
www.allitebooks.com

http://www.allitebooks.org

web2py Application
Development Cookbook
Over 110 recipes to master this full-stack Python
web framework

Mariano Reingart

Bruno Cezar Rocha

Jonathan Lundell

Pablo Martín Mulone

Michele Comitini

Richard Gordon

Massimo Di Pierro

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

web2py Application Development Cookbook

Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be
caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2012

Production Reference: 1070312

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B32PB, UK..

ISBN 978-1-84951-546-7

www.packtpub.com

Cover Image by Asher Wishkerman (wishkerman@hotmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Authors and Reviewers
Mariano Reingart

Bruno Cezar Rocha

Jonathan Lundell

Pablo Martín Mulone

Michele Comitini

Richard Gordon

Massimo Di Pierro

Reviewer
Alan Etkin

Acquisition Editor
Usha Iyer

Lead Technical Editor
Hyacintha D'souza

Technical Editor
Lubna Shaikh

Project Coordinator
Michelle Quadros

Proofreader
Aaron Nash

Indexer
Monica Ajmera

Graphics
Manu Joseph

Production Coordinator
Prachali Bhiwandkar

Cover Work
Prachali Bhiwandkar

www.allitebooks.com

http://www.allitebooks.org

About the Authors
and Reviewers

Mariano Reingart lives in Buenos Aires (Argentina), and is a specialist in database
administration, and development of software applications and libraries (web services, PDF,
replication, and so on), with more than 10 years of experience. Currently, he is the PostgreSQL
regional contact for Argentina and a web2py contributor, with more than 14 open source
projects, including interface for Free Electronic Invoice web services (PyAfipWs) and Pythonic
Replication for PostgreSQL (PyReplica).

Mariano has a bachelor's degree in Computer Systems Analysis from the University of Morón,
and currently works on his own funded startup formed by an open group of independent
professionals, which is dedicated to software development, training, and technical support,
focusing on open source tools (GNU/Linux, Python, PostgreSQL and web2py).

Mariano has worked for local Python companies in large business applications (ERP, SCM, and
CRM) and mission critical systems (election counting, electronic voting, and 911 emergency
events support). He has contributed to the book web2py Enterprise Web Framework 3rd
Edition, and for several Spanish translation efforts of the PostgreSQL official documentation.
You can find his resume at: http://reingart.blogspot.com/p/resume.html.

www.allitebooks.com

http://www.allitebooks.org

Bruno Cezar Rocha is a web developer and entrepreneur. He is the co-founder and lead
developer at http://www.blouweb.com, a micro-company dedicated to web2py/Python
web development and training. He is the lead teacher in Curso de Python (http://www.
CursoDePython.com.br), an initiative to offer online courses of Python and web2py to
Brazilian companies and educational institutes.

He is the Vice President of the Python Brazilian Association, which is the organizer of PyCon
Brazil, and other Python-related events in his country.

He is an entrepeneur focused on SaaS products powered by web2py at http://www.ansy.
me/en, which is a pioneer in web-based systems for veterinarians and pet shops, and creator
of http://www.movu.ca, a social network engine and CMS powered by web2py.

You can find his resume at: http://www.rochacbruno.com.br

Jonathan Lundell leveraged a background in the philosophy of Ludwig Wittgenstein, into
an exciting career in computer systems design. These days, he uses web2py to provide cloud
services to his iOS apps, written for Lobitos Creek. He's getting used to Objective-C, but can't
help wishing that Steve Jobs had been a Python fan.

Pablo Martín Mulone is a full-time web developer and software designer. He co-runs
his own company located in Argentina, which is dedicated to bring IT solution to libraries,
archives, and government in matter of documentary preservation. He has an extensive
experience in FLOSS projects and associated tools. He is the creator of instant2press and
CMS/ blog that is developed in web2py framework. His company created the patrimoniosf.
gov.ar heritage database, which was built for the state government of Santa Fe.

www.allitebooks.com

http://www.allitebooks.org

Michele Comitini is a programmer, a consultant, and an entrepreneur, with 20 years
of experience in the field of open source software development. Michele has worked with
many of the top Information and Communication Technology (ICT) companies in Italy. His
skills include the ability to program in many languages and some of the most popular web
frameworks. Michele was a Linux early adopter, and he has developed a deep knowledge
of the Linux/Unix operating systems as well as its use in embedded systems.

Michele is the owner and CEO of GliscoS.R.L., a consulting and development firm that is
specialized in mission critical or highly customized software. His customers are mostly
companies in the ICT and in the financial sectors.

Richard Gordon has 30 years of experience in agile web development and industrial
design-automation software. He has a Master's degree in Electrical Engineering from Stanford
University and a Science Baccalaureate with honors from Brown University. His career spans
microprocessor design at AT&T Bell laboratories, electronic-design-automation, software
development at Mentor Graphics and Tera Systems, which he founded. He is the founder
and lead YAK at YAKiToMe! Co., the Internet's first text-to-speech SaaS portal.

www.allitebooks.com

http://www.allitebooks.org

Massimo Di Pierro is an associate professor at the School of Computing of DePaul
University in Chicago, where he directs the Master's program in Computational Finance. He
also teaches courses on various topics, including web frameworks, network programming,
computer security, scientific computing, and parallel programming.

Massimo has a PhD in High Energy Theoretical Physics from the University of Southampton
(UK), and he has previously worked as an associate researcher for Fermi National Accelerator
Laboratory.

Massimo is the author of a book on web2py, and more than 50 publications in the fields of
Physics and Computational Finance, and he has contributed to many open source projects.
He started the web2py project in 2007, and is currently the lead developer.

We wish to thank all the web2py contributors and web2py users, but, in
particular, we want to thank those users who have contributed examples
on http://www.web2pyslices.com/, as some of them have been
used as a basis for the recipes in this book. They are:

Nathan Freeze, Hans Christian von Stockhausen, BenignoCalvo,
Chih-Hsiang Hsu, Renato Caliari, Rob Powell, David Harrison, Richard
Penman, Teru Homma, Brian M., Jon Vlachoyiannis, KubaKucharski, Anton
Georg Mückl, Falko Krause, Mike Ellis, Karl Bochert, Alexandre Andrade,
Mark Carrier, Timothy Farrell, Martin Sagastume, Carlos Costa, Fred
Gansevles, John Heenan, Ionel Anton, Alex Pearson, Dmitry Sherbina, Evan
Gray, Nico de Groot, Igor Gassko, John Tynan, Karol Grobski, Dieter Asman,
Mark Pettit, Marco Laspe, Yarin Kessler, PietroBertera, Jeffrey Berube,
huimies, Janis Vizulis, Jose Jachuf, Chris Steel, Patrick Breitenbach, Patrick
Breitenbach, Ariel Gonzalez, ArunRajeevan, Victhor, Zimba, BogdanHlevca,
Nico de Groot, Pierre Thibault, Ai Lau, Gilson Filho, Matt Gorecki,
UolterUolter, and Jim Karsten.

Also, particular thanks go to Anthony Bastardi and Patrick Breintenbach
for their continuous help and support to the web2py community, Alan Etkin
and Timothy Dietrich for their help in proofreading the book, Muqeet Khan
for help with the IIS recipes, and Thadeus Burgess for his help with the
recipes on database queues and template blocks.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewer

Alan Etkin has been gradually migrating from I.T. support to the application development
field, and his preferred programming language is Python. He is a devoted user of web2py,
and participates as a developer in various web2py-powered projects. He also has contributed
with fixes and features to the framework. If you want to reach Alan, type spametki in your
search engine.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in touch
with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
 f Fully searchable across every book published by Packt

 f Copy and paste, print and bookmark content

 f On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.allitebooks.org

To our families, and to the friendly and growing web2py community.

Table of Contents
Preface 1
Chapter 1: Deploying web2py 7

Introduction 7
Installing web2py on Windows (from source code) 8
Installing web2py in Ubuntu 10
Setting up a production deployment on Ubuntu 12
Running web2py with Apache, mod_proxy, and mod_rewrite 16
Running web2py with Lighttpd 23
Running web2py with Cherokee 26
Running web2py with Nginx and uWSGI 31
Running web2py on shared hosts using CGI 34
Running web2py on shared hosts with mod_proxy 35
Running web2py from a user-defined folder 36
Installing web2py as a service in Ubuntu 39
Running web2py with IIS as a proxy 39
Running web2py with ISAPI 45

Chapter 2: Building Your First Application 49
Introduction 50
Improving the scaffolding application 50
Building a simple contacts application 53
Building a Reddit clone 61
Building a Facebook clone 68
Using crud.archive 76
Converting an existing static site into a web2py application 78
Creating semi-static pages (flatpages) 79
Adding your custom logo 84

ii

Table of Contents

Creating menus and submenus 87
Customizing menus with icons 88
Creating a navigation bar 89
Using cookies to set the language 92
Designing modular applications 94
Speeding up downloads 96

Chapter 3: Database Abstraction Layer 99
Introduction 99
Creating a new model 100
Creating a model from a CSV file 102
Batch upload of your data 104
Moving your data from one database to another 106
Creating a model from existing MySQL and PostgreSQL databases 107
Efficiently searching by tag 110
Accessing your database from multiple applications 112
Hierarchical category tree 114
Creating records on demand 116
OR, LIKE, BELONGS, and more on Google App Engine 117
Replacing slow virtual fields with DB views 121

Chapter 4: Advanced Forms 125
Introduction 126
Adding confirmation on form submit 127
Searching data dynamically 128
Embedding multiple forms in one page 130
Detecting and blocking concurrent updates 133
Creating a form wizard 134
De-normalizing data temporarily 136
Removing form labels 138
Using fileuploader.js 139
Uploading files using a LOADed component 142
Making image thumbnails from uploaded images 144
Monitoring upload progress 146
Auto tooltips in forms 148
Color picker widget 150
Shortening text fields 151
Creating multi-table forms 153
Creating a multi-table form with references 154
Creating a multi-table update form 156
Star rating widget 158

iii

Table of Contents

Chapter 5: Adding Ajax Effects 161
Introduction 161
Using jquery.multiselect.js 162
Creating a select_or_add widget 163
Using an autocompletion plugin 169
Creating a drop-down date selector 171
Improving the built-in ajax function 173
Using a slider to represent a number 174
Using jqGrid and web2py 175
Improving data tables with WebGrid 180
Ajaxing your search functions 183
Creating sparklines 187

Chapter 6: Using Third-party Libraries 191
Introduction 191
Customizing logging 191
Aggregating feeds 195
Displaying Tweets 197
Plotting with matplotlib 200
Extending PluginWiki with an RSS widget 203

Chapter 7: Web Services 207
Introduction 207
Consuming a web2py JSON service with jQuery 208
Consuming a JSON-RPC service 210
JSON-RPC from JavaScript 211
Making amf3 RPC calls from Flex using pyamf 220
PayPal integration in Web2py 222
PayPal web payments standard 235
Getting Flickr photos 243
Sending e-mails with Boto through Amazon Web Services (AWS) 245
Making GIS amps using mapscript 246
Google groups and Google code feeds reader 248
Creating SOAP web services 248

Chapter 8: Authentication and Authorization 253
Introduction 253
Customizing Auth 254
Using CAPTCHA on login failure 255
Using pyGravatar to get avatars for user profile pages 256
Multi-user and teacher modes 262
Authenticating with Facebook using OAuth 2.0 263

iv

Table of Contents

Chapter 9: Routing Recipes 267
Introduction 267
Making cleaner URLs with routes.py 268
Creating a simple router 270
Adding a URL prefix 272
Associating applications with domains 272
Omitting the application name 273
Removing application name and controllers from URLs 274
Replacing underscores with hyphens in URLs 275
Mapping favicons.ico and robots.txt 275
Using URLs to specify the language 276

Chapter 10: Reporting Recipes 279
Introduction 279
Creating PDF reports 279
Creating PDF listings 282
Creating pdf labels, badges, and invoices 284

Chapter 11: Other Tips and Tricks 295
Introduction 295
Using PDB and the embedded web2py debugger 296
Debugging with Eclipse and PyDev 302
Updating web2py using a shell script 304
Creating a simple page statistics plugin 307
Rounding corners without images or JavaScript 308
Setting a cache.disk quota 310
Checking if web2py is running using cron 311
Building a Mercurial plugin 312
Building a pingback plugin 315
Changing views for mobile browsers 323
Background processing with a database queue 324
How to effectively use template blocks 327
Making standalone applications with web2py and wxPython 330

Index 335

Preface
we2py is a framework for rapid development of secure database-driven Internet
applications. It is written in and is programmable in Python. It comprises libraries,
applications, and reusable examples.

Created in 2007,web2py has grown, evolved, and improved tremendously, thanks to
the work of many developers who have been using the framework. We thank them all.

web2py has evolved rapidly in the last two years, so much so that it has been difficult to
keep the official documentation current. Although web2py is always backwards-compatible,
new APIs have been created, providing new ways to solve old problems.

A large body of knowledge has accumulated in third-party websites, such as wikis, blogs,
and mailing lists. Two resources, in particular, have been very valuable to web2py users: the
web2py Google Group and the http://www.web2pyslices.com/website. Yet the quality
of the information provided there varies, as some of the recipes have become outdated.

This book started from the need to collect that information, clean it up, update it, and
separate the important and recurrent problems that users try to solve from other issues,
which do not represent the general interest.

The most recurrent problems encountered by users include deploying web2py in a
production-ready configuration, building complex applications using reusable components,
generating PDF reports, customizing forms and authentication, using third-party libraries
(jQuery plugins in particular), and interfacing with third-party web services.

Collecting this information and organizing it in this book has taken us more than a year.
More people than the listed authors have knowingly and unknowingly contributed. Some of
the code used here is, in fact, based on code already published online, although that code
has been refactored, tested, and documented better here.

Preface

2

The code in this book is released under the BSD license, unless otherwise specified, and is
available online on a dedicated GitHub repository listed below. Python code should follow a
style convention called PEP 8. We have followed that convention for the code posted online,
but we have compressed the listings in the printed book in order to follow the Packt style
guide, and reduce the need for wrapping long lines.

We trust this book will be a valuable resource for both new web2py developers and
experienced ones. Our goal is still to make the web a more open and accessible place.
We contribute by providing web2py and its documentation to enable anyone to build new
infrastructure and services with agility and efficiency.

What this book covers
Chapter 1, Deploying web2py. In this chapter, we discuss how to configure various web
servers to work with web2py. This is a necessary setup for a production environment. We
consider the most popular servers, such as Apache, Cherokee, Lighttpd, Nginx, CGI, and
IIS. The corresponding recipes provide examples of usage of the different adapters, such
as mod_wsgi, FastCGI, uWSGI, and ISAPI. Therefore, they can easily be extended to
many other web servers. Using a production web server guarantees speedier serving of
static files, better concurrency, and enhanced logging capabilities.

Chapter 2, Building Your First Application. We guide the reader through the process of creating
a few non-trivial applications, including a Contacts application, a Reddit clone, and a
Facebook clone. Each of these applications provides user authentication, multiple tables
connected by relations, and Ajax functionality. In the second part of the chapter, we discuss
further customization of generic web2py applications, such as building a plugin to serve flat
pages, adding a logo to the header, customizing the menu, and allowing users to select their
preferred language. The main focus of this chapter is on modularity and reusability.

Chapter 3, Database Abstraction Layer. The DAL is arguably the most important component
of web2py. In this chapter, we discuss various ways to import models and data from existing
sources (csv files, mysql, and postgresql databases), and how to create new models. We
deal with recurrent situations, such as tagging data and efficiently searching the database
using tags. We implement a tree representation using the pre-order tree traversal method. We
demonstrate how to work around some of the limitations of the Google App Engine platform.

Chapter 4, Advanced Forms. One of the strengths of web2py is its ability to automatically
generate forms from the data representation. Yet, inevitably, the most demanding users
feel the need to customize these forms. In this chapter, we provide examples of typical
customizations, such as adding buttons, adding an upload progress bar, adding tooltips,
and adding thumbnails for uploaded images. We also show how to create wizard forms
and add multiple forms on one page.

Chapter 5, Adding Ajax Effects. This chapter is an extension of the previous one. Here
we further enhance forms and tables, using various jQuery plugins to make them more
interactive using Ajax.

Preface

3

Chapter 6, Using Third-party Libraries. web2py can use any Python third-party library. In this
chapter we give some examples by using libraries that ship with web2py (feedparser,
rss) as well as libraries that do not (matplotlib). We also provide a recipe that allows
customized logging at the application-level, and an application that can retrieve and display
Twitter feeds.

Chapter 7, Web Services. Computers can talk to each other through protocols, such as JSON,
JSONRPC, XMLRPC, and SOAP. In this chapter, we provide recipes that allow web2py to
both create services based on these protocols and consume services provided by others. In
particular, we provide example of integration with Flex, Paypal, Flickr, and GIS.

Chapter 8, Authentication and Authorization. web2py has a built-in Auth module that deals
with authentication and authorization. In this chapter, we show various ways to customize it,
including adding CAPTCHA to registration and login forms, adding Globally Recognized Avatars
(gravatars) for representing users, and integrating with services using OAuth 2.0 (for example
Facebook). We also show how to utilize the teacher/students mode.

Chapter 9, Routing Recipes. This chapter includes recipes for exposing web2py actions using
shorten, cleaner, and legacy URLs. For example, adding a prefix to, or omitting the application
name from the URLs. We also show advanced uses of the web2py router mechanism to
handle special characters in the URL, use the URL to specify a preferred language, and map
special files, such as favicons.ico and robots.txt.

Chapter 10, Reporting Recipes. There are many ways to create reports in web2py using
standard Python libraries, such as reportlab or latex. Yet for the convenience of the users
web2py ships with pyfpdf, a library created by Mariano Reingart to convert HTML directly to
PDF. This chapter presents recipes to create PDF reports, listings, labels, badges, and invoices
using the web2py template system and the pyfpdf library.

Chapter 11, Other Tips and Tricks. Here we look at those recipes that did not fit into any other
chapter, and yet were considered important by typical web2py users. An example is how to
use web2py with Eclipse, a very popular Java IDE that works with Python. Other examples
include how to develop applications that are mobile-friendly, and how to develop standalone
applications that use a wxPython GUI.

What you need for this book
The only software required is web2py, which is common to all recipes. web2py comes in
source version, and binary versions for Mac and Windows. It can be downloaded from
http://web2py.com.

We do recommend running web2py from source, and in this case, users should also install
the most recent Python 2.7 interpreted, which can be downloaded from http://python.org.

When a recipe has additional requirements, it is stated explicitly in the recipe (for example
some require Windows, some require IIS, and some require additional Python modules or
jQuery plugins).

www.allitebooks.com

http://www.allitebooks.org

Preface

4

Who this book is for
This book is aimed at Python developers with a basic knowledge of web2py, who want to
master this framework.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "Running web2py with Lighttpd."

A block of code is set as follows:

from gluon.storage import Storage
settings = Storage()

settings.production = False

if settings.production:
 settings.db_uri = 'sqlite://production.sqlite'
 settings.migrate = False
else:
 settings.db_uri = 'sqlite://development.sqlite'
 settings.migrate = True

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

{{extend 'layout.html'}}
<h2>Companies</h2>
<table>
 {{for company in companies:}}
<tr>
 <td>
 {{=A(company.name, _href=URL('contacts', args=company.id))}}
 </td>
 <td>
 {{=A('edit', _href=URL('company_edit', args=company.id))}}
 </td>
</tr>
 {{pass}}
<tr>
<td>{{=A('add company', _href=URL('company_create'))}}</td>
</tr>
</table>

Preface

5

Any command-line input or output is written as follows:

python web2py.py -i 127.0.0.1 -p 8000 -a mypassword --nogui

Newterms and importantwords are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "Once the site is created,
double-click the URLRewrite as shown in the following screenshot:".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in
the SUGGEST A TITLE form on www.packtpub.com or e-mail suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.PacktPub.com. If you purchased this book elsewhere, you can
visit http://www.PacktPub.com/support, and register to have the files e-mailed directly
to you. The code files are also uploaded at the following repository: https://github.com/
mdipierro/web2py-recipes-source.

All the code is released under the BSD license (http://www.opensource.org/
licenses/bsd-license.php) unless otherwise stated in the source file.

Preface

6

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you would report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http://www.packtpub.com/support, selecting your book, clicking on the errata
submission form link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded on our website, or added to any
list of existing errata, under the Errata section of that title. Any existing errata can be viewed by
selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

1
Deploying web2py

In this chapter, we will cover the following recipes:

 f Installing web2py on Windows (from source code)

 f Installing web2py on Ubuntu

 f Setting up a production deployment on Ubuntu

 f Running web2py with Apache, mod_proxy, and mod_rewrite

 f Running web2py with Lighttpd

 f Running web2py with Cherokee

 f Running web2py with Nginx and uWSGI

 f Running web2py on shared hosts using CGI

 f Running web2py on shared hosts with mod_proxy

 f Running web2py from a user-defined folder

 f Installing web2py as a service in Ubuntu

 f Running web2py with IIS as proxy

 f Running web2py with ISAPI

Introduction
In this chapter, we discuss how to download, set up, and install web2py in different systems
and with different web servers.

Deploying web2py

8

All of them require that you download the latest web2py source from the
website: http://web2py.com, unzip it under /home/www-data/
web2py on Unix and Linux systems, and on c:/web2py on Windows
systems. In various places, we will assume that the public IP address of
the host machine is 192.168.1.1; replace this with your own IP address
or host name. We will also assume web2py starts on port 8000, but there
is nothing special about this number; change it if you need to.

Installing web2py on Windows
(from source code)

Although there is a binary distribution for Windows environments (packaging executables and
standard libraries), web2py is open source, and can be used with a normal Python installation.

This method allows working with the latest releases of web2py, and customizing the python
modules to be used.

Getting ready
First of all, you must install Python. Download your preferred 2.x version (not 3.x) from:
http://www.python.org/download/releases/.

Although newer versions include more enhancements and bug fixes, previous versions
have more stability and third-party library coverage. Python 2.5.4 has a good balance
within features and proven stability history, with good binary libraries support. Python 2.7.2
is the latest production release for this platform at the time of this writing, so we will use it
for the examples.

After downloading your preferred Windows Python installer (that is python-2.7.2.msi),
double-click to install it. The default values are fine for most cases, so press Next until
it finishes the installation.

You will need Python Win32 extensions to use the web2py taskbar or Windows service.
You can install pywin32 from: http://starship.python.net/~skippy/win32/
Downloads.html.

Prior to using web2py, you may also need some dependencies to connect to databases.
SQLite and MySQL drivers are included in web2py. If you plan to use another RDBMS, you
will need to install its driver.

For PostgreSQL, you can install the psycopg2 binary package (for Python 2.7, you should
use psycopg2-2.3.1.win32-py2.7-pg9.0.1-release.exe): http://www.
stickpeople.com/projects/python/win-psycopg/ (notice that web2py requires
psycopg2 and not psycopg).

Chapter 1

9

For MS SQLServer or DB2, you need pyodbc: http://code.google.com/p/pyodbc/
downloads/list.

How to do it...
At this point, you can use web2py with your preferred database.

1. Download the source package from web2py official website: http://www.web2py.
com/examples/static/web2py_src.zip, and unzip it.

As web2py doesn't requires installation, you can unzip it in any folder. Using c:\
web2py is convenient, to keep pathnames short.

2. To start it, double-click web2py.py. You can also start it from the console:
cd c:\web2py

c:\python27\python.exe web2py.py

3. Here you can add command-line parameters (-a to set an admin password, -p to
specify an alternate port, and so on). You can see all the startup options with:

C:\web2py>c:\python27\python.exe web2py.py --help

How it works...
web2py is written in Python, a portable, interpreted and dynamic language that doesn't require
compilation or complicated installation to run. It uses a virtual machine (such as Java and .Net),
and it can transparently byte-compile your source code on the fly when you run your scripts.

For novice users' convenience, there is web2py Windows binary distribution available at the
official site, which is precompiled to a bytecode, packaged in a zip file with all the required
libraries (dll/pyd), and is present with an executable entry-point file (web2py.exe), but
there is no noticeable difference running web2py from source.

There's more...
Running web2py from the source package in Windows has many advantages, a few of which
are listed as follows:

 f You can more easily use third-party libraries, such as Python Imaging (look at Python
package index, where you can install more than ten thousand modules!).

 f You can import web2py functionality (for example, the Database Abstraction Layer
(DAL)) from other Python programs.

 f You can keep web2py updated with the latest changes, help to test it, and
submit patches.

 f You can browse the web2py source code, tweak it for your custom need, and so on.

Deploying web2py

10

Installing web2py in Ubuntu
This recipe covers how to install web2py in a development environment using the Ubuntu
desktop. Installation in a production system will be covered in the next recipe.

We assume that you know how to use a console and install applications using the console.
We will use the latest Ubuntu desktop, at this writing: Ubuntu Desktop 10.10.

Getting ready
We are going to install web2py in your home directory, so fire up the console.

How to do it...
1. Download web2py.

cd /home

mkdir www-dev

cd www-dev

wget http://www.web2py.com/examples/static/web2py_src.zip
(get web2py)

2. When the download is complete, unzip it:
unzip -x web2py_src.zip

3. Optionally install the tk library for Python, if you want the GUI.
sudo apt-get install python-tk

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.PacktPub.com. If you
purchased this book elsewhere, you can visit http://www.PacktPub.
com/support, and register to have the files e-mailed directly to you.
The code files are also uploaded at the following repository: https://
github.com/mdipierro/web2py-recipes-source.
All the code is released under the BSD license (http://www.
opensource.org/licenses/bsd-license.php) unless
otherwise stated in the source file.

4. To start web2py, access the web2py directory and run web2py.
cd web2py

python web2py.py

Chapter 1

11

After installation, each time you run it, web2py will ask you to choose a password.
This password is your administrative password. If the password is left blank, the
administrative interface will be disabled.

5. Enter 127.0.0.1:8000/ in your browser to check if everything is working OK.

The administrative interface: http://127.0.0.1:8000/admin/
default/index is only accessible through localhost, and always
requires a password. It can also be accessed through an SSH tunnel.

There's more...
You can use some other options. For example, you can specify the port with the option -p
port and IP address with the option -i 127.0.0.1. It's useful to specify the password, so
you don't have to enter it every time you start web2py; use option -a password. If you want
help on other options, run web2py with the -h or –help option.

For example:

python web2py.py -i 127.0.0.1 -p 8000 -a mypassword --nogui

Deploying web2py

12

Setting up a production deployment
on Ubuntu

This recipe describes how to install web2py in a production environment using the Ubuntu
server. This is the recommended method to deploy web2py in production.

Getting ready
We assume that you know how to use a console and install applications using a repository
and commands. We will use the latest Ubuntu server at the time of writing: Ubuntu Server
10.04 LTS.

In this recipe we will learn how to:

 f Install all modules needed to run web2py on Ubuntu

 f Install web2py in /home/www-data/

 f Create a self-signed SSL certificate

 f Set up web2py with mod_wsgi

 f Overwrite /etc/apache2/sites-available/default

 f Restart Apache

Chapter 1

13

First, we need to be sure that the system is up-to-date. Upgrade the system with
these commands:

sudo apt-get update

sudo apt-get upgrade

How to do it...
1. Let's start by installing postgreSQL:

sudo apt-get install postgresql

2. We need to unzip and open ssh-server, if it's not installed already.
sudo apt-get install unzip

sudo apt-get install openssh-server

3. Install Apache 2 and mod-wsgi:
sudo apt-get install apache2

sudo apt-get install libapache2-mod-wsgi

4. Optionally, if you plan to manipulate images, we can install the Python
Imaging Library (PIL):
sudo apt-get install python-imaging

5. Now we need to install web2py. We'll create www-data in /home, and
extract the web2py source there.
cd /home

sudo mkdir www-data

cd www-data

6. Get the web2py source from the web2py site:
sudo wget http://web2py.com/examples/static/web2py_src.zip

sudo unzip web2py_src.zip

sudo chown -R www-data:www-data web2py

7. Enable the Apache SSL and EXPIRES modules:
sudo a2enmod expires

sudo a2enmod ssl

8. Create a self-signed certificate:

You should obtain your SSL certificates from a trusted Certificate Authority, such
as verisign.com, but for testing purposes you can generate your own self-signed
certificates. You can read more about it at: https://help.ubuntu.com/10.04/
serverguide/C/certificates-and-security.html.

www.allitebooks.com

http://www.allitebooks.org

Deploying web2py

14

9. Create the SSL folder, and put the SSL certificates inside it:
sudo openssl req -new -x509 -nodes -sha1 -days 365 -key \

/etc/apache2/ssl/self_signed.key > \

/etc/apache2/ssl/self_signed.cert

sudo openssl x509 -noout -fingerprint -text < \

/etc/apache2/ssl/self_signed.cert > \

/etc/apache2/ssl/self_signed.info

10. If you have problem with permissions, use sudo -i.

11. Edit the default Apache configuration with your editor.
sudo nano /etc/apache2/sites-available/default

12. Add the following code to the configuration:
NameVirtualHost *:80

NameVirtualHost *:443

<VirtualHost *:80>

 WSGIDaemonProcess web2py user=www-data group=www-data

 WSGIProcessGroup web2py

 WSGIScriptAlias / /home/www-data/web2py/wsgihandler.py

 <Directory /home/www-data/web2py>

 AllowOverride None

 Order Allow,Deny

 Deny from all

 <Files wsgihandler.py>

 Allow from all

 </Files>

 </Directory>

 AliasMatch ^/([^/]+)/static/(.*) \
 /home/www-data/web2py/applications/$1/static/$2

 <Directory /home/www-data/web2py/applications/*/static/>

 Options -Indexes

 Order Allow,Deny

Chapter 1

15

 Allow from all

 </Directory>

 <Location /admin>

 Deny from all

 </Location>

 <LocationMatch ^/([^/]+)/appadmin>

 Deny from all

 </LocationMatch>

 CustomLog /var/log/apache2/access.log common

 ErrorLog /var/log/apache2/error.log

</VirtualHost>

<VirtualHost *:443>

 SSLEngine on

 SSLCertificateFile /etc/apache2/ssl/self_signed.cert

 SSLCertificateKeyFile /etc/apache2/ssl/self_signed.key

 WSGIProcessGroup web2py

 WSGIScriptAlias / /home/www-data/web2py/wsgihandler.py

 <Directory /home/www-data/web2py>

 AllowOverride None

 Order Allow,Deny

 Deny from all

 <Files wsgihandler.py>

 Allow from all

 </Files>

 </Directory>

 AliasMatch ^/([^/]+)/static/(.*) \
 /home/www-data/web2py/applications/$1/static/$2

Deploying web2py

16

 <Directory /home/www-data/web2py/applications/*/static/>

 Options -Indexes

 ExpiresActive On

 ExpiresDefault "access plus 1 hour"

 Order Allow,Deny

 Allow from all

 </Directory>

 CustomLog /var/log/apache2/access.log common

 ErrorLog /var/log/apache2/error.log

</VirtualHost>

13. Restart the Apache server:
sudo /etc/init.d/apache2 restart
 cd /home/www-data/web2py
 sudo -u www-data python -c "from gluon.widget import console; \
console();"

 sudo -u www-data python -c "from gluon.main \
import save_password; \
save_password(raw_input('admin password: '),443)"

14. Enter http://192.168.1.1/ in your browser to check if everything is working OK,
replacing 192.168.1.1 with your public IP address.

There's more...
Everything that we did can be done automatically using a script provided by web2py:

wget http://web2py.googlecode.com/hg/scripts/setup-web2py-\
 ubuntu.sh

chmod +x setup-web2py-ubuntu.sh

sudo ./setup-web2py-ubuntu.sh

Running web2py with Apache, mod_proxy,
and mod_rewrite

Apache httpd is the most popular HTTP server, and having Apache httpd on a large
installation is a must, just like panettone on Christmas day in Italy. Like the panettone,
Apache comes in many flavors and with different fillings. You have to find the one you like.

Chapter 1

17

In this recipe, we configure Apache with mod_proxy, and refine it through mod_rewrite rules.
This is a simple, but robust solution. It can be used to increase web2py scalability, throughput,
security, and flexibility. These rules should satisfy both the connoisseur and the beginner.

This recipe will show you how to make a web2py installation on a host appear as part of a
website, even when hosted somewhere else. We will also show how Apache can be used to
improve the performance of your web2py application, without touching web2py.

Getting ready
You should have the following:

 f web2py installed and running on localhost with the built-in Rocket webserver
(port 8000)

 f Apache HTTP server (httpd) version 2.2.x or later

 f mod_proxy and mod_rewrite (included in the standard Apache distribution)

On Ubuntu or other Debian-based servers, you can install Apache with:

apt-get install apache

On CentOS or other Fedora-based Linux distributions, you can install Apache with:

yum install httpd

For most other systems you can download Apache from the website http://httpd.
apache.org/, and install it yourself with the provided instructions.

How to do it...
Now that we have Apache HTTP server (from now on we will refer to it simply as Apache)
and web2py both running locally, we must configure it.

Apache is configured by placing directives in plain text configuration files. The main
configuration file is usually called httpd.conf. The default location of this file is set
at compile time, but may be overridden with the -f command line flag. httpd.conf
may include other configuration files. Additional directives may be placed in any of these
configuration files.

Deploying web2py

18

The configuration files may be located in /etc/apache2, in /etc/apache, or in /etc/
httpd, depending on the details of the OS and the Apache version.

1. Before editing any of the files, make sure that the required modules are enabled
from the command-line shell (bash), type:
a2enmod proxy

a2enmod rewrite

With mod_proxy and mod_rewrite enabled, we are now ready to set up a simple
rewrite rule to proxy forward HTTP requests received by Apache to any other HTTP
server we wish. Apache supports multiple VirtualHosts, that is, it has the ability
to handle different virtual host names and ports within a single Apache instance.
The default VirtualHost configuration is in a file called /etc/<apache>/
sites-available/default, where <apache> is apache, apache2, or httpd.

2. In this file each VirtualHost is defined by creating an entry as follows:
<VirtualHost *:80>

 ...

</VirtualHost>

You can read the in-depth VirtualHost documentation at http://httpd.
apache.org/docs/2.2/vhosts/.

3. To use RewriteRules, we need to activate the Rewrite Engine inside the
VirtualHost:
<VirtualHost *:80>

 RewriteEngine on

 ...

</VirtualHost>

4. Then we can configure the rewrite rule:
<VirtualHost *:80>

 RewriteEngine on

 # make sure we handle the case with no / at the end of URL

 RewriteRule ^/web2py$ /web2py/ [R,L]

 # when matching a path starting with /web2py/ do use a reverse

 # proxy

 RewriteRule ^/web2py/(.*) http://localhost:8000/$1 [P,L]

 ...

</VirtualHost>

Chapter 1

19

The second rule tells Apache to do a reverse proxy connection to http://
localhost:8000, passing all the path components of the URL called by the
user, except for the first, web2py. The syntax used for rules is based on regular
expressions (regex), where the first expression is compared to the incoming URL
(the one requested by the user).

If there is a match, the second expression is used to build a new URL. The flags inside
[and] determine how the resulting URL is to be handled. The previous example
matches any incoming request on the default VirtualHost with a path that begins
with /web2py, and generates a new URL prepending http://localhost:8000/
to the remainder of the matched path; the part of the incoming URL that matches the
expression .* replaces $1 in the second expression.

The flag P tells Apache to use its proxy to retrieve the content pointed by the URL,
before passing it back to the requesting browser.

Suppose that the Apache Server responds at the domain www.example.com; then
if the user's browser requests http://www.example.com/web2py/welcome, it
will receive a response with the contents from the scaffolding application of web2py.
Thats is, it would be as if the browser had requested http://localhost:8000/
welcome.

5. There is a catch: web2py could send an HTTP redirect, for instance to point the user's
browser to the default page. The problem is that the redirect is relative to web2py's
application layout, the one that the Apache proxy is trying to hide, so the redirect
is probably going to point the browser to the wrong location. To avoid this, we must
configure Apache to intercept redirects and correct them.
<VirtualHost *:80>

 ...

 #make sure that HTTP redirects generated by web2py are reverted
 / -> /web2py/

 ProxyPassReverse /web2py/ http://localhost:8000/

 ProxyPassReverse /web2py/ /

 # transform cookies also

 ProxyPassReverseCookieDomain localhost localhost

 ProxyPassReverseCookiePath / /web2py/

 ...

</VirtualHost>

Deploying web2py

20

6. There is yet another issue. Many URLs generated by web2py are also relative to the
web2py context. These include the URLs of images or CSS style sheets. We have to
instruct web2py how to write the correct URL, and of course, since it is web2py, it is
simple and we do not have to modify any code in our application code. We need to
define a file routes.py in the root of web2py's installation, as follows:
routes_out=((r'^/(?P<any>.*)', r'/web2py/\g<any>'),)

7. Apache can, at this point, transform the received content before sending it back to
the client. We have the opportunity to improve website speed in several ways. For
example, we can compress all content before sending it back to the browser, if the
browser accepts compressed content.

Enable content compression on the fly,

speeding up the net transfer on the reverse proxy.

<Location /web2py/>

 # Insert filter

 SetOutputFilter DEFLATE

 # Netscape 4.x has some problems...

 BrowserMatch ^Mozilla/4 gzip-only-text/html

 # Netscape 4.06-4.08 have some more problems

 BrowserMatch ^Mozilla/4\.0[678] no-gzip

 # MSIE masquerades as Netscape, but it is fine

 BrowserMatch \bMSIE !no-gzip !gzip-only-text/html

 # Don't compress images

 SetEnvIfNoCase Request_URI \

 \.(?:gif|jpe?g|png)$ no-gzip dont-vary

 # Make sure proxies don't deliver the wrong content

 Header append Vary User-Agent env=!dont-vary

</Location>

It is possible in the same way, just by configuring Apache, to do other interesting
tasks, such as SSL encryption, load balancing, acceleration by content caching,
and many other things. You can find information for those and many other setups
at http://httpd.apache.org.

Here is the complete configuration for the default VirtualHost as used in the following recipe:

<VirtualHost *:80>

 ServerName localhost

 # ServerAdmin: Your address, where problems with the server

 # should

Chapter 1

21

 # be e-mailed. This address appears on some server-generated

 # pages,

 # such as error documents. e.g. admin@your-domain.com

 ServerAdmin root@localhost

 # DocumentRoot: The directory out of which you will serve your

 # documents. By default, all requests are taken from this

 # directory,

 # but symbolic links and aliases may be used to point to other

 # locations.

 # If you change this to something that isn't under /var/www then

 # suexec will no longer work.

 DocumentRoot "/var/www/localhost/htdocs"

 # This should be changed to whatever you set DocumentRoot to.

 <Directory "/var/www/localhost/htdocs">

 # Possible values for the Options directive are "None", "All",

 # or any combination of:

 # Indexes Includes FollowSymLinks

 # SymLinksifOwnerMatch ExecCGI MultiViews

 #

 # Note that "MultiViews" must be named *explicitly* ---

 # "Options All"

 # doesn't give it to you.

 #

 # The Options directive is both complicated and important.

 # Please

 # see http://httpd.apache.org/docs/2.2/mod/core.html#options

 # for more information.

 Options Indexes FollowSymLinks

 # AllowOverride controls what directives may be placed in

 # .htaccess

 # It can be "All", "None", or any combination of the keywords:

 # Options FileInfo AuthConfig Limit

 AllowOverride All

 # Controls who can get stuff from this server.

Deploying web2py

22

 Order allow,deny

 Allow from all

 </Directory>

 ### WEB2PY EXAMPLE PROXY REWRITE RULES

 RewriteEngine on

 # make sure we handle when there is no / at the end of URL

 RewriteRule ^/web2py$ /web2py/ [R,L]

 # when matching a path starting with /web2py/ do a reverse proxy

 RewriteRule ^/web2py/(.*) http://localhost:8000/$1 [P,L]

 # make sure that HTTP redirects generated by web2py are reverted

 # / -> /web2py/

 ProxyPassReverse /web2py/ http://localhost:8000/

 ProxyPassReverse /web2py/ /

 # transform cookies also

 ProxyPassReverseCookieDomain localhost localhost

 ProxyPassReverseCookiePath / /web2py/

 # Enable content compression on the fly speeding up the net

 # transfer on the reverse proxy.

 <Location /web2py/>

 # Insert filter

 SetOutputFilter DEFLATE

 # Netscape 4.x has some problems...

 BrowserMatch ^Mozilla/4 gzip-only-text/html

 # Netscape 4.06-4.08 have some more problems

 BrowserMatch ^Mozilla/4\.0[678] no-gzip

 # MSIE masquerades as Netscape, but it is fine

 BrowserMatch \bMSIE !no-gzip !gzip-only-text/html

 # Don't compress images

 SetEnvIfNoCase Request_URI \

 \.(?:gif|jpe?g|png)$ no-gzip dont-vary

Chapter 1

23

 # Make sure proxies don't deliver the wrong content

 Header append Vary User-Agent env=!dont-vary

 </Location>

</VirtualHost>

You must restart Apache for any change to take effect. You can use the following command
for the same:

apachectl restart

Running web2py with Lighttpd
Lighttpd is a secure, fast, compliant, and a very flexible web-server that has been optimized
for high-performance environments. It has a very low memory footprint as compared to other
web servers, and takes care of the cpu-load. Its advanced feature-set (FastCGI, CGI, Auth,
Output-Compression, URL-Rewriting, and many more) make Lighttpd the perfect web server
software for every server that suffers load problems.

This recipe was derived from official web2py book, but while the book uses FastCGI mod_fcgi
to expose web2py functionality behind a Ligthttpd web server, here, we use SCGI instead.
The SCGI protocol that we use here is similar in intent to FastCGI, but simpler and faster. It is
described at the following website:

http://python.ca/scgi

SCGI is a binary protocol for inter-process communication over IP. SCGI is tailored for the
specific task of web server to CGI application communication. The CGI standard defines
how a web server can delegate to an external application the dynamic generation of an
HTTP response.

The problem with CGI is that, for every incoming request a new process has to be created.
Process creation can take longer than response generation in some contexts. This is true
in most interpreted language environments, where the time to load a new instance of the
interpreter can be longer than the execution of the program itself.

FastCGI addresses this problem by using long-running processes to answer to more than
one request without exiting. This is beneficial, in particular, for interpreted programs,
because the interpreter does not need to be restarted each time. SCGI was developed
after FastCGI experience to reduce the complexity required to convert a CGI to a FastCGI
application, allowing better performance. SCGI is a standard module of Lighttpd, and is
available for Apache as well.

www.allitebooks.com

http://www.allitebooks.org

Deploying web2py

24

Getting ready
You should have:

 f web2py installed and running on localhost (port 8000)

 f Lighttpd (download and install from http://www.lighttpd.net)

 f SCGI (download and install from http://python.ca/scgi)

 f Python Paste (download and install from http://pythonpaste.org/), or
WSGITools (http://subdivi.de/helmut/wsgitools)

If you have setuptools, you can install SCGI, paste, and wsgitools, as follows:

easy_install scgi

easy_install paste

easy_install wsgitools

You will also need a script to start an SCGI server, configured for web2py that may or may not
come with web2py, depending on the version, so we have supplied one to this recipe.

How to do it...
Now, you have to write the script to start the SCGI server that will be listening to Lighttpd
requests. Don't worry, even if it is very short and easy, we provide one ready to copy here:

#!/usr/bin/env python

-*- coding: utf-8 -*-

LOGGING = False

SOFTCRON = False

import sys

import os

path = os.path.dirname(os.path.abspath(__file__))

os.chdir(path)

sys.path = [path]+[p for p in sys.path if not p==path]

import gluon.main

if LOGGING:

Chapter 1

25

 application = gluon.main.appfactory(

 wsgiapp=gluon.main.wsgibase,

 logfilename='httpserver.log',

 profilerfilename=None)

else:

 application = gluon.main.wsgibase

if SOFTCRON:

 from gluon.settings import global_settings

 global_settings.web2py_crontype = 'soft'

try:

 import paste.util.scgiserver as scgi

 scgi.serve_application(application, '', 4000).run()
except ImportError:

 from wsgitools.scgi.forkpool import SCGIServer

 SCGIServer(application, port=4000).run()

1. Copy the previous script, and put it in the root of your web2py installation
with the name scgihandler.py. Start the SCGI server, and leave it running
in the background:
$ nohup python ./scgihandler.py &

Now we are ready to configure lighttpd.

We provide a simple lighttpd.conf configuration file here, as an example. Of
course, real-world configurations can be much more complex, but the important
parts will not differ much.

2. Append the following lines to your lighttpd.conf:
server.modules += ("mod_scgi")

server.document-root="/var/www/web2py/"

for >= linux-2.6

server.event-handler = "linux-sysepoll"

url.rewrite-once = (

 "^(/.+?/static/.+)$" => "/applications$1",

 "(^|/.*)$" => "/handler_web2py.scgi$1",

)

scgi.server = ("/handler_web2py.scgi" =>

Deploying web2py

26

 ("handler_web2py" =>

 ("host" => "127.0.0.1",

 "port" => "4000",

 "check-local" => "disable", # important!

)

)

)

3. This configuration does the following:

 � Loads the SCGI module into Lighttpd

 � Configures the server document root to the root of web2py installation

 � Rewrites the URL, using mod_rewrite, so that incoming requests to
static files are served directly by Lighttpd, while all the rest are rewritten
to a fake URL beginning with /handler_web2py.scgi

 � Creates an SCGI server stanza: For every request beginning with
/handler_web2py.scgi the request is routed to the SCGI server
running on 127.0.0.1 at port 4000, skipping the check for the
existence of a corresponding local file on the filesystem

4. Now, check that your configuration is ok:
$ lighttpd -t -f lighttpd.conf

5. Then start the server for testing:
$ lighttpd -D -f lighttpd.conf

6. You can start/stop/restart the server with the following command:

$ /etc/init.d/lighttpd start|stop|restart

You will see your web2py application go to the speed of Light(ttpd).

Running web2py with Cherokee
This recipe explains how to run web2py behind a Cherokee web server using uWSGI.

Cherokee is a webserver written in C, similar in intent to Lighttpd: fast, compact, and modular.
Cherokee comes with an administrative interface that allows one to manage its configuration,
which is difficult to read and modify otherwise. uWSGI is described in its website as a fast
(pure C), self-healing, developer/sysadmin-friendly application container server. Cherokee has
an included module to talk to uWSGI servers.

Chapter 1

27

How to do it...
1. Install the package or download, compile, and install the required components.

Create the following file in the installation root of web2py, and call it uwsgi.xml:
<uwsgi>

 <pythonpath>/home/web2py</pythonpath>

 <module>wsgihandler</module>

 <socket>127.0.0.1:37719</socket>

 <master/>

 <processes>8</processes>

 <memory-report/>

</uwsgi>

This configuration spawns eight processes to manage multiple requests from the
HTTP server. Change it as needed, and configure <pythonpath> to the installation
root of web2py.

2. As the user that owns the web2py installation, start the uWSGI server:
$ uWSGI -d uwsgi.xml

3. Now launch the Cherokee administrative interface to create a new configuration:
$ cherokee-admin

4. Connect to the admin interface with the browser at the following link:
http://localhost:9090/.

5. Go to the Sources section - (A), then click on the + button - (B).

http://localhost:9090/
http://localhost:9090/

Deploying web2py

28

6. Select Remote Host on (C), then fill the text field at (D) with the IP address, and port
to match the configuration in the previous uswgi.xml file.

Having configured the uWGI source, it is now possible to configure a Virtual Host, and
redirect requests through it. In this recipe, we choose the default Virtual Host that is
used when no other Virtual Host has a better match for the incoming request.

7. Click on button (C) to go to Rule Management.

8. Delete all rules listed on the left. Only the default rule will remain.

9. Configure the default rule with a uWSGI Handler. Leave the other values unchanged.

Chapter 1

29

10. If you want Cherokee to serve static files directly from web2py folders, you can add a
Regular Expression rule. Click button (A), and select Regular Expression from the
drop-down menu at (B). Be aware that this configuration works only if the web2py
directory is on the same file system, and is accessible to Cherokee.

11. Configure the Regular Expressions:

Deploying web2py

30

12. Now you can configure the Static Handler pointing to the applications subdirectory of
your web2py installation:

Remember to save the configuration, and reload or restart Cherokee from the
administrative interface; then you are ready to start the uWSGI server.

13. Change to the correct user ID that was used to install web2py; be aware that using
root is not recommended.

14. Go into the root directory of web2py installation, where you saved the configuration
file uwsgi.xml.

15. Run uWSGI with the -d <logfile> option, so that it runs in the background:

$ su - <web2py user>

$ cd <web2py root>

$ uwsgi -x uwsgi.xml -d /tmp/uwsgi.log

Enjoy the speed!

Getting ready
You should have the following:

 f web2py (installed but not running)

 f uWSGI (download and install from http://projects.unbit.it/uwsgi/wiki)

 f Cherokee (download and install from http://www.cherokee-project.com/)

Chapter 1

31

Running web2py with Nginx and uWSGI
This recipe explains how to run web2py with the Nginx web server using uWSGI.

Nginx is a free, open-source, high-performance HTTP server, and reverse proxy, written
by Igor Sysoev.

Nginx, unlike traditional servers, does not rely on threads to handle requests, rather, it
implements an asynchronous architecture. This implies that Nginx uses a predictable amount
of memory, even under heavy load, resulting in higher stability and low resource consumption.
Nginx now hosts more than seven percent of all domains worldwide.

It should be stressed that even if Nginx is asynchronous, web2py is not. Therefore, web2py
will use more resources, the more concurrent requests it handles concurrently. uWSGI
is described on its website as a fast (pure C), self-healing, developer/sysadmin-friendly
application container server. We will configure Nginx to serve dynamic web2py pages through
uWSGI, and serve static pages directly, taking advantage of its low footprint capabilities.

Getting ready
You should have the following:

 f web2py (installed but not running)

 f uWSGI (download and install from http://projects.unbit.it/uwsgi/wiki)

 f Nginx (download and install from http://nginx.net/)

On Ubuntu 10.04 LTS, you can install uWSGI and Nginx using apt-get, as follows:

apt-get update

apt-get -y upgrade

apt-get install python-software-properties

add-apt-repository ppa:nginx/stable

add-apt-repository ppa:uwsgi/release

apt-get update

apt-get -y install nginx-full

apt-get -y install uwsgi-python

Deploying web2py

32

How to do it...
1. First we need to configure Nginx. Create or edit a file called /etc/nginx/

sites-available/web2py.

2. In the file, write the following:
server {

 listen 80;

 server_name $hostname;

 location ~* /(\w+)/static/ {

 root /home/www-data/web2py/applications/;

 }

 location / {

 uwsgi_pass 127.0.0.1:9001;

 include uwsgi_params;

 }

}

server {

 listen 443;

 server_name $hostname;

 ssl on;

 ssl_certificate /etc/nginx/ssl/web2py.crt;

 ssl_certificate_key /etc/nginx/ssl/web2py.key;

 location / {

 uwsgi_pass 127.0.0.1:9001;

 include uwsgi_params;

 uwsgi_param UWSGI_SCHEME $scheme;

 }

}

As you can see, it passes all dynamical requests to 127.0.0.1:9001.
We need to get uWSGI running there.

Chapter 1

33

3. Create the following file in the installation root of web2py, and call it web2py.xml:
<uwsgi>

 <socket>127.0.0.1:9001</socket>

 <pythonpath>/home/www-data/web2py/</pythonpath>

 <app mountpoint="/">

 <script>wsgihandler</script>

 </app>

</uwsgi>

This script assumes that web2py is installed as usual at /home/www-data/
web2py/.

4. Now disable the default configuration, and enable the new one:
rm /etc/nginx/sites-enabled/default

rm /etc/nginx/sites-available/default

ln -s /etc/nginx/sites-available/web2py /etc/nginx/sites-enabled/\
web2py

ln -s /etc/uwsgi-python/apps-available/web2py.xml /etc/uwsgi-\
python/apps-enabled/web2py.xml

5. In order to use HTTPS, you may need to create a self-signed certificate:
mkdir /etc/nginx/ssl

cd /etc/nginx/ssl

openssl genrsa -out web2py.key 1024

openssl req -batch -new -key web2py.key -out web2py.csr

openssl x509 -req -days 1780 -in web2py.csr -signkey web2py.key \
-out web2py.crt

6. You will also need to enable web2py admin:
cd /var/web2py

sudo -u www-data python -c "from gluon.main import save_password;\
save_password('$PW', 443)"

7. Once you are done, restart both uWSGI and Nginx:

/etc/init.d/uwsgi-python restart

/etc/init.d/nginx restart

web2py comes with a script that will perform this setup for you automatically:

scrips/setup-web2py-nginx-uwsgi-ubuntu.sh

www.allitebooks.com

http://www.allitebooks.org

Deploying web2py

34

Running web2py on shared hosts using CGI
This recipe explains how to configure web2py to run on a shared host with login (but not
root) access.

With login or FTP access to a shared host, the user isn't able to configure the web server, and
must live within the host's configured constraints. This recipe assumes a typical Unix-based or
Linux-based shared host running Apache.

Two deployment methods are possible, depending on how the system is configured. If
Apache's mod_proxy is available, and the host permits long-running processes, running
web2py's built-in server as an Apache proxy is straightforward and efficient. If mod_proxy is
not available, or the host prohibits long-running processes, we're limited to the CGI interface,
which is simple to configure and almost universally available, but is also slow, since the
Python interpreter must run and load web2py for each request.

We'll start with CGI deployment, the simpler case.

Getting ready
We'll assume that the root of your website is /usr/www/users/username, and that /usr/
www/users/username/cgi-bin is your CGI binaries directory. If your details differ, obtain
the actual values from your provider, and modify these instructions accordingly.

For security reasons, here, we also assume your host supports running CGI scripts as the local
user (cgiwrap). This procedure may vary from host to host, if it's available at all; check with
your provider.

Download the web2py source to your cgi-bin directory. For example:

cd cgi-bin

wget http://www.web2py.com/examples/static/web2py_src.zip

unzip web2py_src.zip

rm web2py_src.zip

Alternatively, unzip the web2py source locally, and upload it to the host through FTP.

How to do it...
1. In your web root directory, create the file .htaccess, if necessary, and add the

following lines (changing paths as required):
SuexecUserGroup <yourusername> <yourgroup>

RewriteEngine on

Chapter 1

35

RewriteBase /usr/www/users/username

RewriteRule ^(welcome|examples|admin)(/.*)?$ \

 /cgi-bin/cgiwrap/username/web2py/cgihandler.py

2. Change its permissions with the following:
chown 644 .htaccess

3. Now access http://yourdomain.com/welcome, or (depending on your provider)
http://hostingdomain.com/username/welcome.

4. If you get access errors at this point, examine the most recent file in web2py/
applications/welcome/errors/, using the tail command. This format isn't
especially friendly, but it can provide useful clues. If the errors directory is empty, you
may need to double-check that the errors directory is writable by the web server.

Running web2py on shared hosts with
mod_proxy

Using mod_proxy has two major advantages over CGI deployment discussed in the previous
recipe: web2py runs continuously, so performance is considerably better, and it runs as
your local user, which improves security. Because from web2py's perspective it appears to
be running on localhost, the admin application can run, but if you don't have SSL operation
available, you may want to disable admin for security reasons. SSL setup is discussed in the
Setting up a production deployment on Ubuntu recipe.

Getting ready
Here we assume that you have already downloaded and unzipped web2py somewhere in
your home folder. We also assume that your web hosting provider has mod_proxy enabled,
supports long running processes, allows you to open a port (8000 in the example but you
can change if this port is occupied by another user).

How to do it...
1. In your base web directory, create a file .htaccess, if necessary, and add

these lines:
RewriteEngine on

RewriteBase /usr/www/users/username

RewriteRule ^((welcome|examples|admin)(/.*)?)$ \

 http://127.0.0.1:8000/$1 [P]

Deploying web2py

36

2. Download and unzip web2py as described previously for CGI operation, except
that web2py need not be installed in your cgi-bin directory, or even in your web
documents tree. For this recipe, we'll assume that you install it in your login home
directory $HOME.

3. Start web2py running on localhost and port 8000 with the following command:

nohup python web2py.py -a password -p 8000 -N

The password is the one time admin password that you choose. The -N is optional
and it disables web2py cron to save memory. (Notice that this last step cannot be
accomplished trhough FTP, so login access is required.)

Running web2py from a user-defined folder
This recipe explains how to relocate the web2py applications folder.

With web2py, each application lives in a folder under the applications/ folder, which in
turn is located in the web2py base or root folder (the folder that also contains gluon/, the
web2py core code).

When web2py is deployed using its built-in web server, the applications/ folder can be
relocated to some other location in your file system. When applications/ is relocated,
certain other files are relocated as well, including logging.conf, routes.py, and
parameters_port.py. Additionally, a site-packages in the same folder as the relocated
applications/, is inserted into sys.path (this site-packages directory need not exist).

How to do it...
When web2py is run from the command line, the folder relocation is specified with the
-f option, which should specify the parent folder of the relocated applications/ folder,
for example:

python web2py.py -i 127.0.0.1 -p 8000 -f /path/to/apps

There's more...
When web2py is run as a Windows service (web2py.exe -W), the relocation can be specified
in a file options.py in the web2py main folder. Change the default folder: os.getcwd() to
specify the parent folder of the relocated applications/ folder. Here is an example of the
options.py file:

import socket

import os

Chapter 1

37

ip = '0.0.0.0'

port = 80

interfaces=[('0.0.0.0',80),

 ('0.0.0.0',443,'ssl_key.pem','ssl_certificate.pem')]

password = '<recycle>' # <recycle> means use the previous password

pid_filename = 'httpserver.pid'

log_filename = 'httpserver.log'

profiler_filename = None

#ssl_certificate = 'ssl_cert.pem' # certificate file

#ssl_private_key = 'ssl_key.pem' # private key file

#numthreads = 50 # ## deprecated; remove

minthreads = None

maxthreads = None

server_name = socket.gethostname()

request_queue_size = 5

timeout = 30

shutdown_timeout = 5

folder = "/path/to/apps" # <<<<<<<< edit this line

extcron = None

nocron = None

Applications relocation is not available when web2py is deployed with an external web server.

How to do it...
1. First, create a web2py unprivileged user:

sudo adduser web2py

2. For security, disable the web2py user password to prevent remote logins:
sudo passwd -l web2py

3. Download the source package from web2py's official website, uncompress it in a
suitable directory (for example /opt/web2py), and set the access permissions
appropriately:
wget http://www.web2py.com/examples/static/web2py_src.zip

sudo unzip -x web2py_src.zip -d /opt

sudo chown -Rv web2py. /opt/web2py

Deploying web2py

38

4. Create an init script in /etc/inid.d/web2py (you can use the one in web2py/
scripts/ as a starting point):
sudo cp /opt/web2py/scripts/web2py.ubuntu.sh /etc/init.d/web2py

5. Edit the init script:
sudo nano /etc/init.d/web2py

6. Set the basic configuration parameters:
PIDDIR=/opt/$NAME

DAEMON_DIR=/opt/$NAME

APPLOG_FILE=$DAEMON_DIR/web2py.log

DAEMON_ARGS="web2py.py -p 8001 -i 127.0.0.1 -c server.crt -k
server.key -a<recycle> --nogui --pid_filename=$PIDFILE -l \
$APPLOG_FILE"

7. Change 127.0.0.1 and 8001 to your desired IP and port. You can use 0.0.0.0
as a wildcard IP that match all the interfaces.

8. Create a self-signed certificate, if you plan on using admin remotely:
sudo openssl genrsa -out /opt/web2py/server.key 1024

sudo openssl req -new -key /opt/web2py/server.key -out /opt/\
web2py/server.csr

sudo openssl x509 -req -days 365 -in /opt/web2py/server.csr \
-signkey /opt/web2py/server.key -out /opt/web2py/server.crt

9. If you use print statements for debugging purposes, or want to record web2py
output messages, you can redirect standard output, by adding the following line
after the imports in web2py.py:
sys.stdout = sys.stderr = open("/opt/web2py/web2py.err","wa", 0)

10. Finally, start your web2py service:
sudo /etc/init.d/web2py start

11. To install it permanently (so it starts and stop automatically with the rest of the
operating system services), issue the following command:

sudo update-rc.d web2py defaults

If all works correctly, you'll be able to open your web2py admin:

https://127.0.0.1:8001/welcome/default/index

Chapter 1

39

Installing web2py as a service in Ubuntu
For simple sites and intranets, you may need a simple installation method that keeps web2py
running. This recipe shows how to start web2py in a simple way without further dependencies
(no Apache webserver!).

There's more...
You can see what is happening using bash to debug the init script:

sudo bash -x /etc/init.d/web2py start

Also, you can change start-stop-daemon options to be more verbose, and use the web2py
user to prevent interference with other Python daemons:

start-stop-daemon --start \

 ${DAEMON_USER:+--chuid $DAEMON_USER} --chdir $DAEMON_DIR \

 --background --user $DAEMON_USER --verbose --exec $DAEMON \

 --$DAEMON_ARGS || return 2

Remember to set up a password to be able to use the administrative interface. This can be
done by executing the following command (change mypass to your desired password):

sudo -u web2py python /opt/web2py/web2py.py -p 8001 -a mypasswd

Running web2py with IIS as a proxy
IIS is the primary web server for the Windows OS. It can run multiple concurrent domains and
several application pools. When you deploy web2py on IIS, you want to set up a new site, and
have a separate application pool for its root application. In this way, you have separate logs and
ability to start/stop the application pool, independently on the others. Here we explain how.

This is the first of three recipes in which we repeat the process using different configurations.
In this first recipe, we set up IIS to act as a proxy for the web2py Rocket web server.

This configuration is desirable when IIS default site is already in production with enabled
ASP.NET, ASP, or PHP applications, and at the same time, your web2py sites may be under-
development and may require frequent restarting (for example, due to changes in routes.py).

Deploying web2py

40

Getting ready
In this recipe, we assume that you have IIS version 7 or later, already installed. We do
not discuss the steps to install IIS7, since it is a commercial product and they are well
documented somewhere else.

You also need to have web2py unzipped in a local folder. Start web2py on port 8081.

python web2py -p 8081 -i 127.0.0.1 -a 'password'

Note that when running web2py as a proxy, you should be careful about unintentionally
exposing admin without encryption.

Finally, you need to be able to use a IIS Proxy. For this, you will need Application Request
Routing (ARR) 2.5. ARR can be downloaded and installed from Microsoft Web Platform
Installer available here:

http://www.microsoft.com/web/downloads/platform.aspx

How to do it...
1. After you download the web platform installer for ARR, open the application and browse

to Products on the left-hand side of the screen, as shown in the following screenshot:

Chapter 1

41

2. Next, click on Add - Application Request Routing 2.5, and then click on Install. This
will take you to a new screen, as shown in the following screenshot; click on I Accept:

Deploying web2py

42

3. Web Platform installer will automatically select and install all the dependencies
required for Application Request Routing 2.5 to work. Click on Finish, and this
will bring you to the Download and Installation screen.

4. Once you receive the successful message, you can close Microsoft web
platform application.

5. Now open the IIS Manager, and create a new website as directed.

6. First, right-click on Sites on the top-left in the IIS Manager, and select
New Website. This will take you to the following screen. Fill in the details
as shown here:

Chapter 1

43

Make sure you select the right IP on which your site will run.

7. Once the site is created, double-click the URL Rewrite as shown in the
following screenshot:

www.allitebooks.com

http://www.allitebooks.org

Deploying web2py

44

8. Once in URL Rewrite module, click on Add Rule on the top-right-hand side,
as shown in the next screenshot.

9. Select the Reverse Proxy template under Inbound and Outbound Rules.

10. Fill out the details as shown here:

11. Since the Server IP field is the most important, it must contain the IP and port where
web2py is running: 127.0.0.1:8081. Also, make sure that SSL Offloading is
checked. In the outbound rules for the TO field, write the domain name assigned to
the website. When done, click OK.

At this point, everything on your web2py installation should be working, except for the
admin interface. Web2py requires that we use HTTPS when a request for the admin
interface is coming for a non-localhost server. In our example, localhost for web2py is
127.0.0.1:8081, while IIS is currently operational on 127.0.0.1:80.

12. To enable the admin, you will need a certificate. Create a certificate and add it to your
server certificates in IIS 7, then repeat the previous steps to bind 443 to the web2py
website we created previously.

13. Now, visit: https://yourdomain.com/admin/, and you will be able to browse the
web2py admin web interface. Enter the password for your web2py admin interface,
and proceed normally.

Chapter 1

45

Running web2py with ISAPI
Here, we present a production quality configuration, which uses a dedicated application pool
run natively in IIS using the ISAPI handler. It is similar to a typical Linux/Apache configuration,
but is a Windows native.

Getting ready
As before you will need IIS installed.

You should have web2py already downloaded and unzipped. If you have it already running on
port 8081 (or other port) on localhost, you can leave it there, since it should not interfere with
this installation. We will assume web2py is installed into C:\path\to\web2py.

You can place it anywhere else you like.

Then you need to download and install isapi-wsgi. This is explained below.

How to do it...
1. First of all, you need to download isapi-wsgi from: http://code.google.

com/p/isapi-wsgi/.

It is a mature WSGI adapter for IIS, based on pywin32. Most of this recipe is based on
the documentation and the examples about isapi-wsgi.

You can install isapi-wsgi using the win32 installer: http://code.google.
com/p/isapi-wsgi/downloads/detail?name=isapi_wsgi-0.4.2.
win32.exe.

You can also install it simply downloading the Python file somewhere into
"c:\Python\Lib\site-packages"

http://isapi-wsgi.googlecode.com/svn/tags/isapi_wsgi-0.4.2/
isapi_wsgi.py.

isapi_wsgi runs on IIS 5.1, 6.0, and 7.0. But IIS 7.x must have IIS 6.0
Management Compatability installed.

You may want to try running the following test to see that it was installed properly:
cd C:\Python\Lib\site-packages

C:\Python\Lib\site-packages> python isapi_wsgi.py install

Configured Virtual Directory: isapi-wsgi-test

Extension installed

Installation complete.

2. Now go to http://localhost/isapi-wsgi-test/.

Deploying web2py

46

3. If you get a 500 error that says this is not a valid Win32 application,
then something is wrong and this is discussed here: http://support.
microsoft.com/kb/895976/en-us.

4. If you see a normal Hello response, then the installation was successful, and you
can remove the test:
C:\Python\Lib\site-packages> python isapi_wsgi.py remove

We are not yet ready to configure the web2py handler. You need to enable the
32-bits mode.

5. We are now ready to configure the web2py handler. Add your web2py installation
to the PYTHONPATH:
set PYTHONPATH=%PYTHONPATH%;C:\path\to\web2py

6. If it does not exist already, create the file isapiwsgihandler.py in the
C:\path\to\web2py folder, which contains the following:
import os

import sys

import isapi_wsgi

The entry point for the ISAPI extension.

def __ExtensionFactory__():

 path = os.path.dirname(os.path.abspath(__file__))

 os.chdir(path)

 sys.path = [path]+[p for p in sys.path if not p==path]

 import gluon.main

 application = gluon.main.wsgibase

 return isapi_wsgi.ISAPISimpleHandler(application)

ISAPI installation:

if __name__=='__main__':

 from isapi.install import ISAPIParameters

 from isapi.install import ScriptMapParams

 from isapi.install import VirtualDirParameters

 from isapi.install import HandleCommandLine

 params = ISAPIParameters()

 sm = [ScriptMapParams(Extension="*", Flags=0)]

Chapter 1

47

 vd = VirtualDirParameters(Name="appname",
 Description = "Web2py in Python",
 ScriptMaps = sm,

 ScriptMapUpdate = "replace")

 params.VirtualDirs = [vd]

 HandleCommandLine(params)

Recent versions of web2py may already contain this file, or even a better version.

7. The first part is the handler, and the second part will allow an automatic installation
from the command line:

cd c:\path\to\web2py

python isapiwsgihandler.py install --server=sitename

By default, this installs the extension for virtual directory appname under Default
Web Site.

There's more...
Check the current mode for Web Applications (32 bits or 64 bits):

cd C:\Inetpub\AdminScripts

cscript.exe adsutil.vbs get W3SVC/AppPools/Enable32BitAppOnWin64

cscript %systemdrive%\inetpub\AdminScripts\adsutil.vbs get w3svc/\
AppPools/Enable32bitAppOnWin64

If answer is The parameter "Enable32BitAppOnWin64" is not set at this
node or Enable32BitAppOnWin64 : (BOOLEAN) False, then you must
switch from 64 bits to 32 bits mode for the Web Server. ISAPI does not wok on IIS in 64 bits
mode. You can switch with the command:

cscript %systemdrive%\inetpub\AdminScripts\adsutil.vbs set w3svc/\
AppPools/Enable32bitAppOnWin64 1

Then restart application pool, as follows:

IIsExt /AddFile %systemroot%\syswow64\inetsrv\httpext.dll 1 ^
WEBDAV32 1 "WebDAV (32-bit)"

Or set up a separate pool, as follows:

system.webServer/applicationPool/add@enable32BitAppOnWin64.

2
Building Your

First Application

In this chapter, we will cover the following recipes:

 f Improving the scaffolding application

 f Building a simple contacts application

 f Building a Reddit clone

 f Building a Facebook clone

 f Using crud.archive

 f Converting an existing static site into a web2py application

 f Creating semi-static pages (flatpages)

 f Adding your custom logo

 f Creating menus and submenus

 f Customizing menus with icons

 f Creating a navigation bar

 f Using cookies to set the language

 f Designing modular applications

 f Speeding up downloads

Building Your First Application

50

Introduction
Now that you have web2py installed and running, you are ready to start building your first
application. The recipes in this chapter will provide examples of complete applications,
comprising models, views, and controllers. They range from simple contacts applications
to a more complex Facebook clone. Other recipes in this chapter will show you how to solve
some recurrent problems that new users typically encounter, from adding a logo to creating a
navigation bar.

Improving the scaffolding application
In this recipe, we discuss how to create your own scaffolding application and add your own
configuration file. The scaffolding application is the collection of files that come with any new
web2py application.

How to do it...
The scaffolding app includes several files. One of them is models/db.py, which imports four
classes from gluon.tools (Mail, Auth, Crud, and Service), and defines the following
global objects: db, mail, auth, crud, and service.

The scaffolding application also defines tables required by the auth object, such as
db.auth_user.

The default scaffolding application is designed to minimize the number of files, not to be
modular. In particular, the model file, db.py, contains the configuration, which in a production
environment, is best kept in separate files.

Here, we suggest creating a configuration file, models/0.py, that contains something like
the following:

from gluon.storage import Storage
settings = Storage()

settings.production = False

if settings.production:
 settings.db_uri = 'sqlite://production.sqlite'
 settings.migrate = False
else:
 settings.db_uri = 'sqlite://development.sqlite'
 settings.migrate = True

settings.title = request.application

Chapter 2

51

settings.subtitle = 'write something here'
settings.author = 'you'
settings.author_email = 'you@example.come'
settings.keywords = ''
settings.description = ''
settings.layout_theme = 'Default'
settings.security_key = 'a098c897-724b-4e05-b2d8-8ee993385ae6'
settings.email_server = 'localhost'
settings.email_sender = 'you@example.com'
settings.email_login = ''
settings.login_method = 'local'
settings.login_config = ''

We also modify models/db.py, so that it uses the information from the configuration file,
and it defines the auth_user table explicitly (this makes it easier to add custom fields):

from gluon.tools import *

db = DAL(settings.db_uri)
if settings.db_uri.startswith('gae'):
 session.connect(request, response, db = db)

mail = Mail() # mailer
auth = Auth(db) # authentication/authorization
crud = Crud(db) # for CRUD helpers using auth
service = Service() # for json, xml, jsonrpc, xmlrpc, amfrpc
plugins = PluginManager()

enable generic views for all actions for testing purpose
response.generic_patterns = ['*']

mail.settings.server = settings.email_server
mail.settings.sender = settings.email_sender
mail.settings.login = settings.email_login
auth.settings.hmac_key = settings.security_key

add any extra fields you may want to add to auth_user
auth.settings.extra_fields['auth_user'] = []

user username as well as email
auth.define_tables(migrate=settings.migrate,username=True)
auth.settings.mailer = mail
auth.settings.registration_requires_verification = False

Building Your First Application

52

auth.settings.registration_requires_approval = False

auth.messages.verify_email = 'Click on the link http://' \
 + request.env.http_host + URL('default','user',
 args=['verify_email']) \
 + '/%(key)s to verify your email'

auth.settings.reset_password_requires_verification = True

auth.messages.reset_password = 'Click on the link http://' \
 + request.env.http_host + URL('default','user',
 args=['reset_password']) \
 + '/%(key)s to reset your password'

if settings.login_method=='janrain':
 from gluon.contrib.login_methods.rpx_account import RPXAccount
 auth.settings.actions_disabled=['register', 'change_password',
 'request_reset_password']
 auth.settings.login_form = RPXAccount(request,
 api_key = settings.login_config.split(':')[-1],
 domain = settings.login_config.split(':')[0],
 url = "http://%s/%s/default/user/login" % \
 (request.env.http_host, request.application))

Normally, after a web2py installation or upgrade, the welcome application is tar-gzipped
into welcome.w2p, and is used as the scaffolding application. You can create your own
scaffolding application from an existing application using the following commands from a
bash shell:

cd applications/app

tar zcvf ../../welcome.w2p *

There's more...
The web2py wizard uses a similar approach, and creates a similar 0.py configuration file. You
can add more settings to the 0.py file as needed.

The 0.py file may contain sensitive information, such as the security_key used to
encrypt passwords, the email_login containing the password of your smtp account, and
the login_config with your Janrain password (http://www.janrain.com/). You may
want to write this sensitive information in a read-only file outside the web2py tree, and read
them from your 0.py instead of hardcoding them. In this way, if you choose to commit your
application to a version-control system, you will not be committing the sensitive information.

Chapter 2

53

The scaffolding application includes other files that you may want to customize, including
views/layout.html and views/default/users.html. Some of them are the subject of
upcoming recipes.

Building a simple contacts application
When you start designing a new web2py application, you go through three phases that are
characterized by looking for the answer to the following three questions:

 f What data should the application store?

 f Which pages should be presented to the visitors?

 f How should the page content, for each page, be presented?

The answer to these three questions is implemented in the models, the controllers, and the
views respectively.

It is important for a good application design to try answering those questions exactly in this
order, and as accurately as possible. Such answers can later be revised, and more tables,
more pages, and more bells and whistles can be added in an iterative fashion. A good web2py
application is designed in such a way that you can change the table definitions (add and
remove fields), add pages, and change page views, without breaking the application.

A distinctive feature of web2py is that everything has a default. This means you can work on
the first of those three steps without the need to write code for the second and third step.
Similarly, you can work on the second step without the need to code for the third. At each
step, you will be able to immediately see the result of your work; thanks to appadmin (the
default database administrative interface) and generic views (every action has a view by
default, until you write a custom one).

Here we consider, as a first example, an application to manage our business contacts, a CRM.
We will call it Contacts. The application needs to maintain a list of companies, and a list of
people who work at those companies.

How to do it...
1. First of all we create the model.

In this step we identify which tables are needed and their fields. For each field, we
determine whether they:

 � Must contain unique values (unique=True)

 � Contain empty values (notnull=True)

 � Are references (contain a list of a record in another table)

 � Are used to represent a record (format attribute)

www.allitebooks.com

http://www.allitebooks.org

Building Your First Application

54

From now on, we will assume we are working with a copy of the default scaffolding
application, and we only describe the code that needs to be added or replaced. In
particular, we will assume the default views/layout.html and models/db.py.

Here is a possible model representing the data we need to store in models/db_
contacts.py:
in file: models/db_custom.py

db.define_table('company',
 Field('name', notnull=True, unique=True),
 format='%(name)s')

db.define_table('contact',
 Field('name', notnull=True),
 Field('company', 'reference company'),
 Field('picture', 'upload'),
 Field('email', requires=IS_EMAIL()),
 Field('phone_number', requires=IS_MATCH('[\d\-\(\)]+')),
 Field('address'),
 format='%(name)s')

db.define_table('log',
 Field('body', 'text',notnull=True),
 Field('posted_on', 'datetime'),
 Field('contact', 'reference contact'))

Of course, a more complex data representation is possible. You may want to allow, for
example, multiple users for the system, allow the same person to work for multiple
companies, and keep track of changes in time. Here, we will keep it simple.

The name of this file is important. In particular, models are executed in alphabetical
order, and this one must follow db.py.

2. After this file has been created, you can try it by visiting the following url:
http://127.0.0.1:8000/contacts/appadmin, to access the web2py database
administrative interface, appadmin. Without any controller or view, it provides a way
to insert, select, update, and delete records.

3. Now we are ready to build the controller. We need to identify which pages are
required by the application. This depends on the required workflow. At a minimum we
need the following pages:

 � An index page (the home page)

 � A page to list all companies

 � A page that lists all contacts for one selected company

 � A page to create a company

Chapter 2

55

 � A page to edit/delete a company

 � A page to create a contact

 � A page to edit/delete a contact

 � A page that allows to read the information about one contact and the
communication logs, as well as add a new communication log

4. Such pages can be implemented as follows:
in file: controllers/default.py

def index():
 return locals()

def companies():
 companies = db(db.company).select(orderby=db.company.name)
 return locals()

def contacts():
 company = db.company(request.args(0)) or
 redirect(URL('companies'))
 contacts = db(db.contact.company==company.id).select(
 orderby=db.contact.name)
 return locals()

@auth.requires_login()
def company_create():
 form = crud.create(db.company, next='companies')
 return locals()

@auth.requires_login()
def company_edit():
 company = db.company(request.args(0)) or
 redirect(URL('companies'))
 form = crud.update(db.company, company, next='companies')
 return locals()

@auth.requires_login()
def contact_create():
 db.contact.company.default = request.args(0)
 form = crud.create(db.contact, next='companies')
 return locals()

@auth.requires_login()
def contact_edit():

Building Your First Application

56

 contact = db.contact(request.args(0)) or
 redirect(URL('companies'))
 form = crud.update(db.contact, contact, next='companies')
 return locals()

@auth.requires_login()
def contact_logs():
 contact = db.contact(request.args(0)) or
 redirect(URL('companies'))
 db.log.contact.default = contact.id
 db.log.contact.readable = False
 db.log.contact.writable = False
 db.log.posted_on.default = request.now
 db.log.posted_on.readable = False
 db.log.posted_on.writable = False
 form = crud.create(db.log)
 logs = db(
 db.log.contact==contact.id).select(orderby=db.log.posted_on)
 return locals()

def download(): return response.download(request, db)

def user(): return dict(form=auth())

5. Make sure that you do not delete the existing user, download, and service
functions in the scaffolding default.py.

6. Notice how all pages are built using the same ingredients: select queries and crud
forms. You rarely need anything else.

7. Also notice the following:

 � Some pages require a request.args(0) argument (a company ID for
contacts and company_edit, a contact ID for contact_edit, and
contact_logs).

 � All selects have an orderby argument.

 � All crud forms have a next argument that determines the redirection after
form submission.

 � All actions return locals(), which is a Python dictionary containing the
local variables defined in the function. This is a shortcut. It is of course
possible to return a dictionary with any subset of locals().

 � contact_create sets a default value for the new contact company to the
value passed as args(0).

 � The contacts_logs retrieves past logs after processing crud.create for
a new log entry. This avoid unnecessarily reloading of the page, when a new
log is inserted.

Chapter 2

57

8. At this point our application is fully functional, although the look-and-feel and
navigation can be improved.:

 � You can create a new company at:
http://127.0.0.1:8000/contacts/default/company_create

 � You can list all companies at:
http://127.0.0.1:8000/contacts/default/companies

 � You can edit company #1 at:
http://127.0.0.1:8000/contacts/default/company_edit/1

 � You can create a new contact at:
http://127.0.0.1:8000/contacts/default/contact_create

 � You can list all contacts for company #1 at:
http://127.0.0.1:8000/contacts/default/contacts/1

 � You can edit contact #1 at:
http://127.0.0.1:8000/contacts/default/contact_edit/1

 � And you can access the communication log for contact #1 at:
http://127.0.0.1:8000/contacts/default/contact_logs/1

9. You should also edit the models/menu.py file, and replace the content with the
following:
response.menu = [['Companies', False, URL('default',
 'companies')]]

The application now works, but we can improve it by designing a better look and feel
for the actions. That's done in the views.

10. Create and edit file views/default/companies.html:
{{extend 'layout.html'}}
<h2>Companies</h2>
<table>
 {{for company in companies:}}
 <tr>
 <td>{{=A(company.name, _href=URL('contacts',
 args=company.id))}}</td>
 <td>{{=A('edit', _href=URL('company_edit',
 args=company.id))}}</td>
 </tr>
 {{pass}}
 <tr>
 <td>{{=A('add company', _href=URL('company_create'))}}</td>
 </tr>
</table>

Building Your First Application

58

Here is how this page looks:

11. Create and edit file views/default/contacts.html:
{{extend 'layout.html'}}
<h2>Contacts at {{=company.name}}</h2>
<table>
 {{for contact in contacts:}}
 <tr>
 <td>{{=A(contact.name, _href=URL('contact_logs',
 args=contact.id))}}</td>
 <td>{{=A('edit', _href=URL('contact_edit',
 args=contact.id))}}</td>
 </tr>
 {{pass}}
 <tr>
 <td>{{=A('add contact', _href=URL('contact_create',
 args=company.id))}}</td>
 </tr>
</table>

Chapter 2

59

Here is how this page looks:

12. Create and edit file views/default/company_create.html:
{{extend 'layout.html'}}
<h2>New company</h2>
{{=form}}

13. Create and edit file views/default/contact_create.html:
{{extend 'layout.html'}}
<h2>New contact</h2>
{{=form}}

14. Create and edit file: views/default/company_edit.html:
{{extend 'layout.html'}}
<h2>Edit company</h2>
{{=form}}

15. Create and edit file views/default/contact_edit.html:
{{extend 'layout.html'}}
<h2>Edit contact</h2>
{{=form}}

Building Your First Application

60

16. Create and edit file views/default/contact_logs.html:

{{extend 'layout.html'}}
<h2>Logs for contact {{=contact.name}}</h2>
<table>
 {{for log in logs:}}
 <tr>
 <td>{{=log.posted_on}}</td>
 <td>{{=MARKMIN(log.body)}}</td>
 </tr>
 {{pass}}
 <tr>
 <td></td>
 <td>{{=form}}</td>
 </tr>
</table>

Here is how this page looks:

Notice that in the last view, we used the function MARKMIN to render the content of the
db.log.body, using the MARKMIN markup. This allows embedding links, images, anchors,
font formatting information, and tables in the logs. For details about the MARKMIN syntax we
refer to: http://web2py.com/examples/static/markmin.html.

Chapter 2

61

Building a Reddit clone
Here we show how to build an application to post and rank links to online news items, similar
to the http://www.reddit.com/ website. The links are organized into categories, and
users can post, vote, and comment on them. As in the previous recipe, the code only shows
additions or changes to the default scaffolding application. We will call our application
reddit.

In this recipe, we will not support threaded comments (as in the actual http://www.
reddit.com/ website), because it would be an unnecessary complication. We will discuss
threaded comments in a subsequent recipe.

We will follow the same steps discussed in the previous recipe.

How to do it...
This application is very similar to the contacts of the previous recipe. In fact, the data model
is almost identical, provided that we map table company into a table category, and table
contact into a table news. The main differences are that news items do not have a name,
but they have a title and a link instead. Moreover, news items must be sorted by user
votes, and not alphabetically. We also need to add a mechanism to allow users to vote, record
votes, and prevent double counting. We need an extra table for this. We will also not deal with
pagination, since this is discussed in a separate recipe.

Here is the complete model:

in file: models/db_reddit.py
db.define_table('category',
 Field('name' ,notnull=True, unique=True),
 format='%(name)s')

db.define_table('news',
 Field('title', notnull=True),
 Field('link', requires=IS_URL()),
 Field('category', 'reference category', readable=False,
 writable=False),
 Field('votes', 'integer', readable=False, writable=False),
 Field('posted_on', 'datetime', readable=False, writable=False),
 Field('posted_by', 'reference auth_user', readable=False,
 writable=False),
 format='%(title)s')

db.define_table('comment',
 Field('news', 'reference news', readable=False, writable=False),
 Field('body', 'text', notnull=True),

Building Your First Application

62

 Field('posted_on', 'datetime', readable=False, writable=False),
 Field('posted_by', 'reference auth_user', readable=False,
 writable=False))

db.define_table('vote',
 Field('news', 'reference news'),
 Field('value', 'integer'),
 Field('posted_on', 'datetime', readable=False, writable=False),
 Field('posted_by', 'reference auth_user', readable=False,
 writable=False))

1. As discussed previously, many of the needed actions are equivalent to the contacts
application of the previous recipe. In particular, we need actions to list categories, to
list news for a given category, to create and edit categories, to create and edit news,
to list comments, and vote for news items.
def index():
 return locals()

def categories():
 categories = db(db.category).select(orderby=db.category.name)
 return locals()

def news():
 category = db.category(request.args(0)) or
 redirect(URL('categories'))
 news = db(db.news.category==category.id).select(
 orderby=~db.news.votes, limitby=(0, 25))
 return locals()

@auth.requires_membership('manager')
def category_create():
 form = crud.create(db.category, next='categories')
 return locals()

@auth.requires_membership('manager')
def category_edit():
 category = db.category(request.args(0)) or
 redirect(URL('categories'))
 form = crud.update(db.category, category, next='categories')
 return locals()

@auth.requires_login()
def news_create():
 db.news.category.default = request.args(0)
 db.news.votes.default = 0
 form = crud.create(db.news, next='news_comments/[id]')
 return locals()

Chapter 2

63

@auth.requires_login()
def news_edit():
 news = db.news(request.args(0)) or redirect(URL('categories'))
 if not news.posted_by==auth.user.id:
 redirect(URL('not_authorized'))
 form = crud.update(db.news, category, next='news_comments/[id]')
 return locals()

def news_comments():
 news = db.news(request.args(0)) or redirect(URL('categories'))
 if auth.user:
 db.comment.news.default = news.id
 db.comment.posted_on.default = request.now
 db.comment.posted_by.default = auth.user.id
 form = crud.create(db.comment)
 comments = db(db.comment.news==news.id).select(
 orderby=db.comment.posted_on)
 return locals()

@auth.requires_login()
def vote():
 if not request.env.request_method=='POST': raise HTTP(400)
 news_id, mode = request.args(0), request.args(1)
 news = db.news(id=news_id)
 vote = db.vote(posted_by=auth.user.id, news=news_id)
 votes = news.votes
 value = (mode=='plus') and +1 or -1
 if vote and value*vote.value==1:
 message = 'you voted already'
 else:
 if vote:
 votes += value - vote.value
 vote.update_record(value=value)
 else:
 votes += value
 db.vote.insert(value=value, posted_by=auth.user.id,
 posted_on=request.now, news=news_id)
 news.update_record(votes=votes)
 message = 'vote recorded'
 return "jQuery('#votes').html('%s');jQuery('.flash').\
 html('%s').slideDown();" % (votes, message)

Most of these actions are very standard, and composed of the usual select and
crud forms.

Building Your First Application

64

2. We used two types of decorators to make sure that only logged-in users can edit
content, and only managers can create and edit categories. You can use appadmin
to create a manager group and give membership to users:

The only special action is the last vote. The vote action is designed to be an Ajax
callback. To avoid indirect reference attacks, the first line makes sure the action is
called with a POST request. Then we parse the request args: it expects a news ID
as args(0), and plus or minus as args(0), depending on whether we want to
vote the news item up or down. If we vote up (plus), it creates a new db.vote entry
with value equal to +1. If we vote down (minus), it creates a new db.vote entry with
value equal to -1. The action also checks whether we voted already. We are allowed
to change our vote, but not to vote twice.

This action returns a JavaScript string that updates the votes HTML element with
the latest vote count, and flashes a new message. The last line of the action is
tightly coupled with the view that will perform the Ajax call (views/default/news_
comments.html).

3. We also want to list all possible categories in the menu:
in file: models/menu.py"
categories = db(db.category).select(orderby=db.category.name,
 cache=(cache.ram, 60))
response.menu = [(c.name, False, URL('default', 'news',
 args=c.id)) for c in categories]

Chapter 2

65

4. Finally, we need to create the following views:

 � views/default/categories.html:
{{extend 'layout.html'}}
<h2>Categories</h2>
<table>
 {{for category in categories:}}
 <tr>
 <td>{{=A(category.name, _href=URL('news',
 args=category.id))}}</td>
 <td>{{=A('edit', _href=URL('category_edit',
 args=category.id))}}
 </td>
 </tr>
 {{pass}}
 <tr>
 <td>{{=A('add category', _href=URL('category_create'))}}</td>
 </tr>
</table>

 � views/default/news.html:
{{extend 'layout.html'}}
<h2>News at {{=category.name}}</h2>
<table>
 {{for news in news:}}
 <tr>
 <td>{{=A(news.title, _href=news.link)}}</td>
 <td>{{=A('comments', _href=URL('news_comments',
 args=news.id))}}
 </td>
 <td>{{=A('edit', _href=URL('news_edit', args=news.id))}}</td>
 </tr>
 {{pass}}
 <tr>
 <td>{{=A('post news item', _href=URL('news_create',
 args=category.id))}}
 </td>
 <td></td>
 </tr>
</table>

Building Your First Application

66

Here is how this page looks:

 � views/default/category_create.html:
{{extend 'layout.html'}}
<h2>New category</h2>
{{=form}}

 � views/default/news_create.html:
{{extend 'layout.html'}}
<h2>Post news item</h2>
{{=form}}

 � views/default/category_edit.html:
{{extend 'layout.html'}}
<h2>Edit category</h2>
{{=form}}

 � views/default/categories.html:
{{extend 'layout.html'}}
<h2>Edit news item</h2>
{{=form}}

 � views/default/news_comments.html:

{{extend 'layout.html'}}
<h2>Comments for {{=A(news.title, _href=news.link)}}</h2>
{{if auth.user:}}
 {{=news.votes}}

Chapter 2

67

 <button id="plus"
 onclick="ajax('{{=URL('vote', args=(news.id, 'plus'))}}', [],
 ':eval')">
 plus
 </button>

 <button id="minus"
 onclick="ajax('{{=URL('vote', args=(news.id, 'minus'))}}', [],
 ':eval')">
 minus
 </button>
 {{=form}}
{{pass}}
<table>
 {{for comment in comments:}}
 <tr>
 <td>{{=comment.posted_on}}</td>
 <td>{{=comment.posted_by.first_name}} says </td>
 <td>{{=MARKMIN(comment.body)}}</td>
 </tr>
 {{pass}}
</table>

Notice the code:
<button id="plus"
 onclick="ajax('{{=URL('vote', args=(news.id, 'plus'))}}', [],
 ':eval')">
 plus
</button>

On clicking, it performs an Ajax request that records our vote. The return value of the
Ajax request is evaluated (:eval). The URL(vote) returns a JavaScript code that will
be evaluated:
def vote():
 ...
 return
 "jQuery('#votes').html('%s');jQuery('.flash').
 html('%s').slideDown();" % (votes, message)

5. In particular, it will alter the content of the following code, and flash a new message
(slidedown):

{{=news.votes}}

Building Your First Application

68

Here is how this page looks:

Building a Facebook clone
At its fundamental level, Facebook handles friendship relations between users, and allows
friends to see each other's posts. Users can register, log in, search for other users, request
friendship, and accept friendship. When a user posts a message, the post will be visible on
the wall (web page) of all his/her friends.

Of course, the real Facebook application is quite complex, and our version is greatly simplified,
but it captures the most important features. In particular, we will omit the ability to attach
comments after posts, and we will omit e-mail notification features. We will also omit the code
to handle photos, videos, and chat. We are only interested in the friendship relations and
display wall posts, based on friendship. We will call our application friends.

How to do it...
The core of our design is a table to link two people: a source and a target of a friendship
relation. The friendship relation is requested by a source, and must be approved by a
target. When approved, the source user can see the posts and profile info of the target.
While the real Facebook friendship relations are bi-directional (although friends can be
hidden/blocked), in our case we assume unidirectional friendship (two users must give
friendship to each other to see each other's posts).

Chapter 2

69

1. The model is therefore quite simple, and we only need two tables:
in file: models:

a table to store posted messages
db.define_table('post',
 Field('body', 'text', requires=IS_NOT_EMPTY(), label='What is on
 your mind?'),
 Field('posted_on', 'datetime', readable=False, writable=False),
 Field('posted_by', 'reference auth_user', readable=False,
 writable=False))

a table to link two people
db.define_table('link',
 Field('source', 'reference auth_user'),
 Field('target', 'reference auth_user'),
 Field('accepted', 'boolean', default=False))

and define some global variables that will make code more
compact

User, Link, Post = db.auth_user, db.link, db.post
me, a0, a1 = auth.user_id, request.args(0), request.args(1)
myfriends = db(Link.source==me)(Link.accepted==True)
alphabetical = User.first_name|User.last_name
def name_of(user): return '%(first_name)s %(last_name)s' % user

The last five lines define various shortcuts that will make our controllers and views
more compact. For example, they allow the user to use User instead of db.user,
and orderby=alphabetical instead of the more verbose equivalent.

myfriends is the set of people that have accepted our friendship, which means we
can see their posts.

The following list line allows us to print the first name followed by last name of a user,
given a user object or a user reference:
{{=name_of(user)}}

2. We are going to need the following pages:

 � An index page that, if we are logged in, redirects to our home page

 � A private home page that shows our messages, the posts of our friends, and
allows us to post a new post

 � A page to search for new friends by name

 � A page to check who our current friends are, check pending friend requests,
and approve or deny friendship

 � A wall page to see the status of one particular friend (or our own)

Building Your First Application

70

3. We also need a callback action to implement to allow users to request friendship, to
accept friendship, to deny a friendship request, and to cancel a previous request for
friendship. We implement these through a single Ajax callback in a function called
friendship:
in file: controllers/default.py
def index():
 if auth.user: redirect(URL('home'))
 return locals()

def user():
 return dict(form=auth())

def download():
 return response.download(request, db)

def call():
 session.forget()
 return service()

our home page, will show our posts and posts by friends
@auth.requires_login()
def home():
 Post.posted_by.default = me
 Post.posted_on.default = request.now
 crud.settings.formstyle = 'table2cols'
 form = crud.create(Post)
 friends = [me]+[row.target for row in
 myfriends.select(Link.target)]
 posts = db(Post.posted_by.belongs(friends))\
 .select(orderby=~Post.posted_on, limitby=(0, 100))
 return locals()

our wall will show our profile and our own posts
@auth.requires_login()
def wall():
 user = User(a0 or me)
 if not user or not (user.id==me or \
 myfriends(Link.target==user.id).count()):
 redirect(URL('home'))
 posts = db(Post.posted_by==user.id)\
 .select(orderby=~Post.posted_on, limitby=(0, 100))
 return locals()

Chapter 2

71

a page for searching friends and requesting friendship
@auth.requires_login()
def search():
 form = SQLFORM.factory(Field('name', requires=IS_NOT_EMPTY()))
 if form.accepts(request):
 tokens = form.vars.name.split()
 query = reduce(lambda a,b:a&b,
 [User.first_name.contains(k)|User.last_name.contains(k) \
 for k in tokens])
 people = db(query).select(orderby=alphabetical)
 else:
 people = []
 return locals()

a page for accepting and denying friendship requests
@auth.requires_login()
def friends():
 friends = db(User.id==Link.source)(Link.target==me)\
 .select(orderby=alphabetical)
 requests = db(User.id==Link.target)(Link.source==me)\
 .select(orderby=alphabetical)
 return locals()

this is the Ajax callback
@auth.requires_login()
def friendship():
 """Ajax callback!"""
 if request.env.request_method != 'POST': raise HTTP(400)
 if a0=='request' and not Link(source=a1, target=me):
 # insert a new friendship request
 Link.insert(source=me, target=a1)
 elif a0=='accept':
 # accept an existing friendship request
 db(Link.target==me)(Link.source==a1).update(accepted=True)
 if not db(Link.source==me)(Link.target==a1).count():
 Link.insert(source=me, target=a1)
 elif a0=='deny':
 # deny an existing friendship request
 db(Link.target==me)(Link.source==a1).delete()
 elif a0=='remove':
 # delete a previous friendship request
 db(Link.source==me)(Link.target==a1).delete()

Building Your First Application

72

4. We also include the home, wall, friends, and search pages in the menu:

in file: models/menu.py
response.menu = [
 (T('Home'), False, URL('default', 'home')),
 (T('Wall'), False, URL('default', 'wall')),
 (T('Friends'), False, URL('default', 'friends')),
 (T('Search'), False, URL('default', 'search')),
]

Most of the views are straightforward.

 � Here is views/default/home.html:
{{extend 'layout.html'}}
{{=form}}
<script>jQuery('textarea').css('width','600px').
 css('height','50px');</script>
{{for post in posts:}}
<div style="background: #f0f0f0; margin-bottom: 5px; padding:
 8px;">
 <h3>{{=name_of(post.posted_by)}} on {{=post.posted_on}}:</h3>
 {{=MARKMIN(post.body)}}
</div>
{{pass}}

Notice the jQuery script that resizes the input message box, and the use of MARKMIN
for rendering message markup.

 � Here is views/default/wall.html, which is very similar to the previous
view (the difference is that there is no form, and the posts are relative to a
single user, specified by request.args(0)):

{{extend 'layout.html'}}
<h2>Profile</h2>
{{=crud.read(db.auth_user, user)}}
<h2>Messages</h2>
{{for post in posts:}}
<div style="background: #f0f0f0; margin-bottom: 5px; padding:
 8px;">
 <h3>{{=name_of(post.posted_by)}} on {{=post.posted_on}}:</h3>
 {{=MARKMIN(post.body)}}
</div>
{{pass}}

Chapter 2

73

Here is what this page looks like:

 � Here is views/default/search.html:
{{extend 'layout.html'}}
<h2>Search for friends</h2>
{{=form}}
{{if people:}}
<h3>Results</h3>
<table>
 {{for user in people:}}
 <td>
 {{=A(name_of(user), _href=URL('wall', args=user.id))}}
 </td>
 <td>
 <button onclick="ajax(
 '{{=URL('friendship', args=('request', user.id))}}',
 [], null);
 jQuery(this).parent().html('pending')">
 request friendship
 </button>
 </td>
 {{pass}}
</table>
{{pass}}

Building Your First Application

74

Here is what this page looks like:

Notice how the buttons perform Ajax calls to request friendship to user.id. Upon
click, the button is replaced by a message that says pending.

 � Below is views/default/friends.html. It lists current friends and
pending friendship requests:

{{extend 'layout.html'}}
<h2>Friendship Offered</h2>
<table>
 {{for friend in friends:}}
 <tr>
 <td>
 {{=A(name_of(friend.auth_user), _href=URL('wall',
 args=friend.auth_user.id))}}
 </td>
 <td>
 {{if friend.link.accepted:}}accepted{{else:}}
 <button onclick="ajax(
 '{{=URL('friendship', args=('accept',
 friend.auth_user.id))}}',
 [], null);
 jQuery(this).parent().html('accepted')">
 accept
 </button>
 {{pass}}
 </td>
 <td>
 <button onclick="ajax(
 '{{=URL('friendship', args=('deny',

Chapter 2

75

 friend.auth_user.id))}}',
 [], null);
 jQuery(this).parent().html('denied')">
 deny
 </button>
 </td>
 </tr>
 {{pass}}
</table>
<h2>Friendship Requested</h2>
<table>
 {{for friend in requests:}}
 <tr>
 <td>
 {{=A(name_of(friend.auth_user), _href=URL('wall',
 args=friend.auth_user.id))}}
 </td>
 <td>
 {{if friend.link.accepted:}}accepted{{else:}}
pending{{pass}}
 </td>
 <td>
 <button onclick="ajax(
 '{{=URL('friendship', args=('deny',
 friend.auth_user.id))}}',
 [], null);
 jQuery(this).parent().html('removed')">
 remove
 </button>
 </td>
 </tr>
 {{pass}}
</table>

Here is what this page looks like:

Building Your First Application

76

This view displays two tables: a list of friendships offered to us (by accepting, we give
them the permission to see our profile and posts), and friendship requests that we sent
(people we want to see profile and posts of). For each user in the first table, there are
two buttons. A button that performs an Ajax call to accept a pending friendship request,
and a button to deny friendship. For each user in the second table, there is a column
that informs us of whether our request was accepted, and a column with a button to
cancel the friendship relation (whether pending or established).

Notice how {{=name_of(user)}} and {{=name_of(message.posted_by)}}
require a database lookup. Our application can be sped up by caching the output of
this function.

Using crud.archive
In this recipe, we discuss how to create full versioning for records in any application.

How to do it...
If you have any table, for example, db.mytable, that needs versioning, and you use crud.
update, you can store a full revision history for your records, by passing onaccept=crud.
archive to crud.update. Here is an example:

form = crud.update(db.mytable, myrecord,
 onaccept=crud.archive,
 deletable=False)

crud.archive will create a hidden table db.mytable_archive, and store the old record,
before update, in the newly created table, including a reference to the current record.

Normally, this new table is hidden and only visible to web2py internals, but you can have
access to it by defining it explicitly in the model. If the original table was called db.mytable,
the archive table must be called db.mytable_archive (postfix the original one with
archive), and it must extend the original table with a reference field called current
record. Here is a concrete example:

db.define_table('mytable_archive',
 Field('current_record', db.mytable),
 db.mytable)

For a different table, just replace mytable with the actual table name. Everything else stays
the same.

Notice such table includes all fields of db.mytable plus one current_record.

Chapter 2

77

There's more...
Let's take a look at other features of crud.archive.

Timestamping the stored record
crud.archive does not timestamp the stored record, unless your original table has a
timestamp and signature. For example:

db.define_table('mytable',
 ...
 auth.signature)

By adding auth.signature to the table, we are adding the following fields:

Field('is_active', 'boolean', default=True),
Field('created_on', 'datetime', default=request.now,
 writable=False, readable=False),
Field('created_by', db.auth_user, default=auth.user_id,
 writable=False, readable=False),
Field('modified_on', 'datetime',
 update=default.now, default=request.now,
 writable=False, readable=False),
Field('modified_by', db.table_user,
 default=auth.user_id, update=auth.user_id,
 writable=False, readable=False)

You can also do this manually (without auth.signature), and give any name to the
signature and timestamp fields. crud.archive handles them transparently. They are filled
by the SQLFORM.accepts function.

Storing the history of each record
The main idea behind crud.archive is that of storing the history of each record that is
edited, and storing previous revisions in a separate table. This allows you to edit the record
without breaking references to it. Moreover, if you alter (migrate) the original table, the archive
table will migrate as well. The only catch is that deleting a record in the original table will
cause a cascade delete in the archive table, and the entire previous history for the record
is deleted. Hence, probably, you do not want to ever delete records, but just make them
disabled, by unchecking the is_active field.

You will also have to change the query in some select statements to hide records that are
disabled, by filtering records with the following:

db.mytable.is_active==True

Building Your First Application

78

Converting an existing static site into a
web2py application

We will assume that you have a collection of static HTML files, CSS files, JavaScript files, and
images in one folder, and that you wish to turn them into a web2py application. There are two
ways to do it: a naive way, in which existing HTML files continue to be treated as static, and a
more complex way, in which HTML files are associated to controller actions, so that one can
add some dynamic content later on.

How to do it...
1. A naive way consists simply of creating a new web2py application (or using an existing

one), and using a static folder. For example, create a new application called app, and
copy the entire directory structure of your existing site under applications/app/
static/.

In this way, a static file, applications/app/static/example.html can be
accessed at the URL:
http://127.0.0.1:8000/app/static/example.html.

While this process does not break relative URLs (URLs that do not start with a forward
slash), such as:
click me, it may break
absolute URLs (which start with a forward slash) such as:
click me.

This is not a web2py-specific problem, but rather an indication of poor design of those
HTML files, since the absolute links break every time the folder structure is moved
into another folder.

2. The proper way to solve this problem, in case it occurs, consists of replacing all
absolute URLS with relative ones. Here is an example.

If a file, static/path1/example1.html, contains a link like
click me, and the file
example2.html, appears under static/path2/example2.html, then the link
should be replaced by
click me.

Here the ../ moves out of the static/path1 folder into the static folder, and
the rest of the path (path2/example2.html) correctly identifies the desired file.

3. A simple search for href, src, and url should allow you to locate all the URLS in the
HTML, CSS, and JavaScript files. All the URLS starting with a / need to be fixed.

4. A more sophisticated approach consists of moving all images, movies, CSS, and
JavaScript files into the static folder, and converting HTML files into views.

Chapter 2

79

We proceed in five steps:

 � We move all static files (except those ending in html) to the application
static/ folder.

 � We create a new controller (for example, one called controllers/
legacy.py), and a new views folder (for example views/legacy).

 � We move all the HTML files (for example, page.html) under the new views
folder.

 � For each view file, we create a controller action with the same name
returning dict().

 � We replace all internal links and references with URL(...).

5. Let's consider a concrete example consisting of the following files:

page.html
image.png

Here, page.html contains . We end up with the
following file structure in our web2py application folder:
controllers/legacy.py
views/legacy/page.html
static/image.png

Here, legacy.py contains
def page(): return dict()

and in page.html is replaced by

The page is now accessible at the following URL:

http://127.0.0.1:8000/app/legacy/page.html.

Creating semi-static pages (flatpages)
Any web application contains pages that are static, and whose content does not change very
often. They are called flatpages. They can be handled by embedding a CMS into the application
(for example plugin_wiki) or using the explicit mechanism described in this recipe.

Examples of flatpages are:

 f Basic home and indexes

 f About us

 f License and disclaimer

Building Your First Application

80

With web2py, for these pages, we could set up simple controllers such as:

def about(): return dict()

And you can then code the page in the view directly, or store the page content in the
database. This second approach is better, because it would allow easy in-place user editing,
multiple-language internationalization support, log change history for audits, and much more.

The idea of this recipe is to store the flatpages in the database, and display them according
the user request (controller, function, args, preferred language, and so on.)

How to do it...
1. First, define a flatpage table to store the page contents, create a file in models called

flatpages.py, and add the following definition:
LANGUAGES = ('en', 'es', 'pt', 'fr', 'hi', 'hu', 'it', 'pl', 'ru')
FLATPAGES_ADMIN = 'you@example.com'
DEFAULT_FLATPAGE_VIEW = "flatpage.html"
db.define_table('flatpage',
 Field('title', notnull=True),
 Field('subtitle', notnull=True),
 Field('c', label='controller'),
 Field('f', label='function'),
 Field('args', label='arguments'),
 Field('view', default=DEFAULT_FLATPAGE_VIEW),
 Field('lang', requires=IS_IN_SET(LANGUAGES), default='en'),
 Field('body', 'text', default=''),
 auth.signature,
)

The fields are:

 � title: This is the main title

 � subtitle: This is the optional subtitle

 � c: This is the controller for who this page belongs to (see URL helper)

 � f: This is the function for who this page belongs to (see URL helper)

 � args: This is the string argument to add several pages to a function
(see URL helper)

 � lang: This is the language to match user preferences

 � body: This is the the page HTML body

Notice that the FLATPAGES_ADMIN will be used to limit the edit access to the
flatpages. This variable contains the e-mail of the user that will be allowed to edit.

Chapter 2

81

2. At this point, you should be able to populate this table using the appadmin
administrative interface, or you can do it programmatically, that is, creating
a setup_flatpage function in a controller, such as the following:
if not db(db.flatpage).count():
 db.flatpage.insert(title="Home", subtitle="Main Index",
 c="default", f='index', body="<h3>Hello world!</h3>")
 db.flatpage.insert(title="About us", subtitle="The company",
 c="company", f='about_us', body="<h3>My company!</h3>")
 db.flatpage.insert(title="Mision & Vision", subtitle="The
 company", c="company", f='mision_vision', body="<h3>
 Our vision is...</h3>")
 db.flatpage.insert(title="Our Team", subtitle="Who we are",
 c="company", f='our_team', body="<h1>We are...</h3>")
 db.flatpage.insert(title="Contact Us", subtitle="Where we are",
 c="company", f='contact_us', body="<h3>Contact form:...</h3>")

This example page will look as follows:
Home: Hello world
About Us
 The Company : My company!
Mission & Vision: Our vision is...
Our Team: We are...
Contact Us: Contact Form:...

3. To be able to render a page, add to the previously created file models/flatpage.py
the following function flatpage:
def flatpage():
 # define languages that don't need translation:
 T.current_languages = ['en', 'en-en']

 # select user specified language (via session or browser config)
 if session.lang:
 lang = session.lang
 elif T.accepted_language is not None:
 lang = T.accepted_language[:2]
 else:
 lang = "en"
 T.force(lang)

 title = subtitle = body = ""
 flatpage_id = None
 form = ''
 view = DEFAULT_FLATPAGE_VIEW

 if request.vars and auth.user and
 auth.user.email==FLATPAGES_ADMIN:

Building Your First Application

82

 # create a form to edit the page:
 record = db.flatpage(request.get_vars.id)
 form = SQLFORM(db.flatpage, record)
 if form.accepts(request, session):
 response.flash = T("Page saved")
 elif form.errors:
 response.flash = T("Errors!")
 else:
 response.flash = T("Edit Page")

 if not form:
 # search flatpage according to the current request
 query = db.flatpage.c==request.controller
 query &= db.flatpage.f==request.function
 if request.args:
 query &= db.flatpage.args==request.args(0)
 else:
 query &= (db.flatpage.args==None)|(db.flatpage.args=='')
 query &= db.flatpage.lang==lang
 # execute the query, fetch one record (if any)
 flatpage =
 db(query).select(orderby=~db.flatpage.created_on,
 limitby=(0, 1), cache=(cache.ram, 60)).first()
 if flatpage:
 flatpage_id = flatpage.id
 title = flatpage.title
 subtitle = flatpage.subtitle
 body = flatpage.body
 view = flatpage.view
 else:
 response.flash = T("Page Not Found!")
 if auth.user and auth.user.email==FLATPAGES_ADMIN:
 # if user is authenticated, show edit button:
 form = A(T('edit'),
 _href=URL(vars=dict(id=flatpage_id)))

 # render the page:
 response.title = title
 response.subtitle = subtitle
 response.view = view
 body = XML(body)
 return dict(body=body, form=form)

Chapter 2

83

This function:

 � Checks user language preferences (or session setting)

 � Checks action URL (according to request controller, function, and args)

 � Fetches stored flatpage

 � Renders the page HTML

If the user FLATPAGES_ADMIN is logged in, the function flatpage:

 � Prepares/processes an SQLFORM if editing the page

 � Or shows an EDIT button to edit the page

4. Finally, you should create a flatpage.html view, so that web2py can render the
page, for example:
{{extend 'layout.html'}}
<h1>{{=response.title}}</h1>
<h2>{{=response.subtitle}}</h2>
{{=form}}
{{=body}}

The placeholders are:

 � form: This is the edit FORM (or the link to edit)

 � body: These are the actual page contents (stored in the database as HTML)

5. To tell web2py to show a flatpage in the desired controller (that is, index in
default.py), write the following:

def index(): return flatpage()

This will render the flatpage for the home page.

company.py sample controller will look as follows:
def about_us(): return flatpage()
def mision_vision(): return flatpage()
def our_team(): return flatpage()

When you go to default/index.php or company/about_us, you should get a
flatpage with an EDIT button, if you are logged in.

Remember that, for performance reasons, flatpages are cached. So, changes may not be seen
immediately (you can change this by clearing the cache or removing the cache parameter at
the database query).

Building Your First Application

84

How it works...
With web2py, you can completely choose what content will be displayed, what view will be
used, and so on.

In this case, when web2py executes your controller, the function flatpage() will try to
fetch the stored page in the database according the request variables.

An SQLFORM will be rendered if the Edit button is pressed, to allow page editing by normal
authenticated users. Page updates are inserted, so you'll get a history of page changes. It
shows the latest record of the page, trying to match the preferred language (for example,
use session.lang = 'es' to change the language).

You can add a view field to flatpage table, so you could have multiple views to show this
kind of content. You can even add a format field, so that you can render the page body
in other markup languages other than HTML (wiki, ReST, and so on).

Adding your custom logo
We are going to change the default logo that came with web2py, and add our logo instead.
We need an image editor; use your preferred one, or use the ones that come with the
operating system. Paint, GIMP, or Photoshop are appropriate.

Chapter 2

85

This is the look of the default application:

This is the result of customizing the logo.

How to do it...
1. First, we need to create a new application. You can do that through the admin

application. Choose Create a new application, and name it. The name of my
application is changelogo. By default, the new application is a copy of the welcome
scaffolding application. Now, if you run your application, you will see at the top of
the application the title of your application followed by the word App, in my case
changelogoApp.

2. Fire up your image editor, and make your logo, if you are going to start a new one.
Choose a pixel dimension, according to the layout you are using. I chose a dimension
of 300x90 pixels for my new logo. When you finish editing it, save it in PNG or JPEG
format. Name it (for example, mylogoapp.png), and copy to the static/images
directory inside your application.

Building Your First Application

86

3. The next step is to edit views/layout.html of your application. You can use the
admin or your own editor. Scroll down to the header section looking for the following:
<div id="header"> <!-- header and login nav -->
 {{block header}} <!-- this is default header -->
 {{try:}}{{=auth.navbar(action=URL('default',
 'user'))}}{{except:pass}}
 <h1>

 {{=request.application.capitalize()}}

 App
 </h1>
 <div style="clear: both;"></div><!-- Clear the divs -->
 {{end}}
</div><!-- header -->

4. Let me explain the code a bit.

The following code prints the user actions, such as login, register, and lost-password:
{{try:}}{{=auth.navbar(action=URL('default',
 'user'))}}{{except:pass}}

The following code prints the application name followed by App:
<h1>

 {{=request.application.capitalize()}}

 App
</h1>

We need to change this to show the new logo. We will replace the <h1>... </h1>
with the following:
{{=IMG(_src=URL('static', 'images/mylogoapp.png'), _style="width:
 100%;")}}

This will print the logo image instead of the title.

The header section now looks as follows:
<div id="header"> <!-- header and login nav -->
 {{block header}} <!-- this is default header -->
 {{try:}}{{=auth.navbar(action=URL('default',
 'user'))}}{{except:pass}}
 {{=IMG(_src=URL('static', 'images/mylogoapp.png'))}}
 <div style="clear: both;"></div><!-- Clear the divs -->
 {{end}}
</div><!-- header -->

Chapter 2

87

5. Finally, it's a good practice that the logo links to the main page, so we will make a
link to default/index:

{{=A(IMG(_src=URL('static', 'images/mylogoapp.png')),
 _href=URL('default', 'index'))}}

Creating menus and submenus
web2py handles menus in a transparent way, as follows:

 f A list of menu items is stored, by convention, in response.menu
 f The menu is embedded in a view with {{=MENU(response.menu)}}

You can have more than one menu in different places of the same view, or in different views.
The value of response.menu is a list of menu items. Normally, each menu item is a list of
tuple containing the following elements: title, status, link, and submenu.

Where title is the title of the menu, status is a Boolean that can be used to determine whether
the menu link is the current page, link is the link to be redirected to when selecting the menu
item, and submenu is a list of menu items.

Here is an example of code that one would normally put in the file models/menu.py:

response.menu = [
 ('Home', URL()==URL('default', 'home'), URL('default', 'home'),
 []),
 ('Search', URL()==URL('default', 'search'), URL('default',
 'search'), []),
]

The condition we used as the second argument checks whether the current page URL()
is the page linked.

How to do it...
1. Submenus can easily be built explicitly, as follows:

response.menu = [
 ('Home', URL()==URL('default', 'home'), URL('default', 'home'),
 []),
 ('Search', False, None,
 [
 ('Local', URL()==URL('default', 'search'), URL('default',
 'search')),
 ('Google', False, 'http://google.com'),
 ('Bing', False, 'http://bing.com'),
]
),
]

Building Your First Application

88

2. The parent of a submenu may or may not have a link. In this example, we moved the
link from Search to its Local submenu item. It is good practice to internationalize
the menu titles.
response.menu = [
 (T('Home'), URL()==URL('default', 'home'), URL('default',
 'home'), []),
]

3. It is also important to specify the controller name (default in the example) for each
link; otherwise, menus break when there are multiple controllers (and that is almost
always the case; think of appadmin).

Customizing menus with icons
Sometimes, you want to customize a menu item more than the usual syntax seems to allow,
for example, by adding icons to your menu items. This recipe shows you how.

How to do it...
1. The first thing to realize is that the following:

response.menu = [
 ('Home', False, URL('default', 'home'), []),
 ...]

Is equivalent to the following:
response.menu = [
 (A('Home', _href=URL('default', 'home')), False, None, []),
 ...]

Here, A is the anchor (link) helper. You can use the latter syntax, and you can replace
the A helper with any other combination of helpers. For example:
response.menu = [
 (A(IMG(_src=URL('static', 'home.png'), _href=URL('default',
 'home'))), False, None, []),
 ...
]

Or:
response.menu = [
 (SPAN(IMG(_src=URL('static', 'home.png')),
 A('home', _href=URL('default', 'home'))), False, None, []),
 ...
]

Chapter 2

89

2. You can create functions that build your menu items:

def item(name):
 return SPAN(IMG(_src=URL('static', name+'.png')), A(name,
 _href=URL('default', name)))

response.menu = [
 (item(home), False, None, []),
 ...

Creating a navigation bar
web2py includes built-in support for menus, rendering using basic Python structures. In most
cases, this is enough, but for more complex menus, it is difficult to maintain them using
Python code exclusively. This recipe shows how to make a more dynamic menu, storing the
menu entries in the database, and building the menu tree automatically.

How to do it...
1. First, let's define a navigation bar table to store the menu entries. Create a file in

models called navbar.py, and add the following definition:
db.define_table('navbar',
 Field("title", "string"),
 Field("url", "string", requires=IS_EMPTY_OR(IS_URL())),
 Field("c", label="Controller"),
 Field("f", label="Function"),
 Field("args", label="Arguments"),
 Field("sortable", "integer"),
 Field("parent_id", "reference navbar"),
 format="%(title)s",
)

The fields are:

 � title: This is the text shown to the user

 � url: This is the optional URL to link to

 � c: This is the controller to build a link (see URL helper)

 � f: This is the function to build a link (see URL helper)

 � args: This is the string argument to build a link (see URL helper)

 � sortable: This is a numeric value to sort the entries

 � parent_id: This is the reference (navbar.id) of the higher-level menu
ancestor (whose item is a submenu)

Building Your First Application

90

2. At this point, you should be able to populate this table using the appadmin
administrative interface, or you can do it programmatically by creating a
setup_navbar function in a controller, such as the following:
if not db(db.navbar).count():
 # create default index entry:
 home_id = db.navbar.insert(title="Home", c="default")

 # create a "Company" leaf with typical options:
 company_id = db.navbar.insert(title="Company", c="company")
 db.navbar.insert(title="About Us", f='about_us',
 parent_id=company_id)
 db.navbar.insert(title="Mision & Vision", f='mision_vision',
 parent_id=company_id)
 db.navbar.insert(title="Our Team", f='our_team',
 parent_id=company_id)

 products_id = db.navbar.insert(title="Products", c="products")
 # Add some "Computers models" to products entry:
 computers_id = db.navbar.insert(title="Computers",
 f='computers', parent_id=products_id)
 for model in 'basic', 'pro', 'gamer':
 db.navbar.insert(title="Model %s" % model, args=model,
 parent_id=computers_id)

This example menu looks like the following:
Home
Company
 About Us
 Mission & Vision
 Our Team
Products
 Computers
 Model basic
 Model pro
 Model gamer

Each top-level menu links to a specific controller, second-level submenus link to
functions on that controller, and third-level entries supply arguments to those
functions (note that you can use the same defaults for URL parameters c and f,
which will be used hierarchically, using the inherited value).

Chapter 2

91

3. Now, to show the menu, add to the previously created file navbar.py in models the
following functions of get_sub_menus:
def get_sub_menus(parent_id, default_c=None, default_f=None):
 children = db(db.navbar.parent_id==parent_id)
 for menu_entry in children.select(orderby=db.navbar.sortable):
 # get action or use defaults:
 c = menu_entry.c or default_c
 f = menu_entry.f or default_f
 # is this entry selected? (current page)
 sel = (request.controller==c and request.function==f and
 (request.args and request.args==menu_entry.args or True))
 # return each menu item
 yield (T(menu_entry.title),
 sel, menu_entry.url or URL(c, f, args=menu_entry.args),
 get_sub_menus(menu_entry.id, c, f)
)

This function recursively builds the Python structure needed to render the menu in
the HTML page, and does the following:

 � Fetches the navbar menu entries for the solicited level

 � Checks action destination or uses defaults (for URL helper)

 � Calculates if this entry is the current selected one

 � Makes and gives back the item to be used with the MENU helper

4. To tell web2py to build the menu, use the following in the same navbar model:
response.menu = get_sub_menus(parent_id=None)

This will build the menu each time a page is viewed.

5. If you have a complex menu that doesn't change often, you can reuse it several times,
using a cache to keep it in memory:

response.menu = cache.ram('navbar_menu', lambda:
 get_sub_menus(parent_id=None), time_expire=60)

The menu is usually rendered in a page with the MENU helper that interprets this structure
(see views, layout.html):

{{=MENU(response.menu, _class='sf-menu')}}

Building Your First Application

92

Using cookies to set the language
By default, web2py determines the preferred user language from the HTTP Accept-
Language header.

Here is an example of the normal workflow:

 f A user sets the browser preferences to en (English), en-us (English spoken in US),
and fr-fr (French spoken in France)

 f When visiting our website, the browser sends the list of accepted languages in the
HTTP header Accept-Language

 f web2py parses the HTTP headers, validates the Accept-Language list, and loops
over its languages

 f web2py stops looping when a language appears in T.current_languages, or
when a corresponding language file (for example fr-fr.py) is found in the language
subfolder of the request application (applications/app/languages)

If web2py stops looping because a language, for example en-en, appears in T.current_
languages, it means that the language does not need translation. If, instead, web2py stops
looping because a language file if found, that language file will be used for translation. If
neither of the two conditions are met for all of the languages in Accept-Language, there is
no translation.

Normally, this selection is performed by web2py before calling the application code.

Within the application code (for example, in a model), you can override default settings. You
can change the list of current languages:

T.set_current_languages('en', 'en-en')

You can also force web2py to pick a language from a different list than the one provided in
the HTTP header:

T.force('it-it')

Often, you do not want the web application to rely on the browser to determine the language
preference, but you want to ask the visitor explicitly through buttons, links, or a drop-down box.
When this happens, the application needs to remember the selection as the user browses
through the application pages.

If the application requires a login, this preference can be stored in the user profile, for
example, in a custom field of the auth_user table.

Chapter 2

93

But not all applications require a login, and often, the language preference is expressed
before registration. A convenient and transparent way to set and remember the language that
does not require a database, is to store the preference in a cookie. This can be achieved in
the following way.

How to do it...
1. Create a model file, for example 0_select_language.py, that contains the

following code:
if 'all_lang' in request.cookies and not
 (request.cookies['all_lang'] is None):
 T.force(request.cookies['all_lang'].value)

2. Insert the following somewhere in views/layout.html:

 <script>
 function set_lang(lang) {
 var date = new Date();
 cookieDate=date.setTime(date.getTime()+(100*24*60*60*1000));
 document.cookie='all_lang='+lang+';expires='+cookieDate+';
 path=/{{=request.application}}';
 window.location.reload();
 };
 </script>
 <select name="adminlanguage"
 onchange="set_lang(jQuery(this).val())">
 {{for language in T.get_possible_languages():}}
 <option {{=T.accepted_language==language and 'selected' or
 ''}}>
 {{=T(language)}}
 </option>
 {{pass}}
 </select>

The previous code produces a select-language drop-down box, listing all languages
for which web2py can find a translation file. When the value of the drop-down box
changes, it forces a reload of the page. Upon reload, the code sets a cookie called
all_lang that contains the selected language. When another page is loaded, if the
code above finds the cookie, it uses the information in the cookie to choose and force
the language selection.

Building Your First Application

94

3. The same can be achieved more explicitly using links instead of a drop-down box:

 <script>
 function set_lang(lang) {
 var date = new Date();
 cookieDate=date.setTime(date.getTime()+(100*24*60*60*1000));
 document.cookie='all_lang='+lang+';expires='+cookieDate+';
 path=/{{=request.application}}';
 window.location.reload();
 return false;
 };
 </script>
 {{for language in T.get_possible_languages():}}
 {{if not T.accepted_language==language:}}

 {{=T(language)}}

 {{else:}}{{=T(language)}}{{pass}}{{pass}}
 </select>

This solution works even if the application does not use sessions.

Notice that the name of the language is itself translated, that is {{=T(language)}},
because it should be listed in the current selected language.

Also notice the following string is inside the cookie, which makes sure the preference applies
only to the current application. This line is interpreted by the client-side, and may need to be
changed, if custom URLs are enabled through routes:

path=/{{=request.application}}

In this case, a simple solution is to replace it with the following, and the preference will apply
to all the applications under the same web2py installation, regardless of the URL:

path=/

Designing modular applications
In this recipe, we will show you how to create a modular application using web2py components.

In particular, we will consider, as an example, an application that will allow you to create
items, list items, and have the list updated dynamically when new items are created/updated.

Chapter 2

95

Getting ready
We will consider the scaffolding application with the following additional model models/
db_items.py:

db.define_table('mytable',
 Field('name'),
 Field('quantity','integer'))

Notice that there is nothing specific about this table or its field structure, but we will use the
db.mytable in the following example.

How to do it...
1. In controllers/default.py, create a base action to load the components in the

view and the controllers, to actually list and edit items:
def index():
 "index will load the list and the create/edit forms as
 components"
 return dict()

def list_items():
 """ shows a list of items that were created
 each items is clickable and can be edited """
 rows = db(db.mytable.id>0).select()
 return dict(rows=rows)

def edit_item():
 """ return a creation form if no item is specified,
 return an edit form if the item is known """
 def display_changed(data):
 response.ajax = \
 'web2py_component("%s","show_itemlist")' % URL('showitems')
 form = crud.update(db.mytable,
 request.args(0),onaccept=display_changed)
 return form

2. In the view views/default/index.html, just load the component to list the items
and link the edit function (using a placeholder that will be used to insert the form to
create or edit items):
{{=LOAD('default', 'list_items', ajax = True, target =
'showitems')}}
{{=A('create',component=URL('edit_item'),target='placeholder')}}
<div id="placeholder"></div>

Building Your First Application

96

3. In the view views/default/list_items.html, each item on the item list will
load the specified URL into the div with the ID placeholder.

 {{for item in rows:}}
 {{=LI(A('edit %s' % item.name,
 component=URL('edit_item',args=item.id),
 target='placeholder'))}}
 {{pass}}

A view for the action edit_item is not necessary, since it returns a helper, not a dict.

How it works...
The view index loads a list of items through Ajax into div#showitems. It also displays a
link and a div#placeholder. Clicking on the link causes an Ajax request to edit_item,
without args to return a create form that is rendered inside div#placeholder. The
list also contains a link to edit_item, which also displays an update form into the
div#placeholder. The form is not just displayed tharough Ajax. The component is always
loaded by clicking an A(...,component=URL(...),target="placeholder").

This ensures that the component is loaded through Ajax, and the forms in the component
will be submitted through Ajax, thus refreshing the component only. Any form submission will
return a response.ajax, which refreshes the other component div@list_items.

Notice that all the logic is generated at the server-side, translated under the hood in the JS
code that is embedded in the page, and executed at the client-side. Clicking on a link causes
a form to be displayed. Submitting a form causes a form to be processed, and, if accepted,
the list of items is refreshed.

Speeding up downloads
By default, the download function in the scaffolding controller sets the following HTTP
response headers, preventing client-side caching:

Expires: Thu, 27 May 2010 05:06:44 GMT
Pragma: no-cache
Cache-Control: no-store, no-cache, must-revalidate, post-check=0,
pre-check=0

This may be good for some dynamic content, but, for example, a client browsing a site with
several non static images, will see how each image loads every time the page is shown,
slowing down navigation.

Chapter 2

97

Caching download with the @cache decorator does not help, because caching would be done
at server-side, while we want client-side caching.

Moreover, the download function also performs some authorization checks, which, in some
cases, are not necessary, and therefore cause an unwanted slow-down.

A better approach consists of using a custom download function, which allows client-side
caching, and skips authorization.

How to do it...
We need to write a custom download function. We could edit the scaffolding one, but it's
preferable to simply add another one that is call fast_download, so we will have the choice
to use one or the other in different parts of our application.

1. First of all, we want our application to return the following HTTP header:
Last-Modified: Tue, 04 May 2010 19:41:16 GMT

2. But omit these ones:
Expires removed
Pragma removed
Cache-control removed

This can be done by explicitly removing the unwanted headers before streaming
back the file:
def fast_download():
 filename = request.args(0)
 if not qualify_for_fast_download(filename)
 return download()
 else:
 del response.headers['Cache-Control']
 del response.headers['Pragma']
 del response.headers['Expires']
 filepath = os.path.join(request.folder, 'uploads', filename)
 response.headers['Last-Modified'] = \
 time.strftime("%a, %d %b %Y %H:%M:%S +0000",
 time.localtime(os.path.getmtime(filename)))
 return response.stream(open(filepath, 'rb'))

3. Notice that response.stream will handle Range requests and If-Modified-
Since for you. Also notice that such an action could be used to download more files
than it is intended to, so we insert a check, as follows:
qualify_for_fast_download(filename)

We leave this for you to implement.

Building Your First Application

98

It will check if this function can be used, or the normal download function should
be used.

4. In your view, remember to make URLs using fast_download instead of download:

URL('fast_download', args='filename')

There's more...
If the filename you want to make sure fast-download is stored in an upload type field,
for example, mytable.myfield, then you can configure your web server to serve it directly,
and by-pass web2py completely. For example, if you are using Apache:

AliasMatch ^/([^/]+)/static/(mytable\.myfield.*) \
 /home/www-data/web2py/applications/$1/static/$2
<Directory /home/www-data/web2py/applications/*/static/>
 Options -Indexes
 Order Allow,Deny
 Allow from all
</Directory>

This works, because all filenames stored in mytable.myfield are renamed by web2py
upon upload, and their names start with mytable.myfield.

3
Database Abstraction

Layer

In this chapter, we will cover the following recipes:

 f Creating a new model

 f Creating a model from a csv file

 f Batch upload of your data

 f Moving your data from one database to another

 f Creating a model from existing MySQL and PostgreSQL databases

 f Efficiently searching by tag

 f Accessing your database from multiple applications

 f Hierarchical category tree

 f Creating records on demand

 f OR, LIKE, BELONGS, and more on Google App Engine

 f Replacing slow virtual fields with DB views

Introduction
The Database Abstraction Layer (DAL) is probably the major strength of web2py. The DAL
exposes a simple Applications Programming Interface (API) to the underlying SQL syntax,
and this may hide its true power. In the recipes of this chapter, we provide examples of
non-trivial applications of the DAL, such as building queries to search by tags efficiently
and building a hierarchical category tree.

Database Abstraction Layer

100

Creating a new model
As shown in the recipes in the previous chapter, most applications require a database, and
building the database model is the first step in the design of the application.

Getting ready
Here we assume that you have a newly created application, and you will be putting the models
in a file called models/db_custom.py.

How to do it...
1. First of all, you need a database connection. This is created by the DAL object.

For example:
db = DAL('sqlite://storage.sqlite')

Notice that this line is already in the file models/db.py, and therefore you may not
need it, unless you deleted it or need to connect to a different database. By default,
web2py connects to an sqlite database stored in file storage.sqlite. This file is
located in the application's databases folder. If the file is not there, it is created by
web2py when the application is first executed.

SQLite is fast, and stores all data in one single file. This means that your data can be
easily transferred from one application to another. In fact, the sqlite database(s)
are packaged by web2py together with the applications. It provides full SQL support,
including translations, joins, and aggregates. Moreover SQLite comes standard with
Python 2.5 and later, and therefore, it is already available to your web2py installation.

There are two disadvantages of SQLite. One is that it does not enforce column types,
and there is no ALTER TABLE except for adding and dropping columns. The other
disadvantage is that the entire database is locked by any transaction that requires
write access. Therefore, the database cannot be accessed concurrently except
for reading.

These features make it a good option for development purposes and low-traffic
websites, but not a viable solution for high-traffic sites.

In the following recipe, we will show you how to connect to a different type of
database.

2. Once we have a db object, we can use the define_table method to define new
tables. For example:
db.define_table('invoice',Field('name'))

Chapter 3

101

The syntax is always the same. The first argument is the table name, and it is
followed by a list of Field(s). The field constructor takes the following arguments:

 � The field name
 � The field type: This can take values having any of the following datatypes

- string (default), text, boolean, integer, double, password,
date, time, datetime, upload, blob, reference other_table,
list:string, list:integer, and list:reference other_table.
Internally, upload, password, and list types are equivalent to string,
but at the web2py level, they are handled differently.

 � length=512: This is the maximum length for string-based fields. It is
ignored for non-text based fields.

 � default=None: This is the default value when a new record is inserted.
The value of this attribute can be a function that is called when a value
is needed (for example, on record insert, if no value is specified).

 � update=None: This works the same as default, but the value is used
only on update, not on insert.

 � ondelete='CASCADE': This maps onto the corresponding SQL
ON DELETE attribute.

 � notnull=False: This specifies whether the field value can be NULL
or not (enforced at database level).

 � unique=False: This specifies whether the field value must be unique
or not (enforced at database level).

 � requires=[]: This is a list of web2py validators (enforced at the level
of web2py forms). Most field types have default validators.

 � required=False: This is not to be confused with requires, and it tells
web2py that a value for this field must be specified during insert and
update. For a required field, default and update values are ignored.
Unless used together with notnull=True, the None value is an
acceptable value, even if the field is required.

 � readable=True: This specifies whether the field is readable in forms or not.
 � writable=True: This specifies whether the field is writable in forms or not.
 � represent=(lambda value: value): This is a function that is used to

display the value of the field in forms and tables.
 � widget=SQLHTML.widgets.string.widget: This is a function that will

build the input widget in forms.
 � label="Field Name": This is the label to be used for this field in forms.
 � comment="...": This is a comment to be added to this field in forms.

The Field constructor has other attributes that are specific to upload type fields.
See the web2py book for further information.

Database Abstraction Layer

102

3. The define_table method also takes three named arguments:
db.define_table('....',
 migrate=True,
 fake_migrate=False,
 format='%(id)s')

 � migrate=True: This instructs web2py to create the table if it does not
exist, or alter it if it does not match the model definition. This process is
accompanied by the creation of metadata files. The metadata files have
the form databases/<hash>_<name>.table, and will be used to keep
track of changes in the model, and perform automatic migrations. Set
migrate=False to disable automatic migrations.

 � fake_migrate=False: Sometimes the above metadata gets corrupt (or
accidentally deleted), and needs to be re-created. If the model matches the
database table content, then set fake_migrate=True, and web2py will
rebuild the metadata.

 � format='%(id)s': This is a format string that determines how records of
this table should be represented when referenced by another table in forms
(for example in select dropboxes). The format can be a function that takes a
row object that returns a string.

There's more...
In all databases, but SQLite and Google App Engine datastore, if you change a table definition,
an ALTER TABLE is issued to make sure the database matches the model. In SQLite, the
ALTER TABLE is only performed when a column is added or deleted, not when a field type
changes (because SQLite does not enforce it). In Google App Engine datastore, there is no
concept of ALTER TABLE, and columns can be added but not deleted; web2py will ignore
columns not listed in the model.

Completely removing a define_table from the model does not result in a DROP TABLE.
The table simply becomes inaccessible to web2py until the corresponding define_table is
put back. This prevents accidental deletion of data. You can drop tables in web2py using the
command db.<name>.drop().

Creating a model from a CSV file
Consider the scenario in which you have a CSV file and you do not know much about it. Yet you
want to create a web application to access the data in the CSV file.

Chapter 3

103

Getting ready
I will assume you have the csv file in a folder

/tmp/mydata.csv

You will also need a program called csvstudio, which you can download from
http://csvstudio.googlecode.com/hg/csvstudio.py.

How to do it...
1. This first step consists of looking at the csv file:

python csvstudio.py -a < /tmp/mydata.csv

If the file is not corrupt, and it is in a standard csv format, then csvstudio will
generate a report listing the CSV columns, data types, and data ranges.

If the file is in a non-standard CSV format, or is, for example, in XLS, try importing
it in Excel, and save it again in CSV.

You may also want to try using Google Refine to clean up the CSV file.

2. Once you know that csvstudio can correctly read the file, run the following command:
python csvstudio.py -w mytable -i /tmp/mydata.csv > db1.py

csvstudio creates a file called db1.py that contains a web2py model that is
compatible with the data. mytable, here, is the name you choose to give to
the table.

3. Move this file into your application's models folder.

4. Now you need to clean up the data, so that you can import it in web2py.
python csvstudio.py -f csv -i /tmp/mydata.csv -o /tmp/mydata2.csv

The file, mydata2.csv, now contains the same data as the original file, but the
column names have been cleaned up to be compatible with the generated model.
The field values have been stripped of any leading and trailing spaces.

5. At this point, all you have to do is run your application and call appadmin.
http://.../app/appadmin

6. You should see the model you generated. Click on the model name, and you will see
an upload link at the bottom. Upload the mydata2.csv file to populate your table.

Database Abstraction Layer

104

There's more...
If you prefer to upload the csv file from a shell instead of using the appadmin interface, you
can do so.

From insider the main web2py folder, run the following command:

python web2py.py -S app -M -N

You will get a web2py shell (-S app opens the shell in the application context, -M loads the
models, and -N prevents cron jobs from running).

From inside the shell do the following:

>>> f = open('/tmp/mydata2.csv','rb')

>>> db.mytable.import_from_csv_file(f)

>>> db.commit()

Et voila, the data is in the database. When you use the shell do not forget to db.commit().

If for any reason this does not work (perhaps because the CSV file is non-standard, and there
is no way to normalize it), try following our next recipe.

Batch upload of your data
Here, we will assume you have data in a flat file of known structure. You want to create a
database model and import the data in the database.

Getting ready
For same of the argument, we will assume the file is in /tmp/data.txt, and has the
following structure:

Clayton Troncoso|234523
Malinda Gustavson|524334
Penelope Sharpless|151555
Serena Ruggerio|234565
Lenore Marbury|234656
Amie Orduna|256456
Margery Koeppel|643124
Loraine Merkley|234555
Avis Bosserman|234523
...
Elinor Erion|212554

Chapter 3

105

Each row is a record ending in \n. The fields are separated by —. The first column contains
<first name> <last name>. The second column contains an annual salary value.

As usual, we will assume you have a new application called app.

How to do it...
1. The first thing you do is create a model in your app called models/db1.py

containing the following data:
db.define_table('employees',
 Field('first_name'),
 Field('last_name'),
 Field('salary','double'))

2. Then, you would write a script, for example:
applications/app/private/importer.py

This script can read the data, parse it, and put it into the db, as follows:
for line in open('/tmp/data.txt','r'):
 fullname,salary = line.strip().split('|')
 first_name,last_name = fullname.split(' ')
 db.employees.insert(first_name=first_name,
 last_name=last_name,
 salary=float(salary))
db.commit()

3. Finally, from the web2py folder run the following script:

python web2py.py -S app -M -N -R applications/app/private/
importer.py

Notice that the importer is a Python script, but not a module (that is why we put it in the
private folder and not the modules folder. It is executed in our application context, as if it
were a controller. In fact, you can copy the code into a controller, and run it from a browser
as well.

There's more...
The previous script works fine if the data is clean. You may need to validate each record
before inserting it. This is again a two-step procedure. First you need to add validators to
your model, for example:

db.define_table('employees',
 Field('first_name', requires=IS_NOT_EMPTY()),
 Field('last_name', requires=SI_NOT_EMPTY()),
 Field('salary','double', requires=IS_FLOAT_IN_RANGE(0,10**7)))

Database Abstraction Layer

106

Then you need to call validators on import and check for errors:

for line in open('/tmp/data.txt','r'):
 fullname,salary = line.strip().split('|')
 first_name,last_name = fullname.split(' ')
 r = db.employee.validate_and_insert(
 first_name=first_name,
 last_name=last_name,
 salary=float(salary))
if r.errors: print line, r.errors
 db.commit()

Records that cause errors will not be inserted, and you can deal with them manually.

Moving your data from one database to
another

So, at this point, you have built your application, and you have data in your SQLite database.
But let's say you need to move to a production MySQL or PostgreSQL environment.

Getting ready
Here we assume you have an application called app, data in the sqlite://storage.
sqlite database, and you want to move your data to a different database:

mysql://username:password@hostname:port/dbname

How to do it...
1. Edit your model db.py, and replace the following:

db=DAL('sqlite://storage.sqlite')

With the following:
production=False
URI = 'mysql://username:password@hostname:port/dbname'
if production:
 db=DAL(URI, pool_size=20)
else:
 db=DAL('sqlite://storage.sqlite')

Chapter 3

107

2. Create a file called applications/app/private/mover.py that contains the
following data:
def main():
 other_db = DAL(URI)
 print 'creating tables...'
 for table in db:
 other_db.define_table(table._tablename,*[field for field in
 table])
 print 'exporting data...'
 db.export_to_csv_file(open('tmp.sql','wb'))
 print 'importing data...'
 other_db.import_from_csv_file(open('tmp.sql','rb'))
 other_db.commit()
 print 'done!'

if __name__() == "__main__":
 main()

3. Run this file with the following command (run it only once or you end up with
duplicate records):
python web2py.py -S app -M -N -R applications/app/private/mover.py

4. Change the model db.py, and change the following:

production=False

To the following:
production=True

There's more...
Actually, web2py comes with the following script:

script/cpdb.py

This script performs tasks and variations using command-line options. Read the file for
more information.

Creating a model from existing MySQL and
PostgreSQL databases

It is often necessary to access an existing database from a web2py application. This is
possible under some conditions.

Database Abstraction Layer

108

Getting ready
In order to connect to an existing database, it must be one that's supported. At the time of
writing, this includes MySQL, PostgreSQL, MSSQL, DB2, Oracle, Informix, FireBase, and
Sybase. You must know the database type (for example mysql or postgres), the database
name (for example, mydb), and the hostname and port where the database server is running
(for example 127.0.0.1:3306 for mysql or 127.0.0.1:5432 for postgres). You must
have a valid username and password to access the database. In summary, you must know
the following URI strings:

 f mysql://username:password@127.0.0.1:3306/mydb

 f postgres://username:password@127.0.0.1:5432/mydb

Assuming you can connect to this database, you will only be able to access those tables that
meet the following conditions:

 f Each table to be accessed must have a unique auto-increment integer primary key
(whether called id or not). For PostgreSQL, you can also have compound primary
keys (comprised of several fields), and not necessarily of SERIAL type (see keyed
tables on web2py book).

 f Records must be referenced by their primary key.

 f The web2py model must include a define_table statement for each table to be
accessed, listing all fields and their types.

In the following, we will also assume your system supports the mysql command to access
the database locally (to extract MySQL models), or your system has installed the psycopg2
python module (to extract PostgreSQL models, see installation recipes).

How to do it...
1. First you need to query the database and come up with a possible model compatible

with the content of the database. This can be done by running the following scripts
that comes with web2py:

 � To build web2py models from a MySQL database, use:
python scripts/extract_mysql_models.py
 username:password@databasename > db1.py

 � To build web2py models from a PostgreSQL database, use:

python scripts/extract_pgsql_models.py databasename localhost 5432
 username password > db1.py

The scripts are not perfect, but they will generate a db1.py file that describes the
database tables.

Chapter 3

109

2. Edit this model to remove tables that you do not need to access. Improve the field
types (for example, a string field may be a password), and add validators.

3. Then move this file into the models/ folder of your application.

4. Finally, edit the original db.py model, and replace the URI string with the one for
this database.

 � For MySQL, write:
db = DAL('mysql://username:password@127.0.0.1:8000/databasename',
 migrate_enabled=False, pool_size=20)

 � For PostgreSQL, write:

db = DAL(
 "postgres://username:password@localhost:5432/databasename",
 migrate_enabled=False, pool_size=10)
migrate = False # you can control migration per define_table

We disable all migrations, because the table already exists and web2py should not
attempt to create or alter it.

Unfortunately, accessing the existing database is one of the most tricky tasks in web2py,
because the database was not created by web2py, and web2py needs to make some
guesses. The only way to fix these problems is by manually editing the model file, and using
independent knowledge of the database content.

There's more...
Actually, the extract_pgsql_models.py has the following additional features:

 f It uses ANSI Standard INFORMATION_SCHEMA (this might work with other RDBMS)

 f It detects legacy keyed tables (not having an id as its primary key)

 f It connects directly to running databases, so there's no need to do an SQL dump

 f It handles notnull, unique, and referential constraints

 f It detects the most common datatypes and default values

 f It supports PostgreSQL columns comments (that is, for documentation)

If you have to use it against other RDBMS that support ANSI INFORMATION_SCHEMA (for
example, MSSQL Server), import and use the proper Python connector, and remove the
postgreSQL specific queries (pg_ tables for comments)

Database Abstraction Layer

110

You cannot mix references between normal auto-increment
primary keys tables (type='id') and keyed tables
(primarykey=['field1', 'field2']). If you use both
in your database, you have to manually define auto-increment
primary keys as keyed tables at the web2py model (removing id
type, and adding the primary key parameter to define_table).

Efficiently searching by tag
Whether you are building a social network, a content management system, or an ERP system,
you eventually need the ability to tag records. This recipe shows you a way to efficiently search
for records by tag.

Getting ready
Here we assume the following two models:

1. A model for containing the data:
db.define_table('data', Field('value'))

2. A model for storing the tags:

db.define_table('tag', Field('record_id', db.data), Field('name'))

Here, name is the tag name.

How to do it...
1. We want to search all records having at least one of the tags in the list:

tags = [...]

For this purpose, we create a search function:
def search_or(data=db.data, tag=db.tag, tags=[]):
 rows = db(data.id==tag.record_id)\
 (tag.name.belongs(tags)).select(
 data.ALL,
 orderby=data.id,
 groupby=data.id,
 distinct=True)
 return rows

Chapter 3

111

2. Similarly, if you want to search for records that have all the tags (as opposed to one of
those in the list):

def search_and(data=db.data,tag=db.tag,tags=[]):
 n = len(tags):
 rows = db(data.id==tag.record_id)\
 (tag.name.belongs(tags)).select(
 data.ALL,
 orderby=data.id,
 groupby=data.id,
 having=data.id.count()==n)
 return rows

Notice that these two functions work for any table that is passed as first argument.

In both functions, the query involves two tables.

data.id==tag.record_id

web2py interprets this as join.

There's more...
This system works great if users are free to choose the tag names. Sometimes, you want to
restrict tags to a well defined set. In that case, the model needs to be updated:

db.define_table('data', Field('value'))
db.define_table('tag', Field('name', unique=True))
db.define_table('link', Field('record_id',db.data), Field('tag_id',db.
tag))

Here, the link table implements a many-to-many relation between data records and tag items.

In this case, we need to modify our search functions, so first we convert a list of tag names
(tags) into a list of tag IDs, and then perform the previous query. This can be done using
a subquery:

def search_or(data=db.data, tag=db.tag,link=db.link,tags=[]):
 subquery = db(db.tag.name.belongs(tags)).select(db.tag.id)
 rows = db(data.id==link.record_id)\
 (link.tag_id.belongs(subquery)).select(
 data.ALL,
 orderby=data.id,
 groupby=data.id,
 distinct=True)
 return rows

Database Abstraction Layer

112

def search_and(data=db.data, tag=db.tag, link=db.link, tags=[]):
 n = len(tags)
 subquery = db(db.tag.name.belongs(tags)).select(db.tag.id)
 rows = db(data.id==link.record_id)\
 (link.tag_id.belongs(subquery)).select(
 data.ALL,
 orderby=data.id,
 groupby=data.id,
 having=data.id.count()==n)
 return rows

The technique we implemented here is known as the Toxi method, and is described in a more
general and abstract way at the following link:

http://www.pui.ch/phred/archives/2005/04/tags-database-schemas.html.

Accessing your database from multiple
applications

One way to build distributed applications, is by having the same database available to multiple
applications. Unfortunately, this is more than a matter of connecting to the database. In fact,
the different applications need to be aware of the table content and other metadata, which is
stored in the model definition.

There are three ways to do this, and they are not equivalent. It depends on whether the
applications share a file system, and the degree of autonomy you want to give to the two
applications.

Getting ready
We will assume you have two web2py applications, one called app1, and one called app2,
where app1 connects to a database through the following:

db = DAL(URI)

Here, URI is some connection string. It does not matter whether this is SQLite or a client/
server database. We will also assume that the model used by app1 is stored in models/
db1.py, although the name is unimportant here.

Now we want app2 to connect to the same database.

Chapter 3

113

How to do it...
It is also a common scenario that you want the two applications to be autonomous, although
able to share data. Autonomous means that you want to be able to distribute each application
without the other one.

If this is the case, each application needs its own copy of the model and its own database
metadata. The only way to achieve this is by duplication of code.

You must follow these steps:

1. Edit the URI string of app2 so that it looks the same as app1, but disable migrations:
db = DAL(URI, migrate_enabled=False)

2. Copy the model file models/d1.py from app1 into app2.

Notice that only app1 will be able to perform migrations (if both were able to do it, the
situation would get very confused). If you change the model in app1, you will have to
copy the model file again.

Although this solution breaks the Don't Repeat Yourself (DRY) pattern, it guarantees
complete autonomy to each application, and they can access the same database even if
running on separate servers.

If the two applications are running on the same server, instead of copying the model file, you
can just make a symbolic link:

ln applications/app1/models/db1.py applications/app2/models/db1.py

Now you have only one model file.

There's more...
Sometimes you need a script (not a web application) to be able to access a web2py model.
This can be done by accessing the metadata only, without executing the actual model file.

Here is a python script (not a web2py model) that can do it:

file myscript.py

from gluon.dal import DAL

db = DAL(URI, folder='/path/to/web2py/applications/app1', auto_
import=True)

print db.tables

add your code here

Database Abstraction Layer

114

Notice the auto_import=True. It tells the DAL to look in the specified folder for the
meta-data associated to the URI connection, and rebuilds the models on the fly, in memory.
Models defined in this way have the right names and field types, but they will not have the
correct values of other attributes, such as readable, writable, default, validators, and so on.
This is because those attributes cannot be serialized in the metadata, and are probably not
needed in this scenario.

Hierarchical category tree
Sooner or later, any application needs a way to categorize data, and categories must be
stored in a tree, because each category has a parent and possibly subcategories. A category
without a subcategory is a leaf of the tree. If there are categories without a parent, we create
a fictitious root tree node, and append all of them as subcategories of the root.

The main issue is how to store categories with parent-child relations in a database table, and
efficiently add nodes and queries for ancestors and descendants of a node.

This can be done using a modified pre-order tree traversal algorithm, described as follows.

How to do it...
The key trick consists of storing each node in its own record with two integer attributes, left
and right, so that all its ancestors have a left attribute lower than or equal to the left attribute
of the current node, and a right attribute larger than the one of the current node. Similarly, all
descendants will have a left larger or equal than the current left and a right smaller than the
current right. In formula:

A is parent of B if A.ileft<=B.ileft, and A.iright>B.iright.

Notice that A.iright - A.ileft is always the number of descendants.

The following is a possible implementation:

from gluon.dal import Table

class TreeProxy(object):
 skeleton = Table(None,'tree',
 Field('ileft','integer'),
 Field('iright','integer'))
 def __init__(self,table):
 self.table=table
 def ancestors(self,node):
 db = self.table._db
 return
 db(self.table.ileft<=node.ileft)(self.table.iright>node.iright)

Chapter 3

115

 def descendants(self,node):
 db = self.table._db
 return
 db(self.table.ileft>=node.ileft)(self.table.iright<node.iright)
 def add_leaf(self,parent_id=None,**fields):
 if not parent_id:
 nrecords = self.table._db(self.table).count()
 fields.update(dict(ileft=nrecords,iright=nrecords))
 else:
 node = self.table(parent_id)
 fields.update(dict(ileft=node.iright,iright=node.iright))
 node.update_record(iright=node.iright+1)
 ancestors = self.ancestors(node).select()
 for ancestor in ancestors:
 ancestor.update_record(iright=ancestor.iright+1)
 ancestors = self.ancestors(node).select()
 for ancestor in ancestors:
 ancestor.update_record(iright=ancestor.iright+1)
 return self.table.insert(**fields)

 def del_node(self,node):
 delta = node.iright-node.ileft
 deleted = self.descendants(node).delete()
 db = self.table._db
 db(self.table.iright>node.iright).
 update(iright=self.table.iright-delta)
 del self.table[node.id]
 return deleted + 1

This allows us to perform the following operations:

 f Define your own tree table (mytree) and proxy object (treeproxy):
treeproxy =
 TreeProxy(db.define_table('mytree',Field('name'),Tree.skeleton))

 f Insert a new node:
id = treeproxy.add_leaf(name="root")

 f Append some nodes:
treeproxy.add_leaf(parent_id=id,name="child1")
treeproxy.add_leaf(parent_id=id,name="child2")

Database Abstraction Layer

116

 f Search ancestors and descendants:
for node in treeproxy.ancestors(db.tree(id)).select():
 print node.name
for node in treeproxy.descendants(db.tree(id)).select():
 print node.name

 f Delete a node and all its descendants:

treeproxy.del_node(db.tree(id))

Creating records on demand
It is common that we need to get a record or update a record, based on a condition, yet the
record may not exist. If the record does not exist, we want to create it. In this recipe, we will
show two utility functions that can serve this purpose:

 f get_or_create

 f update_or_create

For this to work, we need to pass enough field:value pairs to create the missing record.

How to do it...
1. Here is the code for get_or_create:

def get_or_create(table, **fields):
 """
 Returns record from table with passed field values.
 Creates record if it does not exist.
 'table' is a DAL table reference, such as 'db.invoice'
 fields are field=value pairs
 """
 return table(**fields) or table.insert(**fields)

Notice how table(**fields) selects a record from the table, matching the
requested fields, and returns None if the record does not exist. In this latter case,
the record is inserted. Then, table.insert(...) returns a reference to the
inserted record, which, for practical purposes, gets the record just inserted.

2. Here is an example of usage:
db.define_table('person', Field('name'))
john = get_or_create(db.person, name="John")

Chapter 3

117

3. The code for update_or_create is very similar, but we need two sets of
variables— variables for the search (before update) and variables to be updated:
def update_or_create(table, fields, updatefields):
 """
 Modifies record that matches 'fields' with 'updatefields'.
 If record does not exist then create it.

 'table' is a DAL table reference, such as 'db.person'
 'fields' and 'updatefields' are dictionaries
 """
 row = table(**fields)
 if row:
 row.update_record(**updatefields)
 else:
 fields.update(updatefields)
 row = table.insert(**fields)
 return row

4. And here is an example of usage:

tim = update_or_create(db.person, dict(name="tim"),
dict(name="Tim"))

OR, LIKE, BELONGS, and more on Google
App Engine

A major limitation of the Google App Engine (GAE) is the inability to perform queries that
use the OR, BELONGS(IN), and LIKE operators.

The web2py DAL provides a system for abstracting database queries, and it works on
Relational Databases (RDBS) as well as on GAE but, still, it is crippled by the limitations
mentioned. Here we show some workarounds.

We have created an additional API that allows merging, filtering, and sorting records after
they are extracted from the GAE storage, at the web2py level. They can be used to mimic
the missing features, and will make your GAE code portable to RDBS too.

Current supported RDBS are SQLite, MySQL, PostgreSQL, MSSQL, DB2, Informix, Oracle,
FireBird, and Ingres.

GAE is the only currently supported NoDB. Other adapters are under development.

Database Abstraction Layer

118

Getting ready
In the following recipe, we plan to develop an application to run on GAE, and we connect to
the database using the following logic:

if request.env.web2py_runtime_gae:
 db = DAL('google:datastore')
else:
 db = DAL('sqlite://storage.sqlite')

We assume the following models, as an example:

product = db.define_table('product',
 Field('name'),
 Field('price','double'))

buyer = db.define_table('buyer',
 Field('name'))

purchase = db.define_table('purchase',
 Field('product',db.product),
 Field('buyer',db.buyer),
 Field('quantity','integer'),
 Field('order_date','date',default=request.now))

How to do it...
After setting up the GAE model that we described previously, let's see how to do insert and
update records, do joins and other manipulations in the following sections.

Record insert
To test the rest of the code, you may want to insert some records in the tables. You can do
this with appadmin or programmatically. The following code will work fine on GAE with the
caveats that the IDs returned by the insert method are not sequential on GAE:

icecream = db.product.insert(name='Ice Cream',price=1.50)
kenny = db.buyer.insert(name='Kenny')
cartman = db.buyer.insert(name='Cartman')
db.purchase.insert(product=icecream,buyer=kenny,quantity=1,
 order_date=datetime.datetime(2009,10,10))
db.purchase.insert(product=icecream,buyer=cartman,quantity=4,
 order_date=datetime.datetime(2009,10,11))

Chapter 3

119

Record update
The update on GAE works as you would normally expect. Both syntaxes are supported:

icecream.update_record(price=1.99)

And also:

icecream.price=1.99
icecream.update_record()

Joins
On a relational database, you can do the following:

rows = db(purchase.product==product.id)
 (purchase.buyer==buyer.id).select()
for row in rows:
 print row.product.name, row.product.price,
 row.buyer.name, row.purchase.quantity

This produces the following:

Ice Cream 1.99 Kenny 1
Ice Cream 1.99 Cartman 4

This does not work on GAE. You have to perform the query without the join, using
recursive selects.

rows = db(purchase.id>0).select()
for row in rows:
 print row.product.name, row.product.price, row.buyer.name,
 row.quantity

Here, row.product.name performs recursive selects, and gets you the name of the
product referenced by row.product.

Logical OR
On an RDBS, you can implement OR in queries using the — operator:

rows = db((purchase.buyer==kenny)|(purchase.buyer==cartman)).select()

This does not work on GAE, because OR is not supported (at the time of writing). If the queries
involve the same field, you can use the IN operator:

rows = db(purchase.buyer.contains((kenny,cartman))).select()

Database Abstraction Layer

120

This is a portable and efficient solution. In the most general case, you may need to perform
the OR operation at the web2py level as opposed to at the database level.

rows_kenny = db(purchase.buyer==kenny).select()
rows_cartman = db(purchase.buyer==cartman).select()
rows = rows_kenny|rows_cartman

In this latter case, the — is not between queries, but between rows object, and it is performed
after the records are fetched. This presents some problems because the original order is lost,
and because of the increased memory and resource consumption penalty.

OR with orderby
On a relational database you can do the following:

rows = db((purchase.buyer==kenny)|(purchase.buyer==cartman))\
 .select(orderby=purchase.quantity)

But, again on GAE, you have to perform the OR at web2py level. Therefore you also have to
sort at the web2py level:

rows_kenny = db(purchase.buyer==kenny).select()
rows_cartman = db(purchase.buyer==cartman).select()
rows = (rows_kenny|rows_cartman).sort(lambda row:row.quantity)

The sort method of the rows objects take a function of the row, and must return an
expression to sort about. They can also be used with RDBS to implement sorting, when the
expression is too complex to implement at the database level.

OR with more complex orderby
Consider the following query that involves a OR, a JOIN, and an ordering, and would only work
on RDBS:

rows = db((purchase.buyer==kenny)|(purchase.buyer==cartman))\
 (purchase.buyer==buyer.id).select(orderby=buyer.name)

You can rewrite it for GAE using the sort method, and a recursive select in the
sort argument:

rows = (rows_kenny|rows_cartman).sort(\
 lambda row:row.buyer.name)

This works, but it may be inefficient. You may want to cache the mapping of row.buyer into
buyer_names:

buyer_names = cache.ram('buyer_names',
 lambda:dict(*[(b.id,b.name) for b in db(db.buyer).select()]),
 3600)
rows = (rows_kenny|rows_cartman).sort(
 lambda row: buyer_names.get(row.buyer,row.buyer.name))

Chapter 3

121

Here, buyer_names is a mapping between ids and names, and it is cached every hour
(3600 seconds). sort tries to pick the names from buyer_names if possible, or else it
performs the recursive select.

LIKE
On a relational database, you can, for example, search all records with a name starting
with the letter C followed by anything (%):

rows = db(buyer.name.like('C%')).select()
print rows

But GAE neither supports full text search, nor anything that resembles the SQL LIKE
operator. Once more, we have to select all records and perform the filtering at the web2py
level. We can use the find method of the rows object:

rows = db(buyer.id>0).select().find(lambda
 row:row.name.startswith('C'))

Of course, this is expensive, and not recommended for large tables (more than a few
hundred records). If this kind of search is critical for your application, perhaps you should
not be using GAE.

date and datetime manipulations
The same problem occurs for queries involving other expressions, such as date and
datetime manipulations. Consider the following query that works on relational databases
but not on GAE:

rows = db(purchase.order_date.day==11).select()

On GAE you would have to rewrite it as follows:

rows = db(purchase.id>0).select().find(lambda
 row:row.order_date.day==11)

Replacing slow virtual fields with DB views
Consider the following table:

db.define_table('purchase',
 Field('product'),
 Field('price', 'double'),
 Field('quantity','integer'))

You need to add a field called total price that is computed when records are retrieved,
and is defined as the product of price by quantity for each record.

Database Abstraction Layer

122

The normal way to do it is by using virtual fields:

class MyVirtualFields(object):
 def total_price(self):
 return self.purchase.price * self.purchase.quantity
db.purchase.virtualfields.append(MyVirtualFields())

Then you can do the following:

for row in db(db.purchase).select():
 print row.name, row.total_price

This is fine, but computing virtual fields at the web2py level can be slow. Moreover, you would
not be used to involving the virtual fields in queries.

Here we propose an alternate solution that involves creating a database view for the table,
which includes the column with computed fields, and provides a way for web2py to access it.

How to do it...
Given the table, do the following:

if not db.executesql("select * from information_schema.tables where
table_name='purchase_plus' limit 1;"):
 db.executesql("create view purchase_plus as select purchase.*,
 purchase.price * purchase.quantity as total_price from purchase")
db.define_table('purchase_plus', db.purchase, Field('total_price',
 'double'),
 migrate=False)

Now, you can use db.purchase_plus anywhere you would use db.numbers_plus, except
for inserts, with a performance increase when compared to the VirtualFields solution.

How it works...
The following line checks whether the view has been created already:

if not db.executesql("select ...")

If not, it instructs the database to create it:

db.executesql("create view ...")

Finally, it defines a new web2py model, which maps into the table:

db.define_table('purchase_plus',...)

Chapter 3

123

This model includes all fields from the db.purchase table, the new field total_price,
and sets migrate=False, so that web2py does not attempt to create the table (it should
not because this is not a new table, it's a view, and has been already created).

There's more...
Notice that not all supported databases support views, and not all of those that do have
an information_schema.tables. Therefore, this recipe is not guaranteed to work on
all supported databases, and will make your application not portable.

4
Advanced Forms

In this chapter, we will cover the following recipes:

 f Adding a cancel button to forms

 f Adding confirmation on form submit

 f Searching data dynamically

 f Embedding multiple forms in one page

 f Detecting and blocking concurrent updates

 f Creating a form wizard

 f De-normalizing data temporarily

 f Removing form labels

 f Using fileuploader.js

 f Uploading files using a LOADed component

 f Making image thumbnails from uploaded images

 f Monitoring upload progress

 f Auto tooltip in forms

 f Color picker widget

 f Shortening text fields

 f Creating multi-table forms

 f Creating a multi-table form with references

 f Creating a multi-table update form

 f Star rating widget

Advanced Forms

126

Introduction
Web2py comes with powerful functions for form generation. In this chapter, we provide
examples of customization of forms from adding buttons to creating custom form widgets.
We also provide examples of complex forms, such as wizards and multi-table forms.

Adding a cancel button to forms
This recipe explains a method to add cancel buttons to forms, that is, a button that does not
submit the forms, ignores any changes, and goes back to the previous page (or moves on
to the next, depending on settings). The cancel button is really just a special case of a more
general mechanism described herein to add buttons to your form.

Getting ready
Our recipe assumes a generic model.

How to do it...
1. The controller builds the form and button with the following statements:

form=SQLFORM(db.mytable,
 record=mytable_index,
 deletable=True,
 submit_button=T('Update'))

2. You can add a button using the following statement:
form[0][-1][1].append(TAG.BUTTON('Cancel',
 _onclick="document.location='%s';"%URL('index')))

The last line shows how adding a Cancel button to a form is as simple as appending
to the form. The index of the SQLFORM, where you choose append (or insert) your
cancel button, determines where your button will appear on your page.

Here form[0] is the TABLE inside the form. form[0][-1] is the last TR. form[0]
[-1][1] is column number one (the second TD in the last TR). The _onclick
argument takes the user to the URL specified in the right-hand-side of the window.
location= statement.

3. An equivalent notation to put the Cancel button after the Submit button would be:
form.element('input[type=submit]').parent.append(TAG.BUTTON(...))

Here, the element method partially accepts CSS3 syntax.

Chapter 4

127

4. In general, buttons of any type can be added into a form using this same mechanism.

If you prefer more control and transparency over the creation of your Cancel button,
or other buttons, then a custom view might be in order. However, you may not mix this
method with a form that has been appended to. This example shows a custom form,
where the form was created by the following:
form=SQLFORM.factory(db.mytable)

The example assumes a generic table with fields numbered 1 to N.

{{=form.custom.begin}}
{{=form.custom.widget.field1}}
{{=form.custom.widget.field2}}
{{=form.custom.widget.field3}}
{{=form.custom.submit}}
{{=TAG.BUTTON(T('Cancel'), _onclick='...')}}
{{=form.custom.end}}

Here, cannot field1...field3 must be actual field names. Once more, the _onclick
action can be of any kind and flavor you like.

Adding confirmation on form submit
Often, you want to double-check that the user is not accidentally submitting an incorrect
form. You can do this by prompting the user for confirmation when he/she presses the
submit button. This can be done in two ways.

How to do it...
1. One way is by using jQuery to only edit the view that renders the form. In the view

add the following code:
<script>
 jQuery(function(){
 jQuery('input[type=submit]').click(
 function(){return confirm('Are you sure?');
 });
 });
</script>

Here, confirm is a JavaScript function that instructs the browser to create a
confirmation dialog-box. If you press [yes] the onclick function returns true,
and the form is submitted. If you press [no], the onclick function returns
false, and the form is not submitted.

Advanced Forms

128

2. The same can be achieved by adding the string to the onclick attribute of the
button when the form is created.
return confirm('Are you sure?')

3. In web2py, there is an easy way to do it:

def my_action():
 form = SQLFORM.factory(...)
 form.element('input[type=submit]')['_onclick'] = "return
 confirm('Are you sure?');"
 return dict(form=form)

Notice how we grab the form.element(...) using the jQuery syntax on the server-side
(before the form is actually rendered in HTML), and we modify its onclick attribute (using
the web2py notation with the preceding underscore).

Searching data dynamically
Web2py comes with a crud.search mechanism that allows you to do the following:

def index():
 form, results = crud.search(db.things)
 return dict(form=form, results=results)

Here, form is a search form and records are the result of the search. To understand how
this works, we present in this recipe a simplified implementation of this function that you
can further customize depending on your needs. Here, db.things is a table containing our
things. The actual name of the table or its structure are not relevant here.

How to do it...
1. First of all crate a new model, for example dynamic_search.py, and add the

following code to it:
def build_query(field, op, value):
 if op == 'equals':
 return field == value
 elif op == 'not equal':
 return field != value
 elif op == 'greater than':
 return field > value
 elif op == 'less than':
 return field < value
 elif op == 'starts with':
 return field.startswith(value)

Chapter 4

129

 elif op == 'ends with':
 return field.endswith(value)
 elif op == 'contains':
 return field.contains(value)
def dynamic_search(table):
 tbl = TABLE()
 selected = []
 ops = ['equals','not equal','greater than','less than',
 'starts with','ends with','contains']
 query = table.id > 0
 for field in table.fields:
 chkval = request.vars.get('chk'+field,None)
 txtval = request.vars.get('txt'+field,None)
 opval = request.vars.get('op'+field,None)
 row = TR(TD(INPUT(_type="checkbox",_name="chk"+field,
 value=chkval=='on')),
 TD(field),TD(SELECT(ops,_name="op"+field,
 value=opval)),
 TD(INPUT(_type="text",_name="txt"+field,
 _value=txtval)))
 tbl.append(row)
 if chkval:
 if txtval:
 query &= build_query(table[field], opval,txtval)
 selected.append(table[field])
 form = FORM(tbl,INPUT(_type="submit"))
 results = db(query).select(*selected)
 return form, results

2. Now, you can use dynamic_search as a replacement for crud.search.

def index():
 form,results = dynamic_search(db.things)
 return dict(form=form,results=results)

We can render this with the following view:
{{extend 'layout.html'}}
{{=form}}
{{=results}}

Advanced Forms

130

Here is how it looks like:

Embedding multiple forms in one page
This recipe explains how to embed more than one form in a page. Doing so can increase user
productivity by reducing HTTP calls, but carries a risk of cluttering the page layout.

How to do it...
1. To illustrate a page with multiple forms, we create a stripped-down system for storing

a person's educational Curriculum Vitae (CV). We begin by defining tables for
schools, students, and the degrees they received.
YEARS = range(1910, 2011)
DEGREES = ('BA', 'BS', 'MA', 'MS', 'MBA', 'JD', 'PhD')

db.define_table('school',
 Field('name', 'string', unique=True),
 Field('address', 'string'),
 Field('established', 'integer', requires=IS_IN_SET(YEARS)),
 format='%(name)s')

db.define_table('student',
 Field('name', 'string', unique=True),

Chapter 4

131

 Field('birthday', 'date'),
 format='%(name)s')

db.define_table('education',
 Field('student', db.student),
 Field('school', db.school),
 Field('degree', 'string', requires=IS_IN_SET(DEGREES)),
 Field('graduated', 'integer', requires=IS_IN_SET(YEARS)))

2. The index() controller creates a form for each of the tables:
def index():

 student_form = SQLFORM(db.student)
 if student_form.accepts(request, session):
 response.flash = 'Student Form Accepted'
 elif student_form.errors:
 response.flash = 'Form has errors'

 school_form=SQLFORM(db.school)
 if school_form.accepts(request, session):
 redirect(URL('index'))
 response.flash = 'School Form Accepted'
 elif school_form.errors:
 response.flash = 'Form has errors'

 education_form=SQLFORM(db.education)
 if education_form.accepts(request, session):
 response.flash = 'Education Form Accepted'
 elif education_form.errors:
 response.flash = 'Form has errors'

 return locals()

3. In a typical web2py controller, you would see only one form=SQLFORM(...)
statement, and one if form.accepts(...) clause. Since we have three forms
to render and process, we need three SQLFORM(...) statements, and three if
specific_form.accepts(...) statements. Each form must be given a unique
name, so that when one of the forms is POSTed, its respective form.accepts
clause will be triggered.

Note that forms about tables that contain references to other tables must be defined
and processed in the order of the dependences. So if a new school or a new
student is added, it shows the education form drop-down menu.

Advanced Forms

132

The simplest view to display all three forms on a single page is something like this:
{{extend 'layout.html'}}
<h2>Education CV</h2>
<div id='form1'>{{=education_form}}</div>

<h2>Student</h2>
<div id='form1'>{{=student_form}}</div>

<h2>School</h2>
<div id='form1'>{{=school_form}}</div>

If two or more forms are relative to the same table, the accepts must be passed a formname
argument, and it must be different for the two forms.

There's more...
Another option consists of implementing the different forms and components loaded in
the main (index) page using the LOAD command. Also notice that a submission of the
education form does not affect the other two, while the other two affect the drop-down in
the education form. This allows us to create different actions for each of the forms:

def index():
 return dict()

def create_student():
 return crud.create(db.student, message='Student Form Accepted')

def create_school():
 return crud.create(db.school, message='School Form Accepted')

def create_education():
 return crud.create(db.education, message='Education Form Accepted')

A view views/default/index.html embeds the three forms and traps the education
form, so that when this form is submitted, the other two are not processed and reloaded:

{{extend 'layout.html'}}
<h2>Education CV</h2>
<div id='form1'>
 {{=LOAD('default','create_eduction',ajax_trap=True)}}
</div>

<h2>Student</h2>
<div id='form1'>{{=LOAD('default', 'create_student')}}</div>

<h2>School</h2>
<div id='form1'>{{=LOAD('default', 'create_school')}}</div>

Chapter 4

133

Multiple-form pages can also be created using the FORM, SQLFORM.factory, and crud
statements, or a combination of all form-generating statements. Customized forms can
be mixed with automatically-generated forms. There is no limit to the flexibility available to
generating beautiful form-entry pages with web2py.

Detecting and blocking concurrent updates
Consider for example a wiki page. You open the page, edit it, and save it. It is possible that
while you edit your page, somebody accesses the same page, and saves a new version of the
page before you do. Your save action will result in the previous edits being lost.

Of course, you can prevent concurrent edits by implementing a locking mechanism, but it is
difficult to properly implement such a mechanism. What if a user opens a page for editing,
leaves the browser open, and forgets about it? Everybody else would be prevented to edit the
same page. Implementing a timeout re-introduces the original problem.

There is a simple solution. Every time you save a page (or any record for that matters) ask
web2py to check whether the original record has been modified on the server since the
moment when the record was originally retrieved.

This is easy in web2py, as we will explain in the this recipe.

Getting ready
We will consider, as an example, an application with following model:

db.define_table('page', Field('title', notnull=True), Field('body'))

And the following edit form:

def edit():
 page = db.page(request.args(0))
 form = SQLFORM(db.page,page)
 if form.accepts(request,session):
 response.flash = "page saved"
 return dict(form=form)

How to do it...
1. All you have to do is pass an extra attribute to form.accepts, detect_record_

change, and check whether the record has changed:
def edit():
 page = db.page(request.args(0))
 form = SQLFORM(db.page,page)

Advanced Forms

134

 if form.accepts(request,session, detect_record_change=True):
 response.flash = "page saved"
 elif form.record_changed:
 response.flash = "page not saved because changed on server"
 return dict(form=form)

2. On record-changed, you can the write your own logic to deal with the conflict.
The data on the server is always in the page (page.title and page.body); the
submitted values are in request.vars.title and request.vars.body.

There's more...
What about crud forms? It turns out that crud.create and crud.update forms have
detect_record_change=True, by default (while it is False by default for normal
SQLFORMs). Therefore, if a record is modified on the server, the newly submitted values are
not saved. Yet crud forms do not provide any logic to deal with this situation, and leave it to
the developer. For example, you can rewrite the previous example using crud as follows:

def edit():
 page = db.page(request.args(0))
 form = crud.update(db.page,page)
 if form.record_changed:
 response.flash = "page not saved; try resubmit"
 return dict(form=form)

Notice that when a submission is rejected because the record changed on the server, a
second submission will succeed.

Creating a form wizard
We often need to gather information from a user (for example, to populate a database or
perform some other operation), yet we do not want to overwhelm the user with a very large
form. A better approach consists of breaking the form into multiple pages that the user can
navigate with a [next] button. Such an approach is a called a wizard.

How to do it...
1. Here we assume we want to use a wizard to populate multiple fields in a table

called mytable:
db.define_table('mytable',
 Field('field1'),
 Field('field2'),
 ...
 Field('fieldN'))

It does not matter how many fields you have.

Chapter 4

135

2. We can handle the wizard with a single action. The action needs to know how many
steps, which fields to query at each step, and where to go after the last step. Here is
a possible implementation:
def wizard():
 STEPS = {0: ('field1','field2'), # fields for 1st page
 1: ('field3','field4'), # fields for 2nd page
 2: ('field5,''field6'), # fields for 3rd page
 3: URL('done')} # url when wizard completed

 step = int(request.args(0) or 0)
 if not step in STEPS: redirect(URL(args=0))
 fields = STEPS[step]
 if step==0:
 session.wizard = {}
 if isinstance(fields,tuple):
 form = SQLFORM.factory(*[f for f in db.mytable if f.name in
 fields])
 if form.accepts(request,session):
 session.wizard.update(form.vars)
 redirect(URL(args=step+1))
 else:
 db.mytable.insert(**session.wizard)
 session.flash = T('wizard completed')
 redirect(fields)
 return dict(form=form,step=step)

3. You can render the wizard with the following:

{{extend 'layout.html'}}
<h1>Wizard Step {{=step}}</h1>
{{=form}}

How it works...
It is pretty simple, actually. The wizard action gets its page number from request.args(0),
and looks up in STEPS which fields to display. It uses SQLFORM.factory to build the partial
form. Completed data from form.vars are stored in session.wizard. The last page
instead of a tuple for the list of fields, contains a URL('done'), which is a string. When
the wizard encounters this condition, it knows that it is time to insert the session.wizard
variables in a new table and redirect them to the said URL. Notice that validation is done at
each step for the fields that are displayed.

Advanced Forms

136

De-normalizing data temporarily
In this recipe, we consider the model described in the recipe Efficient search by tag, and we
want to create insert, update forms, or a table data that allows the user to type in tags in a
single input type text-box within the same form. In other words, we want to create a form that
is automatically populated from the data, and all tag records referring to this data record.
On submission, the form should update both the data and the tag tables.

Getting ready
We assume our usual application, and the following model:

db.define_table('data',Field('value'))
db.define_table('tag',Field('record_id',db.data),Field('name'))

We will also assume the following function in controllers/default.py:

def edit():
 record = db.data(request.args(0))
 form = crud.update(db.data,record)
 return dict(form=form)

How to do it...
We need to do this in two steps, each represented by a function. One function will assume we
have new tags, delete old tags, and store the new tags. Another function will modify the crud
form and add an input field containing the current tags. These two functions can then be used
to modify our original form.

def update_tags(form):
 db(db.tag.record_id==form.record.id).delete()
 new_tags = [tag.strip() for tag in request.vars.tags.split(',')]
 for tag in new_tags:
 if tag:
 db.tag.insert(record_id=form.record.id,name=tag)

def make_taggable(form):
 tags = [tag.name for tag in db(db.tag.record_id==form.record.id).
select()]
 value = ', '.join(tags)
 form.element('table').insert(-2, TR(LABEL('Tags:'),
 INPUT(_name='tags', value=value)))
 return form

def edit():

Chapter 4

137

 record = db.data(request.args(1))
 form = make_taggable(crud.update(db.data, record,
 onaccept=update_tags))
 return dict(form=form)

How it works...
The make_taggable function takes a form object (forms are always derivatives of the FORM
class), and injects into the form table a new row containing a label (Tags:), and an INPUT
element. The INPUT value defaults to a string containing the current tags for the record.

When the form is submitted and accepted, crud.update ignores the request.vars.tags
because it is not a field of the db.data table. If the form is accepted, the onaccept
function is called, which points to update_tags. This function deletes the current tags
and updates them.

Notice that this mechanism is very general, and there is nothing specific to the table
db.data. In fact, the two functions update_tags and make_taggable can be used
with any table, as long as it is referenced by a db.tags table, and both by crud.update
and crud.create forms.

There's more...
We will need a minor tweak if the tags field needs validation. We will assume that each tag
name needs validation and the validator is given by:

db.tag.name.requires=IS_MATCH('\w[\w\-\./]+')

That is, each tag must contain at least two characters. The first one must be alphanumeric
(\w), while the subsequent ones can be alphanumeric (\w), or dash (\-), or dot (\.), or
forward slash (/).

In order to perform the validation, we need a smart validation function:

def validate_tags(form):
 new_tags = [tag.strip() for tag in request.vars.tags.split(',')]
 if tag in new_tags:
 (value, error) = db.tag.name.validate(tag)
 if error:
 form.errors['tags'] = error + '(%s)' % value

Then we need to force its call on validation:

def edit():
 record = db.data(request.args(0))
 form = make_taggable(crud.update(db.data,record,

Advanced Forms

138

 onvalidation=validate_tags,
 onaccept=update_tags))
 return dict(form=form)

If all the other fields are validated, the onvalidation function is called. This function
loops over all the tags, and validates them using the db.tag.name validator. If one of
them does not pass, the error is stored in form.errors, which is a Storage object. The
presence of form errors prevents the form from being accepted. When the form is rendered,
the INPUT(...,_name='tags') object will pick up the error from the form, and display
it appropriately.

Removing form labels
When you use SQLFORM or crud, the generated form has labels. You can use the formstyle
attribute of the form to decide how the labels should display:

 f table3cols (on the left of the input widgets)

 f table2cols (on the top of the input widgets)

 f divs (on separate divs without a table, so you can position them by coordinates)

 f ul (on the left of the input widgets but using unordered lists instead of a table)

Yet sometimes you just want to hide labels.

How to do it...
There are two ways to do this:

1. One way consists of generating the form and removing them from the form:
db.define_table('mytable',Field('myfield'))
def index():
 form = SQLFORM(db.mytable)
 for row in form.element('table'): del row[0]
 return dict(form=form)

2. Another method consists of using a custom form in the view:

{{=form.custom.begin}}
<table>
 <tr>
 <td>{{=form.custom.widget.myfield}}</td>
 <td>{{=db.mytable.myfield.comment}}</td>
 </tr>
 <tr>

Chapter 4

139

 <td>{{=form.custom.submit}}</td>
 </tr>
</table>
{{=form.custom.end}}

The net effect is the same.

Using fileuploader.js
In this recipe, we will assume you have a database table to store uploaded files and you want
to create an interface that allows users to upload multiple files using Ajax. fileuploader.
js is a jQuery plugin that uses XHR for uploading multiple files, and displays a progress-bar.
It works in Firefox 3.6+, Safari 4+, and Chrome, and falls back to the hidden iframe-based
upload in other browsers.

Getting ready
First you need to download the plugin from https://github.com/valums/file-
uploader, and place the file fileuploader.js into the application static/js/.
Also, place the fileuploader.css into the application static/css.

Second, we will assume you have a model, such as the following where you would store
uploaded files:

db.define_table('document',
 Field('filename', 'upload'),
 Field('uploaded_by', db.auth_user))

How to do it...
We need to create the following upload action in controllers/default.py:

@auth.requires_login()
def upload_callback():
 if 'qqfile' in request.vars:
 filename = request.vars.qqfile
 newfilename = db.document.filename.store(request.body, filename)
 db.document.insert(filename=newfilename,
 uploaded_by=auth.user.id)
 return response.json({'success': 'true'})

@auth.requires_login()
def upload():
 return dict()

Advanced Forms

140

The upload_callback action will receive a file in the request.body with a name in
request.vars.qqfile. It will rename it, store it, insert the new name in the database,
and return success. The upload action, instead, does nothing but its view will display the
jQuery plugin:

{{response.files.append(URL(request.application,'static','js/
fileuploader.js'))}}
{{response.files.append(URL(request.application,'static','css/
fileuploader.css'))}}
{{extend 'layout.html'}}

<script>
jQuery(document).ready(function() {
 var uploader = new qq.FileUploader({
 // pass the dom node (ex. jQuery(selector)[0] for jQuery users)
 element: document.getElementById('file-uploader'),
 // path to server-side upload script
 action: '{{=URL("upload_callback")}}',
 sizeLimit: 15000000,
 minSizeLimit: 0,
 allowedExtensions: ['xls','jpg', 'jpeg', 'pdf',
 'txt','doc','htm','html','xml','xmls', 'txt','ppt','png',
 'gif'],
 // set to true to output server response to console
 debug: true,

 // events
 // you can return false to abort submit
 onSubmit: function(id, fileName){},
 onProgress: function(id, fileName, loaded, total){},
 onComplete: function(id, fileName, responseJSON){},
 onCancel: function(id, fileName){},

 messages: {
 // error messages, see qq.FileUploaderBasic for content
 typeError: "{file} {{=T('has invalid extension.')}}
 {{=T('Only')}} {extensions} {{=T('are allowed.')}}",
 sizeError: "{file} {{=T('is too large, maximum file size
 is')}} {sizeLimit}.",
 minSizeError: "{file} {{=T('is too small, minimum file size
 is')}} {minSizeLimit}.",
 emptyError: "{file} {{=T('is empty, please select files again
 without it.')}}",
 onLeave: "{{=T('The files are being uploaded, if you leave now
 the upload will be cancelled.')}}"

Chapter 4

141

 },
 showMessage: function(message){ alert(message); }
 });
 });
</script>

<div id="file-uploader">
 <noscript>
 <p>Please enable JavaScript to use file uploader.</p>
 <!-- or put a simple form for upload here -->
 </noscript>
</div>

This plugin is very powerful, and it has many configuration options. To learn more about it we
refer to its website: http://valums.com/ajax-upload/.

A screenshot of the result can be seen here:

Advanced Forms

142

Uploading files using a LOADed component
web2py allows you to design pages in a modular way and LOAD components in the page using
Ajax. A component is a subset of the page served by its own action. The component may, for
example, render a form. The component traps form submission, and only refreshes itself upon
submission. This magic is possible, thanks to the static/js/web2py_ajax.js utilities,
and the LOAD helper. The problem is that this mechanism breaks for multi-part forms, and it
does not work when the form in a LOADed component includes a file upload field.

To fix the problem, we need a jQuery plugin called jquery.form.js.

Getting ready
To start, you need to download the required jQuery plugin from http://github.com/
malsup/form/raw/master/jquery.form.js?v2.43, and place it into the static/js
folder as jquery.form.js.

We will also assume the following models (same as previous recipe), but we will ignore
authentication:

db.define_table('document',
 Field('filename','upload',requires=IS_NOT_EMPTY()),
 Field('uploaded_by',db.auth_user))

The following controller:

def index():
 return dict()

@auth.requires_signature()
def component_list():
 db.document.filename.represent = lambda f,r: f and A('file',_href\
 =URL('download',args=f))
 return db(db.document).select()

@auth.requires_signature()
def component_form():
 db.document.uploaded_by.default = auth.user_id
 db.document.uploaded_by.writable = False
 form = SQLFORM(db.document)
 if form.accepts(request):
 response.flash = 'Thanks for filling the form'
 response.js = "web2py_component('%s','doc_list');" % \
 URL('component_list.load',user_signature=True)

Chapter 4

143

 elif form.errors:
 response.flash = 'Fill the form correctly'
 else:
 response.flash = 'Please fill the form'
 return dict(form=form)

And views/default/index.html:

{{extend 'layout.html'}}

<h1>{{=T("Change the user's image!")}}</h1>

{{=LOAD('default', 'component_list.load', ajax=True,
 target='doc_list', user_signature=True)}}

{{=LOAD('default', 'component_form.load', ajax=True,
 user_signature=True)}}

For any form but the one we created, this would work fine. It would not work with our form,
because it contains an upload field. Notice that, in this recipe, we have used user_
signature=True and auth.requires_signature() decorator. This will make sure that
all URLs are signed, and any authentication/authorization that we apply to the parent page
index will propagate to the components.

How to do it...
1. To fix the problem, we need two steps. First we need to include the plugins by adding

this line in views/web2py_ajax.html:
response.files.insert(2,URL('static','js/jquery.form.js'))

2. Then we need to modify static/js/web2py_ajax.js, by adding the logic to
capture the form and handle the uploads using the ajaxForm function, defined in
jqeury.form.js. To achieve this, edit web2py_ajax.js and replace the function
web2py_trap_form with the following:
function web2py_trap_form(action,target) {
 jQuery('#'+target+' form').each(function(i){
 var form=jQuery(this);
 if(!form.hasClass('no_trap'))
 if(form.find('.upload').length>0) {
 form.ajaxForm({
 url: action,
 success: function(data, statusText, xhr) {
 jQuery('#'+target).html(xhr.responseText);
 web2py_trap_form(action,target);
 web2py_ajax_init();

Advanced Forms

144

 }
 });
 } else {
 form.submit(function(e){
 jQuery('.flash').hide().html('');
 web2py_ajax_page('post',action,form.serialize(),target);
 e.preventDefault();
 });
 }
 });
}

It will handle the form upload using ajaxForm, only if the form contains an input
element of the upload class.

3. Then we need to create a view for the action component_form called views/
default/component_form.load that contains the following:

{{=form}}

<script>
/* hack because jquery.form.js does not properly passes headers */
 jQuery('.flash').hide().html("{{=response.flash}}").slideDown();
 eval("{{=XML(response.js or '')}}");
</script>

The script should not be necessary, but the ajaxForm function does not properly pass the
headers back-and-forth to the server. Therefore, we need to explicitly include in the view, the
logic to show response.flash, and execute response.js.

Making image thumbnails from uploaded
images

The title says it all. We want to upload images, and dynamically make thumbnails images from
them. We will store the thumbnail references in the same records as the uploaded images.

Getting ready
To use the recipe, you must install the Python Imaging Library (PIL). You can find it at the
following link:

http://www.pythonware.com/products/pil/

Chapter 4

145

That requires running web2py from source. As usual with Python, you can use easy_install:

easy_install PIL

Or from a Debian compatible distribution with the following:

sudo apt-get install python-imaging

How to do it...
For this purpose, we will modify the model used in the two previous recipes by adding a field
called thumbnail, and we will ignore authentication, since it is an orthogonal issue.

db.define_table('document',
 Field('filename','upload'),
 Field('thumbnail','upload', readable=False, writable=False))

Here is the controller:

def make_thumbnail(table, image_id, size=(150, 150)):
 import os
 from PIL import Image
 this_image = table(image_id)
 im = Image.open(os.path.join(request.folder, 'uploads',
 this_image.filename))
 im.thumbnail(size, Image.ANTIALIAS)
 thumbnail = 'document.thumbnail.%s.jpg' %
 this_image.filename.split('.')[2]
 im.save(os.path.join(request.folder, 'uploads', thumbnail), 'jpeg')
 this_image.update_record(thumbnail=thumbnail)

def uploadimage():
 form = SQLFORM(db.document)
 if form.accepts(request, session):
 response.flash = 'form accepted'
 make_thumbnail(db.document,form.vars.id,(175,175))
 elif form.errors:
 response.flash = 'form has errors'
 docs = db(db.document).select()
 return dict(form=form,docs=docs)

Advanced Forms

146

Monitoring upload progress
In this recipe, we will show how to create a JavaScript widget that displays a progress bar,
and displays the upload progress. Our solution is server-based and more reliable than pure
JavaScript solutions. Be aware that no browser can handle a file over 2GB.

This recipe is based on the following recipes adapted to web2py:

http://www.motobit.com/help/scptutl/pa98.htm

http://www.djangosnippets.org/snippets/679/

How to do it...
1. The main idea consists of using cache.ram to store the progress server-side, and

expose an action to query for the value of this variable.

This is accomplished in two steps. In the first step, we choose an X-Progress-ID
key, so that we can later retrieve the cache value:
<form action="http://127.0.0.1:8000/example/upload/post?X-
 Progress-ID=myuuid">

2. Then we retrieve the upload total length from cache.ram:
cache.ram("X-Progress-ID:myuuid:length",lambda:0,None)

And the current uploaded length:
cache.ram('X-Progress-ID:myuuid:uploaded',
 lambda: 0, None)

Here myuuid has to be replaced everywhere with a server generated UUID.

3. Let's do it now in more detail with a concrete example. Consider this controller action
in controllers/default.py:
def post():
 if request.extension=='json' and 'X-Progress-ID' in
 request.get_vars:
 cache_key = 'X-Progress-ID:'+request.get_vars['X-Progress-ID']
 length=cache.ram(cache_key+':length', lambda: 0, None)
 uploaded=cache.ram(cache_key+':uploaded', lambda: 0, None)
 from gluon.serializers import json
 return json(dict(length=length, uploaded=uploaded))
 form = FORM(INPUT(_type='file',
 _name='file',requires=IS_NOT_EMPTY()),
 INPUT(_type='submit', _value='SUBMIT'))
 return dict(form=form, myuuid = "[server generated uuid]")

Chapter 4

147

Note that this action servers two purposes:

 � It creates and processes the form

 � If called with .json, and passed an X-Progress-ID, it returns
the length and uploaded variables in json

4. Now we need to customize the form in views/default/post.html:

{{extend 'layout.html'}}
<script type="text/javascript">
 // Add upload progress for multipart forms.
 jQuery(function() { jQuery('form[enctype="multipart/form-
 data"]').submit(function(){
 // Prevent multiple submits
 if (jQuery.data(this, 'submitted')) return false;
 // freqency of update in ms
 var freq = 1000;
 // id for this upload so we can fetch progress info.
 var uuid = ''+Math.floor(Math.random() * 1000000);
 // ajax view serving progress info
 var progress_url = '{{ =URL(extension= "json")}}';
 // Append X-Progress-ID uuid form action
 this.action += ((this.action.indexOf('?') == -1)?'?':'&') +
 'X-Progress-ID=' + uuid;
 var progress = jQuery('<div id="upload-progress"
 class="upload-progress"></div>').insertAfter(
 jQuery('input[type="submit"]')).append('<div
 class="progress-container">
 uploading 0%
 <div class="progress-bar"></div></div>');
 jQuery('input[type="submit"]').remove();
 // style the progress bar
 progress.find('.progress-bar').height('1em').width(0);
 progress.css("background-color", "red");

 // Update progress bar
 function update_progress_info() {
 progress.show();
 jQuery.getJSON(progress_url,
 {'X-Progress-ID': uuid, 'random': Math.random()},
 function(data, status){ if (data) {
 var progress_coefficient=
 parseInt(data.uploaded)/parseInt(data.length);
 var width=progress.find('.progress-container').width();
 var progress_width = width * progress_coefficient;

Advanced Forms

148

 progress.find('.progress-bar').width(progress_width);
 progress.find('.progress-info').text('uploading '
 + progress_coefficient*100 + '%');
 }
 window.setTimeout(update_progress_info, freq);
 });
 };
 window.setTimeout(update_progress_info, freq);
 // mark form as submitted.
 jQuery.data(this, 'submitted', true);
 });
});
</script>

{{=form}}

How it works...
The important part in this is the following:

this.action += (this.action.indexOf('?') == -1 ? '?' : '&')
 + 'X-Progress-ID=' + uuid;

It passes the uuid variable as a GET variable. The rest of the magic is done automatically
by web2py, which reads this variables, computes the upload programs, and stores it in
cache.ram.

These lines is also important:

var progress_url = '{{=URL(extension='json')}}';
jQuery.getJSON(progress_url,
 {'X-Progress-ID': uuid, 'random': Math.random()},
 ...)

They tell web2py to use the same URL, but with the .json extension to get the length and
uploaded values necessary to update the progress bar.

Auto tooltips in forms
This recipe shows you how to display tooltips in forms created through Crud or SQLFORM,
using the field's comment attribute.

Chapter 4

149

Getting ready
First of all, you have to fill the comment attribute in the field definition where you want the
tooltip to appear. For example:

db.define_table('board',
 Field('message', comment='Let your message here.'))

If you do only this, the tip will appear on the right side of the field when the form is generated
through Crud or SQLFORM.

Remember that you can put HTML code in a comment using helpers:
db.define_table('recados',
 Field('message', comment=SPAN('Let here your ',B('message'))))

How to do it...
You will need a jQuery plugin to show the tip, so you may Google it and pick one. Or you can
use this link: http://jquery.bassistance.de/tooltip/jquery.tooltip.zip.
See what it looks like here: http://jquery.bassistance.de/tooltip/demo/.

1. Extract jquery.tooltip.min.js in static/js, and jquery.tooltip.css to
static/css respectively.

2. Edit your layout file, and in the head, before {{include 'web2py_ajax.html'}}
add the following:
{{
 response.files.append(URL('static','js/jquery.tooltip.min.js'))
 response.files.append(URL('static','css/jquery.tooltip.css'))
}}

3. Now you have this script on every page you want tooltips:
<script type="text/javascript">
 jQuery(function() {
 // iterates over all form widgets
 jQuery(".w2p_fw").each(function (){
 // set title for the widget taken from the comment column
 jQuery(this).attr('title',jQuery(this).next().html());
 // clear the comment (optional)
 jQuery(this).next().html('');
 // create the tooltip with title attribute set
 jQuery(this).tooltip();
 });
 });
</script>

Your comment column will be converted into nice tooltips.

Advanced Forms

150

You can also include this script in web2py_ajax.html or layout.html, to reuse the
code. Or you may put this code in another file, and include it when needed; maybe this is
a better way.

Color picker widget
If you have a table field that is supposed to contain a color (red, green, #ff24dc, and so on.)
you may want to a widget to represent the feild that allows you to change/select the color by
picking it from a color canvas. Here we show you how to build a widget to do just that.

Getting ready
You need to download mColorPicker from http://www.bertera.it/software/
web2py/mColorPicker-w2p.tgz, and uncompress it in the static/ folder of
your application.

How to do it...
1. Define the widget in the file models/plugin_colorpicker.py:

class ColorPickerWidget(object):
 """
 Colorpicker widget based on
 http://code.google.com/p/mcolorpicker/
 """
 def __init__ (self, js = colorpicker_js, button=True, style="",
 transparency=False):
 import uuid
 uid = str(uuid.uuid4())[:8]
 self._class = "_%s" % uid
 self.style = style
 if transparency == False:
 self.transparency = 'false'
 else:
 self.transparency = 'true'
 if button == True:
 self.data = 'hidden'
 if self.style == "":
 self.style = "height:20px;width:20px;"
 else:
 self.data = 'display'
 if not js in response.files:
 response.files.append(js)

Chapter 4

151

 def widget(self, f, v):
 wrapper = DIV()
 inp = SQLFORM.widgets.string.widget(f,v, _value=v,\
 _type='color',\
 _data_text='hidden', _style=self.style, _hex='true',\
 _class=self._class)
 scr = SCRIPT("jQuery.fn.mColorPicker.init.replace = false; \
 jQuery.fn.mColorPicker.init.allowTransparency=%s; \
 jQuery('input.%s').mColorPicker(\
 {'imageFolder': '/%s/static/mColorPicker/'});"\
 % (self.transparency, self._class, request.application))
 wrapper.components.append(inp)
 wrapper.components.append(scr)
 return wrapper

color_widget = ColorPickerWidget()

2. To test it, create a table, and set the widget to our new colorpicker widget:
db.define_table('house',
 Field('color', widget = color_widget.widget))

3. Finally, create the form in your controller:

def index():
 form = SQLFORM(db.house)
 if form.accepts(request, session):
 response.flash = T('New house inserted')
 return dict(form=form)

Shortening text fields
In this recipe, we assume we have a table like the following, and we want to display a list of
selected post bodies, but shortened.

db.define_table('post', Field('body', 'text'))

How to do it...
How to do this depends on whether the post contains HTML or wiki syntax.

1. We'll consider HTML first.

This is done in three steps. In the controller we select the rows:
def index():
 posts = db(db.post).select()
 return dict(posts=posts)

Advanced Forms

152

2. Then we shorten by serializing and truncating the HTML:
def index():
 posts = db(db.post).select()
 for post in posts:
 post.short = TAG(post.body).flatten()[:100]+'...'
 return dict(posts=posts)

3. Then we display in the associated view:
{{for post in posts:}}<div
 class="post">{{=post.short}}</div>{{pass}}

Notice that TAG(post.body) parses the HTML, and then flatten() serializes the
parsed HTML into text, omitting tags. We then extract the first 100 characters and
add '...'.

4. If the body contained wiki syntax instead of HTML, then things are simpler, because
we do not need to parse, and we could render the shortened text. Here we assume
MARKMIN wiki syntax:
def index():
 posts = db(db.post).select()
 for post in posts:
 post.short = post.body[:100]+'...'
 return dict(posts=posts)

5. And in the view:

{{for post in posts:}}<div
 class="post">{{=MARKMIN(post.short)}}</div>{{pass}}

There's more...
In the latter case, if you are using a relational database, the truncation can be done in the
database server, thus reducing the amount of data transferred from db server to db client.

def index():
 posts = db(db.post).select(db.post.body[:100]+'...')
 for post in posts:
 post.short = post(db.post.body[:100]+'...')
 return dict(posts=posts)

An even better approach is to store the shortened text in a different database field instead of
shortening every time it is needed. This will result in a faster application.

Chapter 4

153

Creating multi-table forms
Let us consider the example case of a database table called bottles with fields representing
guests bringing a bottle of wine to a tasting party. Each bottle can have one or two tasters.
Rest assured, there is also a one-to-many relation for the tasting, but here we assume only
two testers. Our goal is to create a custom form that allows inserting a description of the
bottle, and fill in the names of the two tasters, even if the one-to-may relation is implemented
through a separate table.

Getting ready
We will assume the following minimalist model, where the latter table implements the one-to-
many relation:

db.define_table('bottle', Field('name'), Field('year', 'integer'))
db.define_table('taster', Field('name'), Field('bottle', db.bottle))

How to do it...
1. First, we ask the factory to make us a form that contains a description of the bottle

and a list field for the tasters:
form=SQLFORM.factory(
 db.bottle,
 Field('tasters', type='list:string', label=T('Tasters')))

2. Now, we can handle the accept in the following two steps:

 � We insert the bottle into the db.bottle table

 � We insert each of the tasters into the db.taster table

def register_bottle():
 form=SQLFORM.factory(
 db.bottle, Field('tasters', type='list:string',
 label=T('Tasters')))
 if form.accepts(request,session):
 bottle_id =
 db.bottle.insert(**db.bottle._filter_fields(form.vars))
 if isinstance(form.vars.tasters, basestring):
 db.taster.insert(name=form.vars.tasters, bottle=bottle_id)
 else:
 for taster in form.vars.tasters:
 db.taster.insert(name=taster, bottle=bottle_id)

Advanced Forms

154

 response.flash = 'Wine and guest data are now registered'
 return dict(form=form, bottles = db(db.bottle).select(), \
 tasters = db(db.taster).select())

Notice that we have to filter fields from form.vars, before we can perform a db.bottle.
insert, because the form contains fields that do not belong to the table.

Creating a multi-table form with references
Now we want to modify the previous example, so that tasters must be registered users in the
system, and we want to select them using drop-boxes. One easy way to do this is by setting a
maximum number of tasters (here we choose 10).

How to do it...
1. First we need to modify the model, so that tasters is now a many-to-many link table

(a bottle can have many tasters, and a taster can taste multiple bottles):
db.define_table('bottle', Field('name'), Field('year', 'integer'))
db.define_table('taster', Field('auth_user', db.auth_user),
 Field('bottle', db.bottle))

2. Now we change the action accordingly:

def register_bottle():
 tasters = range(10)
 form=SQLFORM.factory(
 db.bottle,
 *[Field('taster%i'%i, db.auth_user,label=T('Taster #%i'%i))
 for i in tasters])
 if form.accepts(request,session):
 bottle_id = \
 db.bottle.insert(**db.bottle._filter_fields(form.vars))
 for i in tasters:
 if 'taster%i'%i in form.vars:
 db.taster.insert(auth_user=
 form.vars['taster%i'%i],bottle=bottle_id)
 response.flash='Wine and guest data are now registered'
 return dict(form=form)

There's more...
A naive way to render this form is the following:

{{extend 'layout.html'}}
{{=form}}

Chapter 4

155

But, it is possible to make it smarter using JavaScript. The idea consists of hiding all rows of
the form related to tasters, but showing only the first one and then letting the following rows
appear as needed. jQuery is a fantastic tool for this kind of manipulation:

{{extend 'layout.html'}}
{{=form}}
<script>
 var taster_rows = new Array();
 for(var i=0; i<10; i++){
 taster_rows[i] = new Array();
 taster_rows[i][0] = '#no_table_taster'+i;
 taster_rows[i][1] = '#no_table_taster'+(i+1)+'__row';
}
 jQuery(function(){
 for(var i=1; i<10; i++){
 jQuery('#no_table_taster'+i+'__row').hide();
 }
 for(var i=0; i<9; i++){
 jQuery('#no_table_taster'+i).change(
 function(){
 for(var i=0; i<10; i++){
 if(taster_rows[i][0] == ("#" + $(this).attr("id"))){
 jQuery(taster_rows[i][1]).slideDown();
 }
 }
 });
 }
 }
);
</script>

How it works...
First of all, we hide all rows, but taster0. Then we register js actions to events. When
a field value changes, for example, taster2, we make the next one, taster3, appear
(i+1). Notice that if taster3 is a field name, then #no_table_taster3 is the ID of the
input/select tag, and #no_table_taster3__row is the ID of the row in the table. This
is a web2py convention. no_table comes from the fact that the form is generated by a
SQLFORM.factory, and is not uniquely associated to a database table.

Advanced Forms

156

Creating a multi-table update form
What we now want is to update a record of the db.bottle table and its associated
db.tasters in one single form. This can be done using a mechanism similar to the
one explained in the previous recipe. We need to do a little more work.

How to do it...
First, we will retain the same model structure as in the previous example, but we change
the controller action:

def edit_bottle():
 bottle_id = request.args(0)
 bottle = db.bottle(bottle_id) or redirect(URL('error'))
 bottle_tasters = db(db.taster.bottle==bottle_id).select()
 tasters, actual_testers = range(10), len(bottle_tasters)
 form=SQLFORM.factory(
 Field('name', default=bottle.name),
 Field('year', 'integer', default=bottle.year),
 *[Field('taster%i'%i,db.auth_user,
 default=bottle_tasters[i].auth_user \
 if i<actual_testers else '', label=T('Taster #%i'%i)) for
i in tasters])
 if form.accepts(request,session):
 bottle.update_record(**db.bottle._filter_fields(form.vars))
 db(db.taster.bottle==bottle_id).delete()
 for i in tasters:
 if 'taster%i'%i in form.vars:
 db.taster.insert(auth_user=
 form.vars['taster%i'%i],bottle=bottle_id)
 response.flash = 'Wine and guest data are now updated'
 return dict(form=form)

How it works...
Very much like the previous form, but the bottle fields are passed explicitly to the
SQLFORM.factory, so that they can be pre-populated. The tasters%i fields are
also pre-populated with existing tasters. When the form is submitted, the corresponding
bottle record is updated, the past tasters are deleted, and new relations between the
bottle and new tasters are inserted.

Chapter 4

157

There's more...
There is always more. The problem is that the JS code that hides empty rows, is now more
complex. This is because, when editing the custom form, we do not want to hide rows that
have a selected value. Here is a possible solution:

{{extend 'layout.html'}}
{{=form}}
<script>
 var taster_rows = new Array();
 for(var i=0; i<10; i++){
 taster_rows[i] = new Array();
 taster_rows[i][0] = '#no_table_taster'+i;
 taster_rows[i][1] = '#no_table_taster'+(i+1)+'__row';
 }
 jQuery(function(){
 for(var i=1; i<10; i++){
 if(!jQuery('#no_table_taster'+i).val()){
 jQuery('#no_table_taster'+i+'__row').hide();
 }
 }
 for(var i=0; i<9; i++){
 jQuery('#no_table_taster'+i).change(
 function(){
 for(var i=0; i<10; i++){
 if(taster_rows[i][0] == ("#" + $(this).attr("id"))){
 jQuery(taster_rows[i][1]).slideDown();
 }
 }
 });
 }
 }
);
</script>

Can you figure out what it does?

Advanced Forms

158

Star rating widget
In this recipe, we show you how to use the jquery star rating plugin, and integrate it
with web2py.

Getting ready
You need to download the jQuery star rating widget from the following link:

http://orkans-tmp.22web.net/star_rating/index.html

Extract the files under a new static/stars folder, so that stars/ui.stars.js, stars/
ui.stars.css, and the necessary images provided by the plugin are in it.

How to do it...
1. Create a model file called models/plugin_rating.py, and in the file write

the following:
DEPENDENCIES = [
 'http://ajax.googleapis.com/ajax/libs/jqueryui/1.8.9/jquery-
 ui.js',
 'http://ajax.googleapis.com/ajax/libs/jqueryui/1.8.9/themes/ui-
 darkness/jquery-ui.css',
 URL(c='static/stars',f='jquery.ui.stars.js'),
 URL(c='static/stars',f='jquery.ui.stars.css')]

def rating_widget(f,v):
 from gluon.sqlhtml import OptionsWidget
 import uuid
 id = str(uuid.uuid4())
 for path in DEPENDENCIES:
 response.files.append(path)
 return DIV(SPAN(_id="stars-cap"),
 DIV(OptionsWidget.widget(f,v),_id=id),
 SCRIPT("jQuery(function(){jQuery('#%s').stars({inputType:
 'select'});});" % id))

2. Then, create a model. For example:
db.define_table('song',
 Field('title'),
 Field('rating', 'integer'))

3. Set the widget to the rating_widget, as follows:
db.song.rating.requires = IS_IN_SET(range(0, 6))
db.song.rating.widget = rating_widget

Chapter 4

159

4. The plugin model must be executed before the above two lines or the
rating_widget function will be undefined.

5. It is important here that the field represented by the star rating be an integer with
IS_IN_SET(range(0,6)).

Notice how the rating_plugin uses a UUID to define the id attribute of the DIV that renders
the widget. In this way, you can have more than one field using the rating plugin at once.

5
Adding Ajax Effects

In this chapter, we will cover the following recipes:

 f Using jquery.multiselect.js

 f Creating a select_or_add widget

 f Using an autocompletion plugin

 f Creating a drop-down date selector

 f Improving the built-in ajax function

 f Using a slider to represent a number

 f Using jqGrid and web2py

 f Improving data tables with WebGrid

 f Ajaxing your search functions

 f Creating sparklines

Introduction
In this chapter, we discuss examples of integration of jQuery plugins with web2py. These
plugins help in making forms and tables more interactive and friendly to the user, thus
improving the usability of your application. In particular, we provide examples of how to
improve the multi-select drop-down with an interactive add option button, how to replace
an input field with a slider, and how to display tabular data using jqGrid and WebGrid.

Adding Ajax Effects

162

Using jquery.multiselect.js
The default rendering of <select multiple="true">..</select> is quite ugly and not
intuitive to use, in particular, when you need to select multiple non-contiguous options. This
is not an HTML shortcoming, but a poor design of most browsers. Anyway, the presentation
of the multiple select can be overwritten using JavaScript. Here, we will be using a jQuery
plugin called jquery.multiselect.js. Notice that this jQuery plugin comes as standard
and enabled with PluginWiki, but we assume that you are not using PluginWiki.

Getting ready
You will need to download jquery.muliselect.js from http://abeautifulsite.
net/2008/04/jquery-multiselect, and place the corresponding files into static/js/
jquery.multiselect.js and static/css/jquery.multiselect.css.

How to do it...
1. In your view, simply add the following before {{extend 'layout.html}}:

{{
 response.files.append('http://ajax.googleapis.com/ajax\
 /libs/jqueryui/1.8.9/jquery-ui.js')
 response.files.append('http://ajax.googleapis.com/ajax\
 /libs/jqueryui/1.8.9/themes/ui-darkness/jquery-ui.css')
 response.files.append(URL('static','js/jquery.multiSelect.js'))
response.files.append(URL('static','css/jquery.\
 multiSelect.css'))
}}

2. Place the following after {{extend 'layout.html'}}:
<script>
 jQuery(document).ready(function(){jQuery('[multiple]').
 multiSelect();});
</script>

That is all. All your multiple select will be nicely styled.

3. Consider the following action:
def index():
 is_fruits =
 IS_IN_SET(['Apples','Oranges','Bananas','Kiwis','Lemons'],
 multiple=True)
 form = SQLFORM.factory(Field('fruits','list:string',
 requires=is_fruits))

Chapter 5

163

 if form.accepts(request,session):
 response.flash = 'Yummy!'
 return dict(form=form)

This action can be tried with the following view:
{{
 response.files.append('http://ajax.googleapis.com/ajax\
 /libs/jqueryui/1.8.9/jquery-ui.js')
 response.files.append('http://ajax.googleapis.com/ajax\
 /libs/jqueryui/1.8.9/themes/ui-darkness/jquery-ui.css')
 response.files.append(URL('static','js/jquery.multiSelect.js'))
 response.files.append(URL('static','css/jquery.\
 multiSelect.css'))
}}
{{extend 'layout.html}}
<script>
 jQuery(document).ready(function(){jQuery('[multiple]').
 multiSelect();});
</script>
{{=form}}

Here is a screenshot of how it looks:

Creating a select_or_add widget
This widget will create a object with an Add button next to it, allowing users to add new
categories and so on, on the fly without having to visit a different screen. It works with
IS_IN_DB, and uses web2py components and jQueryUI dialogs.

This widget was inspired by the OPTION_WITH_ADD_LINK slice, which can be found at
the following link:

http://web2pyslices.com/main/slices/take_slice/11

Adding Ajax Effects

164

How to do it...
1. Place the following code into a model file. For example, models/select_or_add_

widget.py:
class SelectOrAdd(object):

def __init__(self, controller=None, function=None,
 form_title=None, button_text = None, dialog_width=450):
 if form_title == None:
 self.form_title = T('Add New')
 else:
 self.form_title = T(form_title)
 if button_text == None:
 self.button_text = T('Add')
 else:
 self.button_text = T(button_text)
 self.dialog_width = dialog_width
 self.controller = controller
 self.function = function

def widget(self, field, value):
 #generate the standard widget for this field
 from gluon.sqlhtml import OptionsWidget
 select_widget = OptionsWidget.widget(field, value)

 #get the widget's id (need to know later on so can tell
 #receiving controller what to update)
 my_select_id = select_widget.attributes.get('_id', None)
 add_args = [my_select_id]

 #create a div that will load the specified controller via ajax
 form_loader_div = DIV(LOAD(c=self.controller, f=self.function,
 args=add_args,ajax=True), _id=my_select_id+"_dialog-form",
 _title=self.form_title)

 #generate the "add" button that will appear next the options
 #widget and open our dialog
 activator_button = A(T(self.button_text),
 _id=my_select_id+"_option_add_trigger")

 #create javascript for creating and opening the dialog
 js = 'jQuery("#%s_dialog-form").dialog({autoOpen: false,
 show: "blind", hide: "explode", width: %s});' %

Chapter 5

165

 (my_select_id, self.dialog_width)
 js += 'jQuery("#%s_option_add_trigger").click(function() {
 jQuery("#%s_dialog-form").dialog("open");return
 false;}); ' % (my_select_id, my_select_id) #decorate
 our activator button for good measure
 js += 'jQuery(function() { jQuery("#%s_option_add_trigger"
).button({text: true, icons: { primary: "ui-icon-circle-
 plus"} }); });' % (my_select_id)
 jq_script=SCRIPT(js, _type="text/javascript")

 wrapper = DIV(_id=my_select_id+"_adder_wrapper")
 wrapper.components.extend([select_widget, form_loader_div,
 activator_button, jq_script])
 return wrapper

2. You assign the widget to a field using the following:
Initialize the widget
 add_option = SelectOrAdd(form_title="Add a new something",
 controller="product", function="add_category", button_text =
 "Add New", dialog_width=500)

The widget accepts the following arguments:

 � form_title: string: This will appear as the jQueryUI dialog-box's title.
The default value is Add New.

 � controller: string: This is the name of the controller that will handle
record creation.

 � function: string. This is the name of the function that will handle
record creation. It should create a form, accept it, and be prepared to issue
JavaScript to interact with the widget - see add_category in step 4.)

 � button_text: string. This is the text that should appear on the button
that will activate our form dialog-box. The default value is Add.

 � dialog_width: integer. This is the desired width in pixels of the dialog-
box. Default is 450.

3. Define your database tables in models/db.py, as follows:
db.define_table('category',
 Field('name', 'string', notnull=True, unique=True),
 Field('description', 'text')
)

db.define_table('product',
 Field('category_id', db.category, requires=IS_IN_DB(db,
 'category.id', 'category.name')),
 Field('name', 'string', notnull=True),

Adding Ajax Effects

166

 Field('description', 'text'),
 Field('price', 'decimal(10,2)', notnull=True)
)

assign widget to field
 db.product.category_id.widget = add_option.widget

4. Create your controller functions:
#This is the main function, the one your users go to
def create():
 #Initialize the widget
 add_option = SelectOrAdd(form_title="Add new Product Category",
 controller="product",
 function="add_category",
 button_text = "Add New")
 #assign widget to field
 db.product.category_id.widget = add_option.widget
 form = SQLFORM(db.product)
 if form.accepts(request, session):
 response.flash = "New product created"
 elif form.errors:
 response.flash = "Please fix errors in form"
 else:
 response.flash = "Please fill in the form"

 #you need jQuery for the widget to work; include here or just
 #put it in your master layout.html
 response.files.append("http://ajax.googleapis.com/ajax/\
 libs/jqueryui/1.8.9/jquery-ui.js")
 response.files.append("http://ajax.googleapis.com/ajax/\
 libs/jqueryui/1.8.9/themes/smoothness/jquery-ui.css")
 return dict(message="Create your product", form = form)

def add_category():
 #this is the controller function that will appear in our dialog
 form = SQLFORM(db.category)
 if form.accepts(request):
 #Successfully added new item
 #do whatever else you may want
 #Then let the user know adding via our widget worked
 response.flash = T("Added")
 target = request.args[0]

Chapter 5

167

 #close the widget's dialog box
 response.js = 'jQuery("#%s_dialog-form").dialog(\
"close");' % target

 #update the options they can select their new category in the
 #main form
 response.js += \
 """jQuery("#%s")\
 .append("<option value='%s'>%s</option>");""" % \
 (target, form.vars.id, form.vars.name)
 #and select the one they just added
 response.js += """jQuery("#%s").val("%s");""" % \
 (target, form.vars.id)

 #finally, return a blank form in case for some reason they
 #wanted to add another option
 return form

 elif form.errors:
 # silly user, just send back the form and it'll still be in
 # our dialog box complete with error messages
 return form

 else:
 #hasn't been submitted yet, just give them the fresh blank
 #form
 return form

Here is a screenshot showing the widget in action:

Adding Ajax Effects

168

5. Click on the Add New button, and the dialog-box opens. (Hmm, can't type my own
widget's name right!).

6. Click on Submit, and the new option is created and automatically selected in the
main form.

Chapter 5

169

You can get the source or a sample application from bitbucket, at the following link:

https://bitbucket.org/bmeredyk/web2py-select_or_add_option-widget/src

Using an autocompletion plugin
Although web2py comes with its own autocomplete plugin, its behavior is a kind of magic and,
if it does not suit you, you may prefer to use a jQuery plugin for autocompletion.

Getting ready
Download the necessary files from the following website:

http://bassistance.de/jquery-plugins/jquery-plugin-autocomplete/

Unzip the files into static/autocomplete. Make sure you have the following files:

 f static/autocomplete/jquery.autocomplete.js

 f static/autocomplete/jquery.autocomplete.css

How to do it...
1. First of all, define the following widget in your model:

def autocomplete_widget(field,value):
 response.files.append(URL('static','autocomplete/jquery.\
autocomplete.js'))
 response.files.append(URL('static','autocomplete/jquery.\
autocomplete.css'))
 print response.files
 import uuid
 from gluon.serializers import json
 id = "autocomplete-" + str(uuid.uuid4())
 wrapper = DIV(_id=id)
 inp = SQLFORM.widgets.string.widget(field,value)
 rows = field._db(field._table['id']>0).
 select(field,distinct=True)
 items = [str(t[field.name]) for t in rows]
 scr = SCRIPT("jQuery('#%s input').autocomplete({source: %s});" % \
(id, json(items)))
 wrapper.append(inp)
 wrapper.append(scr)
 return wrapper

Adding Ajax Effects

170

This widget creates a normal <input/> widget inp followed by a script that registers
the autocomplete plugin. It also passes to the plugin, a list of possible values,
obtained by existing values of the field itself.

2. Now, in your model or controller, you simply assign this widget to any string field.
For example:
db.define_table('person',Field('name'))
db.person.name.widget = autocomplete_widget

3. If you want the widget to get values from a different table/field, you just need to
change the following lines:

rows = field._db(field._table['id']>0).select(field,distinct=True)
items = [str(t[field.name]) for t in rows]

Change them to the following:
rows = field._db(query).select(otherfield,distinct=True)
items = [str(t[otherfield.name]) for t in rows]

There is more...
A limitation with this approach is that all possible values will be fetched when the widget
is rendered and embedded in the page. This approach has two limitations:

 f Serving the page gets slower and slower, as more options exist for
the autocompletion

 f It exposes your entire data to the visitor

There is a solution. The plugin can fetch the data using an Ajax callback. To fetch the items
remotely using an Ajax call, we can modify the widget as follows:

def autocomplete_widget(field,value):
 import uuid
 id = "autocomplete-" + str(uuid.uuid4())
 callback_url = URL('get_items')
 wrapper = DIV(_id=id)
 inp = SQLFORM.widgets.string.widget(field,value)
 scr = SCRIPT("jQuery('#%s input').
 autocomplete('%s',{extraParams:{field:'%s',table:'%s'}});" % \
 (id, callback_url,field.name,field._tablename))
 wrapper.append(inp)
 wrapper.append(scr)
 return wrapper

Chapter 5

171

Now you need to implement your own callback_url.

def get_items():
 MINCHARS = 2 # characters required to trigger response
 MAXITEMS = 20 # numer of items in response
 query = request.vars.q
 fieldname = request.vars.field
 tablename = request.vars.table
 if len(query.strip()) > MINCHARS and fieldname and tablename:
 field = db[tablename][fielfname]
 rows = db(field.upper().startswith(qery)).
 select(field,distinct=True,limitby=(0,MINITEMS))
 items = [str(row[fieldname]) for row in rows]

 else:
 items = []

 return '\n'.join(items)

Here is an example of how it works:

Creating a drop-down date selector
Sometimes, you might not like the normal pop-up calendar selector, and want to create
a widget that allows selecting the year, month, and day of the month separately, using
dropdown lists. Here we present a widget to do it.

Adding Ajax Effects

172

How to do it...
1. In one of your models, write the following widget:

def select_datewidget(field,value):
 MINYEAR = 2000
 MAXYEAR = 2020
 import datetime
 now = datetime.date.today()
 dtval = value or now.isoformat()
 year,month,day= str(dtval).split("-")
 dt = SQLFORM.widgets.string.widget(field,value)
 id = dt['_id']
 dayid = id+'__day'
 monthid = id+'__month'
 yearid = id+'__year'
 wrapperid = id+'__wrapper'
 wrapper = DIV(_id=wrapperid)
 day = SELECT([OPTION(str(i).zfill(2)) for i in range(1,32)],
 value=day,_id=dayid)
 month = SELECT([OPTION(datetime.date(2008,i,1).strftime('%B'),
 _value=str(i).zfill(2)) for i in range(1,13)],
 value=month,_id=monthid)
 year = SELECT([OPTION(i) for i in range(MINYEAR,MAXYEAR)],
 value=year,_id=yearid)
 jqscr = SCRIPT("""
 jQuery('#%s').hide();
 var curval = jQuery('#%s').val();
 if(curval) {
 var pieces = curval.split('-');
 jQuery('#%s').val(pieces[0]);
 jQuery('#%s').val(pieces[1]);
 jQuery('#%s').val(pieces[2]);
 }
 jQuery('#%s select').change(function(e) {
 jQuery('#%s').val(
 jQuery('#%s').val()+'-'+jQuery('#%s').val()+'-
 '+jQuery('#%s').val());
 });

 """ % (id,id,yearid,monthid,dayid,
 wrapperid,id,yearid,monthid,dayid))
 wrapper.components.extend([month,day,year,dt,jqscr])
 return wrapper

Chapter 5

173

2. Create a test form in your controller, and set the field to use the widget:

def index():
 form = SQLFORM.factory(
 Field('posted','date',default=request.now,
 widget=select_datewidget))

 if form.accepts(request,session):
 response.flash = "New record added"
 return dict(form=form)

Here is how it looks:

Improving the built-in ajax function
Web2py comes with a static/js/web2py_ajax.js file, which defines an ajax function. It
is a wrapper around jQuery.ajax, but provides an even simpler syntax. Yet, this function is
designed to be intentionally minimalist. In this recipe, we show you how to rewrite it, so that it
displays a spinning image while performing the Ajax request in the background.

How to do it...
1. First of all, you need a spinning icon. Choose one for example from this web site:

http://www.freeiconsdownload.com/Free_Downloads.asp?id=585,
and save it in static/images/loading.gif.

2. Then, edit the ajax function in the file static/js/web2py_ajax.js, as follows
(for older web2py applications, this function is in views/web2py_ajax.html):

function ajax(u,s,t) {
 /* app_loading_image contains the img html
 set in layout.html before including web2py_ajax.html */
 jQuery("#"+t).html(app_loading_image);
 var query="";
 for(i=0; i<s.length; i++) {
 if(i>0) query=query+"&";
 query=query+encodeURIComponent(s[i])+"="+
 encodeURIComponent(document.getElementById(s[i]).value);
 }

Adding Ajax Effects

174

 // window.alert(loading_image);
 jQuery.ajax({type: "POST", url: u, data: query,
 success: function(msg) {
 if(t==':eval') eval(msg);
 else document.getElementById(t).innerHTML=msg;
 }
 });
};

Using a slider to represent a number
jQuery UI comes with a handy slider that can be used to represent numerical fields in a range
as opposed to a boring <input/> tag.

How to do it...
1. Create a model file called models/plugin_slider.py, and define the following:

def slider_widget(field,value):
 response.files.append("http://ajax.googleapis.com/ajax\
/libs/jqueryui/1.8.9/jquery-ui.js")
 response.files.append("http://ajax.googleapis.com/ajax\
/libs/jqueryui/1.8.9/themes/ui-darkness/jquery-ui.css")
 id = '%s_%s' % (field._tablename,field.name)
 wrapper = DIV(_id="slider_wrapper",_style="width: 200px;text-\
align:center;")
 wrapper.append(DIV(_id=id+'__slider'))
 wrapper.append(SPAN(INPUT(_id=id, _style="display: none;"),
 _id=id+'__value'))
 wrapper.append(SQLFORM.widgets.string.widget(field,value))

 wrapper.append(SCRIPT("""
 jQuery('#%(id)s__value').text('%(value)s');
 jQuery('#%(id)s').val('%(value)s');
 jQuery('#%(id)s').hide();
 jQuery('#%(id)s__slider').slider({
 value:'%(value)s',
 stop: function(event, ui){
 jQuery('#%(id)s__value').text(ui.value);
 jQuery('#%(id)s').val(ui.value);
 }});
 """ % dict(id=id, value=value)))
 return wrapper

Chapter 5

175

2. Create a test table, and set the widget to our new slider widget:
db.define_table("product",
 Field("quantity","integer", default=0))

3. Then, use the slider by creating a form in your controller:
def index():
 db.product.quantity.widget=slider_widget
 form = SQLFORM(db.product)
 if form.accepts(request,session):
 response.flash = "Got it"
 inventory = db(db.product).select()
 return dict(form=form,inventory=inventory)

Using jqGrid and web2py
jqGrid is an Ajax-enabled JavaScript control built on jQuery that provides a solution for
representing and manipulating tabular data. You can think of it as a replacement for the
web2py SQLTABLE helper. jqGrid is a client-side solution, and it loads data dynamically
through Ajax callbacks, thus providing pagination, search popup, inline editing, and so on.
jqGrid is integrated into PluginWiki, but, here, we discuss it as a standalone for web2py
programs that do not use the plugin. jqGrid deserves a book of its own, and here we only
discuss its basic features and simplest integration.

Getting ready
You will need jQuery (that comes with web2py), jQuery.UI, and one or more themes which
you can get directly from Google but you will also need jqGrid, which you can get from:

http://www.trirand.com/blog

We will also assume we have a table with stuff that you can pre-populate with random data:

from gluon.contrib.populate import populate

db.define_table('stuff',
 Field('name'),
 Field('quantity', 'integer'),
 Field('price', 'double'))

if db(db.stuff).count() == 0:
 populate(db.stuff, 50)

Adding Ajax Effects

176

How to do it...
First of all, you need a helper that will display the jqGrid, and we can define this in a model.
For example, models/plugin_qgrid.py:

def JQGRID(table,fieldname=None, fieldvalue=None, col_widths=[],
 colnames=[], _id=None, fields=[],
 col_width=80, width=700, height=300, dbname='db'):
 # <styles> and <script> section
 response.files.append('http://ajax.googleapis.com/ajax\
/libs/jqueryui/1.8.9/jquery-ui.js')
 response.files.append('http://ajax.googleapis.com/ajax\
 /libs/jqueryui/1.8.9/themes/ui-darkness/jquery-ui.css')
 for f in ['jqgrid/ui.jqgrid.css',
 'jqgrid/i18n/grid.locale-en.js',
 'jqgrid/jquery.jqGrid.min.js']:
 response.files.append(URL('static',f))

 # end <style> and <script> section
 from gluon.serializers import json
 _id = _id or 'jqgrid_%s' % table._tablename
 if not fields:
 fields = [field.name for field in table if field.readable]
 else:
 fields = fields
 if col_widths:
 if isinstance(col_widths,(list,tuple)):
 col_widths = [str(x) for x in col_widths]
 if width=='auto':
 width=sum([int(x) for x in col_widths])
 elif not col_widths:
 col_widths = [col_width for x in fields]
 colnames = [(table[x].label or x) for x in fields]
 colmodel = [{'name':x,'index':x, 'width':col_widths[i],
 'sortable':True} \
 for i,x in enumerate(fields)]

 callback = URL('jqgrid',
 vars=dict(dbname=dbname,
 tablename=table._tablename,
 columns=','.join(fields),
 fieldname=fieldname or '',

Chapter 5

177

 fieldvalue=fieldvalue,
),
 hmac_key=auth.settings.hmac_key,
 salt=auth.user_id)
 script="""
 jQuery(function(){
 jQuery("#%(id)s").jqGrid({
 url:'%(callback)s',
 datatype: "json",
 colNames: %(colnames)s,
 colModel:%(colmodel)s,
 rowNum:10, rowList:[20,50,100],
 pager: '#%(id)s_pager',
 viewrecords: true,
 height:%(height)s
 });
 jQuery("#%(id)s").jqGrid('navGrid','#%(id)s_pager',{
 search:true,add:false,
 edit:false,del:false
 });
 jQuery("#%(id)s").setGridWidth(%(width)s,false);
 jQuery('select.ui-pg-selbox,input.ui-g-
 input').css('width','50px');
 });
 """ % dict(callback=callback, colnames=json(colnames),
 colmodel=json(colmodel),id=_id,
 height=height,width=width)

 return TAG[''](TABLE(_id=_id),
 DIV(_id=_id+"_pager"),
 SCRIPT(script))

We can use this in our control as follows:

@auth.requires_login()
def index():
 return dict(mygrid = JQGRID(db.stuff))

This function simply generates all the required JavaScript, but does not pass any data to it.
Instead, it passes a callback function URL (jqgrid), which is digitally signed for security.
We need to implement this callback.

Adding Ajax Effects

178

We can define the callback in the same controller of the index action:

def jqgrid():
 from gluon.serializers import json
 import cgi
 hash_vars = 'dbname|tablename|columns|fieldname|
 fieldvalue|user'.split('|')
 if not URL.verify(request,hmac_key=auth.settings.hmac_key,
 hash_vars=hash_vars,salt=auth.user_id):
 raise HTTP(404)

 dbname = request.vars.dbname or 'db'
 tablename = request.vars.tablename or error()
 columns = (request.vars.columns or error()).split(',')
 rows=int(request.vars.rows or 25)
 page=int(request.vars.page or 0)
 sidx=request.vars.sidx or 'id'
 sord=request.vars.sord or 'asc'
 searchField=request.vars.searchField
 searchString=request.vars.searchString
 searchOper={'eq':lambda a,b: a==b,
 'nq':lambda a,b: a!=b,
 'gt':lambda a,b: a>b,
 'ge':lambda a,b: a>=b,
 'lt':lambda a,b: a<b,
 'le':lambda a,b: a<=b,
 'bw':lambda a,b: a.startswith(b),
 'bn':lambda a,b: ~a.startswith(b),
 'ew':lambda a,b: a.endswith(b),
 'en':lambda a,b: ~a.endswith(b),
 'cn':lambda a,b: a.contains(b),
 'nc':lambda a,b: ~a.contains(b),
 'in':lambda a,b: a.belongs(b.split()),
 'ni':lambda a,b: ~a.belongs(b.split())}\

 [request.vars.searchOper or 'eq']
 table=globals()[dbname][tablename]

 if request.vars.fieldname:
 names = request.vars.fieldname.split('|')
 values = request.vars.fieldvalue.split('|')
 query = reduce(lambda a,b:a&b,
 [table[names[i]]==values[i] for i in range(len(names))])

 else:
 query = table.id>0

Chapter 5

179

 dbset = table._db(query)

 if searchField:
 dbset=dbset(searchOper(table[searchField],searchString))
 orderby = table[sidx]

 if sord=='desc': orderby=~orderby
 limitby=(rows*(page-1),rows*page)

 fields = [table[f] for f in columns]
 records = dbset.select(orderby=orderby,limitby=limitby,*fields)
 nrecords = dbset.count()
 items = {}
 items['page']=page
 items['total']=int((nrecords+(rows-1))/rows)
 items['records']=nrecords
 readable_fields=[f.name for f in fields if f.readable]
 def f(value,fieldname):
 r = table[fieldname].represent
 if r: value=r(value)
 try: return value.xml()
 except: return cgi.escape(str(value))
 items['rows']=[{'id':r.id,'cell':[f(r[x],x) for x in
 readable_fields]} \
 for r in records]
 return json(items)

Both the JQGRID helper and the jqgrid action are canned, very similar to the PluginWiki
jgGrid widget, and probably require no modification. The jqgrid action is called by the
code generated by the helper. It checks whether the URL is properly signed (the user is
authorized to access the callback) or not, parses all data in the request to determine what
the user wants, including building a query from the jqgrid search pop-up, and performs
the select and return on the data through JSON.

Notice that you can use multiple JQGRID(table) in multiple actions, and you do not need
to pass any other parameter other than the table to be displayed. Yet, you may want to pass
extra parameters to the helper:

 f fieldname and fieldvalue attributes are user to pre-filter results, based on
table[fieldname]==fieldvalue

 f col_widths is a list of column widths in pixels

 f colnames is a list of column names to replace field.name

 f _id is the tag ID for the grid

Adding Ajax Effects

180

 f fields is a list of field names to be displayed

 f col_width=80 is the default width of each column

 f width=700 and height=300 are the size of the grid

 f dbname='db' is the name of the database to be utilized by the callback,
in case you have more than one, or you use a name that is not db

Improving data tables with WebGrid
In this recipe we will build a module called WebGrid that you can think of a replacement or
web2py's SQLTABLE. Yet is is smarter: it supports paging, sorting, editing and it is easy to
use and customize. It is intentionally designed not to require session nor jQuery plugins.

Getting ready
Download webgrid.py from http://web2pyslices.com/main/static/share/
webgrid.py, and store it in the modules/ folder.

You may want to download a demo application from http://web2pyslices.com/main/
static/share/web2py.app.webgrid.w2p, but this is not necessary for WebGrid to work.

We will assume the scaffolding application with crud defined, and the following code:

db.define_table('stuff',
 Field('name'),
 Field('location'),
 Field('quantity','integer'))

We have in mind a simple inventory system.

How to do it...
We will explain it backwards for a change. First, we will show you how to use it.

1. Add the webgrid.py module to your modules folder (see the Getting ready section
for the instructions on how to install it). In your controller, add the following code:
def index():
 import webgrid
 grid = webgrid.WebGrid(crud)
 grid.datasource = db(db.stuff.id>0)
 grid.pagesize = 10
 return dict(grid=grid()) # notice the ()

Chapter 5

181

The datasource can be a Set, Rows, Table, or list of Tables. Joins are
also supported.
grid.datasource = db(db.stuff.id>0) # Set
grid.datasource = db(db.stuff.id>0).select() # Rows
grid.datasource = db.stuff # Table
grid.datasource = [db.stuff,db.others] # list of Tables
grid.datasource = db(db.stuff.id==db.other.thing) # join

The main row components of the WebGrid are header, filter, datarow, pager,
page_total, and footer

2. You can link to crud functions using action_links. Just tell it where crud
is exposed:
grid.crud_function = 'data'

3. You can turn rows on and off:
grid.enabled_rows = ['header','filter',
'pager','totals','footer','add_links']

4. You can control the fields and field_headers:
grid.fields = ['stuff.name','stuff.location','stuff.quantity']
grid.field_headers = ['Name','Location','Quantity']

5. You can control the action_links (links to crud actions) and action_headers:
grid.action_links = ['view','edit','delete']
grid.action_headers = ['view','edit','delete']

6. You will want to modify crud.settings.[action]_next, so that it redirects to
your WebGrid page after completing:
if request.controller == 'default' and request.function == 'data':
 if request.args:
 crud.settings[request.args(0)+'_next'] = URL('index')

7. You can get page totals for numeric fields:
grid.totals = ['stuff.quantity']

8. You can set filters on columns:
grid.filters = ['stuff.name','stuff.created']

9. You can modify the query that filters use (not available if your datasource is a
Rows object; use rows.find):
grid.filter_query = lambda f,v: f==v

Adding Ajax Effects

182

10. You can control which request vars are allowed to override the grid settings:
grid.allowed_vars =
 ['pagesize','pagenum','sortby','ascending','groupby','totals']

The WebGrid will use a field's represent function, if present, when rendering the cell.
If you need more control, you can completely override the way a row is rendered.

11. The functions that render each row can be replaced with your own lambda
or function:
grid.view_link = lambda row: ...
grid.edit_link = lambda row: ...
grid.delete_link = lambda row: ...
grid.header = lambda fields: ...
grid.datarow = lambda row: ...
grid.footer = lambda fields: ...
grid.pager = lambda pagecount: ...
grid.page_total = lambda:

12. Here are some useful variables for building your own rows:
grid.joined # tells you if your datasource is a join
grid.css_prefix # used for css
grid.tablenames
grid.response # the datasource result
grid.colnames # column names of datasource result
grid.pagenum
grid.pagecount
grid.total # the count of datasource result

For example, let's customize the footer:
grid.footer = lambda fields : TFOOT(TD("This is my footer" ,
 _colspan=len(grid.action_links)+len(fields),
 _style="text-align:center;"),
 _class=grid.css_prefix + '-webgrid footer')

13. You can also customize messages:
grid.messages.confirm_delete = 'Are you sure?'
grid.messages.no_records = 'No records'
grid.messages.add_link = '[add %s]'
grid.messages.page_total = "Total:"

14. You can also also use the row_created event to modify the row when it is created.
Let's add a column to the header:
def on_row_created(row,rowtype,record):
 if rowtype=='header':
 row.components.append(TH(' '))
grid.row_created = on_row_created

Chapter 5

183

15. Let's move the action links to the right-hand side:

def links_right(tablerow,rowtype,rowdata):
 if rowtype != 'pager':
 links = tablerow.components[:3]
 del tablerow.components[:3]
 tablerow.components.extend(links)

grid.row_created = links_right

If you are using multiple grids on the same page, they must have unique names.

Ajaxing your search functions
In this recipe, we describe the code demonstrated in this video:

http://www.youtube.com/watch?v=jGuW43sdv6E

It is very similar to autocompletion. It lets you type code in an input field, sends the text
to the server through Ajax, and displays the results returned by the server. It can be used,
for example, to perform live search. It differs from autocompletion, because the text is not
necessarily picked from one table (it can originate from a more complex search condition
implemented server-side), and the results are not used to populate an input field.

How to do it...
1. We need to start with a model and, for this example, we picked this one:

db.define_table('country',
 Field('iso'),
 Field('name'),

Adding Ajax Effects

184

 Field('printable_name'),
 Field('iso3'),
 Field('numcode'))

2. We populate this model with the following data:
if not db(db.country).count():
 for (iso,name,printable_name,iso3,numcode) in [
 ('UY','URUGUAY','Uruguay','URY','858'),
 ('UZ','UZBEKISTAN','Uzbekistan','UZB','860'),
 ('VU','VANUATU','Vanuatu','VUT','548'),
 ('VE','VENEZUELA','Venezuela','VEN','862'),
 ('VN','VIETNAM','Viet Nam','VNM','704'),
 ('VG','VIRGIN ISLANDS, BRITISH','Virgin Islands,
 British','VGB','092'),
 ('VI','VIRGIN ISLANDS, U.S.','Virgin Islands,
 U.s.','VIR','850'),
 ('EH','WESTERN SAHARA','Western Sahara','ESH','732'),
 ('YE','YEMEN','Yemen','YEM','887'),
 ('ZM','ZAMBIA','Zambia','ZMB','894'),
 ('ZW','ZIMBABWE','Zimbabwe','ZWE','716')]:

db.country.insert(iso=iso,name=name,printable_name=printable_name,
 iso3=iso3,numcode=numcode)

3. Create the following css file static/css/livesearch.css:
#livesearchresults {
 background: #ffffff;
 padding: 5px 10px;
 max-height: 400px;
 overflow: auto;
 position: absolute;
 z-index: 99;
 border: 1px solid #A9A9A9;
 border-width: 0 1px 1px 1px;
 -webkit-box-shadow: 5px 5px 5px rgba(0, 0, 0, 0.3);
 -moz-box-shadow: 5px 5px 5px rgba(0, 0, 0, 0.3);
 -box-shadow: 5px 5px 5px rgba(0, 0, 0, 0.3);
}

#livesearchresults a{
 color:#666666;
}

Chapter 5

185

input#livesearch {
 font-size:12px;
 color:#666666;
 background-color:#ffffff;
 padding-top:5px;
 width:200px;
 height:20px;
 border:1px solid #999999;
}

4. Create the following JavaScript file static/js/livesearch.js:
function livesearch(value){
 if(value != ""){
 jQuery("#livesearchresults").show();
 jQuery.post(livesearch_url,
 {keywords:value},
 function(result){
 jQuery("#livesearchresults").html(result);
 }
);
 }

 else {
 jQuery("#livesearchresults").hide();
 }
}

function updatelivesearch(value){
 jQuery("#livesearch").val(value);jQuery("#livesearchresults").
 hide();
}

jQuery(function(){jQuery("#livesearchresults").hide();});

5. Now create a simple controller action:
def index():
 return dict()

6. The simple controller action is associated to the following views/default/index.
html, which uses the livesearch JS and CSS created in steps 3 and 4:
<script type="text/javascript">
 /* url definition for livesearch ajax call */
 var livesearch_url = "{{=URL('ajaxlivesearch')}}";
</script>

Adding Ajax Effects

186

{{response.files.append(URL('static','css/livesearch.css'))}}
{{response.files.append(URL('static','js/livesearch.js'))}}
{{extend 'layout.html'}}

<label for="livesearch">Search country:</label>

<input type="text" id="livesearch" name="country"
autocomplete="off" onkeyup="livesearch(this.value);" />

<div id="livesearchresults"></div>

7. Finally, in the same controller as the index function, implement the Ajax callback:
def ajaxlivesearch():
 keywords = request.vars.keywords
 print "Keywords: " + str(keywords)

 if keywords:
 query = reduce(lambda a,b:a&b,
 [db.country.printable_name.contains(k) for k in \
 keywords.split()])

 countries = db(query).select()
 items = []

 for c in countries:
 items.append(DIV(A(c.printable_name, _href="#",
 _id="res%s"%c.iso,
 _onclick="updatelivesearch(jQuery('#res%s').
 html())"%c.iso)))
 return DIV(*items)

Here is how it looks:

Chapter 5

187

Creating sparklines
Sparklines are small graphs, typically embedded in text, that summarize a time series
or similar information. The jquery.sparklines plugin provides several different chart
styles and a useful variety of display options. You can combine the sparklines plugin with the
jquery.timers plugin to display data that's changing in real time. This recipe shows one
way to accomplish that.

Sparkline charts are really useful in applications where you need to visually compare lots
of similar data series. Here's a link to a chapter in Edward Tufte's, Beautiful Evidence with
more info:

http://www.edwardtufte.com/bboard/q-and-a-fetch-msg?msg_id=0001OR

We will create an index that shows five to 25 bar charts displaying random numbers, reversely
sorted to emulate Pareto charts. The charts update once-per-second with new data from the
server.

Here's what the display will look like:

Adding Ajax Effects

188

This example assumes that you can use a single JSON query to get the data for all the
sparklines at once, and that you know at the time the view is rendered how many graphs are
to be displayed. The trick is choosing a suitable scheme for generating graph IDs, in this case
["dynbar0", "dynbar1",....], and using the same ID strings as keys for the dictionary,
returned from the JSON service function. This makes it simple to use the web2py view
templating methods, to generate jquery.sparkline() calls that update the sparklines
with data returned from the service function.

How to do it...
1. First of all, you need to download the following:

 � http://plugins.jquery.com/project/sparklines, into
"static/js/jquery.sparkline.js"

 � And the timer, http://plugins.jquery.com/project/timers,
into static/js/jquery.timers-1.2.js

2. Then, in your layout.html, before including web2py_ajax.html, add
the following:
response.files.append(URL('static','js/jquery.sparkline.js'))
response.files.append(URL('static','js/jquery.timers-1.2.js'))

3. Add the following actions to your controller:
def index():
 return dict(message="hello from sparkline.py",
 ngraphs=20, chartmin=0, chartmax=20)

def call():
 return service()

@service.json
def sparkdata(ngraphs,chartmin,chartmax):
 import random
 ngraphs = int(ngraphs)
 chartmin = int(chartmin)
 chartmax = int(chartmax)

 d = dict()
 for n in xrange(ngraphs):
 id = "dynbar" + str(n)
 ### data for bar graph.
 ### 9 random ints between chartmax and chartmin

Chapter 5

189

 data = [random.choice(range(chartmin,chartmax))\
 for i in xrange(9)]
 ### simulate a Pareto plot
 data.sort()
 data.reverse()
 d[id] = data
 return d

4. Then, create views/default/index.html, as follows:

{{extend 'layout.html'}}
{{
 chartoptions =
 XML("{type:'bar',barColor:'green','chartRangeMin':'%d',
 'chartRangeMax':'%d'}" % (chartmin,chartmax))
 jsonurl = URL('call/json/sparkdata/\
 %(ngraphs)d/%(chartmin)d/%(chartmax)d' % locals())
}}

<script type="text/javascript">
 jQuery(function() {
 jQuery(this).everyTime(1000,function(i) {
 jQuery.getJSON('{{=jsonurl}}', function(data) {
 {{for n in xrange(ngraphs):}}
 jQuery("#dynbar{{=n}}").sparkline(data.dynbar{{=n}},
 {{ =chartoptions }});
 {{pass}}
 });
 });
 });
</script>
<h1>This is the sparkline.html template</h1>
{{for n in xrange(ngraphs):}}
<p>
 Bar chart with dynamic data: <span id="dynbar{{=n}}"
 class="dynamicbar">Loading..
</p>
{{pass}}
{{=BEAUTIFY(response._vars)}}

6
Using Third-party

Libraries

In this chapter, we will cover the following recipes:

 f Customizing logging

 f Aggregating feeds

 f Displaying Tweets

 f Plotting with matplotlib

 f Extending PluginWiki with an RSS widget

Introduction
The power of Python comes form the plethora of third-party libraries available. The goal
of this chapter is not to discuss the APIs of these third-party libraries, as the task would be
monumental. The goal, instead, is to show you the proper way to do it by customizing logging,
to detect possible problems, by creating your own APIs in the model files, and packaging the
new interface as a plugin.

Customizing logging
Python's logging capabilities are powerful and flexible, but can be complicated to implement
effectively. Moreover, logging in web2py introduces a new problem set. This recipe offers an
approach for effective logging in web2py, leveraging Python's native logging functionality.

Using Third-party Libraries

192

Python's native logging framework uses a logger-handler combination, whereby one or more
loggers each logs to one or more handlers. The logging framework uses a singleton model for
its loggers, so that the following line of code returns a single global Logger instance by that
name, instantiating it only on first access:

logging.getLogger('name')

By default, a Python process starts out with a single root, logger (name == "), with a
single handler logging to stdout.

How to do it...
Logging in web2py involves some new issues, which are as follows:

 f Configuring and controlling logging at the application level

 f Configuring a logger once and only once

 f Implementing a simple syntax for logging

Python's native logging framework already maintains a global set of named loggers per
process. But in web2py, since the applications run within the same process, loggers are
shared across applications. We need a different solution, if we want to configure and control
loggers on an application-specific basis.

An easy way to create application-specific loggers is by including the application name in the
name of the logger.

logging.getLogger(request.application)

This can be done, for example, in a model file. The same code used across multiple
applications will now return separate loggers for each application.

We want to be able to configure a logger once on start-up. However, when accessing a named
logger, Python doesn't provide a way to check if the logger already exists.

The simplest way to ensure whether a logger is configured only once or not, is to check if it
has any handlers, which is done as follows:

def get_configured_logger(name):
 logger = logging.getLogger(name)
 if len(logger.handlers) == 0:
 # This logger has no handlers, so we can assume
 # it hasn't yet been configured.
 # (Configure logger)
 return logger

Chapter 6

193

Notice that if loggername is empty, you need to retrieve Python's root logger. The default root
logger already has a handler associated with it, so you would check for a handler count of 1.
The root logger can't be made application-specific.

Of course, we don't want to have to call get_configured_logger every time we make
a log entry. Instead, we can make a global assignment once in the model, and use it
throughout our application. The assignment will be executed every time you use the logger
in your controller, but instantiation and configuration will only happen at the first access.

So finally, just place this code in a model:

import logging, logging.handlers
def get_configured_logger(name):
 logger = logging.getLogger(name)
 if (len(logger.handlers) == 0):
 # This logger has no handlers, so we can assume
 # it hasn't yet been configured
 # (Configure logger)
 pass
 return logger

logger = get_configured_logger(request.application)

Use it in your controllers as in the following examples:

logger.debug('debug message')
logger.warn('warning message')
logger.info('information message')
logger.error('error message')

There's more...
What can we do with a custom application-level logger? We can, for example, re-program
logging on Google App Engine, so that messages go in a datastore table. Here is how we
can do it:

import logging, logging.handlers

class GAEHandler(logging.Handler):
 """
 Logging handler for GAE DataStore
 """
 def emit(self, record):
 from google.appengine.ext import db
 class Log(db.Model):

Using Third-party Libraries

194

 name = db.StringProperty()
 level = db.StringProperty()
 module = db.StringProperty()
 func_name = db.StringProperty()
 line_no = db.IntegerProperty()
 thread = db.IntegerProperty()
 thread_name = db.StringProperty()
 process = db.IntegerProperty()
 message = db.StringProperty(multiline=True)
 args = db.StringProperty(multiline=True)
 date = db.DateTimeProperty(auto_now_add=True)
 log = Log()
 log.name = record.name
 log.level = record.levelname
 log.module = record.module
 log.func_name = record.funcName
 log.line_no = record.lineno
 log.thread = record.thread
 log.thread_name = record.threadName
 log.process = record.process
 log.message = record.msg
 log.args = str(record.args)
 log.put()

def get_configured_logger(name):
 logger = logging.getLogger(name)
 if len(logger.handlers) == 0:
 if request.env.web2py_runtime_gae:
 # Create GAEHandler
 handler = GAEHandler()
 else:
 # Create RotatingFileHandler
 import os
 formatter = "%(asctime)s %(levelname)s " + \
 "%(process)s %(thread)s "+ \
 "%(funcName)s():%(lineno)d %(message)s"
 handler = logging.handlers.RotatingFileHandler(
 os.path.join(request.folder,'private/app.log'),
 maxBytes=1024,backupCount=2)
 handler.setFormatter(logging.Formatter(formatter))
 handler.setLevel(logging.DEBUG)
 logger.addHandler(handler)
 logger.setLevel(logging.DEBUG)
 logger.debug(name + ' logger created') # Test entry

Chapter 6

195

 else:
 logger.debug(name + ' already exists') # Test entry
 return logger

Assign application logger to a global var
logger = get_configured_logger(request.application)

You can read more on the subject at the following URLs:

 f http://docs.python.org/library/logging.html

 f http://github.com/apptactic/apptactic-python/blob/master/
logging/custom_handlers.py

Aggregating feeds
In this recipe, we will build an RSS feed aggregator using feedparser and rss2. We call it
Planet Web2py, because it will filter the rss items, based on the string web2py.

How to do it...
1. Create a models/db_feed.py, with the following content:

db.define_table("feed",
 Field("name"),
 Field("author"),
 Field("email", requires=IS_EMAIL()),
 Field("url", requires=IS_URL(), comment="RSS/Atom feed"),
 Field("link", requires=IS_URL(), comment="Blog href"),
 Field("general", "boolean", comment="Many categories (needs
 filters)"),
)

2. Then in controllers/default.py, add a planet function that renders a basic
page by fetching all feeds with feedparser:

def planet():
 FILTER = 'web2py'
 import datetime
 import re
 import gluon.contrib.rss2 as rss2
 import gluon.contrib.feedparser as feedparser

 # filter for general (not categorized) feeds
 regex = re.compile(FILTER,re.I)

Using Third-party Libraries

196

 # select all feeds
 feeds = db(db.feed).select()
 entries = []

 for feed in feeds:
 # fetch and parse feeds
 d = feedparser.parse(feed.url)
 for entry in d.entries:
 # filter feed entries
 if not feed.general or regex.search(entry.description):
 # extract entry attributes
 entries.append({
 'feed': {'author':feed.author,
 'link':feed.link,
 'url':feed.url,
 'name':feed.name},
 'title': entry.title,
 'link': entry.link,
 'description': entry.description,
 'author': hasattr(entry, 'author_detail') \
 and entry.author_detail.name \
 or feed.author,
 'date': datetime.datetime(*entry.date_parsed[:6])
 })

 # sort entries by date, descending
 entries.sort(key=lambda x: x['date'],reverse=True)
 now = datetime.datetime.now()

 # aggregate rss2 feed with parsed entries
 rss = rss2.RSS2(title="Planet web2py",
 link = URL("planet").encode("utf8"),
 description = "planet author",
 lastBuildDate = now,
 items = [rss2.RSSItem(
 title = entry['title'],
 link = entry['link'],
 description = entry['description'],
 author = entry['author'],
 # guid = rss2.Guid('unknown'),
 pubDate = entry['date']) for entry in entries]
)
 # return new rss feed xml
 response.headers['Content-Type']='application/rss+xml'
 return rss2.dumps(rss)

Chapter 6

197

Before you can use this function, you will need to add some feed URLs in db.feed,
for example, using appadmin.

Sample RSS feeds about web2py are as follows:

 f http://reingart.blogspot.com/feeds/posts/default/-/web2py

 f http://web2py.wordpress.com/feed/

 f http://www.web2pyslices.com/main/slices/get_latest.rss

 f http://martin.tecnodoc.com.ar/myblog/default/feed_articles.rss

There's more...
A working example of web2py sample planet can be found at the following URL:

http://www.web2py.com.ar/planet/

Full source code of complete examples (planet-web2py) is published at the Google
code project, available at the following URL:

http://code.google.com/p/planet-web2py/

That application stores rss feed entries, to speed-up aggregation, and refresh
feeds periodically.

Displaying Tweets
In this recipe we will show how to display recent tweets using simplejson, and
fetch the tool included with web2py.

How to do it...
1. First, create a models/0.py file to store the basic configuration, as follows:

TWITTER_HASH = "web2py"

2. In controllers/default.py, add a Twitter function that renders a basic page
section by fetching all tweets with the fetch tool, and parse it with simplejson:
@cache(request.env.path_info,time_expire=60*15,
 cache_model=cache.r
 am)
def twitter():
 session.forget()
 session._unlock(response)

Using Third-party Libraries

198

 import gluon.tools
 import gluon.contrib.simplejson as sj
 try:
 page = gluon.tools.fetch(' http://search.twitter.com/search.
json?q=%%40%s'
 % TWITTER_HASH)
 data = sj.loads(page, encoding="utf-8")['results']
 d = dict()
 for e in data:
 d[e["id"]] = e
 r = reversed(sorted(d))
 return dict(tweets = [d[k] for k in r])
 else:
 return 'disabled'
 except Exception, e:
 return DIV(T('Unable to download because:'),BR(),str(e))

3. Create a view for the twitter component in views/default/twitter.load where we will
render each tweet:

{{ for t in tweets: }}

 {{ =DIV(H5(t["from_user_name"])) }}
 {{ =DIV(t["text"]) }}

{{ pass }}

4. Then, in default/index.html, add the section using LOAD (jQuery) to load
the tweets:

{{if TWITTER_HASH:}}
 <div class="box">
 <h3>{{=T("%s Recent Tweets") % TWITTER_HASH}}</h3>
 <div id="tweets"> {{=LOAD('default','twitter.
load',ajax=True)}}</div>
 </div>{{pass}}

Chapter 6

199

There's more...
You can use CSS styles to enhance the tweets section. Create a static/css/tweets.css
file with the following code:

/* Tweets */

#tweets ol {
 margin: 1em 0;
}

#tweets ol li {
 background: #d3e5ff;
 list-style: none;
 -moz-border-radius: 0.5em;
 border-radius: 0.5em;
 padding: 0.5em;
 margin: 1em 0;
 border: 1px solid #aaa;
}

#tweets .entry-date {
 font-weight: bold;
 display: block;
}

Then, add the CSS file to the response:

def index():
 response.files.append(URL("static","css/tweets.css"))
 response.flash = T('You are successfully running web2py.')
 return dict(message=T('Hello World'))

You can further customize this recipe with the following attributes that this tweeter
API returns for each tweet:

 f iso_language_code

 f to_user_name

 f to_user_id_str

 f profile_image_url_https

 f from_user_id_str

Using Third-party Libraries

200

 f text

 f from_user_name

 f in_reply_to_status_id_str

 f profile_image_url

 f id',

 f to_user

 f source

 f in_reply_to_status_id

 f id_str',

 f from_user

 f from_user_id

 f to_user_id

 f geo

 f created_at

 f metadata

Remember that in this recipe we are using a cache to speed-up the page load
(15 minutes = 60*15). If you need to change it, modify @cache(…,time_expire=…)

Plotting with matplotlib
Matplotlib is a state-of-the-art plotting library for Python. Some examples of what
it can do can be found at the following URL:

http://matplotlib.sourceforge.net/gallery.html

Matplotlib can be used in the following two models:

 f PyLab (a Matlab compatibility mode)

 f More pythonic APIs

Most of the documentation uses PyLab, and that is a problem, because PyLab shares
a global state and it does not work well with web applications. We will need to use the
more pythonic APIs.

Chapter 6

201

How to do it...
Matplotlib has many backends that can be used to print in a GUI or to a file.

In order to use matplotlib in web applications, we need to instruct it to generate plots in
real time, print them into a memory-mapped file, and stream the content of the file to the
page visitor.

Here, we show a utility function to plot datasets of the form:

name = [(x0,y0),(x1,y1),...(xn,yn)]

1. Create a models/matplotlib.py file, containing the following code:
from matplotlib.backends.backend_agg import FigureCanvasAgg as
 FigureCanvas
from matplotlib.figure import Figure
import cStringIO

def myplot(title='title',xlab='x',ylab='y',mode='plot',
 data={'xxx':[(0,0),(1,1),(1,2),(3,3)],
 'yyy':[(0,0,.2,.2),(2,1,0.2,0.2),(2,2,0.2,0.2),
 (3,3,0.2,0.3)]}):
 fig=Figure()
 fig.set_facecolor('white')
 ax=fig.add_subplot(111)
 if title: ax.set_title(title)
 if xlab: ax.set_xlabel(xlab)
 if ylab: ax.set_ylabel(ylab)
 legend=[]
 keys=sorted(data)
 for key in keys:
 stream = data[key]
 (x,y)=([],[])
 for point in stream:
 x.append(point[0])
 y.append(point[1])
 if mode=='plot':
 ell=ax.plot(x, y)
 legend.append((ell,key))
 if mode=='hist':
 ell=ax.hist(y,20)
 if legend:

Using Third-party Libraries

202

 ax.legend([x for (x,y) in legend], [y for (x,y) in
 legend],
 'upper right', shadow=True)
 canvas=FigureCanvas(fig)
 stream=cStringIO.StringIO()
 canvas.print_png(stream)
 return stream.getvalue()

2. You can now try it, using the following actions in your controller:

def test_images():
 return HTML(BODY(
 IMG(_src=URL('a_plot')),
 IMG(_src=URL('a_histogram'))))

def a_plot():
 response.headers['Content-Type']='image/png'
 return myplot(data={'data':[(0,0),(1,1),(2,4),(3,9),(4,16)]})

def a_histogram():
 response.headers['Content-Type']='image/png'
 return myplot(data={'data':[(0,0),(1,1),(2,4),(3,9),(4,16)]},
 mode='hist')

Call them with the following:

 � http://.../test_images

 � http://.../a_plot.png

 � http://.../a_histogram.png

How it works...
When you visit test_images, it generates an HTML that includes the plots as images:

Each of these URLs calls the myplot function in models/matplotlib.py. The plot
function generates a figure containing one subplot (a set of X-Y axes). It then draws on
the subplot called ax (connects the dots when mode="plot", and draws histograms
when mode="hist"), and prints the figure to a memory-mapped canvas called stream.
It then reads the binary data from the stream and returns it.

Chapter 6

203

There's more...
In the example, the critical functions are ax.plot and ax.hist, which draw on the axes
in the subplot. You can now create more plotting functions by copying the provided myplot
function, by renaming it, and by replacing ax.plot or ax.hist with other functions for
scatter plots, error bars, and so on. Now, it should be straightforward from the matplotlib
documentation.

Extending PluginWiki with an RSS widget
PluginWiki is the most complex of the web2py plugins. It adds a lot of capabilities; in
particular, it adds a CMS to your application, and defines widgets that can be embedded
in the CMS pages as well as your own views. This plugin can be extended, and here we
show you how to add a new widget.

For more information about plugin-wiki, see:

http://web2py.com/examples/default/download

How to do it...
1. Create a file named models/plugin_wiki_rss.py, and add the following

code to it:
class PluginWikiWidgets(PluginWikiWidgets):
 @staticmethod
 def aggregator(feed, max_entries=5):
 import gluon.contrib.feedparser as feedparser
 d = feedparser.parse(feed)
 title = d.channel.title
 link = d.channel.link
 description = d.channel.description
 div = DIV(A(B(title[0], _href=link[0])))
 created_on = request.now
 for entry in d.entries[0:max_entries]:
 div.append(A(entry.title,' - ', entry.updated,
 _href=entry.link))
 div.append(DIV(description))
 return div

Using Third-party Libraries

204

2. Now, you can include this widget in the PluginWiki CMS pages, using the
following syntax:

name:aggregator
feed:http://rss.cbc.ca/lineup/topstories.xml
max_entries:4

You can also include it in any web2py page using the following syntax:
{{=plugin_wiki.widget('aggregator',max_entries=4,
 feed='http://rss.cbc.ca/lineup/topstories.xml')}}

There's more...
web2py user, Bogdan, has made some changes to this plugin to make it slicker, by using
jQuery UI, which comes with PluginWiki. Here is the improved plugin:

class PluginWikiWidgets(PluginWikiWidgets):
 @staticmethod
 def aggregator(feeds, max_entries=5):
 import gluon.contrib.feedparser as feedparser
 lfeeds = feeds.split(",")
 strg='''
 <script>
 var divDia = document.createElement("div");
 divDia.id ="dialog";
 document.body.appendChild(divDia);
 var jQuerydialog=jQuery("#dialog").dialog({
 autoOpen: false,
 draggable: false,
 resizable: false,
 width: 500
 });
 </script>
 '''

 for feed in lfeeds:
 d = feedparser.parse(feed)
 title=d.channel.title
 link = d.channel.link
 description = d.channel.description
 created_on = request.now
 strg+='%s' % \
 (link[0],title[0])

Chapter 6

205

 for entry in d.entries[0:max_entries]:
 strg+='''
 <div class="feed_entry">

 %(title)s - %(updated)s
 <script>
 jQuery("a").mouseover(function () {
 var msg = jQuery(this).attr("rel");
 if (msg) {
 jQuerydialog[0].innerHTML = msg;
 jQuerydialog.dialog("open");
 jQuery(".ui-dialog-titlebar").hide();
 }
 }).mousemove(function(event) {
 jQuerydialog.dialog("option", "position", {
 my: "left top",
 at: "right bottom",
 of: event,
 offset: "10 10"
 });
 }).mouseout(function(){
 jQuerydialog.dialog("close");
 });
 </script></div>''' % entry

 return XML(strg)

This modified version of the script does not use helpers, but raw html for speed, is CSS
friendly, and uses a dialog pop-up for entry details.

7
Web Services

In this chapter, we will cover the following recipes:

 f Consuming a web2py JSON service with jQuery

 f Consuming a JSON-RPC service

 f JSON-RPC from JavaScript

 f Making amf3 RPC calls from Flex using pyamf

 f PayPal integration in web2py

 f PayPal web payments standard

 f Getting Flickr photos

 f Sending e-mails with Boto through Amazon Web Services (AWS)

 f Making GIS maps using mapscript

 f Google groups and Google code feeds reader

 f Creating SOAP web services

Introduction
This chapter is not about creating web services (that subject is discussed in the official
web2py manual); it's about consuming web services. The most common web services use
protocols, such as JSON, JSON-RPC, XML, XMLRPC, and/or SOAP. web2py supports them all,
but the integration can be quite tricky. Here, we provide examples of integration with Flex,
Paypal, Flickr, and GIS.

Web Services

208

Consuming a web2py JSON service
with jQuery

This is a simple example of how to retrieve JSON data from the server, and consume it
with jQuery.

How to do it...
There are many ways to return JSON form web2py, but here we consider the case of a JSON
service, for example:

def consumer():
 return dict()

@service.json
def get_days():
 return ["Sunday", "Monday", "Tuesday", "Wednesday", "Thursday",
 "Friday", "Saturday"]

def call():
 return service()

Here the function consumer doesn't really do anything; it just returns an empty dictionary
to render the view, which will consume the service. get_days defines the service, and the
function call exposes all registered services. get_days does not need to be in the controller,
and can be in a model. call is always in the default.py scaffolding controller.

Now, we create a view for the consumer actions:

{{extend 'layout.html'}}

<div id="target"></div>

<script>
 jQuery.getJSON("{{=URL('call',args=['json','get_days'])}}",
 function(msg){
 jQuery.each(msg, function(){ jQuery("#target").
 append(this + "
"); })
 });
</script>

Chapter 7

209

How it works...
The first argument of jQuery.getJSON is the URL of the following service:

http://127.0.0.1:8000/app/default/call/json/get_days

This always follows the pattern: http://<domain>/<app>/<controller>/
call/<type>/<service>

The URL is in between {{...}}, because it is resolved at the server-side, while everything
else is executed at the client-side.

The second argument of jQuery.getJSON is a callback, which will be passed the JSON
response. In our case, the callback loops over each item in the response (a list of week days
as strings), and appends each string, followed by a
 to the <div id="target">.

There's more...
If you enable generic URLs, you can implement json services as a regular action.

response.generic_pattern = ['get_days.json']
def get_days():
 return ["Sunday", "Monday", "Tuesday", "Wednesday",
 "Thursday", "Friday", "Saturday"]

In this case, you do not need to use the call action, and you can rewrite the view for the
consumer action as follows:

{{extend 'layout.html'}}

<div id="target"></div>
<script>
 jQuery.getJSON(
 "{{=URL('get_days.json')}}",
 function(msg){
 jQuery.each(
 msg,
 function(){
 jQuery("#target").append(this + "
");
 }
);
 }
);
</script>

Web Services

210

In this way, the URL is shorter. So, why use the @service.json instead of the latter method?
There are two reasons. The first is that in the former case, you can expose the same function
suing also JSON-RPC, XMLRPC, SOAP, and AMF services, using the corresponding decorators.
While in the latter case, this would be more complex. The second reason is that, using @
service.json, GET variables are automatically parsed and passed as variables to the
service function. For example:

@service.json
def concat(a,b):
 return a+b

This can be called equivalently with the following:

http://127.0.0.1:8000/app/default/call/json/concat?a=hello&b=world

http://127.0.0.1:8000/app/default/call/json/concat/hello/world

http://127.0.0.1:8000/app/default/call/json/concat/hello?b=world

Consuming a JSON-RPC service
While, before, we considered the case of a JSON service, we are now interested in a JSON-
RPC service. This is more complex, because the variables (request and response) have a
more strict format dictated by the protocol.

Getting ready
We can create a JSON-RPC service in pure web2py, but it's more likely that we will consume
it from a different Python program. For this purpose, we will assume a standard jsonrpc
library, which can be found at the following URL:

https://github.com/bmjames/python-jsonrpc

You can install it with the following command:

easy_install jsonrpc

How do do it...
1. First of all, we need to create the service. We will consider the same example that

we used before, but we change its decorator:
from gluon.tools import Service
service = Service(globals())
@service.jsonrpc
def concat(a,b):

Chapter 7

211

 return a+b
def call():
 return service()

2. Now, to call it, we need a JSON-RPC client library from a separate (non web2py)
Python program:

from jsonrpc.proxy import JSONRPCProxy
proxy = JSONRPCProxy(
 'http://127.0.0.1:8000',path='/app/default/call/jsonrpc')
print proxy.call('concat','hello','world')

There's more...
There are other JSON-RPC libraries out there, for example http://json-rpc.org/wiki/
python-json-rpc, which uses the following syntax closer to the xmlrpclib syntax:

from jsonrpc import ServerProxy
proxy = ServerProxy(
 'http://127.0.0.1:8000/app/default/call/jsonrpc')
print proxy.concat('hello','world')

Notice that in this latter case, the method name becomes an attribute. The two libraries are
incompatible, but have the same name. Make sure you know which one you are using.

web2py includes its own JSON-RPC client library in gluon/contrib/simplejsonrpc.py,
and its API is compatible with the previous example:

def test_concat():
 from gluon.contrib.simplejsonrpc import ServerProxy
 proxy = ServerProxy(
 'http://127.0.0.1:8000/%s/default/call/jsonrpc' %
 request.application)
 return proxy.concat('hello','world')

JSON-RPC from JavaScript
There are many good reasons you'd want to use JSON-RPC as transport protocol in your web
applications between the client and the server. This is particularly useful to create a rich
client interface, as JSON-RPC is faster than XML-RPC, because it is less verbose and is easier
to parse by the JavaScript code. JSON-RPC is better than just JSON, because it is an RPC
protocol, which means that it will handle error propagation for you.

In this recipe, we provide an example of how to do it.

Web Services

212

You can read an article for the same at the following URL, which is written by Luke Kenneth
Casson Leighton, author of the excellent Pyjamas library:

http://www.advogato.org/article/993.html

This recipe is based on code posted here:

http://otomotion.org/BasicJSONRPC/static/BasicJSONRPC-application.zip

Getting ready
This recipe is based on the json-xml-rpc library, which is available at:

http://code.google.com/p/json-xml-rpc

It is an RPC JavaScript client implementation used in this example to connect to web2py's
actions, using its native JSON-RPC support.

It's not a perfect approach, but it supplies a level of decoupling between the server and
the client that makes me want to look past its small defects. This enlightening article, by
Luke Kenneth Casson Leighton, goes into more detail about the approach (see the section
Full-blown JavaScript-led Development). This is also the method used by frameworks such as
GWT (http://code.google.com/webtoolkit/) and PyJamas (http://pyjs.org/).

How to do it...
1. We will create two controllers and one view. The first controller will simply load the

rich client interface defined in the view. The second controller defines the JSON-RPC
methods. There's no real reason not to use a single controller for both purposes, but
it is a better design to keep the two functionalities in separate files.

The first controller can be default.py, and we can use the usual trivial action:
def index(); return dict()

In the view views/default/index.html, we are going to simply add the
following code:
{{
 response.files.append(URL('static','js/jquery.js'))
 response.files.append(URL('static','js/rpc.js'))
 response.files.append(URL('static','js/BasicJSONRPC.js'))
}}
{{extend 'layout.html'}}

Chapter 7

213

The BasicJSONRPC.py controller contains nothing more than the reference to
the view.
def index():
 response.view = "BasicJSONRPC.html"
 return dict()

def BasicJSONRPC():
 response.view = "BasicJSONRPC.html"
 return dict()

The BasicJSONRPCData.py controller is where the real meets the live. We'll start
simple.
import math

from gluon.tools import Service

service = Service(globals())

def call():

 return service()

@service.jsonrpc

def systemListMethods():

 #Could probably be rendered dynamically

 return ["SmallTest"];

@service.jsonrpc

def SmallTest(a, b):

 return a + b

The systemListMethods action is required by the json-xml-rpc library. By
default, the library actually calls system.ListMethods, which can't be supported
by Python. We thus remove the period in the call inside the RPC library. The Python
function just needs to return an array of strings of all the possible methods to call.

Web Services

214

2. Now that we have the controller ready, we can move on to the client portion. The URL
to access the RPC methods is something like the following:
http://localhost/Application/Controller/call/jsonrpc

3. Using this URL and the json-xml-rpc library, we create a JavaScript
DataController object, which we'll use for all future procedure calls.
var ConnectionCreationTime = null;
var DataController = null;
var Connected = false;

function InitDataConnection() {
 Connected = false;
 // replace with the correct service url
 var url = http://localhost/Application/Controller/call/jsonrpc
 // var url = GetConnectionURL();
 try {
 // Here we connect to the server and build
 // the service object (important)
 DataController = new rpc.ServiceProxy(url);
 Connected = true;
 } catch(err) {
 Log("Connection Error: " + err.message);
 Connected = false;
 }
 var now = new Date();
 ConnectionCreated = now;
}

4. By default, the json-xml-rpc library creates the DataController for
asynchronous calls. Since you don't want your JavaScript to be blocked during your
requests, asynchronous calls is the desired behavior. If you'd, however, like to run
a quick test of of your remote methods, you can run the following lines of JavaScript
from the Firebug console:
http://getfirebug.com

InitDataConnection();

rpc.setAsynchronous(DataController,false);

DataController.SmallTest(1,2);

Chapter 7

215

The json-xml-rpc documentation, located at http://code.google.com/p/
json-xml-rpc/wiki/DocumentationForJavaScript, gives the details of how
to run asynchronous calls.
function RunSmallTest() {
 if(Connected == false)
 Log("Cannot RunSmallTest unless connected");
 else {
 var a = GetAValue();
 var b = GetBValue();
 Log("Calling remote method SmallTest using values a="
 + a + " and b=" + b);
 DataController.SmallTest({params:[a,b],
 onSuccess:function(sum){
 Log("SmallTest returned " + sum);
 },
 onException:function(errorObj){
 Log("SmallTest failed: " + errorObj.message);
 },
 onComplete:function(responseObj){
 Log("Call to SmallTest Complete");
 }
 });
 Log("Asynchronous call sent");
 }
}

5. Dictionaries and arrays can be returned by your Python functions, as demonstrated
by our BiggerTest function:
@service.jsonrpc
def BiggerTest(a, b):
 results = dict()
 results["originalValues"] = [a,b]
 results["sum"] = a + b
 results["difference"] = a - b
 results["product"] = a * b
 results["quotient"] = float(a)/b
 results["power"] = math.pow(a,b)
 return results

Don't forget to update the systemListMethods function
to include any new functions.

Web Services

216

6. At this step, you should be able to test remote calls and see the results using
JavaScript (called synchronously in Firebug console):
>>> InitDataConnection();

POST http://127.0.0.1:8000/BasicJSONRPC/BasicJSONRPCData/call/
jsonrpc 200 OK 20ms rpc.js (line 368)

>>> rpc.setAsynchronous(DataController,false);

>>> var results = DataController.BiggerTest(17,25);

POST http://127.0.0.1:8000/BasicJSONRPC/BasicJSONRPCData/call/
jsonrpc 200 OK 20ms rpc.js (line 368)

>>> results.originalValues

[17, 25]

>>> results.originalValues[1]

25

>>> results.sum

42

>>> results.difference

-8

>>> results.quotient

0.68

7. Authentication works too, as cookies are posted with every request, and web2py is
thus able to parse the session ID cookie for JSON-RPC calls. Security requirements
can be added to your remote functions, by securing the call function (not the
individual service function; that is important):
@auth.requires_login()
def call():
 return service()

8. If you were to also set @auth.requires_login on the main BasicJSONRPC.py
controller, your users would log in when they first load the page, and all subsequent
RPC calls will be correctly authenticated. The problem with this, comes with timeouts.
If a user lets the page idle until timeout occurs, she or he can still trigger RPC calls
to the server. Authentication will then fail and the default web2py value of auth.
settings.login_url, /default/user/login will be called as a view. The
problem is that since a view is not a valid JSON-RPC message, the json-xml-rpc
library will discard it and fail. You can catch the error, but it's not easy to identify it.
The simplest solution I've found, and I'm hoping that others will find a better one, is
to set the value of auth.settings.login_url to an action in the RPC controller,
which returns nothing but a simple string.

Chapter 7

217

9. In db.py, set:
auth.settings.login_url = URL("BasicJSONRPC", 'Login')

10. Login is a non JSON-RPC action (since we don't want it to require authentication),
which returns an easily recognizable string:
def Login():
 return "Not logged in"

11. We can then detect authentication failure from the client-side, by running a check
whenever an RPC call fails. In the onException handler of the asynchronous call
(see RunSmallTest), replace with the following code to handle authentication:
onException:function(errorObj){
 if(errorObj.message.toLowerCase().indexOf(
 "badly formed json string: not logged in") >= 0)
 PromptForAuthentication();
 else
 Log("SmallTest failed: " + errorObj.message);
}

The obvious flaw in this approach is that we've lost the very practical login view for
regular HTML views. Therefore, while authentication works for RPC calls, it breaks it
for HTML views.

12. We can now simplify our calls.

Although it's not possible to really simplify the syntax used by the json-xml-rpc
library to make an asynchronous call, it is, however, possible to somewhat automate
many parts of it, for calls that simply get or update client-side data objects. This is
especially useful if you're trying to handle errors and authentication in a consistent
way. We can use the following client wrapper function to make asynchronous calls:
function LoadDataObject(objectName,params,
 responseObject,errorObject) {
 Log("Loading data object \"" + objectName + "\"")
 eval("" + objectName + " = \"Loading\"");
 eval(objectName +"Ready = false");
 if(responseObject === undefined) {
 if(Connected != true) {
 Log("Not connected, connecting...");
 InitDataConnection();
 }
 var listUndefined = eval("DataController." +
 objectName + " !== undefined")
 if(Connected == true && listUndefined == true) {
 var paramsString = "";

Web Services

218

 for(var i in params) {
 paramsString += "params[" + i + "],";
 }
 //Removing trailing coma
 paramsString = paramsString.substring(0,
 (paramsString.length - 1));
 eval(
 "DataController."
 + objectName
 + "({params:["
 + paramsString
 + "], onSuccess:function(response){LoadDataObject(\"" +
 objectName + "\",["
 + paramsString
 + "],response)}, onException:function(error){
 Log(\"Error detected\"); LoadDataObject(\""
 + objectName
 + "\",["
 + paramsString
 + "],null, error);}, onComplete:function(responseObj){
 Log(\"Finished loading "
 + objectName
 + "\");} });");
 }
 else {
 eval(objectName + " = \"Could not connect\"");
 eval(objectName + "Ready = false");
 Log("Could not connect. Either server error " +
 "or calling non existing method ("
 + objectName + ")");
 }
 } else {
 if(errorObject === undefined) {
 eval(objectName + " = responseObject");
 eval(objectName +"Ready = true");
 }
 else {
 Log("Failed to Load Data Object " +
 objectName + ": " + errorObject.message)
 eval(objectName + " = errorObject");
 eval(objectName + "Ready = false");
 }
 }
}

Chapter 7

219

The function can be reused for any number of data objects. The requirements are:

 � Define a data object variable that has the same name as the RPC function
(for example: UserList)

 � Define another variable with its name followed by Ready (for example:
UserListReady)

 � Call the wrapper function, by passing the name of the RPC action as a string,
and an array containing any required parameter values (for example:
LoadDataObject("UserList", ["admins",false])

During the call, the ready variable will be set to false, and the data object variable
will be set to the string Loading. If an error occurs, the ready variable will remain false,
and the data object variable will be set to the error object. You can poll the two variables
if necessary.

There's more...
The json-xml-rpc library is a single JavaScript file, which can be obtained by downloading
the rpc-client-JavaScript ZIP file from the following Google-hosted code site:

http://code.google.com/p/json-xml-rpc/downloads/list

It has excellent documentation, which is located at the following URL:

http://code.google.com/p/json-xml-rpc/wiki/DocumentationForJavaScript

There is, however, a bug in their code. In revision 36, we had to change lines 422 to 424:

//Handle errors returned by the server
if(response.error !== undefined){
 var err = new Error(response.error.message);

To the following

//Handle errors returned by the server
if(response.error && response.error !== undefined){
 var err = new Error(response.error.message);

We also had to remove the periods in the calls to system.ListMethods on lines 151 and
154, so that a systemListMethods function could be supported by Python.

Web Services

220

Making amf3 RPC calls from Flex
using pyamf

Unlike the example in The Official web2py Book, in this recipe we show you how to
communicate with an mxml Flex application as opposed to Flash.

Getting ready
First of all, you must install pyamf and make it visible to web2py (which initially comes without
pyamf). For this purpose, visit the pyamf download page, located at the following URL, and get
a ZIP file of the latest stable release:

http://www.pyamf.com/community/download.html

Unzip and install it according to instructions in INSTALL.txt. I suggest using the following
command, in order to avoid possible problems:

python setup.py install --disable-ext

This will place a .egg package (something like PyAMF-0.5.1-py2.6.egg) in Python's
installation folder, under \Lib\site-packages (for example, C:\Python26\Lib\site-
packages)..egg is basically a ZIP archive (such as .jar to Java), so open it and extract the
pyamf folder. Go to the web2py installation folder, and find the library.zip archive. Add
pyamf to this archive. That's it! Now, web2py will run pyamf transparently to you.

How to do it...
1. Python code: Let's assume that you are developing an application called app, and

the web2py server runs on the localhost (127.0.0.1:8000). Add a new controller
called rpc.py, and add the following code to the controller:
from gluon.tools import Service
service = Service(globals())

def call():
 session.forget()
 return service()

@service.amfrpc3("mydomain")
def test():
 return "Test!!!"

Notice that mydomain is important. You can use a different domain name, but you
have to be consistent. Don't forget it!

Chapter 7

221

2. Flex mxml/AS3 code: Now, create a new Flex application, and replace its content
with the following code:
<?xml version="1.0" encoding="utf-8"?>
 <mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="absolute">
 <mx:Script>
 <![CDATA[
 import mx.rpc.events.FaultEvent;
 import mx.rpc.events.ResultEvent;
 import mx.controls.Alert;

 private function resultHandler(
 event:ResultEvent):void
 {
 trace(event.result.toString());
 }
 private function faultHandler(
 event:FaultEvent):void
 {
 trace(event.fault.message);
 }
]]>
 </mx:Script>
 <mx:RemoteObject
 id="amfService"
 endpoint="http://127.0.0.1:8000/app/rpc/call/amfrpc3"
 destination="mydomain"
 showBusyCursor="true">
 <mx:method name="test" result="resultHandler(event)"
 fault="faultHandler(event)"/>
 </mx:RemoteObject>
 <mx:Button x="250" y="150" label="Fire"
 click="amfService.test();"/>
 </mx:Application>

3. code_xml: Pay attention to the definition of the RemoteObject. Endpoint is a
service URL. It doesn't include the RPC method name, which should be specified
in the name attribute of the mx:method object. /call/amfrpc3 is a standard
URL suffix, and it shouldn't be altered. It is important to specify the destination
attribute – it's the same ID that appears in the controller in the @service.
amfrpc3(...) decorator.

Web Services

222

4. Setting crossdomain.xml: Notice that in order for Flex to be able to invoke
RPC services from a different domain, one needs to expose an appropriate
crossdomain.xml file at the top-level of the server of that domain. For example:
http://mydomain.com:8000/crossdomain.xml

To do this, create crossdomain.xml inside the static/ folder of the application
(web2py doesn't support public resources, so we will do some routing), and add
an appropriate access policy. For example, full access (not desirable for security
reasons):
<?xml version="1.0"?>
<!DOCTYPE cross-domain-policy SYSTEM
 "http://www.macromedia.com/xml/dtds/cross-domain-policy.dtd">
<cross-domain-policy>
 <allow-access-from domain="*" />
</cross-domain-policy>

Now go to the web2py installation folder, and create a routes.py file with the
following content:
routes_in = (('/crossdomain.xml', '/app/static/crossdomain.xml'),)

This file instructs the web2py server to redirect all requests in crossdomain.xml,
to its location at the application's static resources. Don't forget to close and run the
process of the server, in order for it to reload the routing information.

PayPal integration in Web2py
This recipe is meant to be an introduction to Paypal integration in web2py. It by no means
covers all the possible integrations with Paypal, and is mostly centered on what PayPal
names Standard Integration. The examples given are proven at the time of writing this,
but they should be taken only as a starting point rather than a reference. For that, please
use both PayPal's and web2py's documentation.

PayPal offers different levels of integration, which, depending
on what you need to do, might be better suited for your needs.
It is important that you get to know at least the basic integration
concepts that PayPal provides before starting to program anything,
so that you can plan in advance what is best suited to your needs.

That said, let me try to give you a rough idea of the different levels involved, before going
any further, so as to better understand the little area that this recipe covers. It is, however,
an area which most of the small-sized and middle-sized projects may fall into.

Chapter 7

223

In broad lines, there are three levels of integration that one can achieve with PayPal:

 f Express checkout: Within a seller account in PayPal, you can create buttons with
information related to each item that you may be selling (name, description, item
number, and pricing). You can have up to 1000 different buttons or items defined
in this way. After that, it is a matter of setting the buttons on the HTML, to go along
with the application. Regarding web2py, it is really simple to just copy the code that
PayPal creates for each button in a text field in your product db, and then just present
it on the screen whenever it's needed. Using this method, one can opt for different
purchase experiences including straight checkout or cart management (managed by
PayPal), which would let you add or remove items from within the checkout screen in
PayPal. I don't like this method, unless you would be selling very, very few item codes,
as it may get to be a pain to maintain your articles in PayPal. If you are selling a few
services or whatever with a small set of prices, it might very well be worth it, as you
don't have to work much from the programming point of view, and it's really simple to
set up.

 f Standard integration: This is the one that we will be covering in this article. It
basically lets you manage your own product database, and so on, and sends all the
data to PayPal at the moment of payment, so that the whole checkout process is
managed at PayPal. After the transaction has been completed, you can choose (as
per configuration of your profile in your PayPal seller account) whether the customer
is redirected back to your domain (you can set up a default URL to return to, or
send that URL dynamically each time you send the data for the checkout, but the
functionality needs to be activated in your seller account). The following two things
need to be mentioned here, which I feel are part of the standard integration, although
they are not required in order to have your basic site working:

 � Payment Data Transfer (PDT): This would be the process by which the
customer is sent back to your domain, which lets you capture the transaction
data (payment confirmation data from PayPal), and shows it in a confirmation
screen in your own domain, with any further information you may want to
show, or redirect the customer to continue his shopping. It is not completely
safe, as nothing guarantees that the customer will be redirected; this may
well happen, because in some cases, PayPal doesn't execute the redirection,
but forces the customer to click on an extra button to return to your domain,
so as to give the opportunity to the customer to join PayPal. This happens
whenever the customer pays by credit card and not using his PayPal account.

 � Instant Payment Notification (IPN): This is a messaging service that
connects to your domain to send the information of each transaction
processed at Paypal. It doesn't stop sending the message until you
acknowledge its reception (or four days pass without acknowledgement).
This is the safest way to collect all the data from all the transactions
processed at PayPal, and trigger any internal process that you may have.
Usually, you will want to do the shipping of your products at this point.

Web Services

224

 f Detailed integration: In here, I am really grouping a number of other methods ands
APIs, that I will not be detailing; some of them for very specific uses. The only method
that I would like to mention more specifically is Name Value Pairs (NVP), as I feel that
it gives you a very simple programing interface with which you can do very detailed
processes controlling all your data, and all your transaction flow from your domain.
Using NVP, you can, for example, capture all the data related to a payment in your
domain, and only at that point, send all the information to PayPal to process the
payment (as opposed to processing the checkout, which is what we are doing with
the previous items). You have a good example as to how to implement this at
http://web2py.com/appliances/default/show/28, or go to the main web
page, and find it under free applications, PayPalEngine, developed by Matt Sellers.
You should, however, check the detailed documentation at PayPal, as the process
involves many steps, in order to ensure the maximum security of your transactions.

So basically, in express checkout, PayPal manages your cart (and master data), the checkout
process, and of course, payments. With standard integration, PayPal manages checkout and
payments, and with further detailed integration, you can make it so that it manages only
the payments.

How to do it...
Before moving on, all the technical documentation regarding integration with PayPal can be
found at:

https://cms.paypal.com/us/cgi-bin/?cmd=_render-content&content_
ID=developer/library_documentation

A link to this URL, in case this changes, can be found by clicking on the documentation link at:

https://developer.paypal.com/

So, moving on to how to use the standard integration, the first thing you should do is create
yourself a sandbox account. You do this at https://developer.paypal.com/. Create
yourself an account, and once logged in, create at least two test accounts: a seller and a
buyer respectively. There is a good guide on all the necessary steps called PP sandbox user
guide, which you can find at the documentation link provided before, or on an HTML version
at https://cms.paypal.com/us/cgi-bin/? cmd=_render-content&content_
ID=developer/howto_testing_sandbox. Everything on how to set your account up and
start running, is described there.

Once you have that set up and running, you will have your seller ID and e-mail (you can use
any of them to identify yourself to PayPal on the code below, although I prefer the ID, if only to
avoid possible spam).

Chapter 7

225

OK, so now, we can already create the checkout button that will take our customers to the
PayPal site with all our cart data. Before moving further, you can find all documentation
related to this point at the documentation link provided before, under the Website Payments
Standard Integration Guide, or directly in an HTML format at:

https://cms.paypal.com/us/cgi-bin/? cmd=_render-content&content_
ID=developer/howto_html_wp_standard_overview

Check the information about Third-Party Shopping Carts. Anyway, creating the button to send
all the information is actually very simple. All that is needed is the following code in your
checkout page view:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr"
 method="post">
 <!-- Select the correct button depending on country etc.
 If you can do it with pre-generated buttons (with prices included
 etc)
 then so much the better for security -->
 <input type="hidden" name="business" value="{{=paypal_id}}" />
<input type="image" src=
 "https://www.sandbox.paypal.com/es_XC/i/btn/btn_buynowCC_LG.gif"
 border="0" name="submit" alt="PayPal - The safer, easier way to pay
 online!">
<img alt="" border="0" src=
 "https://www.sandbox.paypal.com/es_XC/i/scr/pixel.gif" width="1"
 height="1">
<form action="http://www.sandbox.paypal.com/cgi-bin/webscr"
 method="post" />
<input type="hidden" name="cmd" value="_cart" />
<input type="hidden" name="upload" value="1" />
<input type="hidden" name="charset" value="utf-8">
<input type="hidden" name="currency_code" value="EUR" />
<input type="hidden" name="display" value="1"/>
<input type="hidden" name="shopping_url"
 value="http://www.micropolixshop.com/giftlist/default/glist"/>
<!-- Not really necessary, only if want to allow
 continue Shopping -->
<input type="hidden" name="notify_url" value=
 "http://www.micropolixshop.com/giftlist/default/ipn_handler"/>
<!-- Or leave blank and setup default url at paypal -->
<input type="hidden" name="return"
 value="http://www.micropolixshop.com/giftlist/default/confirm"/>
<!-- Or leave blank and setup default url at paypal -->
<input type="hidden" name="custom" value="{{=session.event_code}}"/>
{{k=1}}
{{for id,product in products.items():}}

Web Services

226

 <input type="hidden" name="item_number_{{=k}}"
 value="{{=product.ext_code}}"/>
 <input type="hidden" name="item_name_{{=k}}"
 value="{{=product.name}}"/>
 <input type="hidden" name="quantity_{{=k}}"
 value="{{=session.cart[str(id)]}}"/>
 <input type="hidden" name="discount_rate_{{=k}}" value="15"/>
 <!-- ie, wants a 15% on all articles always -->
 <input type="hidden" name="tax_{{=k}}"
 value="{{=product.price*product.tax_rate}}"/>
 <input type="hidden" name="amount_{{=k}}"
 value="{{=product.price}}"/>
 {{k+=1}}
 {{pass}}
</form>

A couple of comments regarding the listing lst:CheckoutButton:

 f In all cases, to move from sandbox to production, the URL to use only needs to change
from https://www.sandbox.paypal.com to https://www.paypal.com.

 f You can create the buttons using the create new button functionality at your seller
account, and then re-use the code. It would let you to choose the language and the
type of button to use. That way, you will get the correct link to the image to be used
for your PayPal button.

 f The field cmd with value _cart is very important. Read the documentation to see
the possible values of this field, depending on what you want to do. I am assuming a
cart scenario on this example.

 f The fields shopping_url, notify_url, and return can be omitted, if you set
up your seller account profile. If you set it up here, this takes precedence over the
default values set up in your seller account.

 f The field custom, I think, is rather important, as it is one of the few fields that lets
you introduce data not shown to the customer, that may allow you to track any extra
information. It is per transaction (not per item). In this case, I choose to use an
internal event code to track all purchases related to an event (special promotion,
if you like or whatever).

 f As you can see, I created a loop with all the cart items to do the checkout, by passing
a dictionary with all the product data. I have the information of the items purchased
in the session. They get named and numbered following the PayPal rules.

 f Regarding the discount, even though you set the discounts per item, PayPal, only
shows a discount total. I don't know if this is different in the Pro version.

Chapter 7

227

For more information, you should check the documentation named before, which includes a
list of all the fields available to you (which include shipping charges, and so on).

Checkout confirmation/payment data transfer: Once the customer finishes paying through
PayPal, he will be redirected to your website, automatically, if it is set up in the account and
he is already a PayPal user (otherwise he will have to click on a button to return to your site).
This section shows you how to set your application so that it will receive the payment data
confirmation from PayPal, and show a confirmation to your customer.

You can read detailed documentation on this subject here:

https://cms.paypal.com/us/cgi-bin/?cmd=_render-content&content_
ID=developer/howto_html_paymentdatatransfer

Here, you can see how to set it up in detail, so that you know where to get your token from,
which you need to identify yourself to PayPal, to confirm and get the data. In any case, refer
to the following figure representing a Diagram of the Basic flow of a PDT transaction (picture
taken from PayPal docs), so as to give you a detailed view of the process flow:

You display transaction

details to customer

Customer pays you

on PayPal site

Your Website PayPal
PayPal sends you transaction ID via

HTTP GET

You send transaction ID and your identity

token to PayPal via HTTP POST

PayPal sends you transaction details

1

2

3

5

4

Your Customer

In the listing lst:generic-def, I included a number of generic functions that I have
used in setting up the interface. The Connection class definition is a modified version of
a generic connection example that I found while surfing the web, but I cannot really recall
where. The add_to_cart, remove_from_cart, empty_cart, and checkout that I
included as an example of how to set up your cart, which are taken from EStore, can be
found at http://www.web2py.com/appliances/default/show/24.

Web Services

228

Again, please understand that the different methods are oversimplified here, to try to explain
in a few lines the different possibilities:

db.py file
###
Global Variables definition
###
domain='www.sandbox.paypal.com'
protocol='https://'
user=None
passwd=None
realm=None
headers = {'Content-Type':'application/x-www-form-urlencoded'}
This token should also be set in a table so that the seller can set
#it up
dynamically and not through the code. Same goes for the PAGINATE.
paypal_token="XXX"
PAGINATE = 20
###

default.py file
###
coding: utf8

import datetime
import string

if not session.cart: session.cart, session.balance={},0
app=request.application

Setup PayPal login email (seller id) in the session
I store paypal_id in a table
session.paypal_id=myorg.paypal_id
import urllib2, urllib
import datetime

class Connection:
 def __init__(self, base_url, username, password, realm = None,
 header = {}):
 self.base_url = base_url

Chapter 7

229

 self.username = username
 self.password = password
 self.realm = realm
 self.header = header

 def request(self, resource, data = None, args = None):
 path = resource

 if args:
 path += "?" + (args)

 # create a password manager
 password_mgr = urllib2.HTTPPasswordMgrWithDefaultRealm()

 if self.username and self.password:
 # Add the username and password.
 password_mgr.add_password(self.realm, self.base_url,
 self.username, self.password)

 handler = urllib2.HTTPBasicAuthHandler(password_mgr)

 # create "opener" (OpenerDirector instance)
 opener = urllib2.build_opener(handler)

 # Install the opener.
 # Now all calls to urllib2.urlopen use our opener.
 urllib2.install_opener(opener)
 #Create a Request
 req=urllib2.Request(self.base_url + path, data, self.header)
 # use the opener to fetch a URL
 error = ''
 try:
 ret=opener.open(req)
 except urllib2.HTTPError, e:
 ret = e
 error = 'urllib2.HTTPError'
 except urllib2.URLError, e:
 ret = e
 error = 'urllib2.URLError'

 return ret, error

def add_to_cart():
 """

Web Services

230

 Add data into the session.cart dictionary
 Session.cart is a dictionary with id product_id and value =
 quantity
 Session.balance is a value with the total of the transaction.
 After updating values, redirect to checkout
 """
 pid=request.args[0]
 product=db(db.product.id==pid).select()[0]
 product.update_record(clicked=product.clicked+1)
 try: qty=session.cart[pid]+1
 except: qty=1
 session.cart[pid]=qty
 session.balance+=product.price
 redirect(URL('checkout'))

def remove_from_cart():
 """
 allow add to cart
 """
 pid = request.args[0]
 product=db(db.product.id==pid).select()[0]
 if session.cart.has_key(pid):
 session.balance-=product.price
 session.cart[pid]-=1
 if not session.cart[pid]: del session.cart[pid]
 redirect(URL('checkout'))

def empty_cart():
 """
 allow add to cart
 """
 session.cart, session.balance={},0
 redirect(URL('checkout'))

def checkout():
 """
 Checkout
 """
 pids = session.cart.keys()
 cart={}
 products={}
 for pid in pids:
 products[pid]=db(db.product.id==pid).select()[0]
 return dict(products=products,paypal_id=session.paypal_id)

Chapter 7

231

Finally, confirm, at the listing lst:confirm, will process the information sent from PayPal,
with the four step process described in the previous diagram of the basic flow of a PDT
transaction, steps 2,3,4, and 5.

def confirm():
 """
 This is set so as to capture the transaction data from PayPal
 It captures the transaction ID from the HTTP GET that PayPal
 sends.
 And using the token from vendor profile PDT, it does a form post.
 The data from the http get comes as vars Name Value Pairs.
 """
 if request.vars.has_key('tx'):
 trans = request.vars.get('tx')
 # Establish connection.
 conn = Connection(base_url=protocol+domain, username=user,
 password = passwd, realm = realm, header = headers)
 data = "cmd=_notify-synch&tx="+trans+"&at="+paypal_token
 resp,error=conn.request('/cgi-bin/webscr', data)
 data={}
 if error=='':
 respu = resp.read()
 respuesta = respu.splitlines()
 data['status']=respuesta[0]
 if respuesta[0]=='SUCCESS':
 for r in respuesta[1:]:
 key,val = r.split('=')
 data[key]=val
 msg=''
 if data.has_key('memo'): msg=data['memo']
 form = FORM("Quiere dejar un mensaje con los regalos?",
 INPUT(_name=T('message'),_type="text",_value=msg),
 INPUT(_type="submit"))
 if form.accepts(request,session):
 email=data['payer_email'].replace('%40','@')
 id = db.gift_msg.insert(buyer=data['payer_email'],
 transact=trans,msg=form.vars.message)
 response.flash=T('Your message will be passed on to the
 recipient')
 redirect(URL('index'))

 return dict(data=data,form=form)
 return dict(data=data)
 else:
 data['status']='FAIL'
 else:
 redirect(URL('index'))
 return dict(trans=trans)

Web Services

232

Just for the sake of completeness, I am adding a very basic example of confirm.html,
which you can see in the listing lst:confirmhtml.

{{extend 'layout.html'}}

{{if data['status'] == 'SUCCESS':}}
<p><h3>{{=T('Your order has been received.')}}</h3></p>
<hr>
{{=T('Details')}}

 {{=T('Name:')}} {{=data['first_name']}} {{=data['last_name']}}

'
 {{=T('Purchases for event:')}}: {{=data['transaction_subject']}}

 {{=T('Amount')}}: {{=data['mc_currency']}} {{=data['mc_gross']}}

<hr>
{{=form}}
{{else:}}
{{=T('No confirmation received from PayPal. This can be due to a
 number of reasons; please check your email to see if the
 transaction was successful.')}}
{{pass}}

{{=T('Your transaction has finished, you should receive an email of
 your purchase.')}}

{{=T('If you have an account at PayPal, you can check your
 transaction details at')}}
 www.paypal.es

Instant Payment Notification (IPN): As mentioned before, one cannot trust the PDT
process to receive the information from all transactions, as a great number of things can
happen. Thus, you need to implement an additional process, if you need to do additional
processing of the information from your sales, or if you want to keep a local database of
the actual sales processed.

This is done with IPN. You can find all the related documentation at the documentation
site URL given previously. You will need to turn on the IPN functionality at your seller
account, as well as give a default URL to receive those messages, which should be
equal to the view in which you process them. In the case of this example, it would be:
http://www.yourdomain.com/yourapp/default/ipn_handler.

Chapter 7

233

The process is quite similar to that of PDT; even the variables are the same. The main
difference is that IPNs are sent from PayPal, until you acknowledge them. The view for
this function, default/ipn_handler.html, can very well be left blank. I am also
including the table definition for logging the messages from PayPal.

Anyway, you can find in the listing lst:ipnhandler, an example of how to set them up:

At models/db.py
###
db.define_table('ipn_msgs',
 Field('trans_id',label=T('transaction id')),
 Field('timestamp','datetime',label=T('timestamp')),
 Field('type',label=T('type')),
 Field('msg','text',label=T('message')),
 Field('processed','boolean',label=T('processed')),
 Field('total','double',label=T('total')),
 Field('fee','double',label=T('fee')),
 Field('currency',length=3,label=T('currency')),
 Field('security_msg',label=T('security message'))
)

At controllers/default.py
###
def ipn_handler():
 """
 Manages the ipn connection with PayPal
 Ask PayPal to confirm this payment, return status and detail
 strings
 """
 parameters = None
 parameters = request.vars
 if parameters:
 parameters['cmd'] = '_notify-validate'
 params = urllib.urlencode(parameters)
 conn = Connection(base_url=protocol+domain, username=user,
 password = passwd, realm = realm, header = headers)
 resp,error =conn.request('/cgi-bin/webscr', params)
 timestamp=datetime.datetime.now()
 # We are going to log all messages confirmed by PayPal.
 if error =='':

Web Services

234

 ipn_msg_id = db.ipn_msgs.insert(trans_id=parameters['txn_id'],
 timestamp=timestamp,type=resp.read(),msg=params,
 total=parameters['mc_gross'],fee=parameters['mc_fee'],
 currency=parameters['mc_currency'])
 # But only interested in processing messages that have payment
 #status completed and are VERIFIED by PayPal.
 if parameters['payment_status']=='Completed':
 process_ipn(ipn_msg_id,parameters)

The only thing missing would be to process the information received, and check for errors or
possible fraud attempts. You can see an example function in the listing lst:processipn.
Although this is probably something that would change quite a bit from one project to the next,
I hope that it may serve you as a rough guide.

def process_ipn(ipn_msg_id,param):
 """
 We process the parameters sent from IPN PayPal, to correctly
 store the confirmed sales
 in the database.
 param -- request.vars from IPN message from PayPal
 """
 # Check if transaction_id has already been processed.
 query1 = db.ipn_msgs.trans_id==param['txn_id']
 query2 = db.ipn_msgs.processed == True
 rows = db(query1 & query2).select()
 if not rows:
 trans = param['txn_id']
 payer_email = param['payer_email']
 n_items = int(param['num_cart_items'])
 pay_date = param['payment_date']
 total = param['mc_gross']
 curr = param['mc_currency']
 event_code = param['custom']
 if param.has_key('memo'): memo=param['memo']
 event_id = db(db.event.code==event_code).select(db.event.id)
 if not event_id:
 db.ipn_msgs[ipn_msg_id]=dict(security_msg=T('Event does not
 exist'))
 else:
 error=False
 for i in range(1,n_items+1):
 product_code = param['item_number'+str(i)]
 qtty = param['quantity'+str(i)]
 line_total = float(param['mc_gross_'+str(i)]) +
 float(param['mc_tax'+str(i)])

Chapter 7

235

 product=db(db.product.ext_code==product_code).
 select(db.product.id)
 if not product:
 db.ipn_msgs[ipn_msg_id]=dict(security_msg=T('Product code
 does not exist'))
 error=True
 else:
 db.glist.insert(event=event_id[0],product=product[0],
 buyer=payer_email,transact=trans,
 purchase_date=pay_date,quantity_sold=qtty,
 price=line_total,observations=memo)
 if not error: db.ipn_msgs[ipn_msg_id]=dict(processed=True)

Hope that this section helped you to set up your PayPal site using web2py, or at least, helped
you understand the basic concepts behind setting up one, and the different possibilities that
you have available.

PayPal web payments standard
This recipe shows an implementation of the PayPal web payments standard, using both
encrypted requests and IPN for a secure process workflow. Note that in this recipe, web2py
version 1.77.3 is used. Hopefully, it still works in the latest web2py versions.

How to do it...
1. To implement our integration with PayPal, I started with putting together the code

that generates an encrypted form post to PayPal, for all of our cart actions. If you do
this, and you configure PayPal to only accept signed requests, then the user cannot
tamper with your form and change the price of an item. To do this, I installed the
M2Crypto module on our system, and created a module that will do the signing of
the PayPal forms. Note that this does not work on the Google App Engine, because
M2Crypto does not run on GAE.

I have yet to find a replacement for it that runs on the App Engine, so you cannot use
this PayPal payments recipe in that environment.

The encryption module (crypt.py) uses the certificate to sign the data and then
encrypts it, as shown in the following code:
from M2Crypto import BIO, SMIME, X509, EVP

def paypal_encrypt(attributes, sitesettings):
 """
 Takes a list of attributes for working with PayPal (in our
 case adding to the shopping cart), and encrypts them for
 secure transmission of item details and prices.

Web Services

236

 @type attributes: dictionary
 @param attributes: a dictionary of the PayPal request
 attributes. An
 example attribute set is:

 >>> attributes = {"cert_id":sitesettings.paypal_cert_id,
 "cmd":"_cart",
 "business":sitesettings.cart_business,
 "add":"1",
 "custom":auth.user.id,
 "item_name":"song 1 test",
 "item_number":"song-1",
 "amount":"0.99",
 "currency_code":"USD",
 "shopping_url":'http://'+\
 Storage(globals()).request.env.http_host+\
 URL(args=request.args),
 "return":'http://'+\
 Storage(globals()).request.env.http_host+\
 URL('account', 'downloads'),
 }

 @type sitesettings: SQLStorage
 @param sitesettings: The settings stored in the database.
 this method
 requires I{tenthrow_private_key}, I{tenthrow_public_cert},
 and I{paypal_public_cert} to function
 @rtype: string
 @return: encrypted attribute string
 """

 plaintext = ''

 for key, value in attributes.items():
 plaintext += u'%s=%s\n' % (key, value)

 plaintext = plaintext.encode('utf-8')

 # Instantiate an SMIME object.
 s = SMIME.SMIME()

 # Load signer's key and cert. Sign the buffer.
 s.pkey = EVP.load_key_string(sitesettings.tenthrow_private_key)
 s.x509 = X509.load_cert_string(
 sitesettings.tenthrow_public_cert)

 #s.load_key_bio(BIO.openfile(settings.MY_KEYPAIR),

Chapter 7

237

 # BIO.openfile(settings.MY_CERT))

 p7 = s.sign(BIO.MemoryBuffer(plaintext),
 flags=SMIME.PKCS7_BINARY)

 # Load target cert to encrypt the signed message to.
 #x509 = X509.load_cert_bio(BIO.openfile(settings.PAYPAL_CERT))
 x509 = X509.load_cert_string(sitesettings.paypal_public_cert)

 sk = X509.X509_Stack()
 sk.push(x509)
 s.set_x509_stack(sk)

 # Set cipher: 3-key triple-DES in CBC mode.
 s.set_cipher(SMIME.Cipher('des_ede3_cbc'))

 # Create a temporary buffer.
 tmp = BIO.MemoryBuffer()

 # Write the signed message into the temporary buffer.
 p7.write_der(tmp)

 # Encrypt the temporary buffer.
 p7 = s.encrypt(tmp, flags=SMIME.PKCS7_BINARY)

 # Output p7 in mail-friendly format.
 out = BIO.MemoryBuffer()
 p7.write(out)

 return out.read()

2. Then, we construct forms in our view, and encrypt them:
{{from applications.tenthrow.modules.crypt import * }}

{{ attributes = {"cert_id":sitesettings.paypal_cert_id,
 "cmd":"_cart",
 "business":sitesettings.cart_business,
 "add":"1",
 "custom":auth.user.id,
 "item_name":artist_name + ": " + song['name'],
 "item_number":"song-"+str(song['cue_point_id']),
 "amount":song['cost'],
 "currency_code":"USD",
 "shopping_url":full_url('http',r=request,args=request.args),
 "return":full_url('https', r=request, c='account', \
 f='alldownloads'),
 }

Web Services

238

 encattrs = paypal_encrypt(attributes, sitesettings)
}}
<form target="_self"
 action="{{=sitesettings.cart_url}}" method="post"
 name="song{{=song['cue_point_id']}}">
 <!-- Identify your business so that you can collect the
 payments. -->
 <input type="hidden" name="cmd" value="_s-xclick"
 class="unform"/>
 <input type="hidden" name="encrypted" value="{{=encattrs}}"
 class="unform"/>
 <a onclick="document.song{{=song['cue_point_id']}}.submit()"
 class="trBtn">
 <img src="{{=URL('static','images/trIconDL.png')}}"
 alt="Download {{=(song['name'])}}" class="original"/>
 <img src="{{=URL('static','images/trIconDL_Hover.png')}}"
 alt="Download {{=(song['name'])}}" class="hover"/>

 <img alt="" border="0" width="1" height="1"
 src="https://www.paypal.com/en_US/i/scr/pixel.gif"
 class="unform"/>
</form>

Note that the above code calls a method full_url(), which is defined as follows:
def full_url(scheme="http",
 a=None,
 c=None,
 f=None,
 r=None,
 args=[],
 vars={},
 anchor='',
 path = None
):
 """
 Create a fully qualified URL. The URL will use the same host
 that the
 request was made from, but will use the specified scheme.
 Calls
 C{gluon.html.URL()} to construct the relative path to the
 host.

 if <scheme>_port is set in the settings table, append the port
 to the domain of the created URL

 @param scheme: scheme to use for the fully-qualified URL.
 (default to 'http')

Chapter 7

239

 @param a: application (default to current if r is given)
 @param c: controller (default to current if r is given)
 @param f: function (default to current if r is given)
 @param r: request
 @param args: any arguments (optional)
 @param vars: any variables (optional)
 @param anchor: anchorname, without # (optional)
 @param path: the relative path to use. if used overrides
 a,c,f,args, and
 vars (optional)
 """
 port = ''
 if sitesettings.has_key(scheme+"_port") and
 sitesettings[scheme+"_port"]:
 port = ":" + sitesettings[scheme+"_port"]
 if scheme == 'https' and sitesettings.has_key("https_scheme"):
 scheme = sitesettings.https_scheme
 url = scheme +'://' + \
 r.env.http_host.split(':')[0] + port
 if path:
 url = url + path
 else:
 url = url+URL(a=a, c=c, f=f, r=r, args=args, vars=vars,
 anchor=anchor)
 return url

3. Then, I need to be able to process our IPN responses from PayPal. The following
code does just that. You'll see that I only process purchase requests. I also left in
the code that is specific to our database, about how I code product IDs, and then
use that product ID to create records in our database. Based on the existence of
those purchase records in our database, I allow the user to download the files that
they purchased. So, the user cannot download their purchase until the IPN message
is processed. This is usually 5 to 30 seconds after they submitted the order. Most
of the time, the messages are received and processed before PayPal redirects the
user back to our site. Our paypal.py controller will have a function to process the
instant payment notification, as described in the following code section, (note that we
have openanything in our modules directory. Visit http://diveintopython.
org/ for the latest version):

from applications.app.modules.openanything import *

def ipn():
 """
 This controller processes Instant Payment Notifications from
 PayPal.

Web Services

240

 It will verify messages, and process completed cart transaction
 messages
 only. all other messages are ignored for now.

 For each item purchased in the cart, the song_purchases table
 will be
 updated with the purchased item information, allowing the user
 to
 download the item.

 logs are written to /tmp/ipnresp.txt

 the PayPal IPN documentation is available at:
 https://cms.paypal.com/cms_content/US/en_US/files/developer/
 IPNGuide.pdf
 """
 """
 sample PayPal IPN call:

 last_name=Smith&
 txn_id=597202352&
 receiver_email=seller%40paypalsandbox.com&
 payment_status=Completed&tax=2.02&
 mc_gross1=12.34&
 payer_status=verified&
 residence_country=US&
 invoice=abc1234&
 item_name1=something&
 txn_type=cart&
 item_number1=201&
 quantity1=1&
 payment_date=16%3A52%3A59+Jul.+20%2C+2009+PDT&
 first_name=John&
 mc_shipping=3.02&
 charset=windows-1252&
 custom=3&
 notify_version=2.4&
 test_ipn=1&
 receiver_id=TESTSELLERID1&
 business=seller%40paypalsandbox.com&
 mc_handling1=1.67&
 payer_id=TESTBUYERID01&
 verify_sign=AFcWxV21C7fd0v3bYYYRCpSSRl31AtrKNnsnrW3-8M8R-
 P38QFsqBaQM&

Chapter 7

241

 mc_handling=2.06&
 mc_fee=0.44&
 mc_currency=USD&
 payer_email=buyer%40paypalsandbox.com&
 payment_type=instant&
 mc_gross=15.34&
 mc_shipping1=1.02
 """

 #@todo: come up with better logging mechanism
 logfile = "/tmp/ipnresp.txt"

 verifyurl = "https://www.paypal.com/cgi-bin/webscr"
 if request.vars.test_ipn != None and request.vars.test_ipn ==
 '1':
 verifyurl = "https://www.sandbox.paypal.com/cgi-bin/webscr"

 params = dict(request.vars)
 params['cmd'] = '_notify-validate'

 resp = fetch(verifyurl, post_data=params)

#the message was not verified, fail
if resp['data'] != "VERIFIED":
 #@todo: figure out how to fail
 f = open(logfile, "a")
 f.write("Message not verified:\n")
 f.write(repr(params) + "\n\n")
 f.close()
 return None
...
if request.vars.txn_type != "cart":
 #for now ignore non-cart transaction messages
 f = open(logfile, "a")
 f.write("Not a cart message:\n")
 f.write(repr(params) + "\n\n")
 f.close()
 return None
...
if request.vars.payment_status != 'Completed':
 #ignore pending transactions
 f = open(logfile, "a")
 f.write("Ignore pending transaction:\n")

Web Services

242

 f.write(repr(params) + "\n\n")
 f.close()
 return None
...
#check id not recorded
if len(db(db.song_purchases.transaction_id==request.
 vars.txn_id).select())>0:
 #transaction already recorded
 f = open(logfile, "a")
 f.write("Ignoring recorded transaction:\n")
 f.write(repr(params) + "\n\n")
 f.close()
 return None

 #record transaction
 num_items = 1
 if request.vars.num_cart_items != None:
 num_items = request.vars.num_cart_items

 for i in range(1, int(num_items)+1):
 #i coded our item_number to be a tag and an ID. the ID is
 # a key to a table in our database.
 tag, id = request.vars['item_number'+str(i)].split("-")
 if tag == "song":
 db.song_purchases.insert(auth_user=request.vars.custom,
 cue_point=id,
 transaction_id=request.vars.txn_id,
 date=request.vars.payment_date.replace('.', ''))

 elif tag == "song_media":
 db.song_purchases.insert(auth_user=request.vars.custom,
 song_media=id,
 transaction_id=request.vars.txn_id,
 date=request.vars.payment_date.replace('.', ''))

 elif tag == "concert":
 db.concert_purchases.insert(auth_user=request.vars.custom,
 playlist=id,
 transaction_id=request.vars.txn_id,
 date=request.vars.payment_date.replace('.', ''))
 else:
 #@TODO: this is an error, what should we do here?
 f = open(logfile, "a")

Chapter 7

243

 f.write("Ignoring bad item number: " + \
 request.vars['item_number'+str(i)] + "\n")
 f.write(repr(params) + "\n\n")
 f.close()

 f = open(logfile, "a")
 f.write("Processed message:\n")
 f.write(repr(params) + "\n\n")
 f.close()
 return None

That's all, folks!

Getting Flickr photos
This recipe can be used to get a list of Flickr photos passing the photoset ID.

Getting ready
First you need to generate an APIKEY, which you can do on the Flickr developers page:

http://www.flickr.com/services/api/misc.api_keys.html

After that, you need to create a function to fetch the Flickr API. Generally, this is created
in models, but you can do that in modules too.

How to do it...
1. Create a function in any of your model files. We will create one called models/

plugin_flickr.py, as follows:
def plugin_flickr(key, photoset=None, per_page=15, page=1):
 from urllib2 import urlopen
 from xml.dom.minidom import parse as domparse
 apiurl = 'http://api.flickr.com/services/rest/?method=flickr.
 photosets.getPhotos&api_key=%(apikey)s&photoset_id=
 %(photoset)s&privacy_filter=1&per_page=%(per_page)s&page=
 %(page)s&extras=url_t,url_m,url_o,url_sq'

 dom = domparse(urlopen(apiurl % dict(photoset=photoset,
 per_page=per_page, page=page, apikey=key)))

 photos = []

 for node in dom.getElementsByTagName('photo'):
 photos.append({

Web Services

244

 'id':node.getAttribute('id'),
 'title':node.getAttribute('title'),
 'thumb':node.getAttribute('url_t'),
 'medio':node.getAttribute('url_m'),
 'original':node.getAttribute('url_o'),
 'square':node.getAttribute('url_sq'),
 })

 return photos

2. Now you can call that function from any controller or view. For example, in a controller
action, as follows:
def testflickr():
 photos = plugin_flickr(
 key='YOUR_API_KEY',
 photoset='THE_PHOTOSET_ID',
 per_page=15,
 page=1)
 return dict(photos=photos)

3. In the associated views/defaul/testflickr.html, you can add the following:

{{extend 'layout.html'}}

{{for photo in photos:}}
 {{=IMG(_src=photo['square'])}}
{{pass}}

The final product will look like the one shown in the following screenshot:

Chapter 7

245

Sending e-mails with Boto through Amazon
Web Services (AWS)

Amazon Simple Email Service is a nice way to send e-mails without needing to operate your
own mail server. This code utilizes the Boto library, which is a Python interface for AWS.

Getting ready
1. First of all, you need to sign up for AWS at http://aws.amazon.com.

2. Then, enable Simple Email Service at http://aws.amazon.com/ses/.

3. You need to obtain your Amazon AWS-KEY and AWS-SECRET-KEY from https://
aws-portal.amazon.com/gp/aws/developer/account/index.html.

4. Finally, you need to install Boto in your web2py/site-packages folder, or anywhere
in your path, so that web2py can find and import it. You can find Boto on GitHub:
https://github.com/boto/boto.

Before you get production access to Amazon's mail servers, you have to pre-register every
sender's and recipient's e-mail address that you want to use (up to 100). This is OK for
development and testing, but, of course, would not work in production. To register an e-mail
address, execute the following code, replacing AWS-KEY and AWS-SECRET-KEY with your
own keys, and myemail@address.com with the e-mail address that you want to register.

From the web2py shell or any other Python shell, run the following:

from boto.ses.connection import SESConnection
def verify_email_address():
 conn = SESConnection('', '')
 m = conn.verify_email_address('myemail@address.com')

How to do it...
Assuming that everything is installed and configured, as explained before, sending e-mails
is easy:

def test_send_emails():
 aws_key = 'YOUR_AWS_KEY'
 aws_secret_key = 'YOUR_SECRET_KEY'
 from boto.ses.connection import SESConnection
 conn = SESConnection(aws_key, aws_secret_key)
 return conn.send_email(source='myemail@address.com',
 subject='Subject',
 body='Body.',

Web Services

246

 to_addresses='recipient@email.com',
 cc_addresses=None,
 bcc_addresses=None,
 format='text',
 reply_addresses=None,
 return_path=None)

Making GIS amps using mapscript
MapServer is an open source platform for publishing spatial data and interactive mapping
applications to the web. Originally developed in the mid-1990s at the University of Minnesota,
MapServer is released under an MIT-style license, and runs on all major platforms.

This recipe will show you how to publish geo-referenced maps using the MapServer web
service, using a library called mapscript.

Getting ready
First, you need to install mapscript from:

http://pypi.python.org/pypi/mapscript/5.4.2.1.

You can do it by typing the following command:

easy_install mapscript

We will also assume you have a map called private/test2.map in your application folder.
A .map file looks in an ascii file that describes a map (coordinates, type, points with tags,
and so on), and looks like the following:

MAP
 NAME "sample"
 EXTENT -180 -90 180 90 # Geographic
 SIZE 800 400
 IMAGECOLOR 128 128 255
END # MAP

You can read more about map files here:

 f http://mapserver.org/introduction.html

 f http://mapserver.org/mapfile/index.html#mapfile

Chapter 7

247

How to do it...
GIS maps are exposed through WXS services. Here, we show you a simple action that provides
a service to publish a map stored in the file private/test2.map:

def wxs():
 import mapscript
 import os
 path_map = os.path.join(request.folder, 'private', request.args(0))
 if not request.vars:
 return ''
 req = mapscript.OWSRequest()
 for v in request.vars:
 req.setParameter(v, request.vars[v])

 map = mapscript.mapObj(path_map)
 mapscript.msIO_installStdoutToBuffer()
 map.OWSDispatch(req)

 content_type = mapscript.msIO_stripStdoutBufferContentType()
 content = mapscript.msIO_getStdoutBufferBytes()
 response.header = "Content-Type","%s; charset=utf-8"%content_type
 return content

This service can be consumed by QGis (http://www.qgis.org/), or any other Web
MapService client (http://en.wikipedia.org/wiki/Web_Map_Service), or a Web
Feature Service client (http://en.wikipedia.org/wiki/Web_Feature_Service).

The URL to pass to QGIS is:

http://localhost:8000/mapas/default/wxs/test2.map

Here, test2.map points to our map file (stored in the file, private/test2.map, served by
the wxs function as described before).

Web Services

248

Google groups and Google code feeds
reader

In this recipe, we will implement a simple feed reader to retrieve messages from Google
Groups and Google Code using RSS.

How to do it...
We will create a file models/plugin_feedreader.py, with the following code:

def plugin_feedreader(name, source='google-group'):
 """parse group feeds"""
 from gluon.contrib import feedparser
 if source=='google-group':
 URL = "http://groups.google.com/group/%(name)s/
 feed/rss_v2_0_msgs.xml"

 elif source=='google-code':
 URL = "http://code.google.com/feeds/p/%(name)s/hgchanges/basic"

 else:
 URL = source

 url = URL % dict(name=name)
 g = feedparser.parse(url)
 html = UL(*[LI(A(entry['title'],_href=entry['link']))\
 for entry in g['entries'][0:5]])
 return XML(html)

Now, in any controller, you can embed the latest Google group information:

{{=plugin_feedreader('web2py', source='google-group')}}

Or read the latest Google code source updates:

{{=plugin_feedreader('web2py', source='google-code')}}

Creating SOAP web services
Simple Object Access Protocol (SOAP) is a complex XML-based inter-process communication
standard for web service implementation. It is widely used with legacy applications (especially
JAVA and .NET languages), and supports type declaration and Web Service Definition File
(WSDL).

Chapter 7

249

web2py already supports a common infrastructure to expose web services in a simple way,
using the Service tool (rss, json, jsonrpc, xmlrpc, jsonrpc, amfrpc, and amfrpc3).

The PySimpleSOAP library included in gluon/contribs (since version #1.82.1), aims to
add SOAP support, extending the current philosophy.

How to do it...
Serving operations using SOAP is as easy as decorating a function using @service.soap,
declaring the following:

 f Exposed operation method (camel case by convention)

 f Return types

 f Parameters types

Types are declared using a dictionary, mapping the parameter/result name with the standard
Python conversion functions (str, int, float, bool, and so on).

For example, create an application (such as webservices), and in a controller (sample.py),
add the following code:

from gluon.tools import Service
service = Service(globals())

@service.xmlrpc
@service.soap('AddStrings',returns={'AddResult':str},
 args={'a':str, 'b':str})
@service.soap('AddIntegers',returns={'AddResult':int},
 args={'a':int, 'b':int})
def add(a,b):
 "Add two values"
 return a+b

@service.xmlrpc
@service.soap('SubIntegers',returns={'SubResult':int},
 args={'a':int, 'b':int})
def sub(a,b):
 "Substract two values"
 return a-b

def call():
 return service()

Web Services

250

Additionally, web2py can dynamically generate help web pages (list of operations, xml
message examples), and the WSDL XML:

 f List of operations: http://127.0.0.1:8000/webservices/sample/call/soap

 f Operation help (for the SubIntegers method, in this case):
http://127.0.0.1:8000/webservices/sample/call/
soap?op=SubIntegers

 f Service description (WSDL): http://127.0.0.1:8000/webservices/sample/
call/soap?wsdl

Sample operations list page:

Welcome to Web2Py SOAP webservice gateway

The following operations are available

See WSDL for webservice description

AddIntegers: Add two values
SubIntegers: Substract two values
AddStrings: Add two values
Notes: WSDL is linked to URL retriving the full xml. Each operation
is linked to its help page.

Sample operation help page:

AddIntegers

Add two values

Location: http://127.0.0.1:8000//webservices/sample/call/soap
Namespace: http://127.0.0.1:8000/webservices/sample/soap
SoapAction?: -N/A by now-
Sample SOAP XML Request Message:

<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope
 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <AddIntegers
 xmlns="http://127.0.0.1:8000/webservices/sample/soap">
 <a>
 <!--integer-->

Chapter 7

251

 <!--integer-->

 </AddIntegers>
 </soap:Body>
</soap:Envelope>
Sample SOAP XML Response Message:

<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope
 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <AddIntegersResponse
 xmlns="http://127.0.0.1:8000/webservices/sample/soap">
 <AddResult>
 <!--integer-->
 </AddResult>
 </AddIntegersResponse>
 </soap:Body>
</soap:Envelope>

You can test the web service exposed by web2py using this library:

def test_soap_sub():
 from gluon.contrib.pysimplesoap.client import SoapClient, SoapFault
 # create a SOAP client
 client = SoapClient(wsdl="http://localhost:8000/webservices/
 sample/call/soap?WSDL")

 # call SOAP method
 response = client.SubIntegers(a=3,b=2)

 try:
 result = response['SubResult']

 except SoapFault:
 result = None

 return dict(xml_request=client.xml_request,
 xml_response=client.xml_response,
 result=result)

Web Services

252

There's more...
pysimplesoap is included with recent releases of web2py, as it is being actively maintained.
You can frequently check the version to find enhancements, to extend this recipe.

Although there are several python SOAP libraries, this one is designed to be as simple as
possible, and is totally integrated with web2py.

For more information, supported features, and platforms, have a look at the following link:

http://code.google.com/p/pysimplesoap/wiki/Web2Py

To view help pages for the latest web2py versions, you should
create a view, sample/call.html, in this example, as in new
versions of web2py, for security reasons, generic views are not
exposed by default

{{extend 'layout.html'}}
{{for tag in body:}}
{{=tag}}
{{pass}}

8
Authentication

and Authorization

In this chapter, we will cover the following recipes:

 f Customizing Auth

 f Using CAPTCHA on login failure

 f Using pyGravatar to get avatars for user profile pages

 f Multi-user and teacher modes

 f Authenticating with Facebook using OAuth 2.0

Introduction
Almost every application needs to be able to authenticate users and set permissions. web2py
comes with an extensive and customizable role-based access control mechanism. In this
chapter, we show you how to customize it by adding fields to the user table, adding CAPTCHA
security after repeated failed logins, and how to create Globally Recognized Avatars
(Gravatars—icons representing the users). We also discuss the teacher mode of web2py
that allows students to share one web2py instance to develop and deploy their applications.
Finally, we provide an example of integration with OAuth 2.0, one of the newest protocols
for federated authentication. Web2py also supports ofthe protocols, such as CAS, OpenID,
OAuth 1.0, LDAP, PAM, X509, and many more. But, once you learn one, it should be easy to
learn the others using the official documentation.

Authentication and Authorization

254

Customizing Auth
There are two ways to customize Auth. The old way of doing it consists of defining a custom
db.auth_user table from scratch. A new way consists of letting web2py define the auth
table, but listing extra fields that web2py should include in the table. Here, we will review
the latter method.

Specifically, we will assume that each user must also have a username, a phone number,
and an address.

How to do it...
In the db.py model, replace the following line:

auth.define_tables()

Replace it with the following code:

auth.settings.extra_fields['auth_user'] = [
 Field('phone_number',requires=IS_MATCH('\d{3}\-\d{3}\-\d{4}')),
 Field('address','text')]
auth.define_tables(username=True)

How it works...
auth.settings.extra_fields is a dictionary of extra fields. The key is the name of the
auth table to which to add the extra fields. The value is a list of extra fields. Notice that we
have added two extra fields (phone_number and address), but not username, here, for
auth_user.

username has to be treated in a special way, because it is involved in the authentication
process, which is normally based on the email field. By passing the username argument to
the following line, we tell web2py that we want the username field, and we want to use it for
login instead of the email field.

auth.define_tables(username=True)

The username will also be made unique.

There's more...
There may be cases when registration happens outside the normal registration form
(for example, when using Janrain, or when users are registered by the administrator).
Yet you may need to force a new user, after their first login, to complete their registration.
This can be done using a dummy hidden extra field, complete_registration that is
set to False, by default, and is set to True when they update their profile:

Chapter 8

255

auth.settings.extra_fields['auth_user'] = [
 Field('phone_number',requires=IS_MATCH('\d{3}\-\d{3}\-\d{4}'),
 comment = "i.e. 123-123-1234"),
 Field('address','text'),
 Field('complete_registration',default=False,update=True,
 writable=False, readable=False)]
auth.define_tables(username=True)

Then, we may want to force new users, upon login, to complete their registration. In db.py,
we can append the following code:

if auth.user and not auth.user.complete_registration:
 if not (request.controller,request.function) == ('default','user'):
 redirect(URL('default','user/profile'))

This will force new users to edit their profile.

Using CAPTCHA on login failure
web2py has built-in ReCaptcha support (http://www.google.com/recaptcha), but
it is usually ON or OFF. It's useful to have it ON, which prevents brute force attacks on the
application forms, yet it can be annoying to regular users. Here, we propose a solution, a
plugin that conditionally turns ON ReCaptcha after a fixed number of login failures.

How to do it...
All you need to do is create a new models/plugin_conditionalrecaptcha.py,
which contains the following code, and your job is done:

MAX_LOGIN_FAILURES = 3
You must request the ReCaptcha keys
in order to use this feature
RECAPTCHA_PUBLIC_KEY = ''
RECAPTCHA_PRIVATE_KEY = ''

def _():
 from gluon.tools import Recaptcha
 key = 'login_from:%s' % request.env.remote_addr
 num_login_attempts = cache.ram(key,lambda:0,None)

 if num_login_attempts >= MAX_LOGIN_FAILURES:
 auth.settings.login_captcha = Recaptcha(
 request,RECAPTCHA_PUBLIC_KEY,RECAPTCHA_PRIVATE_KEY)

Authentication and Authorization

256

 def login_attempt(form,key=key,n=num_login_attempts+1):
 cache.ram(key,lambda n=n:n,0)

 def login_success(form,key=key):
 cache.ram(key,lambda:0,0)

 auth.settings.login_onvalidation.append(login_attempt)
 auth.settings.login_onaccept.append(login_success)

_()

There's more...
You can customize the ReCaptcha appearance, by passing parameters to it through
JavaScript. If you are using the default user controller for exposing auth login forms,
you can simply edit the user.html view, and add the following code:

<script>
var RecaptchaOptions = {
 theme : 'clean',
 tabindex : 2
};
</script>

Add it before the following line:

{{=form}}

The full ReCaptcha client API can be viewed at the following URL:

http://recaptcha.net/apidocs/captcha/client.html

Using pyGravatar to get avatars for user
profile pages

First download pyGravatar from the following URL:

https://bitbucket.org/gridaphobe/pygravatar/src

Put the gravatar.py in applications/yourapp/modules. If you prefer, you can
use the following command:

pip install pyGravatar

Chapter 8

257

In any of your models source files, you have to import the Gravatar library to be able to use it,
as shown in the following example:

from gravatar import Gravatar

If you are using the scaffold application, edit the default/user.html view, as follows:

{{extend 'layout.html'}}
<h3>{{=T(request.args(0).replace('_',' ').capitalize())}}</h3>
<div id="web2py_user_form">
{{if 'profile' in request.args:}}

{{pass}}

You will now have a profile page that will look like the following screenshot:

Authentication and Authorization

258

Now, in any page, if you want the user avatar, then you just need to use the following code:

You can go further and get the user profile bio from http://en.gravatar.com/. Add the
following code to default/user.html.

{extend 'layout.html'}}
<h2>{{=T(request.args(0).replace('_',' ').capitalize())}}</h2>
<div id="web2py_user_form">
{{if 'profile' in request.args:}}
 {{user = Gravatar(auth.user.email)}}

 <blockquote style='width:300px;'>

 {{try:}}
 {{=user.profile['aboutMe']}}

 {{except Exception:}}
 No profile information
 {{pass}}

 </blockquote>
{{pass}}

Chapter 8

259

Then, you get the following:

Authentication and Authorization

260

You can also get extra services that your user has registered in Gravatar, in the default/
user.html view:

{extend 'layout.html'}}
<div id="web2py_user_form">
{{if 'profile' in request.args:}}
 {{user = Gravatar(auth.user.email)}}

 <blockquote style='width:300px;'>

 {{try:}}
 {{=user.profile['aboutMe']}}
 {{services = user.profile.get('accounts', {})}}
 {{=UL(*[LI(A(service['shortname'], _href=service['url'])) for
 service in services])}}

 {{except Exception:}}
 No profile information

 {{pass}}

 </blockquote>
{{pass}}

And then, you will see the additional information (about me and URL of registered services),
in your web page:

Chapter 8

261

Tell your users to register in http://en.gravatar.com/, using the same e-mail address
used in your application.

Authentication and Authorization

262

Multi-user and teacher modes
Since version 1.92, you can set up web2py in a mult-iuser or teaching mode. There is
one instance of web2py installed on a system, one account is the admin (or teacher), and
the other accounts are the students. Students can only see their own applications. It works
as follows: The admin page is changed and now contains a login and register header. The first
user to log in, in this mode, gets the role of teacher. Subsequent registrations will become
students, after approval by the teacher. In the following recipe, I assume running web2py
locally at 127.0.0.1 on port 8000. The teacher and the students will need an SSL-
secured web2py instance. See Chapter 11, Other Tips and Tricks, for more details.

Note that in the multi-user mode, there is no security mechanism to prevent interference
between administrators.

How to do it...
1. Install web2py in a folder; let's say web2py_mu.

2. Set MULTI_USER_MODE = True, in admin/appadmin/0.py.

3. Start web2py in the usual way, and click on the link for the administrative interface.
Now you see the adapted administrative login.

Click register to create the teacher account. You now enter the admin application.

4. Click on logout, and click on register to create the first student account
(you can let the students do this; provide them with the link).

After a student registers, his/her status is Pending.Approving the students.

5. Enter into the web2py appadmin, of the admin application, using the following URL:
http://127.0.0.1:8000/admin/appadmin.

6. Click on the auth_user table.

You're now looking at the teacher and students accounts. For each
approved student:

 � Click on its ID (leftmost column)

 � Remove the word pending in the field registration_key

If available, you can also import a list of students by using a CSV file (to be expanded upon).

Chapter 8

263

There's more...
For students just starting with Python and webapps, starting with a minimal application
could be helpful. This simple setup will not include Ajax, and it will cover just minimal
templating features.

On the right side, we need an extra option to load a minimal
application, based on a file minimal.w2p.

The components of appadmin are not relevant for the beginning student, and intimidating, a
configuration option BASIC_STUDENT as False, by default, could help. The teacher can turn
this on, and at a later stage off. When False, these files can be hidden from sight, the admin
screen, the wizard, and other advanced options.

Authenticating with Facebook using
OAuth 2.0

The following recipe will show how to build a simple application that authenticates users
using Facebook's OAuth 2.0 authentication service.

OAuth 2.0 is the evolution of the OAuth 1.0a protocol. You can find the exact description
of the protocol at the following URL:

http://oauth.net/2

Without entering in details, the main object of the protocol is allowing sites (providers) give
trusted authentication credentials to other sites (consumers). This is very similar in scope
to CAS authentication system, which is already implemented by web2py.

At the moment, web2py implements OAuth 2.0 as consumer only. But, that is enough to
allow any web2py application to authenticate against a provider of OAuth 2.0 services.

We show how to implement a small application that uses Facebook as OAuth 2.0 provider,
since it is the provider that was tested more in depth.

Authentication and Authorization

264

Getting ready
Before you start, you need to register an application on Facebook:

http://developers.facebook.com

You must be careful about using the exact same URL (including the TCP port) that you use
with the application.

Now, it is suggested that you use the Facebook Graph API Python library, to access the
REST interface in a programmatic way. This recipe uses that library. You can download
it here: https://github.com/facebook/python-sdk. Copy it to the *modules* directory
of your application.

If you want to use the JSON engine that comes with web2py, change the import code at the
beginning of the file to look simply like the following (the other statements are not needed):

for web2py
from gluon.contrib import simplejson
_parse_json = lambda s: simplejson.loads(s)

Chapter 8

265

How to do it...
1. Create a file containing the App Id and the App Secret, shown in the registration

page. Save it in the modules directory of you application, with the name
fbappauth.py:
CLIENT_ID="xxxxxxxxxxxxxxxx"
CLIENT_SECRET="xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"

2. Now, you only need to change the auth code in your model. You can put it in
the usual db.py model that comes with the scaffolding application.

###
use fb auth
for facebook "graphbook" application
###

import sys, os
from fbappauth import CLIENT_ID,CLIENT_SECRET
from facebook import GraphAPI, GraphAPIError
from gluon.contrib.login_methods.oauth20_account import
OAuthAccount

class FaceBookAccount(OAuthAccount):
 """OAuth impl for FaceBook"""
 AUTH_URL="https://graph.facebook.com/oauth/authorize"
 TOKEN_URL="https://graph.facebook.com/oauth/access_token"

 def __init__(self, g):
 OAuthAccount.__init__(self, g, CLIENT_ID, CLIENT_SECRET,
 self.AUTH_URL, self.TOKEN_URL,
 scope='user_photos,friends_photos')
 self.graph = None

 def get_user(self):
 '''Returns the user using the Graph API.'''
 if not self.accessToken():
 return None

 if not self.graph:
 self.graph = GraphAPI((self.accessToken()))
 user = None

 try:
 user = self.graph.get_object("me")

Authentication and Authorization

266

 except GraphAPIError, e:
 self.session.token = None
 self.graph = None

 if user:
 return dict(first_name = user['first_name'],
 last_name = user['last_name'],
 username = user['id'])

auth.settings.actions_disabled = ['register','change_password',
 'request_reset_password','profile']
auth.settings.login_form=FaceBookAccount(globals())
auth.settings.login_next=URL(f='index')

As you can see, this class specializes the generic OAuthAccount class from gluon.
contrib.login_methods.oauth20_account.py, so that it can work with the
Facebook authentication server.

The following line defines where the user lands after the authentication server has positively
accepted the user identity. Change it to whatever you need.

auth.settings.login_next=URL(f='index')

There's more...
Often, you cannot test your application on the public server, where you will deploy the final
application. Usually you can test it using localhost or 127.0.0.1 as a host.

In the common case, using localhost as hostname does not work with your application.
Add the proper entry in /etc/hosts (in the previous registered example application).

fb app testing setup

127.0.0.1 bozzatest.example.com

But, be aware that, in either case, you need to use port 80 to avoid problems.

python web2py.py -p 80 -a <secret>

This often requires administrator permissions when starting web2py, or using capabilities
where your system supports them.

9
Routing Recipes

In this chapter, we will cover the following recipes:

 f Making cleaner URLs with routes.py

 f Creating a simple router

 f Adding a URL prefix

 f Associating applications with domains

 f Omitting the application name

 f Removing application names and controllers from URLs

 f Replacing underscores with hyphens in URLs

 f Mapping favicons.ico and robots.txt

 f Using URLs to specify the language

Introduction
At its core, web2py contains a dispatcher that maps URLs into function calls. This mapping
is called routing, and it can be configured. This may be necessary in order to shorten URLs,
or to deploy a web2py application as a replacement for a pre-existing application, by not
wanting to break old external links. web2py comes with two routers, that is, a two-way routing
configuration. The old one uses regular expressions to match incoming URLs and map them
into the app/controller/function. The new style router instead uses a more holistic approach.

Routing Recipes

268

Making cleaner URLs with routes.py
In web2py, incoming URLs are, by default, interpreted as
http://domain.com/application/controller/function/arg1/
arg2?var1=val1&var2=val2.

That is, the first three elements of the URL are interpreted as the web2py application name,
controller name, and function name, with the remaining path elements saved in request.
args (a list), and the query string saved in request.vars (a dictionary).

If the incoming URL has fewer than three path elements, then the missing elements are filled
in using the defaults: /init/default/index, or, if there is no application named init,
they are filled using the welcome application: /welcome/default/index. web2py's URL()
function creates a URL path (by default, without a scheme or domain) from its component
parts: application, controller, function, args list, and vars dictionary. The results are typically
used for href links in web pages, and for the argument to the redirect function.

As part of its routing logic, web2py also supports URL rewriting, in which the configuration
file, routes.py, specifies rules by which URL() rewrites the URL it generates, and by which
web2py interprets the incoming URLs. There are two independent rewriting mechanisms,
depending on which one is configured in routes.py.

One uses regular-expression pattern matching to rewrite URL strings, while the other uses a
routing-parameter dictionary to control the rewriting. We refer to these as the pattern-based
router and the parameter-based router, respectively (sometimes they are referred to as the
old router and the new router, respectively, but those terms are not very descriptive, and we
will avoid them here).

An example of usage of the old router is given in the following section. An example of usage of
the new router is given in the rest of the chapter.

Getting ready
Normally web URLs have a structure like
http://host/app/controller/function/args.

Now imagine an application where each user has its own home page. For example:
http://host/app/default/home/johndoe,
where home is the action that renders pages, and johndoe is the request.args(0) that
tells web2py which use we are looking for. While this is possible, it would be much better to
have URLs that look like this:

http://host/johndoe/home.

This can be done using the web2py pattern-based routing mechanism.

Chapter 9

269

We will assume the following minimalist application called pages.

In models/db.py, add the following code:

db = DAL('sqlite://storage.sqlite')
from gluon.tools import *
auth = Auth(db)
auth.settings.extra_fields = [Field('html','text'),Field('css','te
xt')]
auth.define_tables(username=True)

Add the following code and the usual scaffolding files to controllers/default.py:

def index():
 return locals()

def user():
 return dict(form=auth())

def home():
 return db.auth_user(username=request.args(0)).html

def css():
 response.headers['content-type']='text/css'
 return db.auth_user(username=request.args(0)).css

How to do it...
We proceed by creating/editing routes.py in the main web2py folder, in order to implement
the following rules:

routes_in = (
 # make sure you do not break admin
 ('/admin','/admin'),
 ('/admin/$anything','/admin/$anything'),
 # make sure you do not break appadmin
 ('/$app/appadmin','/$app/appadmin'),
 ('/$app/appadmin/$anything','/$app/appadmin/$anything'),
 # map the specific urls for this the "pages" app
 ('/$username/home','/pages/default/home/$username'),
 ('/$username/css','/pages/default/css/$username'),
 # leave everything else unchanged
)

routes_out = (

Routing Recipes

270

 # make sure you do not break admin
 ('/admin','/admin'),
 ('/admin/$anything','/admin/$anything'),
 # make sure you do not break appadmin
 ('/$app/appadmin','/$app/appadmin'),
 ('/$app/appadmin/$anything','/$app/appadmin/$anything'),
 # map the specific urls for this the "pages" app
 ('/pages/default/home/$username','/$username/home'),
 ('/pages/default/css/$username','/$username/css'),
 # leave everything else unchanged
)

Note that $app is a shortcut for the regular expression (? P<app>\w+), and it will match
everything not containing slashes. $username is a shortcut for (? P<username>\w+).
Similarly, you can use other variables. $anything is special, since it corresponds with a
different regular expression, (? P<app>.*); that is, it will match everything until the end of
the URL.

The critical parts of the code are as follows:

routes_in=(
 ...
 ('/$username/home','/pages/default/home/$username'),
 ...
)
routes_out=(
 ...
 ('/pages/default/home/$username','/$username/home'),
 ...
)

These map the request for home. We then do the same for the css action. The rest of the
code is not really necessary, but makes sure that you do not accidentally break the admin
and the appadmin URLs.

Creating a simple router
This and the next recipes in this chapter deal with the new parameter-based router, which
is generally easier to configure, and handles most common re-writing tasks effectively. If
possible, try to use the parameter-based router, but if you need more control for special URL-
rewriting tasks, look at the pattern-based router.

Chapter 9

271

The starting point for using the parameter-based router is to copy the file router.example.
py to routes.py, in the web2py base directory. (The file routes.example.py serves the
same purpose for the pattern-based router.) The example file contains basic documentation
for its respective routing systems; additional documentation is available online in the web2py
book, Chapter 4, The Core: URL rewrite and Routes on error..

Whenever routes.py is changed, you must either restart web2py or, if the admin app is
available, load the following URL, for the new configuration to take effect:

http://yourdomain.com/admin/default/reload_routes

The example routing files contain a set of Python doctests.
When you make a change to the routing configuration, add
to or edit the doctests in routes.py to check that your
configuration does what you expect.

The first problem we want to solve is that we want to eliminate the default application and
controller from visible URLs, when possible.

How to do it...
1. Copy router.example.py to routes.py in the main web2py folder, and edit

it as follows. Find the routers dict:
routers = dict(
 # base router
 BASE = dict(
 default_application = 'welcome',
),
)

2. Change default_application from welcome to the name of your application.
If your default controller and function are not named, default and index
respectively, then specify those defaults as well:

routers = dict(
 # base router
 BASE = dict(
 default_application = 'myapp',
 default_controller = 'mycontroller',
 default_function = 'myfunction',
),
)

Routing Recipes

272

Adding a URL prefix
Often when you are running web2py under a production server, the same URL may be shared
by multiple applications or services, and you will need to add an extra PATH_INFO prefix to
identify the web2py service. For example:

http://example.com/php/

http://example.com/web2py/app/default/index

Here, web2py/ identifies the web2py service, and php/ identifies a php service, and the
mapping is performed by the web service. You may want to eliminate the extra web2py/
from the PATH_INFO.

How to do it...
When you specify path_prefix, it is prepended to all URLs generated by URL(), and
stripped from all incoming URLs. For example, if you want your external URLs to look like
http://example.com/web2py/app/default/index, you can do the following:

routers = dict(
 # base router
 BASE = dict(
 default_application = 'myapp',
 path_prefix = 'web2py',
),
)

Associating applications with domains
Often, you want to associate specific domains with specific web2py applications, so that
incoming URLs directed to specified domains are routed to the appropriate application, without
needing the application name in the URL. Again, the parametric router comes in handy.

How to do it...
Use the parameter-based router's domains feature:

routers = dict(
 BASE = dict(
 domains = {
 "domain1.com" : "app1",
 "www.domain1.com" : "app1",
 "domain2.com" : "app2",
 },

Chapter 9

273

 exclusive_domain = True,
),
 # app1 = dict(...),
 # app2 = dict(...),
)

In this example, domain1.com and domain2.com are being served by the same physical host.
The configuration specifies that URLs directed to domain1.com (and in this case, its subdomain
www) are to be routed to app1, and URLs directed to domain2.com are to be routed to app2.
If exclusive_domain is (optionally) set to True, then attempts to use the URL to generate a
URL referring to app2 in response to a request from a domain other than domain2.com (and
similarly for app1), will fail unless they explicitly supply a host name to URL.

Notice that you can also use the following, to further configure the paths for the two apps:

app1 = dict(...),
app2 = dict(...),

Omitting the application name
If you are using the parametric router, you may want to omit the default application name from
the visible URLs for static files.

How to do it...
It is simple; you just turn on the map_static flag as follows:

routers = dict(
 # base router
 BASE = dict(
 default_application = 'myapp',
 map_static = True,
),
)

Or, if you're using an application-specific router dictionary, turn on the map_static flag for
each application (that is, myapp in the following example):

routers = dict(
 # base router
 BASE = dict(
 default_application = 'myapp',
),
 myapp = dict(
 map_static = True,
),
)

Routing Recipes

274

Removing application name and controllers
from URLs

Sometimes, you want to use the parametric router's URL parsing, but you don't want to rewrite
visible URLs. Again, you can use the parametric router, but disable URL rewriting.

How to do it...
Find the router's dict in routes.py, as follows:

routers = dict(
 # base router
 BASE = dict(
 default_application = 'welcome',
),
)

After finding it, change it to the following:

routers = dict(
 # base router
 BASE = dict(
 applications = None,
 controllers = None,
),
)

How it works...
Setting applications and controllers to None (functions and languages are set to
None by default), tells the parametric router not to omit the corresponding parts of the visible
URL. web2py's default URL parsing is stricter than many applications might require, since it
assumes that URL components might be used for filenames. The parametric router adheres
more closely to the HTTP URL RFCs, which makes it friendlier to applications that need more
exotic characters in their arguments or query strings. The null router in this recipe, enables
this parsing without actually rewriting URLs.

Chapter 9

275

Replacing underscores with hyphens in URLs
Underscores in URLs can be ugly, and they can be hard to see when the URL is underlined, as
it often is on web pages. A hyphen is a more visually appealing alternative, but you can't, for
example, use a hyphen in a function name, because it must also be a legal Python identifier.
You can use the parametric router and to map - into _!

The parametric router's map_hyphen flag converts underscores in application, controller,
and function names to hyphens in the visible URLs, and back to underscores when the URL is
received. Args, vars (query string), and possible language selectors are not affected, since
hyphens are fine in those fields. As a result, a URL like the following:

http://some_controller/some_function

Will appear instead as follows:

http://some-controller/some-function

While the internal controller and function names retain their underscores.

How to do it...
Turn on the map_hyphen flag. In the routers directive, add the following code:

routers = dict(
 # base router
 BASE = dict(
 default_application = 'myapp',
),
 myapp = dict(
 map_hyphen = True,
),
)

Mapping favicons.ico and robots.txt
Some special files, such as robots.txt and favicon.ico, are accessed directly as the
root path of a URL. Therefore, they must be mapped from the root folder into the static
folder of the application.

Routing Recipes

276

How to do it...
By default, the parameter-based router sets root_static as follows:

routers = dict(
 # base router
 BASE = dict(
 default_application = 'myapp',
 root_static = ['favicon.ico', 'robots.txt']
),
)

This specifies that the listed files are to be served from the default application's static directory.

Using URLs to specify the language
The recipe Using cookies to set the language, in Chapter 2, describes how to save a user
language preference in a cookie. In this recipe, we describe how to do something similar—to
store the user language preference in the URL. One advantage to this approach is that it's
then possible to bookmark a link that includes a language preference.

How to do it...
The parametric router supports an optional language field in the URL as a field following
the application name:

http://domain.com/app/lang/controller/function

The language field is subject to the usual omission rules: the parametric router will
omit the language designator, if when the default language is used its omission does
not create ambiguity.

URL-based language handling will ordinarily be specified in an application-specific parametric
router, setting default_language and languages as follows:

routers = dict(
 # base router
 BASE = dict(
 default_application = app,
),
 app = dict(
 default_language = 'en',
 languages = ['en', 'it', 'pt', 'pt-br'],
),
)

Chapter 9

277

To specify a language for outgoing URLs using URL(), set request.lang to one of the
supported languages. For incoming requests, request.lang will be set to the language
specified by the incoming URL. As with the language-in-cookie recipe, use T.force to force
the desired translations in a model file, before translations are to be used. For example, in
your model, you can do the following:

T.force(request.lang)

10
Reporting Recipes

In this chapter, we will cover the following recipes:

 f Creating PDF reports

 f Creating PDF listings

 f Creating PDF labels, badges, and invoices

Introduction
There are many ways to generate PDF reports in web2py. One way is to use ReportLab,
the state of the art library for PDF generation in Python. Another way is to generate LaTeX,
and convert the output to PDF. This is probably the most powerful way to generate PDF, and
web2py helps you by packaging markmin2latex and markmin2pdf in its contrib folder.
Yet, both these approaches require mastering of third-party libraries and syntax. There is a
third way described in this chapter: convert HTML to PDF directly using the pyfpdf library,
packaged with web2py.

Creating PDF reports
Who does not need to generate PDF reports, invoices, bills? web2py ships with the pyfpdf
library, which provides conversion of HTML views into PDF, and can be used for this purpose.
pyfpdf is still in infancy, and lacks some advanced features that can be found, for example
in reportlab, yet it is more than appropriate for the average user.

Reporting Recipes

280

You can make a professional-looking business report just by using web2py HTML helpers,
mixing headers, logos, charts, text, and tables. Here is an example:

The main advantage of this method is that the same report can be rendered in a HTML view,
or can be downloaded as PDF, with minimal effort.

How to do it...
Here, we provide an example controller that generates a sample report, and then discuss its
syntax and APIs:

import os

def report():
 response.title = "web2py sample report"

Chapter 10

281

 # include a chart from google chart
 url = "http://chart.apis.google.com/chart?cht=p3&chd=t:60,
 40&chs=500x200&chl=Hello|World&.png"
 chart = IMG(_src=url, _width="250",_height="100")

 # create a small table with some data:
 rows = [THEAD(TR(TH("Key",_width="70%"),
 TH("Value",_width="30%"))),
 TBODY(TR(TD("Hello"),TD("60")),
 TR(TD("World"),TD("40")))]

 table = TABLE(*rows, _border="0", _align="center", _width="50%")

if request.extension=="pdf":
 from gluon.contrib.pyfpdf import FPDF, HTMLMixin

 # create a custom class with the required functionalities
 class MyFPDF(FPDF, HTMLMixin):
 def header(self):
 "hook to draw custom page header (logo and title)"

 # remember to copy logo_pb.png to static/images (and remove
 #alpha channel)
 logo=os.path.join(request.folder,"static","images",
 "logo_pb.png")
 self.image(logo,10,8,33)
 self.set_font('Arial','B',15)
 self.cell(65) # padding
 self.cell(60,10,response.title,1,0,'C')
 self.ln(20)
 def footer(self):
 "hook to draw custom page footer (printing page numbers)"
 self.set_y(-15)
 self.set_font('Arial','I',8)
 txt = 'Page %s of %s' % (self.page_no(), self.alias_nb_pages())
 self.cell(0,10,txt,0,0,'C')
 pdf=MyFPDF()

 # create a page and serialize/render HTML objects
 pdf.add_page()
 pdf.write_html(table.xml())
 pdf.write_html(CENTER(chart).xml())

Reporting Recipes

282

 # prepare PDF to download:
 response.headers['Content-Type']='application/pdf'
 return pdf.output(dest='S')

else normal html view:
return dict(chart=chart, table=table)

How it works...
The key is in the lines that create and serialize the pdf object:

if request.extension=='pdf':
 ...
 pdf=MyFPDF()
 ...
 return pdf.output(dest='S')

The pdf object can parse raw HTML and convert it to PDF. Here, MyFPDF extends FPDF,
by defining its own header and footer.

The following lines play the critical role of serializing HTML components created with
helpers into PDF:

pdf.write_html(table.xml())
pdf.write_html(CENTER(chart).xml())

Internally, PyFPDF has a basic HTML renderer using Python HTMLParser. This reads the
HTML code, and translates it to PDF instructions. Although it only supports basic rendering,
it can be extended easily or mixed up with other PDF primitives.

Also, you can render basic HTML with default.pdf view included with last versions of
web2py, as long you use simple and supported tags.

Look at the PyFPDF wiki documentation for more information and examples at the
following URLs:

 f http://code.google.com/p/pyfpdf/wiki/Web2Py

 f http://code.google.com/p/pyfpdf/wiki/WriteHTML

Creating PDF listings
As a follow-up to the previous recipe, we can create nice tables that automatically spread over
several pages, with headers/footers, column/row highlights, and so on, in a very Pythonic way:

You can see an example at http://pyfpdf.googlecode.com/files/listing.pdf.

Chapter 10

283

How to do it...
Here is an example that more or less speaks for itself:

def listing():
 response.title = "web2py sample listing"

 # define header and footers:
 head = THEAD(TR(TH("Header 1",_width="50%"),
 TH("Header 2",_width="30%"),
 TH("Header 3",_width="20%"),
 _bgcolor="#A0A0A0"))
 foot = TFOOT(TR(TH("Footer 1",_width="50%"),
 TH("Footer 2",_width="30%"),
 TH("Footer 3",_width="20%"),
 _bgcolor="#E0E0E0"))

 # create several rows:
 rows = []
 for i in range(1000):
 col = i % 2 and "#F0F0F0" or "#FFFFFF"
 rows.append(TR(TD("Row %s" %i),
 TD("something", _align="center"),
 TD("%s" % i, _align="right"),
 _bgcolor=col))

 # make the table object
 body = TBODY(*rows)
 table = TABLE(*[head,foot, body],
 _border="1", _align="center", _width="100%")

 if request.extension=="pdf":
 from gluon.contrib.pyfpdf import FPDF, HTMLMixin
 # define our FPDF class (move to modules if it is reused

 class MyFPDF(FPDF, HTMLMixin):
 def header(self):
 self.set_font('Arial','B',15)
 self.cell(0,10, response.title ,1,0,'C')
 self.ln(20)
 def footer(self):
 self.set_y(-15)
 self.set_font('Arial','I',8)

Reporting Recipes

284

 txt = 'Page %s of %s' % (self.page_no(), self.alias_nb_pages())
 self.cell(0,10,txt,0,0,'C')

 pdf=MyFPDF()

 # first page:
 pdf.add_page()
 pdf.write_html(table.xml())
 response.headers['Content-Type']='application/pdf'
 return pdf.output(dest='S')

 # else return normal html view:
 return dict(table=table)

Creating pdf labels, badges, and invoices
This recipe shows how to use the pyfpdf library to do simple conference badges and invoices,
but can easily adapted to print labels (Avery or other formats), and other documents.

How to do it...
1. First, you have to define two tables to hold templates and elements that will hold the

values used to design the PDF.

2. Create a model, for example models/plugin_fpdf_templates.py, and add the
following code to it:
def _():
 PAPER_FORMATS = ["A4","legal","letter"]
 ELEMENT_TYPES = {'T':'Text', 'L':'Line', 'I':'Image', 'B':'Box',
 'BC':'BarCode'}
 FONTS = ['Arial', 'Courier', 'Helvetica', 'Times-Roman',
 'Symbol','ZapfDingbats']
 ALIGNS = {'L':'Left', 'R':'Right', 'C':'Center',
 'J':'Justified'}
 NE = IS_NOT_EMPTY()

 db.define_table("pdf_template",
 Field("pdf_template_id","id"),
 Field("title"),
 Field("format", requires=IS_IN_SET(PAPER_FORMATS)),
 format = '%(title)s')

Chapter 10

285

 db.define_table("pdf_element",
 Field("pdf_template_id", db.pdf_template),
 Field("name", requires=NE),
 Field("type", length=2, requires=IS_IN_SET(ELEMENT_TYPES)),
 Field("x1", "double", requires=NE),
 Field("y1", "double", requires=NE),
 Field("x2", "double", requires=NE),
 Field("y2", "double", requires=NE),
 Field("font", default="Arial", requires=IS_IN_SET(FONTS)),
 Field("size", "double", default="10", requires=NE),
 Field("bold", "boolean"),
 Field("italic", "boolean"),
 Field("underline", "boolean"),
 Field("foreground", "integer", default=0x000000,
 comment="Color text"),
 Field("background", "integer", default=0xFFFFFF, comment="Fill
 color"),
 Field("align", "string", length=1, default="L",
 requires=IS_IN_SET(ALIGNS)),
 Field("text", "text", comment="Default text"),
 Field("priority", "integer", default=0, comment="Z-Order"))
_()

3. Then, in the controller, badges.py, add some functions to create the initial base
label/badge. Easily copy the badges according to your label format, then, finally
generate a PDF, based on some user data (which is speakers):
coding: utf8
import os, os.path
from gluon.contrib.pyfpdf import Template
def create_label():
 pdf_template_id = db.pdf_template.insert(title="sample badge",
 format="A4")

 # configure optional background image and insert his element
 path_to_image = os.path.join(request.folder, 'static','42.png')
 if path_to_image:
 db.pdf_element.insert(pdf_template_id=pdf_template_id,
 name='background', type='I', x1=0.0, y1=0.0, x2=85.23,
 y2=54.75, font='Arial', size=10.0, bold=False, italic=False,
 underline=False, foreground=0, background=16777215, align='L',
 text=path_to_image, priority=-1)

Reporting Recipes

286

 # insert name, company_name, number and attendee type elements:
 db.pdf_element.insert(pdf_template_id=pdf_template_id,
 name='name', type='T', x1=4.0, y1=25.0, x2=62.0, y2=30.0,
 font='Arial', size=12.0, bold=True,
 italic=False,
 underline=False, foreground=0, background=16777215, align='L',
 text='', priority=0)
 db.pdf_element.insert(pdf_template_id=pdf_template_id,
 name='company_name', type='T', x1=4.0, y1=30.0, x2=50.0,
 y2=34.0, font='Arial', size=10.0, bold=False, italic=False,
 underline=False, foreground=0, background=16777215, align='L',
 text='', priority=0)
 db.pdf_element.insert(pdf_template_id=pdf_template_id,
 name='no', type='T', x1=4.0, y1=34.0, x2=80.0, y2=38.0,
 font='Arial', size=10.0, bold=False, italic=False,
 underline=False, foreground=0, background=16777215, align='R',
 text='', priority=0)
 db.pdf_element.insert(pdf_template_id=pdf_template_id,
 name='attendee_type', type='T', x1=4.0, y1=38.0, x2=50.0,
 y2=42.0, font='Arial', size=10.0, bold=False, italic=False,
 underline=False, foreground=0, background=16777215, align='L',
 text='', priority=0)
 return dict(pdf_template_id=pdf_template_id)

def copy_labels():
 # read base label/badge elements from db
 base_pdf_template_id = 1
 elements = db(db.pdf_element.pdf_template_id==\
 base_pdf_template_id).select(orderby=db.pdf_element.priority)

 # set up initial offset and width and height:
 x0, y0 = 10, 10
 dx, dy = 85.5, 55

 # create new template to hold several labels/badges:
 rows, cols = 5, 2
 pdf_template_id = db.pdf_template.insert(title="sample badge\
 %s rows %s cols" % (rows, cols), format="A4")

 # copy the base elements:
 k = 0
 for i in range(rows):
 for j in range(cols):
 k += 1

Chapter 10

287

 for e in elements:
 e = dict(element)
 e['name'] = "%s%02d" % (e['name'], k)
 e['pdf_template_id'] = pdf_template_id
 e['x1'] = e['x1'] + x0 + dx*j
 e['x2'] = e['x2'] + x0 + dx*j
 e['y1'] = e['y1'] + y0 + dy*i
 e['y2'] = e['y2'] + y0 + dy*i
 del e['update_record']
 del e['delete_record']
 del e['id']
 db.pdf_element.insert(**e)

 return {'new_pdf_template_id': pdf_template_id}

def speakers_badges():
 # set template to use from the db:
 pdf_template_id = 2

 # query registered users and generate speaker labels
 speakers = db(db.auth_user.id>0).select(orderby=
 db.auth_user.last_name|db.auth_user.first_name)
 company_name = "web2conf"
 attendee_type = "Speaker"

 # read elements from db
 elements = db(db.pdf_element.pdf_template_id==
 pdf_template_id).select(orderby=db.pdf_element.priority)
 f = Template(format="A4",
 elements = elements,
 title="Speaker Badges", author="web2conf",
 subject="", keywords="")

 # calculate pages:
 label_count = len(speakers)
 max_labels_per_page = 5*2
 pages = label_count / (max_labels_per_page - 1)
 if label_count % (max_labels_per_page - 1): pages = pages + 1

 # fill placeholders for each page
 for page in range(1, pages+1):
 f.add_page()
 k = 0
 li = 0

Reporting Recipes

288

 for speaker in speakers:
 k = k + 1
 if k > page * (max_labels_per_page):
 break
 if k > (page - 1) * (max_labels_per_page):
 li += 1

 #f['item_quantity%02d' % li] = it['qty']
 f['name%02d' % li] = unicode("%s %s" % (speaker.first_name,
 speaker.last_name), "utf8")
 f['company_name%02d' % li] = unicode("%s %s" % \
 (company_name, ""), "utf8")
 f['attendee_type%02d' % li] = attendee_type

 ##f['no%02d' % li] = li

 response.headers['Content-Type']='application/pdf'
 return f.render('badge.pdf', dest='S')

To check this example:

 � Execute create_label, and record the value of pdf_template
_id created

 � Set copy_labels equal to the value in base_pdf_template
_id, then execute it

 � Set speaker_badges equal to pdf_template_id, then execute it

The function should generate a PDF with the labels (badges) for the registered
users of your application.

The sample badge has a background image as follows:

Chapter 10

289

4. Then, it writes the text over it, filling the speaker name, the address, and so on.
You can use a similar method to make attendance certificates and several reports
like that.

For a more complex example, see the following invoice controller (you will need
to import the invoice design; look at the pyfpdf application sample for a
complete example):
coding: utf8

from gluon.contrib.pyfpdf import Template
import os.path
import random
from decimal import Decimal

def invoice():
 # set sample invoice pdf_template_id:
 invoice_template_id = 3

 # generate sample invoice (according to Argentina's regulations)

 # read elements from db
 elements = db(db.pdf_element.pdf_template_id==
 invoice_template_id).select(orderby=db.pdf_element.priority)

 f = Template(format="A4",
 elements = elements,
 title="Sample Invoice", author="Sample Company",
 subject="Sample Customer", keywords="Electronic TAX Invoice")

 # create some random invoice line items and detail data
 detail = "Lorem ipsum dolor sit amet, consectetur. " * 5
 items = []
 for i in range(1, 30):
 ds = "Sample product %s" % i
 qty = random.randint(1,10)
 price = round(random.random()*100,3)
 code = "%s%s%02d" % (chr(random.randint(65,90)),
 chr(random.randint(65,90)),i)
 items.append(dict(code=code, unit='u',
 qty=qty, price=price,
 amount=qty*price,
 ds="%s: %s" % (i,ds)))

 # divide and count lines
 lines = 0
 li_items = []

Reporting Recipes

290

 for it in items:
 qty = it['qty']
 code = it['code']
 unit = it['unit']
 for ds in f.split_multicell(it['ds'], 'item_description01'):
 # add item description line (without price nor amount)
 li_items.append(dict(code=code, ds=ds, qty=qty, unit=unit,
 price=None, amount=None))
 # clean qty and code (show only at first)
 unit = qty = code = None
 # set last item line price and amount
 li_items[-1].update(amount = it['amount'],
 price = it['price'])

 # split detail into each line description
 obs="\n<U>Detail:</U>\n\n" + detail
 for ds in f.split_multicell(obs, 'item_description01'):
 li_items.append(dict(code=code, ds=ds, qty=qty, unit=unit,
 price=None, amount=None))

 # calculate pages:
 lines = len(li_items)
 max_lines_per_page = 24
 pages = lines / (max_lines_per_page - 1)
 if lines % (max_lines_per_page - 1): pages = pages + 1

 # fill placeholders for each page
 for page in range(1, pages+1):
 f.add_page()
 f['page'] = 'Page %s of %s' % (page, pages)
 if pages>1 and page<pages:
 s = 'Continues on page %s' % (page+1)
 else:
 s = ''
 f['item_description%02d' % (max_lines_per_page+1)] = s
 f["company_name"] = "Sample Company"
 f["company_logo"] = os.path.join(request.folder,"static",
 "images","logo_pb.png")
 f["company_header1"] = "Some Address - somewhere -"
 f["company_header2"] = "http://www.example.com"
 f["company_footer1"] = "Tax Code ..."
 f["company_footer2"] = "Tax/VAT ID ..."
 f['number'] = '0001-00001234'
 f['issue_date'] = '2010-09-10'
 f['due_date'] = '2099-09-10'

Chapter 10

291

 f['customer_name'] = "Sample Client"
 f['customer_address'] = "Siempreviva 1234"

 # print line item...
 li = 0
 k = 0
 total = Decimal("0.00")
 for it in li_items:
 k = k + 1

 if k > page * (max_lines_per_page - 1):
 break

 if it['amount']:
 total += Decimal("%.6f" % it['amount'])

 if k > (page - 1) * (max_lines_per_page - 1):
 li += 1

 if it['qty'] is not None:
 f['item_quantity%02d' % li] = it['qty']

 if it['code'] is not None:
 f['item_code%02d' % li] = it['code']

 if it['unit'] is not None:
 f['item_unit%02d' % li] = it['unit']
 f['item_description%02d' % li] = it['ds']

 if it['price'] is not None:
 f['item_price%02d' % li] = "%0.3f" % it['price']

 if it['amount'] is not None:
 f['item_amount%02d' % li] = "%0.2f" % it['amount']

 # last page? print totals:
 if pages == page:
 f['net'] = "%0.2f" % (total/Decimal("1.21"))
 f['vat'] = "%0.2f" % (total*(1-1/Decimal("1.21")))
 f['total_label'] = 'Total:'

 else:
 f['total_label'] = 'SubTotal:'
 f['total'] = "%0.2f" % total

 response.headers['Content-Type']='application/pdf'
 return f.render('invoice.pdf', dest='S')

Reporting Recipes

292

Here is an example of the output:

Chapter 10

293

How it works...
PDF templates are predefined documents (such as invoices, tax forms, and so on), where
each element (text, lines, barcodes, and so on) has a fixed position (x1, y1, x2, and y2),
style (font, size, and so on), and a default text.

These elements can act as placeholders, so the program can change the default text filling
the document.

Also, the elements can be defined in a CSV file or in a database, so the user can easily adapt
the form to his printing needs. Template is used like a dict, setting its items values with the
following properties:

 f name: This is the placeholder identification

 f type: T stands for texts, L stands for lines, I stands for images, B stands for boxes,
and BC stands for barcodes

 f x1, y1, x2, and y2: These are the top-left and bottom-right coordinates (in mm).

 f font: This can take the following values—Arial, Courier, Helvetica, Times,
Symbol, ZapfDingbats

 f size: This is the text size in points, that is, 10

 f bold, italic, and underline: This is the text style (non-empty to enable)

 f foreground, background: These are text and fill colors, that is, 0xFFFFFF

 f align: These are the text alignments, where L stands for left, R stands for right,
and C stands for center

 f text: This is the default string that can be replaced at runtime

 f priority: This specifies the Z-Order

Elements can be defined manually (just passing a dict), or they can be read from a CSV
sheet (using parse_csv), or stored in a database, as shown in this example using the
pdf_element table.

There's more...
This is a basic example to show badge generation using fill-in-the-blank PDF templates, but it
can be used to make any custom repetitive design.

Also, there is a visual designer to drag-and-drop elements, graphically adjust their properties,
and easily test them.

See PyFPDF wiki documentation for further information at the following URLs:

 f http://code.google.com/p/pyfpdf/wiki/Web2Py

 f http://code.google.com/p/pyfpdf/wiki/Templates

11
Other Tips and Tricks

In this chapter, we will cover the following recipes:

 f Using PDB and the embedded web2py debugger

 f Debugging with Eclipse and PyDev

 f Updating web2py using a shell script

 f Creating a simple page statistics plugin

 f Rounding corners without images or JavaScript

 f Setting a cache.disk quota

 f Checking if web2py is running using cron

 f Building a Mercurial plugin

 f Building a pingback plugin

 f Changing views for mobile browsers

 f Background processing with a database queue

 f How to effectively use template blocks

 f Making standalone applications with web2py and wxPython

Introduction
This chapter contains recipes that did not fit in any other chapter, and yet were considered
important by typical web2py users. An example is how to use web2py with Eclipse. The latter
is a very popular Java IDE that works well with Python, but presents some quirks when used
with web2py, and here, we show you how to overcome those quirks with proper configuration.
Other examples are how to develop applications that are mobile-friendly, and how to develop
standalone applications that use a wxPython GUI.

Other Tips and Tricks

296

Using PDB and the embedded web2py
debugger

web2py has interactive (web browser) debug capabilities built into the admin application,
similar to shell, but issuing commands directly to PDB, which is the Python Debugger.

Although this is not a fully-featured visual debugger, it is useful to programmatically set up
breakpoints, then step in and do variable and stack inspection, arbitrary code execution in
the program context, instruction jump, and other operations.

The use of this debugger is optional, and it is intended for advanced users (it should be
used with care, or you can block the web2py server). It is not imported, by default, and
normal operation of web2py is not modified.

The implementation can be enhanced and extended to do other kinds of COMET-like
communication (pushing data from server to client using AJAX), with general purpose
long-running processes.

How to do it...
PDB is the Python Debugger, included in the standard library.

1. You can start the debugger by writing the following:
import pdb; pdb.set_trace()

For example, let's debug the welcome default index controller:
def index():
 import pdb; pdb.set_trace()
 message = T('Hello World')
 return dict(message=message)

2. Then, when you open the index page: http://127.0.0.1:8000/welcome/
default/index, the (PDB) prompt will appear in the console where you
started web2py:
$ python web2py.py -a a

web2py Web Framework

Created by Massimo Di Pierro, Copyright 2007-2011

Version 1.99.0 (2011-09-15 19:47:18)

Database drivers available: SQLite3, pymysql, PostgreSQL

Starting hardcron...

Chapter 11

297

please visit:

 http://127.0.0.1:8000

use "kill -SIGTERM 16614" to shutdown the web2py server

> /home/reingart/web2py/applications/welcome/controllers/default.
py(20)index()

-> message = T('Hello World')

(Pdb)

3. The debugger points out that we are stopped inside welcome/controllers/
default.py at line 20. At this point, any Pdb command can be issued. The
most useful ones are as follows:

 � help: This command prints the list of available commands

 � where: This command prints the current stack trace

 � list [first[, last]]: This command lists the source code
(between the first and the last lines)

 � p expression: This command evaluates the expression and prints
the result

 � ! statement: This command executes a Python statement

 � step: step in: This command executes the current line,
entering functions

 � next: step next: This command executes the current line, not
entering functions

 � return: step return: This command continues execution until
the function exits

 � continue: This command continues execution, and only stops
at breakpoints

 � jump lineno: This command changes the next line to be executed

 � break filename:lineno: This command sets a breakpoint

 � quit: This command quits from the debugger (aborts the current program)

Other Tips and Tricks

298

The commands can be issued just by typing the first letter; for example, look at the
following example session:
(Pdb) n

> /home/reingart/web2py/applications/welcome/controllers/default.
py(21)index()

-> return dict(message=message)

(Pdb) p message

<lazyT 'Hello World'>

(Pdb) !message="hello web2py recipe!"

(Pdb) w

> /home/reingart/web2py/applications/welcome/controllers/default.
py(21)index()

-> return dict(message=message)

(Pdb) c

4. The commands were n for next (execute the line), p for a message to print the
message variable, !message= to change its value to hello web2py recipe!,
w to see the current stack trace, and continue to exit the debugger.

The problem is that this technique cannot be used if you don't have direct access to a
console (for example, if web2py is running inside apache, pdb will not work).

If a console is not available, the embedded web2py debugger can be used. The only
difference is that instead of calling pdb, there is gluon.debug with a customized
PDB version that runs using a web2py interactive shell through the browser.

5. In the previous example, replace pdb.set_trace() with gluon.debug.stop_
trace, and add gluon.debug.stop_trace() prior to the return function to give
back the control to web2py:
def index():
 gluon.debug.set_trace()
 message = T('Hello World')
 gluon.debug.stop_trace()
 return dict(message=message)

6. Then, when you open the index page, http://127.0.0.1:8000/welcome/
default/index, the browser will block until you enter into the debug page (included
in the administrative interface): http://127.0.0.1:8000/admin/debug.

Chapter 11

299

7. At the debug page, you can issue any PDB command listed before, and interact with
your program as though you where in a local console.

The following image show the last session, but inside the web2py debugger this time:

Other Tips and Tricks

300

How it works...
The web2py debugger defines a Pipe class deriving from Queue.Queue for inter-thread
communication, used as a standard input and output of PDB to interact with the user.

The online shell-like interface uses an ajax callback to receive user commands, send them
to the debugger, and print the results, as if the user were using PDB directly in a console.

When gluon.debug.set_trace() is called (that is, in a controller of the debugged
application), the custom web2py PDB instance is run, then the input and output is redirected
and queued until the other threads open the queue and communicate with it (usually, the
admin debug application is called from a separate browser window).

Meanwhile, into the debugging process, PDB does all the work, and web2py only redirects
the input and the output messages.

When gluon.debug.stop_trace() is called, the thread sends void data (None value)
to signal the monitor thread that debugging has finished.

As said in the introduction, this functionality is intended for intermediate and advanced
users, as if stop_trace is not called, or the debug controller is not refreshed, then
the internal communication queue can block the web2py server (time-outs should be
implemented to avoid deadlocks).

Pages being debugged will be blocked until the debug ends, the same as with using
pdb through the console. The debug controller will be blocked until the first breakpoint
(set_trace) is reached.

For more details, see gluon/debug.py and applications/admin/controllers/
debug.py inside the web2py source files.

There's more...
PDB is a fully featured debugger, supporting conditional breakpoints and advanced
commands. The complete documentation can be found at the following URL:

http://docs.python.org/library/pdb.html

PDB derives from the BDB module (Python Debugger framework), that can be used to extend
this technique to add more features, implementing a lightweight remote debugger (it is a base
debugger that doesn't need console interaction, so other user interfaces could be used).

Also, the Pipe class is an example of interacting with long running processes that can be
useful in COMET-like scenarios, to push data from the server to the browser, without keeping
a connection open (using standard web servers and AJAX).

Chapter 11

301

Combining both techniques, a new debugger (QDB) was developed, enabling remote
debugging of web2py applications (even in production environments). In the following
paragraphs, an example use case will be shown. For more information see the following:

http://code.google.com/p/rad2py/wiki/QdbRemotePythonDebugger

To use qdb, you have to download qdb.py (see the previous link), and put it on the gluon.
contrib directory (it will be included in further releases of web2py).

Then, in your controller, import it and call set_trace to start debugging, as shown in the
following example:

def index():
 response.flash = T('Welcome to web2py')
 import gluon.contrib.qdb as qdb
 qdb.set_trace()
 return dict(message='Hello World')

When you open your controller and set_trace is reached, qdb will listen for a remote
connection to attach to and start the debugger interaction. You can start the debug session
by executing the qdb module (python qdb.py) as follows:

C:\rad2py\ide2py>python qdb.py

qdb debugger fronted: waiting for connection to ('localhost', 6000)

> C:\web2py\applications\welcome\controllers/default.py(19)

-> return dict(message=T('Hello World'))

(Cmd) p response.flash

Welcome to web2py!

> C:\web2py\applications\welcome\controllers/default.py(19)

-> return dict(message=T('Hello World'))

(Cmd) c

You can interact with the same commands as PDB ones, that is, step, print a value, continue,
and so on.

Note that web2py (backend debugger) and qdb frontend debugger are different processes, so
you can debug even a daemon webserver,such as Apache. Also, in the qdb.py source, you
can change the address/port and password to connect to remote servers over the Internet.

web2py will include qdb and a web user interface debugger in the 2.0 release (for the
development environment).

For a full-featured IDE for web2py (for either development or production environments),
including a visual debugger based in this recipe, see the following:

http://code.google.com/p/rad2py

Other Tips and Tricks

302

Debugging with Eclipse and PyDev
Eclipse is an open source, extensible development platform and application framework,
designed for building, deploying, and managing software across its entire software lifecycle. It
is very popular in the Java world. PyDev is a Python extension for Eclipse, which allows the use
of Eclipse as an IDE for Python, and therefore, for web2py. Here, we show you how to set up
web2py to work well with these tools.

Getting ready
1. Download the latest Eclipse IDE (http://www.eclipse.org/downloads/),

and extract it to a folder of your choice.

2. Start Eclipse by running eclipse.exe in the folder. Notice that there is
no installation for Eclipse, but you must have the Java runtime
(http://java.com/en) installed.

3. Install PyDev by clicking on [Help | Install New Software], and entering the following
URL, then clicking the Add button:
http://pydev.org/updates

4. Select all of the options and hit [next].

5. It should prompt you to accept a license agreement. Continue through the wizard,
and click [No] when it asks you if you want to restart.

6. Install the correct mercurial version for your operating system:
http://mercurial.selenic.com

7. Go back to Help | Install New Software, and enter the following URL:
http://cbes.javaforge.com/update

8. Continue through the wizard, and click on Yes when it asks you to restart this time.

9. Create a new project in Eclipse by going to File | New | Project | Mercurial | Clone
Mercurial Repository using Mercurial, and enter the following URL:
http://code.google.com/p/web2py

10. Enter web2py in the Clone Directory Name field.

Chapter 11

303

11. Set the interpreter by going to Window | Preferences | PyDev | Interpreter, and
choosing the path to your Python binary:

That's it! You can start debugging by finding web2py.py in the project tree, by right-clicking
and selecting Debug As | Python Run. You can also pass arguments to web2py.py by
choosing Debug Configuration from the same menu.

There's more...
Instead of installing web2py from the mercurial repository, you can make PyDev point to an
existing web2py installation (it must be a source installation and not a web2py binary). In this
case, simply go to File | New | PyDev, and specify the directory of your web2py installation:

Other Tips and Tricks

304

Updating web2py using a shell script
The web2py admin interface provides an upgrade button, which downloads the latest web2py,
and unzips it over the old one (it does not overwrite applications except welcome, admin, and
examples). This is ok, but it presents some potential problems:

 f The admin may be disabled

 f You may want to update many installations at once, and would rather do
it programmatically

 f You may want to archive the previous version, in case you need reverting

The script we provide in this recipe is only useful for solving these problems in Linux and
on a Mac.

How to do it...
1. Move under the web2py folder:

cd /path/to/web2py

2. Make sure that you are the same user who owns the web2py folder, or you at
least have the write permission. Save the following script in a file (for example:
update_web2py.sh), and make it executable:
chmod +x update_web2py.sh

3. Then, run it:

update-web2py.sh

2009-12-16

#

install in web2py/.. or web2py/ or web2py/scripts as update-

web2py.sh

make executable: chmod +x web2py.sh

#

save a snapshot of current web2py/ as web2py/../web2py-version.

zip

download the current stable version of web2py

unzip downloaded version over web2py/

TARGET=web2py

Chapter 11

305

if [! -d $TARGET]; then

 # in case we're in web2py/

 if [-f ../$TARGET/VERSION]; then

 cd ..

 # in case we're in web2py/scripts

 elif [-f ../../$TARGET/VERSION]; then

 cd ../..

 fi

fi

read a VERSION c < $TARGET/VERSION

SAVE=$TARGET-$VERSION

URL=http://www.web2py.com/examples/static/web2py_src.zip

ZIP=`basename $URL`

SAVED=""

Save a zip archive of the current version,

but don't overwrite a previous save of the same version.

###

if [-f $SAVE.zip]; then

 echo "Remove or rename $SAVE.zip first" >&2

 exit 1

fi

if [-d $TARGET]; then

 echo -n ">>Save old version: " >&2

 cat $TARGET/VERSION >&2

 zip -q -r $SAVE.zip $TARGET

 SAVED=$SAVE.zip

fi

###

Download the new version.

###

echo ">>Download latest web2py release:" >&2

curl -O $URL

Other Tips and Tricks

306

###

Unzip into web2py/

###

unzip -q -o $ZIP

rm $ZIP

echo -n ">>New version: " >&2

cat $TARGET/VERSION >&2

if ["$SAVED" != ""]; then

 echo ">>Old version saved as $SAVED"

fi

There's more...
Yes, there is more. When upgrading web2py, the welcome application is upgraded, and it
might contain a new appadmin, a new layout, and new JavaScript libraries. You may want
to upgrade your applications as well. You can do this manually, and you have to be careful,
because depending on how your applications work, this may break them. For an application
called app, you can upgrade appadmin with the following:

cp applications/welcome/controllers/appadmin.py applications/app/\
controllers

cp applications/welcome/views/appadmin.py applications/app/views

You can upgrade generic views with the following:

cp applications/welcome/views/generic.* applications/app/views

You can upgrade web2py_ajax with the following:

cp applications/welcome/views/web2py_ajax.html applications/app/views

cp applications/welcome/static/js/web2py_ajax.js applications/app/
static/\js

And finally, you can upgrade all static files with the following:

cp -r applications/welcome/static/* applications/app/static/

You may have to be more selective. Back up first and be careful.

Chapter 11

307

Creating a simple page statistics plugin
In this recipe, we will show you how to create a plugin to display page statistics in a
hierarchical format.

How to do it...
First of all, create a file called models/plugin_stats.py, which contains the
following code:

#!/usr/bin/env python
-*- coding: utf-8 -*-

def _(db, # reference to DAL obj.
 page_key, # string to id page
 page_subkey='', # string to is subpages
 initial_hits=0, # hits initial value
 tablename="plugin_stats" # table where to store data
):
 from gluon.storage import Storage
 table = db.define_table(tablename,
 Field('page_key'),
 Field('page_subkey'),
 Field('hits', 'integer'))
 record = table(page_key=page_key,page_subkey=page_subkey)

 if record:
 new_hits = record.hits + 1
 record.update_record(hits=new_hits)
 hits = new_hits

 else:
 table.insert(page_key=page_key,
 page_subkey=page_subkey,
 hits=initial_hits)
 hits = initial_hits

 hs = table.hits.sum()
 total = db(table.page_key==page_key).select(hs).first()(hs)
 widget = SPAN('Hits:',hits,'/',total)
 return Storage(dict(hits=hits,total=total,widget=widget))

plugin_stats = _(db,
 page_key=request.env.path_info,
 page_subkey=request.query_string)

Other Tips and Tricks

308

If you want to get the results displayed to the visitor, add the following to views/layout.html:

{{=plugin_stats.widget}}

How it works...
The plugin file is a model file, and is executed at every request. It calls the following query,
which defines a table to store hits, and each record is identified by a page_key (request.
env.path_info) and a page_subkey (request.query_string).

plugin_stats = _(db,
 page_key=request.env.path_info,
 page_subkey=request.query_string)

If a record with this key and subkey does not exist, it is created. If it exists, it is retrieved,
and the field hits is incremented by one. The function _ has a weird name, but there is
nothing special about it. You can choose a different name; we just do not wish to pollute
the namespace, as the function is needed only once. The function returns a Storage
object assigned to plugin_stats, which contains the following:

 f hits: This is the number of hits corresponding to the current page_key and
page_subkey

 f total: This is the sum of the hits for the same page_key as the current page
but different subkeys

 f widget: This is a span displaying the hits, and total, which can be embedded
in views

There's more...
Notice that you can decide to change the following lines into something else, and use
different variables to group pages for counting purposes:

page_key=request.env.path_info
page_subkey=request.query_string

Rounding corners without images or
JavaScript

Modern browsers support CSS directives for rounding corners. They include the following:

 f WebKit (Safari, Chrome)

 f Gecko (Firefox)

 f Opera (with a major hack)

Chapter 11

309

Getting ready
We assume that you have a view containing the following HTML code, and you want to round
the corner of the box class:

<div class="box">
 test
</div>

How to do it...
In order to see the effect, we also need to change the background color. In the style file, for
example, add the following code for the default layout in static/styles/base.css:

.box {
 -moz-border-radius: 5px; /* for Firefox */
 -webkit-border-radius: 5px; /* for Safari and Chrome */
 background-color: yellow;
}

The first line -moz-border-radius: 5px; is interpreted only by Firefox, and ignored by
other browsers. The second line is interpreted only by Safari and Chrome.

There's more...
What about Opera? Opera does not have a CSS directive for rounded corners, but you can
modify the previous CSS as follows, and have web2py generate a dynamic image to use as
the background with the requested color and rounded corners:

.box {
 -moz-border-radius: 5px; /* for Firefox */
 -webkit-border-radius: 5px; /* for Safari and Chrome */
 background-color: yellow;
 background-image: url("../images/border_radius?r=4&fg=249,249,249&
bg=235,232,230"); /*
 for opera */
}

To this purpose, create a controllers/images.py file, and add the following code to it:

def border_radius():
 import re
 radius = int(request.vars.r or 5)
 color = request.vars.fg or 'rbg(249,249,249)'
 if re.match('\d{3},\d{3},\d{3}',color):

Other Tips and Tricks

310

 color = 'rgb(%s)' % color
 bg = request.vars.bg or 'rgb(235,232,230)'
 if re.match('\d{3},\d{3},\d{3}',bg):
 bg = 'rgb(%s)'%bg
 import gluon.contenttype
 response.headers['Content-Type']= 'image/svg+xml;charset=utf-8'
 return '''<?xml version="1.0" ?><svg
 xmlns="http://www.w3.org/2000/svg"><rect fill="%s" x="0" y="0"
 width="100%%" height="100%%" /><rect ill="%s" x="0" y="0"
 width="100%%" height="100%%" rx="%spx"
 /></svg>'''%(bg,color,radius)

This code will generate an SVG image, dynamically.

Reference: http://home.e-tjenesten.org/~ato/2009/08/border-radius-opera.

Setting a cache.disk quota
This recipe is about web2py using RAM memory for disk caching on Linux (with tmpfs).

cache.disk is a popular caching mechanism that allows multiple web2py installations that
share a file system to share cache. It is not as efficient as memcache, as writing on a shared
file system can be a bottleneck; nevertheless this is an option for some users. If you are using
cache.disk, you may want to limit the amount of data that gets written to cache by setting
a quota. This can be achieved by creating a temporary memory-mapped file system with the
added benefit of improving performances.

How to do it...
The main idea is to use cache.disk with tmpfs.

1. First of all, you need to log in as root and execute the following command:
mount -t tmpfs tmpfs $folder_path -o rw,size=$size

Here:

$folder_path is a path to the folder where you mount your slice of RAM

$size is the amount of memory you want to dedicate (M - megabytes)

For example:
mkdir /var/tmp/myquery

mount -t tmpfs tmpfs /var/tmp/myquery -o rw,size=200M

Chapter 11

311

2. You have just allocated 200 MB of your RAM. Now we have to map it in a web2py
application. Just write the following in your models:
from gluon.cache import CacheOnDisk
cache.disk = CacheOnDisk(request,
 folder='/the/memory/mapped/folder')

So, in our case:
cache.disk = CacheOnDisk(request, folder='/var/tmp/myquery')

3. Now, when you use:

db(...).select(cache=(cache.disk,3600)....)

Or the following:
@cache(request.env.path_info, time_expire=5, cache_model=cache.
disk)
def cache_controller_on_disk():
 import time
 t = time.ctime()
 return dict(time=t, link=A('click to reload',
 _href=request.url))

You have have ram space quota for every query/controller/etc cached, and
each one can have a different size setting.

Checking if web2py is running using cron
If you are on a UNIX machine, you may want to monitor whether web2py is running. A
production quality solution to this problem is using Monit: http://mmonit.com/monit/
documentation/.

It can monitor your processes, log problems, and also restart them for you automatically. Here
we present a do-it-yourself simpler solution, in the minimalist web2py spirit.

How to do it...
1. We will create the file, /root/bin/web2pytest.sh, to check if web2py runs, and

start web2py if it is not running.
#! /bin/bash

written by Ivo Maintz

export myusername=mdipierro

export port=8000

export web2py_path=/home/mdipierro/web2py

Other Tips and Tricks

312

if ! ` netcat -z localhost $port `

 then pgrep -flu $myusername web2py | cut -d -f1 | xargs kill >
/\

dev/null 2>&1

 chown $myusername: /var/log/web2py.log

 su $myusername -c 'cd $web2py_path && ./web2py.py -p $port -a
\

password 2>&1 >> /var/log/web2py.log'

 sleep 3

 if ` netcat -z localhost $port `

 then echo "web2py was restarted"

 else echo "web2py could not be started!"

 fi

fi

2. Now edit the crontab using the shell command:
crontab -e

3. Add a crontab line that instructs the crontab deamon to run our script every
three minutes:

*/3 * * * * /root/bin/web2pytest.sh > /dev/null

Notice that you may have to edit the first few lines of the script to set the right
username, port, and web2py path that you want to monitor/restart.

Building a Mercurial plugin
web2py's admin supports Mercurial for versioning, but can one pull and push changes
through HTTP?

In this recipe, we present a plugin for web2py that consists of a single file. It wraps Mercurial's
hgwebdir wsgi application, and allows one to interact with the mercurial repository of the
web2py application either from a web browser or the hg client.

This is interesting for the following two reasons:

1. On one side, if you use mercurial to version control your application, this plugin allows
you to share the repository online with other people.

2. On the other side, this is a great example of how to call a third party WSGI application
from web2py.

Chapter 11

313

Getting ready
This requires that you run web2py from source, and you have mercurial installed. You can
install mercurial using the following command:

easy_install mercurial

This plugin will only work on Python distributions that have mercurial installed. You could
package mercurial into the web2py application itself, but we do not recommend it. It makes
very little sense to use this plugin if you are not a regular mercurial user.

How to do it...
All you need to do to create the plugin is create a new controller, "plugin_mercurial.py":

""" plugin_mercurial.py
 Author: Hans Christian v. Stockhausen <hc at vst.io>
 Date: 2010-12-09
"""

from mercurial import hgweb

def index():
 """ Controller to wrap hgweb

 You can access this endpoint either from a browser in which case
 the hgweb interface is displayed or from the mercurial client.

 hg clone http://localhost:8000/app/plugin_mercurial/index app
 """

 # HACK - hgweb expects the wsgi version to be reported in a tuple
 wsgi_version = request.wsgi.environ['wsgi.version']
 request.wsgi.environ['wsgi.version'] = (wsgi_version, 0)

 # map this controller's URL to the repository location and
 #instantiate app
 config = {URL():'applications/'+request.application}
 wsgi_app = hgweb.hgwebdir(config)

 # invoke wsgi app and return results via web2py API
 # http://web2py.com/book/default/chapter/04#WSGI
 items = wsgi_app(request.wsgi.environ, request.wsgi.start_response)
 for item in items:
 response.write(item, escape=False)
 return response.body.getvalue()

Other Tips and Tricks

314

Here is a view of a sample report from the shell:

Here is a view from the plugin_above:

Chapter 11

315

You can also push to the repository. To be able to push to the repository, you need to edit/
create the file application/<app>/.hg/hgrc, and add the following entries for example:

[web]

allow_push = *

push_ssl = False

Clearly, this is recommended for a trusted environment only. Also, see the hgrc
documentation at http://www.selenic.com/mercurial/hgrc.5.html#web.

The hgwebdir WSGI application can expose multiple repositories, although for a web2py
application-specific plugin, this is probably not what you want. If you do, however, want just
that, try tweaking the config variable that is passed to the hgwebdir constructor. For
example, you could pass the name of the repository to access through request.args[0].
URLs are even longer then, so you might want to set up some rules in routes.py.

config = {
 'app/plugin_mercurial/index/repo1':'path/to/repo1',
 'app/plugin_mercurial/index/repo2':'path/to/repo2',
 'app/plugin_mercurial/index/repo3':'path/to/repo3'
}

Building a pingback plugin
Pingbacks allow blog posts and other resources, such as photos, to automatically notify one
another of backlinks. This plugin exposes a decorator to pingback-enable controller functions,
and a pingback client to inform a Wordpress blog, for example, that we link to it.

Pingback is a standard protocol, and version 1.0 is described at the following URL:

http://www.hixie.ch/specs/pingback/pingback

plugin_pingback consists of one single module file.

How to do it...
First of all, create a module/plugin_pingback.py file, with the following code:

#!/usr/bin/env python
coding: utf8
#
Author: Hans Christian v. Stockhausen <hc at vst.io>
Date: 2010-12-19
License: MIT
#

Other Tips and Tricks

316

TODO
- Check entity expansion requirements (e.g. <) as per Pingback
spec page 7
- make try-except-finally in PingbackClient.ping robust

import httplib
import logging
import urllib2
import xmlrpclib
from gluon.html import URL

__author__ = 'H.C. v. Stockhausen <hc at vst.io>'
__version__ = '0.1.1'

from gluon import *

we2py specific constants
TABLE_PINGBACKS = 'plugin_pingback_pingbacks'

Pingback protocol faults
FAULT_GENERIC = 0
FAULT_UNKNOWN_SOURCE = 16
FAULT_NO_BACKLINK = 17
FAULT_UNKNOWN_TARGET = 32
FAULT_INVALID_TARGET = 33
FAULT_ALREADY_REGISTERED = 48
FAULT_ACCESS_DENIED = 49
FAULT_UPSTREAM_ERROR = 50

def define_table_if_not_done(db):
 if not TABLE_PINGBACKS in db.tables:
 db.define_table(TABLE_PINGBACKS,
 Field('source', notnull=True),
 Field('target', notnull=True),
 Field('direction', notnull=True,
 requires=IS_IN_SET(('inbound', 'outbound'))),
 Field('status'), # only relevant for outbound pingbacks
 Field('datetime', 'datetime', default=current.request.now))

class PingbackServerError(Exception):
 pass

class PingbackClientError(Exception):

Chapter 11

317

 pass

class PingbackServer(object):
 " Handles incomming pingbacks from other sites. "

 def __init__(self, db, request, callback=None):
 self.db = db
 self.request = request
 self.callback = callback
 define_table_if_not_done(db)

 def __call__(self):
 """
 Invoked instead of the decorated function if the request is a
 pingback request from some external site.
 """

 try:
 self._process_request()
 except PingbackServerError, e:
 resp = str(e.message)
 else:
 resp = 'Pingback registered'
 return xmlrpclib.dumps((resp,))

 def _process_request(self):
 " Decode xmlrpc pingback request and process it "

 (self.source, self.target), method = xmlrpclib.loads(
 self.request.body.read())

 if method != 'pingback.ping':
 raise PingbackServerError(FAULT_GENERIC)
 self._check_duplicates()
 self._check_target()
 self._check_source()

 if self.callback:
 self.callback(self.source, self.target, self.html)
 self._store_pingback()

 def _check_duplicates(self):
 " Check db whether the pingback request was previously processed "

Other Tips and Tricks

318

 db = self.db
 table = db[TABLE_PINGBACKS]
 query = (table.source==self.source) & (table.target==self.target)
 if db(query).select():
 raise PingbackServerError(FAULT_ALREADY_REGISTERED)

 def _check_target(self):
 " Check that the target URI exists and supports pingbacks "

 try:
 page = urllib2.urlopen(self.target)
 except:
 raise PingbackServerError(FAULT_UNKNOWN_TARGET)
 if not page.info().has_key('X-Pingback'):
 raise PingbackServerError(FAULT_INVALID_TARGET)

 def _check_source(self):
 " Check that the source URI exists and contains the target link "

 try:
 page = urllib2.urlopen(self.source)

 except:
 raise PingbackServerError(FAULT_UNKNOWN_SOURCE)
 html = self.html = page.read()
 target = self.target

 try:
 import BeautifulSoup2
 soup = BeautifulSoup.BeautifulSoup(html)
 exists = any([a.get('href')==target for a in soup.findAll('a')])

 except ImportError:
 import re
 logging.warn('plugin_pingback: Could not import BeautifulSoup,' \
 ' using re instead (higher risk of pingback spam).')
 pattern = r'<a.+href=[\'"]?%s[\'"]?.*>' % target
 exists = re.search(pattern, html) != None

 if not exists:
 raise PingbackServerError(FAULT_NO_BACKLINK)

 def _store_pingback(self):

Chapter 11

319

 " Companion method for _check_duplicates to suppress duplicates. "

 self.db[TABLE_PINGBACKS].insert(
 source=self.source,
 target=self.target,
 direction='inbound')

class PingbackClient(object):
 " Notifies other sites about backlinks. "

 def __init__(self, db, source, targets, commit):
 self.db = db
 self.source = source
 self.targets = targets
 self.commit = commit
 define_table_if_not_done(db)

 def ping(self):
 status = 'FIXME'
 db = self.db
 session = current.session
 response = current.response
 table = db[TABLE_PINGBACKS]
 targets = self.targets

 if isinstance(targets, str):
 targets = [targets]

 for target in targets:
 query = (table.source==self.source) & (table.target==target)

 if not db(query).select(): # check for duplicates
 id_ = table.insert(
 source=self.source,
 target=target,
 direction='outbound')

 if self.commit:
 db.commit()

 try:
 server_url = self._get_pingback_server(target)

 except PingbackClientError, e:

Other Tips and Tricks

320

 status = e.message

 else:
 try:
 session.forget()
 session._unlock(response)
 server = xmlrpclib.ServerProxy(server_url)
 status = server.pingback.ping(self.source, target)

 except xmlrpclib.Fault, e:
 status = e

 finally:
 db(table.id==id_).update(status=status)

 def _get_pingback_server(self, target):
 " Try to find the target's pingback xmlrpc server address "

 # first try to find the pingback server in the HTTP header
 try:
 host, path = urllib2.splithost(urllib2.splittype(target)[1])
 conn = httplib.HTTPConnection(host)
 conn.request('HEAD', path)
 res = conn.getresponse()
 server = dict(res.getheaders()).get('x-pingback')

 except Exception, e:
 raise PingbackClientError(e.message)
 # next try the header with urllib in case of redirects

 if not server:
 page = urllib2.urlopen(target)
 server = page.info().get('X-Pingback')

 # next search page body for link element

 if not server:
 import re
 html = page.read()
 # pattern as per Pingback 1.0 specification, page 7
 pattern = r'<link rel="pingback" href=(P<url>[^"])" ?/?>'
 match = re.search(pattern, html)

 if match:

Chapter 11

321

 server = match.groupdict()['url']

 if not server:
 raise PingbackClientError('No pingback server found.')
 return server

def listen(db, callback=None):
 """
 Decorator for page controller functions that want to support
 pingbacks.
 The optional callback parameter is a function with the following
 signature.
 callback(source_uri, target_uri, source_html)
 """

 request = current.request
 response = current.response

def pingback_request_decorator(_):
 return PingbackServer(db, request, callback)

def standard_request_decorator(controller):
 def wrapper():
 " Add X-Pingback HTTP Header to decorated function's response "

 url_base = '%(wsgi_url_scheme)s://%(http_host)s' % request.env
 url_path = URL(args=['x-pingback'])
 response.headers['X-Pingback'] = url_base + url_path
 return controller()
 return wrapper

 if request.args(0) in ('x-pingback', 'x_pingback'):
 return pingback_request_decorator

 else:
 return standard_request_decorator

def ping(db, source, targets, commit=True):
 " Notify other sites of backlink "

 client = PingbackClient(db, source, targets, commit)
 client.ping()

Other Tips and Tricks

322

And here is how to use it:

 f Import the module

 f Decorate actions that should receive pingbacks with listen

 f Modify actions that should send pingbacks with ping

Here is a concrete example, where we assume a simple blog system:

import plugin_pingback as pingback

def on_pingback(source_url, target_url, source_html):
 import logging
 logging.info('Got a pingback')
 # ...

@pingback.listen(db,on_pingback)
def viewpost():
 " Show post and comments "
 # ...
 return locals()

def addpost():
 " Admin function to add new post "
 pingback.ping(globals(),
 source=new_post_url,
 targets=[linked_to_post_url_A, linked_to_post_url_B]
)
 # ...
 return locals()

How it works...
The plugin_pingback.py module provides the core functionality of the plugin_
pingback plugin.

The class PingbackServer handles the incoming pingbacks. The class PingbackClient
is used to notify external sites of the backlinks. In your code, you should not have to use these
classes directly. Instead, use the module functions listen and ping.

listen is a decorator to be used with controller functions you want to pingback-enable.
Under the hood, it uses the PingbackServer. This decorator accepts the db as its first
parameter, and optionally a second callback parameter. The callback signature is the
function name (source, target, or html), where source is the ping- back source URI,
target is the target URI, and html is the source page content.

ping is used to notify external sites of backlinks using the PingbackClient.

Chapter 11

323

The first parameter is, as for listen, the db object, the second is the source page URI, the third
is either a string or a list of target URIs, and finally there is the commit parameter (defaults to
True). A DB commit is likely to be required at this point, as the controller function containing the
ping is probably generating the source page. If the source page is not committed, the pingback
system of the target page will not be able to find it, and thus rejects the pingback request.

Changing views for mobile browsers
If your web application is accessed from a mobile device, such as a phone, then most likely, the
visitor is using a small screen and limited bandwidth to access your website. You may want to
detect this, and serve a light version of your pages. What light means depends on the context,
but here we assume that you simply want to change the default layout for these visitors.

web2py provides two APIs that allow you to do this.

 f You can detect when a client is using a mobile device:
if request.user_agent().is_mobile: ...

 f You can ask web2py to replace the default view *.html with *.mobile.html, for
any action using the @mobilize decorator.

from gluon.contrib.user_agent_parser import mobilize
@mobilize
def index():
 return dict()

In this recipe, we will show you how to do this manually, using third-party libraries: mobile.
sniffer and mywurlf, instead of using the built-in web2py APIs.

Getting ready
This slice uses the libraries mobile.sniffer and pywurfl to parse the USER_AGENT
header from the HTTP request. We will create a single function that returns True/False.

You can install both of them with the following commands:

easy_install mobile.sniffer

easy_install pywurfl

How to do it...
We will create our function so that, for example, if we have this request, http://example.
com/app/controller/function, the regular view will be in views/controller/
function.html, while the mobile view will be in views/controller/function.
mobile.html. And if it does not exist, it will revert to the regular one.

Other Tips and Tricks

324

This can be achieved through the following function, which you can place in any model file, for
example models/plugin_detect_mobile.py.

coding: utf8
import os

def plugin_detect_mobile(switch_view=True):
 from mobile.sniffer.detect import detect_mobile_browser
 if detect_mobile_browser(request.env.http_user_agent):
 if switch_view:
 view = '%(controller)s/%(function)s.mobile.%(extension)s' %
 request
 if os.path.exists(os.path.join(request.folder, 'views',view)):
 response.view = view
 return True
 return False
plugin_detect_mobile()

Background processing with a database
queue

Let's consider a very typical application that requires users to register. After a user submits
the registration form, the application sends out a confirmation e-mail, asking the user to
verify the sign-up process. The problem, however, is that the user does not get an immediate
response to the next page, since they have to wait for the application to connect to the SMTP
mail server, send the message, save some database results, and then finally, return the next
view. Another pathological case could be argued; let's say this same application provides
a dashboard that allows the user to download PDF reports, or data in an OpenOffice Calc
format. For the sake of argument, this process usually takes five to ten minutes to generate
the PDF or spreadsheet. Obviously, it does not make sense for a user to wait on the server to
process this data, since they would not be able to perform any other actions.

Instead of actually performing these actions that may take a while to run, the application
can just register a request in the database to perform the said action. A background process
executed by cron could read these requests, and then proceed to process them.

For the user registration, just provide a database table called emails_to_send; this will
cause a background process that would run every minute, and send all of the e-mails in a
single session. The user doing the registration benefits from a speedier sign-up, and our
application benefits by needing to only make a single SMTP connection for multiple e-mails.

Chapter 11

325

For report generation, the user could submit a request for the file in question. They might
visit a download page on the application, which shows processing for files that have been
requested. Again, a background process could load all report requests, process them into
output files, and then save the results to the database. The user would re-visit the download
page, and be able to download the processed file. The user could continue performing other
tasks, while waiting for the report to finish.

How to do it...
For this example, we will use the user report requests. This will be a dentistry website, where
clients information is stored. The office clerk would like to know the demographic breakdown
of their clients by zip code, to help determine where would be the best place to send out their
new advertising campaign. Lets just assume this is a very large dentist's office that has over
100,000 clients. This report could take a while.

For this, we will need the following tables:

db.define_table('clients',
 Field('name'),
 Field('zipcode'),
 Field('address'))

db.define_table('reports',
 Field('report_type'),
 Field('report_file_loc'),
 Field('status'),
 Field('submitted_on', 'datetime', default=request.now),
 Field('completed_on', 'datetime', default=None))

When a user navigates to the reports page, they are presented with options for possible
reports that could be downloaded. The following is an example of a controller function for a
report request:

def request_report():
 report_type = request.vars.report_type

 # make sure its a valid report
 if report_type not in ['zipcode_breakdown', 'name_breakdown']:
 raise HTTP(404)

 # add the request to the database to process
 report_id = db.reports.insert(report_type=report_type,
 status='pending')

 # return something to uniquely identify this report in case
 # this request was made from Ajax.
 return dict(report_id=report_id)

Other Tips and Tricks

326

Now for the script that would process all report requests.

def process_reports():
 from collections import defaultdict
 reports_to_process = db(db.reports.status == 'pending').select()

 # set selected reports to processing so they do not get picked up
 # a second time if the cron process happens to execute again while
 # this one is still executing.
 for report in reports_to_process:
 report.update_record(status='processing')

 db.commit()

 for report in reports_to_process:
 if report.report_type == 'zipcode_breakdown':

 # get all zipcodes
 zipcodes = db(db.clients.zipcode != None).select()

 # if the key does not exist, create it with a value of 0
 zipcode_counts = defaultdict(int)

 for zip in zipcodes:
 zipcode_counts[zip] += 1

 # black box function left up to the developer to implement
 # just assume it returns the filename of the report it created.
 filename = make_pdf_report(zipcode_counts)

 report.update_record(status='done',
 completed_on=datetime.datetime.now(),
 report_file_loc=filename)

 # commit record so it reflects into the database immediately.
 db.commit()
process_reports()

Now that we have the code to generate reports, it needs a way to execute. Let's add the call
to this function to the web2py cron/crontab file.

* * * * * root *applications/dentist_app/cron/process_reports.py

Now, when the user requests the page, they will either see that the report is processing, or a
link to download the generated report.

Chapter 11

327

There's more...
In this recipe, we used a Poor-Man's Queue example of dispatching tasks to the
background processes. This method will scale up to a certain amount of users, however,
at some point, an external message queue could be used to speed things up even more.

Since version 1.99.1, web2py includes its own built-in scheduler and scheduling API. It is
documented in the latest edition of the official web2py manual, but you can also read more
of it at the following link:

http://www.web2py.com/examples/static/epydoc/web2py.gluon.scheduler-
module.html

There is a plugin that integrated celery into web2py:

http://code.google.com/p/web2py-celery/

The former uses database access to distribute tasks, and the latter uses RabbitMQ through
celery to implement enterprise message queue servers.

How to effectively use template blocks
As you may already know, the web2py template system is very flexible, providing template
inheritance, inclusions, and a recently new (and under-documented) feature called blocks.

A block is a way that child templates can override certain portions of their parent templates,
and replace or extend the content with their own.

For example, a typical layout template includes several places that could be overridden,
based on the current page a user is located on. Examples include the title bar, portions
of the navigation, perhaps a page title, or keywords.

In this example, we will consider a typical enterprise application that contains custom
JavaScript on each page to handle elements local to only that page; the method of solving
this will generate a base pattern for block usage.

How to do it...
First, let's handle the basic pattern of using blocks, since this also solves the issue in our
example application of needing a place to put extra JavaScript blocks within the <head>
element of the HTML page.

Other Tips and Tricks

328

Consider the following layout.html file:

<!doctype html>

<head>
 <title>{{block title}}My Web2py App{{end}}</title>

 <script type="text/javascript" src={{=URL(c="static/js",
 f="jquery.js")}}></script>

 {{block head}}{{end}}
</head>

<body>
 <h1>{{block body_title}}My Web2py App{{end}}</h1>

 <div id="main_content">
 {{block main_content}}
 <p>Page has not been defined</p>
 {{end}}
 </div>
</body>

And the following detail.html file:

{{extend "layout.html"}}

{{block title}}Analysis Drilldown - {{super}}{{end}}

{{block head}}
 <script>
 $(document).ready(function() {
 $('#drill_table').sort();
 });
 </script>
{{end}}

{{block main_content}}
 <table id="drill_table">
 <tr>
 <td>ABC</td>
 <td>123</td>
 </tr>
 <tr>
 <td>EFG</td>
 <td>456</td>
 </tr>
 </table>
{{end}}

Chapter 11

329

This will render the following output file:

<!doctype html>

<head>
 <title>Analysis Drilldown - My Web2py App</title>

 <script type="text/javascript" src="/static/js/jquery.js"></script>

 <script>
 $(document).ready(function() {
 $('#drill_table').sort();
 });
 </script>
</head>

<body>
 <h1>My Web2py App</h1>

 <div id="main_content">
 <table id="drill_table">
 <tr>
 <td>ABC</td>
 <td>123</td>
 </tr>
 <tr>
 <td>EFG</td>
 <td>456</td>
 </tr>
 </table>
 </div>
</body>

There's more...
Notice the use of {{super}} when overriding the title block. {{super}} will take the
HTML output of the parent block that it is overriding, and insert it at that position. So, in this
example, the page title can retain the global sites title, but insert this unique page name into
the title.

Another thing to note is that when a block is not defined in a child template, it will still render.
Since there was no definition for the body_title block, it still rendered My web2py App.

Also, blocks deprecate the need for the old web2py {{include}} helper, as the child
template could just define a block that represents the location for the main content of the
page. This is a design pattern used heavily in other popular template languages.

Other Tips and Tricks

330

Making standalone applications with
web2py and wxPython

web2py can be used to make desktop-visual applications that doesn't require a browser or
a web server. This can be useful when standalone applications are needed (that is, no web
server installation), and also, this approach allows to simplify user interface programming
without advanced JavaScript or CSS requirements, giving direct access to a user's machine
operating system and libraries.

This recipe shows you how to use models and helpers to create a sample form, to store
basic person information into a database using the wxPython GUI toolkit, in fewer than
100 lines of code, following the best practices of web2py.

Getting ready
First, you need a working Python and web2py installation, and then download and install
wxPython from (http://www.wxpython.org/download.php).

Second, you need gui2py, a small library that manages forms, bridging web2py and wx
(http://code.google.com/p/gui2py/downloads/list).

You can also pull the source code from the project repository using Mercurial:

hg clone https://codegoogle.com/p/gui2py/.

How to do it...
In this basic recipe, we will cover the following steps:

1. Import wxPython, gui2py, and web2py.

2. Create a sample Person table, with several fields and validators.

3. Create wxPython GUI objects (application, main frame window, and html browser).

4. Create a web2py SQL form for the Person table.

5. Define the event handler to process the user input (validating and inserting the row).

6. Connect the event handler, show the window, and start to interact with the user.

Chapter 11

331

The full example follows, with a self-explained source code. Type it in, and save as a usual
Python script, for example, in your home directory as my_gui2py_app.py:

#!/usr/bin/python
-*- coding: latin-1 -*-

import sys

import wxPython:
import wx

import gui2py support -wxHTML FORM handling- (change the path!)
sys.path.append(r"/home/reingart/gui2py")
from gui2py.form import EVT_FORM_SUBMIT

import web2py (change the path!)
sys.path.append(r"/home/reingart/web2py")
from gluon.dal import DAL, Field
from gluon.sqlhtml import SQLFORM
from gluon.html import INPUT, FORM, TABLE, TR, TD
from gluon.validators import IS_NOT_EMPTY, IS_EXPR, IS_NOT_IN_DB,
IS_IN_SET
from gluon.storage import Storage

create DAL connection (and create DB if not exists)
db=DAL('sqlite://guitest.sqlite',folder=None)

define a table 'person' (create/aster as necessary)
person = db.define_table('person',
 Field('name','string', length=100),
 Field('sex','string', length=1),
 Field('active','boolean', comment="check!"),
 Field('bio','text', comment="resume (CV)"),
)

set sample validator (do not allow empty nor duplicate names)
db.person.name.requires = [IS_NOT_EMPTY(),
 IS_NOT_IN_DB(db, 'person.name')]

db.person.sex.requires = IS_IN_SET({'M': 'Male', 'F': 'Female'})

create the wxPython GUI application instance:
app = wx.App(False)

create a testing frame (wx "window"):
f = wx.Frame(None, title="web2py/gui2py sample app")

Other Tips and Tricks

332

create the web2py FORM based on person table
form = SQLFORM(db.person)

create the HTML "browser" window:
html = wx.html.HtmlWindow(f, style= wx.html.HW_DEFAULT_STYLE |
 wx.TAB_TRAVERSAL)
convert the web2py FORM to XML and display it
html.SetPage(form.xml())

def on_form_submit(evt):
 "Handle submit button user action"
 global form
 print "Submitting to %s via %s with args %s"% (evt.form.action,
 evt.form.method, evt.args)
 if form.accepts(evt.args, formname=None, keepvalues=False,
 dbio=False):
 print "accepted!"
 # insert the record in the table (if dbio=True this is done by
 web2py):
 db.person.insert(name=form.vars.name,
 sex=form.vars.sex,
 active=form.vars.active,
 bio=form.vars.bio,
)
 # don't forget to commit, we aren't inside a web2py controller!
 db.commit()
 elif form.errors:
 print "errors", form.errors
 # refresh the form (show web2py errors)
 html.SetPage(form.xml())

connect the FORM event with the HTML browser
html.Bind(EVT_FORM_SUBMIT, on_form_submit)

show the main window
f.Show()
start the wx main-loop to interact with the user
app.MainLoop()

Remember to change /home/reingart/web2py /home/reingart/gui2py to your
web2py and gui2py installation paths.

Once you have saved the file, run it:

python my_gui2py_app.py

Chapter 11

333

You should see the application window ready to receive data, and test it! It should work as a
usual web2py application:

How it works...
This recipe uses basic wxPython objects, in this case, the wx.HTML control (you can see the
original form_example.zip that is the base to gui2py):

http://wiki.wxpython.org/wxHTML

wx.HTML is basically the wxPython browser, and it can display simple HTML markup (mainly
intended to show help pages, reports, and do simple printing). It can be extended to render
custom HTML tags (FORM, INPUT, TEXTAREA, and so on), emulating a normal browser.

First, the program should import the required libraries, define the models, and create a wx
application and a basic window (a Frame in the wx world). Once the wx.HTML control is
created inside the main window, the event handler should be connected to tell wx how to
respond to user actions. The event handler receives the form data already parsed, it does
the standard form validation and inserts the row data using DAL (in a similar way to web2py
controllers). Finally, this is a GUI application, so it must call the MainLoop. It runs forever,
waiting for the user events, and calling the appropriate event handlers.

The main advantage is that wx.HTML removes the need of a JavaScript engine, so the events
can be programmed directly in Python, and it also assures the same results in different
platforms where wxPython runs, without the troubles of HTML compatibility issues.

Other Tips and Tricks

334

As the code is a standard Python program, you can access advanced features directly in the
user machine, such as opening files or socket connections, or using libraries to interact with
webcams, USB devices or legacy hardware.

Also, this approach allows to reuse your web2py knowledge (DAL, models, helpers, built-in
validation, and so on), speeding up the development of standalone visual GUI applications,
following the best practices of web development.

There's more...
This recipe could be further extended with more advanced wxPython controls, such as
wx.ListCtrl or wx.Grid, enabling to make responsive fully-featured applications with
spreadsheets capabilities, custom cell editors, virtual rows to browse huge quantities of
records, and so on.

Also, wx.AUI (Advanced User Interface) allows to build modern looking applications with
docking toolbars and panels, visual styles, and so on.

You can see more than 200 wx examples in the wxPython Docs&Demo package, available at:
http://www.wxpython.org.

Index
Symbols
$app 270
.egg package 220
@service.amfrpc3(...) decorator 221
@service.json 210
@service.json, GET variable 210
! statement, Pdb command 297

A
Add button 163
Advanced User Interface. See WX.AUI
Amazon Web Services. See AWS
amf3 RPC calls

making from Flex, pyamf used 220-222
Apache httpd 16-20, 23
API 99
app 106
appadmin URLs 270
application

associating, with domains 272, 273
controllers, removing from URLs 274
name, omitting 273
name, removing from URLs 274

Applications Programming Interface. See API
asynchronous calls 214
AUI 334
Auth

auth.settings.extra_fields 254
auth_user 254
customizing 254
db.auth_user table 254

auth.settings.extra_fields 254
auth.settings.login_url 216
auth_user 254

auth_user table 51
autocompletion plugin

using 169-171
auto tooltips

adding, in forms 148-150
avatars

getting for user profile page,
pyGravatar used 256-261

AWS
e-mails, sending with Boto 245

B
badges

creating 284-292
BasicJSONRPCData.py controller 213
BasicJSONRPC.py controller 213, 216
BDB module 300
block 327
body_title block 329
Bogdan 204
Boto

e-mails sending with, through Amazon
Web Services (AWS) 245

break filename
lineno, Pdb command 297

built-in ajax function 173
button_text: string 165

C
cache.disk 310
Calc format 324
call action 209
callback parameter 322
callback signature 322

336

cancel button
adding, to forms 126, 127

CAPTCHA 253, 255, 256
category tree

hierarchical 114, 115
CGI

used, for running web2py on shared hosts 34
checkout button 225
Cherokee

URL, for downloading 30
URL, for installing 30
web2py, running 26-30

code_xml 221
color picker widget 150, 151
concurrent updates

blocking 133, 134
detecting 133, 134

config variable 315
confirmation

adding, on form submit 127, 128
consumers 263
contacts application

building 53-60
contacts_logs 56
continue, Pdb command 297
controller: string 165
cookies

used, for setting language 92-94
corners, rounding

about 308
background color, changing 309
Gecko (Firefox), supported browser 308
Opera (with a major hack),

supported browser 308, 309
WebKit (Safari, Chrome),

supported browser 308
crud.archive

about 76
record history, storing 77
stored record, timestamping 77
using 76

csv file
model, creating from 102-104

Curriculum Vitae (CV) 130
custom logo

adding 84-86

D
DAL 9, 99
data

batch upload 104, 105
de-normalizing temporarily 136-138
moving, from one database

to another 106, 107
searching, dynamically 128

database
accessing, from multiple

applications 112-114
Database Abstraction Layer. See DAL
database queue

used, for processing background 324-326
DataController object 214
data object variable 219
data tables

improving, with WebGrid 180-183
date 121
datetime 121
db.auth_user table 254
db.bottle table 156
db.commit() 104
DB commit 323
db object 323
db.vote entry 64
define_table method 100, 102
dialog_width: string 165
domains

applications, associating 272, 273
downloads

speeding, up 96-98
drop-down date selector

creating 171-173
dynamic_search 129

E
Eclipse 302
Eclipse IDE

URL 302
EDIT button 83
e-mails

sending, with Boto through Amazon
Web Services (AWS) 245

337

emails_to_send 324
exclusive_domain 273
express checkout 223

F
Facebook

authenticating, OAuth 2.0 used 263-266
Facebook clone

building 68-75
FastCGI 23
fast_download 97
favicons.ico

mapping 275, 276
feedparser 195
feeds

aggregating 195-197
files

uploading, LOADed component used 142-144
fileuploader.js

using 139-141
flatpages

creating 79-83
defining 80
examples 79

Flex
amf3 RPC calls making, pyamf used 220-222

flex mxml/AS3 code 221
Flickr photos

APIKEY, generating 243
function, calling from controller 244
function, calling from view 244
function, creating in model files 243
getting 243

format field 84
form labels

removing 138
forms

auto tooltips, adding 148-150
cancel button, adding 126, 127

formstyle attribute 138
form submit

configuration, adding 127, 128
form_title: string 165
form wizard

creating 134, 135

full_url() method 238
function: string 165

G
GAE 117
get_configured_logger 193
get_days 208
GIS amps

making, mapscript used 246, 247
Globally Recognized Avatars. See Gravatars
gluon.debug.set_trace() 300
gluon.debug.stop_trace() 298, 300
Google App Engine. See GAE
Google code feeds reader 248
Google groups feeds reader 248
Google Refine 103
Gravatars 253, 267
gui2py

URL 330
GWT

URL 212

H
helpers 330
help, Pdb command 297
hgwebdir constructor 315
hgwebdir wsgi application 312
hgwebdir WSGI application 315
HTTP Accept-Language header 92
httpd.conf 17
hyphens

used, for replacing underscores, in URLs 275

I
icons

menus, customizing 88, 89
IIS

web2py, running as proxy 39-44
IIS 6.0 Management Compatability 45
image thumbnails

creating, from uploaded images 144
Instant Payment Notification. See IPN
invoices

creating 284-292

338

IPN 223, 232
is_active field 77
ISAPI

web2py, running 45-47
isapi-wsgi 45

J
Janrain

URL 52
Java runtime

URL 302
JavaScript

JSON-RPC from 211, 214-219
joins 119
jqGrid

and web2py 175-179
jQuery

web2py JSON service, consuming 208, 209
jQuery.getJSON 209
jquery.multiselect.js

URL, for donwloading 162
using 162, 163

jquery.timers plugin 187
JSON-RPC

from JavaScript 211, 214-219
jsonrpc library 210
JSON-RPC service

consuming 210, 211
json-xml-rpc documentation

URL 215
json-xml-rpc library 214, 219
jump lineno, Pdb command 297

L
language

specifying, URLs used 276, 277
language field 276
LaTeX 279
light 323
Lighttpd

about 23
URL, for downloading 24
URL, for installing 24

LIKE 121
listen 322

list [first[, last]], Pdb command 297
LOAD command 132
LOADed component

used, for uploading files 142-144
loggername 193
logging

about 191
get_configured_logger 193
issues 192
loggername 193

Logical OR 119

M
M2Crypto module 235
make_taggable function 137
map_hyphen flag 275
mapscript

about 246
used, for making GIS amps 246, 247

MapServer 246
map_static flag 273
matplotlib

about 200
plotting with 201, 202
uses 200

mColorPicker
URL, for downloading 150

menus
creating 87, 88
customizing, with icons 88, 89

mercurial plugin
building 312-315

mercurial version
URL 302

mobile browsers
views, changing for 323

model
creating 100, 102
creating, from csv file 102-104
creating, from existing MySQL

database 107-110
creating, from existing PostgreSQL

database 107-110
models 330
mod_proxy

web2py, running on shared hosts 35

339

modular applications
designing 94-96

Monit
used, for monitoring web2py

process 311, 312
multiple applications

database, accessing from 112-114
multiple forms

embedding, in one page 130-133
multi-table forms

creating, with references 154, 155
creating 153, 154

multi-table update form
creating 156, 157

multi-user mode 262, 263
mx:method object 221
myplot function 203

N
Name Value Pairs. See NVP
navigation bar

creating 89-91
next: step next, Pdb command 297
Nginx

web2py, running 31-33
number

representing, slider used 174
NVP 224

O
OAuth 2.0

about 253, 267
used, for Facebook authentication 263-266

onaccept function 137
onclick attribute 128
onclick function 127
onException handler 217
onvalidation function 138
operations

help page, sample 250, 251
help, URL 250
list page, sample 250
lists, URL 250
serving, SOAP used 249

OR
with complex orderby 120
with orderby 120

os.getcwd() 36

P
page

about 269
multiple forms, embedding in 130-133

page statistics plugin
about 307, 308
plugin file 308
plugin_stats 308

parameter-based router 268
PATH_INFO prefix 272
path_prefix 272
pattern-based router 268
Payment Data Transfer. See PDT
PayPal

integration, Web2py 222-231
web payments, standard 235-243

PayPalEngine 224
PayPal integration, Web2py

about 222
checkout confirmation/payment

data transfer 227
express checkout 223
lst:confirmhtml 232
standard integration 223
technical documentation, URL 224

paypal.py controller 239
PayPal web payments, standard

about 235, 237, 243
full_url() method 238
implementation 235
M2Crypto module 235
paypal.py controller 239

PDB
about 296
BDB module 300
implementation 296
Pdb command 297
standard library 296
technical documentation, URL 300

340

Pdb command
break filename:lineno 297
continue 297
help 297
jump lineno 297
list [first[, last]] 297
next: step next 297
p expression 297
quit 297
return: step return 297
! statement 297
step: step in 297
where 297

pdb.set_trace() 298
pdf label

creating 284-292
PDF listings

creating 282
example, URL 282

pdf object 282
PDF reports

creating 279-282
pdf object 282
pyfpdf library 279

PDF templates 293
PDT 223
p expression, Pdb command 297
PIL 13, 144
ping 322
pingback plugin

building 315, 321
callback signature 322
db object 323
example 322
listen 322
ping 322
PingbackServer class 322
plugin_pingback.py module 322
source 322
using 322

PingbackServer class 322
Planet Web2py 195
plugin_pingback plugin 322
plugin_pingback.py module 322

plugin_stats
hits 308
total 308
widget 308

PluginWiki
about 203
extending, RSS widget used 203-205
URL, for downloading 203

PostgreSQL 8
PP sandbox user guide 224
production deployment

setting up, on Ubuntu 12-14
providers 263
psycopg2, installing 8
pyamf

URL, for installing 220
used, for making amf3 RPC

calls from Flex 220-222
PyDev

about 302
URL 302

pyfpdf library 279
PyFPDF wiki documentation

URL 282, 293
pyGravatar

URl, for downloading 256
used, to get avatars for user

profile page 256-261
PyJamas

URL 212
pyodbc, installing 9
pysimplesoap

about 252
URL 252

PySimpleSOAP library 249
Python

URL, for downloading 8
python code 220
Python Debugger. See PDB
Python Imaging Library. See PIL
Python Paste

URL, for downloading 24
pywin32

installing 8

341

Q
QGis

URL 247
Queue.Queue 300
quit, Pdb command 297
quota 310

R
RabbitMQ 327
RDBS 117
ReCaptcha 255, 256
record insert 118
records

creating, on demand 116, 117
record update 119
Reddit clone

building 61-67
references

multi-table form, creating 154, 155
Relational Databases. See RDBS
RemoteObject. Endpoint, service URL 221
request.args(0) argument 56
request.lang 277
response.menu 87
return

return step return, Pdb command 297
return function 298
robots.txt

mapping 275, 276
root folder 275
router

simple router, creating 270, 271
routes.py

cleaner URLS, creating 268-270
request.args (a list) 268
request.vars (a dictionary) 268

rpc-client-JavaScript ZIP file 219
rss2 195
RSS widget

used, for extending PluginWiki 203-205

S
scaffolding application 50-52
SCGI

about 23
URL, for downloading 24
URL, for installing 24

search functions
Ajaxing 183-186

searching
by tag 110-112

select_or_add widget
creating 163-169

semi-static pages. See flatpages
service description (WSDL)

URL 250
session.wizard variable 135
shared hosts

web2py running, CGI used 34
web2py running, mod_proxy used 35

shell script
used, for updating web2py 304-306

Simple Object Access Protocol. See SOAP
slider

using, to represent number 174
slow virtual fields

DB views, replacing 121, 122
SOAP 248
source 322
sparklines

about 187
creating, steps 188, 189

SQLFORM.factory 135
SSL-secured web2py instance 262
standalone application

making, web2py used 330-333
making, wxPython used 330-333

standard integration 222, 223
star rating widget

URL, for downloading 158
static folder 275
static site

converting, into web2py application 78, 79

342

step: step in, Pdb command 297
stop_trace 300
submenus

creating 87, 88
systemListMethods function 215

T
target 322
tasters%i field 156
teaching mode 262, 263
template blocks

effective use 327-329
text fields

shortening 151, 152
tweets

displaying 197-199

U
Ubuntu

production deployment, setting up 12-14
web2py, installing as service 39

underscores
replacing, with hyphens in URLs 275

upgrade button 304
upload action 140
upload_callback action 140
uploaded images

image thumbnails, creating from 144
upload progress

monitoring 146-148
upload type field 98
URL() function 268
URL prefix

adding 272
URLs

cleaner URLs, creating with
routes.py 268-270

underscores, replacing with hyphens 275
using, to specify language 276, 277

URL(vote) 67
user-defined folder

web2py, running 36-38
user profile page

avatars getting, pyGravatar used 256-261

uWSGI
web2py, running 31-33

V
views

changing, for mobile browsers 323
virtual fields 122
VirtualHost configuration 18

W
web2py

and jqGrid 175-179
existing static site, converting into 78, 79
installing, as service in Ubuntu 39
installing, in Ubuntu 10
installing, on Windows 8
PayPal, integration 222-231
process monitoring, Monit used 311, 312
RSS feeds, sample 197
running, from user-defined folder 36-38
running on shared hosts, CGI used 34
running on shared hosts, mod_proxy used 35
running, with Apache 16-23
running, with Cherokee 26-30
running, with IIS as proxy 39-44
running, with ISAPI 45-47
running, with Lighttpd 23-26
running, with mod_proxy 16-23
running, with mod_rewrite 16-23
running, with Nginx 31-33
running, with uWSGI 31-33
setting up 302
updating, shell script used 304, 306
URL 8
used, for making standalone

applications 330-333
web2py debugger

PDB 296
Pipe class 300
Queue.Queue 300

web2py, installing in Ubuntu
about 10
tk library, installing 10
web2py, downloading 10

343

web2py, installing on Windows
PostgreSQL 8
psycopg2, installing 8
pyodbc, installing 9
Python, installing 8
Python Win32 extensions 8
pywin32, installing 8
source package, downloading 9

web2py JSON service
consuming, with jQuery 208, 209

web2py, updating
generic views, updating 306
shell script used 304
static files, updating 306
web2py_ajax, updating 306

Web Feature Service client
URL 247

WebGrid
data tables, improving with 180-183

Web MapService client
URL 247

Web Service Definition File. See WSDL
web URLs

URL 268
where, Pdb command 297
Windows

web2py, installing 8
wizard 134
wrapper function 219
WSDL

about 248
used, for serving operations 249

WX.AUI 334
WX.HTML. See wxPython
wxPython

about 333
URL 330
used, for making standalone

applications 330-333
wxPython Docs

URL 334

Thank you for buying
web2py Application Development Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cutting-
edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

NumPy 1.5 Beginner's Guide
ISBN: 978-1-84951-530-6 Paperback: 234 pages

An action-packed guide for the easy-to-use, high
performance, Python based free open source NumPy
mathematical library using real-world examples

1. The first and only book that truly explores
NumPy practically

2. Perform high performance calculations with clean
and efficient NumPy code

3. Analyze large data sets with statistical functions

4. Execute complex linear algebra and mathematical
computations

Python 3 Object Oriented
Programming
ISBN: 978-1-849511-26-1 Paperback: 404 pages

Harness the power of Python 3 objects

1. Learn how to do Object Oriented Programming in
Python using this step-by-step tutorial

2. Design public interfaces using abstraction,
encapsulation, and information hiding

3. Turn your designs into working software by
studying the Python syntax

4. Raise, handle, define, and manipulate exceptions
using special error objects

Please check www.PacktPub.com for information on our titles

Nginx 1 Web Server
Implementation Cookbook
ISBN: 978-1-84951-496-5 Paperback: 236 pages

Over 100 recipes to master using the Nginx HTTP server
and reverse proxy

1. Quick recipes and practical techniques to help you
maximize your experience with Nginx

2. Interesting recipes that will help you optimize your
web stack and get more out of your existing setup

3. Secure your website and prevent your setup
from being compromised using SSL and
rate-limiting techniques

4. Get more out of Nginx by using it as an
important part of your web application
using third-party modules

Python Testing Cookbook
ISBN: 978-1-84951-466-8 Paperback: 364 pages

Over 70 simple but incredibly effective recipes for taking
control of automated testing using powerful Python
testing tools

1. Learn to write tests at every level using a variety of
Python testing tools

2. The first book to include detailed screenshots and
recipes for using Jenkins continuous integration
server (formerly known as Hudson)

3. Explore innovative ways to introduce automated
testing to legacy systems

4. Written by Greg L. Turnquist – senior software
engineer and author of Spring Python 1.1

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors and Reviewers
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Deploying web2py
	Introduction
	Installing web2py on Windows
(from source code)
	Installing web2py in Ubuntu
	Setting up a production deployment
on Ubuntu
	Running web2py with Apache, mod_proxy, and mod_rewrite
	Running web2py with Lighttpd
	Running web2py with Cherokee
	Running web2py with Nginx and uWSGI
	Running web2py on shared hosts using CGI
	Running web2py on shared hosts with
mod_proxy
	Running web2py from a user-defined folder
	Installing web2py as a service in Ubuntu
	Running web2py with IIS as a proxy
	Running web2py with ISAPI

	Chapter 2: Building Your First Application
	Introduction
	Improving the scaffolding application
	Building a simple contacts application
	Building a Reddit clone
	Building a Facebook clone
	Using crud.archive
	Converting an existing static site into a
web2py application
	Creating semi-static pages (flatpages)
	Adding your custom logo
	Creating menus and submenus
	Customizing menus with icons
	Creating a navigation bar
	Using cookies to set the language
	Designing modular applications
	Speeding up downloads

	Chapter 3: Database Abstraction Layer
	Introduction
	Creating a new model
	Creating a model from a CSV file
	Batch upload of your data
	Moving your data from one database to another
	Creating a model from existing MySQL and PostgreSQL databases
	Efficiently searching by tag
	Accessing your database from multiple
applications
	Hierarchical category tree
	Creating records on demand
	OR, LIKE, BELONGS, and more on Google App Engine
	Replacing slow virtual fields with DB views

	Chapter 4: Advanced Forms
	Introduction
	Adding confirmation on form submit
	Searching data dynamically
	Embedding multiple forms in one page
	Detecting and blocking concurrent updates
	Creating a form wizard
	De-normalizing data temporarily
	Removing form labels
	Using fileuploader.js
	Uploading files using a LOADed component
	Making image thumbnails from uploaded
images
	Monitoring upload progress
	Auto tooltips in forms
	Color picker widget
	Shortening text fields
	Creating multi-table forms
	Creating a multi-table form with references
	Creating a multi-table update form
	Star rating widget

	Chapter 5: Adding Ajax Effects
	Introduction
	Using jquery.multiselect.js
	Creating a select_or_add widget
	Using an autocompletion plugin
	Creating a drop-down date selector
	Improving the built-in ajax function
	Using a slider to represent a number
	Using jqGrid and web2py
	Improving data tables with WebGrid
	Ajaxing your search functions
	Creating sparklines

	Chapter 6: Using Third-party Libraries
	Introduction
	Customizing logging
	Aggregating feeds
	Displaying Tweets
	Plotting with matplotlib
	Extending PluginWiki with an RSS widget

	Chapter 7: Web Services
	Introduction
	Consuming a web2py JSON service
with jQuery
	Consuming a JSON-RPC service
	JSON-RPC from JavaScript
	Making amf3 RPC calls from Flex
using pyamf
	PayPal integration in Web2py
	PayPal web payments standard
	Getting Flickr photos
	Sending e-mails with Boto through Amazon Web Services (AWS)
	Making GIS amps using mapscript
	Google groups and Google code feeds
reader
	Creating SOAP web services

	Chapter 8: Authentication and Authorization
	Introduction
	Customizing Auth
	Using CAPTCHA on login failure
	Using pyGravatar to get avatars for user
profile pages
	Multi-user and teacher modes
	Authenticating with Facebook using
OAuth 2.0

	Chapter 9: Routing Recipes
	Introduction
	Making cleaner URLs with routes.py
	Creating a simple router
	Adding a URL prefix
	Associating applications with domains
	Omitting the application name
	Removing application name and controllers from URLs
	Replacing underscores with hyphens in URLs
	Mapping favicons.ico and robots.txt
	Using URLs to specify the language

	Chapter 10: Reporting Recipes
	Introduction
	Creating PDF reports
	Creating PDF listings
	Creating pdf labels, badges, and invoices

	Chapter 11: Other Tips and Tricks
	Introduction
	Using PDB and the embedded web2py
debugger
	Debugging with Eclipse and PyDev
	Updating web2py using a shell script
	Creating a simple page statistics plugin
	Rounding corners without images or
JavaScript
	Setting a cache.disk quota
	Checking if web2py is running using cron
	Building a Mercurial plugin
	Building a pingback plugin
	Changing views for mobile browsers
	Background processing with a database queue
	How to effectively use template blocks
	Making standalone applications with
web2py and wxPython

	Index

