages, is there a more
common set of properties than the element’s width or height? Probably not, so jQuery
makes it easy for us to deal with the dimensions of the elements as numeric values
rather than strings.

 Specifically, we can get (or set) the width and height of an element as a number by
using the convenient width() and height() methods. We can set the width or height
as follows:

Keep in mind that these are shortcuts for the more verbose css() function, so

$("div.myElements").width(500)

is identical to

$("div.myElements").css("width",500)

We can retrieve the width or height as follows:

Method syntax: width and height

width(value)
height(value)
Sets the width or height of all elements in the matched set.

Parameters
value (Number|String|Function) The value to be set. This can be a number of pixels, or a

string specifying a value in units (such as px, em, or %). If no unit is specified, px
is the default.
If a function, the function is invoked for each wrapped element, passing that
element as the function context. The function’s returned value is used as the
value.

Returns
The wrapped set.

Method syntax: width and height

width()
height()
Retrieves the width or height of the first element of the wrapped set.

Parameters
none

Returns
The computed width or height as a number in pixels.
Download from Library of Wow! eBook <www.wowebook.com>

73Changing element styling
The fact that the width and height values are returned from these functions as num-
bers isn’t the only convenience that these methods bring to the table. If you’ve ever
tried to find the width or height of an element by looking at its style.width or
style.height property, you were confronted with the sad fact that these properties
are only set by the corresponding style attribute of that element; to find out the
dimensions of an element via these properties, you have to set them in the first place.
Not exactly a paragon of usefulness!

 The width() and height() methods, on the other hand, compute and return the
size of the element. Knowing the precise dimensions of an element in simple pages
that let their elements lay out wherever they end up isn’t usually necessary, but know-
ing such dimensions in highly interactive scripted pages is crucial to be able to cor-
rectly place active elements such as context menus, custom tool tips, extended
controls, and other dynamic components.

 Let’s put them to work. Figure 3.3 shows a sample page that was set up with two pri-
mary elements: a <div> serving as a test subject that contains a paragraph of text (also
with a border and background color for emphasis) and a second <div> in which to
display the dimensions.

 The dimensions of the test subject aren’t known in advance because no style rules
specifying dimensions are applied. The width of the element is determined by the
width of the browser window, and its height depends on how much room will be
needed to display the contained text. Resizing the browser window will cause both
dimensions to change.

 In our page, we define a function that will use the width() and height() methods
to obtain the dimensions of the test subject <div> (identified as testSubject) and
display the resulting values in the second <div> (identified as display).

function displayDimensions() {
 $('#display').html(
 $('#testSubject').width()+'x'+$('#testSubject').height()
);

We call this function in the ready handler of the page, resulting in the initial display of
the values 589 and 60 for that particular size of browser window, as shown in the upper
portion of figure 3.3.
We also add a call to the same function in a resize handler on the window that updates
the display whenever the browser window is resized, as shown in the lower portion of
figure 3.3.

 This ability to determine the computed dimensions of an element at any point is
crucial to accurately positioning dynamic elements on our pages.

 The full code of this page is shown in listing 3.1 and can be found in the file
chapter3/dimensions.html.

Download from Library of Wow! eBook <www.wowebook.com>

74 CHAPTER 3 Bringing pages to life with jQuery

<!DOCTYPE html>
<html>
 <head>
 <title>Dynamic Dimensions Example</title>
 <link rel="stylesheet" type="text/css" href="../styles/core.css"/>
 <style type="text/css">
 body {
 background-color: #eeeeee;
 }
 #testSubject {
 background-color: #ffffcc;
 border: 2px ridge maroon;
 padding: 8px;
 font-size: .85em;
 }
 </style>
 <script type="text/javascript"
 src="../scripts/jquery-1.4.js"></script>
 <script type="text/javascript">
 $(function(){
 $(window).resize(displayDimensions);
 displayDimensions();
 });

Listing 3.1 Dynamically tracking and displaying the dimensions of an element

Figure 3.3 The width and height of the test element aren’t fixed and depend on the width of the
browser window.

Establishes resize
handler that invokes
display function

Invokes reporting function in
document ready handler
Download from Library of Wow! eBook <www.wowebook.com>

75Changing element styling
 function displayDimensions() {
 $('#display').html(
 $('#testSubject').width()+'x'+$('#testSubject').height()
);
 }
 </script>
 </head>

 <body>
 <div id="testSubject">
 Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
 Aliquam eget enim id neque aliquet porttitor. Suspendisse
 nisl enim, nonummy ac, nonummy ut, dignissim ac, justo.
 Aenean imperdiet semper nibh. Vivamus ligula. In in ipsum
 sed neque vehicula rhoncus. Nam faucibus pharetra nisi.
 Integer at metus. Suspendisse potenti. Vestibulum ante
 ipsum primis in faucibus orci luctus et ultrices posuere
 cubilia Curae; Proin quis eros at metus pretium elementum.
 </div>
 <div id="display"></div>
 </body>
</html>

In addition to the very convenient width() and height() methods, jQuery also pro-
vides similar methods for getting more particular dimension values, as described in
table 3.2.

 When dealing with the window or document elements, it’s recommended to avoid
the inner and outer methods and use width() and height().

We’re not done yet; jQuery also gives us easy support for positions and scrolling values.

POSITIONS AND SCROLLING

jQuery provides two methods for getting the position of an element. Both of these ele-
ments return a JavaScript object that contains two properties: top and left, which,
not surprisingly, indicate the top and left values of the element.

Table 3.2 Additional jQuery dimension-related methods

Method Description

innerHeight() Returns the “inner height” of the first matched element, which excludes
the border but includes the padding.

innerWidth() Returns the “inner width” of the first matched element, which excludes
the border but includes the padding.

outerHeight(margin) Returns the “outer height” of the first matched element, which includes
the border and the padding. The margin parameter causes the margin
to be included if it’s true, or omitted.

outerWidth(margin) Returns the “outer width” of the first matched element, which includes
the border and the padding. The margin parameter causes the margin
to be included if it’s true, or omitted.

Displays width and
height of test subject

Declares test
subject with
dummy text

Displays dimensions
in this area
Download from Library of Wow! eBook <www.wowebook.com>

76 CHAPTER 3 Bringing pages to life with jQuery
 The two methods use different origins from which their relative computed values
are measured. One of these methods, offset(), returns the position relative to the
document:

The other method, position(), returns values relative to an element’s closest offset
parent:

The offset parent of an element is the nearest ancestor that has an explicit positioning
rule of either relative or absolute set.

 Both offset() and position() can only be used for visible elements, and it’s rec-
ommended that pixel values be used for all padding, borders, and margins to obtain
accurate results.

 In addition to element positioning, jQuery gives us the ability to get, and to set, the
scroll position of an element. Table 3.3 describes these methods.

 All methods in table 3.3 work with both visible and hidden elements.
Now that we’ve learned how to get and set the styles of elements, let’s discuss different
ways of modifying their contents.

Method syntax: offset

offset()
Returns the position (in pixels) of the first element in the wrapped set relative to the document
origin.

Parameters
none

Returns
A JavaScript object with left and top properties as floats (usually rounded to the nearest
integer) depicting the position in pixels relative to the document origin.

Method syntax: position

position()
Returns the position (in pixels) of the first element in the wrapped set relative to the element’s
closest offset parent.

Parameters
none

Returns
A JavaScript object with left and top properties as integers depicting the position in pixels
relative to the closest offset parent.

Table 3.3 The jQuery scroll control methods

Method Description

scrollLeft() Returns the horizontal scroll offset of the first matched element.

scrollLeft(value) Sets the horizontal scroll offset for all matched elements.

scrollTop() Returns the vertical scroll offset of the first matched element.

scrollTop(value) Sets the vertical scroll offset for all matched elements.
Download from Library of Wow! eBook <www.wowebook.com>

77Setting element content
3.3 Setting element content
When it comes to modifying the contents of elements, there’s an ongoing debate
regarding which technique is better: using DOM API methods or changing the ele-
ments’ inner HTML.

 Although use of the DOM API methods is certainly exact, it’s also fairly “wordy” and
results in a lot of code, much of which can be difficult to visually inspect. In most
cases, modifying an element’s HTML is easier and more effective, so jQuery gives us a
number of methods to do so.

3.3.1 Replacing HTML or text content

First up is the simple html() method, which allows us to retrieve the HTML contents
of an element when used without parameters or, as we’ve seen with other jQuery func-
tions, to set its contents when used with a parameter.

 Here’s how to get the HTML content of an element:

And here’s how to set the HTML content of all matched elements:

We can also set or get only the text contents of elements. The text() method, when
used without parameters, returns a string that’s the concatenation of all text. For
example, let’s say we have the following HTML fragment:

<ul id="theList">
 One
 Two
 Three
 Four

Method syntax: html

html()
Obtains the HTML content of the first element in the matched set.

Parameters
none

Returns
The HTML content of the first matched element. The returned value is identical to accessing the
innerHTML property of that element.

Method syntax: html

html(content)
Sets the passed HTML fragment as the content of all matched elements.

Parameters
content (String|Function) The HTML fragment to be set as the element content. If a

function, the function is invoked for each wrapped element, setting that element
as the function context, and passing two parameters: the element index and the
existing content. The function’s returned value is used as the new content.

Returns
The wrapped set.
Download from Library of Wow! eBook <www.wowebook.com>

78 CHAPTER 3 Bringing pages to life with jQuery
The statement

var text = $('#theList').text();

results in variable text being set to OneTwoThreeFour.

We can also use the text() method to set the text content of the wrapped elements.
The syntax for this format is as follows:

Note that setting the inner HTML or text of elements using these methods will replace
contents that were previously in the elements, so use these methods carefully. If you
don’t want to bludgeon all of an element’s previous content, a number of other meth-
ods will leave the contents of the elements as they are but modify their contents or sur-
rounding elements. Let’s look at them.

3.3.2 Moving and copying elements

Manipulating the DOM of a page without the necessity of a page reload opens a world
of possibilities for making our pages dynamic and interactive. We’ve already seen a
glimpse of how jQuery lets us create DOM elements on the fly. These new elements
can be attached to the DOM in a variety of ways, and we can also move or copy existing
elements.

 To add content to the end of existing content, the append() method is available.

Method syntax: text

text()
Concatenates all text content of the wrapped elements and returns it as the result of the method.

Parameters
none

Returns
The concatenated string.

Method syntax: text

text(content)
Sets the text content of all wrapped elements to the passed value. If the passed text contains
angle brackets (< and >) or the ampersand (&), these characters are replaced with their equivalent
HTML entities.

Parameters
content (String|Function) The text content to be set into the wrapped elements. Any angle

bracket characters are escaped as HTML entities. If a function, the function is
invoked for each wrapped element, setting that element as the function context,
and passing two parameters: the element index and the existing text. The
function’s returned value is used as the new content.

Returns
The wrapped set.
Download from Library of Wow! eBook <www.wowebook.com>

79Setting element content

This method accepts a string containing an HTML fragment, a reference to an existing
or newly created DOM element, or a jQuery wrapped set of elements.

 Consider the following simple case:

$('p').append('some text');

This statement appends the HTML fragment created from the passed string to the end
of the existing content of all <p> elements on the page.

 A more semantically complex use of this method identifies already-existing ele-
ments of the DOM as the items to be appended. Consider the following:

$("p.appendToMe").append($("a.appendMe"))

This statement moves all links with the class appendMe to the end of the child list of all
<p> elements with the class appendToMe. If there are multiple targets for the opera-
tion, the original element is cloned as many times as is necessary and appended to the
children of each target. In all cases, the original is removed from its initial location.

 This operation is semantically a move if one target is identified; the original source
element is removed from its initial location and appears at the end of the target’s list
of children. It can also be a copy-and-move operation if multiple targets are identified,
creating enough copies of the original so that each target can have one appended to
its children.

 In place of a full-blown wrapped set, we can also reference a specific DOM element,
as shown:

$("p.appendToMe").append(someElement);

Although it’s a common operation to add elements to the end of an elements con-
tent—we might be adding a list item to the end of a list, a row to the end of a table, or
simply adding a new element to the end of the document body—we might also have a
need to add a new or existing element to the start of the target element’s contents.

 When such a need arises, the prepend() method will do the trick.

Method syntax: append

append(content)
Appends the passed HTML fragment or elements to the content of all matched elements.

Parameters
content (String|Element|jQuery|Function) A string, element, wrapped set, or function

specifying the elements of the wrapped set. If a function, the function is invoked
for each wrapped element, setting that element as the function context, and
passing two parameters: the element index and the previous contents. The
function’s returned value is used as the content.

Returns
The wrapped set.
Download from Library of Wow! eBook <www.wowebook.com>

80 CHAPTER 3 Bringing pages to life with jQuery

Sometimes, we might wish to place elements somewhere other than at the beginning
or end of an element’s content. jQuery allows us to place new or existing elements
anywhere in the DOM by identifying a target element that the source elements are to
be placed before, or are to be placed after.

 Not surprisingly, the methods are named before() and after(). Their syntax
should seem familiar by now.

Method syntax: prepend

prepend(content)
Prepends the passed HTML fragment or elements to the content of all matched elements.

Parameters
content (String|Element|jQuery|Function) A string, element, wrapped set, or function

specifying the content to append to the elements of the wrapped set. If a function,
the function is invoked for each wrapped element, setting that element as the
function context, and passing two parameters: the element index and the previous
contents. The function’s returned value is used as the content.

Returns
The wrapped set.

Method syntax: before

before(content)
Inserts the passed HTML fragment or elements into the DOM as a sibling of the target elements,
positioned before the targets. The target wrapped elements must already be part of the DOM.

Parameters
content (String|Element|jQuery|Function) A string, element, wrapped set, or function

specifying the content to insert into the DOM before the elements of the wrapped
set. If a function, the function is invoked for each wrapped element, passing that
element as the function context. The function’s returned value is used as the
content.

Returns
The wrapped set.

Method syntax: after

after(content)
Inserts the passed HTML fragment or elements into the DOM as a sibling of the target elements
positioned after the targets. The target wrapped elements must already be part of the DOM.

Parameters
content (String|Element|jQuery|Function) A string, element, wrapped set, or function

specifying the content to insert into the DOM after the elements of the wrapped
set. If a function, the function is invoked for each wrapped element, passing that
element as the function context. The function’s returned value is used as the
content.

Returns
The wrapped set.
Download from Library of Wow! eBook <www.wowebook.com>

81Setting element content
These operations are key to manipulating the DOM effectively in our pages, so a Move
and Copy Lab Page has been provided so that we can play around with these opera-
tions until they’re thoroughly understood. This lab is available at chapter3/
move.and.copy.lab.html, and its initial display is as shown in figure 3.4.

 The left pane of this Lab contains three images that can serve as sources for our
move/copy experiments. Select one or more of the images by checking their corre-
sponding checkboxes.

Figure 3.4 The Move and Copy Lab Page will let us inspect the operation of the DOM
manipulation methods.
Download from Library of Wow! eBook <www.wowebook.com>

82 CHAPTER 3 Bringing pages to life with jQuery
 Targets for the move/copy operations are in the right pane and are also selected
via checkboxes. Controls at the bottom of the pane allow us to select one of the four
operations to apply: append, prepend, before, or after. (Ignore “clone” for now; we’ll
attend to that later.)

 The Execute button causes any source images you have selected to be applied to a
wrapped set of the selected set of targets using the specified operation. After execu-
tion, the Execute button is replaced with a Restore button that we’ll use to put every-
thing back into place so we can run another experiment.

 Let’s run an “append” experiment.
 Select the dog image, and then select Target 2. Leaving the append operation

selected, click Execute. The display in figure 3.5 results.
 Use the Move and Copy Lab to try various combinations of sources, targets, and

the four operations until you have a good feel for how they operate.

Figure 3.5 Cozmo has been added to the end of Target 2 as a result of the append operation.
Download from Library of Wow! eBook <www.wowebook.com>

83Setting element content
 Sometimes, it might make the code more readable if we could reverse the order of
the elements passed to these operations. If we want to move or copy an element from
one place to another, another approach would be to wrap the source elements (rather
than the target elements), and to specify the targets in the parameters of the method.
Well, jQuery lets us do that too by providing analogous operations to the four that we
just examined, reversing the order in which sources and targets are specified. They
are appendTo(), prependTo(), insertBefore(), and insertAfter(), and their syntax
is as follows:

Method syntax: appendTo

appendTo(targets)
Adds all elements in the wrapped set to the end of the content of the specified target(s).

Parameters
targets (String|Element) A string containing a jQuery selector or a DOM element. Each

element of the wrapped set will be appended to the content of each target
element.

Returns
The wrapped set.

Method syntax: prependTo

prependTo(targets)
Adds all elements in the wrapped set to the beginning of the content of the specified target(s).

Parameters

targets (String|Element) A string containing a jQuery selector or a DOM element. Each
element of the wrapped set will be prepended to the content of each target
element.

Returns
The wrapped set.

Method syntax: insertBefore

insertBefore(targets)

Adds all elements in the wrapped set to the DOM just prior to the specified target(s).

Parameters
targets (String|Element) A string containing a jQuery selector or a DOM element. Each

element of the wrapped set will be added before each target element.

Returns
The wrapped set.
Download from Library of Wow! eBook <www.wowebook.com>

84 CHAPTER 3 Bringing pages to life with jQuery

There’s one more thing we need to address before we move on ...
 Remember back in the previous chapter when we looked at how to create new

HTML fragments with the jQuery $() wrapper function? Well, that becomes a really
useful trick when paired with the appendTo(), prependTo(), insertBefore(), and
insertAfter() methods. Consider the following:

$('<p>Hi there!</p>').insertAfter('p img');

This statement creates a friendly paragraph and inserts a copy of it after every image
element within a paragraph element. This is an idiom that we’ve already seen in list-
ing 2.1 and that we’ll use again and again on our pages.

 Sometimes, rather than inserting elements into other elements, we want to do the
opposite. Let’s see what jQuery offers for that.

3.3.3 Wrapping and unwrapping elements

Another type of DOM manipulation that we’ll often need to perform is to wrap an ele-
ment (or series of elements) in some markup. For example, we might want to wrap all
links of a certain class inside a <div>. We can accomplish such DOM modifications by
using jQuery’s wrap() method. Its syntax is as follows:

To wrap each link with the class surprise in a <div> with the class hello, we could
write

$("a.surprise").wrap("<div class='hello'></div>")

If we wanted to wrap the link in a clone of the first <div> element on the page, we
could write

Method syntax: insertAfter

insertAfter (targets)
Adds all elements in the wrapped set to the DOM just after the specified target(s).

Parameters
targets (String|Element) A string containing a jQuery selector or a DOM element. Each

element of the wrapped set will be added after each target element.

Returns
The wrapped set.

Method syntax: wrap

wrap(wrapper)
Wraps the elements of the matched set with the passed HTML tags or a clone of the passed
element.

Parameters
wrapper (String|Element) A string containing the opening and closing tags of the element

with which to wrap each element of the matched set, or an element to be cloned
and serve as the wrapper.

Returns
The wrapped set.
Download from Library of Wow! eBook <www.wowebook.com>

85Setting element content
$("a.surprise").wrap($("div:first")[0]);

When multiple elements are collected in a matched set, the wrap() method operates
on each one individually. If we’d rather wrap all the elements in the set as a unit, we
can use the wrapAll() method instead:

Sometimes we may not want to wrap the elements that are in a matched set, but rather
their contents. For just such cases, the wrapInner() method is available:

The converse operation, removing the parent of a child element, is also possible with
the unwrap() method: :

Now that we know how to create, wrap, unwrap, copy, and move elements, we may
wonder how we make them go away.

Method syntax: wrapAll

wrapAll(wrapper)
Wraps the elements of the matched set, as a unit, with the passed HTML tags or a clone of the
passed element.

Parameters
wrapper (String|Element) A string containing the opening and closing tags of the element

with which to wrap each element of the matched set, or an element to be cloned
and serve as the wrapper.

Returns
The wrapped set.

Method syntax: wrapInner

wrapInner(wrapper)
Wraps the contents, to include text nodes of the elements in the matched set with the passed
HTML tags or a clone of the passed element.

Parameters
wrapper (String|Element) A string containing the opening and closing tags of the element

with which to wrap each element of the matched set, or an element to be cloned
and serve as the wrapper.

Returns
The wrapped set.

Method syntax: unwrap

unwrap()
Removes the parent element of the wrapped elements. The child element, along with any siblings,
replaces the parent element in the DOM.

Parameters
none

Returns
The wrapped set.
Download from Library of Wow! eBook <www.wowebook.com>

86 CHAPTER 3 Bringing pages to life with jQuery
3.3.4 Removing elements

Just as important as the ability to add, move, or copy elements in the DOM is the ability
to remove elements that are no longer needed.

 If we want to empty or remove a set of elements, this can be accomplished with the
remove() method, whose syntax is as follows:

Note that, as with many other jQuery methods, the wrapped set is returned as the
result of this method. The elements that were removed from the DOM are still refer-
enced by this set (and hence not yet eligible for garbage collection) and can be fur-
ther operated upon using other jQuery methods, including the likes of appendTo(),
prependTo(), insertBefore(), insertAfter(), and any other similar behaviors
we’d like.

 Note, however, that any jQuery data or events that were bound to the elements are
removed when the elements are removed from the DOM using remove(). A similar
method, detach(), also removes the elements from the DOM, but retains any bound
events and data.

The detach() method is the preferred means of removing an element that we’ll want
to put back into the DOM at a later time with its events and data intact.

 To completely empty DOM elements of their contents, we can use the empty()
method. Its syntax is as follows:

Method syntax: remove

remove(selector)
Removes all elements in the wrapped set from the page DOM.

Parameters
selector (String) An optional selector that further filters which elements of the wrapped set

are to be removed.

Returns
The wrapped set.

Method syntax: detach

detach(selector)
Removes all elements in the wrapped set from the page DOM, retaining any bound events and
jQuery data.

Parameters
selector (Selector) An optional selector string that further filters which elements of the

wrapped set are to be detached.

Returns
The wrapped set.
Download from Library of Wow! eBook <www.wowebook.com>

87Setting element content

Sometimes, we don’t want to move elements, but to copy them ...

3.3.5 Cloning elements

One more way that we can manipulate the DOM is to make copies of elements to
attach elsewhere in the tree. jQuery provides a handy wrapper method for doing so
with its clone() method.

Making a copy of existing elements with clone() isn’t useful unless we do something
with the carbon copies. Generally, once the wrapped set containing the clones is gen-
erated, another jQuery method is applied to stick them somewhere in the DOM. For
example,

$('img').clone().appendTo('fieldset.photo');

This statement makes copies of all image elements and appends them to all <field-
set> elements with the class name photo.

 A slightly more complex example is as follows:

$('ul').clone().insertBefore('#here');

This method chain performs a similar operation, but the targets of the cloning opera-
tion—all elements—are copied, including their children (it’s likely that any
element will have a number of children).

 One last example:

$('ul').clone().insertBefore('#here').end().hide();

Method syntax: empty

empty()
Removes the content of all DOM elements in the matched set.

Parameters
none

Returns
The wrapped set.

Method syntax: clone

clone(copyHandlers)
Creates copies of the elements in the wrapped set and returns a new wrapped set that contains
them. The elements and any children are copied. Event handlers are optionally copied depending
upon the setting of the copyHandlers parameter.

Parameters
copyHandlers (Boolean) If true, event handlers are copied. If false or omitted, handlers

aren’t copied.

Returns
The newly created wrapped set.
Download from Library of Wow! eBook <www.wowebook.com>

88 CHAPTER 3 Bringing pages to life with jQuery
This statement performs the same operation as the previous example, but after the
insertion of the clones, the end() method is used to select the original wrapped set
(the original targets) and hide them. This emphasizes how the cloning operation cre-
ates a new set of elements in a new wrapper.

 In order to see the clone operation in action, return to the Move and Copy Lab
Page. Just above the Execute button is a pair of radio buttons that allow us to specify a
cloning operation as part of the main DOM manipulation operation. When the yes
radio button is selected, the sources are cloned before the append, prepend, before,
or after methods are executed.

 Repeat some of the experiments you conducted earlier with cloning enabled, and
note how the original sources are unaffected by the operations.

 We can insert, we can remove, and we can copy. Using these operations in combi-
nation, it’d be easy to concoct higher-level operations such as replace. But guess what?
We don’t need to!

3.3.6 Replacing elements

For those times when we want to replace existing elements with new ones, or to move
an existing element to replace another, jQuery provides the replaceWith() method.

Let’s say that, under particular circumstances, we want to replace all images on the
page that have alt attributes with elements that contain the alt values of the
images. Employing each() and replaceWith() we could do it like this:

$('img[alt]').each(function(){
 $(this).replaceWith(''+ $(this).attr('alt') +'')
});

The each() method lets us iterate over each matching element, and replaceWith() is
used to replace the images with generated elements.

 The replaceWith() method returns a jQuery wrapped set containing the elements
that were removed from the DOM, in case we want to do something other than just dis-
card them. As an exercise, consider how would you augment the example code to
reattach these elements elsewhere in the DOM after their removal.

Method syntax: replaceWith

replaceWith(content)
Replaces each matched element with the specific content.

Parameters
content (String|Element|Function) A string containing an HTML fragment to become the

replaced content, or an element reference to be moved to replace the existing
elements. If a function, the function is invoked for each wrapped element, setting
that element as the function context and passing no parameters. The function’s
returned value is used as the new content.

Returns
A jQuery wrapped set containing the replaced elements.
Download from Library of Wow! eBook <www.wowebook.com>

89Dealing with form element values
 When an existing element is passed to replaceWith(), it’s detached from its origi-
nal location in the DOM and reattached to replace the target elements. If there are
multiple such targets, the original element is cloned as many times as needed.

 At times, it may be convenient to reverse the order of the elements as specified by
replaceWith() so that the replacing element can be specified using the matching
selector. We’ve already seen such complementary methods, such as append() and
appendTo(), that let us specify the elements in the order that makes the most sense for
our code.

 Similarly, the replaceAll() method mirrors replaceWith(), allowing us to per-
form a similar operation, but with the order of specification reversed.

As with replaceWith(), replaceAll() returns a jQuery wrapped set. But this set con-
tains not the replaced elements, but the replacing elements. The replaced elements are
lost and can’t be further operated upon. Keep this in mind when deciding which
replace method to employ.

 Now that we’ve discussed handling general DOM elements, let’s take a brief look at
handling a special type of element: the form elements.

3.4 Dealing with form element values
Because form elements have special
properties, jQuery’s core contains a num-
ber of convenience functions for activi-
ties such as

Getting and setting their values
Serializing them
Selecting elements based on form-
specific properties

These functions will serve us well in most
cases, but the Form Plugin—an officially
sanctioned plugin developed by members
of the jQuery Core Team—provides even
more form-related functionality. Learn
more about this plugin at http://
jquery.malsup.com/form/.

Method syntax: replaceAll

replaceAll(selector)
Replaces each element matched by the passed selector with the content of the matched set to
which this method is applied.

Parameters
selector (Selector) A selector string expression identifying the elements to be replaced.

Returns
A jQuery wrapped set containing the inserted elements.

So what’s a form element?
When we use the term form element,
we’re referring to the elements that
can appear within a form, possess
name and value attributes, and
whose values are sent to the server
as HTTP request parameters when
the form is submitted. Dealing with
such elements by hand in script can
be tricky because, not only can ele-
ments be disabled, but the W3C
defines an unsuccessful state for
controls. This state determines
which elements should be ignored
during a submission, and it’s a tad
on the complicated side.
Download from Library of Wow! eBook <www.wowebook.com>

http://jquery.malsup.com/form/
http://jquery.malsup.com/form/

90 CHAPTER 3 Bringing pages to life with jQuery
 That said, let’s take a look at one of the most common operations we’ll want to per-
form on a form element: getting access to its value. jQuery’s val() method takes care
of the most common cases, returning the value attribute of a form element for the
first element in the wrapped set. Its syntax is as follows:

This method, although quite useful, has a number of limitations of which we need to
be wary. If the first element in the wrapped set isn’t a form element, an empty string is
returned, which isn’t the most intuitive value that could have been chosen (undefined
would probably have been clearer). This method also doesn’t distinguish between the
checked or unchecked states of checkboxes and radio buttons, and will simply return
the value of checkboxes or radio buttons as defined by their value attribute, regard-
less of whether they’re checked or not.

 For radio buttons, the power of jQuery selectors combined with the val() method
saves the day, as we’ve already seen in the first example in this book. Consider a form
with a radio group (a set of radio buttons with the same name) named radioGroup
and the following expression:

$('[name="radioGroup"]:checked').val()

This expression returns the value of the single checked radio button (or undefined if
none is checked). That’s a lot easier than looping through the buttons looking for the
checked element, isn’t it?

 Because val() only considers the first element in a wrapped set, it’s not as useful
for checkbox groups where more than one control might be checked. But jQuery
rarely leaves us without recourse. Consider the following:

var checkboxValues = $('[name="checkboxGroup"]:checked').map(
 function(){ return $(this).val(); }
).toArray();

Even though we haven’t formally covered extending jQuery (that’s still four chapters
away), you’ve probably seen enough examples to give it a go. See if you can refactor
the preceding code into a jQuery wrapper method that returns an array of any
checked checkboxes in the wrapped set.

 Although the val() method is great for obtaining the value of any single form con-
trol element, if we want to obtain the complete set of values that would be submitted

Method syntax: val

val()
Returns the value attribute of the first element in the matched set. When the element is a multi-
select element, the returned value is an array of all selections.

Parameters
none

Returns
The fetched value or values.
Download from Library of Wow! eBook <www.wowebook.com>

91Dealing with form element values
through a form submission, we’ll be much better off using the serialize() or seri-
alizeArray() methods (which we’ll see in chapter 8) or the official Form Plugin.

 Another common operation we’ll perform is to set the value of a form element.
The val() method is also used bilaterally for this purpose by supplying a value. Its syn-
tax is as follows:

Another way that the val() method can be used is to cause checkbox or radio ele-
ments to become checked, or to select options within a <select> element. The syntax
of this variant of val() is as follows:

Consider the following statement:

$('input,select').val(['one','two','three']);

This statement will search all the <input> and <select> elements on the page for val-
ues that match any of the input strings: one, two, or three. Any checkboxes or radio but-
tons that are found to match will become checked, and any options that match will
become selected.

 This makes val() useful for much more than just the text-based form elements.

Method syntax: val

val(value)
Sets the passed value as the value of all matched form elements.

Parameters
value (String|Function) Specifies the value that is to be set as the value property of

each form element in the wrapped set. If a function, the function is invoked for
each element in the wrapped set, with that element passed as the function
context, and two parameters: the element index and the current value of the
element. The value returned from the function is taken as the value to be set.

Returns
The wrapped set.

Method syntax: val

val(values)
Causes any checkboxes, radio buttons, or options of <select> elements in the wrapped set to
become checked or selected if their value properties match any of the values passed in the
values array.

Parameters
values (Array) An array of values that will be used to determine which elements are to be

checked or selected.

Returns
The wrapped set.
Download from Library of Wow! eBook <www.wowebook.com>

92 CHAPTER 3 Bringing pages to life with jQuery
3.5 Summary
In this chapter, we’ve gone beyond the art of selecting elements and started manipu-
lating them. With the techniques we’ve learned so far, we can select elements using
powerful criteria, and then move them surgically to any part of the page.

 We can choose to copy elements, or to move them, replace them, or even create
brand new elements from scratch. We can append, prepend, or wrap any element or
set of elements on the page. And we’ve learned how to manage the values of form ele-
ments, all leading to powerful yet succinct logic.

 With that behind us, we’re ready to start looking into more advanced concepts,
starting with the typically messy job of handling events in our pages.
Download from Library of Wow! eBook <www.wowebook.com>

Events are
where it happens!
Anyone familiar with the Broadway show Cabaret, or its subsequent Hollywood film,
probably remembers the song “Money Makes the World Go Around.” Although this
cynical view might be applicable to the physical world, in the virtual realm of the
World Wide Web, it’s events that make it all happen!

 Like many other GUI management systems, the interfaces presented by HTML
web pages are asynchronous and event-driven (even if the HTTP protocol used to
deliver them to the browser is wholly synchronous in nature). Whether a GUI is
implemented as a desktop program using Java Swing, X11, or the .NET Framework,

This chapter covers
The event models as implemented by the browsers

The jQuery Event Model

Binding event handlers to DOM elements

The Event object instance

Triggering event handlers under script control

Registering proactive event handlers
93

Download from Library of Wow! eBook <www.wowebook.com>

94 CHAPTER 4 Events are where it happens!
or as a page in a web application using HTML and JavaScript, the program steps are
pretty much the same:

1 Set up the user interface.
2 Wait for something interesting to happen.
3 React accordingly.
4 Go to 2.

The first step sets up the display of the user interface; the others define its behavior. In
web pages, the browser handles the setup of the display in response to the markup
(HTML and CSS) that we send to it. The script we include in the page defines the
behavior of the interface.

 This script takes the form of event handlers, also known as listeners, that react to the
various events that occur while the page is displayed. These events could be generated
by the system (timers or the completion of asynchronous requests, for example) but
are most often the result of some user activity (such as moving or clicking the mouse,
entering text via the keyboard, or even iPhone gestures). Without the ability to react
to these events, the World Wide Web’s greatest use might be limited to showing pic-
tures of kittens.

 Although HTML itself does define a small set of built-in semantic actions that
require no scripting on our part (such as reloading pages as the result of clicking an
anchor tag or submitting a form via a submit button), any other behaviors that we
wish our pages to exhibit require us to handle the various events that occur as our
users interact with those pages.

 In this chapter, we’ll examine the various ways that browsers expose these events,
how they allow us to establish handlers to control what happens when these events
occur, and the challenges that we face due to the multitude of differences between the
browser event models. Then we’ll see how jQuery cuts through the browser-induced
fog to relieve us of these burdens.

 Let’s start off by examining how browsers expose their event models.

JavaScript you need to know!
One of the great benefits that jQuery brings to web applications is the ability to imple-
ment a great deal of scripting-enabled behavior without having to write a whole lot of
script ourselves. jQuery handles the nuts-and-bolts details so that we can concen-
trate on the job of making our applications do what they need to do!

Up to this point, the ride has been pretty painless. You only needed rudimentary
JavaScript skills to code and understand the jQuery examples we introduced in the
previous chapters. In this chapter and the chapters that follow, you must understand
a handful of important fundamental JavaScript concepts to make effective use of the
jQuery library.
Download from Library of Wow! eBook <www.wowebook.com>

95Understanding the browser event models

4.1 Understanding the browser event models
Long before anyone considered standardizing how browsers would handle events,
Netscape Communications Corporation introduced an event-handling model in its
Netscape Navigator browser; all modern browsers still support this model, which is
probably the best understood and most employed by the majority of page authors.

 This model is known by a few names. You may have heard it termed the Netscape
Event Model, the Basic Event Model, or even the rather vague Browser Event Model,
but most people have come to call it the DOM Level 0 Event Model.

NOTE The term DOM level is used to indicate what level of requirements an
implementation of the W3C DOM specification meets. There isn’t a DOM
Level 0, but that term is used to informally describe what was implemented
prior to DOM Level 1.

The W3C didn’t create a standardized model for event handling until DOM Level 2,
introduced in November 2000. This model enjoys support from all modern standards-
compliant browsers such as Firefox, Camino (as well as other Mozilla browsers), Safari,
and Opera. Internet Explorer continues to go its own way and supports a subset of the
functionality in the DOM Level 2 Event Model, albeit using a proprietary interface.

 Before we see how jQuery makes that irritating fact a non-issue, let’s spend some
time getting to know how the various event models operate.

4.1.1 The DOM Level 0 Event Model

The DOM Level 0 Event Model is the event model that most web developers employ on
their pages. In addition to being somewhat browser-independent, it’s fairly easy to use.

 Under this event model, event handlers are declared by assigning a reference to a
function instance to properties of the DOM elements. These properties are defined to
handle a specific event type; for example, a click event is handled by assigning a func-
tion to the onclick property, and a mouseover event by assigning a function to the
onmouseover property of elements that support these event types.

continued
Depending on your background, you may already be familiar with these concepts, but
some page authors may have been able to get pretty far without a firm grasp of these
concepts—the very flexibility of JavaScript makes such a situation possible. Before
we proceed, it’s time to make sure that you’ve wrapped your head around these core
concepts.

If you’re already comfortable with the workings of the JavaScript Object and Func-
tion classes, and have a good handle on concepts like function contexts and clo-
sures, you may want to continue reading this and the upcoming chapters. If these
concepts are unfamiliar or hazy, we strongly urge you to turn to the appendix to help
you get up to speed on these necessary concepts.
Download from Library of Wow! eBook <www.wowebook.com>

96 CHAPTER 4 Events are where it happens!
 The browsers allow us to specify the body of an event handler function as attribute
values embedded within the HTML markup of the DOM elements, providing a short-
hand for creating event handlers. An example of defining such handlers is shown in
listing 4.1. This page can be found in the downloadable code for this book in the file
chapter4/dom.0.events.html.

<!DOCTYPE html>
<html>
 <head>
 <title>DOM Level 0 Events Example</title>
 <link rel="stylesheet" type="text/css" href="../styles/core.css"/>
 <script type="text/javascript" src="../scripts/jquery-1.4.min.js"></

script>
 <script type="text/javascript" src="../scripts/jqia2.support.js"></

script>
 <script type="text/javascript">
 $(function(){
 $('#example')[0].onmouseover = function(event) {
 say('Crackle!');
 };
 });
 </script>
 </head>

 <body>
 <img id="example" src="example.jpg"
 onclick="say('BOOM!');"
 alt="ooooh! ahhhh!"/>
 </body>
</html>

In this example, we employ both styles of event handler declaration: declaring under
script control and declaring in a markup attribute.

 The page first declares a ready handler in which a reference to the image element
with the id of example is obtained (using jQuery), and its onmouseover property is set
to an inline function B. This function becomes the event handler for the element
when a mouseover event is triggered on it. Note that this function expects a single
parameter to be passed to it. We’ll learn more about this parameter shortly.

 Within this function, we employ the services of a small utility function, say() C,
that we use to emit text messages to a dynamically created <div> element on the page
that we’ll call the “console.” This function is declared within the imported support
script file (jqia2.support.js), and will save us the trouble of using annoying and disrup-
tive alerts to indicate when things happen on our page. We’ll be using this handy func-
tion in many of the examples throughout the remainder of the book.

 In the body of the page, we define an element upon which we’re defining
the event handlers. We’ve already seen how to define a handler under script control
in the ready handler B, but here we declare a handler for a click event using the
onclick attribute D of the element.

Listing 4.1 Declaring DOM Level 0 event handlers

Defines the
mouseover
handler

B

Emits text to
“console”C

Instruments

element

D

Download from Library of Wow! eBook <www.wowebook.com>

97Understanding the browser event models
NOTE Obviously we’ve thrown the concept of Unobtrusive JavaScript out the
kitchen window for this example. Long before we reach the end of this chap-
ter, we’ll see why we won’t need to embed event behavior in the DOM markup
anymore!

Loading this page into a browser (found in the file chapter4/dom.0.events.html),
waving the mouse pointer over the image a few times, and then clicking the image,
results in a display similar to that shown in figure 4.1.

 We declared the click event handler in the element markup using the fol-
lowing attribute:

onclick="say('BOOM!');"

This might lead us to believe that the say() function becomes the click event handler
for the element, but that’s not really the case. When handlers are declared via HTML
markup attributes, an anonymous function is automatically created using the value of
the attribute as the function body. Assuming that imageElement is a reference to the
image element, the construct created as a result of the attribute declaration is equiva-
lent to the following:

imageElement.onclick = function(event) {
 say('BOOM!');
};

Note how the value of the attribute is used as the body of the generated function, and
note that the function is created so that the event parameter is available within the
generated function.

 Before we move on to examining what that event parameter is all about, we should
note that using the attribute mechanism of declaring DOM Level 0 event handlers vio-
lates the precepts of Unobtrusive JavaScript that we explored in chapter 1. When
using jQuery in our pages, we should adhere to the principles of Unobtrusive

Figure 4.1 Waving the mouse over the
image and clicking it results in the event
handlers firing and emitting their
messages to the console.
Download from Library of Wow! eBook <www.wowebook.com>

98 CHAPTER 4 Events are where it happens!
JavaScript and avoid mixing behavior defined by JavaScript with display markup. We’ll
shortly see that jQuery provides a much better way to declare event handlers than
either of these means.

 But first, let’s examine what that event parameter is all about.

THE EVENT INSTANCE

When an event handler is fired, an instance of a class named Event is passed to the
handler as its first parameter in most browsers. Internet Explorer, always the life of the
party, does things in its own proprietary way by tacking the Event instance onto a
global property (in other words, a property on window) named event.

 In order to deal with this discrepancy, we’ll often see the following used as the first
statement in a non-jQuery event handler:

if (!event) event = window.event;

This levels the playing field by using feature detection (a concept we’ll explore in
greater depth in chapter 6) to check if the event parameter is undefined (or null)
and assigning the value of the window’s event property to it if so. After this state-
ment, the event parameter can be referenced regardless of how it was made available
to the handler.

 The properties of the Event instance provide a great deal of information regard-
ing the event that has been fired and is currently being handled. This includes details
such as which element the event was triggered on, the coordinates of mouse events,
and which key was clicked for keyboard events.

 But not so fast. Not only does Internet Explorer use a proprietary means to get the
Event instance to the handler, but it also uses a proprietary definition of the Event
class in place of the W3C-defined standard—we’re not out of the object-detection
woods yet.

 For example, to get a reference to the target element—the element on which the
event was triggered—we access the target property in standards-compliant browsers
and the srcElement property in Internet Explorer. We deal with this inconsistency by
employing feature detection with a statement such as the following:

var target = (event.target) ? event.target : event.srcElement;

This statement tests whether event.target is defined and, if so, assigns its value to the
local target variable; otherwise, it assigns event.srcElement. We’ll be required to
take similar steps for other Event properties of interest.

 Up until this point, we’ve acted as if event handlers are only pertinent to the ele-
ments that serve as the trigger to an event—the image element of listing 4.1, for exam-
ple—but events propagate throughout the DOM tree. Let’s find out about that.

EVENT BUBBLING

When an event is triggered on an element in the DOM tree, the event-handling mech-
anism of the browser checks to see if a handler has been established for that particular
event on that element and, if so, invokes it. But that’s hardly the end of the story.
Download from Library of Wow! eBook <www.wowebook.com>

99Understanding the browser event models
 After the target element has had its chance to handle the event, the event model
checks with the parent of that element to see if it has established a handler for the
event type, and if so, it’s also invoked—after which its parent is checked, then its par-
ent, then its parent, and on and on, all the way up to the top of the DOM tree. Because
the event handling propagates upward like the bubbles in a champagne flute (assum-
ing we view the DOM tree with its root at the top), this process is termed event bubbling.

 Let’s modify the example from listing 4.1 so that we can see this process in action.
Consider the code in listing 4.2.

<!DOCTYPE html>
<html id="greatgreatgrandpa">
 <head>
 <title>DOM Level 0 Bubbling Example</title>
 <link rel="stylesheet" type="text/css" href="../styles/core.css"/>
 <script type="text/javascript" src="../scripts/jquery-1.4.js"></script>
 <script type="text/javascript" src="../scripts/jqia2.support.js"></

script>
 <script type="text/javascript">
 $(function(){
 $('*').each(function(){
 var current = this;
 this.onclick = function(event) {
 if (!event) event = window.event;
 var target = (event.target) ?
 event.target : event.srcElement;
 say('For ' + current.tagName + '#'+ current.id +
 ' target is ' +
 target.tagName + '#' + target.id);
 };
 });
 });
 </script>
 </head>

 <body id="greatgrandpa">
 <div id="grandpa">
 <div id="pops">

 </div>
 </div>
 </body>
</html>

We do a lot of interesting things in the changes to this example. First, we remove the
previous handling of the mouseover event so that we can concentrate on the click
event. We also embed the image element that will serve as the target for our event
experiment in a couple of nested <div> elements, merely to place the image element
artificially deeper within the DOM hierarchy. We also give almost every element in the
page a specific and unique id—even the <body> and <html> tags!

 Now let’s look at even more interesting changes.

Listing 4.2 Events propagate from the point of origin to the top of the DOM

Selects every
element on the page

B

Applies onclick handler to
every selected elementC
Download from Library of Wow! eBook <www.wowebook.com>

100 CHAPTER 4 Events are where it happens!
 In the ready handler for the page, we use jQuery to select all elements on the page
and to iterate over each one with the each() method B. For each matched element,
we record its instance in the local variable current and establish an onclick handler
C. This handler first employs the browser-dependent tricks that we discussed in the
previous section to locate the Event instance and identify the event target, and then
emits a console message. This message is the most interesting part of this example.

 It displays the tag name and id of the current element, putting closures to work
(please read the section on closures in the appendix if closures are a subject that gives
you heartburn), followed by the id of the target. By doing so, each message that’s
logged to the console displays the information about the current element of the bub-
ble process, as well as the target element that started the whole shebang.

 Loading the page (located in the file chapter4/dom.0.propagation.html) and
clicking the image results in the display of figure 4.2.

 This clearly illustrates that, when the event is fired, it’s delivered first to the tar-
get element and then to each of its ancestors in turn, all the way up to the root <html>
element.

 This is a powerful ability because it allows us to establish handlers on elements at
any level to handle events occurring on its descendents. Consider a handler on a
<form> element that reacts to any change event on its child elements to effect
dynamic changes to the display based upon the elements’ new values.

 But what if we don’t want the event to propagate? Can we stop it?

AFFECTING EVENT PROPAGATION AND SEMANTIC ACTIONS

There may be occasions when we want to prevent an event from bubbling any further
up the DOM tree. This might be because we’re fastidious and we know that we’ve
already accomplished any processing necessary to handle the event, or we may want to
forestall unwanted handling that might occur higher up in the chain.

Figure 4.2 The console
messages clearly show the
propagation of the event as
it bubbles up the DOM tree
from the target element to
the tree root.
Download from Library of Wow! eBook <www.wowebook.com>

101Understanding the browser event models
 Regardless of the reason, we can prevent an event from propagating any higher via
mechanisms provided on the Event instance. For standards-compliant browsers, we
call the stopPropagation() method of the Event instance to halt the propagation of
the event further up the ancestor hierarchy. In Internet Explorer, we set a property
named cancelBubble to true in the Event instance. Interestingly, many modern stan-
dards-compliant browsers support the cancelBubble mechanism even though it’s not
part of any W3C standard.

 Some events have default semantics associated with them. As examples, a click
event on an anchor element will cause the browser to navigate to the element’s href,
and a submit event on a <form> element will cause the form to be submitted. Should
we wish to cancel these semantic actions—sometimes termed the default actions—of
the event, we simply return the value false from the event handler.

 A frequent use for such an action is in the realm of form validation. In the handler
for the form’s submit event, we can make validation checks on the form’s controls and
return false if any problems with the data entry are detected.

 You may also have seen the following on <form> elements:

<form name="myForm" onsubmit="return false;" ...

This effectively prevents the form from being submitted in any circumstances except
under script control (via form.submit(), which doesn’t trigger a submit event)—a
common trick used in many Ajax applications where asynchronous requests will be
made in lieu of form submissions.

 Under the DOM Level 0 Event Model, almost every step we take in an event han-
dler involves using browser-specific detection in order to figure out what action to
take. What a headache! But don’t put away the aspirin yet—it doesn’t get any easier
when we consider the more advanced event model.

4.1.2 The DOM Level 2 Event Model

One severe shortcoming of the DOM Level 0 Event Model is that, because a property is
used to store a reference to a function that’s to serve as an event handler, only one
event handler per element can be registered for any specific event type at a time. If we
have two things that we want to do when an element is clicked, the following state-
ments aren’t going to let that happen:

someElement.onclick = doFirstThing;
someElement.onclick = doSecondThing;

Because the second assignment replaces the previous value of the onclick property,
only doSecondThing is invoked when the event is triggered. Sure, we could wrap both
functions in another single function that calls both, but as pages get more compli-
cated, as is quite likely in highly interactive applications, it becomes increasingly diffi-
cult to keep track of such things. Moreover, if we use multiple reusable components or
libraries in a page, they may have no idea of the event-handling needs of the other
components.
Download from Library of Wow! eBook <www.wowebook.com>

102 CHAPTER 4 Events are where it happens!
 We could employ other solutions: implementing the Observable pattern, which
establishes a publish/subscribe scheme for the handlers, or even tricks using closures.
But all of these add complexity to pages that are likely to already be complex enough.

 Besides the establishment of a standard event model, the DOM Level 2 Event Model
was designed to address these types of problems. Let’s see how event handlers, even
multiple handlers, are established on DOM elements under this more advanced model.

ESTABLISHING EVENT HANDLERS

Rather than assigning a function reference to an element property, DOM Level 2
event handlers—also termed listeners—are established via an element method. Each
DOM element defines a method named addEventListener() that’s used to attach
event handlers (listeners) to the element. The format of this method is as follows:

addEventListener(eventType,listener,useCapture)

The eventType parameter is a string that identifies the type of event to be handled.
These string values are, generally, the same event names we used in the DOM Level 0
Event Model without the on prefix: for example: click, mouseover, keydown, and so on.

 The listener parameter is a reference to the function (or an inline function)
that’s to be established as the handler for the named event type on the element. As
in the basic event model, the Event instance is passed to this function as its first
parameter.

 The final parameter, useCapture, is a Boolean whose operation we’ll explore in a
few moments, when we discuss event propagation in the Level 2 Model. For now, we’ll
leave it set to false.

 Let’s once again change the example from listing 4.1 to use the more advanced
event model. We’ll concentrate only on the click event type; this time, we’ll establish
three click event handlers on the image element. The new example code can be found
in the file chapter4/dom.2.events.html and is shown in listing 4.3.

<!DOCTYPE html>
<html>
 <head>
 <title>DOM Level 2 Events Example</title>
 <link rel="stylesheet" type="text/css" href="../styles/core.css"/>
 <script type="text/javascript" src="../scripts/jquery-1.4.js"></script>
 <script type="text/javascript" src="../scripts/jqia2.support.js"></

script>
 <script type="text/javascript">
 $(function(){
 var element = $('#example')[0];
 element.addEventListener('click',function(event) {
 say('BOOM once!');
 },false);
 element.addEventListener('click',function(event) {
 say('BOOM twice!');
 },false);

Listing 4.3 Establishing event handlers with the DOM Level 2 Event Model

Establishes three
event handlers!

B

Download from Library of Wow! eBook <www.wowebook.com>

103Understanding the browser event models
 element.addEventListener('click',function(event) {
 say('BOOM three times!');
 },false);
 });
 </script>
 </head>

 <body>

 </body>
</html>

This code is simple, but it clearly shows how we can establish multiple event handlers
on the same element for the same event type—something we were not able to do eas-
ily with the Basic Event Model. In the ready handler for the page B, we grab a refer-
ence to the image element and then establish three event handlers for the click event.

 Loading this page into a standards-compliant browser (not Internet Explorer) and
clicking the image results in the display shown in figure 4.3.

 Note that even though the handlers fire in the order in which they were estab-
lished, this order isn’t guaranteed by the standard! Testers of this code never observed an
order other than the order of establishment, but it would be foolish to write code that
relies on this order. Always be aware that multiple handlers established on an element
may fire in random order.

 Now, let’s find out what’s up with that useCapture parameter.

EVENT PROPAGATION

We saw earlier that, with the Basic Event Model, once an event was triggered on an ele-
ment the event propagated from the target element upwards in the DOM tree to all
the target’s ancestors. The advanced Level 2 Event Model also provides this bubbling
phase but ups the ante with an additional capture phase.

 Under the DOM Level 2 Event Model, when an event is triggered, the event first
propagates from the root of the DOM tree down to the target element and then

Figure 4.3 Clicking the image once
demonstrates that all three handlers
established for the click event are
triggered.
Download from Library of Wow! eBook <www.wowebook.com>

104 CHAPTER 4 Events are where it happens!
propagates again from the target element up to the DOM root. The former phase (root
to target) is called capture phase, and the latter (target to root) is called bubble phase.

 When a function is established as an event handler, it can be flagged as a capture
handler, in which case it will be triggered during capture phase, or as a bubble han-
dler, to be triggered during bubble phase. As you might have guessed by this time, the
useCapture parameter to addEventListener() identifies which type of handler is
established. A value of false for this parameter establishes a bubble handler, whereas
a value of true registers a capture handler.

 Think back a moment to the example of listing 4.2 where we explored the propa-
gation of the Basic Model events through a DOM hierarchy. In that example, we
embedded an image element within two layers of <div> elements. Within such a hier-
archy, the propagation of a click event with the element as its target would
move through the DOM tree as shown in figure 4.4.

 Let’s put that to the test, shall we? Listing 4.4 shows the code for a page containing
the element hierarchy of figure 4.4 (chapter4/dom.2.propagation.html).

<!DOCTYPE html>
<html id="greatgreatgrandpa">
 <head>
 <title>DOM Level 2 Propagation Example</title>
 <link rel="stylesheet" type="text/css" href="../styles/core.css"/>
 <script type="text/javascript" src="../scripts/jquery-1.4.js"></script>
 <script type="text/javascript" src="../scripts/jqia2.support.js"></

script>
 <script type="text/javascript">
 $(function(){
 $('*').each(function(){
 var current = this;
 this.addEventListener('click',function(event) {
 say('Capture for ' + current.tagName + '#'+ current.id +
 ' target is ' + event.target.id);
 },true);

Listing 4.4 Tracking event propagation with bubble and capture handlers

<html id=greatgreatgrandpa>

<body id=greatgrandpa>

<div id=grandpa>

<div id=pops>

Event
start

Event
end

C
a
p
t
u
r
e

B
u
b
b
l
e

target

Figure 4.4 Propagation in the DOM Level 2 Event Model traverses the DOM
hierarchy twice: once from top to target during capture phase and once from target
to top during bubble phase.

Establishes listeners
on all elementsB
Download from Library of Wow! eBook <www.wowebook.com>

105Understanding the browser event models
 this.addEventListener('click',function(event) {
 say('Bubble for ' + current.tagName + '#'+ current.id +
 ' target is ' + event.target.id);
 },false);
 });
 });
 </script>
 </head>

 <body id="greatgrandpa">
 <div id="grandpa">
 <div id="pops">

 </div>
 </div>
 <div id="console"></div>
 </body>
</html>

This code changes the example of listing 4.2 to use the DOM Level 2 Event Model API
to establish the event handlers. In the ready handler B, we use jQuery’s powerful abil-
ities to run through every element of the DOM tree. On each, we establish two han-
dlers: one capture handler and one bubble handler. Each handler emits a message to
the console identifying which type of handler it is, the current element, and the id of
the target element.

 With the page loaded into a standards-compliant browser, clicking the image
results in the display in figure 4.5, showing the progression of the event through the
handling phases and the DOM tree. Note that, because we defined both capture and
bubble handlers for the target, two handlers were executed for the target and all its
ancestor nodes.

Figure 4.5 Clicking the
image results in each
handler emitting a
console message that
identifies the path of the
event during both capture
and bubble phases.
Download from Library of Wow! eBook <www.wowebook.com>

106 CHAPTER 4 Events are where it happens!
 Well, now that we’ve gone through all the trouble to understand these two types of
handlers, we should know that capture handlers are hardly ever used in web pages.
The simple reason for that is that Internet Explorer doesn’t support the DOM Level 2
Event Model. Although it does have a proprietary model corresponding to the bubble
phase of the Level 2 standard, it doesn’t support any semblance of a capture phase.

 Before we look at how jQuery can help sort all this mess out, let’s briefly examine
the Internet Explorer Model.

4.1.3 The Internet Explorer Event Model

Internet Explorer (IE 6, IE 7, and, most disappointingly, even IE 8) doesn’t provide
support for the DOM Level 2 Event Model. These versions of Microsoft’s browser pro-
vide a proprietary interface that closely resembles the bubble phase of the standard
model.

 Rather than addEventListener(), the Internet Explorer Model defines a method
named attachEvent() for each DOM element. This method accepts two parameters
similar to those of the standard model:

attachEvent(eventName,handler)

The first parameter is a string that names the event type to be attached. The standard
event names aren’t used; the name of the corresponding element property from the
DOM Level 0 Model is used—“onclick”, “onmouseover”, “onkeydown”, and so on.

 The second parameter is the function to be established as the handler, and as in
the Basic Model, the Event instance must be fetched from the window.event property.

 What a mess! Even when using the relatively browser-independent DOM Level 0
Model, we’re faced with a tangle of browser-dependent choices to make at each
stage of event handling. And when using the more capable DOM Level 2 or Internet
Explorer Model, we even have to diverge our code when establishing the handlers
in the first place.

 Well, jQuery is going to make our lives simpler by hiding these browser disparities
from us as much as it possibly can. Let’s see how!

4.2 The jQuery Event Model
Although it’s true that the creation of highly interactive applications requires a hefty
reliance on event handling, the thought of writing event-handling code on a large
scale while dealing with the browser differences is enough to daunt even the most
intrepid of page authors.

 We could hide the differences behind an API that abstracts the differences away
from our page code, but why bother when jQuery has already done it for us?

 jQuery’s event model implementation, which we’ll refer to informally as the
jQuery Event Model, exhibits the following features:

Provides a unified method for establishing event handlers
Allows multiple handlers for each event type on each element
Download from Library of Wow! eBook <www.wowebook.com>

107The jQuery Event Model
Uses standard event-type names: for example, click or mouseover
Makes the Event instance available as a parameter to the handlers
Normalizes the Event instance for the most-often-used properties
Provides unified methods for event canceling and default action blocking

With the notable exception of support for a capture phase, the feature set of the
jQuery Event Model closely resembles that of the DOM Level 2 Event Model while sup-
porting both standards-compliant browsers and Internet Explorer with a single API.
The omission of the capture phase should not be an issue for the vast majority of page
authors who never use it (or even know it exists) due to its lack of support in IE.

 Is it really that simple? Let’s find out.

4.2.1 Binding event handlers with jQuery

Using the jQuery Event Model, we can establish event handlers on DOM elements with
the bind() method. Consider the following simple example:

$('img').bind('click',function(event){alert('Hi there!');});

This statement binds the supplied inline function as the click event handler for every
image on a page. The full syntax of the bind() method is as follows:

Let’s put bind() into action. Taking the example of listing 4.3 and converting it from
the DOM Level 2 Event Model to the jQuery Event Model, we end up with the code
shown in listing 4.5 and found in the file chapter4/jquery.events.html.

Method syntax: bind

bind(eventType,data,handler)
bind(eventMap)
Establishes a function as the event handler for the specified event type on all elements in the
matched set.

Parameters
eventType (String) Specifies the name of the event type or types for which the handler is to

be established. Multiple event types can be specified as a space-separated
list.
These event types can be namespaced with a suffix affixed to the event name
with a period character. See the remainder of this section for details.

data (Object) Caller-supplied data that’s attached to the Event instance as a
property named data and made available to the handler function. If omitted,
the handler function can be specified as the second parameter.

handler (Function) The function that’s to be established as the event handler. When
invoked, it will be passed the Event instance, and its function context (this) is
set to the current element of the bubble phase.

eventMap (Object) A JavaScript object that allows handlers for multiple event types to be
established in a single call. The property names identify the event type (same
as would be used for the eventType parameter), and the property value
provides the handler.

Returns
The wrapped set.
Download from Library of Wow! eBook <www.wowebook.com>

108 CHAPTER 4 Events are where it happens!

<!DOCTYPE html>
<html>
 <head>
 <title>jQuery Events Example</title>
 <link rel="stylesheet" type="text/css" href="../styles/core.css"/>
 <script type="text/javascript" src="../scripts/jquery-1.4.js"></script>
 <script type="text/javascript" src="../scripts/jqia2.support.js"></

script>
 <script type="text/javascript">
 $(function(){
 $('#example')
 .bind('click',function(event) {
 say('BOOM once!');
 })
 .bind('click',function(event) {
 say('BOOM twice!');
 })
 .bind('click',function(event) {
 say('BOOM three times!');
 });
 });
 </script>
 </head>

 <body>

 </body>
</html>

The changes to this code, limited to the body of the ready handler, are minor but
significant B. We create a wrapped set consisting of the target element and
apply three bind() methods to it—remember, jQuery chaining lets us apply multi-
ple methods in a single statement—each of which establishes a click event handler
on the element.

 Loading this page into a standards-compliant browser and clicking the image
results in the display of figure 4.6, which, not surprisingly, is the exact same result we
saw in figure 4.3 (except for the URL and window caption).

 But perhaps more importantly, it also works when loaded into Internet Explorer,
as shown in figure 4.7. This was not possible using the code from listing 4.3 without
adding browser-specific testing and branching code to use the correct event model for
the current browser.

 At this point, page authors who have wrestled with mountains of browser-specific
event-handling code in their pages are no doubt singing “Happy Days Are Here
Again” and spinning in their office chairs. Who could blame them?

 Another nifty little event-handling extra that jQuery provides for us is the ability to
group event handlers by assigning them to a namespace. Unlike conventional
namespacing (which assigns namespaces via a prefix), the event names are
namespaced by adding a suffix to the event name separated by a period character. In

Listing 4.5 Establishing advanced event handlers without browser-specific code

Binds three event
handlers to the imageB
Download from Library of Wow! eBook <www.wowebook.com>

109The jQuery Event Model
fact, if you’d like, you can use multiple suffixes to place the event into multiple
namespaces.

 By grouping event bindings in this way, we can easily act upon them later as a unit.
 Take, for example, a page that has two modes: a display mode and an edit mode.

When in edit mode, event listeners are placed on many of the page elements, but
these listeners aren’t appropriate for display mode and need to be removed when the

Figure 4.6 Using the jQuery
Event Model allows us to specify
multiple event handlers just like
the DOM Level 2 Event Model.

Figure 4.7 The jQuery Event Model allows us to use a unified events API to support events
across the standards-compliant browsers as well as Internet Explorer.
Download from Library of Wow! eBook <www.wowebook.com>

110 CHAPTER 4 Events are where it happens!
page transitions out of edit mode. We could namespace the edit mode events with
code such as this:

$('#thing1').bind('click.editMode',someListener);
$('#thing2').bind('click.editMode',someOtherListener);
 ...
$('#thingN').bind('click.editMode',stillAnotherListener);

By grouping all these bindings into a namespace named editMode, we can later oper-
ate upon them as a whole. For example, when the page leaves edit mode and it comes
time to remove all the bindings, we could do this easily with

$('*').unbind('click.editMode');

This will remove all click bindings (the explanation of the unbind() method is com-
ing up in the next section) in the namespace editMode for all elements on the page.

 Before we leave bind(), let’s consider one more example:

$('.whatever').bind({
 click: function(event) { /* handle clicks */ },
 mouseenter: function(event) { /* handle mouseenters */ },
 mouseleave: function(event) { /* handle mouseleaves */ }
});

For occasions when we want to bind multiple event types to an element, we can do it
with a single call to bind(), as shown.

 In addition to the bind() method, jQuery provides a handful of shortcut methods
to establish specific event handlers. Because the syntax of each of these methods is
identical except for the name of the method, we’ll save some space and present them
all in the following single syntax descriptor:

Method syntax: specific event binding

eventTypeName(listener)
Establishes the specified function as the event handler for the event type named by the method’s
name. The supported methods are as follows:
blur
change
click
dblclick
error
focus

focusin
focusout
keydown
keypress
keyup
load

mousedown
mouseenter
mouseleave
mousemove
mouseout
mouseover

mouseup
ready
resize
scroll
select
submit
unload

Note that when using these shortcut methods, we can’t specify a data value to be placed in the
event.data property.

Parameters
listener (Function) The function that’s to be established as the event handler.

Returns
The wrapped set.
Download from Library of Wow! eBook <www.wowebook.com>

111The jQuery Event Model
The focusin and focusout events deserve some discussion.
 It’s not hard to imagine scenarios where we’d want to handle focus and blur events

in a central manner. For example, let’s say that we wanted to keep track of which fields
in a form had been visited. Rather than establishing a handler on each and every ele-
ment, it’d be handy to establish a single handler on the form. But we can’t.

 The focus and blur events, by their nature, do not bubble up the DOM tree. There-
fore, a focus handler established on the form element would never get invoked.

 This is where the focusin and focusout events come in. Handlers established for
these events on focusable elements are invoked whenever the element receives or loses
focus, as are any such handlers established on the ancestors of the focusable element.

 jQuery also provides a specialized version of the bind() method, named one(),
that establishes an event handler as a one-shot deal. Once the event handler executes
the first time, it’s automatically removed as an event handler. Its syntax is similar to the
bind() method:

These methods give us many choices for binding an event handler to matched ele-
ments. And once a handler is bound, we may eventually need to remove it.

4.2.2 Removing event handlers

Typically, once an event handler is established, it remains in effect for the remainder
of the life of the page. But particular interactions may dictate that handlers be
removed based on certain criteria. Consider, for example, a page where multiple steps
are presented, and once a step has been completed, its controls revert to read-only.

 For such cases, it would be advantageous to remove event handlers under script
control. We’ve seen that the one() method can automatically remove a handler after
it has completed its first (and only) execution, but for the more general case where
we’d like to remove event handlers under our own control, jQuery provides the
unbind() method.

 The syntax of unbind() is as follows:

Method syntax: one

one(eventType,data,listener)
Establishes a function as the event handler for the specified event type on all elements in the
matched set. Once executed, the handler is automatically removed.

Parameters
eventType (String) Specifies the name of the event type for which the handler is to be

established.
data (Object) Caller-supplied data that’s attached to the Event instance for

availability to the handler function. If omitted, the handler function can be
specified as the second parameter.

listener (Function) The function that’s to be established as the one-time event handler.

Returns
The wrapped set.
Download from Library of Wow! eBook <www.wowebook.com>

112 CHAPTER 4 Events are where it happens!

This method can be used to remove event handlers from the elements of the matched
set at various levels of granularity. All listeners can be removed by omitting any param-
eters, or listeners of a specific type can be removed by providing just that event type.

 Specific handlers can be removed by providing a reference to the function origi-
nally established as the listener. To do this, a reference to the function must be
retained when binding the function as an event listener in the first place. For this rea-
son, when a function that’s eventually to be removed as a handler is originally estab-
lished as a listener, it’s either defined as a top-level function (so that it can be referred
to by its top-level variable name) or a reference to it is retained by some other means.
Supplying the function as an anonymous inline reference would make it impossible to
later reference the function in a call to unbind().

 That’s a situation where using name-spaced events can come in quite handy, as you
can unbind all events in a particular namespace without having to retain individual
references to the listeners. For example:

$('*').unbind('.fred');

This statement will remove all event listeners in namespace fred.
 So far, we’ve seen that the jQuery Event Model makes it easy to establish (as well as

remove) event handlers without worries about browser differences, but what about
writing the event handlers themselves?

4.2.3 Inspecting the Event instance

When an event handler established with the bind() method (or any of its related con-
venience methods) is invoked, an Event instance is passed to it as the first parameter
to the function regardless of the browser, eliminating the need to worry about the
window.event property under Internet Explorer. But that still leaves us dealing with
the divergent properties of the Event instance, doesn’t it?

 Thankfully, no, because truth be told, jQuery doesn’t really pass the Event instance
to the handlers.

 Screech! (sound of needle being dragged across record).

Method syntax: unbind

unbind(eventType,listener)
unbind(event)
Removes events handlers from all elements of the wrapped set as specified by the optional
passed parameters. If no parameters are provided, all listeners are removed from the elements.

Parameters
eventType (String) If provided, specifies that only listeners established for the specified

event type are to be removed.
listener (Function) If provided, identifies the specific listener that’s to be removed.
event (Event) Removes the listener that triggered the event described by this Event

instance.

Returns
The wrapped set.
Download from Library of Wow! eBook <www.wowebook.com>

113The jQuery Event Model
 Yes, we’ve been glossing over this little detail because, up until now, it hasn’t mat-
tered. But now that we’ve advanced to the point where we’re going to examine the
instance within handlers, the truth must be told!

 In reality, jQuery defines an object of type jQuery.Event that it passes to the han-
dlers. But we can be forgiven our simplification, because jQuery copies most of the
original Event properties to this object. As such, if you only look for the properties
that you expected to find on Event, the object is almost indistinguishable from the
original Event instance.

 But that’s not the important aspect of this object—what’s really valuable, and the
reason that this object exists, is that it holds a set of normalized values and methods
that we can use independently of the containing browser, ignoring the differences in
the Event instance.

 Table 4.1 lists the jQuery.Event properties and methods that are safe to access in a
platform-independent manner.

Table 4.1 Browser-independent jQuery.Event properties

Name Description

PROPERTIES

altKey Set to true if the Alt key was pressed when the event
was triggered, false if not. The Alt key is labeled Option
on most Mac keyboards.

ctrlKey Set to true if the Ctrl key was pressed when the event
was triggered, false if not.

currentTarget The current element during the bubble phase. This is the
same object that’s set as the function context of the
event handler.

data The value, if any, passed as the second parameter to the
bind() method when the handler was established.

metaKey Set to true if the Meta key was pressed when the event
was triggered, false if not. The Meta key is the Ctrl key
on PCs and the Command key on Macs.

pageX For mouse events, specifies the horizontal coordinate of
the event relative to the page origin.

pageY For mouse events, specifies the vertical coordinate of
the event relative to the page origin.

relatedTarget For mouse movement events, identifies the element that
the cursor left or entered when the event was triggered.

screenX For mouse events, specifies the horizontal coordinate of
the event relative to the screen origin.

screenY For mouse events, specifies the vertical coordinate of
the event relative to the screen origin.
Download from Library of Wow! eBook <www.wowebook.com>

114 CHAPTER 4 Events are where it happens!
It’s important to note that the keycode property isn’t reliable across browsers for non-
alphabetic characters. For instance, the left arrow key has a code of 37, which works
reliably on keyup and keydown events, but Safari returns nonstandard results for
these keys on a keypress event.

 We can get a reliable, case-sensitive character code in the which property of key-
press events. During keyup and keydown events, we can only get a case-insensitive key
code (so a and A both return 65), but we can determine case by checking shiftKey.

shiftKey Set to true if the Shift key was pressed when the event
was triggered, false if not.

result The most recent non-undefined value returned from a
previous event handler.

target Identifies the element for which the event was triggered.

timestamp The timestamp, in milliseconds, when the
jQuery.Event instance was created.

type For all events, specifies the type of event that was trig-
gered (for example, “click”). This can be useful if you’re
using one event handler function for multiple events.

which For keyboard events, specifies the numeric code for
the key that caused the event; for mouse events, speci-
fies which button was pressed (1 for left, 2 for middle,
3 for right). This should be used instead of button,
which can’t be relied on to function consistently across
browsers.

METHODS

preventDefault() Prevents any default semantic action (such as form sub-
mission, link redirection, checkbox state change, and so
on) from occurring.

stopPropagation() Stops any further propagation of the event up the DOM
tree. Additional events on the current target aren’t
affected. Works with browser-defined events as well as
custom events.

stopImmediatePropagation() Stops all further event propagation including additional
events on the current target.

isDefaultPrevented() Returns true if the preventDefault() method has
been called on this instance.

isPropagationStopped() Returns true if the stopPropagation() method has
been called on this instance.

isImmediatePropagationStopped() Returns true if the stopImmediatePropagation()
method has been called on this instance.

Table 4.1 Browser-independent jQuery.Event properties (continued)

Name Description
Download from Library of Wow! eBook <www.wowebook.com>

115The jQuery Event Model
 Also, if we want to stop the propagation of the event (but not immediate propaga-
tion), as well as cancel its default behavior, we can simply return false as the return
value of the listener function.

 All of this gives us the ability to exert fine-grained control over the establishment
and removal of event handlers for all the elements that exist within the DOM; but what
about elements that don’t exist yet, but will?

4.2.4 Proactively managing event handlers

With the bind() and unbind() methods (and the plethora of convenience methods),
we can readily control which event handlers are to be established on the elements of
the DOM. The ready handler gives us a convenient place to initially establish handlers
on the DOM elements that are created from the HTML markup on the page, or cre-
ated within the ready handler.

 But one of the whole reasons for using jQuery, as we saw in the last chapter, is the
ease with which it allows us to dynamically manipulate the DOM. And when we throw
Ajax into the mix, a subject that we’ll address in chapter 8, it’s likely that DOM ele-
ments will be coming into and out of existence frequently during the lifetime of the
page. The ready handler isn’t going to be of much help in managing the event han-
dlers for these dynamic elements that don’t exist when the ready handler is executed.

 We can certainly manage event handlers on the fly as we use jQuery to manipulate
the DOM, but wouldn’t it be nice if we could keep all the event management code
together in one place?

SETTING UP “LIVE” EVENT HANDLING

jQuery grants our wish with the live() method, which allows us to seemingly proac-
tively establish event handlers for elements that don’t even exist yet!

 The syntax of live() is as follows:

Method syntax: live

live(eventType,data,listener)
Causes the passed listener to be invoked as a handler whenever an event identified by the event
type occurs on any element that matches the selector used to create the wrapped set, regardless
of whether those elements exist or not when this method is called.

Parameters
eventType (String) Specifies the name of the event type for which the handler is to be

invoked. Unlike bind(), a space-separated list of event types can’t be
specified.

data (Object) Caller-supplied data that’s attached to the Event instance as a
property named data for availability to the handler function. If omitted, the
handler function can be specified as the second parameter.

listener (Function) The function that’s to be invoked as the event handler. When
invoked, it will be passed the Event instance, and its function context (this) is
set to the target element.

Returns
The wrapped set.
Download from Library of Wow! eBook <www.wowebook.com>

116 CHAPTER 4 Events are where it happens!
If the syntax of this method reminds you of the syntax for the bind() method, you’d
be right. This methods looks and acts a lot like bind(), except that when a corre-
sponding event occurs, it will be triggered for all elements that match the selector,
even if those elements aren’t in existence at the time that live() is called.

 For example, we might write

$('div.attendToMe').live(
 'click',
 function(event){ alert(this); }
);

Throughout the lifetime of the page, a click on any <div> element with class attend-
ToMe will result in the handler being invoked as an event handler, complete with a
passed event instance. And the preceding code doesn’t need to be in a ready handler
because, for “live” events, it doesn’t matter whether the DOM has been built yet or not.

 The live() method makes it amazingly easy to establish all the event handlers
needed on the page in one place and at the outset, without having to worry about
whether the elements already exist or when the elements will be created.

 But some cautions must be exercised when using live(). Because of its similarity
to bind(), you might expect “live events” to work in exactly the same manner as native
events. But there are differences that may or may not be important on your page.

 Firstly, recognize that live events aren’t native “normal” events. When an event such
as a click occurs, it propagates up through the DOM elements as described earlier in
this chapter, invoking any event handlers that have been established. Once the event
reaches the context used to create the wrapped set upon which live() was called
(usually the document), the context checks for elements within itself that match the
live selector. The live event handlers are triggered on any elements that match, and
this triggered event doesn’t propagate.

 If the logic of your page depends upon propagation and propagation order,
live() might not be the best choice—especially if you mix live event handlers with
native event handlers established via bind().

 Secondly, the live() method can only be used on selectors, and can’t be used on
derived wrapped sets. For example, both of these expressions are legal:

$('img').live(...)
$('img','#someParent').live(...)

The first will affect all images, the second all images within the context established by
#someParent. Note that when a context is specified, it must exist at the time of the call
to live().

 But the following expression isn’t legal

$('img').closest('div').live(...)

because it invokes live() on something other than a selector.
 Even with these restrictions, live() is tremendously handy on any page with

dynamic elements, but we’ll see how it becomes crucial in pages employing Ajax in
chapter 8. Later in this chapter (section 4.3), we’ll see live() used extensively in a
Download from Library of Wow! eBook <www.wowebook.com>

117The jQuery Event Model
comprehensive example that employs the handy DOM manipulation methods that we
learned about in chapter 3 to create dynamic elements.

REMOVING “LIVE” EVENT HANDLING

Handlers established using live() should be unbound with the (rather morbidly
named) die() method, which bears a strong resemblance to its unbind() counterpart:

In addition to allowing us to manage event handling in a browser-independent man-
ner, jQuery provides a set of methods that gives us the ability to trigger event handlers
under script control. Let’s look at those.

4.2.5 Triggering event handlers

Event handlers are designed to be invoked when browser or user activity triggers the
propagation of their associated events through the DOM hierarchy. But there may be
times when we want to trigger the execution of a handler under script control. We
could define such event handlers as top-level functions so that we can invoke them by
name, but as we’ve seen, defining event handlers as inline anonymous functions is
much more common and so darned convenient! Moreover, calling an event handler
as a function doesn’t cause semantic actions or bubbling to occur.

 To provide for this need, jQuery has provided methods that will automatically trig-
ger event handlers on our behalf under script control. The most general of these
methods is trigger(), whose syntax is as follows:

Method syntax: die

die(eventType,listener)
Removes live event handlers established by live(), and prevents the handler from being invoked
on any future elements that may match the selector used for the call to live().

Parameters
eventType (String) If provided, specifies that only listeners established for the specified

event type are to be removed.
listener (Function) If provided, identifies the specific listener that’s to be removed.

Returns
The wrapped set.

Method syntax: trigger

trigger(eventType,data)
Invokes any event handlers established for the passed event type for all matched elements.

Parameters
eventType (String) Specifies the name of the event type for which handlers are to be

invoked. This includes namespaced events. You can append the exclamation
point (!) to the event type to prevent namespaced events from triggering.

data (Any) Data to be passed to the handlers as the second parameter (after the
event instance).

Returns
The wrapped set.
Download from Library of Wow! eBook <www.wowebook.com>

118 CHAPTER 4 Events are where it happens!
The trigger() method, as well as the convenience methods that we’ll introduce in a
moment, does its best to simulate the event to be triggered, including propagation
through the DOM hierarchy and the execution of semantic actions.

 Each handler called is passed a populated instance of jQuery.Event. Because
there’s no real event, properties that report event-specific values, such as the location
of a mouse event or the key of a keyboard event, have no value. The target property
is set to reference the element of the matched set to which the handler was bound.

 Just as with actual events, triggered event propagation can be halted via a call to
the jQuery.Event instance’s stopPropagation() method, or a false value can be
returned from any of the invoked handlers.

NOTE The data parameter passed to the trigger() method is not the same as
the one passed when a handler is established. The latter is placed into the
jQuery.Event instance as the data property; the value passed to trigger()
(and, as we’re about to see, triggerHandler()) is passed as a parameter to
the listeners. This allows both data values to be used without conflicting with
each other.

For cases where we want to trigger a handler, but not cause propagation of the event
and execution of semantic actions, jQuery provides the triggerHandler() method,
which looks and acts just like trigger() except that no bubbling or semantic actions
will occur. Additionally, no events bound by live will be triggered.

In addition to the trigger() and triggerHandler() methods, jQuery provides con-
venience methods for triggering most of the event types. The syntax for all these
methods is exactly the same except for the method name, and that syntax is as follows:

Method syntax: triggerHandler

triggerHandler(eventType,data)
Invokes any event handlers established for the passed event type for all matched elements
without bubbling, semantic actions, or live events.

Parameters
eventType (String) Specifies the name of the event type for which handlers are to be

invoked
data (Any) Data to be passed to the handlers as the second parameter (right after

the event instance).

Returns
The wrapped set.
Download from Library of Wow! eBook <www.wowebook.com>

119The jQuery Event Model

In addition to binding, unbinding, and triggering event handlers, jQuery offers
higher-level functions that further make dealing with events on our pages as easy as
possible.

4.2.6 Other event-related methods

Interactive applications often employ interaction styles that are implemented using a
combination of behaviors. jQuery provides a few event-related convenience methods
that make it easier to use these interaction behaviors on our pages. Let’s look at them.

TOGGLING LISTENERS

The first of these is the toggle() method, which establishes a circular progression of
click event handlers that are applied on each subsequent click event. On the first click
event, the first registered handler is called, on the second click, the second is called,
on the third click the third is called, and so on. When the end of the list of established
handlers is reached, the first handler becomes the next in line. The toggle()
method’s syntax is as follows:

A common use for this convenience method is to toggle the enabled state of an ele-
ment back and forth on each odd or even click. For this, we’d supply two handlers;
one for the odd clicks, and one for the even clicks.

Method syntax: eventName

eventName()
Invokes any event handlers established for the named event type for all matched elements. The
supported methods are as follows:
blur
change
click
dblclick
error
focus

focusin
focusout
keydown
keypress
keyup
load

mousedown
mousenter
mouseleave
mousemove
mouseout
mouseover

resize
scroll
select
submit
unload

Parameters
none

Returns
The wrapped set.

Method syntax: toggle

toggle(listener1,listener2, ...)
Establishes the passed functions as a circular list of click event handlers on all elements of the
wrapped set. The handlers are called in order on each subsequent click event.

Parameters
listenerN (Function) One or more functions that serve as the click event handlers for

subsequent clicks.

Returns
The wrapped set.
Download from Library of Wow! eBook <www.wowebook.com>

120 CHAPTER 4 Events are where it happens!
But this method can also be used to create a progression through two or more clicks.
Let’s consider an example.

 Imagine that we have a site in which we want users to be able to view images in one
of three sizes: small, medium, or large. The interaction will take place through a sim-
ple series of clicks. Clicking on the image bumps it up to its next bigger size, until we
reach the largest size, and it reverts back to the smallest.

 Examine the progression shown in the time-lapse screenshots in figure 4.8. Each
time the image is clicked, it grows to the next bigger size. If one more click were to be
made, the image would revert to the smallest size.

 The code for this page is shown in listing 4.6 and can be found in file chapter4/
toggle.html.

<!DOCTYPE html>
<html>
 <head>
 <title>jQuery .toggle() Example</title>
 <link rel="stylesheet" type="text/css" href="../styles/core.css"/>

Listing 4.6 Defining a progression of event handlers

Figure 4.8 jQuery’s toggle() method lets us predefine a progression of behaviors for click events.
Download from Library of Wow! eBook <www.wowebook.com>

121The jQuery Event Model
 <script type="text/javascript" src="../scripts/jquery-1.4.js"></script>
 <script type="text/javascript">
 $(function(){

 $('img[src*=small]').toggle(
 function() {
 $(this).attr('src',
 $(this).attr('src').replace(/small/,'medium'));
 },
 function() {
 $(this).attr('src',
 $(this).attr('src').replace(/medium/,'large'));
 },
 function() {
 $(this).attr('src',
 $(this).attr('src').replace(/large/,'small'));
 }
);

 });
 </script>
 <style type="text/css">
 img {
 cursor: pointer;
 }
 </style>
 </head>

 <body>

 <div>Click on the image to change its size.</div>
 <div>

 </div>

 </body>
</html>

NOTE If you’re like your authors and pay attention to the names of things,
you might wonder why this method is named toggle() when that really only
makes sense for the case when only two handlers are established. The reason
is that in earlier versions of jQuery, this method was limited to only two han-
dlers and was later expanded to accept an arbitrary number of handlers. The
name was retained for backwards compatibility.

Another common multi-event scenario that’s frequently employed in interactive appli-
cations involves mousing into and out of elements.

HOVERING OVER ELEMENTS

Events that inform us when the mouse pointer has entered an area, as well as when it
has left that area, are essential to building many of the user interface elements that
are commonly presented to users on our pages. Among these element types, cascad-
ing menus used as navigation systems are a common example.

 A vexing behavior of the mouseover and mouseout event types often hinders the
easy creation of such elements: when a mouseout event fires as the mouse is moved

Establishes a
progression of handlers
Download from Library of Wow! eBook <www.wowebook.com>

122 CHAPTER 4 Events are where it happens!
over an area and its children. Consider the display in figure 4.9 (available in the file
chapter4/hover.html).
This page displays two identical (except for naming) sets of areas: an outer area and
an inner area. Load this page into your browser as you follow the rest of this section.

 For the top set of rectangles on the page, the following script in the ready handler
establishes handlers for the mouseover and mouseout events:

$('#outer1').bind('mouseover mouseout',report);
$('#inner1').bind('mouseover mouseout',report);

This statement establishes a function named report as the event handler for both the
mouseover and mouseout events.

 The report() function is defined as follows:

function report(event) {
 say(event.type+' on ' + event.target.id);
}

This listener merely adds a <div> element containing the name of the event that fired
to a <div> named console that’s defined at the bottom of the page, allowing us to see
when each event fires.

 Now, let’s move the mouse pointer into the area labeled Outer 1 (being careful not
to enter Inner 1). We’ll see (from looking at the bottom of the page) that a mou-
seover event has fired. Move the pointer back out of the area. As expected, we’ll see
that a mouseout event has fired.

 Let’s refresh the page to start over, clearing the console.
 Now, let’s move the mouse pointer into Outer 1 (noting the event), but this time

continue inward until the pointer enters Inner 1. As the mouse enters Inner 1, a mou-
seout event fires for Outer 1. If we wave our pointer to cross back and forth over the
boundary between Outer 1 and Inner 1, we’ll see a flurry of mouseout and mouseover

Figure 4.9 This page helps demonstrate
when mouse events fire as the mouse pointer
is moved over an area and its children.
Download from Library of Wow! eBook <www.wowebook.com>

123The jQuery Event Model
events. This is the defined behavior, even if it’s rather unintuitive. Even though the
pointer is still within the bounds of Outer 1, when the pointer enters a contained ele-
ment, the event model considers the transition to be leaving the outer area.

 Expected or not, we don’t always want that behavior. Often, we want to be
informed when the pointer leaves the bounds of the outer area and don’t care
whether the pointer is over a contained area or not.

 Luckily, some of the major browsers support a nonstandard pair of mouse events,
mouseenter and mouseleave, first introduced by Microsoft in Internet Explorer. This
event pair acts slightly more intuitively, not firing a mouseleave event when moving
from an element to a descendant of that element. For browsers not supporting these
events, jQuery emulates them so that they work the same across all browsers.

 Using jQuery we could establish handlers for this set of events using the following
code:

$(element).mouseenter(function1).mouseleave(function2);

But jQuery also provides a single method that makes it even easier: hover(). The syn-
tax of this method is as follows:

We use the following script to establish mouse event handlers for the second set of
areas (Outer 2 and its Inner 2 child) on the hover.html example page:

$('#outer2').hover(report);

As with the first set of areas, the report() function is established as both the mouseen-
ter and mouseleave handlers for Outer 2. But unlike the first set of areas, when we
pass the mouse pointer over the boundaries between Outer 2 and Inner 2, neither of
these handlers (for Outer 2) is invoked. This is useful for those situations where we
have no need for parent handlers to react when the mouse pointer passes over child
elements.

 With all these event-handling tools under our belts, let’s use what we’ve learned so
far and look at an example page that makes use of them, as well as some of the other
jQuery techniques that we’ve learned from previous chapters!

Method syntax: hover

hover(enterHandler,leaveHandler)
hover(handler)
Establishes handlers for the mouseenter and mouseleave events for matched elements. These
handlers only fire when the area covered by the elements is entered and exited, ignoring
transitions to child elements.

Parameters
enterHandler (Function) The function to become the mouseenter handler.
leaveHandler (Function) The function to become the mouseleave handler.
handler (Function) A single handler to be called for both mouseenter and mouseleave

events.

Returns
The wrapped set.
Download from Library of Wow! eBook <www.wowebook.com>

124 CHAPTER 4 Events are where it happens!
4.3 Putting events (and more) to work
Now that we’ve covered how jQuery brings order to the chaos of dealing with dispa-
rate event models across browsers, let’s work on an example page that puts the knowl-
edge we’ve gained so far to use. This example uses not only events but also some
jQuery techniques that we’ve explored in earlier chapters, including some heavy-
weight jQuery method chains. For this comprehensive example, let’s pretend that
we’re videophiles whose collection of DVDs, numbering in the thousands, has become
a huge problem. Not only has organization become an issue, making it hard to find a
DVD quickly, but all those DVDs in their cases have become a storage prob-
lem—they’ve taken over way too much space and will get us thrown out of the house if
the problem isn’t solved.

 We’ll posit that we solved the storage side of the problem by buying DVD binders
that hold one hundred DVDs each in much less space than the comparable number
of DVDs in their cases. But although that saved us from having to sleep on a park
bench, organizing the DVD discs is still an issue. How will we find a DVD that we’re
looking for without having to manually flip through each binder until we find the
one we’re seeking?

 We can’t do something like sort the DVDs in alphabetic order to help quickly locate
a specific disc. That would mean that every time we buy a new DVD, we’d need to shift
all the discs in perhaps dozens of binders to keep the collection sorted. Imagine the
job ahead of us after we buy Abbott and Costello Go to Mars!

 Well, we’ve got computers, we’ve got the know-how to write web applications, and
we’ve got jQuery! So we’ll solve the problem by writing a DVD database program to
help keep track of what DVDs we have, and where they are.

 Let’s get to work!

4.3.1 Filtering large data sets

Our DVD database program is faced with the same problem facing many other appli-
cations, web-delivered or otherwise. How do we allow our users (in this case ourselves)
to quickly find the information that they seek?

 We could be all low-tech about it and just display a sorted list of all the titles, but
that would still be painful to scroll through if there’s anything more than a handful of
entries. Besides, we want to learn how to do it right so that we can apply what we learn
to real, customer-facing applications.

 So no shortcuts!
 Obviously, designing the entire application would be well beyond the scope of this

chapter, so what we’ll concentrate on is developing a control panel that will allow us to
specify filters with which we can tune the list of titles that will be returned when we
perform a database search.

 We’ll want the ability to filter on the DVD title, of course. But we’ll also add the
ability to filter the search based upon the year that the movie was released, its cate-
gory, the binder in which we placed the disc, and even whether we’ve viewed the
Download from Library of Wow! eBook <www.wowebook.com>

125Putting events (and more) to work
movie yet or not. (This will help answer the commonly asked question, “What should I
watch tonight?”)

 Your initial reaction may be to wonder what the big deal is. After all, we can just
put up a number of fields and be done with it, right?

 Well, not so fast. A single field for something like the title is fine if, for example, we
wanted to find all movies with the term “creature” in their title. But what if we want to
search for either of “creature” or “monster”? Or only movies released in 1957 or 1972?

 In order to provide a robust interface for specifying filters, we’ll need to allow the
user to specify multiple filters for either the same or different properties of the DVD.
And rather than try to guess how many filters will be needed, we’ll be all swank about
it and create them on demand.

 For our interface, we’re going to steal a page from Apple’s user interface playbook
and model our interface on the way filters are specified in many Apple applications.
(If you’re an iTunes user, check out how Smart Playlists are created for an example.)

 Each filter, one per “line,” is identified by a dropdown (single-selection <select>
element) that specifies the field that’s to be filtered. Based upon the type of that field
(string, date, number, and even Boolean) the appropriate controls are displayed on
the line to capture information about the filter.

 The user is given the ability to add as many of these filters as they like, or to remove
previously specified filters.

 A picture being worth a thousand words, study the time-progression display of fig-
ures 4.10a through 4.10c. They show the filter panel that we’ll be building: (a) when
initially displayed, (b) after a filter has been specified, and (c) after a number of filters
have been specified.

 As we can see by inspecting the interactions shown in figures 4.10a through 4.10c,
there’s going to be a lot of element creation on the fly. Let’s take a few moments to
discuss how we’re going to go about that.

Figure 4.10a The display initially shows a single, unconfigured filter.
Download from Library of Wow! eBook <www.wowebook.com>

126 CHAPTER 4 Events are where it happens!

4.3.2 Element creation by template replication

We can readily see that to implement this filtering control panel, we’re going to need
to create a fair number of elements in response to various events. For example, we’ll
new to create a new filter entry whenever the user clicks the Add Filter button, and
new controls that qualify that filter whenever a specific field is selected.

 No problem! In the previous chapter we saw how easy jQuery makes it to dynami-
cally create elements using the $() function. And although we’ll do some of that in
our example, we’re also going to explore some higher-level alternatives.

 When we’re dynamically creating lots of elements, all the code necessary to create
those elements and stitch together their relationships can get a bit unwieldy and a bit

Figure 4.10b After a filter type is selected, its qualifier controls are added.

Figure 4.10c The user can add as many filters as required.
Download from Library of Wow! eBook <www.wowebook.com>

127Putting events (and more) to work
difficult to maintain, even with jQuery’s assistance. (Without jQuery’s help, it can be a
complete nightmare!) What’d be great would be if we could create a “blueprint” of
the complex markup using HTML, and then replicate it whenever we needed an
instance of the blueprint.

 Yearn, no more! The jQuery clone() method gives us just that ability.
 The approach that we’re going to take is to create sets of “template” markup that

represent the HTML fragments we’d like to replicate, and use the clone() method
whenever we need to create an instance of that template. We don’t want these tem-
plates to be visible to the end user, so we’ll sequester them in a <div> element at the
end of the page that’s hidden from view using CSS.

 As an example, let’s consider the combination of the “X” button and dropdown
that identifies the filterable fields. We’ll need to create an instance of this combina-
tion every time the user clicks the Add Filter button. The jQuery code to create such a
button and <select> element, along with its child <option> elements, could be con-
sidered a tad long, though it would not be too onerous to write or maintain. But it’d
be easy to envision that anything more complex would get unwieldy quickly.

 Using our template technique, and placing the template markup for that button
and dropdown in a parent <div> used to hide all the templates, we create markup as
follows:

<!-- hidden templates -->
<div id="templates">
 <div class="template filterChooser">
 <button type="button" class="filterRemover" title="Remove this

filter">X</button>

 <select name="filter" class="filterChooser" title="Select a property to
filter">

 <option value="" data-filter-type="" selected="selected">
 -- choose a filter --</option>
 <option value="title" data-filter-type="stringMatch">DVD Title</option>
 <option value="category" data-filter-type="stringMatch">Category

 </option>
 <option value="binder" data-filter-type="numberRange">Binder</option>
 <option value="release" data-filter-type="dateRange">Release Date

 </option>
 <option value="viewed" data-filter-type="boolean">Viewed?</option>
 </select>
 </div>

 <!—- more templates go here -->

</div>

The outer <div> with id of templates serves as a container for all our templates and
will be given a CSS display rule of none to prevent it from being displayed in the
browser B.

 Within this container, we define another <div> which we give the classes tem-
plate and filterChooser C. We’ll use the template class to identify templates in
general, and the filterChooser class to identify this particular template type. We’ll

Encloses and hides
all templates

B
Defines the
filterChooser template

C

Download from Library of Wow! eBook <www.wowebook.com>

128 CHAPTER 4 Events are where it happens!
see how these classes are used in the code shortly—remember, classes aren’t just for
CSS anymore!

 Also note that each <option> in the <select> has been given a custom attribute:
data-filter-type. We’ll use this value to determine what type of filter controls need
to be used for the selected filter field.

 Based upon which filter type is identified, we’ll populate the remainder of the fil-
ter entry “line” with qualifying controls that are appropriate for the filter type.

 For example, if the filter type is stringMatch, we’ll want to display a text field into
which the user can type a text search term, and a dropdown giving them options for
how that term is to be applied.

 We’ve set up the template for this set of controls as follows:

<div class="template stringMatch">
 <select name="stringMatchType">
 <option value="*">contains</option>
 <option value="^">starts with</option>
 <option value="$">ends with</option>
 <option value="=">is exactly</option>
 </select>
 <input type="text" name="term"/>
</div>

Again, we’ve used the template class to identify the element as a template, and we’ve
flagged the element with the class stringMatch. We’ve purposely made it such that
this class matches the data-filter-type value on the field chooser dropdown.

 Replicating these templates whenever, and wherever, we want is easy using the
jQuery knowledge under our belts. Let’s say that we want to append a template
instance to the end of an element that we have a reference to in a variable named
whatever. We could write

$('div.template.filterChooser').children().clone().appendTo(whatever);

In this statement, we select the template container to be replicated (using those con-
venient classes we placed on the template markup), select the child elements of the
template container (we don’t want to replicate the <div>, just its contents), make
clones of those children, and then attach them to the end of the contents of the ele-
ment identified by whatever.

 See why we keep emphasizing the power of jQuery method chains?
 Inspecting the options of the filterChooser dropdown, we see that we have a

number of other filter types defined: numberRange, dateRange, and boolean. So we
define qualifying control templates for those filter types as well with this code:

<div class="template numberRange">
 <input type="text" name="numberRange1" class="numeric"/> through

 <input type="text" name="numberRange2" class="numeric"/>
</div>

<div class="template dateRange">
 <input type="text" name="dateRange1" class="dateValue"/>
Download from Library of Wow! eBook <www.wowebook.com>

129Putting events (and more) to work
 through
 <input type="text" name="dateRange2" class="dateValue"/>
</div>

<div class="template boolean">
 <input type="radio" name="booleanFilter" value="true" checked="checked"/>

Yes
 <input type="radio" name="booleanFilter" value="false"/> No
</div>

OK. Now that we’ve got our replication strategy defined, let’s take a look at the pri-
mary markup.

4.3.3 Setting up the mainline markup

If we refer back to figure 4.10a, we can see that the initial display of our DVD search
page is pretty simple: a few headers, a first filter instance, and a couple of buttons.
Let’s take a look at the HTML markup that achieves that:

<div id="pageContent">

 <h1>DVD Ambassador</h1>
 <h2>Disc Locator</h2>

 <form id="filtersForm" action="/fetchFilteredResults" method="post">

 <fieldset id="filtersPane">
 <legend>Filters</legend>
 <div id="filterPane"></div>
 <div class="buttonBar">
 <button type="button" id="addFilterButton">Add Filter</button>
 <button type="submit" id="applyFilterButton">Apply Filters</button>
 </div>
 </fieldset>

 <div id="resultsPane">
 No results displayed
 </div>

 </form>

</div>

There’s nothing too surprising in that markup—or is there? Where, for example, is
the markup for the initial filter dropdown? We’ve set up a container in which the fil-
ters will be placed B, but it’s initially empty. Why?

 Well, we’re going to need to be able to populate new filters dynamically—which
we’ll be getting to in just a moment—so why do the work in two places? As we shall
see, we’ll be able to leverage the dynamic code to initially populate the first filter, so
we don’t need to explicitly create it in the static markup.

 One other thing that should be pointed out is that we’ve set aside a container to
receive the results C (the fetching of which is beyond the scope of this chapter), and
we’ve placed these results inside the form so that the results themselves can contain
form controls (for sorting, paging, and so on).

Container for
filter instances

B

Container for
search results

C

Download from Library of Wow! eBook <www.wowebook.com>

130 CHAPTER 4 Events are where it happens!
 OK. We have our very simple, mainline HTML laid out, and we have a handful of
hidden templates that we can use to quickly generate new elements via replication.
Let’s finally get to writing the code that will apply the behavior to our page!

4.3.4 Adding new filters

Upon a click of the Add Filter button, we need to add a new filter to the <div> ele-
ment that we’ve set up to receive it, which we’ve identified with the id of filterPane.

 Recalling how easy it is to establish event handlers using jQuery, it should be an
easy matter to add a click handler to the Add Filter button. But wait! There’s some-
thing we forgot to consider!

 We’ve already seen how we’re going to replicate form controls when users add fil-
ters, and we’ve got a good strategy for easily creating multiple instances of these con-
trols. But eventually, we’re going to have to submit these values to the server so it can
look up the filtered results in the database. And if we just keep copying the same name
attributes over and over again for our controls, the server is just going to get a jum-
bled mess without knowing what qualifiers belong to which filters!

 To help out the server-side code (there’s a good chance we’ll be writing it ourselves
in any case) we’re going to append a unique suffix to the name attribute for each filter
entry. We’ll keep it simple and use a counter, so that the first filter’s controls will all
have “.1” appended to their names, the second set “.2”, and so on. That way, the server-
side code can group them together by suffix when they arrive as part of the request.

NOTE The “.n” suffix format was chosen for this example code because it is
simple and conceptually captures what the suffix is trying to represent
(groupings of parametric data). Depending upon what you are using for your
server-side code, you may wish to choose alternative suffix formats that might
work better in conjunction with the data-binding mechanisms that are avail-
able to you. For example, the “.n” format would not play particularly well with
Java backends using property-based POJO binding mechanisms (a format of
“[n]” would be better suited for this environment).

To keep track of how many filters we’ve added (so we can use the count as the suffix
for subsequent filter names), we’ll create a global variable, initialized to 0, as follows:

var filterCount = 0;

“Global variable? I thought those were evil,” I hear you say.
 Global variables can be a problem when used incorrectly. But in this case, this is truly

a global value that represents a page-wide concept, and it will never create any con-
flicts because all aspects of the page will want to access this single value in a consistent
fashion.

 With that set up, we’re ready to establish the click handler for the Add Filter but-
ton by adding the following code to a ready handler (remember, we don’t want to start
referencing DOM elements until after we know they’ve been created):
Download from Library of Wow! eBook <www.wowebook.com>

131Putting events (and more) to work
$('#addFilterButton').click(function(){
 var filterItem = $('<div>')
 .addClass('filterItem')
 .appendTo('#filterPane')
 .data('suffix','.' + (filterCount++));
 $('div.template.filterChooser')
 .children().clone().appendTo(filterItem)
 .trigger('adjustName');
});

Although this compound statement may look complicated at first glance, it accom-
plishes a great deal without a whole lot of code. Let’s break it down one step at a time.

 The first thing that we do in this code is to establish a click handler on the Add Fil-
ter button B by using the jQuery click() method. It’s within the function passed to
this method, which will get invoked when the button is clicked, that all the interesting
stuff happens.

 Because a click of the Add Filter button is going to, well, add a filter, we create a
new container for the filter to reside within C. We give it the class filterItem not
only for CSS styling, but to be able to locate these elements later in code. After the ele-
ment is created, it’s appended to the master filter container that we created with the
id value of filterPane.

 We also need to record the suffix that we want to add to the control names that will
be placed within this container. This value will be used when it comes time to adjust
the names of the controls, and this is a good example of a value that’s not suited for a
global variable. Each filter container (class filterItem) will have its own suffix, so try-
ing to record this value globally would require some sort of complex array or map
construct so that the various values didn’t step all over each other.

 Rather, we’ll avoid the whole mess by recording the suffix value on the elements
themselves using the very handy jQuery data() method. Later, when we need to
know what suffix to use for a control, we’ll simply look at this data value on its con-
tainer and won’t have to worry about getting it confused with the values recorded on
other containers.

 The code fragment

.data('suffix','.' + (filterCount++))

formats the suffix value using the current value of the filterCount variable, and then
increments that value. The value is attached to the filterItem container using the
name suffix, and we can later retrieve it by that name whenever we need it.

 The final statement of the click handler D replicates the template that we set up
containing the filter dropdown using the replication approach that we discussed in
the previous section. You might think that the job is over at this point, but after the
cloning and appending, we execute E the following fragment:

.trigger('adjustName')

The trigger() method is used to trigger an event handler for an event named
adjustName.

Establishes click
handlerBCreates filter

entry blockC

Replicates filter
dropdown template

D

Triggers custom eventE
Download from Library of Wow! eBook <www.wowebook.com>

132 CHAPTER 4 Events are where it happens!
 adjustName?
 If you thumb through your specifications, you’ll find this event listed nowhere! It’s

not a standard event defined anywhere but in this page. What we’ve done with this code
is to trigger a custom event.

 A custom event is a very useful concept—we can attach code to an element as a
handler for a custom event, and cause it to execute by triggering the event. The
beauty of this approach, as opposed to directly calling code, is that we can register the
custom handlers in advance, and by simply triggering the event, cause any registered
handlers to be executed, without having to know where they’ve been established.

OK, so that will trigger the custom event, but we need to define the handler for that
event, so within the ready handler, we also establish the code to adjust the control
names of the filters:

$('.filterItem[name]').live('adjustName',function(){
 var suffix = $(this).closest('.filterItem').data('suffix');
 if (/(\w)+\.(\d)+$/.test($(this).attr('name'))) return;
 $(this).attr('name',$(this).attr('name')+suffix);
});

Here we see a use of the live() method to proactively establish event handlers. The
input elements with name attributes will be popping into and out of existence when-
ever a filter is added or removed, so we employ live() to automatically establish and
remove the handlers as necessary. That way, we set it up once, and jQuery will handle
the details whenever an item that matches the .filterItem[name] selector is created
or destroyed. How easy is that?

 We specify our custom event name of adjustName and supply a handler to be
applied whenever we trigger the custom event. (Because it’s a custom event, there’s no
possibility of it being triggered by user activity the way that, say, a click handler can be.)

 Within the handler, we obtain the suffix that we recorded on the filterItem con-
tainer—remember, within a handler, this refers to the element upon which the event
was triggered, in this case, the element with the name attribute. The closest()
method quickly locates the parent container, upon which we find the suffix value.

Pattern alert!
The custom event capability in jQuery is a limited example of the Observer pattern,
sometimes referred to as the Publish/Subscribe pattern. We subscribe an element
to a particular event by establishing a handler for that event on that element, and
then when the event is published (triggered), any subscribed elements in the event
hierarchy automatically have their handlers invoked. This can greatly reduce the com-
plexity of code by reducing the coupling necessary.

We called this a limited example of the Observer pattern because subscribers are
limited to elements in the publisher’s ancestor hierarchy (as opposed to anywhere in
the DOM).
Download from Library of Wow! eBook <www.wowebook.com>

133Putting events (and more) to work
 We don’t want to adjust element names that we’ve already adjusted once, so we use
a regular expression test to see if the name already has the suffix attached, and if so,
simply return from the handler.

 If the name hasn’t been adjusted, we use the attr() method to both fetch the orig-
inal name and set the adjusted name back onto the element.

 At this point, it’s worth reflecting on how implementing this as a custom event, and
using live(), creates very loose coupling in our page code. This frees us from having
to worry about calling the adjustment code explicitly, or establishing the custom han-
dlers explicitly at the various points in the code when they need to be applied. This
not only keeps the code cleaner, it increases the flexibility of the code.

 Load this page into your browser and test the action of the Add Filter button. Note
how every time you click on the Add Filter button, a new filter is added to the page. If
you inspect the DOM with a JavaScript debugger (Firebug in Firefox is great for this),
you’ll see that the name of each <select> element has been suffixed with a per-filter
suffix, as expected.

 But our job isn’t over yet. The dropdowns don’t yet specify which field is to be fil-
tered. When a selection is made by the user, we need to populate the filter container
with the appropriate qualifiers for the filter type for that field.

4.3.5 Adding the qualifying controls

Whenever a selection is made from a filter dropdown, we need to populate the filter
with the controls that are appropriate for that filter. We’ve made it easy for ourselves
by creating markup templates that we just need to copy when we determine which one
is appropriate. But there are also a few other housekeeping tasks that we need to do
whenever the value of the dropdown is changed.

 Let’s take a look at what needs to be done when establishing the change handler
for the dropdown:

$('select.filterChooser').live('change',function(){
 var filterType = $(':selected',this).attr('data-filter-type');
 var filterItem = $(this).closest('.filterItem');
 $('.qualifier',filterItem).remove();
 $('div.template.'+filterType)
 .children().clone().addClass('qualifier')
 .appendTo(filterItem)
 .trigger('adjustName');
 $('option[value=""]',this).remove();
});

Once again, we’ve taken advantage of jQuery’s live() method to establish a handler
up front that will automatically be established at the appropriate points without fur-
ther action on our part. This time, we’ve proactively established a change handler for
any filter dropdown that comes into being B.

TIP The ability to specify change events with live() is a new (and welcome)
addition to jQuery 1.4.

Establishes change
handler

B

Removes any old controlsC
Replicates
appropriate templateD

Removes
obsolete option

E

Download from Library of Wow! eBook <www.wowebook.com>

134 CHAPTER 4 Events are where it happens!
When the change handler fires, we first collect a few pieces of information: the fil-
ter type recorded in the custom data-filter-type attribute, and the parent filter
container.

 Once we’ve got those values in hand, we need to remove any filter qualifier con-
trols that might already be in the container C. After all, the user can change the
value of the selected field many times, and we don’t want to just keep adding more
and more controls as we go along! We’ll add the qualifier class to all the appropri-
ate elements as they’re created (in the next statement), so it’s easy to select and
remove them.

 Once we’re sure we have a clean slate, we replicate the template for the correct set
of qualifiers D by using the value we obtained from the data-filter-type attribute.
The qualifier class name is added to each created element for easy selection (as we
saw in the previous statement). Also note how once again we trigger the adjustName
custom event to automatically trigger the hander that will adjust the name attributes of
the newly created controls.

 Finally, we want to remove the “choose a filter” <option> element from the filter
dropdown E, because once the user has selected a specific field, it doesn’t make any
sense to choose that entry again. We could just ignore the change event that triggers
when the user selects this option, but the best way to prevent a user from doing some-
thing that doesn’t make sense is to not let them do it in the first place!

 Once again, refer to the example page in your browser. Try adding multiple fil-
ters, and change their selections. Note how the qualifiers always match the field
selection. And if you can view the DOM in a debugger, observe how the name attri-
butes are augmented.

 Now, for those remove buttons.

4.3.6 Removing unwanted filters and other tasks

We’ve given the user the ability to change the field that any filter will be applied to,
but we’ve also given them a remove button (labeled “X”) that they can use to remove a
filter completely.

 By this time, you should already have realized that this task will be almost trivial
with the tools at our disposal. When the button is clicked, all we need to do is find the
closest parent filter container, and blow it away!

$('button.filterRemover').live('click',function(){
 $(this).closest('div.filterItem').remove();
});

And yes, it turns out to be that simple.
 On to a few other matters ...
 You may recall that when the page is first loaded, an initial filter is displayed, even

though we did not include it in the markup. We can easily realize this by simulating a
click of the Add Filter button upon page load.

 So, in the ready handler we simply add
Download from Library of Wow! eBook <www.wowebook.com>

135Putting events (and more) to work
$('#addFilterButton').click();

This causes the Add Filter button handler to be invoked, just as if the user had
clicked it.

 And one final matter. Although it’s beyond the scope of this example to deal with
submitting this form to the server, we thought we’d give you a tantalizing glimpse of
what’s coming up in future chapters.

 Go ahead and click the Apply Filters button, which you may have noted is a submit
button for the form. But rather than the page reloading as you might have expected,
the results appear in the <div> element that we assigned the id of resultsPane.

 That’s because we subverted the submit action of the form with a handler of our
own that cancels the form submission and instead makes an Ajax call with the form
contents, loading the results into the resultsPane container. We’ll see lots more
about how easy jQuery makes Ajax in chapter 8, but you might be surprised (espe-
cially if you’ve already done some cross-browser Ajax programming) to see that we can
make the Ajax call with just one line of code:

$('#filtersForm').submit(function(){
 $('#resultsPane').load('applyFilters',$('#filtersForm').serializeArray());
 return false;
});

If you paid attention to those displayed results, you might have noted that the results
are the same no matter what filters are specified. Obviously, there’s no real database
powering this example, so it’s really just returning a hard-coded HTML page. But it’s
easy to imagine that the URL passed to jQuery’s load() Ajax method could reference
a dynamic PHP, Java servlet, or Rails resource that would return actual results.

 That completes the page, at least as far as we wanted to take it for the purposes of
this chapter, but as we know ...

4.3.7 There’s always room for improvement

For our filter form to be considered production-quality, there’s still lots of room for
improvement.

 Below we’ll list some additional functionality that this form either requires before
being deemed complete, or that would be just plain nice to have. Can you implement
these additional features with the knowledge you’ve gained up to this point?

Data validation is non-existent in our form. For example, the qualifying fields
for the binder range should be numeric values, but we do nothing to prevent the
user from entering invalid values. The same problem exists for the date fields.

We could just punt and let the server-side code handle it—after all, it has to
validate the data regardless. But that makes for a less-than-pleasant user experi-
ence, and as we’ve already pointed out, the best way to deal with errors is to pre-
vent them from happening in the first place.

Because the solution involves inspecting the Event instance—something that
wasn’t included in the example up to this point—we’re going to give you the
Download from Library of Wow! eBook <www.wowebook.com>

136 CHAPTER 4 Events are where it happens!
code to disallow the entry of any characters but decimal digits into the numeric
fields. The operation of the code should be evident to you with the knowledge
you’ve gained in this chapter, but if not, now would be a good time to go back
and review the key points.

$('input.numeric').live('keypress',function(event){
 if (event.which < 48 || event.which > 57) return false;
});

As mentioned, the date fields aren’t validated. How would you go about ensur-
ing that only valid dates (in whatever format you choose) are entered? It can’t
be done on a character-by-character basis as we did with the numeric fields.

Later in the book, we’ll see how the jQuery UI plugin solves this problem for
us handily, but for now put your event-handling knowledge to the test!
When qualifying fields are added to a filter, the user must click in one of the
fields to give it focus. Not all that friendly! Add code to the example to give
focus to the new controls as they are added.
The use of a global variable to hold the filter count violates our sensibilities and
limits us to one instance of the “widget” per page. Replace it by applying the
data() method to an appropriate element, keeping in mind that we may want
to use this multiple times on a page.
Our form allows the user to specify more than one filter, but we haven’t defined
how these filters are applied on the server. Do they form a disjunction (in which
any one filter must match), or a conjunction (in which all filters must match)?
Usually, if unspecified, a disjunction is assumed. But how would you change the
form to allow the user to specify which?
What other improvements, either to the robustness of the code or the usability
of the interface, would you make? How does jQuery help?

If you come up with ideas that you’re proud of, be sure to visit the Manning web page
for this book at http://www.manning.com/bibeault2, which contains a link to the dis-
cussion forum. You’re encouraged to post your solutions for all to see and discuss!

4.4 Summary
Building upon the jQuery knowledge that we’ve gained so far, this chapter introduced
us to the world of event handling.

 We learned that there are vexing challenges to implementing event handling in
web pages, but such handling is essential for creating pages in interactive web applica-
tions. Not insignificant among those challenges is the fact the there are three event
models that each operate in different ways across the set of modern popularly used
browsers.

 The legacy Basic Event Model, also informally termed the DOM Level 0 Event
Model, enjoys somewhat browser-independent operation to declare event listeners,
but the implementation of the listener functions requires divergent browser-depen-
dent code in order to deal with differences in the Event instance. This event model is
Download from Library of Wow! eBook <www.wowebook.com>

http://www.manning.com/bibeault2

137Summary
probably the most familiar to page authors and assigns event listeners to DOM ele-
ments by assigning references to the listener functions to properties of the ele-
ments—the onclick property, for example.

 Although simple, this model limits us to only one listener for any event type on a
particular DOM element.

 We can avoid this deficiency by using the DOM Level 2 Event Model, a more
advanced and standardized model in which an API binds handlers to their event types
and DOM elements. Versatile though this model is, it is supported only by standards-
compliant browsers such as Firefox, Safari, Camino, and Opera.

 For Internet Explorer, even up to IE 8, an API-based proprietary event model that
provides a subset of the functionality of the DOM Level 2 Event Model is available.

 Coding all event handling in a series of if statements—one clause for the standard
browsers and one for Internet Explorer—is a good way to drive ourselves to early
dementia. Luckily jQuery comes to the rescue and saves us from that fate.

 jQuery provides a general bind() method to establish event listeners of any type
on any element, as well as event-specific convenience methods such as change()and
click(). These methods operate in a browser-independent fashion and normalize the
Event instance passed to the handlers with the standard properties and methods most
commonly used in event listeners.

 jQuery also provides the means to remove event handlers or cause them to be trig-
gered under script control, and it even defines some higher-level methods that make
implementing common event-handling tasks as easy as possible.

 As if all that were not enough, jQuery provides the live() method to assign han-
dlers proactively to elements that may not even exist yet, and allows us to specify cus-
tom methods to easily register handlers to be invoked when those custom events are
published.

 We looked at a few examples of using events in our pages, and explored a compre-
hensive example that demonstrated many of the concepts that we’ve learned up to
this point. In the next chapter, we’ll look at how jQuery builds upon these capabilities
to put animation and animated effects to work for us.
Download from Library of Wow! eBook <www.wowebook.com>

Energizing pages with
animations and effects
Browsers have come a long way since LiveScript—subsequently renamed
JavaScript—was introduced to Netscape Navigator in 1995 to allow scripting of web
pages.

 In those early days, the capabilities afforded to page authors were severely lim-
ited, not only by the minimal APIs, but by the sluggishness of scripting engines and
low-powered systems. The idea of using these limited abilities for animation and
effects was laughable, and for years the only animation was through the use of ani-
mated GIF images (which were generally used poorly, making pages more annoying
than usable).

 My, how times have changed. Today’s browser scripting engines are lightning
fast, running on hardware that was unimaginable 10 years ago, and they offer a rich
variety of capabilities to us as page authors.

This chapter covers
Showing and hiding elements without animation

Showing and hiding elements using core animation effects

Writing custom animations

Controlling animation and function queuing
138

Download from Library of Wow! eBook <www.wowebook.com>

139Showing and hiding elements
 But even though the capabilities exist in low-level operations, JavaScript has no
easy-to-use animation engine, so we’re on our own. Except, of course, that jQuery
comes to our rescue, providing a trivially simple interface for creating all sorts of neat
effects.

 But before we dive into adding whiz-bang effects to our pages, we need to contem-
plate the question, should we? Like a Hollywood blockbuster that’s all special effects
and no plot, a page that overuses effects can elicit a very different, and negative, reac-
tion than what we intend. Be mindful that effects should be used to enhance the usabil-
ity of a page, not hinder it by just showing off.

 With that caution in mind, let’s see what jQuery has to offer.

5.1 Showing and hiding elements
Perhaps the most common type of dynamic effect we’ll want to perform on an ele-
ment, or any group of elements, is the simple act of showing or hiding them. We’ll
get to more fancy animations (like fading an element in or out) in a bit, but some-
times we’ll want to keep it simple and pop elements into existence or make them
instantly vanish!

 The methods for showing and hiding elements are pretty much what we’d expect:
show() to show the elements in a wrapped set, and hide() to hide them. We’re going
to delay presenting their formal syntax for reasons that will become clear in a bit; for
now, let’s concentrate on using these methods with no parameters.

 As simple as these methods may seem, we should keep a few things in mind. First,
jQuery hides elements by changing their style.display properties to none. If an ele-
ment in the wrapped set is already hidden, it will remain hidden but still be returned
for chaining. For example, suppose we have the following HTML fragment:

<div style="display:none;">This will start hidden</div>
<div>This will start shown</div>

If we apply $("div").hide().addClass("fun"), we’ll end up with the following:

<div style="display:none;" class="fun">This will start hidden</div>
<div style="display:none;" class="fun">This will start shown</div>

Note that even though the first element was already hidden, it remains part of the
matched set and takes part in the remainder of the method chain.

 Second, jQuery shows objects by changing the display property from none to
either block or inline. Which of these values is chosen is based upon whether a pre-
viously specified explicit value was set for the element or not. If the value was explicit,
it’s remembered and reverted. Otherwise it’s based upon the default state of the dis-
play property for the target element type. For example, <div> elements will have
their display property set to block, whereas a element’s display property will
be set to inline.

 Let’s see about putting these methods to good use.
Download from Library of Wow! eBook <www.wowebook.com>

140 CHAPTER 5 Energizing pages with animations and effects
5.1.1 Implementing a collapsible “module”

You’re no doubt familiar with sites, some of which aggregate data from other sites,
that present you with various pieces of information in configurable “modules” on
some sort of “dashboard” page. The iGoogle site is a good example, as shown in
figure 5.1.

 This site lets us configure much about how the page is presented, including mov-
ing the modules around, expanding them to full-page size, specifying configuration
information, and even removing them completely. But one thing it doesn’t let us do
(at least at the time of this writing) is to “roll up” a module into its caption bar so that
it takes up less room, without having to remove it from the page.

 Let’s define our own dashboard modules and one-up Google by allowing users to
roll up a module into its caption bar.

 First, let’s take a look at what we want the module to look like in its normal and
rolled-up states, shown in figures 5.2a and 5.2b respectively.

 In figure 5.2a, we’ve created a module with two major sections: a caption bar, and
a body. The body contains the data of the module—in this case, random “Lorem
ipsum” text. The more interesting caption bar contains a caption for the module and
small button that we’ll instrument to invoke the roll-up (and roll-down) functionality.

Figure 5.1 iGoogle is an example of a site that presents aggregated information in a series of
dashboard modules.
Download from Library of Wow! eBook <www.wowebook.com>

141Showing and hiding elements
Once the button is clicked, the body of the module will disappear as if it had been
rolled up into the caption bar. A subsequent click will roll down the body, restoring its
original appearance.

 The HTML markup we’ve used to create the structure of our module is fairly
straightforward. We’ve applied numerous class names to the elements both for identi-
fication as well as for CSS styling.

<div class="module">
 <div class="caption">
 Module Caption

 </div>
 <div class="body">
 Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
 Aliquam eget enim id neque aliquet porttitor. Suspendisse
 nisl enim, nonummy ac, nonummy ut, dignissim ac, justo.
 Aenean imperdiet semper nibh. Vivamus ligula. In in ipsum
 sed neque vehicula rhoncus. Nam faucibus pharetra nisi.
 Integer at metus. Suspendisse potenti. Vestibulum ante
 ipsum primis in faucibus orci luctus et ultrices posuere
 cubilia Curae; Proin quis eros at metus pretium elementum.
 </div>
</div>

Figure 5.2a We’ll create our own
dashboard modules, which consist
of two parts: a bar with a caption
and roll-up button, and a body in
which data can be displayed.

Figure 5.2b When the roll-up
button is clicked, the module body
disappears as if it had been rolled up
into the caption bar.
Download from Library of Wow! eBook <www.wowebook.com>

142 CHAPTER 5 Energizing pages with animations and effects
The entire construct is enclosed in a <div> element tagged with the module class, and
the caption and body constructs are each represented as <div> children with the
classes caption and body.

 In order to give this module the roll-up behavior, we’ll instrument the image in the
caption with a click handler that does all the magic. And with the hide() and show()
methods up our sleeves, giving the module this behavior is considerably easier than
pulling a quarter out from behind someone’s ear.

 Let’s examine the code placed into the ready handler to take care of the roll-up
behavior:

$('div.caption img').click(function(){
 var body$ = $(this).closest('div.module').find('div.body');
 if (body$.is(':hidden')) {
 body$.show();
 }
 else {
 body$.hide();
 }
});

As would be expected, this code first establishes a click handler on the image in the
caption B.

 Within the click handler, we first locate the body associated with the module. We
need to find the specific instance of the module body because, remember, we may
have many modules on our dashboard page, so we can’t just select all elements that
have the body class. We quickly locate the correct body element by finding the closest
module container, and using it as the jQuery context, finding the body within it using
the jQuery expression C:

$(this).closest('div.module').find('div.body')

(If how this expression finds the correct element isn’t clear to you, now would be a
good time to review the information in chapter 2 regarding finding and selecting
elements.)

 Once the body is located, it becomes a simple matter of determining whether the
body is hidden or shown (the jQuery is() method comes in mighty handy here), and
either showing or hiding it as appropriate using the show() D or hide() E method.

NOTE With this code example, we’ve introduced a convention that many peo-
ple use when storing references to a wrapped set within a variable: that of
using the $ character within the variable name. Some may use the $ as a prefix
and some as a suffix (as we have done here—if you think of the $ as represent-
ing the word “wrapper,” the variable name body$ can be read as “body wrap-
per”). In either case, it’s a handy way to remember that the variable contains a
reference to a wrapped set rather than an element or other type of object.

The full code for this page can be found in file chapter5/collapsible.mod-
ule.take.1.html and is shown in listing 5.1. (If you surmise that the “take 1” part of this
filename indicates that we’ll be revisiting this example, you’re right!)

Instruments the button B
Finds the
related
bodyCShows the bodyD

Hides the bodyE
Download from Library of Wow! eBook <www.wowebook.com>

143Showing and hiding elements

<!DOCTYPE html>
<html>
 <head>
 <title>Collapsible Module — Take 1</title>
 <link rel="stylesheet" type="text/css" href="../styles/core.css" />
 <link rel="stylesheet" type="text/css" href="module.css" />
 <script type="text/javascript" src="../scripts/jquery-1.4.js"></script>
 <script type="text/javascript">
 $(function() {

 $('div.caption img').click(function(){
 var body$ = $(this).closest('div.module').find('div.body');
 if (body$.is(':hidden')) {
 body$.show();
 }
 else {
 body$.hide();
 }
 });

 });
 </script>
 </head>

 <body class="plain">

 <div class="module">
 <div class="caption">
 Module Caption

 </div>
 <div class="body">
 Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
 Aliquam eget enim id neque aliquet porttitor. Suspendisse
 nisl enim, nonummy ac, nonummy ut, dignissim ac, justo.
 Aenean imperdiet semper nibh. Vivamus ligula. In in ipsum
 sed neque vehicula rhoncus. Nam faucibus pharetra nisi.
 Integer at metus. Suspendisse potenti. Vestibulum ante
 ipsum primis in faucibus orci luctus et ultrices posuere
 cubilia Curae; Proin quis eros at metus pretium elementum.
 </div>
 </div>

 </body>

</html>

That wasn’t difficult at all, was it? But as it turns out, it can be even easier!

5.1.2 Toggling the display state of elements

Toggling the display state of elements between revealed and hidden—as we did for
the collapsible module example—is such a common occurrence that jQuery defines a
method named toggle() that makes it even easier.

Listing 5.1 The first implementation of our collapsible module
Download from Library of Wow! eBook <www.wowebook.com>

144 CHAPTER 5 Energizing pages with animations and effects
 Let’s apply this method to the collapsible module and see how it helps to simplify
the code of listing 5.1. Listing 5.2 shows only the ready handler for the refactored
page (no other changes are necessary) with the changes highlighted in bold. The
complete page code can be found in file chapter5/collapsible.module.take.2.html.

$(function() {

 $('div.caption img').click(function(){
 $(this).closest('div.module').find('div.body').toggle();
 });

});

Note that we no longer need the conditional statement to determine whether to hide
or show the module body; toggle()takes care of swapping the displayed state on our
behalf. This allows us to simplify the code quite a bit, and the need to store the body
reference in a variable simply vanishes.

 Instantaneously making elements appear and disappear is handy, but sometimes
we want the transition to be less abrupt. Let’s see what’s available for that.

5.2 Animating the display state of elements
Human cognitive ability being what it is, making items pop into and out of existence
instantaneously can be jarring to us. If we blink at the wrong moment, we could miss
the transition, leaving us to wonder, “What just happened?”

 Gradual transitions of a short duration help us know what’s changing and how we
got from one state to the other—and that’s where the jQuery core effects come in.
There are three sets of effect types:

Show and hide (there’s a bit more to these methods than we let on in section 5.1)
Fade in and fade out
Slide down and slide up

Let’s look more closely at each of these effect sets.

5.2.1 Showing and hiding elements gradually

The show(), hide(), and toggle()methods are a tad more complex than we led you
to believe in the previous section. When called with no parameters, these methods
effect a simple manipulation of the display state of the wrapped elements, causing
them to instantaneously be revealed or hidden from the display. But when passed
parameters, these effects can be animated so that the changes in display status of the
affected elements take place over a period of time.

 With that, we’re now ready to look at the full syntaxes of these methods.

Listing 5.2 The collapsible module code, simplified with toggle()
Download from Library of Wow! eBook <www.wowebook.com>

145Animating the display state of elements

Method syntax: hide

hide(speed,callback)
Causes the elements in the wrapped set to become hidden. If called with no parameters, the
operation takes place instantaneously by setting the display style property value of the
elements to none. If a speed parameter is provided, the elements are hidden over a period of
time by adjusting their width, height, and opacity downward to zero, at which time their display
style property value is set to none to remove them from the display.
An optional callback can be specified, which is invoked when the animation is complete.

Parameters
speed (Number|String) Optionally specifies the duration of the effect as a number of

milliseconds or as one of the predefined strings: “slow”, “normal”, or “fast”. If
omitted, no animation takes place, and the elements are immediately removed
from the display.

callback (Function) An optional function invoked when the animation completes. No
parameters are passed to this function, but the function context (this) is set to
the element that was animated. The callback is fired for each element that
undergoes animation.

Returns
The wrapped set.

Method syntax: show

show(speed,callback)
Causes any hidden elements in the wrapped set to be revealed. If called with no parameters, the
operation takes place instantaneously by setting the display style property value of the
elements to an appropriate setting (one of block or inline).
If a speed parameter is provided, the elements are revealed over a specified duration by adjusting
their width, height, and opacity upward to full size and opacity.
An optional callback can be specified that’s invoked when the animation is complete.

Parameters
speed (Number|String) Optionally specifies the duration of the effect as a number of

milliseconds or as one of the predefined strings: “slow”, “normal”, or “fast”. If
omitted, no animation takes place and the elements are immediately revealed in
the display.

callback (Function) An optional function invoked when the animation is complete. No
parameters are passed to this function, but the function context (this) is set to
the element that was animated. The callback is fired for each element that
undergoes animation.

Returns
The wrapped set.
Download from Library of Wow! eBook <www.wowebook.com>

146 CHAPTER 5 Energizing pages with animations and effects

We can exert a bit more control over the toggling process with another variant of the
toggle() method:

Let’s do a third take on the collapsible module, animating the opening and closing of
the sections.

 Given the previous information, you’d think that the only change we’d need to
make to the code in listing 5.2 would be to change the call to the toggle() method to

toggle('slow')

And you’d be right.
 But not so fast! Because that was just too easy, let’s take the opportunity to also add

some whizz-bang to the module.
 Let’s say that, to give the user an unmistakable visual clue, we want the module’s

caption to display a different background when it’s in its rolled-up state. We could
make the change before firing off the animation, but it’d be much more suave to wait
until the animation is finished.

 We can’t just make the call right after the animation method call because anima-
tions don’t block. The statements following the animated method call would execute
immediately, probably even before the animation has had a chance to commence.

Method syntax: toggle

toggle(speed,callback)
Performs show() on any hidden wrapped elements and hide() on any non-hidden wrapped
elements. See the syntax description of those methods for their semantics.

Parameters
speed (Number|String) Optionally specifies the duration of the effect as a number of

milliseconds or as one of the predefined strings: “slow”, “normal”, or “fast”. If
omitted, no animation takes place.

callback (Function) An optional function invoked when the animation is complete. No
parameters are passed to this function, but the function context (this) is set to
the element that was animated. The callback is fired for each element that
undergoes animation.

Returns

The wrapped set.

Method syntax: toggle

toggle(condition)
Shows or hides the matched elements based upon the evaluation of the passed condition. If
true, the elements are shown; otherwise, they’re hidden.

Parameters
condition (Boolean) Determines whether elements are shown (if true), or hidden (if

false).

Returns
The wrapped set.
Download from Library of Wow! eBook <www.wowebook.com>

147Animating the display state of elements
 Rather, that’s where the callback that we can register with the toggle() method
comes in.

 The approach that we’ll take is that, after the animation is complete, we’ll add a
class name to the module to indicate that it’s rolled up, and remove the class name
when it isn’t rolled up. CSS rules will take care of the rest.

 Your initial thoughts might have led you to think of using css() to add a back-
ground style property directly to the caption, but why use a sledgehammer when we
have a scalpel?

 The “normal” CSS rule for the module caption (found in file chapter5/mod-
ule.css) is as follows:

div.module div.caption {
 background: black url('module.caption.backg.png');
 ...
}

We’ve also added another rule:

div.module.rolledup div.caption {
 background: black url('module.caption.backg.rolledup.png');
}

This second rule causes the background image of the caption to change whenever its
parent module possesses the rolledup class. So, in order to effect the change, all we
have to do is add or remove the rolledup class to the module at the appropriate
points.

 Listing 5.3 shows the new ready handler code that makes that happen.

$(function() {

 $('div.caption img').click(function(){
 $(this).closest('div.module').find('div.body')
 .toggle('slow',function(){
 $(this).closest('div.module')
 .toggleClass('rolledup',$(this).is(':hidden'));
 });
 });

});

The page with these changes can be found in file chapter5/collaps-
ible.list.take.3.html.

 Knowing how much people like us love to tinker, we’ve set up a handy tool that we’ll
use to further examine the operation of these and the remaining effects methods.

INTRODUCING THE JQUERY EFFECTS LAB PAGE

Back in chapter 2, we introduced the concept of lab pages to help us experiment with
using jQuery selectors. For this chapter, we’ve set up a jQuery Effects Lab Page for
exploring the operation of the jQuery effects in file chapter5/lab.effects.html.

Listing 5.3 Animated version of the module, now with a magically changing caption!
Download from Library of Wow! eBook <www.wowebook.com>

148 CHAPTER 5 Energizing pages with animations and effects
Loading this page into your browser results in the display of figure 5.3.
 This Lab consists of two main panels: a control panel in which we’ll specify which

effect will be applied, and one that contains four test subject elements upon which the
effects will act.

 “Are they daft?” you might be thinking. “There are only two test subjects.”
 No, your authors haven’t lost it yet. There are four elements, but two of them

(another <div> with text and another image) are initially hidden.
 Let’s use this page to demonstrate the operations of the methods we’ve discussed

to this point. Display the page in your browser, and follow along with the ensuing
exercises:

Exercise 1—With the controls left as is after the initial page load, click the Apply
button. This will execute a show() method with no parameters. The expression
that was applied is displayed below the Apply button for your information. Note
how the two initially hidden test subject elements appear instantly. If you’re

Figure 5.3 The initial state of the jQuery Effects Lab Page, which will help us examine the operation of
the jQuery effects methods.
Download from Library of Wow! eBook <www.wowebook.com>

149Animating the display state of elements
wondering why the belt image on the far right appears a bit faded, its opacity
has been purposefully set to 50 percent.
Exercise 2—Select the Hide radio button, and click Apply to execute a parame-
ter-less hide() method. All of the test subjects immediately vanish. Take special
notice that the pane in which they resided has tightened up. This indicates that
the elements have been completely removed from the display rather than
merely made invisible.

NOTE When we say that an element has been removed from the display (here,
and in the remainder of our discussion about effects), we mean that the ele-
ment is no longer being taken into account by the browser’s layout manager
by setting its CSS display style property to none. It doesn’t mean that the ele-
ment has been removed from the DOM tree; none of the effects will ever
cause an element to be removed from the DOM.

Exercise 3—Select the Toggle radio button, and click Apply. Click Apply again.
And again. You’ll note that each subsequent execution of toggle() flips the
presence of the test subjects.
Exercise 4—Reload the page to reset everything to the initial conditions (in Fire-
fox and other Gecko browsers, set focus to the address bar and press the Enter
key—simply clicking the reload button won’t reset the form elements). Select
Toggle, and click Apply. Note how the two initially visible subjects vanish and
the two that were hidden appear. This demonstrates that the toggle() method
applies individually to each wrapped element, revealing the ones that are hid-
den and hiding those that aren’t.
Exercise 5—In this exercise, we’ll move into the realm of animation. Refresh the
page, leave Show selected, and select Slow for the Speed setting. Click Apply,
and carefully watch the test subjects. The two hidden elements, rather than
popping into existence, gradually grow from their upper-left corners. If you
want to really see what’s going on, refresh the page, select Milliseconds for the
speed and enter 10000 for the speed value. This will extend the duration of the
effect to 10 (excruciating) seconds and give you plenty of time to observe the
behavior of the effect.
Exercise 6—Choosing various combinations of Show, Hide, and Toggle, as well as
various speeds, experiment with these effects until you feel you have a good
handle on how they operate.

Armed with the jQuery Effects Lab Page, and the knowledge of how this first set of
effects operates, let’s take a look at the next set of effects.

5.2.2 Fading elements into and out of existence

If you watched the operation of the show()and hide()effects carefully, you will have
noted that they scaled the size of the elements (either up or down as appropriate) and
adjusted the opacity of the elements as they grew or shrank. The next set of effects,
fadeIn()and fadeOut(), only affects the opacity of the elements.
Download from Library of Wow! eBook <www.wowebook.com>

150 CHAPTER 5 Energizing pages with animations and effects
 Other than the lack of scaling, these methods work in a fashion similar to the ani-
mated forms of show() and hide(). The syntaxes of these methods are as follows:

Let’s have some more fun with the jQuery Effects Lab Page. Display the Lab, and run
through a set of exercises similar to those in the previous section but using the Fade
In and Fade Out selections (don’t worry about Fade To for now; we’ll attend to that
soon enough).

 It’s important to note that when the opacity of an element is adjusted, the jQuery
hide(), show(), fadeIn(), and fadeOut()effects remember the original opacity of an
element and honor its value. In the Lab, we purposefully set the initial opacity of the
belt image at the far right to 50 percent before hiding it. Throughout all the opacity
changes that take place when applying the jQuery effects, this original value is never
stomped on.

Method syntax: fadeIn

fadeIn(speed,callback)
Causes any matched elements that are hidden to be shown by gradually changing their opacity to
their natural value. This value is either the opacity originally applied to the element, or 100
percent. The duration of the change in opacity is determined by the speed parameter. Only hidden
elements are affected.

Parameters
speed (Number|String) Specifies the duration of the effect as a number of milliseconds

or as one of the predefined strings: “slow”, “normal”, or “fast”. If omitted, the
default is “normal”.

callback (Function) An optional function invoked when the animation completes. No
parameters are passed to this function, but the function context (this) is set to
the element that was animated. This callback is fired individually for each
animated element.

Returns
The wrapped set.

Method syntax: fadeOut

fadeOut(speed,callback)
Causes any matched elements that aren’t hidden to be removed from the display by gradually
changing their opacity to 0 percent and then removing the element from the display. The duration
of the change in opacity is determined by the speed parameter. Only displayed elements are
affected.

Parameters
speed (Number|String) Specifies the duration of the effect as a number of milliseconds

or as one of the predefined strings: “slow”, “normal”, or “fast”. If omitted, the
default is “normal”.

callback (Function) An optional function invoked when the animation completes. No
parameters are passed to this function, but the function context (this) is set to
the element that was animated. This callback is fired individually for each
animated element.

Returns
The wrapped set.
Download from Library of Wow! eBook <www.wowebook.com>

151Animating the display state of elements
 Run though additional exercises in the Lab until you’re convinced that this is so
and are comfortable with the operation of the fade effects.

 Another effect that jQuery provides is via the fadeTo() method. This effect adjusts
the opacity of the elements like the previously examined fade effects, but it never
removes the elements from the display. Before we start playing with fadeTo() in the
Lab, here’s its syntax.

Unlike the other effects that adjust opacity while hiding or revealing elements,
fadeTo() doesn’t remember the original opacity of an element. This makes sense
because the whole purpose of this effect is to explicitly change the opacity to a spe-
cific value.

 Bring up the Lab page, and cause all elements to be revealed (you should know
how by now). Then work through the following exercises:

Exercise 1—Select Fade To and a speed value slow enough for you to observe the
behavior; 4000 milliseconds is a good choice. Now set the Opacity field (which
expects a percentage value between 0 and 100, converted to 0.0 through 1.0
when passed to the method) to 10, and click Apply. The test subjects will fade to
10 percent opacity over the course of four seconds.
Exercise 2—Set the opacity to 100, and click Apply. All elements, including the
initially semitransparent belt image, are adjusted to full opaqueness.
Exercise 3—Set the opacity to 0, and click Apply. All elements fade away to invisi-
bility, but note that once they’ve vanished, the enclosing module doesn’t
tighten up. Unlike the fadeOut() effect, fadeTo() never removes the elements
from the display, even when they’re fully invisible.

Continue experimenting with the Fade To effect until you’ve mastered its workings.
Then we’ll be ready to move on to the next set of effects.

Method syntax: fadeTo

fadeTo(speed,opacity,callback)
Gradually adjusts the opacity of the wrapped elements from their current settings to the new
setting specified by opacity.

Parameters
speed (Number|String) Specifies the duration of the effect as a number of milliseconds

or as one of the predefined strings: “slow”, “normal”, or “fast”. If omitted, the
default is “normal”.

opacity (Number) The target opacity to which the elements will be adjusted, specified as a
value from 0.0 to 1.0.

callback (Function) An optional function invoked when the animation completes. No
parameters are passed to this function, but the function context (this) is set to
the element that was animated. This callback is fired individually for each
animated element.

Returns
The wrapped set.
Download from Library of Wow! eBook <www.wowebook.com>

152 CHAPTER 5 Energizing pages with animations and effects
5.2.3 Sliding elements up and down

Another set of effects that hide or show elements—slideDown() and slideUp()—also
works in a similar manner to the hide() and show() effects, except that the elements
appear to slide down from their tops when being revealed and to slide up into their
tops when being hidden.

 As with hide()and show(), the slide effects have a related method that will toggle
the elements between hidden and revealed: slideToggle(). The by-now-familiar syn-
taxes for these methods follow.

Method syntax: slideDown

slideDown(speed,callback)
Causes any matched elements that are hidden to be shown by gradually increasing their vertical
size. Only hidden elements are affected.

Parameters
speed (Number|String) Specifies the duration of the effect as a number of milliseconds

or as one of the predefined strings: “slow”, “normal”, or “fast”. If omitted, the
default is “normal”.

callback (Function) An optional function invoked when the animation completes. No
parameters are passed to this function, but the function context (this) is set to
the element that was animated. This callback is fired individually for each
animated element.

Returns
The wrapped set.

Method syntax: slideUp

slideUp(speed,callback)
Causes any matched elements that are displayed to be removed from the display by gradually
decreasing their vertical size.

Parameters
speed (Number|String) Specifies the duration of the effect as a number of milliseconds

or as one of the predefined strings: “slow”, “normal”, or “fast”. If omitted, the
default is “normal”.

callback (Function) An optional function invoked when the animation completes. No
parameters are passed to this function, but the function context (this) is set to
the element that was animated. This callback is fired individually for each
animated element.

Returns
The wrapped set.
Download from Library of Wow! eBook <www.wowebook.com>

153Animating the display state of elements

Except for the manner in which the elements are revealed and hidden, these effects
act similarly to the other show and hide effects. Convince yourself of this by displaying
the jQuery Effects Lab Page and running through exercises like those we applied
using the other effects.

5.2.4 Stopping animations

We may have a reason now and again to stop an animation once it has started. This
could be because a user event dictates that something else should occur or because we
want to start a completely new animation. The stop() command will achieve this for us.

Note that any changes that have already taken place for any animated elements will
remain in effect. If we want to restore the elements to their original states, it’s our
responsibility to change the CSS values back to their starting values using the css()
method or similar methods.

 By the way, there’s also a global flag that we can use to completely disable all ani-
mations. Setting the flag jQuery.fx.off to true will cause all effects to take place
immediately without animation. We’ll cover this flag more formally in chapter 6 with
the other jQuery flags.

Method syntax: slideToggle

slideToggle(speed,callback)
Performs slideDown() on any hidden wrapped elements and slideUp() on any displayed
wrapped elements. See the syntax description of those methods for their semantics.

Parameters
speed (Number|String) Optionally specifies the duration of the effect as a number of

milliseconds or as one of the predefined strings: “slow”, “normal”, or “fast”. If
omitted, the default is “normal”.

callback (Function) An optional function invoked when the animation completes. No
parameters are passed to this function, but the function context (this) is set to
the element that was animated. This callback is fired individually for each
animated element.

Returns
The wrapped set.

Command syntax: stop

stop(clearQueue,gotoEnd)
Halts any animations that are currently in progress for the elements in the matched set.

Parameters
clearQueue (Boolean) If specified and set to true, not only stops the current animation,

but any other animations waiting in the animation queue. (Animation queue?
We’ll get to that shortly ...)

gotoEnd (Boolean) If specified and set to true, advances the current animation to its
logical end (as opposed to merely stopping it).

Returns
The wrapped set.
Download from Library of Wow! eBook <www.wowebook.com>

154 CHAPTER 5 Energizing pages with animations and effects
 Now that we’ve seen the effects built into core jQuery, let’s investigate writing our
own!

5.3 Creating custom animations
The number of core effects supplied with jQuery is purposefully kept small, in order
to keep jQuery’s core footprint to a minimum, with the expectation that page authors
would use plugins (including jQuery UI which we will begin to explore in chapter 9)
to add more animations at their discretion. It’s also a surprisingly simple matter to
write our own animations.

 jQuery publishes the animate() wrapper method, which allows us to apply our own
custom animated effects to the elements of a wrapped set. Let’s take a look at its syntax.

Method syntax: animate

animate(properties,duration,easing,callback)
animate(properties,options)
Applies an animation, as specified by the properties and easing parameters, to all members
of the wrapped set. An optional callback function can be specified that’s invoked when the
animation is complete. An alternative format specifies a set of options in addition to the
properties.

Parameters
properties (Object) An object hash that specifies the values that supported CSS styles

should reach at the end of the animation. The animation takes place by
adjusting the values of the style properties from the current value for an
element to the value specified in this object hash. (Be sure to use camel case
when specifying multiword properties.)

duration (Number|String) Optionally specifies the duration of the effect as a number of
milliseconds or as one of the predefined strings: “slow”, “normal”, or “fast”. If
omitted or specified as 0, no animation takes place and the elements’
specified properties are immediately, and synchronously, set to the target
values.

easing (String) The optional name of a function to perform easing of the animation.
Easing functions must be registered by name and are often provided by
plugins. Core jQuery supplies two easing functions registered as “linear” and
“swing”. (See chapter 9 for the list of easing functions provided by jQuery UI.)

callback (Function) An optional function invoked when the animation completes. No
parameters are passed to this function, but the function context (this) is set
to the element that was animated. This callback is fired individually for each
animated element.

options (Object) Specifies the animation parameter values using an object hash. The
supported properties are as follows:

- duration—See previous description of duration parameter.
- easing—See previous description of easing parameter.
- complete—Function invoked when the animation completes.
- queue—If false, the animation isn’t queued and begins running

immediately.
- step—A callback function called at each step of the animation. This

callback is passed the step index and an internal effects object (that
doesn’t contain much of interest to us as page authors). The function
context is set to the element under animation.

Returns
The wrapped set.
Download from Library of Wow! eBook <www.wowebook.com>

155Creating custom animations
We can create custom animations by supplying a set of CSS style properties and target
values that those properties will converge towards as the animation progresses. Anima-
tions start with an element’s original style value and proceed by adjusting that style
value in the direction of the target value. The intermediate values that the style
achieves during the effect (automatically handled by the animation engine) are deter-
mined by the duration of the animation and the easing function.

 The specified target values can be absolute values, or we can specify relative values
from the starting point. To specify relative values, prefix the value with += or -= to
indicate relative target values in the positive or negative direction, respectively.

 The term easing is used to describe the manner in which the processing and pace
of the frames of the animation are handled. By using some fancy math on the dura-
tion of the animation and current time position, some interesting variations to the
effects are possible. The subject of writing easing functions is a complex, niche topic
that’s usually only of interest to the most hard-core of plugin authors; we’re not going
to delve into the subject of custom easing functions in this book. We'll be taking a look
at a lot more easing functions in chapter 9 when we examine jQuery UI.

 By default, animations are added to a queue for execution (much more on that
coming up); applying multiple animations to an object will cause them to run serially.
If you’d like to run animations in parallel, set the queue option to false.

 The list of CSS style properties that can be animated is limited to those that accept
numeric values for which there is a logical progression from a start value to a target
value. This numeric restriction is completely understandable—how would we envision
the logical progress from a source value to an end value for a non-numeric property
such as background-image? For values that represent dimensions, jQuery assumes the
default unit of pixels, but we can also specify em units or percentages by including the
em or % suffixes.

 Frequently animated style properties include top, left, width, height, and opac-
ity. But if it makes sense for the effect we want to achieve, numeric style properties
such as font size, margin, padding, and border dimensions can also be animated.

NOTE jQuery UI adds the ability to animate CSS properties that specify a color
value. We'll learn all about that when we discuss jQuery UI effects in chapter 9.

In addition to specific values for the target properties, we can also specify one of the
strings “hide”, “show”, or “toggle”; jQuery will compute the end value as appropriate
to the specification of the string. Using “hide” for the opacity property, for example,
will result in the opacity of an element being reduced to 0. Using any of these special
strings has the added effect of automatically revealing or removing the element from
the display (like the hide() and show() methods), and it should be noted that “tog-
gle” remembers the initial state so that it can be restored on a subsequent “toggle”.

 Did you notice that when we introduced the core animations that there was no tog-
gling method for the fade effects? That’s easily solved using animate() and “toggle” to
create a simple custom animation as follows:

$('.animateMe').animate({opacity:'toggle'},'slow');
Download from Library of Wow! eBook <www.wowebook.com>

156 CHAPTER 5 Energizing pages with animations and effects
Taking this to the next logical step—creating a wrapper function—could be coded as
follows:

$.fn.fadeToggle = function(speed){
 return this.animate({opacity:'toggle'},speed);
};

Now, let’s try our hand at writing a few more custom animations.

5.3.1 A custom scale animation

Consider a simple scale animation in which we want to adjust the size of the elements
to twice their original dimensions. We’d write such an animation as shown in
listing 5.4.

$('.animateMe').each(function(){
 $(this).animate({
 width: $(this).width() * 2,
 height: $(this).height() * 2
 },
 2000
);
});

To implement this animation, we iterate over all the elements in the wrapped set via
each() to apply the animation individually to each matched element B. This is
important because the property values that we need to specify for each element are
based upon the individual dimensions for that element C. If we always knew that we’d
be animating a single element (such as if we were using an id selector) or applying
the exact same set of values to each element, we could dispense with each() and ani-
mate the wrapped set directly.

 Within the iterator function, the animate() method is applied to the element
(identified via this) with style property values for width and height set to double the
element’s original dimensions. The result is that over the course of two seconds (as
specified by the duration parameter of 2000 D), the wrapped elements (or element)
will grow from their original size to twice that size.

 Now let’s try something a bit more extravagant.

5.3.2 A custom drop animation

Let’s say that we want to conspicuously animate the removal of an element from the
display, perhaps because it’s vitally important to convey to users that the item being
removed is gone and that they should make no mistake about it. The animation we’ll
use to accomplish this will make it appear as if the element drops off the page, disap-
pearing from the display as it does so.

 If we think about it for a moment, we can figure out that by adjusting the top
position of the element we can make it move down the page to simulate the drop;
adjusting the opacity will make it seem to vanish as it does so. And finally, when all

Listing 5.4 A custom scale animation

Iterates over each
matched elementB

Specifies
individual
target valuesC

Sets durationD
Download from Library of Wow! eBook <www.wowebook.com>

157Creating custom animations
that’s done, we can remove the element from the display (similar to the animated
hide() method).

 We can accomplish this drop effect with the code in listing 5.5.

$('.animateMe').each(function(){
 $(this)
 .css('position','relative')
 .animate(
 {
 opacity: 0,
 top: $(window).height() - $(this).height() -
 $(this).position().top
 },
 'slow',
 function(){ $(this).hide(); }
);
});

There’s a bit more going on here than in our previous custom effect. We once again
iterate over the element set, this time adjusting the position and opacity of the ele-
ments. But to adjust the top value of an element relative to its original position, we
first need to change its CSS position style property value to relative B.

 Then, for the animation, we specify a target opacity of 0 and a computed top
value. We don’t want to move an element so far down the page that it moves below the
window’s bottom; this could cause scroll bars to be displayed where none may have
been before, possibly distracting users. We don’t want to draw their attention away
from the animation—grabbing their attention is why we’re animating in the first
place! So we use the height and vertical position of the element, as well as the height
of the window, to compute how far down the page the element should drop C.

 When the animation is complete, we want to remove the element from the display,
so we specify a callback routine D that applies the non-animated hide() method to
the element (which is available to the function as its function context).

NOTE We did a little more work than we needed to in this animation, just so
we could demonstrate doing something that needs to wait until the animation
is complete in the callback function. If we were to specify the value of the opac-
ity property as “hide” rather than 0, the removal of the element(s) at the end
of the animation would be automatic, and we could dispense with the callback.

Now let’s try one more type of “make it go away” effect for good measure.

5.3.3 A custom puff animation

Rather than dropping elements off the page, let’s say we want an effect that makes it
appear as if the element dissipates away into thin air like a puff of smoke. To animate
such an effect, we can combine a scale effect with an opacity effect, growing the ele-
ment while fading it away. One issue we need to deal with for this effect is that this

Listing 5.5 A custom drop animation

Dislodges element
from static flow

B

Computes drop
distance

C

Removes element
from display

D

Download from Library of Wow! eBook <www.wowebook.com>

158 CHAPTER 5 Energizing pages with animations and effects
dissipation would not fool the eye if we let the element grow in place with its upper-
left corner anchored. We want the center of the element to stay in the same place as it
grows, so in addition to its size we also need to adjust the position of the element as
part of the animation.

 The code for our puff effect is shown in listing 5.6.

$('.animateMe').each(function(){
 var position = $(this).position();
 $(this)
 .css({position: 'absolute',
 top: position.top,
 left: position.left})
 .animate(
 {
 opacity: 'hide',
 width: $(this).width() * 5,
 height: $(this).height() * 5,
 top: position.top - ($(this).height() * 5 / 2),
 left: position.left - ($(this).width() * 5 / 2)
 },
 'normal');
});

In this animation, we decrease the opacity to 0 while growing the element to five times
its original size and adjusting its position by half that new size, resulting in the center
of the element remaining in the same position C. We don’t want the elements sur-
rounding the animated element to be pushed out while the target element is growing,
so we take it out of the layout flow completely by changing its position to absolute
and explicitly setting its position coordinates B.

 Because we specified “hide” for the opacity value, the elements are automatically
hidden (removed from the display) once the animation is complete.

 Each of these three custom effects can be observed by loading the page at
chapter5/custom.effects.html, whose display is shown in figure 5.4.

Listing 5.6 A custom puff animation

Dislodges element
from static flow

B

Adjusts element size,
position, opacity

C

Figure 5.4 The custom effects
we developed, Scale, Drop, and
Puff, can be observed in action
using the buttons provided on this
example page.
Download from Library of Wow! eBook <www.wowebook.com>

159Animations and Queuing
We purposefully kept the browser window to a minimum size for the screenshot, but
you’ll want to make the window bigger when running this page to properly observe
the behavior of the effects. And although we’d love to show you how these effects
behave, screenshots have obvious limitations. Nevertheless, figure 5.5 shows the puff
effect in progress.

 We’ll leave it to you to try out the various effects on this page and observe their
behavior.

 Up until this point, all of the examples we’ve examined have used a single anima-
tion method. Let’s discuss how things work when we use more than one.

5.4 Animations and Queuing
We’ve seen how multiple properties of elements can be animated using a single ani-
mation method, but we haven’t really examined how animations behave when we call
simultaneous animation methods.

 In this section we’ll examine just how animations behave in concert with each
other.

5.4.1 Simultaneous animations

What would you expect to happen if we were to execute the following code?

$('#testSubject').animate({left:'+=256'},'slow');
$('#testSubject').animate({top:'+=256'},'slow');

We know that the animate() method doesn’t block while its animation is running on
the page; nor do any of the other animation methods. We can prove that to ourselves
by experimenting with this code block:

Figure 5.5 The Puff effect expands and moves the image while simultaneously
reducing its opacity.
Download from Library of Wow! eBook <www.wowebook.com>

160 CHAPTER 5 Energizing pages with animations and effects
say(1);
$('#testSubject').animate({left:'+=256'},'slow');
say(2);

Recall that we introduced the say() function in chapter 4 as a way to spit messages
onto an on-page “console” in order to avoid alerts (which would most definitely screw
up our observation of the experiment).

 If we were to execute this code, we’d see that the messages “1” and “2” are emitted
immediately, one after the other, without waiting for the animation to complete.

 So, what would we expect to happen when we run the code with two animation
method calls? Because the second method isn’t blocked by the first, it stands to reason
that both animations fire off simultaneously (or within a few milliseconds of each
other), and that the effect on the test subject would be the combination of the two
effects. In this case, because one effect is adjusting the left style property, and the
other the top style property, we might expect that the result would be a meandering
diagonal movement of the test subject.

 Let’s put that to the test. In file chapter5/revolutions.html we’ve put together an
experiment that sets up two images (one of which is to be animated), a button to start
the experiment, and a “console” in which the say() function will write its output. Fig-
ure 5.6 shows its initial state.

 The Start button is instrumented as shown in listing 5.7.

$('#startButton').click(function(){
 say(1);
 $("img[alt='moon']").animate({left:'+=256'},2500);
 say(2);
 $("img[alt='moon']").animate({top:'+=256'},2500);

Listing 5.7 Instrumentation for multiple simultaneous animations

Figure 5.6 Initial state of the page where we’ll observe the behavior of multiple,
simultaneous animations
Download from Library of Wow! eBook <www.wowebook.com>

161Animations and Queuing
 say(3);
 $("img[alt='moon']").animate({left:'-=256'},2500);
 say(4);
 $("img[alt='moon']").animate({top:'-=256'},2500);
 say(5);
});

In the click handler for the button, we fire off four
animations, one after the other, interspersed with
calls to say() that show us when the animation
calls were fired off.

 Bring up the page, and click the Start button.
 As expected, the console messages “1” through

“5” immediately appear on the console as shown in
figure 5.7, each firing off a few milliseconds after
the previous one.

 But what of the animations? If we examine the
code in listing 5.7, we can see that we have two animations changing the top property
and two animations changing the left property. In fact, the animations for each
property are doing the exact opposite of each other. So what should we expect? Might
they just cancel each other out, leaving the Moon (our test subject) to remain com-
pletely still?

 No. Upon clicking Start, we see that each animation happens serially, one after the
other, such that the Moon makes a complete and orderly revolution around the Earth
(albeit in a very unnatural square orbit that would have made Kepler’s head explode).

 What’s going on? We’ve proven via the console messages that the animations
aren’t blocking, yet they execute serially just as if they were (at least with respect to
each other).

 What’s happening is that, internally, jQuery is queuing up the animations and exe-
cuting them serially on our behalf.

 Refresh the Kepler’s Dilemma page to clear the console, and click the Start button
three times in succession. (Pause between clicks just long enough to avoid double-
clicks.) You’ll note how 15 messages get immediately sent to the console, indicating
that our click handler has executed three times, and then sit back as the Moon makes
three orbits around the Earth.

 Each of the 12 animations is queued up by jQuery and executed in order. jQuery
maintains a queue on each animated element named fx just for this purpose. (The
significance of the queue having a name will become clear in the next section.)

 The queuing of animations in this manner means that we can have our cake and
eat it too! We can affect multiple properties simultaneously by using a single ani-
mate() method that specifies all the animated properties, and we can serially execute
any animations we want by simply calling them in order.

 What’s even better is that jQuery makes it possible for us to create our own execu-
tion queues, not just for animations, but for whatever purposes we want. Let’s learn
about that.

Figure 5.7 The console messages
appear in rapid succession, proving
that the animation methods aren’t
blocking until completion.
Download from Library of Wow! eBook <www.wowebook.com>

162 CHAPTER 5 Energizing pages with animations and effects
5.4.2 Queuing functions for execution

Queuing up animations for serial execution is an obvious use for function queues. But
is there a real benefit? After all, the animation methods allow for completion call-
backs, so why not just fire off the next animation in the callback of the previous ani-
mation?

ADDING FUNCTIONS TO A QUEUE

Let’s review the code fragment of listing 5.7 (minus the say() invocations for clarity):

$("img[alt='moon']").animate({left:'+=256'},2500);
$("img[alt='moon']").animate({top:'+=256'},2500);
$("img[alt='moon']").animate({left:'-=256'},2500);
$("img[alt='moon']").animate({top:'-=256'},2500);

Compare that to the equivalent code that would be necessary without function queu-
ing, using the completion callbacks:

$('#startButton').click(function(){
 $("img[alt='moon']").animate({left:'+=256'},2500,function(){
 $("img[alt='moon']").animate({top:'+=256'},2500,function(){
 $("img[alt='moon']").animate({left:'-=256'},2500,function(){
 $("img[alt='moon']").animate({top:'-=256'},2500);
 });
 });
 });
});

It’s not that the callback variant of the code is that much more complicated, but it’d
be hard to argue that the original code isn’t a lot easier to read (and to write in the
first place). And if the bodies of the callback functions were to get substantially more
complicated ... Well, it’s easy to see how being able to queue up the animations makes
the code a lot less complex.

 So what if we wanted to do the same thing with our own functions? Well, jQuery
isn’t greedy about its queues; we can create our own to queue up any functions we’d
like to have executed in serial order.

 Queues can be created on any element, and distinct queues can be created by
using unique names for them (except for fx which is reserved for the effects queue).
The method to add a function instance to a queue is, unsurprisingly, queue(), and it
has three variants:

Method syntax: queue

queue(name)
queue(name,function)
queue(name,queue)
The first form returns any queue of the passed name already established on the first element in
the matched set as an array of functions.
The second form adds the passed function to the end of the named queue for all elements in the
matched set. If such a named queue doesn’t exist on an element, it’s created.
The last form replaces any existing queue on the matched elements with the passed queue.
Download from Library of Wow! eBook <www.wowebook.com>

163Animations and Queuing
The queue() method is most often used to add functions to the end of the named
queue, but it can also be used to fetch any existing functions in a queue, or to replace
the list of functions in a queue. Note that the array form, in which an array of func-
tions is passed to queue(), can’t be used to add multiple functions to the end of a
queue because any existing queued functions are removed. (In order to add functions
to the queue, we’d fetch the array of functions, merge the new functions, and set the
modified array back into the queue.)

EXECUTING THE QUEUED FUNCTIONS

OK, so now we can queue functions up for execution. That’s not all that useful unless
we can somehow cause the execution of the functions to actually occur. Enter the
dequeue() method.

When dequeue() is invoked, the foremost function in the named queue for each ele-
ment in the wrapped set is executed with the function context for the invocation
(this) being set to the element.

 Let’s consider the code in listing 5.8.

<html>
 <head>
 <link rel="stylesheet" type="text/css" href="../styles/core.css" />
 <script type="text/javascript" src="../scripts/jquery-1.4.js"></script>
 <script type="text/javascript" src="console.js"></script>
 <script type="text/javascript">

Method syntax: queue (continued)

Parameters
name (String) The name of the queue to be fetched, added to, or replaced. If omitted,

the default effects queue of fx is assumed.
function (Function) The function to be added to the end of the queue. When invoked, the

function context (this) will be set to the DOM element upon which the queue has
been established.

queue (Array) An array of functions that replaces the existing functions in the named
queue.

Returns
An array of functions for the first form, and the wrapped set for the remaining forms.

Method syntax: dequeue

dequeue(name)
Removes the foremost function in the named queue for each element in the matched set and
executes it for each element.

Parameters
name (String) The name of the queue from which the foremost function is to be removed

and executed. If omitted, the default effects queue of fx is assumed.

Returns
The wrapped set.

Listing 5.8 Queuing and dequeuing functions on multiple elements
Download from Library of Wow! eBook <www.wowebook.com>

164 CHAPTER 5 Energizing pages with animations and effects
 $(function() {

 $('img').queue('chain',
 function(){ say('First: ' + $(this).attr('alt')); });
 $('img').queue('chain',
 function(){ say('Second: ' + $(this).attr('alt')); });
 $('img').queue('chain',
 function(){ say('Third: ' + $(this).attr('alt')); });
 $('img').queue('chain',
 function(){ say('Fourth: ' + $(this).attr('alt')); });

 $('button').click(function(){
 $('img').dequeue('chain');
 });

 });
 </script>
 </head>

 <body>

 <div>

 </div>

 <button type="button" class="green90x24">Dequeue</button>

 <div id="console"></div>

 </body>
</html>

In this example (found in file chapter5/queue.html), we have two images upon which
we establish queues named chain. In each queue, we place four functions B that
identify themselves in order and emit the alt attribute of whatever DOM element is
serving as the function context. This way, we can tell which function is being executed,
and from which element’s queue.

 Upon clicking the Dequeue button, the button’s click handler C causes a single
execution of the dequeue() method.

 Go ahead and click the button once, and observe the messages in the console, as
shown in figure 5.8.

 We can see that the first function we added to the chain queue for the images has
been fired twice: once for the Earth image, and once for the Moon image.
Clicking the button more times removes the subsequent functions from the queues
one at a time, and executes them until the queues have been emptied; after which,
calling dequeue()has no effect.

 In this example, the dequeuing of the functions was under manual control—we
needed to click the button four times (resulting in four calls to dequeue()) to get all
four functions executed. Frequently we may want to trigger the execution of the
entire set of queued functions. For such times, a commonly used idiom is to call the
dequeue() method within the queued function in order to trigger the execution of (in
other words, create a chain to) the next queued function.

Establishes
four queued
functions

B

Dequeues one
function on
each clickC
Download from Library of Wow! eBook <www.wowebook.com>

165Animations and Queuing
Consider the following changes to the code in listing 5.8:

$('img').queue('chain',
 function(){
 say('First: ' + $(this).attr('alt'));
 $(this).dequeue('chain');
 });
$('img').queue('chain',
 function(){
 say('Second: ' + $(this).attr('alt'));
 $(this).dequeue('chain');
 });
$('img').queue('chain',
 function(){
 say('Third: ' + $(this).attr('alt'));
 $(this).dequeue('chain');
 });
$('img').queue('chain',
 function(){
 say('Fourth: ' + $(this).attr('alt'));
 $(this).dequeue('chain');
 });

We’ve made just such a change to the example in file chapter5/queue.2.html. Bring
up that page in your browser, and click the Dequeue button. Note how the single click
now triggers the execution of the entire chain of queued functions.

CLEARING OUT UNEXECUTED QUEUED FUNCTIONS

If we want to remove the queued functions from a queue without executing them, we
can do that with the clearQueue() method:

Figure 5.8 Clicking the Dequeue button
causes a single queued instance of the
function to fire, once for each image that it
was established upon.
Download from Library of Wow! eBook <www.wowebook.com>

166 CHAPTER 5 Energizing pages with animations and effects

While similar to the stop() animation method, clearQueue() is intended for use on
general queued functions rather than just animation effects.

DELAYING QUEUED FUNCTIONS

Another queue-oriented activity we might want to perform is to add a delay between
the execution of queued functions. The delay() method enables that:

There’s one more thing to discuss regarding queuing functions before moving along ...

5.4.3 Inserting functions into the effects queue

We previously mentioned that internally jQuery uses a queue named fx to queue up
the functions necessary to implement the animations. What if we’d like to add our
own functions to this queue in order to intersperse actions within a queued series of
effects? Now that we know about the queuing methods, we can!

 Think back to our previous example in listing 5.7, where we used four animations
to make the Moon revolve around the Earth. Imagine that we wanted to turn the back-
ground of the Moon image black after the second animation (the one that moves it
downward). If we just added a call to the css() method between the second and third
animations, as follows,

$("img[alt='moon']").animate({left:'+=256'},2500);
$("img[alt='moon']").animate({top:'+=256'},2500);
$("img[alt='moon']").css({'backgroundColor':'black'});
$("img[alt='moon']").animate({left:'-=256'},2500);
$("img[alt='moon']").animate({top:'-=256'},2500);

Method syntax: clearQueue

clearQueue(name)
Removes all unexecuted functions from the named queue.

Parameters
name (String) The name of the queue from which the functions are to be removed

without execution. If omitted, the default effects queue of fx is assumed.

Returns
The wrapped set.

Method syntax: delay

delay(duration,name)
Adds a delay to all unexecuted functions in the named queue.

Parameters
duration (Number|String) The delay duration in milliseconds, or one of the strings fast or

slow, representing values of 200 and 600 respectively.
name (String) The name of the queue from which the functions are to be removed

without execution. If omitted, the default effects queue of fx is assumed.

Returns
The wrapped set.
Download from Library of Wow! eBook <www.wowebook.com>

167Summary
we’d be very disappointed because this would cause the background to change imme-
diately, perhaps even before the first animation had a chance to start.

 Rather, consider the following code:

$("img[alt='moon']").animate({left:'+=256'},2500);
$("img[alt='moon']").animate({top:'+=256'},2500);
$("img[alt='moon']").queue('fx',
 function(){
 $(this).css({'backgroundColor':'black'});
 $(this).dequeue('fx');
 }
);
$("img[alt='moon']").animate({left:'-=256'},2500);
$("img[alt='moon']").animate({top:'-=256'},2500);

Here, we wrap the css() method in a function that we place onto the fx queue using
the queue() method. (We could have omitted the queue name, because fx is the
default, but we made it explicit here for clarity.) This puts our color-changing function
into place on the effects queue where it will be called as part of the function chain that
executes as the animations progress, between the second and third animations.

 But note! After we call the css() method, we call the dequeue() method on the fx
queue. This is absolute necessary to keep the animation queue chugging along. Fail-
ure to call dequeue() at this point will cause the animations to grind to a halt, because
nothing is causing the next function in the chain to execute. The unexecuted anima-
tions will just sit there on the effects queues until either something causes a dequeue
and the functions commence, or the page unloads and everything just gets discarded.

 If you’d like to see this process in action, load the page in file chapter5/revolu-
tions.2.html into your browser and click the button.

 Queuing functions comes in handy whenever we want to execute functions consec-
utively, but without the overhead, or complexity, of nesting functions in asynchronous
callbacks; something that, as you might imagine, can come in handy when we throw
Ajax into the equation.

 But that’s another chapter.

5.5 Summary
This chapter introduced us to the animated effects that jQuery makes available out of
the box, as well as to the animate() method that allows us to create our own custom
animations.

 The show() and hide() methods, when used without parameters, reveal and con-
ceal elements from the display immediately, without any animation. We can perform
animated versions of the hiding and showing of elements with these methods by
passing parameters that control the speed of the animation, as well as providing an
optional callback that’s invoked when the animation completes. The toggle()
method toggles the displayed state of an element between hidden and shown.

 Another set of wrapper methods, fadeOut() and fadeIn(), also hides and shows
elements by adjusting the opacity of elements when removing or revealing them in
Download from Library of Wow! eBook <www.wowebook.com>

168 CHAPTER 5 Energizing pages with animations and effects
the display. A third method, fadeTo(), animates a change in opacity for its wrapped
elements without removing the elements from the display.

 A final set of three built-in effects animates the removal or display of our
wrapped elements by adjusting their vertical height: slideUp(), slideDown(), and
slideToggle().

 For building our own custom animations, jQuery provides the animate() method.
Using this method, we can animate any CSS style property that accepts a numeric
value, most commonly the opacity, position, and dimensions of the elements. We
explored writing some custom animations that remove elements from the page in
novel fashions.

 We also learned how jQuery queues animations for serial execution, and how we
can use the jQuery queuing methods to add our own functions to the effects queue or
our own custom queues.

 When we explored writing our own custom animations, we wrote the code for
these custom effects as inline code within the on-page JavaScript. A much more com-
mon, and useful, method is to package custom animations as custom jQuery methods.
We’ll learn how to do that in chapter 7, and you’re encouraged to revisit these effects
after you’ve read that chapter. Repackaging the custom effects we developed in this
chapter, and any that you can think up on your own, would be an excellent follow-up
exercise.

 But before we write our own jQuery extensions, let’s take a look at some high-level
jQuery functions and flags that will be very useful for general tasks as well as extension
writing.
Download from Library of Wow! eBook <www.wowebook.com>

Beyond the DOM
with jQuery utility functions
Up to this point, we’ve spent a fair number of chapters examining the jQuery
methods that operate upon a set of DOM elements wrapped by the $() function.
But you may recall that, way back in chapter 1, we also introduced the concept of
utility functions—functions namespaced by jQuery/$ that don’t operate on a
wrapped set. These functions could be thought of as top-level functions except
that they’re defined on the $ instance rather than window, keeping them out of the
global namespace.

 Generally, these functions either operate upon JavaScript objects other than
DOM elements (that’s the purview of the wrapper methods, after all), or they per-
form some non-object-related operation (such as an Ajax request).

This chapter covers
The jQuery browser support information

Using other libraries with jQuery

Array manipulation functions

Extending and merging objects

Dynamically loading new scripts

And more ...
169

Download from Library of Wow! eBook <www.wowebook.com>

170 CHAPTER 6 Beyond the DOM with jQuery utility functions
 In addition to functions, jQuery also provides some useful flags that are defined
within the jQuery/$ namespace.

 You may wonder why we waited until this chapter to introduce these functions and
flags. Well, we had two reasons:

We wanted to guide you into thinking in terms of using jQuery wrapper meth-
ods rather than resorting to lower-level operations that might feel more familiar
but not be as efficient or as easy to code as using the jQuery wrapper.
Because the wrapper methods take care of much of what we want to do when
manipulating DOM elements on the pages, these lower-level functions are fre-
quently most useful when writing the methods themselves (as well as other
extensions) rather than in page-level code. (We’ll be tackling how to write our
own plugins to jQuery in the next chapter.)

In this chapter, we’ll finally get around to formally introducing most of the $-level util-
ity functions, as well as a handful of useful flags. We’ll put off talking about the utility
functions that deal with Ajax until chapter 8, which deals exclusively with jQuery’s
Ajax functionality.

 We’ll start out with those flags we mentioned.

6.1 Using the jQuery flags
Some of the information jQuery makes available to us as page authors, and even
plugin authors, is available not via methods or functions but as properties defined on
$. Many of these flags are focused on helping us divine the capabilities of the current
browser, but others help us control the behavior of jQuery at a page-global level.

 The jQuery flags intended for public use are as follows:

$.fx.off—Enables or disabled effects
$.support—Details supported features
$.browser—Exposes browser details (officially deprecated)

Let’s start by looking at how jQuery lets us disable animations.

6.1.1 Disabling animations

There may be times when we might want to conditionally disable animations in a page
that includes various animated effects. We might do so because we’ve detected that
the platform or device is unlikely to deal with them well, or perhaps for accessibility
reasons.

 In any case, we don’t need to resort to writing two pages, one with and one without
animations. When we detect we’re in an animation-adverse environment, we can sim-
ply set the value of $.fx.off to true.

 This will not suppress any effects we’ve used on the page; it will simply disable the
animation of those effects. For example, the fade effects will show and hide the ele-
ments immediately, without the intervening animations.

 Similarly, calls to the animate() method will set the CSS properties to the specified
final values without animating them.
Download from Library of Wow! eBook <www.wowebook.com>

171Using the jQuery flags
 One possible use-case for this flag might be for certain mobile devices or browsers
that don’t correctly support animations. In that case, you might want to turn off ani-
mations so that the core functionality still works.

 The $.fx.off flag is a read/write flag. The remaining predefined flags are meant
to be read-only. Let’s take a look at the flag that gives us information on the environ-
ment provided by the user agent (browser).

6.1.2 Detecting user agent support

Thankfully, almost blissfully, the jQuery methods that we’ve examined so far shield us
from having to deal with browser differences, even in traditionally problematic areas
like event handling. But when we’re the ones writing these methods (or other exten-
sions), we may need to account for the differences in the ways browsers operate so
that the users of our extensions don’t have to.

 Before we dive into seeing how jQuery helps us in this regard, let’s talk about the
whole concept of browser detection.

WHY BROWSER DETECTION IS HEINOUS

OK, maybe the word heinous is too strong, but unless it’s absolutely necessary, the
browser detection technique should be avoided.

 Browser detection might seem, at first, like a logical way to deal with browser differ-
ences. After all, it’s easy to say, “I know what the set of capabilities of browser X are, so
testing for the browser makes perfect sense, right?” But browser detection is full of pit-
falls and problems.

 One of the major arguments against this technique is that the proliferation of
browsers, as well as varying levels of support within versions of the same browser,
makes this technique an unscalable approach to the problem.

 You could be thinking, “Well, all I need to test for is Internet Explorer and Fire-
fox.” But why would you exclude the growing number of Safari users? What about
Opera and Google’s Chrome? Moreover, there are some niche, but not insignificant,
browsers that share capability profiles with the more popular browsers. Camino, for
example, uses the same technology as Firefox behind its Mac-friendly UI. And OmniWeb
uses the same rendering engine as Safari and Chrome.

 There’s no need to exclude support for these browsers, but it is a royal pain to have
to test for them. And that’s without even considering differences between versions—IE
6, IE 7, and IE 8, for example.

 Yet another reason is that if we test for a specific browser, and a future release fixes
that bug, our code may actually stop working. jQuery’s alternative approach to this
issue (which we’ll discuss in the next section) gives browser vendors an incentive to fix
the bugs that jQuery has worked around.

 A final argument against browser detection (or sniffing, as it’s sometimes called) is
that it’s getting harder and harder to know who’s who.

 Browsers identify themselves by setting a request header known as the user agent
string. Parsing this string isn’t for the faint-hearted. In addition, many browsers now
allow their users to spoof this string, so we can’t even believe what it tells us after we do
go though all the trouble of parsing it!
Download from Library of Wow! eBook <www.wowebook.com>

172 CHAPTER 6 Beyond the DOM with jQuery utility functions
 A JavaScript object named navigator gives us a partial glimpse into the user agent
information, but even it has browser differences. We almost need to do browser detec-
tion in order to do browser detection!

 Stop the madness!
 Browser detection is

Imprecise, accidentally blocking browsers within which our code would actually
work
Unscalable, leading to enormous nested if and if-else statements to sort things
out
Inaccurate, due to users spoofing user agent information

Obviously, we’d like to avoid using it whenever possible.
 But what can we do instead?

WHAT’S THE ALTERNATIVE TO BROWSER DETECTION?

If we think about it, we’re not really interested in which browser anyone is using, are
we? The only reason we’re even thinking about browser detection is so that we can
know which capabilities and features we can use. It’s the capabilities and features of a
browser that we’re really after; using browser detection is just a ham-handed way of
trying to determine what those features and capabilities are.

 So why don’t we just figure out what those features are rather than trying to infer
them from the browser identification? The technique known broadly as feature detec-
tion allows code to branch based on whether certain objects, properties, or even meth-
ods exist.

 Let’s think back to chapter 4 on event handling as an example. Remember that
there are two advanced event-handling models: the W3C standard DOM Level 2 Event
Model and the proprietary Internet Explorer Event Model. Both models define meth-
ods on the DOM elements that allow listeners to be established, but each uses different
method names. The standard model defines the method addEventListener(),
whereas the IE model defines attachEvent().

 Using browser detection, and assuming that we’ve gone through the pain and
aggravation of determining which browser is being used (maybe even correctly), we
could write

...
complex code to set flags: isIE, isFirefox, and isSafari
...
if (isIE) {
 element.attachEvent('onclick',someHandler);
}
else if (isFirefox || isSafari) {
 element.addEventListener('click',someHandler);
}
else {
 throw new Error('event handling not supported');
}

Aside from the fact that this example glosses over whatever necessarily complex code
we’re using to set the flags isIE, isFirefox, and isSafari, we can’t be sure if these
Download from Library of Wow! eBook <www.wowebook.com>

173Using the jQuery flags
flags accurately represent the browser being used. Moreover, this code will throw an
error if used in Opera, Chrome, Camino, OmniWeb, or a host of other lesser-known
browsers that might perfectly support the standard model.

 Consider the following variation of this code:

if (element.attachEvent) {
 element.attachEvent('onclick',someHandler);
}
else if (element.addEventListener) {
 element.addEventListener('click',someHandler);
}
else {
 throw new Error('event handling not supported');
}

This code doesn’t perform a lot of complex, and ultimately unreliable, browser detec-
tion, and it automatically supports all browsers that support either of the two compet-
ing event models. Much better!

 Feature detection is vastly superior to browser detection. It’s more reliable, and it
doesn’t accidentally block browsers that support the capability we’re testing for simply
because we don’t know about the features of that browser, or even of the browser
itself. Did you account for Google Chrome in your most recent web application? iCab?
Epiphany? Konqueror?

NOTE Even feature detection is best avoided unless absolutely required. If we
can come up with a cross-browser solution, it should be preferred over any
type of branching.

But as superior to browser detection as feature detection may be, it can still be no walk
in the park. Branching and detection of any type can still be tedious and painful in
our pages, and some feature differences can be decidedly difficult to detect, requiring
nontrivial or downright complex checks. jQuery comes to our aid by performing
those checks for us and supplying the results in a set of flags that detect the most com-
mon user agent features that we might care about.

THE JQUERY BROWSER CAPABILITY FLAGS

The browser capability flags are exposed to us as properties of jQuery’s $.support
object.

 Table 6.1 summarizes the flags that are available in this object.

Table 6.1 The $.support browser capability flags

Flag property Description

boxModel Set to true if the user agent renders according to the standards-compliant
box model. This flag isn’t set until the document is ready.
More information regarding the box-model issue is available at http://
www.quirksmode.org/css/box.html and at http://www.w3.org/TR/REC-
CSS2/box.html.

cssFloat Set to true if the standard cssFloat property of the element’s style
property is used.
Download from Library of Wow! eBook <www.wowebook.com>

http://www.quirksmode.org/css/box.html
http://www.quirksmode.org/css/box.html
http://www.w3.org/TR/REC-CSS2/box.html
http://www.w3.org/TR/REC-CSS2/box.html

174 CHAPTER 6 Beyond the DOM with jQuery utility functions
Table 6.2 shows the values for each of these flags for the various browser families.

hrefNormalized Set to true if obtaining the href element attributes returns the value
exactly as specified.

htmlSerialize Set to true if the browser evaluates style sheet references by <link> ele-
ments when injected into the DOM via innerHTML.

leadingWhitespace Set to true if the browser honors leading whitespace when text is inserted
via innerHTML.

noCloneEvent Set to true if the browser does not copy event handlers when an element
is cloned.

objectAll Set to true if the JavaScript getElementsByTagName() method returns
all descendants of the element when passed “*”.

opacity Set to true if the browser correctly interprets the standard opacity CSS
property.

scriptEval Set to true if the browser evaluates <script> blocks when they’re
injected via calls to the appendChild() or createTextNode() meth-
ods.

style Set to true if the attribute for obtaining the inline style properties of an ele-
ment is style.

tbody Set to true if a browser doesn’t automatically insert <tbody> elements
into tables lacking them when injected via innerHTML.

Table 6.2 Browser results for the $.support flags

Flag property
Gecko (Firefox,
Camino, etc.)

WebKit (Safari,
OmniWeb, Chrome,

etc.)
Opera IE

boxModel true true true false in quirks
mode, true in stan-
dards mode

cssFloat true true true false

hrefNormalized true true true false

htmlSerialize true true true false

leadingWhitespace true true true false

noCloneEvent true true true false

objectAll true true true false

opacity true true true false

scriptEval true true true false

style true true true false

tbody true true true false

Table 6.1 The $.support browser capability flags (continued)

Flag property Description
Download from Library of Wow! eBook <www.wowebook.com>

175Using the jQuery flags
As expected, it comes down to the differences between Internet Explorer and the
standards-compliant browsers. But lest this lull you into thinking that you can just fall
back on browser detection, that approach fails miserably because bugs and differences
may be fixed in future versions of IE. And bear in mind that the other browsers aren’t
immune from inadvertently introducing problems and differences.

 Feature detection is always preferred over browser detection when we need to
make capability decisions, but it doesn’t always come to our rescue. There are those
rare moments when we’ll need to resort to making browser-specific decisions that can
only be made using browser detection (we’ll see an example in a moment). For those
times, jQuery provides a set of flags that allow direct browser detection.

6.1.3 The browser detection flags

For those times when only browser detection will do, jQuery provides a set of flags that
we can use for branching. They’re set up when the library is loaded, making them
available even before any ready handlers have executed, and they’re defined as prop-
erties of an object instance with a reference of $.browser.

 Note that even though these flags remain present in jQuery 1.3 and beyond, they’re
regarded as deprecated, meaning that they could be removed from any future release
of jQuery and should be used with that in mind. These flags may have made more
sense during the period when browser development had stagnated somewhat, but now
that we’ve entered an era when browser development has picked up the pace, the capa-
bility support flags make more sense and are likely to stick around for some time.

 In fact, it’s recommended that, when you need something more than the core sup-
port flags provide, you create new ones of your own. But we’ll get to that in just a bit.

 The browser support flags are described in table 6.3.
 Note that these flags don’t attempt to identify the specific browser that’s being

used. jQuery classifies a user agent based upon which family of browsers it belongs to,
usually determined by which rendering engine it uses. Browsers within each family
will sport the same sets of characteristics, so specific browser identification should not
be necessary.

Table 6.3 The $.browser user agent detection flags

Flag property Description

msie Set to true if the user agent is identified as any version of Internet Explorer.

mozilla Set to true if the user agent is identified as any of the Mozilla-based browsers.
This includes browsers such as Firefox and Camino.

safari Set to true if the user agent is identified as any of the WebKit-based browsers,
such as Safari, Chrome, and OmniWeb.

opera Set to true if the user agent is identified as Opera.

version Set to the version number of the rendering engine for the browser.
Download from Library of Wow! eBook <www.wowebook.com>

176 CHAPTER 6 Beyond the DOM with jQuery utility functions
The vast majority of commonly used, modern browsers will fall into one of these four
browser families, including Google Chrome, which returns true for the safari flag
due to its use of the WebKit engine.

 The version property deserves special notice because it’s not as handy as we might
think. The value set in this property isn’t the version of the browser (as we might ini-
tially believe) but the version of the browser’s rendering engine. For example, when
executed within Firefox 3.6, the reported version is 1.9.2—the version of the Gecko
rendering engine. This value is handy for distinguishing between versions of Internet
Explorer, as the rendering engine versions and browser versions match.

 We mentioned earlier that there are times when we can’t fall back on feature
detection and must resort to browser detection. One example of such a situation is
when the difference between browsers isn’t that they present different object classes
or different methods, but that the parameters passed to a method are interpreted dif-
ferently across the browser implementations. In such a case, there’s no object or feature
on which to perform detection.

NOTE Even in these cases, it’s possible to set a feature flag by trying the oper-
ation in a hidden area of the page (as jQuery does to set some of its feature
flags). But that’s not a technique we often see used on many pages outside of
jQuery.

Let’s take the add() method of <select> elements as an example. It’s defined by the W3C
as follows (at http://www.w3.org/TR/DOM-Level-2-HTML/html.html#ID-14493106, for
those of us who like to look at the specifications):

selectElement.add(element,before)

For this method, the first parameter identifies an <option> or <optgroup> element to
add to the <select> element and the second identifies the existing <option> (or
<optgroup>) before which the new element is to be placed. In standards-compliant
browsers, this second parameter is a reference to the existing element as specified; in
Internet Explorer, however, it’s the ordinal index of the existing element.

 Because there’s no way to perform feature detection to determine whether we
should pass an object reference or an integer value (short of trying it out, as noted
previously), we can resort to browser detection, as shown in the following example:

var select = $('#aSelectElement')[0];
select.add(
 new Option('Two and \u00BD','2.5'), $.browser.msie ? 2 : select.options[2]
);

In this code, we perform a simple test of the $.browser.msie flag to determine
whether it’s appropriate to pass the ordinal value 2, or the reference to the third
option in the <select> element.

 The jQuery team, however, recommends that we not directly use such browser
detection in our code. Rather, it’s recommended that we abstract away the browser
detection by creating a custom support flag of our own. That way, should the browser
Download from Library of Wow! eBook <www.wowebook.com>

http://www.w3.org/TR/DOM-Level-2-HTML/html.html#ID-14493106

177Using other libraries with jQuery
support flags vanish, our code is insulated from the change by merely finding another
way to set the flag in one location.

 For example, somewhere in our own JavaScript library code, we could write

$.support.useIntForSelectAdds = $.browser.msie;

and use that flag in our code. Should the browser detection flag ever be removed,
we’d only have to change our library code; all the code that uses the custom flag
would be insulated from the change.

 Let’s now leave the world of flags and look at the utility functions that jQuery
provides.

6.2 Using other libraries with jQuery
Back in chapter 1, we introduced a means, thoughtfully provided for us by the jQuery
team, to easily use jQuery on the same page as other libraries.

 Usually, the definition of the $ global name is the largest point of contention and
conflict when using other libraries on the same page as jQuery. As we know, jQuery
uses $ as an alias for the jQuery name, which is used for every feature that jQuery
exposes. But other libraries, most notably Prototype, use the $ name as well.

 jQuery provides the $.noConflict() utility function to relinquish control of the $
identifier to whatever other library might wish to use it. The syntax of this function is
as follows:

Because $ is an alias for jQuery, all of jQuery’s functionality is still available after the
application of $.noConflict(), albeit by using the jQuery identifier. To compensate
for the loss of the brief—yet beloved—$, we can define our own shorter, but noncon-
flicting, alias for jQuery, such as

var $j = jQuery;

Another idiom we may often see employed is to create an environment where the $
identifier is scoped to refer to the jQuery object. This technique is commonly used
when extending jQuery, particularly by plugin authors who can’t make any assump-

Function syntax: $.noConflict

$.noConflict(jqueryToo)
Restores control of the $ identifier back to another library, allowing mixed library use on pages
using jQuery. Once this function is executed, jQuery features will need to be invoked using the
jQuery identifier rather than the $ identifier.
Optionally, the jQuery identifier can also be given up.
This method should be called after including jQuery but before including the conflicting library.

Parameters
jqueryToo (Boolean) If provided and set to true, the jQuery identifier is given up in

addition to the $.

Returns
jQuery
Download from Library of Wow! eBook <www.wowebook.com>

178 CHAPTER 6 Beyond the DOM with jQuery utility functions
tions regarding whether page authors have called $.noConflict() and who, most cer-
tainly, can’t subvert the wishes of the page authors by calling it themselves.

 This idiom is as follows:

(function($) { /* function body here */ })(jQuery);

If this notation makes your head spin, don’t worry! It’s pretty straightforward, even if
odd-looking to those encountering it for the first time.

 Let’s dissect the first part of this idiom:

(function($) { /* function body here */ })

This part declares a function and encloses it in parentheses to make an expression out
of it, resulting in a reference to the anonymous function being returned as the value
of the expression. The function expects a single parameter, which it names $; what-
ever is passed to this function can be referenced by the $ identifier within the body of
the function. And because parameter declarations have precedence over any similarly
named identifiers in the global scope, any value defined for $ outside of the function
is superseded within the function by the passed argument.

 The second part of the idiom,

(jQuery)

performs a function call on the anonymous function passing the jQuery object as the
argument.

 As a result, the $ identifier refers to the jQuery object within the body of the func-
tion, regardless of whether it’s already defined by Prototype or some other library out-
side of the function. Pretty nifty, isn’t it?

 When employing this technique, the external declaration of $ isn’t available within
the body of the function.

 A variant of this idiom is also frequently used to form a third syntax for declaring a
ready handler in addition to the means that we already examined in chapter 1. Con-
sider the following:

jQuery(function($) {
 alert("I'm ready!");
});

By passing a function as the parameter to the jQuery function, we declare it as a ready
handler, as we saw in chapter 1. But this time, we declare a single parameter to be
passed to the ready handler using the $ identifier. Because jQuery always passes a ref-
erence to jQuery to a ready handler as its first and only parameter, this guarantees
that the $ name refers to jQuery inside the ready handler regardless of whatever defi-
nition $ might have outside the body of the handler.

 Let’s prove it to ourselves with a simple test. For the first part of the test, let’s exam-
ine the HTML document in listing 6.1 (available in chapter6/ready.handler.
test.1.html).
Download from Library of Wow! eBook <www.wowebook.com>

179Using other libraries with jQuery

<!DOCTYPE html>
<html>
 <head>
 <title>Hi!</title>
 <script type="text/javascript" src="../scripts/jquery-1.4.js"></script>
 <script type="text/javascript">
 var $ = 'Hi!';
 jQuery(function(){
 alert('$ = '+ $);
 });
 </script>
 </head>
 <body></body>
</html>

In this example, we import jQuery, which (as we know) defines the global names
jQuery and its alias $. We then redefine the global $ variable to a string value B,
overriding the jQuery definition. We replace $ with a simple string value for simplic-
ity within this example, but it could be redefined by including another library such as
Prototype.

 We then define the ready handler C whose only action is to display an alert show-
ing the value of $.

 When we load this page, we see the alert displayed, as shown in figure 6.1.
 Note that, within the ready handler, the global value of $ is in scope and has the

expected redefined value resulting from our string assignment. How disappointing if
we wanted to use the jQuery definition of $ within the handler.
Now let’s make one change to this example document. The following code shows only
the portion of the document that has been modified; the minimal change is high-
lighted in bold. (You can get the full page in chapter6/ready.handler.test.2.html.)

<script type="text/javascript">
 var $ = 'Hi!';
 jQuery(function($){
 alert('$ = '+ $);
 });
</script>

Listing 6.1 Ready handler test 1

Overrides $ name
with custom valueBDeclares the

ready handler
C

Figure 6.1 The $
says, “Hi!” as its
redefinition takes
effect within the
ready handler.
Download from Library of Wow! eBook <www.wowebook.com>

180 CHAPTER 6 Beyond the DOM with jQuery utility functions
The only change we made was to add a parameter to the ready handler function
named $. When we load this changed version, we see something completely different,
as shown in figure 6.2.

 Well, that may not have been exactly what we might have predicted in advance, but
a quick glance at the jQuery source code shows that, because we declare the first
parameter of the ready handler to be $ within that function, the $ identifier refers to
the jQuery function that jQuery passes as the sole parameter to all ready handlers (so
the alert displays the definition of that function).

 When writing reusable components, which might or might not be used in pages
where $.noConflict() is used, it’s best to take such precautions regarding the defini-
tion of $.

 A good number of the remaining jQuery utility functions are used to manipulate
JavaScript objects. Let’s take a good look at them.

6.3 Manipulating JavaScript objects and collections
The majority of jQuery features implemented as utility functions are designed to oper-
ate on JavaScript objects other than the DOM elements. Generally, anything designed
to operate on the DOM is provided as a jQuery wrapper method. Although some of
these functions can be used to operate on DOM elements—which are JavaScript
objects, after all—the focus of the utility functions isn’t DOM-centric.

 These functions run the gamut from simple string manipulation and type testing
to complex collection filtering, serialization of form values, and even implementing a
form of object inheritance through property merging.

 Let’s start with one that’s pretty basic.

6.3.1 Trimming strings

Almost inexplicably, the JavaScript String type doesn’t possess a method to remove
whitespace characters from the beginning and end of a string instance. Such basic
functionality is customarily part of a String class in most other languages, but
JavaScript mysteriously lacks this useful feature.

 Yet string trimming is a common need in many JavaScript applications; one promi-
nent example is during form data validation. Because whitespace is invisible on the

Figure 6.2 The
alert now displays
the jQuery version
of $ because its
definition has been
enforced within
the function.
Download from Library of Wow! eBook <www.wowebook.com>

181Manipulating JavaScript objects and collections
screen (hence its name), it’s easy for users to accidentally enter extra space characters
before or after valid entries in text boxes or text areas. During validation, we want to
silently trim such whitespace from the data rather than alerting the user to the fact
that something they can’t see is tripping them up.

 To help us out, jQuery defines the $.trim() function as follows:

A small example of using this function to trim the value of a text field in-place is

$('#someField').val($.trim($('#someField').val()));

Be aware that this function doesn’t check the parameter we pass to ensure that it’s a
String value, so we’ll likely get undefined and unfortunate results (probably a
JavaScript error) if we pass any other value type to this function.

 Now let’s look at some functions that operate on arrays and other objects.

6.3.2 Iterating through properties and collections

Oftentimes when we have nonscalar values composed of other components, we’ll
need to iterate over the contained items. Whether the container element is a
JavaScript array (containing any number of other JavaScript values, including other
arrays) or instances of JavaScript objects (containing properties), the JavaScript lan-
guage gives us means to iterate over them. For arrays, we iterate over their elements
using the for loop; for objects, we iterate over their properties using the for-in loop.

 We can code examples of each as follows:

var anArray = ['one','two','three'];
for (var n = 0; n < anArray.length; n++) {
 //do something here
}

var anObject = {one:1, two:2, three:3};
for (var p in anObject) {
 //do something here
}

Pretty easy stuff, but some might think that the syntax is needlessly wordy and com-
plex—a criticism frequently targeted at the for loop. We know that, for a wrapped set

Function syntax: $.trim

$.trim(value)
Removes any leading or trailing whitespace characters from the passed string and returns the
result.
Whitespace characters are defined by this function as any character matching the JavaScript
regular expression \s, which matches not only the space character but also the form feed, new
line, return, tab, and vertical tab characters, as well as the Unicode character \u00A0.

Parameters
value (String) The string value to be trimmed. This original value isn’t modified.

Returns
The trimmed string.
Download from Library of Wow! eBook <www.wowebook.com>

182 CHAPTER 6 Beyond the DOM with jQuery utility functions
of DOM elements, jQuery defines the each() method, allowing us to easily iterate over
the elements in the set without the need for messy for-loop syntax. For general arrays
and objects, jQuery provides an analogous utility function named $.each().

 The really nice thing is that the same syntax is used, whether iterating over the
items in an array or the properties of an object.

This unified syntax can be used to iterate over either arrays or objects using the same
format. With this function, we can write the previous example as follows:

var anArray = ['one','two','three'];
$.each(anArray,function(n,value) {
 //do something here
});

var anObject = {one:1, two:2, three:3};
$.each(anObject,function(name,value) {
 //do something here
});

Although using $.each() with an inline function may seem like a six-of-one scenario
in choosing syntax, this function makes it easy to write reusable iterator functions or
to factor out the body of a loop into another function for purposes of code clarity, as
in the following:

$.each(anArray,someComplexFunction);

Note that when iterating over an array or object, we can break out of the loop by
returning false from the iterator function.

NOTE You may recall that we can also use the each() method to iterate over
an array, but the $.each() function has a slight performance advantage over
each(). Bear in mind that if you need to be concerned with performance to
that level, you’ll get the best performance from a good old-fashioned for loop.

Function syntax: $.each

$.each(container,callback)
Iterates over the items in the passed container, invoking the passed callback function for each.

Parameters
container (Array|Object) An array whose items, or an object whose properties, are to be

iterated over.
callback (Function) A function invoked for each element in the container. If the container

is an array, this callback is invoked for each array item; if it’s an object, the
callback is invoked for each object property.
The first parameter to this callback is the index of the array element or the name
of the object property. The second parameter is the array item or property value.
The function context (this) of the invocation is also set to the value passed as
the second parameter.

Returns
The container object.
Download from Library of Wow! eBook <www.wowebook.com>

183Manipulating JavaScript objects and collections
Sometimes we may iterate over arrays to pick and choose elements to become part of a
new array. Although we could use $.each() for that purpose, let’s see how jQuery
makes that even easier.

6.3.3 Filtering arrays

Traversing an array to find elements that match certain criteria is a frequent need of
applications that handle lots of data. We might wish to filter the data for items that fall
above or below a particular threshold or, perhaps, that match a certain pattern. For
any filtering operation of this type, jQuery provides the $.grep()utility function.

 The name of the $.grep() function might lead us to believe that the function
employs the use of regular expressions like its namesake, the UNIX grep command.
But the filtering criterion used by the $.grep() utility function isn’t a regular expres-
sion; it’s a callback function provided by the caller that defines the criteria to determine
whether a data value should be included or excluded from the resulting set of values.
Nothing prevents that callback from using regular expressions to accomplish its task,
but the use of regular expressions isn’t automatic.

 The syntax of the function is as follows:

Let’s say that we want to filter an array for all values that are greater than 100. We’d do
that with a statement such as the following:

var bigNumbers = $.grep(originalArray,function(value) {
 return value > 100;
 });

The callback function that we pass to $.grep() can use whatever processing it likes to
determine if the value should be included. The decision could be as easy as this

Function syntax: $.grep

$.grep(array,callback,invert)
Traverses the passed array, invoking the callback function for each element. The return value of
the callback function determines whether the value is collected into a new array returned as the
value of the $.grep() function. If the invert parameter is omitted or false, a callback value of
true causes the data to be collected. If invert is true, a callback value of false causes the
value to be collected.
The original array isn’t modified.

Parameters
array (Array) The traversed array whose data values are examined for collection. This

array isn’t modified in any way by this operation.
callback (Function) A function whose return value determines whether the current data

value is to be collected. A return value of true causes the current value to be
collected, unless the value of the invert parameter is true, in which case the
opposite occurs.
This function is passed two parameters: the current data value and the index of
that value within the original array.

invert (Boolean) If specified as true, it inverts the normal operation of the function.

Returns
The array of collected values.
Download from Library of Wow! eBook <www.wowebook.com>

184 CHAPTER 6 Beyond the DOM with jQuery utility functions
example or, perhaps, even as complex as making synchronous Ajax calls (with the
requisite performance hit) to the server to determine if the value should be included
or excluded.

 Even though the $.grep() function doesn’t directly use regular expressions
(despite its name), JavaScript regular expressions can be powerful tools in our call-
back functions to determine whether to include or exclude values from the resultant
array. Consider a situation in which we have an array of values and wish to identify any
values that don’t match the pattern for United States postal codes (also known as Zip
Codes).

 U.S. postal codes consist of five decimal digits optionally followed by a dash and
four more decimal digits. A regular expression for such a pattern would be /^\d{5}(-
\d{4})?$/, so we could filter a source array for nonconformant entries with the fol-
lowing:

var badZips = $.grep(
 originalArray,
 function(value) {
 return value.match(/^\d{5}(-\d{4})?$/) != null;
 },
 true);

Notable in this example is the use of the String class’s match() method to determine
whether a value matches the pattern or not and the specification of the invert param-
eter to $.grep() as true to exclude any values that match the pattern.

 Collecting subsets of data from arrays isn’t the only operation we might perform
upon them. Let’s look at another array-targeted function that jQuery provides.

6.3.4 Translating arrays

Data might not always be in the format that we need it to be. Another common opera-
tion that’s frequently performed in data-centric web applications is the translation of a
set of values to another set. Although it’s a simple matter to write a for loop to create
one array from another, jQuery makes it even easier with the $.map utility function.

Function syntax: $.map

$.map(array,callback)
Iterates through the passed array, invoking the callback function for each array item and collecting
the return values of the function invocations in a new array.

Parameters
array (Array) The array whose values are to be transformed to values in the new array.
callback (Function) A function whose return values are collected in the new array returned

as the result of a call to the $.map() function.
This function is passed two parameters: the current data value and the index of
that value within the original array.

Returns
The array of collected values.
Download from Library of Wow! eBook <www.wowebook.com>

185Manipulating JavaScript objects and collections
Let’s look at a trivial example that shows the $.map() function in action.

var oneBased = $.map([0,1,2,3,4],function(value){return value+1;});

This statement converts an array of values, a zero-based set of indexes, to a corre-
sponding array of one-based indexes.

 An important behavior to note is that if the function returns either null or
undefined, the result isn’t collected. In such cases, the resulting array will be smaller
in length than the original, and one-to-one correspondence between items by order
is lost.

 Let’s look at a slightly more involved example. Imagine that we have an array of
strings, perhaps collected from form fields, that are expected to represent numeric
values, and that we want to convert this string array to an array of corresponding Num-
ber instances. Because there’s no guarantee against the presence of an invalid
numeric string, we need to take some precautions. Consider the following code:

var strings = ['1','2','3','4','S','6'];

var values = $.map(strings,function(value){
 var result = new Number(value);
 return isNaN(result) ? null : result;
});

We start with an array of string values, each of which is expected to represent a
numeric value. But a typo (or perhaps user entry error) resulted in the letter S
instead of the expected number 5. Our code handles this case by checking the Num-
ber instance created by the constructor to see if the conversion from string to
numeric was successful or not. If the conversion fails, the value returned will be the
constant Number.NaN. But the funny thing about Number.NaN is that, by definition, it
doesn’t equal anything else, including itself! Therefore the value of the expression
Number.NaN==Number.NaN is false!

 Because we can’t use a comparison operator to test for NaN (which stands for Not a
Number, by the way), JavaScript provides the isNaN() method, which we employ to test
the result of the string-to-numeric conversion.

 In this example, we return null in the case of failure, ensuring that the resulting
array contains only the valid numeric values with any error values elided. If we want to
collect all the values, we can allow the transformation function to return Number.NaN
for bad values.

 Another useful behavior of $.map()is that it gracefully handles the case where an
array is returned from the transformation function, merging the returned value into
the resulting array. Consider the following statement:

var characters = $.map(
 ['this','that','other thing'],
 function(value){return value.split('');}
);

This statement transforms an array of strings into an array of all the characters that
make up the strings. After execution, the value of the variable characters is as follows:

['t','h','i','s','t','h','a','t','o','t','h','e','r',' ','t','h','i','n','g']
Download from Library of Wow! eBook <www.wowebook.com>

186 CHAPTER 6 Beyond the DOM with jQuery utility functions
This is accomplished by use of the String.split() method, which returns an array
of the string’s characters when passed an empty string as its delimiter. This array is
returned as the result of the transformation function and is merged into the resul-
tant array.

 jQuery’s support for arrays doesn’t stop there. There are a handful of minor func-
tions that we might find handy.

6.3.5 More fun with JavaScript arrays

Have you ever needed to know if a JavaScript array contained a specific value and, per-
haps, even the location of that value in the array?

 If so, you’ll appreciate the $.inArray() function.

A trivial but illustrative example of using this function is

var index = $.inArray(2,[1,2,3,4,5]);

This results in the index value of 1 being assigned to the index variable.
 Another useful array-related function creates JavaScript arrays from other array-like

objects. “Other array-like objects? What on Earth is an array-like object?” you may ask.
 jQuery considers an array-like object to be any object that has a length and the con-

cept of indexed entries. This capability is most useful for NodeList objects. Consider
the following snippet:

var images = document.getElementsByTagName("img");

This populates the variable images with a NodeList of all the images on the page.
 Dealing with a NodeList is a bit of a pain, so converting it to a JavaScript array

makes things a lot nicer. The jQuery $.makeArray function makes converting the
NodeList easy.

Function syntax: $.inArray

$.inArray(value,array)
Returns the index position of the first occurrence of the passed value.

Parameters
value (Object) The value for which the array will be searched.
array (Array) The array to be searched.

Returns
The index of the first occurrence of the value within the array, or -1 if the value isn’t found.

Function syntax: $.makeArray

$.makeArray(object)
Converts the passed array-like object into a JavaScript array.

Parameters
object (Object) The array-like object (such as a NodeList) to be converted.

Returns
The resulting JavaScript array.
Download from Library of Wow! eBook <www.wowebook.com>

187Manipulating JavaScript objects and collections
This function is intended for use in code that doesn’t make much use of jQuery,
which internally handles this sort of thing on our behalf. This function also comes in
handy when dealing with NodeList objects while traversing XML documents without
jQuery, or when handling the arguments instance within functions (which, you may
be surprised to learn, isn’t a standard JavaScript array).

 Another seldom-used function that might come in handy when dealing with arrays
built outside of jQuery is the $.unique() function.

Again, this is a function that jQuery uses internally to ensure that the lists of elements
that we receive contain unique elements. It’s intended for use on element arrays cre-
ated outside the bounds of jQuery.

 Want to merge two arrays? No problem; there’s the $.merge function:

Consider

var a1 = [1,2,3,4,5];
var a2 = [5,6,7,8,9];
$.merge(a1,a2);

After this sequence executes, a2 is untouched, but a1 contains [1,2,3,4,5,5,6,
7,8,9].

 Now that we’ve seen how jQuery helps us to easily work with arrays, let’s see how it
helps us manipulate plain old JavaScript objects.

6.3.6 Extending objects

Although we all know that JavaScript provides some features that make it act in many
ways like an object-oriented language, we know that JavaScript isn’t what anyone

Function syntax: $.unique

$.unique(array)
Given an array of DOM elements, returns an array of the unique elements in the original array.

Parameters
array (Array) The array of DOM elements to be examined.

Returns
An array of DOM elements consisting of the unique elements in the passed array.

Function syntax: $.merge

$.merge(array1,array2)
Merges the values of the second array into the first and returns the result. The first array is
modified by this operation and returned as the result.

Parameters
array1 (Array) An array into which the other array’s values will be merged.
array2 (Array) An array whose values will be merged into the first array.

Returns
The first array, modified with the results of the merge.
Download from Library of Wow! eBook <www.wowebook.com>

188 CHAPTER 6 Beyond the DOM with jQuery utility functions
would call purely object-oriented because of the features that it doesn’t support. One
of these important features is inheritance—the manner in which new classes are
defined by extending the definitions of existing classes.

 A pattern for mimicking inheritance in JavaScript is to extend an object by copying
the properties of a base object into the new object, extending the new object with the
capabilities of the base.

NOTE If you’re an aficionado of “object-oriented JavaScript,” you’ll no doubt
be familiar with extending not only object instances but also their blueprints
via the prototype property of object constructors. $.extend() can be used to
effect such constructor-based inheritance by extending prototype, as well as
object-based inheritance by extending existing object instances (something
jQuery does itself internally). Because understanding such advanced topics
isn’t a requirement in order to use jQuery effectively, this is a subject—albeit an
important one—that’s beyond the scope of this book.

It’s fairly easy to write JavaScript code to perform this extension by copying, but as
with so many other procedures, jQuery anticipates this need and provides a ready-
made utility function to help us out: $.extend(). As we’ll see in the next chapter, this
function is useful for much more than extending an object. Its syntax is as follows:

Let’s take a look at this function doing its thing.
 We’ll set up three objects, a target and two sources, as follows:

var target = { a: 1, b: 2, c: 3 };
var source1 = { c: 4, d: 5, e: 6 };
var source2 = { e: 7, f: 8, g: 9 };

Function syntax: $.extend

$.extend(deep,target,source1,source2, ... sourceN)
Extends the object passed as target with the properties of the remaining passed objects.

Parameters
deep (Boolean) An optional flag that determines whether a deep or shallow copy

is made. If omitted or false, a shallow copy is executed. If true, a deep
copy is performed.

target (Object) The object whose properties are augmented with the properties of
the source objects. This object is directly modified with the new properties
before being returned as the value of the function.
Any properties with the same name as properties in any of the source
elements are overridden with the values from the source elements.

source1 ...
sourceN

(Object) One or more objects whose properties are added to the target
object.
When more than one source is provided and properties with the same
names exist in the sources, sources later in the argument list override
those earlier in the list.

Returns
The extended target object.
Download from Library of Wow! eBook <www.wowebook.com>

189Manipulating JavaScript objects and collections
Then we’ll operate on these objects using $.extend() as follows:

$.extend(target,source1,source2);

This should take the contents of the source objects and merge them into the target.
To test this, we’ve set up this example code in the file chapter6/$.extend.html, which
executes the code and displays the results on the page.

 Loading this page into a browser results in the display of figure 6.3.
 As we can see, all properties of the source objects have been merged into the tar-

get object. But note the following important nuances:

Both the target and source1 contain a property named c. The value of c in
source1 replaces the value in the original target.
Both source1 and source2 contain a property named e. Note that the value of
e within source2 overrides the value within source1 when merged into target,
demonstrating how objects later in the list of arguments take precedence over
those earlier in the list.

Although it’s evident that this utility function can be useful in many scenarios where
one object must be extended with properties from another object (or set of objects),
we’ll see a concrete and common use of this feature when learning how to define util-
ity functions of our own in the next chapter.

 But before we get to that, we’ve still got a few other utility functions to examine.

6.3.7 Serializing parameter values

It should come as no surprise that in a dynamic, highly interactive application, submit-
ting requests is a common occurrence. Heck, it’s one of the things that makes the
World Wide Web a web in the first place.

 Frequently, these requests will be submitted as a result of a form submission, where
the browser formats the request body containing the request parameters on our
behalf. Other times, we’ll be submitting requests as URLs in the href attribute of <a>
elements. In these latter cases, it becomes our responsibility to correctly create and
format the query string that contains any request parameters we wish to include with
the request.

Figure 6.3 The $.extend() function
merges properties from multiple source
objects without duplicates, and gives
precedence to instances in reverse order
of specification.
Download from Library of Wow! eBook <www.wowebook.com>

190 CHAPTER 6 Beyond the DOM with jQuery utility functions
 Server-side templating tools generally have great mechanisms that help us con-
struct valid URLs, but when creating them dynamically on the client, JavaScript
doesn’t give us much in the way of support. Remember that not only do we need to
correctly place all the ampersand (&) and equal signs (=) that format the query string
parameters, we need to make sure that each name and value is properly URI-encoded.
Although JavaScript provides a handy function for that (encodeURIComponent()), the
formatting of the query string falls squarely into our laps.

 And, as you might have come to expect, jQuery anticipates that burden and gives
us a tool to make it easier: the $.param() utility function.

Consider the following statement:

$.param({
 'a thing':'it&s=value',
 'another thing':'another value',
 'weird characters':'!@#$%^&*()_+='
});

Here, we pass an object with three properties to the $.param() function, in which the
names and the values all contain characters that must be encoded within the query
string in order for it to be valid. The result of this function call is

a+thing=it%26s%3Dvalue&another+thing=another+value
 ➥ &weird+characters=!%40%23%24%25%5E%26*()_%2B%3D

Note how the query string is formatted correctly and that the non-alphanumeric char-
acters in the names and values have been properly encoded. This might not make the
string all that readable to us, but server-side code lives for such strings!

Function syntax: $.param

$.param(params,traditional)
Serializes the passed information into a string suitable for use as the query string of a submitted
request. The passed value can be an array of form elements, a jQuery wrapped set, or a JavaScript
object. The query string is properly formatted and each name and value in the string is properly
URI-encoded.

Parameters
params (Array|jQuery|Object) The value to be serialized into a query string.

If an array of elements or a jQuery wrapped set is passed, the name/value
pairs represented by the included form controls are added to the query string.
If a JavaScript object is passed, the object’s properties form the parameter
names and values.

traditional (Boolean) An optional flag that forces this function to perform the serialization
using the same algorithm used prior to jQuery 1.4. This generally only affects
source objects with nested objects. See the sections that follow for more
details.
If omitted, defaults to false.

Returns
The formatted query string.
Download from Library of Wow! eBook <www.wowebook.com>

191Manipulating JavaScript objects and collections
 One note of caution: if you pass an array of elements, or a jQuery wrapped set, that
contains elements other than those representing form values, you’ll end up with a
bunch of entries such as

&undefined=undefined

in the resulting string, because this function doesn’t weed out inappropriate elements
in its passed argument.

 You might be thinking that this isn’t a big deal because, after all, if the values are
form elements, they’re going to end up being submitted by the browser via the form,
which is going to handle all of this for us. Well, hold on to your hat. In chapter 8,
when we start talking about Ajax, we’ll see that form elements aren’t always submitted
by their forms!

 But that’s not going to be an issue, because we’ll also see later on that jQuery pro-
vides a higher-level means (that internally uses this very utility function) to handle this
sort of thing in a more sophisticated fashion.

SERIALIZING NESTED PARAMETERS

Trained by years of dealing with the limitations of HTTP and HTML form controls, web
developers are conditioned to think of serialized parameters, aka query strings, as a
flat list of name/value pairs.

 For example, imagine a form in which we collect someone’s name and address.
The query parameters for such a form might contain names such as firstName, last-
Name and city. The serialized version of the query string might be:

firstName=Yogi&lastName=Bear&streetAddress=123+Anywhere+Lane
 ➥ &city=Austin&state=TX&postalCode=78701

The pre-serialized version of this construct would be:

{
 firstName: 'Yogi',
 lastName: 'Bear',
 streetAddress: '123 Anywhere Lane',
 city: 'Austin',
 state: 'TX',
 postalCode : '78701'
}

As an object, that doesn’t really represent the way that we’d think about such data.
From a data organization point of view, we might think of this data as two major ele-
ments, a name and an address, each with their own properties. Perhaps something
along the lines of:

{
 name: {
 first: 'Yogi',
 last: 'Bear'
 },
 address: {
 street: '123 Anywhere Lane',
Download from Library of Wow! eBook <www.wowebook.com>

192 CHAPTER 6 Beyond the DOM with jQuery utility functions
 city: 'Austin',
 state: 'TX',
 postalCode : '78701'
 }
}

But this nested version of the element, though more logically structured than the flat
version, doesn’t easily lend itself to conversion to a query string.

 Or does it?
 By using a conventional notation employing square brackets, such a construct

could be expressed as the following:

name[first]=Yogi&name[last]=Bear&address[street]=123+Anywhere+Lane
 ➥ &address[city]=Austin&address[state]=TX&address[postalCode]=78701

In this notation, sub-properties are expressed using square brackets to keep track of
the structure. Many server-side frameworks such as RoR (Ruby on Rails) and PHP can
handily decode these strings. Java doesn’t have any native facility to reconstruct a
nested object from such notation, but such a processor would be pretty easy to build.

 This is new behavior in jQuery 1.4—older versions of jQuery’s $.param() function
did not produce anything meaningful when passed a nested construct. If we want to
cause $.param() to exhibit the older behavior, the traditional parameter should be
passed as true.

 We can prove this to ourselves with the $.param() Lab Page provided in file
chapter6/lab.$.param.html, and shown in figure 6.4.

Figure 6.4 The $.param() Lab lets us see how flat and nested objects are serialized using
the new and traditional algorithms.
Download from Library of Wow! eBook <www.wowebook.com>

193Manipulating JavaScript objects and collections
 This Lab lets us see how $.param() will serialize flat and nested objects, using its
new algorithm, as well as the traditional algorithm.

 Go ahead and play around with this Lab until you feel comfortable with the action
of the function. We even urge you to make a copy of the page and play around with
different object structures that you might want to serialize.

6.3.8 Testing objects

You may have noticed that many of the jQuery wrapper methods and utility functions
have rather malleable parameter lists; optional parameters can be omitted without the
need to include null values as placeholders.

 Take the bind() wrapper method as an example. Its function signature is

bind(event,data,handler)

But if we have no data to pass to the event, we can simply call bind() with the handler
function as the second parameter. jQuery handles this by testing the types of the param-
eters, and if it sees that there are only two parameters, and that a function is passed as
the second parameter, it interprets that as the handler rather than as a data argument.

 Testing parameters for various types, including whether they are functions or not,
will certainly come in handy if we want to create our own functions and methods that
are similarly friendly and versatile, so jQuery exposes a number of testing utility func-
tions, as outlined in table 6.4.

Now let’s look at a handful of miscellaneous utility functions that don’t really fit into
any one category.

Table 6.4 jQuery offers utility functions for testing objects

Function Description

$.isArray(o) Returns true if o is a JavaScript array (but not if o is any other array-like
object like a jQuery wrapped set).

$.isEmptyObject(o) Returns true if o is a JavaScript object with no properties, including any
inherited from prototype.

$.isFunction(o) Returns true if o is a JavaScript function. Warning: in Internet Explorer,
built-in functions such as alert() and confirm(), as well as element
methods are not correctly reported as functions.

$.isPlainObject(o) Returns true if o is a JavaScript object created via {} or new
Object().

$.isXMLDoc(node) Returns true if node is an XML document, or a node within an XML doc-
ument.
Download from Library of Wow! eBook <www.wowebook.com>

194 CHAPTER 6 Beyond the DOM with jQuery utility functions
6.4 Miscellaneous utility functions
This section will explore the set of utility functions that each pretty much define their
own category. We’ll start with one that doesn’t seem to do very much at all.

6.4.1 Doing nothing

jQuery defines a utility function that does nothing at all. This function could have
been named $.wastingAwayAgainInMargaritaville(), but that’s a tad long so it’s
named $.noop(). It’s defined with the following syntax:

Hmmm, a function that is passed nothing, does nothing, and returns nothing. What’s
the point?

 Recall how many jQuery methods are passed parameters, or option values, that are
optional function callbacks? $.noop() serves as a handy default for those callbacks
when the user does not supply one.

6.4.2 Testing for containment

When we want to test one element for containment within another, jQuery provides
the $.contains() utility function:

Hey, wait a minute! Doesn’t this sound familiar? Indeed, we discussed the has()
method back in chapter 2, to which this function bears a striking resemblance.

 This function, used frequently internally to jQuery, is most useful when we already
have references to the DOM elements to be tested, and there’s no need to take on the
overhead of creating a wrapped set.

 Let’s look at another function that closely resembles its wrapper-method
equivalent.

Function syntax: $.noop

$.noop()
Does nothing.

Parameters
none

Returns
Nothing.

Function syntax: $.contains

$.contains(container,containee)
Tests if one element is contained within another with the DOM hierarchy.

Parameters
container (Element) The DOM element being tested as containing another element.
containee (Element) The DOM element being tested for containment.

Returns
true if the containee is contained within the container; false otherwise.
Download from Library of Wow! eBook <www.wowebook.com>

195Miscellaneous utility functions
6.4.3 Tacking data onto elements

Back in chapter 3, we examined the data() method, which allows us to assign data to
DOM elements. For those cases where we already have a DOM element reference, we
can use the low-level utility function $.data() to perform the same action:

As might be expected, we can also remove the data via a utility function:

Now let’s turn our attention to one of the more esoteric utility functions—one that
lets us have a pronounced effect on how event listeners are called.

6.4.4 Prebinding function contexts

As we’ve seen throughout our examination of jQuery, functions and their contexts
play an important role in jQuery-using code. In the coming chapters on Ajax
(chapter 8) and jQuery UI (chapters 9 through 11), we’ll see an even stronger empha-
sis on functions, particularly when used as callbacks.

 The contexts of functions—what’s pointed to by this—is determined by how the
function is invoked (see the appendix if you want to review this concept). When we
want to call a particular function and explicitly control what the function context will
be, we can use the Function.call() method to invoke the function.

 But what if we’re not the ones calling the function? What if, for example, the func-
tion is a callback? In that case, we’re not the ones invoking the function so we can’t
use Function.call() to affect the setting of the function context.

Function syntax: $.data

$.data(element,name,value)
Stores or retrieves data on the passed element using the specified name.

Parameters
element (Element) The DOM element upon which the data is to be established, or from

which the data is to be retrieved.
name (String) The name with which the data is associated.
value (Object) The data to be assigned to the element with the given name. If omitted,

the named data is retrieved.

Returns
The data value that was stored or retrieved.

Function syntax: $.removeData

$.removeData(element,name)
Removes data stored on the passed element.

Parameters
element (Element) The DOM element from which the data is to be removed.
name (String) The name of the data item to be removed. If omitted, all stored data is

removed.

Returns
Nothing.
Download from Library of Wow! eBook <www.wowebook.com>

196 CHAPTER 6 Beyond the DOM with jQuery utility functions
 jQuery gives us a utility function by which we can prebind an object to a function
such that when the function is invoked, the bound object will become the function
context. This utility function is named $.proxy(), and its syntax is as follows:

Bring up the example in file chapter6/$.proxy.html. You’ll see a display as shown in
figure 6.5.

 In this example page, a Test button is created within a <div> element with an id
value of buttonContainer. When the Normal radio button is clicked, a click handler is
established on the button and its container as follows:

$('#testButton,#buttonContainer').click(
 function(){ say(this.id); }
);

When the button is clicked, we’d expect the established handler to be invoked on the
button and, because of event bubbling, on its parent container. In each case, the func-
tion context of the invocation should be the element upon which the handler was
established.

Function syntax: $.proxy

$.proxy(function,proxy)
$.proxy(proxy,property)
Creates a copy of a function with a prebound proxy object to serve as the function context when
the function is invoked as a callback.

Parameters
function (Function) The function to be prebound with the proxy object.
proxy (Object) The object to be bound as the proxy function context.
property (String) The name of the property within the object passed as proxy that contains

the function to be bound.

Returns
The new function prebound with the proxy object.

Figure 6.5 The $.proxy example page will help us see the difference between
normal and proxied callbacks.
Download from Library of Wow! eBook <www.wowebook.com>

197Miscellaneous utility functions
 The results of the call to say(this.id) within the handler (which reports the id
property of the function context) show that all is as expected—see the top portion of
figure 6.6. The handler is invoked twice: first on the button and then on the con-
tainer, with each element respectively set as the function context.

 However, when the Proxy radio button is checked, the handler is established as
follows:

$('#testButton,#buttonContainer').click(
 $.proxy(function(){ say(this.id); }, $('#controlPanel')[0])
);

This establishes the same handler as before, except that the handler function has been
passed through the $.proxy() utility function, prebinding an object to the handler.

 In this case, we bound the element with the id of controlPanel. The bound object
does not have to be an element—in fact, most often it won’t be. We just chose it for
this example because it makes the object easy to identify via its id value.

 Now when we click the Test button, we see the display at the bottom of figure 6.6,
showing that the function context has been forced to be the object that we bound to
the handler with $.proxy().

Figure 6.6 This example shows the effects of prebinding an object to the click
handler for the Test button.
Download from Library of Wow! eBook <www.wowebook.com>

198 CHAPTER 6 Beyond the DOM with jQuery utility functions
 This ability is really useful for providing data to a callback that it might not nor-
mally have access to via closures or other means.

 The most common use case for $.proxy() is when we want to bind a method of an
object as a handler, and have the method’s owning object established as the handler’s
function context exactly as if we had called the method directly. Consider an object
such as this:

var o = {
 id: 'o',
 hello: function() { alert("Hi there! I'm " + this.id); }
};

If we were to call the hello() method via o.hello(), the function context (this)
would be o. But if we establish the function as a handler like so,

$(whatever).click(o.hello);

we find that the function context is the current bubbling element, not o. And if our
handler relies upon o, we’re rather screwed.

 We can unwedge ourselves by using $.proxy() to force the function context to be
o with one of these two statements:

$(whatever).click($.proxy(o.hello,o));

or
$(whatever).click($.proxy(o,'hello'));

Be aware that going this route means that you will not have any way of knowing the
current bubble element of the event propagation—the value normally established as
the function context.

6.4.5 Parsing JSON

JSON has fast become an Internet darling child, threatening to push the more stodgy-
seeming XML off the interchange-format pedestal. As most JSON is also valid
JavaScript expression syntax, the JavaScript eval() function has long been used to
convert a JSON string to its JavaScript equivalent.

 Modern browsers provide JSON.parse() to parse JSON, but not everyone has the
luxury of assuming that all of their users will be running the latest and greatest.
Understanding this, jQuery provides the $.parseJSON() utility function.

Function syntax: $.parseJSON

$.parseJSON(json)
Parses the passed JSON string, returning its evaluation.

Parameters
json (String) The JSON string to be parsed.

Returns
The evaluation of the JSON string.
Download from Library of Wow! eBook <www.wowebook.com>

199Miscellaneous utility functions
When the browser supports JSON.parse(), jQuery will use it. Otherwise, it will use a
JavaScript trick to perform the evaluation.

 Bear in mind that the JSON string must be completely well-formed, and that the rules
for well-formed JSON are much more strict than JavaScript expression notation. For
example, all property names must be delimited by double-quote characters, even if
they form valid identifiers. And that’s double-quote characters—single-quote charac-
ters won’t cut it. Invalid JSON will result in an error being thrown. See http://
www.json.org/ for the nitty-gritty on well-formed JSON.

 Speaking of evaluations ...

6.4.6 Evaluating expressions

While the use of eval() is derided by some Internet illuminati, there are times when
it’s quite useful.

 But eval() executes in the current context. When writing plugins and other reus-
able scripts, we might want to ensure that the evaluation always takes place in the
global context. Enter the $.globalEval() utility function.

Let’s wrap up our investigation of the utility functions with one that we can use to
dynamically load new scripts into our pages.

6.4.7 Dynamically loading scripts

Most of the time, we’ll load the external scripts that our page needs from script files
when the page loads via <script> tags in the <head> of the page. But every now and
again, we might want to load a script after the fact under script control.

 We might do this because we don’t know if the script will be needed until after
some specific user activity has taken place, and we don’t want to include the script
unless it’s absolutely needed. Or perhaps we might need to use some information not
available at load time to make a conditional choice between various scripts.

 Regardless of why we might want to dynamically load new scripts into the page,
jQuery provides the $.getScript() utility function to make it easy.

Function syntax: $.globalEval

$.globalEval(code)
Evaluates the passed JavaScript code in the global context.

Parameters
code (String) The JavaScript code to be evaluated.

Returns
The evaluation of the JavaScript code.
Download from Library of Wow! eBook <www.wowebook.com>

http://www.json.org/
http://www.json.org/

200 CHAPTER 6 Beyond the DOM with jQuery utility functions

Under its covers, this function uses jQuery’s built-in Ajax mechanisms to fetch the
script file. We’ll be covering these Ajax facilities in great detail in chapter 8, but we
don’t need to know anything about Ajax to use this function.

 After fetching, the script in the file is evaluated, any inline script is executed, and
any defined variables or functions become available.

WARNING In Safari 2 and older, the script definitions loaded from the
fetched file don’t become available right away, even in the callback to the
function. Any dynamically loaded script elements don’t become available
until after the script block within which it is loaded relinquishes control back
to the browser. If your pages are going to support these older versions of
Safari, plan accordingly!

Let’s see this in action. Consider the following script file (available in chapter6/
new.stuff.js):

alert("I'm inline!");
var someVariable = 'Value of someVariable';
function someFunction(value) {
 alert(value);
};

This trivial script file contains an inline statement (which issues an alert that leaves no
doubt as to when the statement gets executed), a variable declaration, and a declara-
tion for a function that issues an alert containing whatever value is passed to it when
executed. Now let’s write a page to include this script file dynamically. The page is
shown in listing 6.2 and can be found in the file chapter6/$.getScript.html.

<!DOCTYPE html>
<html>
 <head>
 <title>$.getScript() Example</title>
 <link rel="stylesheet" type="text/css" href="../styles/core.css" />
 <script type="text/javascript" src="../scripts/jquery-1.4.js"></script>

Function syntax: $.getScript

$.getScript(url,callback)
Fetches the script specified by the url parameter using a GET request to the specified server,
optionally invoking a callback upon success.

Parameters
url (String) The URL of the script file to fetch. The URL is not restricted to the same

domain as the containing page.
callback (Function) An optional function invoked after the script resource has been loaded

and evaluated, with the following parameters: the text loaded from the resource,
and a text status message: “success” if all has gone well.

Returns
The XMLHttpRequest instance used to fetch the script.

Listing 6.2 Dynamically loading a script file and examining the results
Download from Library of Wow! eBook <www.wowebook.com>

201Miscellaneous utility functions
 <script type="text/javascript"
 src="../scripts/jqia2.support.js"></script>
 <script type="text/javascript">
 $(function(){
 $('#loadButton').click(function(){
 $.getScript(
 'new.stuff.js'
 //,function(){$('#inspectButton').click()}
);
 });
 $('#inspectButton').click(function(){
 someFunction(someVariable);
 });
 });
 </script>
 </head>

 <body>
 <button type="button" id="loadButton">Load</button>
 <button type="button" id="inspectButton">Inspect</button>
 </body>
</html>

This page defines two buttons D that we use to trigger the activity of the example.
The first button, labeled Load, causes the new.stuff.js file to be dynamically loaded
through use of the $.getScript() function B. Note that, initially, the second param-
eter (the callback) is commented out—we’ll get to that in a moment.

 On clicking the Load button, the new.stuff.js file is loaded, and its content is evalu-
ated. As expected, the inline statement within the file triggers an alert message, as
shown in figure 6.7.

 Clicking the Inspect button executes its click handler C, which executes the
dynamically loaded someFunction() function, passing the value of the dynamically
loaded someVariable variable. If the alert appears as shown in figure 6.8, we know
that both the variable and function are loaded correctly.

 If you’re still running Safari 2 or older (which is very out-of-date at this point) and
would like to observe the behavior of older versions of Safari that we warned you
about earlier, make a copy of the HTML file for the page shown in figure 6.8, and

Fetches script on
clicking Load button

B

Displays result on
clicking Inspect button

C

Contains test buttonsD

Figure 6.7 The dynamic
loading and evaluation of
the script file results in the
inline alert statement
being executed.
Download from Library of Wow! eBook <www.wowebook.com>

202 CHAPTER 6 Beyond the DOM with jQuery utility functions
uncomment the callback parameter to the $.getScript() function. This callback
executes the click handler for the Inspect button, calling the dynamically loaded
function with the loaded variable as its parameter.

 In browsers other than Safari 2, the function and variable loaded dynamically from
the script are available within the callback function. But when executed on Safari 2,
nothing happens! We need to take heed of this divergence of functionality when using
the $.getScript() function in Safari’s older versions.

6.5 Summary
In this chapter we surveyed the features that jQuery provides outside of the methods
that operate upon a wrapped set of matched DOM elements. These included an assort-
ment of functions, as well as a set of flags, defined directly on the jQuery top-level
name (as well as its $ alias).

 We saw how jQuery informs us about the capabilities of the containing browser
using the various flags in the $.support object. When we need to resort to browser
detection to account for differences in browser capabilities and operations beyond
what $.support provides, the $.browser set of flags lets us determine within which
browser family the page is being displayed. Browser detection should be used only as a
last resort when it’s impossible to write the code in a browser-independent fashion
and the preferred approach of feature detection can’t be employed.

 Recognizing that page authors may sometimes wish to use other libraries in con-
junction with jQuery, jQuery provides $.noConflict(), which allows other libraries to
use the $ alias. After calling this function, all jQuery operations must use the jQuery
name rather than $.

 $.trim() exists to fill the gap left by the native JavaScript String class for trim-
ming whitespace from the beginning and end of string values.

 jQuery also provides a set of functions that are useful for dealing with data sets in
arrays. $.each() makes it easy to traverse through every item in an array; $.grep()
allows us to create new arrays by filtering the data of a source array using whatever fil-
tering criteria we’d like to use; and $.map() allows us to easily apply our own trans-
formations to a source array to produce a corresponding new array with the
transformed values.

Figure 6.8 The
appearance of the alert
shows that the dynamic
function is loaded
correctly, and the
correctly displayed value
shows that the variable
was dynamically loaded.
Download from Library of Wow! eBook <www.wowebook.com>

203Summary
 We can convert NodeList instances to JavaScript arrays with $.makeArray(), test to
see if a value is in an array with $.inArray(), and even test if a value is an array itself
with $.isArray(). We can also test for functions using $.isFunction().

 We also saw how jQuery lets us construct properly formatted and encoded query
strings with $.param().

 To merge objects, perhaps even to mimic a sort of inheritance scheme, jQuery also
provides the $.extend() function. This function allows us to unite the properties of
any number of source objects into a target object.

 We also saw a bevy of functions for testing objects to see if they’re functions,
JavaScript objects, or even empty objects—useful for many situations, but particularly
when inspecting variable argument lists.

 The $.proxy() method can be used to prebind an object to later be used as the
function context for an event handler invocation, and the $.noop() function can be
used to do nothing at all!

 And for those times when we want to load a script file dynamically, jQuery defines
$.getScript(), which can load and evaluate a script file at any point in the lifetime of
a page, even from domains other than the page source.

 With these additional tools safely tucked away in our toolbox, we’re ready to tackle
adding our own extensions to jQuery. Let’s get to it in the next chapter.
Download from Library of Wow! eBook <www.wowebook.com>

Expand your reach
by extending jQuery
Over the course of the previous chapters, we’ve seen that jQuery gives us a large
toolset of useful methods and functions, and we’ve also seen that we can easily tie
these tools together to give our pages whatever behavior we choose. Sometimes
that code follows common patterns we want to use again and again. When such pat-
terns emerge, it makes sense to capture these repeated operations as reusable tools
that we can add to our original toolset. In this chapter, we’ll explore how to capture
these reusable fragments of code as extensions to jQuery.

 But before any of that, let’s discuss why we’d want to pattern our own code as
extensions to jQuery in the first place.

This chapter covers
Why to extend jQuery with custom code

Guidelines for effectively extending jQuery

Writing custom utility functions

Writing custom wrapper methods
204

Download from Library of Wow! eBook <www.wowebook.com>

205The jQuery plugin authoring guidelines
7.1 Why extend jQuery?
If you’ve been paying attention while reading through this book, and you’ve been
reviewing the code examples presented within it, you undoubtedly will have noted
that adopting jQuery for use in our pages has a profound effect on how script is writ-
ten within a page.

 jQuery promotes a certain style for a page’s code: generally forming a wrapped set
of elements and then applying a jQuery method, or chain of methods, to that set.
When writing our own code, we can write it however we please, but most experienced
developers agree that having all of the code on a site, or at least the great majority of
it, adhere to a consistent style is a good practice.

 So one good reason to pattern our code as jQuery extensions is to help maintain a
consistent code style throughout the site.

 Not reason enough? Need more? The whole point of jQuery is to provide a set of
reusable tools and APIs. The creators of jQuery carefully planned the design of the
library and the philosophy of how the tools are arranged to promote reusability. By
following the precedent set by the design of these tools, we automatically reap the
benefits of the planning that went into these designs—a compelling second reason to
write our code as jQuery extensions.

 Still not convinced? The final reason we’ll consider (though it’s quite possible oth-
ers could list even more reasons) is that, by extending jQuery, we can leverage the
existing code base that jQuery makes available to us. For example, by creating new
jQuery methods (wrapper methods), we automatically inherit the use of jQuery’s pow-
erful selector mechanism. Why write everything from scratch when we can layer upon
the powerful tools jQuery already provides?

 Given these reasons, it’s easy to see that writing our reusable components as jQuery
extensions is a good practice and a smart way of working. In the remainder of this chap-
ter, we’ll examine the guidelines and patterns that allow us to create jQuery plugins,
and we’ll create a few of our own. In the following chapter, which covers a completely
different subject (Ajax), we’ll see even more evidence that creating our own reusable
components as jQuery plugins in real-world scenarios helps to keep the code consis-
tent and makes it a whole lot easier to write those components in the first place.

 But first, the guidelines ...

7.2 The jQuery plugin authoring guidelines

Sign! Sign! Everywhere a sign!
Blocking out the scenery, breaking my mind.
Do this! Don’t do that! Can’t you read the sign?

—Five Man Electrical Band, 1971

Although the Five Man Electrical Band may have lyrically asserted an anti-
establishment stance against rules back in 1971, sometimes rules are a good thing.
Without any, chaos would reign.
Download from Library of Wow! eBook <www.wowebook.com>

206 CHAPTER 7 Expand your reach by extending jQuery
 So it is with the rules—which are more like common-sense guidelines—governing
how to successfully extend jQuery with our own plugin code. These guidelines help us
ensure that not only does our new code plug into the jQuery architecture properly,
but also that it will work and play well with other jQuery plugins, and even other
JavaScript libraries.

 Extending jQuery takes one of two forms:

Utility functions defined directly on $ (an alias for jQuery)
Methods to operate on a jQuery wrapped set (what we’ve been calling jQuery
methods)

In the remainder of this section, we’ll go over some guidelines common to both types
of extensions. Then, in the following sections, we’ll tackle the guidelines and tech-
niques specific to writing each type of plugin.

7.2.1 Naming files and functions

To Tell the Truth was an American game show, first airing in the 1950s, in which multi-
ple contestants claimed to be the same person with the same name, and a panel of
celebrities was tasked with determining which of the contestants was in reality the per-
son they all claimed to be. Although fun for a television audience, name collisions
aren’t fun at all when it comes to programming.

 We’ll discuss avoiding name collisions within our plugins, but first let’s address
naming the files within which we’ll write our plugins so that they don’t conflict with
other files.

 The guideline recommended by the jQuery team is simple but effective, advocat-
ing the following format:

Prefix the filename with jquery.
Follow that with the name of the plugin.
Optionally, include the major and minor version numbers of the plugin.
Conclude with .js.

For example, if we write a plugin that we want to name “Fred”, our JavaScript filename
for this plugin could be jquery.fred-1.0.js. The use of the “jquery” prefix eliminates
any possible name collisions with files intended for use with other libraries. After all,
anyone writing non-jQuery plugins has no business using the “jquery” prefix, but that
leaves the plugin name itself still open for contention within the jQuery community.

 When we’re writing plugins for our own use, all we need to do is avoid conflicts
with any other plugins that we plan to use. But when writing plugins that we plan to
publish for others to use, we need to avoid conflicts with any other plugin that’s
already published.

 The best way to avoid conflicts is to stay in tune with the goings-on within the
jQuery community. A good starting point is the page at http://plugins.jquery.com/,
but beyond being aware of what’s already out there, there are other precautions we
can take.
Download from Library of Wow! eBook <www.wowebook.com>

http://plugins.jquery.com/

207The jQuery plugin authoring guidelines
 One way to ensure that our plugin filenames are unlikely to conflict with others is
to subprefix them with a name that’s unique to us or our organization. For example,
all of the plugins developed in this book use the filename prefix “jquery.jqia” (jqia
being short for jQuery in Action) to help make sure that they won’t conflict with anyone
else’s plugin filenames, should anyone wish to use them in their own web applications.
Likewise, the files for the jQuery Form Plugin begin with the prefix “jquery.form”. Not
all plugins follow this convention, but as the number of plugins increases, it will
become more and more important to follow such conventions.

 Similar considerations need to be taken with the names we give to our functions,
whether they’re new utility functions or methods on the jQuery wrappers.

 When creating plugins for our own use, we’re usually aware of what other plugins
we’ll use; it’s an easy matter to avoid any naming collisions. But what if we’re creating
our plugins for public consumption? Or what if our plugins, which we initially
intended to use privately, turn out to be so useful that we want to share them with the
rest of the community?

 Once again, familiarity with the plugins that already exist will go a long way in
avoiding API collisions, but we also encourage gathering collections of related func-
tions under a common prefix (similar to the proposal for filenames) to avoid clutter-
ing the namespace.

 Now, what about conflicts with $?

7.2.2 Beware the $

“Will the real $ please stand up?”
 Having written a fair amount of jQuery code, we’ve seen how handy it is to use the

$ alias in place of jQuery. But when writing plugins that may end up in other people’s
pages, we can’t be quite so cavalier. As plugin authors, we have no way of knowing
whether a web developer intends to use the $.noConflict() function to allow the $
alias to be used by another library.

 We could employ the sledgehammer approach and use the jQuery name in place
of the $ alias, but dang it, we like using $ and are loath to give up on it so easily.

 Chapter 6 introduced an idiom often used to make sure that the $ alias refers to
the jQuery name in a localized manner without affecting the remainder of the page,
and this little trick can also be (and often is) employed when defining jQuery plugins
as follows:

(function($){
//
// Plugin definition goes here
//
})(jQuery);

By passing jQuery to a function that defines the parameter as $, $ is guaranteed to ref-
erence jQuery within the body of the function.

 We can now happily use $ to our heart’s content in the definition of the plugin.
 Before we dive into learning how to add new elements to jQuery, let’s look at one

more technique plugin authors are encouraged to use.
Download from Library of Wow! eBook <www.wowebook.com>

208 CHAPTER 7 Expand your reach by extending jQuery
7.2.3 Taming complex parameter lists

Most plugins tend to be simple affairs that require few, if any, parameters. We’ve seen
ample evidence of this in the vast majority of the core jQuery methods and functions,
which either take a small handful of parameters or none at all. Intelligent defaults are
supplied when optional parameters are omitted, and parameter order can even take
on a different meaning when some optional parameters are omitted.

 The bind() method is a good example; if the optional data parameter is omitted,
the listener function, which is normally specified as the third parameter, can be sup-
plied as the second. The dynamic and interpretive nature of JavaScript allows us to
write such flexible code, but this sort of thing can start to break down and get com-
plex (both for web developers and ourselves as plugin authors) when the number of
parameters grows larger. The possibility of a breakdown increases when many of the
parameters are optional.

 Consider a somewhat complex function whose signature is as follows:

function complex(p1,p2,p3,p4,p5,p6,p7) {

This function accepts seven arguments, and let’s say that all but the first are optional.
There are too many optional arguments to make any intelligent guesses about the
intention of the caller when optional parameters are omitted. If a caller of this func-
tion is only omitting trailing parameters, this isn’t much of a problem, because the
optional trailing arguments can be detected as nulls. But what if the caller wants to
specify p7 but let p2 through p6 default? Callers would need to use placeholders for
any omitted parameters and write

complex(valueA,null,null,null,null,null,valueB);

Yuck! Even worse is a call such as

complex(valueA,null,valueC,valueD,null,null,valueB);

along with other variations of this nature. Web developers using this function are
forced to carefully keep track of counting nulls and the order of the parameters; plus,
the code is difficult to read and understand.

 But short of not allowing the caller so many options, what can we do?
 Again, the flexible nature of JavaScript comes to the rescue; a pattern that allows

us to tame this chaos has arisen among the page-authoring communities—the options
hash. Using this pattern, optional parameters are gathered into a single parameter in
the guise of a JavaScript Object instance, whose property name/value pairs serve as
the optional parameters.

 Using this technique, our first example could be written as

complex(valueA, {p7: valueB});

The second would be as follows:

complex(valueA, {
 p3: valueC,
 p4: valueD,
 p7: valueB
});
Download from Library of Wow! eBook <www.wowebook.com>

209The jQuery plugin authoring guidelines
Much better!
 We don’t have to account for omitted parameters with placeholder nulls, and we

also don’t need to count parameters; each optional parameter is conveniently labeled
so that it’s clear exactly what it represents (when we use better parameter names than
p1 through p7, that is).

NOTE Some APIs follow this convention of bundling optional parameters
into a single options parameter (leaving required parameters as standalone
parameters), while others bundle the complete set of parameters, required
and optional alike, into a single object. Neither approach is deemed more
correct than the other, so choose whichever best suits your code.

Although this is obviously a great advantage to the caller of our complex functions,
what about the ramifications for us as the plugin authors? As it turns out, we’ve
already seen a jQuery-supplied mechanism that makes it easy for us to gather these
optional parameters together and merge them with default values. Let’s reconsider
our complex example function with a required parameter and six options. The new,
simplified signature is

complex(p1,options)

Within our function, we can merge those options with default values with the handy
$.extend() utility function. Consider the following:

function complex(p1,options) {
 var settings = $.extend({
 option1: defaultValue1,
 option2: defaultValue2,
 option3: defaultValue3,
 option4: defaultValue4,
 option5: defaultValue5,
 option6: defaultValue6
 },options||{});
 // remainder of function ...
}

By merging the values passed by the web developer in the options parameter with an
object containing all the available options with their default values, the settings vari-
able ends up with the default values superseded by any explicit values specified by the
web developer.

TIP Rather than creating a new settings variable, we could also just use the
options reference itself to accumulate the values. That would cut down on
one reference on the stack, but let’s keep on the side of clarity for the
moment.

Note that we guard against an options object that’s null or undefined with ||{},
which supplies an empty object if options evaluates to false (as we know null and
undefined do).
Download from Library of Wow! eBook <www.wowebook.com>

210 CHAPTER 7 Expand your reach by extending jQuery
 Easy, versatile, and caller-friendly!
 We’ll see examples of this pattern in use later in this chapter and in jQuery func-

tions that will be introduced in chapter 8, but, for now, let’s look at how we extend
jQuery with our own utility functions.

7.3 Writing custom utility functions
In this book, we use the term utility function to describe functions defined as proper-
ties of jQuery (and therefore $). These functions aren’t intended to operate on DOM
elements—that’s the job of methods defined to operate on a jQuery wrapped set—but
to either operate on non-element JavaScript objects or perform some other operation
that doesn’t specifically operate on any objects. Some examples we’ve seen of each of
these types of function are $.each() and $.noConflict().

 In this section, we’ll learn how to add our own similar functions.
 Adding a function as a property to an Object instance is as easy as declaring the

function and assigning it to an object property. (If this seems like black magic to you,
and you have not yet read through the appendix, now would be a good time to do so.)
Creating a trivial custom utility function should be as easy as

$.say = function(what) { alert('I say '+what); };

And, in truth, it is that easy. But this manner of defining a utility function isn’t without
its pitfalls; remember our discussion in section 7.2.2 regarding the $? What if some
developer includes this function on a page that uses Prototype and has called
$.noConflict()? Rather than add a jQuery extension, we’d create a method on Pro-
totype’s $() function. (Get thee to the appendix if the concept of a method of a func-
tion makes your head hurt.)

 This isn’t a problem for a private function that we know will never be shared, but
even then, what if some future changes to the pages reassign the $? It’s a good idea to
err on the side of caution.

 One way to ensure that someone stomping on $ doesn’t also stomp on us is to
avoid using $ at all. We could write our trivial function as

jQuery.say = function(what) { alert('I say '+what); };

This seems like an easy way out, but it proves to be less than optimal for more complex
functions. What if the function body utilizes lots of jQuery methods and functions
internally to get its job done? We’d need to use jQuery rather than $ throughout the
function. That’s rather wordy and inelegant; besides, once we use the $, we don’t want
to let it go!

 So looking back to the idiom we introduced in section 7.2.2, we can safely write
our function as follows:

(function($){
 $.say = function(what) { alert('I say '+what); };
})(jQuery);

We highly encourage using this pattern (even though it may seem like overkill for
such a trivial function) because it protects the use of $ when declaring and defining
Download from Library of Wow! eBook <www.wowebook.com>

211Writing custom utility functions
the function. Should the function ever need to become more complex, we could
extend and modify it without wondering whether it’s safe to use the $ or not.

 With this pattern fresh in our minds, let’s implement a nontrivial utility function of
our own.

7.3.1 Creating a data manipulation utility function

Often, when emitting fixed-width output, it’s necessary to take a numeric value and
format it to fit into a fixed-width field (where width is defined as the number of charac-
ters). Usually such operations will right-justify the value within the fixed-width field
and prefix the value with enough fill characters to make up any difference between the
length of the value and the length of the field.

 Let’s write such a utility function with the following syntax:

The implementation of this function is shown in listing 7.1.

 (function($){
 $.toFixedWidth = function(value,length,fill) {
 var result = (value || '').toString();
 fill = fill || '0';
 var padding = length - result.length;
 if (padding < 0) {
 result = result.substr(-padding);
 }
 else {
 for (var n = 0; n < padding; n++)
 result = fill + result;
 }
 return result;
 };
})(jQuery);

This function is simple and straightforward. The passed value is converted to its string
equivalent, and the fill character is determined either from the passed value or the
default of 0 B. Then, we compute the amount of padding needed C.

Function syntax: $.toFixedWidth

$.toFixedWidth(value,length,fill)
Formats the passed value as a fixed-width field of the specified length. An optional fill character
can be supplied. If the numeric value exceeds the specified length, its higher order digits will be
truncated to fit the length.

Parameters
value (Number) The value to be formatted.
length (Number) The length of the resulting field.
fill (String) The fill character used when front-padding the value. If omitted, 0 is used.

Returns
The fixed-width field.

Listing 7.1 Implementation of the $.toFixedWidth() custom utility function

Assigns default valueB
Computes paddingC

Truncates if necessaryD

Pads resultE

Returns final resultF
Download from Library of Wow! eBook <www.wowebook.com>

212 CHAPTER 7 Expand your reach by extending jQuery
 If we end up with negative padding (the result is longer than the passed field
length), we truncate from the beginning of the result to end up with the specified
length D; otherwise, we pad the beginning of the result with the appropriate number
of fill characters E prior to returning it as the result of the function F.

Simple stuff, but it serves to show how easily we can add a utility function. And, as
always, there’s room for improvement. Consider the following exercises:

1 As with most examples in books, the error checking is minimal because we’re
focusing on the lesson at hand. How would you beef up the function to account
for caller errors such as not passing numeric values for value and length? What
if they don’t pass them at all?

2 We were careful to truncate numeric values that were too long, in order to guar-
antee that the result was always the specified length. But if the caller passes
more than a single-character string for the fill character, all bets are off. How
would you handle that?

3 What if you don’t want to truncate too-long values?

Now, let’s tackle a more complex function in which we can make use of the
$.toFixedWidth() function that we just wrote.

7.3.2 Writing a date formatter

If you’ve come to the world of client-side programming from the server, one of the
things you may have longed for is a simple date formatter; something that the
JavaScript Date type doesn’t provide. Because such a function would operate on a
Date instance, rather than any DOM element, it’s a perfect candidate for a utility func-
tion. Let’s write one that uses the following syntax:

Namespacing utility functions
If you want to make sure that your utility functions aren’t going to conflict with any-
body else’s, you can namespace the functions by creating a namespace object on $
that, in turn, serves as the owner of your functions. For example, if we wanted to
namespace all our date formatter functions under a namespace called jQiaDate-
Formatter, we’d do the following:

$.jQiaDateFormatter = {};
$.jQiaDateFormatter.toFixedWidth = function(value,length,fill) {...};

This ensures that functions like toFixedWidth() can never conflict with another sim-
ilarly named function. (Of course, we still need to worry about conflicting
namespaces, but that’s easier to deal with.)
Download from Library of Wow! eBook <www.wowebook.com>

213Writing custom utility functions

The implementation of this function is shown in listing 7.2. We’re not going to go into
great detail regarding the algorithm used to perform the formatting (after all, this
isn’t an algorithms book), but we’ll use this implementation to point out some inter-
esting tactics that we can use when creating a somewhat complex utility function.

(function($){
 $.formatDate = function(date,pattern) {
 var result = [];
 while (pattern.length > 0) {
 $.formatDate.patternParts.lastIndex = 0;
 var matched = $.formatDate.patternParts.exec(pattern);
 if (matched) {
 result.push(
 $.formatDate.patternValue[matched[0]].call(this,date)
);
 pattern = pattern.slice(matched[0].length);
 } else {
 result.push(pattern.charAt(0));
 pattern = pattern.slice(1);
 }

Function syntax: $.formatDate

$.formatDate(date,pattern)
Formats the passed date according to the supplied pattern. The tokens that are substituted in the
pattern are as follows:
yyyy: the 4-digit year
yy: the 2-digit year
MMMM: the full name of the month
MMM: the abbreviated name of the month
MM: the month number as a 0-filled, 2-character field
M: the month number
dd: the day of the month as a 0-filled, 2-character field
d: the day of the month
EEEE: the full name of the day of the week
EEE: the abbreviated name of the day of the week
a: the meridian (AM or PM)
HH: the 24-hour clock hour in the day as a 2-character, 0-filled field
H: the 24-hour clock hour in the day
hh: the 12-hour clock hour in the day as a 2-character, 0-filled field
h: the 12-hour clock hour in the day
mm: the minutes in the hour as a 2-character, 0-filled field
m: the minutes in the hour
ss: the seconds in the minute as a 2-character, 0-filled field
s: the seconds in the minute
S: the milliseconds in the second as a 3-character, 0-filled field

Parameters
date (Date) The date to be formatted.
pattern (String) The pattern to format the date into. Any characters not matching pattern

tokens are copied as-is to the result.

Returns
The formatted date.

Listing 7.2 Implementation of the $.formatDate() custom utility function

Implements main
body of the function

B

Download from Library of Wow! eBook <www.wowebook.com>

214 CHAPTER 7 Expand your reach by extending jQuery
 }
 return result.join('');
 };
 $.formatDate.patternParts =
 /^(yy(yy)?|M(M(M(M)?)?)?|d(d)?|EEE(E)?|a|H(H)?|h(h)?|m(m)?|s(s)?|S)/;

 $.formatDate.monthNames = [
 'January','February','March','April','May','June','July',
 'August','September','October','November','December'
];
 $.formatDate.dayNames = [
 'Sunday','Monday','Tuesday','Wednesday','Thursday','Friday',
 'Saturday'
];
 $.formatDate.patternValue = {
 yy: function(date) {
 return $.toFixedWidth(date.getFullYear(),2);
 },
 yyyy: function(date) {
 return date.getFullYear().toString();
 },
 MMMM: function(date) {
 return $.formatDate.monthNames[date.getMonth()];
 },
 MMM: function(date) {
 return $.formatDate.monthNames[date.getMonth()].substr(0,3);
 },
 MM: function(date) {
 return $.toFixedWidth(date.getMonth() + 1,2);
 },
 M: function(date) {
 return date.getMonth()+1;
 },
 dd: function(date) {
 return $.toFixedWidth(date.getDate(),2);
 },
 d: function(date) {
 return date.getDate();
 },
 EEEE: function(date) {
 return $.formatDate.dayNames[date.getDay()];
 },
 EEE: function(date) {
 return $.formatDate.dayNames[date.getDay()].substr(0,3);
 },
 HH: function(date) {
 return $.toFixedWidth(date.getHours(),2);
 },
 H: function(date) {
 return date.getHours();
 },
 hh: function(date) {
 var hours = date.getHours();
 return $.toFixedWidth(hours > 12 ? hours - 12 : hours,2);
 },
 h: function(date) {

Defines the
regular expression

C

Provides name of the monthsD

Provides name
of the days

E

Collects token-to-value
translation functions

F

Download from Library of Wow! eBook <www.wowebook.com>

215Writing custom utility functions
 return date.getHours() % 12;
 },
 mm: function(date) {
 return $.toFixedWidth(date.getMinutes(),2);
 },
 m: function(date) {
 return date.getMinutes();
 },
 ss: function(date) {
 return $.toFixedWidth(date.getSeconds(),2);
 },
 s: function(date) {
 return date.getSeconds();
 },
 S: function(date) {
 return $.toFixedWidth(date.getMilliseconds(),3);
 },
 a: function(date) {
 return date.getHours() < 12 ? 'AM' : 'PM';
 }
 };
})(jQuery);

The most interesting aspect of this implementation, aside from a few JavaScript tricks
used to keep the amount of code in check, is that the function B needs some ancil-
lary data to do its job. In particular,

A regular expression used to match tokens in the pattern C
A list of the English names of the months D
A list of the English names of the days E
A set of subfunctions designed to provide the value for each token type, given a
source date F

We could have included each of these as var definitions within the function body, but
that would clutter an already somewhat involved algorithm, and because they’re con-
stants, it makes sense to segregate them from variable data.

 We don’t want to pollute the global namespace, or even the $ namespace, with a
bunch of names needed only by this function, so we make these declarations proper-
ties of our new function itself. Remember, JavaScript functions are first-class objects,
and they can have their own properties like any other JavaScript object.

 As for the formatting algorithm itself? In a nutshell, it operates as follows:

1 Creates an array to hold portions of the result.
2 Iterates over the pattern, consuming identified token and non-token characters

until it has been completely inspected.
3 Resets the regular expression (stored in $.formatDate.patternParts) on each

iteration by setting its lastIndex property to 0.
4 Tests the regular expression for a token match against the current beginning of

the pattern.
Download from Library of Wow! eBook <www.wowebook.com>

216 CHAPTER 7 Expand your reach by extending jQuery
5 Calls the function in the $.formatDate.patternValue collection of conversion
functions to obtain the appropriate value from the Date instance if a match
occurs. This value is pushed onto the end of the results array, and the matched
token is removed from the beginning of the pattern.

6 Removes the first character from the pattern and adds it to the end of the
results array if a token isn’t matched at the current beginning of the pattern.

7 Joins the results array into a string and returns it as the value of the function
when the entire pattern has been consumed.

Note that the conversion functions in the $.formatDate.patternValue collection
make use of the $.toFixedWidth() function that we created in the previous section.

 You’ll find both of these functions in the file chapter7/jquery.jqia.dateFormat.js
and a rudimentary page to test it at chapter7/test.dateFormat.html.

 Operating on run-of-the-mill JavaScript objects is all well and good, but the real
power of jQuery lies in the wrapper methods that operate on a set of DOM elements
collected via the power of jQuery selectors. Next, let’s see how we can add our own
powerful wrapper methods.

7.4 Adding new wrapper methods
The true power of jQuery lies in the ability to easily and quickly select and operate on
DOM elements. Luckily, we can extend that power by adding wrapper methods of our
own that manipulate selected DOM elements as we deem appropriate. By adding wrap-
per methods, we automatically gain the use of the powerful jQuery selectors to pick
and choose which elements are to be operated on without having to do all the work
ourselves.

 Given what we know about JavaScript, we probably could have figured out on our
own how to add utility functions to the $ namespace, but that’s not necessarily true of
wrapper functions. There’s a tidbit of jQuery-specific information that we need to
know: to add wrapper methods to jQuery, we must assign them as properties to an
object named fn in the $ namespace.

 The general pattern for creating a wrapper function is

$.fn.wrapperFunctionName = function(params){function-body};

Let’s concoct a trivial wrapper method to set the color of the matched DOM elements
to blue:

(function($){
 $.fn.makeItBlue = function() {
 return this.css('color','blue');
 };
})(jQuery);

As with utility functions, we make the declaration within an outer function that guar-
antees that $ is an alias to jQuery. But unlike utility functions, we create the new wrap-
per method as a property of $.fn rather than of $.
Download from Library of Wow! eBook <www.wowebook.com>

217Adding new wrapper methods
NOTE If you’re familiar with “object-oriented JavaScript” and its prototype-
based class declarations, you might be interested to know that $.fn is merely
an alias for an internal prototype property of an object that jQuery uses to
create its wrapper objects.

Within the body of the method, the function context (this) refers to the wrapped
set. We can use all of the predefined jQuery methods on it; in this example, we call
the css() method on the wrapped set to set the color to blue for all matched DOM
elements.

WARNING The function context (this) within the main body of a wrapper
method refers to the wrapped set, but when inline functions are declared
within this function, they each have their own function contexts. You must
take care when using this under such circumstances to make sure that it’s
referring to what you think it is! For example, if you use the each() jQuery
method with its iterator function, this within the iterator function refer-
ences the DOM element for the current iteration.

We can do almost anything we like to the DOM elements in the wrapped set, but there
is one very important rule when defining new wrapper methods: unless the function is
intended to return a specific value, it should always return the wrapped set as its
return value. This allows our new method to take part in any jQuery method chains.
In our example, because the css() method returns the wrapped set, we simply return
the result of the call to css().

 In the previous example, we applied the jQuery css() method to all the elements
in the wrapped set by applying it to this. If, for some reason, we need to deal with
each wrapped element individually (perhaps because we need to make conditional
processing decisions), the following pattern can be used:

(function($){
 $.fn.someNewMethod = function() {
 return this.each(function(){
 //
 // Function body goes here -- this refers to individual
 // DOM elements
 //
 });
 };
})(jQuery);

In this pattern, the each() method is used to iterate over every individual element in
the wrapped set. Note that, within the iterator function, this refers to the current
DOM element rather than the entire wrapped set. The wrapped set returned by
each() is returned as the new method’s value so that this method can participate in
chaining.

 Let’s consider a variation of our previous blue-centric example that deals with each
element individually:
Download from Library of Wow! eBook <www.wowebook.com>

218 CHAPTER 7 Expand your reach by extending jQuery
(function($){
 $.fn.makeItBlueOrRed = function() {
 return this.each(function(){
 $(this).css('color',$(this).is('[id]') ? 'blue' : 'red');
 });
 };
})(jQuery);

In this variation, we want to apply the color blue or the color red based upon a condi-
tion that’s unique to each element (in this case, whether it has an id attribute or not),
so we iterate over the wrapped set so that we can examine and manipulate each ele-
ment individually.

That’s all there is to it, but (isn’t there always a but?) there are some techniques we
should be aware of when creating more involved jQuery wrapper methods. Let’s define
a couple more plugin methods of greater complexity to examine those techniques.

7.4.1 Applying multiple operations in a wrapper method

Let’s develop another new plugin method that performs more than a single operation
on the wrapped set. Imagine that we need to be able to flip the read-only status of text
fields within a form and to simultaneously and consistently affect the appearance of
the field. We could easily chain a couple of existing jQuery methods together to do
this, but we want to be neat and tidy about it and bundle these operations together
into a single method.

 We’ll name our new method setReadOnly(), and its syntax is as follows:

Iteration via methods that accept functions for values
Note that the “blue or red” example is a tad contrived to show how each() can be
used to traverse the individual elements in the wrapped set. Because the css()
method accepts a function for its value (which automatically iterates over the ele-
ments), the astute among you might have noted that this custom method could also
have been written without each() as follows:

(function($){
 $.fn.makeItBlueOrRed = function() {
 return this.css('color' function() {
 return $(this).is('[id]') ? 'blue' : 'red';
 });
 };

})(jQuery);

This is a common idiom across the jQuery API; when a function can be passed in
place of a value, the function is invoked in an iterative fashion over the elements of
the wrapped set.

The variant of the example using each() is illustrative of cases where there’s no
such automatic iteration of elements.
Download from Library of Wow! eBook <www.wowebook.com>

219Adding new wrapper methods

The implementation of this plugin is shown in listing 7.3 and can be found in the file
chapter7/jquery.jqia.setreadonly.js.

(function($){
 $.fn.setReadOnly = function(readonly) {
 return this.filter('input:text')
 .attr('readOnly',readonly)
 .css('opacity', readonly ? 0.5 : 1.0)
 .end();
 };
})(jQuery);

This example is only slightly more complicated than our initial example, but it exhib-
its the following key concepts:

A parameter is passed that affects how the method operates.
Four jQuery methods are applied to the wrapped set by use of jQuery chaining.
The new method can participate in a jQuery chain because it returns the
wrapped set as its value.
The filter() method is used to ensure that, no matter what set of wrapped ele-
ments the web developer applies this method to, only text fields are affected.
The end() method is invoked so that the original (not the filtered) wrapped set
is returned as the value of the call.

How might we put this method to use?
 Often, when defining an online order form, we may need to allow the user to enter

two sets of address information: one for where the order is to be shipped and one for
the billing information. Much more often than not, these two addresses are going to
be the same, and making the user enter the same information twice decreases our
user-friendliness factor to less than we’d want it to be.

 We could write our server-side code to assume that the billing address is the same as
the shipping address if the form is left blank, but let’s assume that our product man-
ager is a bit paranoid and would like something more overt on the part of the user.

 We’ll satisfy him by adding a checkbox to the billing address that indicates whether
the billing address is the same as the shipping address. When this box is checked, the

Method syntax: setReadOnly

setReadOnly(state)
Sets the read-only status of wrapped text fields to the state specified by state. The opacity of the
fields will be adjusted: 100 percent if not read-only, 50 percent if read-only. Any elements in the
wrapped set other than text fields are ignored.

Parameters
state (Boolean) The read-only state to set. If true, the text fields are made read-only;

otherwise, the read-only status is cleared.

Returns
The wrapped set.

Listing 7.3 Implementation of the setReadOnly() custom wrapper method
Download from Library of Wow! eBook <www.wowebook.com>

220 CHAPTER 7 Expand your reach by extending jQuery
billing address fields will be copied from the shipping fields and then made read-only.
Unchecking the box will clear the value and read-only status from the fields.

 Figure 7.1a shows a test form in its before state, and figure 7.1b shows the after state.
 The page for this test form is available in the file chapter7/test.setReadOnly.html

and is shown in listing 7.4.

<!DOCTYPE html>
<html>
 <head>
 <title>setReadOnly() Test</title>
 <link rel="stylesheet" type="text/css" href="../styles/core.css" />
 <link rel="stylesheet" type="text/css" href="test.setReadOnly.css" />
 <script type="text/javascript" src="../scripts/jquery-1.4.js"></script>

Listing 7.4 Implementation of the test page for the setReadOnly() wrapper method

Figure 7.1a Our form for testing the
setReadOnly() custom wrapper
method before checking the checkbox

Figure 7.1b Our form for testing the
setReadOnly() custom wrapper
method after checking the checkbox,
showing the results of applying the
custom method
Download from Library of Wow! eBook <www.wowebook.com>

221Adding new wrapper methods
 <script type="text/javascript" src="jquery.jqia.setReadOnly.js"></script>
 <script type="text/javascript">
 $(function(){
 $('#sameAddressControl').click(function(){
 var same = this.checked;
 $('#billAddress').val(same ? $('#shipAddress').val():'');
 $('#billCity').val(same ? $('#shipCity').val():'');
 $('#billState').val(same ? $('#shipState').val():'');
 $('#billZip').val(same ? $('#shipZip').val():'');
 $('#billingAddress input').setReadOnly(same);
 });
 });
 </script>
 </head>

 <body>
 <div class="module">
 <div class="banner">

 <img src="../images/module.right.cap.png" alt=""
 style="float:right"/>
 <h2>Test setReadOnly()</h2>
 </div>
 <div class="body">

 <form name="testForm">
 <div>
 <label>First name:</label>
 <input type="text" name="firstName" id="firstName"/>
 </div>
 <div>
 <label>Last name:</label>
 <input type="text" name="lastName" id="lastName"/>
 </div>
 <div id="shippingAddress">
 <h2>Shipping address</h2>
 <div>
 <label>Street address:</label>
 <input type="text" name="shipAddress" id="shipAddress"/>
 </div>
 <div>
 <label>City, state, zip:</label>
 <input type="text" name="shipCity" id="shipCity"/>
 <input type="text" name="shipState" id="shipState"/>
 <input type="text" name="shipZip" id="shipZip"/>
 </div>
 </div>
 <div id="billingAddress">
 <h2>Billing address</h2>
 <div>
 <input type="checkbox" id="sameAddressControl"/>
 Billing address is same as shipping address
 </div>
 <div>
 <label>Street address:</label>
 <input type="text" name="billAddress"
 id="billAddress"/>
Download from Library of Wow! eBook <www.wowebook.com>

222 CHAPTER 7 Expand your reach by extending jQuery
 </div>
 <div>
 <label>City, state, zip:</label>
 <input type="text" name="billCity" id="billCity"/>
 <input type="text" name="billState" id="billState"/>
 <input type="text" name="billZip" id="billZip"/>
 </div>
 </div>
 </form>
 </div>
 </div>

 </body>
</html>

We won’t belabor the operation of this page, as it’s relatively straightforward. The
only truly interesting aspect of this page is the click handler attached to the checkbox
in the ready handler. When the state of the checkbox is changed by a click, we do
three things:

1 Copy the checked state into the variable same for easy reference in the remain-
der of the listener.

2 Set the values of the billing address fields. If they’re to be the same, we set the
values from the corresponding fields in the shipping address information. If
not, we clear the fields.

3 Call the new setReadOnly() method on all input fields in the billing address
container.

But, oops! We were a little sloppy with that last step. The wrapped set that we create
with $('#billingAddress input') contains not only the text fields in the billing
address block but the checkbox too. The checkbox element doesn’t have read-only
semantics, but it can have its opacity changed—definitely not our intention!

 Luckily, this sloppiness is countered by the fact that we were not sloppy when
defining our plugin. Recall that we filtered out all but text fields before applying the
remainder of the methods in that method. We highly recommend such attention to
detail, particularly for plugins that are intended for public consumption.

 What are some ways that this method could be improved? Consider making the fol-
lowing changes:

We forgot about text areas! How would you modify the code to include text
areas along with the text fields?
The opacity levels applied to the fields in either state are hard-coded into the
function. This is hardly caller-friendly. Modify the method to allow the levels to
be caller-supplied.
Oh heck, why force the web developer to accept the ability to affect only the
opacity? How would you modify the method to allow the developer to deter-
mine what the renditions for the fields should be in either state?

Now let’s take on an even more complex plugin.
Download from Library of Wow! eBook <www.wowebook.com>

223Adding new wrapper methods
7.4.2 Retaining state within a wrapper method

Everybody loves a slideshow!
 At least on the web. Unlike hapless after-dinner guests forced to sit through a

mind-numbingly endless display of badly focused vacation photos, visitors to a web
slideshow can leave whenever they like without hurting anyone’s feelings!

 For our more complex plugin example, we’re going to develop a jQuery method
that will easily allow a web developer to whip up a quick slideshow page. We’ll create a
jQuery plugin, which we’ll name Photomatic, and then we’ll whip up a test page to put
it through its paces. When complete, this test page will appear as shown in figure 7.2.

 This page sports the following components:

A set of thumbnail images
A full-sized photo of one of the images available in the thumbnail list
A set of buttons for moving through the slideshow manually, and for starting
and stopping the automatic slideshow

The behaviors of the page are as follows:

Clicking any thumbnail displays the corresponding full-sized image.
Clicking the full-sized image displays the next image.
Clicking any button performs the following operations:
- First—Displays the first image

Figure 7.2 The test page that we’ll use to put our Photomatic plugin through its paces
Download from Library of Wow! eBook <www.wowebook.com>

224 CHAPTER 7 Expand your reach by extending jQuery
- Previous—Displays the previous image
- Next—Displays the next image
- Last—Displays the last image
- Play—Commences moving through the photos automatically until clicked

again
Any operation that moves past the end of the list of images wraps back to the
other end; clicking Next while on the last image displays the first image and
vice versa.

We also want to grant web developers as much freedom for layout and styling as possi-
ble; we’ll define our plugin so that developers can set up the elements in any manner
they like and then tell us which page element should be used for each purpose. Fur-
thermore, in order to give web developers as much leeway as possible, we’ll define our
plugin so that they can provide any wrapped set of images to serve as thumbnails. Usu-
ally, thumbnails will be gathered together as in our test page, but developers are free
to identify any image on the page as a thumbnail.

 To start, let’s introduce the syntax for the Photomatic plugin.

Because we have a nontrivial number of parameters for controlling the operation of
Photomatic (many of which can be omitted), we utilize an object hash to pass them, as
was discussed in section 7.2.3. The possible options that we can specify are shown in
table 7.1.

Method syntax: photomatic

photomatic(options)
Instruments the wrapped set of thumbnails, as well as page elements identified in the options
hash, to operate as Photomatic controls.

Parameters
options (Object) An object hash that specifies the options for Photomatic. See table 7.1

for details.

Returns
The wrapped set.

Table 7.1 The options for the Photomatic custom plugin method

Option name Description

firstControl (Selector|Element) Either a reference to or jQuery selector that identifies the
DOM element(s) to serve as a First control. If omitted, no control is instru-
mented.

lastControl (Selector|Element) Either a reference to or jQuery selector that identifies the
DOM element(s) to serve as a Last control. If omitted, no control is instru-
mented.

nextControl (Selector|Element) Either a reference to or jQuery selector that identifies the
DOM element(s) to serve as a Next control. If omitted, no control is instru-
mented.
Download from Library of Wow! eBook <www.wowebook.com>

225Adding new wrapper methods
With a nod to the notion of test-driven development, let’s create the test page for this
plugin before we dive into creating the Photomatic plugin itself. The code for this page,
available in the file chapter7/photomatic/photomatic.html, is shown in listing 7.5.

<!DOCTYPE html>
<html>
 <head>
 <title>Photomatic Test</title>
 <link rel="stylesheet" type="text/css"
 href="../../styles/core.css">
 <link rel="stylesheet" type="text/css" href="photomatic.css">
 <script type="text/javascript"
 src="../../scripts/jquery-1.4.js"></script>
 <script type="text/javascript"
 src="jquery.jqia.photomatic.js"></script>
 <script type="text/javascript">
 $(function(){
 $('#thumbnailsPane img').photomatic({
 photoElement: '#photoDisplay',
 previousControl: '#previousButton',
 nextControl: '#nextButton',
 firstControl: '#firstButton',
 lastControl: '#lastButton',
 playControl: '#playButton',
 delay: 1000
 });
 });
 </script>
 </head>

photoElement (Selector|Element) Either a reference to or jQuery selector that identifies the
 element that’s to serve as the full-sized photo display. If omitted,
defaults to the jQuery selector img.photomaticPhoto.

playControl (Selector|Element) Either a reference to or jQuery selector that identifies the
DOM element(s) to serve as a Play control. If omitted, no control is instru-
mented.

previousControl (Selector| Element) Either a reference to or jQuery selector that identifies
the DOM element(s) to serve as a Previous control. If omitted, no control is
instrumented.

transformer (Function) A function used to transform the URL of a thumbnail image into
the URL of its corresponding full-sized photo image. If omitted, the default
transformation substitutes all instances of thumbnail with photo in the
URL.

delay (Number) The interval between transitions for an automatic slideshow, in
milliseconds. Defaults to 3000.

Listing 7.5 The test page that creates the Photomatic display in figure 7.2

Table 7.1 The options for the Photomatic custom plugin method (continued)

Option name Description

Invokes the
Photomatic plugin

B

Download from Library of Wow! eBook <www.wowebook.com>

226 CHAPTER 7 Expand your reach by extending jQuery
 <body class="fancy">

 <div id="pageContainer">
 <div id="pageContent">

 <h1>Photomatic Tester</h1>

 <div id="thumbnailsPane">

 </div>

 <div id="photoPane">

 </div>

 <div id="buttonBar">
 <img src="button.placeholder.png" id="firstButton"
 alt="First" title="First photo"/>
 <img src="button.placeholder.png" id="previousButton"
 alt="Previous" title="Previous photo"/>
 <img src="button.placeholder.png" id="playButton"
 alt="Play/Pause" title="Play or pause slideshow"/>
 <img src="button.placeholder.png" id="nextButton"
 alt="Next" title="Next photo"/>
 <img src="button.placeholder.png" id="lastButton"
 alt="Last" title="Last photo"/>
 </div>

 </div>
 </div>

 </body>
</html>

If that looks simpler than you thought it would, you shouldn’t be surprised. By apply-
ing the principles of Unobtrusive JavaScript and by keeping all style information in an
external style sheet, our markup is tidy and simple. In fact, even the on-page script has
a tiny footprint, consisting of a single statement that invokes our plugin B.

 The HTML markup consists of a container that holds the thumbnail images C,
an image element (initially sourceless) to hold the full-sized photo D, and a collec-
tion of images E that will control the slideshow. Everything else is handled by our
new plugin.

Contains
thumbnail images

C

Defines image
element for
full-sized photos

D

Contains elements to
serve as controls

E

Download from Library of Wow! eBook <www.wowebook.com>

227Adding new wrapper methods
 Let’s develop that now.
 To start, let’s set out a skeleton (we’ll fill in the details as we go along). Our starting

point should look rather familiar because it follows the same patterns we’ve been
using so far.

(function($){
 $.fn.photomatic = function(options) {
 };
})(jQuery);

This defines our initially empty wrapper function, which (as expected from our syntax
description) accepts a single hash parameter named options. First, within the body of
the function, we merge these caller settings with the default settings described in
table 7.1. This will give us a single settings object that we can refer to throughout the
remainder of the method.

 We perform this merge operation using the following idiom (which we’ve already
seen a few times):

var settings = $.extend({
 photoElement: 'img.photomaticPhoto',
 transformer: function(name) {
 return name.replace(/thumbnail/,'photo');
 },
 nextControl: null,
 previousControl: null,
 firstControl: null,
 lastControl: null,
 playControl: null,
 delay: 3000
 },options||{});

After the execution of this statement, the settings variable will contain the defaults
supplied by the inline hash object overridden with any values supplied by the caller.
Although it’s not necessary to include the properties that have no defaults (those with
a null value), we find it’s useful and wise to list all the possible options here if for
nothing other than documentation purposes.

 We’re also going to need to keep track of a few things. In order for our plugin to
know what concepts like next relative image and previous relative image mean, we need
not only an ordered list of the thumbnail images, but also an indicator that identifies
the current image being displayed.

 The list of thumbnail images is the wrapped set that this method is operating
on—or, at least, it should be. We don’t know what the developers collected in the
wrapped set, so we want to filter it down to only image elements, which we can easily
do with a jQuery selector. But where should we store the list?

 We could easily create another variable to hold it, but there’s a lot to be said for
keeping things corralled. Let’s store the list as another property on settings, as
follows:

settings.thumbnails$ = this.filter('img');
Download from Library of Wow! eBook <www.wowebook.com>

228 CHAPTER 7 Expand your reach by extending jQuery
Filtering the wrapped set (available via this in the method) for only image elements
results in a new wrapped set (containing only elements), which we store in a
property of settings that we name thumbnails$ (the trailing dollar sign being a con-
vention that indicates a stored reference to a wrapped set).

 Another piece of state that we need to keep track of is the current image. We’ll do
that by maintaining an index into the list of thumbnails by adding another property to
settings named current:

settings.current = 0;

There is one more setup step that we need to take with regard to the thumbnails. If
we’re going to keep track of which photo is current by keeping track of its index, there
will be at least one case (which we’ll be examining shortly) where, given a reference to
a thumbnail element, we’ll need to know its index. The easiest way to handle this is to
anticipate this need and use the handy jQuery data() method to record a thumbnail’s
index on each of the thumbnail elements. We do that with the following statement:

settings.thumbnails$
 .each(
 function(n){ $(this).data('photomatic-index',n); }
)

This statement iterates through each of the thumbnail images, adding a data element
named photomatic-index to it that records its order in the list. Now that our initial
state is set up, we’re ready to move on to the meat of the plugin—instrumenting the
controls, thumbnails, and photo display.

 Wait a minute! Initial state? How can we expect to keep track of state in a local vari-
able within a function that’s about to finish executing? Won’t the variable and all our
settings go out of scope when the function returns?

 In general, that might be true, but there is one case where such a variable sticks
around for longer than its usual scope—when it’s part of a closure. We’ve seen closures
before, but if you’re still shaky on them, please review the appendix. You must under-
stand closures not only for completing the implementation of the Photomatic plugin
but also when creating anything but the most trivial of plugins.

 When we think about the job remaining, we realize that we need to attach a num-
ber of event listeners to the controls and elements that we’ve taken such great pains to
identify to this point. And because the settings variable is in scope when we declare
the functions that represent those listeners, each listener will be part of a closure that
includes the settings variable. So we can rest assured that, even though settings
may appear to be transient, the state that it represents will stick around and be avail-
able to all the listeners that we define.

 Speaking of those listeners, here’s a list of click event listeners that we’ll need to
attach to the various elements:

Clicking a thumbnail photo will cause its full-sized version to be displayed.
Clicking the full-sized photo will cause the next photo to be displayed.
Download from Library of Wow! eBook <www.wowebook.com>

229Adding new wrapper methods
Clicking the element defined as the Previous control will cause the previous
image to be displayed.
Clicking the Next control will cause the next image to be displayed.
Clicking the First control will cause the first image in the list to be displayed.
Clicking the Last control will cause the last image in the list to be displayed.
Clicking the Play control will cause the slideshow to automatically proceed, pro-
gressing through the photos using a delay specified in the settings. A subse-
quent click on the control will stop the slideshow.

Looking over this list, we immediately note that all of these listeners have something
in common: they all need to cause the full-sized photo of one of the thumbnail images
to be displayed. And being the good and clever coders that we are, we want to factor
out that common processing into a function so that we don’t need to repeat the same
code over and over again.

 But how?
 If we were writing normal on-page JavaScript, we could define a top-level function.

If we were writing object-oriented JavaScript, we might define a method on a
JavaScript object. But we’re writing a jQuery plugin. Where should we define imple-
mentation functions?

 We don’t want to infringe on either the global namespace, or even the $
namespace, for a function that should only be called internally from our plugin code,
so what can we do? Oh, and just to add to our dilemma, let’s try to make it so that the
function participates in a closure including the settings variable so that we won’t
have to pass it as a parameter to each invocation.

 The power of JavaScript as a functional language comes to our aid once again, and
allows us to define this new function within the plugin function. By doing so, we limit
its scope to within the plugin function itself (one of our goals), and because the set-
tings variable is within scope, it forms a closure with the new function (our other
goal). What could be simpler?

 So we define a function named showPhoto(), which accepts a single parameter
indicating the index of the thumbnail that’s to be shown full-sized, within the plugin
function, as follows:

function showPhoto(index) {
 $(settings.photoElement)
 .attr('src',
 settings.transformer(settings.thumbnails$[index].src));
 settings.current = index;
};

This new function, when passed the index of the thumbnail whose full-sized photo is
to be displayed, uses the values in the settings object (available via the closure cre-
ated by the function declaration) to do the following:

1 Look up the src attribute of the thumbnail identified by index.
2 Pass that value through the transformer function to convert it from a thumb-

nail URL to a photo URL.
Download from Library of Wow! eBook <www.wowebook.com>

230 CHAPTER 7 Expand your reach by extending jQuery
3 Assign the result of the transformation to the src attribute of the full-sized
image element.

4 Record the index of the displayed photo as the new current index.

With that handy function available, we’re ready to define the listeners that we listed
earlier. Let’s start by instrumenting the thumbnails themselves, which simply need to
cause their corresponding full-size photo to be displayed. We chain a call to the
click() method to the previous statement that references settings.thumbnails$, as
follows:

.click(function(){
 showPhoto($(this).data('photomatic-index'));
});

In this handler, we obtain the value of the thumbnail’s index (which we thoughtfully
already stored in the photomatic-index data element), and call the showPhoto()
function using it. The simplicity of this handler verifies that all the setup we coded ear-
lier is going to pay off!

 Instrumenting the photo display element to show the next photo in the list is just
as simple:

$(settings.photoElement)
 .attr('title', 'Click for next photo')
 .css('cursor','pointer')
 .click(function(){
 showPhoto((settings.current+1) % settings.thumbnails$.length);
 });

We add a thoughtful title attribute to the photo so users know that clicking on the
photo will progress to the next one, and we set the cursor to indicate that the element
is clickable.

 We then establish a click handler, in which we call the showPhoto() function with
the next index value—note how we use the JavaScript modulo operator (%) to wrap
around to the front of the list when we fall off the end.

 The handlers for the First, Previous, Next, and Last controls all follow a similar pat-
tern: figure out the appropriate index of the thumbnail whose full-sized photo is to be
shown, and call showPhoto() with that index:

$(settings.nextControl).click(function(){
 showPhoto((settings.current+1) % settings.thumbnails$.length);
});
$(settings.previousControl).click(function(){
 showPhoto((settings.thumbnails$.length+settings.current-1) %
 settings.thumbnails$.length);
});
$(settings.firstControl).click(function(){
 showPhoto(0);
});
$(settings.lastControl).click(function(){
 showPhoto(settings.thumbnails$.length-1);
});
Download from Library of Wow! eBook <www.wowebook.com>

231Adding new wrapper methods
The instrumentation of the Play control is somewhat more complicated. Rather than
showing a particular photo, this control must start a progression through the entire
photo set, and then stop that progression on a subsequent click. Let’s take a look at
the code we use to accomplish that:

$(settings.playControl).toggle(
 function(event){
 settings.tick = window.setInterval(
 function(){
 $(settings.nextControl).triggerHandler('click')
 },
 settings.delay);
 $(event.target).addClass('photomatic-playing');
 $(settings.nextControl).click();
 },
 function(event){
 window.clearInterval(settings.tick);
 $(event.target).removeClass('photomatic-playing');
 }
);

First, note that we use the jQuery toggle() method to easily swap between two differ-
ent listeners on every other click of the control. That saves us from having to figure
out on our own whether we’re starting or stopping the slideshow.

 In the first handler, we employ the JavaScript-provided setInterval() method to
cause a function to continually fire off using the delay value. We store the handle of
that interval timer in the settings variable for later reference.

 We also add the class photomatic-playing to the control so that the web devel-
oper can effect any appearance changes using CSS, if desired.

 As the last act in the handler, we emulate a click on the Next control to progress to
the next photo immediately (rather than having to wait for the first interval to expire).

 In the second handler of the toggle() invocation, we want to stop the slideshow,
so we clear the interval timeout using clearInterval() and remove the photomatic-
playing class from the control.

 Bet you didn’t think it would be that easy.
 We have two final tasks before we can declare success: we need to display the first

photo in advance of any user action, and we need to return the original wrapped set
so that our plugin can participate in jQuery method chains. We achieve these with

showPhoto(0);
return this;

Take a moment to do a short Victory Dance; we’re finally done!
 The completed plugin code, which you’ll find in the file chapter7/photomatic/

jquery.jqia.photomatic.js, is shown in listing 7.6.
Download from Library of Wow! eBook <www.wowebook.com>

232 CHAPTER 7 Expand your reach by extending jQuery

(function($){

 $.fn.photomatic = function(options) {
 var settings = $.extend({
 photoElement: 'img.photomaticPhoto',
 transformer: function(name) {
 return name.replace(/thumbnail/,'photo');
 },
 nextControl: null,
 previousControl: null,
 firstControl: null,
 lastControl: null,
 playControl: null,
 delay: 3000
 },options||{});
 function showPhoto(index) {
 $(settings.photoElement)
 .attr('src',
 settings.transformer(settings.thumbnails$[index].src));
 settings.current = index;
 }
 settings.current = 0;
 settings.thumbnails$ = this.filter('img');
 settings.thumbnails$
 .each(
 function(n){ $(this).data('photomatic-index',n); }
)
 .click(function(){
 showPhoto($(this).data('photomatic-index'));
 });
 $(settings.photoElement)
 .attr('title','Click for next photo')
 .css('cursor','pointer')
 .click(function(){
 showPhoto((settings.current+1) % settings.thumbnails$.length);
 });
 $(settings.nextControl).click(function(){
 showPhoto((settings.current+1) % settings.thumbnails$.length);
 });
 $(settings.previousControl).click(function(){
 showPhoto((settings.thumbnails$.length+settings.current-1) %
 settings.thumbnails$.length);
 });
 $(settings.firstControl).click(function(){
 showPhoto(0);
 });
 $(settings.lastControl).click(function(){
 showPhoto(settings.thumbnails$.length-1);
 });
 $(settings.playControl).toggle(
 function(event){
 settings.tick = window.setInterval(
 function(){ $(settings.nextControl).triggerHandler('click'); },

Listing 7.6 The complete implementation of the Photomatic plugin
Download from Library of Wow! eBook <www.wowebook.com>

233Summary
 settings.delay);
 $(event.target).addClass('photomatic-playing');
 $(settings.nextControl).click();
 },
 function(event){
 window.clearInterval(settings.tick);
 $(event.target).removeClass('photomatic-playing');
 });
 showPhoto(0);
 return this;
 };

})(jQuery);

This plugin is typical of jQuery-enabled code; it packs a big wallop in some compact
code. But it serves to demonstrate an important set of techniques—using closures to
maintain state across the scope of a jQuery plugin and to enable the creation of pri-
vate implementation functions that plugins can define and use without resorting to
any namespace infringements.

 Also note that because we took such care to not let state “leak out” of the plugin,
we’re free to add as many Photomatic widgets to a page as we like, without fear that
they will interfere with one another (taking care, of course, to make sure we don’t use
duplicate id values in the markup).

 But is it complete? You be the judge and consider the following exercises:

Again, error checking and handling has been glossed over. How would you go
about making the plugin as bulletproof as possible?
The transition from photo to photo is instantaneous. Leveraging your knowl-
edge from chapter 5, change the plugin so that photos cross-fade to one
another.
Going one step further, how would you go about allowing the developer to use a
custom animation of his or her choice?
For maximum flexibility, we coded this plugin to instrument HTML elements
already created by the user. How would you create an analogous plugin, but
with less display freedom, that generated all the required HTML elements on
the fly?

You’re now primed and ready to write your own jQuery plugins. When you come up
with some useful ones, consider sharing them with the rest of the jQuery community.
Visit http://plugins.jquery.com/ for more information.

7.5 Summary
This chapter introduced us to writing reusable code that extends jQuery.

 Writing our own code as extensions to jQuery has a number of advantages. Not
only does it keep our code consistent across our web application regardless of whether
it’s employing jQuery APIs or our own, but it also makes all of the power of jQuery
available to our own code.
Download from Library of Wow! eBook <www.wowebook.com>

http://plugins.jquery.com/ for more information

234 CHAPTER 7 Expand your reach by extending jQuery
 Following a few naming rules helps avoid naming collisions between filenames, as
well as problems that might be encountered when the $ name is reassigned by a page
that will use our plugin.

 Creating new utility functions is as easy as creating new function properties on $,
and new wrapper methods are easily created as properties of $.fn.

 If plugin authoring intrigues you, we highly recommend that you download and
comb through the code of existing plugins to see how their authors implemented
their own features. You’ll see how the techniques presented in this chapter are used in
a wide range of code, and you’ll learn new techniques that are beyond the scope of
this book.

 Having yet more jQuery knowledge at our disposal, let’s move on to learning how
jQuery makes incorporating Ajax into our interactive applications practically a no-
brainer.

Download from Library of Wow! eBook <www.wowebook.com>

Talk to the server
with Ajax
It can be successfully argued that no single technology shift has transformed the
landscape of the web more than Ajax. The ability to make asynchronous requests
back to the server without the need to reload entire pages has enabled a whole new
set of user-interaction paradigms and made DOM-scripted applications possible.

 Ajax is a less recent addition to the web toolbox than many people may real-
ize. In 1998, Microsoft introduced the ability to perform asynchronous requests
under script control (discounting the use of <iframe> elements for such activity)
as an ActiveX control as part of the creation of Outlook Web Access (OWA).
Although OWA was a moderate success, few people seemed to take notice of the
underlying technology.

This chapter covers
A brief overview of Ajax

Loading preformatted HTML from the server

Making general GET and POST requests

Exerting fine-grained control over requests

Setting default Ajax properties

Handling Ajax events
235

Download from Library of Wow! eBook <www.wowebook.com>

236 CHAPTER 8 Talk to the server with Ajax
 A few years passed, and a handful of events launched Ajax into the collective con-
sciousness of the web development community. The non-Microsoft browsers imple-
mented a standardized version of the technology as the XMLHttpRequest (XHR)
object; Google began using XHR; and, in 2005, Jesse James Garrett of Adaptive Path
coined the term Ajax (for Asynchronous JavaScript and XML).

 As if they were only waiting for the technologies to be given a catchy name, the web
development masses suddenly took note of Ajax in a big way, and it has become one of
the primary tools by which we can enable DOM-scripted applications.

 In this chapter, we’ll take a brief tour of Ajax (if you’re already an Ajax guru, you
might want to skip ahead to section 8.2), and then we’ll look at how jQuery makes
using Ajax a snap.

 Let’s start off with a refresher on what Ajax technology is all about.

8.1 Brushing up on Ajax
Although we’ll take a quick look at Ajax in this section, please note that this isn’t
intended as a complete Ajax tutorial or an Ajax primer. If you’re completely unfamil-
iar with Ajax (or worse, think that we’re talking about a dishwashing liquid or a myth-
ological Greek hero), we encourage you to familiarize yourself with the technology
through resources that are geared toward teaching you all about Ajax; the Manning
books Ajax in Action and Ajax in Practice are both excellent examples.

 Some people may argue that the term Ajax applies to any method of making server
requests without the need to refresh the user-facing page (such as by submitting a
request to a hidden <iframe> element), but most people associate the term with the
use of XMLHttpRequest (XHR) or the Microsoft XMLHTTP ActiveX control.

 A diagram of the overall process, which we’ll examine one step at a time, is shown
in figure 8.1.

Client
(browser) Server

Response
body

evaluated

Create and set
up the XHR

instance

1

Request sent
to server

2

Response
returned to

client

4
3

Figure 8.1 The lifecycle of an Ajax request as it makes its way from the client to the server
and back again
Download from Library of Wow! eBook <www.wowebook.com>

237Brushing up on Ajax
 Let’s take a look at how those objects are used to generate requests to the server,
beginning with creating an XHR instance.

8.1.1 Creating an XHR instance

In a perfect world, code written for one browser would work in all commonly used
browsers. We’ve already learned that we don’t live in that world, and things are no dif-
ferent when it comes to Ajax. There is a standard way to make asynchronous requests
via the JavaScript XHR object, and an Internet Explorer proprietary way that uses an
ActiveX control. With IE 7, a wrapper that emulates the standard interface is available,
but IE 6 requires divergent code.

NOTE jQuery’s Ajax implementation—which we’ll be addressing throughout
the remainder of this chapter—doesn’t use the Internet Explorer wrapper,
citing issues with improper implementation. Rather, it uses the ActiveX object
when available. This is good news for us! By using jQuery for our Ajax needs,
we know that the best approaches have been researched and will be utilized.

Once created, the code to set up, initiate, and respond to the request is relatively
browser-independent, and creating an instance of XHR is easy for any particular
browser. The problem is that different browsers implement XHR in different ways, and
we need to create the instance in the manner appropriate for the current browser.

 But rather than relying on detecting which browser a user is running to determine
which path to take, we’ll use the preferred technique of feature detection that we intro-
duced in chapter 6. Using this technique, we try to figure out what the browser’s fea-
tures are, not which browser is being used. Feature detection results in more robust
code because it can work in any browser that supports the tested feature.

 The code in listing 8.1 shows a typical idiom used to instantiate an instance of XHR
using this technique.

var xhr;
if (window.ActiveXObject) {
 xhr = new ActiveXObject("Microsoft.XMLHTTP");
}
else if (window.XMLHttpRequest) {
 xhr = new XMLHttpRequest();
}
else {
 throw new Error("Ajax is not supported by this browser");
}

After it’s created, the XHR instance sports a conveniently consistent set of properties
and methods across all supporting browser instances. These properties and methods
are shown in table 8.1, and the most commonly used of these will be discussed in the
sections that follow.

Listing 8.1 Capability detection resulting in code that can use Ajax in many browsers

Tests to see if
ActiveX is present

Tests to see if
XHR is defined

Throws error if there’s
no Ajax support
Download from Library of Wow! eBook <www.wowebook.com>

238 CHAPTER 8 Talk to the server with Ajax

NOTE Want to get it from the horse’s mouth? The XHR specification can be
found at http://www.w3.org/TR/XMLHttpRequest/.

Now that we’ve got an XHR instance created, let’s look at what it takes to set up and
fire off the request to the server.

Table 8.1 XMLHttpRequest (XHR) methods and properties

Methods Description

abort() Causes the currently executing request to be cancelled.

getAllResponseHeaders() Returns a single string containing the names and values of
all response headers.

getResponseHeader(name) Returns the value of the named response header.

open(method,url,async,
username,password)

Sets the HTTP method (GET or POST) and destination URL
of the request. Optionally, the request can be declared syn-
chronous, and a username and password can be supplied
for requests requiring container-based authentication.

send(content) Initiates the request with the specified (optional) body
content.

setRequestHeader(name,value) Sets a request header using the specified name and value.

Properties Description

onreadystatechange The event handler to be invoked when the state of the
request changes.

readyState An integer value that indicates the current state of the
active request as follows:
0 = UNSENT
1 = OPENED
2 = HEADERS_RECEIVED
3 = LOADING
4 = DONE

responseText The body content returned in the response.

responseXML If the body content is identified as XML, the XML DOM cre-
ated from the body content.

status The response status code returned from the server. For
example: 200 for success or 404 for not found. See the
HTTP specificationa for the full set of codes.

statusText The status text message returned by the response.

a. HTTP 1.1 status code definitions from RFC 2616:
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.
Download from Library of Wow! eBook <www.wowebook.com>

http://www.w3.org/TR/XMLHttpRequest/
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10

239Brushing up on Ajax
8.1.2 Initiating the request

Before we can send a request to the server, we need to perform the following setup
steps:

1 Specify the HTTP method, such as (POST or GET)
2 Provide the URL of the server-side resource to be contacted
3 Let the XHR instance know how it can inform us of its progress
4 Provide any body content for POST requests

We set up the first two items by calling the open() method of XHR as follows:

xhr.open('GET','/some/resource/url');

Note that this method doesn’t cause the request to be sent to the server. It merely sets
up the URL and HTTP method to be used. The open() method can also be passed a
third Boolean parameter that specifies whether the request is to be asynchronous (if
true, which is the default) or synchronous (if false). There’s seldom a good reason
to make the request synchronous (even if doing so means we don’t have to deal with
callback functions); after all, the asynchronous nature of the request is usually the
whole point of making a request in this fashion.

 In the third step, we must provide a means for the XHR instance to tap us on the
shoulder to let us know what’s going on. We accomplish this by assigning a callback
function to the onreadystatechange property of the XHR object. This function,
known as the ready state handler, is invoked by the XHR instance at various stages of its
processing. By looking at the settings of the other properties of XHR, we can find out
exactly what’s going on with the request. We’ll take a look at how a typical ready state
handler operates in the next section.

 The final steps to initiating the request are to provide any body content for POST
requests and send it off to the server. Both of these steps are accomplished via the
send() method. For GET requests, which typically have no body, no body content
parameter is passed, as follows:

xhr.send(null);

When request parameters are passed to POST requests, the string passed to the send()
method must be in the proper format (which we might think of as query string format)
in which the names and values are properly URI encoded. URI encoding is beyond the
scope of this section (and, as it turns out, jQuery is going to handle all of that for us),
but if you’re curious, do a web search for the term encodeURIComponent, and you’ll be
suitably rewarded.

 An example of such a call is as follows:

xhr.send('a=1&b=2&c=3');

Now let’s see what the ready state handler is all about.
Download from Library of Wow! eBook <www.wowebook.com>

240 CHAPTER 8 Talk to the server with Ajax
8.1.3 Keeping track of progress

An XHR instance informs us of its progress through the ready state handler. This han-
dler is established by assigning a reference to the function to serve as the ready han-
dler to the onreadystatechange property of the XHR instance.

 Once the request is initiated via the send() method, this callback will be invoked
numerous times as the request makes transitions through its various states. The cur-
rent state of the request is available as a numeric code in the readyState property
(see the description of this property in table 8.1).

 That’s nice, but more times than not, we’re only interested in when the request
completes and whether it was successful or not. Frequently we’ll see ready handlers
implemented using the idiom shown in listing 8.2.

xhr.onreadystatechange = function() {
 if (this.readyState == 4) {
 if (this.status >= 200 &&
 this.status < 300) {
 //success
 }
 else {
 //problem
 }
 }
}

This code ignores all but the DONE state, and once that has been detected, examines
the value of the status property to determine whether the request succeeded or not.
The HTTP specification defines all status codes in the 200 to 299 range as success and
those with values of 300 or above as various types of failure.

 Now let’s explore dealing with the response from a completed request.

8.1.4 Getting the response

Once the ready handler has determined that the readyState is complete and that the
request completed successfully, the body of the response can be retrieved from the
XHR instance.

 Despite the moniker Ajax (where the X stands for XML), the format of the
response body can be any text format; it’s not limited to XML. In fact, most of the
time, the response to Ajax requests is a format other than XML. It could be plain text
or, perhaps, an HTML fragment; it could even be a text representation of a JavaScript
object or array in JavaScript Object Notation (JSON) format (which is becoming
increasingly popular as an exchange format).

 Regardless of its format, the body of the response is available via the responseText
property of the XHR instance (assuming that the request completes successfully). If
the response indicates that the format of its body is XML by including a content type
header specifying a MIME type of text/xml, application/xml, or a MIME type that
ends with +xml, the response body will be parsed as XML. The resulting DOM will be

Listing 8.2 Ready state handlers are often written to ignore all but the DONE state

Ignores all but
DONE state

Branches on
response status

Executes
on success

Executes
on failure
Download from Library of Wow! eBook <www.wowebook.com>

241Loading content into elements
available in the responseXML property. JavaScript (and jQuery itself, using its selector
API) can then be used to process the XML DOM.

 Processing XML on the client isn’t rocket science, but—even with jQuery’s help—it
can still be a pain. Although there are times when nothing but XML will do for return-
ing complex hierarchical data, frequently page authors will use other formats when
the full power (and corresponding headache) of XML isn’t absolutely necessary.

 But some of those other formats aren’t without their own pain. When JSON is
returned, it must be converted into its runtime equivalent. When HTML is returned, it
must be loaded into the appropriate destination element. And what if the HTML
markup returned contains <script> blocks that need evaluation? We’re not going to
deal with these issues in this section because it isn’t meant to be a complete Ajax refer-
ence and, more importantly, because we’re going to find out that jQuery handles most
of these issues on our behalf.

 At this point, you might want to review the diagram of the whole process shown in
figure 8.1.

 In this short overview of Ajax, we’ve identified the following pain points that page
authors using Ajax need to deal with:

Instantiating an XHR object requires browser-specific code.
Ready handlers need to sift through a lot of uninteresting state changes.
The response body needs to be dealt with in numerous ways, depending upon
its format.

The remainder of this chapter will describe how the jQuery Ajax methods and utility
functions make Ajax a lot easier (and cleaner) to use on our pages. There are a lot of
choices in the jQuery Ajax API, and we’ll start with some of the simplest and most-
used tools.

8.2 Loading content into elements
Perhaps one of the most common uses of Ajax is to grab a chunk of content from the
server and stuff it into the DOM at some strategic location. The content could be an
HTML fragment that’s to become the child content of a target container element, or it
could be plain text that will become the content of the target element.

Setting up for the examples
Unlike all of the example code that we’ve examined so far in this book, the code
examples for this chapter require the services of a web server to receive the Ajax
requests to server-side resources. Because it’s well beyond the scope of this book
to discuss the operation of server-side mechanisms, we’re going to set up some min-
imal server-side resources that send data back to the client without worrying about
doing it for real, treating the server as a “black box”; we don’t need or want to know
how it’s doing its job.

To enable the serving of these smoke-and-mirrors resources, you’ll need to set up a
web server of some type. For your convenience, the server-side resources have been
Download from Library of Wow! eBook <www.wowebook.com>

242 CHAPTER 8 Talk to the server with Ajax
Let’s imagine that, on page load, we want to grab a chunk of HTML from the server
using a resource named someResource, and make it the content of a <div> element
with an id of someContainer. For the final time in this chapter, let’s look at how we’d
do this without jQuery’s assistance. Using the patterns we set out earlier in this chap-
ter, the body of the onload handler is as shown in listing 8.3. The full HTML file for
this example can be found in the file chapter8/listing.8.3.html.

NOTE Again, you must run this example using a web server—you can’t just
open the file in the browser—so the URL should be http://localhost:8080/
jqia2/chapter8/listing.8.3.html. Omit the port specification of :8080 if using
Apache, and leave it in if using Tomcat.

In future URLs in this chapter we’ll use the notation [:8080] to indicate
that the port number might or might not be needed, but be sure not to
include the square brackets as part of the URL.

var xhr;

if(window.ActiveXObject) {
 xhr = new ActiveXObject("Microsoft.XMLHTTP");
 }
else if (window.XMLHttpRequest) {
 xhr = new XMLHttpRequest();
}

Listing 8.3 Using native XHR to fetch and include an HTML fragment

continued
set up in two formats: Java Server Pages (JSP) and PHP. The JSP resources can be
used if you’re running (or wish to run) a servlet/JSP engine; if you want to enable PHP
for your web server of choice, you can use the PHP resources.

If you want to use the JSP resources but aren’t already running a suitable server,
instructions on setting up the free Tomcat web server are included with the sample
code for this chapter. You’ll find these instructions in the chapter8/tomcat.pdf file.
And don’t be concerned; even if you’ve never looked at a single line of Java, it’s eas-
ier than you might think!

The examples found in the downloaded code are set up to use either of the JSP or
PHP resources, depending upon which server you have set up.

Once you have the server of your choice set up, you can hit the URL http://local-
host:8080/jqia2/chapter8/test.jsp (to check your Tomcat installation) or http://
localhost/jqia2/chapter8/test.php (to check your PHP installation). The latter
assumes that you have set up your web server (Apache or any other you have chosen)
to use the example code root folder as a document base.

When you can successfully view the appropriate test page, you’ll be ready to run the
examples in this chapter.

Alternatively, if you don’t want to run these examples locally, you can run the example
code remotely from http://bibeault.org/jqia2.
Download from Library of Wow! eBook <www.wowebook.com>

http://localhost:8080/jqia2/chapter8/test.jsp
http://localhost:8080/jqia2/chapter8/test.jsp
http://localhost:8080/jqia2/chapter8/test.jsp
http://localhost:8080/jqia2/chapter8/test.jsp
http://bibeault.org/jqia2
http://bibeault.org/jqia2
http://bibeault.org/jqia2

243Loading content into elements
else {
 throw new Error("Ajax is not supported by this browser");
}

xhr.onreadystatechange = function() {
 if (this.readyState == 4) {
 if (this.status >= 200 && this.status < 300) {
 document.getElementById('someContainer')
 .innerHTML = this.responseText;
 }
 }
}

xhr.open('GET','someResource');
xhr.send();

Although there’s nothing tricky going on here, that’s a non-trivial amount of code; 20
lines, without even counting the blank lines that we added for readability.

 The equivalent code we’d write as the body of a ready handler using jQuery is as
follows:

$('#someContainer').load('someResource');

We’re betting that we know which code you’d rather write and maintain! Let’s take a
close look at the jQuery method we used in this statement.

8.2.1 Loading content with jQuery

The simple jQuery statement at the end of the previous section easily loads content
from the server-side resource using one of the most basic, but useful, jQuery Ajax
methods: load(). The full syntax description of this method is as follows:

Method syntax: load

load(url,parameters,callback)
Initiates an Ajax request to the specified URL with optional request parameters. A callback
function can be specified that’s invoked when the request completes and the DOM has been
modified. The response text replaces the content of all matched elements.

Parameters
url (String) The URL of the server-side resource to which the request is sent,

optionally modified via selector (explained below).
parameters (String|Object|Array) Specifies any data that’s to be passed as request

parameters. This argument can be a string that will be used as the query string,
an object whose properties are serialized into properly encoded parameters to
be passed to the request, or an array of objects whose name and value
properties specify the name/value pairs.
If specified as an object or array, the request is made using the POST method.
If omitted or specified as a string, the GET method is used.

callback (Function) An optional callback function invoked after the response data has
been loaded into the elements of the matched set. The parameters passed to
this function are the response text, a status string (usually “success”), and the
XHR instance.
This function will be invoked once for each element in the wrapped set with the
target element set as the function context (this).

Returns
The wrapped set.
Download from Library of Wow! eBook <www.wowebook.com>

244 CHAPTER 8 Talk to the server with Ajax
Though simple to use, this method has some important nuances. For example, when
the parameters parameter is used to supply the request parameters, the request is
made using the POST HTTP method if an object hash or array is used; otherwise, a GET
request is initiated. If we want to make a GET request with parameters, we can include
them as a query string on the URL. But be aware that when we do so, we’re responsible
for ensuring that the query string is properly formatted and that the names and values
of the request parameters are URI-encoded. The JavaScript encodeURIComponent()
method is handy for this, or you can employ the services of the jQuery $.param() util-
ity function that we covered in chapter 6.

 Most of the time, we’ll use the load() method to inject the complete response into
whatever elements are contained within the wrapped set, but sometimes we may want
to filter elements coming back as the response. If we want to filter response elements,
jQuery allows us to specify a selector on the URL that will be used to limit which
response elements are injected into the wrapped elements. We specify the selector by
suffixing the URL with a space followed by the selector.

 For example, to filter response elements so that only <div> instances are injected,
we write

$('.injectMe').load('/someResource div');

When it comes to supplying the data to be submitted with a request, sometimes we’ll
be winging it with ad hoc data, but frequently we’ll find ourselves wanting to gather
data that a user has entered into form controls.

 As you might expect, jQuery’s got some assistance up its sleeve.

SERIALIZING FORM DATA

If the data that we want to send as request parameters come from form controls, a
helpful jQuery method for building a query string is serialize(), whose syntax is as
follows:

The serialize() method is smart enough to only collect information from form con-
trol elements in the wrapped set, and only from those qualifying elements that are
deemed successful. A successful control is one that would be included as part of a form
submission according to the rules of the HTML specification.1 Controls such as
unchecked checkboxes and radio buttons, dropdowns with no selections, and dis-

Method syntax: serialize

serialize()
Creates a properly formatted and encoded query string from all successful form elements in the
wrapped set, or all successful form elements of forms in the wrapped set.

Parameters
none

Returns
The formatted query string.

1 HTML 4.01 Specification, section 17.13.2, “Successful controls”: http://www.w3.org/TR/html401/interact/
forms.html#h-17.13.2.
Download from Library of Wow! eBook <www.wowebook.com>

http://www.w3.org/TR/html401/interact/forms.html#h-17.13.2
http://www.w3.org/TR/html401/interact/forms.html#h-17.13.2

245Loading content into elements
abled controls aren’t considered successful and don’t participate in form submission,
so they’re also ignored by serialize().

 If we’d rather get the form data in a JavaScript array (as opposed to a query string),
jQuery provides the serializeArray() method.

The array returned by serializeArray() is composed of anonymous object instances,
each of which contains a name property and a value property that contain the name
and value of each successful form control. Note that this is (not accidentally) one of
the formats suitable for passing to the load() method to specify the request parame-
ter data.

 With the load() method at our disposal, let’s put it to work solving some common
real-world problems that many web developers encounter.

8.2.2 Loading dynamic HTML fragments

Often in business applications, particularly for commerce web sites, we want to grab
real-time data from the server in order to present our users with the most up-to-date
information. After all, we wouldn’t want to mislead customers into thinking that they
can buy something that’s not available, would we? In this section, we’ll begin to
develop a page that we’ll add to throughout the course of the chapter. This page is part
of a web site for a fictitious firm named The Boot Closet, an online retailer of overstock
and closeout motorcycle boots. Unlike the fixed product catalogs of other online
retailers, this inventory of overstock and closeouts is fluid, depending on what deals
the proprietor was able to make that day and what’s already been sold from the inven-
tory. It will be important for us to always make sure that we’re displaying the latest info!

 To begin our page (which will omit site navigation and other boilerplate to con-
centrate on the lessons at hand), we want to present our customers with a dropdown
containing the styles that are currently available and, when a style is selected, display
detailed information regarding that style. On initial display, the page will look as
shown in figure 8.2.

 After the page first loads, a dropdown with the list of styles currently available in
the inventory is displayed. When no style is selected, we’ll display a helpful message as
a placeholder for the selection: “— choose a style —”. This invites the user to interact
with the dropdown, and when a user selects a boot style from this dropdown, here’s
what we want to do:

Method syntax: serializeArray

serializeArray()
Collects the values of all successful form controls into an array of objects containing the names
and values of the controls.

Parameters
none

Returns
The array of form data.
Download from Library of Wow! eBook <www.wowebook.com>

246 CHAPTER 8 Talk to the server with Ajax
Display the detailed information about that style in the area below the drop-
down.
Remove the “— choose a style —” entry; once the user picks a style, it’s served
its purpose and is no longer meaningful.

Let’s start by taking a look at the HTML markup for the body that defines this page
structure:

<body>
 <div id="banner">

 </div>
 <div id="pageContent">
 <h1>Choose your boots</h1>
 <div>
 <div id="selectionsPane">
 <label for="bootChooserControl">Boot style:</label>
 <select id="bootChooserControl" name="bootStyle"></select>
 </div>
 <div id="productDetailPane"></div>
 </div>
 </div>
</body>

Not much to it, is there?
 As would be expected, we’ve defined all the visual rendition information in an

external style sheet, and (adhering to the precepts of Unobtrusive JavaScript) we’ve
included no behavioral aspects in the HTML markup.

 The most interesting parts of this markup are a container B that holds the
<select> element that will allow customers to choose a boot style, and another con-
tainer C into which product details will be injected.

 Note that the boot style control needs to have its option elements added before
the user can interact with the page. So let’s set about adding the necessary behavior to
this page.

Figure 8.2 The initial display of our commerce page with a simple dropdown inviting customers to
click on it

Contains
selection
control

B

Holds place for
product detailsC
Download from Library of Wow! eBook <www.wowebook.com>

247Loading content into elements
 The first thing we’ll add is an Ajax request to fetch and populate the boot style
dropdown.

NOTE Under most circumstances, initial values such as these would be han-
dled on the server prior to sending the HTML to the browser. But there are
circumstances where prefetching data via Ajax may be appropriate, and we’re
doing that here, if only for instructional purposes.

To add the options to the boot style control, we define a ready handler, and within it
we make use of the handy load() method:

$('#bootChooserControl').load('/jqia2/action/fetchBootStyleOptions');

How simple is that? The only complicated part of this statement is the URL, which isn’t
really all that long or complicated, which specifies a request to a server-side action
named fetchBootStyleOptions.

 One of the nice things about using Ajax (with the ease of jQuery making it even
nicer) is that it’s completely independent of the server-side technology. Obviously the
choice of server-side tech has an influence on the structure of the URLs, but beyond
that we don’t need to worry ourselves much about what’s going to transpire on the
server. We simply make HTTP requests, sometimes with appropriate parameter data,
and as long as the server returns the expected responses, we could care less if the
server is being powered by Java, Ruby, PHP, or even old-fashioned CGI.

 In this particular case, we expect that the server-side resource will return the HTML
markup representing the boot style options—supposedly from the inventory database.
Our faux backend code returns the following as the response:

<option value="">— choose a style —</option>
<option value="7177382">Caterpillar Tradesman Work Boot</option>
<option value="7269643">Caterpillar Logger Boot</option>
<option value="7332058">Chippewa 9" Briar Waterproof Bison Boot</option>
<option value="7141832">Chippewa 17" Engineer Boot</option>
<option value="7141833">Chippewa 17" Snakeproof Boot</option>
<option value="7173656">Chippewa 11" Engineer Boot</option>
<option value="7141922">Chippewa Harness Boot</option>
<option value="7141730">Danner Foreman Pro Work Boot</option>
<option value="7257914">Danner Grouse GTX Boot</option>

This response then gets injected into the <select> element, resulting in a fully func-
tional control.

 Our next act is to instrument the dropdown so that it can react to changes, carrying
out the duties that we listed earlier. The code for that is only slightly more complicated:

$('#bootChooserControl').change(function(event){
 $('#productDetailPane').load(
 '/jqia2/action/fetchProductDetails',
 {style: $(event.target).val()},
 function() { $('[value=""]',event.target).remove(); }
);
});

Establishes
change handler B

Fetches
and displays
product
detail

C

Download from Library of Wow! eBook <www.wowebook.com>

248 CHAPTER 8 Talk to the server with Ajax
In this code, we select the boot style dropdown and bind a change handler to it B. In
the callback for the change handler, which will be invoked whenever a customer
changes the selection, we obtain the current value of the selection by applying the
val() method to the event target, which is the <select> element that triggered the
event. We then once again employ the load() method C to the productDetailPane
element to initiate an Ajax callback to a server-side resource, in this case fetch-
ProductDetails, passing the style value as a parameter named style.

 After the customer chooses an available boot style, the page will appear as shown
in figure 8.3.

 The most notable operation performed in the ready handler is the use of the
load() method to quickly and easily fetch snippets of HTML from the server and place
them within the DOM as the children of existing elements. This method is extremely
handy and well suited to web applications that are powered by servers capable of
server-side templating with technologies such as JSP and PHP.

Figure 8.3 The server-side resource returns a preformatted fragment of HTML to
display the detailed boot information.
Download from Library of Wow! eBook <www.wowebook.com>

249Loading content into elements
 Listing 8.4 shows the complete code for our Boot Closet page, which can be found
at http://localhost[:8080]/jqia2/chapter8/bootcloset/phase.1.html. We’ll be revisit-
ing this page to add further capabilities to it as we progress through this chapter.

<!DOCTYPE html>
<html>
 <head>
 <title>The Boot Closet — Phase 1</title>
 <link rel="stylesheet" type="text/css" href="../../styles/core.css">
 <link rel="stylesheet" type="text/css" href="bootcloset.css">
 <link rel="icon" type="image/gif" href="images/favicon.gif">
 <script type="text/javascript"
 src="../../scripts/jquery-1.4.js"></script>
 <script type="text/javascript"
 src="../../scripts/jqia2.support.js"></script>
 <script type="text/javascript">
 $(function() {

 $('#bootChooserControl')
 .load('/jqia2/action/fetchBootStyleOptions');

 $('#bootChooserControl').change(function(event){
 $('#productDetailPane').load(
 '/jqia2/action/fetchProductDetails',
 {style: $(event.target).val()},
 function() { $('[value=""]',event.target).remove(); }
);
 });

 });
 </script>
 </head>

 <body>

 <div id="banner">

 </div>

 <div id="pageContent">

 <h1>Choose your boots</h1>

 <div>

 <div id="selectionsPane">
 <label for="bootChooserControl">Boot style:</label>
 <select id="bootChooserControl" name="bootStyle"></select>
 </div>

 <div id="productDetailPane"></div>

 </div>

 </div>

 </body>

</html>

Listing 8.4 The first phase of the Boot Closet commerce page
Download from Library of Wow! eBook <www.wowebook.com>

http://localhost[:8080]/jqia2/chapter8/bootcloset/phase.1.html

250 CHAPTER 8 Talk to the server with Ajax
The load() method is tremendously useful when we want to grab a fragment of HTML
to stuff into the content of an element (or set of elements). But there may be times
when we either want more control over how the Ajax request gets made, or we need to
do something more esoteric with the returned data in the response body.

 Let’s continue our investigation of what jQuery has to offer for these more com-
plex situations.

8.3 Making GET and POST requests
The load() method makes either a GET or a POST request, depending on how the
request parameter data (if any) is provided, but sometimes we want to have a bit more
control over which HTTP method gets used. Why should we care? Because, just maybe,
our servers care.

 Web authors have traditionally played fast and loose with the GET and POST meth-
ods, using one or the other without heeding how the HTTP protocol intends for these
methods to be used. The intentions for each method are as follows:

GET requests—Intended to be idempotent ; the same GET operation, made again
and again and again, should return exactly the same results (assuming no other
force is at work changing the server state).
POST requests—Can be non-idempotent; the data they send to the server can be
used to change the model state of the application; for example, adding or
updating records in a database or removing information from the server.

A GET request should, therefore, be used whenever the purpose of the request is to
merely get data; as its name implies. It may be required to send some parameter data
to the server for the GET; for example, to identify a style number to retrieve color
information. But when data is being sent to the server in order to effect a change,
POST should be used.

WARNING This is more than theoretical. Browsers make decisions about caching
based upon the HTTP method used, and GET requests are highly subject to
caching. Using the proper HTTP method ensures that you don’t get crossways
with the browser’s or server’s expectations regarding the intentions of the
requests.

This is just a glimpse into the realm of RESTful principles, where other
HTTP methods, such as PUT and DELETE, also come into play. But for our pur-
poses, we’ll limit our discussion to the GET and POST methods.

With that in mind, if we look back to our phase one implementation of The Boot
Closet (in listing 8.4), we discover that we’re doing it wrong! Because jQuery initiates a
POST request when we supply an object hash for parameter data, we’re making a POST
when we really should be making a GET. If we glance at a Firebug log (as shown in fig-
ure 8.4) when we display our page in Firefox, we can see that our second request, sub-
mitted when we make a selection from the style dropdown, is indeed a POST.
Download from Library of Wow! eBook <www.wowebook.com>

251Making GET and POST requests
Does it really matter? That’s up to you, but if we want to use HTTP in the manner in
which it was intended, our request to fetch the boot detail should be a GET rather than
a POST.

 We could simply make the parameter that specifies the request information a
string rather than an object hash (and we’ll revisit that a little later), but for now, let’s
take advantage of another way that jQuery lets us initiate Ajax requests.

Figure 8.4 An inspection of the Firebug console shows that we’re making a POST request when we
should be making a GET.

Get Firebug
Trying to develop a DOM-scripted application without the aid of a debugging tool is
like trying to play concert piano while wearing welding gloves. Why would you do that
to yourself?

One important tool to have in your tool chest is Firebug, a plugin for the Firefox
browser. As shown in figure 8.4, Firebug not only lets us inspect the JavaScript con-
sole, it lets us inspect the live DOM, the CSS, the script, and many other aspects of
our page as we work through its development.

One feature most relevant for our current purposes is its ability to log Ajax requests
along with both the request and response information.

For browsers other than Firefox, there’s Firebug Lite, which simply loads as a
JavaScript library while we’re debugging.

You can get Firebug at http://getfirebug.com and Firebug Lite at http://getfire-
bug.com/lite.html.

Google’s Chrome browser comes built in with Firebug-like debug capabilities, which
you can display by opening its Developer Tools (look around the menus for this
entry—it keeps moving).
Download from Library of Wow! eBook <www.wowebook.com>

http://getfirebug.com
http://getfirebug.com/lite.html
http://getfirebug.com/lite.html

252 CHAPTER 8 Talk to the server with Ajax
8.3.1 Getting data with GET

jQuery gives us a few means to make GET requests, which unlike load(), aren’t imple-
mented as jQuery methods on a wrapped set. Rather, a handful of utility functions are
provided to make various types of GET requests. As we pointed out in chapter 1, jQuery
utility functions are top-level functions that are namespaced with the jQuery global
name (and its $ alias).

 When we want to fetch some data from the server and decide what to do with it
ourselves (rather than letting the load() method set it as the content of an HTML ele-
ment), we can use the $.get() utility function. Its syntax is as follows:

The $.get() utility function allows us to initiate GET requests with a lot of versatility.
We can specify request parameters (if appropriate) in numerous handy formats, pro-
vide a callback to be invoked upon a successful response, and even direct how the
response is to be interpreted and passed to the callback. If even that’s not enough ver-
satility, we’ll be seeing a more general function, $.ajax(), later on.

 We’ll be examining the type parameter in greater detail when we look at the
$.ajax() utility function, but for now we’ll let it default to html or xml depending
upon the content type of the response.

 Applying $.get() to our Boot Closet page, we’ll replace the use of the load()
method with the $.get() function, as shown in listing 8.5.

Function syntax: $.get

$.get(url,parameters,callback,type)
Initiates a GET request to the server using the specified URL with any passed parameters as the
query string.

Parameters
url (String) The URL of the server-side resource to contact via the GET method.
parameters (String|Object|Array) Specifies any data that’s to be passed as request

parameters. This parameter can be a string that will be used as the query
string, an object whose properties are serialized into properly encoded
parameters to be passed to the request, or an array of objects whose name
and value properties specify the name/value pairs.

callback (Function) An optional function invoked when the request completes
successfully. The response body is passed as the first parameter to this
callback, interpreted according to the setting of the type parameter, and the
text status is passed as the second parameter. A third parameter contains a
reference to the XHR instance.

type (String) Optionally specifies how the response body is to be interpreted; one of
html, text, xml, json, script, or jsonp. See the description of $.ajax()
later in this chapter for more details.

Returns
The XHR instance.
Download from Library of Wow! eBook <www.wowebook.com>

253Making GET and POST requests

$('#bootChooserControl').change(function(event){
 $.get(
 '/jqia2/action/fetchProductDetails',
 {style: $(event.target).val()},
 function(response) {
 $('#productDetailPane').html(response);
 $('[value=""]',event.target).remove();
 }
);
});

The changes for this second phase of our page are subtle, but significant. We call
$.get() B in place of load(), passing the same URL and the same request parame-
ters. Because $.get() does no automatic injection of the response anywhere within
the DOM, we need to do that ourselves, which is easily accomplished via a call to the
html() method C.

 The code for this version of our page can found at http://localhost[:8080]/jqia2/
chapter8/bootcloset/phase.2.html, and when we display it and select a style drop-
down, we can see that a GET request has been made, as shown in figure 8.5.
In this example, we returned formatted HTML from the server and inserted it into the
DOM, but as we can see from the type parameter to $.get(), there are many other
possibilities than HTML. In fact, the term Ajax began its life as the acronym AJAX,
where the X stood for XML.

 When we pass the type as xml (remember, we’ll be talking about type in more
detail in a little bit), and return XML from the server, the data passed to the callback is
a parsed XML DOM. And although XML is great when we need its flexibility and our
data is highly hierarchical in nature, XML can be painful to traverse and to digest its
data. Let’s see another jQuery utility function that’s quite useful when our data needs
are more straightforward.

Listing 8.5 Changing the Boot Closet to use a GET when fetching style details

Initiates GET
requestB

Injects
response HTMLC

Figure 8.5 Now we can see that the second request is a GET rather than a POST, as befitting
the operation.
Download from Library of Wow! eBook <www.wowebook.com>

http://localhost[:8080]/jqia2/chapter8/bootcloset/phase.2.html
http://localhost[:8080]/jqia2/chapter8/bootcloset/phase.2.html

254 CHAPTER 8 Talk to the server with Ajax
8.3.2 Getting JSON data

As stated in the previous section, when an XML document is returned from the server,
the XML document is automatically parsed, and the resulting DOM is made available
to the callback function. When XML is overkill or otherwise unsuitable as a data-trans-
fer mechanism, JSON is often used in its place. One reason for this choice is that JSON
is astoundingly easy to digest in client-side scripts. jQuery makes it even easier.

 For times when we know that the response will be JSON, the $.getJSON() utility
function automatically parses the returned JSON string and makes the resulting
JavaScript data item available to its callback. The syntax of this utility function is as
follows:

This function, which is simply a convenience function for $.get() with a type of
json, is great for those times when we want to get data from the server without the
overhead of dealing with XML.

 Between $.get() and $.getJSON(), jQuery gives us some powerful tools when it
comes to making GET requests, but man does not live by GETs alone!

8.3.3 Making POST requests

“Sometimes you feel like a nut, sometimes you don’t.” What’s true of choosing
between an Almond Joy or a Mounds candy bar is also true of making requests to the
server. Sometimes we want to make a GET, but at other times we want (or even need) to
make a POST request.

 There are any number of reasons why we might choose a POST over a GET. First, the
intention of the HTTP protocol is that POST will be used for any non-idempotent
requests. Therefore, if our request has the potential to cause a change in the server-
side state, resulting in varying responses, it should be a POST. Moreover, accepted

Function syntax: $.getJSON

$.getJSON(url,parameters,callback)
Initiates a GET request to the server using the specified URL, with any passed parameters as the
query string. The response is interpreted as a JSON string, and the resulting data is passed to the
callback function.

Parameters
url (String) The URL of the server-side resource contacted via the GET method.
parameters (String|Object|Array) Specifies any data that’s to be passed as request

parameters. This parameter can be a string that will be used as the query
string, an object whose properties are serialized into properly encoded
parameters to be passed to the request, or an array of objects whose name
and value properties specify the name/value pairs.

callback (Function) A function invoked when the request completes. The data value
resulting from digesting the response body as a JSON representation is
passed as the first parameter to this callback, and the status text is passed
as the second parameter. A third parameter provides a reference to the XHR
instance.

Returns
The XHR instance.
Download from Library of Wow! eBook <www.wowebook.com>

255Making GET and POST requests
practices and conventions aside, a POST operation must sometimes be used when the
data to be passed to the server exceeds the small amount that can be passed by URL in
a query string—a limit that’s a browser-dependent value. And sometimes, the server-
side resource we contact may only support POST operations, or it might even perform
different functions depending upon whether our request uses the GET or POST method.

 For those occasions when a POST is desired or mandated, jQuery offers the
$.post() utility function, which operates in a similar fashion to $.get(), except for
employing the POST HTTP method. Its syntax is as follows:

Except for making a POST request, using $.post() is identical to using $.get().
jQuery takes care of the details of passing the request data in the request body (as
opposed to the query string), and sets the HTTP method appropriately.

 Now, getting back to our Boot Closet project, we’ve made a really good start, but
there’s more to buying a pair of boots than just selecting a style; customers are sure to
want to pick which color they want, and certainly they’ll need to specify their size.
We’ll use these additional requirements to show how to solve one of the most-asked
questions in online Ajax forums, that of ...

8.3.4 Implementing cascading dropdowns

The implementation of cascading dropdowns—where subsequent dropdown options
depend upon the selections of previous dropdowns—has become sort of a poster
child for Ajax on the web. And although you’ll find thousands, perhaps tens of thou-
sands, of solutions, we’re going to implement a solution on our Boot Closet page that
demonstrates how ridiculously simple jQuery makes it.

Function syntax: $.post

$.post(url,parameters,callback,type)
Initiates a POST request to the server using the specified URL, with any parameters passed within
the body of the request.

Parameters
url (String) The URL of the server-side resource to contact via the POST method.
parameters (String|Object|Array) Specifies any data that’s to be passed as request

parameters. This parameter can be a string that will be used as the query
string, an object whose properties are serialized into properly encoded
parameters to be passed to the request, or an array of objects whose name
and value properties specify the name/value pairs.

callback (Function) A function invoked when the request completes. The response body
is passed as the single parameter to this callback, and the status text as the
second. A third parameter provides a reference to the XHR instance.

type (String) Optionally specifies how the response body is to be interpreted; one of
html, text, xml, json, script, or jsonp. See the description of $.ajax()
for more details.

Returns
The XHR instance.
Download from Library of Wow! eBook <www.wowebook.com>

256 CHAPTER 8 Talk to the server with Ajax
 We’ve already seen how easy it was to load a dropdown dynamically with server-
powered option data. We’ll see that tying multiple dropdowns together in a cascading
relationship is only slightly more work.

 Let’s dig in by listing the changes we need to make in the next phase of our page:

Add dropdowns for color and size.
When a style is selected, add options to the color dropdown that show the col-
ors available for that style.
When a color is selected, add options to the size dropdown that show the sizes
available for the selected combination of style and color.
Make sure things remain consistent. This includes removing the “— please
make a selection —” options from newly created dropdowns once they’ve been
used once, and making sure that the three dropdowns never show an invalid
combination.

We’re also going to revert to using load() again, this time coercing it to initiate a GET
rather than a POST. It’s not that we have anything against $.get(), but load() just
seems more natural when we’re using Ajax to load HTML fragments.

 To start off, let’s examine the new HTML markup that defines the additional drop-
downs. A new container for the select elements is defined to contain three labeled
elements:

<div id="selectionsPane">
 <label for="bootChooserControl">Boot style:</label>
 <select id="bootChooserControl" name="style"></select>
 <label for="colorChooserControl">Color:</label>
 <select id="colorChooserControl" name="color" disabled="disabled"></select>
 <label for="sizeChooserControl">Size:</label>
 <select id="sizeChooserControl" name="size" disabled="disabled"></select>
</div>

The previous style selection element remains, but it has been joined by two more: one
for color, and one for size, each of which is initially empty and disabled.

 That was easy, and it takes care of the additions to the structure. Now let’s add the
additional behaviors.

 The style selection dropdown must now perform double duty. Not only must it
continue to fetch and display the boot details when a selection is made, its change
handler must now also populate and enable the color selection dropdown with the
colors available for whatever style was chosen.

 Let’s refactor the fetching of the details first. We want to use load(), but we also
want to force a GET, as opposed to the POST that we were initiating earlier. In order to
have load() induce a GET, we need to pass a string, rather than an object hash, to spec-
ify the request parameter data. Luckily, with jQuery’s help, we won’t have to build that
string ourselves. The first part of the change handler for the style dropdown gets
refactored like this:
Download from Library of Wow! eBook <www.wowebook.com>

257Making GET and POST requests
$('#bootChooserControl').change(function(event){
 $('#productDetailPane').load(
 '/jqia2/action/fetchProductDetails',
 $(this).serialize()
);
 // more to follow
});

By using the serialize() method, we create a string representation of the value of
the style dropdown, thereby coercing the load() method to initiate a GET, just as we
wanted.

 The second duty that the change handler needs to perform is to load the color-
choice dropdown with appropriate values for the chosen style, and then enable it.
Let’s take a look at the rest of the code to be added to the handler:

$('#colorChooserControl').load(
 '/jqia2/action/fetchColorOptions',
 $(this).serialize(),
 function(){
 $(this).attr('disabled',false);
 $('#sizeChooserControl')
 .attr('disabled',true)
 .html("");
 }
);

This code should look familiar. It’s just another use of load(), this time referencing
an action named fetchColorOptions, which is designed to return a set of formatted
<option> elements representing the colors available for the chosen style (which we
again passed as request data) B. This time, we’ve also specified a callback to be exe-
cuted when the GET request successfully returns a response.

 In this callback, we perform two important tasks. First, we enable the color-chooser
control C. The call to load() injected the <option> elements, but once populated it
would still be disabled if we did not enable it.

 Second, the callback disables and empties the size-chooser control D. But why?
(Pause a moment and think about it.)

 Even though the size control will already be disabled and empty the first time the
style chooser’s value is changed, what about later on? What if, after the customer
chooses a style and a color (which we’ll soon see results in the population of the size
control), he or she changes the selected style? Because the sizes displayed depend
upon the combination of style and color, the sizes previously displayed are no longer
applicable and don’t reflect a consistent view of what’s chosen. Therefore, whenever
the style changes, we need to blow the size options away and reset the size control to
initial conditions.

 Before we sit back and enjoy a lovely beverage, we’ve got more work to do. We still
have to instrument the color-chooser dropdown to use the selected style and color val-
ues to fetch and load the size-chooser dropdown. The code to do this follows a famil-
iar pattern:

Provides
query string

Fetches and loads
color options

B

Enables
color controlCDisables and

empties size
control

D

Download from Library of Wow! eBook <www.wowebook.com>

258 CHAPTER 8 Talk to the server with Ajax
$('#colorChooserControl').change(function(event){
 $('#sizeChooserControl').load(
 '/jqia2/action/fetchSizeOptions',
 $('#bootChooserControl,#colorChooserControl').serialize(),
 function(){
 $(this).attr('disabled',false);
 }
);
});

Upon a change event, the size information is obtained via the fetchSizeOptions
action, passing both the boot style and color selections, and the size control is enabled.

 There’s one more thing that we need to do. When each dropdown is initially
populated, it’s seeded with an <option> element with a blank value and display text
along the lines of “— choose a something —”. You may recall that in the previous
phases of this page, we added code to remove that option from the style dropdown
upon selection.

 Well, we could add such code to the change handlers for the style and color drop-
downs, and add instrumentation for the size dropdown (which currently has none) to
add that. But let’s be a bit more suave about it.

 One capability of the event model that often gets ignored by many a web developer
is event bubbling. Page authors frequently focus only on the targets of events, and forget
that events will bubble up the DOM tree, where handlers can deal with those events in
more general ways than at the target level.

 If we recognize that removing the option with a blank value from any of the three
dropdowns can be handled in the exact same fashion regardless of which dropdown is
the target of the event, we can avoid repeating the same code in three places by estab-
lishing a single handler, higher in the DOM, that will recognize and handle the change
events.

 Recalling the structure of the document, the three dropdowns are contained
within a <div> element with an id of selectionsPane. We can handle the removal of
the temporary option for all three dropdowns with the following, single listener:

$('#selectionsPane').change(function(event){
 $('[value=""]',event.target).remove();
});

This listener will be triggered whenever a change event happens on any of the
enclosed dropdowns, and will remove the option with the blank value within the con-
text of the target of the event (which will be the changed dropdown). How slick is that?

 Using event bubbling to avoid repeating the same code in lower-level handlers can
really elevate your script to the big leagues!

 With that, we’ve completed phase three of The Boot Closet, adding cascading
dropdowns into the mix as shown in figure 8.6. We can use the same techniques in any
pages where dropdown values depend upon previous selections. The page for this
phase can be found at URL http://localhost[:8080]/jqia2/chapter8/bootcloset/
phase.3.html.
Download from Library of Wow! eBook <www.wowebook.com>

http://localhost[:8080]/jqia2/chapter8/bootcloset/phase.3.html
http://localhost[:8080]/jqia2/chapter8/bootcloset/phase.3.html

259Making GET and POST requests
The full code of the page is now as shown in listing 8.6.

<!DOCTYPE html>
<html>
 <head>
 <title>The Boot Closet — Phase 3</title>
 <link rel="stylesheet" type="text/css" href="../../styles/core.css">
 <link rel="stylesheet" type="text/css" href="bootcloset.css">
 <link rel="icon" type="image/gif" href="images/favicon.gif">
 <script type="text/javascript"
 src="../../scripts/jquery-1.4.js"></script>

 <script type="text/javascript"
 src="../../scripts/jqia2.support.js"></script>
 <script type="text/javascript">
 $(function() {

 $('#bootChooserControl')
 .load('/jqia2/action/fetchBootStyleOptions');

Listing 8.6 The Boot Closet, now with cascading dropdowns!

Figure 8.6 The third phase of The Boot Closet shows how easy it is to implement cascading dropdowns.
Download from Library of Wow! eBook <www.wowebook.com>

260 CHAPTER 8 Talk to the server with Ajax
 $('#bootChooserControl').change(function(event){
 $('#productDetailPane').load(
 '/jqia2/action/fetchProductDetails',
 $(this).serialize()
);
 $('#colorChooserControl').load(
 '/jqia2/action/fetchColorOptions',
 $(this).serialize(),
 function(){
 $(this).attr('disabled',false);
 $('#sizeChooserControl')
 .attr('disabled',true)
 .html("");
 }
);
 });

 $('#colorChooserControl').change(function(event){
 $('#sizeChooserControl').load(
 '/jqia2/action/fetchSizeOptions',
 $('#bootChooserControl,#colorChooserControl').serialize(),
 function(){
 $(this).attr('disabled',false);
 }
);
 });

 $('#selectionsPane').change(function(event){
 $('[value=""]',event.target).remove();
 });

 });
 </script>
 </head>

 <body>

 <div id="banner">

 </div>

 <div id="pageContent">

 <h1>Choose your boots</h1>

 <div>

 <div id="selectionsPane">
 <label for="bootChooserControl">Boot style:</label>
 <select id="bootChooserControl" name="style"></select>
 <label for="colorChooserControl">Color:</label>
 <select id="colorChooserControl" name="color"
 disabled="disabled"></select>
 <label for="sizeChooserControl">Size:</label>
 <select id="sizeChooserControl" name="size"
 disabled="disabled"></select>
 </div>

 <div id="productDetailPane"></div>
Download from Library of Wow! eBook <www.wowebook.com>

261Taking full control of an Ajax request
 </div>

 </div>

 </body>

</html>

As we’ve seen, with the load() method and the various GET and POST jQuery Ajax func-
tions at our disposal, we can exert some measure of control over how our request is ini-
tiated and how we’re notified of its completion. But for those times when we need full
control over an Ajax request, jQuery has a means for us to get as picky as we want.

8.4 Taking full control of an Ajax request
The functions and methods we’ve seen so far are convenient for many cases, but there
may be times when we want to take the control of all the nitty-gritty details into our
own hands.

 In this section, we’ll explore how jQuery lets us exert such dominion.

8.4.1 Making Ajax requests with all the trimmings

For those times when we want or need to exert fine-grained control over how we make
Ajax requests, jQuery provides a general utility function for making Ajax requests,
named $.ajax(). Under the covers, all other jQuery features that make Ajax requests
eventually use this function to initiate the request. Its syntax is as follows:

Looks simple, doesn’t it? But don’t be deceived. The options parameter can specify a
large range of values that can be used to tune the operation of this function. These
options (in general order of their importance and the likelihood of their use) are
defined in table 8.2.

Function syntax: $.ajax

$.ajax(options)
Initiates an Ajax request using the passed options to control how the request is made and
callbacks notified.

Parameters
options (Object) An object whose properties define the parameters for this operation. See

table 8.2 for details.

Returns
The XHR instance.

Table 8.2 Options for the $.ajax() utility function

Name Description

url (String) The URL for the request.

type (String) The HTTP method to use. Usually either POST or GET. If omitted, the
default is GET.
Download from Library of Wow! eBook <www.wowebook.com>

262 CHAPTER 8 Talk to the server with Ajax
data (String|Object|Array) Defines the values that will serve as the query parameters to
be passed to the request. If the request is a GET, this data is passed as the query
string. If a POST, the data is passed as the request body. In either case, the encod-
ing of the values is handled by the $.ajax() utility function.
This parameter can be a string that will be used as the query string or response
body, an object whose properties are serialized, or an array of objects whose name
and value properties specify the name/value pairs.

dataType (String) A keyword that identifies the type of data that’s expected to be returned by
the response. This value determines what, if any, post-processing occurs upon the
data before being passed to callback functions. The valid values are as follows:

•xml—The response text is parsed as an XML document and the resulting XML
DOM is passed to the callbacks.

•html—The response text is passed unprocessed to the callback functions. Any
<script> blocks within the returned HTML fragment are evaluated.

•json—The response text is evaluated as a JSON string, and the resulting
object is passed to the callbacks.

•jsonp—Similar to json except that remote scripting is allowed, assuming the
remote server supports it.

•script—The response text is passed to the callbacks. Prior to any callbacks
being invoked, the response is processed as a JavaScript statement or state-
ments.

•text—The response text is assumed to be plain text.
The server resource is responsible for setting the appropriate content-type
response header.
If this property is omitted, the response text is passed to the callbacks without any
processing or evaluation.

cache (Boolean) If false, ensures that the response won’t be cached by the browser.
Defaults to true except when dataType is specified as either script or jsonp.

context (Element) Specifies an element that is to be set as the context of all callbacks
related to this request.

timeout (Number) Sets a timeout for the Ajax request in milliseconds. If the request doesn’t
complete before the timeout expires, the request is aborted and the error callback
(if defined) is called.

global (Boolean) If false, disables the triggering of global Ajax events. These are jQuery-
specific custom events that trigger at various points or conditions during the pro-
cessing of an Ajax request. We’ll be discussing them in detail in the upcoming sec-
tion. If omitted, the default (true) is to enable the triggering of global events.

contentType (String) The content type to be specified on the request. If omitted, the default is
application/x-www-form-urlencoded, the same type used as the default
for form submissions.

success (Function) A function invoked if the response to the request indicates a success
status code. The response body is returned as the first parameter to this function
and evaluated according to the specification of the dataType property. The sec-
ond parameter is a string containing a status value—in this case, always
success. A third parameter provides a reference to the XHR instance.

Table 8.2 Options for the $.ajax() utility function (continued)

Name Description
Download from Library of Wow! eBook <www.wowebook.com>

263Taking full control of an Ajax request
That’s a lot of options to keep track of, but it’s unlikely that more than a few of them
will be used for any one request. Even so, wouldn’t it be convenient if we could set
default values for these options for pages where we’re planning to make a large num-
ber of requests?

error (Function) A function invoked if the response to the request returns an error status
code. Three arguments are passed to this function: the XHR instance, a status
message string (in this case, one of: error, timeout, notmodified, or
parseerror), and an optional exception object, sometimes returned from the
XHR instance, if any.

complete (Function) A function called upon completion of the request. Two arguments are
passed: the XHR instance and a status message string of either success or
error. If either a success or error callback is also specified, this function is
invoked after that callback is called.

beforeSend (Function) A function invoked prior to initiating the request. This function is passed
the XHR instance and can be used to set custom headers or to perform other pre-
request operations. Returning false from this handler will cancel the request.

async (Boolean) If specified as false, the request is submitted as a synchronous
request. By default, the request is asynchronous.

processData (Boolean) If set to false, prevents the data passed from being processed into
URL-encoded format. By default, the data is URL-encoded into a format suitable for
use with requests of type application/x-www-form-urlencoded.

dataFilter (Function) A callback invoked to filter the response data. This function is passed
the raw response data and the dataType value, and is expected to return the
“sanitized” data.

ifModified (Function) If true, allows a request to succeed only if the response content has
not changed since the last request, according to the Last-Modified header. If
omitted, no header check is performed. Defaults to false.

jsonp (String) Specifies a query parameter name to override the default jsonp callback
parameter name of callback.

username (String) The username to be used in the event of an HTTP authentication request.

password (String) The password to be used in the case of an HTTP authentication request.

scriptCharset (String) The character set to be used for script and jsonp requests when the
remote and local content are of different character sets.

xhr (Function) A callback used to provide a custom implementation of the XHR
instance.

traditional (Boolean) If true, the traditional style of parameter serialization is used. See the
description of $.param() in chapter 6 for details on parameter serialization.

Table 8.2 Options for the $.ajax() utility function (continued)

Name Description
Download from Library of Wow! eBook <www.wowebook.com>

264 CHAPTER 8 Talk to the server with Ajax
8.4.2 Setting request defaults

Obviously the last question in the previous section was a setup. As you might have sus-
pected, jQuery provides a way for us to define a default set of Ajax properties that will
be used when we don’t override their values. This can make pages that initiate lots of
similar Ajax calls much simpler.

 The function to set up the list of Ajax defaults is $.ajaxSetup(), and its syntax is as
follows:

At any point in script processing, usually at page load (but it can be at any point of the
page authors’ choosing), this function can be used to set up defaults to be used for all
subsequent calls to $.ajax().

NOTE Defaults set with this function aren’t applied to the load() method.
Also, for utility functions such as $.get() and $.post()=, the HTTP method
can’t be overridden by these defaults. For example, setting a default type of
GET won’t cause $.post() to use the GET HTTP method.

Let’s say that we’re setting up a page where, for the majority of Ajax requests (made
with the utility functions rather than the load() method), we want to set up some
defaults so that we don’t need to specify them on every call. We can, as the first state-
ment in the header <script> element, write this:

$.ajaxSetup({
 type: 'POST',
 timeout: 5000,
 dataType: 'html'
});

This would ensure that every subsequent Ajax call (except as noted previously) would
use these defaults, unless explicitly overridden in the properties passed to the Ajax
utility function being used.

 Now, what about those global events we mentioned that were controlled by the
global option?

Method syntax: $.ajaxSetup

$.ajaxSetup(options)
Establishes the passed set of option properties as the defaults for subsequent calls to $.ajax().

Parameters
options (Object) An object instance whose properties define the set of default Ajax options.

These are the same properties described for the $.ajax() function in table 8.2.
This function should not be used to set callback handlers for success, error, and
completion. (We’ll see how to set these up using an alternative means in an
upcoming section.)

Returns
Undefined.
Download from Library of Wow! eBook <www.wowebook.com>

265Taking full control of an Ajax request
8.4.3 Handling Ajax events

Throughout the execution of jQuery Ajax requests, jQuery triggers a series of custom
events for which we can establish handlers in order to be informed of the progress of
a request, or to take action at various points along the way. jQuery classifies these
events as local events and global events.

 Local events are handled by the callback functions that we can directly specify using
the beforeSend, success, error, and complete options of the $.ajax() function, or
indirectly by providing callbacks to the convenience methods (which, in turn, use the
$.ajax() function to make the actual requests). We’ve been handling local events all
along, without even knowing it, whenever we’ve registered a callback function to any
jQuery Ajax function.

 Global events are those that are triggered like other custom events within jQuery,
and for which we can establish event handlers via the bind() method (just like any
other event). The global events, many of which mirror local events, are: ajaxStart,
ajaxSend, ajaxSuccess, ajaxError, ajaxStop, and ajaxComplete.

 When triggered, the global events are broadcast to every element in the DOM, so
we can establish these handlers on any DOM element, or elements, of our choosing.
When executed, the handlers’ function context is set to the DOM element upon which
the handler was established.

 Because we don’t need to consider a bubbling hierarchy, we can establish a han-
dler on any element for which it would be convenient to have ready access via this. If
we don’t care about a specific element, we could just establish the handler on the
<body> for lack of a better location. But if we have something specific to do to an ele-
ment, such as hide and show animated graphics while an Ajax request is processing,
we could establish the handle on that element and have easy access to it via the func-
tion context.

 In addition to the function context, more information is available via parameters
passed to the handlers; most often these are the jQuery.Event instance, the XHR
instance, and the options passed to $.ajax().

 Exceptions to this parameter list will be noted in Table 8.3, which shows the jQuery
Ajax events in the order in which they are delivered.

Table 8.3 jQuery Ajax event types

Event name Type Description

ajaxStart Global Triggered when an Ajax request is started, as long as no other requests
are active. For concurrent requests, this event is triggered only for the
first of the requests.
No parameters are passed.

beforeSend Local Invoked prior to initiating the request in order to allow modification of
the XHR instance prior to sending the request to the server, or to can-
cel the request by returning false.
Download from Library of Wow! eBook <www.wowebook.com>

266 CHAPTER 8 Talk to the server with Ajax
Once again (to make sure things are clear), local events represent callbacks passed to
$.ajax() (and its cohorts), whereas global events are custom events that are triggered
and can be handled by established handlers, just like other event types.

 In addition to using bind() to establish event handlers, jQuery also provides a
handful of convenience functions to establish the handlers, as follows:

Let’s put together a simple example of how some of these methods can be used to eas-
ily track the progress of Ajax requests. The layout of our test page (it’s too simple to be
called a Lab) is shown in figure 8.7 and is available at URL http://localhost[:8080]/
jqia2/chapter8/ajax.events.html.

ajaxSend Global Triggered prior to initiating the request in order to allow modification of
the XHR instance prior to sending the request to the server.

success Local Invoked when a request returns a successful response.

ajaxSuccess Global Triggered when a request returns a successful response.

error Local Invoked when a request returns an error response.

ajaxError Global Triggered when a request returns an error response. An optional fourth
parameter referencing the thrown error, if any, is passed.

complete Local Invoked when a request completes, regardless of status. This callback
is invoked even for synchronous requests.

ajaxComplete Global Triggered when a request completes, regardless of status. This call-
back is invoked even for synchronous requests.

ajaxStop Global Triggered when an Ajax request completes and there are no other con-
current requests active.
No parameters are passed.

Method syntax: jQuery Ajax event establishers

ajaxComplete(callback)
ajaxError(callback)
ajaxSend(callback)
ajaxStart(callback)
ajaxStop(callback)
ajaxSuccess(callback)
Establishes the passed callback as an event handler for the jQuery Ajax event specified by the
method name.

Parameters
callback (Function) The function to be established as the Ajax event handler. The function

context (this) is the DOM element upon which the handler is established.
Parameters may be passed as outlined in table 8.3.

Returns
The wrapped set.

Table 8.3 jQuery Ajax event types (continued)

Event name Type Description
Download from Library of Wow! eBook <www.wowebook.com>

http://localhost[:8080]/jqia2/chapter8/ajax.events.html
http://localhost[:8080]/jqia2/chapter8/ajax.events.html

267Taking full control of an Ajax request
This page exhibits three controls: a count field, a Good button, and a Bad button.
These buttons are instrumented to issue the number of requests specified by the count
field. The Good button will issue requests to a valid resource, whereas the Bad button
will issue that number of requests to an invalid resource that will result in failures.

 Within the ready handler on the page, we also establish a number of event han-
dlers as follows:

$('body').bind(
 'ajaxStart ajaxStop ajaxSend ajaxSuccess ajaxError ajaxComplete',
 function(event){ say(event.type); }
);

This statement establishes a handler for each of the various jQuery Ajax event types
that emits a message to the on-page “console” (which we placed below the controls),
showing the event type that was triggered.

 Leaving the request count at 1, click the Good button and observe the results.
You’ll see that each jQuery Ajax event type is triggered in the order depicted in
table 8.3. But to understand the distinctive behavior of the ajaxStart and ajaxStop
events, set the count control to 2, and click the Good button. You’ll see a display as
shown in figure 8.8.

Figure 8.7 The initial display of the page we’ll use to examine the jQuery Ajax
events by firing multiple events and observing the handlers

Figure 8.8 When multiple requests are active, the ajaxStart and ajaxStop events are
called around the set of requests rather than for each.
Download from Library of Wow! eBook <www.wowebook.com>

268 CHAPTER 8 Talk to the server with Ajax
 Here we can see how, when multiple requests are active, the ajaxStart and ajaxStop
events are triggered only once for the entire set of concurrent requests, whereas the
other event types are triggered on a per-request basis.

 Now try clicking the Bad button to generate an invalid request, and observe the
event behavior.

 Before we move on to the next chapter, let’s put all this grand knowledge to use,
shall we?

8.5 Putting it all together
It’s time for another comprehensive example. Let’s put a little of everything we’ve
learned so far to work: selectors, DOM manipulation, advanced JavaScript, events,
effects, and Ajax. And to top it all off, we’ll implement another custom jQuery
method!

 For this example, we’ll once again return to The Boot Closet page. To review, look
back at figure 8.6 to remind yourself where we left off, because we’re going to con-
tinue to enhance this page.

 In the detailed information of the boots listed for sale (evident in figure 8.6),
terms are used that our customers may not be familiar with—terms like “Goodyear
welt” and “stitch-down construction.” We’d like to make it easy for customers to find
out what these terms mean, because an informed customer is usually a happy cus-
tomer. And happy customers buy things! We like that.

 We could be all 1998 about it and provide a glossary page that customers navigate
to for reference, but that would move the focus away from where we want it—the
pages where they can buy our stuff! We could be a little more modern about it and
open a pop-up window to show the glossary or even the definition of the term in ques-
tion. But even that’s being terribly old-fashioned.

 If you’re thinking ahead, you might be wondering if we could use the title attri-
bute of DOM elements to display a tooltip (sometimes called a flyout) containing the
definition when customers hover over the term with the mouse cursor. Good think-
ing! That would allow the definition to be shown in-place without requiring customers
to move their focus elsewhere.

 But the title attribute approach presents some problems for us. First, the flyout
only appears if the mouse cursor hovers over the element for a few seconds—and we’d
like to be a bit more overt about it, displaying the information immediately after click-
ing a term. But more importantly, some browsers will truncate the text of a title fly-
out to a length far too short for our purposes.

 So we’ll build our own!
 We’ll somehow identify terms that have definitions, change their appearance to

allow the user to easily identify such elements as clickable (giving them what’s termed
an “invitation to engage”), and instrument the elements so that a mouse click will dis-
play a flyout containing a description of the term. Subsequently clicking the flyout will
remove it from the display.
Download from Library of Wow! eBook <www.wowebook.com>

269Putting it all together
 We’re also going to write it as a generally reusable plugin, so we need to make sure
of two very important things:

There’ll be no hard-coding of anything that’s specific to The Boot Closet.
We’ll give the page authors maximum flexibility for styling and layout (within
reason).

We’ll call our new plugin the Termifier, and figures 8.9a through 8.9c display a portion
of our page showing the behavior that we’ll be adding.

 In figure 8.9a, we see the description of the item with the terms “Full-grain” and
“oil-tanned” highlighted. Clicking Full-grain causes the Termifier flyout containing
the term’s definition to be displayed, as shown in figures 8.9b and 8.9c. In the rendi-
tion of figure 8.9b, we’ve supplied some rather simple CSS styling; in figure 8.9c we’ve
gotten a bit more grandiose. We need to make sure that the plugin code allows for
such flexibility.

 Let’s get started.

Figure 8.9a The terms “full-
grain” and “oil-tanned” have been
instrumented for “termifying” by
our handy new plugin.

Figure 8.9b The Termifier
pane deployed using simple
styling specified by CSS
external to the plugin.

Figure 8.9c The Termifier pane
with fancier styling—we need to
give a user of our plugin this kind
of flexibility.
Download from Library of Wow! eBook <www.wowebook.com>

270 CHAPTER 8 Talk to the server with Ajax
8.5.1 Implementing the Termifier

As you’ll recall, adding a jQuery method is accomplished by using the $.fn prop-
erty. Because we’ve called our new plugin the Termifier, we’ll name the method
termifier().

 The termifier() method will be responsible for instrumenting each element in
its matched set to achieve the following plan:

Establish a click handler on each matched element that initiates the display of
the Termifier flyout.
Once clicked, the term defined by the current element will be looked up using
a server-side resource.
Once received, the definition of the term will be displayed in a flyout using a
fade-in effect.
The flyout will be instrumented to fade out once clicked within its boundaries.
The URL of the server-side resource will be the only required parameter; all
other options will have reasonable defaults.

The syntax for our plugin is as follows:

We’ll begin the implementation by creating a skeleton for our new termifier()
method in a file named jquery.jqia.termifier.js:

(function($){

 $.fn.termifier = function(actionURL,options) {
 //
 // implementation goes here
 //
 return this;
 };

})(jQuery);

Method syntax: termifier

termifier(url,options)
Instruments the wrapped elements as Termifier terms. The class name termified is added to
all wrapped elements.

Parameters
url (String) The URL of the server-side action that will retrieve term definitions.
options (Object) Specifies the options as follows:

•paramName—The request parameter name to use to send the term to the
server-side action. If omitted, a default of term is used.

•addClass—A class name to be added to the outer container of the generated
Termifier pane. This is in addition to the class name termifier, which is
always added.

•origin—An object hash containing the properties top and left that specify
an offset for the Termifier pane from the cursor position. If omitted, the origin
is placed exactly at the cursor position.

•zIndex—The z-index to assign to the Termifier pane. Defaults to 100.

Returns
The wrapped set.
Download from Library of Wow! eBook <www.wowebook.com>

271Putting it all together
This skeleton uses the pattern outlined in the previous chapter to ensure that we can
freely use the $ in our implementation, and creates the wrapper method by adding
the new function to the fn prototype. Also note how we set up the return value right
away to ensure that our new method plays nice with jQuery chaining.

 Now, on to processing the options. We want to merge the user-supplied options
with our own defaults:

var settings = $.extend({
 origin: {top:0,left:0},
 paramName: 'term',
 addClass: null,
 actionURL: actionURL
},options||{});

We’ve seen this pattern before, so we won’t belabor its operation, but note how we’ve
added the actionURL parameter value into the settings variable. This collects every-
thing we’ll need later into one tidy place for the closures that we’ll be creating.

 Having gathered all the data, we’ll now move on to defining the click handler on
the wrapped elements that will create and display the Termifier pane. We start setting
that up as follows:

this.click(function(event){
 $('div.termifier').remove();
 //
 // create new Termifier here
 //
});

When a termified element is clicked, we want to get rid of any previous Termifier
panes that are lying around before we create a new one. Otherwise, we could end up
with a screen littered with them, so we locate all previous instances and remove them
from the DOM.

NOTE Can you think of another approach that we might have taken to ensure
that there is only one Termifier pane ever displayed?

With that, we’re now ready to create the structure of our Termifier pane. You might
think that all we need to do is create a single <div> into which we can shove the term
definition, but although that would work, it would also limit the options that we offer
the users of our plugin. Consider the example of figure 8.9c, where the text needs to
be placed precisely in relation to the background “bubble” image.

 So we’ll create an outer <div>, and then an inner <div> into which the text will be
placed. This won’t only be useful for placement; consider the situation of figure 8.10,
in which we have a fixed-height construct and text that’s longer than will fit. The pres-
ence of the inner <div> allows the page author to user the overflow CSS rule to add
scrollbars to the flyout text.

 Let’s examine the code that creates the outer <div>:

Download from Library of Wow! eBook <www.wowebook.com>

272 CHAPTER 8 Talk to the server with Ajax
$('<div>')
 .addClass('termifier' +
 (settings.addClass ? (' ') + settings.addClass : ''))
 .css({
 position: 'absolute',
 top: event.pageY - settings.origin.top,
 left: event.pageX - settings.origin.left,
 display: 'none'
 })
 .click(function(event){
 $(this).fadeOut('slow');
 })
 .appendTo('body')

In this code, we create a new <div> element B and proceed to adjust it. First, we
assign the class name termifier to the element C so that we can easily find it later, as
well as to give the page author a hook onto which to hang CSS rules. If the caller pro-
vided an addClass option, it’s also added.

 We then apply some CSS styling D. All we do here is the minimum that’s necessary
to make the whole thing work (we’ll let the page author provide any additional styling
through CSS rules). The element is initially hidden, and it’s absolutely positioned at
the location of the mouse event, adjusted by any origin provided by the caller. The
latter is what allows a page author to adjust the position so that the tip of the bubble’s
pointer in figure 8.9c appears at the click location.

 After that, we establish a click event handler E that removes the element from the
display when clicked upon. Finally, the element is attached to the DOM F.

 OK, so far so good. Now we need to create the inner <div>—the one that will carry
the text—and append it to the element we just created, so we continue like this:

Figure 8.10 Having two <div> elements to play with gives the page author some leeway to do things
like scroll the inner text.

Creates outer <div>B
Adds class
name(s)C

Assigns CSS
positioningD

Removes from
display on click

E

Attaches to DOMF
Download from Library of Wow! eBook <www.wowebook.com>

273Putting it all together
.append(
 $('<div>').load(
 settings.actionURL,
 encodeURIComponent(settings.paramName) + '=' +
 encodeURIComponent($(event.target).text()),
 function(){
 $(this).closest('.termifier').fadeIn('slow');
 }
)

Note that this is a continuation of the same statement that created the outer
<div>—have we not been telling you all along how powerful jQuery chaining is?

 In this code fragment, we create and append B the inner <div> and initiate an
Ajax request to fetch and inject the definition of the term C. Because we’re using
load() and want to force a GET request, we need to supply the parameter info as a text
string. We can’t rely on serialize() here because we’re not dealing with any form
controls, so we make use of JavaScript’s encodeURIComponent() method to format the
query string ourselves D.

 In the completion callback for the request, we find the parent (marked with the
termifier class) and fade it into view E.

 Before dancing a jig, we need to perform one last act before we can declare our
plugin complete; we must add the class name termified to the wrapped elements to
give the page author a way to style termified elements:

this.addClass('termified');

There! Now we’re done and can enjoy our lovely beverage.
 The code for our plugin is shown in its entirety in listing 8.7, and it can be found in

file chapter8/jquery.jqia.termifier.js.

(function($){

 $.fn.termifier = function(actionURL,options) {
 var settings = $.extend({
 origin: {top:0,left:0},
 paramName: 'term',
 addClass: null,
 actionURL: actionURL
 },options||{});
 this.click(function(event){
 $('div.termifier').remove();
 $('<div>')
 .addClass('termifier' +
 (settings.addClass ? (' ') + settings.addClass : ''))
 .css({
 position: 'absolute',
 top: event.pageY - settings.origin.top,
 left: event.pageX - settings.origin.left,
 display: 'none'
 })
 .click(function(event){

Listing 8.7 The complete implementation of the Termifier plugin

Appends inner to outer <div>B
Fetches and
injects definitionC

Provides termD

Fades Termifier
into viewE
Download from Library of Wow! eBook <www.wowebook.com>

274 CHAPTER 8 Talk to the server with Ajax
 $(this).fadeOut('slow');
 })
 .appendTo('body')
 .append(
 $('<div>').load(
 settings.actionURL,
 encodeURIComponent(settings.paramName) + '=' +
 encodeURIComponent($(event.target).text()),
 function(){
 $(this).closest('.termifier').fadeIn('slow');
 }
)
);
 });
 this.addClass('termified');
 return this;
 };

})(jQuery);

That was the hard part. The easy part should be putting the Termifier to use on our
Boot Closet page—at least, if we did it right. Let’s find out if we did.

8.5.2 Putting the Termifier to the test

Because we rolled all the complex logic of creating and manipulating the Termifier
flyout into the termifier() method, using this new jQuery method on the Boot
Closet page is relatively simple. But first we have some interesting decisions to make.

 For example, we need to decide how to identify the terms on the page that we wish
to termify. Remember, we need to construct a wrapped set of elements whose content
contains the term elements for the method to operate on. We could use a ele-
ment with a specific class name; perhaps something like this:

Goodyear welt

In this case, creating a wrapped set of these elements would be as easy as
$('span.term').

 But some might feel that the markup is a bit wordy. Instead, we’ll leverage
the little-used <abbr> HTML tag. The <abbr> tag was added to HTML 4 in order to
help identify abbreviations in the document. Because the tag is intended purely for
identifying document elements, none of the browsers do much with these tags, either
in the way of semantics or visual rendition, so it’s perfect for our use.

NOTE HTML 42 defines a few more of these semantic tags, such as <cite>,
<dfn>, and <acronym>. The HTML 5 draft specification3 proposal adds even
more of these semantic tags, whose purpose is to provide structure rather
than provide layout or visual rendition directives. Among such tags are <sec-
tion>, <article>, and <aside>.

2 HTML 4.01 specification, http://www.w3.org/TR/html4/.
3 HTML 5 draft specification, http://www.w3.org/html/wg/html5/.
Download from Library of Wow! eBook <www.wowebook.com>

http://www.w3.org/TR/html4/
http://www.w3.org/html/wg/html5/

275Putting it all together
Therefore, the first thing we need to do is modify the server-side resource that returns
the item details to enclose terms that have glossary definitions in <abbr> tags. Well, as
it turns out, the fetchProductDetails action already does that. But because the
browsers don’t do anything with the <abbr> tag, you might not have even noticed,
unless you’ve already taken a look inside the action file or inspected the action’s
response. A typical response (for style 7141922) contains this:

<div>
 <label>Features:</label> <abbr>Full-grain</abbr> leather uppers. Leather
 lining. <abbr>Vibram</abbr> sole. <abbr>Goodyear welt</abbr>.
</div>

Note how the terms “Full-grain”, “Vibram”, and “Goodyear welt” are identified using
the <abbr> tag.

 Now, onward to the page itself. Starting with the code of phase three (listing 8.6)
as a starting point, let’s see what we need to add to the page in order to use the Termi-
fier. We need to bring the new method into the page, so we add the following state-
ment to the <head> section (after jQuery itself has loaded):

<script type="text/javascript" src="jquery.jqia.termifier.js"></script>

We need to apply the termifier() method to any <abbr> tags added to the page when
item information is loaded, so we add a callback to the load() method that fetches the
product detail information. That callback uses the Termifier to instrument all <abbr>
elements. The augmented load() method (with changes in bold) is as follows:

$('#productDetailPane').load(
 '/jqia2/action/fetchProductDetails',
 $('#bootChooserControl').serialize(),
 function(){ $('abbr').termifier('/jqia2/action/fetchTerm'); }
);

The added callback creates a wrapped set of all <abbr> elements and applies the ter-
mifier() method to them, specifying a server-side action of fetchTerm and letting all
options default.

 And that’s it! (Well, almost.)

CLEANING UP AFTER OURSELVES

Because we wisely encapsulated all the heavy lifting in our reusable jQuery plugin,
using it on the page is even easier than pie! And we can as easily use it on any other
page or any other site. Now that’s what engineering is all about!

 But there is one little thing we forget. We built into our plugin the removal of any
Termifier flyouts when another one is displayed, but what happens if the user chooses
a new style? Whoops! We’d be left with a Termifier pane that’s no longer relevant. So
we need to remove any displayed Termifiers whenever we reload the product detail.

 We could just add some code to the load() callback, but that seems wrong, tightly
coupling the Termifier to the loading of the product details. We’d be happier if we
could keep the two decoupled and just listen for an event that tells us when its time to
remove any Termifiers.
Download from Library of Wow! eBook <www.wowebook.com>

276 CHAPTER 8 Talk to the server with Ajax
 If the ajaxComplete event came to mind, treat yourself to a Maple Walnut Sundae
or whatever other indulgence you use to reward yourself for a great idea. We can listen
for ajaxComplete events and remove any Termifiers that exist when the event is tied to
the fetchProductDetails action:

$('body').ajaxComplete(function(event,xhr,options){
 if (options.url.indexOf('fetchProductDetails') != -1) {
 $('div.termifier').remove();
 }
});

Now let’s take a look at how we applied those various styles to the Termifier flyouts.

TERMIFYING IN STYLE

Styling the elements is quite a simple matter. In our style sheet we can easily apply
rules to make the termified terms, and the Termifier pane itself, look like the display
of figure 8.9b. Looking in bootcloset.css, we find this:

abbr.termified {
 text-decoration: underline;
 color: aqua;
 cursor: pointer;
}

div.termifier {
 background-color: cornsilk;
 width: 256px;
 color: brown;
 padding: 8px;
 font-size: 0.8em;
}

These rules give the terms a link-ish appearance that invites users to click the terms,
and gives the Termifier flyouts the simple appearance shown in figure 8.9b. This ver-
sion of the page can be found at http://localhost[:8080]/jqia2/chapter8/bootcloset/
phase.4a.html.

 To take the Termifier panes to the next level, shown in figure 8.9c, we only need to
be a little clever and use some of the options we provided in our plugin. For the fan-
cier version, we call the Termifier plugin (within the load() callback) with this code:

$('#productDetailPane').load(
 '/jqia2/action/fetchProductDetails',
 $('#bootChooserControl').serialize(),
 function(){ $('abbr')
 .termifier(
 '/jqia2/action/fetchTerm',
 {
 addClass: 'fancy',
 origin: {top: 28, left: 2}
 }
);
 }
);
Download from Library of Wow! eBook <www.wowebook.com>

http://localhost[:8080]/jqia2/chapter8/bootcloset/phase.4a.html
http://localhost[:8080]/jqia2/chapter8/bootcloset/phase.4a.html

277Putting it all together
This call differs from the previous example only by specifying that the class name
fancy be added to the Termifiers, and that the origin be adjusted so that the tip of the
bubble appears at the mouse event location.

 To the style sheet we add this (leaving the original rule):

div.termifier.fancy {
 background: url('images/termifier.bubble.png') no-repeat transparent;
 width: 256px;
 height: 104px;
}

div.termifier.fancy div {
 height: 86px;
 width: 208px;
 overflow: auto;
 color: black;
 margin-left: 24px;
}

This adds all the fancy stuff that can be seen in figure 8.9c.
 This new page can be found at http://localhost[:8080]/jqia2/chapter8/boot-

closet/phase.4b.html. Our new plugin is useful and powerful, but as always, we can
make improvements.

8.5.3 Improving the Termifier

Our brand-spankin’-new jQuery plugin is quite useful as is, but it does have some
minor issues and the potential for some major improvements. To hone your skills,
here’s a list of possible changes you could make to this method or to the Boot
Closet page:

Add an option (or options) that allows the page author to control the fade
durations or, perhaps, even to use alternate effects.
The Termifier flyout stays around until the customer clicks it, another one is
displayed, or the product details are reloaded. Add a timeout option to the Ter-
mifier plugin that automatically makes the flyout go away if it’s still displayed
after the timeout has expired.
Clicking the flyout to close it introduces a usability issue, because the text of the
flyout can’t be selected for cut-and-paste. Modify the plugin so that it closes the
flyout if the user clicks anywhere on the page except on the flyout.
We don’t do any error handling in our plugin. How would you enhance the
code to gracefully deal with invalid caller info, or server-side errors?
We achieved the appealing drop shadows in our images by using PNG files with
partial transparencies. Although most browsers handle this file format well, IE 6
doesn’t and displays the PNG files with white backgrounds. To deal with this, we
could also supply GIF formats for the images without the drop shadows. Although
support for IE 6 is waning (in fact, Google has dropped support for IE 6 as of
Download from Library of Wow! eBook <www.wowebook.com>

http://localhost[:8080]/jqia2/chapter8/bootcloset/phase.4b.html
http://localhost[:8080]/jqia2/chapter8/bootcloset/phase.4b.html

278 CHAPTER 8 Talk to the server with Ajax
March 1, 2010), how would you enhance the page to detect when IE 6 is being
used and to replace all the PNG references with their corresponding GIFs?
While we’re talking about the images, we only have one photo per boot style,
even when multiple colors are available. Assuming that we have photo images
for each possible color, how would you enhance the page to show the appropri-
ate image when the color is changed?

Can you think of other improvements to make to this page or the termifier()
plugin? Share your ideas and solutions at this book’s discussion forum, which you can
find at http://www.manning.com/bibeault2.

8.6 Summary
Not surprisingly, this is one of the longest chapters in this book. Ajax is a key part of
the new wave of DOM-scripted applications, and jQuery is no slouch in providing a
rich set of tools for us to work with.

 For loading HTML content into DOM elements, the load() method provides an
easy way to grab the content from the server and make it the contents of any wrapped
set of elements. Whether a GET or POST method is used is determined by how any
parameter data to be passed to the server is provided.

 When a GET is required, jQuery provides the utility functions $.get() and $.getJ-
SON(); the latter being useful when JSON data is returned from the server. To force a
POST, the $.post() utility function can be used.

 When maximum flexibility is required, the $.ajax() utility function, with its
ample assortment of options, lets us control the most minute aspects of an Ajax
request. All other Ajax features in jQuery use the services of this function to provide
their functionality.

 To make managing the bevy of options less of a chore, jQuery provides the
$.ajaxSetup() utility function that allows us to set default values for any frequently
used options to the $.ajax() function (and to all of the other Ajax functions that use
the services of $.ajax()).

 To round out the Ajax toolset, jQuery also allows us to monitor the progress of
Ajax requests by triggering Ajax events at the various stages, allowing us to establish
handlers to listen for those events. We can bind() the handlers, or use the conve-
nience methods: ajaxStart(), ajaxSend(), ajaxSuccess(), ajaxError(), ajaxCom-
plete(), and ajaxStop().

 With this impressive collection of Ajax tools under our belts, it’s easy to enable rich
functionality in our web applications. And remember, if there’s something that jQuery
doesn’t provide, we’ve seen that it’s easy to extend jQuery by leveraging its existing
features. Or, perhaps there’s already a plugin—official or otherwise—that adds exactly
what you need!
Download from Library of Wow! eBook <www.wowebook.com>

http://www.manning.com/bibeault2

Part 2

jQuery UI

In the first part of this book, focusing on the jQuery core library, we made a
big deal about how easy it is to extend jQuery. And we were correct to do so,
because the ease with which jQuery can be extended is a big deal. And nowhere
is it more evident than in the official plugins, the score of available unofficial
plugins, and the companion library: jQuery UI.

 jQuery UI builds upon the foundation laid by the capabilities of the core
library to give us high-level user interface constructs, focused on creating great
and intuitive UIs.

 We’ll start by learning how the library can be obtained and configured—it’s
not quite as simple as just copying a single file, as we were able to do with the
core library. Then we’ll take a look at some of the basic capabilities that jQuery
UI adds to the features of the core library.

 From there we’ll see how jQuery UI layers upon the core library, and we’ll
look at the extended capabilities that it adds, all of which brings us user inter-
face interactions such as the ability to drag and drop, sort, and resize elements.
And then, layering further upon that, we’ll explore the user interface widgets
that jQuery UI adds to our toolbox of input controls.

 After finishing this part, and hence the book, you’ll be fully prepared to take
on just about any user interface project that the web might throw at you. Bring
it on!

Download from Library of Wow! eBook <www.wowebook.com>

Download from Library of Wow! eBook <www.wowebook.com>

Introducing jQuery UI:
themes and effects
More than a plugin, but not part of the jQuery core, jQuery UI enjoys a status as an
official extension of the jQuery core library aimed at providing extended user
interface (UI) capabilities to jQuery-enabled web application pages.

 The tools available for us to use within the browser environment (JavaScript,
DOM manipulation, HTML, and even the core jQuery library) give us low-level abil-
ities to put together pretty much any kind of user interactions we might want to
provide for our users. But even so, building complex interactions using basic build-
ing blocks can be a large and daunting task. The native JavaScript API for DOM
manipulation is tedious in the extreme (luckily we have core jQuery to contend

This chapter covers
An overview of jQuery UI

Configuring and downloading the jQuery UI library

Obtaining and creating jQuery UI themes

Extended effects provided by jQuery UI

Other extensions to the core library
281

Download from Library of Wow! eBook <www.wowebook.com>

282 CHAPTER 9 Introducing jQuery UI: themes and effects
with that), and the set of form controls that HTML provides is rather sparse when com-
pared with desktop environment counterparts.

 We can create our own interactions and controls (often called widgets) with the
help of the jQuery methods we’ve learned to this point. But the jQuery UI library pro-
vides us with a fair number of generally desired extended features or gives us higher-
level building blocks to create them ourselves.

 Imagine a commonly needed widget such as a progress bar. We could analyze its
requirements and figure out how to implement it using core jQuery, but the UI
library has already anticipated that need and provides a progress bar widget right out
of the box.

 Unlike the core jQuery library, jQuery UI is a confederation of loosely coupled ele-
ments. We’ll see, in the first section of this chapter, how we can download a library
that contains all of these pieces, or just the ones we’re going to need. These elements
fall into three general categories:

Effects—Enhanced effects beyond those provided by the core library
Interactions—Mouse interactions, such as drag and drop, sorting, and the like
Widgets—A set of commonly needed controls, such as progress bars, sliders, dia-
log boxes, tabs, and so on

It’s important to note that the interactions and widgets make heavy use of CSS to
“theme” the visible elements. This is an essential tool for making the elements work
correctly, as well as to match the design and appearance of our own pages, and it’s a
topic that we’ll be examining later in this chapter.

 As you can see, there’s a lot there. And because jQuery UI is an important exten-
sion to jQuery, we’re devoting three chapters to it. We have also provided an extensive
set of UI-focused Lab pages—pretty much one for each major area of jQuery UI.
These chapters, along with the Labs, should give you a good starting point for using
jQuery UI.

 Without further blather, let’s get going and get our hands on jQuery UI.

9.1 Configuring and downloading the UI library
The jQuery UI library consists of a fairly large number of elements. Depending upon
the needs of your application, you might want to use all of these elements, or perhaps
just a subset of them. For example, your application might not need to make use of
the widgets, but it might need drag-and-drop capability.

 The jQuery UI team has provided the ability to construct a library that consists of
only the essential required pieces, plus any features that you need for your applica-
tion. This eliminates the need to load a larger library than your application will use.
After all, why load up a bunch of script on every page that’s just going to sit there
unused?
Download from Library of Wow! eBook <www.wowebook.com>

283Configuring and downloading the UI library
9.1.1 Configuring and downloading

Before we can use the library, we need to download it. The download page for jQuery
UI can be found at http://jqueryui.com/download, depicted in figure 9.1. As you can
see in the figure, the most recent version as of this writing is jQuery UI 1.8.

 On that page, you’ll find a list of the available components for the jQuery UI
library, each with a checkbox that you can check to select that component. You’ll need
to check the box for UI Core in order to be able to use any of the interactions and
most of the widgets. But don’t worry too much about what you select—the page will
automatically select dependencies, and it won’t let you put together an invalid combi-
nation of elements.

 Once you’ve identified the components that you want (for now, we recommend
selecting them all for exploratory purposes), pick a theme from the dropdown in the
right-most column, and then click the Download button.

Figure 9.1 The jQuery UI download page allows us to configure and download a jQuery UI library
configuration customized to the needs of our application.
Download from Library of Wow! eBook <www.wowebook.com>

http://jqueryui.com/download

284 CHAPTER 9 Introducing jQuery UI: themes and effects
 It doesn’t matter which theme you choose at this point; we’ll be addressing CSS
themes later in this chapter. For now, just pick any theme, though we recommend
avoiding the No Theme option at this point. You want to download the CSS rather
than building it from scratch. Trust us—you can always replace or tweak it later.

NOTE The selected theme has no effect on the JavaScript code generated for
your component selections. The differences between themes are limited to
the style sheet and images associated with the theme.

The jQuery UI library configuration that’s provided with the example code for this
book contains all components and uses the Cupertino theme.

9.1.2 Using the UI library

Once you’ve clicked the Download button, a set of zipped custom jQuery UI library
files is downloaded to your system (exactly where depends upon your browser set-
tings). The zip file contains the following files and folders:

index.html—An HTML file containing demo samples of the downloaded wid-
gets rendered in the chosen theme. You can use this as a quick check to make
sure that the widgets you want are included, and that the theme matches your
expectations.
css—A folder containing a folder that in turn contains the CSS file and images
for the theme that you selected. The subfolder will bear the name of the theme
that you chose; for example, cupertino or trontastic.
development-bundle—A folder containing developer resources such as license
files, demos, documentation, and other useful files. Explore this at your leisure;
there’s lots of good stuff there.
js—A folder containing the generated jQuery UI JavaScript library code, as well
as a copy of the core jQuery library.

To use the library, you’ll want to copy the theme folder in the css folder, and the
jQuery UI library file, jquery-ui-1.8.custom.min.js in the js folder, to the appropriate
locations in your web application. You’ll also need the jQuery core library file if it’s
not already present.

NOTE The name of the JavaScript file will reflect the current version of
jQuery UI, so it will change as jQuery UI is updated.

Although the locations in which you place these files can be specific to the needs of
your web application, it’s important to retain the relationship between the theme’s
CSS file and its images. Unless you want to change the references to all the images
within the CSS file, be sure to leave the theme’s images folder in the same folder as the
CSS file.

 A commonly used application layout, supporting multiple themes, is shown in fig-
ure 9.2. Here, we’re supporting three of the canned themes available for download.
Download from Library of Wow! eBook <www.wowebook.com>

285jQuery themes and styling
Switching between themes is as easy as changing the URLs that reference the CSS files
in the application’s pages.

 Once the files are in place, we can simply import them into our pages with the
usual <link> and <script> tags. For example, we could import the files into the
index.html file in the application layout depicted in figure 9.2 with the following
markup:

<link rel="stylesheet" type="text/css"
 href="themes/black-tie/jquery-ui-1.8.custom.css">
<script type="text/javascript" src="scripts/jquery-1.4.2.min.js"></script>
<script type="text/javascript"
 src="scripts/jquery-ui-1.8.custom.min.js"></script>

Switching themes is as easy as changing the theme folder name in the <link> tag.

NOTE If you would like an easy way to allow your users to dynamically switch
between themes, check out the Theme Switcher Widget at http://jque-
ryui.com/docs/Theming/ThemeSwitcher.

With that, we’re ready to start exploring jQuery UI. Within this chapter, we’ll begin
with a closer look at themes, and then look at the ways jQuery UI extends core meth-
ods and capabilities, especially in the area of effects. In the next two chapters, we’ll
explore the mouse interactions and then the widgets.

9.2 jQuery themes and styling
jQuery UI, especially the widget set, relies heavily upon the CSS classes defined within
the downloaded CSS file for styling the visible elements that appear on our pages. But,

Figure 9.2 A conventional layout for the script and theme files within an application using jQuery
UI–your mileage may vary.
Download from Library of Wow! eBook <www.wowebook.com>

http://jqueryui.com/docs/Theming/ThemeSwitcher
http://jqueryui.com/docs/Theming/ThemeSwitcher

286 CHAPTER 9 Introducing jQuery UI: themes and effects
as we’ll learn in this and the next two chapters, it also relies heavily upon class names
assigned to the elements for much more than just styling.

 There are a number of ways to set up the themes that jQuery UI relies upon. Here
they are, from easiest to hardest:

Choose a theme during download and use it verbatim.
Use the ThemeRoller web application to design your own theme. We’ll take a
quick look at the ThemeRoller in section 9.2.2.
Tweak the downloaded theme by modifying the original CSS file, or supplying a
CSS file that overrides the original’s settings.
Write your own from scratch.

The last approach isn’t recommended. The number of classes to be defined is exten-
sive—the CSS files for the predefined themes run in the 450 to 500 line range—and
the consequences of getting it wrong can be dire.

 Let’s start by taking a look at how the predefined CSS files and class names are
organized.

9.2.1 Overview

Although the predefined themes are all very nice, it’s unlikely that we’d find one that
precisely matches the look of our own web applications.

 We could, of course, pick a canned theme first, and use it as the definitive look for
our site, but that may not be a luxury we often have. Which one of us has never had a
marketing or product manager looking over our shoulder and asking, “What if we
make that blue?”

 The ThemeRoller, which we’ll discuss in the next section, can help us make a
theme that has exactly the colors and textures we want for our applications, but even
so, we may still need to make page-by-page tweaks. As such, it behooves us to under-
stand how the CSS classes are laid out and used by jQuery UI.

 We’ll begin by examining how the classes are named.

CLASS NAMING

The class names defined and used by jQuery are extensive, but well organized. They
were carefully chosen to convey not only their meaning, but where and how they’re
used. Even though there are a lot of names, they make logical sense and are easy to
manage once you get the hang of how they’re constructed.

 First, in order to keep from stepping on anyone else’s names in the class
namespace, all jQuery UI class names begin with the prefix ui-. Names are always in
lowercase, and hyphen characters are used to separate words; for example, ui-
state-active.

 Some classes are used throughout the library. The aforementioned class ui-
state-active is a good example. It’s used by all components of the UI library to indi-
cate that an element is in an active state. For example, the Tab widget will use it to
mark the active table, whereas the Accordion widget will use it to identify the open
accordion pane.
Download from Library of Wow! eBook <www.wowebook.com>

287jQuery themes and styling
 When a class is specific to a particular component, be it an interaction or a widget,
the name of the component will immediately follow the ui- prefix. For example,
classes specific to the Autocomplete widget will all begin with ui-autocomplete,
whereas those specific to the Resizable interaction will begin with ui-resizable.

 We’ll take a closer look at the cross-library class groupings in the remainder of this
section. The component-specific classes will be discussed as we examine the various
components over the next few chapters. It isn’t our intention to cover every one of the
hundreds of class names defined by jQuery UI. Rather, we’ll look at the most impor-
tant, and the ones that we’re likely to need to know about on our pages.

IDENTIFYING WIDGETS

When widgets are created by the jQuery UI library, some elements that compose the
widget may be created by the library, and some may be existing elements that are
already resident on the page.

 In order to identify the elements that comprise the widgets, jQuery UI uses a set of
class names that begin with ui-widget. The class ui-widget is used to identify the
master element of the widget—usually a container that’s the parent of all the elements
that form the widget.

 Other class names, such as ui-widget-header and ui-widget-content, are used
as appropriate for the widget’s elements. Just how a widget uses these classes is specific
to each widget.

STATE TRACKING

At any point in time, various parts of widget or interaction elements may be in various
states. jQuery UI tracks these states, and applies appropriate visual styling to them, via
a set of classes that begin with ui-state. These states include ui-state-default, ui-
state-active, ui-state-focus, ui-state-highlight, ui-state-error, ui-state-
disabled, and ui-state-hover.

 We can use these names in our own scripts or CSS to track state or affect the styling
of elements in the various states.

ICONS

jQuery UI defines a large number of icons that can be used by various widgets. For
example, icon indicators on the tab elements of the Tab widget, or icons directly on
Button widgets. Each icon is identified by a class name beginning with ui-icon; for
example, ui-icon-person, ui-icon-print, and ui-icon-arrowthick-1-sw.

 jQuery UI is very clever regarding how it handles icons. All the individual icon
images are defined in a grid on a single image—an icon sheet, if you will. That way,
once this image has been downloaded and cached by the browser, no further trips to
the server are needed to display any of the available icons—and there are a lot of
them (173 as this is being written). The icon class definitions merely identify how to
move the origin of this sheet image as a background image, causing the desired icon
to appear as the background of an element.

 We’ll be examining icons in greater detail along with the Button widget in
chapter 11, but if you want a sneak peek, bring up the file chapter11/buttons/ui-but-
ton-icons.html in your browser.
Download from Library of Wow! eBook <www.wowebook.com>

288 CHAPTER 9 Introducing jQuery UI: themes and effects
ROUNDED CORNERS

If you’ve already taken a glimpse at the widgets defined by jQuery UI, you’ve probably
already seen a lot of rounded corners.

 jQuery UI applies these corners with a set of class names that define the appropri-
ate browser-specific and CSS3 style rules to cause rounded corners to appear in brows-
ers for which they’re supported. Non-supporting browsers will simply not have the
rounded corners.

 These corner-rounding classes aren’t limited to just the JQuery UI widgets! We can
use these classes on any element of our page.

 Bring up the Rounded Corners Mini-Lab (it’s too simple to consider a full Lab
page) from the chapter9/lab.rounded-corners.html file in your browser. You’ll see the
page displayed in figure 9.3.

 The checkbox controls allow us to choose which, if any, of the ui-corner classes
are applied to the test subjects. When a checkbox is checked, the corresponding class
name is applied; when unchecked, the class name is removed.

NOTE Rounded corners of any type aren’t supported in Internet Explorer 8
or earlier (they should be as of IE 9), and Firefox (at least as of this writing)
doesn’t support rounded corners on image elements.

Spend a few moments clicking the various checkboxes to see how the application of
the classes affects the corners of the test subjects.

9.2.2 Using the ThemeRoller tool

If you take a quick look through the CSS file generated when we downloaded jQuery
UI, you’ll probably quickly come to the conclusion that trying to write such a file from
scratch would be nothing short of madness. A quick glance at the images accompany-
ing the CSS firmly cements that notion.

Figure 9.3 The Rounded Corners Mini-Lab lets us see how rounded corners can be applied
to elements via simple class assignments.
Download from Library of Wow! eBook <www.wowebook.com>

289jQuery themes and styling
 When one of the canned themes doesn’t match what we need for our site, we have
some sane choices:

Pick a canned theme that’s close to what we want, and tweak it to our liking.
Create a theme from scratch using the ThemeRoller tool.

As it turns out, the ThemeRoller tool is the best way to achieve either of these options.
With the ThemeRoller tool, we can start from scratch and specify every detail of a
theme using an easy and intuitive interface, or we can preload it with one of the pre-
defined themes and adjust it to our liking.

 The ThemeRoller can be found at http://jqueryui.com/themeroller/, and it
appears as shown in figure 9.4.

 We’re not going to go into a great deal of detail on using the ThemeRoller—it’s
pretty easy to figure out. But there are a few things you should know that are worth
spending some time on.

Figure 9.4 The jQuery UI ThemeRoller tool lets us create custom themes interactively with an intuitive and
easy-to-use interface.
Download from Library of Wow! eBook <www.wowebook.com>

http://jqueryui.com/themeroller/

290 CHAPTER 9 Introducing jQuery UI: themes and effects
BASIC THEMEROLLER USAGE

The control panel for the ThemeRoller on left side of the interface has three tabs:

Roll Your Own—This is where we’ll do most of the work. The various panels
(click on a panel header to open it) let us specify all the details of the theme.
Changes are shown in real time in the display area that shows how the settings
we make affect the various widgets.
Gallery—Contains a gallery of the canned themes. We’ll attend to this one in the
next section.
Help—Some help text in case you get stuck.

When we’re satisfied with the settings of our theme, the Download Theme button on
the Roll Your Own tab sends us to the Build Your Download page so that we can
download the custom theme. (The theme settings are passed on the URL as request
parameters.)

 Clicking the Download button on the Build Your Download page downloads the
theme as we discussed in section 9.1.

STARTING WITH A CANNED THEME

Often, one of the canned themes might make a better starting point for a custom
theme than starting completely from scratch. If you want to load the settings for one
of the predefined themes and make adjustments from there, follow these simple steps:

1 Select the Gallery tab.
2 Peruse the predefined themes and choose the one you want to start with. Click

on it and the widgets in the display area will exhibit the theme settings.
3 Return to the Roll Your Own tab. Note that the settings from the predefined

theme have been set into the controls.
4 Adjust away to your heart’s content.
5 Click Download Theme when the theme is ready.

The downloaded CSS file and images will reflect the settings that you selected for the
custom theme, and within the download, the folder containing the theme within the
css folder will be named custom-theme.

RELOADING A THEME

Inevitably, just as you’re admiring your custom theme in your web application, some-
one will come along and demand a change. You know the type. But try as you might,
you can’t find an upload or reload control on the ThemeRoller. Do we really have to
start over and recreate a custom theme each time in order to make a change? Of
course not.

 Within the downloaded CSS file (not right at the top, but somewhere around line
44) you’ll find a comment that contains the text, “* To view and modify this theme,
visit” followed by a rather long URL. Cut and paste this URL into your browser, and it
will bring you to the ThemeRoller page, loaded with the settings for the custom
theme (which are encoded onto the URL as request parameters). Any necessary
changes can be made to the theme settings and the new files downloaded when ready.
Download from Library of Wow! eBook <www.wowebook.com>

291jQuery UI Effects
 OK, we now have a themed jQuery UI installation ready and waiting to use. Let’s
dig into the extended effects that jQuery UI provides.

9.3 jQuery UI Effects
Back in chapter 5, we saw how easy it is to create custom effects using the jQuery ani-
mation engine. jQuery UI takes advantage of the core animation engine to offer us an
ample set of effects right out of the box, including some that implement the custom
effects that we set up ourselves as exercises.

 We’ll take a close look at those effects, but we’ll also see how jQuery UI infuses
these effects into core jQuery by providing extended versions of core methods that
normally don’t support effects. We’ll also see a few new effect-focused methods that
jQuery UI provides for us.

 But first, let’s take a look at the effects.

9.3.1 The jQuery UI effects

All of the effects that jQuery UI provides can be used on their own—without other
methods—via the effect() method. This method launches the effect on the ele-
ments of the wrapped set. Here it is:

Although table 9.1 attempts to describe what each effect does, it’s a lot clearer to actu-
ally see it in action. The jQuery UI Effects Lab has been set up for just this purpose.
This Lab page can be found in chapter9/lab.ui-effects.html and appears as shown in
figure 9.5.

 This Lab lets us see each effect in action. When an effect type is chosen, the
options that can be specified with that effect appear in the control panel (using

Method syntax: effect

effect(type,options,speed,callback)
Executes the specified effect on the elements of the wrapped set.

Parameters
type (String) The effect to run. One of blind, bounce, clip, drop, explode, fade,

fold, highlight, puff, pulsate, scale, shake, size, slide, or transfer.
See table 9.1 for details of these effect types.

options (Object) Provides the options for the specified effect as defined by the core
animate() method (see chapter 5). Additionally, each effect has its own set of
options that can be specifiedósome common across multiple effectsóas
described in table 9.1.

speed (String|Number) Optionally provides one of slow, normal, fast, or the duration
of the effect in milliseconds. If omitted, defaults to normal.

callback (Function) An optional callback function invoked for each element after the effect
is completed. No arguments are passed to this function, and the function context
is set to the element being animated.

Returns
The wrapped set.
Download from Library of Wow! eBook <www.wowebook.com>

292 CHAPTER 9 Introducing jQuery UI: themes and effects
jQuery UI effects, of course). As you read through the descriptions of the effects in
table 9.1, use this Lab page to see exactly what the effect does, and how the options
affect the operation of the effect.

 In table 9.1, the various effects are described, along with their options. All effects
(except explode) accept an easing option that specifies the easing function to be
used with the effect. We’ll examine the concept of easing in the upcoming
section 9.3.5.

 As you read through the entries in table 9.1, use the jQuery Effects Lab to see each
effect in action.

 Thinking back to our examination of the animate() method in chapter 5, you’ll
recall how that method allows us to animate CSS properties expressed by numeric val-
ues that have a logical progression from a start value to an end value. Color proper-
ties, you may recollect, were not among the supported animatable properties.

 So how, then, does jQuery UI implement the highlight effect, which animates the
background color of an element? Let’s find out.

Figure 9.5 The jQuery UI Effects Lab lets us see how the UI effects operate in real time with
various options.
Download from Library of Wow! eBook <www.wowebook.com>

293jQuery UI Effects

Table 9.1 jQuery UI effects

Effect name

Description Effect-specific options

blind

Shows or hides the ele-
ment in the manner of a win-
dow blind: by moving the
bottom edge down or up, or
the right edge to the right or
left, depending upon the
specified direction and
mode.

direction: (String) One of horizontal or vertical. If omitted, the
default is vertical.

mode: (String) One of show or hide (the default).

bounce

Causes the element to
appear to bounce in the ver-
tical or horizontal direction,
optionally showing or hiding
the element.

direction: (String) One of up, down, left, or right. If omitted, the
default is up.

distance: (Number) The distance to bounce in pixels. Defaults to 20 pixels.

mode: (String) One of effect, show, or hide. If omitted, effect is used,
which simply bounces the element in place without changing the visibility of
the element.

times: (Number) The number of times to bounce. If omitted, the default is 5.

clip

Shows or hides the ele-
ment by moving opposite
borders of the element
together until they meet in
the middle, or vice versa.

direction: (String) One of horizontal or vertical. If omitted, the
default is vertical.

mode: (String) One of show or hide (the default).

drop

Shows or hides the ele-
ment by making it appear to
drop onto, or drop off of, the
page.

direction: (String) One of left (the default), right, up, or down.

distance: (Number) The distance to move the element. Defaults to half the
height or half the width, depending upon the direction that the effect will
move the element.

mode: (String) One of show or hide (the default).

explode

Shows or hides the ele-
ment by splitting it into mul-
tiple pieces that move in
radial directions as if
imploding into, or exploding
from, the page.

mode: (String) One of show, hide, or toggle.

pieces: (Number) The number of pieces to be used in the effect. If omitted, a
default of 9 is used. Note that the algorithm may optimize your value to a dif-
ferent number.

fade

Shows or hides the ele-
ment by adjusting its opac-
ity. This is the same as the
core fade effects, but with-
out options.

mode: (String) One of show, hide (the default), or toggle.
Download from Library of Wow! eBook <www.wowebook.com>

294 CHAPTER 9 Introducing jQuery UI: themes and effects
fold

Shows or hides the ele-
ment by adjusting opposite
borders in or out, and then
doing the same for the other
set of borders.

horizFirst: (Boolean) if true, the horizontal borders are moved first. If
omitted or specified as false, the vertical borders are moved first.

mode: (String) One of show or hide (the default).

size: (Number) The size in pixels of the “folded” element. If omitted, the size
is set to 15 pixels.

highlight

Calls attention to the ele-
ment by momentarily chang-
ing its background color
while showing or hiding the
element.

color: (String) The color to use as the highlight. Colors can be expressed as
CSS color names such as orange, hexadecimal notation such as #ffffcc
or #ffc, or an RGB triplet rgb(200,200,64).

mode: (String) One of show (the default) or hide.

pulsate

Adjusts the opacity of the
element on and off before
ensuring that the element is
shown or hidden as speci-
fied.

mode: (String) One of show (the default) or hide.

times: (Number) The number of times to pulse the element. Defaults to 5.

puff

Expands or contracts the
element in place while
adjusting its opacity.

mode: (String) One of show or hide (the default).

percent: (Number) The target percentage of the puff effect. Defaults to
150.

scale

Expands or contracts the
element by a specified per-
centage.

direction: (String) One of horizontal, vertical, or both. If omitted,
the default is both.

fade: (Boolean) If specified as true, the opacity is adjusted along with the
size as appropriate for whether the element is being shown or hidden.

from: (Object) An object whose height and width properties specify the
starting dimensions. If omitted, the element starts from its current dimen-
sions.

mode: (String) One of show, hide, toggle, or effect (the default).

origin: (Array) If mode is not effect, defines the base vanishing point for
the effect, specified as a 2-string array. Possible values are: top, middle,
bottom, and left, center, right. Defaults to
['middle','center'].

percent: (Number) The percentage to scale to. Defaults to 0 for hide, and
100 for show.

scale: (String) Which area of the element is to be scaled, specified as one of
box, which resizes the border and padding; content, which resizes the ele-
ment content; or both, which resizes both. Defaults to both.

Table 9.1 jQuery UI effects (continued)

Effect name

Description Effect-specific options
Download from Library of Wow! eBook <www.wowebook.com>

295jQuery UI Effects
shake

Shakes the element back
and forth, either vertically or
horizontally.

direction: (String) One of up, down, left, or right. If omitted, the
default is left.

distance: (Number) The distance to shake in pixels. Defaults to 20 pixels.

duration: (Number) The speed of each “shake”; defaults to 140 ms.

mode: (String) One of show, hide, toggle, or effect (the default).

times: (Number) The number of times to shake. If omitted, the default is 3.

size

Resizes the element to a
specified width and height.
Similar to scale except for
how the target size is speci-
fied.

from: (Object) An object whose height and width properties specify the
starting dimensions. If omitted, the element starts from its current dimen-
sions.

to: (Object) An object whose height and width properties specify the end-
ing dimensions. If omitted, the element starts from its current dimensions.

origin: (Array) Defines the base vanishing point for the effect, specified as a
2-string array. Possible values are: top, middle, bottom, and left,
center, right. Defaults to ['middle','center'].

scale: (String) Which area of the element is to be scaled, specified as one of
box, which resizes the border and padding; content, which resizes the ele-
ment content; or both, which resizes both. Defaults to both.

restore: (Boolean) Saves and restores certain CSS properties of the ele-
ments and their children being animated, and restores them after the effect
has been applied. The properties that are saved are undocumented, but
include margin and padding settings and are highly dependent upon the
other options and environment of the element. Use this option only if some
property is not turning out as you intend to see if it rectifies the issue.

This option defaults to false. (Note that the scale effect uses the size
effect internally, with this option set to true).

slide

Moves the element such
that it appears to slide onto
or off of the page.

direction: (String) One of up, down, left, or right. If omitted, the
default is left.

distance: (Number) The distance to slide the element. The value should be
less than the width or height of the element (depending upon direction), and
the default is the current width (for left or right) or height (for up or
down) of the element.

mode: (String) One of show (the default) or hide.

transfer

Animates a transient outline
element that makes the ele-
ment appear to transfer to
another element. The
appearance of the outline
element must be defined via
CSS rules for the ui-
effects-transfer
class, or the class specified
as an option.

className: (String) An additional class name to be applied to the outline ele-
ment. Specifying this option doesn’t prevent the ui-effects-transfer
class from being applied.

to: (String) A jQuery selector for the element to which the element will appear
to transfer. There is no default; this option must be specified for the effect to
work.

Table 9.1 jQuery UI effects (continued)

Effect name

Description Effect-specific options
Download from Library of Wow! eBook <www.wowebook.com>

296 CHAPTER 9 Introducing jQuery UI: themes and effects
9.3.2 Extended core animation capabilities

If we dissect the majority of effects that we’ve discussed throughout this book, includ-
ing the list provided by jQuery UI (shown in table 9.1), we can determine that most of
them are implemented by changes in the position, dimensions, and opacity of the ani-
mated elements. And although that gives us (not to mention jQuery UI) a great deal
of latitude for creating effects, the range of effects that can be created is greatly
expanded if the ability to animate color is thrown into the mix.

 The core jQuery animation engine doesn’t possess this ability, so jQuery UI
extends the capabilities of the core animate() method to allow the animation of CSS
properties that specify color values.

 The following CSS properties are supported by this augmentation:

backgroundColor
borderBottomColor

borderLeftColor

borderRightColor

borderTopColor

color

outlineColor

And because all effects are eventually executed by this augmented capability, it doesn’t
matter how the effect is initiated—all means of specifying effects can take advantage
of this extended capability. We’ll shortly see how this is significant when we examine
other extensions to the core library that jQuery UI provides.

9.3.3 Augmented visibility methods

As we discussed in chapter 5, the primary visibility methods of core jQuery—show(),
hide(), and toggle()—when provided with a duration value, show or hide the target
elements with a predefined effect that adjusts the width, height, and opacity of the ele-
ments. But what if we want more choices?

 jQuery UI gives us that flexibility by extending those methods in core jQuery to
accept any of the effects outlined in table 9.1. The extended syntax for these methods
is as follows:

Method syntax: extended visibility methods

show(effect,options,speed,callback)
hide(effect,options,speed,callback)
toggle(effect,options,speed,callback)
Shows, hides, or toggles the visibility of the wrapped elements using the specified effect.

Parameters
effect (String) The effect to use when adjusting the element visibility. Any of the effects

listed in table 9.1 can be used.
options (Object) Provides the options for the specified effect as described in table 9.1.
Download from Library of Wow! eBook <www.wowebook.com>

297jQuery UI Effects
Whether you realize it or not, you’ve already seen an example of using these aug-
mented visibility effects. In the jQuery UI Effects Lab, when the value of the effect
dropdown is changed, any option controls not appropriate for the newly selected
effect are removed with

$(someSelector).hide('puff');

And the controls that are appropriate for the selected effect are shown via

$(someSelector).show('slide');

As an advanced exercise, make a copy of the jQuery UI Effects Lab, and turn it into
the jQuery UI Show, Hide, and Toggle Lab:

Add a set of radio controls that allow you to select one of the three visibility
methods: show(), hide(), and toggle().
When the Apply button is clicked, determine which method has been selected,
and execute that method in place of the effect() method.

The visibility methods aren’t the only core methods that jQuery UI extends with
added capabilities. Let’s see what other core methods are augmented.

9.3.4 Animating class transitions

As you might recall, the animate() method of core jQuery allows us to specify a set of
CSS properties that the animation engine will progressively modify in order to create
animated effects. Because CSS classes are collections of CSS properties, it seems a natu-
ral extension to allow the animation of class transitions.

 And indeed, that’s exactly what jQuery UI provides: extensions to the class transi-
tion methods addClass(), removeClass(), and toggleClass() to allow animating the
changes to the CSS properties. The syntax of the augmented methods is as follows:

Method syntax: extended visibility methods (continued)

speed (String|Number) Optionally provides one of slow, normal, fast, or the duration of
the effect in milliseconds. If omitted, defaults to normal.

callback (Function) An optional callback function invoked for each element after the effect
is completed. No arguments are passed to this function, and the function context
is set to the element being animated.

Returns
The wrapped set.

Method syntax: extended class methods

addClass(class,speed,easing,callback)
removeClass(class,speed,easing,callback)
toggleClass(class,force,speed,easing,callback)
Adds, removes, or toggles the specified class name on the wrapped elements. If the speed
parameter is omitted, these methods act exactly like the unextended core methods.
Download from Library of Wow! eBook <www.wowebook.com>

298 CHAPTER 9 Introducing jQuery UI: themes and effects
In addition to extending these core class transition methods, jQuery adds a useful new
class manipulation method, switchClass(), whose syntax is as follows:

Between the effect() method and the extensions to the core visibility and class tran-
sition methods, jQuery UI gives us a lot of choices regarding how we write code that
manipulates elements in an animated manner.

 Could we just use the animate() method for all such occasions? Sure we could. But
thinking in terms of code clarity, it makes a lot more sense to use a method named
hide() to hide an element—even in an animated fashion—than a method named
animate(). jQuery UI gives us the ability to use the methods that make the most sense
for the context of the code, regardless of whether animation will be used or not.

 Another extension that jQuery UI provides in the area of animation is a rather
large set of easings beyond that provided by jQuery core.

Method syntax: extended class methods (continued)

Parameters
class (String) The CSS class name, or space-delimited list of class names, to be added,

removed, or toggled.
speed (String|Number) Optionally provides one of slow, normal, fast, or the duration of

the effect in milliseconds. If omitted, no animated effect takes place.
easing (String) The name of the easing function to be passed to the animate() method.

See the description of animate() in chapter 5 for more information.
callback (Function) A callback to be invoked when the animation completes. See the

description of animate() in chapter 5 for more information.
force (Boolean) If specified, forces the toggleClass() method to add the class if

true, or to remove the class if false.

Returns
The wrapped set.

Method syntax: switchClass

switchClass(removed,added,speed,easing,callback)
Removes the specified class or classes, while adding the specified class or classes, using a
transition effect.

Parameters
removed (String) The CSS class name, or space-delimited list of class names, to be

removed.
added (String) The CSS class name, or space-delimited list of class names, to be added.
speed (String|Number) Optionally provides one of slow, normal, fast, or the duration of

the effect in milliseconds. If omitted, the animate() method determines the
default.

easing (String) The name of the easing function to be passed to the animate() method.
See the description of animate() in chapter 5 for more information.

callback (Function) A callback to be invoked when the animation completes. See the
description of animate() in chapter 5 for more information.

Returns
The wrapped set.
Download from Library of Wow! eBook <www.wowebook.com>

299jQuery UI Effects
9.3.5 Easings

When we originally discussed animation back in chapter 5, we introduced the concept
of easing functions (casually termed easings) that control the pace at which anima-
tions progress. jQuery core provides two easings: linear and swing. jQuery UI
renames swing to jswing, adds its own version of swing, and adds another 31 easings.

 We can specify an easing in any animation method that accepts an options hash.
As noted earlier, these options are eventually passed to the animate() core method,
which all animation methods eventually call to execute the animation or effect. One
of those core options is easing, which identifies the name of the easing function to
be used.

 When jQuery UI is loaded, the entire list of available easings is as follows:

linear easeInOutQuart easeOutCirc

swing easeInQuint easeInOutCirc

jswing easeOutQuint easeInElastic

easeInQuad easeInOutQuint easeOutElastic

easeOutQuad easeInSine easeInOutElastic

easeInOutQuad easeOutSine easeInBack

easeInCubic easeInOutSine easeOutBack

easeOutCubic easeInExpo easeInOutBack

easeInOutCubic easeOutExpo easeInBounce

easeInQuart easeInOutExpo easeOutBounce

easeOutQuart easeInCirc easeInOutBounce

It’d be practically impossible to describe in words how each easing operates—we really
need to see them in action to understand how any specific easing affects the progres-
sion of an animation. And so the jQuery UI Easings Lab page is available to let us see
how the easings operate when applied to the various animations. This Lab is available
in file chapter9/lab.ui-easings.html and displays as shown in figure 9.6.

NOTE As an additional resource, the jQuery UI online documentation has
SVG-driven examples of the easings, which can be found at http://jque-
ryui.com/demos/effect/#easing.

This Lab lets us try out the various easings paired with the various effects. For best
results in seeing what transpires as each easing function progresses, we recommend
trying the following:

1 Choose the easing to be observed.
2 Choose scale as the effect. When scale is chosen, the percent option is hard-

coded to 25.
3 Set the speed to very slow—slower than the slow setting. Try 10 seconds (10000

milliseconds) to really see how the scaling of the test subject is affected by the
selected easing.

Now let’s look at one more utility that jQuery UI provides.
Download from Library of Wow! eBook <www.wowebook.com>

http://jqueryui.com/demos/effect/#easing
http://jqueryui.com/demos/effect/#easing

300 CHAPTER 9 Introducing jQuery UI: themes and effects
9.4 Advanced positioning
CSS positioning gives us the ability to position elements within our pages with relative
ease. Throw jQuery into the mix, and it becomes almost trivial—if we know where we
want to position the elements.

 For example, if we knew that we wanted an element to be moved to some absolute
position, we’d write this:

$('#someElement').css({
 position: 'absolute',
 top: 200,
 left: 200
});

But what if we wanted to position the element relative to another element? For exam-
ple, place the element to the right of another element, but with the tops aligned? Or
place it below another element with their centers in alignment?

Figure 9.6 The jQuery UI Easings Lab shows us how the various easings operate when applied to an
animation effect.
Download from Library of Wow! eBook <www.wowebook.com>

301Advanced positioning
 No problem, really. We can grab the dimension and position information of the
elements in question using core jQuery methods, do some math, and use the results
to absolutely position the target element.

 But although it’s not a problem, it’s rather a fair amount of code, and it could be
rather fragile if we’re not careful about assumptions made in the formulas that calcu-
late the new position. It probably wouldn’t be the most readable code in the world,
either; most likely it’d be less than a snap to figure out what that code did by casual
inspection, especially for someone who didn’t write the formulas in the first place.

 jQuery UI gives us a helping hand by providing a method that not only abstracts
away the formulas needed to figure out positions relative to other elements (and
more, as we’ll see), but it does so in a manner that makes the code ultra-readable.

 This method is an overloading of the position() method we examined in
chapter 3 (which obtains the position of an element relative to its offset parent).
Here’s its syntax:

As you may have come to expect, a Lab page has been provided to help observe the
operation of the jQuery UI position() method: the jQuery UI Positioning Lab, found
in chapter9/lab.ui-positioning.html, and shown in figure 9.7.

 As you read through the options in table 9.2, use the Positioning Lab to familiarize
yourself with the operation of the options. Give yourself bonus points if you can pin
the tail in the proper location in one try!

 You might be looking at the names of the options and saying to yourself, “What
were they thinking? at? my? of? What on Earth?”

 But there’s a method to the madness. If you inspected the generated statement in
the Positioning Lab as you were experimenting with it, you’ve already seen it. If not,
consider the following statement:

$('#someElement').position({
 my: 'top center',
 at: 'bottom right',
 of: '#someOtherElement'
});

It almost reads like an English sentence! Even someone who’s never seen a fragment
of computer code in his or her life would most likely be able to figure out what this
statement does (while wondering why computer gear-heads insist on all that gnarly
punctuation).

 Most APIs could benefit from a touch of this sort of “madness.”

Method syntax: position

position(options)
Absolutely positions the wrapped elements using the information provided by the options.

Parameters
options (Object) Provides the information that specifies how the elements of the wrapped

set are to be positioned, as described in table 9.2.

Returns
The wrapped set.
Download from Library of Wow! eBook <www.wowebook.com>

302 CHAPTER 9 Introducing jQuery UI: themes and effects

Table 9.2 Options for the jQuery UI position() method

Option Description In
Lab?

my (String) Specifies the location of the wrapped elements (the ones being re-posi-
tioned) to align with the target element or location. Two of: top, left,
bottom, right, and center, separated by a space character, where the first
value is the horizontal value, and the second the vertical. If a single value is
specified, the other defaults to center. Whether the specified single value is
considered horizontal or vertical depends upon which value you use (for exam-
ple, top is taken as vertical, while right is horizontal).

Examples: top, or bottom right.

✓

Figure 9.7 The jQuery UI Positioning Lab lets us observe the jQuery UI overload of position()
 in action.
Download from Library of Wow! eBook <www.wowebook.com>

303Summary
9.5 Summary
In this chapter we dove head-first into jQuery UI, and we won’t be coming up for air
until the end of this book.

 We learned that jQuery UI enjoys a special status as an official companion to the
core jQuery library, and how to download a customized version of the library (along
with one of the predefined themes) from http://jqueryui.com/download. We learned
about the contents of the download, and how the library is typically added to a web
application’s folder structure.

 We then discussed the theming capability of the jQuery UI library and how the
CSS classes that it defines are laid out, including how they’re organized by naming
conventions.

 We examined the official ThemeRoller online application, located at http://jque-
ryui.com/themeroller/, which can be used to tweak one of the predefined themes, or
to create a new theme entirely from scratch.

 The remainder of the chapter examined extensions that JQuery makes to the core
library.

at (String) Specifies the location of the target element against which to align the
re-positioned elements. Takes the same values as the my option.

Examples: “right”, or “left center”.

✓

of (Selector|Event) A selector that identifies the target element against which the
wrapped elements are to be re-positioned, or an Event instance containing
mouse coordinates to use as the target location.

✓

offset (String) Specifies any offset to be added to the calculated position as two pixel
values specifying left and top respectively. Negative offsets are allowed. For
example: 10 -20.
If a single value is specified, it applies to both left and top. Defaults to 0.

✓

collision (String) Specifies the rules to be applied when the positioned element extends
beyond the window in any direction. Accepts two (horizontal followed by vertical)
of the following:

flip: The default, flips the element to the opposing side and runs collision
detection again for fit. If neither side fits, center is used as a fallback.

fit: Keeps the element in the desired direction, but adjusts the position such
that it will fit.

none: disables collision detection.

If a single value is specified, it applies to both directions.

using (Function) A function that replaces the internal function that changes the ele-
ment position. Called for each wrapped element with a single argument that
consists of an object hash with the left and top properties set to the com-
puted target position, and the element set as the function context.

Table 9.2 Options for the jQuery UI position() method

Option Description In
Lab?
Download from Library of Wow! eBook <www.wowebook.com>

http://jqueryui.com/download
http://jqueryui.com/themeroller/
http://jqueryui.com/themeroller/

304 CHAPTER 9 Introducing jQuery UI: themes and effects
 We saw how the core animation engine has been extended to provide a good num-
ber of named effects that are easily launchable using the new effect() method.

 We also saw how jQuery UI extends the visibility methods show(), hide(), and tog-
gle() to work in conjunction with these new effects. The same manner of extension
has also been applied to the class transition methods: addClass(), removeClass(),
toggleClass(), and the newly defined switchClass() method.

 We then discussed the two and a half dozen easing functions that jQuery adds to
be used by the animation engine to control the progression of an animation.

 Finally, we looked at an extension to the core position() method that allows us, in
a remarkably readable fashion, to position elements relative to each other, or to the
location of a mouse event.

 But we’ve only just begun. Read on to the next chapter, where we’ll learn about
another major part of jQuery UI: mouse interactions.
Download from Library of Wow! eBook <www.wowebook.com>

jQuery UI mouse interactions:
Follow that mouse!
Few usability experts would argue that direct manipulation isn’t key to good user
interfaces. Allowing users to directly interact with elements and immediately see
the effects of their activities is a much better user experience than some abstraction
that approximates the activities.

 Take sorting a list of elements for example. How would we allow users to specify
a sort order for the elements? Using just the basic set of controls available in HTML
4, there’s not a whole lot of flexibility available to us. Showing the list of elements
followed by a text box next to them in which the user must type the ordinal value
could hardly be presented as a paragon of usability.

 But what if we could allow users to grab and drag the elements within the list to
immediately move them around until they’re happy with the result? This

This chapter covers
Core mouse interactions

Implementing drag and drop

Making things sortable

Allowing resizing

Making things selectable
305

Download from Library of Wow! eBook <www.wowebook.com>

306 CHAPTER 10 jQuery UI mouse interactions: Follow that mouse!
mechanism, using direct manipulation, is clearly the superior approach, but it’s out of
reach given only HTML’s basic set of controls.

 The core interactions—focusing on direct manipulation—are the foundation upon
which jQuery UI is built, and they afford us a much greater degree of power and flexi-
bility with regard to the types of user interfaces that we can present to our users.

 The core interactions add advanced behavior to our pages that relate to the use of
the mouse pointer. We can use these interactions ourselves—as we’ll see throughout
this chapter—and they’re also the bedrock upon which much of the remaining
jQuery UI library is built upon.

 The core interactions are the following:

Dragging—Moving things around on a page (section 10.1)
Dropping—Dropping dragged things onto other things (section 10.2)
Sorting—Putting things in order (section 10.3)
Resizing—Changing the size of things (section 10.4)
Selecting—Making things selectable that aren’t normally selectable
(section 10.5)

As we’ll see while working our way through this chapter, the core interactions build
upon one another. To get the most out of this chapter, it’s recommended that you
work through it sequentially. This may be a long chapter, but there’s a level of consis-
tency to the jQuery UI methods, mirrored in the structure of the chapter sections, that
makes it easy to work through all the material once you get familiar with how the
methods are arranged.

 Interacting with the mouse pointer is an integral and core part of any GUI.
Although some simple mouse pointer interactions are built into web interfaces (click-
ing, for example), the web doesn’t natively support some advanced interaction styles
available to desktop applications. A prime example of this deficiency is the lack of sup-
port for drag and drop.

 Drag and drop is a ubiquitous interaction technique for desktop user interfaces. For
example, in the GUI file manager for any desktop system, we can easily copy files or
move them around the filesystem by dragging and dropping them from folder to
folder, or even delete them by dragging and dropping them onto a trash or wastebas-
ket icon. But as prevalent as this interaction style is within desktop applications, it’s
just as sparse in web applications, mainly because modern browsers don’t natively sup-
port drag and drop. And correctly implementing it is a rather daunting task.

 “Daunting?” you might scoff. “A few captured mouse events and some CSS fiddling.
What’s the big deal?”

 Although the high-level concepts aren’t that difficult to grasp (especially with the
power of jQuery at our disposal), it turns out that implementing the nuances of drag-
and-drop support, particularly in a robust and browser-independent manner, can
become painful quickly. But in the same way that jQuery and its plugins have eased
our pain before, they do so again with direct support for drag and drop.

 But before we can drag and drop, we first need to learn how to drag, so that’s
where we’ll start.
Download from Library of Wow! eBook <www.wowebook.com>

307Dragging things around
10.1 Dragging things around
Although we’d be hard-pressed to find the term draggable in most dictionaries, it’s the
term that’s commonly applied to items that can be dragged about in a drag-and-drop
operation. Likewise, it’s both the term that jQuery UI uses to describe such elements
and the name of the method that applies this ability to elements in a matched set.

 But before we introduce the syntax of the draggable() method, let’s take some
time to talk about a convention used throughout jQuery UI.

 In order to keep the incursion into the method namespace as minimal as possible,
many of the methods in jQuery serve multiple purposes depending upon the nature of
the parameters passed to them. That’s not anything particularly new—we’ve seen quite
a bit of that in core jQuery. But jQuery UI takes method overloading to the next level.
We’ll see that the same method can be used for quite a number of related actions.

 The draggable() method is an excellent example. This one method is used to not
only make elements draggable, but to control every aspect of the draggability of the
elements, including disabling, destroying, and re-enabling the elements’ draggability,
as well as to set and fetch individual draggability options.

 Because the method name will be the same for all these operations, we only have
the parameter list to differentiate among the intended operations. Frequently, the dif-
ferentiator takes the guise of a string, passed as the first parameter, that identifies the
operation to be performed.

 For example, to disable the draggability of draggable elements, we’d write

$('.disableMe').draggable('disable');

NOTE If you’ve been using previous incarnations of jQuery UI, you may
remember when distinct methods such as draggableDisable() and dragga-
bleDestroy() were defined to provide various operations. Such methods no
longer exist, having been replaced by more succinct multipurpose methods
such as draggable().

 The syntax for the various forms of the draggable() method are as follows:

Command syntax: draggable

draggable(options)
draggable('disable')
draggable('enable')
draggable('destroy')
draggable('option',optionName,value)
Makes the elements in the wrapped set draggable according to the specified options, or performs
some other draggability action based upon an operation string passed as the first parameter.

Parameters
options (Object) An object hash of the options to be applied to the elements in the

wrapped set, as described in table 10.1, making them draggable. If omitted
(and no other parameters are specified) or empty, the elements become freely
draggable anywhere within the window.
Download from Library of Wow! eBook <www.wowebook.com>

308 CHAPTER 10 jQuery UI mouse interactions: Follow that mouse!
That’s a lot of variation to pack into a single method. Let’s start digging in by examin-
ing how to make things draggable in the first place.

10.1.1 Making elements draggable

Looking at the list of variations of the draggable() method, we might expect that a
call to the draggable('enable') method would make the elements in a wrapped set
draggable, but we’d be very mistaken!

 To make elements draggable, we need to call the draggable() method with a
parameter consisting of an object whose properties specify the draggability options (as
outlined in table 10.1), or with no parameter at all (to use all default settings). We’ll
see what the enable call does in short order.

 When an item is made draggable, the class ui-draggable is added to it. This helps
not only in allowing us to identify the draggable elements, but as a hook to apply
visual clues via CSS should we choose to do so. We can also identify items that are
actively being dragged around because the class ui-draggable-dragging will be
added to a dragged element during a drag operation.

 There are a lot of draggability options, so to help us get familiar with them, a
jQuery UI Draggables Lab page has been provided. Bring up the chapter10/dragga-
bles/lab.draggables.html page in your browser as you follow along with the rest of this
section. You’ll see the display shown in figure 10.1.

 The options available for the draggable() method give us a lot of flexibility and
control over exactly how drag operations will take place; they’re described in
table 10.1. The options represented in the Draggables Lab page are identified in the In
Lab column of table 10.1. Be sure to try them out as you go along.

Command syntax: draggable (continued)

'disable' (String) Temporarily disables the draggability of any draggable elements in the
wrapped set. The draggability of the elements isn’t removed, and can be
restored by calling the 'enable' variant of this method.

'enable' (String) Re-enables draggability on any draggable elements in the wrapped set
whose draggability has been disabled. Note that this method won’t add
draggability to any non-draggable elements.

'destroy' (String) Removes draggability from the elements in the wrapped set.
'option' (String) Allows option values to be set on all elements of the wrapped set, or to

be retrieved on the first element of the wrapped set (which should be a
draggable element), based upon the remaining parameters. If specified, at least
the optionName parameter must also be provided.

optionName (String) The name of the option (see table 10.1) whose value is to be set or
returned. If a value parameter is provided, that value becomes the option’s
value. If no value parameter is provided, the named option’s value is returned.

value (Object) The value to be set for the option identified by the optionName
parameter.

Returns
The wrapped set, except for the case where an option value is returned.
Download from Library of Wow! eBook <www.wowebook.com>

309Dragging things around

Table 10.1 Options for the jQuery UI draggable() method

Option Description In
Lab

addClasses (Boolean) If specified as false, prevents the ui-draggable class from being
added to draggable elements. We might choose to do this for performance rea-
sons if the class isn’t needed and we’re adding draggability to many elements
on a page.
Despite its pluralized name, this option doesn’t prevent other classes, such as
the ui-draggable-dragging class, from being added to elements during a
drag operation.

Figure 10.1 The Draggables Lab page will help us to familiarize ourselves with the many options for
draggables in the jQuery UI.
Download from Library of Wow! eBook <www.wowebook.com>

310 CHAPTER 10 jQuery UI mouse interactions: Follow that mouse!
appendTo (Element|Selector) When a helper is created (see the helper option below),
specifies the DOM element to which the helper will be appended. If not speci-
fied, any helper is appended to the parent of the draggable element.

axis (String) If specified as x or y, constrains movement during a drag operation to
the specified axis. For example, specifying x allows movement in the horizontal
direction only. If unspecified, or specified as any other values, movement is
unconstrained.

✓

cancel (Selector) Specifies a selector identifying elements that should not allow
 drag operations to commence. If unspecified, the selector :input,option is
used.
Note that this doesn’t prevent these elements from becoming draggable; it
merely prevents the elements from being actively dragged around. The elements
are still considered draggable and the ui-draggable class is added to these
elements.

connectToSortable (Selector) Identifies a sortable list that this draggable element can be dropped
upon in order to become part of that list. If specified, the helper option should
also be specified as clone.
This option is in support of sortables, which we’ll be taking a look at in
section 10.3.

containment (Element|Selector|Array|String) Defines an area within which the drag operation
will be constrained. If unspecified, or specified as document, the movement is
unconstrained within the document.
The string window will constrain movement to the visible viewport, whereas the
string parent will constrain movement within the element’s direct parent.
If an element, or selector identifying an element, is specified, movement is con-
strained within that element.
An arbitrary rectangle relative to the document can also be specified as an array
of four numbers, identifying the top-left and bottom-right corners of the rectangle
as follows: [x1,y1,x2,y2].

✓

cursor (String) The CSS name of the mouse pointer cursor to use during a drag opera-
tion. If not specified, defaults to auto.

✓

cursorAt (Object) Specifies a relative position for the cursor within the dragged element
during a drag operation. Can be specified as an object with one of the left or
right properties, and one of the top or bottom properties.
For example: cursorAt:{top:5,left:5} will place the cursor five pixels
from the top left of the element while dragging.
If unspecified, the cursor remains in the position where it was clicked upon
within the element.

✓

delay (Number) The number of milliseconds to delay after the mousedown event
before beginning the drag operation. This can be used to help prevent accidental
drags by only reacting if the user maintains the mouse button in the down posi-
tion for the specified period.
By default, the value is 0, meaning that no delay is defined.

Table 10.1 Options for the jQuery UI draggable() method (continued)

Option Description In
Lab
Download from Library of Wow! eBook <www.wowebook.com>

311Dragging things around
distance (Number) The number of pixels that must be dragged across before a drag oper-
ation is initiated. This can also be used to help prevent accidental drags. If
unspecified, the distance defaults to 1 pixel.

✓

drag (Function) Specifies a function to be established on the draggables as an event
handler for drag events. See table 10.2 for more details on this event.

grid (Array) An array of two numbers that specifies discrete horizontal and vertical
distances that the drag operation will “snap to” during a drag operation. The ori-
gin of the grid is the initial position of the dragged element.
If unspecified, no grid is defined.

✓

handle (Element|Selector) Specifies an element, or selector that selects an element, to
serve as the trigger for the drag operation. The handle element must be a child
of the draggable for this to work correctly.
When specified, only a click on the handle element will cause a drag operation
to commence. By default, clicking anywhere within the draggable starts the drag.

helper (String|Function) If unspecified, or specified as original, the draggable ele-
ment is moved during a drag operation. If clone is specified, a copy of the drag-
gable item is created and moved around during the drag operation.
A function can be specified that gives us the opportunity to create and return a
new DOM element to use as the drag helper.

✓

iframeFix (Boolean|Selector) Prevents <iframe> elements from interfering with a drag
operation by preventing them from capturing mousemove events. If specified as
true, all iframes are masked during a drag operation. If a selector is provided,
any selected iframes are masked.

opacity (Number) A value from 0.0 to 1.0 that specifies the opacity of the dragged
element or helper. If omitted, the opacity of the element isn’t changed during
dragging.

✓

refreshPositions (Boolean) If specified as true, the positions of all droppable elements (which
we’ll be discussing in section 10.2) are recomputed during every mousemove
event of the drag. Use this only if it solves some problems you may be having on
highly dynamic pages, because it comes with a heavy performance penalty.

revert (Boolean|String) If specified as true, the dragged element will return to its orig-
inal position at the end of the drag operation. If the string invalid is used, the
element reverts only if it has not been dropped onto a droppable; if valid, the
element reverts only if dropped onto a droppable.
If omitted, or specified as false, the dragged element doesn’t return to its orig-
inal position.

✓

revertDuration (Number) If revert is true, specifies the number of milliseconds it takes for
the dragged element to return to its original position. If omitted, a default value
of 500 is used.

scope (String) Used to associate draggables with droppables. Draggables with the
same scope name as a droppable will automatically be accepted by that droppa-
ble. If not specified, a default scope of default is used.
(This will make more sense when we discuss droppables.)

Table 10.1 Options for the jQuery UI draggable() method (continued)

Option Description In
Lab
Download from Library of Wow! eBook <www.wowebook.com>

312 CHAPTER 10 jQuery UI mouse interactions: Follow that mouse!
All these options allow us a great deal of flexibility in how drag operations will con-
duct themselves. But we’re not done yet. Draggables also give us the flexibility to con-
trol how the rest of our page conducts itself while a drag is under way. Let’s see how.

10.1.2 Draggability events

We saw, in table 10.1, that there are three options that let us register event handlers on
the draggables themselves: drag, start, and stop. These options are a convenient way
to bind event handlers for three custom events that jQuery triggers during various
stages of a drag operation: dragstart, drag, and dragstop, all described in table 10.2.
This table (and all event-description tables that follow) show the bindable custom

scroll (Boolean) If set to false, prevents the container from auto-scrolling during a
drag operation. If omitted, or specified as true, auto-scrolling is enabled.

✓

scrollSensitivity (Number) The distance in pixels from the pointer to the edge of the viewport
when auto-scrolling should take place. If omitted, the default is 20 pixels.

scrollSpeed (Number) The speed at which auto-scrolling should commence once started. The
default value is 20. Use lower values to slow the scrolling, and higher values to
speed it up.

snap (Selector|Boolean) Specifies a selector that identifies target elements on the
page whose edges the dragged element will “snap to” whenever the dragged
element approaches the targets. Specifying true is shorthand for the selector
.ui-draggable, making all other draggables the target elements.

snapMode (String) Specifies which side of an edge the dragged object will snap to. The
string outer specifies that only the outside of the edge will be snapped
to, whereas inner specifies that only the inside of the edge will be
snapped to. The string both (the default) will cause either side of the edge
to be snapped to.

snapTolerance (Number) If snapping is enabled, specifies the distance, in pixels, from an edge
at which snapping should occur. The default value is 20 pixels.

stack (Object) An object hash that controls z-index stacking of grouped elements dur-
ing drag operations. Whenever you drag an element, it becomes the highest (by
z-index) of all other draggables in that group.
A minimum value that the z-index should never fall below can also be specified
with the min property.

start (Function) Specifies a function to be established on the draggables as an event
handler for dragstart events. See table 10.2 for more details on this event.

stop (Function) Specifies a function to be established on the draggables as an event
handler for dragstop events. See table 10.2 for more details on this event.

zIndex (Number) Specifies the z-index for the draggables during drag operations. If omit-
ted, the z-index of the draggables is unchanged during drag operations.

Table 10.1 Options for the jQuery UI draggable() method (continued)

Option Description In
Lab
Download from Library of Wow! eBook <www.wowebook.com>

313Dragging things around
event name, the option name that can be used to specify a handler function, and a
description of the event.

 Handlers for each of these events can be established on any element in a dragga-
ble element’s ancestor hierarchy to receive notification whenever any of these events
occurs. We might want, for example, to react to dragstart events in some global man-
ner by establishing a handler for that event on the document body:

$('body').bind('dragstart',function(event,info){
 say('What a drag!');
});

Regardless of where the handler is established, and whether it was established via an
option entry or with the bind() method, the handler is passed two parameters: the
mouse event instance, and an object whose properties contain information on the
current state of the drag event. The properties on this object are as follows:

helper—A wrapped set containing the element being dragged (either the orig-
inal element or its clone).
position—An object whose top and left properties give the position of the
dragged element relative to its offset parent. It may be undefined for dragstart
events.
offset—An object whose top and left properties give the position of the
dragged element relative to the document page. It may be undefined for drag-
start events.

The Draggables Lab page establishes draggable event handlers and uses the informa-
tion passed to them to show the position of the dragged element in its Console pane.

 Once we’ve made an element draggable using this first form of the draggable()
method (in which we pass an options object), we can use the other forms to control
the element’s draggability.

10.1.3 Controlling draggability

As we learned in the previous section, calling the draggable() method with an
options hash (or with no parameters at all) establishes the draggability of the wrapped
elements. Once an element is draggable, we may have occasion to want to suspend
that draggability, but without losing all the options we’ve taken the effort to set up.

 We can temporarily disable an element’s draggability by calling the following form
of the draggable() method:

Table 10.2 jQuery UI events triggered for draggables

Event Option Description

dragstart start Triggered when a drag operation commences

drag drag Continuously triggered for mousemove events during a drag operation

dragstop stop Triggered when a drag operation terminates
Download from Library of Wow! eBook <www.wowebook.com>

314 CHAPTER 10 jQuery UI mouse interactions: Follow that mouse!
$('.ui-draggable').draggable('disable');

Any draggable elements in the wrapped set will become temporarily non-draggable. In
the preceding example, we’ve disabled draggability for all draggables on the page.

 To reinstate the draggability of such elements, we’d use this statement:

$('.ui-draggable').draggable('enable');

This will re-enable the draggability of any draggable elements that have been disabled.

WARNING As previously discussed, you can’t use the draggable('enable')
method to initially apply draggability to non-draggable elements. The enable
form of the method will only re-enable the draggability of draggable elements
that have been previously disabled.

If we wish to make draggable elements non-draggable permanently, restoring them to
predraggable condition, then we’d use this statement:

$('.ui-draggable').draggable('destroy');

The destroy variant of the method removes all vestiges of draggability from the ele-
ments.

 The final format of the versatile draggable() method allows us to set or retrieve
individual options at any time during a draggable’s lifetime.

 For example, to set the revert option on a draggable element, use this line:

$('.whatever').draggable('option','revert',true);

This will set the revert option to true for the first element in the wrapped set if that
element is already draggable. Trying to set an option on a non-draggable element
won’t do anything useful.

 If we want to fetch the value of a draggable’s option, we could write this:

var value = $('.ui-draggable').draggable('option','revert');

This will fetch the value of the revert option for the first element in the wrapped set
if that element is draggable (otherwise, you’ll just get undefined).

 Dragging things around the screen is all well and good, but is it really useful? It’s
fun for a time, but like playing with a yo-yo (unless we’re true aficionados), it loses its
charm quickly. In practical applications, we could use it to allow users to move modu-
lar elements around the screen (and if we’re nice, we’d remember their chosen posi-
tions in cookies or other persistence mechanisms), or in games or puzzles. But drag
operations truly shine when there’s something interesting to drop dragged elements
on. So let’s see how we can make droppables to go with our draggables.

10.2 Dropping dragged things
The flip side of the coin from draggables is droppables—elements that can accept
dragged elements and do something interesting when the draggable is dropped on
them. Creating droppable items from page elements is similar to creating draggables;
in fact, it’s even easier because there are fewer options to worry about.
Download from Library of Wow! eBook <www.wowebook.com>

315Dropping dragged things
 Like the draggable() method, the droppable() method has a number of forms:
one used to initially create the droppables, and the others to affect the droppable
afterwards. This is its syntax:

Let’s see what it takes to make elements droppable.

10.2.1 Making elements droppable

Elements are made droppable by collecting them into a wrapped set and calling the
droppable() method with an object hash of options (or no parameters at all to accept
the option defaults). When made droppable, the class ui-droppable is added to the
elements. This is similar to the way we made things draggable, but there are fewer
options, as listed in table 10.3.

 As with draggables, we’ve also provided a jQuery UI Droppables Lab page (shown
in figure 10.2) that demonstrates most of the droppable options in action.

Command syntax: droppable

droppable(options)
droppable('disable')
droppable('enable')
droppable('destroy')
droppable('option',optionName,value)
Makes the elements in the wrapped set droppable according to the specified options, or performs
some other droppability action based upon an operation string passed as the first parameter.

Parameters
options (Object) An object hash of the options to be applied to the elements in the

wrapped set, as described in table 10.3, making them droppable.
'disable' (String) Disables the droppability of any droppable elements in the wrapped

set. The droppability of the elements isn’t removed and can be restored by
calling the enable variant of this method.

'enable' (String) Re-enables droppability on any droppable elements in the wrapped set
whose droppability has been disabled. Note that this method won’t add
droppability to any non-droppable elements.

'destroy' (String) Removes droppability from the elements in the wrapped set.
'option' (String) Allows option values to be set on all elements of the wrapped set, or

to be retrieved from the first element of the wrapped set (which should be a
droppable element), based upon the remaining parameters. If specified, at
least the optionName parameter must also be provided.

optionName (String) The name of the option (see table 10.3) whose value is to be set or
returned. If a value parameter is provided, that value becomes the option’s
value. If no value parameter is provided, the named option’s value is
returned.

value (Object) The value to be set for the option identified by the optionName
parameter.

Returns
The wrapped set, except for the case where an option value is returned.
Download from Library of Wow! eBook <www.wowebook.com>

316 CHAPTER 10 jQuery UI mouse interactions: Follow that mouse!
Find this page at chapter10/droppables/lab.droppables.html, load it into your
browser, and use it to manipulate droppable options as you read through the option
descriptions in table 10.3.

 Although there are fewer options available for droppables than for draggables, it’s
also clear that there are more events and states associated with droppables. Let’s
examine these states and events in detail.

Figure 10.2 The Droppables Lab page allows us to see the droppable options in action.
Download from Library of Wow! eBook <www.wowebook.com>

317Dropping dragged things

Table 10.3 Options for the jQuery UI droppable() method

Option Description In
Lab

accept (Selector|Function) Specifies a selector that identifies draggables that are to be
accepted for dropping, or a function that filters all draggable elements on the page.
The function is invoked for all draggable elements, with a reference to that element as
the first parameter. Returning true from the function accepts the draggable for drop-
ping.
If omitted, all draggable elements are accepted.

✓

activate (Function) Specifies a function to be established on the droppables as an event han-
dler for dropactivate events, which are triggered when a drag operation starts. See the
description of the droppable events in table 10.4 for more details on this event.

✓

activeClass (String) A class name or names to be added to the droppable whenever a drag opera-
tion with an acceptable element is underway. You can specify more than one class
name by separating them with space characters.
If omitted, no classes are added to the droppable during an acceptable drag
operation.

✓

addClasses (Boolean) If specified as false, prevents the ui-droppable class from being added
to droppable elements. We might choose to do this for performance reasons if the
class isn’t needed and we’re adding droppability to many elements on a page.

deactivate (Function) Specifies a function to be established on the droppables as
an event handler for dropdeactivate events, which are triggered when a drag operation
terminates. See the description of the droppable events
in table 10.4 for more details on this event.

✓

drop (Function) Specifies a function to be established on the droppables as an event han-
dler for drop events. See the description of the droppable events in table 10.4 for more
details on this event.

✓

greedy (Boolean) Droppability events will normally propagate to nested droppables. If this
option is set to true, this propagation is prevented.

hoverClass (String) A class name or names to be added to the droppable whenever an acceptable
draggable is hovering over the droppable. Multiple class names can be provided by sep-
arating them with space characters.
If omitted, no classes are added to the droppable during an acceptable hover.

✓

out (Function) Specifies a function to be established on the droppables as an event han-
dler for dropout events. See the description of the droppable events in table 10.4 for
more details on this event.

✓

over (Function) Specifies a function to be established on the droppables as an event han-
dler for dropover events. See the description of the droppable events in table 10.4 for
more details on this event.

✓

scope (String) Used to associate draggables with droppables. Draggables with the same
scope name as a droppable will automatically be accepted by the droppable. If not
specified, a default scope of default is used.
Download from Library of Wow! eBook <www.wowebook.com>

318 CHAPTER 10 jQuery UI mouse interactions: Follow that mouse!
10.2.2 Droppability events

Keeping track of the states of a drag event
is pretty easy; either the element is being
dragged or it’s not. But when we add
dropping into the mix, things become a
bit more complex. Not only do we have
the draggable to take into account, but
also its interaction with the droppables
for which it’s acceptable.

 Because a figure is worth many words,
figure 10.3 depicts the states and the
events that cause their transitions during
a drag-and-drop operation.

 Once established as a droppable, a
droppable element will be in inactive
state—it’s prepared to accept draggables,
but because there’s no drag operation
underway, all is peaceful and at rest. But
once a drag operation starts, things get more interesting:

B When a drag operation starts for a draggable that’s acceptable to the droppable
(see the accept and scope options for what’s deemed acceptable), a dropactivate
event is triggered and the droppable is considered in active state.

Any handlers for dropactivate events (whether established via options or
not) will be triggered according to the normal rules of event propagation
unless the greedy option was specified as true, in which case only handlers on
droppables will be invoked.

At this point, any class names provided by the activeClass option are
applied to the droppable.

C If the dragged element is moved such that it satisfies the rules that determine
when a draggable is considered hovering over the droppable (as specified by
the tolerance option), a dropover event is triggered (invoking suitable han-
dlers), and the droppable enters hover state.

tolerance (String) Controls how a dragged element is considered to be hovering over a droppable.
The values are

•fit—The draggable must be entirely within the droppable.
•pointer—The mouse pointer must enter the droppable.
•touch—Any part of the draggable must overlap the droppable.
•intersect—At least 50 percent of the draggable must overlap the droppable.
• If omitted, intersect is used as the default.

✓

Table 10.3 Options for the jQuery UI droppable() method (continued)

Option Description In
Lab

I
N
A
C
T
I
V
E

A
C
T
I
V
E

H
O
V
E
R

DROP

Acceptable
drag starts

Draggable
moves over
droppable

Draggable
leaves

droppable

Drag
operation
terminates

Draggable
is dropped

dropactivate dropover

dropoutdropdeactivate

drop
dropdeactivate

B C

De

fg

Figure 10.3 The states and transitions that a
droppable can attain depend upon the interaction
between the active draggable and the droppable
element during a drag-and-drop operation.
Download from Library of Wow! eBook <www.wowebook.com>

319Dropping dragged things
This is the point at which any class names supplied by a hoverClass option
are applied to the droppable.

There are two possible transitions from this point: the drag operation can
terminate by the release of the mouse button, or the draggable can continue to
be moved.

D If the draggable is moved such that it’s no longer considered hovering over the
droppable (again via the tolerance rules), a dropout event is triggered, and
any class names specified by hoverClass are removed.

The droppable returns to active state.

E If the drag operation terminates while in active state, a dropdeactivate event is
triggered, any classes specified by activeClass are removed, and the droppable
reverts to inactive state.

F If, however, the drag operation terminates while in hover state, the draggable is
considered dropped onto the droppable and two events are triggered: drop and
dropdeactivate.

G The droppable reverts to inactive state, and any classes specified by active-
Class are removed.

NOTE The “drop” itself isn’t considered a state, but an instantaneous event.

 The droppables events are summarized in table 10.4.

All droppable event handlers are passed two parameters: the mouse event instance,
and an object whose properties contain information on the current state of the drag-
and-drop operation. The properties on this object are as follows:

helper—A wrapped set containing the helper element being dragged (either
the original element or its clone).
draggable—A wrapped set containing the current draggable element.

Table 10.4 jQuery UI events triggered for droppables

Event Option Description

dropactivate activate Triggered when a drag operation commences using a dragga-
ble that’s acceptable to a droppable

dropdeactivate deactivate Triggered when a pending drop operation terminates

dropover over Triggered when an acceptable draggable moves over a drop-
pable as defined by the droppable’s tolerance option

dropout out Triggered when a draggable moves off of an accepting droppa-
ble

drop drop Triggered when a drag operation terminates while over an
accepting droppable
Download from Library of Wow! eBook <www.wowebook.com>

320 CHAPTER 10 jQuery UI mouse interactions: Follow that mouse!
position—An object whose top and left properties give the position of the
dragged element relative to its offset parent. May be undefined for dragstart
events.
offset—An object whose top and left properties give the position of the
dragged element relative to the document page. May be undefined for drag-
start events.

We can use the Droppables Lab to make sure that we understand these events and
state transitions. As in the other labs, there’s a Control Panel that lets us specify the
options to be applied to the droppable after clicking the Apply button. The Disable
and Enable buttons serve to disable and enable the droppable (using the appropriate
variants of the droppable() method), and the Reset button puts the form back to its
initial state and destroys the droppable capability on the Lab’s drop target.

 In the Test Subjects pane are six draggable elements and an element that will
become droppable after clicking the Apply button (which we’ll call the Drop Zone).
Below the Drop Zone are grayed-out text elements that read Activate, Over, Out,
Drop, and Deactivate. When a corresponding droppable event is triggered, the appro-
priate text element, which we’ll refer to as an event indicator, is momentarily high-
lighted to indicate that the event has been triggered. (Can you already figure out how
that’s achieved within the Lab page?)

 Let’s dig in and get the skinny on droppables using this Lab.

Exercise 1—In this exercise, we’re going to begin familiarizing ourselves with the
accept option, which is what tells the droppable what constitutes an acceptable
draggable. Although this option can be set to any jQuery selector (or even a
function that can programmatically make suitability determinations), for the
purposes of the lab, we’ll concentrate on elements that possess particular class
names. In particular, we can specify a selector that includes any of the class
names flower, dog, motorcycle, and water by checking the appropriate check-
boxes of the accept option controls.

The six draggable image elements on the left side of the Test Subjects pane
are each assigned one or two of these class names based on what appears in the
image. For example, the upper-left draggable possesses the class names dog and
flower (because both a dog and some flowers appear in the photo), whereas
the lower-middle image is defined with the class names motorcycle and water
(a Yamaha V-Star and the Colorado River, to be precise).

Before clicking Apply, try to drag and drop any of these elements on the
Drop Zone. Aside from the dragging, not much happens. Carefully observe the
event indicators, and note how they don’t change. This should be no surprise
because, at outset, no droppable even exists on the page.

Now, leaving all controls in their initial conditions (including all accept
checkboxes checked), click the Apply button. The executed command includes
an accept option that specifies a selector that matches all four class names.
Download from Library of Wow! eBook <www.wowebook.com>

321Dropping dragged things
Once again, try to drag any of the images to the Drop Zone while observing
the event indicators. This time, you’ll see the Activate indicator briefly high-
light, or throb, when you begin moving any of the images, indicating that a drop-
pable has noticed that a drag operation has commenced using a draggable
that’s acceptable for dropping, and has triggered a dropactivate event.

Drag the image over and out of the Drop Zone a number of times. Corre-
sponding dropover and dropout events are triggered (as shown by the corre-
sponding indicators) at the appropriate times. Now, drop the image outside the
confines of the Drop Zone, and watch the Deactivate indicator throb.

Finally, repeat the drag operation, but this time drop the image on top of the
Drop Zone. The Drop indicator throbs (indicating that the drop event was trig-
gered). Note, also, that the Drop Zone is wired to display the most recent image
that was dropped upon it.

Exercise 2—Uncheck all of the accept checkboxes, and click Apply. This results
in an accept option consisting of the empty string, which matches nothing. No
matter which image you choose, no callback indicators throb, and nothing hap-
pens when you drop an image onto the Drop Zone. Without a meaningful
accept option, our Drop Zone has become a brick. (Note that this isn’t the
same as omitting accept, which causes all elements to be acceptable.)
Exercise 3—Check only one accept checkbox, say flower, and note how only
images with flowers in them (known to the page because the class name flower
was defined for them) are construed to be acceptable items.

Try again with whatever combinations of acceptable class names you like
until you’re comfortable with the concept of the accept option.

Exercise 4—Reset the controls, check the activeClass’s greenBorder radio but-
ton, and click Apply. This supplies an activeClass option to the droppable
that specifies a class name that defines (you guessed it) a green border.

Now, when you begin to drag an image that’s acceptable to the droppable (as
defined by the accept option), the black border around the Drop Zone is
replaced by a green border.

TIP If you have trouble getting this to work for you on your own pages, note
that you need to be mindful of CSS precedence rules. When an activeClass
class name is applied, it must be able to override the rule that assigns the
default visual rendition that you wish to supplant. This is also true of hover-
Class. (Sometimes the !important CSS qualifier is needed to override other
style rules.)

Exercise 5—Reset the Lab, check the hoverClass radio button labeled bronze,
and click Apply. When an acceptable image is dragged over the Drop Zone, the
Drop Zone changes to a bronze color.
Exercise 6—For this exercise, choose each of the various tolerance radio but-
tons, and note how the setting affects when the droppable makes the transition
Download from Library of Wow! eBook <www.wowebook.com>

322 CHAPTER 10 jQuery UI mouse interactions: Follow that mouse!
from active to hover (in other words, when a dropover event is triggered). This
transition can easily be observed by setting the hoverClass option or when the
Over event indicator throbs.

Continue to toy around with the lab page until you fully understand how drag-and-
drop operations operate and are affected by the supported options.

 Once we have dragging and dropping, we can imagine a whole range of user inter-
actions where drag and drop can be used make things easy and intuitive for the user
by letting them directly manipulate page elements. One of those interactions, sorting,
is so ubiquitous that jQuery UI provides direct support for it.

10.3 Sorting stuff
Arguably, sorting is one of the most useful interactions that utilizes drag and drop. Put-
ting a list of items into a specific order, or even moving them in order between lists, is
a rather common interaction technique in desktop applications, but on the web it’s
either been missing or approximated with a combination of <select> elements and
buttons (to move items within, and sometimes between, multiple select lists).

 Although such composite controls aren’t horrible, it’d be much more intuitive for
a user to be able to directly manipulate the elements. Drag and drop gives us that abil-
ity, and jQuery UI makes it pretty darn easy.

 As with the draggable and droppable capabilities, jQuery UI provides sortability
via a single, multi-purpose method, sortable(), whose syntax style should be familiar
by now.

Command syntax: sortable

sortable(options)
sortable('disable')
sortable('enable')
sortable('destroy')
sortable('option',optionName,value)
sortable('cancel')
sortable('refresh')
sortable('refreshPositions')
sortable('serialize')
sortable('toArray')
Makes the elements in the wrapped set sortable according to the specified options, or performs
some other sortability action based upon an operation string passed as the first parameter.

Parameters
options (Object) An object hash of the options to be applied to the elements

in the wrapped set, as described in table 10.5, making them
sortable.

'disable' (String) Disables the sortability of any sortable elements in the
wrapped set. The sortability of the elements isn’t removed and can
be restored by calling the enable variant of this method.
Download from Library of Wow! eBook <www.wowebook.com>

323Sorting stuff
That’s a few more method variations than in the previous interactions, and we’ll
examine some of those in detail, but first let’s make elements sortable.

10.3.1 Making things sortable

We can make pretty much any set of child elements sortable (by applying sortability to
their parent), but most often you’ll see sortability applied to a list (or ele-
ment) so that its children can be moved around. That makes a lot of semantic
sense and also allows the element to degrade gracefully should we decide not to apply
sortability.

 Nothing prevents us, on the other hand, from applying sortability to the <div>
children of a parent <div>, if that makes more sense for our application. We’ll see
how to do so when we examine the sortability options in table 10.5.

 Like the draggable and droppable interactions, sortability is applied by calling the
sortable method with no parameters (to accept the defaults), or with an object that
provides non-default options.

Command syntax: sortable (continued)

'enable' (String) Re-enables sortability on any sortable elements in the
wrapped set whose sortability has been disabled. Note that this
method won’t add sortability to any non-sortable elements.

'destroy' (String) Removes sortability from the elements in the wrapped set.
'options' (String) Allows option values to be set on all elements of the

wrapped set, or to be retrieved on the first element of the wrapped
set (which should be a sortable element), based upon the
remaining parameters. If specified, at least the optionName
parameter must also be provided.

'cancel' (String) Cancels the current sort operation. This is most useful
within handlers for the sortreceive and sortstop events.

'refresh' (String) Triggers the reloading of items within the sortable element.
Calling this method will cause new items added to the sortable to
be recognized.

'refreshPositions' (String) This method is used mostly internally to refresh the cached
information of the sortable. Unwise use can impair the performance
of the operation, so use only within handlers when necessary to
solve problems created by outdated cache information.

'serialize' (String) Returns a serialized query string (submitable via Ajax)
formed from the sortable. We’ll be examining the use of this
method in more detail shortly.

'toArray' (String) Returns an array of the id values of the sortable elements
in sorted order.

optionName (String) The name of the option (see table 10.5) whose value is to
be set or returned. If a value parameter is provided, that value
becomes the option’s value. If no value parameter is provided, the
named option’s value is returned.

value (Object) The value to be set for the option identified by the
optionName parameter.

Returns
The wrapped set, except for the cases where an option value, query string, or array is returned.
Download from Library of Wow! eBook <www.wowebook.com>

324 CHAPTER 10 jQuery UI mouse interactions: Follow that mouse!
 As jQuery UI Sortables Lab page, chapter10/sortables/lab.sortables.html, is avail-
able, which we can use to see the sortability options operate in real time. This Lab
page is shown in figure 10.4.

 It should come as no surprise that quite a few of the options to sortable simply pass
through to the lower-level drag or drop operations. In the interest of saving space, the

Figure 10.4 The Sortables Lab allows us to apply various sortability options to a list.
Download from Library of Wow! eBook <www.wowebook.com>

325Sorting stuff
description of these options isn’t repeated; rather, a reference to the table in which
the option is first described is provided.

 Most of these options are fairly self-explanatory, but the connectWith option
deserves closer attention.

Table 10.5 Options for the jQuery UI sortable() method

Option Description In
Lab

activate (Function) Specifies a function to be established on the sortables as an
event handler for sortactivate events. See table 10.6 for details of this
event.

appendTo See the draggable operation of the same name in table 10.1.
Appending to the body element may solve any issues with overlaying or z-
index.

axis See the draggable operation of the same name in table 10.1.
Frequently, this option is used to constrain movement to the orientation
(horizontal or vertical) of the sorted list.

✓

beforeStop (Function) Specifies a function to be established on the sortables as an
event handler for sortbeforeStop events. See table 10.6 for details of this
event..

cancel See the draggable operation of the same name in table 10.1.

change (Function) Specifies a function to be established on the sortables as an
event handler for sortchange events. See table 10.6 for details of this
event.

connectWith (Selector) Identifies another sortable element that can accept items from
this sortable. This allows items from one list to be moved to other lists—a
frequent and useful user interaction. If omitted, no other element is con-
nected.

✓

containment See the draggable operation of the same name in table 10.1. ✓

cursor See the draggable operation of the same name in table 10.1. ✓

cursorAt See the draggable operation of the same name in table 10.1. ✓

deactivate (Function) Specifies a function to be established on the sortables as an
event handler for sortdeactivate events. See table 10.6 for details of this
event.

delay See the draggable operation of the same name in table 10.1.

distance See the draggable operation of the same name in table 10.1. ✓

dropOnEmpty (Boolean) If true (the default), dropping items from this sortable on
another connected sortable is allowed when that sortable has no ele-
ments. Otherwise, dropping is disallowed when empty.

forceHelperSize (Boolean) If true, forces the helper to have a size. Defaults to false.

forcePlaceholderSize (Boolean) If true, forces the placeholder to have a size. Defaults to
false.
Download from Library of Wow! eBook <www.wowebook.com>

326 CHAPTER 10 jQuery UI mouse interactions: Follow that mouse!
grid See the draggable operation of the same name in table 10.1. ✓

handle See the draggable operation of the same name in table 10.1.

helper See the draggable operation of the same name in table 10.1.

items (Selector) Provides a selector, within the context of the sortable, that iden-
tifies what child elements can be sorted. By default, > * is used, which
allows all child elements to be selected for sorting.

opacity See the draggable operation of the same name in table 10.1. ✓

out (Function) Specifies a function to be established on the sortables as an
event handler for sortout events. See table 10.6 for details of this event.

over (Function) Specifies a function to be established on the sortables as an
event handler for sortover events. See table 10.6 for details of this event.

placeholder (String) A class name that gets applied to the otherwise unstyled place-
holder space.

receive (Function) Specifies a function to be established on the sortables as an
event handler for sortreceive events. See table 10.6 for details of this
event.

remove (Function) Specifies a function to be established on the sortables as an
event handler for sortremove events. See table 10.6 for details of this
event.

revert See the draggable operation of the same name in table 10.1.
The effect, when enabled, is for the drag helper to smoothly slide into
place, as opposed to quickly snapping into place.

✓

scroll See the draggable operation of the same name in table 10.1. ✓

scrollSensitivity See the draggable operation of the same name in table 10.1.

scrollSpeed See the draggable operation of the same name in table 10.1.

sort (Function) Specifies a function to be established on the sortables as an
event handler for sort events. See table 10.6 for details of this event.

start (Function) Specifies a function to be established on the sortables as an
event handler for sortstart events. See table 10.6 for details of this event.

stop (Function) Specifies a function to be established on the sortables as an
event handler for sortstop events. See table 10.6 for details of this event.

tolerance See the droppable operation of the same name in table 10.3. ✓

update (Function) Specifies a function to be established on the sortables as an
event handler for sortupdate events. See table 10.6 for details of this
event.

4

zIndex See the draggable operation of the same name in table 10.1.

Table 10.5 Options for the jQuery UI sortable() method (continued)

Option Description In
Lab
Download from Library of Wow! eBook <www.wowebook.com>

327Sorting stuff
10.3.2 Connecting sortables

It’s readily apparent how useful the sortable capability is for allowing users to order a
single list of elements, but it’s also a common way to allow them to move items from
one list to another. This capability is frequently provided by a combination of two
multi-select lists and a button (to move selected items from one list to another), and
perhaps even more buttons to control the order of items within each of the lists.

 By using jQuery UI sortables, and linking them using the connectWith option, we
can eliminate all those buttons and present the user with a cleaner direct-manipula-
tion interface. Imagine, perhaps, a page in which we allow users to design reports that
they’d like to receive. There may be many possible data columns included in the
report, but we can allow users to specify the subset of columns that they’d like
included and the order in which they’d like them to appear.

 We could include all possible columns in one list, and allow users to drag their
desired columns from this list to a second list whose content represents the report’s
columns in the order in which they’re to appear.

 Code to set up this complex interaction could be as easy as this:

$('#allPossibleColumns').sortable({
 connectWith: '#includedColumns'
});
$('#includedColumns').sortable();

In the Sortables Lab page, you can experiment with dragging between two lists by
checking the checkbox labeled connectWith.

 With all those drag and drop operations going on—not to mention elements
being moved around within (or between) lists—there are lots of events that we might
want to know about so we can hook into what’s going on during a sort operation.

10.3.3 Sortability events

There’s a lot of moving and shaking during a sort operation; drag and drop events are
firing, and the DOM is being manipulated—both to move elements around as the sort
unfolds, and to handle any placeholder that we may have defined.

 If all we care about is allowing the user to sort a list of items and then retrieve the
result at a later point (which we’ll cover in the next section), we don’t need to be very
concerned with all the events that are taking place during the operation. But, as with
draggables and droppables, if we want to hook into the operation during its interest-
ing events, we can define handlers to be notified when these events take place.

 As we’ve seen in the other interactions, we can establish these handlers either
locally on the sortable via options passed to sortable(), or by establishing the han-
dlers ourselves using bind().

 The information passed to these handlers follows the customary interaction for-
mat, with the event as the first parameter, and a custom object with interesting
information about the operation passed as the second. For sortables, this custom
object contains the following properties:
Download from Library of Wow! eBook <www.wowebook.com>

328 CHAPTER 10 jQuery UI mouse interactions: Follow that mouse!
position—An object whose top and left properties give the position of the
dragged element relative to its offset parent
offset—An object whose top and left properties give the position of the
dragged element relative to the document page
helper—A wrapped set containing the drag helper (often a clone)
item—A wrapped set containing the sort item
placeholder—A wrapped set containing the placeholder (if any)
sender—A wrapped set containing the source sortable when a connected oper-
ation takes place between two sortables

Be aware that some of these properties may be undefined or null if they don’t make
sense for the current state. For example, there is no helper defined for the sortstop
event because the drag operation is no longer underway.

 The function context for these handlers is the element to which the sortable()
method was applied.

 The events that are triggered during a sort operation are shown in table 10.6.

Table 10.6 jQuery UI events triggered for sortables

Event Option Description

sort sort Repeatedly triggered for mousemove events during a sort
operation

sortactivate activate Triggered on the sortables when a sort operation starts on
connected sortables

sortbeforeStop beforeStop Triggered when the sort operation is about to end, with the
helper and placeholder element reference still valid

sortchange change Triggered when the sorted element changes position within
the DOM

sortdeactivate deactivate Triggered when a connected sort stops, propagated to the
connected sortables

sortout out Triggered when the sort item is moved away from a con-
nected list

sortover over Triggered when a sort item moves into a connected list

sortreceive receive Triggered when a connected list has received a sort item
from another list

sortremove remove Triggered when the sort item is removed from a connected
list and is dragged into another

sortstart start Triggered when a sort operation starts

sortstop stop Triggered when a sort operation has concluded

sortupdate update Triggered when a sort operation stops and the position of
the item has been changed
Download from Library of Wow! eBook <www.wowebook.com>

329Sorting stuff
Note that a good number of these event types are triggered only during an operation
involving connected lists; the number of events fired for a sort within a single list is
fairly small.

 The sortupdate event may be the most important because it can be used to let us
know when a sort that has resulted in something actually changing has taken place. If
a sort operation takes place without anything changing, chances are we don’t really
need to care.

 When a sortupdate event fires, we probably want to know what the sorted order of
the list is. Let’s find out how we can get that information.

10.3.4 Fetching the sort order

Any time we want to know what the sorted order of a sortables list is, there are two vari-
ants of the sortable() method that we can use, depending upon what type of infor-
mation we need.

 The sortable('toArray') method returns a JavaScript array of the id values of
the sorted items, in their sorted order. We can use this whenever we need to know the
order of the items.

 If, on the other hand, we want to submit the information as part of a new request,
or even an Ajax request, we’d use sortable('serialize'), which returns a string
suitable for use as a query string or request body, containing the ordered information
of the sort elements.

 Using this variant requires that you use a specific format for the id values assigned
to the sortable’s elements (the elements that will be sorted, not the sortable itself).
Each id needs to be of the format prefix_number where the prefix can be anything
you want—as long as it’s the same for all the elements—followed by an underscore
and a numeric value. When this format is followed, serializing the sortable results in a
query string that contains an entry for each sortable where the name is the prefix fol-
lowed by [], and whose value is the trailing numeric value of the id.

 Confused? Don’t blame you. Let’s turn to the Sortables Lab page for help.
 The console at the bottom of the Lab (unseen in figure 10.4 because it’s below the

bottom of the screen) shows the results of calling the fetch methods after a sort opera-
tion (using a sortupdate event handler). The id values assigned to the sort elements
are subject_1 through subject_6 in top to bottom order, following the formatting
rules set out for the serialize method.

 In the Lab, leaving all options in their default state, click Apply, grab the orange
tiger lily image (which has the id value subject_3), and drag it such that it becomes
the first item in the list. In the console, you’ll observe that the array of id values is now
as follows:

['subject_3', 'subject_1', 'subject_2', 'subject_4', 'subject_5',
'subject_6']

This is exactly what we’d expect, showing the new order of the items with the third
item now in the first position.
Download from Library of Wow! eBook <www.wowebook.com>

330 CHAPTER 10 jQuery UI mouse interactions: Follow that mouse!
 The result of the serialization is

subject[]=3&subject[]=1&subject[]=2&subject[]=4&subject[]=5&subject[]=6

This shows how the prefix (subject) is used to construct the query parameter names,
with the trailing numeric values becoming the parameter values. (The [], by the way,
is a common notation meaning “array,” which is used to suggest that there are more
than one of the same named parameters.)

 If this format isn’t to your liking, the array of ids can always be used as a basis to
create your own query strings (in which case $.param() would come in quite handy).

 As an exercise, hearken back to the “collapsible module” example in chapter 5
(when we animated the rolling up of a body into a caption bar). How would you use
sortables to let a user manage the position of a number of these modules (also termed
portlets by some) in multiple columns?

 With sortables, the basic drag and drop interactions have been combined to create
a higher-order interaction. Let’s see another such interaction that jQuery UI provides.

10.4 Changing the size of things
Back in chapter 3, we learned how to change the size of DOM elements using jQuery’s
methods, and in chapter 5, we even saw how to do so in an animated fashion. jQuery UI
also allows us to let our users change the size of elements through direct manipulation.

 Thinking again of the collapsible module example, in addition to allowing users to
move these modules around on the page, wouldn’t it be nice to let them easily assign
custom sizes to the modules?

 With the interactions we’ve seen so far, the inclusion of the CSS file generated
when you downloaded jQuery UI (which we discussed back in chapter 9) is not neces-
sary. But for the resizable interaction to function, the CSS file must be imported into
the page, as in this example:

<link rel="stylesheet" type="text/css"
 href="styles/ui-theme/jquery-ui-1.8.custom.css">

Other than that detail, the resizable() method is as easy to use as the other jQuery
UI interactions, and its syntax follows the familiar pattern:

Download from Library of Wow! eBook <www.wowebook.com>

331Changing the size of things

Nothing much new there—the overloaded interaction method’s pattern should be
quite familiar by now—so let’s take a look at the options available when creating resiz-
able elements.

10.4.1 Making things resizable

One size rarely fits all, so as with the other interaction methods, the resizable()
method offers a number of options that we can use to customize the interaction to our
needs.

 A helpful lab page, the jQuery UI Resizables Lab, is available at chapter10/resiz-
ables/lab.resizables.html, and is shown in figure 10.5.

 The Control Panel of this lab lets us play around with most of the options available
for the resizable() method. Follow along in this Lab as you read through the
options list in table 10.7.

 As compared with some of the more involved interactions, resizable() has a
modest set of options. We’ll find the same is true of its events.

Command syntax: resizable

resizable(options)
resizable('disable')
resizable('enable')
resizable('destroy')
resizable('option',optionName,value)
Makes the elements in the wrapped set resizable according to the specified options, or performs
some other resizable action based upon an operation string passed as the first parameter.

Parameters
options (Object) An object hash of the options to be applied to the elements in the

wrapped set, as described in table 10.7, making them resizable.

'disable' (String) Disables the resizability of any resizable elements in the wrapped set.
The resizability of the elements isn’t removed and can be restored by calling
the enable variant of this method.

'enable' (String) Re-enables resizability on any resizable elements in the wrapped set
whose resizability has been disabled. Note that this method won’t add
resizability to any non-resizable elements.

'destroy' (String) Removes resizability from the elements in the wrapped set.
'option' (String) Allows option values to be set on all elements of the wrapped set, or to

be retrieved on the first element of the wrapped set (which should be a
resizable element), based upon the remaining parameters. If specified, at
least the optionName parameter must also be provided.

optionName (String) The name of the option (see table 10.7) whose value is to be set or
returned. If a value parameter is provided, that value becomes the option’s
value. If no value parameter is provided, the named option’s value is
returned.

value (Object) The value to be set for the option identified by the optionName
parameter.

Returns
The wrapped set, except for the cases where an option value, query string, or array is returned.
Download from Library of Wow! eBook <www.wowebook.com>

332 CHAPTER 10 jQuery UI mouse interactions: Follow that mouse!

Figure 10.5 The Resizables Lab lets us see the operation of the various resizability options in action.
Download from Library of Wow! eBook <www.wowebook.com>

333Changing the size of things

Table 10.7 Options for the jQuery UI resizable() method

Option Description In
Lab

alsoResize (Selector|jQuery|Element) Specifies other DOM elements that are to be resized in
synchronization with the resizable elements. These other elements don’t need to
have the resizable() method applied to them. If omitted, no other elements
are affected.

✓

animate (Boolean) If true, the element itself isn’t resized until after the drag operation fin-
ishes, at which time the element is resized smoothly via animation. While drag-
ging, a helper with the class ui-resizable-helper (unless overridden by the
helper option, discussed below) is used to show the drag outline. Be sure that
this class has a suitable CSS definition or you may not see anything during an ani-
mated resize operation.
For example, the Resizables Lab page uses the following:
.ui-resizable-helper {
 border: 1px solid #82bf5a;
}
By default, operations aren’t animated.

✓

animateDuration (Integer|String) When the animate option is enabled, defines the duration of the
animation. The standard animation strings slow, normal, or fast may be used,
or the value can be specified as a number of milliseconds.

✓

animateEasing (String) Specifies the easing effect to be used when the animate option is enabled.
The default is the built-in swing easing. See chapter 5 for a more thorough discus-
sion of easing.

aspectRatio (Boolean|Float) Specifies whether, and at what ratio, the aspect ratio of the ele-
ment is to be retained during a resize operation. A value of true enforces the orig-
inal aspect ratio of the element, whereas a floating value can be used to specify
the ratio using the formula width / height. For example, a 3 to 4 ratio would
be specified as 0.75.
By default, no aspect ratio is maintained during the operation.

✓

autoHide (Boolean) If true, the handles are hidden except when the mouse hovers over the
resizable element. See the handles option for more information. By default, the
handles are always displayed.

✓

cancel (Selector) Specifies elements that should be excluded from resizable operations.
By default, the selector :input,option is used.

containment (String|Element|Selector) Specifies an element within which resizing should be con-
strained. The built-in strings parent, or document can be specified, a specific
element can be supplied, or you can use a selector to identify the containment ele-
ment. By default, the operation is unconstrained.

✓

delay See the draggable operation of the same name in table 10.1.

distance See the draggable operation of the same name in table 10.1.

ghost (Boolean) If true, a translucent helper is displayed during a resize operation. The
default is false.

✓

grid See the draggable operation of the same name in table 10.1.
Download from Library of Wow! eBook <www.wowebook.com>

334 CHAPTER 10 jQuery UI mouse interactions: Follow that mouse!
10.4.2 Resizability events

Only three simple events are triggered during a resize operation to let us know that a
resize operation has started, that it’s underway, and that it has ended.

 The information passed to these event handlers follows the customary interaction
format of the event as the first parameter and a custom object with interesting infor-
mation about the operation passed as the second. For resizables, this custom object
contains the following properties:

position—An object whose top and left properties give the current position
of the element relative to its offset parent
size—An object whose width and height properties give the current size of
the element

handles (String|Object) Specifies in which directions the elements may be resized. These
values can be supplied as a string with a comma-separated list of the possible val-
ues: n, ne, e, se, s, sw, w, nw, or all. This format should be used when you want
jQuery UI to handle the creation of the handles.
If you want to use child elements of the resizable as handles, supply an object with
properties that define handles for each of the eight directions: n, ne, e, se, s, sw,
w, and nw. The value of the property should be a selector for the element to use as
the handle.
We’ll address the handles a bit more after we talk about events.
If omitted, handles are created for the e, se, and s directions.

✓

helper (String) If specified, enables the use of a helper element with the supplied class
name during the resize operation. Helpers are enabled by using this option, but
can also be implicitly enabled by other options such as ghost or animate. If
implicitly enabled, the default class is ui-resizable-helper unless this option
is used to override that class name.

maxHeight (Integer) Specifies a maximum height to which the element can be resized. By
default, no maximum is imposed.

✓

maxWidth (Integer) Specifies a maximum width to which the element can be resized. By
default, no maximum is imposed.

✓

minHeight (Integer) Specifies a minimum height to which the element can be resized. By
default, a value of 10px is used.

✓

minWidth (Integer) Specifies a minimum width to which the element can be resized. By
default, a value of 10px is used.

✓

resize (Function) Specifies a function to be established on the resizables as an event
handler for resize events. See table 10.8 for details of this event.

✓

start (Function) Specifies a function to be established on the resizables as an event
handler for resizestart events. See table 10.8 for details of this event.

✓

stop (Function) Specifies a function to be established on the resizables as an event
handler for resizestop events. See table 10.8 for details of this event.

✓

Table 10.7 Options for the jQuery UI resizable() method (continued)

Option Description In
Lab
Download from Library of Wow! eBook <www.wowebook.com>

335Changing the size of things
originalPosition—An object whose top and left properties give the original
position of the element relative to its offset parent
originalSize—An object whose width and height properties give the original
size of the element
helper—A wrapped set containing any helper element

Be aware that some of these properties may be undefined or null if they don’t make
sense for the current state. For example, there may be no helper defined.

 The function context for these handlers is the element to which the resizable()
method was applied. The specific events that are triggered during a resize operation
are summarized in table 10.8.

The Resizables Lab uses these events to report the current position and size of the test
subject elements in the Console pane of the Lab page.

10.4.3 Styling the handles

Although resizable() is a fairly simple operation, at least as the jQuery UI interac-
tions go, the handles deserve a bit of discussion of their own.

 By default, handles are created for the east, southeast, and south directions,
enabling resizing in those directions. Any direction that has no resize handle defined
isn’t enabled for resizing.

 You might initially be confused by the fact that in your pages, as well as in the
Resizables Lab, no matter how many directions are enabled, only the southeast corner
gets a special “grip” icon when enabled. And yet, all the other specified directions are
enabled—they work fine, and the mouse cursor changes shape when the edge of the
resizable is hovered over. What’s up with the difference?

 It’s not you, and it’s not your code. jQuery UI treats that corner as a special case,
adding additional class names to the southeast handle element in addition to what it
adds to the other handles.

 When any handle is created, it’s given the class names ui-resizable-handle and
ui-resizable-xx, where xx represents the direction that the handle represents (for
example, ui-resizable-n for the north handle). The southeast corner, deemed spe-
cial by jQuery UI, also receives the ui-icon and ui-icon-gripsmall-diagonal-se
class names, whose definition (in the default CSS files as generated during the jQuery
UI download process) creates the “grip” that appears on that corner. Although you

Table 10.8 jQuery UI events triggered for resizables

Event Option Description

resizestart start Triggered when a resize operations starts

resize resize Repeatedly triggered for mousemove events during the
resize operations

resizestop stop Triggered when a resize operation terminates
Download from Library of Wow! eBook <www.wowebook.com>

336 CHAPTER 10 jQuery UI mouse interactions: Follow that mouse!
can manipulate the CSS for the handle names to affect how all the handles, including
the southeast handle, appear, there is no option to change the class name assign-
ment behavior.

NOTE The inspiration for the special southeast “grip” handle undoubtedly
has its origin in window managers such as that for Mac OS X, which place such
a grip on their resizable windows.

Figure 10.6 shows this grip handle, and the CSS handle that the mouse pointer dis-
plays when hovered near the resizable east edge.

 If you find this too limiting, you can use the more complex version of the handles
option to define child elements as handles that you can create yourself.

 Now let’s take a look at the final interaction that jQuery UI provides.

10.5 Making things selectable
Most of the interactions that we’ve examined so far involve direct manipulation of ele-
ments in order to change their state in some manner, be it to affect their position,
size, or order within the DOM. The selectable() interaction gives us the ability to set
and clear a “selected” state on any DOM element.

 In HTML forms, we’re used to using controls such as checkboxes, radio buttons,
and yes, <select> elements to retain selection state. jQuery UI allows us to retain such
state on elements other than these controls.

 Think back to the DVD Ambassador example in chapter 4. In that example, we
focused on the filtering set of controls, and didn’t pay much mind to the results
returned from that filtering operation. We’re about to change that. As a reminder, a
screenshot of that example is shown in figure 10.7.

 The results (which, in the example, are the result of a hard-coded HTML fragment
that in a real application would be generated from database information) are dis-
played as a list of elements on the page in a tabular format.

Figure 10.6 By default, jQuery UI places a
“grip” handle in the southeast corner and
uses CSS cursors for the other handles.
Download from Library of Wow! eBook <www.wowebook.com>

337Making things selectable
Let’s say that we wanted to allow users of DVD Ambassador to select one or more DVD
titles and apply some sort of bulk operation upon them: deleting them from the data-
base, for example, or perhaps marking them all as viewed or unviewed.

 The traditional approach would be to add a checkbox control to every row, and to
use it to indicate that the row is selected. This method is tried and true, but it can pres-
ent a challenge to the sloppy clickers in the audience because the checkbox creates a
small area, usually about 12 by 12 pixels, within which the user must click to toggle the
checkbox value.

NOTE In forms, the <label> element is often used to associate text with the
checkbox, making the combination of the checkbox and label clickable.

User interfaces shouldn’t be a game of hand-eye coordination, so we’d like to make it
easier on our users. We have the know-how to instrument the entire row with a click
handler such that when the user clicks anywhere on the row, the handler finds the
enclosed checkbox and toggles its value. That gives the user a much bigger target to
aim for, and the checkbox merely serves as a visual cue, and the means by which the
selected state is remembered.

Figure 10.7 Revisiting the DVD Ambassador to instrument its result data set using jQuery UI
selectables.
Download from Library of Wow! eBook <www.wowebook.com>

338 CHAPTER 10 jQuery UI mouse interactions: Follow that mouse!
 jQuery UI Selectables will allow us to take this a step further, which gives us two dis-
tinct advantages:

The checkbox can be eliminated.
Users will be able to make multiple selections with a single interaction.

The elimination of the checkbox means that we’ll need to provide our own visual cues
as to whether a row is selectable (without the checkbox, users have lost an important
cue that we must make up for), and whether it is selected or not. Changing the back-
ground color of the row is a conventional means to indicate changes in status, and it’s
not a bad idea to also change the cursor shape to one that indicates that something
wonderful will happened when the row is clicked upon.

 With regards to remembering what’s selected and what’s not, jQuery UI selectables
will maintain selection status using a class name (namely ui-selected) placed on
selected elements.

 Using the checkbox approach, users are limited to selecting and unselecting ele-
ments one by one. Although it’s common to provide an über-checkbox that toggles
the state of all the checkboxes, what if the user want to selects rows 3 through 7?
They’re stuck with selecting them one at a time.

 With selectables, not only can we single-select with a click, but by dragging a rect-
angular marquee across the elements (or enclosing them, depending on how we set
our options) our users will be able to select multiple adjacent elements in one fell
swoop—much as we’re used to in many desktop applications.

 Additionally, selectables allows elements to be added to an already selected set by
holding down the Control key (the Command key on Macs) while clicking or dragging.

 Now is a good time to bring up the jQuery UI Selectables Lab, found in file
chapter10/selectables/lab.selectables.html, and shown in figure 10.8. In this Lab, we
use the DVD Ambassador tabular result set as the test subject.

 Let’s try out a few interactions using the default options.

Exercise 1—Before changing anything or clicking any buttons, wave the mouse
cursor over the data table, and try clicking on and dragging over the rows. Note
how the cursor pointer retains its normal appearance, and clicking has no
effect at all. Dragging just results in the normal browser selection of text.

Leave the options with their default settings, and click the Apply button.
Now note how the mouse cursor changes to the hand pointer when it hovers
over any of the data rows. When a DOM element becomes selectable (eligible
for selection), jQuery UI places the class ui-selectee on the element. In the
Lab page, the following CSS rule applies the cursor change:
.ui-selectee { cursor: pointer; }

Now click on a few rows. Note that as each row is clicked, it changes background
color. When an element becomes selected, the class ui-selected is applied to it,
and the following rule in the Lab page changes its background color:
#testSubject .ui-selected { background-color: pink; }
Download from Library of Wow! eBook <www.wowebook.com>

339Making things selectable
Also note that as you click each row, causing it to become selected, any previ-
ously selected row becomes unselected.

Exercise 2—Without changing anything or clicking any buttons, select a row and
then hold the Control/Command key down while selecting other rows. Note
how when the Control/Command key is depressed during a click, any previ-
ously selected elements are not unselected.
Exercise 3—Without changing anything or clicking any buttons, start a rectangu-
lar drag operation that cuts across a number of rows. Be sure that the drag oper-
ation starts within a row. Note that any row that the drag operation cuts across
becomes selected. Pressing the Control/Command key during a drag likewise
causes any previous selection to be retained.

That’ll do for the moment.

Figure 10.8 The Selectables Lab uses the HTML results fragment from the DVD Ambassador as its
test subject.
Download from Library of Wow! eBook <www.wowebook.com>

340 CHAPTER 10 jQuery UI mouse interactions: Follow that mouse!
10.5.1 Creating selectables

Now that we’ve seen Selectables in action, let’s take a look at the selectable()
method that makes it all happen:

The options that can be used when creating selectable elements are shown in
table 10.9.

 Now that we’ve been introduced to the options, let’s try a few more exercises using
the Selectables Lab.

Command syntax: selectable

selectable(options)
selectable('disable')
selectable('enable')
selectable('destroy')
selectable('option',optionName,value)
selectable('refresh')
Makes the elements in the wrapped set selectable according to the specified options, or performs
some other selectable action based upon an operation string passed as the first parameter.

Parameters
options (Object) An object hash of the options to be applied to the elements in the

wrapped set, as described in table 10.9, making them selectable.
'disable' (String) Disables the selectability of any selectable elements in the wrapped

set. The selectability of the elements isn’t removed and can be restored by
calling the enable variant of this method.

'enable' (String) Re-enables selectability on any selectable elements in the wrapped set
whose selectability has been disabled. Note that this method won’t add
selectability to any non-selectable elements.

'destroy' (String) Removes selectability from the elements in the wrapped set.
'refresh' (String) Causes the size and position of the selectable elements to be

refreshed. Used mostly when the autoRefresh option is disabled.
'option' (String) Allows option values to be set on all elements of the wrapped set, or

to be retrieved on the first element of the wrapped set (which should be a
selectable element), based upon the remaining parameters. If specified, at
least the optionName parameter must also be provided.

optionName (String) The name of the option (see table 10.9) whose value is to be set or
returned. If a value parameter is provided, that value becomes the option’s
value. If no value parameter is provided, the named option’s value is
returned.

value (Object) The value to be set for the option identified by the optionName
parameter.

Returns
The wrapped set, except for the cases where an option value, query string, or array is returned.
Download from Library of Wow! eBook <www.wowebook.com>

341Making things selectable

Exercise 4—Repeat the actions of exercises 1 through 3, except this time observe
the Console pane at the bottom of the page. This panel will display the events
that take place during the select operations. We’ll be discussing what informa-
tion is passed to these events in the next section.

Table 10.9 Options for the jQuery UI selectable() method

Option Description In Lab

autoRefresh (Boolean) If true (the default), the position and size of each selectable item is
computed at the beginning of a select operation.
Although a selectable operation won’t make any changes to the position and size of
selectable elements, they might have changed via CSS or scripting on the page.
If there are many selectable elements, this option can be disabled for performance,
and the refresh method can be used to manually recompute the values.

cancel See the draggable operation of the same name in table 10.1.

delay See the draggable operation of the same name in table 10.1.

distance See the draggable operation of the same name in table 10.1.

filter (Selector) Specifies a selector that identifies what type of child elements within the
elements of the wrapped set become selectable. Each of these elements is marked
with the class ui-selectee.
By default, all children are eligible.

✓

selected (Function) Specifies a function to be established on the selectables as an event
handler for selected events. See table 10.10 for details on this event..

✓

selecting (Function) Specifies a function to be established on the selectables as an event
handler for selecting events. See table 10.10 for details on this event.

✓

start (Function) Specifies a function to be established on the selectables as an event
handler for selectablestart events. This handler is passed the event, but no other
information. See table 10.10 for details on this event.

✓

stop (Function) Specifies a function to be established on the selectables as an event
handler for selectablestop events. This handler is passed the event, but no other
information. See table 10.10 for details on this event.

✓

tolerance (String) One of fit or touch (the default).
If fit, a drag selection must completely encompass an element for it to be
selected. This can be problematic in some layouts because a drag selection must
start within a selectable.
If touch, the drag rectangle only needs to intersect any portion of the selectable
item.

✓

unselected (Function) Specifies a function to be established on the selectables as an event
handler for unselected events. See table 10.10 for details on this event.

✓

unselecting (Function) Specifies a function to be established on the selectables as an event
handler for unselecting events. See table 10.10 for details on this event.

✓

Download from Library of Wow! eBook <www.wowebook.com>

342 CHAPTER 10 jQuery UI mouse interactions: Follow that mouse!
Exercise 5—In all the exercises so far, we allowed the filter option to be speci-
fied as tr, making the entire data row selectable. Click the Reset button or
refresh the page, choose the td value for the filter option, and click Apply.

Click within the data table to select various elements. Note that we can now
select individual data cells as opposed to entire rows.

Exercise 6 —Change the value of the filter option to span, and click Apply.
Now click on the various text values within the data results. Notice that only the
text itself is selected rather than the entire cell. (Each text value within the <td>
elements is enclosed in a).
Exercise 7—Reset the page, choose a tolerance value of touch, and click Apply.
Try various drag selections and note how the behavior hasn’t changed; any row
that’s overlapped by the selection marquee becomes selected.

Now change the filter value to td and repeat the exercise, noting how any
cell intersected by the marquee becomes selected.

Exercise 8—Leaving the filter value set at td, choose a tolerance value of fit,
and click Apply. Repeat the drag exercises and note how only cells that are com-
pletely enclosed by the marquee become selected.

Now change the filter value to tr, click Apply, and try again. Any luck?
Because a drag selection must begin within a selection, the tolerance set-

ting requires that a selectable be completely enclosed to become selected, and
the rows aren’t surrounded by other selectables, this combination makes it
almost impossible to select any rows. The lesson? Use a tolerance value of fit
cautiously.

The list of options for selectable() is shorter than for the other interactions; in fact,
the majority are shortcuts for establishing event handlers for the selectable events. But
those events are an important part of the selectables process. Let’s examine them.

10.5.2 Selectable events

For such a seemingly simple operation, a rich set of events is triggered during a select-
able operation. There aren’t only events that identify when the operation starts and
stops, but when individual elements are selected or unselected, and even when ele-
ments are pending a change of selection state.

 Unlike the other interaction events, selectable events don’t have a fixed construct
that’s passed to the handlers. Rather, the information, if any at all, is tuned to each
event type. Table 10.10 describes the selectable events and what data is passed to them.

 If any of these events are unclear, especially the differences between events such as
selecting and selected, repeat the exercises in the Selectables Lab, carefully observing
the Console Pane to see how the events are triggered as selection operations of vari-
ous types are carried out.

 OK, we have things that are selected. Now what?
Download from Library of Wow! eBook <www.wowebook.com>

343Making things selectable

Table 10.10 jQuery UI events triggered for selectables

Event Option Description

selectablestart start Triggered when a selectable operation starts. The event is
passed as the first parameter to this handler, and an empty
object is passed as the second.

selecting selecting Triggered for each selectable element that’s about to
become selected. The event is passed as the first parame-
ter, and the second parameter is an object with a single
property, selecting, that contains a reference to the ele-
ment that’s about to become selected.
The class name ui-selecting is added to these ele-
ments. If present, the ui-unselecting class is
removed.
It’s not inevitable that an element reported by this event
will eventually become selected. If a user drags a marquee
that includes an element, that element will be reported by
this event. But if the marquee is changed such that the ele-
ment is no longer included, that element won’t become
selected.

selected selected Triggered for each element that becomes selected. The
event is passed as the first parameter, and the second
parameter is an object with a single property, selected,
that contains a reference to the element that has become
selected.
The class name ui-selecting is removed and the class
ui-selected is added to these elements.

unselecting unselecting Triggered for each selected element that’s about to become
unselected. The event is passed as the first parameter,
and the second parameter is an object with a single prop-
erty, unselecting, that contains a reference to the ele-
ment that’s about to become unselected.
The class name ui-unselecting is added to these
elements.
As with the selecting event, elements reported by this
event won’t always become unselected.

unselected unselected Triggered for each element that becomes unselected. The
event is passed as the first parameter, and the second
parameter is an object with a single property,
unselected, that contains a reference to the element
that has become unselected.
The class name ui-unselecting is removed from these
elements.

selectablestop stop Triggered when a selectable operation terminates. The
event is passed as the only parameter to this handler.
Download from Library of Wow! eBook <www.wowebook.com>

344 CHAPTER 10 jQuery UI mouse interactions: Follow that mouse!
10.5.3 Finding the selected and selectable elements

The selectable event that’s bound most often is likely to be selectablestop, which
informs us when a selection event has occurred and is concluded. Within handlers
for this event, we’ll almost invariably want to determine which elements ended up
as selected.

 Even if we’re not interested in the selections when the selection takes place, there
almost always comes a time when we need to know what the selections are, such as
when it comes time to contact the server.

 The traditional state-retaining HTML controls submit their state as part of a form
submission without any help on our part. But if we need to communicate the selection
state of our selectables as part of a form submission, or even as parameters to an Ajax
request, we need to collect the selections.

 You may recall that the sortables interaction provided a couple of methods that we
could use to determine the final state of the sortables. If we expected the same of
selectables, we’ve been disappointed.

 But only momentarily; the selected elements are so easy to obtain using jQuery
selectors that a specialized method to fetch them isn’t necessary. Because each
selected element is marked with the class name ui-selected, fetching a wrapped set
of all selected elements is as easy as this:

$('.ui-selected')

If we wanted to only grab selected <div> elements, we’d do this:

$('div.ui-selected')

What we’ll probably want to do most often is collect the selected elements so that we
can convey the selections to the server, much in the same way that checkboxes or
radio buttons are conveyed using request parameters. If we wanted to cause the selec-
tions to be submitted to the server as part of a form submission, an easy way to accom-
plish that is to add hidden <input> elements to the form just prior to submission, one
for each selected element.

 Let’s say that in our Selectables Lab, we wanted to submit all selected movie names
as a request parameter array named title[]. We could accomplish that with the fol-
lowing code placed in the form’s submit handler:

$('.ui-selected').each(function(){
 $('<input>')
 .attr({
 type: 'hidden',
 name: 'title[]',
 value: $('td:first-child span',this).html()
 })
 .appendTo('#labForm');
});

If, instead, we wanted to create a query string to represent the title[] request param-
eter, we could write the following:
Download from Library of Wow! eBook <www.wowebook.com>

345Summary
var queryString = $.param({'title[]':
 $.map($('.ui-selected'),function(element){
 return $('td:first-child span',element).html();
 })
});

As an exercise, write some code that would take the currently selected movie elements
and submit them via an Ajax request using $.post(). As another exercise, capture the
previous code sample that creates the hidden inputs on the form as a jQuery plugin
method.

 And that wraps up our examination of the jQuery UI interactions. Let’s review
what we’ve learned.

10.6 Summary
In this chapter we continued our examination of jQuery UI, focusing on the mouse
interaction techniques that it provides.

 We began with dragging, which provide a basic interaction used by the remaining
interactions: dropping, sorting, resizing, and selecting.

 We saw how the dragging interaction lets us free elements from the bounds of
their page layout so that we can move them freely about the page. Numerous options
are available to customize the dragging behaviors to our needs (as well as to the needs
of the remaining interactions).

 The dropping interaction gives us something interesting to drop draggables on, in
order to provide various user interface semantic actions.

 One of those interactions is so common that it’s provided as an interaction of its
own, sorting, which allows us to drag and drop elements to redefine their position
within an ordered list, or even across multiple lists.

 Not content with just letting us move things around, the resizing interaction lets us
change the size of elements, with plenty of options to customize how and what can be
resized.

 And finally, we examined selecting, an interaction that lets us apply a persistent
selected state to elements that don’t intrinsically have selectability.

 Together, these interactions give us a lot of power to realize complex, but easy-to-
use, user interfaces to present to our users.

 But that’s not the end of it. These interactions also serve as a basis for even more
that jQuery UI has to offer. In the next chapter, we’ll continue looking at jQuery UI,
this time poking into the user interface widgets that it provides.
Download from Library of Wow! eBook <www.wowebook.com>

jQuery UI widgets:
Beyond HTML controls
Since the dawn of the web, developers have been constrained by the limited set of
controls afforded by HTML. Although that set of controls runs the gamut from sim-
ple text entry through complex file selection, the variety of provided controls pales
in comparison to those available to desktop application developers. HTML 5 prom-
ises to expand this set of controls, but it may be some time before support appears
in all major browsers.

 For example, how often have you heard the HTML <select> element referred
to as a “combo box,” a desktop control to which it bears only a passing resem-

This chapter covers
Extending the set of HTML controls with jQuery UI widgets

Augmenting HTML buttons

Using slider and datepicker controls for numeric and date input

Showing progress visually

Simplifying long lists with autocompleters

Organizing content with tabs and accordions

Creating dialog boxes
346

Download from Library of Wow! eBook <www.wowebook.com>

347Buttons and buttonsets
blance? The real combo box is a very useful control that appears often in desktop
applications, yet web developers have been denied its advantages.

 But as computers have become more powerful, browsers have increased their capa-
bilities, and DOM manipulation has become a commonplace activity, clever web devel-
opers have been taking up the slack. By creating extended controls—either
augmenting the existing HTML controls or creating controls from scratch using basic
elements—the developer community has shown nothing short of sheer ingenuity in
using the tools at hand to make the proverbial lemonade from lemons.

 Standing on the shoulders of core jQuery, jQuery UI brings this ingenuity to us, as
jQuery users, by providing a set of custom controls to solve common input problems
that have traditionally been difficult to solve using the basic control set. Be it making
standard elements play well (and look good) in concert with other elements, accept-
ing numeric values within a range, allowing the specification of date values, or giving
us new ways to organize our content, jQuery UI offers a valuable set of widgets that we
can use on our pages to make data entry a much more pleasurable experience for our
users (all while making it easier on us as well).

 Following our discussion of the core interactions provided by jQuery UI, we’ll con-
tinue our exploration by seeing how jQuery UI fills in some gaps that the HTML con-
trol set leaves by providing custom controls (widgets) that give us more options for
accepting user input. In this chapter, we’ll explore the following jQuery UI widgets:

Buttons (section 11.1)
Sliders (section 11.2)
Progress bars (section 11.3)
Autocompleters (section 11.4)
Datepickers (section 11.5)
Tabs (section 11.6)
Accordions (section 11.7)
Dialog boxes (section 11.8)

Like the previous chapter, this is a long one! And as with interactions, the jQuery UI
methods that create widgets follow a distinct pattern that makes them easy to under-
stand. But unlike interactions, the widgets pretty much stand on their own, so you can
choose to skip around the sections in this chapter in any order you like.

 We’ll start with one of the simpler widgets that lets us modify the style of existing
control elements: buttons.

11.1 Buttons and buttonsets
At the same time that we lament the lack of variety in the set of HTML 4 controls, it
offers a great number of button controls, many of which overlap in function.

 There’s the <button> element, and no less than six varieties of the <input> ele-
ment that sport button semantics: button, submit, reset, image, checkbox, and
radio. Moreover, the <button> element has subtypes of button, submit, and reset,
whose semantics overlap those of the corresponding input element types.
Download from Library of Wow! eBook <www.wowebook.com>

348 CHAPTER 11 jQuery UI widgets: Beyond HTML controls
NOTE Why are there so many HTML button types? Originally, only the
<input> button types were available, but as they could only be defined with a
simple text string, they were deemed limiting. The <button> element was
added later; it can contain other elements and thereby offers more rendering
possibilities. The simpler <input> varieties were never deprecated, so we’ve
ended up with the plethora of overlapping button types.

All these buttons types offer varying semantics, and they’re very useful within our
pages. But, as we’ll see when we explore more of the jQuery UI widget set, their
default visual style may not blend well with the styles that the various widgets exhibit.

11.1.1 Button appearance within UI themes

Remember back when we downloaded jQuery UI near the beginning of chapter 9? We
were given a choice of various themes to download, each of which applies a different
look to the jQuery UI elements.

 To make our buttons match these styles, we could poke around the CSS file for the
chosen theme and try to find styles that we could apply to the button elements to
bring them more into line with how the other elements look. But as it turns out, we
don’t have to—jQuery UI provides a means to augment our button controls so their
appearance matches the theme without changing the semantics of the elements.
Moreover, it will also give them hover styles that will change their appearance slightly
when the mouse pointer hovers over them—something the unstyled buttons lack.

 The button() method will modify individual buttons to augment their appear-
ance, while the buttonset() method will act upon a set of buttons (most often a set of
radio buttons or checkboxes) not only to theme them, but to make them appear as a
cohesive unit.

 Consider the display in figure 11.1.
 This page fragment shows the unthemed display of some individual button ele-

ments, and some groupings of checkboxes, radio buttons, and <button> elements. All
perfectly functional, but not exactly visually exciting.

Figure 11.1 Various button elements
without any styling—rather boring,
wouldn’t you say?
Download from Library of Wow! eBook <www.wowebook.com>

349Buttons and buttonsets
After applying the button() method to the individual buttons, and the buttonset()
method to the button groups (in a page using the Cupertino theme), the display
changes to that shown in figure 11.2.

 After styling, the new buttons make those shown in figure 11.1 look positively
Spartan.

 Not only has the appearance of the buttons been altered to match the theme, the
groups have been styled so that the buttons in the group form a visual unit to match
their logical grouping. And even though the radio buttons and checkboxes have been
restyled to look like “normal” buttons, they still retain their semantic behaviors. We’ll
see that in action when we introduce the jQuery UI Buttons Lab.

 This theme’s styling is one we’ll become very familiar with as we progress through
the jQuery UI widgets in the remainder of this chapter.

 But first we’ll take a look at the methods that apply this styling to the button
elements.

11.1.2 Creating themed buttons

The methods that jQuery UI provides to create widgets follow the same style we saw
in the previous chapter for the interaction methods: calling the button() method
and passing an options hash creates the widget in the first place, and calling the same
method again but passing a string that identifies a widget-targeted operation modifies
the widget.

 The syntax for the button() and buttonset() methods is similar to the methods
we investigated for the UI interactions:

Figure 11.2 After a style makeover, our buttons are dressed in their best and ready to hit the town!
Download from Library of Wow! eBook <www.wowebook.com>

350 CHAPTER 11 jQuery UI widgets: Beyond HTML controls

To apply button theming to a set of elements, we call the button() or buttonset()
method with a set of options, or with no parameter to accept the default options.
Here’s an example:

$(':button').button({ text: true });

NOTE The word “theming” isn’t in the dictionary, but it’s what jQuery UI
uses, so we’re running with it.

The options that are available to use when creating buttons are shown in table 11.1.
 The button() method comes with plenty of options, and you can try them out in

the Buttons Lab page, which you’ll find in chapter11/buttons/lab.buttons.html and is
shown in figure 11.3.

 Follow along in this Lab as you read through the options list in table 11.1.

Command syntax: button and buttonset

button(options)
button('disable')
button('enable')
button('destroy')
button('option',optionName,value)
buttonset(options)
buttonset('disable')
buttonset('enable')
buttonset('destroy')
buttonset('option',optionName,value)
Themes the elements in the wrapped set to match the currently loaded jQuery UI theme. Button
appearance and semantics will be applied even to non-button element such as and
<div>.

Parameters
options (Object) An object hash of the options to be applied to the elements in the

wrapped set, as described in table 11.1, making them themed buttons.
'disable' (String) Disables click events for the elements in the wrapped set.
'enable' (String) Re-enables button semantics for the elements in the wrapped set.
'destroy' (String) Reverts the elements to their original state, before applying the UI

theme.
'option' (String) Allows option values to be set on all elements of the wrapped set, or to

be retrieved from the first element of the wrapped set (which should be a
jQuery UI button element), based upon the remaining parameters. If specified,
at least the optionName parameter must also be provided.

optionName (String) The name of the option (see table 11.1) whose value is to be set or
returned. If a value parameter is provided, that value becomes the option’s
value. If no value parameter is provided, the named option’s value is
returned.

value (Object) The value to be set for the option identified by the optionName
parameter.

Returns
The wrapped set, except for the case where an option value is returned.
Download from Library of Wow! eBook <www.wowebook.com>

351Buttons and buttonsets

Table 11.1 Options for the jQuery UI buttons and buttonsets

Option Description In
Lab?

icons (Object) Specifies that one or two icons are to be displayed in the button: primary
icons to the left, secondary icons to the right. The primary icon is identified by the
primary property of the object, and the secondary icon is identified by the
secondary property.
The values for these properties must be one of the 174 supported call names that
correspond to the jQuery button icon set. We’ll discuss these in a moment.
If omitted, no icons are displayed.

✓

Figure 11.3 The jQuery UI Buttons Lab page lets us see the before and after states of buttons, as well
as fiddle with the options.
Download from Library of Wow! eBook <www.wowebook.com>

352 CHAPTER 11 jQuery UI widgets: Beyond HTML controls
These options are straightforward except for the icons options. Let’s chat a little
about that.

11.1.3 Button icons

jQuery UI supplies a set of 174 themed icons that can be displayed on buttons. You
can show a single icon on the left (the primary icon), or one on the left and one on
the right (as a secondary icon).

 Icons are specified as a class name that identifies the icon. For example, to create a
button with an icon that represents a little wrench, we’d use this code:

$('#wrenchButton').button({
 icons: { primary: 'ui-icon-wrench' }
});

If we wanted a star on the left, and a heart on the right, we’d do this:

$('#weirdButton').button({
 icons: { primary: 'ui-icon-star', secondary: 'ui-icon-heart' }
});

Because we all know how many words a picture is worth, rather than just listing the
available icon names here, we’ve provided a page that creates a button for each of the
icons, labeled with the name of the icon. You’ll find this page at chapter11/buttons/
ui-button-icons.html, and it’s shown in figure 11.4.

 You might want to keep this page handy for whenever you want to find an icon to
use on your buttons.

11.1.4 Button events

Unlike the interactions and the remainder of the widgets, there are no custom events
associated with jQuery UI buttons.

 Because these widgets are merely themed versions of existing HTML 4 controls, the
native events can be used as if the buttons had not been augmented. To handle button
clicks, we simply continue to handle click events for the buttons.

label (String) Specifies text to display on the button that overrides the natural label. If
omitted, the natural label for the element is displayed. In the case of radio buttons
and checkboxes, the natural label is the <label> element associated with the
control.

✓

text (Boolean) Specifies whether text is to be displayed on the button. If specified as
false, text is suppressed if (and only if) the icons option specifies at least one
icon. By default, text is displayed.

✓

Table 11.1 Options for the jQuery UI buttons and buttonsets (continued)

Option Description In
Lab?
Download from Library of Wow! eBook <www.wowebook.com>

353Buttons and buttonsets
11.1.5 Styling buttons

The whole purpose of using the jQuery UI button() and buttonset() methods is to
make the buttons match the chosen jQuery UI theme. It’s as if we took the buttons
and sent them to appear on What Not to Wear (a popular US and UK TV makeover real-
ity show); they start out drab and homely and emerge looking fabulous! But even so,
we may want to fine-tune those styled elements to make them work better on our
pages. For example, the text of the buttons on the Buttons Icon page was made
smaller to fit the buttons on the page.

 jQuery UI augments or creates new elements when creating widgets, and it applies
class names to the elements that match the style rules in the theme’s CSS style sheet.
We can use these class names ourselves to augment or override the theme definitions
on our pages.

 For example, in the Button Icons page, the button text’s font size was adjusted like
this:

.ui-button-text { font-size: 0.8em; }

The class name ui-button-text is applied to the element that contains the
button text.

 It would be nearly impossible to cover all the permutations of elements, options,
and class names for the widgets created by jQuery UI, so we’re not even going to try.
Rather, the approach that we’ll take is to provide, for each widget type, some tips on

Figure 11.4 The jQuery UI Button Icons page lets us see all the available button icons along with their names.
Download from Library of Wow! eBook <www.wowebook.com>

354 CHAPTER 11 jQuery UI widgets: Beyond HTML controls
some of the most common styling that we’re likely to need on our pages. The previous
tip on restyling the button text is a good example.

 Button controls are great for initiating actions, but except for radio buttons and
checkboxes, they don’t represent values that we might want to obtain from the user. A
number of the jQuery UI widgets represent logical form controls that make it easy for
us to obtain input types that have long been an exercise in pain. Let’s take a look at
one that eases the burden of obtaining numeric input.

11.2 Sliders
Numeric input has traditionally been a thorn in the side of web developers every-
where. The HTML 4 control set just doesn’t have a control that’s well suited to accept-
ing numeric input.

 A text field can be (and is most often) used to accept numeric input. This is less
than optimal because the value must be converted and validated to make sure that the
user doesn’t enter “xyz” for their age or for the number of years they’ve been at their
residence.

 Although after-the-fact validation isn’t the greatest of user experiences, filtering
the input to the text control such that only digits can be entered has its own issues.
Users might be confused when they keep hitting the A key and nothing happens.

 In desktop applications, a control called a slider is often used whenever a numeric
value within a certain range is to be obtained. The advantage of a slider over text
input is that it becomes impossible for the user to enter a bad value. Any value that
they can pick with the slider is valid.

 jQuery UI brings us a slider control so that we can share that advantage.

11.2.1 Creating slider widgets

A slider generally takes the form of a “trough” that contains a handle. The handle
can be moved along the trough to indicate the value selected within the range, or the
user can click within the trough to indicate where the handle should move to within
the range.

 Sliders can be arranged either horizontally or vertically. Figure 11.5 shows an
example of a horizontal slider from a desktop application.

 Unlike the button() method, sliders aren’t created by augmenting an existing
HTML control. Rather, they’re composited from basic elements like <div> and <a>.
The target <div> element is styled to form the trough of the slider, and anchor ele-
ments are created within it to form the handles.

 The slider widget can possess any number of handles and can therefore represent
any number of values. Values are specified using an array, with one entry for each han-
dle. However, as the single-handle case is so much more common than the multi-han-
dle case, there are methods and options that treat the slider as if it had a single value.

Figure 11.5 Sliders can be used to represent a
range of values; in this example, from minimum
to full brightness.
Download from Library of Wow! eBook <www.wowebook.com>

355Sliders
This prevents us from having to deal with arrays of a single element for the way that
we’ll use sliders most often. Thanks jQuery UI team! We appreciate it!

 This is the method syntax for the slider() method:

When creating a slider, there are a good variety of options for creating slider controls
with various behaviors and appearance.

Command syntax: slider

slider(options)
slider('disable')
slider('enable')
slider('destroy')
slider('option',optionName,value)
slider('value',value)
slider('values',index,values)
Transforms the target elements (<div> elements recommended) into a slider control.

Parameters
options (Object) An object hash of the options to be applied to the elements in the

wrapped set, as described in table 11.2 making them sliders.
'disable' (String) Disables slider controls.
'enable' (String) Re-enables disabled slider controls.
'destroy' (String) Reverts any elements transformed into slider controls to their previous

state.
'option' (String) Allows option values to be set on all elements of the wrapped set, or to

be retrieved from the first element of the wrapped set (which should be a slider
element), based upon the remaining parameters. If specified, at least the
optionName parameter must also be provided.

optionName (String) The name of the option (see table 11.2) whose value is to be set or
returned. If a value parameter is provided, that value becomes the option’s
value. If no value parameter is provided, the named option’s value is returned.

value (Object) The value to be set for the option identified by the optionName
parameter (when used with 'option'), the value to be set for the slider (if used
with 'value'), or the value to be set for the handles (if used with 'values').

'value' (String) If value is provided, sets that value for the single-handle slider and
returns that value ; otherwise the slider’s current value is returned.

'values' (String) For sliders with multiple handles, gets or sets the value for specific
handles, where the index parameter must be specified to identify the handles.
If the values parameter is provided, sets the value for the handles. The values
of the specified handles are returned.

index (Number|Array) The index, or array of indexes, of the handles to which new
values are to be assigned.

Returns
The wrapped set, except for the case where an option or handle value is returned.
Download from Library of Wow! eBook <www.wowebook.com>

356 CHAPTER 11 jQuery UI widgets: Beyond HTML controls
While you’re reading through the options in table 11.2, bring up the Sliders Lab in
file chapter11/sliders/lab.sliders.html (shown in figure 11.6), and follow along, trying
out the various options.

 Now let’s explore the events that slider controls can trigger.

Figure 11.6 The jQuery UI Sliders Lab shows the various ways that jQuery UI sliders can be set up and
manipulated.
Download from Library of Wow! eBook <www.wowebook.com>

357Sliders
Table 11.2 Options for the jQuery UI sliders

Option Description In
Lab?

animate (Boolean|String|Number) If true, causes the handle to move smoothly to
a position clicked to within the trough. Can also be a duration value or one
of the strings slow, normal, or fast. By default, the handle is moved
instantaneously.

✓

change (Function) Specifies a function to be established on the slider as an event
handler for slidechange events. See the description of the slider events in
table 11.3 for details on the information passed to this handler.

✓

max (Number) Specifies the upper value of the range that the slider can
attain—the value represented when the handle is moved to the far right
(for horizontal sliders) or top (for vertical sliders). By default, the maxi-
mum value of the range is 100.

✓

min (Number) Specifies the lower value of the range that the slider can
attain—the value represented when the handle is moved to the far left (for
horizontal sliders) or bottom (for vertical sliders). By default, the minimum
value of the range is 0.

✓

orientation (String) One of horizontal or vertical. Defaults to horizontal. ✓

range (Boolean|String) If specified as true, and the slider has exactly two han-
dles, an element that can be styled is created between the handles.
If the slider has a single handle, specifying min or max creates a range
element from the handle to the beginning or end of the slider respectively.
By default, no range element is created.

✓

start (Function) Specifies a function to be established on the sliders as an
event handler for slidestart events. See the description of the slider
events in table 11.3 for details on the information passed to this handler.

✓

slide (Function) Specifies a function to be established on the slider as an event
handler for slide events. See the description of the slider events in table
11.3 for details on the information passed to this handler.

✓

step (Number) Specifies discrete intervals between the minimum and maxi-
mum values that the slider is allowed to represent. For example, a step
value of 2 would allow only even numbers to be selected.
The step value should evenly divide the range.
By default, step is 1 so that all values can be selected.

✓

stop (Function) Specifies a function to be established on the slider as an event
handler for slidestop events. See the description of the slider events in
table 11.3 for details on the information passed to this handler.

✓

value (Number) Specifies the initial value of a single-handle slider. If there are
multiple handles (see the values options), specifies the value for the
first handle.
If omitted, the initial value is the minimum value of the slider.

✓

Download from Library of Wow! eBook <www.wowebook.com>

358 CHAPTER 11 jQuery UI widgets: Beyond HTML controls
11.2.2 Slider events

As with the interactions, most of the jQuery UI widgets trigger custom events when
interesting things happen to them. We can establish handlers for these events in one
of two ways. We can bind handlers in the customary fashion at any point in the ances-
tor hierarchy, or we can specify the handler as an option, which is what we saw in the
previous section.

 For example, we might want to handle sliders’ slide events in a global fashion on
the body element:

$('body').bind('slide',function(event,info){ ... });

This allows us to handle slide events for all sliders on the page using a single handler.
If the handler is specific to an instance of a slider, we might use the slide option
instead when we create the slider:

$('#slider').slider({ slide: function(event,info){ ... } });

This flexibility allows us to establish handlers in the way that best suits our pages.
 As with the interaction events, each event handler is passed two parameters: the

event instance, and a custom object containing information about the control. Isn’t
consistency wonderful?

 The custom object contains the following properties:

handle—A reference to the <a> element for the handle that’s been moved.
value—The current value represented by the handle being moved. For single-
handle sliders, this is considered the value of the slider.
values—An array of the current values of all sliders; this is only present for
multi-handled sliders.

In the Sliders Lab, the value and values properties are used to keep the value display
below the slider up to date.

 The events that sliders can trigger are summarized in table 11.3.
 The slidechange event is likely to be the one of most interest because it can be

used to keep track of the slider’s value or values.
 Let’s say that we have a single-handled slider whose value needs to be submitted to

the server upon form submission. Let’s also suppose that a hidden input with a name

values (Array) Causes multiple handles to be created and specifies the initial val-
ues for those handles. This option should be an array of possible values,
one for each handle.
For example, [10,20,30] will cause the slider to have three handles
with initial values of 10, 20, and 30.
If omitted, only a single handle is created.

✓

Table 11.2 Options for the jQuery UI sliders (continued)

Option Description In
Lab?
Download from Library of Wow! eBook <www.wowebook.com>

359Sliders
of sliderValue is to be kept up to date with the slide value so that when the enclosing
form is submitted, the slider’s value acts like just another form control. We could
establish an event on the form as follows:

$('form').bind('slidechange',function(event,info){
 $('[name="sliderValue"]').val(info.value);
});

 Here’s a quick exercise for you to tackle:

Exercise 1—The preceding code is fine as long as there is only one slider in the
form. Change the preceding code so that it can work for multiple sliders. How
would you identify which hidden input element corresponds to the individual
slider controls?

 Now let’s add some style to our sliders.

11.2.3 Styling tips for sliders

When an element is transformed into a slider, the class ui-slider is added to it.
Within this element, <a> elements will be created to represent the handles, each of
which will be given the ui-slider-handle class. We can use these class names to aug-
ment the styles of these elements as we choose.

TIP Can you guess why anchor elements are used to represent the handles?
Time’s up—it’s so that the handles are focusable elements. In the Sliders Lab,
create a slider and set focus to a handle by clicking upon it. Now use the left
and right arrow keys and see what happens.

Another class that will be added to the slider element is either ui-slider-horizontal
or ui-slider-vertical, depending upon the orientation of the slider. This is a useful
hook we can use to adjust the style of the slider based upon orientation. In the Sliders
Lab, for example, you’ll find the following style rules, which adjust the dimensions of
the slider as appropriate to its orientation:

.testSubject.ui-slider-horizontal {
 width: 320px;
 height: 8px;
}

Table 11.3 Events for the jQuery UI sliders

Event Option Description

slide slide Triggered for mousemove events whenever the handle is being
dragged through the trough. Returning false cancels the slide.

slidechange change Triggered whenever a handle’s value changes, either through user
action or programmatically.

slidestart start Triggered when a slide starts.

slidestop stop Triggered when a slide stops.
Download from Library of Wow! eBook <www.wowebook.com>

360 CHAPTER 11 jQuery UI widgets: Beyond HTML controls
.testSubject.ui-slider-vertical {
 height: 108px;
 width: 8px;
}

The class name testSubject is the class
that’s used within the Lab to identify the ele-
ment to be transformed into the slider.

 Here’s another neat tip: let’s suppose
that in order to match the rest of our site,
we’d like the slider handler to look like a fleur-de-lis. With an appropriate image and a
little CSS magic, we can make that happen.

 In the Sliders Lab, reset everything, check the checkbox labeled Use Image Han-
dle, and click Apply. The slider looks as shown in figure 11.7.

 Here’s how it was done. First, a PNG image with a transparent background and
containing the fleur-de-lis was created, named handle.png. 18 by 18 pixels seems like a
good size. Then the following style rule was added to the page:

.testSubject a.ui-slider-handle.fancy {
 background: transparent url('handle.png') no-repeat 0 0;
 border-width: 0;
}

Finally, after the slider was created, the fancy class was added to the handle.

$('.testSubject .ui-slider-handle').addClass('fancy');

One last tip: if you create a range element via the range option, you can style it using
the ui-widget-header class. We do so in the Lab page with this line:

.ui-slider .ui-widget-header { background-color: orange; }

Sliders are a great way to let users enter numeric values in a range without a lot of
aggravation on our part or the user’s. Let’s take a look at another widget that can help
us keep our users happy.

11.3 Progress bars
Little irks a user more than sitting through a long operation without knowing whether
anything is really happening behind the scenes. Although users are somewhat more
accustomed to waiting for things in web applications than in desktop applications, giv-
ing them feedback that their data is actually being processed makes for much happier,
less anxious users.

 It’s also beneficial to our applications. Nothing good can come of a frustrated user
clicking away on our interface and yelling, “Where’s my data!” at the screen. The
flurry of resulting requests will at best help to bog down our servers, and at worst can
cause problems for the backend code.

 When a fairly accurate and deterministic means of determining the completion
percentage of a lengthy operation is available, a progress bar is a great way to give the
user feedback that something is happening.

Figure 11.7 With a PNG image and a little
CSS magic, we can make the slider handle
look like whatever we want.
Download from Library of Wow! eBook <www.wowebook.com>

361Progress bars
Visually, a progress bar generally takes the form of a
rectangle that gradually “fills” from left to right with
a visually distinct inner rectangle to indicate the
completion percentage of an operation. Figure 11.8
shows an example progress bar depicting an opera-
tion that’s a bit less than half complete.

 jQuery UI provides an easy-to-use progress bar widget that we can use to let users
know that our application is hard at work performing the requested operation. Let’s
see just how easy it is to use.

11.3.1 Creating progress bars

Not surprisingly, progress bars are created using the progressbar() method, which
follows the same pattern that’s become so familiar:

Command syntax: progressbar

progressbar(options)
progressbar('disable')
progressbar('enable')
progressbar('destroy')
progressbar('option',optionName,value)
progressbar('value',value)
Transforms the wrapped elements (<div> elements recommended) into a progress bar widget.

Parameters
options (Object) An object hash of the options to be applied to the created progress

bars, as described in table 11.4.
'disable' (String) Disables a progress bar.

When not to use progress bars
Even worse than making the user guess when an operation will complete is lying to
them about it.

Progress bars should only be used when a reasonable level of accuracy is possible.
It’s never a good idea to have a progress bar that reaches 10 percent and suddenly
jumps to the end (leading users to believe that the operation may have aborted in
midstream), or even worse, to be pegged at 100 percent long before the operation
actually completes.

If you can’t determine an accurate completion percentage, a good alternative to a
progress bar is just some indication that something might take a long time; perhaps
a text display along the lines of “Please wait while your data is processed—this may
take a few minutes ...”, or perhaps an animation that gives the illusion of activity
while the lengthy operation progresses.

For the latter, a handy website at http://www.ajaxload.info/ generates GIF anima-
tions that you can tailor to match your theme.

Figure 11.8 A progress bar shows
the completion percentage of an
operation by “filling” the control from
left to right.
Download from Library of Wow! eBook <www.wowebook.com>

http://www.ajaxload.info/

362 CHAPTER 11 jQuery UI widgets: Beyond HTML controls
Progress bars are conceptually simple widgets, and this simplicity is reflected in the list
of options available for the progressbar() method. There are only two, as shown in
table 11.4.

Once a progress bar is created, updating its value is as easy as calling the value variant
of the method:

$('#myProgressbar').progressbar('value',75);

Attempting to set a value greater than 100 will result in the value being set to 100. Sim-
ilarly, attempting to set a value that’s a negative number will result in a value of 0.

 The options are simple enough, as are the events defined for progress bars.

11.3.2 Progress bar events

The single event defined for progress bars is shown in table 11.5.
Catching the progressbarchange event could be useful in updating a text value on
the page that shows the exact completion percentage of the control, or for any other
reason that the page might need to know when the value changes.

Command syntax: progressbar (continued)

'enable' (String) Re-enables a disabled progress bar.
'destroy' (String) Reverts the elements made into progress bar widgets to their original

state.
'option' (String) Allows option values to be set on all elements of the wrapped set, or

to be retrieved from the first element of the wrapped set (which should be a
progress bar element), based upon the remaining parameters. If specified, at
least the optionName parameter must also be provided.

optionName (String) The name of the option (see table 11.4) whose value is to be set or
returned. If a value parameter is provided, that value becomes the option’s
value. If no value parameter is provided, the named option’s value is
returned.

value (String|Number) The value to be set for the option identified by the
optionName parameter (when used with 'option'), or the value between 0
and 100 to be set for the progress bar (if used with 'value').

'value' (String) If value is provided, sets that value for the progress bar; otherwise
the progress bar’s current value is returned.

Returns
The wrapped set, except for the case where a value is returned.

Table 11.4 Options for the jQuery UI progress bars

Option Description

change (Function) Specifies a function to be established on the progress bar as an event han-
dler for progressbarchange events. See the description of the progress bar events in
table 11.5 for details on the information passed to this handler.

value (Number) Specifies the initial value of the progress bar; 0, if omitted.
Download from Library of Wow! eBook <www.wowebook.com>

363Progress bars
The progress bar is so simple—only two options and one event—that a Lab page for
this control has not been provided. Rather, we thought we’d create a plugin that auto-
matically updates a progress bar as a lengthy operation progresses.

11.3.3 An auto-updating progress bar plugin

When we fire off an Ajax request that’s likely to take longer to process than a nor-
mal person’s patience will accept, and we know that we can deterministically obtain
the completion percentage, it’s a good idea to comfort the user by displaying a prog-
ress bar.

 Let’s think of the steps we’d run through to accomplish this:

1 Fire off the lengthy Ajax operation.
2 Create a progress bar with a default value of 0.
3 At regular intervals, fire off additional requests that take the pulse of the

lengthy operation and return the completion status. It’s imperative that this
operation be quick and accurate.

4 Use the result to update the progress bar and any text display of the completion
percentage.

Sounds pretty easy, but there are a few nuances to take into account, such as making
sure that the interval timer is destroyed at the right time.

DEFINING THE AUTO-PROGRESSBAR WIDGET

As this widget is something that could be generally useful across many pages, and
because there are non-trivial details to take into account, creating a plugin that’s
going to handle this for us sounds like a great idea.

 We call our plugin the auto-progressbar, and its method, autoProgressbar(), is
defined as follows:

Table 11.5 Events for the jQuery UI progress bars

Event Option Description

progressbarchange change Called whenever the value of the progress bar changes.
Two parameters are passed: the event instance, and an empty
object. The latter is passed in order to be consistent with the
other jQuery UI events, but no information is contained within
the object.

Command syntax: autoProgressbar

autoProgressbar(options)
autoProgressbar('stop')
autoProgressbar('destroy')
autoProgressbar('value',value)
Transforms the wrapped elements (<div> elements recommended) into a progress bar widget.

Parameters
options (Object) An object hash of the options to be applied to the created progress

bars, as described in table 11.6.
Download from Library of Wow! eBook <www.wowebook.com>

364 CHAPTER 11 jQuery UI widgets: Beyond HTML controls
The options that we’ll define for our plugin are shown in table 11.6.

Let’s get to it.

CREATING THE AUTO-PROGRESSBAR

As usual, we’ll start with a skeleton for the method that follows the rules and practices
we laid out in chapter 7. (Review chapter 7 if the following doesn’t seem familiar.) In a
file named jquery.jqia2.autoprogressbar.js we write this outline:

(function($){
 $.fn.autoProgressbar = function(settings,value) {

//implementation will go here

 return this;
 };

})(jQuery);

The first thing we’ll want to do is check to see if the first parameter is a string or not. If
it’s a string, we’ll use the string to determine which method to process. If it’s not a string,
we’ll assume it’s an options hash. So we add the following conditional construct:

if (typeof settings === "string") {
 // process methods here

Command syntax: autoProgressbar (continued)

'stop' (String) Stops the auto-progressbar widget from checking the completion status.
'destroy' (String) Stops the auto-progressbar widget and reverts the elements made into

the progress bar widget to their original state.
'value' (String) If value is provided, sets that value for the progress bar; otherwise the

progress bar’s current value is returned.
value (String|Number) A value between 0 and 100 to be set for the progress bar used

with the 'value' method.

Returns
The wrapped set, except for the case where a value is returned.

Table 11.6 Options for the autoProgressbar() plugin method

Option Description

pulseUrl (String) Specifies the URL of a server-side resource that will check the pulse of the
backend operation that we want to monitor. If this option is omitted, the method per-
forms no operation.
The response from this resource must consist of a numeric value in the range of 0
through 100 indicating the completion percentage of the monitored operation.

pulseData (Object) Any data that should be passed to the resource identified by the pulseUrl
option. If omitted, no data is sent.

interval (Number) The duration, in milliseconds, between pulse checks. The default is 1000 (1
second).

change (Function) A function to be established as the progressbarchange event handler.
Download from Library of Wow! eBook <www.wowebook.com>

365Progress bars
}
else {
 // process options here
}

Because processing the options is the meat of our plugin, we’ll start by tackling the
else part. First, we’ll merge the user-supplied options with the set of default options,
as follows:

settings = $.extend({
 pulseUrl: null,
 pulseData: null,
 interval: 1000,
 change: null
},settings||{});
if (settings.pulseUrl == null) return this;

As in previous plugins that we’ve developed, we use the $.extend() function to merge
the objects. Note also that we continue with the practice of listing all options in the
default hash, even if they have a null value. This makes for a nice place to see all the
options that the plugin supports.

 After the merge, if the pulseUrl option hasn’t been specified, we return, perform-
ing no operation—if we don’t know how to contact the server, there’s not much we
can do.

 Now it’s time to actually create the progress bar widget:

this.progressbar({value:0,change:settings.change});

Remember, within a plugin, this is a reference to the wrapped set. We call the jQuery
UI progress bar method on this set, specifying an initial value of 0, and passing on any
change handler that the user supplied.

 Now comes the interesting part. For each element in the wrapped set (chances are
there will only be one, but why limit ourselves?) we want to start an interval timer that
will check the status of the lengthy operation using the supplied pulseUrl. Here’s the
code we use for that:

this.each(function(){
 var bar$ = $(this);
 bar$.data(
 'autoProgressbar-interval',
 window.setInterval(function(){
 $.ajax({
 url: settings.pulseUrl,
 data: settings.pulseData,
 global: false,
 dataType: 'json',
 success: function(value){
 if (value != null) bar$.autoProgressbar('value',value);
 if (value == 100) bar$.autoProgressbar('stop');
 }
 });
 },settings.interval));
});

Iterates over
wrapped setB Stores interval

handle on widget
C

Starts interval timerD
Fires off
Ajax requestE

Receives
completion
status

F

Download from Library of Wow! eBook <www.wowebook.com>

366 CHAPTER 11 jQuery UI widgets: Beyond HTML controls
There’s a lot going on here, so let’s take it one step at a time.
 We want each progress bar that will be created to have its own interval timer. Why a

user would want to create multiple auto-progressbars may be beyond us, but it’s the
jQuery way to let them have their rope. We use the each() method B to deal with
each wrapped element separately.

 For both readability, as well as for use within closures that we’ll later create, we cap-
ture the wrapped element in the bar$ variable.

 We then want to start the interval timer, but we need to keep in mind that later on
we’re going to want to stop the timer. So we need to store the handle that identifies
the timer somewhere that we can easily get at later. jQuery’s data() method comes in
handy for this C, and we use it to store the handle on the bar element with a name of
autoProgressbar-interval.

 A call to JavaScript’s window.setInterval() function starts the timer D. To this
function we pass an inline function that we want to execute on every tick of the timer,
and the interval value that we obtain from the interval option.

 Within the timer callback, we fire off an Ajax request E to the URL supplied by the
pulseUrl option, with any data supplied via pulseData. We also turn off global events
(these requests are happening behind the scenes, and we don’t want to confuse the
page by triggering global Ajax events that it should know nothing about), and specify
that we’ll be getting JSON data back as the response.

 Finally, in the success callback for the request F, we update the progress bar with
the completion percentage (which was returned as the response and passed to the
callback). If the value has reached 100, indicating that the operation has completed,
we stop the timer by calling our own stop method.

 After that, implementing the remaining methods will seem easy. In the if part of
the high-level conditional statement (the one that checked to see if the first parame-
ter was a string or not), we write this:

switch (settings) {
 case 'stop':
 this.each(function(){
 window.clearInterval($(this).data('autoProgressbar-interval'))
 });
 break;
 case 'value':
 if (value == null) return this.progressbar('value');
 this.progressbar('value',value);
 break;
 case 'destroy':
 this.autoProgressbar('stop');
 this.progressbar('destroy');
 break;
 default:
 break;
}

In this code fragment, we switch to different processing algorithms based on the string
in the settings parameter B, which should contain one of: stop, value, or destroy.

Switches on
string value

B
Implements
stop method

C

Implements
value method

Implements
destroy method

Does nothing for
unsupported
strings
Download from Library of Wow! eBook <www.wowebook.com>

367Progress bars
 For stop we want to kill off all the interval timers that we created for the ele-
ments in the wrapped set C. We retrieve the timer handle, which we conveniently
stored as data on the element, and pass it to the window.clearInterval() method
to stop the timer.

 If the method was specified as value, we simply pass the value along to the value
method of the progress bar widget.

 When destroy is specified, we want to stop the timer, so we just call our own
stop method (why copy and paste the same code twice?), and then we destroy the
progress bar.

 And we’re done! Note how whenever we return from any call to our method, we
return the wrapped set so that our plugin can participate in jQuery chaining just like
any other chainable method.

 The full implementation of this plugin can be found in file chapter11/progress-
bars/jquery.jqia2.autoprogressbar.js.

 Let’s now turn our attention to testing our plugin.

TESTING THE AUTO-PROGRESSBAR PLUGIN

The file chapter11/progressbars/autoprogressbar-test.html contains a test page that
uses our new plugin to monitor the completion progress of a long-running Ajax oper-
ation. In the interest of saving some space, we won’t examine every line of code in that
file, but we will concentrated on the portions relevant to using our plugin.

 First, let’s look at the markup that creates the DOM structures of note:

<div>
 <button type="button" id="startButton" class="green90x24">Start</button>
 (starts a lengthy operation)
</div>

<div>
 <div id="progressBar"></div>
 —
</div>

<div>
 <button type="button" id="stopButton" class="green90x24">Stop</button>
 (stops the progress bar pulse checking)
</div>

This markup creates four primary elements:

A Start button that will start a lengthy operation and use our plugin to monitor
its progress.
A <div> to be transformed into the progress bar.
A to show the completion percentage as text.
A Stop button that will stop the progress bar from monitoring the lengthy
operation.

In action, our test page will look like figure 11.9.
Download from Library of Wow! eBook <www.wowebook.com>

368 CHAPTER 11 jQuery UI widgets: Beyond HTML controls
NOTE Because this example uses server-side Ajax operations, it must be run
from the Tomcat instance that we set up for the example in chapter 8 (note
the 8080 port in the URL). Alternatively, you can run this example remotely
by visiting http://www.bibeault.org/jqia2/chapter11/progressbars/autopro-
gressbar-test.html.

Instrumenting the Start button is the most important operation on this page, and
that’s accomplished with the following script:

$('#startButton').click(function(){
 $.post('/jqia2/lengthyOperation',function(){
 $('#progressBar')
 .autoProgressbar('stop')
 .autoProgressbar('value',100);
 });
 $('#progressBar').autoProgressbar({
 pulseUrl: '/jqia2/checkProgress',
 change: function(event) {
 $('#valueDisplay').text$('#progressBar').autoProgressbar ('value') +

'%');
 }
 });
});

Within the click handler for the Start button, we do two things: kick off the lengthy
operation, and create the auto-progressbar.

 We post to the URL /jqia2/lengthyOperation, which identifies a process on the
server that takes approximately 12 seconds to complete B. We’ll get to the success
callback in a moment, but first let’s skip ahead to the creation of the auto-progressbar.

 We call our new plugin D with values that identify a server-side resource, /jqia2/
checkProgress, which identifies the process that checks the status of our long-run-
ning process and returns the completion percentage as its response. How this is done
on the server is completely dependent upon how the backend of the web application
is written and that’s well beyond the scope of this discussion. (For our example, two
separate servlets are used, using the servlet session to keep track of progress.) The

Figure 11.9 The auto-progressbar is monitoring a long-running operation on the server.

Kicks off the long-
running process

B

C Finalizes
operation

Creates the monitoring
progress barD
Download from Library of Wow! eBook <www.wowebook.com>

http://www.bibeault.org/jqia2/chapter11/progressbars/autoprogressbar-test.html
http://www.bibeault.org/jqia2/chapter11/progressbars/autoprogressbar-test.html

369Autocompleters
change handler for the progress bar causes the onscreen display of the completion
value to be updated.

 Now let’s backtrack to the success handler for the long-running operation C.
When the operation completes, we want to do two things: stop the progress bar, and
make sure that the progress bar reflects that the operation is 100 percent done. We
easily accomplish this by first calling the stop method of our plugin, followed by a call
to the value method. The change handler for the progress bar will update the text
display accordingly.

 We’ve created a really useful plugin using a progress bar. Now let’s discuss some
styling tips for progress bars.

11.3.4 Styling progress bars

When an element is transformed into a progress bar, the class name ui-progressbar
is added to it, and the <div> element created within this element to depict the value is
classed with ui-progressbar-value. We can use these class names for CSS rules that
augment the style of these elements as we see fit.

 For example, you might want to fill the background of the inner element with an
interesting pattern, rather than the theme’s solid color:

.ui-progressbar-value {
 background-image: url(interesting-pattern.png);
}

Or you could make the progress bar even more dynamic by supplying an animated
GIF image as the background image.

 Progress bars calm the psyches of our users by letting them know how their opera-
tions are progressing. Next, let’s delight our users by limiting how much they need to
type to find what they’re looking for.

11.4 Autocompleters
The contemporary acronym TMI, standing for “too much information,” is usually used
in conversation to mean that a speaker has revealed details that are a tad too intimate
for the listening audience. In the world of web applications, “too much information”
refers not to the nature of the information, but the amount.

 Although having the vast amount of information that’s available on the web at our
fingertips is a great thing, it really is possible to have too much information—it’s easy
to get overwhelmed when fed a deluge of data. Another colloquial expression that
describes this phenomenon is “drinking from a fire hose.”

 When designing user interfaces, particularly those for web applications, which have
the ability to access huge amounts of data, it’s important to avoid flooding a user with
too much data or too many choices. When presenting large data sets, such as report
data, good user interfaces give the user tools to gather data in ways that are useful and
helpful. For example, filters can be employed to weed out data that isn’t relevant to the
user, and large sets of data can be paged so that they’re presented in digestible chunks.
This is exactly the approach taken by our DVD Ambassador example.
Download from Library of Wow! eBook <www.wowebook.com>

370 CHAPTER 11 jQuery UI widgets: Beyond HTML controls
 As an example, let’s consider a data set that we’ll be using in this section: a list of
DVD titles, which is a data set consisting of 937 titles. It’s a large set of data, but still a
small slice of larger sets of data (such as the list of all DVDs ever made, for example).

 Suppose we wished to present this list to users so that they could pick their favorite
flick. We could set up an HTML <select> element that they could use to choose a
title, but that would hardly be the friendliest thing to do. Most usability guidelines rec-
ommend presenting no more than a dozen or so choices to a user at a time, let alone
many hundreds! And usability concerns aside, how practical is it to send such a large
data set to the page each time it’s accessed by potentially hundreds, thousands, or
even millions of users on the web?

 jQuery UI helps us solve this problem with an autocomplete widget—a control that
acts a lot like a <select> dropdown, but filters the choices to present only those that
match what the user is typing into a control.

11.4.1 Creating autocomplete widgets

The jQuery autocomplete widget augments an existing <input> text element to fetch
and present a menu of possible choices that match whatever the user types into the
input field. What constitutes a match depends on the options we supply to the widget
upon creation. Indeed, the autocomplete widget gives us a great deal of flexibility in
how to provide the list of possible choices, and how to filter them given the data sup-
plied by the user.

 The syntax for the autocomplete() method is as follows:

Command syntax: autocomplete

autocomplete(options)
autocomplete('disable')
autocomplete('enable')
autocomplete('destroy')
autocomplete('option',optionName,value)
autocomplete('search',value)
autocomplete('close')
autocomplete('widget')
Transforms the <input> elements in the wrapped set into an autocomplete control.

Parameters
options (Object) An object hash of the options to be applied to the elements in the

wrapped set, as described in table 11.7, making them autocompleters.
'disable' (String) Disables autocomplete controls.
'enable' (String) Re-enables disabled autocomplete controls.
'destroy' (String) Reverts any elements transformed into autocomplete controls to

their previous state.

'option' (String) Allows option values to be set on all elements of the wrapped set, or
to be retrieved from the first element of the wrapped set (which should be an
autocomplete element), based upon the remaining parameters. If specified,
at least the optionName parameter must also be provided.
Download from Library of Wow! eBook <www.wowebook.com>

371Autocompleters
For such a seemingly complex control, the list of options available for autocomplete
controls is rather sparse, as described in table 11.7.

Command syntax: autocomplete (continued)

optionName (String) The name of the option (see table 11.7) whose value is to be set or
returned. If a value parameter is provided, that value becomes the option’s
value. If no value parameter is provided, the named option’s value is
returned.

value (Object) The value to be set for the option identified by the optionName
parameter (when used with 'option'), or the search term (if used with
'search').

'search' (String) Triggers a search event using the specified value, if present, or the
content of the control. Supply an empty string to see a menu of all
possibilities.

'close' (String) Closes the autocomplete menu, if open.
'widget' (String) Returns the autocomplete element (the one annotated with the ui-

autocomplete class name).

Returns
The wrapped set, except for the case where an option, element, search result, or handle value is
returned.

Table 11.7 Options for the jQuery UI autocompleters

Option Description In
Lab?

change (Function) Specifies a function to be established on the autocompleters as an event han-
dler for autocompletechange events. See the description of the autocomplete events in
table 11.8 for details on the information passed to this handler.

✓

close (Function) Specifies a function to be established on the autocompleters as an event han-
dler for autocompleteclose events. See the description of the autocomplete events in
table 11.8 for details on the information passed to this handler.

✓

delay (Number) The number of milliseconds to wait before trying to obtain the matching values
(as specified by the source option). This can help reduce thrashing when non-local data
is being obtained by giving the user time to enter more characters before the search is
initiated.
If omitted, the default is 300 (0.3 seconds).

✓

disabled (Boolean) If specified and true, the widget is initially disabled.

focus (Function) Specifies a function to be established on the autocompleters as an event han-
dler for autocompletefocus events. See the description of the autocomplete events in
table 11.8 for details on the information passed to this handler.

✓

minLength (Number) The number of characters that must be entered before trying to obtain the
matching values (as specified by the source option). This can prevent too large a value
set from being presented when a few characters isn’t enough to whittle the set down to a
reasonable level.
The default value is 1 character.

✓

open (Function) Specifies a function to be established on the autocompleters as an event han-
dler for autocompleteopen events. See the description of the autocomplete events in
table 11.8 or details on the information passed to this handler.

✓

Download from Library of Wow! eBook <www.wowebook.com>

372 CHAPTER 11 jQuery UI widgets: Beyond HTML controls
As you might have guessed, an Autocompleters Lab (shown in figure 11.10) has been
provided. Load it from chapter11/autocompleters/lab.autocompleters.html and fol-
low along as you review the options.

NOTE In this Lab, the URL variant of the source option requires the use of
server-side Ajax operations. It must be run from the Tomcat instance we set
up for the example in chapter 8 (note the 8080 port in the URL). Alterna-
tively, you can run this example remotely by visiting http://www.bibeault.org/
jqia2/chapter11/autocompleters/lab.autocompleters.html.

Except for source, these options are all fairly self-explanatory. Leaving the source
option at its default setting, use the Autocompleters Lab to observe the events that
transpire and the behavior of the minLength and delay options until you feel that you
have grasped them.

 Now let’s see what it takes to provide source data for this widget.

11.4.2 Autocomplete sources

The autocomplete widget gives us a lot of flexibility for providing the data values that
match whatever the user types in.

 Source data for the autocompleters takes the form of an array of candidate items,
each of which has two properties:

A value property that represents the actual values. These are the strings that
are matched against as the user types into the control, and they’re the values
that will be injected into the control when a menu item is selected.
A label property that represents the value, usually as a shorter form. These
strings are what is displayed in the autocomplete menu, and they don’t partici-
pate in the default matching algorithms.

search (Function) Specifies a function to be established on the autocompleters as an event han-
dler for autocompletesearch events. See the description of the autocomplete events in
table 11.8 for details on the information passed to this handler.

✓

select (Function) Specifies a function to be established on the autocompleters as an event han-
dler for autocompleteselect events. See the description of the autocomplete events in
table 11.8 for details on the information passed to this handler.

✓

source (String|Array|Function) Specifies the manner in which the data that matches the input
data is obtained. A value must be provided or the autocomplete widget won’t be created.
This value can be a string representing the URL of a server resource that will return
matching data, an array of local data from which the value will be matched, or a function
that serves as a general callback from providing the matching values.
See section 11.4.2 for more information on this option.

✓

Table 11.7 Options for the jQuery UI autocompleters (continued)

Option Description In
Lab?
Download from Library of Wow! eBook <www.wowebook.com>

http://www.bibeault.org/jqia2/chapter11/autocompleters/lab.autocompleters.html
http://www.bibeault.org/jqia2/chapter11/autocompleters/lab.autocompleters.html

373Autocompleters
This data can come from a variety of sources.
 For cases where the data set is fairly small (dozens, not hundreds or more), the

data can be provided as a local array. The following example is taken from the Auto-
completers Lab and provides candidate data that uses usernames as labels and full
names as the values:

var sourceObjects = [
 { label: 'bear', value: 'Bear Bibeault'},
 { label: 'yehuda', value: 'Yehuda Katz'},
 { label: 'genius', value: 'Albert Einstein'},
 { label: 'honcho', value: 'Pointy-haired Boss'},
 { label: 'comedian', value: 'Charlie Chaplin'}
];

When displayed, the labels (usernames) are what appear in the autocomplete menu,
but matching is performed on the values (full names), and the value is what is set into
the control upon selection.

 This is handy when we want to represent longer data with shorter values in the
menus, but for many cases, perhaps even most, the label and the value will be the

Figure 11.10 The jQuery UI Autocompleters Lab shows us how a large result set can be narrowed down
as more data is entered.
Download from Library of Wow! eBook <www.wowebook.com>

374 CHAPTER 11 jQuery UI widgets: Beyond HTML controls
same. For these common cases, jQuery UI lets us specify the data as an array of strings,
and takes the string value to be both the label and the value.

TIP When providing objects, if only one of label or value is specified, the
provided data is automatically used for both label and value.

The entries don’t have to be in any particular order (such as sorted) for the widget to
work correctly, and matching entries will be displayed in the menu in the order that
they appear within the array.

 When local data is used, the matching algorithm is such that any candidate value
that contains what the user has typed, called the term, is deemed to match. If this isn’t
what you want—let’s say you only want to match values that begin with the term—fear
not! There are two more-general ways to supply the source data that give us complete
control over the matching algorithm.

 For the first of these schemes, the source can be specified as the URL of a server-
side resource that returns a response containing the data values that match the term,
which is passed to the resource as a request parameter named term. The returned
data should be a JSON response that evaluates to one of the formats supported for
local data, usually an array of strings.

 Note that this variant of source is expected to perform the search and return only
the matching elements—no further processing of the data will take place. Whatever
values are returned are displayed in the autocomplete menu.

 When we need maximum flexibility, another scheme can be used: a callback func-
tion can be supplied as the source option, and it’s called whenever data is needed by
the widget. This callback is invoked with two parameters:

An object with a single property, term, that contains the term to be matched.
A callback function to be called, which is passed the matching results to be dis-
played. This set of results can be either of the formats accepted as local data,
usually an array of strings.

This callback mechanism offers the most flexibility, because we can use whatever
mechanisms and algorithms we want to turn the term into a set of matching elements.
A skeleton for how to use this variant of source is as follows:

$('#control').autocomplete({
 source: function(request,response) {
 var term = request.term;
 var results;

 // algorithm here to fill results array

 response(results);
 }
});

As with the URL variant of source, the result should contain only those values that are
to be displayed in the autocomplete menu.
Download from Library of Wow! eBook <www.wowebook.com>

375Autocompleters
 Play around with the source options in the Autocompleters Lab. A few things to
note about the different source options in the Lab:

The local string option provides a list of 79 values, all of which begin with the
letter F.
The local object option provides a short list of usernames for labels, and full
names as values. Note how the matching occurs on the values, not the labels.
(Hint: enter the letter b.)
For the URL variant, the backend resource only matches values that begin with
the term. It uses a different algorithm than when local values are supplied (in
which the term can appear anywhere within the string). This difference is inten-
tional and is intended to emphasize that the backend resource is free to employ
whatever matching criteria it likes.
The callback variant simply returns the entire value set of 79 F-titles provided by
the local option. Make a copy of the Lab page, and modify the callback to play
around with whatever algorithm you’d like to filter the returned values.

Various events are triggered while an autocomplete widget is doing its thing. Let’s see
what those are.

11.4.3 Autocomplete events

During an autocomplete operation, a number of custom events are triggered, not
only to inform us of what’s going on, but to give us a chance to cancel certain aspects
of the operation.

 As with other jQuery UI custom events, two parameters are passed to the event
handlers: the event and a custom object. This custom object is empty except for auto-
completefocus, autocompletechange, and autocompleteselect events. For the focus,
change, and select events, this object contains a single property named item, which in
turn contains the properties label and value, representing the label and value of
the focused or selected value. For all the event handlers, the function context (this)
is set to the <input> element.

Table 11.8 Events for the jQuery UI autocompleters

Event Option Description

autocompletechange change Triggered when the value of the <input> element is
changed based upon a selection. When triggered, this
event will always come after the autocompleteclose
event is triggered.

autocompleteclose close Triggered whenever the autocomplete menu closes.

autocompletefocus focus Triggered whenever one of the menu choices receives
focus. Unless canceled (for example, by returning
false), the focused value is set into the <input> ele-
ment.
Download from Library of Wow! eBook <www.wowebook.com>

376 CHAPTER 11 jQuery UI widgets: Beyond HTML controls
The Autocompleters Lab uses all of these events to update the console display as the
events are triggered.

 Now let’s take a look at dressing up our autocompleters.

11.4.4 Autocompleting in style

As with the other widgets, autocompleters inherit style elements from the jQuery UI
CSS theme via the assignment of class names to the elements that compose the auto-
completer.

 When an <input> element is transformed into an autocompleter, the class ui-
autocomplete-input is added to it.

 When the autocomplete menu is created, it’s created as an unordered list ele-
ment () with class names ui-autocomplete and ui-menu. The values within the
menu are created as elements with class name ui-menu-item. And within those
list items, anchor elements are created that get the ui-state-hover class when hov-
ered over.

 We can use these classes to hook our own styles onto the autocomplete elements.
 For example, let’s say that we want to give the autocomplete menu a slight level of

transparency. We could do that with this style rule:

.ui-autocomplete.ui-menu { opacity: 0.9; }

Be careful with that. Make it too transparent and it becomes unreadable.
 The autocomplete menu can end up pretty big if there are lots of matches. If we’d

like to fit more entries in less space, we can shrink the font size of the entries with a
rule like this:

.ui-autocomplete.ui-menu .ui-menu-item { font-size: 0.75em; }

Note that ui-menu-item isn’t a class name specific to the autocompleter (if it were, it
would have the text autocomplete within it), so we qualify it with ui-autocomplete
and ui-menu to make sure we don’t inadvertently apply the style to other elements on
the page.

autocompleteopen open Triggered after the data has been readied and the menu
is about to open.

autocompletesearch search Triggered after any delay and minLength criteria have
been met, just before the mechanism specified by
source is activated. If canceled, the search operation is
aborted.

autocompleteselect select Triggered when a value is selected from the autocom-
plete menu. Canceling this event prevents the value from
being set into the <input> element (but doesn’t pre-
vent the menu from closing).

Table 11.8 Events for the jQuery UI autocompleters (continued)

Event Option Description
Download from Library of Wow! eBook <www.wowebook.com>

377Date pickers
 What if we really wanted to make hovered items stand out? We could change their
border to red:

.ui-autocomplete.ui-menu a.ui-state-hover { border-color: red; }

Autocompleters let us let our users hone down large datasets quickly, preventing
information overload. Now let’s see how we can simplify yet another long-standing
pain point in data entry: dates.

11.5 Date pickers
Entering date information has been another traditional source of anxiety for web
developers and frustration for end users. A number of approaches have been tried
using the basic HTML 4 controls, all of which have their drawbacks.

 Many sites will present the user with a simple text input into which the date must
be entered. But even if we include instructions such as, “Please enter the date in dd/
mm/yyyy format”, people still tend to get it wrong. And so, apparently, do some web
developers. How many times have you wanted to throw your computer across the
room upon discovering, after 15 failed attempts, that you had to include leading
zeroes when entering a single digit date or month value?

 Another approach uses three dropdowns, one each for month, day, and year.
Although this vastly reduces the possibility of user error, it’s clumsy and requires a lot
of clicks to choose a date. And developers still need to guard against entries such as
February 31.

 When people think of dates, they think of calendars, so the most natural way to
have them enter a date is to let them pick it from a calendar display.

 Frequently called calendar controls or date pickers, scripts to create these controls
have been around for some time, but they’ve generally been cantankerous to config-
ure, and awkward to use on pages, including trying to match styling. Leave it to jQuery
and jQuery UI to make it easy with jQuery UI datepickers.

11.5.1 Creating jQuery datepickers

Creating a jQuery datepicker is easy, especially if you take the default values. It may
only seem complex because there are lots of options for configuring the datepicker in
the manner that best suits our applications.

 As with other jQuery UI elements, the datepicker() exposes the basic set of UI
methods and also offers some specific methods to control the element after creation:
Download from Library of Wow! eBook <www.wowebook.com>

378 CHAPTER 11 jQuery UI widgets: Beyond HTML controls

Command syntax: datepicker

datepicker(options)
datepicker('disable')
datepicker('enable')
datepicker('destroy')
datepicker('option',optionName,value)
datepicker('dialog',dialogDate,onselect,options,position)
datepicker('isDisabled')
datepicker('hide',speed)
datepicker('show')
datepicker('getDate')
datepicker('setDate',date)
datepicker('widget')
Transforms the <input>, <div>, and elements in the wrapped set into a datepicker
control. For <input> elements, the datepickeris displayed on focus; for other elements, creates
an inline datepicker.

Parameters
options (Object) An object hash of the options to be applied to the elements in the

wrapped set, as described in table 11.9, making them datepickers.
'disable' (String) Disables datepicker controls.
'enable' (String) Re-enables disabled datepicker controls.
'destroy' (String) Reverts any elements transformed into datepicker controls to their

previous state.
'option' (String) Allows option values to be set on all elements of the wrapped set,

or to be retrieved from the first element of the wrapped set (which should
be a datepicker element), based upon the remaining parameters. If
specified, at least the optionName parameter must also be provided.

optionName (String) The name of the option (see table 11.9) whose value is to be set or
returned. If a value parameter is provided, that value becomes the
option’s value. If no value parameter is provided, the named option’s
value is returned.

value (Object) The value to be set for the option identified by the optionName
parameter.

'dialog' (String) Displays a jQuery UI dialog box containing a datepicker.
dialogDate (String|Date) Specifies the initial date for the datepicker in the dialog box

as a string in the current date format (see the description of the
dateFormat option in table 11.9) or a Date instance.

onselect (Function) If specified, defines a callback to be invoked with the date text
and datepicker instance when a date is selected.

position (Array|Event) An array specifying the position of the dialog box as
[left,top], or a mouseevent Event instance from which the position will
be determined.
If omitted, the dialog box is centered in the window.

'isDisabled' (String) Returns true or false reporting whether the datepicker is
currently disabled or not.

'hide' (String) Closes the datepicker.
Download from Library of Wow! eBook <www.wowebook.com>

379Date pickers
Seemingly to make up for the Spartan set of options available for autocompleters,
datepickers offer a dizzying array of options that make it the most configurable widget
in the jQuery UI set. Don’t get too overwhelmed; frequently the defaults are just what
we want. But the options are there in case we need to change the way the datepicker
works to better fit into our sites.

 But all those options do make for a rather complicated Datepickers Lab page—as
shown in figure 11.11. You’ll find it in file chapter11/datepickers/lab.datepick-
ers.html.

 As you work your way through the generous set of options described in table 11.9,
try them out in the Datepickers Lab.

Command syntax: datepicker (continued)

speed (String|Number) One of slow, normal, or fast, or a value in milliseconds
that controls the animation closing the datepicker.

'show' (String) Opens the datepicker.
'getDate' (String) Returns the currently selected date for the datepicker. This value

can be null if no value has yet been selected.
'setDate' (String|Date) Sets the specified date as the current date of the datepicker.
date (String|Date) Sets the date for the datepicker. This value can be a Date

instance, or a string that identifies an absolute or relative date. Absolute
dates are specified using the date format for the control (specified by the
dateFormat option, see table 11.9), or a string of values specifying a date
relative to today. The values are numbers followed by m for month, d for
day, w for week, and y for year.
For example, tomorrow is +1d, and a week and a half could be +1w +4d.
Both positive and negative values can be used.

'widget' (String) The datapicker widget element; the one annotated with the ui-
datapicker class name.

Returns
The wrapped set, except for the cases where values are returned, as described above.
Download from Library of Wow! eBook <www.wowebook.com>

380 CHAPTER 11 jQuery UI widgets: Beyond HTML controls
Figure 11.11 The jQuery UI Datepickers Lab helps us grasp the copious variety of options available for
datepicker controls (too many to fit into one screenshot).
Download from Library of Wow! eBook <www.wowebook.com>

381Date pickers

Table 11.9 Options for the jQuery UI datepickers

Option Description In
Lab?

altField (Selector) Specifies a jQuery selector for a field that’s to also be
updated with any date selections. The altFormat option can be
used to set the format for this value. This is quite useful for setting
date values into a hidden input element to be submitted to the server,
while displaying a more user-friendly format to the user.

✓

altFormat (String) When an altField is specified, provides the format for the
value to be written to the alternate element. The format of this value
is the same as for the $.datepicker.formatDate() utility func-
tion—see its description in section 11.5.2 for details.

✓

appendText (String) A value to be placed after the <input> element, intended to
show instructions to the user. This value is displayed within a
element created with the class name ui-datepicker-append,
and can contain HTML markup.

✓

autoSize (Boolean) If true, the size of the <input> element is adjusted to
accommodate the datepicker’s date format as set with the
dateFormat option. If omitted, no resize takes place.

✓

beforeShow (Function) A callback that’s invoked just before a datepicker is dis-
played, with the <input> element and datepicker instance passed
as parameters. This function can return an options hash used to mod-
ify the datepicker.

✓

beforeShowDay •(Function) A callback that’s invoked for each day in the datepicker
just before it’s displayed, with the date passed as the only parameter.
This can be used to override some of the default behavior of the day
elements. This function must return a three-element array, as follows:

• [0]—true to make the date selectable, false otherwise
• [1]—A space-delimited string of CSS class names to be applied,

or an empty string to apply none
• [2]—An optional string to apply a tooltip to the day element

buttonImage (String) Specifies the path to an image to be displayed on the button
enabled by setting the showOn option to one of button or both. If
buttonText is also provided, the button text becomes the alt attri-
bute of the button.

✓

buttonImageOnly (Boolean) If true, specifies that the image specified by
buttonImage is to appear standalone (not on a button). The
showOn option must still be set to one of button or both for the
image to appear.

✓

buttonText (String) Specifies the caption for the button enabled by setting the
showOn option to one of button or both. If buttonImage is also
specified, this text becomes the alt attribute of the image.

✓

calculateWeek (Function) A custom function to calculate and return the week number
for a date passed as the lone parameter. The default implementation
is that provided by the $.datepicker.iso8601Week() utility func-
tion.
Download from Library of Wow! eBook <www.wowebook.com>

382 CHAPTER 11 jQuery UI widgets: Beyond HTML controls
changeMonth (Boolean) If true, a month dropdown is displayed, allowing the user
to directly change the month without using the arrow buttons to step
through them. If omitted, no dropdown is displayed.

✓

changeYear (Boolean) If true, a year dropdown is displayed, allowing the user to
directly change the year without using the arrow buttons to step
through them. If omitted, no dropdown is displayed.

✓

closeText (String) If the button panel is displayed via the showButtonPanel
option, specifies the text to replace the default caption of Done for
the close button.

✓

constrainInput (Boolean) If true (the default), text entry into the <input> element
is constrained to characters allowed for the date format of the control
(see dateFormat).

✓

currentText (String) If the button panel is displayed via the showButtonPanel
option, specifies the text to replace the default caption of Today for
the current button.

✓

dateFormat (String) Specifies the date format to be used. See section 11.5.2 for
details.

✓

dayNames (Array) A 7-element array providing the full day names with the 0th ele-
ment representing Sunday. Can be used to localize the control. The
default set is the full day names in English.

dayNamesMin (Array) A 7-element array providing the minimal day names with the
0th element representing Sunday, used as column headers. Can be
used to localize the control. The default set is the first two letters of
the English day names.

dayNamesShort (Array) A 7-element array providing the short day names with the 0th
element representing Sunday. Can be used to localize the control. The
default set is the first three letters of the English day names.

defaultDate (Date|Number|String) Sets the initial date for the control, overriding
the default value of today, if the <input> element has no value. This
can be a Date instance, the number of days from today, or a string
specifying an absolute or relative date. See the description of the
date parameter in the method syntax for the datapicker()
method for more details.

✓

disabled (Boolean) If specified and true, the widget is initially disabled.

duration (String|Number) Specifies the speed of the animation that makes the
datepicker appear. Can be one of slow, normal, (the default) or
fast, or the number of milliseconds for the animation to span.

✓

firstDay (Number) Specifies which day is considered the first day of the week,
and will be displayed as the left-most column. Sunday (the default) is
0, Saturday is 6.

✓

gotoCurrent (Boolean) If true, the current day link is set to the selected date,
overriding the default of today.

✓

Table 11.9 Options for the jQuery UI datepickers (continued)

Option Description In
Lab?
Download from Library of Wow! eBook <www.wowebook.com>

383Date pickers
hideIfNoPrevNext (Boolean) If true, hides the next and previous links (as opposed to
merely disabling them) when they aren’t applicable, as determined by
the settings of the minDate and maxDate options. Defaults to
false.

✓

isRTL (Boolean) If true, the localizations specify a right-to-left language.
Used by localized version of this control. Defaults to false.

maxDate (Date|Number|String) Sets the maximum selectable date for the con-
trol. This can be a Date instance, the number of days from today, or a
string specifying an absolute or relative date. See the description of
the date parameter in the datepicker setDate method syntax for
more details.

✓

minDate (Date|Number|String) Sets the minimum selectable date for the con-
trol. This can be a Date instance, the number of days from today, or a
string specifying an absolute or relative date. See the description of
the date parameter in the method syntax for the datapicker()
method for more details.

✓

monthNames (Array) A 12-element array providing the full month names with the 0th
element representing January. Can be used to localize the control.
The default set is the full month names in English.

monthNamesShort (Array) A 12-element array providing the short month names with the
0th element representing January. Can be used to localize the control.
The default set is the first three letters of the English month names.

✓

navigationAsDateFormat (Boolean) If true, the navigation links for nextText, prevText,
and currentText are passed through the
$.datepicker.formatDate() function prior to display. This
allows date formats to be supplied for those options that get replaced
with the relevant values. Defaults to false.

✓

nextText (String) Specifies the text to replace the default caption of Next for the
next month navigation link. Note that the ThemeRoller replaces this
text with an icon.

✓

numberOfMonths (Number|Array) The number of months to show in the datepicker, or a
2-element array specifying the number of rows and columns for a grid
of months. For example, [3,2] will display 6 months in a 3-row by 2-
column grid. By default, a single month is shown.

✓

onChangeMonthYear (Function) A callback that’s invoked when the datepicker moves to a
new month or year, with the selected year, month (1-based), and
datepicker instance passed as parameters, and the function context
is set to the input field element.

onClose (Function) A callback invoked whenever a datepicker is closed, passed
the selected date as text (the empty string if there is no selection),
and the datepicker instance, and the function context is set to the
input field element.

Table 11.9 Options for the jQuery UI datepickers (continued)

Option Description In
Lab?
Download from Library of Wow! eBook <www.wowebook.com>

384 CHAPTER 11 jQuery UI widgets: Beyond HTML controls
onSelect (Function) A callback invoked whenever a date is selected, passed the
selected date as text (the empty string if there is no selection), and
the datepicker instance, and the function context is set to the input
field element.

prevText (String) Specifies the text to replace the default caption of Prev for the
previous month navigation link. (Note that the ThemeRoller replaces
this text with an icon.)

✓

selectOtherMonths (Boolean) If true, days shown before or after the displayed month(s)
are selectable. Such days aren’t displayed unless the
showOtherMonths option is true. By default, the days aren’t
selectable.

✓

shortYearCutoff (Number|String) If a number, specifies a value between 0 and 99
years before which any 2-digit year values will be considered to belong
to the previous century. For example, if specified as 50, the year 39
would be considered to be 2039, and the year 52 would be inter-
preted as 1952.
If a string, the value undergoes a numeric conversion and is added to
the current year.
The default is +10 which represents 10 years from the current year.

showAnim (String) Sets the name of the animation to be used to show and hide
the datepicker. If specified, must be one of show (the default),
fadeIn, slideDown, or any of the jQuery UI show/hide animations.

✓

showButtonPanel (Boolean) If true, a button panel at the bottom of the datepicker is
displayed, containing current and close buttons. The caption of these
buttons can be provided via the currentText and closeText
options. Defaults to false.

✓

showCurrentAtPos (Number) Specifies the 0-based index, starting at the upper left, of
where the month containing the current date should be placed within
a multi-month display. Defaults to 0.

?✓

showMonthAfterYear (Boolean) If true, the positions of the month and year are reversed in
the header of the datepicker. Defaults to false.

✓

showOn (String) Specifies what triggers the display of the datepicker as one of
focus, button, or both.
focus (default) causes the datepicker to display when the <input>
element gains focus, whereas button causes a button to be created
after the <input> element (but before any appended text) that trig-
gers the datepicker when clicked. The button’s appearance can be var-
ied with the buttonText, buttonImage, and buttonImageOnly
options.
both causes the trigger button to be created, and for focus events to
also trigger the datepicker.

✓

showOptions (Object) When a jQuery UI animation is specified for the showAnim
option, provides an option hash to be passed to that animation.

Table 11.9 Options for the jQuery UI datepickers (continued)

Option Description In
Lab?
Download from Library of Wow! eBook <www.wowebook.com>

385Date pickers
Still with us?
 Although that may seem rather overwhelming when taken as a whole, the vast

majority of options for the datepickers are used only when needed to override default
values, which are usually exactly what we want. It’s not uncommon to create datepick-
ers while specifying no options at all.

11.5.2 Datepicker date formats

A number of the datepicker options listed in table 11.9 employ a string that represents
a date format. These are strings that specify a pattern for formatting and parsing dates.
Character patterns within the string represent parts of dates (for example, y for year,
and MM for full month name) or simply template (literal) text.

 Table 11.10 shows the character patterns used within date format patterns and
what they represent.

showOtherMonths (Boolean) If true, dates before or after the first and last days of the
current month are displayed. These dates aren’t selectable unless
the selectOtherMonths option is also set to true. Defaults to
false.

✓

showWeek (Boolean) If true, the week number is displayed in a column to the
left of the month display. The calculateWeek option can be used to
alter the manner in which this value is determined. Defaults to
false.

✓

stepMonths (Number) Specifies how many months to move when one of the month
navigation controls is clicked. By default, a single month is stepped.

✓

weekHeader (String) The text to display for the week number column, overriding the
default value of Wk, when showWeek is true.

✓

yearRange (String) When changeYear is true, specifies limits on which years
are displayed in the dropdown in the form from:to. The values can
be absolute or relative (for example: 2005:+2, for 2005 through 2
years from now). The prefix c can be used to make relative values off-
set from the selected year rather than the current year (example: c-
2:c+3).

✓

yearSuffix (String) Text that’s displayed after the year in the datepicker header. ✓

Table 11.10 Date format character patterns

Patterns Description

d Date within month without leading zeroes

dd 2-digit date within month with leading zeroes for values less than 10

o Day of the year without leading zeroes

Table 11.9 Options for the jQuery UI datepickers (continued)

Option Description In
Lab?
Download from Library of Wow! eBook <www.wowebook.com>

386 CHAPTER 11 jQuery UI widgets: Beyond HTML controls
The datepicker defines some well-known date format patterns as constant values, as
shown in table 11.11.

 We’ll be addressing these patterns again when we discuss the datepicker utility
functions in section 11.5.4.

 Now let’s turn our attention to the events that datepickers trigger.

oo 3-digit day within the year with leading zeroes for values less than 100

D Short day name

DD Full day name

m Month of the year with no leading zeroes, where January is 1

mm 2-digit month within the year with leading zeroes for values less than 10

M Short month name

MM Full month name

y 2-digit year with leading zeroes for values less than 10

yy 4-digit year

@ Number of milliseconds since January 1, 1970

! Number of 100 ns ticks since January 1, year 1

'' Single quote character

'...' Literal text (quoted with single quotes)

Anything else Literal text

Table 11.10 Date format character patterns (continued)

Patterns Description

Constant Pattern

$.datepicker.ATOM yy-mm-dd

$.datepicker.COOKIE D, dd M yy

$.datepicker.ISO_8601 yy-mm-dd

$.datepicker.RFC_822 D, d M y

$.datepicker.RFC_850 DD, dd-M-y

$.datepicker.RFC_1036 D, d M y

$.datepicker.RFC_1123 D, d M yy

$.datepicker.RFC_2822 D, d M yy

$.datepicker.RSS D, d M y

$.datepicker.TICKS !

$.datepicker.TIMESTAMP @

$.datepicker.W3C yy-mm-dd Table 11.11 Date format
pattern constants
Download from Library of Wow! eBook <www.wowebook.com>

387Date pickers
11.5.3 Datepicker events

Surprise! There aren’t any!
 The datepicker code in jQuery UI 1.8 is some of the oldest in the code base, and it

hasn’t been updated to adhere to the modern event-triggering conventions that the
other widgets follow. Expect this to change in a future version of jQuery UI, to the
point that the jQuery UI roadmap (which you can find at http://wiki.jqueryui.com/
Roadmap) states that the widget will be completely rewritten for version 2.0.

 For now, the options that allow us to specify callbacks when interesting things hap-
pen to a datepicker are beforeShow, beforeShowDay, onChangeMonthYear, onClose,
and onSelect. All the callbacks invoked via these options have the <input> elements
set as their function contexts.

 Although datepickers may lack the event triggering that other widgets sport, they
do give us some extras: a handful of useful utility functions. Let’s see what those can
do for us.

11.5.4 Datepicker utility functions

Dates can be cantankerous data types. Just think of the nuances of dealing with years
and leap years, months of differing lengths, weeks that don’t divide into months evenly,
and all the other oddities that plague date information. Luckily for us, the JavaScript
Date implementation handles most of those details for us. But there are a few areas
where it falls short—the formatting and parsing of date values being two of them.

 The jQuery UI datepicker steps up to the plate and fills in those gaps. In the guise
of utility functions, jQuery UI provides the means to not only format and parse date
values, but also to make the large number of datepicker options a bit easier to handle
for pages with more than one datepicker.

 Let’s start there.

SETTING DATEPICKER DEFAULTS

When our datepickers need to use multiple options to get the look and behavior we
want, it seems just plain wrong to cut and paste the same set of options for every
datepicker on the page. We could store the options object in a global variable and ref-
erence it from every datepicker creation, but jQuery UI lets us go one better by provid-
ing a means to simply register a set of default options that supersedes the defined
defaults. This utility function’s syntax is as follows:

Command syntax: $.datepicker.setDefaults

$.datepicker.setDefaults(options)
Sets the options passed as the defaults for all subsequently created datepickers.

Parameters
options (Object) An object hash of the options to be used as the defaults for all

datepickers.

Returns
Nothing.
Download from Library of Wow! eBook <www.wowebook.com>

http://wiki.jqueryui.com/Roadmap
http://wiki.jqueryui.com/Roadmap

388 CHAPTER 11 jQuery UI widgets: Beyond HTML controls
As you’ll recall from the list of datepicker options, some of the options specify formats
for how date values are to be displayed. That’s a useful thing to be able to do in gen-
eral, and jQuery UI makes it available directly to us.

FORMATTING DATE VALUES

We can format any date value using the $.datepicker.formatDate()utility function,
defined as follows:

That sort of obsoletes the date formatter we set up in chapter 7! But that’s OK, we
learned a lot from that exercise, and we can always use it in projects that don’t use
jQuery UI.

 What other tricks does the datepicker have up its sleeve for us?

PARSING DATE STRINGS

As useful as formatting date values into text strings is, it’s just as useful—if not even
more so—to convert text strings into date values. jQuery UI gives us that ability with
the $.datepicker.parseDate() function, whose syntax is as follows:

There’s one more utility function that the datepicker makes available.

Command syntax: $.datepicker.formatDate

$.datepicker.formatDate(format,date,options)
Formats the passed date value as specified by the passed format pattern and options.

Parameters
format (String) The date format pattern string as described in tables 11.10 and 11.11.
date (Date) The date value to be formatted.
options (Object) An object hash of options that supply alternative localization values for

day and month names. The possible options are dayNames, dayNamesShort,
monthNames, and monthNamesShort.
See table 11.9 for details of these options. If omitted, the default English names
are used.

Returns
The formatted date string.

Command syntax: $.datepicker.parseDate

$.datepicker.parseDate(format,value,options)
Converts the passed text value into a date value using the passed format pattern and options.

Parameters
format (String) The date format pattern string as described in tables 11.10 and 11.11.
value (String) The text value to be parsed.
options (Object) An object hash of options that supply alternative localization values for

day and month names, as well as specifying how to handle 2-digit year values. The
possible options are shortYearCutoff, dayNames, dayNamesShort,
monthNames, and monthNamesShort.
See table 11.9 for details of these options. If omitted, the default English names
are used, and the rollover year is +10.

Returns
The parsed date value.
Download from Library of Wow! eBook <www.wowebook.com>

389Tabs
GETTING THE WEEK IN THE YEAR

As a default algorithm for the calculateWeek option, jQuery UI uses an algorithm
defined by the ISO 8601 standard. In the event that we might have some use for this
algorithm outside of a datepicker control, it’s exposed to use as the
$.datepicker.iso8601Week() function:

The ISO 8601 definition of week numbering is such that weeks start on Mondays, and
the first week of the year is the one that contains January 4th (or in other words, the
week containing the first Thursday).

 We’ve seen jQuery UI widgets that allow us to gather data from the user in an intu-
itive manner, so we’re now going to turn our attention to widgets that help us orga-
nize our content. If your eyes are getting bleary at this point, now might be a good
time to sit back for a moment and enjoy a snack; preferably one containing caffeine.

 When you’re ready, let’s forge on ahead to examine one of the most common
organization metaphors on the web—tabs.

11.6 Tabs
Tabs probably need no introduction. As a navigation method, they’ve become ubiqui-
tous on the web, surpassed only by links themselves. Mimicking physical card index
tabs, GUI tabs allow us to quickly flip between sets of content logically grouped at the
same level.

 In the bad old days, switching between tabbed panels required full-page refreshes,
but today we can just use CSS to show and hide elements as appropriate, and even
employ Ajax to fetch hidden content on an as-needed basis.

 As it turns out “just using CSS” turns out to be a fair amount of work to get right, so
jQuery UI gives us a ready-made tabs implementation that, of course, matches the
downloaded UI theme.

11.6.1 Creating tabbed content

Most of the widgets we’ve examined so far take a simple element, such as a <button>,
<div>, or <input>, and transforms it into the target widget. Tabs, by nature, start with
a more complex HTML construct.

 A canonical construct for a tabset with three tabs should follow this pattern:

Command syntax: $.datepicker.iso8601Week

$.datepicker.iso8601Week(date)
Given a date value, calculates the week number as defined by ISO 8601.

Parameters
date (Date) The date whose week number is to be calculated.

Returns
The computed week number.
Download from Library of Wow! eBook <www.wowebook.com>

390 CHAPTER 11 jQuery UI widgets: Beyond HTML controls
<div id="tabset">

 Tab One
 Tab Two
 Tab Three

 <div id="panel1">
 ... content ...
 </div>
 <div id="panel2">
 ... content ...
 </div>
 <div id="panel3">
 ... content ...
 </div>
</div>

This construct consists of a <div> element that contains the entire tabset B, which
consists of two subsections: an unordered list () containing list items () that
will become the tabs C, and a set of <div> elements, one for each corresponding
panel D.

 Each list item that represents a tab contains an anchor element (<a>) that not only
defines the association between the tab and its corresponding panel, but also serves as
a focusable element. The href attribute of these anchors specifies an HTML anchor
hash, useable as a jQuery id selector, for the panel that it’s to be associated with.

 Each tab’s content can alternatively be fetched from the server via an Ajax request
upon first selection. In this case, the href of the anchor element specifies the URL of
the active content, and it isn’t necessary to include a panel in the tabset.

 If we were to create the markup for a three-tab tabset where all the content is
fetched from the server, the markup could be as follows:

<div id="tabset">

 Tab One
 Tab Two
 Tab Three

</div>

In this scenario, three <div> elements serving as panels to hold the dynamic content
will be automatically created. You can control the id values assigned to these panel
elements by placing a title attribute on the anchor. The value of the title, with
spaces replaced by underscores, will be the id of the corresponding panel.

 You can precreate the panel using this id, and the tab will be correctly hooked up
to it, but if you don’t, it will be automatically generated. For example, if we were to
rewrite the third tab as,

Tab Three

Contains tabs and
tab panelsB

C Defines tabs

D Provides
panels
Download from Library of Wow! eBook <www.wowebook.com>

391Tabs
the id value of the corresponding panel would be a_third_panel. If such a panel
already exists, it will be used; otherwise, it will be created.

 Ajax and non-Ajax tabs can be freely mixed in a single tabset.
 Once we have the base markup all squared away, we’ll create the tabset with the

tabs() method, applied to the outer tabset <div> element, whose syntax follows.

Command syntax: tabs

tabs(options)
tabs('disable',index)
tabs('enable',index)
tabs('destroy')
tabs('option',optionName,value)
tabs('add',association,label,index)
tabs('remove',index)
tabs('select',index)
tabs('load',index)
tabs('url',index,url)
tabs('length')
tabs('abort')
tabs('rotate',duration,cyclical)
tabs('widget')
Transforms tabset markup (as specified earlier in this section) into a set of UI tabs.

Parameters
options (Object) An object hash of the options to be applied to the tabset, as

described in table 11.12.
'disable' (String) Disables one or all tabs. If a zero-based index is provided, only the

identified tab is disabled. Otherwise, the entire tabset is disabled.
A backdoor method to disable any set of tabs is to use the data() method
to set a data value of disabled.tabs onto the widget element consisting of
an array of zero-based indexes of the tabs to be disabled. For example,
$('#tabWidget').data('disabled.tabs',[0,3,4]).

'enable' (String) Re-enables a disabled tab or tabset. If a zero-based index is
provided, the identified tab is enabled. Otherwise, the entire tabset is
enabled.
All tabs can be enabled by using the backdoor trick outlined above,
specifying an empty array.

'destroy' (String) Reverts any elements transformed into tab controls to their previous
state.

'option' (String) Allows option values to be set on all elements of the wrapped set, or
to be retrieved from the first element of the wrapped set (which should be a
tab element), based upon the remaining parameters. If specified, at least
the optionName parameter must also be provided.

optionName (String) The name of the option (see table 11.12) whose value is to be set or
returned. If a value parameter is provided, that value becomes the option’s
value. If no value parameter is provided, the named option’s value is
returned.

index (Number) The zero-based index identifying a tab to be operated upon. Used
with disable, enable, remove, select, add, load, and url.
Download from Library of Wow! eBook <www.wowebook.com>

392 CHAPTER 11 jQuery UI widgets: Beyond HTML controls
As might be expected for such a complex widget, there are a fair number of options
(see table 11.12).

 As usual, we’ve provided a Tabs Lab to help you sort through the tabs() method
options. The Lab can be found in file chapter11/tabs/lab.tabs.html, and it’s shown in
figure 11.12.

NOTE Because this Lab uses server-side Ajax operations, it must be run from
the Tomcat instance we set up for the examples in chapter 8 (note the 8080
port in the URL). Alternatively, you can run this Lab remotely by visiting
http://www.bibeault.org/jqia2/chapter11/tabs/lab.tabs.html.

The options available for the tabs() method are shown in table 11.12.

Command syntax: tabs (continued)

'add' (String) Adds a new tab to the tabset. The index parameter specifies the
existing tab before which the new tab will be inserted. If no index is
provided, the tab is placed at the end of the tab list.

association (String) Specifies the association with the panel that will correspond to this
tab. This can be an id selector for an existing element to become the panel,
or the URL of a server-side resource to create an Ajax tab.

label (String) The label to assign to the new tab.
'remove' (String) Removes the indexed tab from the tabset.
'select' (String) Causes the indexed tab to become the selected tab.
'load' (String) Forces a reload of the indexed tab, ignoring the cache.
'url' (String) Changes the association URL for the indexed tab. If the tab isn’t an

Ajax tab, it becomes one.
url (String) The URL to a server-side resource that returns a tab’s panel content.
'length' (String) Returns the number of tabs in the first matched tabset in the

wrapped set.
'abort' (String) Aborts any in-progress Ajax tab-loading operations and any running

animations.
'rotate' (String) Sets the tabs to automatically cycle using the specified duration.
duration (Number) The duration, in milliseconds, between rotations of the tabset.

Pass 0 or null to stop an active rotation.
cycle (Boolean) If true, rotation continues even after a user has selected a tab.

Defaults to false.
'widget' (String) Returns the element serving as the tabs widget, annotated with the

ui-tabs class name.

Returns
The wrapped set, except for the cases where values are returned as described above.
Download from Library of Wow! eBook <www.wowebook.com>

http://www.bibeault.org/jqia2/chapter11/tabs/lab.tabs.html

393Tabs
Figure 11.12 The jQuery UI Tabs Lab page shows us how tabs can be used to organize content into
panels for serial display.
Download from Library of Wow! eBook <www.wowebook.com>

394 CHAPTER 11 jQuery UI widgets: Beyond HTML controls

Table 11.12 Options for the jQuery UI tabs

Option Description In
Lab?

add (Function) Specifies a function to be established on the tabset as an event han-
dler for tabsadd events. See the description of the tab events in table 11.13 for
details on the information passed to this handler.

✓

ajaxOptions (Object) An options hash specifying any additional options to be passed to
$.ajax() during any Ajax load operations for the tabset. See the description of
the $.ajax() method in chapter 8 for details of these options.

cache (Boolean) If true, any content loaded via Ajax will be cached. Otherwise, Ajax
content is reloaded. Defaults to false.

✓

collapsible (Boolean) If true, selecting an already selected tab will cause it to become unse-
lected, resulting in no tab being selected and the pane area collapsing. By
default, clicking on an already selected tab has no effect.

✓

cookie (Object) If provided, specifies that a cookie should be used to remember which
tab was last selected and to restore it upon page load.
The properties of this object are those expected by the cookie plugin: name,
expires (in days), path, domain, and secure.
Requires that the cookie plugin (http://plugins.jquery.com/project/cookie) be
loaded.

✓

disable (Function) Specifies a function to be established on the tabset as an event han-
dler for tabsdisable events. See the description of the tab events in table 11.13
for details on the information passed to this handler.

✓

disabled (Array) An array containing the zero-based indexes of tabs that will be initially dis-
abled. If the selected option is not specified (defaults to 0), having 0 as index
in this array won’t disable the first tab, as it will be selected by default.

✓

enable (Function) Specifies a function to be established on the tabset as an event han-
dler for tabsenable events. See the description of the tab events in table 11.13
for details on the information passed to this handler.

✓

event (String) Specifies the event used to select a tab. Most often this is one of click
(the default) or mouseover, but events such as mouseout can also be specified
(even if a bit strange).

✓

fx (Object) Specifies an object hash to be suitable for use with animate() to be
used when animating the tabs. A duration property can be used to specify the
duration with any value suitable for the animation method: milliseconds, normal
(the default) , slow, or fast. An opacity property can also be specified as a
number from 0 to 1.0.

idPrefix (String) When no title attribute is present on a tab anchor, specifies the prefix
to use when generating a unique id value to assign to the tab panels for dynamic
content. If omitted, the prefix ui-tabs- is used.

load (Function) Specifies a function to be established on the tabset as an event han-
dler for tabsload events. See the description of the tab events in table 11.13 for
details on the information passed to this handler.

✓

Download from Library of Wow! eBook <www.wowebook.com>

http://plugins.jquery.com/project/cookie

395Tabs
We trust that you’ve become experienced enough with the various Lab pages pre-
sented throughout this book to not need any help working through the basic options
in the Tabs Lab. But there are some important nuances we want to make sure you
understand around Ajax tabs, so here are a few Lab exercises that you should do after
playing around with the basic options:

Exercise 1—Bring up the Lab and, leaving all controls in their default state, click
Apply. The Food and Slow tabs are Ajax tabs whose panels aren’t loaded until
the tabs are selected.

Click the Food tab. This tab is simply loaded from an HTML source and
appears instantaneously. But note a tabsload event in the console. This indicates
that the content was loaded from the server.

Click the Flowers tab and then click the Food tab again. Note how another
tabsload event was triggered as the content was loaded again from the server.

panelTemplate (String) The HTML template to use when creating tab panels on the fly. This could
be the result of an add method or automatic creation for an Ajax tab. By default,
the template "<div></div>" is used.

remove (Function) Specifies a function to be established on the tabset as an event han-
dler for tabsremove events. See the description of the tab events in table 11.13
for details on the information passed to this handler.

✓

select (Function) Specifies a function to be established on the tabset as an event han-
dler for tabsselect events. See the description of the tab events in table 11.13 for
details on the information passed to this handler.

✓

selected (Number) The zero-based index of the tab to be initially selected. If omitted, the
first tab is selected. The value -1 can be used to cause no tabs to be initially
selected.

✓

show (Function) Specifies a function to be established on the tabset as an event han-
dler for tabsshow events. See the description of the tab events in table 11.13 for
details on the information passed to this handler.

✓

spinner (String) A string of HTML to be displayed in an Ajax tab that’s fetching remote con-
tent. The default is the string "Loading…". (The embedded
HTML entity is the Unicode character for an ellipsis.)
In order for the spinner to appear, the content of the tabs anchor element must be
a element. For example,
Slow

✓

tabTemplate (String) The HTML template to use when creating new tabs via the add method. If
omitted, the default of "#{label}</
span>" is used.
Within the template, the tokens #{href} and #{label} are replaced with the
values passed to the add method.

Table 11.12 Options for the jQuery UI tabs (continued)

Option Description In
Lab?
Download from Library of Wow! eBook <www.wowebook.com>

396 CHAPTER 11 jQuery UI widgets: Beyond HTML controls
Exercise2 —Reset the Lab. Choose the true option for cache, and click Apply.
Repeat the actions of exercise 1 and note how, this time, the Food tab is only

loaded on its first selection.

Exercise 3—Reset the Lab and, leaving all controls in their default state, click
Apply.

Repeat exercise 1 except click on the Slow tab instead of the Flowers tab. The
Slow tab is loaded from a server-side resource that takes about 10 seconds to
load. Note how the default spinner value of “Loading ...” is displayed during the
lengthy load operation, and how the tabsload event isn’t delivered until the
content has been received.

Exercise 4—Reset the Lab and, choosing the Image value for the spinner option,
click Apply.

Repeat the actions of exercise 3. This supplies the HTML for an ele-
ment that’s displayed in the tab while loading. You can’t miss the effect.

11.6.2 Tab events

There are many reasons that we may want to be notified when users are clicking on
our tabs. For example, we may want to wait to perform some initialization events on
tabbed content until the user actually selects the tab. After all, why do a bunch of work
on content that the user may not even look at? The same goes with loaded content.
There may be tasks we want to perform after the content has been loaded.

 To help us get our hooks into the tabs and tabbed content at the appropriate
times, the events shown in table 11.13 are triggered at interesting times during the life
of the tabset. Each event handler is passed the event instance as the first parameter,
and a custom object as the second, whose properties consist of three elements:

index—The zero-based index of the tab associated with the event
tab—A reference to the anchor element for the tab associated with the event
panel—A reference to the panel element for the tab associated with the event

Table 11.13 Events for jQuery UI tabs

Event Option Description

tabsadd add Triggered when a new tab is added to the tabset.

tabsdisable disable Triggered whenever a tab is disabled.

tabsenable enable Triggered whenever a tab is enabled.

tabsload load Triggered after the content of an Ajax tab is loaded (even if an error
occurs).

tabsremove remove Triggered when a tab is removed.

tabsselect select Triggered when a tab is clicked upon, becoming selected, unless
this callback returns false, in which case the selections is can-
celed.

tabsshow show Triggered when a tabbed panel is shown
Download from Library of Wow! eBook <www.wowebook.com>

397Accordions
As an example, let’s say we wanted to add a class name to all image elements in a
tabbed panel that loaded via Ajax. We could do that with a single tabsload handler
established on the tabset:

$('#theTabset').bind('tabsload',function(event,info){
 $('img',info.panel).addClass('imageInATab');
});

The important points to take away from this small example are

The info.panel property references the panel affected.
The panel’s content has been loaded by the time the tabsload event is trig-
gered.

Now let’s turn our attention to what CSS class names are added to the elements so we
can use them as styling hooks.

11.6.3 Styling tabs

When a tabset is created, the following CSS class names are applied to various partici-
pating elements:

ui-tabs—Added to the tabset element
ui-tabs-nav—Added to the unordered list element housing the tabs
ui-tabs-selected—Added to the list item representing the selected tab
ui-tabs-panel—Added to the tabbed panels

Do you think that the tabs are too big in their default rendition? Shrink them down to
size with a style rules such as this:

ul.ui-tabs-nav { font-size: 0.5em; }

Do you want your selected tabs to really stand out? Try this:

li.ui-tabs-selected a { background-color: crimson; }

Tabs are a great and ubiquitous widget for organizing panels of related content so that
users only see a single panel at a time. But what if they’re a bit too ubiquitous and you
want to achieve the same goal but with a less common look and feel?

 An accordion might be just the widget for you.

11.7 Accordions
Although the term accordion might conjure images of mustached men playing badly
delivered tableside serenades, it’s actually an apt name for the widget that presents
content panels one at a time (just like tabs) in a layout reminiscent of the bellows of
the actual instrument.

 Rather than having a set of tabs across the top of an area that displays the panels,
accordions present choices as a stacked series of horizontal bars, each of whose con-
tent is shown between the associated bar and the next. If you’ve been using the index
page for the code examples (index.html in the root folder), you’ve already seen an
accordion in action, as shown in figure 11.13.
Download from Library of Wow! eBook <www.wowebook.com>

398 CHAPTER 11 jQuery UI widgets: Beyond HTML controls
Like a tabset, only one panel can be open at a time, and, by default, accordions also
adjust the size of the panels so that the widget takes up the same amount of room no
matter which panel is open. This makes the accordion a very well-behaved on-page
citizen.

 Let’s take a look at what it takes to create one.

11.7.1 Creating accordion widgets

As with the tabset, the accordion expects a particular HTML construct that it will
instrument. Because of the different layout of the accordion, and to make sure things
degrade gracefully in the absence of JavaScript, the structure of the source for an
accordion is rather different from that for a tabset.

 The accordion expects an outer container (to which the accordion() method is
applied) that contains pairs consisting of a header and associated content. Rather

Figure 11.13 We used an accordion widget to organize the links to the many code examples for
this book.
Download from Library of Wow! eBook <www.wowebook.com>

399Accordions
than using href values to associate content panels to their headers, accordions (by
default) expect each header to be followed by its content panel as the next sibling.

 A typical construct for an accordion could look like the following:

<div id="accordion">

 <h2>Header 1</h2>
 <div id="contentPanel_1"> ... content ... </div>

 <h2>Header 2</h2>
 <div id="contentPanel_2"> ... content ... </div>

 <h2>Header 3</h2>
 <div id="contentPanel_3"> ... content ... </div>

</div>

Note that the header text continues to be embedded within an anchor—in order to
give the user a focusable element—but the href is generally set to # and isn’t used to
associate the header to its content panel. (There is one option where the anchor’s
href value is significant, but generally they’re just set to #.)

 The syntax of the accordion() method is as follows:

Command syntax: accordion

accordion(options)
accordion('disable')
accordion('enable')
accordion('destroy')
accordion('option',optionName,value)
accordion('activate',index)
accordion('widget')
accordion('resize')
Transforms the accordion source construct (as specified earlier in this section) into an accordion
widget.

Parameters
options (Object) An object hash of the options to be applied to the accordion, as

described in table 11.14.
'disable' (String) Disables the accordion.
'enable' (String) Re-enables a disabled accordion.
'destroy' (String) Reverts any elements transformed into an accordion widget to their

previous state.
'option' (String) Allows option values to be set on all elements of the wrapped set, or

to be retrieved from the first element of the wrapped set (which should be an
accordion element), based upon the remaining parameters. If specified, at
least the optionName parameter must also be provided.

optionName (String) The name of the option (see table 11.14) whose value is to be set or
returned. If a value parameter is provided, that value becomes the option’s
value. If no value parameter is provided, the named option’s value is
returned.

'activate' (String) Activates (opens) the content panel identified by the index parameter.
Download from Library of Wow! eBook <www.wowebook.com>

400 CHAPTER 11 jQuery UI widgets: Beyond HTML controls
The short, but capable, list of options available for the accordion() method is shown
in table 11.14.

 Follow along in this Lab as you read through the options list in table 11.14.

Command syntax: accordion (continued)

index (Number|Selector|Boolean) A zero-based index identifying the accordion panel
to be activated, a selector identifying the panel, or false, which causes all
panels to be deactivated if the collapsible option is specified as true.

'widget' (String) Returns the accordion widget element; the one annotated with the ui-
accordion class name.

'resize' (String) Causes the size of the widget to be recomputed. This should be called
whenever something occurs that may cause the widget size to change; for
example, resizing its container.

Returns
The wrapped set, except for the cases where values are returned as described above.

Table 11.14 Options for the jQuery UI accordions

Option Description In
Lab?

active (Number|Boolean|Selector|Element|jQuery) Specifies which panel is to be ini-
tially open. This can be the zero-based index of the panel, or a means to iden-
tify the header element for the panel: an element reference, a selector, or a
jQuery wrapped set.
If specified as false, no panel is initially opened unless the collapsible
options is set to false.

✓

animated (String|Boolean) The name of the animation to be used when opening and
closing accordion panels. One of: slide (the default), bounceslide, or any
of the installed easings (if included on the page).
If specified as false, no animation is used.

✓

autoHeight (Boolean) Unless specified as false, all panels are forced to the biggest
height needed to accommodate the highest panel, making all panels the
same size. Otherwise, panels retain their natural size. Defaults to true.

✓

clearStyle (Boolean) If true, height and overflow styles are cleared after an animation.
The autoHeight option must be set to false for this to apply.

change (Function) Specifies a function to be established on the accordion as an
event handler for accordionchange events. See the description of the accor-
dion events in table 11.15 for details on the information passed to this
handler.

✓

changestart (Function) Specifies a function to be established on the accordion as an
event handler for accordionchangestart events. See the description of the
accordion events in table 11.15 for details on the information passed to this
handler.

✓

collapsible (Boolean) If true, clicking on the header for the open accordion panel will
cause the panel to close, leaving no panels open. By default, clicks on the
open panel’s header have no effect.

✓

disabled (Boolean) If specified and true, the accordion widget is initially disabled.
Download from Library of Wow! eBook <www.wowebook.com>

401Accordions
We’ve provided the Accordions Lab, in file chapter11/accordions/lab/accordi-
ons.html, to demonstrate many of the options. It’s shown in figure 11.14.

 After you’ve run through the basic options and tried out things in the Accordions
Lab, here are a couple of exercises we want to make sure you don’t miss:

Exercise 1—Load the Lab and, leaving all settings at their default, click Apply.
Select various headers in any order and note how, as the panels open and close,
the accordion itself never changes size.
Exercise 2—Reset the Lab, choose true for autoHeight, and click Apply. Run
through the actions of exercise 1, noticing that, this time, when the Flowers
panel is opened, the height of the accordion shrinks to fit the smaller content
of the Flowers panel.

event (String) Specifies the event used to select an accordion header. Most often
this is one of click (the default) or mouseover, but events such as
mouseout can also be specified (even if a bit strange).

✓

fillSpace (Boolean) If true, the accordion is sized to completely fill the height of its
parent element, overriding any autoHeight option value.

header (Selector|jQuery) Specifies a selector or element to override the default pat-
tern for identifying the header elements. The default is "> li > :first-
child,> :not(li):even". Use this only if you need to use a source con-
struct for the accordion that doesn’t conform to the default pattern.

icons (Object) An object that defines the icons to use to the left of the header text
for opened and closed panels. The icon to use for closed panels is specified
as a property named header, whereas the icon to use for open panels is
specified as a property named headerSelected.
The values of these properties are strings identifying the icons by class
name, as defined earlier for button widgets in section 11.1.3.
The defaults are ui-icon-triangle-1-e for header, and ui-icon-
triangle-1-s for headerSelected.

✓

navigation (Boolean) If true, the current location (location.href) is used to attempt
to match up to the href values of the anchor tags in the accordion headers.
This can be used to cause specific accordion panels to be opened when the
page is displayed.
For example, setting the href values to anchor hashes such as #chapter1
(and so on), will cause the corresponding panel to be opened when the page
is displayed if the URL (or bookmark) is suffixed with the same hash value.
The index.html page for the code examples uses this technique. Try it out!
Visit the page by specifying index.html#chapter3 as part of the URL.

navigationFilter (Function) Overrides the default navigation filter used when navigation is
true. You can use this function to change the behavior described in the
navigation option description to any of your own choosing.
This callback will be invoked with no parameters, and the anchor tag for a
header is set as the function context. Return true to indicate that a naviga-
tion match has occurred.

Table 11.14 Options for the jQuery UI accordions (continued)

Option Description In
Lab?
Download from Library of Wow! eBook <www.wowebook.com>

402 CHAPTER 11 jQuery UI widgets: Beyond HTML controls
Now we’re ready to tackle the events that are triggered while an accordion is being
manipulated.

11.7.2 Accordion events

Accordions trigger only two event types when the user is opening and closing panels,
as described in table 11.15.

Figure 11.14 The jQuery UI Accordions Lab shows us how we can expose serial content panels to our
users in a novel fashion.
Download from Library of Wow! eBook <www.wowebook.com>

403Accordions
 Each of the handlers is passed the usual event instance and custom object. The prop-
erties of the custom object are the same for both events and consist of the following:

options—The options passed to the accordion() method when the widget was
created.
oldHeader—A jQuery wrapped set containing the header element of the previ-
ously open panel. This may be empty if no panel was opened.
newHeader—A jQuery wrapped set containing the header element of the panel
being opened. This may be empty for collapsible accordions when all panels are
being closed.
oldContent—A jQuery wrapped set containing a reference to the previously
open panel.
newContent—A jQuery wrapped set containing a reference to the panel being
opened.

Table 11.15. lists the events generated for accordion widgets.

That’s a pretty sparse list of events, and it does offer some challenges. For example, it’s
disappointing that we get no notification when the initial panel (if any) is opened.
We’ll see how that makes things a tad harder for us when we try to use these events to
instrument the accordion. But before we tackle an example of using these events to
add some functionality to our widget, let’s examine the CSS class names that jQuery UI
adds to the elements that compose the accordion.

11.7.3 Styling classes for accordions

As with tabs, jQuery UI adds a number of CSS class names to the elements that go into
making an accordion. We can use not only use them as styling hooks, but to find the
elements using jQuery selectors. We saw an example of that in the previous section
when we learned how to locate the panels involved in the accordion events.

 These are the class names that are applied to the accordion elements:

ui-accordion—Added to the outer container for the accordion (the element
upon which accordion() was called).
ui-accordion-header—Added to all header elements that become the click-
able elements.
ui-accordion-content—Added to all panel elements.

Table 11.15 Events for jQuery UI accordions

Event Option Description

accordionchangestart changestart Triggered when the accordion is about to
change.

accordionchange change Triggered when the accordion has been changed,
after the duration of any animation used to
change the display.
Download from Library of Wow! eBook <www.wowebook.com>

404 CHAPTER 11 jQuery UI widgets: Beyond HTML controls
ui-accordion-content-active—Assigned to the currently open panel ele-
ment, if any.
ui-state-active—Assigned to the header for the currently open panel, if any.
Note that this is one of the generic jQuery UI class names shared across multi-
ple widgets.

Using these class names, we can restyle accordion elements as we like, much like we
did for tabs. Try your hand at changing the style of the elements: the header text, for
example, or maybe the border surrounding the panels.

 Let’s also see how knowing these class names helps us to add functionality to an
accordion widget.

11.7.4 Loading accordion panels using Ajax

One feature that the accordion widget lacks, present in its tabs widget kinfolk, is the
innate ability to load content via Ajax. Not wanting our accordions to suffer from an
inferiority complex, let’s see how we can easily add that ability using the knowledge
that we have at hand.

 Tabs specify the location of remote content via the href of the anchor tags within
them. Accordions, on the other hand, ignore the href of anchor tags in their header
unless the navigation option is being used. Knowing this, we’ll safely use it to specify
the location of any remote content to be loaded for the panel.

 This is a good decision because it’s consistent with the way that tabs work (consis-
tency is a good thing), and it means we don’t have to needlessly introduce custom
options or attributes to record the location. We’ll leave the anchor href of “normal”
panels at #.

 We want to load the panel content whenever the panel is about to open, so we bind
an accordionchangestart event to the accordion(s) on our page with this code:

$('.ui-accordion').bind('accordionchangestart',function(event,info){
 if (info.newContent.length == 0) return;
 var href = $('a',info.newHeader).attr('href');
 if (href.charAt(0) != '#') {
 info.newContent.load(href);
 $('a',info.newHeader).attr('href','#');
 }
});

In this handler we first locate the opening panel by using the reference provided in
info.newContent. If there’s none (which can happen for collapsible accordions), we
simply return.

 Then we locate the anchor within the activating header by finding the <a> element
within the context of the reference provided by info.newHeader, and grab its href
attribute. If it doesn’t start with #, we assume it’s a remote URL for the panel content.

 To load the remote content, we employ the handy load() method, and then
change the href of the anchor to #. This last action prevents us from fetching the con-
tent again next time the panel is opened. (To force a load every time, simply remove
the href assignment.)
Download from Library of Wow! eBook <www.wowebook.com>

405Dialog boxes
 When using this handler, we might want to turn autoHeight off if not knowing the
size of the largest panel in advance creates a problem. A working example of this
approach can be found at chapter11/accordions/ajax/ajax-accordion.html.

 As usual, there are always different vectors of approach. Try the following exercise.

Exercise 1—If we wanted to avoid using the href value so that we could use the
navigation option, how would you rewrite the example to use custom attri-
butes (or any other tactic of your choosing)?

Accordions give us an alternative to tabbed panels when we want to serially present
related content to the user. Now let’s wrap up our examination of the widgets, by look-
ing at another widget that lets us present content dynamically.

11.8 Dialog boxes
As a concept, dialog boxes need no introduction. A staple of desktop application
design since the inception of the GUI, dialog boxes, whether modeless or modal, are a
common means of eliciting information from the user, or delivering information to
the user.

 In web interfaces, however, they haven’t existed as an innate concept except for
the built-in JavaScript alert prompt and confirm tools. Deemed inadequate for a vari-
ety of reasons—not the least of which is their inability to be styled to conform to the
theme of a site—these tools are often ignored except as debugging aids.

 Internet Explorer introduced the concept of a web-based dialog box, but it failed
to impress the standards community and remains a proprietary solution.

 For years, web developers used the window.open() method to create new windows
that stood in for dialog boxes. Although fraught with issues, this approach was ade-
quate as a solution for modeless dialog boxes, but truly modal dialog boxes were out
of reach.

 As JavaScript, browsers, DOM manipulations, and developers themselves have
become more capable, it’s become possible to use these basic tools to create in-page
elements that “float” over the rest of the display—even locking out input in a modal
fashion—which better approximates the semantics of modeless and modal dialog
boxes.

 So although dialog boxes as a concept still don’t actually exist in web interfaces, we
can do a darned good job of making it seem like they do.

 Let’s see what jQuery UI provides for us in this area.

11.8.1 Creating dialog boxes

Although the idea of in-page dialog boxes seems simple—just remove some content
from the page flow, float it with a high z-index, and put some “chrome” around
it—there are lots of details to take into account. Luckily, jQuery UI is going to handle
that, allowing us to create modeless and modal dialog boxes, with advanced features
such as the ability to be resized and repositioned, with ease.
Download from Library of Wow! eBook <www.wowebook.com>

406 CHAPTER 11 jQuery UI widgets: Beyond HTML controls
NOTE The term “chrome” when applied to dialog boxes denotes the frame
and widgets that contain the dialog box and allow it to be manipulated. This
can include features such as resize borders, title bar, and the omnipresent lit-
tle “x” icon that closes the dialog box.

Unlike the rather stringent requirements for the tabs and accordion widgets, just
about any element can become the body of a dialog box, though a <div> element con-
taining the content that’s to become the dialog box’s body is most often used.

 To create a dialog box, the content to become the body is selected into a
wrapped set, and the dialog() method is applied. The dialog() method has the
following syntax:

Command syntax: dialog

dialog(options)
dialog('disable')
dialog('enable')
dialog('destroy')
dialog('option',optionName,value)
dialog('open')
dialog('close')
dialog('isOpen')
dialog('moveToTop')
dialog('widget')
Transforms the elements in the wrapped set into a dialog box by removing them from the
document flow and wrapping them in “chrome.” Note that creating a dialog box also causes it to
automatically be opened unless this is disabled by setting the autoOpen option to false.

Parameters
options (Object) An object hash of the options to be applied to the dialog box, as

described in table 11.16.
'disable' (String) Disables the dialog box.
'enable' (String) Re-enables a disabled dialog box.
'destroy' (String) Destroys the dialog box. Once destroyed, the dialog box can’t be

reopened. Note that destroying a dialog box doesn’t cause the contained
elements to be restored to the normal document flow.

'option' (String) Allows option values to be set on all elements of the wrapped set, or
to be retrieved from the first element of the wrapped set (which should be a
dialog box element), based upon the remaining parameters. If specified, at
least the optionName parameter must also be provided.

optionName (String) The name of the option (see table 11.16) whose value is to be set or
returned. If a value parameter is provided, that value becomes the option’s
value. If no value parameter is provided, the named option’s value is
returned.

'open' (String) Opens a closed dialog box.
'close' (String) Closes an open dialog box. The dialog box can be reopened at any

time with the open method.
'isOpen' (String) Returns true if the dialog box is open; false otherwise.
'moveToTop' (String) If multiple dialog boxes exist, moves the dialog box to the top of the

stack of dialog boxes.
Download from Library of Wow! eBook <www.wowebook.com>

407Dialog boxes
It’s important to understand the difference between creating a dialog box and open-
ing one. Once a dialog box is created, it doesn’t need to be created again to be
reopened after closing. Unless disabled, a dialog box is automatically opened upon
creation, but to reopen a dialog box that has been closed, we call dialog('open')
rather than calling the dialog() method with options again.

Command syntax: dialog (continued)

'widget' (String) Returns the dialog box’s widget element; the element annotated with
the ui-dialog class name.

Returns
The wrapped set, except for the cases where values are returned as described above.

Figure 11.15 The jQuery UI Dialogs Lab lets us try out all the options that are available for jQuery UI
dialog boxes.
Download from Library of Wow! eBook <www.wowebook.com>

408 CHAPTER 11 jQuery UI widgets: Beyond HTML controls
 As usual, a Dialogs Lab has been made available in file chapter11/dialogs/lab.dia-
logs.html, shown in figure 11.15, so you can try out the dialog() method options.

 Follow along in this Lab as you read through the options list in table 11.16.

Table 11.16 Options for the jQuery UI dialogs

Option Description In
Lab?

autoOpen (Boolean) Unless set to false, the dialog box is opened upon creation.
When false, the dialog box will be opened upon a call to dialog('open').

✓

beforeClose (Function) Specifies a function to be established on the dialog box as an event
handler for dialogbeforeClose events. See the description of the dialog events in
table 11.17 for details on the information passed to this handler.

✓

buttons (Object) Specifies any buttons to place at the bottom of the dialog box. Each prop-
erty in the object serves as the caption for the button, and the value must be a
callback function to be invoked when the button is clicked.
This handler is invoked with a function context of the dialog box element, and is
passed the event instance with the button set as the target property.
If omitted, no buttons are created for the dialog box.
The function context is suitable for use with the dialog() method. For example,
within a Cancel button, the following could be used to close the dialog box:
$(this).dialog('close');

✓

close (Function) Specifies a function to be established on the dialog box as an event
handler for dialogclose events. See the description of the dialog events in table
11.17 for details on the information passed to this handler.

✓

closeOnEscape (Boolean) Unless set to false, the dialog box will be closed when the user
presses the Escape key while the dialog box has focus.

✓

closeText (String) Text to replace the default of Close for the close button. ✓

dialogClass (String) Specifies a space-delimited string of CSS class names to be applied to
the dialog box element in addition to the class names that jQuery UI will add. If
omitted, no extra class names are added.

drag (Function) Specifies a function to be established on the dialog box as an event
handler for drag events. See the description of the dialog events in table 11.17
for details on the information passed to this handler.

✓

dragstart (Function) Specifies a function to be established on the dialog box as an event
handler for dragStart events. See the description of the dialog events in table
11.17 for details on the information passed to this handler.

dragstop (Function) Specifies a function to be established on the dialog box as an event
handler for dragStop events. See the description of the dialog events in table
11.17 for details on the information passed to this handler.

draggable (Boolean) Unless set to false, the dialog box is draggable by clicking and drag-
ging its title bar.

✓

focus (Function) Specifies a function to be established on the dialog box as an event
handler for dialogfocus events. See the description of the dialog events in
table 11.17 for details on the information passed to this handler.
Download from Library of Wow! eBook <www.wowebook.com>

409Dialog boxes
height (Number|String) The height of the dialog box in pixels, or the string "auto" (the
default), which allows the dialog box to determine its height based upon its con-
tents.

✓

hide (String) The effect to be used when the dialog box is closed (as we discussed in
chapter 9). By default, none.

✓

maxHeight (Number) The maximum height, in pixels, to which the dialog box can be resized. ✓

maxWidth (Number) The maximum width, in pixels, to which the dialog box can be resized. ✓

minHeight (Number) The minimum height, in pixels, to which the dialog box can be resized.
Defaults to 150.

✓

minWidth (Number) The minimum width, in pixels, to which the dialog box can be resized.
Defaults to 150.

✓

modal (Boolean) If true, a semi-transparent “curtain” is created behind the dialog box
covering the remainder of the window content, preventing any user interaction.
If omitted, the dialog box is modeless.

✓

open (Function) Specifies a function to be established on the dialog box as an event
handler for dialogopen events. See the description of the dialog events in table
11.17 for details on the information passed to this handler.

position (String|Array) Specifies the initial position of the dialog box. Can be one of the pre-
defined positions: center (the default), left, right, top, or bottom.
Can also be a 2-element array with the left and top values (in pixels) as
[left,top], or text positions such as ['right','top'].

✓

resize (Function) Specifies a function to be established on the dialog box as an event
handler for resize events. See the description of the dialog events in table 11.17
for details on the information passed to this handler.

resizable (Boolean) Unless specified as false, the dialog box is resizable in all directions. ✓

resizeStart (Function) Specifies a function to be established on the dialog box as an event
handler for resizeStart events. See the description of the dialog events in
table 11.17 for details on the information passed to this handler.

resizeStop (Function) Specifies a function to be established on the dialog box as an event
handler for resizeStop events. See the description of the dialog events in table
11.17 for details on the information passed to this handler.

show (String) The effect to be used when the dialog box is being opened. By default, no
effect is used.

✓

stack (Boolean) Unless specified as false, the dialog box will move to the top of any
other dialog boxes when it gains focus.

title (String) Specifies the text to appear in the title bar of the dialog box chrome. By
default, the title attribute of the dialog box element will be used as the title.

✓

Table 11.16 Options for the jQuery UI dialogs (continued)

Option Description In
Lab?
Download from Library of Wow! eBook <www.wowebook.com>

410 CHAPTER 11 jQuery UI widgets: Beyond HTML controls
Most of these options are easy to see in action using the Dialogs Lab, but make sure
you run through the differences between modal and modeless dialog boxes.

 In the console of the Lab, the various events that are triggered (as the dialog box is
interacted with) are displayed in the order that they’re received. Let’s examine the
possible events.

11.8.2 Dialog events

As the user manipulates the dialog boxes we create, various custom events are trig-
gered that let us get our hooks into the page. This gives us the opportunity to perform
actions at pertinent times during the life of the dialog box, or even to affect the oper-
ation of the dialog box.

 The events triggered during dialog box interactions are shown in table 11.17. Each
of these handlers is passed the event instance and a custom object. The function con-
text, as well as the event target, is set to the dialog box element.

 The custom object passed to the handler depends upon the event type:

For the drag, dragStart, and dragStop events, the custom object contains prop-
erties offset and position, which in turn contain left and top properties that
identify the position of the dialog box relative to the page or its offset parent
respectively.
For the resize, resizeStart, and resizeStop events, the custom object contains the
properties originalPosition, originalSize, position, and size. The posi-
tion properties are objects that contain the expected left and top properties,
while the size properties contain height and width properties.
For all other event types, the custom object has no properties.

width (Number) The width of the dialog box in pixels. If omitted, a default of 300 pixels
is used.

✓

zIndex (Number) The initial z-index for the dialog box, overriding the default value of
1000.

Table 11.17 Events for jQuery UI dialogs

Event Option Description

dialogbeforeClose beforeClose Triggered when the dialog box is about to close.
Returning false prevents the dialog box from clos-
ing—handy for dialog boxes with forms that fail valida-
tion.

dialogclose close Triggered after a dialog box has closed.

Table 11.16 Options for the jQuery UI dialogs (continued)

Option Description In
Lab?
Download from Library of Wow! eBook <www.wowebook.com>

411Dialog boxes
Before we can see a few clever uses of these events, let’s examine the class names that
jQuery places on the elements that participate in the creation of our dialog boxes.

11.8.3 Dialog box class names

As with the other widgets, jQuery UI marks up the elements that go into the structure
of the dialog box widget with class names that help us to find the elements, as well as
to style them via CSS.

 In the case of dialog boxes, the added class names are as follows:

ui-dialog—Added to the <div> element created to contain the entire widget,
including the content and the chrome.
ui-dialog-titlebar—Added to the <div> element created to house the title
and close icon.
ui-dialog-title—Added to the element contained within the title bar
to wrap the title text.
ui-dialog-titlebar-close—Added to the <a> tag used to encompass the ‘x’
icon within the title bar.
ui-dialog-content—Added to the dialog box content element (the element
wrapped during the call to dialog()).

It’s important to remember that the element passed to the event handlers is the dialog
box content element (the one marked with ui-dialog-content), not the generated
outer container created to house the widget.

 Now let’s look at a few ways to specify content that’s not already on the page.

drag drag Triggered repeatedly as a dialog box is moved about
during a drag.

dragStart dragStart Triggered when a repositioning of the dialog box com-
mences by dragging its title bar.

dragStop dragStop Triggered when a drag operation terminates.

dialogfocus focus Triggered when the dialog box gains focus.

dialogopen open Triggered when the dialog box is opened.

resize resize Triggered repeatedly as a dialog box is resized.

resizeStart resizeStart Triggered when a resize of the dialog box commences.

resizeStop resizeStop Triggered when a resize of the dialog box terminates.

Table 11.17 Events for jQuery UI dialogs (continued)

Event Option Description
Download from Library of Wow! eBook <www.wowebook.com>

412 CHAPTER 11 jQuery UI widgets: Beyond HTML controls
11.8.4 Some dialog box tricks

Generally, dialog boxes are created from <div> elements that are included in the page
markup. jQuery UI takes that content, removes it from the DOM, creates elements that
serve as the dialog box chrome, and sets the original elements as the content of the
chrome.

 But what if we wanted to load the content dynamically upon dialogopen via Ajax?
That’s actually surprisingly easy with code such as this:

$('<div>').dialog({
 open: function(){ $(this).load('/url/to/resource'); },
 title: 'A dynamically loaded dialog'
});

In this code, we create a new <div> element on the fly, and turn it into a dialog box
just as if it were an existing element. The options specify its title, and a callback for
dialogopen events that loads the content element (set as the function context) using
the load() method.

 In the scenarios we’ve seen so far, regardless of whether the content already
existed on the page or was loaded via Ajax, the content exists within the DOM of the
current page. What if we want the dialog box body to be its own page?

 Although it’s convenient to have the dialog box content be part of the same DOM
as its parent, if the dialog box content and the page content need to interact in any
way, we might want the dialog box content to be a separate page unto itself. The most
common reason may be because the content needs its own styles and scripts that we
don’t want to include in every parent page in which we plan to use the dialog box.

 How could we accomplish this? Is there support in HTML for using a separate page
as a part of another page? Of course ... the <iframe> element!

 Consider this:

$('<iframe src="content.html" id="testDialog">').dialog({
 title: 'iframe dialog',
 buttons: {
 Dismiss: function(){ $(this).dialog('close'); }
 }
});

Here we dynamically create an <iframe> element, specifying its source and an id, and
make it into a dialog box. The options we pass to the dialog() method give the dialog
box its title and a Dismiss button that closes the dialog box. Is this awesome or what?

 But our self-admiration is short-lived when we display the dialog box and see a
problem. The scrollbar for the <iframe> is clipped by the dialog chrome, as shown in
the left half of figure 11.16. What we want, of course, is for the dialog box to appear as
shown in the right half of the figure.

 Because the <iframe> appears a bit too wide, we could attempt to narrow it with a
CSS rule, but to our chagrin, we find that doesn’t work. A little digging reveals that a
CSS style of width: auto is placed right on the <iframe> element by the dialog()
method, defeating any attempt to style the <iframe> indirectly.
Download from Library of Wow! eBook <www.wowebook.com>

413Summary
But that’s OK. We’ll just use a bigger sledgehammer. Let’s add the following option to
the dialog() call:

open: function(){
 $(this).css('width','95%');
}

This overrides the style placed on the <iframe> when the dialog box is opened.
 Bear in mind that this approach isn’t without its pitfalls. For example, any buttons

are created in the parent page, and interaction between the buttons and the page
loaded into the <iframe> will need to communicate across the two windows.

 The source for this example can be found in file chapter11/dialogs/iframe.dia-
log.html.

11.9 Summary
Wow. This was a long chapter, but we learned a great deal from it.

 We saw how jQuery UI builds upon the interactions and effects that it provides,
and which we explored in the previous chapters, to allow us to create various widgets
that help us present intuitive and easy-to-use interfaces to our users.

 We learned about the button widget that augments the look and feel of conven-
tional HTML buttons so that they play well in the jQuery UI sandbox.

 Widgets that allow our users to enter data types that have traditionally been
fraught with problems, namely numeric and date data, are provided in the guise of
sliders and datepickers. Autocomplete widgets round out the data entry widgets, let-
ting users quickly filter through large sets of data.

 Progress bars give us the ability to communicate completion percentage status to
our users in a graphical, easy-to-understand display.

 And finally, we saw three widgets that let us organize our content in varying fash-
ions: tabs, the accordion, and the dialog box.

Figure 11.16 Our victory dance was cut short by the clipping of the scroll bar shown at left—how
can we fix it as shown at right?
Download from Library of Wow! eBook <www.wowebook.com>

414 CHAPTER 11 jQuery UI widgets: Beyond HTML controls
 Added to our toolbox, these widgets give us a wider range of possibilities for our
interfaces. But that’s just the official set of widgets provided by jQuery UI. As we’ve
seen firsthand, jQuery is designed to extend easily, and the jQuery community hasn’t
been sitting on its hands. Hundreds, if not many thousands, of other plugin controls
exist, just waiting for us to discover them. A good place to start is http://plu-
gins.jquery.com/.

11.10 The end?
Hardly! Even though we’ve presented the entire API for jQuery and jQuery UI within
the confines of this book, it would have been impossible to show you all the many
ways that these broad APIs can be used on our pages. The examples we presented
were chosen specifically to lead you down the path of discovering how you can use
jQuery to solve the problems that you encounter on a day-to-day basis on your web
application pages.

 jQuery is a living project. Astoundingly so! Heck, it was quite a chore for your
authors to keep up with the rapid developments in the libraries over the course of
writing this book. The core library is constantly evolving into a more useful resource,
and more and more plugins are appearing on practically a daily basis. And the pace of
development for jQuery UI is practically exhausting.

 We urge you to keep track of the developments in the jQuery community and sin-
cerely hope that this book has been a great help in starting you on the path to writing
better web applications in less time and with less code than you might have ever
believed possible.

 We wish you health and happiness, and may all your bugs be easily solvable!
Download from Library of Wow! eBook <www.wowebook.com>

http://plugins.jquery.com/
http://plugins.jquery.com/

appendix:
JavaScript that

you need to know
but might not!

One of the great benefits that jQuery brings to our web applications is the ability to
implement a great deal of scripting-enabled behavior without having to write a
whole lot of script ourselves. jQuery handles the nuts-and-bolts details so that we
can concentrate on the job of making our applications do what they need to do!

This appendix covers
Which JavaScript concepts are important for effectively
using jQuery

JavaScript Object basics

How functions are first-class objects

Determining (and controlling) what this means

What’s a closure?
415

Download from Library of Wow! eBook <www.wowebook.com>

416 APPENDIX JavaScript that you need to know but might not!
 For the first few chapters in this book, we only needed rudimentary JavaScript skills
to code and understand the examples. In the chapters on advanced topics such as
event handling, animations, and Ajax, we must understand a handful of fundamental
JavaScript concepts to make effective use of the jQuery library. You may find that a lot
of things that you, perhaps, took for granted in JavaScript (or took on blind faith) will
start to make more sense.

 We’re not going to go into an exhaustive study of all JavaScript concepts
here—that’s not the purpose of this book. The purpose of this book is to get us up
and running with effective jQuery in the shortest time possible. To that end, this
appendix will concentrate on the fundamental concepts that we need to make the
most effective use of jQuery in our web applications.

 The most important of these concepts is that functions are first-class objects in
JavaScript, which is a result of the way JavaScript defines and deals with functions.
What do we mean by that? In order to understand what it means for a function to be
an object, let alone a first-class one, we must first make sure that we understand what a
JavaScript object is all about. So let’s dive right in.

A.1 JavaScript Object fundamentals
The majority of object-oriented (OO) languages define a fundamental Object type of
some kind from which all other objects are derived. In JavaScript, the fundamental
Object serves as the basis for all other objects, but that’s where the comparison stops.
At its basic level, the JavaScript Object has little in common with the fundamental
object defined by most other OO languages.

 At first glance, a JavaScript Object may seem like a boring and mundane item.
Once created, it holds no data and exposes little in the way of semantics. But those
limited semantics do give it a great deal of potential.

 Let’s see how.

A.1.1 How objects come to be

A new object comes into existence via the new operator paired with the Object con-
structor. Creating an object is as easy as this:

var shinyAndNew = new Object();

It could be even easier (as we’ll see shortly), but this will do for now.
 But what can we do with this new object? It seemingly contains nothing: no infor-

mation, no complex semantics, nothing. Our brand-new, shiny object doesn’t get
interesting until we start adding things to it—things known as properties.

A.1.2 Properties of objects

Like their server-side counterparts, JavaScript objects can contain data and possess
methods (well ... sort of, but that’s getting ahead of ourselves). Unlike those server-
side brethren, these elements aren’t predeclared for an object; we create them
dynamically as needed.
Download from Library of Wow! eBook <www.wowebook.com>

417JavaScript Object fundamentals
Take a look at the following code fragment:

var ride = new Object();
ride.make = 'Yamaha';
ride.model = 'V-Star Silverado 1100';
ride.year = 2005;
ride.purchased = new Date(2005,3,12);

Here we create a new Object instance and assign it to a variable named ride. We then
populate this variable with a number of properties of different types: two strings, a num-
ber, and an instance of the Date type.

 We don’t need to declare these properties prior to assigning them; they come into
being merely by the act of our assigning a value to them. That’s mighty powerful juju
that gives us a great deal of flexibility. But before we get too giddy, let’s remember that
flexibility always comes with a price!

 For example, let’s say that in subsequent code on our scripted HTML page, we want
to change the value of the purchase date:

ride.purchased = new Date(2005,2,1);

No problem ... unless we make an inadvertent typo such as

ride.purcahsed = new Date(2005,2,1);

There’s no compiler to warn us that we’ve made a mistake; a new property named
purcahsed is cheerfully created on our behalf, leaving us to wonder later why the new
date didn’t take when we reference the correctly spelled property.

 With great power comes great responsibility (where have we heard that before?),
so type carefully!

NOTE JavaScript debuggers, like Firebug for Firefox, can be lifesavers when
dealing with these issues. Because typos such as these frequently result in no
JavaScript errors, relying on JavaScript consoles or error dialog boxes is usu-
ally less than effective.

From this example, we’ve learned that an instance of the JavaScript Object, which
we’ll simply refer to as an object from here forward, is a collection of properties, each of
which consists of a name and a value. The name of a property is a string, and the value
can be any JavaScript object, be it a Number, String, Date, Array, basic Object, or any
other JavaScript object type (including, as we shall see, functions).

 This means the primary purpose of an Object instance is to serve as a container
for a named collection of other objects. This may remind you of concepts in other lan-
guages: a Java map for example, or dictionaries or hashes in other languages.

 Properties aren’t limited to types such as String or Number. An object property can
be another Object instance, which in turn has its own set of properties, which can in
turn be objects with their own properties, and so on, to any depth that makes sense for
the data that we are trying to model.
Download from Library of Wow! eBook <www.wowebook.com>

418 APPENDIX JavaScript that you need to know but might not!
 Let’s say that we add a new property to our ride instance that identifies the owner
of the vehicle. This property is another JavaScript object that contains properties such
as the name and occupation of the owner:

var owner = new Object();
owner.name = 'Spike Spiegel';
owner.occupation = 'bounty hunter';
ride.owner = owner;

To access the nested property, we write this:

var ownerName = ride.owner.name;

There are no limits to the nesting levels we can employ (except the limits of good
sense). When finished—up to this point—our object hierarchy is as shown in
figure A.1.

 Note how each value in the figure is a distinct instance of a JavaScript type.

NOTE There’s no need for all the intermediary variables (such as owner) that
we’ve created for illustrative purposes in these code fragments. In a short
while, we’ll see more efficient and compact ways to declare objects and their
properties.

Up to this point, we’ve referenced properties of an object by using the dot (period
character) operator. But, as it turns out, that’s a synonym for a more general operator
for performing property referencing.

 What if, for example, we have a property named color.scheme? Do you notice the
period in the middle of the name? It throws a monkey wrench into the works because
the JavaScript interpreter will try to look up scheme as a nested property of color.

 “Well, just don’t do that!” you say. But what about space characters? What about
other characters that could be mistaken for delimiters rather than part of a name?

String V-Star Silverado 1100

String Yamaha

String Spike Spiegel

String bounty hunter

Object

name

occupation

Date 3-12-2005

Number 2005

Object

make

model

year

purchased

owner

Figure A.1 Our object hierarchy shows that Objects are containers for named references to other
Objects or JavaScript built-in types.
Download from Library of Wow! eBook <www.wowebook.com>

419JavaScript Object fundamentals
And most importantly, what if we don’t even know what the property name is, but we
have it as a value in another variable or as the result of an expression evaluation?

 For all these cases, the dot operator is inadequate, and we must use the more gen-
eral notation for accessing properties. The format of the general property reference
operator is

object[propertyNameExpression]

where propertyNameExpression is a JavaScript expression whose evaluation as a
string forms the name of the property to be referenced. For example, all three of the
following references are equivalent:

ride.make
ride['make']
ride['m'+'a'+'k'+'e']

So is this reference:

var p = 'make';
ride[p];

Using the general reference operator is the only way to reference properties whose
names don’t form valid JavaScript identifiers, such as this,

ride["a property name that's rather odd!"]

which contains characters not legal for JavaScript identifiers, or whose names are the
values of other variables.

 Building up objects by creating new instances with the new operator and assigning
each property using separate assignment statements can be a tedious affair. In the
next section, we’ll look at a more compact and easy-to-read notation for declaring
objects and their properties.

A.1.3 Object literals

In the previous section, we created an object that modeled some of the properties of a
motorcycle, assigning it to a variable named ride. To do so, we used two new opera-
tions, an intermediary variable named owner, and a bunch of assignment statements.
This is tedious—as well as wordy and error-prone—and it is difficult for us to visually
grasp the structure of the object during a quick inspection of the code.

 Luckily, we can use a notation that’s more compact and easier to visually scan. Con-
sider the following statement:

var ride = {
 make: 'Yamaha',
 model: 'V-Star Silverado 1100',
 year: 2005,
 purchased: new Date(2005,3,12),
 owner: {
 name: 'Spike Spiegel',
 occupation: 'bounty hunter'
 }
};
Download from Library of Wow! eBook <www.wowebook.com>

420 APPENDIX JavaScript that you need to know but might not!
Using an object literal, this fragment creates the same ride object that we built up with
assignment statements in the previous section.

 This notation, which has come to be termed JSON (JavaScript Object Notation1), is
much preferred by most page authors over the multiple-assignment means of object
building. Its structure is simple; an object is denoted by a matching pair of braces,
within which properties are listed delimited by commas. Each property is denoted by
listing its name and value separated by a colon character.

NOTE Technically, JSON has no way to express date values, primarily because
JavaScript itself lacks any kind of date literal. When used in script, the Date
constructor is usually employed as shown in the previous example. When
used as an interchange format, dates are frequently expressed either as a
string containing the ISO 8601 format or a number expressing the date as the
millisecond value returned by Date.getTime().

Note also that when using JSON as an interchange format, there are some
stricter rules that need to be followed, such as quoting property names. See
http://www.json.org or RFC 4627 (http://www.ietf.org/rfc/rfc4627.txt) for
more details.

As we can see by the declaration of the owner property, object declarations can be
nested.

 By the way, we can also express arrays in JSON by placing the comma-delimited list
of elements within square brackets, as in the following:

var someValues = [2,3,5,7,11,13,17,19,23,29,31,37];

As we’ve seen in the examples presented in this section, object references are fre-
quently stored in variables or in properties of other objects. Let’s take a look at a spe-
cial case of the latter scenario.

A.1.4 Objects as window properties

Up to this point, we’ve seen two ways to store a reference to a JavaScript object: vari-
ables and properties. These two means of storing references use differing notation, as
shown in the following snippet:

var aVariable =
 'Before I teamed up with you, I led quite a normal life.';

someObject.aProperty =
 'You move that line as you see fit for yourself.';

These two statements each assign a String instance (created via literals) to some-
thing: a variable in the first statement, and an object property in the second. (Kudos
to you if you can identify the source of the obscure quotes; no cheating with Google!
There was a clue earlier in this appendix.)

1 For more information, you can visit http://www.json.org/.
Download from Library of Wow! eBook <www.wowebook.com>

http://www.json.org
http://www.ietf.org/rfc/rfc4627.txt
http://www.json.org/

421Functions as first-class citizens
 But are these statements really performing different operations? As it turns out,
they’re not!

 When the var keyword is used at the top level, outside the body of any containing
function, it’s only a programmer-friendly notation for referencing a property of the
predefined JavaScript window object. Any reference made in top-level scope is implic-
itly made on the window instance. This means that all of the following statements, if
made at the top level (that is, outside the scope of a function), are equivalent:

var foo = bar;

and

window.foo = bar;

and

foo = bar;

Regardless of which notation is used, a window property named foo is created (if it’s
not already in existence) and assigned the value of bar. Also, note that because bar is
unqualified, it’s assumed to be a property on window.

 It probably won’t get us into conceptual trouble to think of top-level scope as win-
dow scope because any unqualified references at the top level are assumed to be window
properties. The scoping rules get more complex when we delve deeper into the bod-
ies of functions—much more complex, in fact—but we’ll be addressing that soon
enough.

 That pretty much covers things for our overview of the JavaScript Object. These
are the important concepts to take away from this discussion:

A JavaScript object is an unordered collection of properties.
Properties consist of a name and a value.
Objects can be declared using object literals.
Top-level variables are properties of window.

Now, let’s discuss what we meant when we referred to JavaScript functions as first-class
objects.

A.2 Functions as first-class citizens
In many traditional OO languages, objects can contain data and they can possess
methods. In these languages, the data and methods are usually distinct concepts;
JavaScript walks a different path.

 Functions in JavaScript are considered objects like any of the other object types
that are defined in JavaScript, such as Strings, Numbers, or Dates. Like other objects,
functions are defined by a JavaScript constructor—in this case Function—and they
can be

Assigned to variables
Assigned as a property of an object
Download from Library of Wow! eBook <www.wowebook.com>

422 APPENDIX JavaScript that you need to know but might not!
Passed as a parameter
Returned as a function result
Created using literals

Because functions are treated in the same way as other objects in the language, we say
that functions are first-class objects.

 But you might be thinking to yourself that functions are fundamentally different
from other object types like String or Number because they possess not only a value
(in the case of a Function instance, its body) but also a name.

 Well, not so fast!

A.2.1 What’s in a name?

A large percentage of JavaScript programmers operate under a false assumption that
functions are named entities. Not so. If you’re one of these programmers, you’ve been
fooled by a Jedi mind trick. As with other instances of objects—be they Strings, Dates,
or Numbers—functions are referenced only when they are assigned to variables, proper-
ties, or parameters.

 Let’s consider objects of type Number. We frequently express instances of Number by
their literal notation, such as 213. The statement

213;

is perfectly valid, but it is also perfectly useless. The Number instance isn’t all that use-
ful unless it has been assigned to a property or a variable, or bound to a parameter
name. Otherwise, we have no way to reference the disembodied instance.

 The same applies to instances of Function objects.
 “But, but, but ...,” you might be saying, “what about the following code?”

function doSomethingWonderful() {
 alert('does something wonderful');
}

“Doesn’t that create a function named doSomethingWonderful?”
 No, it doesn’t. Although that notation may seem familiar and is ubiquitously used

to create top-level functions, it’s the same syntactic sugar used by var to create window
properties. The function keyword automatically creates a Function instance and
assigns it to a window property created using the function “name” (what we referred to
earlier as a Jedi mind trick), as in the following:

doSomethingWonderful = function() {
 alert('does something wonderful');
}

If that looks weird to you, consider another statement using the exact same format,
except this time using a Number literal:

aWonderfulNumber = 213;

There’s nothing strange about that, and the statement assigning a function to a top-
level variable (the window property) is no different; a function literal is used to create
Download from Library of Wow! eBook <www.wowebook.com>

423Functions as first-class citizens
an instance of Function and then is assigned to the variable doSomethingWonderful
in the same way that our Number literal 213 was used to assign a Number instance to the
variable aWonderfulNumber.

 If you’ve never seen the syntax for a function literal, it might seem odd. It’s com-
posed of the keyword function, followed by its parameter list enclosed in parenthe-
ses, then followed by the function body.

 When we declare a top-level named function, a Function instance is created and
assigned to a property of window that’s automatically created using the so-called func-
tion name. The Function instance itself no more has a name than a Number literal or a
String literal. Figure A.2 illustrates this concept.

 Remember that when a top-level variable is created in an HTML page, the variable
is created as a property of the window instance. Therefore, the following statements
are all equivalent:

function hello(){ alert('Hi there!'); }
hello = function(){ alert('Hi there!'); }
window.hello = function(){ alert('Hi there!'); }

Although this may seem like syntactic juggling, it’s important to understanding that
Function instances are values that can be assigned to variables, properties, or param-
eters just like instances of other object types. And like those other object types,
nameless disembodied instances
aren’t of any use unless they’re
assigned to a variable, property, or
parameter through which they can
be referenced.

 We’ve seen examples of assign-
ing functions to variables and prop-
erties, but what about passing
functions as parameters? Let’s take a
look at why and how we do that.

Number 213

window

aWonderfulNumber

Function () {
 alert('does something wonderful');
}

doSomethingWonderful

Figure A.2 A Function instance is a nameless object like the Number 213 or any other
JavaScript value. It’s named only by references that are made to it.

Gecko browsers and function names
Browsers based on the Gecko layout engine,
such as Firefox and Camino, store the name of
functions defined using the top-level syntax in a
nonstandard property of the function instance
named name. Although this may not be of much
use to the general development public,
particularly considering its confinement to
Gecko-based browsers, it’s of great value to
writers of browser plugins and debuggers.
Download from Library of Wow! eBook <www.wowebook.com>

424 APPENDIX JavaScript that you need to know but might not!
A.2.2 Functions as callbacks

Top-level functions are all well and good when our code follows a nice and orderly
synchronous flow, but the nature of HTML pages—once loaded—is far from synchro-
nous. Whether we’re handling events, instituting timers, or making Ajax requests, the
nature of the code in a web page is asynchronous. And one of the most prevalent con-
cepts in asynchronous programming is the notion of a callback function.

 Let’s take the example of a timer. We can cause a timer to fire—let’s say in five sec-
onds—by passing the appropriate duration value to the window.setTimeout()
method. But how does that method let us know when the timer has expired so that we
can do whatever it is that we’re waiting around for? It does so by invoking a function
that we supply.

 Let’s consider the following code:

function hello() { alert('Hi there!'); }

setTimeout(hello,5000);

We declare a function named hello and set a timer to fire in 5 seconds, expressed as
5000 milliseconds by the second parameter. In the first parameter to the setTime-
out() method, we pass a function reference. Passing a function as a parameter is no
different than passing any other value—just as we passed a Number in the second
parameter.

 When the timer expires, the hello function is called. Because the setTimeout()
method makes a call back to a function in our own code, that function is termed a call-
back function.

 This code example would be considered naive by most advanced JavaScript coders
because the creation of the hello name is unnecessary. Unless the function is to be
called elsewhere in the page, there’s no need to create the window property hello to
momentarily store the Function instance to pass it as the callback parameter.

 The more elegant way to code this fragment is

setTimeout(function() { alert('Hi there!'); },5000);

in which we express the function literal directly in the parameter list, and no needless
name is generated. This is an idiom that we’ll often see used in jQuery code when
there is no need for a function instance to be assigned to a top-level property.

 The functions we’ve created in the examples so far are either top-level functions
(which we know are top-level window properties) or assigned to parameters in a func-
tion call. We can also assign Function instances to properties of objects, and that’s
where things get really interesting. Read on ...

A.2.3 What’s this all about?

OO languages automatically provide a means to reference the current instance of an
object from within a method. In languages like Java and C++, a variable named this
points to that current instance. In JavaScript, a similar concept exists and even uses
the same this keyword, which also provides access to an object associated with a
Download from Library of Wow! eBook <www.wowebook.com>

425Functions as first-class citizens
function. But OO programmers beware! The JavaScript implementation of this dif-
fers from its OO counterparts in subtle but significant ways.

 In class-based OO languages, the this pointer generally references the instance of
the class for which the method has been declared. In JavaScript, where functions are
first-class objects that aren’t declared as part of anything, the object referenced by
this—termed the function context—is determined not by how the function is declared
but by how it’s invoked.

 This means that the same function can have different contexts depending on how
it’s called. That may seem freaky at first, but it can be quite useful.

 In the default case, the context (this) of an invocation of the function is the
object whose property contains the reference used to invoke the function. Let’s look
back to our motorcycle example for a demonstration, amending the object creation as
follows (additions highlighted in bold):

var ride = {
 make: 'Yamaha',
 model: 'V-Star Silverado 1100',
 year: 2005,
 purchased: new Date(2005,3,12),
 owner: {name: 'Spike Spiegel',occupation: 'bounty hunter'},
 whatAmI: function() {
 return this.year+' '+this.make+' '+this.model;
 }
};

To our original example code, we add a property named whatAmI that references a
Function instance. Our new object hierarchy, with the Function instance assigned to
the property named whatAmI, is shown in figure A.3.

String V-Star Silverado 1100

String Yamaha

Date 3-12-2005

Object

make

model

year

purchased

owner

Function () {
 return this.year+' '+this.make+' '+this.model;
}

whatAmI

Number 2005

Object

name

occupation String bounty hunter

String Spike Spiegel

Figure A.3 This model clearly shows that the function isn’t part of the Object but is only
referenced from the Object property named whatAmI.
Download from Library of Wow! eBook <www.wowebook.com>

426 APPENDIX JavaScript that you need to know but might not!
 When the function is invoked through the property reference, like this,

var bike = ride.whatAmI();

the function context (the this reference) is set to the object instance pointed to by
ride. As a result, the variable bike gets set to the string 2005 Yamaha V-Star Sil-
verado 1100 because the function picks up the properties of the object through which
it was invoked via this.

 The same is true of top-level functions. Remember that top-level functions are
properties of window, so their function context, when called as top-level functions, is
the window object.

 Although that may be the usual and implicit behavior, JavaScript gives us the means
to explicitly control what’s used as the function context. We can set the function context
to whatever we want by invoking a function via the Function methods call() or
apply().

 Yes, as first-class objects, even functions have methods as defined by the Function
constructor.

 The call() method invokes the function specifying, as its first parameter, the
object to serve as the function context, while the remainder of the parameters
become the parameters of the called function—the second parameter to call()
becomes the first argument of the called function, and so on. The apply() method
works in a similar fashion except that its second parameter is expected to be an array
of objects that become the arguments to the called function.

 Confused? It’s time for a more comprehensive example. Consider the code of list-
ing A.1 (found in the downloadable code as appendix/function.context.html).

<html>
 <head>
 <title>Function Context Example</title>
 <script>
 var o1 = {handle:'o1'};
 var o2 = {handle:'o2'};
 var o3 = {handle:'o3'};
 window.handle = 'window';

 function whoAmI() {
 return this.handle;
 }

 o1.identifyMe = whoAmI;

 alert(whoAmI());
 alert(o1.identifyMe());
 alert(whoAmI.call(o2));
 alert(whoAmI.apply(o3));

 </script>
 </head>

Listing A.1 The function context value depends on how the function is invoked

B

C

D

E
F

G
H

Download from Library of Wow! eBook <www.wowebook.com>

427Functions as first-class citizens
 <body>
 </body>
</html>

In this example, we define three simple objects, each with a handle property that
makes it easy to identify the object given a reference B. We also add a handle prop-
erty to the window instance so that it’s also readily identifiable.

 We then define a top-level function that returns the value of the handle property
for whatever object serves as its function context C and assign the same function
instance to a property of object o1 named identifyMe D. We can say that this creates
a method on o1 named identifyMe, although it’s important to note that the function
is declared independently of the object.

 Finally, we issue four alerts, each of which uses a different mechanism to invoke
the same function instance. When loaded into a browser, the sequence of four alerts is
as shown in figure A.4.

Figure A.4 The object serving as the
function context changes with the
manner in which the function is called.
Download from Library of Wow! eBook <www.wowebook.com>

428 APPENDIX JavaScript that you need to know but might not!
 This sequence of alerts illustrates the following:

When the function is called directly as a top-level function, the function context
is the window instance E.
When called as a property of an object (o1 in this case), the object becomes the
function context of the function invocation F. We could say that the function
acts as a method for that object—as in OO languages. But take care not to get too
blasé about this analogy. You can be led astray if you’re not careful, as the
remainder of this example’s results will show.
Employing the call() method of Function causes the function context to be
set to whatever object is passed as the first parameter to call()—in this case, o2
G. In this example, the function acts like a method to o2, even though it has no
association whatsoever—even as a property—with o2.
As with call(), using the apply() method of Function sets the function con-
text to whatever object is passed as the first parameter H. The difference
between these two methods only becomes significant when parameters are
passed to the function (which we didn’t do in this example for simplicity).

This example page clearly demonstrates that the function context is determined on a
per invocation basis and that a single function can be called with any object acting as
its context. As a result, it’s probably never correct to say that a function is a method of
an object. It’s much more correct to state the following:

A function f acts as a method of object o when o serves as the function context of the
invocation of f.

As a further illustration of this concept, consider the effect of adding the following
statement to our example:

alert(o1.identifyMe.call(o3));

Even though we reference the function as a property of o1, the function context for
this invocation is o3, further emphasizing that it’s not how a function is declared but
how it’s invoked that determines its function context.

 When using jQuery commands and functions that employ callbacks, this proves to
be an important concept. We saw this concept in action early on (even if you didn’t
realize it at the time) in section 2.3.3 of chapter 2, where we supplied a callback func-
tion to the filter() method of $ and that function was sequentially invoked with
each element of the wrapped set serving as its function context in turn.

 Now that we understand how functions can act as methods of objects, let’s turn our
attention to another advanced function topic that will play an important role in effec-
tive usage of jQuery: closures.

A.2.4 Closures

To page authors coming from a traditional OO or procedural programming back-
ground, closures are often an odd concept to grasp, whereas to those with a functional
Download from Library of Wow! eBook <www.wowebook.com>

429Functions as first-class citizens
programming background, they’re a familiar and cozy concept. For the uninitiated,
let’s answer the question: What are closures?

 Stated as simply as possible, a closure is a Function instance coupled with the local
variables from its environment that are necessary for its execution.

 When a function is declared, it has the ability to reference any variables that are in
its scope at the point of declaration. This is expected and should be no surprise to any
developer from any background. But, with closures, these variables are carried along
with the function even after the point of declaration has gone out of scope, closing the
declaration.

 The ability for callback functions to reference the local variables in effect when
they were declared is an essential tool for writing effective JavaScript. Using a timer
once again, let’s look at the illustrative example in listing A.2 (the file appendixA/clo-
sure.html).

<html>
 <head>
 <title>Closure Example</title>
 <script type="text/javascript"
 src="../scripts/jquery-1.2.js"></script>
 <script>
 $(function(){
 var local = 1;
 window.setInterval(function(){
 $('#display')
 .append('<div>At '+new Date()+' local='+local+'</div>');
 local++;
 },3000);
 });
 </script>
 </head>
 <body>
 <div id="display"></div>
 </body>
</html>

In this example, we define a ready handler that fires after the DOM loads. In this han-
dler, we declare a local variable named local B and assign it a numeric value of 1. We
then use the window.setInterval() method to establish a timer that will fire every 3
seconds C. As the callback for the timer, we specify an inline function that references
the local variable and shows the current time and the value of local, by writing a
<div> element into an element named display that’s defined in the page body E. As
part of the callback, the local variable’s value is also incremented D.

 Prior to running this example, if we were unfamiliar with closures, we might look
at this code and see some problems. We might surmise that, because the callback will
fire off three seconds after the page is loaded (long after the ready handler has fin-
ished executing), the value of local is undefined during the execution of the callback

Listing A.2 Closures allow access to the scope of a function's declaration

B
C

D

E

Download from Library of Wow! eBook <www.wowebook.com>

430 APPENDIX JavaScript that you need to know but might not!
function. After all, the block in which local is declared goes out of scope when the
ready handler finishes, right?

 But on loading the page and letting it run for a short time, we see the display
shown in figure A.5.

 It works! But how?
 Although it is true that the block in which local is declared goes out of scope

when the ready handler exits, the closure created by the declaration of the function,
which includes local, stays in scope for the lifetime of the function.

NOTE You might have noted that the closure, as with all closures in
JavaScript, was created implicitly without the need for explicit syntax as is
required in some other languages that support closures. This is a double-
edged sword that makes it easy to create closures (whether you intend to or
not!) but it can make them difficult to spot in the code.

Unintended closures can have unintended consequences. For example,
circular references can lead to memory leaks. A classic example of this is the
creation of DOM elements that refer back to closure variables, preventing
those variables from being reclaimed.

Another important feature of closures is that a function context is never included as
part of the closure. For example, the following code won’t execute as we might
expect:

...
this.id = 'someID';
$('*').each(function(){
 alert(this.id);
});

Remember that each function invocation has its own function context so that, in the
preceding code, the function context within the callback function passed to each() is
an element from the jQuery wrapped set, not the property of the outer function set to
'someID'. Each invocation of the callback function displays an alert box showing the
id of each element in the wrapped set in turn.

Figure A.5 Closures
allow callbacks to access
their environment even if
that environment has
gone out of scope.
Download from Library of Wow! eBook <www.wowebook.com>

431Summary
 When access to the object serving as the function context in the outer function is
needed, we can employ a common idiom to create a copy of the this reference in a
local variable that will be included in the closure. Consider the following change to
our example:

this.id = 'someID';
var outer = this;
$('*').each(function(){
 alert(outer.id);
});

The local variable outer, which is assigned a reference to the outer function’s func-
tion context, becomes part of the closure and can be accessed in the callback func-
tion. The changed code now displays an alert showing the string 'someID' as many
times as there are elements in the wrapped set.

 We’ll find closures indispensable when creating elegant code using jQuery com-
mands that utilize asynchronous callbacks, which is particularly true in the areas of
Ajax requests and event handling.

A.3 Summary
JavaScript is a language that’s widely used across the web, but it’s often not deeply used
by many of the page authors writing it. In this appendix, we introduced some of the
deeper aspects of the language that we must understand to use jQuery effectively on
our pages.

 We saw that a JavaScript Object primarily exists to be a container for other objects.
If you have an OO background, thinking of an Object instance as an unordered col-
lection of name/value pairs may be a far cry from what you think of as an object, but it’s
an important concept to grasp when writing JavaScript of even moderate complexity.

 Functions in JavaScript are first-class citizens that can be declared and referenced in
a manner similar to the other object types. We can declare them using literal notation,
store them in variables and object properties, and even pass them to other functions
as parameters to serve as callback functions.

 The term function context describes the object that’s referenced by the this pointer
during the invocation of a function. Although a function can be made to act like a
method of an object by setting the object as the function context, functions aren’t
declared as methods of any single object. The manner of invocation (possibly explic-
itly controlled by the caller) determines the function context of the invocation.

 Finally, we saw how a function declaration and its environment form a closure allow-
ing the function, when later invoked, to access those local variables that become part
of the closure.

 With these concepts firmly under our belts, we’re ready to face the challenges that
confront us when writing effective JavaScript using jQuery on our pages.
Download from Library of Wow! eBook <www.wowebook.com>

Download from Library of Wow! eBook <www.wowebook.com>

index
Symbols

^ See caret character
: See colon character
* See asterisk character
% operator, usage

example 230
$ 16, 170

.ajax() function 261
list of options 261
setting defaults 264

.ajaxSetup() function 264

.browser 170
user agent detection

flags 175
.browser.mozilla flag 175
.browser.msie flag 175–176
.browser.opera flag 175
.browser.safari flag 175
.browser.version flag 175
.contains() function 194
.data() function 195
.datepicker.formatDate()

method 388
.datepicker.iso8601week()

method 389
.datepicker.parseDate()

method 388
.datepicker.setDefaults()

method 387
.each() function 182

performance advantage
over each() 182

.extend() function 188, 209,
365

usage example 189, 209,
227

.fn 216
usage example 270

.fx.off 170
disabling animations 170

.get() function 252
usage example 252

.getJSON() function 254

.getScript() function 200
usage example 201

.globalEval() function 199

.grep() function 183

.inArray() function 186

.isArray() function 193

.isEmptyObject()
function 193

.isFunction() function 193

.isPlainObject()
function 193

.isXMLDoc() function 193

.makeArray() function 186

.map() function 184

.merge() function 187

.noConflict() function 177,
180, 207

usage example 16
.noop() function 194
.param() function 190
.param() Lab Page 192
.parseJSON() function 198
.post() function 255
.proxy() function 196
.removeData () function 195
.support 170
.support object 173, 202
.support.boxModel flag 173
.support.cssFloat flag 173

.support.hrefNormalized
flag 173

.support.htmlSerialize
flag 173

.support.leadingWhitespace
flag 173

.support.noCloneEvent
flag 173

.support.objectAll flag 173

.support.opacity flag 173

.support.scriptEval flag 173

.support.style flag 173

.support.tbody flag 173

.trim() function 181

.unique() function 187
alias for jQuery name 177,

216
as function namespace 169
as namespace prefix 11
avoiding name collisions 207
conflicts with 207
defining locally 178
identifier 177, 180
in plugins 207
in ready handler 179
jQuery object 178
namespace 215, 229
namespace object 212
naming conflicts 16
sharing with other

libraries 177
use in identifiers 142
use in Prototype 177
variables defined on 170
wrapper 15
See also dollar sign character
433

Download from Library of Wow! eBook <www.wowebook.com>

INDEX 434
$() 9, 11, 14
adding wrapper methods 233
creating DOM elements 13,

32
creating wrappers 18
defining ready handler 11
function 9
HTML fragment 20
methods 11
multiple contexts 21
selecting elements 18
selector 20
specifying element

attributes 33
supplying context 20

A

a element 354
abbr element 274
absolute position selectors 29
acceptable element 317
accordion widgets 286

creating 398
example 398

accordion() method, syntax 399
accordionchange event 403
accordionchangestart event 403
accordions 397

events 402
loading using Ajax 404
options 400
styling 403
typical construct 398

Accordions Lab 402
active elements 73
ActiveX control 235, 237
ActiveX object 237
add() method 41–42

adding existing elements 44
adding new elements 44
element references 44
usage example 41

addClass() method 66
extended by jQuery UI 297

addEventListener()
method 102, 104, 172

attachEvent() method 106
adding a wrapper method 219
after() method 80
aggregate selectors 41
Ajax 101, 167, 184, 234–235

accordians 404
Ajax in Action 236
Ajax in Practice 236

as acronym 253
browser-independence 237
complicating event

handling 115
comprehensive 278
comprehensive example 268
comprehensive jQuery

API 261, 263
concurrent requests 268
diagrammed 236
GET 253
global events 265
global functions 268
growth catalyst 3
HTTP requests 250, 252
iframes, using 236
initializing 237–238
jQuery events 265
loading content 243
loading scripts 200
local events 265
overview 236
pain points 241
POST requests 254
progress bar 363
ready state handler 239
request life cycle 236
request parameters 239
responses 240–241
responseText 240
responseXML 241
return types 262
server-side independence 247
setting defaults 264
setting timeout 262
sortables 323
specifying content type 262
synchronous request 263
tabbed content 390
term coined 236
tracking requests 266
with live events 116
XML, not using 240

ajaxComplete()
method 265–266

usage example 276
ajaxError() method 265–266
ajaxSend() method 265–266
ajaxStart() method 265–266

behavior 267
ajaxStop() method 265–266

behavior 267
ajaxSuccess() method 265–266
algorithms 213
alpha filters 70

Amazon 3
anchor elements 359
anchor tags, accordions 404
andSelf() method 53
animate() method 154, 159,

161, 170
CSS properties 292
usage example 155

animated elements 296
animated GIFs 55, 138
animated graphics, showing busy

state 265
animation 138

blocking 161
frames 155
queue 159, 167

animation methods 299
simultaneous 159

animations
animation engine 155
browsers 171
CSS properties 155
custom 154–156
custom drop 156–157
custom fading 155
custom puff 157, 159
custom scale 156
disabling 153, 170
easing 155
fancy 139
global flag 153
height property 155
left property 155
mobile devices 171
multiple 155, 160
non-blocking 146
opacity property 155
plugins 154
queuing 155, 159, 161–162
simultaneous 159–160
stopping 153
top property 155
width property 155
writing custom

animations 154
annoying tricks, avoiding 56
anonymous

event handler 97
functions 117, 178
listeners 97

Apache 242
API collisions 207
API. See jQuery API
append() method 78
appending content 79
Download from Library of Wow! eBook <www.wowebook.com>

INDEX 435
appendTo() method 83, 86
appetizer menu 136
Apple applications 125
application layout 284
Application Programming

Interface. See jQuery API
application/xml 240
application/x-www-form-

urlencoded 262–263
array indexing 38

fetching elements by index 38
arrays

array-like object 186
filtering 183–184
merging 187
testing for 193
translating 184

assigning properties 49
asterisk character 26

in selectors 26
asynchronous

interfaces 93
requests 101

Asynchronous JavaScript and
XML. See Ajax

attachEvent() method 172
attr() method 58, 60–61

disabling form submission 63
usage example 133

attribute selectors 24
ways to use 25

attributes
applying 65
correspondence to

properties 57
custom 59
definition 56
diagrammed 57
fetching values 58, 60
Internet Explorer

limitations 61
jQuery normalized names 59
manipulation examples 62
names 59
removing 62
setting multiple 61
setting values 60
specifying on creation 33

augmented visibility
methods 296

augmenting wrapped sets 43
autocomplete widgets 287

creating 370
events 375
sources 372

autocomplete() method
syntax 370

autocompletechange event 375
autocompleteclose event 375
autocompletefocus event 375
autocompleteopen event 376
autocompleters 369

events 375
options 371
source data 372
styling 376

Autocompleters Lab 373
source options 375

autocompletesearch event 376
autocompleteselect event 376
auto-progressbar plugin,

testing 367
auto-progressbar widget 363

creating 364
auto-progressbar, test page 368
autoProgressbar() method 363

options 364
auto-scrolling

sensitivity 312
speed 312

B

background patterns 55
background sounds 55
backgroundColor property 296
bar widget 282
Basic Event Model 102

event propagation 103
See also DOM Level 0 Event

Model
before() method 80
beforeSend option 265
behaviors 119

cascading dropdowns 256
progression 120
separating from structure 6

best practices 16, 205
bilateral operations 58
bind() method 107, 110, 265,

313
establishing handlers on

sortables 327
event handlers 266

black box 241
blind effect 293
blinking text 55
blur() method 110, 119
Boot Closet, exercises 277
borderBottomColor

property 296

borderLeftColor property 296
borderRightColor property 296
borderTopColor property 296
bounce effect 293
branching 173
browser capability flags 173
browser detection 171–172,

175–176
alternatives 172, 175
custom support flag 176
jQuery flags 175, 177
when required 176
why to avoid 172

Browser Event Model. See DOM
Level 0 Event Model

browsers 8
bugs 171
caching decisions 250
differences in event

models 94
effects and animations

within 138
event models 93, 95
exposing events 94
family 175
identification 172
layout manager 149
modern 23
nonstandard mouse

events 123
proliferation 171
standards-compliant 23, 98,

101, 103, 105, 107–108,
175

XHR implementation 237
bubble handlers 104–105

establishing 105
tracking event

propagation 104
bubble phase 104

event path 105
Internet Explorer 106

bubble process 100
bubbling 98

hierarchy 265
stopping 100

button
element 347
semantics 347
theming 350
types 348

Button widgets, icons 287
button() method 348

applying 349
options 350
syntax 349
Download from Library of Wow! eBook <www.wowebook.com>

INDEX 436
buttons 347
events 352
icons 352
options 351
styling 353

buttonset() method 348
applying 349
syntax 349

buttonsets 347
options 351

C

caching, in browsers 250
calendar controls See date pick-

ers
callback functions 374, 424

function context 58
Camino 95, 171, 423

$.support flags 174
browser flags 173

cancelBubble property 101
canned theme 286, 289

custom theme 290
capabilities

detection 172
user agent 171

caption bar 140
capture handlers 104–105

establishing 105
tracking event

propagation 104
usage 106

capture phase 104
event path 105
Internet Explorer 106
jQuery Event Model 107

caret character 25
in selectors 25

cascading dropdowns 255, 258
implementing 259

Cascading Style Sheets 4, 6, 8
basic selectors 22
CSS class names 22
filter selectors 29
psuedo-class 29
rules 6
selectors 23
See also CSS

CGI, server side 247
chainability 10
chaining 52, 367

stack 53
chains 9

managing 52–53

change events 134
usage example 258

change handler,
establishing 133

change() method 110, 119
character patterns 385
character sets 263
checkboxes 244, 354
:checked 29
child selectors 23–24
children() method 50
Chrome 23, 171

$.support flags 174
browser flags 173
debugging with 251

class manipulation method. See
switchClass() method

class names
adding, removing 66, 70
fetching 69
multiple 66
testing for 69
toggling 67

class transition methods
animating 297
extensions 297

clearQueue() method 166
click 102, 107
click event handler 97
click events 99, 101, 120

establishing multiple event
handlers 103

propagation 104
click() method 110, 119
client-side code 8
client-side libraries 11
client-side programming 212
clip effect 293
clone() method 52, 87

for templating 127
clones 87
cloning 131
cloning operation 88
closest() method 49

usage example 132
closures 64, 95, 100, 228, 233,

428, 431
Observable pattern 102

coding styles 15
cognitive ability 144
collapsible module example

animated version 147
implementation 143
implementing 140

collections, iterating
through 181

colon character 27
in selectors 27

color property 296
combo box 347
comma operator, in selectors 23
commerce web sites 245
complete 266
computed style 71
connected lists 329
content management system 62
content type header 240
contents() method 50
context argument to $() 20
context menus 73
context, multiple 21
controls 282
convenience methods 72
copy-and-move operation 79
copying elements 87
core animation

engine 291, 296
extended 296

core interactions 306
core jQuery 282
core library 14
correspondence between attri-

butes and properties 57
creating DOM elements 13
creating utility functions 211
cross-browser

Ajax 237
problems 3
solution 173

CSS 282
!important qualifier 321
absolute positioning during

animation 158
class names 66, 69
computed style 71
convenience methods 72
display property 149
hiding and showing

elements 139
inline vs block 139
opacity 151, 155
position style 157
precedence rules 321
relative positioning 157
selectors 8
specifying at creation 34
style properties 155
styles 72
styling 141
styling plugin elements 272
See also Cascading Style Sheets
Download from Library of Wow! eBook <www.wowebook.com>

INDEX 437
CSS classes, naming 286
CSS display property 139
CSS file 284
CSS filter selectors 30
css folder 284
CSS positioning,

advanced 300
CSS properties 296–297
CSS selectors 8, 22–23, 27, 29
CSS specification 27
css() method 70–71, 153, 217

usage example 147
CSS3 9, 22

style rules 288
Cupertino theme 284
cursor

CSS name 310
relative position 310

custom
animations 154, 159
drop animation 157
effects 158
puff animation 158
scale animation 156

custom attributes 59
data- prefixed name 59
in HTML 59

custom code 204
custom controls 347
custom data 64
Custom Effects Example 159
custom event 132
custom function

$.formatDate() 213
$.toFixedWidth() 211
date formatter 212

custom handlers 133
custom method

photomatic() 224
setReadOnly() 219

custom properties 64
custom selectors 29, 32
custom wrapper methods 216

D

dashboard example 140
data conversion 185
data translation 184
data() method 64–65, 136, 366

usage example 228
Date 212
date formats 377

character patterns 385
pattern constants 386

date formatter 212, 214
pattern 213
tokens 213

date formatting 212–213, 216
date pickers 377
date strings 388
datepicker() method 377
datepickers

callback options 387
creating 377
date options 385
defaults 387
events 387
options 381
utility functions 387

Datepickers Lab 380
dblclick() method 110, 119
debugging tool, JavaScript 251
default action blocking 107
default actions. See semantic

actions
defining functions 210
delay() method 166
delaying queues 166
Dell 3
dependencies 283
dependent dropdowns 255
Dequeue button 165
dequeue() method 163

usage example 167
dequeuing 163

functions 163
usage example 164

desktop applications 354
drag and drop 306
interaction styles 306
sorting 322

detach() method 86
development-bundle folder 284
DHTML 56
dialog boxes

creating 405
events 410
opening 407
options 408
tricks 412

dialog() method 412
syntax 406

dialogbeforeClose event 410
dialogclose event 410
dialogfocus event 411
dialogopen event 411
Dialogs Lab 407
dialogs See dialog boxes
die() method 117

dimensions, getting and
setting 72

direct manipulation 305
disable() function 14
disabled attribute 63
disabling animations 170
disabling elements, gotchas 63
disabling form elements 14
display property 145
display state

manipulation 144
toggling 143

div element 354
dialog boxes 412

document instance 12
Document Object Model 6,

12, 18
creating new elements 13
generating elements 32
sample fragment 20
sub-trees 21
See also DOM

document ready handler 11
document structure 12
dollar sign character 26

in selectors 26
DOM 56, 65

API methods 77
appending content 79
cloning elements 87
copying elements 78, 87
event bubbling 98–99, 258
event propagation 103
form elements 89
hierarchy 99
in Ajax 240
inspecting with Firebug 251
manipulation 77

comprehensive
example 268

moving elements 78
removing elements 86–87
replacing elements 88
setting content 77
unwrapping elements 84
wrapping elements 84
See also Document Object

Model
DOM elements 9, 11, 15, 21,

29, 35
attributes 56
collecting into a wrapper 9
creation 18

example 34
event handlers 96
Download from Library of Wow! eBook <www.wowebook.com>

INDEX 438
DOM elements (continued)
JavaScript object instances 64
listeners 96
removing attributes 62
selecting 20
selection 18
selectors 18
storing JavaScript values 64
style property 70
wrapper methods 216

DOM Level 0 Event Model 95,
97, 101–102

browser-independent 106
event handlers 95
shortcomings 101

DOM Level 1 Event Model 95
DOM Level 2 Event Model 95,

101, 172
converting to jQuery Event

Model 107
establishing event

handlers 102, 105
event handlers 102
event propagation 103
Internet Explorer 106
listeners 102
multiple event handlers 109
standard event model 102

DOM manipulations 56
functions 13
jQuery 56
Move and Copy Lab Page 81
unwrapping 84
wrapping 84

DOM Sample 21
DOM scripting 56
DOM tree 12, 22, 33, 149

event progression 105
event propagation 98, 100
jQuery 105

DOM-scripted applications 3,
18, 235–236

Double-Submit Problem 63
Download Theme button 290
downloads, example code for

book 5
drag and drop 282, 306

in desktop applications 306
in web applications 306

drag event 312, 411
current state 313

drag operation
acceptable element 317
auto-scrolling 312
constraining area 310

constraining axis 310
delaying 310
disallowing 310
distance 311
drag event 313
flexibility 308, 312
handle 311
iframes 311
pixels to initiate 311
reverting 311
stages 312
start event 313
starting 311
stop event 313
ui-draggable-dragging 308
z-index 312

drag-and-drop operation 307
current state 319
transitions 318

draggability 307
controlling 313
disabling 307–308, 313
disabling permanently 314
events 312
options 308
re-enabling 308, 314
removing 308

draggable elements
current draggable

element 319
disabling draggability 308
drag helper 311
draggability 307
identifying 308
re-enabling draggability 308

draggable, how to make 308
draggable() method 307

options 308–309
options object 313
retrieving individual

options 314
setting individual options 314
syntax 307

draggableDestroy() method 307
draggableDisable() method 307
draggables 307

associating with
droppables 311

event handler function 311
flexibility 312
registering event

handlers 312
scope 311
stacking 312
UI events 313
z-index 312

Draggables Lab page 308
control panel 309
draggable event handlers 313
dragged element 313

dragged elements
opacity 311
position 320
properties 313
revert duration 311
reverting position 311
snapping 312
target elements 312

dragging
accidental 311
definition 306
flexibility 312
how to 306
usefulness 314

dragstart event 312, 411
event handler 312
registering a handler 313

dragstop event 312, 411
event handler 312

drop effect 156, 158, 293
drop event, when triggered 319
dropactivate event, when

triggered 318–319
dropdeactivate event, when

triggered 319
dropdowns 244

cascading 255–256
instrumentation example 247

dropout event, when
triggered 319

dropover event, when
triggered 318–319

droppability
disabling 315
enabling 315
events 318
events propogation 317
performance 317
removing 315

droppable
disabling 320
elements

droppability 315
recomputing positions 311
ui-droppable class 317

droppable() method
making droppable 315
options 317
syntax 315

droppables 314
activating classes 317
active state 318–319
Download from Library of Wow! eBook <www.wowebook.com>

INDEX 439
droppables(continued)
associating draggables 317
defining hovering 318
enabling 320
event handlers

drop events 317
dropactivate events 317
dropover events 317

events 316, 319
handlers 318
hover class 317
hover state 318
identifying 317
inactive state 318–319
states 318
transitions 318

Droppables Lab Page
Control Panel 320
control panel 316
exercises 320

droppablesevent handlers
dropdeactivate events 317
dropout events 317

dropping, definition 306
DVD cataloging example 124
dyanmic element creation,

example 34
dynamic components 73
dynamic data, loading 245
dynamic dimensions,

example 73
dynamic elements 73
dynamic functionality 4
Dynamic HTML. See DHTML

E

each() method 49, 100, 156,
182, 228, 366, 430

usage example 15
easing functions 155

linear 155
swing 155

easings 155, 292, 299
list of available 299

e-commerce 245
effect() method 291, 297
effects 138, 282, 291

augmented visibility 297
comprehensive example 268
custom 154, 158
custom drop 156
custom fading 155
custom puff 157
custom scale 156

description 292
dynamic 139
fade in 144
fade out 144
fading 149
hide 144
hide() method 139
overuse 139
purpose 139
queue 162, 166
queuing 159
show 144
show() method 139
slide down 144
slide up 144
sliding 152
speed 149

Effects Lab Page 147–150
element attributes, specifying on

creation 33
element creation, example 34
element selection 14
elements 4

abbr 274
active elements 73
animated 153
animating 144, 154
applying styles 70
as data scopes 64
attributes 56, 62, 65
behavioral elements 7
cloning 87
content 77–78
copying 78, 87
creating a union 41
creating elements 126
creation by template 126
custom data 64
display state toggling 143
draggability 307
dynamic 116
emptying 86
enabled state example 119
fading 139, 149
finding index of an

element 40
form elements 89
getting and setting

properties 57
hiding 139
how to make draggable 308
making droppable 315
making selectable 336
making sortable 323
manipulating properties 58

modifying contents 77
moving 78
opacity 149
position 75
properties 56–57, 65
references 58
removing 86–87
replacing 88
resizability 331
scroll position 76
selecting 19
selecting by order 27
setting content 77
setting multiple attributes 61
showing 139
sliding 152
sorting 305
span 274
state tracking 287
structural elements 7
styling 65, 76
stylistic rendition 70
subscribing 132
text contents 77
toggling 143
tooltips 268
unwrapping 84
visible 76
width and height 72
wrapping 84
wrapping contents 85

em units 155
empty, testing for 193
empty() method 86
encodeURIComponent()

function 190, 239, 244, 273
end() method 53

usage example 219
enhanced effects 282
Epiphany 173
eq() method 39
error 266
error() method 110, 119
event bubbling 99, 117, 258

avoiding repetitive code 258
event handlers 94

anonymous function 97
as attributes 97
attach method 102
automatic generation from

markup 97
binding 107, 119
browser-specific

detection 101
choices for binding 111
Download from Library of Wow! eBook <www.wowebook.com>

INDEX 440
event handlers(continued)
click event handler 108
convenience methods 115
DOM Level 0 Event

Model 95, 97
establishing 102, 106
establishing mouse event

handlers 123
establishing multiple 103
Event instance 107
example 108
fine-grained control 115
grouping 108
listeners 94
live 116
managing 115
multiple 106
multiple handlers 102
namespace 108
onclick 97
order 103
progression 120
removing 111
script control 96
specifying at creation 34
styles of declarations 96
testing 103
toggling 119, 121
triggering 117, 119
unbinding 119

event handling 106
hovering 121, 123
proactive 115
removing live event

handlers 117
standardizing 95

event indicator 320
Event instance 98, 100

adding event listener 102
cancelBubble property 101
inspecting 112
Internet Explorer 98
Internet Explorer Event

Model 106
jQuery.Event 113
normalizing 107, 112
preventing event

propagation 101
properties 98
stopPropagation()

method 101
target 118

event models 93, 95
Basic 95, 98
bubbling example 258

DOM Level 0 Event
Model 95, 98

DOM Level 2 103
DOM Level 2 Event

Model 95, 101
Internet Explorer 106
jQuery 106, 136
Netscape 95, 98
standard event model 102

event parameter 97
event propagation

affecting 100
diagrammed 104
element hierarchy 104
preventing 101, 115, 118
tracking 104

event target 100
event.srcElement 98
event.target 98
event-driven interfaces 93
event-handling

browser-specific 108
model 95
models 172

event-related, methods 119
events 136

addEventListener()
method 102

Ajax 265
Ajax events 265
API abstraction 106
attachEvent() method 106
behaviors 94
binding 107
bubble phase 104
bubbling 98
cancelling propagation 100
capture phase 104
comprehensive example 268
custom 132
establishing multiple 102–103
event canceling 107
Event instance 98
event names 108
exposing 94
jQuery convenience

methods 119
key codes 114
modifier keys 114
name-spaced 112
propagation 99–100, 103
publishing 132
srcElement property 98
target element 98
triggering 117, 119

example code
download location 5
online URL 242

expandos. See custom properties
explode effect 293
extended controls 73
extending jQuery 15, 204

custom plugins 204
defining wrapper

methods 216, 233
implementation

functions 229, 231
in $ namespace 210–211
motivations 205
naming files 206
The Termifier 277
utility functions 210–211

extending objects 187
Extensible Hypertext Markup

Language 4
external resources 12

F

fade effects 170, 293
fade in effect 144

usage example 270
fade out effect 144
fadeIn() method 150
fadeOut() method 150
fadeTo() method 151

opacity 151
fading 149
feature detection 98, 172, 176

alternative to browser
detection 173

feasibility 176
for Ajax 237
preferred over browser

detection 175
filter selectors 32

:not 44
element expressions 32

filter() method 46
usage example 45, 219

filtering data 183–184
filtering wrapped sets 45
filters 369

adding 126
basic filters 27
child filters 27
inverse of 31
multiple 134
positional 27
removing unwanted 134
See also pseudo-classes
Download from Library of Wow! eBook <www.wowebook.com>

INDEX 441
find() method 51
Firebug 133, 251, 417

download URL 251
inspecting Ajax requests 251

Firebug Lite 251
Firefox 95, 171, 176, 417, 423

$.support flags 174
inspecting Ajax requests 250
reload vs. refresh 149

first() method 39
first-class objects 215
fixed-width output 211–212
flags 170

$ 170
detecting user agent

support 171
using 170

Flash 12
flexibility 305, 374

drag operation 308
flexibility of code via loose

coupling 133
flyouts 268
focus() method 110, 119
focusin event 110–111
focusout event 110–111
fold effect 294
font tag, deprecated 6
form

data 244
submission 244

form elements 89
convenience functions 89
definition 89
setting value 91
unsuccessful state 89

Form Plugin 89, 91
form validation 101
form.submit() 101
formatting fixed-width

output 211
forms

controls 244
data validation 135, 180
query string 189
read-only fields 220
serializing 244
serializing form elements 189
submit event 101
submitting form

elements 189
URL 189

frames, animation 155
Function

apply() method 426
as first-class object 421

call() method 426
function keyword

operation 422
naming 422–423

function context 95, 425–426
See also this

function detection for Ajax 237
function literals 7
function queuing 162
Function.prototype

property 188
functional language 229
functional programming 429
functions

as callbacks 424
as methods 423, 428
assigning context 426
context 425
function literal 423
queuing 159
testing for 193
top-level 422

fx 162
fx queue 167

G

Gallery tab 290
garbage collection 86
Garrett, Jesse James 236
Gecko 176, 423

$.support flags 174
generated event handlers 97
GET 239

body content 239
semantic intentions 250
via jQuery 252

get() method 38
negative index 38
returning an array 38

GIF 138
GIF animations 361
GIF files 277
global events 265
global flags 170
global identifier 16
global namespace 16, 229

avoid polluting 169
polluting 215

global values, scope issues 64
global variables 64–65, 130, 136
Google Chrome 171, 173, 176
Graphical User Interface

drag and drop 306
See also GUI

grep 183
grip handle 336
groupings of parametric

data 130
GUI 93

.NET framework 93
event dispatching 94
Java Swing 93
management systems 93
X11 93

H

halting form submission 101
handles 359

single-handle case 354
handling phases 105
:has() filter 32

usage example 32
has() method 48
hasClass() method 69

is() method,comparison 69
hash as parameter 208, 210
header, Last-Modified 263
height, setting 72
height() method 72
Help tab 290
helper element 319
hide effect 144
hide() method 139, 144–145

extended by jQuery UI
296

usage example 142
highlight effect 294
horizontal slider 354
hover styles 348
hover() method 123
hovering 121
HTML

as Ajax result 253
behavioral aspects 246
semantic actions 94
specification 244

HTML 4 274
controls 352
custom attributes 59

HTML 5
custom attributes 59
Draft Specification 274
W3C specification 59

HTML markup
custom attributes 59
DOM elements 56–57
event handler function 96
event handlers 97
Download from Library of Wow! eBook <www.wowebook.com>

INDEX 442
HTML page
behavior 6
body tag 7
creating elements 13
CSS selectors 8
dynamic elements 32
head section 7
onload handler 7
readability 6
structure 6
style 6
Unobtrusive JavaScript 7

HTML Page, maintainability 6
HTML, generation 32
html() method 77

usage example 253
HTTP

protocol 250
request parameters 89
requests 247
See also Hypertext Transfer

Protocol
HTTP method

GET 238–239
POST 238–239

HTTP status code
200 238
404 238

Hypertext Transfer
Protocol 254

methods 239, 244
effects on caching 250

status codes 240
See also HTTP

I

IBM 3
iCab 173
icon sheet 287
icons 287
idempotent requests 250
IE 6 106, 171, 237

PNG file non-support 277
IE 7 106, 171, 237
IE 8 106, 171
IE, $.support flags 174
iframe dialog 412

styling 413
iframes

for Ajax 236
masking 311

iGoogle 140
image loading 12
image resizing example 120

images folder 284
img element

dynamically creating 33
selecting 45
selecting with except type

relationship 45
wrapped set 43

index.html file 284
index() method 40
info.panel property 397
inheritance 188
inline functions 7
inner HTML 77–78
innerHeight() method 75
innerHTML property 10
innerWidth() method 75
input controls 56
input element 347, 370
insertAfter() method 83, 86
insertBefore() method 83, 86
inserting dynamic HTML 84
installing jQuery 4
interactions 282
interactive applications 101, 119

multi-events 121
interfaces

asynchronous 93
event-driven 93

Internet Explorer 23, 171, 176
Ajax 237
Ajax wrapper 237
alpha filters vs. opacity 70
attribute setting

limitations 61
cancelBubble property 101
DOM Level 2 Event Model 95
event handling

limitations 106
Event instance,

proprietary 98
Event Model 106
jQuery Event Model 108
lack of DOM Level 2 Event

Model 106
non-compliance with

standards 175
srcElement property 98
unified events API 109

Internet Explorer 8
rounded corners 288

Internet Explorer Event
Model 106, 172

attachEvent() method 106
inverting selectors 31–32
iPhone 94

is() method 52
hasClass() method,

comparison 69
usage example 142

isNaN() method 185
ISO 8601 389
iterating

properties and
collections 181, 183

the wrapped set 49

J

Java 242
server side 247

Java Server Pages. See JSP
JavaScript 3–4

. operator 418
adding select options 176
animation engine 139
arrays 37, 186
attribute value 60
closure variables 429
closures 64, 95, 228, 428, 431
creating objects 416
custom properties 64
Date 212
dot operator 418
dynamic and interpretive 208
dynamic creation of

properties 417
dynamic nature 56
dynamically loading

scripts 199, 202
effective use 5
encodeURIComponent()

function 190, 239, 244,
273

essential concepts 415
expressions 7
extending objects 187
flexibility 95
flexible nature 208
for loop 181
for-in loop 181
Function 95
function contexts 95, 217
function keyword 422
functional language 229
functions 11, 215, 421
general reference

operator 419
getAttribute() method 59
global names 13
isNaN() method 185
Download from Library of Wow! eBook <www.wowebook.com>

INDEX 443
JavaScript (continued)
libraries 3, 16, 206
modulo operator 230
NaN 185
navigator object 172
new operator 416
NodeList 186
nonstandard property

names 418
Number 185
Object 95, 416, 421
object hash 208
Object instance 208

See also objects
Object literals 419–420
object properties 416, 419
object property diagram 418
object-oriented 187, 217, 229
objects 56, 64
operations on wrapped

elements 37
properties 58
property name 57
property references 418
prototype property 188
regular expressions 184, 215
separation of behavior 7
setAttribute() method 59
statements 7
String type 180, 186
String.match() method 184
String.split() method 186
testing objects for

existence 15
top-level scope 421
Unobtrusive JavaScript 6, 8,

97
using libraries with

jQuery 177, 180
var keyword explained 421
window properties 420
XML and 241

JavaScript array, from wrapped
set 40

JavaScript Object Notation
as Ajax response 240

jQuery 3, 8
$() 9
accessing elements 58
adding wrapper methods 216
Ajax events 265
animation queue 161
architecture 206
attribute manipulation 58
attributes handling 58

basic CSS selectors 26
bilateral methods 58
bilateral operations 58
bind() method 110
binding event handlers 107
browser detection flags 175,

177
browser disparities 106
browser-independent Event

instance 113
browser-independent

events 117
browsers 23
cascading dropdowns 255
chain stack 53
chainability 10

of methods 33
chaining 9, 36, 41–42, 108,

205, 217
chains 52
checkboxes 90
coding styles 15
common tasks 4
community 206
compound statements 34
core effects 144
core library 14
Core Team 89
creating dynamic elements 32
cross-browser support 8, 12
CSS convenience methods 72
CSS filter selectors 30
CSS implementation 22
CSS3 22
custom data 64
custom events 132
custom filter selectors 29–30
custom selectors 32
dimension manipulation 72
dimension methods 75
document ready handler 11
DOM manipulation

functions 13
download website 4
dynamic manipulation 115
dynamically creating

elements 14
effects 139
effects queue 161
element placement 80
emulating nonstandard

mouse events 123
essential JavaScript

concepts 415
establishing handlers 123

event convenience
methods 119

event implementation 106
Event instance 112
Event Model 106, 108
event techniques 124
event trigger convenience

methods 118
examples of extending 14
extending 14, 16, 204, 233
extending with utility

functions 210
extensions 15
feature flags 176
filtering large data sets

example 124
filters 32
flags 170
form element convenience

functions 89
fundamentals 8
fx queue 166
GET requests 254
global names 179
grouping event handlers 108
higher-level functions 119
installing 4
JavaScript concepts 94
jQuery 1.3 175
jQuery object 177–178
less JavaScript 94
live() method 115
load() Ajax method 135
loading content 243
manipulating collections 180
manipulating JavaScript

objects 180
method chain examples 124
method chains 41, 128, 231
methods 35, 206
multiple selectors 23
namespace 16
native JavaScript notation 58
Nokia 4
opacity property handling 70
opening links in external

windows 62
operations 37
Operations Lab 35–36, 42–44
patterns 205
performance 52
positional filter selectors 27
positions 75
POST requests 255
queues 162
Download from Library of Wow! eBook <www.wowebook.com>

INDEX 444
jQuery (continued)
radio buttons 90
radio group example 5
readability 34
removing element data 65
scripting-enabled behavior 94
scroll position 76
scrolling 75
selecting by position 27
selecting elements 22
selecting elements to be

wrapped 18
selector 21
selector engine 23
selector mechanism 205
selector string 20
selectors 5, 19, 27, 32, 41, 344
Selectors Lab Page 19–20
shortcut event methods 110
toggle() method 120
translating data 184
trimming strings 180
UI Draggables Lab Page 308
Unobtrusive JavaScript 7, 97
user agent classification 175
using with other libraries 16,

177, 180
utility functions 11, 169, 177,

180
versatile code 7–8
Visual Studio tool 4
why extend 205
why use 3
wrapped set 9, 206
wrapper function 14
wrapper methods 19, 37, 218
wrappers 8–9, 11, 207

jQuery 1.2 32
jQuery 1.3 32
jQuery API

$.ajax() 261
$.ajaxSetup 264
$.browser.mozilla 175
$.browser.msie 175
$.browser.opera 175
$.browser.safari 175
$.browser.version 175
$.contains() 194
$.data() 195
$.each() 182
$.extend() 188
$.fx.off 170
$.get() 252–253
$.getJSON() 254
$.getScript() 200

$.globalEval() 199
$.grep() 183
$.inArray() 186
$.isArray() 193
$.isEmptyObject() 193
$.isFunction() 193
$.isPlainObject() 193
$.isXMLDoc() 193
$.makeArray() 186
$.map() 184
$.merge() 187
$.noConflict(jQueryToo) 177
$.noop() 194
$.param() 190
$.parseJSON() 198
$.post() 255
$.proxy() 196
$.removeData() 195
$.support. noCloneEvent 173
$.support.boxModel 173
$.support.cssFloat 173
$.support.hrefNormalized

173
$.support.htmlSerialize 173
$.support.leadingWhitespace

173
$.support.objectAll 173
$.support.opacity 173
$.support.scriptEval 173
$.support.style 173
$.support.tbody 173
$.trim() 181
$.unique() 187
$() 9
add() 42
addClass() 66
after() 80
ajaxComplete() 266
ajaxError() 266
ajaxSend() 266
ajaxStart() 266
ajaxStop() 266
ajaxSuccess() 266
andSelf() 53
animate() 154
append() 79
appendTo() 83
attr() 58, 60–61
before() 80
bind() 107
blur() 110, 119
change() 110, 119
children() 50
clearQueue() 166
click() 110, 119

clone() 87
contents() 50
css() 70–71
data() 64–65
dblclick() 110, 119
delay() 166
dequeue() 163
detach() 86
die() 117
draggable() 307
draggable() method 307
droppable() 315
each() method 49
empty() 86
end() 53
eq() 39
error() 110, 119
fadeIn() 150
fadeOut() 150
fadeTo() 151
filter() 46
find() 51
first() 39
focus() 110, 119
focusin() 110
focusout() 110
get() 38
has() 48
hasClass() 69
height() 72
height(value) 72
hide() 145
hover() 123
html() 77
index() 40
innerHeight() 75
innerWidth() 75
insertAfter () 83
insertBefore () 83
is() 52
jQuery() function 9
keydown() 110, 119
keypress() 110, 119
keyup() 110, 119
last() 39
live() 115
load() 110, 243
map() 48
mousedown() 110
mouseenter() 110
mouseleave() 110
mousemove() 110
mouseout() 110
mouseup() 110
next() 50
Download from Library of Wow! eBook <www.wowebook.com>

INDEX 445
jQuery API (continued)
nextAll() 50
nextUntil() 50
not() 45
offset() 76
offsetParent() 50
one() 111
outerHeight() 75
outerWidth() 75
parent() 50
parents() 50
parentsUntil() 50
position() 76
prepend() 79
prependTo() 83
prev() 50
prevAll() 50
prevUntil() 50
queue() 162
ready() 110
remove() 86
removeAttr() 62
removeClass() 67
removeData() 65
replaceAll () 89
replaceWith() 88
resizable() 331
resize() 110
scroll() 110
scrollLeft() 76
scrollTop() 76
select() 110, 119
selectable() 340
serialize() 244
serializeArray() 245
show() 145
siblings() 50
size() 37
slice() 47
slideDown() 152
slideToggle() 153
slideUp() 152
sortable() 322
stop() 153
submit() 110, 119
text() 78
toggle() 119, 146
toggleClass() 67–68
trigger() 117
triggerHandler() 118
unbind() 112
unload() 110
unwrap() 85
val() 90–91
width() 72

wrap() 84
wrapAll() 85
wrapInner() 85

jQuery chaining, in plugins 271
jQuery documentation 27
jQuery Event Model 106

browser differences 112
capture phase 107
DOM Level 2 Event

Model 107
establishing event

handlers 107, 112
features 106
Internet Explorer 107, 109
multiple event handlers 109
unified events API 109

jQuery extensions 204
code consistency 205
jQuery methods 206
leveraging existing

codebase 205
Photomatic plugin 223
reusability 205
utility functions 206
why extend 205

jQuery Form Plugin 207
jQuery plugins

avoiding name collisions 206
complex methods 218
filenames 207
guidelines 205
implementation

functions 229
maintaining state 233
naming 206
parameters 208
patterns 205
scope 233

jQuery selectors, examples 10
jQuery UI 281, 347

$.datepicker. iso8601week ()
method 389

$.datepicker.formatDate()
method 388

$.datepicker.parseDate()
method 388

$.datepicker.setDefaults()
method 387

accordion() method 399
addClass() method 297
autocomplete() method 370
button() method 349
buttons 351
changing element sizes 330
configuring 282

convention 307
core interactions 306
datepicker() method 378
dialog() method 406
download page 283
downloading 282
draggable() method 307
draggables 307
drop zones 320
droppables 314
Droppables Lab Page 315
effect() method 291
effects 291
events for draggables 313
hide() method 296
higher-order interaction 330
method overloading 307
mouse interactions 306
position() method 301
progressbar() method 361
removeClass() method 297
Resizables Lab 331
selectables 337
Selectables Lab Page 338
selection state 336
show() method 296
slider() method 355
sliders 357
Sortables Lab Page 324
sorting 322
switchClass() method 298
tabs() method 391
team 282
toggle() method 296
toggleClass() method 297
using 284
version1.8 283

jQuery UI Button Icons
page 353

jQuery UI Buttons Lab 351
jQuery UI Easings Lab 300
jQuery UI Effects Lab 297
jQuery UI Effects Lab Page 292
jQuery UI Positioning Lab 302
jQuery UI Sliders Lab 356
jQuery wrapper 9

as array 9
methods 9

jquery, as file prefix 206
jQuery.Event 118, 265

data property 118
halting event

propagation 118
stopPropagation()

method 118
Download from Library of Wow! eBook <www.wowebook.com>

INDEX 446
jQuery.Event object 113
methods 114
properties 113

jQuery.fx.off flag 153
jQuery() function 9, 12–13
js folder 284
JSON 420

array example 420
as Ajax result 254
JavaScript Dates and 420
object example 419
See also JavaScript Object

Notation
json type 262
jsonp type 262
JSP 242, 248

engine 242

K

Kepler 161
Kepler's Dilemma 160
keyboard events 98
keydown events 102, 114
keydown() method 110, 119
keypress events 114
keypress() method 110, 119
keyup() method 110, 119
Konqueror 173

L

Lab Pages
$.param() 192
Accordions 401
Autocompleters 372
Buttons 350
Datepickers 379
Dialogs 408
Draggables 308
Droppables 315
Effects 147
Move and Copy 81
Operations 35
Resizables 331
Rounded Corners 288
Selectables 338
Selectors 20
Sliders 356
Sortables 324
Tabs 392
UI Easings 299
UI Effects 291
UI Positioning 301

last() method 39
Last-Modified header 263

left property 161
length property, applied to

$() 37
leveraging jQuery 205
libraries, using with jQuery 16
linear easing 299
listeners 94, 102

binding 112
establishing 104
removing 112
toggling 119

live events 116
live selector 116
live() method 115

dynamic elements 116
establishing event

handlers 116
limitations 116
similarity with bind()

method 116
usage example 132

LiveScript 138
load() method 110, 243, 404,

412
forcing a GET 256
usage example 248, 256, 273

loading content 241, 243
loading dynamic data 245
local events 265
loose coupling 133

M

Mac OS X, resizable
windows 336

Manning
Ajax in Action 236
Ajax in Practice 236

map() method 48
markup, well-formed 33
marquees 55
matching algorithm 374
memory leaks 64
memory management 65
merging options, usage

example 227
method 428

as read operation 58
as write operation 58

method attribute 25
method chain 9, 139

managing 52–53
methods, jQuery. See jQuery API
Microsoft

Ajax 235
XMLHTTP 236

MIME type 240
mission-critical applications 3
modal dialog boxes 405
modeless dialog boxes 405
module class 142
module, roll up state 140
modules 140
modulo operator 230
mouse

core interactions 306
event instance 313, 319
pointer cursor 310

mouse events 98
limitations 121
nonstandard 123
triggering 122

mouse interactions 282
mousedown() event 110
mouseenter() event 110, 123
mouseleave() event 110, 123
mousemove() method 110
mouseout() event 68, 110, 121
mouseover event 68, 99, 102,

107, 121
mouseup() event 110
Move and Copy Lab Page 81

clone operation 88
move and copy operations 82
Mozilla Firefox 23
-moz-opacity 70
multi-binding events 110
multiple class names 66
multiple simultaneous

animations 160

N

name collisions 17, 207
name-spaced events 112
namespaces 108

$ namespace 170
cluttering 207
global 169, 215
grouping events 110
hierarchy 65
multiple for events 109
object 212
prefix 11
unbinding events 112

namespacing 212
naming

avoiding collisions 207
collisions 207

NaN 185
navigator object 172
Download from Library of Wow! eBook <www.wowebook.com>

INDEX 447
Netflix 3
Netscape Communications

Corporation 95
Netscape Event Model. See DOM

Level 0 Event Model
Netscape Navigator 138

event-handling model 95
next() method 50
nextAll() method 50
nextUntil() method 50
NodeList 186
Nokia 4
non-alphabetic character

events 114
non-idempotent requests 250
normalizing event targets 98
:not() filter 31–32
not() method 44–46

removing elements 45
Number.NaN 185
numeric input 354

O

Object
literals 419–420
properties 416, 419

object hash 208, 210
object orientation 188
object-oriented JavaScript 187
objects

extending 187
testing for 193
testing for existence 15

Observable pattern 102
Observer pattern 132
offset() method 76
offsetParent() method 50
OmniWeb 171

$.support flags 174
browser flags 173

onclick event 106
onclick handler 100
onclick property 95, 101
one() method 111

removing an event
handler 111

onkeydown event 106
online retailers 245
onload handler 7

external resources 12
onload handler, alternative

to 12
onload mechanism 12
onmouseover event 106
onmouseover property 95–96

onreadystatechange 239–240
opacity 296

adjustments by effects 150
during custom drop

animation 156
reducing during

animation 159
opacity effect 157
opacity property handling 70
opacity property, animating 155
Opera 95, 171

$.support flags 174
browser flags 173

Operations Lab Page, compari-
son with Selectors Lab 36

operator 419
options hash 208, 210

extensive example 224
options object 209
ordinal index of wrapped

elements 40
outerHeight() method 75
outerWidth() method 75
outlineColor property 296
Outlook Web Access 235
overflow, usage example 271
OWA, Outlook Web Access 235

P

page 161
pain points, Ajax 241
parameters 144, 208, 210

optional 208
parent() method 50
parents() method 50
parsing ZIP codes 184
patterns

behavior 6
necessity in Scripted

Applications 8
Observable 102
Observer pattern 132
options hash 210
Publish/Subscribe

pattern 132
repetitiveness 204
Separation of Concerns 8
structure and 6

Photomatic plugin 223, 233
closures 228
HTML markup 226
implementation 232
syntax 224
test page 223, 225

PHP 192, 242, 248
server side 247

plain text response 240
plugin example, The

Termifier 269
plugin, termifier() 270
plugins 8, 15

creating 204, 233
PNG files 277
PNG image, slider 360
position, during animation 157
position() method 76

extended by jQuery UI 301
options 302
overloaded 301

positional filters 27
selectors 27

positional selectors 27, 29
positions 75
POST 239

body content 239
semantic intentions 250

prefetching data 247
prepend() method 79
prependTo() method 83, 86
prev() method 50
prevAll() method 50
prevUntil() method 50
progress bar plugin 363
progress bar widget 282, 361
progress bars 360

events 363
styling 369
updating 362
when not to use 361

progressbar() method 361
options 362

progressbarchange event 363
propagation of events 103
properties

definition 56
diagrammed 57
iterating through 181
of JavaScript objects 416, 419

property referencing 418
Prototype

conflicts with $ 210
using with jQuery 16, 177,

180
prototype 217
Prototype JavaScript

library 16–17
prototype property 188
pseudo-classes 29

See also filters
Download from Library of Wow! eBook <www.wowebook.com>

INDEX 448
pseudo-classes in CSS 27
Publish/Subscribe Pattern 102,

132
puff animation 157
puff effect 157–159, 294
pulsate effect 294
pulseData option 366
pulseUrl option 366

Q

qualifier controls, removing 134
query string 191, 239
queue option 155
queue() method 162

usage example 167
queues 162

dequeuing 163
distinct 162
executing 163
named 163

queuing 159
clearing 165
delay 166
functions 163, 166–167
insertions 166

QuickTime 12

R

radio buttons 244, 354
radio groups example 4
range element 360
readability of pages 55
read-only status, applying 219
ready handler 142, 144

binding event handlers 108
declaring 178
establishing handlers 115
live events 116
use of $ within 178

ready state handler 240
See also onreadystatechange

ready state handlers 239–240
ready() 110

usage example 12
real-time data 245
regular expressions 25,

183–184, 214
patterns 215
United States postal

codes 184
Zip Codes 184

relational selectors 23
remove() method 86

removeAttr() method 62
removeClass() method 66

extended by jQuery UI 297
removeData() method 65
removing wrapped set

elements 44
rendering engine 176
repeated operations 204
replaceAll() method 89
replaceWith() method 88
replication strategy 129
replication via templates 130
request header 171
request parameters 89
requests

asynchronous 235
GET vs POST 250, 254
idempotent 250
initiating 239
multiple 267
non-idempotent 250, 254

resizability
disabling 331
events 334
re-enabling 331
removing 331

resizable elements 331
other elements to resize 333

Resizable widget 287
resizable() method

handles 335
options 331, 333
syntax 331

resizables
event handlers

resize events 334
resizestart events 334
resizestop events 334

events 335
Resizables Lab Page, Control

Panel 332
resize event 335, 411
resize handler 73
resize operation

aspect ratio 333
constraining 333
direction 334
event handlers 334
event triggered 334
excluding elements 333
helper element 334
properties 334
translucent helper 333
via animation 333

resize() method 110

resizeStart event 411
resizestart event 335
resizeStop event 411
resizestop event 335
resizing, definition 306
resources, jQuery plugins 206
response 240–241

JSON 254
responseText property 243
RESTful principles 250
retail web sites 245
reusability 205
reusable code fragments 204
reusable components, avoiding

$ collisions 180
reusable tools 204
RIA. See rich internet applica-

tions
rich internet applications 3
roll-up button 141
roll-up functionality

example 140
RoR 192
rounded corners 288
Rounded Corners Mini-Lab 288
Ruby on Rails 192
Ruby, server side 247

S

Safari 23, 95, 171
$.support flags 174
problems loading scripts in

older versions 200
sample DOM 23
say() method 160
scale animation 156
scale effect 157–158, 294

usage example 299
scope issues 64
script blocks 7

jQuery 7
performance 7

script control
preventing form

submission 101
removing event handlers 111

script type 262
scripting engines 138
scripting, triggering event

handlers 117
scripts, dynamic loading 199,

202
scroll control methods 76
scroll() method 110
Download from Library of Wow! eBook <www.wowebook.com>

INDEX 449
scrolling 75
scrollLeft() method 76
scrollTop() method 76
segregating the script 7
select element 346
Select.add() method 176
select() method 110, 119
selectability

disabling 340
re-enabling 340
removing 340

selectable elements,
refreshing 340–341

selectable() method 336
options 341
syntax 340

selectables
adding an element 338
creating 340
event handlers

selectablestart events 341
selectablestop events 341
selected events 341
selecting events 341
unselected events 341
unselecting events 341

events 343
filtering 341
finding 344
results 337
selecting multiple

elements 338
tolerance 341

Selectables Lab Page
Control Panel 339
exercises 338, 340

selectablestart event, when
triggered 343

selectablestop event, when
triggered 343

selected elements 20
finding 344
submitting 344

selected event, when
triggered 343

selecting check boxes 29
selecting event, when

triggered 343
selecting links 25
selecting, definition 306
selection expressions 22

tag names 22
selection state 336–337

ui-selected class 338
selector filters, combining 31

selector mechanism 205
selectors 5, 8, 18–19, 32, 35

advanced 23
aggregate 41
application 22
attribute 23–24, 26
attribute ends with 26
base selector 31
basic 22–23, 26
basic selector type

examples 22
chaining 44
child 23, 26
comprehensive example

268
container 23, 26
cross-browser support 9
CSS syntax 19
CSS3 9
custom 32

checkbox 30
custom filter 29
form-related 31
inverting 31–32
match attribute at

beginning 26
multiple 23, 44
PDF files 26
positional 27, 29
regular expression syntax

similarity 25
relational 23, 26
selector expression 49

Selectors Lab 23
Selectors Lab Page 20–21,

23–24, 26, 29, 35
filters 31

self-disabling form 63
semantic action blocking 107
semantic actions 94, 101, 117

execution 118
serialization of form

elements 189
serialize() method 244

usage example 257
serializeArray() method 245
serializing form data 244
server setup for examples 241
server-side

independence 247
resources for example

code 241
state 254
technology 247
templating 248

server-side code 8, 219
responsibilities 64

servlet engine 242
setInterval() method, usage

example 231
setReadOnly() method,

implementation 219
shake effect 295
show effect 144
show() method 139, 145

extended by jQuery UI 296
usage example 142

simultaneous animation
methods 159

simultaneous
animations 159–160

size effect 295
size() method 37
slice() method 47
slide down effect 144
slide effect 295
slide event 359
slide up effect 144
slidechange event 359
slideDown() method 152
slider widgets, creating 354
slider() method, syntax 355
sliders 282, 354

events 358–359
options 357
styling 359

slideshow 223, 226
layout and styling 224

slidestart event 359
slidestop event 359
slideToggle() method 153
slideUp() method 152
snapping

edge mode 312
target elements 312
tolerance 312

sniffing 171
sort event 328
sort operation 323
sort order 305

Ajax request 329
fetching 329
sorted items 329

sortability
applying 323
disabling 322
enabling 323
events 327
options 324
removing 323
Download from Library of Wow! eBook <www.wowebook.com>

INDEX 450
sortability actions 322
sortable() method

applying sortability 323
establishing handlers 327
options 325
sort order 329
syntax 322

sortables
array 323
cache information 323
connecting 327
direct-manipulation

interface 327
establishing handlers 327
event handlers

sort events 326
sortactivate events 325
sortbeforestop events 325
sortchange events 325
sortdeactivate events 325
sortout events 326
sortover events 326
sortreceive events 326
sortremove events 326
sortstart events 326
sortstop events 326
sortupdate events 326

events 328
exercises 330
final state 344
option for 310
properties 327
refreshing 323
serialized query string 323

Sortables Lab Page 324
Control Panel 324
sort fetch results 329

sortables list 329
sortactivate event 328
sortbeforestop event 328
sortchange event 328
sortdeactivate event 328
sorting 282, 305, 322

definition 306
sortout event 328
sortover event 328
sortreceive event 328
sortremove event 328
sortstart event 328
sortstop event 328
sortupdate event 328

importance 329
sort order 329
sort result 329

span element 353, 367

speed of effects 149
srcElement property 98
stack 53
stacking 312
standard event model 102
status codes 240
stop() method 153, 366
stopPropagation() method

101
string trimming 180
String.match() method 184
String.split() method 186
style sheets 8
style.height property 73
style.width property 73
styles 348

applying 349
getting 70
separating from structure 6
setting 70
specifying at creation 34

stylesheets 6
styling 65, 76, 285
sublings() method 50
submit button, disabling 63
submit event 101

canceling 101
submit() method 110, 119
subsettting wrapped sets 47, 49
success 266
support user agent 171
swing easing 299
switchClass() method 298
synchronous Ajax 239

T

Tab widget 286
icons 287

tabbed panels 389
alternative 405

tabs 282
creating 389
events 396
styling 397

Tabs Lab 393
tabs() method 391

options 394
tabsadd event 396
tabsdisable event 396
tabsenable event 396
tabsload event 396
tabsremove event 396
tabsselect event 396
tabsshow event 396

target elements 5, 100, 312
event propagation 103

target property 98
targets

multiple 79
target element 80

template class 127
templates

creating 133
replicating 128, 131, 134
replicating elements 126
replication 126

templating 248
term 374
Termifier, The 273

comprehensive example 269
exercises 277
implementation 270
testing 274

test subjects 149
test-driven development 225
testing for existence 15
testing objects 193
testSubject class 360
text type 262
text() method 78
text/xml 240
theme 282–283

creating 289
CSS file 284
images 284
reloading 290

Theme Switcher Widget 285
themed buttons, creating 349
themed icons 352
ThemeRoller tool 286, 288

usage 290
themes 285

button controls
appearance 348

custom 289
predefined 286
setting up 286
switching 285

theming 350
this 424, 428

See also function context
this keyword 15
thumbnail images 223
timers 94
title attribute, as tooltip 268
toArray() method 38
toggle() method 119, 146

applied individually 149
callback 147
Download from Library of Wow! eBook <www.wowebook.com>

INDEX 451
toggle() method (continued)
extended by jQuery UI 296
naming 121
usage example 143, 231

toggleClass() method 67–68
extended by jQuery UI 297

toggling
class names 68
display state 143
process 146

Tomcat 242, 368, 372, 392
port 8080 242
testing 242

tooltips 73, 268
custom implementation 268

top property 161
transfer effect 295
translating arrays 184
translating data 185
translation functions 214
trash icon, drag and drop 306
tree root 100
trigger() method 117

data parameter 118
example usage 131

triggerHandler() method 118
triggering events 117
trimming strings 180
Twitter 3

U

ui- prefix 286
UI principles, gradual

transition 144
ui-accordion class 403
ui-accordion-content class 403
ui-accordion-content-active

class 404
ui-accordion-header class 403
ui-autocomplete class 376
ui-autocomplete-input class 376
ui-button-text class 353
ui-corner classes 288
ui-dialog class 411
ui-dialog-content class 411
ui-dialog-title class 411
ui-dialog-titlebar class 411
ui-dialog-titlebar-close class 411
ui-draggable class 308

adding 309
ui-draggable-dragging class

308
adding 309

ui-droppable class, adding 317

ui-icon class 287, 335
ui-icon-gripsmall-diagonal-se

class 335
ui-menu class 376
ui-menu-item class 376
ui-progressbar class 369
ui-progressbar-value class 369
ui-resizable-handle class 335
ui-resizable-helper

class 333–334
ui-resizable-n class 335
ui-resizable-xx class 335
ui-selected class 338, 343–344
ui-selectee class 341
ui-selecting class 343
ui-slider class 359
ui-slider-handle class 359
ui-slider-horizontal class 359
ui-slider-vertical class 359
ui-state classes 287
ui-state-active class 286, 404
ui-state-hover class 376
ui-tabs class 397
ui-tabs-nav class 397
ui-tabs-panel class 397
ui-tabs-selected class 397
ui-unselecting class 343
ui-widget class 287
ui-widget-content class 287
ui-widget-header class 287,

360
unbind() method 110, 112
unified events API 109
UNIX grep 183
unload() method 110
Unobtrusive JavaScript 6–7, 11,

97, 246
coding patterns 8
disadvantage 8
practical application 226
violation 97

unselected event, when
triggered 343

unselecting event 343
unthemed display 348
unwrap() method 85
URI encoding 239, 244
URLs 189, 239

non-alphanumeric
characters 190

usability 305
user agent 171

detection 171, 173
spoofing 171
string 171

user interfaces
annoyances 55
behavior 94
display 94
too much information 369

user-friendliness factor 219
utility functions 11, 169, 189

$.ajax() function 261
$.ajaxSetup function 264
$.contains() function 194
$.data() function 195
$.each() function 182
$.extend() function 188
$.get() function 252
$.getJSON() function 254
$.getScript() function 200
$.globalEval() function 199
$.grep() function 183
$.inArray() function 186
$.isArray() function 193
$.isEmptyObject()

function 193
$.isFunction() function 193
$.isPlainObject()

function 193
$.isXMLDoc() function 193
$.makeArray() function 186
$.map() function 184
$.merge() function 187
$.noConflict() function 177
$.noop() function 194
$.param() function 190
$.parseJSON() function 198
$.post() function 255
$.proxy() function 196
$.removeData () function 195
$.trim() function 181
$.unique() function 187
adding custom 210
as jQuery extensions 206
avoiding conflict 212
creating 213, 216
custom 211
data manipulation 211
date formatter 214
namespacing 212
naming 207
on $ namespace 170
subfunctions 215
trimming strings 11

V

val() method 90–91
limitations 90
Download from Library of Wow! eBook <www.wowebook.com>

INDEX 452
value, getting a value 90
variable parameter lists 193
variables as part of closure 429
visibility methods, extended 296
visible elements 76, 282, 285

W

W3C DOM specification, DOM
level 95

W3C. See World Wide Web Con-
sortium

wastebasket icon, drag and
drop 306

web applications
interactive 4–5, 18
next-generation 16
separation of

responsibilities 8
web development

CSS 6
elements 4
jQuery 3–4
patterns 3
styles 6

web experience 56
web server

document base 242
for example code 241
PHP-enabled 242
Tomcat 242
URL 242

web-based dialog box 405
WebKit

$.support flags 174
engine 176

week numbering 389
well-formed markup 33
widgets 282

identifying 287
state tracking 287

width, setting 72
width() method 72
wiki 62
window object 12
window, properties 420
window.clearInterval()

method 367
window.event property 98, 106,

112
window.open() method 405
window.setInterval()

function 366, 429
window.setTimeout() 424
World Wide Web 189

events 93

World Wide Web
Consortium 23

Wow factor 56
wrap() method 84
wrapAll() method 85
wrapInner() method 85
wrapped element set 18
wrapped elements 35, 37

fetching as an array 38
wrapped set 9, 21, 35

add() method 43
adding elements 41, 44
adjusting elements 41
array indexing 58
as array 37
as JavaScript array 40
augmenting 41
augmenting using

relationships 49
augmenting with add()

method 44
determining size 37
dynamic adjustment of

elements 46
filtering 45
filtering with not()

method 45
finding all the elements 40
finding descendants 51
iterating over 49
manipulation 35
obtaining elements from 37,

41
programmatic filtering 45
removing elements 44, 46
removing elements with fil-

ter() method 45
selecting images 42
subsetting 47
subsetting using

relationships 49
subsetting with slice()

method 47
testing for matches 52
transformations 48
translating elements 48
traversing 49

wrapped sets
creating 36
managing with jQuery 54
multiple 52

wrapper 9
wrapper functions, creating 216
wrapper methods 9, 19, 36, 216

adding 216–217

applying multiple
operations 218, 222

chaining 52
custom 220
defining 216, 233
implementation

functions 229, 231
maintaining state 227
read-only status 222
retaining state 223
techniques 218

X

XHR
See XMLHttpRequest

XHTML 59
attribute names 59
See also Extensible Hypertext

Markup Language
XML

as Ajax response 240
documents 187
DOM 241, 253
processing 241
XPath 8

+xml on MIME type 240
XMLHTTP 236
XMLHttpRequest 236

current state 240
fine-grained control 261
Google 236
initiating request 239
instance creation

example 237
instantiating 237
making the request 239
methods 238
native example 242
parameters 239
progress 239
properties 238
ready state handler 239
responses 240–241
responseText property 240
responseXML property 241
sending 239
setting HTTP method 239
setting URL 239
specification URL 238
status 240

Z

z-index 312
Download from Library of Wow! eBook <www.wowebook.com>

A good web development framework anticipates your
 needs—jQuery practically reads your mind. You’ll fall
 in love with it when you see 20 lines of code reduced

to three. jQuery is concise and readable. And with version
1.4, there’s even more to love including new eff ects and
events, usability improvements, and more testing options.

jQuery in Action, Second Edition is a fast-paced introduction
to jQuery that will take your JavaScript programming to
the next level. An in-depth rewrite of the bestselling fi rst
edition, this edition provides deep and practical coverage
of the latest jQuery and jQuery UI releases. Th e book’s
unique “lab pages” anchor the explanation of each new
concept in a practical example. You’ll learn how to traverse
HTML documents, handle events, perform animations,
and add Ajax to your web pages. Th is comprehensive guide
also teaches you how jQuery interacts with other tools and
frameworks and how to build jQuery plugins.

What’s Inside
In-depth jQuery 1.4
Complete coverage of jQuery UI 1.8
DOM manipulation and event handling
Animation and UI eff ects
Many practical examples

Bear Bibeault is a software architect and JavaRanch senior
moderator and coauthor of Manning’s Ajax in Practice
and Prototype and Scriptaculous in Action. Yehuda Katz is a
developer with Engine Yard. He heads the jQuery plugin
development team and runs Visual jQuery.

For online access to the authors and a free ebook for owners
of this book, go to manning.com/jQueryinActionSecondEdition

$44.99 / Can $56.99 [INCLUDING eBOOK]

jQuery IN ACTION, SECOND EDITION
Bear Bibeault Yehuda Katz

WEB DEVELOPMENT

“Th e best-thought-out and
 researched piece of literature
 on the jQuery library.”
 —From the Foreword to the
 First Edition by John Resig
 Creator of jQuery

“Clear, concise, complete—
 the only jQuery core book
 you’ll ever need.”
 —Christopher Haupt
 Webvanta, Inc

“Indispensable! A lively and
 detailed exploration of
 jQuery.”
 —Scott Sauyet
 Four Winds Software

“Th ey’ve done it again—
 created an invaluable
 companion in the quest
 for jQuery mastery.”
 —Michael Smolyak, SumoBrain

“If jQuery is your religion,
 this book is your Bible!”
 —Jonas Bandi, TechTalk

M A N N I N G

SEE INSERT

Download from Library of Wow! eBook <www.wowebook.com>

	jQuery in Action
	brief contents
	contents
	list of lab pages
	foreword to the first edition
	preface to the second edition
	preface to the first edition
	acknowledgments
	about this book
	Audience
	Roadmap
	Margin icons
	Code conventions
	Code downloads
	Author Online

	about the authors
	about the cover illustration
	Core jQuery
	Introducing jQuery
	1.1 Power in the economy of code
	1.2 Unobtrusive JavaScript
	1.2.1 Separating behavior from structure
	1.2.2 Segregating the script

	1.3 jQuery fundamentals
	1.3.1 The jQuery wrapper
	1.3.2 Utility functions
	1.3.3 The document ready handler
	1.3.4 Making DOM elements
	1.3.5 Extending jQuery
	1.3.6 Using jQuery with other libraries

	1.4 Summary

	Selecting the elements upon which to act
	2.1 Selecting elements for manipulation
	2.1.1 Controlling the context
	2.1.2 Using basic CSS selectors
	2.1.3 Using child, container, and attribute selectors
	2.1.4 Selecting by position
	2.1.5 Using CSS and custom jQuery filter selectors

	2.2 Generating new HTML
	2.3 Managing the wrapped element set
	2.3.1 Determining the size of a wrapped set
	2.3.2 Obtaining elements from a wrapped set
	2.3.3 Slicing and dicing a wrapped element set
	2.3.4 Getting wrapped sets using relationships
	2.3.5 Even more ways to use a wrapped set
	2.3.6 Managing jQuery chains

	2.4 Summary

	Bringing pages to life with jQuery
	3.1 Working with element properties and attributes
	3.1.1 Manipulating element properties
	3.1.2 Fetching attribute values
	3.1.3 Setting attribute values
	3.1.4 Removing attributes
	3.1.5 Fun with attributes
	3.1.6 Storing custom data on elements

	3.2 Changing element styling
	3.2.1 Adding and removing class names
	3.2.2 Getting and setting styles

	3.3 Setting element content
	3.3.1 Replacing HTML or text content
	3.3.2 Moving and copying elements
	3.3.3 Wrapping and unwrapping elements
	3.3.4 Removing elements
	3.3.5 Cloning elements
	3.3.6 Replacing elements

	3.4 Dealing with form element values
	3.5 Summary

	Events are where it happens!
	4.1 Understanding the browser event models
	4.1.1 The DOM Level 0 Event Model
	4.1.2 The DOM Level 2 Event Model
	4.1.3 The Internet Explorer Event Model

	4.2 The jQuery Event Model
	4.2.1 Binding event handlers with jQuery
	4.2.2 Removing event handlers
	4.2.3 Inspecting the Event instance
	4.2.4 Proactively managing event handlers
	4.2.5 Triggering event handlers
	4.2.6 Other event-related methods

	4.3 Putting events (and more) to work
	4.3.1 Filtering large data sets
	4.3.2 Element creation by template replication
	4.3.3 Setting up the mainline markup
	4.3.4 Adding new filters
	4.3.5 Adding the qualifying controls
	4.3.6 Removing unwanted filters and other tasks
	4.3.7 There’s always room for improvement

	4.4 Summary

	Energizing pages with animations and effects
	5.1 Showing and hiding elements
	5.1.1 Implementing a collapsible “module”
	5.1.2 Toggling the display state of elements

	5.2 Animating the display state of elements
	5.2.1 Showing and hiding elements gradually
	5.2.2 Fading elements into and out of existence
	5.2.3 Sliding elements up and down
	5.2.4 Stopping animations

	5.3 Creating custom animations
	5.3.1 A custom scale animation
	5.3.2 A custom drop animation
	5.3.3 A custom puff animation

	5.4 Animations and Queuing
	5.4.1 Simultaneous animations
	5.4.2 Queuing functions for execution
	5.4.3 Inserting functions into the effects queue

	5.5 Summary

	Beyond the DOM with jQuery utility functions
	6.1 Using the jQuery flags
	6.1.1 Disabling animations
	6.1.2 Detecting user agent support
	6.1.3 The browser detection flags

	6.2 Using other libraries with jQuery
	6.3 Manipulating JavaScript objects and collections
	6.3.1 Trimming strings
	6.3.2 Iterating through properties and collections
	6.3.3 Filtering arrays
	6.3.4 Translating arrays
	6.3.5 More fun with JavaScript arrays
	6.3.6 Extending objects
	6.3.7 Serializing parameter values
	6.3.8 Testing objects

	6.4 Miscellaneous utility functions
	6.4.1 Doing nothing
	6.4.2 Testing for containment
	6.4.3 Tacking data onto elements
	6.4.4 Prebinding function contexts
	6.4.5 Parsing JSON
	6.4.6 Evaluating expressions
	6.4.7 Dynamically loading scripts

	6.5 Summary

	Expand your reach by extending jQuery
	7.1 Why extend jQuery?
	7.2 The jQuery plugin authoring guidelines
	7.2.1 Naming files and functions
	7.2.2 Beware the $
	7.2.3 Taming complex parameter lists

	7.3 Writing custom utility functions
	7.3.1 Creating a data manipulation utility function
	7.3.2 Writing a date formatter

	7.4 Adding new wrapper methods
	7.4.1 Applying multiple operations in a wrapper method
	7.4.2 Retaining state within a wrapper method

	7.5 Summary

	Talk to the server with Ajax
	8.1 Brushing up on Ajax
	8.1.1 Creating an XHR instance
	8.1.2 Initiating the request
	8.1.3 Keeping track of progress
	8.1.4 Getting the response

	8.2 Loading content into elements
	8.2.1 Loading content with jQuery
	8.2.2 Loading dynamic HTML fragments

	8.3 Making GET and POST requests
	8.3.1 Getting data with GET
	8.3.2 Getting JSON data
	8.3.3 Making POST requests
	8.3.4 Implementing cascading dropdowns

	8.4 Taking full control of an Ajax request
	8.4.1 Making Ajax requests with all the trimmings
	8.4.2 Setting request defaults
	8.4.3 Handling Ajax events

	8.5 Putting it all together
	8.5.1 Implementing the Termifier
	8.5.2 Putting the Termifier to the test
	8.5.3 Improving the Termifier

	8.6 Summary

	jQuery UI
	Introducing jQuery UI: themes and effects
	9.1 Configuring and downloading the UI library
	9.1.1 Configuring and downloading
	9.1.2 Using the UI library

	9.2 jQuery themes and styling
	9.2.1 Overview
	9.2.2 Using the ThemeRoller tool

	9.3 jQuery UI Effects
	9.3.1 The jQuery UI effects
	9.3.2 Extended core animation capabilities
	9.3.3 Augmented visibility methods
	9.3.4 Animating class transitions
	9.3.5 Easings

	9.4 Advanced positioning
	9.5 Summary

	jQuery UI mouse interactions: Follow that mouse!
	10.1 Dragging things around
	10.1.1 Making elements draggable
	10.1.2 Draggability events
	10.1.3 Controlling draggability

	10.2 Dropping dragged things
	10.2.1 Making elements droppable
	10.2.2 Droppability events

	10.3 Sorting stuff
	10.3.1 Making things sortable
	10.3.2 Connecting sortables
	10.3.3 Sortability events
	10.3.4 Fetching the sort order

	10.4 Changing the size of things
	10.4.1 Making things resizable
	10.4.2 Resizability events
	10.4.3 Styling the handles

	10.5 Making things selectable
	10.5.1 Creating selectables
	10.5.2 Selectable events
	10.5.3 Finding the selected and selectable elements

	10.6 Summary

	jQuery UI widgets: Beyond HTML controls
	11.1 Buttons and buttonsets
	11.1.1 Button appearance within UI themes
	11.1.2 Creating themed buttons
	11.1.3 Button icons
	11.1.4 Button events
	11.1.5 Styling buttons

	11.2 Sliders
	11.2.1 Creating slider widgets
	11.2.2 Slider events
	11.2.3 Styling tips for sliders

	11.3 Progress bars
	11.3.1 Creating progress bars
	11.3.2 Progress bar events
	11.3.3 An auto-updating progress bar plugin
	11.3.4 Styling progress bars

	11.4 Autocompleters
	11.4.1 Creating autocomplete widgets
	11.4.2 Autocomplete sources
	11.4.3 Autocomplete events
	11.4.4 Autocompleting in style

	11.5 Date pickers
	11.5.1 Creating jQuery datepickers
	11.5.2 Datepicker date formats
	11.5.3 Datepicker events
	11.5.4 Datepicker utility functions

	11.6 Tabs
	11.6.1 Creating tabbed content
	11.6.2 Tab events
	11.6.3 Styling tabs

	11.7 Accordions
	11.7.1 Creating accordion widgets
	11.7.2 Accordion events
	11.7.3 Styling classes for accordions
	11.7.4 Loading accordion panels using Ajax

	11.8 Dialog boxes
	11.8.1 Creating dialog boxes
	11.8.2 Dialog events
	11.8.3 Dialog box class names
	11.8.4 Some dialog box tricks

	11.9 Summary
	11.10 The end?

	appendix: JavaScript that you need to know but might not!
	A.1 JavaScript Object fundamentals
	A.1.1 How objects come to be
	A.1.2 Properties of objects
	A.1.3 Object literals
	A.1.4 Objects as window properties

	A.2 Functions as first-class citizens
	A.2.1 What’s in a name?
	A.2.2 Functions as callbacks
	A.2.3 What’s this all about?
	A.2.4 Closures

	A.3 Summary

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

	jQuery Back

