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Preface

Introduction

The human face has long been an object of fascination, investigation, and analysis. It is so
familiar to our visual cognition system that we can recognize a person’s face in difficult
visual environments, that is, under arbitrary lighting conditions and pose variation. A common
question to many researchers is whether a computer vision system can process and analyze 3D
face as the human vision system does. In addition to understanding human cognition, there is
also increasing interest in analyzing shapes of facial surfaces for developing applications such
as biometrics, human–computer interaction (HCI), facial surgery, video communications, and
3D animation.

Because facial biometrics is natural, contact free, nonintrusive, and of psychological inter-
est, it has emerged as a popular modality in the biometrics community. Unfortunately, the
technology for 2D image-based face recognition still faces difficult challenges. Face recog-
nition is made difficult by data variability caused by pose variations, lighting conditions,
occlusions, and facial expressions. Because of the robustness of 3D observations to lighting
conditions and pose variations, face recognition using shapes of facial surfaces has become a
major research area in the last few years. Many of the state-of-the-art methods have focused on
the variability caused by facial deformations, for example, those caused by face expressions,
and have proposed methods that are robust to such shape variations.

Another important use of 3D face analysis is in the area of computer interaction. As
machines become more and more involved in everyday human life and take on increasing
roles in both their living and work spaces, they need to become more intelligent in terms
of understanding human moods and emotions. Embedding these machines with a system
capable of recognizing human emotions and mental states is precisely what the HCI research
community is focused on. Facial expression recognition is a challenging task that has seen
a growing interest within the research community, impacting important applications in fields
related to HCI. Toward building human-like emotionally intelligent HCI devices, scientists are
trying to include identifiers of the human emotional state in such systems. Recent developments
in 3D acquisition sensors have made 3D data more readily available. Such data help alleviate
problems inherent in 2D data such as illumination, pose, and scale variations as well as low
resolution.

The interest in 3D facial shape analysis is fueled by the recent advent of cheaper and lighter
scanners that can provide high resolution measurements of both geometry and texture of human
facial surfaces. One general goal here is to develop computational tools for analyzing 3D face
data. In particular, there is interest in quantifiably comparing the shapes of facial surfaces. This
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can be used to recognize human beings according to their facial shapes, to measure changes
in a facial shape following a surgery, or to study/capture the variations in facial shapes during
conversations and expressions of emotions. Accordingly, the main theme of this book is to
develop computational frameworks for analyzing shapes of facial surfaces. In this book, we
use some basic and some advanced tools from differential geometry, Riemannian geometry,
algebra, statistics, and computer science to develop the desired algorithms.

Scope of the book

This book, which focuses on 3D face modeling, processing, and applications, is divided into
five chapters.

Chapter 1 provides a brief overview of successful ideas in the literature, starting with some
background material and important basic ideas. In particular, the principles of depth from
triangulation and shape from shading are explained first. Then, an original 3D face (static or
dynamic) modeling-guided taxonomy is proposed. Next, a survey of successful approaches
that have led to commercial systems is given in accordance with the proposed taxonomy.
Finally, a general review of these approaches according to factors that are intrinsic factors
(spatial and temporal resolutions, depth accuracy, sensor cost, etc.) and extrinsic (motion
speed, illumination changes, face details, intrusion and need for user cooperation, etc.) are
provided.

Chapter 2 discusses the state of the art in 3D surface features for the recognition of the
human face. Particular emphasis is laid on the most prominent and recent contributions. The
features extracted from 3D facial surfaces serve as means for dimensionality reduction of
surface data and for facilitating the task of face recognition. The complexity of extraction,
descriptiveness, and robustness of features directly affect the overall accuracy, performance,
and robustness of the 3D recognition system.

Chapter 3 presents a novel geometric framework for analyzing 3D faces, with specific goals
of comparing, matching, and averaging their shapes. In this framework, facial surfaces are
represented by radial curves emanating from the nose tips. These curves, in turn, are compared
using elastic shape analysis to develop a Riemannian framework for full facial surfaces. This
representation, along with the elastic Riemannian metric, seems natural for measuring facial
deformations and is robust to data issues such as large facial expressions. One difficulty
in extracting facial curves from the surface of 3D face scans is related to the presence of
noise. A possible way to smooth the effect of the noise without losing the effectiveness of
representations is to consider aggregates of facial curves, as opposed to individual curves,
called iso-geodesic stripes.

Chapter 4 presents an automatic and efficient method to fit a statistical deformation model
of the human face to 3D scan data. In a global-to-local fitting scheme, the shape parameters
of this model are optimized such that the produced instance of the model accurately fits the
3D scan data of the input face. To increase the expressiveness of the model and to produce a
tighter fit of the model, the method fits a set of predefined face components and blends these
components afterwards. In the case that a face cannot be modeled, the automatically acquired
model coefficients are unreliable, which hinders the automatic recognition. Therefore, we
present a bootstrapping algorithm to automatically enhance a 3D morphable face model with
new face data. The accurately generated face instances are manifold meshes without noise
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and holes, and can be effectively used for 3D face recognition. The results show that model
coefficient based face matching outperforms contour curve and landmark based face matching,
and is more time efficient than contour curve matching.

Although there have been many research efforts in the area of 3D face analysis in the last
few years, the development of potential applications and exploitation of face recognition tools
is still in its infancy. Chapter 5 summarizes recent trends in 3D face analysis with particular
emphasis on the application techniques introduced and discussed in the previous chapters.
The chapter discusses how 3D face analysis has been used to improve face recognition in
the presence of facial expressions and missing parts, and how 3D techniques are now being
extended to process dynamic sequences of 3D face scans for the purpose of facial expression
recognition.

We hope that this will serve as a good reference book for researchers and students interested
in this field.

Mohamed Daoudi, TELECOM Lille 1/LIFL, France
Anuj Srivastava, Florida State University, USA

Remco Veltkamp, Utrecht University, The Netherlands
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1
3D Face Modeling

Boulbaba Ben Amor,1 Mohsen Ardabilian,2 and Liming Chen2
1Institut Mines-Télécom/Télécom Lille 1, France
2Ecole Centrale de Lyon, France

Acquiring, modeling, and synthesizing realistic 3D human faces and their dynamics have
emerged as an active research topic in the border area between the computer vision and
computer graphics fields of research. This has resulted in a plethora of different acquisition
systems and processing pipelines that share many fundamental concepts as well as specific
implementation details. The research community has investigated the possibility of targeting
either end-to-end consumer-level or professional-level applications, such as facial geometry
acquisition for 3D-based biometrics and its dynamics capturing for expression cloning or per-
formance capture and, more recently, for 4D expression analysis and recognition. Despite the
rich literature, reproducing realistic human faces remains a distant goal because the challenges
that face 3D face modeling are still open. These challenges include the motion speed of the
face when conveying expressions, the variabilities in lighting conditions, and pose. In addition,
human beings are very sensitive to facial appearance and quickly sense any anomalies in 3D
geometry or dynamics of faces. The techniques developed in this field attempt to recover facial
3D shapes from camera(s) and reproduce their actions. Consequently, they seek to answer the
following questions:

� How can one recover the facial shapes under pose and illumination variations?
� How can one synthesize realistic dynamics from the obtained 3D shape sequences?

This chapter provides a brief overview of the most successful existing methods in the
literature by first introducing basics and background material essential to understand them.
To this end, instead of the classical passive/active taxonomy of 3D reconstruction techniques,
we propose here to categorize approaches according to whether they are able to acquire faces
in action or they can only capture them in a static state. Thus, this chapter is preliminary to

3D Face Modeling, Analysis and Recognition, First Edition.
Edited by Mohamed Daoudi, Anuj Srivastava and Remco Veltkamp.
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2 3D Face Modeling, Analysis and Recognition

the following chapters that use static or dynamic facial data for face analysis, recognition, and
expression recognition.

1.1 Challenges and Taxonomy of Techniques

Capturing and processing human geometry is at the core of several applications. To work on
3D faces, one must first be able to recover their shapes. In the literature, several acquisition
techniques exist that are either dedicated to specific objects or are general. Usually accom-
panied by geometric modeling tools and post-processing of 3D entities (3D point clouds, 3D
mesh, volume, etc.), these techniques provide complete solutions for 3D full object reconstruc-
tion. The acquisition quality is mainly linked to the accuracy of recovering the z-coordinate
(called depth information). It is characterized by loyalty reconstruction, in other words, by
data quality, the density of 3D face models, details preservation (regions showing changes in
shapes), etc. Other important criteria are the acquisition time, the ease of use, and the sensor’s
cost. In what follows, we report the main extrinsic and intrinsic factors which could influence
the modeling process.

� Extrinsic factors. They are related to the environmental conditions of the acquisition and the
face itself. In fact, human faces are globally similar in terms of the position of main features
(eyes, mouth, nose, etc.), but can vary considerably in details across (i) their variabilities
due to facial deformations (caused by expressions and mouth opening), subject aging
(wrinkles), etc, and (ii) their specific details as skin color, scar tissue, face asymmetry, etc.
The environmental factors refer to lighting conditions (controlled or ambient) and changes
in head pose.

� Intrinsic factors. They include sensor cost, its intrusiveness, manner of sensor use (cooper-
ative or not), spatial and/or temporal resolutions, measurement accuracy and the acquisition
time, which allows us to capture moving faces or simply faces in static state.

These challenges arise when acquiring static faces as well as when dealing with faces
in action. Different applications have different requirements. For instance, in the computer
graphics community, the results of performance capture should exhibit a great deal of spatial
fidelity and temporal accuracy to be an authentic reproduction of a real actors’ performance.
Facial recognition systems, on the other hand, require the accurate capture of person-specific
details. The movie industry, for instance, may afford a 3D modeling pipeline system with
special purpose hardware and highly specialized sensors that require manual calibration.
When deploying a 3D acquisition system for facial recognition at airports and in train stations,
however, cost, intrusiveness, and the need of user cooperation, among others, are important
factors to consider. In ambient intelligence applications where a user-specific interface is
required, facial expression recognition from 3D sequences emerges as a research trend instead
of 2D-based techniques, which are sensitive to changes and pose variations. Here, also,
sensor cost and its capability to capture facial dynamics are important issues. Figure 1.1
shows a new 3D face modeling-guided taxonomy of existing reconstruction approaches. This
taxonomy proposes two categories: The first category targets 3D static face modeling, while
the approaches belonging to the second category try to capture facial shapes in action (i.e., in
3D+t domain). In the level below, one finds different approaches based on concepts presented



3D Face Modeling 3

3D Face Modeling 
Techniques

Time of Flight
Multi-view

reconstruction

Static 
3D face
(still 3D)

Laser stripe
scanning

From single
shot

Deformable 
3D face

(dynamic 3D)

Time-coded
Structured Light

Photometric 
stereo

Depth from triangulation

Depth from Time of Flight
Shape from shading

Spacetime
stereo

Structured
Light

Time of Flight

Figure 1.1 Taxonomy of 3D face modeling techniques

in section 1.2. In static face category, the multi-view stereo reconstruction uses the optical
triangulation principle to recover the depth information of a scene from twoormore projections
(images). The same mechanism is unconsciously used by our brain to work out how far an
object is. The correspondence problem in multi-view approaches is solved by looking for
pixels that have the same appearance in the set of images. This is known as stereo-matching
problem. Laser scanners use the optical triangulation principle, this time called active by
replacing one camera with a laser source that emits a stripe in the direction of the object to
scan. A second camera from a different viewpoint captures the projected pattern. In addition
to one or several cameras, time-coded structured-light techniques use a light source to project
on the scene a set of light patterns that are used as codes for finding correspondences between
stereo images. Thus, they are also based on the optical triangulation principle.
The moving face modeling category, unlike the first one, needs fast processing for 3D

shape recovery, thus, it tolerates scene motion. The structured-light techniques using one
complex pattern is one solution. In the same direction, the work called Spacetime faces shows
remarkable results in dynamic 3D shape modeling, by employing random colored light on the
face to solve the stereo matching problem. Time-of-flight-based techniques could be used to
recover the dynamic of human body parts such as the faces but with a modest shape accuracy.
Recently, photometric stereo has been used to acquire 3D faces because it can recover a dense
normal field from a surface. In the following sections, this chapter first gives basic principles
shared by the techniques mentioned earlier, then addresses the details of each method.

1.2 Background

In the projective pinhole camera model, a point P in the 3D space is imaged into a point p on
the image plane. p is related to P with the following formula:

p = M P = K R[I |t]P, (1.1)

where p and P are represented in homogeneous coordinates, M is a 3× 4 projection matrix,
and I is the 3× 3 identity matrix. M can be decomposed into two components: the intrinsic
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parameters and the extrinsic parameters. Intrinsic parameters relate to the internal parameters
of the camera, such as the image coordinates of the principal point, the focal length, pixel
shape (its aspect ratio), and the skew. They are represented by the 3× 3 upper triangular
matrix K . Extrinsic (or external) parameters relate to the pose of the camera, defined by the
3× 3 rotation matrix R and its position t with respect to a global coordinate system. Camera
calibration is the process of estimating the intrinsic and extrinsic parameters of the cameras.
3D reconstruction can be roughly defined as the inverse of the imaging process; given a

pixel p on one image, 3D reconstruction seeks to find the 3D coordinates of the point P that
is imaged onto p. This is an ill-posed problem because with the inverse imaging process a
pixel p maps into a ray v that starts from the camera center and passes through the pixel p.
The ray direction �v can be computed from the camera pose R and its intrinsic parameters K
as follows;

�v = R−1K −1 p

‖R−1K −1 p‖ (1.2)

1.2.1 Depth from Triangulation

If q is the image of the same 3D point P taken by another camera from a different viewing
angle, then the 3D coordinates of P can be recovered by estimating the intersection of the two
rays, v1 and v2, that start from the camera centers passing, respectively, through p and q. This
is known as the optical triangulation principle. p and q are called corresponding or matching
pixels because they are the images of the same 3D point P .
A 3D point P is the intersection of n(n > 1) rays vi passing through the optical centers ci

of cameras {Ci }where i = 1, . . . , n. This can also be referred to passive optical triangulation.
As illustrated in Figure 1.2, all points on vi project to pi , given a set of corresponding pixels
pi captured by the cameras Ci , and their corresponding rays vi , the 3D location of P can
be found by intersecting the rays vi . In practice, however, these rays will often not intersect.

P

vi

vi

pi

Ci

Figure 1.2 Multiview stereo determines the position of a point in space by finding the intersection of
the rays vi passing through the center of projection ci of the i th camera and the projection of the point
P in each image, pi
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Instead, we look for the optimal value of P that lies closest to the rays vi . Mathematically, if
Ki , Ri , ti are the parameters of the camera Ci , where Ki is the 3× 3 matrix that contains the
intrinsic parameters of the camera and Ri and ti are the pose of the i th camera with respect to
the world coordinate system, the rays vi originating at Ci and passing through pi are in the
direction of R−1

i K −1
i pi . The optimal value of P that lies closest to all the rays �vi , p minimizes

the distance:

‖c j + d j �v j − p‖2 (1.3)

Methods based on the optical triangulation need to solve two problems: (i) the matching
problem, and (ii) the reconstruction problem. The correspondence problem consists of finding
matching points across the different cameras. Given the corresponding points, the reconstruc-
tion problem consists of computing a 3D disparity map of the scene, which is equivalent
to the depth map (z-coordinate on each pixel). Consequently, the quality of the reconstruc-
tion depends crucially on the solution to the correspondence problem. For further reading on
stereo vision (cameras calibration, stereo matching algorithms, reconstruction, etc.), we refer
the reader to download the PDF of the Richard Szeliski’s Computer Vision: Algorithms and
Applications available at http://szeliski.org.1

Existing optical triangulation-based 3D reconstruction techniques, such as multi-view
stereo, structured-light techniques, and laser-based scanners, differ in the way the corre-
spondence problem is solved. Multiview stereo reconstruction uses the triangulation principle
to recover the depth map of a scene from two or more projections. The same mechanism
is unconsciously used by our brain to work out how far an object is. The correspondence
problem in stereo vision is solved by looking for pixels that have the same appearance in the
set of images. This is known as stereo matching. Structured-light techniques use, in addition to
camera(s), a light source to project on the scene a set of light patterns that are used as codes for
finding correspondences between stereo images. Laser scanners use the triangulation principle
by replacing one camera with a laser source that emits a laser ray in the direction of the object
to scan. A camera from a different viewpoint captures the projected pattern.

1.2.2 Shape from Shading

Artists have reproduced, in paintings, illusions of depth using lighting and shading. Shape From
Shading (SFS) addresses the shape recovery problem from a gradual variation of shading in the
image. Image formation is a key ingredient to solve the SFS problem. In the early 1970s, Horn
was the first to formulate the SFS problem as that of finding the solution of a nonlinear first-
order Partial Differential Equation (PDE) also called the brightness equation. In the 1980s, the
authors address the computational part of the problem, directly computing numerical solutions.
Bruss and Brooks asked questions about the existence and uniqueness of solutions. According
to the Lambertian model of image formation, the gray level at an image pixel depends on the
light source direction and surface normal. Thus, the aim is to recover the illumination source

1http://szeliski.org/Book/
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and the surface shape at each pixel. According to Horn’s formulation of SFS problem, the
brightness equation arises as:

I (x, y) = R(�n(x, y)), (1.4)

where, (x, y) are the coordinates of a pixel; R, the reflectance map and I the brightness
image. Usually, SFS approaches, particularly those dedicated to face shape recovery, adopt
the Lambartian property of the surface. In which case, the reflectance map is the cosine of the
angle between light vector �L(x, y) and the normal vector �n(x, y) to the surface:

R = cos( �L, �n) =
�L

| �L| · �n
|�n| , (1.5)

where R, �L and �n depends on (x, y). Since the first SFS technique developed by Horn, many
different approaches have emerged; active SFS which requires calibration to simplify the
solution finding has achieved impressive results.

1.2.3 Depth from Time of Flight (ToF)

Time of flight provides a direct way to acquire 3-D surface information of objects or scenes
outputting 2.5 D, or depth, images with a real-time capability. The main idea is to estimate the
time taken for the light projected by an illumination source to return from the scene or the object
surface. This approach usually requires nano-second timing to resolve surface measurements
to millimeter accuracy. The object or scene is actively illuminated with a nonvisible light
source whose spectrum is usually nonvisible infrared, e.g. 780 nm. The intensity of the active
signal is modulated by a cosine-shaped signal of frequency f . The light signal is assumed
to have a constant speed, c, and is reflected by the scene or object surface. The distance d
is estimated from the phase shift θ in radian between the emitted and the reflected signal,
respectively:

d = c

2 f

θ

2π
(1.6)

While conventional imaging sensors consists of multiple photo diodes, arranged within a
matrix to provide an image of, e.g., color or gray values, a ToF sensor, for instance a pho-
ton mixing device (PMD) sensor, simultaneously acquires a distance value for each pixel in
addition to the common intensity (gray) value. Compared with conventional imaging sensors,
a PMD sensor is a standard CMOS sensor that benefits from these functional improve-
ments. The chip includes all intelligence, which means that the distance is computed per
pixel. In addition, some ToF cameras are equipped with a special pixel-integrated circuit,
which guarantees the independence to sunlight influence by the suppression of background
illumination (SBI).
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1.3 Static 3D Face Modeling

1.3.1 Laser-stripe Scanning

Laser-stripe triangulation uses the well-known optical triangulation described in section 1.2.
A laser line is swept across the object where a CCD array camera captures the reflected light,
its shape gives the depth information. More formally, as illustrated in Figure 1.3, a slit laser
beam, generated by a light projecting optical system, is projected on the object to be measured,
and its reflected light is received by a CCD camera for triangulation. Then, 3D distance data
for one line of slit light are obtained. By scanning slit light with a galvanic mirror, 3D data
for the entire object to be measured are obtained. By measuring the angle 2π − θ , formed by
the baseline d (distance between the light-receiving optical system and the light-projecting
optical system) and by a laser beam to be projected, one can determine the z-coordinate
by triangulation. The angle θ is determined by an instruction value of the galvanic mirror.
Absolute coordinates for laser beam position on the surface of the object, denoted by p, are
obtained from congruence conditions of triangles, by

z

f0
= d − z. tan(θ )

p
. (1.7)

This gives the z-coordinate, by

z = d f0
p + f0 tan(θ )

. (1.8)

Solve question 1 in section 5.5.3 for the proof.

P 

Laser source

Mirror(deflector

Optical axis

)

Surface to 
be measured

Range point

Position in CCD

Imaging lens

baseline : d

f

z?

Θ

p

Laser beam

CCD sensor

Figure 1.3 Optical triangulation geometry for a laser-stripe based scanner
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Depth imageTexture image

Cloud of 3D points 3D mesh Textured surface

Figure 1.4 One example of 3D face acquisition based on laser stripe scanning (using Minolta VIVID
910). Different representations are given, from the left: texture image, depth image, cloud of 3D points,
3D mesh, and textured shape

The Charged Couple Device (CCD) is the widely used light-receiving optical system to
digitize the point laser image. CCD-based sensors avoid the beam spot reflection and stray
light effects and provide more accuracy because of the single-pixel resolution. Another factor
that affects the measurement accuracy is the difference in the surface characteristic of the
measured object from the calibration surface. Usually calibration should be performed on
similar surfaces to ensure measurement accuracy. Using laser as a light source, this method
has proven to be able to provide measurement at a much higher depth range than other passive
systems with good discrimination of noise factors. However, this line-by-line measurement
technique is relatively slow. The laser-based techniques can give very accurate 3D information
for a rigid body even with a large depth. However, this method is time consuming for real
measurement since it obtains 3D geometry on a line at a time. The area scanning-based
methods such as time-coded structured light (see section 1.3.2) are certainly faster.
An example of acquired face using these technique is given by Figure 1.4. It illustrates

the good quality of the reconstruction when office environment acquisition conditions are
considered, the subject is distant of 1 m from the sensor and remains stable for a few seconds.

1.3.2 Time-coded Structured Light

The most widely used acquisition systems for face are based on structured light by virtue of
reliability for recovering complex surface and accuracy. That consists in projecting a light
pattern and imaging the illuminated object, a face for instance, from one or more points of
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(a) (b)

Space

Time

Figure 1.5 (a) Binary-coded patterns projection for 3D acquisition, (b) n-ary-coded coded patterns
projection for 3D acquisition

view. Correspondences between image points and points of the projected pattern can be easily
found. Finally the decoded points can be triangulated, and depth is recovered. The patterns are
designed so that code words are assigned to a set of pixels.
A code word is assigned to a coded pixel to ensure a direct mapping from the code words to

the corresponding coordinates of the pixel in the pattern. The code words are numbers and they
are mapped in the pattern by using gray levels, color or geometrical representations. Pattern
projection techniques can be classified according to their coding strategy: time-multiplexing,
neighborhood codification, and direct codification. Time-multiplexing consists in projecting
code words as sequence of patterns along time, so the structure of every pattern can be very
simple. In spite of increased complexity, neighborhood codification represents the code words
in a unique pattern. Finally, direct codification defines a code word for every pixel; equal to
the pixel gray level or color.
One of the most commonly exploited strategies is based on temporal coding. In this case,

a set of patterns are successively projected onto the measuring surface. The code word for a
given pixel is usually formed by the sequence of illumination values for that pixel across the
projected patterns. Thus, the codification is called temporal because the bits of the code words
are multiplexed in time. This kind of pattern can achieve high accuracy in the measurements.
This is due to two factors: First, because multiple patterns are projected, the code word basis
tends to be small (usually binary) and hence a small set of primitives is used, being easily
distinguishable among each other. Second, a coarse-to-fine paradigm is followed, because the
position of a pixel is encoded more precisely while the patterns are successively projected.
During the three last decades, several techniques based on time-multiplexing have appeared.

These techniques can be classified into three categories: binary codes (Figure 1.5a), n-ary codes
(Fig. 1.5b), and phase-shifting techniques.

• Binary codes. In binary code, only two illumination levels are used. They are coded as
0 and 1. Each pixel of the pattern has its code word formed by the sequence of 0 and
1 corresponding to its value in every projected pattern. A code word is obtained once
the sequence is completed. In practice, illumination source and camera are assumed to be
strongly calibrated and hence only one of both pattern axes is encoded. Consequently, black
and white strips are used to compose patterns – black corresponding to 0 and white 1, m
patterns encode 2m stripes. The maximum number of patterns that can be projected is the
resolution in pixels of the projector device; however, because the camera cannot always
perceive such narrow stripes, reaching this value is not recommended. It should be noticed
that all pixels belonging to a similar stripe in the highest frequency pattern share the same
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code word. Therefore, before triangulating, it is necessary to calculate either the center of
every stripe or the edge between two consecutive stripes. The latter has been shown to be
the best choice.

• N-ary codes. The main drawback of binary codes is the large number of patterns to be
projected. However, the fact that only two intensities are projected eases the segmentation
of the imaged patterns. The number of patterns can be reduced by increasing the number of
intensity levels used to encode the stripes. A first mean is to use multilevel Gray code based
on color. This extension of Gray code is based on an alphabet of n symbols; each symbol is
associated with a certain RGB color. This extended alphabet makes it possible to reduce the
number of patterns. For instance, with binary Gray code, m patterns are necessary to encode
2m stripes. With an n-ary code, nm stripes can be coded using the same number of patterns.

• Phase shifting. Phase shifting is a well-know principle in the pattern projection approach
for 3D surface acquisition. Here, a set of sinusoidal patterns is used. The intensities of a
pixel p(x, y) in each pattern is given by:

I1 (x, y) = I0 (x, y)+ Imod (x, y) cos (φ (x, y)− θ ) ,

I2 (x, y) = I0 (x, y)+ Imod (x, y) cos (φ (x, y)) , (1.9)

I3 (x, y) = I0 (x, y)+ Imod (x, y) cos (φ (x, y)+ θ ) .

I0 (x, y) is the background or the texture information, Imod (x, y) is the signal modulation
amplitude, and I1 (x, y), I2 (x, y) and I3 (x, y) are the intensities of the three patterns.φ (x, y)
is the phase value and θ = 2π

3 is a constant. Three images of the object are used to estimate
a wrapped phase value φ̂ (x, y) by:

φ̂ (x, y) = arctan

{√
3

I1 (x, y)− I3 (x, y)

2 I2 (x, y)− I1 (x, y)− I3 (x, y)

}
(1.10)

The wrapped phase is periodic and needs to be unwrapped to obtain an absolute phase
value φ′ (x, y) = φ (x, y)+ 2kπ , where k is an integer representing the period or the
number of the fringe. Finally the 3D information is recovered based on the projector-camera
system configuration. Other pattern configurations of these patterns have been proposed.
For instance, Zhang and Yau proposed a real-time 3D shape measurement based on a
modified three-step phase-shifting technique (Zhang et al., 2007) (Figure 1.6). They called
the modified patterns 2+1 phase shifting approach. According to this approach, the patterns
and phase estimation are given by

I1 (x, y) = I0 (x, y)+ Imod (x, y) cos
(
φ (x, y)− π

2

)
,

I2 (x, y) = I0 (x, y)+ Imod (x, y) cos (φ (x, y)) , (1.11)

I3 (x, y) = I0 (x, y) ,

φ̂ (x, y) = arctan

{
I1 (x, y)− I3 (x, y)

I2 (x, y)− I3 (x, y)

}
. (1.12)
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Figure 1.6 The high-resolution and real-time 3D shape measurement system proposed by Zhang and
Yau (2007) is based on the modified 2 + 1 phase-shifting algorithm and particularly adapted for face
acquisition. The data acquisition speed is as high as 60 frames per second while the image resolution is
640 × 480 pixels per frame. Here a photograph captured during the experiment is illustrated. The left
side of the image shows the subject, whereas the right side shows the real-time reconstructed geometry

A robust phase unwrapping approach called “multilevel quality-guided phase unwrapping
algorithm” is also proposed in Zhang et al. (2007).
Ouji et al. (2011) proposed a cost-effective 3D video acquisition solution with a 3D super-

resolution scheme, using three calibrated cameras coupled with a non-calibrated projector
device, which is particularly suited to 3D face scanning, that is, rapid, easily movable, and
robust to ambient lighting conditions. Their solution is a hybrid stereovision and phase-
shifting approach that not only takes advantage of the assets of stereovision and structured
light but also overcomes their weaknesses. First, a 3D sparse model is estimated from stereo
matchingwith a fringe-based resolution and a sub-pixel precision. Then projector parameters
are automatically estimated through an inline stage. A dense 3D model is recovered by the
intrafringe phase estimation, from the two sinusoidal fringe images and a texture image,
independently from the left, middle, and right cameras. Finally, the left, middle, and right
3D dense models are fused to produce the final 3D model, which constitutes a spatial
super-resolution. In contrast with previous methods, camera-projector calibration and phase-
unwrapping stages are avoided.

1.3.3 Multiview Static Reconstruction

The aimofmultiview stereo (MVS) reconstruction is twofold. Firstly, it allows to reinforce con-
straints on stereo matching, discard false matches, and increase the precision of good matches.
Secondly, spatial arrangement of cameras allows covering the entire face. To reduce the com-
plexity, as well as achieve high quality reconstruction, multiview reconstruction approaches
usually proceed in a coarse-to-fine sequence. Finally, multiview approaches involve high res-
olution images captured in real time, whereas the processing stage requires tens of minutes.
MVS scene and object reconstruction approaches can be organized into four categories. The
first category operates first by estimating a cost function on a 3D volume and then extracting
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a surface from this volume. A simple example of this approach is the voxel-coloring algo-
rithm and its variants (Seitz and Dyer, 1997; Treuille et al., 2004). The second category of
approaches, based on voxels, level sets, and surface meshes, works by iteratively evolving a
surface to decrease or minimize a cost function. For example, from an initial volume, space
carving progressively removes inconsistent voxels. Other approaches represent the object as
an evolving mesh (Hernandez and Schmitt, 2004; Yu et al., 2006) moving as a function of
internal and external forces. In the third category are image-space methods that estimate a set
of depth maps. To ensure a single consistent 3D object interpretation, they enforce consistency
constraints between depth maps (Kolmogorov and Zabih, 2002; Gargallo and Sturm, 2005) or
merge the set of depth maps into a 3D object as a post process (Narayanan et al., 1998). The
final category groups approaches that first extract and matches a set of feature points. A surface
is then fitted to the reconstructed features (Morris and Kanade, 2000; Taylor, 2003). Seitz et al.
(2006) propose an excellent overview and categorization of MVS. 3D face reconstruction
approaches use a combination of methods from these categories.
Furukawa and Ponce (2009) proposed aMVS algorithm that outputs accurate models with a

fine surface. It implementsmultiview stereopsis as a simplematch, expand, andfilter procedure.
In the matching step, a set of features localized by Harris operator and difference-of-Gaussians
algorithms are matched across multiple views, giving a sparse set of patches associated with
salient image regions. From these initial matches, the two next steps are repeated n times
(n = 3 in experiments). In the expansion step, initial matches are spread to nearby pixels to
obtain a dense set of patches. Finally in the filtering step, the visibility constraints are used to
discard incorrect matches lying either in front of or behind the observed surface. The MVS
approach proposed by Bradley et al. (2010) is based on an iterative binocular stereo method
to reconstruct seven surface patches independently and to merge into a single high resolution
mesh. At this stage, face details and surface texture help guide the stereo algorithm. First,
depth maps are created from pairs of adjacent rectified viewpoints. Then the most prominent
distortions between the views are compensated by a scaled-window matching technique. The
resulted depth images are converted to 3D points and fused into a single dense point cloud. A
triangular mesh from the initial point cloud is reconstructed over three steps: down-sampling,
outliers removal, and triangle meshing. Sample reconstruction results of this approach are
shown in Figure 1.7.
The 3D face acquisition approach proposed by Beeler et al. (2010), which is built on the

survey paper, takes inspiration from Furukawa and Ponce (2010). The main difference lies in
a refinement formulation. The starting point is the established approach for refining recovered
3D data on the basis of a data-driven photo-consistency term and a surface-smoothing term,
which has been research topic. These approaches differ in the use of a second-order anisotropic
formulation of the smoothing term, and we argue that it is particularly suited to faces. Camera
calibration is achieved in a pre-processing stage.
The run-time system starts with a pyramidal pairwise stereo matching. Results from lower

resolutions guide the matching at higher-resolutions. The face is first segmented based on
cues of background subtraction and skin color. Images from each camera pair are rectified. An
image pyramid is then generated by factor of two downsampling using Gaussian convolution
and stopping at approximately 150× 150 pixels for the lowest layer. Then a dense matching is
established between pairwise neighboring cameras, and each layer of the pyramid is processed
as follows: Matches are computed for all pixels on the basis of normalized cross correlation
(NCC) over a square window (3× 3). The disparity is computed to sub-pixel accuracy and
used to constrain the search area in the following layer. For each pixel, smoothness, uniqueness,
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Figure 1.7 Sample results on 3D modeling algorithm for calibrated multiview stereopsis proposed by
Furukawa and Ponce (2010) that outputs a quasi-dense set of rectangular patches covering the surfaces
visible in the input images. In each case, one of the input images is shown on the left, alongwith two views
of textured-mapped reconstructed patches and shaded polygonal surfaces. Copyright C© 2007, IEEE

and ordering constraints are checked, and the pixels that do not fulfill these criteria are reached
using the disparity estimated at neighboring pixels. The limited search area ensures smoothness
and ordering constraints, but the uniqueness constraint is enforced again by disparity map
refinement. The refinement is defined as a linear combination of a photometric consistency
term, dp, and a surface consistency term, ds , balanced both by a user-specified smoothness
parameter, ws , and a data-driven parameter, w p, to ensure that the photometric term has the
greatest weight in regions with good feature localization. dp favors solutions with high NCC,
whereas ds favors smooth solutions. The refinement is performed on the disparity map and
later on the surface. Both are implemented as iterative processes.
The refinement results in surface geometry that is smooth across skin pores and finewrinkles

because the disparity change across such a feature is too small to detect. The result is flatness
and lack of realism in synthesized views of the face. On the other hand, visual inspection
shows the obvious presence of pores and fine wrinkles in the images. This is due to the fact
that light reflected by a diffuse surface is related to the integral of the incoming light. In small
concavities, such as pores, part of the incoming light is blocked and the point thus appears
darker. This has been exploited by various authors (e.g., Glencross et al., 2008)) to infer local
geometry variation. In this section, we expose a method to embed this observation into the
surface refinement framework. It should be noticed that this refinement is qualitative, and the
geometry that is recovered is not metrically correct. However, augmenting the macroscopic
geometry with fine scale features does produce a significant improvement in the perceived
quality of the reconstructed face geometry.
For the mesoscopic augmentation, only features that are too small to be recovered by the

stereo algorithm are interesting. Therefore, first high pass filtered values are computed for all
points X using the projection of a Gaussian N :

μ (X) =
∑

cεν αc
(Ic (X)− [N∑

c

⊗ Ic
]
(X)

)∑
cεν αc

(1.13)
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where V denotes the set of visible cameras, ∑c the covariance matrix of the projection of
the Gaussian N into camera c, and the weighting term αc is the cosine of the foreshortening
angle observed at camera c. The variance of the Gaussian N is chosen such that high spatial
frequencies are attenuated. It can either be defined directly on the surface using the known
maximum size of the features or in dependence of the matching window m. The next steps
are based on the assumption that variation in mesoscopic intensity is linked to variation in the
geometry. For human skin, this is mostly the case. Spatially bigger skin features tend to be
smooth and are thus filtered out. The idea is thus to adapt the local high frequency geometry of
the mesh to the mesoscopic field (X). The geometry should locally form a concavity whenever
(X) decreases and a convexity when it increases.

1.4 Dynamic 3D Face Reconstruction

The objective now is to create dynamic models that accurately recover the facial shape and
acquire the time-varying behavior of a real person’s face.Modeling facial dynamics is essential
for several applications such as avatar animation, facial action analysis, and recognition.
Compared with a static or quasi-static object (or scene), this is more difficult to achieve
because of the required fast processing. Besides, it is the main limitation of the techniques
described in Section 1.3. In particular, laser-based scanners and time-coded structured light
shape capture techniques do not operate effectively on fast-moving scenes because of the
time required for scanning the object when moving or deforming. In this section, we present
appropriate techniques designed for moving/deforming face acquisition and post-processing
pipeline for performance capture or expression transfer.

1.4.1 Multiview Dynamic Reconstruction

Passive facial reconstruction has received particular attention because of its potential appli-
cations in facial animation. Recent research effort has focused on passive multi-view stereo
(PMVS) for animated face capture sans markers, makeup, active technology, and expensive
hardware. A key step toward effective performance capture is to model the structure and
motion of the face, which is a highly deformable surface. Furukawa and Ponce (2009) pro-
posed a motion capture approach from video stream that specifically aims at this challenge.
Assuming that the instantaneous geometry of the face is represented by a polyhedral mesh
with fixed topology, an initial mesh is constructed in the first frame using PMVS software
for MVS (Furukawa and Ponce, 2010) and Poisson surface reconstruction software (Kazhdan
et al., 2006) for meshing. Then its deformation is captured by tracking its vertices v1, . . . vn

over time. The goal of the algorithm is to estimate in each frame f the position v f
i of each

vertex vi (From now on, v
f

i will be used to denote both the vertex and its position.) Each vertex
may or may not be tracked at a given frame, including the first one, allowing the system to
handle occlusion, fast motion, and parts of the surface that are not initially visible. The three
steps of the tracking algorithm refer to local motion parameters estimation, global surface
deformation, and filtering.
First, at each frame, an approximation of a local surface region around each vertex, by its

tangent plane, gives the corresponding local 3D rigid motion with six degrees of freedom.
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Three parameters encode normal information, while the remaining three contain tangential
motion information. Then, on the basis of the estimated local motion parameters, the whole
mesh is then deformed by minimizing the sum of the three energy terms.

∑
i

∣∣∣v f
i − v̂ f

i

∣∣∣2+ η1

∣∣∣ [
ζ2


2 − ζ1

]

v f
i

∣∣∣2 + η2 Er

(
v f

i

)
. (1.14)

The first data term measures the squared distance between the vertex position v f
i and the

position v̂ f
i estimated by the local estimation process. The second uses the discrete Laplacian

operator of a local parameterization of the surface in vi to enforce smoothness. [The values
ζ1 = 0.6 and ζ2 = 0.4 are used in all experiments (Furukawa and Ponce, 2009)]. This term
is very similar to the Laplacian regularizer used in many other algorithms (Ponce, 2008).
The third term is also used for regularization, and it enforces local tangential rigidity with
no stretch, shrink, or shear. The total energy is minimized with respect to the 3D positions
of all the vertices by a conjugate gradient method. In case of deformable surfaces such as
human faces, nonstatic target edge length is computed on the basis of non-rigid tangential
deformation from the reference frame to the current one at each vertex. The estimation of the
tangential deformation is performed at each frame before starting the motion estimation, and
the parameters are fixed within a frame. Thus, the tangential rigidity term Er (v

f
i ) for a vertex

v f
i in the global mesh deformation is given by

∑
v j ∈ N (vi )

max

[
0,

(
e f

i j − ê f
i j

)2
− τ 2

]
, (1.15)

which is the sum of squared differences between the actual edge lengths and those predicted
from the reference frame to the current frame. The term τ is used to make the penalty zero
when the deviation is small so that this regularization term is enforced only when the data term
is unreliable and the error is large. In all our experiments, τ is set to be 0.2 times the average
edge length of the mesh at the first frame. Figure 1.8 shows some results of motion capture
approach proposed in Furukawa and Ponce (2009).
Finally after surface deformation, the residuals of the data and tangential terms are used

to filter out erroneous motion estimates. Concretely, these values are first smoothed, and a
smoothed local motion estimate is deemed an outlier if at least one of the two residuals exceeds
a given threshold. These three steps are iterated a couple of times to complete tracking in each
frame, the local motion estimation step only being applied to vertices whose parameters have
not already been estimated or filtered out.
The face capture framework proposed by Bradley et al. (2010) operates without use of

markers and consists of three main components: acquisition, multiview reconstruction and
geometry, and texture tracking. The acquisition stage uses 14 high definition video cameras
arranged in seven binocular stereo pairs. At the multiview reconstruction stage, each pair
captures a highly detailed small patch of the face surface under bright ambient light. This stage
uses on an iterative binocular stereomethod to reconstruct seven surface patches independently
that aremerged into a single high resolutionmesh; the stereo algorithm is guided by face details
providing, roughly, 1 million polygons meshes. First, depth maps are created from pairs of
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Figure 1.8 The results of motion capture approach, proposed by Furukawa and Ponce (2009), form
multiple synchronized video streams based on regularization adapted to nonrigid tangential deformation.
From left to right, a sample input image, reconstructed mesh model, estimated notion and a texture
mapped model for one frame with interesting structure/motion for each dataset 1, 2, and 3. The right two
columns show the results in another interesting frame. Copyright C© 2009, IEEE

adjacent rectified viewpoints. Observing that the difference in projection between the views
causes distortions of the comparison windows, the most prominent distortions of this kind
are compensated by a scaled-window matching technique. The resulting depth images are
converted to 3D points and fused into a single dense point cloud. Then, a triangular mesh
from the initial point cloud is reconstructed through three steps: the original point cloud is
downsampled using hierarchical vertex clustering (Schaefer and Warren, 2003). Outliers and
small-scale high frequency noise are removed on the basis of the Plane Fit Criterion proposed
by Weyrich et al. (2004) and a point normal filtering inspired by Amenta and Kil (2004),
respectively. A triangle mesh is generated without introducing excessive smoothing using
lower dimensional triangulation methods Gopi et al. (2000).
At the last stage, in order to consistently track geometry and texture over time, a single

referencemesh from the sequence is chosen. A sequence of compatiblemeshes without holes is
explicitly computed. Given the initial per-frame reconstructionsGt , a set of compatible meshes
Mt is generated that has the same connectivity as well as explicit vertex correspondence. To
create high quality renderings, per-frame texture maps Tt that capture appearance changes,
such as wrinkles and sweating of the face, are required. Starting with a single reference mesh
M0, generated by manually cleaning up the first frame G0, dense optical flow on the video
images is computed and used in combination with the initial geometric reconstructions Gt to
automatically propagate M0 through time. At each time step, a high quality 2D face texture Tt
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from the video images is computed. Drift caused by inevitable optical flow error is detected
in the per-frame texture maps and corrected in the geometry. Also, the mapping is guided by
an edge-based mouth-tracking process to account the high speed motion while talking.
Beeler et al. (2011) extend their MVS face acquisition system, discussed in Section 1.3,

to facial motion capture. Their solution, as Bradley’s solution, requires no makeup; the tem-
porally varying texture can be derived directly from the captured video. The computation is
parallelizable so that long sequences can be reconstructed efficiently using a multicore imple-
mentation. The high quality results derive from two innovations. The first is a robust tracking
algorithm specifically adapted for short sequences that integrates tracking in image space and
uses the integrated result to propagate a single reference mesh to each target frame. The second
is to address long sequences, and it employs the “anchor frame” concept. The latter is based on
the observation that a lengthy facial performance contains many frames similar in appearance.
One frame is defined as the reference frame. Other frames similar to the reference frame are
marked as anchor frames. Finally, the tracker computes the flow from the reference to each
anchor independently with a high level of measurement accuracy. The proposed framework
operates in five stages:

1. Stage 1: Computation of Initial Meshes – Each frame is processed independently to generate
a first estimate of the mesh.

2. Stage 2: Anchoring – The reference frame is manually identified. Similar frames to the
reference frame are detected automatically and labeled as anchor frames.

3. Stage 3: Image–Space Tracking – Image pixels are tracked from the reference frame to
anchor frames and then sequentially between non-anchor frames and the nearest anchor
frame.

4. Stage 4: Mesh Propagation – On the basis tracking results from the previous stage, a
reference mesh is propagated to all frames in the sequence.

5. Stage 5: Mesh Refinement – The initial propagation from Stage 4 is refined to enforce
consistency with the image data.

1.4.2 Photometric Stereo

Photometric stereo is a technique in computer vision for estimating the surface normals of
objects by observing that object under different lighting conditions. Estimation of face surface
normals can be achieved on the basis of photometric stereo assuming that the face is observed
under different lighting conditions. For instance, in three-source photometric stereo, three
images of the face are given, taken from the same viewpoint and illuminated by three light
sources. These light sources emit usually the same light spectrum from three non-coplanar
directions. If an orthographic camera model is assumed, the word coordinate system can be
aligned so that the xy plane coincides with the image plane. Z axis corresponds to the viewing
direction. Hence, the surface in front of the camera can be defined as the height Z (x, y). Now,
assuming that ∇z is the gradient of this function with respect to x and y, the vector locally
normal to the surface at (x, y) can be defined as

n = 1√
1+ |∇Z |2

(∇Z
−1

)
. (1.16)
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Also, a 2d projection operator can be define P[x] = (x1/x3, x2/x3) so that it follows that
∇z = P[n]. The pixel intensity ci (x, y) in the i th image, for i = 1, . . . 3, can be defined as

ci (x, y) = (
lT
i n

) ∫
E (λ)R (x, y, λ) S (λ) dλ, (1.17)

where li is the direction of a light source with spectral distribution Ei (λ), illuminating the
surface point (x, y, z (x, y))T ; R (x, y, λ) reflectance function, and S (λ) the response of the
sensor camera. The value of this integral is known as Albedo ρ, so the pixel intensity can be
defined as

ci = lTi ρn. (1.18)

Using linear constraints of this equation to solve for ρn in a least squares sense. The
gradient of the height function ∇z = P[ρn] is obtained and integrated to produce the function
z. According to three source photometric stereo, when the point is not in shadow with respect
to all three lights, three positive intensities ci can be estimated each of which gives a constraint
on ρn. Thus the following system can be defined as

ρn=L−1c. (1.19)

If the point is in shadow, for instance in the 1st image, then the estimated of c1 cannot be
used as constraint. In this case, each equation describes a 3D plane, the intersection of the two
remaining constraints is a 3D line given by

(c3 l2 − c2 l3)Tn = 0. (1.20)

In a general case, if the point is in shadow in the ith image, this equation can be arranged as

[c] i
× L n = 0 (1.21)

This equation is derived by Wolff and Angelopoulou (1994) and used for stereo matching
in a two view photometric. Fan and Wolff (1997) also used this formulation to perform
uncalibrated photometric stereo. Hernandez et al. (2011) used that for the first time in a least
squares framework to perform three source photometric stereo in the presence of shadows.
Figures 1.9 and 1.10 illustrate some reconstruction results with their proposed shading and
shape regularization schemes.

1.4.3 Structured Light

Structured light–based techniques are reputed to be precise and rapid. However, 3D imaging
of moving objects as faces is a challenging task and usually need more sophisticated tools
in combination with the existing patterns projection principle. The first strategy consists in
patterns projecting and capturing with a synchronized projecting device and camera at a very
high rate. The second is to motion modeling and compensation. Finally, the third fuses several
3D models from one or more projector-camera couples to complete them and corrects sensor
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Figure 1.9 Two different frames out of a 1000-frame face video sequence Hernandez et al. (2011).
The left column shows the reconstruction when shadows are ignored. Middle and right columns show
the corresponding reconstructions after detecting and compensating for the shadow regions using the
shading regularization scheme (middle) and shape regularization scheme (right). Note the improvement
in the regions around the nose reconstruction where strong cast shadows appear (see arrows). Note also
how the shape regularization scheme fails to reconstruct some boundary regions (see circle). Copyright
C© 2011, IEEE

Figure 1.10 Face sequence. Acquisition of 3D facial expressions based on Hernandez et al. (2007) and
the shadow processing technique described in Hernandez et al. (2011). The shadows are processed with
the shading regularization scheme. The full video sequence has more than a 1000 frames reconstructed.
Copyright C© 2011, Springer
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Figure 1.11 (a) DLP projecting technology. (b) Single-chip DLP projection mechanism

errors. These three strategies are presented in the following sections. Pan et al. (2004) have
extensively studied the use of color pattern(s) (RGB) and 3-CCD camera. According to their
technique, one single color pattern is used, and the data acquisition is fast. If binary or gray-
level patterns are used, they must be switched and projected rapidly so that they are captured
in a short period. Rusinkiewicz et al. proposed to switch patterns by software (Rusinkiewicz
and Levoy, 2001; Rusinkiewicz et al., 2002). To reach fast image switching, Zhang and Yau
(2007) proposed to take advantage of the projection mechanism of the single-chip digital-
light-processing (DLP) technology. According to their approach, three primary color channels
are projected sequentially and repeatedly. This allows capture of three color channel images
separately using a synchronized DLP projector device with a digital camera.
A color wheel is a circular disk that spins rapidly. It is composed of R, G, and B filters that

color the white light once it passes from in front. Color lights are thus generated. The digital
micro-mirror synchronized with the color light, reflects it, and produces three R, G, and B
color channel images. Human perception cannot differentiate individual channels as a result
of the projection speed. Instead color images are seen. Three phase-shifted sinusoidal patterns
are encoded as three primary color channels, R, G, and B of a color image. Three patterns are
sent to the single-chip DLP projector from which color filters are removed. A CCD camera
is synchronized with the projector and captures each of the three color channels separately
into a computer. Unwrapping and phase-to-depth processing steps are applied to the sequence
of captured images to recover the depth information. Despite this high speed acquisition, fast
motion may still distort the reconstructed phase and hence the reconstructed 3D geometry.
Weise et al. (2007) proposed to estimate the error in phase shifting, which produces ripples
on the 3D reconstructed surface, and to compensate it. Also, this estimation can provide the
motion of the reconstructed 3D surface. Three-step phase shifting has been introduced in
Section 1.3 where a sinusoidal pattern is shifted by 2π3 to produce three patterns, the minimum
required to recover depth information:

I1 (x, y) = I0 (x, y)+ Imod (x, y) cos (φ (x, y)− θ ) ,

I2 (x, y) = I0 (x, y)+ Imod (x, y) cos (φ (x, y)) , and (1.22)

I3 (x, y) = I0 (x, y)+ Imod (x, y) cos (φ (x, y)+ θ ) .

www.allitebooks.com
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I j , j = 1, . . . 3, are the recorded intensities, I0 is the background and Imod is the signal
amplitude. φ (x, y) is the recorded phase value, and θ is the constant phase shift. The phase
value corresponds to projector coordinates computed as φ = x p

ω
2π N , where x p is the projector

x-coordinate,ω the horizontal resolution of the projection pattern, andN the number of periods
of the sinusoidal pattern. The wrapped phase is estimated as

φ̂ (x, y) = arctan

{
tan

(
θ

2

)
I1 (x, y)− I3 (x, y)

2 I2 (x, y)− I1 (x, y)− I3 (x, y)

}
, (1.23)

I0 (x, y) = I1 (x, y)+ I2 (x, y)+ I3 (x, y)

3
, and (1.24)

Imod (x, y) =
√
(I3 (x, y)− I0 (x, y))2

3
+

(
2I2 (x, y)− I1(x, y)− I 3 (x, y)

)2
9

. (1.25)

Using the estimated phase, the depth is calculated on the basis of triangulation between
camera and projection device.

• Motion estimation: Figure 1.12 shows a planar surface and its effects on phase estimation.
P0 is the location observed by the camera at time t0 and P1 at t1. Assuming that 
t =
t0 − t−1 = t1 − t0, is a known constant value. If P0 and P−1 are known, the distance vector

P0
P1

t–1

t0

t1

n

P–1
Δc

Δs

Figure 1.12 A planar surface moving towards the camera and its effect on phase estimation (Weise
et al. (2007)). Here three images are captured at three time steps. The velocity of the surface along its
normal is estimated on the basis of the normal motion displacement δs as the projection of δc, the distance
vector, onto the surface normal n. Copyright C© 2007, IEEE
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c can be estimated, and thus, the normal motion displacement 
s as the projection of 
c
onto the surface normal n. From that, the velocity 
s


t of the surface along its normal can be
estimated.

• Error estimation and compensation: Now assume p0, p−1, and p1 are projector pixel coor-
dinates of P0, P−1, and P1. As the camera and projector are mounted horizontally, the pro-
jection pattern is invariant vertically, and only the x-coordinates are of importance. Hence,
the difference between the points in the projection pattern is 
x = px

−1 − px
0 ≈ px

0 − px
1 .

As shown earlier, the intensity of an observed pixel in each of the three images depends on
I0, amplitude Imod, phase φ (x, y), and shift θ . In case of a planar surface, uniform, and diffuse,
I0 and Imod are locally constant on the observed surface. The shift θ is constant. However, as
the observed surface is moving, the φ (x, y) changes between the three images at three different
moments in time. At time t−1, t0, and t1 camera observes the intensity as projected by p−1, p0,
and p1, respectively. By converting
x into the phase difference we have
θ = 2π N 
x

ω
;
x

being the width of the projection pattern and N the number of projected wrapped phrase. The
true intensities are given by

I1 (x, y) = I0 (x, y)+ Imod (x, y) cos (φ (x, y)− θ + 
θ ) ,

I2 (x, y) = I0 (x, y)+ Imod (x, y) cos (φ (x, y)) , and (1.26)

I3 (x, y) = I0 (x, y)+ Imod (x, y) cos (φ (x, y)+ θ − 
θ ) .

The corrupted shift phase is θ − 
θ.The relative phase error
φ between observed distorted
phase φd and true phase φt is

φd = arctan

(
tan

(
θ − 
θ

2

)
g

)
, (1.27)

φt = arctan

(
tan

(
θ

2

)
g

)
, (1.28)


φ = φd − φt , and (1.29)

g = I1 (x, y)− I3 (x, y)

2 I2 (x, y)− I1 (x, y)− I3 (x, y)
. (1.30)

φt can be expressed as Taylor expansion of φd :

φt = φd + sin (2 φd ) y −
(
1

2
sin (2 φd )− 1

4
sin (4 φd )

)
y2 + O

(
y3

)
, (1.31)

where y = 1
2

(
tan( θ−
θ

2 )
tan( θ

2 )
− 1

)
, 
θ = θ − 2 arctan

(
tan

(
θ
2

)
(2y + 1)). For small motion,

only the first-term of the Taylor expansion is enough. In this case, the undistorted phase
values can be locally approximated to evolve linearly along a scanline of the camera:
φt (m) = φc + φm m, where m is the x-coordinate of the pixel. Then a linear least-square
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fit can be performed in this local neighborhood (7 pixels used in the author’s experiments) of
each pixel solving for φc, φm , and y:

min
φc, φm , y

∑
(φc (m)− (mφm (m)− sin (2ϕd (m)) y))2. (1.32)

For large motion, the first-order Taylor degrades, and instead of using the second-order
approximation, a faster solution is to use a simulation that estimates y for different values
of 
θ and to create a lookup-table (LUT), which is then used to retrieve the true 
θ from
an estimated biased y. In this case, a median filter is first applied for robustness. Despite
high speed acquisition and motion compensation, imperfections essentially due to sensor
noise, residual uncompensated motion and acquisition conditions as illumination may persist.
To deal with these problems, Ouji et al. (2011) proposed to apply a 3D temporal super-
resolution for each couple of successive 3D point sets Mt−1 and Mt at time t . First, a 3D
nonrigid registration is performed. The registration can be modeled as a maximum-likelihood
estimation problem because the deformation between two successive 3D faces is nonrigid in
general. The coherent point drift (CPD) algorithm, proposed in Andriy Myronenko (2006),
is used for the registration the of 3D points setMt−1 with the 3D points setMt . The CPD
algorithm considers the alignment of two point setsMsrc andMdst as a probability density
estimation problem and fits the Gaussian Mixture Model (GMM) centroids representingMsrc

to the data points ofMdst by maximizing the likelihood as described in Andriy Myronenko
(2006). Nsrc is the number of points ofmsrc andMsrc = {sn|n = 1, . . . , Nsrc}. Ndst constitutes
the number of points ofMdst andMdst = {dn|n = 1, . . . , Ndst}. To create the GMM for
Msrc, a multivariate Gaussian is centered on each point inMsrc. All gaussians share the same
isotropic covariance matrix σ 2 I , I being a 3× 3 identity matrix and σ 2 the variance in all
directions Andriy Myronenko (2006). Hence the whole point setMsrc can be considered as a
GMM with the density p(d) as defined by

p (d) =
Ndst∑

m=1

1

Ndst
p (d | m) , d |m ∝ N (

sm, σ 2I
)

(1.33)

The core of the CPDmethod is forcingGMMcentroids tomove coherently as a group, which
preserves the topological structure of the point sets as described in Andriy Myronenko (2006).
The coherence constraint is imposed by explicit re-parameterization of GMM centroids’
locations for rigid and affine transformations. For smooth nonrigid transformations such as
expression variation, the algorithm imposes the coherence constraint by regularization of the
displacement fieldMyronenko and Song (2010). Once registered, the 3D points setsMt−1 and
Mt and also their corresponding 2D texture images are used as a low resolution data to create
a high resolution 3D point set and its corresponding texture. 2D super-resolution technique as
proposed in Farsiu et al. (2004) is applied, which solves an optimization problem of the form:

minimize Edata(H )+ Eregular(H ). (1.34)

The first term Edata(H ) measures agreement of the reconstruction H with the aligned low
resolution data. Eregular(H ) is a regularization or prior energy term that guides the optimizer
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Figure 1.13 Some 3D frames computed by the temporal 3D super resolution approach proposed by
Ouji et al. (2011)

towards plausible reconstruction H . The 3D model Mt cannot be represented by only one 2D
disparity image since the points situated on the fringe change-over have sub-pixel precision.
Also, pixels participate separately in the 3D model since the 3D coordinates of each pixel is
retrieved using only its phase information. Thus, for each camera three 2D maps are created,
defined by the x-, y- and z-coordinates of the 3D points. The optimization algorithm and the
deblurring are applied to compute high resolution images of x, y, and z and texture from the low
resolution images. The final high resolution 3D point cloud is retrieved by merging obtained
3D models that are already registered since all of them contain the 3D sparse point cloud. The
final result is illustrated in Figure 1.13.

1.4.4 Spacetime Faces

The vast majority of stereo research has focused on the problem of establishing spatial corre-
spondences between pixels in a single pair of images for a static moment in time. The works
presented in Davis et al. (2003) and Zhang et al. (2003), which presented nearly identical
ideas, proposed to introduce the temporal axis (available since they process video sequences)
to improve the stereo matching problem. They proposed spacetime stereo matching algo-
rithms based on similar ideas. The algorithm proposed in Davis et al. (2003) was tested on
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static objects when varying illuminations. The algorithm proposed in Zhang et al. (2003) was
tested on moving objects (faces when conveying arbitrary expressions). The following synthe-
sis is based on both works, but the reconstruction results are taken from Zhang et al. (2004)
because the object of interest in this chapter is human face. We note that in their experiments,
Zhang et al. (2004) used four cameras and two projectors. Each side of the face was acquired
by one binocular active stereo system (one projector associated to two cameras). By this way,
the authors tried to avoid self-occlusions, which can be a challenging problem in stereo vision
(even if a textured light were projected).

• Spatial stereo matching. The way in which traditional stereo systems determine the position
in space of P , is triangulation, that is by intersection the rays defined by the centers cl , cr of
cameras Cl, Cr and the projection of P in left and right images Il (xl, yl , t) and Ir (xr , yr , t),
respectively. Thus triangulation accuracy depends crucially on the solution of corresponding
problem. This kind of approaches, widely used in literature, operates entirely within the
spatial domain (the images). In fact, knowing the cameras positions ((R, t), the stereo
extrinsic parameters), one can first apply rectification transformation that projects left image
Il (xl, y, t) and right image Ir (xr , y, t) onto a common image plane, where yl = yr = y.
Thus, the establishing correspondence moves from a 2D search problem to a 1D search
problem and minimizes the matching 1D function F(xr ) 1.35, to find x∗

r ,

F(xr ) =
∑

Vs

(Il (Vs(xl))− Ir (Vs(xr )))
2, (1.35)

where Vs is a window of pixels in a spatial neighborhood close to xl (or xr ). The size of
Vs is a parameter, it is well-known that the smoothness/noisy reconstruction depends on
larger/smaller used window Vs . F(xr ) given in Equation 1.35 is simply the square difference
metric. Other metrics exist is the literature, we refer the reader to the review presented in
Scharstein and Szeliski (2002). Figure 1.15c shows the reconstructed facial surface from
passive stereo (left top frame is given Fig. 1.15a). Here, neither light pattern is projected
on the face. The reconstruction result is noisy due to the texture homogeneity on the skin
regions, which leads to matching ambiguities. In contract, an improved reconstruction is

Time Time

Vst(xl, t0) Vst(xr, t0)

Vs(xl) Vs(xr)

yl = yr = y yl = yr = y

xl xr

Il Ir

Figure 1.14 Spatial vs. Spacetime stereo matching. The spatial matching uses only spatial axis along
y, thus the Vs window to establish correspondence. The spacetime stereo matching extend the spatial
window to the time axis, thus the Vst is used to compute F(xr )
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(e)(d)(c) (f )

(a) (b)

Figure 1.15 Comparison of four different stereo matching algorithms. (a) Top left non-pattern frame,
captured in ambient lighting conditions. (b) Sequence of top left pattern frames, captured under patterns
projections. (c) Reconstructed face using traditional stereo matching with a [15× 15] window achieved
on non-pattern left stereo frames. The result is noisy due to the lack of color variation on the face. (d)
Reconstructed face using pattern frames (examples are given in (b)) using stereo matching with a [15×
15] window. The result is much better because the projected stripes provide texture. However, certain face
details are smoothed out due to the need for a large spatial window. (e) Reconstructed face using local
spacetime stereo matching with a [9× 5× 5] window. (f) Reconstructed face using the global spacetime
stereo matching with a [9× 5× 5] window. Global spacetime stereo matching removes most of the
striping artifacts while preserving the shape details [from http://grail.cs.washington.edu/projects/stfaces/]

given in Figure 1.15d, where active stereo is used. The projected colored stripes generate
texture on the face, which helps the spatial matching process. However, certain facial shape
details are smoothed out because of the largeness of the used spatial window (15× 15).
Frames shown in Figure 1.15b) illustrate pattern projections on the face across time.

• Temporal stereo matching. In this stereo-matching schema, establishing correspondence for
a pixel (xl , y, t0) in frameM is based, this time, on temporal neighborhood Vt = t0 ± 
t ,
instead of the spatial window Vs . Thus, one can define the matching function F(xr ) as
follows,

F(xr ) =
∑

Vt

(Il(Vt (xl , t0))− Ir (Vt (xr , t0)))
2 (1.36)

The previous equation is analogous to Equation 1.35 except that now instead of a spatial
neighborhood, one must consider a temporal neighborhood Vt around some central time t0.
Because of the changing of the light patterns over time, this temporal window works. This
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time, the size of Vt is a parameter, that is, the accuracy/noisy reconstruction depends on
larger/smaller of the used window. It should be also adapted to deforming objects speed.

• Spacetime stereo matching. This stereo-matching schema combines both spatial matching
and temporal one to limit the matching ambiguities. The function F(xr ) is analogous to
Equations 1.35 and 1.36 and is given by

F(xr ) =
∑
Vst

(Il(Vst (xl, t0))− Ir (Vst (xr , t0)))
2, (1.37)

Here Vst represents a spatiotemporal volume instead of a window in a spatial-basedmatching
or a vector in a temporal-basedmatching. Figure 1.14 illustrates the spatial and the spacetime
stereo matchings to establish correspondences between the pixels in Il and those in Ir .
The images are already rectified. Figure 1.15e shows the reconstruction result operated by
spatio-temporal stereomatching using a volume of size (9× 5× 5). This time, the spacetime
approach cover more shape details than in Fig. 1.15d, however, it also yields artifacts due
to the over-parametrization of the depth map. An improvement of this reconstruction using
a global spacetime stereo matching with the same volume size is given in Fig. 1.15f. (See2

for video illustrations of these reconstructions).

1.4.5 Template-based Post-processing

Recently, template-based approaches emerge due to its simplicity and robustness to noisy range
data. Outputs of shape recovery techniques present often imperfections like spikes, holes dues
to self-occlusions or the absorption of projected lights by dark regions of the face. The template
generic model provides a strong geometric prior and thus leads to high quality reconstructions
with automated hole-filling and noise removal. Correspondence estimation is often facilitated
by the use of trackedmarker points or hand-selected landmarks correspondences. The template-
based literature consist on template-to-data registration then fitting and could allowing 3D
face tracking and expressions cloning. These stages are described in detail in the following
paragraphs. For the rest of this section, letM denotes the template model and P denotes the
target data.

Landmarks Detection

This step consists on manually or automatically facial keypoints detection (eyebrows, eyes,
nose, mouth contours, etc.). These facial keypoints are important in the following stages. In
particular, they could be used in coarse rigid registration to prepare the fine one, and they are
often used as control points in the warping/fitting procedure. Automatic 3D face landmarking
is one active research topic studied within the 3D face recognition and expression recognition
applications. Many approaches are designed and try to face the pose variation and external
occlusion problems (Segundo et al., 2010; Mehryar et al., 2010; Zhao et al., 2011).

2http://grail.cs.washington.edu/projects/stfaces/
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Rigid Registration

Registration ofM and P involves estimating an optimal rigid transformation between them,
denoted T . Here, P is assumed to remain stationary (the reference data), whereas M (the
source data) is spatially transformed to match it. The Iterative Closet Point algorithm (ICP)
is the best-known technique for pairwise surface registration. Since the first paper of Besl
and McKay (1992) ICP has been widely used for geometric alignment of 3D models and
many variants of ICP have been proposed (Rusinkiewicz and Levoy, 2001). ICP is an iterative
procedure minimizing the error (deviation) between points inP and the closest points inM. It
is based one of the following two metrics: (i) the point-to-point, metric which is the earlier and
the classical one, by minimizing in the k-th iteration, the error Ek

reg(T
k) = ∑

(T k .pi − q j );
q j = q|minq∈M(Ek

reg(T
k)); (ii) the point-to-plane introduced later and minimizes Ek

reg(T
k) =∑

n(q j )(T k .pi − q j ). For each used metrics, this ICP procedure is alternated and iterated
until convergence (i.e., stability of the error). Indeed, total transformation T is updated in an
incremental way as follows: for each iteration k of the algorithm: T = T k .T . One note that
ICP performs fine geometric registration assuming that a coarse registration transformation
T 0 is known. The final result depends on the initial registration. The initial registration could
be obtained when corresponding detected landmarks inM and P .

Template Warping/Fitting

A warping of M to P is defined as the function F such that F(M) = P . The function F
is called the warping function, which takesM to P . Given a pair of landmarks (detected as
described in Section 1.4.5) with known correspondences,UL = (ui )T1<i<L and VL = (vi )T1<i<L ,
inM andP , respectively. One needs to establish dense correspondence between other meshes
vertices; uk and vk denote the locations of the k-th corresponding pair and L is the total
number of corresponding landmarks. Thus, a warping function, F , that warps UL to VL

subject to perfect alignment is given by the conditions F(ui ) = vi for i = 1, 2, . . . , L .

• Thin Plate Spline (TPS). TPS Bookstein (1989) are a class of widely used non-rigid interpo-
lating (warping) functions. The thin plate spline algorithm specifies the mapping of points
for a reference, P , set to corresponding points on a source set,M. The TPS fits a mapping
function F(u) between corresponding point-sets {vi } ∈ M and {ui } ∈ P by minimizing the
following energy function:

Etps =
L∑

i=1
‖vi − F(ui )‖2 + LλJ (1.38)

For a fixed λ which provides trade-off of warp smoothness and interpolation.

J =
� [(

∂2F

∂u2

)2
+ 2

(
∂2F

∂u∂v

)2
+

(
∂2F

∂v2

)2]
du dv (1.39)
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The interpolation deformation model is given in terms of the warping function F(u), with

F(u) =
4×4︷︸︸︷
A u + W T︸︷︷︸

4×L

L×1︷ ︸︸ ︷
K (u), (1.40)

where A (affine transformation) andW (non-affinewarping) are TPS parameters and K (u) =
(|u − u1|; |u − u2|; . . . ; |u − um |)T is the control point influence vector.
The warping coefficients A and W are computed by the equation:

(A|W )
(

U 0

K + LλI U T

)
= (V |0) (1.41)

In other words, any point on M close to a source landmark vk will be moved to a place
close to the corresponding target landmark uk in P . The points in between are interpolated
smoothly using Bookstein’s Thin Plate Spline algorithm Bookstein (1989).

• Non-rigid ICP. Register in a non-rigid way a templateM and an input scan P by non-rigid
ICP requires estimating both correspondence and a suitable warping function that matches
the shape difference between them. In Allen et al. (2003) and Amberg et al. (2007) similar
ideas are presented for scan-template warping applied on human body in Allen et al. (2003)
and on human faces in Amberg et al. (2007). Both of them proposed an energy-minimization
framework, as given by

E = α

Edata(T )︷ ︸︸ ︷∑
vi ∈M

widist
2(T i vi ,P)+β

Esmoothness︷ ︸︸ ︷∑
i, j |{vi,v j}∈edges(M)}

‖T i − T j‖2F +γ

Elandmarks︷ ︸︸ ︷∑
i

‖T i vi − u j‖2,

(1.42)

where minimizing the term Edata guarantee that the distance between the deformed template
M and the target dataP is small. The term Esmoothness is used to regularize the deformation. In
other words, it penalizes large displacement differences between neighboring vertices. The
term Elandmarks is introduced to guide the deformation by using corresponding control points
that are simply the anthropometric markers in human body and facial landmarks in the case
of face fitting. Similar formulation are presented in Zhang et al. (2004) for template fitting.
The Figure 1.16 illustrates an example of template fitting results. A similar formulation is
used in Weise et al. (2009) for personalized template building.

Template Tracking

In Zhang et al. (2004), after the template fitting step, the authors proposed a tracking procedure
which yields point correspondence across the entire sequence. They obtained time-varying
face models (of the deformed template) without using markers. Once this template sequence
is acquired, they propose to interactively manipulate it to create new expressions. To achieve
template tracking, they first compute optical flow from the sequence. The flow represents
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(a)

(b)

(c)

(d)

(e)

(f )

Figure 1.16 Illustration of the template fitting process. (a) A face template with manual landmarks. (b)
Obtained mesh after fitting the warped template to the first two depth maps given in (e). (c) Facial region
limitation (red colored regions present unreliable depth or optical flow estimation). (d) A sequence of
texture image pairs. (e) A sequence of depth map pairs. (f) Selected meshes after tracking the initial
mesh through the whole sequence, using both depth maps and optical flows. The process is marker-less
and automatic [from http://grail.cs.washington.edu/projects/stfaces/]

vertices motion across the facial sequence and is used to enhance template tracking by estab-
lishing inter-frame correspondences with video data. Then, they measure the consistency of
the optical flow and the vertex inter-frame motion by minimizing the defined metric. Similar
ideas were presented in Weise et al. (2009) where a person-specific facial expression model is
constructed from the tracked sequences after non-rigid fitting and tracking. The authors tar-
geted real-time puppetry animation by transferring the conveyed expressions (of an actor) to
new persons. InWeise et al. (2011) the authors deal with two challenges of performance-driven
facial animation; accurately track the rigid and non-rigid motion of the user’s face, and map
the extracted tracking parameters to suitable animation controls that drive the virtual character.
The approach combines these two problems into a single optimization that estimates the most
likely parameters of a user- specific expression model given the observed 2D and 3D data.
They derive a suitable probabilistic prior for this optimization from pre-recorded animation
sequences that define the space of realistic facial expressions.
In Sun and Yin (2008), the authors propose to adapt and track a generic model to each

frame of 3D model sequences for dynamic 3D expression recognition. They establish the
vertex flow estimation as follows: First, they establish correspondences between 3D meshes
using a set of 83 pre-defined key points. This adaptation process is performed to establish
a matching between the generic model (or the source model) and the real face scan (or the
target model). Second, once the generic model is adapted to the real face model, it will be
considered as an intermediate tracking model for finding vertex correspondences. The vertex
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correspondence across 3D model sequences provides a set of motion trajectories (vertex flow)
of 3D face scans. The vertex flow can be depicted on the adapted generic model (tracking
model) through the estimation of the displacement vector from the tracked points of the current
frame to the corresponding points of the first framewith a neutral expression. The vertex flow is
described by the facial motion vectorU = [u1, u2, . . . , un], where n is the number of vertices
of the adapted generic model. They used the Hidden Markov Model to model and train facial
dynamics.

Expression Transferring

Also known as expression cloning or performance capture when facial animation uses the
performance of an actor to animate virtual models. The steps discussed earlier, namely,
template fitting and tracking, allow expression transferring from real-time acquired 3D data
to a virtual model or puppetry. Several papers were published to transfer facial animation to
templates, puppetry or personalized models, yong Noh and Neumann (2001), Sumner and
Popović (2004), Vlasic et al. (2005), Pyun et al. (2003), Zhang et al. (2004), Weise et al.
(2009), Weise et al. (2011), etc.

1.5 Summary and Conclusions

Creating 3D face models that look and deform realistically in an important issue is many
applications such as person-specific facial animation, 3D-based face recognition, and 3D-
based expression recognition. This chapter is a survey of successful state-of-the-art techniques
that sometimes led to commercial systems. These techniques are within a static/dynamic
(moving) face modeling–guided taxonomy. Each of the presented techniques is based on one
of the following well-known concepts: (i) depth from triangulation, (ii) shape from shading,
and (iii) depth from ToF. Obviously, other approaches exist in the literature but we limited our
survey to those based on the aforementioned concepts. In this section, we will put forward,
a comparative study of the mentioned approaches according to the intrinsic and extrinsic
factors. The intrinsic factors are related to the sensor, such as its cost, its spatial (in the
case of static modeling) or spatio-temporal resolutions (in the case of dynamic modeling),
its measurement accuracy, and its intrusiveness/need user cooperation. The extrinsic factors
include variations due to illumination changes, motion speed of the observed face, and details
in the face (wrinkles, scars, etc.). Figure 1.17 gives an evaluation of approaches according to
these criteria.

� Laser-stripe scanning is intended for static faces due to the processing time required to
project the laser stripe on thewhole face. The sensor is expensive and needs user cooperation
to perform face acquisition (a distance less than 1.5 m is required). Commercial systems
such as the Minolta Non-contact 3D Digitizer VIVID-9103 produced texture and depth
images of the same resolution 640× 480. The system accurately measures the 3D object
with a depth-accuracy of around 0.1 mm. It takes 2.5 s for the fine mode and 0.5 s for the fast
mode to produce a scan, thus no motion during the scan is tolerated. Laser-based techniques

3http://www.konicaminolta.com/instruments/download/catalog/3d/pdf/vivid910 e9.pdf
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Figure 1.17 Evaluation of different 3D facemodeling techniques according toExtrinsic factors (Motion
speed/illumination changes/intrusivity and need for user cooperation/face details) and Intrinsic factors
(spatial and temporal resolutions/accuracy measurement/sensor cost)

work in office environment lighting conditions. Most of the facial details (wrinkles, scars,
and other person-specific markers) are reproduced in the virtual model.

� Structured-light (SL) techniques provided an attractive alternative to the expensive laser-
stripe scanning technique. In fact, projected light(s) intend(s) to replace the laser scan. The
ARTEC MHT 3D scanner4 is one commercial system which projects a permanent light
pattern and produces 3D video of a rate around 15 fps. Frame resolution is about 500,000
points. The working distance should be in the interval of 0.4–1 m. Depth-measurement
accuracy is comparable to laser scanners and is about 0.1 mm. Texture channel is also
captured but only when needed. The sensor is cheaper than the laser digitizers.

� Structured-light (SL) consumer depth cameras (which aremuch cheeper) asMSKinect5 and
Asus Xtion Pro Live6 have been recently developed and have been an attractive alternative
for expensive sensors. Kinect is based on the permanent projection of one infrared-laser
pattern. It was primarily designed for natural interaction in a computer game environment.
In fact, the sensor is less intrusive and only a near-frontal position of the user is needed.
However, the characteristics of the data captured by Kinect have attracted the attention of
researchers in the field of computer vision and computer graphics. The camera provides
depth and texture video with 300,000 points in every frame. The 2D and 3D videos have
got a rate of 30 fps. The depth measurement produced by the Kinect was not so accurate,
which means that it achieves a coarse reconstruction of the 3D face.

4http://www.artec3d.com/3d scanners/artec-mht
5http://www.xbox.com/fr-fr/kinect
6http://www.asus.com/Multimedia/Motion Sensor/Xtion PRO LIVE/
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� In photometric stereo approaches, only one image of the face is captured and used to recover
the depth information. The face is illuminated with three colored light sources from three
different directions. The capture can be made in real time enabling 3D and 4D acquisition.
By knowing the surface reflectance properties of the face, the local surface orientation at
points illuminated by all three light sources are computed. One of the important advantages
of the photometric stereo approaches is that the points do not need to be registered. Thus, this
category of approaches does not suffer from the correspondence problem, providing high
performance for featureless surfaces as the human skin.On the other hand, the disadvantages
of this category of approaches are that they are indirect and practical only for applications
in which the illumination is carefully controlled.

� Multiview-based approaches capture images instantly and provide high resolution 3D and
4D textured images. In addition, they have several advantages over active approaches. First
is the quality texture image. The acquisition phase does not require pattern projection, and,
so, there is a true one-to-one correspondence with every color pixel and every 3D point. The
original texture images are always of the highest quality. Second is the absence of holes in
the final 3D scans. Dimensional Imaging7 proposes systems designed specifically to capture
high definition 3D surface images of the human face with highly detailed 20-megapixel
texture maps using four 10-megapixel cameras and up to 32 cameras with a resolution of
up to 21 megapixels.

� ToF cameras are relatively new devices, as the semiconductor processes have only recently
become fast enough for such devices. The systems cover ranges of a few meters up to about
60 m. Another advantage of ToF systems is the high rate capture. In return, they have a
low resolution and a precision of 1 mm to 1 cm. The Mesa Imaging8 SwissRanger 4000
(SR4000) is probably the most well-known ToF camera. It has a range of 5–8 m, 176× 144
pixel resolution over 43.6◦ × 34.6◦ field of view and operates at up to 54 fps.The PMD
Technologies9 CamCube 2.0 is a less popular one. It has a range of 7 m, 204× 204 pixel
resolution with 40.0◦ × 40.0◦ field of view. It operates at 25 fps.

Exercises

1. From Figure 1.18 prove that
AB

A′ B ′ = AC

A′C ′ = BC

B ′C ′ = h ABC

h A′ B ′C ′
; retrieve the Z formula

given in Equation 1.8.

2. We need to study the 3D scanning prototype given in Figure 1.19. It consists of a laser
source that illuminates the object to be continuously scanned and two cameras that look
at the same object. The projected laser stripe is seen by both cameras. The global sensor
calculates the depth information, as illustrated in the figure. To capture the full geometry
of the object, a manual scan of the surface is required.
• Compute the Z1-coordinate together with Z2-coordinate.
• Explain the triangles considered to calculate Z1-coordinate.
• Why this prototype involves two sensors, each of them capable of measuring the depth.
Suggest a depth value Z as a function of Z1 and Z2; explain your choice.

7http://www.di3d.com
8http://www.mesa-imaging.ch/
9http://www.pmdtec.com/
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3. We aim to produce patterns associated with Equation 1.10. Assuming that the gray level 0
represents black and gray level 255 represents white, find the value of I0 and Imod. Solve
Equation 1.10 for I0, Imod, and Equation 1.10.

4. Extend Equation 1.10 to obtain N patterns. Solve these equations for I0, Imod, and Equa-
tion 1.10. What is the impact of using more than three patterns on the accuracy and delay?

5. Assuming that only one pattern from Equation 1.10 is used, resolve I0, Imod, and Equa-
tion 1.10 using Fourier Transfrom.

6. The approach presented in Section 1.4, Equations 1.27 to 1.32, overcomes themajor problem
of fast phase-shift scanning, namely, motion artifacts. An analysis of the motion error has
been introduced to compensate for motion artifacts on the pixel level. Nevertheless, high-
frequency texture can still pose problems during motion, as the assumption of invariant
surface reflectance is violated. Investigate the possibility of adding a stereo module and
extending the motion compensation to stereo geometry to handle these cases.
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This chapter discusses the state of the art in 3D surface features for the recognition of the human
face. Particular emphasis is laid on the most prominent and recent contributions. Features
extracted from 3D facial surfaces serve as a means for dimensionality reduction of surface
data, facilitating the task of face recognition. The complexity of extraction, descriptiveness,
and robustness of features directly affect the overall accuracy, performance, and robustness of
the 3D recognition system.

2.1 Geometry of 3D Facial Surface

The shape of the human face is a unique class of 3D objects. Many geometrical and topological
aspects of the 3D facial surface have been the key ideas behind many facial surface features.
Before we proceed with feature extraction, this chapter will first cover (1) the primary 3D
surface representations from which feature representations of surfaces are extracted, (2) rigid
transformations and decimation of 3D surfaces, and (3) geometries and topologies of the
human face that might influence 3D face recognition.
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2.1.1 Primary 3D Surface Representations

Before we provide formal definitions and descriptions of the different types of 3D surface
representations, we will start with an informal description of these representations and indicate
some of their differences.
Scanners usually digitize 3D surfaces in the form of dense 3D point clouds. This is an

intuitive output because each surface measurement results in a 3D point. The point cloud rep-
resentation is capable of completely representing open or closed free-form (characterized by
an irregular shape) 3D surfaces. In some face-recognition systems, the 3D point cloud repre-
sentation can be used throughout the different modules of the system, namely, preprocessing,
feature extraction, and matching. For example, the point cloud representation is sufficient in
an iterative closest point (ICP) based face recognition system. (Note: Some variants of ICP are
based on mesh representation.)
However, converting from the point cloud representation to other complete representations

such as 3D mesh, range image, or normal map is often needed or desirable. The 3D mesh
representation provides a flexible and efficient manipulation of surfaces. This because it
stores indexed and precomputed local information of the surface. For instance, once the mesh
representation is computed, it enables a more efficient region growing in comparison to a point
cloud representation. In addition, the deformation of 3D meshes is more flexible than point
clouds. However, 3D meshes require more memory and storage.
For a surface scan of a single view, a range image or a normal map representation can

be adequate. To an extent, they resemble 2D gray-level images and thus many 2D image
processing and computer vision operations can be similarly and directly applied on them,
notably kernel filtering and decimation. These two representations are simpler than 3Dmeshes,
and yet, they can be handy for some types of surface manipulation such as segmentation,
computation of curvatures, deformation, and translation. Rotating 3D surfaces might, however,
result in the self-occlusion of parts of the surface (in which case some of the 3D points will
be over ridden in the range image) or the exposure of previously self-occluded parts (which
results in the appearance of surface holes). The following sections provide formal definitions
and descriptions of the different 3D surface representations.

Point Cloud Representation

A point cloud representation is merely a set of 3D tuples of the x-, y- and z-coordinates, each
representing a 3D point (or a measurement) on the 3D surface. Let p = (x, y, z) ∈ �3 denote
a 3D point in a point cloud P . Alternatively, a 3D point can be represented as a 3D vector p,
and a point cloud can be represented as a 3× matrix P, where N is the number of points.

p = [x y z]�. (2.1)

P = [p1 . . . pN ]. (2.2)

Textured point clouds are usually represented by attaching to each 3D point a pair of u
and v indices pointing to a position on a texture map. In this case, the tuple representation
of a textured 3D point is five dimensional, p = (x, y, z, u, v) ∈ �5. During the manipulation
of the textured point cloud, such as rigid transformations or deformations, the x-, y- and
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z-coordinates of the 3D points change, but the u and v indices should remain fixed. For this
reason, it is preferred to separate the shape S from texture T in the matrix representation,
namely,

s = [x y z]�, (2.3)

S = [s1 . . . sN ], (2.4)

t = [u v]�, and (2.5)

T = [t1 . . . tN ]. (2.6)

In this matrix representation, the geometric manipulation should be performed on the shape
matrix, whereas, the texture matrix stores and maintains the one-to-one correspondence of
the 3D points to the texture information. An example of a point cloud and its corresponding
texture map is shown in Figure 2.1.

3D Polygonal Mesh Representation

A 3D meshM represents a 3D surface using sets of mesh elements; vertices V , edges E , and
polygons (facets) F along with incidence and/or adjacency relations, M = (V, E,F). The
mesh vertices are 3D points, V ⊂ �3. Each edge, ei ∈ E , is defined by two distinct vertices,
E ⊂ {ei = {v j , vk} | v j , vk ∈ V, j �= k}. While each facet, fi ∈ F , is defined by three or more
edges such that each pair of edges share a vertex. (The vertex is incident to both edges.) In
the case of a triangular mesh (which is the most widely used type of mesh due its relative
simplicity), the facet fi is exactly defined by three edges F ⊂ { fi = {e j , ek, el} | e j , ek, el ∈
E, j �= k, j �= l, k �= l,∀e1, e2 ∈ fi∃v(v ∈ e1 ∧ v ∈ e2)}. Alternatively, each facet is defined
by three distinct vertices,F ⊂ { fi = {v j , vk, vl} | v j , vk, vl ∈ V, j �= k, j �= l, k �= l}. The use
of subsets in the definitions of the mesh elements signifies that (1) the mesh representation of a
3D surface is not unique. In fact, there are several valid mesh representations for the same 3D
surface. (2) For a valid (and to a less extent optimal) mesh representation, further constraints
should be imposed on the selection of the mesh element sets and their adjacency relations. For
3D meshes representing compact 2-manifold surfaces (which is the case with facial surfaces),
each point of the 3D mesh and its neighborhood should be homeomorphic to an open disc
and no holes should be introduced (open discs are removed from the representation). Such
topological changes occur for example when (1) adding an excessive number of polygons
to F that are incident to a common vertex or edge (2) dropping internal polygons (away
from the border) from a valid mesh representation (creates a hole). Additionally, constraints
on the angles of the polygons and the lengths of the edges can result in more optimal mesh
representations. Polygons with acute angles are not desirable in mesh representation. There are
different types of mesh representations, depending on how the data of the mesh are stored and
organized in data structures. Pros and cons of some well-known meshes are briefly discussed
in the following paragraphs:

Polygon mesh: It is the simplest 3D mesh in which the polygon data are stored in a table.
Each row of the table stores the x-, y- and z-coordinates of all vertices of a polygon. As
the vertices that are incident to a polygon can also be incident to many other polygons, this
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(b)(a)

(d)(c)

Figure 2.1 (a) A 3D facial scan with texture mapped on top of the 3D surface. (b) 3D facial surface.
The image (c) is a point cloud representation and (d) is a polygonal representation of the same facial
surface

(c)(b)(a)

Figure 2.2 The facial surface of the scan shown in Figure 2.1 after cropping and pose-correction in
the range image (b) and normal map (c) representations. The normal map is displayed as a color image,
where the x-, y-, and z-coordinates of the normals each correspond to the red, green and blue color
channels of the image
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mesh type produces redundancies. Moreover, because polygon meshes do not have adjacency
information, mesh traversal is not efficient.

Vertex-polygon mesh: To alleviate the redundancy problem of the polygon mesh, the vertices
of the mesh are stored in a separate table. Rather than the actual vertices being stored in the
polygon table, their indices to the vertex table are stored instead. Nevertheless, this mesh type
stores no adjacency information.

Simple adjacency mesh: In this mesh type, three tables are used to store vertices, edges, and
polygons. Along with each individual element, the indices to all incident elements are stored.
This mesh enables an efficient traversal but requires extra storage (compared with other mesh
types), more processing power, and care during manipulation (e.g., split or merge operations)
to maintain mesh consistency.

Partial adjacency mesh: This mesh is similar to the simple adjacency mesh with the excep-
tion that not all adjacency information is stored, hence reducing the demand for memory
and storage. The unprovided adjacency information can be efficiently inferred from the one
provided; thus, the mesh is efficiently traversable, particularly if the facets are constrained to
be triangular (as in the case of a triangular mesh).

Triangular mesh: As previously mentioned, the polygons in this mesh are triangles, and it
is the most widely used mesh representation because of its simplicity. The triangular mesh
usually stores the vertices and the triangleswith indices to all neighboring vertices and triangles
in separate tables. The edge information is implicit and can be inferred at any vertex (defined
by the neighboring vertices) or triangle (its edges).

Winged-edge mesh: The adjacency information in this mesh is centered around the edges,
and the mesh is traversed on an edge-by-edge basis. Along with each edge, indices point to
the two incident polygons (left and right) and four other edges; the first encountered edges in
the clock wise (CW) and the counter-clock wise (CCW) directions at both vertices of the edge
(see Figure 2.3). The split-and-merge operations are flexible and efficient for the winged-edge
mesh.
3D meshes can store (or refer to) data pertaining to local mesh elements such as texture

(as with point cloud pointers to texture maps are used), normals and curvatures. They can
also be customized to better suit (from the point of view of flexibility and/or efficiency)
the applications at hand. For more variants and extensive discussions of 3D meshes and
mesh operations, the reader is refered to the SIGGRAPH course notes by Botsch et al.
(2007). Well-thought of designs of data structures for 3D polygonal meshes are provided by
Kettner (1999).

Range Image Representation

A range image can be defined as a partial binary function, r : �′ × �′ → �, that maps to the
range (depth) of a surface point relative to a reference Cartesian frame (often the frame of
the 3D acquisition digitizer). The domain of the range image R can be the azimuth � ⊂ �
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Figure 2.3 Different mesh representations of two surface patches
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and elevation � ⊂ � angles within the view range of the 3D digitizer, r : � × � → �.
Alternatively, it can be the sets of x- and y-coordinates, X ⊂ � and Y ⊂ �, that is r :
X × Y → �. The range image from a data structure point view is a 2D matrix, R, entries of
which correspond to the range data, where its horizontal and vertical indices implicitly define
the azimuth and elevation angles (for an angle-based range image) or the x- and y-coordinates
(for the XY -based range image), see Figure 2.2.
The angle-based range image representation—which can be the default representation of

some 3D digitizers because of the direct relationship with the sensor orientation—suffers from
the limitation that it undergoes a perspective-like transformation. The range readings are as if
they were projected on a spherical surface in a way similar to a 2D image plane in the case of
2D imaging. In contrast, the XY-based range image does not suffer from this transformation,
which makes it a better choice for 3D face recognition. Nevertheless, an angle-based range
image is capable of representing multi view surfaces (e.g., closed surfaces). A cylindrical
form of a range image can represent the 3D surface around one direction, often the azimuth,
r : � × Y → �.

Conversion from an angle-based to an XY-based range representation: The range is first
converted to a point cloud representation. Then the point cloud is converted to an XY-based
range image. Let an N + 1× M + 1 matrix, Rθφ , represent an angle-based range image with
implicit azimuth angles ranging from θmin to θmax,� = {θi = θmin + (θmax−θmin)i

N | i = 0 . . . N −
1}, and elevation angles ranging from φmin to φmax, � = {φ j = φmin + (φmax−φmin) j

M | j =
0 . . . M − 1}. The point cloud representation is shown in Equation 2.10.

x = Ri j cosφ j cos θi , (2.7)

y = Ri j sinφi , (2.8)

z = Ri j cosφ j sin θi , (2.9)

P = {pi, j = (x, y, z) | (θi , φ j ) ∈ � × �}. (2.10)

Conversion from a point cloud to an XY-based range representation: First, the resolution
of the XY-based range imageRxy is decided, let it be N − 1× M − 1. The implicit information
about the x- and y-coordinates are then decided. One choice is to let the horizontal indices
represent the set X of the x-coordinates varying from minimum xmin = minx P to maxi-
mum xmax = maxx P , i.e.,X = {xi = xmin + (xmax−xmin)i

N | i = 0 . . . N − 1}. Similarly, the ver-
tical indices represent the Y-coordinates, Y = {y j = xmin + (xmax−xmin) j

M | j = 0 . . . M − 1}.
The range image pixels correspond to the implicit x- and y-coordinates according to
Ri j = (xi , y j ) ∈ X × Y . The pixel values are the interpolation of the range (z-coordinate)
at the implicit x- and y-coordinates. Those pixels not in the 2D convex hull formed by the
neighboring x- and y-coordinates (of 3D points in P) are masked out because not all the
implicit x- and y-coordinates correspond to the 3D surface (or 3D points in P).

Normal Map Representation

Anormalmap representation can be defined as a partial binary function thatmaps the horizontal
and vertical coordinates to unit normal vectors (or tuples), n : �′ × �′ → �3. Similar to range
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images, the domain of n can correspond to the x- and y-coordinates, X × Y . Similar to the
case in range images, other 2D parameterizations of the domain can be used with the normal
map representation such as the spherical (angle-based, � × �) or the cylindrical (� × Y)
domain. A suitable data structure for a normal map representation N is a three-channel matrix
(i.e., N + 1× M + 1× 3). As in the case of range images, the horizontal and vertical matrix
indices correspond to the domain. Equally, the normal vectors Nij can be computed from the
positions of the 3D points and their neighbors while the surface is in a point cloud, a 3D mesh,
or a range image representation.
For a 3D mesh representation, a normal vector is computed at each polygonal facet fi by

taking the (normalized to unit length) cross product of any two edges of fi that are incident to
a common vertex (e1 = (v1, vc), e2 = (v2, vc)) as shown in Equation 2.11. Depending on the
right hand rule of the cross product the normal can point inward or outward from the surface,
where the latter is more appropriate for 3D surface representation.

ni = ± (v1 − vc)× (v2 − vc)

‖(v1 − vc)× (v2 − vc)‖ . (2.11)

The normals at the mesh vertices can be estimated from the facet normals (located the at
centroids of the facets) using a weighted sum (according to the distances between the facet
centroids and vertices) of all the normals of the facets incident to the vertex or using any other
interpolation technique. A normal map can then be computed from the vertex normals in a
similar manner to the (previously discussed) conversion from point clouds to range images,
with the difference that the normals are used instead of the range values. The normal maps are
also used with 3D meshes (typically in computer graphics) where they are referenced from
the mesh elements (similar to the case of texture maps as explained earlier).
The normal map can reliably be computed from an XY-based range image representation,

R. The normal ni j is the normalized cross product between [1, 0, ∂
∂x Ri j ]� and [0, 1, ∂

∂y Ri j ]�

is shown in Equation 2.12.

ni j =

[
−∂ Ri j

∂x
,−∂ Ri j

∂y
, 1

]�

∥∥∥∥∥
[
−∂ Ri j

∂x
,−∂ Ri j

∂y
, 1

]�∥∥∥∥∥
. (2.12)

All that is needed to compute the normals is the gradient of the range image, ∇ R. A
sound approach (which is less prone to noise) for finding the gradient of R is to con-
volve it with kernels of partial derivatives of the Gaussian function G(x, y, σ ), that is,
∇ R = ( ∂ R

∂x , ∂ R
∂y ) �( ∂(G∗R)

∂x , ∂(G∗R)
∂y ) = ( ∂G

∂x ∗ R, ∂G
∂y ∗ R).

The normals of a 3D surface vary when the surface is transformed, although translation and
rigid scaling do not affect the orientation of the normals. Instead of recalculating the normals,
the original normals can be transformed accordingly. Let M be a linear 3× 3 transformation
matrix (not involving translation). It can be shown that the transformed surface normal equals
to themultiplication of the transposed inverse ofM by the original normal, that is,n′ = M−1�n.
The linear transformations are discussed in subsection 2.1.2.
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2.1.2 Rigid 3D Transformations

3D rigid transformations (namely rotations, translations, or combinations of both) are special
cases of linear transformation. Let the vector v̄ represent a 3D point augmented by one, v̄ =
[x y z 1]�, the vector v̄′ represents the linear transformation of v̄, and the vector t = [tx ty tz]�

represents the translation (the displacement of the surface points in the x-, y- and z-directions).
The linear transformation is expressed as in Equation 2.13.

v̄′ = Av̄ =
[

M t

o� 1

]
v̄, (2.13)

where o is a vector of zeros, [0 0 0]�, and the matrix A is square (4× 4). Note that it is
possible to represent the same linear transformation using a non-square matrix (3× 4) or just
using a 3× 3 matrix by multiplying M by the point vector then adding the translation vector,
v′ = Mv + t. However, the use of a 4× 4 matrix makes it possible to represent a sequence of
linear transformations through matrix multiplication, At = An . . . A2A1, where Ai ’s represent
successive rigid transformations culminating into a total rigid transformation represented
by At .
In the most general case of Equation 2.13 (when the values of M and t are arbitrary), the

transformation is affine. Applying an affine transformation on a 3D surface may change its
shape (including the scale and the shear), its orientation (due to rotations) and its location
(due to translations). However, the parallelism between lines (formed by surface points) is
preserved. The special case when M is orthonormal (M� = M−1 or equivalently I = MM�)
and satisfies det(M) = 1 results in a rigid transformation. In this case, the matrix M is called
a rotation matrix and is denoted by R, and for such transformation (rigid) only the orientation
and the location of the surface may change while the surface shape is preserved. When the
matrix M is equal to an identity matrix I, it corresponds to no rotations, but the surface
translates according to t.
As indicated by Euler’s rotation theorem, any arbitrary (or general) rotation can equally be

achieved by a sequence of three rotations about the x-, y- and z-axes, each represented by the
Euler angles α, β, and γ . The (total) rotation matrix corresponding to these parameters Rt is
given by the following equations, where Rα , Rβ , and Rγ are the rotation matrices about x-, y-
and z-axes.

Rα =

⎡
⎢⎣
1 0 0

0 cosα sinα

0 − sinα cosα

⎤
⎥⎦ (2.14)

Rβ =

⎡
⎢⎣
cosβ 0 − sinβ

0 1 0

sinβ 0 cosβ

⎤
⎥⎦ (2.15)

Rγ =

⎡
⎢⎣
cos γ sin γ 0

− sin γ cos γ 0

0 0 1

⎤
⎥⎦ (2.16)
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The overall rotation Rt is given by

Rt = Rγ RβRα (2.17)

The total rotation (Rt ) depends on the order in which the rotation Euler angles were applied.
The use of Euler’s angles to generate a rotation matrix also suffers from the gimbal lock
problem. For some values of the rotation angles, the degree of freedom becomes lower than
what it should be. For example, when the angle β = 0, the degree of freedom of the Euler’s
rotation decreases from two (the expected) to one as the rotation about the x-axis becomes
equivalent to a rotation about the z-axis (α or γ becomes redundant). Nevertheless, the resulting
rotation matrix remains mathematically correct.
Another way of representing rotation matrices is through the use of unit quaternion rotation,

a representation that is not affected by the disadvantages of using Euler’s rotation. The unit
quaternion rotation is equivalent to a rotation of the 3D points by angle θ about unit vector u and
is represented by unit quaternion q = [x y z w]�. Quaternions are a 4D extension of complex
numbers. A quaternion is a combination of a real number, w , and weighted three imaginary
numbers, namely, q = w + xi + y j + zk. In a parallel way to the ordinary (2D) complex
numbers, the conjugate of q is defined as q∗ = w − xi − y j − zk and the magnitude of the

quaternion is defined as ‖q‖ = √
qq∗ =

√
w2 + x2 + y2 + z2. The complex numbers i , j ,

and k are related by the fundamental formulae i2 = j2 = k2 = i jk = −1. The multiplication
of quaternions is not commutative: q1q2 �= q2q1. From the fundamental formulae and the
non commutative property, the following complex products derive i j = k, j i = −k, jk = i ,
k j = −i , ki = j and ik = − j . On the basis of that, the product of q1 = [x1 y1 z1 w1]� and
q2 = [x2 y2 z2 w2]� is shown in Equation 2.18.

q1q2 =

w1w2 − x1x2 − y1y2 − z1z2
+ (w1x2 + x1w2 + y1z2 − z1y2)i

+ (w1y2 − x1z2 + y1w2 + z1x2) j

+ (w1z2 + x1y2 − y1x2 + z1w2)k

. (2.18)

When representing the quaternions by 4× 4 matrices (as in Eq. 2.19), matrix addition and
multiplication are equivalent to quaternion addition and multiplication, respectively, and the
quaternion conjugate is the matrix transposition.

q =

⎡
⎢⎢⎢⎣

w x y z

−x w −z −y
−y z w −x

−z −y x w

⎤
⎥⎥⎥⎦ . (2.19)

The rotation about unit 3D vector u by angle θ is represented by the unit quaternion
q = [u� sin θ

2 cos
θ
2 ]

�. The rotation of 3Dpoint v = [x y z]� is shown inEquation 2.20,where
the 3D points before and after the rotation are represented by the quaternions p = [v� 0]� and
p′ = [v′� 0]�, respectively

p′ = qpq−1 = qpq∗. (2.20)
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The rotation resulting from the unit quaternion, q, is equivalent to that given by the rotation
matrix, R, as shown in Equation 2.21.

R =

⎡
⎢⎣

w2 + x2 − y2 − z2 2xy − 2wz 2xz + 2wy

2xy + 2wz w2 − x2 + y2 − z2 2yz − 2w x

2xz − 2wy 2yz + 2w x w2 − x2 − y2 + z2

⎤
⎥⎦ . (2.21)

2.1.3 Decimation of 3D Surfaces

Decimation refers to the process of reducing the resolution of digitized signals or, in our case,
3D surface scans/representations. The resolution has impacts on the accuracy, memory storage,
and the computational complexity of 3D face recognition. A high resolution representation
enables the capture of facial surface details and generally yields to a better recognition accuracy
unless it is beyond the finest details. However, in the case of overly high resolution, in addition
to the high storage requirement and computational burden, a diminished or even adverse effect
on the recognition accuracy may result (possibly as result of the curse of high dimensionality).
Acquired facial surfaces are usually of a higher and possibly varying resolution (the resolution
depends on the distance of the face from the 3D digitizer). By decimating the 3D surface,
a compromise between these requirements can be achieved. Generally, a resolution of 1 or
0.5 mm suffices for 3D face recognition.

Mesh Decimation

Mesh decimation, or mesh simplification as it is sometimes referred to, aims to reduce the
number of mesh elements such that the reduced mesh remains as approximate to the original
mesh as possible. An overview of some well-known of the various approaches to mesh
decimation are provided here. For more in-depth discussions and a wider exposure to mesh
decimation algorithms, the reader is referred to the surveys by Botsch et al. (2007), Heckbert
and Garland (1997), Luebke (2001), and Renze and Oliver (1996).
Mesh decimation algorithms can be contrasted from each other depending on the following

factors: iterativeness (iterative versus non iterative), ability to preserve the mesh topology,
faithfulness to preserve the mesh details, error measures used to prioritize elements removal
or quantification of the closeness of the decimated mesh to the original mesh, regularity (as
opposed to adaptiveness) of the decimated mesh, and/or efficiency.

Vertex clustering: Vertex clustering was proposed by Rossignac and Borrel (1993) for the
rendering of scenes in computer graphics. Vertex clustering is fast and produces regular
decimated meshes that can be of large decimation ratios. Despite the relatively low mesh
quality and the possibility of introducing topological changes (e.g., producing handles), the
algorithm has potential applications in 3D face recognition. It can be used, for example, along
with suitable feature extraction techniques (that are tolerant to its drawbacks) to perform fast
rejection classification in which matching gallery facial surfaces are short-listed not only for
a more accurate but also a more computationally expensive classifier.
The 3D space around the surface is first divided into regular cells (a 3D grid). The vertices

of the original surface that are within each cell is replaced by a representative vertex associated
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with that individual cell. When increasing the size of the grid, more vertices are likely to fall
into each cell intersected by the surface; hence, the decimation ratio is increased. The accuracy
of the decimation is guaranteed to be less than the size of the cell. The mesh edges and triangles
that have more than one incident vertex falling into a cell become degenerate. Those elements
are removed, and the mesh representation is adjusted accordingly. The representative vertices
are possibly selected as the centers of the cells, means or medians of the vertices falling into
the cells. However, a more accurate result can be achieved when assigning the representative
vertices on the basis of the quadratic error metric (QEM). (Garland and Heckbert, 1997). The
QEM minimizes the squared distances from the optimal vertex to the planes P on which the
triangles incident to the vertex reside. Let the ith plane be ai x + bi y + ci z + d = 0, where
‖[ai bi ci ]‖ = 1 is represented by the vector pi = [n�

i di ]�, and the vertex position v̄ equals
[v�1]�. The optimal vertex position v̄o is shown as the following:

v̄o = argmin
v̄

∑
∀pi ∈P

(p�
i v̄)

�
p�

i v̄ (2.22)

= argmin
v̄

∑
∀pi ∈P

v̄�pi p�
i v̄ (2.23)

= argmin
v̄

v̄�(
∑

∀pi ∈P
pi p�

i )v̄ (2.24)

= argmin
v̄

v̄�Qv̄. (2.25)

By taking partial derivatives of v̄�Qv̄ with respect to the x-, y- and z-coordinates of v̄ and
equating to zero, it can be shown (based on Equation 2.25) that the optimal vertex position is
shown as the following closed form solution, where qi j is is the ijth element in Q.

v̄o =

⎡
⎢⎢⎢⎣

q11 q12 q13 q14
q21 q22 q23 q24
q31 q32 q33 q34
0 0 0 1

⎤
⎥⎥⎥⎦

−1 ⎡
⎢⎢⎢⎣
0

0

0

1

⎤
⎥⎥⎥⎦ . (2.26)

Vertex removal: The algorithm by Schroeder et al. (1992) is the first and probably the most
well-known in this class of algorithms. In general, mesh decimation algorithms of this class
iteratively remove vertices on the basis of some metric criteria. The removal of a vertex results
in a surface hole, which is then filled by retriangulating the surface patch corresponding to the
hole. (This can easily be achieved by iteratively splitting the patch until all of the splits become
triangles.) The mesh is then updated accordingly. Schroeder et al. used the distance from a
candidate vertex to a local plane (computed by taking average of all the triangles incident to
vertex weighted by their areas) and the distance from the mesh edge (for near border vertices)
as the criteria for prioritizing vertex removal; vertices with the least distances are removed
first. Iterative decimation is terminated when a certain decimation ratio is achieved or a certain
decimation error is exceeded. This decimation algorithm is fast and can adapt (adjust) vertex
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density to the level of local surface details. Additionally, it can preserve the topology of the
surface.

Edge contraction: Similar to the vertex removal approach, mesh edges can also be removed
by replacing the two vertices that are incident to an edge by a single vertex. The triangles
that are incident to the edge become degenerate and are then removed from the mesh. The
position of the new vertex can be chosen to be either one of the edge vertices. However,
more quality is achieved by taking their average or by choosing an optimal position (on the
basis of a metric measure). Besides lowering the decimation error, the later choice also has a
low pass filtering effect that avoids mesh aliasing. They are also generally similar to vertex-
removal approaches in their iterative nature and the use of metric measures to prioritize edge
contractions. Unlike vertex-removal algorithms, the mesh topology is not preserved. However,
this can sometimes be advantageous. For example, a surface hole can be filled by contracting
the edges around it. A number of edge contraction algorithms have been proposed that mostly
differ by the metric measures they use. An example of an edge contraction algorithm was
developed by Garland and Heckbert (1997) for which the concept QEM (discussed earlier) was
initially proposed.

Range Image Decimation

As with 2D images, the simplest and the most efficient approach to range image decimation
is to retain every ri th horizontal and r j th vertical range pixel and drop the outstanding
vertices, where r , i , and j are the decimation parameter, the horizontal, and vertical indices
of the decimated range pixels. If r is a non-integer, then indices ri and r j can be also non-
integers, which can be then rounded to their nearest integer or interpolated at the location
corresponding to the i th and j th pixel of the decimated range image. However, this approach
could compromise the quality of the decimated range image. In fact, the dropped pixels can be
important (depending on the local shape of the surface and the level of noise). Additionally,
the decimation of range images with high frequency components (abrupt shape variations) can
results in shape aliasing. A better decimation quality can be achieved by introducing low pass
filtering before decimation. Alternatively, the decimation and low pass filtering are usually
performed in one step as in Equation 2.27, where R, R′, and H are the range image, the
decimated range image, and a low pass kernel (typically a Gaussian).

R′(i, j) =
∑
k,l

R(k, l)H (ri, r j). (2.27)

2.1.4 Geometric and Topological Aspects of the Human Face

The recognition of 3D human faces can be categorized as within-class object recognition.
However, some geometric and topological aspects that are specific to the human face can
pose challenges and/or provide opportunities to enhance the performance of face recognition
systems. These aspects and their relevance to 3D face recognition are discussed in the following
sections.
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The Nonrigidity of the Human Face

The 3D shape of the human face is highly deformable as a result of aging, weight loss/gain and
most prominently following variations in facial expressions. These variations pose challenges
to 3D face recognition as they can obscure those arising from identity variations (shape
variations among different individuals) on the basis of which individuals are recognized.
This is because the 3D shape variations of the human face among different individuals are
statistically small. In fact, some facial expressions, in addition to the geometric changes, can
induce topological changes to the 3D facial surface, such as those involving mouth opening.
Nevertheless, the nonrigidity of the human face is not arbitrary, particularly the one related to
facial expressions because the anatomical structure of the face remains unchanged. This factor
makes the modeling of the facial expressions or the extraction of expression-invariant features
for 3D face recognition possible. Another aspect of the nonrigidity due to facial expressions
is that some facial regions such as the nose and the forehead (called the semirigid regions) are
(to an extent) less affected by facial expressions. In addition, some facial regions (possibly
other than the semi rigid ones) may be less deformed than some others, depending on the
facial expression of the face. The two latter aspects have allowed for the development of rigid
approaches to 3D face recognition (where the 3D face or some of its parts are treated as if they
are rigid) that are invariant to facial expressions.

The Symmetry of the Human Face

The 3D shape of the human face is bilaterally symmetric about a plane splitting the face
into two mirror, left and right, halves (to a large extent). Interestingly, facial symmetry holds
considerably not only for faces under neutral expression but also for most facial expressions,
especially those that naturally express emotional states or result from talking. The symmetry
of the face has been employed by many 3D face recognition systems for a number of tasks. It
was used for pose estimation and correction of 3D faces (e.g., Pan and Wu, 2005), whereby
they estimate the facial symmetry plane and define reference points on the symmetry profile
(i.e., the intersection between the symmetry plane and the 3D face). It was also used for feature
extraction or dimensionality reduction of the facial data (e.g., Gnanaprakasam et al., 2010;
Harguess et al., 2008). Other applications in which facial symmetry was exploited include,
and is not limited to, the interpolation of holes in raw facial data (for a better estimation of
the missing data), the localization of the fiducial points (for more robustness and accuracy),
the detection of the face (for an enhanced detection efficiency), and the normalization of
illumination of textured 3D faces. Nevertheless, the asymmetry of the human face can also be
of importance to face recognition as it may be person specific.

Fiducial Points of the Human Face

There are natural landmark points on the facial surface called the fiducial points, which can be
detected evenwhen the face is deformed. Typical fiducial points include the eye corners, themid
point between the eyes, the tip of the nose and its two lower corners, the furthest chin point,
and mouth corners. Sometimes, it is needed to establishing point-to-point correspondence
between two or more facial scans of the same person or of different people, as is the case
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in some approaches to expression modeling and expression invariant face recognition. For
rigid surfaces, an accurate point-to-point correspondence is possible (e.g., by using the ICP
algorithm). However, for deformable surfaces, the establishment of such correspondences is
more difficult. The problem can be undermined by first establishing correspondences between
the fiducial points of the facial scans. The fiducial points are also used as standard locations
from which local features can be extracted for 3D face recognition. Additional features can be
extracted from their relative locations for further enhancement of the recognition.

Self-Occlusions of the Human Face

Depending on the pose of the 3D face relative to the viewpoint of the 3D digitizer, parts of the
scanned facial surface can be self-occluded because some of the visible regions block the line
of sight between the 3D digitizer and the occluded regions. As a result, the occluded facial
surface regions cannot be digitized and will appear as holes in the single view scan (often
referred to as 2.5D scan). In profile facial scans, where the face is scanned from roughly either
the left or right side, all or large parts of the opposite side can be self-occluded. The side
of the nose, which is considered to be a highly discriminative region of the face, is easily
occluded even for a moderate side pose. On the other hand, facial scanning from frontal or
near frontal viewpoints is least affected by self-occlusions. In this case, all or nearly all of
the facial regions are visible to the 3D digitizer. Additionally, near frontal scanning is less
susceptible to occlusions by hair and clothing.
On that basis, the frontal facial pose is the choice of most recognition systems that match

2.5D probes scans against a gallery of 2.5D scans. The recovering of occluded regions is
possible by performing a scan from different viewpoints. From these multiple scans of the
face, a complete facial model can be generated from ear to ear. The online generation of
complete models (as probes) is not practical for most applications (complete against complete
model matching). However, matching 2.5D probes against complete gallery models is more
practical (offline model completion) and reduces the effects of occlusions (limited to the
probes) and allows for the matching of both frontal and profile 2.5D probes.

2.2 Curvatures Extraction from 3D Face Surface

3D facial surface curvatures (or curvature-like quantities) have been widely used in 3D face
recognition systems. Some 3D face preprocessing approaches (e.g., surface smoothing), 3D
face or subregion segmentation, feature extraction, and the detection of facial fiducial points
rely on some (or all) of the different types of surface curvatures. This section first discusses
the concepts and mathematical definitions of 3D curvatures and then covers some practical
methods for their extraction. For further information on this topic, the reader is referred to
textbooks on differential geometry such as those by O’Neill (2006) and Bar (2010).

2.2.1 Theoretical Concepts on 3D Curvatures

Curvature of 3D Curves

The curvature is a measure of how much a curve is bent. In other words, the curvature at a
point on the curve is the extent at which the curve locally deviates from the tangent at the



54 3D Face Modeling, Analysis and Recognition

point. Curvature κ is quantified as ± 1
R , where R is the radius of the osculating circle (that

locally fits the curve). For a parametric curve embedded in a 3D space, γ = [x(t) y(t) z(t)]�,
the curvature is described as

κ = ‖γ̈ − γ̈ · ˆ̇γ ‖
‖γ̇ ‖2 (2.28)

= ‖γ̇ × γ̈ ‖
‖γ̇ ‖3 , (2.29)

where γ̇ and γ̈ are the first and second derivatives of the curve with respect to the parameter
t . The unit vector ˆ̇γ is the curve tangent, ˆ̇γ = γ̇ /‖γ̇ ‖. The vector γ̈ − γ̈ · ˆ̇γ is orthogonal to
the tangential vector, and when normalized to a unit magnitude, it defines the principal normal
of the curve. In theory, 3D curves can be (re)-parameterized so they are unit-speed, that is,
‖γ̇ ‖ = 1. The curvature of unit speed curves simplifies to ‖γ̈ ‖, and the principal normal to ˆ̈γ .
It should be noted that both the osculated circle and the principal normal are coplanar and the
curvature κ is invariant to rigid transformations.

Curvatures of Curves on 3D Surfaces

For curves on 3D surfaces, the second derivative vector of the parametric curve defines two
types of curvatures: the geodesic and the normal curvatures. Let σ = [x(u, v) y(u, v) z(u, v)]�

be a 3D surface parameterized by u and v . A further parameterization of the surface param-
eters, with respect to a single parameter t , yields a 3D curve on the surface σ , that is,
γ = [x(u(t), v(t)) y(u(t), v(t)) z(u(t), v(t)) ]�. The surface normal n = σu×σv

‖σu×σv ‖ , where σu

and σv are the derivatives of the surface with respect to u and v (the two vectors span the
tangential plane). The tangent vector of the curve is t = ˆ̇γ , differentiated with respect to t .
The geodesic and the normal curvature are shown in Equations 2.30 and 2.31.

κg = γ̈

‖γ̇ ‖2 · (n × t). (2.30)

κn = γ̈

‖γ̇ ‖2 · n. (2.31)

The curvatures κg and κn are a quantification of how the curve is bent within and away from
the tangential plane of the surface. The normal curvature. κn . has a particular importance in
3D face recognition because it is a characteristic of the surface in the tangential direction of
the curve, t. While κg is solely a characteristic of the 3D curve (as opposed to the surface).
From the preceding two equations (Eqs. 2.30 and 2.31) and Equations 2.28 and 2.29, the total

curvature κ of the curve is related to κg and κn by κ =
√

κ2g + κ2.

Principal curvatures: The principal curvatures are two unique normal curvatures (Eq. 2.31)
corresponding the curvature of the curve resulting from the intersection of the 3D surface with
a normal plane (orthogonal to the tangential plane) in the tangential directions that give the
minimum κ1 and maximum κ2 normal curvatures. While normal curvatures have pertinence to
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both the surface and the parameterization of the curve on the surface, which can yield tangents
with one degree of freedom (revolution around surface normal), the two principal curvatures
are a sufficient description of the local surface around a point. In fact, the local surface can be
locally approximated using the principal curvatures up to the rigid transformations using the
paraboloid z = 1

2 (κ1x
2 + κ2y2).

The principal curvatures are given in terms of the first and second fundamental forms as
follows (starting from the Eq. 2.31):

‖γ̇ ‖2κn = γ̈ · n. (2.32)

= d

dt
γ̇ · n. (2.33)

= d

dt

(
σu
du

dt
+ σv

dv

dt

)
· n. (2.34)

=
[
σu
d2u

dt2
+ σv

d2v

dt2
+

(
σuu
du

dt
+ σuv

dv

dt

)
du

dt

+
(

σuv
du

dt
+ σvv

dv

dt

)
dv

dt

]
· n. (2.35)

In Equation 2.34, the tangent vector (to the curve) γ̇ is expressed as a weighted combination
of the surface tangents σu and σv , where the weights are dudt and

dv
dt . Some terms in Equation

2.35 are tangential, so their dot product with the surface normal reduces to zero. Equation 2.35
is expressed in terms of the first and second fundamental forms, F1 and F2, and the weight
vector w = [ dudt

dv
dt ]

�.

‖γ̇ ‖2κn = γ̇ · γ̇ κn = w�
[

σuu · n σuv · n

σuv · n σvv · n

]
w. (2.36)

(
σu
du

dt
+ σv

dv

dt

)
·
(

σu
du

dt
+ σv

dv

dt

)
κn = w�

[
σuu · n σuv · n

σuv · n σvv · n

]
w. (2.37)

w�
[

σu · σu σu · σv

σu · σv σv · σv

]
wκn = w�

[
σuu · n σuv · n

σuv · n σvv · n

]
w. (2.38)

w�
[

E F

F G

]
wκn = w�

[
L M

M N

]
w. (2.39)

w�F1wκn = w�F2w. (2.40)

Using the Equation 2.40, the normal curvature can be computed in any tangential direction
specified byw, κn = w�F2w

w�F1w . Also, on the basis of Equation 2.40, Equation 2.41 holds indicating
that the maximum and minimum principal curvatures are the eigenvalues of F1−1F2.

wκn = F1−1F2w. (2.41)
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Mean curvature:Themean curvature H is defined as themean of themaximum andminimum
normal curvatures, H = κ1+κ2

2 . Since κ1 and κ2 are the eigenvalues of F1 and F2, the mean
curvature is also shown by

H = 1

2
trace

(F1−1F2). (2.42)

Gaussian curvature: The Gaussian curvature K is also defined based on κ1 and κ2, K = κ1κ2.
In terms of F1 and F2, the Gaussian curvature is given by

K = det
(F1−1F2) = det

(F1−1) det(F2). (2.43)

Another approach of finding K is to use a Gaussian map. The Gaussian map is a continuous
mapping from the 3D surface σ to unit sphere S2 (representing normals), each point on the
surface is mapped to a point on the unit sphere that represents the surface normal. For an
infinitely small local surface patch around a point (with a disc diameter r ), the absolute value
of K is given by the ratio of the corresponding area on the unit sphere Au to the area of the
surface patch Aσ .

|K | = lim
r→0

Au

Aσ

. (2.44)

It should be noted that from both H and K , the principal curvatures κ1 and κ2 can be computed.
Therefore, similar to the principal curvatures, the mean and Gaussian curvatures together fully
characterize an infinitely small surface patch.

κ1 = H +
√

H 2 − K . (2.45)

κ2 = H −
√

H 2 − K . (2.46)

2.2.2 Practical Curvature Extraction Methods

As explained in our theoretical discussions about surface curvatures earlier, the values of the
curvatures depend on the first and second derivatives of the surface (with respect to the surface
parameters). While it is possible to find numerically those derivatives for both 3D point clouds
and meshes, they are susceptible to noise, particularly the second derivatives. One way to
overcome derivative noise is to (heavily) smooth the surface. For range images, it is more
convenient to differentiate a Gaussian kernel (with a low cut off frequency) and convolve it
with the range image. However, a heavy smoothing may remove surface details and affect the
accuracy of estimating curvatures at locations where the surface is highly curved, which in
turn might affect subsequent surface segmentation and recognition modules.
Another approach of finding estimating/calculating surface curvatures at a 3D point is to fit

an analytical surface to the local patch (or points) around the point. The curvatures are then
computed from the analytical surface. Fitting a truncated Taylor expansion (up to the second
order), one to each of x-, y- and z-coordinates of the 3D points (Eqs. 2.47, 2.48, and 2.49),
is widely used. This approach can equally be used with 3D point clouds, meshes, and range
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images. However, for 3D point clouds and meshes, the fitting of the analytical surface to the
local 3D points requires a parameterization of the surface. A simple parameterization approach
is to project the local 3D points on the tangential plane. Their positions on the tangential plane
are then expressed in any orthonormal coordinates, u and v .

x = cx0 + cx1u + cx2v + cx3

2
u2 + cx4uv + cx5

2
v2. (2.47)

y = cy0 + cy1u + cy2v + cy3

2
u2 + cy4uv + cy5

2
v2. (2.48)

z = cz0 + cz1u + cz2v + cz3

2
u2 + cz4uv + cz5

2
v2. (2.49)

2.3 3D Face Segmentation

The segmentation of 3D surfaces consists in the partitioning of the surface into disjoint
sub-surfaces of the same representation. The segmented subsurfaces may correspond to well-
defined surface parts, which are referred to as part-segmentation. Examples of this type include
the segmentation of the facial surface from a 3D scan and/or the subparts of the face such
as the nose, the forehead, and the eyes. Alternatively, the result of the segmentation may
not correspond to natural and visually distinct surface parts, yet the segmentation is still
meaningful. In this case, it is referred to as patch-segmentation. The latter segmentation is
objectively carried out on the basis of metric criteria and properties of the surface without
aiming to obtain segments neatly corresponding to distinctive parts.
There are many applications of 3D surface segmentation, including parameterization (which

allows texture mapping and curvature extraction), modeling, and morphing. However, the
primary purpose of surface segmentation in 3D face recognition is the extraction (from the
segmented sub-surfaces) of surface features formatching.Manygeneral approaches for the seg-
mentation of 3D surfaces have been proposed in the literature. To some extent, these approaches
fall in a specific class of clustering algorithms but with a different variety of distance measures
and constraints pertaining to 3D surfaces. A recent survey of (generic) 3D surface segmentation
algorithms is provided by Shamir (2008) and another one for CAD applications is provided
by Agathos et al. (2007). In the next subsections, we limit our focus to 3D segmentation
approaches that are specific to facial surfaces.

2.3.1 Curvature-based 3D Face Segmentation

An number of 3D face recognition systems use surface curvatures for segmentation. As
curvatures are independent of the transformation/pose of the face and can be computed at
every 3D point of the surface, they are handy as measures for surface segmentation. They are
equally applicable for both patch-segmentation, part-segmentation, and the detection of facial
landmarks. For patch-segmentation, either principal curvatures, κ1 and κ2, or the mean H and
Gaussian K curvatures are computed at every point of the surface and are used to assign each
points to a surface segment. Typically, each of the segments has consistent geometric properties
such as convexity (peak), concavity (pit), ellipticity (shaped like an oval cup), hyperbolicity
(saddle shaped), cylindricity (both concave and convex corresponding to valleys and ridges
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Table 2.1 Relation between signs of curvatures and geometric shapes of local patches of the surface

κ1 > 0 κ1 < 0 κ1 = 0 H > 0 H < 0 H = 0

κ2 > 0 pit n.p. n.p. pit peak n.p. G > 0
κ2 < 0 saddle peak ridge saddle valley saddle ridge minimal surface G < 0
κ2 = 0 valley n.p. plane valley ridge flat G = 0

n.p. means that the combination is not possible.

in the surface when relaxing the requirement of fixed curvature), and flatness. The signs of
the curvatures along with (near) zero curvatures (determined using appropriate thresholding)
along with region growing algorithm have been widely used for segmentation (Akagunduz
and Ulusoy, 2007; Besl and Jain, 1988; Moreno et al., 2003). Table 2.1 maps the signs of
curvatures to the geometric types of local patches, see Figure 2.4 for an illustration of such
facial surface segmentation.
Alternatively, the values of curvatures or their ranges along with constraints on the segments

such as proximity, smooth perimeters of the patches, and their areas could be used for clustering
the points into segments. The use of hierarchical clustering or K-means algorithms is typical
with these approaches.
The curvature-based patch segmentation is closely related to many landmark detection

approaches (Akagunduz and Ulusoy, 2007; Dibeklioglu et al., 2008; Segundo et al., 2007), in
terms of using the curvatures to detect the landmarks on the basis of their resemblance to the
geometric shapes mentioned above. The location of the facial landmarks (or fiducial points)
makes it possible to segment the facial surface into parts (part-segmentations).

2.3.2 Bilateral Profile-based 3D Face Segmentation

The tip of the nose (which is an important landmark of the face) and the ridge of the noise
lie on the plane of symmetry. Finding the plane of symmetry or its intersection with the
facial surface (bilateral profile line) can assist in detecting those landmarks accurately. The
detection/localization of these landmarks can also assist in the detection of the remaining ones
(based on relative positions). The extraction of the symmetry plane starts by finding an initial
course estimate of the plane (based on the principal directions of the face) then the points
of the surface are mirrored across that plane from both sides. The actual and mirror facial
surfaces are then iteratively registered. In each iteration, the symmetry plane is adjusted on the
basis of the new poses of the two facial surfaces. Zhang et al. (2006) use the bilateral profile
in addition to the mean curvature to detect the nose tip and the lowest point on the ridge of
the nose.
In the work by Mian et al. (2007), the nose tip in near frontal facial scans is detected. Then,

the facial surface is segmented by dropping the 3D points that lie outside a sphere centered
at the tip of the nose with a radius r = 80 mm. The pose of the segmented facial surface is
then corrected to the frontal view using the principal directions of the face. The frontal view
and the knowledge of the location of the tip of the nose enables the segmentation of the parts
of the facial surface using image masks. The detection of the tip of the nose starts by slicing
the facial surface horizontally from top to bottom. Each resulting line is then searched for the
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(b)(a)

(d)(c)

Figure 2.4 (a) A range image of a neutral face and its maximum and minimum principal curvatures,
(b), and (c). The red color indicates higher curvatures while the blue color indicates lower curvatures.
The image (d) shows the segmented local patches of the facial surface over-laid on the range image. The
color codes are red for planar regions, yellow for valleys, green for ridges, blue for saddle regions, cyan
for peaks, and magenta for pits

point which has the highest distance (altitude) to the line segment formed by the intersection
of a circle with a horizontal slice, which is designated as a potential nose tip. As the potential
nose tips are assumed to lie on the nose ridge, a line is fitted to them using the random sample
consensus algorithm (RANSAC). The potential nose tip, which lies on the consensus line and
has the highest altitude, is considered to be the final estimate of the tip of the nose.

2.4 3D Face Surface Feature Extraction and Matching

Feature extraction in 3D face recognition systems, as in the case of pattern recognition in
general, is a core stage that largely influences the performance and reliability of these systems.
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The extraction of features generally serves the recognition process in a number of ways. It can
be considered as a form of data reduction that captures the essential discriminative information
from the full-dimensional data. It also serves as a tool for matching facial surfaces. Often, 3D
face recognition systems achieve invariance to facial pose and expression variations by means
of extracting invariant features.
Many feature extraction approaches have been used in 3D face recognition. They can

be categorized on the basis of the size of the surface area from which they are extracted
(holistic, regional, or point features). Other categorizations include, rigid versus deformable
feature extraction and uni modal (shape only) versus multi modal (e.g., shape and texture).
In this section, the most prominent rigid approaches to feature extraction are discussed.
They are organized according to their surface size. Nonrigid approaches are discussed in
Section 2.5.

2.4.1 Holistic 3D Facial Features

The holistic approaches extract 3D facial features from the whole surface of the face. Most
feature extraction approaches fall in this category.

Iterative Closest Point

The ICP algorithm, proposed by Besl and Mckay (1992) and Chen and Medioni (1991) for
corresponding and registering 3D surfaces, was initially widely used for 3D modeling. Later,
ICP proved to be equally useful for surface matching, providing a high accuracy particularly
for rigid surfaces. On the downside, the computational complexity of ICP is high. Nonetheless,
there are efficient variants, for example, the one by Greenspan and Yurick (2003), which uses a
K-D tree to speed up the search for closest points (the main bottleneck of ICP). The registration
error, expressed as the sum of the Euclidean distances or other distances (e.g., city block) or
their histogram, is used for matching.

Description of ICP: The ICP algorithm requires an initial coarse registration. Less accurate
registration approaches such as those based on the detection of the fiducial points of the face
(either 3D or 2D in case of textured scans) and/or pose correction can be used to provide an
initial coarse registration. Starting from that coarse registration, ICP iteratively estimates the
rigid transformations (rotations and translations) between the two surface (which minimizes
the registration error) and updates one of the two surfaces accordingly. When the registration
error from one iteration to another diminishes and/or after a pre-specified number of iterations,
the algorithm assume convergence. The convergence of ICP can be influenced by the shape
of the surface. Surfaces that can be slid on each other in one or two geodesic directions can
yield low registration errors but an incorrect registration. Examples of these surfaces include
planar, spherical, and cylindrical (which can be slided bidirectionally). Any 3D surface that
can result from the rotation of a curve (rotational surface) or its translation along a straight
line, will induce the ICP to potentially converge somewhere along the direction of rotation or
translation of the curve. However, facial surfaces as most free-form surfaces exhibit a decent
convergence behavior.
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The estimation of the rigid transformations at the ith iteration, the central part of ICP, is
computed from two sets of points with a one-to-one correspondence. These correspondences
are typically formed by taking the vertices of the first surface as the first set of 3D points
and the second set as their closest points in the other surface. Alternatively, the closest points
along the directions of the surface normals are taken. The latter approach has been shown
to demonstrate a higher registration accuracy. Let P and Q be 3× n matrices storing the x-,
y- and z-coordinates of the first and second point sets, and let pi and qi represent the ith
corresponding pair of points. The transformations (Ri and ti ) that minimize the registration
error, e = ∑n

i=1 ‖qi − Ri pi − ti‖, can be found in a number of ways. A closed form solution
can find Ri and ti by first translating the point sets so that their average positions lie on
the origin, p′

i = pi − p̄i and similarly q′
i = qi − q̄i where p̄i and q̄i are p̄i = 1/n

∑n
i=1 pi

and q̄i = 1/n
∑n

i=1 qi . The rotational matrix is then found by orthonormalizing the matrix
A = P′�Q′ using single value decomposition A = UDV�; the singular values are replaced by
ones, and if the determinant of the resulting matrix is −1, the matrix is multiplied by −1, that
is R = ±UIV�. The translation ti is given by −Rp̄ + q̄.

Use of ICP in holistic face recognition: The registration errors between facial surfaces has
been used in 3D face recognition as a dissimilarity measure (Lu et al., 2006). Since ICP is
an approach designed for the registration of rigid objects, its accuracy in 3D face recognition
on the basis of its registration error deteriorates with variations in facial expressions (see
Figure 2.5). Matching facial surfaces using the histograms of the registration errors appears
to handle expression variations better (Amor et al., 2006). The partial ICP approach to 3D
face recognition (Wang et al., 2006), can dynamically extract the regions of the face that are
not affected by expressions (vary according to the expressions) and compute the dissimilarity
measures of these regions. The partial ICP ranks the correspondences (in each ICP iteration)
on the basis of their distances in ascending order and considers only a fixed percentage of
them, that is, those which rank first. The ICP is also used for textured 3D face recognition. It
should be noted that the extension of ICP to multi modal is straightforward (apart from the
complexities related to illuminations variations) as a fixed mapping between the 3D points
and their texture should be maintained.

Principal Component Analysis (PCA)

PCA is an effective approach to the compression of high dimensional data (where each
observation is represented by a multi dimensional vector). The higher dimensional data can
often reside (or approximately reside) in a lower dimensional orthonormal subspace. In this
case, the original data can be approximated or represented by a lower number of variables by
projection on that subspace, the dimension of which is equal to the number of the reduced
variables. These variables were widely used as feature vectors in 2D face recognition and later
in 3D face recognition.

Description of PCA: Firstly, a lower subspace of the 3D facial data (usually a collection of
range image) is found. As PCA operates on vectorial data, the range images are vectorized
in the same manner. The pixels of each range image are stacked in a vector, row by row or,
equivalently, column by column. Let the vector fi represent the vectorized ith range image.
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(f)(e)(d)

(c)(b)(a)

Figure 2.5 The top row shows two neutral facial scans (of the same subject) and their registration using
ICP (c). The bottom row shows the registration of a neutral facial scan to a non-neutral scan of the same
subject, which appears to be of a higher registration error than the former case

The average range face is then computed, f̄ = 1/n
∑n

i=1 fi . The covariance matrix � is next
computed as in Equation 2.50.

� =
n∑

i=1
(fi − f̄)(fi − f̄)�. (2.50)

The lower dimensional subspace is given by the k eigenvectors of � with the highest eigen-
values E = [e1 . . . ek], where k is much lower than the number of range pixels (fixed in each
image). This is because the extent of data variation along an eigenvector is indicated by the
corresponding eigenvalue, αi ei = �ei . See Figure 2.6.
The compact representation of an unseen range image (after vectorization and subtracting

the average face) fp is called the PCA coefficients cp (the feature vector) and is given by the
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(b)(a)

(d)(c)

Figure 2.6 An average range face (a) and the first three eigenfaces (eigenvectors of the covariance
matrix), (b), (c), and (d), computed from 200 facial range images of different people

projection cp = E�fp. The PCA coefficients of the range image cp can be matched against
another PCA coefficients of another unseen range image cg (found in a similar way) on the
basis of any metric distance (dissimilarity measure). Typical dissimilarity measures used along

with PCA are the Euclidean ‖cp − cg‖ and the cosine c�
p cg

‖cp‖‖cg‖ distances.

Comments on the use of PCA in 3D face recognition: The use of PCA in recognition
requires the pose-correction of the facial surfaces (to a predefined pose, typically the frontal
one), the cropping of the facial surface. The range images should also be of the same resolution.
Variations that could be introduced by these factors affect the computation of the PCA sub-
space and/or the PCA features which ultimately may undermine the recognition performance.
Another aspect of using PCA features for 3D face recognition is that they are sensitive to facial
expressions in that the values of the features vary according to facial expressions. However, as
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an effective tool for dimensionality reduction of facial data, PCA is the de facto technique for
feature extraction in many 3D face recognition approaches that further process these features
to counteract feature variations and, as a result, enhance the recognition accuracy. Examples
of such approaches are some of those based on linear discriminate analysis (LDA), nonlin-
ear manifolds and support vector machines (SVMs). PCA is also a building block in some
approaches to nonrigid 3D face recognition (see Section 2.5).

Linear Discriminant Analysis (LDA)

Description of LDA: Similar to that of PCA, LDA projects observations of multi-dimensional
data on an orthonormal subspace. However, as opposed to PCA, which aims for a subspace
that captures most of the variance in the data, LDA aims for a better separability among
the various classes of the data (the 3D faces). In order to achieve that, LDA finds a subspace
E = [e1 . . . ek] that maximizes the Fisher’s criterion (the ratio of the variance between the
classes to the variance within the classes) as shown in Equation 2.51.

J(L) = trace

(
E��BE
E��W E

)
(2.51)

=
k∑

i=1

e�
i �Bei

e�
i �W ei

(2.52)

=
k∑

i=1
e�

i �−1
W �Bei , (2.53)

where�B and�W are the between and within covariance matrices that are defined in terms of
a number ofC class means,μ1 . . . μC , the overall mean (the average face) f̄, and the vectorized
facial data, fi j , which denotes the ith facial vector belonging to the jth person (class).

�B =
C∑

j=1
(μ j − f̄)(μ j − f̄)�. (2.54)

�W =
C∑

J=1

N j∑
i=1
(fi j − μ j )(fi j − μ j )

�. (2.55)

From Equation 2.53, it can be seen that J maximized when the vectors e1 . . . ek are the
eigenvectors of �−1

w �B . Similarly to PCA, the LDA feature vector of an unseen facial vector
is computed by subtracting the mean face first and then projecting the difference onto the
subspace.

Comments on the use of LDA in 3D face recognition: Because LDA requires the inversion
of the within-class covariance matrix, the total number of the training data samples should be
higher than the dimension of sample vectors, which is usually large (the number of pixels).
Otherwise, the matrix will be singular, referred to as the small sample size (SSS) problem.
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One way to overcome this problem is to use the pseudo-inverse of �w . A common approach
to pseudo-inverse is to decompose the covariance matrix using SVD, �w = U�U� and then
invert the non-zero singular values (or only those that are considerably higher than zero and
the remaining ones are set to zeros),�+

w = U�+U�, where�+ is diagonal and each diagonal
element is the inverse (1/λi ) of the corresponding element in � if it is non-zero. A more
accepted approach is to reduce the dimensionality of the training data using PCA prior to the
application of LDA, called PCA + LDA.
LDA is widely used in both 2D and 3D face recognition and generally demonstrates better

recognition accuracies than does PCA. Apart from its relative discriminatory advantage, LDA
still suffers from pose and expression variations. There are three prominent approaches to
LDA feature extraction in 3D face recognition. First, LDA feature extraction is performed
on range images. Second, LDA features are extracted from facial normal maps. Gokberk
et al. (2006) experimentally have shown that LDA on normal maps outperforms that on range
images. Third, in textured 3D face recognition, LDA feature extraction has been performed
on the texture, whereas ICP, which is more accurate than 3D LDA, is used for shape feature
extraction (Lu et al., 2006). In matching, the dissimilarity measures produced by the shape
and texture are combined using a weighted sum rule.

Curvature-based Methods

In comparison to the use of curvatures for regional and point-based feature extraction, 3D face
detection and pose estimation, the use of curvatures in holistic 3D face recognition is to an
extent limited. However, some of the most early approaches to 3D face recognition are those
based on the extended Gaussian image (EGI) (Lee and Milios, 1990; Tanaka et al., 1998).

EGI facial features: An EGI is constructed by mapping (or associating) the facial surface
normals to those of a unit sphere in the same directions. The points on the unit sphere
are assigned the values of the Gaussian curvatures K at their corresponding surface points,
G(θi , φi ) = Ki , but those with no correspondences are assigned a value of zero. In reality, a
discretization of the unit sphere is used, in which some cells are within the continuous range of
normals but are left empty due to the sampling of the surface. Interpolation is used to estimate
the curvature at those cells. In the EGI variant by Tanaka et al. (1998), the facial surface is
segmented into valleys and ridges based on H and K curvatures. EGIs are then computed
from the two facial segments. In that work, the EGIs map the principal curvature directions
(e1 and e2) to the normals of a unit sphere rather than from the normals of the original surface,
to the normals of a unit shpere.
Surface representation using EGI has some advantages. Since the curvatures are invari-

ant to rigid transformations and the normals are invariant to translations, EGI representa-
tions/features are also invariant to translations. However, the rotational invariance is easily
handled during matching by means of spherical correlation, in which one of the spheres
of the two matched EGIs, G1(θ, φ) and G2(θ, φ), is revoluted to maximize the correlation∑

G1(θ, φ)G2(θ, φ)/
√∑

G2
1(θ, φ)

∑
G2
2(θ, φ).

Ideally, when a 3D surface represented by an EGI is convex, there is a one-to-one mapping
between the surface and the unit sphere normals as there are no surface normals pointing in
the same direction. This makes EGI representations for convex surfaces unique. However,
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this is not the case with facial surfaces; 3D face recognition approaches based on EGI often
assume that the 3D face has (to an extent) a convex shape. Other disadvantages of EGIs include
the possible information loss during mapping (the actual positions of the 3D points) and its
susceptibility to noise due to the reliance on normals and curvatures.

Curvature-like method: The method proposed by Al-osaimi et al. (2008) extracts 11 scalar
quantities pertaining to local attributes of the facial surface at each point, each called a scalar
filed, and 3 other fields pertaining to the global structure of the face. Some of these local fields
are (conceptually) similar, to an extent, to surface curvatures but are in contrast less affected
by noise. Discriminative and transformation invariant features are extracted by constructing a
2D histogram from each combination of a local and a global field. The histograms are indexed
in one direction by the local field and in the other direction by the global field. The bins of each
histogram store the area of the surface with the local and the global field values corresponding
to its indices. The histograms are vectorized and concatenated. PCA is then used to compress
these concatenated features.
The local fields are extracted at each vertex from a 3D facial mesh from the triangles

ti within a small and a large neighborhood, denoted by N1 and N2, respectively. Six local
fields are defined as the thee eigenvalues of the covariance matrix in Equation 2.56 for each
neighborhood, where ri is the vector from the point to the centroid on the ith triangle, ai is its
area, and A is the total area of the neighborhood.

∑
ai ∈N

ai ri r�
i

A‖ri‖ . (2.56)

Three other local fields are defined as the singular values of the matrix in Equation 2.57, where
n and n̄ are the normal of the ith triangle and the mean normal, respectively. The fields that
involve the normals were only extracted from the larger neighborhood to reduce the effect of
noise because they are more sensitive to the noise than to the r vectors.

∑
ai ∈N2

ai (ni − n̄)r�
i

A‖ri‖ . (2.57)

Two other local fields are defined as (one from each neighborhood)

∑
ai ∈N2

ai ni · r�
i

A‖ri‖ . (2.58)

The global fields are the dot products between the vectors from the global centroid C of the
cropped facial surface to each vertex ci and each of the three principal directions of the face.
The principal directions of the face are the eigenvalues the matrix in Equation 2.59.

∑
ai (ci − C)(ci − C)�. (2.59)
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Although the recognition accuracy of this method is considerably high for neutral and near
neutral face recognition, its ability to handle recognition under facial expressions is limited.

2.4.2 Regional 3D Facial Features

The rigid matching of sub-facial surfaces (regions of the 3D face) or the extraction of (rigid)
features from specific regions of the face has proven tomitigate the effects of facial expressions
on the recognition accuracy. Chances are facial expressions leave some regions undeformed,
depending on the expression at hand. Even, deformed regions could appear locally minimal.

ICP-based approaches: Indeed, some of the most successful approaches to 3D face recogni-
tion are those based on region-matching using ICP. The reason behind their success is that ICP
is very accurate when matching rigid surfaces but is, on the other hand, sensitive to deforma-
tions. As discussed earlier, region-based matching mitigates the affects of facial expressions
and consequently the accuracy of ICP is retained, to an extent. Chang et al. (2006) performed
3D face recognition using ICP on multiple overlapping nose regions. For matching a probe to
a gallery facial scans, the landmarks (e.g., the nose tip, eye pits, and the ridge of the nose) are
first detected using curvatures. On the basis of the locations of the landmarks, the overlapping
regions in the probe scan are extracted. ICP is then used to individually register each extracted
region to the gallery scan. From the registration errors of the overlapping regions, a total
dissimilarity measure between the probe and the gallery scans is computed on the basis of
the product, sum, and minimum rules. The product and the sum rules have demonstrated a
better recognition accuracy than the minimum rule, but they (the product and sum rules) were
comparable to each other. By matching facial scans using ICP on the forehead and the nose
as two separate regions, a higher recognition accuracy has been achieved (Mian et al., 2005,
2007). In order to reduce the computational complexity of ICP, a rejection classifier was used.
The rejection classifier is a histogram of the number of the 3D points of the face falling in
between concentric spheres centred at the tip of the nose with increasing diameters called
spherical face representation (SFR).

Miscellaneous region-based approaches: The 3D face recognition approach proposed by
Gunlu and Bilge (2010) divides a pose-corrected range image of the 3D face into a number
of squares. The discrete cosine transform (DCT) is then applied to each region, producing
a collection of DCT coefficients. The most discriminative and expression invariant DCT
coefficients are selected as features for recognition, by means of a feature selection approach.
Intuitively, as DCT is a template matching approach, one would expect that this approach to
give a higher recognition accuracy than a holistic PCA due to the use of feature selection.
However, the selected features may still be affected by pose variations as facial expressions
also introduce pose correction errors.
The curvature-based approach proposed by Moreno et al. (2003), one of the early ones in

this category, segments the 3D face into regions on the basis of the sign of the mean H and
Gaussian K curvatures. A number of attributes of the segmented regions are used as features
for recognition. These attributes include their areas, distances, and angles between their centers
gravity, average H and K . It is noted that unlike most other approaches in this category, the
division into regions is not meant to achieve invariance to facial expressions but is rather a
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means for feature extraction. In fact, the segmented regions and their attributes could differ
from a range image to another depending on facial expressions.

2.4.3 Point 3D Facial Features

A well-known paradigm to object recognition is to first detect points, called key points. Then,
point features are extracted from the local neighborhood of the detected key points, called
descriptors or point signatures. For matching a pair of images, neither all the key points need
to be detected (in both images) nor all of them need to match. Nevertheless, a high rate of key-
point detection and matching translates into a high similarity measure. Approaches following
this paradigm are less sensitive to clutter and occlusions and do not require the segmentation
of the object from the background.
Many approaches to 3D face recognition follow this paradigm. In addition to the afore-

mentioned advantages of key-point based recognition, they show a degree of invariance to
facial expressions. For the general case, the key points may not be at anatomically distinctive
locations. On the contrary and as a special case, the key points might be the fiducial points
(the landmarks) of the face.

Sphere and surface intersection method:One of the earliest approach to 3D face recognition
that might be categorized in this category is the one by seng Chua et al. (2000). While, the
notion of key-point detection was not strongly present, the approach is largely based on
point descriptors. The approach defines a point descriptor as the closed curve formed by
intersecting a sphere with the 3D facial surface, the sphere center is placed at the 3D point.
The curve of intersection is represented by its orthogonal distance to the tangential plane and
is parametrized by an angle θ from a reference vector, d(θ ). The reference vector is defined as
the maximum distance from the 3D point to any point on the projected curve. Two descriptors
d1(θ ) and d2(θ ) are matched (possibly) by finding the integral of their absolute difference,∫ |d1(θ )− d2(θ )|dθ .
During training, the approach considers only the point descriptors that can match under

different facial expressions. For an efficient retrieval during matching, the selected point
descriptors are stored in a 3D table along with the identities of their training scans (the
gallery). The indexing dimensions of the table are the number of the local minimums of the
descriptors, the number of their local maximums, and the number of their minimums plus
maximums. For matching a probe scan against the gallery identities, the point descriptors are
found at every point of the probe. Then, all the point descriptors are matched against those in
the 3D table and those that match then vote for the identity of the probe.

Principal directions method: The principal directions are used byMian et al. (2008) to detect
repeatable and descriptive (indicated by the non planarity of the local surface) key points on
facial surfaces. The detections of a key point starts by cropping the local surface around a
candidate key point using a sphere. A plane is then fitted to the local surface in order to
uniformly sample the surface according to a regular grid, resulting in a fixed number n of
samples. Next, the principal directions of the sampled local surface, E = [e1 e2 e3], are found
in a similar fashion as described in Equation 2.59. After that, the 3D points of the sampled
surface are projected on the principal directions, p′

i = E�(pi − p̄), where i = 1 . . . n, and p̄ is
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the sampled points average. On the basis of the maximum and minimum x- and y-coordinates
of the projection of all the n samples, a scalar measure for key-point selection is defined,
δ = max(p′

x )−min(p′
x )+min(p′

y)+max(p′
y). A 3D point on the facial surface is considered

a key point if its δ exceeds a certain threshold. The majority of the detected points were located
on and to the sides of the nose region, which is known to be discriminative. However, it is
noticed that a small number of them are located on the forehead region, which also is very
discriminative. This is because the forehead is slightly curved.
PCA features are used as descriptors of the local regions. For matching a pair of surfaces,

the PCA descriptors of the key points are matched against each other. Matched key points
(those with low dissimilarity measures) are used to construct two identical graphs (one on each
facial surface) in which the key points are represented by the graph nodes and their positions
information is stored. A total dissimilarity between the pair of surfaces is computed using the
weighted-sum rule from the average of the descriptor matching errors, the number of key-point
matches, and the average of the absolute distance errors among the corresponding edges and
nodes of the two graphs.

Filtering kernel methods: Some of the well-known approaches to key-point detection in 2D
images are based on filtering kernels, for example, the SIFT by Lowe (2004). A 3D variant
of the SIFT was proposed by Lo and Siebert (2008) and used for face recognition from range
images. For key-point detection, a Gaussian pyramid is constructed (following the 2D SIFT),
each pyramid level is double the resolution (both vertically and horizontally) of the next
level. In each level, there are multiple Gaussian range images, responses of Gaussian kernels
with increasing σ parameters. From each two consecutive Gaussian images, a difference of
Gaussian (DoG) range images is found. The extrema (minima and maxima) points in the DoG
images in their spatial and scale (the adjacent DoG images) proximities are considered key
points if their deviations from their proximities exceeds a certain threshold. It is noticed that
the detected 3D SIFT key points are mostly located on the eyes regions, where the acquisition
of the surface is usually unreliable and spiky due to the eyelashes and appear sparse elsewhere.
This is possibly why in their system they also included key points detected on the basis of the
ratio of the principal curvatures κ1/κ2, if the local maxima exceed a certain threshold. Parallel
to the 2D SIFT, the 3D SIFT descriptors are histograms of the surface gradients around the
key points. Each key point is assigned a direction, usually the dominant gradient direction,
which is used as a reference for in plane rotation (as opposed to in depth rotation) invariance.
A local region of a key point is divided into nine overlapping subregions by means of scaling
by displaced Gaussian functions, from each a histogram is computed. The histogram bins
correspond to specific ranges of directions. The nine histograms are concatenated to form the
key point descriptor.
Another kernel-based approach was proposed by Al-Osaimi et al. (2007). Blob like images

were produced by convolving range images with kernels. By taking the peaks of the blobs as
key points if their difference relative to their spatial neighborhood exceeds a certain thresh-
old, stable and repeatable key points was achieved. The underlying principle of those blob
generating kernels is that a set of adjacent higher spatial frequencies (both vertically and
horizontally) become constructive and destructive at certain locations and forms a pattern of
peaks and bottoms. By allowing those frequencies of a range image to pass, a specific blob like
image (to the range image) is produced. The kernel is found by first setting selected adjacent
frequencies to a value of one in a square matrix (of the kernel size) and setting the discrete
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Fourier transform remaining frequencies to a value of zero. Then, the inverse of the (DFT) of
that square matrix is computed. To achieve invariance to in plane rotations, the real part of the
DFT inverse is rotated in small steps one complete cycle (360◦). The kernels at each step are
then interpolated and their average is found. Finally, the DC component is removed from the
average kernel and the resulting kernel is normalized to sum up to a value of one. The kernels
have shown to detect key points in all regions of the face. A comparison with the well-known
Laplacian of the Gaussian (LoG) kernel, whose response is similar to the DoG, which is also
used to generate blob like images from 2D images reveals that the blobs generated by the
adjacent frequencies approach gives much prominent blob like images.
As descriptors of the detected key points, the intersections of the local surface with five

concentric spheres (of different radii) are found, and each is sampled at fixed angular steps.
A pair of descriptors are matched by first estimating the off set roll rotation between their
samples using circular correlation. The estimation of the off set roll angle is then used to
vectorize the depths (z-coordinates) of the two sets of circular samples starting from the same
point (z1 and z2, respectively, for the first and second descriptors), giving invariance to roll
rotations. Before the computation of a dissimilarity measure, small out of plane rotations are
adjusted for by adding a plane to one of the two depth vectors so it best fits the other depth
vector, as described in Equations 2.60 and 2.61.

[u v]� = (L�L)−1L�(z1 − (z2 − zc1)) and (2.60)

z′
2 = z2 − zc1 + L[u v]�, (2.61)

where L is a two-column matrix holding the x- and y-coordinates of the samples of the second
descriptor, u and v are the fitting parameters, and zc1 is the depth at the center of the first
region (at the key-point position). The dissimilarity measure is the summation of the absolute
errors between z1 and z′

2, that is, e = ∑
i |z1(i)− z′

2(i)|.

Landmark methods: Local region matching around predefined landmarks on the face has
been also used in 3D face recognition. This application of landmarks is not generally as
promising as the use of key points in handling facial expressions. The landmarks are very
sparse in comparison to the key points and usually such approaches require the accurate and
full detection of all the landmarks, in contrast to approaches based on key points that are
tolerant to some failure in key-point detection and matching.
The well-known elastic bunch graph matching (EBGM) approach to 2D face recognition

(Wiskott et al., 1997), which has been adapted to perform 2D+3D and 3D face recognition
(Husken et al., 2005; Wang et al., 2001), is the best known approach in this category. EBGM
relies on a set of Gabor filters (of different frequencies, orientations called and scales) to
detect the landmarks and also to describe their local regions. The convolution of a range image
with the Gabor filters produces a vector of responses at each point called a jet. Initially, the
jets at manually localized landmarks on facial range images are computed and stored in the
nodes of a graph (face bunch graph, FBG). Each node stores a bunch of jets computed from
the different range images at a corresponding landmark. Once an initial FBG is obtained, it
can be automatically expanded. The landmarks on an unseen range image are localized by
searching for points whose jets best fit the jets in the FBG and their positions agree with the
FBG nodes.
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2.5 Deformation Modeling of 3D Face Surface

In the previous section, a common strategy used by the rigid approaches for the handling
of expression variations for 3D face recognition is to avoid deformable and/or deformed
regions. This strategy has clearly shown to improve the recognition performance. Yet, the
fact remains that it does not take advantage of any discriminative information available in
the non utilized regions. Another successful strategy for handling expression variations is to
apply deformations to the facial surface before matching, this set of approaches fall under
what is termed nonrigid 3D face recognition. The applied deformations should counter-act
(or neutralize) those attributed to facial expressions but should be able to retain any relevant
discriminative information. In fact, the success of nonrigid approaches to 3D face recognition
largely depends on the extent of achieving this criterion.

Modeling Expressions as Isomorphism

A popular class of 3D face recognition systems, which model facial expression deformations,
is based on the assumption that the geodesic distances on the facial surface are invariant to
facial expression. This is equivalent to assuming that the facial skin does not stretch or shrink
under expression variations. This assumption is intuitive to an extent, but it is violated for
expressions that involve topological changes of the facial surface, notably mouth opening.
This issue, however, can be handled by the detection and closing of the open mouth in a
preprocessing stage. One of the early approaches in this category is that by Bronstein et al.
(2005). They have experimentally shown that geodesic distances on facial surfaces have much
less absolute errors due to expression variations than Euclidian distances.
The approach by Bronstein et al. (2005) first deforms the facial surface to a canoni-

cal form (a surface of a standard shape in 3D space) subject to the preservation of the
geodesic distances. During the matching phase, the canonical forms are matched against
each other using ICP or other feature-based matching. The deformation is carried out itera-
tively and through the optimization of an objective function. The coordinates of the surface
vertices (or sample points on the surface) are varied (displaced in the 3D space) such that
the objective function that incurs costs proportional to the discrepancies in geodesic dis-
tances (with respect to the original surface) is minimized. Hence, the computation of the
geodesic distances is required at every iteration of deformation. The geodesic distances can
be computed from every point on the facial surface to every other point on that same sur-
face. However, this is computationally expensive. The computational load of the approach is
reduced by only computing distances from certain points (the tip of the nose and the nose
apex in their case). These geodesic distances are efficiently computed by the fast marching
method (FMM), which emulates wave propagation on the 3D facial surface from these two
selected points.
Alternativemethods to the deformation of the facial surfaces have also been developed. They

extract features on the basis of the geodesic distances of the surface rather than using them as
constraints for deformation. In the work by Smeets et al. (2009), the geodesic distances among
the 3D points of the facial surface are first computed and stored in a 2D matrix. The largest
singular values of that matrix are then taken as features. These features are independent of the
order of the surface points used during the computation of that matrix. It is worth mentioning
that the isometric modeling of expression deformations only captures the intrinsic properties
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of the surface, that is it captures the information pertaining to the Gaussian curvature but
not that pertaining to the mean curvature of the facial surface. On one hand, the approach
limits the discriminative information but on the other hand, it largely removes the influence of
expression variations on the retained discriminative information.

Subspace Modeling of Expressions

PCA subspaces have been used in different ways and for different purposes in 3D face
recognition. PCA is mostly applied on the facial data for dimensionality reduction. When
used in this manner, it simultaneously captures the facial surface data and any expression
variations together in the PCA subspace/features. This blend of the discriminative information
with the expression variations becomes a source of error if not addressed at a later stage in
the recognition system. In the work by McCool et al. (2006), the variations of facial PCA
features relative to some other PCA features (differences of feature vectors) are modeled using
Gaussian mixture models (GMMs). The GMMs provide a probabilistic means for computing
a similarity measure between a pair of facial scans (from which a feature vector difference
is formed). In matching a probe to a gallery of scans, a feature vector difference is formed
between the probe and each of the gallery scans. The identity of the probe is deemed to be
that of the gallery scan that produces the feature vector difference with the highest similarity
measure.
In the work by Al-Osaimi et al. (2009), a PCA subspace is constructed from image dif-

ferences between pairs of pose-corrected range images. Each range image difference is the
subtraction of the neutral face from a non-neutral image belonging to the same subject but
the training data includes pairs belonging to many subjects. Before the computation of the
range image difference, the two range images are registered to each other using ICP and on
the basis of only semi-rigid regions of the face (the forehead and the nose). This reduces
the effects of expression deformations on the registration and therefore the accuracy of the
image difference. Since each training pair belongs to the same subjects, the PCA subspace
represents only expression deformations in this case. Projecting an unseen probe difference d
(between a probe image and a gallery scan) on the PCA subspace results in the separation of
the expression deformations from the discriminative information since the projection retains
only the expression deformations. The projected range image difference is then reconstructed
d̂ and subtracted from the original range image difference, e = d − d̂. The vector e, which
represents the discriminative information, is then post processed by thresholding the pixels
with high absolute values and finally a dissimilarity measure is computed from the post pro-
cessed vector. The approach has achieved a much higher recognition accuracy compared with
the approach that models PCA features.

Elasticity-based Modeling of Expressions

In the work by Kakadiaris et al. (2007), a generic model of the 3D face, called the annotated
facial model AFM, Kakadiaris et al. (2005), is elastically deformed/fitted to probe and gallery
facial scans (which may be under facial expression). For matching, the features are extracted
from the fitted models rather than the facial scans. The AFM is basically an average facial
mesh with marked facial regions and a u and v parameterization. AFM tends to have no person
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specific discriminative information and to appear under neutral expression. Before fitting,
the AFM is registered to the 3D facial scan using ICP. Then, external forces are iteratively
applied on the AFM to displace its vertices towards the 3D facial surface. The external forces
are countered by forces proportional to the displacement (elastic force), the acceleration of
displacement (inertial force) and the speed of displacement (damping force). The fitting of
AFM intuitively converges when the elastic forces are in balance with the applied external
forces. It is the elastic fitting that provides the fitted AFM with the discriminative information
but also include some of the expression deformations. Since the AFM looks like a neutral face
and the expression deformations can vary more the discriminative information, the fitting is
likely to mitigate the effects of expression variations.

Exercises

1. For a cropped 3D facial surface under a near fontal pose, the princi-
pal directions are p1 = [−0.3 0.92 0.25219]�, p1 = [0.88159 0.16639 0.44172]�,
[0.36442 0.35484 −0.86098]� and the tip of the nose is located at (10,−15,−35).
A. Find the rigid transformation that pose-corrects the facial surface so its principal direc-
tions become p′

1 = [0 1 0]�, p′
2 = [1 0 0]� and p′

3 = [0 0 − 1]� and the tip of the
nose be at the origin of the reference frame, (0, 0, 0).

B. Explain how quaternions can be used to achieve the same transformation in part A.

2. For a facial range image and using the method of the kernels of Gaussian derivatives to find
surface derivatives:
A. Write a MatLab function that computes the first and second fundamental forms at each
range pixel and on the basis of the fundamental forms computes the Gaussian and the
mean curvatures.

B. For different σ values of the Gaussian function and different sizes of the filtering
kernel, compare estimates of the Gaussian and the mean curvatures of the same image
and suggest appropriate σ value and kernel size.

3. From a publicly available data set of 3D facial scans, randomly pick a set of neutral facial
scans and a set of non-neutral scans for use as probes. As a gallery set, pick one neutral
scan for every individual in either of the two probe sets. Then, compute and compare the
identification rates of the following:
A. When using PCA for the identification of the scans in the neutral probe set.
B. When using PCA for the identification of the scans in the non-neutral facial scans.
C. Crop off the lower part of the facial scans, just below the nose, in both the gallery and
probe sets. Then, use PCA for the identification of the scans in the neutral probe set.

D. When using PCA for the identification of the cropped non-neutral probe set.
E. When using ICP for the identification of the scans in the neutral probe set.
F. When using ICP for the identification of the scans in the non-neutral facial scans.

G. When using ICP for the identification of the cropped neutral probe set.
H. When using ICP for the identification of the cropped non-neutral probe set.

4. Select 10 facial scans of the same subject and under different facial expressions from a
publicly available data set and estimate the repeatability rate of key-point detection of the
principal direction approach.
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3.1 Introduction

There is an increasing interest in analyzing the shapes of facial surfaces withmany applications
including biometrics, facial surgery, video communications, and 3D animation. This interest
is fuelled by the advent of cheaper and lighter scanners that can provide high-resolution
measurements of the geometry and texture of human facial surfaces. One general goal here is
to develop computational tools for analyzing 3D face data, in particular, comparing the shapes
of facial surfaces. Such a tool can be used to recognize human beings according to their facial
shapes, to measure changes in a facial shape due to a surgery, or to study/capture the variations
in facial shapes during conversations and expressions of emotions. Additionally, a subproblem
may be to find an optimal deformation of one surface into another under some chosen criterion.
These deformations can be useful in defining the summary statistics of a collection of faces.
For example, one can compute an average of faces of different people, under different facial
expressions. Efficient tools for understanding and studying variability in facial shapes are of
great importance in our biometric-oriented society.

Major issues in surface analysis: What are the difficulties in performing standard shape
analysis on the face data? The main issue is that there is no canonical coordinate system to
represent and study the geometry of a nonlinear surface such as a face. To highlight this issue,
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contrast the geometry of a surface with that of a curve. The points along a curve have a fixed
ordering that allows us to impose a coordinate system for studying shapes of curves. Although
the parametrization for a curve may not be unique, the task of analyzing the shapes of curves
modulo all possible parametrizations are still tractable. More specifically, the space of all
possible parametrizations of a curve is the set of all one-dimensional diffeomorphisms, and
there exist efficient algorithms (such as the dynamic programming algorithm) for optimally
matching curves over all parametrizations. For surfaces, there is no natural ordering of points
and, hence, no natural way of parametrizing them. Thus, the goal of analyzing shapes of
surfaces, modulo all possible reparametrizations, becomes quite difficult to achieve and leads
to enormous computational challenges.

3.2 Facial Surface Modeling

Let S1 and S2 be two facial surfaces modeled as Riemannian manifolds. The two faces belong
to the same person, but S1 is a neutral face, whereas S2 is an expressive one. Let f : S1 → S2
be a diffeomorphism modeling the expression (see Figure 3.1).

Definition 3.2.1 Diffeomorphism A smooth map f : S1 → S2 that are bijective and whose
inverse f −1 : S2 → S1 is smooth is called diffeomorphism. If there is a diffeomorphism
between them, S1 and S2 are said to be diffeormorphic.

Definition 3.2.2 Isometry If S1 and S2 are surfaces, a diffeomorphism f : S1 → S2 is called
an isometry if it takes curves in S1 to curves of the same length in S2. If an isometry f : S1 → S2
exists, we say that S1 and S2 are isometric.

In Bronstein et al. (2005), the authors assume that facial expressions can be modeled as
isometries of the facial surface. This assumption reduces the problem of comparing faces in the
presence of facial expressions to the problem of isometric surface matching. Indeed, Bronstein
et al. (2005) placed 133 markers on a face and computed the distances between these points
under facial expressions deformations. The distribution of the absolute change of the geodesic

Neutral face Expressive face

f

Figure 3.1 Points correspondence (neutral face at left and expressive face at the right)



3D Face Surface Analysis and Recognition Based on Facial Curves 79

and the Euclidean distances shows that the geodesic distance is more stable than Euclidean
one under facial expression variations.
In other words, this assumption means that f preserves the geodesic distance d between

every pair of points of facial surface, such that

dS1 (x, y) = dS2 ( f (x), f (y)),∀x, y ∈ S1. (3.1)

This assumption is valid in the case of a small expression. The large expression causes some
combinations of shrinking and/or stretching. Under such variations, the geodesic distance is
no more stable. To quantitatively verify this assumption, we placed four markers on a face and
tracked the change of the geodesic and Euclidean distances under large expression variations.
Figure 3.2 shows that a change in expression from neutral to non-neutral generally results

in a shrinking or a stretching of the face shape, and both the Euclidean and geodesic distances
between points on the face are changed.
In one of the illustrated cases, these distances decrease (from 113 to 103 mm for Euclidean

distance and from115 to 106mm for the geodesic distance), whereas in the other two cases they
increase. This clearly shows that large expression variations cause stretching and shrinking of
face shape, and under such elastic deformations, neither the Euclidean distance nor the surface
distance is preserved. Hence, the assumption of isometric deformation of the shape of the face
is not always valid. One way to handle such elastic deformations of faces due to changes in
expressions is to use elastic shape analysis.
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Figure 3.2 Significant changes in both Euclidean and surface distances under different face expressions.
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3.3 Parametric Representation of Curves

In the following sections, we provide a brief introduction to the elementary differential geome-
try of curves terms used in the manuscript. For details, please refer to some standard textbooks
on differential geometry such as Pressley (2001).

Definition 3.3.1 A parametrized curve A parametrized curve in R
3 is a map γ : [a, b] →

R
3, for some a, b with −∞ ≤ a < b ≤ +∞. The symbol [a, b] denotes the open interval
[a, b] = {t ∈ R, a < t < b}.

Definition 3.3.2 Reparametrization A parametrized curve γ̃ : [a, b] → R
3 is a repara-

metrization of a parametrized curve γ : [a, b] → R
3 if there is a smooth bijective map � :

[ã, b̃] → [a, b] (the reparametrization map) such that the inverse map �−1 : [a, b] → [ã, b̃]
also smooth and

γ̃ (t̃) = γ (�(t̃)) for all t̃ ∈ [ã, b̃]. (3.2)

� is also called a diffeomorphism from [ a,b] to itself.

Note that, since � has a smooth inverse, γ̃ is a reparametrization of γ :

γ̃ (�−1(t)) = γ (�(�−1(t))) = γ (t) for all t ∈ [a, b]. (3.3)

Two curves that are reparametrizations of each other have the same image, so they should
have the same geometric properties.

Example 3.3.3 One parametrization of a circle defined by x2 + y2 = 1 is γ =
(cos(t), sin(t)), another parametrization of a circle is γ̃ = (sin t, cos t). To see that γ̃ is a
reparametrization of γ , we have to find a reparametrization map such that

(cos(�(t)), sin(�(t))) = (sin(t), cos(t)).

One solution is �(t) = π/2− t .

In general the analysis of a curve is simplified when it is known to be unit-speed.

Definition 3.3.4 Arc-Length The arc-length of a curve γ starting at the point γ (t0) is the
functions(t) given by

s(t) =
∫ t

t0

‖γ̇ (u)‖ du. (3.4)

Definition 3.3.5 A point γ (t) of a parametrized curve γ is called a regular point if ˙γ (t) 	= 0;
otherwise γ (t) is a singular point of γ . A curve is regular if all of its points are regular.
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Proposition 3.3.6 A parametrized curve has a unit-speed reparametrization if and only if it
is regular.

One can show that the arc-length is the only unit-speed parameter on a regular curve.

3.4 Facial Shape Representation Using Radial Curves

Let βα denotes the radial curve on S, which makes an angle α with a reference radial curve.
The reference curve is chosen to be the vertical curve once the face has been rotated to the
upright position. In practice, each radial curve βα is obtained by slicing the facial surface by a
plane Pα that has the nose tip as its origin and makes an angle, α, with the plane containing the
reference curve, as shown in Figure 3.3; that is, the intersection of Pα with S gives the radial
curve βα . We repeat this step to extract radial curves from the facial surface at equal angular
separation. Each curve is indexed by the angle α. Figure 3.4 shows an example of some radial
curves.
If needed, we can approximately reconstruct S from these radial curves according to

S ≈ ∪αβα = ∪α{S ∩ Pα} as illustrated in Figures 3.4 and 3.5. This indexed collection of
radial curves captures the shape of a facial surface and forms its mathematical representation.
In practice, we used 80 curves.
We have chosen to represent a surface with a collection of curves because we have better

tools for elastically analyzing shapes of curves than we have for surfaces. More specifically,
we are going to utilize an elastic method for studying shapes of curves that is especially suited
for modelling deformations associated with changes in facial expressions.

3.5 Shape Space of Open Curves

In the last few years, many approaches have been developed to analyze shapes of 2D curves.We
can cite approaches based on Fourier descriptors, moments, or the median axis. More recent
works in this area consider a formal definition of shape spaces as a Riemannian manifold of
infinite dimension on which they can use the classic tools for statistical analysis. The recent

Preprocessed face

S
Collection of
radial curves

S ≈  

Nose tip

Figure 3.3 Procedure for extraction of radial curves, a curve βr
α is obtained by slicing the facial surface

by Pα defined by the angle α with the vertical plane and having as origin the nose tip. Copyright C©
2012, IEEE
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Figure 3.4 Radial curves extraction: left image illustrates the intersection between the face surface and
a plan to form two radial curves. The collection of radial curves is illustrated on the right image

results of Michor and Mumford (2006) and Yezzi and Mennucci (2005) show the efficiency
of this approach for 2D curves. Joshi et al. (2007) have recently proposed a generalization of
this work to the case of curves defined in R

n . We will adapt this work to our problem since
our 3D curves are defined in R

3.

3.5.1 Shape Representation

We start by considering a curve β in R
3. Although there are several ways to analyze shapes

of curves, an elastic analysis of the parametrized curves is particularly appropriate in our

Figure 3.5 Radial curves extraction: facial expression
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application – face analysis under facial expression variations. This is because of the following
reasons: (1) Such analysis uses the square-root velocity function representation, which allows
comparison local facial shapes in the presence of elastic deformations. (2) This method uses
a square-root representation under which the elastic metric reduces to the standard L

2 metric
and thus simplifies the analysis (3) Under this metric, the Riemannian distance between
curves is invariant to the reparametrization. To analyze the shape of β, we shall represent it
mathematically using a square-root representation of β as follows: For an interval I = [0, 1],
let β : I −→ R

3 be a curve and define q : I −→ R
3 to be its square-root velocity function

(SRVF), given by

q(t)
.= β̇(t)√

|β̇(t)|
. (3.5)

Here t is a parameter ∈ I and | · | is the Euclidean norm in R
3. We note that q(t) is a

special function that captures the shape of β and is particularly convenient for shape analysis,
as we describe next. The classical elastic metric for comparing shapes of curves becomes the
L
2-metric under the SRVF representation (Srivastava et al., 2011). This point is very important
as it simplifies the calculus of elastic metric to the well-known calculus of functional analysis
under the L

2-metric. Also, the squared L
2-norm of q, given by ‖q‖2 = ∫

I 〈q(t), q(t)〉 dt =∫ ‖β̇(t)‖dt, is the length of β. If we set ‖q‖ = 1, implying all curves are rescaled to unit length,
then translation and scaling variability have been removed by this mathematical representation
of curves.

‖β1 − β2‖ 	= ‖β1 ◦ γ − β2 ◦ γ ‖. (3.6)

Consider the two curves in Figure 3.6a. Let us fix the parametrization of the top curve to
be arc-length, that is, we are going to traverse that curve with speed equal to one. To have
the best matching of the curves, we should know at what rate we must move along the two

21

11 12

21

11 12

(a) (b)

Figure 3.6 Illustration of elastic metric. In order to compare the two curves in (a), some combination
of stretching and bending are needed. The elastic metric measures the amounts of these deformations.
The optimal matching between the two curves is illustrated in (b). Copyright C© 2012, IEEE
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Nose tip

Upper lip

Lower lip

(c) Face with closed 
mouth

(a) Face with open 
mouth (b) Best reparametrization

before matching

Figure 3.7 An example of matching of two radial curves extracted from two faces. (a) A curve on an
open mouth, (c) a curve on closed mouth, (b) change of parametrization before matching. Copyright C©
1969, IEEE

curves so that points reached at the same time on two curves are as close as possible under
some geometric criterion. In other words, peaks and valleys should be reached at the same
time. Figure 3.6b illustrates the matching, where point 1 on the top curve matches point 11 on
the down curve. The part between the point 1 and 2 on the top curve shrinks on the curve 2.
Therefore, the point 2 matches the point 12 on the second curve. An elastic metric is the
measure of that shrinking.
The use of SRV representation allows the reparametrization group to act by isometry on the

manifold of SRV representations. This point is very important as the curve matching could
be done after reparametrization. The change of parametrization before the matching is able to
reduce the effect of stretching and/or stretching of the curve.
This idea is illustrated in Figure 3.7. The task is to match two radial curves on two faces

with two different expressions. The expression in the face at the left induces open mouth in
contrast with the expression in face at the right. As shown in the middle panel, the anatomic
points on the curves (upper and down lips) match together after reparametrizing one curve.
More formally, the elastic matching of the curves allows better matching of anatomical points
on them.

3.5.2 Geometry of Preshape Space

We denote C = {q : I → R
3, ‖q‖ = 1} ⊂ L

2(I, R
3) as the space of all unit-length, elastics

curve. The space C is in fact an infinite-dimensional unit-sphere and represents the preshape
space of all open elastic curves invariant to translation and uniform-scaling.
With the L

2 metric on its tangent spaces, C becomes a Riemannian manifold. In particular,
since the elements of C have a unit L2 norm, C is a hypersphere in the Hilbert space L

2(I, R
3).

To compare the shapes of two radial curves, we can compute the distance between them in C
under the chosen metric. This distance is defined as the length of a geodesic connecting the
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q2

q1

ψ(τ)

Figure 3.8 Illustration of shape space and geodesic between its elements

two points in C. Since C is a sphere, the geodesic length between any two points q1, q2 ∈ C is
given by

dc(q1, q2) = cos−1(〈q1, q2〉), (3.7)

and the geodesic path ψ : [0, 1] → C, is given by

ψ(τ ) = 1

sin(θ )
(sin((1− τ )θ )q1 + sin(θτ )q2),

where θ = dc(q1, q2). Figure 3.8 illustrates the spaceC and geodesic path between two elements
of that space. As illustrated in Figure 3.8, the space of all curves is a sphere in Hilbert space.
Thus, the geodesic on the space of curves is the arc of the great circle connecting the two
curves seen as elements of this sphere.
It is easy to see that several elements of C can represent curves with the same shape. For

example, if we rotate a face in R
3, and thus its facial curves, we get different SRVFs for the

curves but their shapes remain unchanged. Another similar situation arises when a curve is
reparametrized; a reparametrization changes the SRVF of curve but not its shape. In order to
handle this variability, we define orbits of the rotation group SO(3) and the reparametrization
group 
 as equivalence classes in C. Here, 
 is the set of all orientation-preserving diffeomor-
phisms of I (to itself) and the elements of 
 are viewed as reparametrization functions. For
example, for a curve β : I → R

3 and a function γ ∈ 
, the curve β ◦ γ is a reparametrization
of β. The corresponding SRVF changes according to q(t) �→ √

γ̇ (t)q(γ (t)). We define the
equivalent class containing q as

[q] = {
√

γ̇ (t)Oq(γ (t))|O ∈ SO(3), γ ∈ 
}.

The set of such equivalence class is called shape space of open curves in R
3 denoted by

S .= C/(SO(3)× 
). Thanks to SRV representation, the groups 
 × SO(3) act by isometries.
This is a necessary condition to let the quotient space S inherits the Riemannian metric from
the preshape space C. To obtain geodesics and geodesic distances between elements of S, one
needs to solve the optimization problem, which is typically done using dynamic programming.
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3.5.3 Reparametrization Estimation by Using Dynamic Programming

Given two shapes q1 and q2, the idea is to estimate a nonlinear function γ that reparametrizes
q2 so as to match both shapes closely, we want to solve for

γ̂ = argminγ∈


∫ 1

0
‖q1(t)−

√
˙γ (t)q̂2(γ (t)‖2 dt (3.8)


 is the set of all reparametrizations. We can solve a discrete approximation of this problem
using dynamic programming (DP). A necessary condition for applying DP to such problems is
that the cost function is additive in time t. To decompose the problem into several subproblems,
define a partial cost function:

E(s, t ; γ ) =
∫ t

s
‖q1(τ )−

√
˙γ (τ )q̂2(γ (τ )‖2 dτ (3.9)

so the original cost function is simply E(0, 1; γ ). γ is seen as a graph from (0, 0) to (1, 1) in
R
2 such that the slope of this graph is always strictly between 0 and 90 degrees.
Our goal is to find an optimal path from (0, 0) to (1, 1) in R

2, corresponding to (t, γ (t)) that
minimizes the cost function.
To use a numerical approach, the domain [0, 1]× [0, 1] is replaced with a finite grid and

we restrict over search to that grid. The grid Gn × Gn is formed by uniform partition of Gn as
Gn = {1/n, 2/n, . . . , (n − 1)/n, 1}. The search will be done over the set of all restrictions of
γ to this grid. The total cost associated with the path is the sum of the costs associated with
its linear segments. On an n × n grid, there are only a finite number of paths, even less when
we impose the slope constraint. Actually the path is never vertical or horizontal. However, this
number of paths grows exponentially with n and we can not possibly search over all possible
paths in an exhaustive fashion. Instead, the DP finds the optimal path in O(n2) time.
Denote a point on the grid (i/n, j/n) by (i, j). Certain nodes are not allowed to go to (i, j)

because of the slope constraint. Denote by Ni j the set of nodes that are allowed to go to (i, j).
For instance N (i, j) = {(k, l)/0 ≤ k < i ; l < j ≤ n} is a valid set. Let L(k, l; i, j) denote a
straight line joining the nodes (k, l) and (i, j); for (k, l) ∈ Ni j this is a line with slope strictly
between 0 and 90 degrees. This sets up the iterative optimization problem:

(k̂, l̂) = argmin(k,l)∈Ni j E(k/n, l/n; L(k, l; i, j)), (3.10)

with E as defined in Equation 3.9. Define the minimum energy of reaching the point (i, j), in
an iterative fashion as

H (i, j) = E(k̂/n, l̂/n; L(k̂, l̂; i, j))+ Ĥ (k̂, l̂), with H (0, 0) = 0. (3.11)

This subproblem is solved sequentially for each node (i, j), starting from (1, 1) and increas-
ing i, j till one reaches the node (n, n). Tracing the path that results in the energy H (n, n)
provides a discrete version of the optimal γ .
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Algorithm 1 Dynamic programming algorithm for optimal reparametrization estimation

Input: Discrete version of q1 and q2, Ni j : set of nodes that are allowed to go to (i, j)
Output: Discrete version of γ

E n by n matrix initialized by zeros;
for i ← 1 to n do

E(1,i)=1;
end
for i ← 1 to n do

E(i,1)=1;
end
E(1,1)=0;
for i ← 2 to n do

for j ← 2 to n do
for Num ← 1 to length(Ni j ) do

k = i - Nbrs(Num,1);
l = j - Nbrs(Num,2);
if ((l > 0)&(k > 0)) then

Hc(Num) = H (k, l)+ FunctionE(q1, q2,
k
n , i

n , l
n ,

j
n );

else
Hc(Num) = C ;

end
H (i, j) = min(Hc)

end
end

end

Algorithm 1 summarizes the dynamic pogramming algorithm for optimal reparametrization
estimation. In this algorithm, C is a large positive number, function E is a subroutine that
computes E(k̂/n, l̂/n; L(k̂, l̂; i, j)), and Nbrs is a list of sites used to define Ni j . In practice,
one often restricts to a smaller subset to seek a computational step sped up. The next effect
is that the number of possible values for the slope along the path are further restricted (see
Figure 3.9).
An example of this idea is shown in Figures 3.10 and 3.11. The optimal matching using

dynamic programming for the two curves corresponding to the open and the closed mouth is
illustrated in Figure 3.11b and it highlights the elastic nature of this framework. For the left
curve, the mouth is open and for the right curve, it is closed. Still the feature points (upper and
bottom lips) match each other well. Figure 3.11d shows the geodesic path between the two
curves in the shape space S and this evolution looks very natural under the elastic matching.
The middle panel in the top row shows the optimal matching for the two curves obtained

using the dynamic programming, and this highlights the elastic nature of this framework. For
the left curve, the mouth is open and for the right curve, it is closed. Still the feature points
(upper and bottom lips) match each other very well. The bottom row shows the geodesic
path between the two curves in the shape space S and this evolution looks very natural
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(0,0) (0,0)

(0,j)
(i,j)

(1,0)

Figure 3.9 Right: an illustration of some nodes that are allowed to go to (i/n, j/n) point on the graph.
Left: an example of a φ1 function restricted to a finite graph

under the elastic matching. Since we have geodesic paths denoting optimal deformations
between individual curves, we can combine these deformations to obtain full deformations
between faces.

3.5.4 Extension to Facial Surfaces Shape Analysis

Now we extend the framework from radial curves to full facial surfaces. As mentioned earlier,
we are going to represent a face surface S with an indexed collection of radial curves. That
is, S ↔ {βα, α ∈ [0, α0]}. Through this relation, each facial surface has been represented as
an element of the set S [0,α0]. The indexing provides a correspondence between curves across
faces. For example, a curve at an angle α on the probe face is matched with the curve at the
same angle on the gallery face. Figure 3.12 illustrates an example of this correspondence. With
this correspondence, we can compute pairwise geodesic paths and geodesic distances between
the matched curves across faces. This computation has several interesting properties. Firstly,

Figure 3.10 Examples of matching result of matching using dynamic programming
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Nose tip

Upper lip

Lower lip

(c) Face with closed 
mouth

(a) Face with open 
mouth (b) Radial curves matching

(d) Geodesic between curves

Figure 3.11 Examples of shape matching and geodesic deforming radial curves extracted from two
faces: (a) a curve on an open mouth, (b) a result of matching using dynamic programming, (c) a curve
on closed mouth, and (d) a geodesic path between curves (a) and (c)

it provides a Riemannian distance between shapes of facial surfaces by combining distances
between the corresponding radial curves. The distance between two facial surfaces is given by

d : S [0,α0] × S [0,α0] → R≥0, d(S1, S2) = 1

α0

α0∑
α=1

ds
([

q1α
]
,
[
q2α

])
.

Here, qi
α denotes the SRVF of the radial curve β i

α on the i th, i = 1, 2 facial surface, and ds

is the geodesic distance between the curves represented by qi
α .

Reference radial curves

1
1 cS αα

= 2
2 cS αα

=∪ ∪

Figure 3.12 Faces comparison by pairwise curves comparisons
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Examples of interclass geodesics

Examples of intraclass geodesics

Figure 3.13 Examples of intra- and inter-class geodesics in the shape space. Copyright C© 1969, IEEE

Secondly, since we have geodesic paths denoting optimal deformations between individual
curves, we can combine these deformations to obtain full deformations between faces. In
fact, these full deformations are geodesic paths between faces when represented as elements
of S [0,α0]. Shown in Figure 3.13 are examples of such geodesic paths between source and
target faces. The three top rows illustrate paths between different subjects called interclass
geodesics, whereas the remaining rows illustrate paths between the same person under different
expressions called intraclass geodesics.

3.6 The Dense Scalar Field (DSF)

With the proposed representation, a facial surface is approximated by an indexed collection
of radial curves βα , where the index α denotes the angle formed by the curve with respect to
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Figure 3.14 The figure illustrates: (a) the extracted radial curves; (b)-(c) A radial curve on a neutral
face, and the correspondent radial curve on the same face with happy expression, respectively; (d) the
two radial curves are plotted together; (e) the values of the magnitude of dψ

∗
dτ |τ=0(k) computed between

the curves in (d) are reported for each point k of the curves; (f) the parallel vector field across the geodesic
between q1 and q2 in the space of curves C

a reference radial curve. In particular, the reference radial curve (i.e., the curve with α = 0) is
chosen as oriented along the vertical axis, whereas the other radial curves are separated each
other by a fixed angle and are ordered in a clockwise manner. As an example, Figure 3.14a
shows the radial curves extracted for a sample face with happy expression. To extract the
radial curves, the nose tip is accurately detected, and each face scan is rotated to the upright
position so as to establish a direct correspondence between radial curves that have the same
index in different facial scans (the preprocessing steps, including nose tip detection and pose
normalization are discussed in more detail in Sect. 5.5.1). In Figure 3.14b,c, two radial curves
at α = 90◦ in the neutral and happy scans of a same subject are shown. As shown in the plot
Figure 3.14d, facial expressions can induce consistent variations in the shape of corresponding
curves. These variations are not the same in strength from expression to expression and for
different parts of the face. To effectively capture these variations, a dense scalar field is
proposed, which relies on a Riemannian analysis of facial shapes.
Each radial curve is represented on the manifold C by its SRVF. According to this, given

the SRVFs q1 and q2 of two radial curves, the geodesic path ψ∗ on the manifold C between q1
and q2 is a critical point of the following energy function:

E(ψ) = 1

2

∫
< ψ̇(τ ), ψ̇(τ ) > dτ , (3.12)
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where ψ denotes a path on the manifold C between q1 and q2, ψ̇ ∈ Tψ (C) is the tangent vector
field on the curve ψ ∈ C, and < . > denotes the L

2 inner product on the tangent space.
Because elements of C have an unit L

2 norm, C is a hypersphere in the Hilbert space
L
2(I, R

3). As a consequence, the geodesic path between any two points q1, q2 ∈ C is simply
given by theminor arc of the great circle connecting themon this hypersphere,ψ∗ : [0, 1] → C.
This is given by the following expression:

ψ∗(τ ) = 1

sin(θ )
(sin((1− τ )θ )q1 + sin(θτ )q2), (3.13)

where θ = dC(q1, q2) = cos−1(〈q1, q2〉). We point out that sin(θ ) = 0, if the distance between
the two curves is zero, in other words q1 = q2. In this case, for each τ , ψ∗(τ ) = q1 = q2. The
tangent vector field on this geodesic is then written as dψ

∗
dτ : [0, 1] → Tψ (C), and is obtained

by the following equation:

dψ∗

dτ
= − θ

sin(θ )
(cos((1− τ )θ )q1 − cos(θτ )q2). (3.14)

Knowing that on geodesic path, the covariant derivative of its tangent vector field is equal
to 0, dψ

∗
dτ is parallel along the geodesic ψ∗, and it can be represented with dψ

∗
dτ |τ=0 without any

loss of information. Accordingly, Equation 3.14 becomes

dψ∗

dτ
|τ=0 = θ

sin(θ )
(q2 − cos(θ )q1) (θ 	= 0). (3.15)

A graphical interpretation of this mathematical representation is shown in Figure 3.14. In
Figure 3.14a, we show a sample face with the happy expression and all the extracted radial
curves. In Figures 3.14b and 3.14c two corresponding radial curves (i.e., radial curves at the
same angle α), respectively, on neutral and happy faces of the same person are highlighted.
These curves are reported together in Figure 3.14d, where the amount of the deformation
between them can be appreciated, although the two curves lie at the same angle α and belong
to the same person. The amount of deformation between the two curves is calculated using
Equation 3.15, and the plot of the magnitude of this vector at each point of the curve is reported
in Figure 3.14e (i.e., 50 points are used to sample each of the two radial curves and reported
in x axis, the magnitude of DSF is reported in y axis).
Finally, Figure 3.14f illustrates the idea to map the two radial curves on the hypersphere C

in the Hilbert space through their SRVFs q1 and q2 and shows the geodesic path connecting
these two points on the hypersphere. The tangent vectors of this geodesic path represent a
vector field whose covariant derivative is zero. According to this, dψ

∗
dτ |τ=0 becomes sufficient

to represent this vector field, with the remaining vectors generatable by parallel transport of
dψ∗
dτ |τ=0 along the geodesic ψ∗.
On the basis of the preceding representation, we define a DSF capable of capturing defor-

mations between two corresponding radial curves β1α and β2α of two faces approximated by a
collection of radial curves.
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Definition 3.6.1 Dense Scalar Field (DSF) Let xα(t) = || dψ∗
α

dτ |τ=0(t)||, which corresponds to
the values of the magnitude computed between the curves qα

1 and qα
2 for each point t of the

curves. Let T be the number of sampled points per curve and |�| be the number of curves
used per face. So, we define the function f by:

f : C × C −→ (R+)T ,

f
(
qα
1 , qα

2

) = (
x1α, . . . , xk

α, . . . , xT
α

)
.

Assuming that {β1α|α ∈ �} and {β2α|α ∈ �} be the collections of radial curves associated with
the two faces F1 and F2 and let {q1α and {q2α be their SRVFS, the DSF vector is defined by:

DSF(F1, F2) = (
f
(
q01 , q02

)
, . . . , f

(
qα
1 , qα

2

)
, . . . , f

(
q |�|
1 , q |�|

2

))
. (3.16)

The dimension of the vector DSF vector is |�| × T .

Algorithm 2 summarizes the proposed approach.

Algorithm 2 Computation of the dense scalar field

Input: Facial surfaces F1 and F2; T : number of points on a curve; α0: angle between
successive radial curves; |�|: number of curves per face.

Output: DSF(F1, F2): the Dense Scalar Field between the two faces.

α = 0;
while α < |�| do

for i ← 1 to 2 do
Extract the curve β i

α;

Compute corresponding square-root velocity function qi
α(t)

.= β̇ i
α (t)√

‖β̇ i
α(t)‖

∈ C;
t = 1, 2 . . . T .

end
Compute θ the distance between q1α and q2α as: θ = dC(q1α, q2α) = cos−1(〈q1αq2α〉)
Compute the deformation vector dψ

∗
dτ |τ=0 using Equation 3.15 as:

f
(
qα
1 , qα

2

) = (xα(1), xα(2), . . . , xα(T )) ∈T
+;

xα(t) =
∣∣∣∣ θ

sin(θ )

(
q2α − cos(θ )q1α

)∣∣∣∣ , t = 1, 2 . . . T ;

end
Compute the local deformation DSF(F1, F2) as the magnitude of

dψ∗
dτ |τ=0(k);

DSF(F1, F2) = ( f (q01 , q02 ), . . . , f (qα
1 , qα

2 ), . . . , f (q |�|
1 , q |�|

2 ))
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Happy Angry Surprise Sad FearNeutral Disgust

High
deformations

Low
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F
004

Figure 3.15 Deformation maps computed between the neutral face of a sample subject and the apex
frame of the six prototypical expressions sequences of the same subject

In Figure 3.15, an example of the deformation field computed on the 3D frames of a sample
subject is reported. In particular, a neutral mesh is reported on the left, and the vector field
is computed between the 3D neutral face and the 3D apex frames of each expression of the
same subject. The values of the vector field needed to be applied on the neutral face to convey
the six different universal expressions reported using a color scale. In particular, colors from
green to black represent the highest deformations, whereas blue represents the lower values of
the vector field. It can be observed, as the regions with high deformation lie in different parts
of the face for different expressions. For example, as intuitively expected, the corners of the
mouth and the cheeks are strongly deformed for happiness expression, whereas the eyebrows
are strongly deformed for the angry expression.

3.7 Statistical Shape Analysis

As mentioned earlier, an important advantage of our Riemannian approach over many past
papers is its ability to compute summary statistics of a set of faces.

3.7.1 Statistics on Manifolds: Karcher Mean

What are the challenges in applying classical statistics if the underlying domain is nonlinear?
Take the case of the simplest statistic, the sample mean, for a sample set {x1, x2, . . . , xk} onR

n:

x̄k = 1

k

k∑
i=1

xi , xi ∈ R
n (3.17)

Now what if underlying space is not R
n but nonlinear manifold? In this situation, the

summation in Equation 3.17 is not valid operation, and the equation is not useful. So, how do
we define the sample mean in this case?
For example, one can use the notion of Karcher mean (Karcher, 1977) to define an average

face that can serve as a representative face of a group of faces.
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We recall that S .= C/(SO(3)× 
) is the shape space of open curves in R
3. As described

in Section 3.5.4, the distance between two facial surfaces is given by

ds : S [0,α0] × S [0,α0] → R≥0

ds(S
1, S2) = 1

α0

α0∑
α=1

ds
([

q1α
]
,
[
q2α

])
.

Here, qi
α denotes the SRVF of the radial curve β i

α on the i th, i = 1, 2 facial surface.
To calculate the Karcher mean of facial surfaces {S1, . . . , Sn} in S [0,α0], we define the

variance function as

V : S [0,α0] → R,V(S) =
n∑

i=1
ds(S, Si )2. (3.18)

The Karcher mean is then defined by

S = arg min
μ∈S [0,α0]

V(μ). (3.19)

To calculate a Karcher mean of facial surfaces {S1, . . . , Sn} in Sn , we define an objec-
tive function: V : Sn → R,V(S) = ∑k

i=1 dS(S, Si )2. The Karcher mean is then defined by
S = argminS∈Sn V(S). This minimizer may not be unique and, in practice, any one of those
solutions may be picked as the mean face. This mean has a nice geometrical interpretation:
S is an element of Sn that has the smallest total (squared) deformation from all given facial
surfaces {S1, . . . , Sn}.
We present a commonly used algorithm for finding Karcher mean for a given set of facial

surfaces. This approach, presented in Algorithm 1, uses the gradient of V to iteratively update
the current mean μ. An iterative algorithm for computing the sample Karcher mean is defined
by Algorithm 3.

Algorithm 3 Karcher mean algorithm

Gradient search
Set k = 0. Choose some time increment ε ≤ 1

n . Choose a point μ0 ∈ S [0,α0] as an initial
guess of the mean. (For example, one could just take μ0 = S1.)
1. For each i = 1, . . . , n choose the tangent vector fi ∈ Tμk (S [0,α0]), which is tangent to
the geodesic from μk to Si . The vector g = ∑i=n

i=1 fi is proportional to the gradient at μk

of the function V .
2. Flow for time ε along the geodesic that starts at μk and has velocity vector g. Call the
point where you end up μk+1.
3. Set k = k + 1 and go to step 1.

Since this is a gradient approach, it only ensures a localminimizer of the variance functionV .
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Figure 3.16 An example of Karcher mean of faces, the face at the right is the karcher mean of the eight
faces in the left. Copyright C© 1969, IEEE

An example of a Karcher mean face for eight faces belonging to different people is shown in
Figure 3.16. This figure illustrates themean face of faces belonging to different persons. Several
examples of using the Karcher mean to compute average noses are shown in Figure 3.17.

3.7.2 Learning Statistical Models in Shape Space

We have a way of estimating the Karcher mean of a sample set on a nonlinear manifold. What
about principal component analysis? The core of this problem, in our representation of facial
surfaces by curves, is to take a partial facial curve and predict its completion. The sources of

Figure 3.17 Examples of nasal shapes and their means. Copyright C© 2009, IEEE
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Figure 3.18 Radial curves collections for training step

information available for this prediction are (1) the current (partially observed) curve and (2)
several (complete) training curves at the same angle that are extracted from full faces. The
basic idea is to develop a sparse model for the curve from the training curves and use that
to complete the observed curve. To keep the model simple, we use the PCA of the training
data (in an appropriate vector space) to form an orthogonal basis representing training shapes.
Then, this basis is used to estimate coefficients of the observed curve, and the coefficients help
us to reconstruct the full curve. Because the shape space of curve S is a nonlinear space, we
use the tangent space Tμ(S), where μ is the mean of the training shapes, to perform PCA.
Some examples of curves used during training step are shown in Figure 3.18.
Let α denote the angular index of the observed curve, and let q1α, q2α, . . . , qk

α be the SRVFs
of the curves taken from training faces at that angle. As described earlier, we can compute the
sample Karcher mean of their shapes {[qi

α] ∈ S}, denoted by μα . Then, using the geometry of
S we can map these training shapes in the tangent space using the inverse exponential map,
that is, obtain vi,α = exp−1

μα
(qi

α), where

exp−1
q1 (q2) = θ

sin(θ )
(q∗
2 − cos(θ )q1), θ = cos−1(〈q1, q∗

2 〉),

and where q∗
2 is the optimal rotation and reparametrization of q2 to be aligned with q1, as

discussed earlier. A PCA of the tangent vectors {vi } leads to the principal basis vectors u1,α ,
u2,α, . . . , u J,α , where J represents the number of significant basis elements.
Figure 3.19 illustrates a mapping of elements of the shape space onto the tangent space on

the mean shape μ.
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Tμ(S) v = expμ
–1(qi)

μ

qi

Figure 3.19 Illustration of mapping shapes onto the tangent space of μ, Tμ(S)

We summarize the calculation of eigencurves in Algorithm 4.

Algorithm 4 Eigencurves computation

Input: Training faces (without missing data) G = {yi } 1≤i≤NG

Output: B = {vk j } : eigenvectors
K : number of curves in each face;
for k ← 1 to K do

μk = intrinsic mean of SRVF(yki ) (Karcher mean).
for i ← 1 to NG do

βki = exp−1
μk
(SRVF(yki ))

end
Sk = ∑NG

i=1 βki β
T
ki{

vk j

}
= eigenvectors of Sk

end

3.8 Applications of Statistical Shape Analysis

3.8.1 3D Face Restoration

Now returning to the problem of completing a partially occluded curve, let us assume that it
is observed for parameter value t in [0, τ ] ⊂ [0, 1]. In other words, the SRVF of this curve
q(t) is known for t ∈ [0, τ ] and unknown for t > τ . Then, we can estimate the coefficients of
q under the chosen basis according to c j,α = 〈q, u j,α〉 ≈ ∫ τ

0 〈q(t), u j,α(t)〉dt , and estimate the
SRVF of the full curve according to

q̂α(t) =
J∑

j=1
c j,αu j,α(t) , t ∈ [0, 1].
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In our case, the exponential mapping exp maps a vector v ∈ Tμ(S) to a point of S. In other
words, to reach the point expμ(v), one starts at μ, and then moves for time 1 along the unique
constant speed geodesic whose velocity vector at q is v . The inverse of an exponential map
takes a point qi on the manifold S and maps it to an element (or multiple elements) of the
tangent space Tμ(S). A vector v is said to be the inverse exponential map of a point qi ∈ S, at
the point μ ∈ S, if expμ(v) = qi . It is denoted by v = exp−1

μ (qi ).
As a result, the exponential map, exp : Tμ(S) → S, has also a simple expression. Let v be

a vector v ∈ T μ(S), the exponential mapping of v gives an element of the manifold S as:

expμ(v) = cos(‖v‖)μ + sin(‖v‖) v

‖v‖ ,

The exponential map is a bijection if we restrict ‖v‖ so that ‖v‖ ∈ [0, π ). For a point qi ∈ S,
such that (qi 	= μ), the inverse exponential map v = exp−1

μ (qi ) projects qi on the tangent space
of μ as u:

u = θ

sin(θ )
(qi − cos(θ )μ),

where θ = cos−1(< μ, q >). The result of this projection is elements on the tangent space
{v1, v2, . . . , vN }. It is possible to perform traditional operations and work as in an Euclidean
space using the projected elements. We summarize this procedure in Algorithm 5.

Algorithm 5 Projection of facial curves on eigencurves space

Input: P: face without missing data, eigenvectors Bk j , k = 1 . . . K
Output: P restored

K : number of curves in each face;
for k ← 1 to K do

qk = SRVF(ck);
vk = exp−1

μk
(qk);

qk = expμk
(
∑NBk

j=1〈ckvk j 〉vk j );
ck = SRVF(qk);

end

Figure 3.20 illustrates the restoration of three different curves. As illustrated respectively in
Figure 3.20a–c, the restoration of curve generates the same curve. This validates our model,
which represents curves in a new basis while keeping 90% of the information. The same idea
is followed to recover 3D faces: Curves of different index are restored. The collection of the
restored curves represents the 3D face. Notice that the number of eigenvectors differs from one
level to another. Figure 3.21 illustrates the face projection. The first row illustrates the original
face (to the left) and the restored one (to the right). In the second row, we see in the middle
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Figure 3.20 Restoration of curves of different index

the original and restored face together. The left and right images illustrate, respectively, the
signed and absolute deviation between the original and the restored face. The average absolute
deviation is 0.21 mm with 0.28 mm as standard deviation. These observations demonstrate on
the closeness of the restored face to the original one. Therefore, we propose next to restore
curves with missing data and keep complete ones.
In order to evaluate the face recovery procedure, we compare the restored facial surface

(shown in the top row of Figure 3.22) with the complete neutral face of that class, as shown in
Figure 3.22. Small values of both absolute deviation and signed deviation between the restored
face and the corresponding face in the gallery demonstrate the success of the restoration
process.

Original face 
Retord face 

Average distance = 0.02 mm
Standard deviation = 0.35 mm

(a) signed deviation (b) absolute deviation

Average distance = 0.21 mm
Standard deviation = 0.28 mm

2.00000 0.00000 0.40000 0.80000 1.20000 1.60000 2.000000.80000

average average
Total distribution:

100.00000%
Total distribution:

100.00000%

0.00000-1.20000-2.00000

Figure 3.21 Restoration of full face: the absolute and signed deviations
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Figure 3.22 Illustration of a face with missing data (after occlusion removal) and its restoration. The
deviation between the restored face and the corresponding neutral face is also illustrated. Copyright C©
1969, IEEE

Algorithm 6 Curves restoration

Input: P: face with missing data, eigenvectors Bk j , k = 1 . . . K
Output: P restored

K : number of curves in each face; n: number of points in a complete curve.
for k ← 1 to K do

if quality(ck = 0) then
for i ← 1 to n do

flagk[i] = 1;
if i corresponds to missing part then

flag[i] = 0;
end

end
qk = SRVF(ck);
vk = exp−1

μk
(qk); if flag[i] = 1

qk = expμk
(
∑NBk

j=1〈ckvk j 〉vk j ); if flag[i] = 1
end

end

3.8.2 Hierarchical Organization of Facial Shapes

One of the main goals for studying shapes of the nose/face region is to conduct biometric
identification where query is often compared to a set of gallery shapes. This comparison
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can be made more efficient if we organize the gallery elements in the form of a hierarchical
database, that is, a tree, where the comparisons are performed only at the nodes. To construct
such a shape tree, we need to be able to cluster similar shapes, and that is the problem we
study next.
Let S [0,α0] denotes the set of facial shapes. Consider the problem of clustering n shapes

(in S [0,α0]) into k clusters. A general approach is to form clusters in such a way that they
minimize total “within-cluster” variance. Let a configuration C consists of clusters denoted by
C1, C2, . . . , Ck , and let μi s be the mean shapes in Ci s and ni s be the sizes of Ci s. There are
several cost functions used for clustering, for example, the sum of traces of covariances within
clusters. However, the computation of means μi s of large shape clusters, and therefore their
variances, is computationally expensive, especially when they are updated at every iteration.
As a solution, a variation called pairwise clustering is used. (Hofmann and Buhmann, 1997),
where the variance of a cluster is replaced by a scaled sum of distances (squared) between its
elements as follows:

Q(C) =
k∑

i=1

2

ni

⎛
⎝ ∑

Sa∈Ci

∑
b<a,θb∈Ci

ds(S
a, Sb)2

⎞
⎠ . (3.20)

We seek configurations that minimize Q, i.e., C∗ = argmin Q(C). Notice that the metric
used is the arithmetic mean da . We will minimize the clustering cost using a Markov chain
search process on the configuration space. The basic idea is to start with a configuration of
k clusters and to reduce Q by rearranging shapes amongst the clusters. The rearrangement
is performed in a stochastic fashion using two kinds of moves. These moves are performed
with probability proportional to the negative exponential of the Q-value of the resulting
configuration. The two types of moves are as follows: (1) Move a shape: Here we select
a shape randomly and reassign it to another cluster. Let Q(i)

j be the clustering cost when a
shape θ j is reassigned to the cluster Ci keeping all other clusters fixed. If θ j is not a singleton,
that is, not the only element in its cluster, then the transfer of θ j to cluster Ci is performed

with probability: PM ( j, i ; T ) = exp(−Q(i)
j /T )∑k

i=1 exp(−Q(i)
j /T )

i = 1, 2, . . . , k. Here T plays a role similar to

temperature in simulated annealing. If θ j is a singleton, then moving it is not allowed in order
to fix the number of clusters at k. (2). Swap two shapes: Here we select two shapes randomly
from two different clusters and swap them. Let Q(1) and Q(2) be the Q-values of the original
configuration (before swapping) and the new configuration (after swapping), respectively.
Then, swapping is performed with probability: PS(T ) = exp(−Q(2)/T )∑2

i=1 exp(−Q(i)/T )
.

To seek global optimization, we have adopted a simulated annealing approach. Although
simulated annealing and the random nature of the search help in avoiding local minima, the
convergence to a global minimum is difficult to establish. Algorithm 7 illustrates the steps of
the clustering algorithm.
It is important to note that once the pairwise distances are computed, they are not com-

puted again in the iterations. Secondly, unlike k-mean clustering, the mean shapes are never
calculated in this clustering. The algorithms for computing Karcher mean and clustering
can be applied repeatedly for organizing a large database of human faces into a hierarchy
that allows efficient searches during biometrics. Among the 466 faces used as gallery in the
FRGCv2 experimentation, we propose to organize the 410 faces that have corresponding face
in the probe.
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Algorithm 7 Statistical shape clustering

For n shapes and k clusters, initialize by randomly distributing n shapes among k clusters.
Set a high initial temperature T .
1. Compute pairwise geodesic distances between all n shapes. This requires n(n − 1)/2
geodesic computations.
2. With equal probabilities pick one of the two moves:

� Move a shape: Pick a shape θ j randomly. If it is not a singleton in its cluster,
then compute Q(i)

j for all i = 1, 2, . . . , k. Compute the probability PM ( j, i ; T ) for all
i = 1, . . . , k and re-assign θ j to a cluster chosen according to the probability PM .

� Swap two shapes: Select two clusters randomly, and select a shape from each. Compute
the probability PS(T ) and swap the two shapes according to that probability.

3. Update the temperature using T = T/β and return to Step 2.We have used β = 1.0001.

Figure 3.23 shows a hierarchical organization of these shapes all the way up to the top. At
the bottom level (level D in the figure), these 410 are gathered into 29 clusters. Computing
the means of each of these clusters, we obtain faces that are to be clustered at the next level
(level C in the Figure 3.23). Repeating the clustering on the mean faces at level C, we obtain
the next level (level B) containing 3 mean faces representing the clusters of the previous level.
In level A, we just calculate the mean of the three mean faces in level B. This face represents
the coarsest face along the tree.
If we follow a path from top to bottom of the tree, we can see the shapes getting more

detailed structurally and leading up to individual faces, as illustrated in Figure 3.24.
Another example, we start with approximately 500 nose scans corresponding to 50 distinct

subjects. These noses form the bottom layer of the hierarchy, called level E in Figure 3.25.
Then, we compute Karcher mean shapes for each person to obtain shapes at level D. These
shapes are further clustered together and a Karcher mean is computed for each cluster. These
mean shapes form the level C of the hierarchy. Repeating this idea a few times, we reach the
top of the tree. If we follow a path from top to bottom of the tree, we can see the shapes getting
more detailed structurally and leading up to individual faces, as illustrated in Figure 3.26.

3.9 The Iso-geodesic Stripes

Onemain difficulty in extracting facial curves from the surface of 3D face scans is related to the
presence of noise. In fact, in addition to the intrinsic noise components as a result of acquisition
devices and surface characteristics that can be smoothed through some preprocessing, other
sources of noise can contribute to alter the extraction of facial curves from the acquired
data. For example, in the approach proposed by Samir et al. (2006), the iso-depth curves
extracted from the face are greatly influenced by the misalignment of 3D scans with respect
to a common 3D cartesian reference system, whereas in Samir et al. (2009) the iso-geodesic
curves are sensitive to the noise in computing the geodesic distances between points of the
surface and a reference point of the face. As a consequence, the shape of these facial curves
can be largely influenced by the noise, and the effect of these variations can be amplified by



104 3D Face Modeling, Analysis and Recognition

B
1

A

1

2 3

C

Q1

Path to retrieve Q1 in the tree

D

Figure 3.23 The result of hierarchical organization of gallery faces from FRGCv2 data set and an
example of path parsed by a query across the tree

BA C D Shape resolution

Figure 3.24 Path from top to bottom in the tree show increasing shape resolution
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Figure 3.25 The tree resulting on hierarchical clustering. Copyright C© 2009, IEEE

Figure 3.26 Paths from top to buttom in the tree show increasing shape resolutions. Copyright C©
2009, IEEE
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the fact that the shape of facial curves is used to match each other to compute the similarity
between faces.
A possible way to smooth the effect of the noise without losing the effectiveness of rep-

resentations based on facial curves is to consider aggregations of facial curves instead of
individual ones. In practice, this corresponds to extend facial curves to facial surfaces. In
fact, the use of extended surfaces of the face should permit the punctual influence of noisy
data to be reduced, thus making the representation extracted from the facial surfaces more
descriptive and reliable. Following this intuition, the approaches in Samir et al. (2006) and
Samir et al. (2009) can be extended to the case of iso-depth surfaces and iso-geodesic surfaces,
respectively. In particular, the idea to describe the face using iso-geodesic surfaces has been
originally proposed in Berretti et al. (2006), and then developed in Berretti et al. (2010), and
Berretti et al. (2012).
In the approach of Berretti et al. (2010), the structural information of a face scan is captured

through the 3D shape and relative arrangement of iso-geodesic stripes identified on the 3D
surface. Iso-geodesic stripes are defined by computing, for every surface point, the normalized
geodesic distance between the point and a reference point located at the nose tip of the face.
Normalized values of the geodesic distance are obtained dividing the geodesic distance by the
Euclidean eye-to-nose distance, that is the sum of the distances between the nose tip and the
two points located at the inner commissure of the left and right eye fissure, and the distance
between the two points at the inner eyes. The algorithm reported inMian et al. (2007) is used for
the identification of the nose tip and of the two inner eye points. This normalization guarantees
invariance of the distance values with respect to scaling of the face scan. Furthermore, since
the Euclidean eye-to-nose distance is invariant to face expressions, this normalization factor
does not bias values of the distance under expression changes.
The fact that geodesic and Euclidean distances of the face are capable to characterize

individual morphological traits of the face is strongly supported by studies of face anthropom-
etry conducted by Farkas (Farkas, 1994). These studies have evidenced that relevant facial
information is conveyed by measuring the Euclidean and geodesic distances, and the angles
between 47 fiducial points. Figure 3.27a,b, illustrate some of the fiducial points and facial
measurements.

tr tr

sci

v-tr

en-ex
ch-t

ear inclination

mentocervical angle

n

al
tenex

sn
chgo

gn

v

or

sa

t

sbachsto

gn

prn

(b)(a)

Figure 3.27 (a) Some of the fiducial points proposed by Farkas: alare (al); cheilion (ch); endocanthion
(en); exocanthion (ex); gnathion (gn); nasion (n); orbitale (or); pronasale (prn); subnasale (sn); tragion
(t); trichion (tr); vertex (v). (b) Some facial measurements (Farkas, 1994): geodesic distance (ch-t);
Euclidean distances (v-tr and en-ex); angular measures (mentocervical angle and ear inclination)
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Stability of facial fiducial points and measurements under changes following facial expres-
sions is a fundamental issue for recognition. It has been demonstrated that geodesic distances
are almost preserved under many expressions (Bronstein et al., 2005). Experimental evidence
of this fact has been reported in Mpiperis et al. (2006), where the maximum change of 5% is
measured for the geodesic distances computed between the nose and the cheek of the same
subject under different expressions. Similar results are reported in Bronstein et al. (2007),
where the average standard deviation of the absolute distance error due to facial expressions
was measured in 5.89 mm and 12.03 mm, respectively, for the geodesic and Euclidean dis-
tance. Moreover, the pronasale (i.e., the nose tip) and the left and right endocanthion (i.e., the
points at the inner commissure of the left and right eye fissure) have been verified to be stable
with respect to face variations (Bronstein et al., 2005; Chang et al., 2005).

3.9.1 Extraction of Facial Stripes

In the proposed approach, computation of the geodesic distance on the piecewise planar mesh
is accomplished through the Dijkstra’s algorithm (Cormen et al., 2001), and approximates the
actual geodesic distance between two surface points with the length of the shortest piecewise
linear path on mesh edges. In particular, considering a mesh as a graph G = (V, E) with
the edge weights w(e), w(e) > 0, for each edge e ∈ E , the Dijkstra’s algorithm solves the
problem to find the shortest path from a source vertex vs ∈ V to a target vertex vt ∈ V . In
our specific case, the weight w(ei j ) of an edge ei j = (vi , v j ) connecting vertices vi and v j ,
is given by the linear length of the edge itself, that is, w(ei j ) = |vi − v j |. It is worth noting
that the computation of geodesic distances on the mesh can be affected by the regularity of
the mesh. In fact, since the Djikstra’s algorithm approximates the actual geodesic distances
through edge lengths, a nontriangular mesh (i.e., a mesh composed of general polygons) or
a nonregular mesh (i.e., a mesh composed of triangles of different sizes) makes the estimate
less accurate. So, a mesh should be preprocessed to triangularize and regularize its polygons,
thus making sufficiently accurate the computation of the geodesic distance using the Dijkstra’s
approximation (Antini et al., 2005).

Computer Implementation

A pseudo-code description of the Dijkstra’s algorithm is reported in Figure 3.28. In this simple
implementation, vertices of the set V are stored in an ordinary linked list (or array), and
extract minimum from V is simply a linear search through all vertices in V . In this case,
it can be easily shown that if |V | and |E | are the number of vertices and edges in V and
E , respectively, the algorithm runs with a worst case time complexity of O(|V |2 + |E |) =
O(|V 2|). For sparse graphs, that is, graphs with far fewer than O(|V |2) edges, Dijkstra’s
algorithm can be implemented more efficiently by storing the graph in the form of adjacency
lists and using a binary heap as a priority queue to implement extracting minimum efficiently.
With a binary heap, the algorithm requires O((|E | + |V |) log |V |) time, which is dominated
by O(|E | log |V |), assuming the graph is connected. Since, meshes representing 3D faces are
sparse and connected, this latter optimized implementation of the algorithm can be used in
our case, thus reducing the overall time complexity in computing the geodesic distances to
the nose tip. A simplified description of the algorithm using a binary tree V -TREE, where the
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Algorithm: The shortest path

struct vertex {
...
int distance;

};

void di jkstra shortest path( set of struct vertex V, struct vertex vs, struct vertex vt )
/**********************************************************************
receives a set of vertices V , a source vertex vs and a target vertex vt ,
and computes the shortest path between vs and vt .
***********************************************************************/
{

set of struct vertex T ;
struct vertex u, v;
V ← V \ {vs};
T ← {vs};
vs .distance← 0;
// initialization: the distance attribute of a vertex u ∈ V is equal to the edge weight w((vs, u))
// for all vertices incident from vs

for each u ∈ V
if ( (vs, u) ∈ E )

u.distance← w((vs, u));
else u.distance← +∞;

end
// main loop: at each iteration the vertex u in V with minimum distance attribute is moved to T .
// Distance attributes of the vertices in V are updated in the case that a path via u is shorter
// than the direct connection from vs

while ( vt /∈ T ) {
u ← “u ∈ V, such that ∀v ∈ V : u.distance ≤ v .distance”;
T ← T ∪ {u};
V ← V \ {u};
for each v “such that (u, v) ∈ E”

if ( v .distance > w((u, v)) + u.distance )
v .distance← w((u, v)) + u.distance;

end
}

}

Figure 3.28 A pseudo-code description of Dijkstra’s shortest path algorithm. This algorithm actually
only computes the length of the shortest path rather than the shortest path itself

vertices are sorted in ascendant order of distance attribute from the source vertex is reported
in Figure 3.29.
The Exercise 6 proposes the computation of the geodesic distance of the shortest path

between two vertices of a simple graph. In Exercise 7, the shortest path itself connecting two
vertices instead of merely its length is required to be computed.
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Algorithm: Geodesic distance computation

Given a set of vertices V and a source vertex vs :
1. Set v .distance = +∞ for every vertex v ∈ V ;
2. Set vs .distance = 0 and insert vs in V-TREE;
3. Take the vertex v , which has smallest v .distance in V -TREE, and remove it from V -TREE;
4. For each vertex u adjacent to v , if v .distance + |(v, u)| < u.distance,

update u.distance = v .distance + |(v, u)| and insert (or reinsert) u to V -TREE;
5. Repeat Step 3 and 4 until V -TREE is empty.

Figure 3.29 Algorithm to operatively compute the geodesic distance from a source vertex of the mesh
vs to all the other vertices V of the mesh. The use of a binary tree V -TREE, where the vertices are sorted
in ascendant order of distance attribute from the source vertex permits to optimize the time complexity

3.9.2 Computing Relationships between Facial Stripes

Once values of the normalized geodesic distance are computed for every surface point, iso-
geodesic stripes can be identified. For this purpose, the range of the normalized geodesic
distance values is quantized into n intervals c1, . . . , cn . Accordingly, n stripes concentric with
respect to the nose tip, are identified on the 3D surface, the i th stripe corresponding to the
set of surface points for which the value of the normalized geodesic distance falls within the
limits of interval ci .
Figure 3.31b shows the projection on the XY plane of the pairs of iso-geodesic stripes of

the three subjects in Figure 3.31a, thus evidencing the shape variations of the stripes. As an
example, Figure 3.35 shows the first nine iso-geodesic stripes identified on the face scans of
two individuals.
Results of the analysis of the deformation that non-neutral facial expressions induce in

the shape of the iso-geodesic stripes, as is detailed in Berretti et al. (2010), motivate the
decomposition of the facial stripes into three parts, upper left (UL), upper right (UR) and
lower (L), with respect to the coordinates of the nose tip (see Figure 3.31b). In general, under
the effect of non-neutral facial expressions, the region around the mouth is subject to larger
deformations than the other regions of the face. Furthermore, decomposition of the upper
part into the upper left and upper right allows the face representation model to better deal
with slight asymmetries of the face that constitute a characterizing trait of some individuals.
This subdivision resulted necessary in improving the performance of the approach in the case
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Figure 3.30 An edge-weighted directed graph



110 3D Face Modeling, Analysis and Recognition

Z
X

Y

X

Y

UL UR

L

(b)(a)

Figure 3.31 (a) Sample face models, where the fourth and seventh iso-geodesic stripes are evidenced.
The 3DWW relationship descriptors are computed for the UL, UR, and L parts of the stripe pair; (b)
Projection of the pairs of iso-geodesic stripes in (a) on the XY plane, with the partitioning of the
iso-geodesic stripes into three parts

of faces with expression variations (results of the iso-geodesic stripes approach without face
partitioning were first reported in Berretti et al. (2006)).
Once facial stripes are extracted, distinctive structural features of 3D face scans are captured

by describing the pointwise 3D spatial relationships between homologous parts of pairs of
iso-geodesic stripes. To this end, the 3D weighted walkthroughs (3DWWs) descriptor has been
used. The 3DWW was first introduced in Berretti et al. (2006), and their use and properties in
the context of 3D face recognition have been extensively discussed in Berretti et al. (2010). It
defines a set of integral measures over the points of two regions, A and B, in the 3D domain.
These measures are captured through weights wi, j,k(A, B) that encode the number of pairs
of points belonging to A and B, whose displacement is captured by the walkthrough 〈i, j, k〉
(with i, j, k taking values in {−1, 0,+1}):

wi, j,k(A, B) = 1

Ki, j,k
·
∫

A

∫
B

Ci (xb − xa)C j (yb − ya)Ck(zb − za) d�b d�a, (3.21)

where d�b = dxbdybdzb and d�a = dxadyadza ; Ki, j,k acts as a normalization factor to guarantee
that wi, j,k takes value in [0, 1]; C±1(.) are the characteristic functions of the positive and
negative real semi-axis (0,+∞) and (−∞, 0), respectively; C0(·) denotes the Dirac’s function
that is used to reduce the dimensionality of the integration domain to enable a finite non-null
measure. In particular, C±1(t) are defined in the following way:

C+1(t) =
{
1 if t > 0
0 otherwise

C−1(t) =
{
1 if t < 0
0 otherwise,

(3.22)

being the Dirac’s function, by definition:

C0(t) =
{
1 if t == 0,
0 otherwise.

(3.23)
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3DWWs are capable to quantitatively measure the relative spatial arrangement of two
extended sets of 3D points by computing 27 weights and organizing them in a 3× 3× 3
matrix. As a particular case, the 3DWWs computed between an extended 3D entity and itself
also account for intrinsic shape information.
By developing on the properties of integrals, it can be easily proved that weightswi, j,k(A, B)

are reflexive (i.e., wi, j,k(A, B) = w−i,− j,−k(B, A)) and invariant with respect to shifting and
scaling. In addition, 3DWWs are compositional, in that the walkthroughs between A and the
union B1 ∪ B2 can be derived by the linear combination of the 3DWWs between A and B1 and
A and B2. The demonstrations for the 2D case can be found in Berretti et al. (2003). According
to this, the integral of Equation 3.21 can be reduced to the linear combination of subintegrals
computed on any partition of A and B.

Computer Implementation

Considering the uniform voxelization of two 3D entities A and B (A = ⋃
n An, and

B = ⋃
m Bm), the integral of Eq. 3.21 can be replaced by a linear combination of terms

wi, j,k(An, Bm) computed on the voxels pairs 〈An, Bm〉:

wi, j,k(
⋃

n

An,
⋃
m

Bm) = 1

Ki, j,k(A, B)

∑
n

∑
m

Ki, j,k(An, Bm) · wi, j,k(An, Bm) (3.24)

Two 3D voxels in the 3D space can be posed, one with respect to the other, in a set of 27
different mutual arrangements (basic arrangements). Because the wi, j,k coefficients for these
basic arrangements can be computed in closed form using Equation 3.21, the relationships
between two extended entities can be reduced to the combination through Equation 3.24 of
the coefficients computed in the basic cases, thus avoiding the numerical evaluation of the
integral measure.
As an example, Figure 3.32 shows a 3D face with the voxelization of two facial stripes

(for the clarity of the visualization, the cube shape of a 3D voxel is approximated with
a sphere).

Figure 3.32 The 3D voxelization of a pair of facial stripes
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Figure 3.33 Two 3D voxels in one of the basic spatial arrangements (bn is lower positioned with
respect to an , and aligned with an along the X and Z axes) and the resulting values of the wi, j,k

coefficients

Suggestion: As an example and suggestion for the derivation of the other cases, in the following
the closed form computation of the w+1,−1,+1 coefficient is detailed. To make easier the analytical
derivation, we assume the two voxels are cubes with side equal to T . The voxels have also the 3D
coordinates in the reference system shown in Figure. 3.34.

According to Equation 3.21, the relationship between voxels an and bm can be written as
follows:

w+1,−1,+1(an, bm) = 1

K+1,−1,+1

∫
an

∫
bm

C+1(xb − xa)C−1(yb − ya)C+1(zb − za) d�b d�a.

(3.25)

According to the coordinates of Figure. 3.34 for the two voxels, the integral of Equation 3.25 can
be split into

= 1

K+1,−1,+1

∫ Vb+T

Vb

dyb

∫ Va+T

Va

dya

∫ D+T

D

∫ D+T

za

∫ L+T

L

∫ L+T

xa

dxb dxa dzb dza, (3.26)
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Figure 3.34 The two voxels are cubes with side equal to T and the coordinates given in the figure
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being the integration along y independent from x and z. Then, by applying the usual integration rules,
it results in the following:

w+1,−1,+1(an, bm) = T 2

K+1,−1,+1

∫ D+T

D

∫ D+T

za

∫ L+T

L
(L + T − xa) dxa dzb dza =

= T 2

K+1,−1,+1

∫ D+T

D

∫ D+T

za

[
(L + T )xa − xa

2

]L+T

L
dzb dza =

= T 2

K+1,−1,+1

∫ D+T

D

∫ D+T

za

T 2

2
dzb dza =

= T 2

K+1,−1,+1

∫ D+T

D

T 2

2
(D + T − za) dza = 1

K+1,−1,+1

T 6

4
.

To obtain an adimensional value, the normalization factor K+1,−1,+1 is posed equal to the products of
the volumes of the two voxels, that is: |an ||bm | = T 6. This results in a final value for the coefficient
w+1,−1,+1(an, bm) = 1/4. A similar approach can be used in the derivation of the other coefficients.

The properties of 3DWW, joined with the geodesic distance computation and the face
partitioning provide the method with robustness to expression variations. In fact, geodesic
distances between two facial points keep sufficiently stable under expression changes resulting
into the fact that the largemajority of the points of each stripe still remainwithin the same stripe,
even under facial expression changes. In addition, because of the constrained elasticity of the
skin tissue, neighbor points can be assumed to feature very similar motion for moderate facial
expressions in most parts of the face. For all these points the mutual displacement between the
two points is mainly determined by the geometry of the neutral face. This property is preserved
by 3DWWs that provide an integral measure of displacements between pairs of points.

3.9.3 Face Representation and Matching Using Iso-geodesic Stripes

A generic face model F , is represented through a set of NF stripes. In that 3DWWs are
computed for every pair of iso-geodesic stripes (including the pair composed by a stripe and
itself), a face is represented by a set of NF · (NF + 1)/2 relationship matrixes. According
to the proposed representation, iso-geodesic stripes and 3DWW computed between pairs of
stripes (interstripe 3DWW) and between each stripe and itself (intrastripe 3DWW), have been
cast to a graph representation where intrastripe 3DWW are used to label the graph nodes and
interstripe 3DWWs to label the graph edges (see Figure 3.35).
To compare graph representations, distance measures for node labels and for edge labels

have been defined. Both of them rely on the L1 distance measure D defined between 3DWWs
(Berretti et al., 2006). The similarity measure between two face models represented through
the graphs P and G with nodes pk and gk , is then derived as follows:

μ(P, G) = α

NP
·

NP∑
k=1

D(w(pk, pk), w(gk, gk)) (3.27)

+ 2(1− α)

NP (NP − 1) ·
NP∑

k=1

k−1∑
h=1

D(w(pk, ph), w(gk, gh)),
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Figure 3.35 The first nine iso-geodesic stripes for two sample face scans. The graphs constructed on a
subset of the stripes and their matching are also shown

where the first summation in Equation 3.27 accounts for the intrastripe 3DWWs similarity
measure, and the second summation evaluates the interstripe 3DWWs similarity measure. The
α parameter permits to weight differently the two distance components and its value has been
set to 0.3 (Berretti et al., 2010). This value has been tuned in a pilot set of experiments carried
out on the Face Recognition Grand Challenge version 1.0 (FRGC v1.0) (Phillips et al., 2005)
database and shows that to support face recognition, interstripe spatial relationships are more
discriminant than intrastripe spatial relationships.
Implicitly, Equation 3.27 assumes that the number of nodes NP in the graph P , is not greater

than the number of nodes NG of the graph G. This can be assumed with no loss of generality,
in that if NP > NG , graphs P and G can be exchanged.
Following the considerations discussed earlier, distances between faces of two individuals

are measured by computing the 3DWW for each pair of iso-geodesic stripes, separately in the
three face parts, and then comparing the 3DWWs of homologous pairs of the two faces. The
final dissimilarity measure is obtained by averaging distances in the three parts.
According to Equation 3.27, the overall runtime complexity can be estimated as O(N 2

P TD),
being TD the complexity in computing D, that is estimated to be a constant value (Berretti
et al., 2010). This permits efficient implementation for face identification in large datasets,
also with the use of appropriate index structures, with great savings in performance. More
details on the index structure and its performance are discussed in Berretti et al. (2001).

Exercises

1. Let S1, S2, and S3 be regular surfaces, Prove that
A. If φ : S1 → S2 is an isometry, then φ−1 : S2 → S1 is also an isometry.
B. If φ : S1 → S2 is an isometry, φ : S1 → S3 are isometries, then, ψ ◦ φ : S1 → S3 is
an isometry.

C. Prove that the isometry of regular surface S constitutes a group. This group is called
the group of isometries.

2. Compute square-root velocity function of the circle

x = cos 2t, y = sin 2t, t ∈ [0, 2π ]
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Table 3.1 The evolution of the distance attributes in Dijkstra’s algorithm when applied to the
graph of Figure 3.30

vi distance for i =
iteration V T 1 2 3 4 5 6

1 {v2, v3, v4, v5, v6} {v1} 0 6 +∞ 1 3 +∞
2 {v2, v3, v5, v6} {v1, v4} 6 6 2 +∞
3 {v2, v3, v6} {v1, v4, v5} 6 6 3
4 {v2, v3} {v1, v4, v5, v6} 4 6
5 {v3} {v1, v4, v5, v6, v2} 5
6 {} {v1, v4, v5, v6, v2, v3}

In this example vs = v1 and vt = v2. At each iteration, the distance of the vertex u ∈ V, such that
∀v ∈ V : u.distance≤ v .distance is marked in bold in the table. This highlighted distance value indicates
that the associated vertex is transferred from V to T in that iteration. After 5 iterations the vt = v2
condition is reached, and continuing for one iteration more the lengths of the shortest paths for all
vertices in the graph are computed.

3. Derive the relation 3.6

4. Given two points p and q in R
n , compute the geodesic path between them.

5. Derive the relation 3.7 and the formula of geodesic path ψ(τ )

6. Write a pseudo-algorithm of the geodesic distance between two curves represented by qi
α ,

i = 1, 2

7. Given the edge-weighted directed graph of Figure 3.30, compute the Dijkstra’s shortest
path between v1 and v2. The growth of the set T , the corresponding variation of the set V ,
and the subsequent values of the distance attributes of the vertices in the graph have
been listed in Table 3.1.

8. Modify the description of Dijkstra’s algorithm of Figure 3.28 in order to find the shortest
path itself instead of merely the length of the shortest path. Suggestion: Pay special
attention to the data structure for the representation of the path.

9. Using the Equation 3.21 derive the wi, j,k between the two 3D voxels illustrated on the left
of Figure 3.33.

10. Using Equation 3.24 and the relationship between 3D voxels in the basic arrangements,
compute the relationships between the entities A and B of Figure 3.36.

an

bm

A =
n=1

10
an

B =
m=1

4
bm

Figure 3.36 Two extended 3D entities comprising, respectively, 10 voxels (A) and 4 voxels (B)



116 3D Face Modeling, Analysis and Recognition

Glossary

In the following we provide a brief introduction to the geometrical terms used in the book.
For details, please refer to some standard textbooks on differential geometry such as Boothby
(1986) or Spivak (1979).

• Geodesic Path: For any two points p1, p2 ∈ M , a geodesic is a path α connecting p1 and
p2 on M that is locally length-minimizing, that is, this path cannot be changed or perturbed
in any way and its length cannot be reduced. If is the shortest path connecting p1 and p2
then it is called the minimizing geodesic. Note that the definition of a geodesic is dependent
upon the Riemmanian structure of M , that is,

α̂ = argmin
α:[0,1]→M, α(0)=p1,α(1)=p2

L[α].

The length of this path is called the geodesic length d(p1, p2) = L[α̂].
• Group Action by Isometries: If a group G acts on a Riemannian manifold M , then the
group action is said to be by isometries if d(p1, p2) = d((g · p1), (g · p2)) for all g ∈ G and
p1, p2 ∈ M .

• Group Action on a Manifold: If G is an algebraic group and M is a manifold, then the
mappingG × M → M , given by (g, p) �→ g · p is called a group action if: (1) (g1(g2, p)) =
(g1 ∗ g2) · p, (2) (e, p) = p, for all g1, g2 ∈ G and p ∈ M and where e denotes the identity
element of G. The set {g · p|g ∈ G} is called the orbit of p and is denoted by [p].

• Inherited Distance on M/G: As in the previous item, let G acts on M by isometries and,
additionally, let the orbits of M under G be closed. Then, the inherited distance between any
two elements of M/G is defined to be

dM/G([p1], [p2]) = inf
g∈G

dM (p1, (g · p2)).

• Inherited Metric: If the action of G on a Riemannian manifold M is by isometries, and the
quotient space M/G is a differentiable manifold, then M/G inherits the Riemannian metric
from M and this metric can be used to define geodesics and geodesic distances between
elements of M/G.

• Length of Curves: For any curve α : [0, 1] → M , the length of α can be defined as:

L[α] =
∫ 1

0

〈
dα

dt
,
dα

dt

〉(1/2)
dt,

where the inner product inside the integral is defined using the Riemannian metric of M .
• Manifold: A manifold is a topological space that is locally Euclidean, that is, for each point
on this set, an open neighborhood can be locally identified with an open set of a Euclidean
space using a homemorphism. If these mappings are smooth (diffeomorphsisms) and com-
patible with each other (their concatenations are also smooth), then the manifold is called
adifferentiable manifold. In this chapter, all the manifolds we deal with are differentiable
manifolds and, hence, we often drop the work differentiable.
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• Path-Straightening Approach: This is an approach for finding geodesic paths between
points on a manifold by minimizing the energy functional:

E[α] =
∫ 1

0

〈
dα

dt
,
dα

dt

〉
dt.

Klassen & Srivastava (2006) derived a particularly convenient form of the gradient of E in
cases where M is a submanifold of a larger vector space V and the Riemannian metric on
M is a restriction of the metric on V . This is the case for all of the manifolds studied in
this book.

• Quotient Space of a Manifold: Let a group G act on the manifold M as defined earlier.
Then, the set of all orbits of all elements of M is called the quotient of M under G. IT is
denoted by M/G. We have:

M/G = {[p]|p ∈ M}, where [p] = {(g · p)|g ∈ G}.

• Reparametrization Action on Curves: Let B be an appropriate space of curves of the type
β : [0, 1] → R

n and 
 be the reparametrization group. Then, 
 acts on B according to the
action (γ, β) = β ◦ γ . It is interesting to note that if we assume the standard L

2 metric on B,
then this action is not by isometries. However, if one assumes an elastic metric, as defined by
Mio et al. [2007], then this action is by isometries and one can define the inherited distance
on the quotient space B/
.

• Reparametrization Group: Let 
 be the set of all corner-preserving diffeomorphisms from
[0, 1] to itself. That is, 
 is the set of all γ such that γ is a diffeomorphisms and γ (0) = 0
and γ (1) = 1. 
 is a group under concatenation: for any γ1, γ2 ∈ 
 the group operation is
γ1 ◦ γ2. The identity element of the group is given by γid (t) = t .
If β : [0, 1] → R

n is a parametrized curve in R
n , then for a γ ∈ 
, the curve β̃(t) = β(γ (t))

is called a reparametrization of β; therefore, 
 is also called the reparametrization group.
• Riemannian Metric: A Riemannian metric is map that smoothly associates to each point

p ∈ M a form for computing inner product between elements of Tp(M). A manifold with a
Riemannian metric on it is called a Riemannian manifold.

• Tangent Space: For a point p ∈ M , Tp(M) is the set of all vectors that are tangent to M at
point p. A tangent vector can be defined by constructing a differentiable curve on M passing
through p and evaluating the velocity to the curve at that point. Tp(M) is a vector space of
the same dimension as the manifold M .
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In this chapter, we present an automatic and efficient method to fit a statistical deformation
model of the human face to 3D scan data. In a global-to-local fitting scheme, the shape
parameters of this model are optimized such that the produced instance of the model accurately
fits the 3D scan data of the input face. To increase the expressiveness of the model and to
produce a tighter fit of the model, the method fits a set of predefined face components and
blends these components afterwards. Quantitative evaluation shows an improvement of the
fitting results when multiple components are used instead of one.
For a 3D face recognition system based onmodel coefficients, it is of utmost importance that

the statistics of many realistic faces are captured in the morphable model. In case a face cannot
be modeled, the automatically acquired model coefficients are unreliable, which hinders the
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automatic recognition. We present a new bootstrapping algorithm to automatically enhance a
3D morphable face model with new face data. The algorithm is based on a morphable model-
fitting method that uses a set of predefined face components. This fitting method produces
accurate model fits to 3D face data with noise and holes. In the fitting process, the dense
point-to-point correspondences between the scan data and the face model can become less
reliable at the border of components. This is solved by introducing a blending technique
that improves on the distorted correspondences close to the borders. Afterwards, a new face
instance is acquired similar to the 3D scan data and in full correspondence with the face model.
These newly generated face instances, which go beyond the statistics of the initial morphable
face model, can then be added to the morphable face model to build a more descriptive
one. To avoid our bootstrapping algorithm from needlessly adding redundant face data, we
incorporate a redundancy estimation algorithm. Quantitative and qualitative evaluation shows
that this algorithm successfully enhances an initial morphable face model with new face data,
in a fully automatic manner.
The accurately generated face instances are manifold meshes without noise and holes and

can be effectively used for 3D face recognition. The results show that model coefficient–based
face matching outperforms contour curve and landmark-based face matching, and is more
time efficient than contour curve matching.

4.1 Introduction

There are numerous methods to perform 3D face analysis and recognition. Some of these
techniques are based on 3D geodesic surface information, such as the methods of Bronstein
et al. (2005) and Berretti et al. (2007). The geodesic distance between two points on a surface is
the length of the shortest path between two points. To compute accurate 3D geodesic distances
for face recognition purposes, a 3D face without noise and without holes is desired. Because
this is typically not the case with laser range scans, the noise has to be removed and the
holes in the 3D surface interpolated. However, the success of basic noise removal techniques,
such as Laplacian smoothing, is very much dependent on the resolution and density of the
scan data. Straightforward techniques to interpolate holes using curvature information or flat
triangles often fail in case of complex holes, as pointed out by Davis et al. (2002). The use
of a deformation model to approximate new scan data and interpolate missing data is a gentle
way to regulate flaws in scan data.
A well known statistical deformation model specifically designed for surface meshes of

3D faces, is the 3D morphable face model of Blanz and Vetter (1999). This statistical
model was built from 3D face scans with dense correspondences to which principal com-
ponent analysis (PCA) was applied. In their early work, Blanz and Vetter fit this 3D mor-
phable face model to 2D color images and cylindrical depth images from the CyberwareTM

(Del Monte AvenueMonterey, CA) scanner. In each iteration of their fitting procedure, the
model parameters are adjusted to obtain a new 3D face instance, which is projected to 2D
cylindrical image space allowing the comparison of its color values (or depth values) to
the input image. The parameters are optimized using a stochastic Newton algorithm. More
recently, Blanz et al. (2007) proposed a method to fit their 3D morphable face model to more
common textured depth images. In the fitting process, a cost function is minimized using both
color and depth values after the projection of the 3D model to 2D image space. To initialize
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their fitting method, they manually select seven corresponding face features on their model
and in the depth scan. A morphable model of expressions was proposed by Lu and Jain (2008).
Starting from an existing neutral scan, they use their expression model to adjust the vertices
in a small region around the nose to obtain a better fit of the neutral scan to a scan with a
certain expression. Amberg et al. (2008) built a PCA model from 270 identity vectors and a
PCA model from 135 expression vectors and combined the two into a single morphable face
model. They fitted this model to 3D scans of both the UND (University of Notre Dame) and
GAVAB (Grupo de Algorı́tmica para la Visión Artificial y la Biometrı́a) face sets (see next
section), and use the acquired model coefficients for expression invariant face matching with
considerable success.
Non statistical deformation models were proposed as well. Huang et al. (2006) proposed

a global-to-local deformation framework to deform a shape with an arbitrary dimension (2D,
3D or higher) to a new shape of the same class. They show their framework’s applicability
to 3D faces, for which they deform an incomplete source face to a target face. Kakadiaris
et al. (2006) deform an annotated face model to scan data. Their deformation is driven by
triangles of the scan data attracting the vertices of the model. The deformation is restrained
by stiffness, mass, and damping matrices that control the resistance, velocity, and acceleration
of the models vertices. Whitmarsh et al. (2006) fit a parameterized CANDIDE face model to
scan data by optimizing shape and action parameters. The advantage of such deformable faces
is that they are not limited to the statistical changes of the example shapes, so the deformation
has less restrictions. However, this is also their disadvantage, because these models cannot
rely on statistics in case of noise and missing data.

4.2 Data Sets

In this chapter, we fit a morphable face model that is defined as Sinst = S̄ + ∑m
i=1 wiσi si to 3D

scan data. By doing this, we obtain a clean model of the face scan, that we can use to identify
3D faces. The scans that we fit the morphable face model to are the 3D face scans of the
UND (Chang et al., 2005), a subset of the GAVAB (Moreno and Sanchez, 2004; ter Haar et al.,
2008) and a subset of the Binghamton University 3D Facial Expression (BU-3DFE) (Yin et al.,
2006) databases. The UND set contains 953 frontal range scans of 277 different subjects with
mostly neutral expression. The GAVAB set consists of nine low quality scans for each of its
61 subject, including scans for different poses and expressions. From this set, we selected, per
subject, four neutral scans, namely the two frontal scans and the scans in which subjects look
up and down. Acquired scan data from these poses differ in point cloud density, completeness
and relatively small facial changes. The BU-3DFE set was developed for facial expression
classification. This set contains one neutral scan and 24 expression scans having different
intensity levels, for each of its 100 subjects. From this set, we selected the neutral scans and
the low level expression scans (anger, disgust, fear, happiness, sadness, surprise at level 1).
Although the currently used morphable model is based on faces with neutral expressions

only, it makes sense to investigate the performance of our face model fitting in case of
changes in pose and expressions. These variations in 3D scan data, which are typical for a non
cooperative scan environment, allow us to evaluate our 3D face recognition methods.
We aim at 3D face recognition, so we need to segment the face from each scan. For that,

we employ our pose normalization method (ter Haar and Veltkamp, 2008) that normalizes
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Figure 4.1 Face segmentation. The depth image (left) is converted to a surface mesh (middle). The
surface mesh is cleaned, the tip of the nose is detected and the face segmented (right, in pink)

the pose of the face and localizes the tip of the nose. Before pose normalization, we applied
a few basic preprocessing steps to the scan data: The 2D depth images were converted to
triangle meshes by connecting the adjacent depth samples with triangles, slender triangles and
singularities were removed, and only considerably large connected components were retained.
Afterwards, the face is segmented by removing the scan data with a Euclidean distance larger
than 110 mm from the nose tip. The face segmentation is visualized in Figure 4.1.

4.3 Face Model Fitting

In general, 3D range scans suffer from noise, outliers, and missing data, and their resolution
may vary. The problem with single face scans, the GAVAB scans in particular, is that large
areas of the face are missing, which are hard to fill using simple hole filling techniques. When
the morphable face model is fitted to a 3D face scan, a model is obtained that has no holes, has
a proper topology, and has an assured resolution. By adjusting the m = 99 weights wi for the
eigenvectors, the morphable model creates a new face instance. To fit the morphable model to
3D scan data, we need to find the optimal set of m weights wi . This section describes a fully
automatic method that efficiently finds a proper model of the face scan in the m-dimensional
space.

4.3.1 Distance Measure

To evaluate if an instance of the morphable face model is a good approximation of the 3D face
scan, we use the root mean square (RMS) distance of the instance’s vertices to their closest
points in the face scan. For each vertex point (p) from the instance (M1), we find the vertex
point (p′) in the scan data (M2) with the minimal Euclidean distance

emin(p, M2) = min
p′∈M2

d(p, p′) (4.1)

using a kD-tree. The RMS distance is then measured between M1 and M2 as:

drms(M1, M2) =
√√√√1

n

n∑
i=1

emin(pi , M2)2 (4.2)
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using n vertices from M1. Closest point pairs (p,p′) for which p′ belongs to the boundary of
the face scan, are not used in the distance measure.
The morphable face model has n = 75,972 vertices. These vertices cover the face, neck and

ear regions and its resolution in the upward direction is three times higher than in its sideways
direction. Because the running time of our measure is dependent on the number of vertices,
we use for the model fitting only those vertices that cover the face (data within 110 mm from
the tip of the nose) and not the neck and ears. To obtain a more uniform resolution for the
model, we reduced the upward resolution to one third of the original model. The number of
vertices used in the fitting process is now reduced to n = 12,964 vertices, a sample every
≈2.6 mm2 of the face area. Note that we do not change or recompute the PCA model, we
simply select a set of vertex indices.

4.3.2 Iterative Face Fitting

With the defined distance measure for an instance of our compressed morphable face model,
the m-dimensional space can be searched for the optimal instance. The fitting is done by
choosing a set of m weights wi , adjusting the position of the instance’s vertices according to
Sinst = S̄ + ∑m

i=1 wiσi si , measuring the RMS-distance of the new instance to the scan data,
selecting new weights and continue until the optimal instance is found. Knowing that each
instance is evaluated using a large number of vertices, an exhaustive search for the optimal set
of m weights is too computationally expensive.
A commonmethod to solve large combinatorial optimization problems is simulated anneal-

ing (SA) (Kirkpatrick et al., 1983). In our case, random m-dimensional vectors could be
generated which represent different morphs for a current face instance. A morph that brings
the current instance closer to the scan data is accepted (downhill), and otherwise it is either
accepted (uphill to avoid local minima) or rejected with a certain probability. In each iter-
ation, the length of the m-dimensional morph vector can be reduced as implementation of
the “temperature” scheme. The problem with such a naı̈ve SA approach is that most ran-
dom m-dimensional morph vectors are uphill. In particular, close to the optimal solution, a
morph vector is often rejected, which makes it hard to produce an accurate fit. Besides this
inefficiency, it doesn’t take the eigensystem of the morphable face model into account.
Instead, we use an iterative downhill walk along the consecutive eigenvectors from a current

instance toward the optimal solution. Starting from the mean face S̄ (∀m
i=1wi = 0), try new

values forw1 and keep the best fit, then try new values forw2 and keep the best fit, and continue
until the face is morphed downhill along all m eigenvectors. Then iterate this process with a
smaller search space for wi . The advantage in computation costs of this method is twofold.
First, the discrete number of morphs in the selected search space directly defines the number of
rejected morphs per iteration. Second, optimizing one wi at a time means only a one (instead
ofm) dimensional modification of the current face instance Snew = Sprev + (wnew − wprev)σi si .
Because the first eigenvectors induce the fitting of global face properties (e.g., face height

and width) and the last eigenvectors change local face properties (e.g., nose length and width),
each iteration follows a global-to-local fitting scheme (see Fig. 4.2). To avoid local minima,
two strategies are applied. (1) The selected wi in one iteration is not evaluated in the next
iteration, forcing a new (similar) path through them-dimensional space. (2) The vertices of the
morphable face model are uniformly divided over three sets and in each iteration a different set



124 3D Face Modeling, Analysis and Recognition

Figure 4.2 Face morphing along eigenvectors starting from the mean face (center column). Different
weights for the principal eigenvectors (e.g., i = 1, 2) changes the global face shape. For latter eigenvectors
the shape changes locally (e.g., i = 50)

is modified and evaluated. Only in the first and last iteration are all vertices evaluated. Notice
that this also reduces the number of vertices to fit and therefore the computation costs.
The fitting process starts with themean face andmorphs in place toward the scan data, which

means that the scan data should be well aligned to the mean face. To do so, the segmented
and pose normalized face is placed with its center of mass on the center of mass of the mean
face, and finely aligned using the iterative closest point (ICP) algorithm (Besl and McKay,
1992). The ICP algorithm iteratively minimizes the RMS distance between vertices. To further
improve the effectiveness of the fitting process, our approach is applied in a coarse-fitting and
a fine-fitting step, see the next subsections.

4.3.3 Coarse Fitting

The more the face scan differs from the mean face S̄, the less reliable the initial alignment of
the scan data to the mean face is. Therefore, the mean face is coarsely fitted to the scan data
by adjusting the weights of the first 10 principal eigenvectors (mmax = 10) in a single iteration
(kmax = 1) with 10 different values for wnew =[-1.35,-1.05,...,1.05,1.35], see Algorithmmodel
fitting(S̄, scan). Fitting the model by optimizing the first 10 eigenvectors results in the face
instance Scoarse, with global face properties similar to those of the scan data. After that, the
alignment of the scan to Scoarse is further improved with the ICP algorithm.

4.3.4 Fine Fitting

Starting with the improved alignment, we again fit the model to the scan data. This time the
model-fitting algorithm is applied using all eigenvectors (mmax =m) and multiple iterations
(kmax = 9). In the first iteration of Algorithm model fitting (S̄, scan), 10 new weight values
wnew are tried for each eigenvector, to cover a large range of facial variety. The best wnew

for every sequential eigenvector is used to morph the instance closer to the face scan. In the
following kmax-1 iterations only four new weight values wnew are tried around wi with a range
wrange equal to w incr of the previous iteration. By iteratively searching for a better wi in a
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smaller range, the weights are continuously optimized. Local minima are avoided as described
in Section 4.3.2. The range of the first iteration and the number of new weights tried in each
next iteration were empirically selected as good settings.

4.3.5 Multiple Components

Knowing that the morphable model was generated from 100 3D face scans, an increase of its
expressiveness is most likely necessary to cover a large population. To increase the expres-
siveness, also Blanz and Vetter (1999) proposed to independently fit different components of
the face, namely the eyes, nose, mouth, and the surrounding region. Because each component
is defined by its own linear combination of shape parameters, a larger variety of faces can be
generated with the same model. The fine fitting scheme from the previous section was devel-
oped to be applicable to either the morphable face model as a whole, but also to individual
components of this model.

Algorithm 8 Model fitting (Sinst, scan)

wrange = 1.5, w incr = 0.3
for k ← 1 to kmax do
select vertices (uniform subset of component)
for i ← 1 to mmax do

wmin = wi − wrange + 1
2w incr

wmax = wi + wrange − 1
2w incr

for wnew ← wmin to wmax do
morph Sinst with wnew

drms(Sinst, scan) smaller→ keep wnew

undo morph
wnew = wnew + w incr

morph Sinst with wi ← best wnew

wrange = w incr, w incr = 1
2w incr

return Sinst

Component selection. All face instances generated with the morphable model are assumed
to be in correspondence, so a component is simply a subset of vertices in the mean shape S̄ (or
any other instance). We define seven components in our adjusted morphable face model (see
Fig. 4.3). Starting with the improved alignment, we can individually fit each of the components
to the scan data using the fine-fitting scheme, obtaining a higher precision of the fitting process
(as shown in Sect. 4.3.6). Individual components for the left and right eyes and cheeks were
selected, so that our method applies to non symmetric faces as well. For comparison, we also
used a face model with four components, one for the eyes, one for the nose, one for the mouth,
and one for the forehead and cheeks. The use of multiple components has no influence on
the fitting time, because the total number of vertices remains the same and only the selected
vertices are modified and evaluated.
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(a) (b) (c) (d) (e)

Figure 4.3 Multiple components (a) may intersect (b1), move apart (b2), or move across (b3).
(c) Simulating a cylindrical scan and (d) smoothing the new border vertices (e) solves these problems

Component blending. A drawback of fitting each component separately is that inconsisten-
cies may appear at the borders of the components. During the fine fitting, the border triangles of
two components may start to intersect, move apart, or move across (Fig. 4.3). The connectivity
of the complete mesh remains the same, so two components moving apart remain connected
with elongated triangles at their borders. We solve these inconsistencies by means of a post
processing step, as described in more detail below.
Knowing that the morphable face model is created from cylindrical range scans and that the

position of the face instance does not change, it is easy to synthetically rescan the generated
face instance. Each triangle of the generated face instance Sfine is assigned to a component
(Fig. 4.3a). A cylindrical scanner is simulated, obtaining a cylindrical depth image d(θ, y)
with a surface sample for angle θ , height y with radius distance d from the y-axis through the
center of mass of S̄ (Fig. 4.3c). Basically, each sample is the intersection point of a horizontal
ray with its closest triangle, so we still know to which component it belongs. The cylindrical
depth image is converted to a 3D triangle mesh by connecting the adjacent samples and
projecting the cylindrical coordinates to 3D. This new mesh S′

fine has a guaranteed resolution
depending on the step sizes of θ and y, and the sampling solves the problem of intersecting
and stretching triangles. However, ridges may still appear at borders where components moved
across. Therefore, Laplacian smoothing is applied to the border vertices and their neighbors
(Fig. 4.3d). Laplacian smoothing moves each vertex toward the center of mass of its connected
vertices. Finally, data further then 110 mm from the tip of the nose is removed to have the final
model Sfinal (Fig. 4.3e) correspond to the segmented face. In Section 4.3.6, we evaluate both
the single and multiple component fits.

4.3.6 Results

In this section, we evaluate our fitting results for the UND, GAVAB, and BU-3DFE data sets.
We perform a qualitative and quantitative evaluation of the acquired model fits and compare
the results with other model-fitting methods. To prove that the use of multiple components
improves the fitting accuracy over a single component, we compare the quantitative mea-
sures and relate the fitting accuracy to face recognition by applying different face-matching
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algorithms to the produced fits. By applying and comparing different face-matching methods,
we end up with a complete 3D face recognition system with high recognition rates for all three
data sets.
Starting with the 3D face scans from a data set, we apply our face segmentation method

(Section 4.2). The presented face segmentation method correctly normalized the pose of all
face scans and adequately extracted the tip of the nose in each of them. For the 953 scans of the
UND face set, we evaluated the tip of the nose extraction by computing the average distance
and standard deviation of the 953 automatically selected nose tips to our manually selected
nose tips, which was 2.3 ± 1.2 mm. Because our model-fitting method aligns the face scan to
the mean face, and at a later stage to the coarsely fitted face instance, these results are good
enough.
We evaluated the face model fitting as follows. Each segmented face was aligned to S̄ and

the coarse-fitting method of Section 4.3.3 was applied. After the improved alignment of the
scan data to Scoarse, the fine-fitting method of Section 4.3.4 was applied to either the entire
face or to each of the individual components. For a fair comparison the same post-processing
steps (Sect. 4.3.5) were applied to the final Sfine instances. Figure 4.4 shows qualitative better
fits when multiple components are used instead of a single component. Globally, by looking
at the more frequent surface interpenetration of the fitted model and face scan, which means a
tighter fit. Locally, by looking at facial features, such as the nose, lips, and eyes. Note that our
fitting method correctly neglects facial hair and interpolates holes, which is often a problem
for 3D face recognition methods.
To quantitatively evaluate the produced fits, we determined the RMS distance (Eq. 4.2) for

each of the fitted models to their face scan drms(Sfinal, scan). To report merely the measurements
in overlapping face regions, the points paired with boundary points are not included. Also
outliers, point-pairs with a distance larger than 10 mm, are not taken into account. The RMS
errors are shown in Table 4.1. Note that the UND scans have a higher resolution and thus
smaller point-to-point distances, the RMS distances are therefore lower for the UND set than
for the GAVAB and BU-3DFE sets.
Blanz et al. (2007) reported the accuracy of their model-fitting method using the average

depth error between the depth images of the input scan and the output model, neglecting point-
pairs with a distance larger than 10 mm. To compare the accuracy of our method with their
method, we produced cylindrical depth images (as in Fig. 4.3c) for both the segmented face
scan and the fitted model and computed the average depth error |dscan(θ, y)− dfinal(θ, y)|,
excluding the outliers. Because of the surface mesh resampling, these projection errors
(Table 4.2) are resolution independent. The GAVAB set has more acquisition artifacts causing
higher projection errors, with high maximum projection errors in particular. The available
BU-3DFE scans were heavily smoothed right after the acquisition process, causing lower
projection errors than the high resolution UND scans.
The errors reported in Tables 4.1 and 4.2 are all in favor of the multiple component fits with

an average RMS gain of 0.2 mm per point pair. However, only a marginal gain in accuracy
is acquired when seven components are used instead of four. So, with the use of multiple
components we can increase the model’s expressiveness to some extend.

Comparison. Blanz et al. (2007) reported a mean depth error over 300 UND scans of
1.02 mmwhen they neglected outliers. For our fitted single component to UND scans the error
davr.depth is 0.65 mm, which is already more accurate. For the fitted multiple components these
errors are 0.47 and 0.43, for four and seven components, respectively.
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Figure 4.4 Fitted face models Sfinal based on a single component (1st and 3rd column) and multiple
components (2nd and 4th column) to scan data in blue. Results from the front and side view, show a
qualitative better fit of the multiple components to the scan data

Our time to process a raw scan requires ca. 3 seconds for the face segmentation, ca. 1 second
for the coarse fitting, and ca. 30 seconds for the fine fitting on a Pentium IV 2.8 GHz. Blanz
method reported ca. 4 minutes on a 3.4 GHz Xeon processor, but includes texture fitting as
well. Huang et al. (2006) report for their deformation model a matching error of 1.2 mm after a
processing time of 4.6 minutes. Recently, Amberg et al. (2008) proposed a competitive fitting
time of 40 to 90 seconds for their face model with 310 model coefficients and 11.000 vertices.
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Table 4.1 RMS errors (mm) of output models to input scans

Data sets model min max mean sd

UND 1 comp 0.51 1.73 0.79 0.13
4 comp 0.39 1.57 0.66 0.11
7 comp 0.39 1.50 0.64 0.10

GAVAB 1 comp 0.94 3.45 1.22 0.19
4 comp 0.80 2.30 1.06 0.14
7 comp 0.80 2.24 1.05 0.14

BU-3DFE 1 comp 0.92 1.97 1.20 0.18
4 comp 0.87 1.77 1.09 0.15
7 comp 0.87 1.78 1.08 0.16

4.4 Dynamic Model Expansion

For a statistical face model to be applicable in face recognition systems all over the world, it is
important to include example data on all possible face variations. Because this is an intractable
task, a flexible model is required that updates itself in case of new example faces. For that,
a system should automatically fit the face model to face data, estimate dense and accurate
correspondences beyond the linear combinations of current example data, and measure the
redundancy of the new example faces.

Table 4.2 Projection errors (mm) of output models to input scans

Data sets model min max mean sd

UND 1 comp 0.40 1.65 0.65 0.15
4 comp 0.28 1.33 0.47 0.11
7 comp 0.26 1.20 0.43 0.10

GAVAB 1 comp 0.49 3.03 0.79 0.20
4 comp 0.35 1.91 0.55 0.14
7 comp 0.35 1.69 0.53 0.12

BU-3DFE 1 comp 0.37 1.58 0.63 0.17
4 comp 0.25 0.99 0.43 0.10
7 comp 0.23 0.92 0.39 0.11
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When full correspondence between the face model and the scan data is established and the
new face instance is not redundant, it can be added as a new example to the statistical face
model, increasing the descriptiveness of the model. The process of using a statistical model to
enhance itself automatically, is referred to as bootstrapping the synthesis of the model. The
difficulty of bootstrapping is that (1) if the model (as is) fits a new example well, there is no use
of adding the new example to the model. This must be automatically verified. (2) If the model
doesn’t fit the new example, the correspondences are incorrect and the example cannot be
added to the model. (3) It should be fully automatic. Nowadays, several statistical models are
available, ready to be used and reused. In this chapter, we present a bootstrapping algorithm
on the basis of an initial statistical model, which automatically fits to new scan data with noise
and holes, and which is capable of measuring the redundancy of new example faces.
The need for bootstrapping statistical models was posed by Vetter et al. (1997). They

introduced a bootstrapping algorithm for statistical models, and showed that the use of merely
an optic flow algorithmwas not enough to establish full correspondence between example faces
and a reference face. Instead, they attain an effective bootstrapping algorithm by iteratively
fitting the face model, applying the optic flow algorithm, and updating the face model. They
also used this bootstrapping algorithm to build a 3D morphable face model (Blanz and Vetter,
1999). Their bootstrapping algorithmworks well in case of input data with constant properties,
but fails when input data is incomplete and when the optic flow algorithm fails. To bootstrap
the 3D morphable face model with more general face data, (Basso et al., 2006) added a
smoothness term to regularize the positions of the vertices where the optic flow correspondence
is unreliable. In case a 3D morphable face model is not yet available, a reference face can be
used as an approximation instead, which is a major advantage.
Amberg et al. (2007) proposed a non rigid ICP algorithm to establish dense correspondences

between a reference face and face scans, but they need an initial rigid transformation for the
reference face on the basis of 14 manually selected landmarks. Afterwards, the reference face
and the fitted face instances can be used to construct a new morphable face model.
Basso and Verri (2007) fit the morphable face model to scan data using implicit represen-

tations. They also use multiple components and blend the implicit functions at the borders of
components, but they lose the full point-to-point correspondence in the process. So the fitted
examples cannot be added to the morphable model.
Huang et al. (2006) proposed a global-to-local deformation framework to deform a shape

with an arbitrary dimension (2D, 3D or higher) to a new shape of the same class. Their method
also operates in the space of implicit surfaces, but uses a non statistical deformation model.
They show their framework’s applicability to 3D faces, for which they deform an incomplete
source face to a target face.
The use of multiple components has been used by to improve the face model fitting by Blanz

and Vetter (1999) and for face recognition purposes by Blanz and Vetter (2003), but, so far,
the resulting face instances were not accurate enough to be incorporated in the statistic model.
The explicit point-to-point correspondences of the fitted face instance and the statistical model
had to be established by techniques on the basis of optic flow or non rigid ICP.
In this chapter, a set of predefined face components was used to increase the descriptiveness

of a 3D morphable face model. With the use of multiple components, a tighter fit of the
face model was obtained and higher recognition rates were achieved. However, by fitting
each component individually, components started to intersect, move apart, or move across. So,
afterwards the full point-to-point correspondences between the morphable model and the fitted
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instance were distorted. The post processing method to blend the borders of the components
introduces a new set of surface samples without correspondence to the model either.
We present a new bootstrapping algorithm that can be applied to general 3D face data. Our

algorithm automatically detects if a new face scan cannot be sufficiently modeled, establishes
full correspondence between the face scan and the model, and enhances the model with this
new face data. Without the use of unreliable optic flow (Basso et al., 2006) or semi-automatic
non rigid ICP (Amberg et al., 2007), we are able to bootstrap the 3Dmorphable facemodel with
highly accurate face instances. As a proof of concept, we (1) fit the initial morphable facemodel
to several 3D face scans using multiple components, (2) blend the components at the borders
such that accurate point-to-point correspondences with the model are established, (3) add the
fitted face instances to the morphable model, and (4) fit the enhanced morphable model to the
scan data as one single component. In the end, we compare each single component fit obtained
with the enhanced morphable model to the single component fit obtained with the initial
morphable model. Qualitative and quantitative evaluation shows that the new face instances
have accurate point-to-point correspondences that can be added to the initial morphable face
model. By comparing the multiple and single component fit, our bootstrapping algorithm
automatically distinguishes between new face data to add and redundant data to reject. This
is important to keep both the model fitting and the face recognition with model coefficients
time-efficient.

4.4.1 Bootstrapping Algorithm

We fit the morphable face model to 3D scan data to acquire full correspondence between
the scan and the model. We crop the morphable face model and lower its resolution so
that n = 12,964 vertices remain for the fitting. We use the new set of correspondences S =
(x1, y1, z1, . . . , xn, yn, zn)T ∈ �3n to automatically bootstrap the model, in order to increase
its expressiveness.
Figure 4.5 shows the changes of the original face model when the weight of the third

eigenvector (w3) is varied. It can be noticed that the model is tilted upwards and downwards.
This variation in one of the first eigenvectors means that the alignment of the 100 sets Si is
not optimal for face identification using model coefficients. To adjust the original model, we
realigned each reduced face shape Si to the mean face S̄ of the morphable model using the
ICP algorithm, and recomputed the PCA model. Visual inspection of our newly constructed
PCA model showed no signs of pose variations.
Themain problem in bootstrapping the 3Dmorphable face model, is that (1) we only want to

add example faces that are not covered by the current model, (2) new example faces suffer from

Figure 4.5 Changingweightw3 {−2,0,+2} causes an unwanted change in the gaze direction. Copyright
C© 2009, IEEE
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noise and missing data, which makes it hard to establish the point-to-point correspondences,
and (3) it should be fully automatic. To establish point-to-point correspondences between
the 3D morphable face model and new face data with noise and missing data, we apply
our model-fitting method described in Section 4.3. This method either fits the model as a
single component or as a set of predefined components. In case the model is fitted as a single
component, the final model fit is in full point-to-point correspondence with the face model, but
adds no additional information to the current face model. In case the model is fitted as a set of
predefined components, this method produces model fits that go beyond the current statistics
of the face model, but the point-to-point correspondence are inaccurate or lost. In this section,
we briefly describe the used model-fitting method, then we explain our algorithm to establish
dense point-to-point correspondences between the multiple component fits and the morphable
face model, and finally, we explain how the bootstrapping algorithm can distinguish between
new face data to add to the model and redundant data to reject.

Model Fitting

The morphable face model that we use (see Section 4.4) has m = 99 coefficients that can be
varied to fit the face model to new scan data. To fit the model, we bring a new 3D face scan into
alignment with the 3D face model automatically. First, we automatically normalize the pose of
the face, detect the tip of the nose, and segment the face as described in Section 4.2. Secondly,
we align the face scan to the face model, coarsely by using their nose tips and more accurately
using the ICP algorithm. Then we apply the model-fitting algorithm as described in Section
4.3, using a set of four face components. This model-fitting algorithm iteratively adjusts the m
coefficientswi for each component, such that the verticesmove closer to the vertices of the scan
data. After all components are fitted to the scan data individually, an accurate representation
of the new face Sfine is acquired. Each component can then be described using the set of m
coefficients wi for the eigenvectors of the face model. However, the fitted face instance Sfine
may show artifacts at the borders of these fitted component. Note that we use the same PCA
model for each component, but with a subset of the model’s vertices only.

Correspondence Estimation

After the application of the model-fitting method, most of the face model’s vertices are brought
into correspondence with the face scan, but at the component’s borders these point-to-point
correspondences are less accurate. Only in highly exceptional cases, borders are good enough
to bootstrap the face model with Sfine directly. To resolve the artifacts at the borders of the
individually fitted components, we use their sets of m coefficients wi that were used to obtain
each component. In fact, each set of coefficients can be used to acquire a full face instance of
which the component is simply a predefined subset of vertices. We refer to such a full face
instance as Scomp. Because we fitted a set of c = 4 components, we have c = 4 face instances
Scomp. So the face instance Sfine is basically a composition of the c intermediate face instances
(Fig. 4.6). To blend the c components, we blend the vertices of the c face instances. In this
process, the goal is to determine for each vertex in Sfine a new position, such that it has a
smooth transition to its neighboring vertices. Once we reach this state, we refer to this final
face instance as Sfinal.
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Figure 4.6 Model Fitting. Four face instances Scomp, are constructed during the model-fitting process
each with the focus on a smaller subset of vertices. The composition of these components provides an
accurate fit. Copyright C© 2009, IEEE

Because components can overlap more than several millimeters, Laplacian smoothing of
the vertices at the borders would not suffice. The selection of a larger region of triangles
and vertices to smooth causes a non statistical shape deformation and local features may not
be preserved. In particular, the places were three or more components overlap, it is hard to
regularize the vertex positions using smoothing techniques. Surface stitching techniques as
by Turk and Levoy (1994) could be applied to stitch the components, but this would distort
the point-to-point correspondences. Mesh fairing using Gaussian curvatures, as done by Zhao
and Xu (2006) for instance, could smooth some of the border triangles properly. However,
these techniques focus on the preservation of sharp features, whereas we want to remove sharp
creases caused by overlapping components.
To repair the discontinuities at the borders, we have developed an algorithm that uses the

vertex positions of the intermediate face instances Scomp, local neighborhood properties and the
PCAmodel. Because all instances Scomp were acquiredwith the same PCAmodel, their vertices
are all in full correspondence. In case two connected vertices cause a discontinuity in Sfine, one
can assume that moving each vertex toward the center of mass of its adjacent vertices (as in
Laplacian smoothing) slightly improves on the situation. However, propagating this smoothing
locally causes the border discontinuities to attract well positioned vertices instead of solving
the discontinuity. Propagating such smoothing globally, changes the statistical shape of the
face (Fig. 4.8 h). Instead, we morph each vertex Sfine[vi ] toward its c corresponding positions
Scomp[vi ]. For that we need to (1) detect the local distortions, (2) know which components lie
close to which vertices, (3) have for each vertex a weight for each close by component, and
(4) recompute the vertex positions.
First, to detect the local distortion, we determine for each vertex Sfine[vi ] its maximum

displacement error to one of its c corresponding positions Scomp[vi ], using

mde[vi ] = max
c ∈ comp

(e(Sfine[vi ], Sc[vi ])),

where e(p, q) is the Euclidean distance between two 3D coordinates p and q. When a vertex
has approximately the same 3D position in all face instances Scomp, its displacement error is
small. In that case, we have consensus on its position and thus less need for a repositioning.
Second, close by vertices are selected (Sfine[v j ]) using a sphere of radius r [vi ] around Sfine[vi ],
where radius r [vi ] equals the displacement error times three, r [vi ] = 3 ·mde[vi ]. For a vertex
Sfine[vi ] on a component border, this set of close-by vertices include vertices from different
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Figure 4.7 Repairing inconsistencies at the borders of components. Vertex S0[vi ] is moved toward its
corresponding point S1[vi ] using a weighted voting scheme. Close by vertices in both components S0
and S1 are used to compute the appropriate weight. Copyright C© 2009, IEEE

components. If all close by vertices belong to the same component as the current vertex nothing
will change. Third, each close by vertex Sfine[v j ] adds a weighted vote for the component it
belongs to. This weight decreases linearly with the distance of vertex Sfine[v j ] to Sfine[vi ]. The
maximum weight of one is for the vertex Sfine[vi ] itself, and decreases linearly to zero for
radius r [vi ]. Because components can move away from each other, radius r [vi ] must be at
least two times larger than the maximum displacement error, otherwise nothing changes. In
the end, a vertex next to the border of the two components, has a number of close by vertices
that vote for its own component and a number of close by vertices that vote for the other
component. Then, vertex Sfine[vi ] is morphed toward its corresponding position Scomp[vi ] in
the other component according to these weighted votes. For example, if a vertex (weighted
vote of 1) has four close by vertices with weighted votes of 0.25 of which two vertices lie on
an other component Scomp, then we have a 3-to-1 vote, and vertex Sfine[vi ] if morphed for 25%
toward Scomp[vi ]. Another example in 2D is shown in Figure 4.7. In case close by vertices
belong to three or more components, the vertex Sfine[vi ] is morphed to three or more different
positions Scomp[vi ].
Thisweighted voting scheme for the local geometry of a face instance Sfine, results in a proper

blending of the components. Because the overall topology of the face instance is retained, and
the problematic vertices and their local neighborhood are assigned to new positions, the
adjusted face instance Sfine is now in full correspondence with the face model. Figure 4.8,
shows the multiple component fit Sfine on the basis of four components Scomp (two are shown),
the displacement errors, the blending, and the final result Sfinal.

Redundancy Estimation

After the regularization of the vertex positions, the repaired face instance Sfinal can be added
to the morphable face model. To do so, we can apply the ICP algorithm to finely align Sfinal to
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.8 Correspondence estimation. By individually fitting components (b,c) to scan data (a),
artifacts may occur at the borders of Sfine (d). The maximum displacement error (r in mm) for a vertex is
an indication of the local mesh distortion (e), toward purple/black means a higher distortion. Using this
error, surrounding vertices are selected that all contribute to the voting for a new position of the vertex.
After the voting, each vertex is repositioned on the basis of the weighted votes for close by components
(f). The final model fit Sfinal (g) presents smooth transitions between the different components. Five
iterations of Laplacian smoothing (h) was not enough to repair the artifact close to the eyebrow whereas
the face already lost most of its detail. Copyright C© 2009, IEEE

the mean face S̄ of the morphable model and include it in the example set of 3D faces from
which the morphable face model was built. Then, we can recompute the PCA model using
100+k example faces, and keep the m + k principal eigenvectors and eigenvalues of the face
(see Section 4.4). This way the face properties of a new example face can be added to the
statistical face model. With this enhanced model, we should be able to produce accurate model
fits with only a single component to face scans similar to those k example scans. In the end,
each face scan can be described using m + k model coefficients, and face identification can
be performed on the basis of such a m + k feature vector.
The addition of k extra example faces to the current face model, causes an increase of

computation costs for both the model-fitting and face identification method. So, it is important
not to add example faces that are already covered in the current morphable face model.
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Figure 4.9 Redundancy estimation. From left to right, the face scan, Ssingle, the residual errors of Ssingle,
Smult, the residual errors of Smult, and the color map for the point-to-point distances (in mm). Copyright
C© 2009, IEEE

Therefore, we estimate the redundancy of encountered example data. First, the morphable
face model is fitted as a single face component to the 3D scan data, which we refer to as Ssingle.
Second, we fit the morphable face model using multiple face components with the improved
correspondence estimation described earlier, Smult. After the model-fitting process, a residual
error between the vertices of the model fit and the scan data remains. The difference of the
two residual errors of Ssingle and Smult, can be used to estimate the redundancy of the new face
scan. In case the residual error of Ssingle is significantly larger than that of Smult, then the face
scan is most likely not contained in the current morphable face model, and we should add Smult
to the model.
To compute the residual error of these model fits we use the RMS distance of closest point

pairs,

drms(S, scan) =
√√√√1

n

n∑
i=1

emin(pi , scan)2 (4.3)

using all n vertices of Ssingle and Smult. Closest point pairs (p,p′) for which p′ belongs to the
boundary (including holes) of the face scan, are not used in the distance measure. Figure 4.9
shows for one face scan, the two model fits and their residual error maps. For this example the
RMS error for Ssingle is 0.89 mm and for Smult 0.68 mm.

4.4.2 Results

We fit the morphable face model to 3D scan data from the UND (Chang et al., 2005), GAVAB
(Moreno and Sanchez, 2004), BU-3DFE (Yin et al., 2006), Dutch CAESAR-survey (2008),
and our local data set. From all except the UND set, we randomly select four scans, giving
a first test set of 16 scans. These scans vary in pose, facial expression, resolution, accuracy,
and coverage. This set of 16 face scans is used to test our bootstrapping algorithm. To test
the automatic redundancy check, we use a subset of 277 face scans from the UND data set,
namely the first scan of each new subject. To acquire the 3D face data from the scans, we
apply the face pose normalization and face segmentation methods described in Section 4.2).
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To elaborate on the performance of our bootstrapping algorithm, we applied it to the data
set of 16 different face scans and to the subset of 277 UND scans. The small set is used to
evaluate the model-fitting and correspondence estimation algorithm. The UND set is used to
test the redundancy estimation.

Correspondence Estimation

To evaluate the correspondence estimation, we compare the residual errors of fitted face
instances. First, we fit the initial morphable face model as a single component to the segmented
face data Ssingle. Second, we fit the initial model to the segmented face data using the four
components and blend their borders. Third, we add these 16 face instances Smult to the example
set and recompute the PCA model, keeping the m = 99 principal components of the face.
Finally, we fit the enhanced morphable face model to the same segmented face data using a
single component S+

single.
In Table 4.3, we report the residual errors of the fitted face instances. We use these errors

for quantitative evaluation of the produced fits. For all face scans, Smult has a lower residual
error than Ssingle, which means that a higher fitting accuracy is achieved with the use of
multiple components in combination with the improved correspondence estimation. After the
model was enhanced with the 16 face instances Smult, the model was again fitted as a single
component to the 16 face scans. Now, all residual errors are lower for S+

single than they were for
Ssingle, which means that our bootstrapping algorithm successfully enhanced the morphable
face model. For one face scan, the face instance S+

single is even more accurate than Smult. This is

Table 4.3 RMS errors (mm) of output models to input scans. The model fits with the smallest and
largest difference in residual errors (bold) are show in Figure 4.10

Data set Ssingle Smult S+
single Ssingle − Smult S+

single − Smult

GAVAB 1.36 1.24 1.27 0.13 0.04
GAVAB 1.34 1.16 1.19 0.18 0.03
GAVAB 2.04 1.59 1.56 0.45 −0.03
GAVAB 1.32 1.16 1.19 0.17 0.03

BU-3DFE 1.18 1.01 1.02 0.18 0.02
BU-3DFE 1.28 1.12 1.15 0.16 0.03
BU-3DFE 1.06 0.96 0.96 0.10 0.00
BU-3DFE 1.61 1.40 1.49 0.21 0.09

local 0.70 0.55 0.58 0.15 0.03
local 0.89 0.68 0.69 0.21 0.01
local 0.79 0.62 0.67 0.17 0.05
local 0.69 0.55 0.58 0.14 0.04

CAESAR 1.86 1.77 1.80 0.09 0.03
CAESAR 1.88 1.77 1.78 0.11 0.01
CAESAR 1.81 1.74 1.77 0.07 0.03
CAESAR 1.80 1.75 1.78 0.05 0.03
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possible, because we enhanced the model with the facial variety of 16 faces at once. We expect
that the residual errors of S+

single can be lowered further, by iterating the process of (1) fitting
the enhanced model using multiple components, (2) replacing the 16 face instances S+

mult, and
(3) building a new PCA model. In fact, we tried it for the face scan in Figure 4.9 and lowered
its RMS distance for Smult (0.68 mm) and S+

single (0.69 mm) to 0.64 mm for S+
mult. So, iteratively

replacing the 16 instances of the enhanced model with their improved instances S+
mult, will

probably help to some extend. Note that the residual errors are lowest for our local set, which
contains the highest resolution scans, and the highest errors for the low resolution CAESAR
faces. This is as a result of the RMS distance that measures point-to-point distances. Because
we are interested in the difference between residual errors, this works fine, otherwise, one
could use a surface mesh comparison tool instead. In previous experiments, we used metro
Cignoni et al. (1998) for that.
In Figure 4.10, we show some of the resulting model fits and their distance maps acquired

with our bootstrapping algorithm. In this figure,we show the two faces per data set that achieved
the smallest and largest difference in residual errors in the same order as in Table 4.3. Visual
inspections of the fittedmodels shows an improved single component fit of the enhancedmodel
to the scan data (S+

single), compared with the single component fit using the initial morphable
model (Ssingle). This can be seen in the residual error maps as well. That the bootstrapping
algorithm successfully incorporated the 16 face scans in themorphable facemodel, can be seen
by face instances Smult and S+

single, which are very similar. The initial morphable face model
consisted of neutral expression scans only. Nevertheless, the use of multiple components
allows for correspondence estimation among some expression data as well.

Redundancy Estimation

To distinguish between new and redundant face data, we computed the residual errors for face
instances Ssingle and Smult using the RMS distance measure. In Table 4.3, we reported the RMS
errors for our set of 16 faces. These differences in RMS error for Ssingle − Smult vary between
0.05 and 0.45. The maximum difference of 0.45 was achieved for the sad looking person on
row four in Figure 4.10. With the use of a threshold t for the difference in RMS error, we
decide whether a face is redundant or new. On the basis of the visual inspection of the faces in
Figure 4.10, we decided to select t = 0.17 for our experiments. In case the RMS difference is
higher than t , we consider a face to be new and otherwise as redundant. With this threshold,
we classify only the faces in row two, four, and five as being new.
We applied our bootstrapping algorithm to the 277 UND scans, and let our algorithm

automatically select potential faces to add to the model, without actually adding them. This
way we can see which face scans (persons) are new to the model. For these persons, we
may assume a difficulty in identifying them, because a coefficient-based recognition system
may confuse that person with a different person that has those coefficients. Out of the 277
UND scans, 35 scans were found as being new to the system, that is, having a decrease in
RMS error of Ssingle − Smult higher than threshold t . Some of these produced fits are shown in
Figure 4.11. Most of the selected faces have indeed new face features and should be added to
the morphable face model. However, some of the faces that are covered by facial hair produce
less reliable fits. To improve on these fits, one could apply a skin detection algorithm and
remove the hair beforehand.
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Figure 4.10 Automatic correspondence estimation. From left to right, the segmented and pose normal-
ized faces, the single component fit Ssingle, its distance map, the multiple component fit Smult, its distance
map, and the single component fit S+

single with its distance map. Faces in rows two, four, and five were
selected as being new to the model. Copyright C© 2009, IEEE
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Figure 4.11 Automatic bootstrapping and redundancy estimation. From left to right, the segmented
and pose normalized faces, the single component fit Ssingle, its distance map, and the multiple component
fit Smult with its distance map. The instances Smult were automatically selected as being new
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4.5 Face Matching

Our model-fitting algorithm determines a set of model coefficients that morphs the mean face
to a clean model instance that resembles the 3D face scan. On the basis of this model instance,
we use three different methods to perform face matching. Two methods use the newly created
3D geometry as input, namely the landmarks-based and contour-based methods. The third
method uses the model coefficients as a feature vector to describe the generated face instance.

4.5.1 Comparison

Landmarks. All vertices of two different instances of the morphable model are assumed to
have a one-to-one correspondence. Assuming that facial landmarks such as the tip of the nose
and corners of the eyes are morphed toward the correct position in the scan data, we can use
them to match two 3D faces. So, we assigned 15 anthropometric landmarks to the mean face
and obtain their new locations by fitting the model to the scan data. To match two faces A and
B we use the sets of c = 15 corresponding landmark locations:

dcorr(A, B) =
c∑

i=1
dp(ai , bi ), (4.4)

where distance dp between two correspondencesai and bi is the squared difference inEuclidean
distance e to the nose tip landmark pnt

dp(ai , bi ) = (e(ai , pnt )− e(bi , pnt ))
2. (4.5)

Contour curves. Another approach is to fit the model to scans A and B and use the new
clean geometry as input for a more complex 3D face recognition method. To perform 3D
face recognition, we extract from each fitted face instance three 3D facial contour curves, and
match only these curves to find similar faces, see ter Haar and Veltkamp (2009).

Model coefficients. The iterative model-fitting process determines an optimal weight wi for
each of the m eigenvectors. These weights, or model coefficients, multiplied by σ describe a
path along the linearly independent eigenvectors through the m dimensional face space. For
two similar scans one can assume these paths are alike, which means that the set of m model
coefficients can be used as a feature vector for face matching.
In the case of multiple components, each component has its own set ofm model coefficients.

Blanz et al. (2007) simply concatenated sets of model coefficients into a single coefficient
vector. Here, we also concatenate the coefficient vectors of multiple components. To determine
the similarity of faces with these coefficient vectors, we use four distance measures, namely
the L1 and L2 distance before and after normalizing the vector’s length. Amberg et al. (2008)
assume that caricatures of an identity lie on a vector from the origin to any identity and use
the angle between two coefficient vectors as a distance measure. Normalizing the length of
the coefficient vectors and computing the L2 distance has this same effect and results in the
same ranking of retrieved faces.
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4.5.2 Results

We can use the morphed face instances to perform 3D face recognition. For this experiment,
we computed the 953 × 953, 244 × 244, and 700 × 700 dissimilarity matrices and sorted the
ranked lists of face models on decreasing similarity. From these ranked lists, we computed the
recognition rate (RR), the mean average precision (MAP) and the verification rate at 0.1% false
acceptance rate (VR@0.1%FAR).Aperson is recognized (or identified)when the face retrieved
on top of the ranked list (excluding the query) belongs to the same subject as the query. For 77
subjects in the UND set only a single face instance is available which cannot be identified, so
for this set the RR is based on the remaining 876 queries. The mean average precision (MAP)
of the ranked lists are also reported, to elaborate on the retrieval of all relevant faces, that is, all
faces from the same subject. Instead of focusing on 3D face retrieval application, one could use
3D face matching for imposter detection as well. For an imposter/client detection system, all
face matches with a dissimilarity above a carefully selected threshold are rejected. Lowering
this threshold means that more imposters are successfully rejected, but also that less clients
are accepted. We use the dissimilarity threshold at which the false acceptance rate is 0.1%,
which is also used in the face recognition vendor test. Because the VR@0.1%FAR depends
on similarity values, it is not only important to have relevant faces on top of the ranked lists,
but also that their similarity values are alike and differ from irrelevant faces.
Because the VR@0.1%FAR evaluation measure depends on the acquired similarity values,

there are several ways to influence this measure. Rank aggregation with the use of Consensus
Voting or Borda Count (Faltemier et al., 2008), for instance, reassigns similarity values on
the basis of the ranking. This way one can abstract from the actual similarity values, which
allows for the selection of a different imposter threshold and change the VR@0.1%FAR. Of
course, a rank-based threshold cannot be used in case of a one-to-one face matching, that is, a
scenario in which someone’s identity must be confirmed or rejected. The application domain
for rank-based measures is the one-to-many face matching, that is, a scenario in which we
search for the most similar face in a large database.
In case of the face matching based on model coefficients, we assume that caricatures of

an identity lie on a vector from the origin to any identity. If we normalize the lengths of
these vectors, we neglect the caricatures and focus on the identity. This normalization step
also regulates the similarity values and thus influences the VR@0.1%FAR. In Table 4.4, we
report the face-matching results on the basis of the L1 and L2 distances between coefficient
vectors, before and after length normalization. Remarkable is the significant increase of the
VR@0.1%FAR for the normalized coefficient vectors, whereas the rankings are similar as
shown by the MAPs. Although we show in Table 4.4 only the results for the face model fitting
using seven components, it also holds for the one and four component case. Because the L1
distance between normalized coefficient vectors slightly outperforms the L2 distance measure,
we use this measure whenever we evaluate the performance of model coefficients.
Face retrieval and verification results based on anthropometric landmarks, contour curves,

andmodel coefficients are shown in Table 4.5. To each set of face scans we fitted themorphable
face model using one, four, and seven components. Each fitted component produces a 99
dimensional model coefficient vector with a different face instance as a result. The performance
of our face matching depends on both the number of components as well as the applied feature
set. The two main observations are that (1) the coefficient-based method outperforms the
landmark- and contour-based methods, and (2) that the use of multiple components can
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Table 4.4 The effect of normalizing coefficient vectors to unit length

Data set measure RR MAP VR@0.1%FAR

UND L1 1.00 0.99 0.94
L2 1.00 0.99 0.94
L1 norm* 1.00 1.00 0.99
L2 norm* 1.00 1.00 0.98

GAVAB L1 0.97 0.91 0.69
L2 0.95 0.90 0.69
L1 norm* 0.97 0.94 0.85
L2 norm* 0.97 0.93 0.84

BU-3DFE L1 0.99 0.90 0.59
L2 0.99 0.88 0.56
L1 norm* 0.98 0.94 0.80
L2 norm* 0.97 0.93 0.78

*A significant increase of the VR@0.1%FAR is achieved bymatching the normalized coefficient vectors.

Table 4.5 Performance measures based on landmarks, contour curves, and coefficient vectors for
single and multiple component fits

Data set features model RR MAP VR@0.1%FAR

UND landmarks 1 comp 0.85 0.86 0.71
landmarks 4 comp 0.90 0.89 0.74
landmarks 7 comp 0.89 0.90 0.77
contours 1 comp 0.95 0.94 0.85
contours 4 comp 0.97 0.92 0.98
contours 7 comp 0.98 0.97 0.92
coefficients 1 comp 0.98 0.98 0.95
coefficients 4 comp 1.00 1.00 0.98
coefficients 7 comp 1.00 1.00 0.99

GAVAB landmarks 1 comp 0.72 0.73 0.46
landmarks 4 comp 0.60 0.66 0.38
landmarks 7 comp 0.64 0.67 0.43
contours 1 comp 0.91 0.86 0.67
contours 4 comp 0.82 0.79 0.58
contours 7 comp 0.83 0.80 0.59
coefficients 1 comp 0.96 0.93 0.82
coefficients 4 comp 0.98 0.95 0.88
coefficients 7 comp 0.97 0.94 0.85

BU-3DFE landmarks 1 comp 0.61 0.49 0.27
landmarks 4 comp 0.63 0.50 0.28
landmarks 7 comp 0.66 0.54 0.31
contours 1 comp 0.84 0.66 0.43
contours 4 comp 0.88 0.67 0.43
contours 7 comp 0.88 0.67 0.44
coefficients 1 comp 0.96 0.88 0.73
coefficients 4 comp 0.98 0.92 0.78
coefficients 7 comp 0.98 0.94 0.80
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improve the performance of 3D face matching. In the next paragraphs, we elaborate on these
observations.
The automatically selected anthropometric landmarks have a reasonable performance on

the UND face scans, but are not reliable enough for effective 3D face matching in the two
other sets. The contours perform well for retrieval and verification purposes in the UND
face set. However, their performance drops significantly for the other two sets, because
the contour curves cannot be effectively used in case of facial deformations. The use of
the model coefficients consistently outperforms both the landmark-based and contour-based
face matching. Besides the difference in performance, the three methods differ in running
time as well. The landmark-based method matches two faces using only 15 coordinates,
whereas the contour-based method matches two faces using 135 coordinates. The coefficient-
based method matches faces using 99 weights times the number of fitted components. So, the
coefficient-based method using four components has approximately the same running time as
the contour-based method.
The observation that multiple (four or seven) components increases the performance of our

face matching holds for all results except the landmark- and contour-based methods in the
GAVAB set. The problemwith this set is that a low quality scan of a person looking up or down
causes artifacts on and around the nose. In such cases a more accurate fit of the face model’s
nose harms, because the performance of landmark- and contour-based methods are heavily
dependent on an accurate selection of the nose tip. Although the face matching improves from
the single to multiple component case, there is no consensus for the four or seven component
case. The use of either four or seven components causes either a marginal increase or decrease
of the evaluation scores. Although face matching with the use of 1000 model coefficients is
usually referred to as time efficient, one could argue for the use four components instead of
seven, because the number of coefficients is smaller.

Comparison. Blanz et al. (2007) achieved a 96% RR for 150 queries in a set of 150 faces
(from the FRGC v.1). To determine the similarity of two face instances, they computed the
scalar product of the 1000 obtained model coefficients. In this chapter, we achieved 98% RR
on the UND set using the three selected contour curves, and 100% RR with the use of our
model coefficients.

4.6 Concluding Remarks

Where other methods need manual initialization, we presented a fully automatic 3D face
morphing method that produces a fast and accurate fit for the morphable face model to 3D
scan data. On the basis of a global-to-local fitting scheme the face model is coarsely fitted to
the automatically segmented 3D face scan. After the coarse fitting, the face model is either
finely fitted as a single component or as a set of individual components. Inconsistencies at the
borders are resolved using an easy to implement post processing method. Results show that
the use of multiple components produces a tighter fit of the face model to the face scan, but
assigned anthropometric landmarks may lose their reliability for 3D face identification.
We also presented a method for establishing accurate correspondences among 3D face

scans. With the use of an initial morphable face model and a set of predefined components,
we are able to produce accurate model fits to 3D face data with noise and holes. Afterwards,
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the components still have defects on their border, for which we presented a new blending
technique that retains the full correspondence between the face instance and the morphable
model. These newly generated face instances can be added to the example set from which a
new and enhanced morphable model can be built. We tested our fully automatic bootstrapping
algorithm on a set of 16 new face scans, to show that the new morphable face model has
indeed an enhanced expressiveness. By adding data to an initial morphable face model, we can
fit the model to face scans of a larger population and reduce the confusion among identities.
Therefore, the building of a strongmorphable face model is essential for the difficult task of 3D
face recognition. However, adding data to a morphable model increases the computation costs
for both model fitting and face comparison. Therefore, we developed an automatic redundancy
check, which discriminates between new face data to add to the model and redundant face
data to reject. On the basis of the initial 16 scans, we selected a residual error threshold for the
automatic redundancy check. Then, we applied our bootstrapping algorithm to 277UND scans.
Our bootstrapping algorithm successfully established full correspondence between these scans
and the initial morphable model, and selected 35 persons that were new to the model.
With our new bootstrapping algorithm, we are able to successfully update an initial face

model, which we use to produce more accurate fits to new scan data. The algorithm is fully
automatic, reuses initial face statistics, checks for redundancy, and retains the full correspon-
dence even in case of noisy scan data with holes. The algorithm successfully enhances the
neutral morphable face model with new (close to) neutral face scans. It should also apply to,
for instance, a surprised face model and surprised scans, but not to a neutral face model and
surprised scans. To establish correspondences among face scans with different expressions,
new automatic algorithms are required.
Face matching using facial contours shows higher recognition rates on the basis the multiple

component fits than for the single component fits. This means that the obtained 3D geometry
after fitting multiple components has a higher accuracy. Our face modeling approach in
combination with the three selected contour curves achieves 98% RR on the UND set. The
obtained model coefficient that were used to produce the accurate face instances, turned out
to have the highest performance. With the use of four components, we achieve 100% correct
identification for 876 queries in the UND face set, 98% for 244 queries in the GAVAB face
set, and 98% for 700 queries in the BU-3DFE face set. These high recognition rates based
on normalized coefficient vectors proves that our model-fitting method successfully fits the
morphable face model consistently to scan data with varying poses and expressions.

Exercises

1. The pose normalization based on fitting a coarse nose template fails when a scan is made
from the side (such that half the nose is occluded), or when the scanning range is not right
(such that the nose is not scanned). (a) Think of a way to detect such cases. (b) Develop an
alternative way for pose normalization that does not suffer from such cases.

2. When a morphable model is fitted to a frontal face scan, the resulting weight values are
not well commensurable to the weight values resulting from fitting a morphable model to
a side face scan. Invent a strategy to cope with this situation.
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3. Design an experiment to evaluate the effect of different distance measures between two
vectors of model-fitting weights.

4. How would you place landmarks to build a morphable model that is suitable for fitting to
faces that show surprise, or bitterness?
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5.1 Introduction

In the previous chapters, techniques that can effectively represent the surface of 3D face scans
to perform face analysis were presented. These techniques were mainly developed to perform
face identification and verification to enable provison of complementary and/or alternative
solutions with respect to traditional 2D approaches. In fact, a lot of research effort has been
invested on this topic in the last few years, resulting in the development of many different
techniques that help obtain very high recognition accuracy on benchmark data sets. However,
as 3D face recognition methods become more robust, effective, and efficient, new tasks are
emerging where 3D techniques can be usefully applied.
The main objective of this last chapter of the book is to give an overview of emerging

3D face processing applications and new trends of research interest. In particular, in the next
sections of the chapter, first an overview of the 3D face databases that are released for public
use are presented, evidencing their main characteristics in terms of expression variations, pose
changes, presence of occlusions (Section 5.2), then different applicative scenarios will be
presented, as follows:

• In Section 5.3, state-of-the-art methods for 3D facial recognition are reviewed and discussed.
• In Section 5.3.3, the challenges related to face recognition using 3D scans with non-frontal
pose, missing parts, and occlusions are discussed, and methods that address this applicative
scenario are reviewed. More insights are given for two of these methods.

3D Face Modeling, Analysis and Recognition, First Edition.
Edited by Mohamed Daoudi, Anuj Srivastava and Remco Veltkamp.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.
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Table 5.1 3D face data sets for 3D face recognition

Number of Total Missing
Database Sensor subjects scans data Occlusions

FRGC v1.0 laser 275 943 No No
FRGC v2.0 laser 466 4007 Yes No
GAVAB laser 61 549 Yes Yes
Bosphorus structured light 105 4652 Yes Yes

• In Section 5.4, state-of-the-art methods for facial expression recognition are reviewed,
and two specific solutions are then discussed in more detail. A semi-automatic approach
that requires manual intervention, and a fully automatic solution that performs expression
recognition without any human intervention. In this section, the new challenges posed by the
analysis of 3D dynamic face sequences for the purpose of facial expression recognition are
also addressed, and a recent method giving effective solution to this problem is presented.

5.2 3D Face Databases

In the last few years, several 3D face databases have been made publicly available for test-
ing algorithms that use 3D data to perform face modeling, analysis, and recognition. These
databases have progressively included face scans of subjects that exhibit non-neutral facial
expressions and nonfrontal poses. Table 5.1, reports the more general data sets that are cur-
rently available for the task of 3D face recognition. For each data set information about the
sensor used during acquisition, the total number of involved subjects and scans are reported,
together with notes about the presence of scans with missing parts or occlusions.
Table 5.2 summarizes the characteristics of some of the most known and used 3D face

databases that include subjects with non-neutral expressions.
Some data sets have specific characteristics to perform facial expression classification (see

Table 5.3). In this case, it is relevant that the number of expressions labeled in the data set and
that constitute the ground truth for the purpose of expression recognition. Among these data
sets, those constructed at the Binghamton University (BU-3DFE database) (Yin et al., 2006)

Table 5.2 Main characteristics of the most used 3D face databases that include non-neutral facial
acquisitions

Data set Subjects Scans Expressions Pose

FRGC v2.0 466 4007 not categorized – disgust, happiness
sadness, surprise

small changes

GAVAB 61 549 smile, laugh, random up, down, left, right
BU-3DFE 100 2500 anger, disgust, fear happiness,

sadness, surprise
frontal

Bosphorus 105 4666 action units, anger, disgust fear,
happiness, sadness, surprise

13 yaw and pitch rotations
hand, eyeglasses
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Table 5.3 3D static and dynamic (3D+time) face data sets for 3D facial expressions recognition

Database Format Subjects Scans Expressions Image Resolution Year

BU-3DFE static 100 2500 7 Color 1040 × 1329 2006
Bosphorus static 105 4666 6 Color 1600 × 1200 2008
ZJU-3DFE static 40 360 4 Color – 2006
ADSIP dynamic 10 210 7 Color 601 × 549 2009
BU-4DFE dynamic 101 606 6 Color 1024 × 681 2008
Hi4D-ADSIP dynamic 80 3360 14 Color 1024 × 1728 2011

and at the Boğaziçi University (Bosphorus database) (Savran et al., 2008), have contributed to
push the research on 3D facial expression recognition and classification. Recently, some 4D
databases that include dynamic sequences of 3D scans along the time have been also released
for public use (Matuszewski et al., 2011, 2012; Yin et al., 2008). These 4D data are mainly
intended for studying facial expressions which are intrinsically related to the time variation of
the face.
More details on the individual data sets are reported in the following paragraphs, starting

with 3D static data sets and then presenting the most recent 4D dynamic data sets.

The Face Recognition Grand Challenge (FRGC) database

The Face Recognition Grand Challenge version 2.0 (FRGC v2.0) database (Phillips et al.,
2005) is the largest 3D database in terms of subjects enrolled and the most widely used in
order to compare methods for 3D face recognition. However, it does not provide categorized
facial expressions; hence it is less useful for the purpose of 3D facial expression recognition.
It includes 3D face scans partitioned in three sets, namely, Spring2003 set (943 scans of 275
individuals), Fall2003 and Spring2004 (4007 scans of 466 subjects in total). The Spring2003
set is also referred to as FRGC v1.0 an is used for training, set up, and tuning of methods,
whereas the Fall2003 and Spring2004 are referred to as FRGC v2.0 and are used for testing.
Face scans are given as matrices of points of size 480× 640, with a binary mask indicating
the valid points of the face. Because of different distances of the subjects from the sensor
during acquisition, the actual number of points representing a face can vary. Individuals have
been acquired with frontal view from the shoulder level, with very small pose variations.
About 60 percent of the faces have neutral expression, and the others show expressions of
disgust, happiness, sadness, and surprise. In particular, according to a classification originally
performed at Geometrix (Maurer et al., 2005) and subsequently suggested by the FRGC
organizers, there are 2,469 neutral expression scans, 796 small cooperative expression scans,
and 742 large non-cooperative expression scans. Some scans have also occlusions because of
hair. Guidelines suggest using the Spring2003 set for training and the remaining two sets for
validation.
It is also interesting to note that a 2D color image of the subject is also provided for each

3D scan. In fact, acquisitions are performed using the Minolta Vivid 910 laser scanner that
permits a 2D color image capturing at the same time of the 3D acquisition (actually, the 2D
image is acquired just with a very short time delay, because different sensors are used for 2D
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2D acquisition3D acquisition

Figure 5.1 FRGC database: 3D and 2D sample data for the subject with id = 02463 are reported. It
can be observed as the 3D and 2D acquisitions are registered and both provided with a set of 480× 640
points/pixels

and 3D acquisitions). Figure 5.1 shows the 3D and 2D data for the gallery scan of a sample
subject. The database can be summarized as follows:

• Pros—largest number of subjects and very high number of scans; textured images; most
used for competitive evaluation; used for the FRGC contest in 2005/2006

• Cons—small/moderate facial expressions; expressions not categorized; some images have
small misalignment between 3D and 2D data

The GAVAB Database (GAVAB)

The Grupo de Algorı́tmica para la Visión Artificial y la Biometrı́a database (GAVAB DB)
(Moreno and Sánchez, 2004a) is characterized by facial scans with very large pose and expres-
sion variations and acquisition. It includes 3D face scans of 61 adult Caucasian individuals (45
males and 16 females). For each individual, nine scans are taken that differ in the acquisition
viewpoint and facial expressions, resulting in a total of 549 facial scans. In particular, for each
individual, there are two frontal face scans with neutral expression, two face scans where
the subject is acquired with a rotated posture of the face (around ±35◦ looking up or looking
down) and neutral facial expression, and three frontal scans in which the person laughs, smiles,
or shows a random expression. Finally, there are also a right and a left side scan each nominally
acquired with a rotation of ±90◦ left and right. This results in about 67% of the scans that
have a neutral expression, but just 22% that have neutral expression and frontal pose.
Modified scans of this database have been used as data for the SHREC 2008 Shape Retrieval

Contest of 3D Face Scans (Daoudi et al., 2008) and to test face recognition accuracy as well
as to test recognition performance in the case parts of the face scans are missing (Drira et al.,
2010; Huang et al., 2012). As an example, Figure 5.2 shows one 3D neutral scan and the left
and right scans of a sample subject. In summary, the main features of the database are:

• Pros—accentuated facial expressions; pose variations (left/right, up/down)
• Cons—few subjects (61); small number of scans (549); large artifacts and noisy acquisitions;
no-texture images
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right sideleft sidefrontal

Figure 5.2 GAVAB database: For a sample subject, the frontal scan and the two side scans are reported.
For the side scans, the given acquisition as provided in the database and its normalized counterpart are
shown so as to better evidence the extent of the missing parts of the face

The Binghamton University 3D Facial Expression (BU-3DFE) Database

The BU-3DFE database was recently constructed at Binghamton University (Yin et al., 2006).
It was designed to provide 3D facial scans of a population of different subjects, each showing a
set of prototypical emotional states at various levels of intensities. A total of 100 subjects exist
in the database, divided between female (56 subjects) and male (44 subjects). The subjects
are well distributed across different ethnic groups or racial ancestries, includingWhite, Black,
East-Asian, Middle-East Asian, Latino-Americans, and others. During the acquisition, each
subject was asked to perform the six basic facial expressions defined by Ekman, namely,
anger (AN), disgust (DI), fear (FE), happiness (HA), sadness (SA), and surprise (SU), plus
the neutral (NE). Each facial expression has four levels of intensity—low, middle, high and
highest—except the neutral facial expression. Thus, there are 25 3D facial expression scans
for each subject, resulting in 2500 3D facial expression scans in the database. As an example,
Figure 5.3 shows the 3D faces of sample subject for the happiness expression (four levels of
intensity) and the neutral expression.
Each of the 3D facial expression scan is also associated with a raw 3D face mesh, a cropped

3D face mesh, a set of 83 manually annotated facial landmarks, and a facial pose vector.
These data give a complete 3D description of a face under a specific facial expression. The
cropped and textured 3D face scan, and the 83 facial landmarks are shown in Figure 5.4a.

neutral happiness

low medium highesthigh

Figure 5.3 BU-3DFE database: 3D textured face scans of a sample subject showing the happiness
facial expression at the four levels of intensity (from highest to low) plus the neutral expression
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#pointsface region

right eye 8
left eye 8
right eyebrow 10
left eyebrow 10
nose 12
mouth 20
face boundary 15

(b)(a)

Figure 5.4 BU-3DFE database: (a) the 83 facial landmarks evidenced on a textured 3D face scan with
neutral expression; (b) the number of manually identified landmarks for different regions of the face.
Copyright C© 2011, Springer

As summarized in Figure 5.4b, the landmarks are distributed in correspondence to the most
distinguishing traits of the face, that is, eyes, eyebrows, nose, andmouth (plus some landmarks
on the face boundary). A more detailed description of the BU-3DFE database can be found in
(Yin et al., 2006).
Finally, we observe that these data are acquired with an ad hoc stereo-camera system that

reconstructs the 3D shape of the face from two different left/right views. In so doing, the two
cameras also acquire two 2D color images of the face with a left/right view of the face. The
characteristics of the BU-3DFE data set can be summarized in the following way:

• Pros—categorized facial expressions; different levels of intensity for each expression; pre-
processed face models; scans with annotated facial landmarks

• Cons—medium number of subjects (100); just frontal pose; 2D color images provided but
from left/right views

The Bosphorus Database

The Bosphorus database was collected at the Boğaziçi University and made available in 2008
(Savran et al., 2008). It consists of the 3D facial scans and images of 105 subjects acquired
under different expressions and various poses and occlusion conditions. Occlusions are given
by hair, eyeglasses, or predefined hand gestures covering one eye or the mouth. Many of the
male subjects also have facial hair (beard and moustache. The majority of the subjects are
Caucasians aged between 25 and 35 years, with a total of 60males and 45 females. The database
includes a total of 4666 face scans, with the subjects categorized into two different classes:

• 34 subjects with up to 31 scans per subject (including 10 expressions, 13 poses, 4 occlusions,
and 4 neutral faces)

• 71 subjects with up to 54 different face scans. Each scan is intended to cover one pose and/or
one expression type, and most of the subjects have only one neutral face, though some of



Applications 155

23 (24)

22
21

20
19 18

15
1413

1
7

2 3
81112

4
9

5
6

10

16
17

#pointsface region

right eye 2
left eye 2
right eyebrow 3
left eyebrow 3
nose 5
mouth 6
face boundary 3

(b)(a)

Figure 5.5 Bosphorus database: (a) the 24 facial landmarks evidenced a face sketch; (b) the number
of manually identified landmarks for different regions of the face

them have two. There are a total of 34 expressions, 13 poses, 4 occlusions, and 1 or 2 neutral
faces. In this set, 29 subjects are professional actors/actresses, the scans of whom provide
more realistic and pronounced expressions.

Each scan has been manually labeled with 24 facial landmarks, such as nose tip, inner eye
corners, provided that they are visible in the given scan. These feature points are summarized
in Figure 5.5.
In Figure 5.6, sample scans for subjects of different gender, ethnicity, and age are

reported. Scans also differ for pose, occlusions, and missing parts (rendering of textured and

Figure 5.6 Bosphorus database: Sample scans are shown with and without texture, and from frontal
and 45◦ yaw views. Some scans also evidence occlusions and missing parts
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non-textured scans are reported). With respect to the other data sets, the characteristics of the
Bosphorus database can be summarized as:

• Pros—categorized facial expressions; facial action units performed by professional actors;
occlusions and pose variations; scans with annotated facial landmarks; 2D images available

• Cons—medium number of subjects (105), but large number of scans (4666)

The Binghamton University 4D Facial Expression (BU-4DFE) Database

To investigate the usability and performance of 3D dynamic facial sequences for facial expres-
sion recognition, a dynamic 3D facial expression database has been created at Binghamton
University (Yin et al., 2008). The Dimensional Imaging’s 3D dynamic capturing system
(Di3D, 2006), has been used to capture a sequence of stereo images and produce the depth
map according to a passive stereo-photogrammetry approach. The range maps are then com-
bined to produce a temporally varying sequence of high-resolution 3D images with an RMS
accuracy of 0.2 mm. At the same time, 2D texture videos of the dynamic 3D models are
also recorded. Each participant (subject) was requested to perform the six prototypic expres-
sions (i.e., anger, disgust, fear, happiness, sadness, and surprise) separately. Each expression
sequence contains neutral expressions in the beginning and the end, so that each expression
was performed gradually from neutral appearance, low intensity, high intensity, and back to
low intensity and neutral. Each 3D sequence captures one expression at a rate of 25 frames
per second and each 3D sequence lasts approximately 4 seconds with about 35,000 vertices
per scan (i.e., 3D frame). The database consists of 101 subjects (58 female and 43 male,
with an age range of 18–45 years old) including 606 3D model sequences with 6 prototypic
expressions and a variety of ethnic/racial ancestries (i.e., 28 Asian, 8 African-American, 3
Hispanic/Latino, and 62 Caucasian). More details on the BU-4DFE can be found in (Yin et al.,
2008). An example of a 3D dynamic facial sequence of a subject with “happy” expression
is shown in Figure 5.7, where 2D frames and 3D frames are reported. From left to right, the
frames illustrate the extent of the facial expression from neutral to the onset, offset, apex, and
neutral intensity of the expression.

High Resolution 4D Database from the Applied Digital Signal and Image Processing
Research Centre (Hi4D-ADSIP)

This data set was acquired at the University of Central Lancashire and released in late 2011
(Matuszewski et al., 2011; 2012). The dynamic facial acquisition system from the Dimensional

Figure 5.7 Examples of 2D and 3D frames of a 3D video from the BU-4DFE data set
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Imaging (Di3D, 2006) was used to acquire 3D facial sequences. The system consists of two
pods with three cameras in each pod, and two floodlights. All six cameras have a high
resolution four megapixel sensor. In each pod, two cameras are used for depth recovery,
whereas the third one captures texture. The maximum recording speed is 60 frames per second.
Each pod generates a range map from its own pair of corresponding stereo images using a
passive stereo-photogrammetry approach and produces a related 3D triangular mesh that
covers approximately half of the facial area. Two 3D meshes from both pods are subsequently
stitched together to forma complete face representationwith anRMS (root-mean-square) target
accuracy of approximately 0.5 mm. The system is able to construct a face model covering
nearly 180◦ field. The participants were asked to perform a number of facial expressions
one after another. Each recorded sequence starts and ends with a neutral facial appearance
and is performed at a specified expression intensity. To reduce the required database storage
space and to simplify time warping between expressions for construction of the common time
reference frame, the participant was asked to complete each expression in less than 10s. For
each sequence, six videos were recorded simultaneously with an image resolution of 2352 ×
1728 pixels per frame. The recorded video sequences include four grayscale sequences for
geometry reconstruction and two color sequences for texture mapping.
Currently there are 80 subjects included in the database. The majority of them, 65, are

undergraduate students from the Performing Arts Department at the University of Central
Lancashire. The rest are undergraduate students, postgraduate students, and members of staff
from other departments of the same university without any specific training in acting. Their
age range is between 18 and 60. The database consists of 48 female and 32 male subjects
from a variety of ethnic origins. Each 3D model in a sequence contains approximately 20,000
vertices. For each recorded facial articulation, the following files are included in the database:
(1) a sequence of OBJ files with associated MTL and texture JPG files for each individual
frame; (2) a video clip; (3) animated GIF files, and (4) text file with 3D position of 84
tracked landmarks. On average, the duration of the sequence showing one of the seven basic
expressions is about 3s long, whereas the durations of the mouth/eyebrow articulations and
phrases reading sequences are 6s and 10s, respectively.

5.3 3D Face Recognition

Because facial biometrics is natural, contactless, and non-intrusive, it emerges as the most
attractive way for identity recognition. Unfortunately, 2D-based face recognition technologies
still face difficult challenges, such as pose variations, changes in lighting conditions, occlu-
sions, and facial expressions. Instead, 3D output from laser scanners is minimally dependent
on the external environmental factors and provides faithful measurements of shapes facial
surfaces. It is the case the only remaining variability that is manifested within the same class
(i.e., within the measurements of the same person) is the one introduced by changes in facial
expressions. In fact, changes induced by facial expressions modify the shapes of facial surfaces
to some extent and introduce a nuisance variability that has to be accounted for in shape-based
3D face recognition. We argue that the variability introduced by facial expressions has become
one of the most important issues in 3D face recognition. The other important issues relate to
data collection and imperfections introduced in that process. It is difficult to obtain a pris-
tine, continuous facial surface, or a mesh representing such a surface, with the current laser
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technology. One typically gets holes in the scanned data in locations of eyes, lips, and outside
regions. For instance, scans of people with open mouths result in holes in the mouth region.
Moreover, when the subject is noncooperative and the acquisition phase is unconstrained, these
result in variation in pose and unforeseen extraneous occlusions. Many studies have treated
pose and expression variations, but only a few have tried to focus on solving the problem of
occlusions even if a face can easily be partially hidden by objects like glasses, hats, scarves,
or a hand, hair, and beard. Occluded parts represent wrong information, which can degrade
recognition accuracy, so locating and removing occlusions on face quickly and automatically
are challenging tasks.
In the biometrics literature, recognition is a general termwhich includes: (1) face verification

(or authentication) and (2) face identification (or recognition).

• Face verification (“Am I who I say I am?”) is one-to-one match that compares a query
face image against a template face image whose identity is being claimed. To evaluate the
verification performance, the verification rate (the rate at which legitimate users are granted)
versus false accept rate (the rate at which imposters are granted access) is plotted, called the
receiver operating characteristic (ROC) curve.

• Face identification (“Who am I?”) is one-to-many matching process that compares query
face image against all the template images in a face database to determine the identity of the
query face. The identification of the test image is done by locating the image in the database
that has the highest similarity with the test image. To evaluate identification performance the
cumulative matching characteristic (CMC) curve is used. This curve displays the cumulative
identification rates as a function of the rank distribution. This provides an indication of how
close one may be to getting the correct match if the rank-one match was incorrect.

One application of the verification task is access control where an authorized individual is
seeking access to a secure facility and presents to the system his or her identity. Here, a one-
to-one matching is performed: The 3D image for this individual is acquired, preprocessed, and
finally compared with an enrollment acquisition already incorporated in the system database.
If the similarity is greater than a defined threshold, the subject is granted access, otherwise
access is denied.
The classic application of the identification task is for identify the presence of suspect

people in database of recorded identity. In this case the one-to-many matching is performed
by first acquiring the 3D image of the individual, then preprocessing the scan to enhance the
quality and extract appropriate shape descriptors and finally comparing against a gallery of
already enrolled subjects. Depending on the specific scenario and on the size of the gallery,
the computational time is typically an additional issue in this case.

5.3.1 Challenges of 3D Face Recognition

When acquired in non-controlled conditions, scan data often suffer from the problemofmissing
parts because of self-occlusions or laser-absorption by dark area. Actually, the 3D face needs
more than one scan to be fully acquired. Especially when the pose is not frontal as illustrated
in Figure 5.8b, the resulting scan is said to be 2.5D and not full 3D. However, this 2.5D scan is
roughly approximated by 3D scan by 3D face recognition community researchers. Moreover,
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(a) (b)

Figure 5.8 (a) Deformations under facial expressions; (b) Missing data due to self occlusion

the bottom row in Figure 5.8b illustrates that dark areas (hair or eyebrows) absorb the laser
and generate missing data in the 3D mesh as illustrated at the top row of the same figure.
Additionally, variations in face data due to facial expressions cause deformations in the 3D

mesh. Figure 5.8a illustrates expressive faces at the bottom row (as 3D textured mesh). The
top row illustrates the resulting 3D mesh with deformations.
Any 3D face recognition approach should successfully match face scans in the presence

of expression-based deformations and/or missing data (as illustrated in Figs. 5.8a,b) to a
good quality, neutral, frontal 3D model. We note that generally the enrolled face scans are
collected in controlled conditions and exhibit good data quality. Past literature has tackled this
fundamental issue with varying degree of success as described in the survey paper by Bowyer
et al. (2006). In the following sections, we review some of the approaches addressing 3D face
recognition, grouping them according to the general idea addressed in 3D face representation.

5.3.2 3D Face Recognition: State of the Art

Among the various solutions that have appeared in recent years, we address methods that
are based on geodesic measures of the face, deformable templates, or the extraction of local
regions/features.

Geodesic-Based Approaches

In Bronstein et al. (2005), the authors presented an experimental validation of the isometric
model. They placed 133 markers on a face and tracked the change of both Euclidean and
geodesic distances under facial expressions. The distribution of the absolute change of geodesic
distanceswas closer to zero than the distribution of the change ofEuclidean distance. Therefore,
the authors assumed that the change of geodesic distance is insignificant and concluded
that geodesic distance remains unchanged under facial expression. Under this assumption
Bronstein et al. (2005) corresponded the geodesic distance between the corresponding points
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of the face surface to the Euclidean distance between two canonical surface points. Canonical
surfaces were obtained from face surfaces by warping according to a topology preserving
transformation. Finally, face models were represented with the geometric moments up to
the fifth order computed for the 3D face canonical forms. However, although the effect of
expressions was attenuated, a similar attenuation also occurred for discriminating features
such as the eye sockets and the nose. This approach was improved in Bronstein et al. (2006b)
where the authors handled the challenge of missing parts. They embedded the probe facial
surface into that of the gallery. Faces belonging to the same subject are nearly isometric and
thus result in low embedding error, whereas different subjects are expected to have different
intrinsic geometry, and thus produce higher embedding error. The open mouth corrupts the
isometric model. This problem was handled later by the authors in Bronstein et al. (2007) by
using a geodesic mask that excluded the mouth region. The authors first detected and removed
the lips, then the computation of geodesic distance geodesics were calculated on the surface
in the presence of a hole corresponding to the removed part. This was done while avoiding
passing in mouth area.
The assumption of the isometric model has motivated several authors to use geodesic

distance on facial surface. In Samir et al. (2009a), the geodesic distance to the tip of the nose
was used as a surface distance function. Differential geometry was used to compare 3D level
curves of the surface distance function. This approach was an improvement upon an earlier
work by the authors Samir et al. (2006), where they had used the level curves of the height
function to define facial curves. The use of geodesic distance in (Samir et al., 2009a) allows
this approach to handle facial expressions. However, the open mouth corrupts the shape of
some level curves, and this parametrization did not address this problem; hence, experiments
were restricted to a small subset of FRGC v2.0 database.
A similar geodesic polar parametrization of the face surface was proposed in Mpiperis

et al. (2007), but rather than studying the shape of curves, they studied local geometric
attributes under this polar parametrization. To handle data with open mouths, they modified
their geodesic polar parametrization by disconnecting the lips. Therefore, their approach
required lips detection, as was the case in Bronstein et al. (2007).
In Berretti et al. (2010b), the authors used the geodesic distance on the face to extract iso-

geodesic facial stripes. Equal-width iso-geodesic facial stripes were used as nodes of graph and
edges between nodes were labeled with descriptors, referred to as 3D weighted walkthroughs
(3DWWs), that captured the mutual relative spatial displacement between all the pairs of
points of the corresponding stripes. Face partitioning into iso-geodesic stripes and 3DWWs
together provided an approximate representation of local morphology of faces that exhibits
smooth variations for changes induced by facial expressions.
A common limitation of the previously described approaches is that they assume that the

facial shape deforms isometrically, that is, the surface distances between points are preserved,
which is not valid in the case of large expressions. Actually, the movement of mimic muscles
can stretch and/or shrink the face surface and not only bending it.

Deformable Template-Based Approaches

In recent years there has been focus on deforming surfaces, one into another, under a chosen
criterion. Grenander’s deformable template theory (Grenander, 1993) has been successfully
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applied to studying shapes of anatomical parts usingmedical images (Miller andYounes, 2001;
Grenander and Miller, 1998). The set of nonrigid deformations can be subdivided into linear
and nonlinear deformations. Nonlinear deformations imply local stretching, compression, and
bending of surfaces to match each other and are also referred to as elastic deformations. Earlier
attempts at elastic matching used graphs on the basis texture images of faces (Kotropoulos
et al., 2000).
Kakadiaris et al. (2007a) used an annotated face model to study geometrical variability

across faces. The annotated face model was deformed elastically to fit each face thus allowing
the annotation of its different anatomical areas, such as the nose, eyes, and mouth. Elastic
registration with models was used the points of an annotated 3D face reference model were
shifted according to elastic constraints so as to match the corresponding points of 3D target
models in a gallery. Similar morphing was performed for each query face. Then, face matching
was performed by comparing the wavelet coefficients of the deformation images obtained
from morphing. This approach was automatic. Similar approaches were based on manually
annotated models (Lu and Jain, 2006, 2008; Mpiperis et al., 2008a).
Lu and Jain (2008) presented an approach that is robust to self-occlusions (due to huge pose

variations) and expressions. Three-dimensional deformations learned from a small control
group was transferred to the 3D models with neutral expression in the gallery. The cor-
responding deformation was synthesized in the 3D neutral model to generate a deformed
template. The matching was performed by fitting the deformable model to a given test scan,
which was then formulated as a minimization of a cost function.
ter Haar and Velkamp (2010), proposed a multiresolution approach to semi-automatically

build seven morphable expression models, and one morphable identity model from scratch.
The proposed algorithm automatically selects the proper pose, identity, and expression such
that the final model instance accurately fits the 3D face scan.
A strong limitation of these approaches is that the fiducial landmarks needed during expres-

sion learning have to be extracted manually for some approaches. They are usually semi-
automatic and rarely full automatic.

Local Regions / Features Approaches

A different way proposed in the literature to handle expression variations is to match parts or
regions of faces rather than the whole faces. Several notable local techniques were proposed in
Gordon (1992) andMoreno et al. (2005), where the authors employed surface areas, curvatures
around facial landmarks, distances, and angles between themwith a nearest neighbor classifier.
In Lee et al. (2005), on the basis of ratios of distances and angles between eight fiducial points,
the authors’ technique used a support vector machine classifier. Euclidean/geodesic distances
between anthropometric fiducial points were employed as features in Gupta et al. (2007) along
with linear discriminant analysis classifiers. However, a successful automated detection of
fiducial points is critical here.
In Mahoor and Abdel-Mottaleb (2009) and Mousavi et al. (2008), the authors presented

low level geometric features-based approaches and reported results on neutral faces but the
performance decreased when expressions variations were introduced. Using similar features,
the authors in Li et al. (2009) proposed designing a feature pooling and ranking scheme
to collect various types of low level geometric features, such as curvatures, and rank them
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according to their sensitivities to facial expressions. They applied sparse representations to the
collected low level features and achieved good results on a challenging data set [GAVABDB
(Moreno and Sanchez, (2004b)]. This approach, however, required a training step.
Along similar lines, Wang et al., (2010) computed a signed shape difference map (SSDM)

between two aligned 3D faces as an intermediate representation for the shape comparison.
With regards to the SSDMs, they used three kinds of features to encode both the local similarity
and the change characteristics between facial shapes. Selected the most discriminative local
features optimally by boosting and trained as weak classifiers for assembling three collective
strong classifiers. The individual features were of the type: Haar-like, Gabor, and local binary
pattern (LBP).
McKeon and Russ (2010) used the 3D Fisherface region ensemble approach. After faces

registration using the ICP algorithm, the Fisherface approach seeks to generate a scatter matrix
for improved classification by maximizing the ratio of the between scatter and within scatter.
Twenty-two regions were used as input for 3D Fisherface. To select most discriminative
regions, sequential forward search Sun et al. (2008) was used.
Huang et al. (2010), proposed to use the multiscale LBP as a new representation for 3D face

jointly to shape index. They then extracted Scale Invariant Feature Transform(SIFT)-based
local features. The matching also involves holistic constraint of the facial component and
configuration.
In Cook et al. (2006), the Log–Gabor templates were used to exploit the multitude of

information available in human faces to construct multiple observations of a subject, which
were classified independently and combined with score fusion. Gabor features were recently
used in Moorthy et al. (2010) on automatically detected fiducial points.
In Chang et al. (2006) andMian et al. (2007a) the focus was on matching nose regions albeit

using ICP. To avoid passing over deformable parts of the face encompassing discriminative
information, the authors in Faltemier et al. (2008a) proposed to use a set of 38 face regions
that densely cover the face and fused the scores and decisions after performing ICP on each
region.
In Queirolo et al. (2010a), the circular and elliptical areas around the nose were used

togetherwith the forehead and the entire face region for authentication. Surface interpenetration
measure (SIM) was used for the matching. Taking advantage of invariant face regions, an
annealing simulated approach was used to handle expressions.
In Alyüz et al. (2008b), the authors proposed to use average region models (ARMs) locally

to handle themissing data and the expression-inducted deformation challenges. Theymanually
divided the facial area into severalmeaningful components, and registration of faceswas carried
out by separate dense alignments to relative ARMs. A strong limitation of this approach is the
need for manual segmentation.

5.3.3 Partial Face Matching

Many of the 3D face recognition methods that have been proposed in the last few years focused
on face recognition in the presence of expression variations reporting very high accuracies on
benchmark databases such as the FRGC v2.0 data set (Phillips et al., 2005). However, only a
few solutions explicitly addressed the problem of 3D face recognition in case only a part of
the facial scan was available (partial face match), or parts of the face are occluded by hair,
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glasses, scarves, hand gestures, and such. In a traditional face recognition experiment, both the
probe and gallery scans are assumed to be acquired cooperatively so as to precisely represent
the whole face. Differently, an increasing interest is targeting the development of solutions
enabling recognition in uncooperative scenarios. In such cases, acquisition of the probe scan
is performed in suboptimal conditions that can yield a nonfrontal face scan, missing parts, or
occlusions.
In general, global approaches cannot effectively manage partial face match, whereas local

approaches entail the potential to cope with the problem. To manage missing data obtained
by randomly removing certain regions from frontal scans, Bronstein et al. (2006a) proposed a
canonical representation of the face, which exploits the isometry invariance of the face surface.
On a small database of 30 subjects, they reported high recognition rates, but no side scans
were used for recognition. Alyüz et al. (2008a), proposed a part-based 3D face recognition
method, which operates in the presence of both expression variations and occlusions. The
approach is based on the use of ARMs for registration. Under variations, such as those
caused by occlusions, the method can determine noisy regions and discard them. Savran et
al. (2008) tested the performance of this approach tested on the Bosphorus 3D face database.
However, a strong limitation of this solution was the use of manually annotated landmarks
that were used for face alignment and region segmentation. Faltemier et al. (2008b) used a
set of 38 overlapping regions that densely cover the face around the nose and selected the
best-performing subset of 28 regions to perform matching using the ICP algorithm. They
reported a recognition experiment accounting for missing parts in the probe faces. However, in
this case, too, region segmentation across different facial scans strongly relied on the accurate
identification of the nose tip. More recently, a method that addresses the partial matching
problem has been proposed in Perakis et al. (2009). This is obtained by using an automatic
face landmarks detector to identify the pose of the facial scan so as to mark regions of missing
data and to roughly register the facial scan with an annotated face model (AFM) (Kakadiaris
et al., 2007c). The AFM is fitted using a deformable model framework that exploits facial
symmetry where data are missing. Wavelet coefficients extracted from a geometry image
derived from the fitted AFM are used for the match. Experiments have been performed using
the FRGC v2.0 gallery scans and side scans with 45◦ and 60◦ rotation angles as probes. In
Drira et al. (2010), the facial surface is represented as a collection of radial curves originating
from the nose tip and face comparison is obtained by the elastic matching of the curves. A
quality control permits the exclusion of corrupted radial curves from the match, thus enabling
recognition even in the case of missing data. Results of partial matching are given for the 61
left and 61 right side scans of the GAVAB data set (Moreno and Sánchez, 2004a).
Local approaches based on regions are limited by the need to identify some facial landmarks

to define the regions of the face to be matched. In addition, because parts of these regions
can be missing or occluded, the extraction of region descriptors is difficult; hence, regions
comparison is often performed using rigid (ICP) or elastic registration (deformable models).
Methods that use keypoints of the face promise to solve some of these limitations. In particular,
a few recent works have shown that local descriptors computed around salient keypoints can
be usefully applied to describe 3D objects and faces. In Mian et al. (2008), a 3D keypoint
detector and descriptor inspired to the scale invariant feature transform (SIFT) (Lowe, 2004)
has been designed and used to perform 3D face recognition through a hybrid 2D+3D approach
that also uses the SIFT detector and descriptor to index 2D texture face images. In Mayo and
Zhang (2009), SIFT detectors are used to detect and represent salient points in multiple 2D
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depth images derived from 3D face models for the purpose of 3D face recognition. A similar
idea is used in Ohbuchi and Furuya (2004) to perform 3D object retrieval by visual similarity,
but in this case, points of a sampling grid are used and SIFT descriptors are computed for
them. In Berretti et al. (2010d), SIFT feature descriptors computed in correspondence with
facial landmarks of depth images are used to classify 3D facial expressions.

Partial Face Matching Using Keypoints and Facial Curves

In the following, we shortly summarize the approach for partial face matching proposed in
Berretti et al. (2011b). The approach uses SIFT keypoints to detect relevant and stable interest
points on depth images of the face and facial curves to model the depth of face scans along
the surface path connecting pairs of SIFT keypoints. In doing so, distinguishing traits of a face
scan are captured by the SIFT descriptors of detected keypoints as well as by the set of facial
curves identified by each pair of keypoints. Facial curves of gallery scans are also associated
with a measure of saliency so as to distinguish those that model characterizing traits of some
subjects from those that are frequently observed in the face of many different subjects. In the
comparison of two faces, SIFT descriptors are matched to measure the similarity between pairs
of keypoints identified on the two depth images. Spatial constrains are imposed to avoid outliers
matches. Then, the distance between the two faces is derived by composing the individual
distances between facial curves that originate from pairs of matching keypoints.
The use of keypoints of the face is advantageous with respect to using landmarks in the

case of partial face matching. In fact, just few landmarks can be detected automatically
with accuracy, and in the case of side scans, just a few of them are likely to be visible.
On the contrary, keypoints are not constrained to specific points of the face, and many of
them can be detected also on just a part of the face. According to this, the approach in
Berretti et al., (2011b) does not exploit any particular assumption about the position of the
keypoints on the face surface. Rather, the position of keypoints is expected to be influenced
by the specific morphological traits of each subject. In particular, assuming that the process
of keypoint detection incorporates a measure of the scale associated with each keypoint, the
assumption that detected keypoints correspond to meaningful landmarks is relaxed and the
more general assumption of within-subject repeatability is exploited: The position of the most
stable keypoints—detected at the coarsest scales—does not change substantially within facial
scans of the same subject. In particular, the approach in Berretti et al., (2011b) relies on the
detection of a number of keypoints on the 3D face surface and the description of the 3D face
surface in correspondence to these keypoints as well as along the paths connecting pairs of
keypoints. The SIFT are used to perform keypoints detection and description. SIFT keypoints
are extracted at scales of increasing σ , so as to obtain a minimum of N keypoints for scan.
Then, the top N keypoints—starting from the highest σ values—are retained and used as the
base for face description.
To extract depth images and detect SIFT keypoints, 3D face scans first undergo some

preprocessing (Berretti et al., 2010c). First, 3D faces are cropped using a sphere of radius 100
mm centered on the nose tip (the nose tip has been detected using the approach in Mian et al.
(2007b)). After this, face scans are transformed to depth images considering a frontal view
of the scan. To this end, the pose of the scans have been normalized using a solution on the
basis of an iterative principal component analysis (PCA) (Mian et al., 2007b). In addition,
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(c)(b)(a)

Figure 5.9 Each column shows three depth images of the same individual. It can be noticed that a large
part of the keypoints are repeatably identified at the same neighborhoods for the same individual

spikes were removed using median filtering in the z-coordinate, holes were filled using cubic
interpolation, and the 3D scans were re-sampled on an uniform square grid at 1 mm resolution.
Figure 5.9 shows the depth images derived from the 3D face scans of three different subjects.

For the detected keypoints, the SIFT descriptors are computed. The properties of the SIFT
descriptor make it capable to provide a compact and powerful local representation of the depth
image and, as a consequence, of the face surface. Because the localization of SIFT keypoints
only depends on the geometry of the face surface, these keypoints are not guaranteed to
correspond to specific meaningful landmarks on the face. For the same reason, the detection
of keypoints on two face scans of the same individual should yield to the identification of
the same points on the face, unless the shape of the face is altered by major occlusions or
non-neutral facial expressions. As an example, Figure 5.9 shows the keypoints identified on
the depth images of three subjects.
An important measure to validate the effectiveness of the extracted keypoints is represented

by their repeatability. This can be evaluated using the approach in Mian et al. (2008). In
this solution, the correspondence of the location of keypoints detected in two face scans is
measured by considering ICP registration: The 3D faces belonging to the same individual are
automatically registered and the errors between the nearest neighbors of their keypoints (one
from each face) are recorded.
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However, the information captured by combining local SIFT descriptors of the keypoints
detected in a face scan is not discriminant enough for the accurate recognition of the subjects’
identity. Additional information necessary to discriminate the identity of each subject is
captured by considering relational information between pairs of keypoints in the form of
facial curves, as discussed in the following sections.

Facial Curves and Their Saliency

Each pair of SIFT keypoints detected on a depth image is used to identify a facial curve, that
is, the 1D function of the depth values of the pixels that lay on the segment connecting the two
keypoints. More formally, let I (x) with x ∈ �2 be the depth image representing a face scan, x1
and x2 two keypoints, then the facial curve identified by the ordered pair (x1, x2) is defined as

C I
x1,x2 (t) = I ((1− t)x1 + t x2) , t ∈ [0, 1]. (5.1)

As an example, Figure 5.10 shows three facial curves derived from the depth image of a
sample individual. It can be observed that the curves capture the shape of the face across
different paths and in particular the nose protrusion.
Comparison of the identity of two face representations is accomplished by matching their

corresponding facial curves. Given the facial curve C1(t), t ∈ [0, t1] identified by the keypoint
pair (x1, x2) of the face scan I1, and the facial curve C2(t), t ∈ [0, t2] identified by the keypoint
pair (x3, x4) of the face scan I2, the distance between the two facial curves is measured as

D(C1(t), C2(t)) =
∫ min{t1,t2}

0
|C1(t)− C2(t)| dt. (5.2)

In general, it is expected that not all the facial curves have the same relevance in discrim-
inating between different subjects. This suggests to evaluate the saliency of facial curves by
assuming the higher the saliency of a curve C, the lower the uncertainty about the identity of
the person that is represented in the depth image if the curve C is observed. To this end, an
information theoretic model is defined to associate with a generic curve a value of saliency.
Formally, let’s assume that the 3D face scans of n different subjects are available and let X be
a discrete random variable taking values in the set {x1, . . . , xn}, representing the identity of

0
0

0.2

0.4

0.6

0.8

1

10 20 30 40 50 60 0
0

0.2

0.4

0.6

0.8

1

20 40 60 80 0
0

0.2

0.4

0.6

0.8

1

5 10 15 20 25 30

Figure 5.10 Three facial curves between pairs of keypoints of a sample face. The horizontal axis reports
the number of pixels between the two keypoints, whereas the vertical axis represents the gray-level of
the depth image along the curve normalized in [0,1]
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the subject. Furthermore, let Y be a continuous random variable representing a sample curve.
Given an observation Y = y, the uncertainty of X once y is observed can be measured through
the Shannon entropy of the posterior distribution, that is defined as

H (X |Y = y) = −
∑

xi

P(X = xi |y) log P(X = xi |y). (5.3)

Values of H (X |Y = y) are high for facial curves y that are observed in the faces of many
subjects and low for facial curves y that are observed in the faces of just a few subjects. The
lower the value of H (X |Y = y), the more the observation of the facial curve y on a face scan
tells about the identity of the subject.
Operatively, since in a real application context only the gallery scan is available for each

subject, estimation of P(X = xi |Y = y) is prevented. Therefore, the saliency S(y) of the facial
curve y can be approximated with a measure of the frequency of observing a curve similar to

y (up to a threshold τ ) in the gallery scans S(y) = e− N
Ng , being N the number of occurrences

of y in the scans of the gallery and Ng the number of gallery scans.

Face Matching Using Keypoints and Facial Curves

Face comparison is performed by jointly matching the keypoints and the facial curves of
two faces. First, SIFT descriptors of the keypoints detected in the probe and the gallery are
compared so that for each keypoint in the probe, a candidate corresponding keypoint in the
gallery is identified. In particular, a keypoint kp in the probe is assigned to a keypoint kg in
the gallery if they match each other among all keypoints, that is, if kp is closer to kg than
to any other keypoint in the gallery and kg is closer to kp than to any other keypoint in the
probe. For this purpose, proximity of keypoints is measured through the Euclidean distance
between 128-dimensional SIFT descriptors associated with the keypoints. This analysis of the
proximity of keypoint descriptors results in the identification of a candidate set of keypoint
correspondences. Identification of the actual set of keypoint correspondences must pass a
final constraint targeting the consistent spatial arrangement of corresponding keypoints on the
probe and the gallery. The RANSAC algorithm is used to identify outliers in the candidate
set of keypoint correspondences. This involves generating transformation hypotheses using
a minimal number of correspondences and then evaluating each hypothesis on the basis of
the number of inliers among all features under that hypothesis. In this way, corresponding
keypoints whose spatial arrangement is an outlier are removed from the match.
Correspondences between inliers pairs of keypoints of two face scans are used to measure

the distance between the two facial scans. Given a probe and a gallery, the correspondences
identified by the spatial consistency can be formalized in terms of a function ξ : ℵ �→ ℵ that
associates with a facial curve C(p)i in the probe, its corresponding facial curve C(g)ξ (i) in the
gallery. For each matched facial curve in the probe C(p)i , the distance to the corresponding
facial curve C(g)ξ (i) in the gallery is evaluated by weighting the result of Equation 5.2 by the
saliency of the gallery scan

di = D
(
C(p)i , C(g)ξ (i)

)
S

(
C(g)ξ (i)

)
. (5.4)
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Eventually, the distance between the probe and the gallery is measured by averaging values of
di in Equation 5.4 over all pairs of matching facial curves.
It should be noted that the matching scheme does not exploit any specific assumption about

the correspondence of keypoints and facial curves to meaningful anatomical parts of the face.
As a consequence, the matching scheme can be used without any change to support matching
between a partial scan and a full scan of the face, thus enabling the recognition of faces with
missing parts and/or occlusions.

5.3.4 Comparison of State-of-the-Art Methods

In the following sections, we report the 3D face recognition results for several approaches
performing face identification/verification on the 3D face scans. Results are first reported for
the FRGC v2.0 data set for neutral and expressive scans, then the results on the GAVAB
data set are shown with the performance of methods capable of managing both expression
variations and large pose changes of the face, this latter one resulting in acquisitions with
missing parts.

Comparative Evaluation on FRGC v2.0 Data Set

For the first evaluation, the results scored by state-of-the-art 3D face recognition methods
on the FRGC v2.0 data set were presented (see Section 5.2). Facial scans are categorized,
according to the classification provided in the FRGC protocol, as showing neutral expression,
small expression, and large expression. The gallery consists of the first scans of each subject
in the database (466 scans in total), with the remaining scans forming the probe set. Using the
categories mentioned earlier, three recognition experiments are considered: (1) neutral versus
neutral, (2) neutral versus non-neutral, and (3) neutral versus all. In these experiments, the first
label indicates the gallery scans (neutral), whereas the second one refers to the probe scans
used in the experiment (i.e., neutral, non-neutral, and all). Overall recognition at rank-1 of
state-of-the-art methods are presented in Table 5.4, thus reporting about the effectiveness in
identification scenario.

Table 5.4 Comparison of rank-1 recognition rates on the FRGC
v2.0 data set for the state-of-the-art methods

Method rank-1 RR

Spreeuwers (2011) 99.5%
Wang et al. (2010) 98.3%
ter Haar and Velkamp (2010) 97%
Berretti et al. (2010b) 94.1%
Queirolo et al. (2010a) 98.4%
Faltemier et al. (2008a) 97.2%
Kakadiaris et al. (2007b) 97%
Drira et al. (2012) 97%
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Table 5.5 Comparison of verification rates (i.e., true acceptance rate, TAR) at
FAR = 0.1% on the FRGC v2.0 data set for the state-of-the-art methods

TAR @ FAR = 0.1%
Method ROC III All vs. All

Kakadiaris et al. (2007b) 97% –
Faltemier et al. (2008a) 94.8% 93.2%
Berretti et al. (2010b) – 81.2%
Queirolo et al. (2010a) 96.6% 96.5%
Spreeuwers (2011) 94.6% 94.6%
Wang et al. (2010) 98.4% 98.13%
Drira et al., (2012) 97.14% 93.96%

The highest published results on this data set are those reported in the works of Queirolo
et al. (2010a), Spreeuwers (2011), Wang et al. (2010), with a rank-1 recognition rate greater
than 98% for the neutral versus neutral experiment. The overall best recognition score on
FRGC v2.0 is reported by Spreeuwers (2011), which uses an intrinsic coordinate system on
the basis of the vertical symmetry plane through the nose.
To evaluate the performance of the state-of-the-art approaches in a verification scenario,

receiver operating characteristic (ROC) curves for the ROC III mask of the FRGC v2.0 and
the “All vs. All” experiment are reported in Table 5.5 using the verification results at FAR of
0.1 percent as performance indicator.

Comparative Evaluation on GAVAB Data Set

The GAVAB DB (see Section 5.2) has many noisy 3D face scans with large expressions
and also scans with missing parts because of acquisitions where subjects exhibit large pose
variations with respect to the frontal one. The GAVAB experimental protocol assumes that
one of the two frontal scans with the neutral expression for each person is taken as a gallery
model, and the remaining are used as probes.
Table 5.6 compares published results of methods using the same evaluation protocol on

the GAVAB. The approaches in Drira et al. (2010) and Huang et al. (2012) attain the highest
recognition rate for faces with non-neutral expressions and side scans.

Table 5.6 Recognition results comparison between different methods on the GAVAB data set

neutral expressive looking-down looking-up right side left side

Li et al. (2009) 96.67% 93.33% – – – –
Moreno et al. (2005) 90.16% 77.9% – – – –
Mahoor et al. (2009) – 72% 85.3% 88.6% – –
Huang et al. (2012) 100% 93.99% 96.72% 96.72% 93.44% 78.69%
Drira et al. (2010) 100% 94.54% 100% 98.36% 70.49% 86.89%
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5.4 Facial Expression Analysis

As machines become more and more involved in everyday human lives and take part in both
their living and work spaces, they need to become more intelligent in terms of understanding
the moods and emotions of humans. Embedding these machines with systems capable of rec-
ognizing human emotions and mental state is precisely what the human–computer interaction
research community is focusing on in the affective computing and human–machine interac-
tion communities. The following are some interesting areas where automatic facial expression
recognition systems find applications:

• Human–machine interface: Facial expression is a way of communication asmany other ways
(e.g., speech signal). Emotional detection is natural for humans, but it is a very difficult task
for machines; therefore, the purpose of an emotion recognition system is to use emotion-
related knowledge in such a way that human–machine communication can be improved and
make machines and robots more human-like.

• Medical care and cure field: Facial expressions are the direct means to identify when specific
mental processes (e.g., pain, depression) occur.

• Psychological field: Expression detection is tremendously useful for the analysis of the
human psychology.

• Security field: Decoding the language of micro-expressions is crucial for establishing or
detracting from credibility, and to determine any deception from suspects during interroga-
tions. This is because micro-expression is a momentary involuntary facial expression that
people unconsciously display when hiding an emotion.

• Education field: Pupils’ facial expressions inform the teacher of the need to adjust the
instructional message.

The first studies on this subject date back to the late 1970s with the pioneering work of
Ekman (1972). In these studies, it is evidenced that a number of basic facial expressions exist
that can be categorized into six classes, namely, anger, disgust, fear, happiness, sadness, and
surprise, plus the neutral expression. This categorization of facial expressions has been also
proved to be consistent across different ethnicities and cultures; hence, these expressions are
in some sense “universally” recognized.
In their studies, Ekman and Friesen (1977) also defined the Facial Action Coding System

to code the facial expressions through the movement of face points as described by the action
units. This work inspired many researchers to analyze facial expressions in 2D by tracking
facial features (e.g., facial landmarks) and measuring the amount of facial movements these
landmarks undergo from expression to expression in still images and videos. Almost all of
the methods developed in 2D use distributions or facial distances of these facial landmarks
as features to be used as inputs to classification systems. Then, the outcome of the classifiers
is one of the facial expression classes. These approaches mainly differ in the facial features
selected and the classifier used to distinguish among the different facial expressions.
Recently, there has been a progressive shift from 2D to 3D in face analysis approaches,

mainly motivated by the robustness of the 3D facial shape to illumination changes, pose,
and scale variations. Although many studies have appeared to perform 3D face recognition
(Berretti et al., 2010c; Gupta et al., 2010; Kakadiaris et al., 2007c; Mian et al., 2008; Queirolo
et al., 2010b; Samir et al., 2009b), very few have taken advantage of the 3D facial geometric
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information to perform facial expression recognition. A few years ago, the first solutions to
automatically perform facial expression recognition based on 3D face scans were proposed
using very small databases and categorizing only a few facial expressions (Ramanathan et al.,
2006). The availability of new facial expression databases, like those constructed at the BU-
3DFE database (Yin et al., 2006), and at the Boğaziçi University (Bosphorus database) (Savran
et al., 2008) have now propelled research on this topic. In particular, the BU-3DFE database
has become the de facto standard for comparing facial expression recognition algorithms.
This is because unlike other 3D face data sets, the BU-3DFE database provides a precise
categorization of facial scans according to the Ekman’s six basic facial expressions plus the
neutral one, also providing different levels of expression intensities (see also the description
in Section 5.2).
In the following paragraphs, the problem of facial expression recognition is introduced by

first reviewing the more recent and influencing state-of-the-art solutions then presenting in
detail some specific solutions. For the characterizing features of the main 3D face databases
for expression analysis, we refer to Section 5.2.

5.4.1 3D Facial Expression Recognition: State of the Art

Most of the works on 3D facial expression recognition can be categorized as those based on
the generic facial model or feature classification.
In the first category, a general 3D face model (template model) is trained with prior knowl-

edge, such as feature points, shape and texture variations, or local geometry labels. A dense
correspondence between points of 3D faces is usually required to build the template model.
For example, in Ramanathan et al. (2006) a correspondence is established between faces with
expression and their neutral pair by minimizing an energy function. A morphable expres-
sion model (MEM) is constructed by applying the PCA to different expressions, so that
new expressions can be projected into points in a low dimensional space constructed by the
eigen-expressions obtained by MEM. Expression classification is performed by comparing
the Euclidean distances among projected points in the eigen-expression space, and a recog-
nition rate of over 97% is reported on a small and private data set (just 25 subjects with 4
expressions per subject are included in the data set). An Approach inspired by the advances
in the artificial intelligence techniques such as ant colony optimization (ACO) and particle
swarm optimization (PSO) is proposed inMpiperis et al. (2008c). In this work, first anatomical
correspondence between faces is established using a generic 3D deformable model and the 83
manually detected facial landmarks of the BU-3DFE database. Then, surface points are used
as a basis for classification, according to a set of classification rules that are discovered by an
ACO/PSO-based rule-discovery algorithm. The performance of the algorithm evaluated on the
BU-3DFE database scored a total recognition rate of 92.3%. In Mpiperis et al. (2008b), face
recognition and facial expression recognition are performed jointly by decoupling identity
and expression components with a bilinear model. An elastically deformable model algorithm
that establishes correspondence among a set of faces is proposed. Construction of the model
relies on manually identified landmarks that are used to establish points correspondence in
the training stage. Fitting these models to unknown faces enables face recognition invariant
to facial expressions and facial expression recognition with unknown identity. A quantitative
evaluation of the technique is conducted on the BU-3DFE database with an overall 90.5%
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facial expression recognition. In Gong et al. (2009), the shape of an expressional 3D face
is approximated as the sum of a basic facial shape component, representing the basic face
structure and neutral-style shape, and an expressional shape component that contains shape
changes caused by facial expressions. The two components are separated by first learning a
reference face for each input non-neutral 3D face then, on the basis of the reference face and
the original expressional face, a facial expression descriptor is constructed, which accounts for
the depth changes of rectangular regions around eyes and mouth. Average recognition rates
of 71.63% and 76.22% have been reported on the BU-3DFE database, respectively, not using
and using a reference neutral scan for each subject.
Approaches in the second category, extract features from 3D scans and use these features to

classify the facial scans into different expressions. In Wang et al. (2006), a feature-based facial
expression descriptor is proposed and the BU-3DFE database is used for the first time. The face
is subdivided into seven regions using manually annotated landmarks and classified primitive
surface features are classified into basic categories, such as ridge, ravine, peak, and saddle,
using surface curvatures and their principal directions. They reported the highest average
recognition rate of 83.6% using the primitive facial surface features and an LDA classifier.
The facial expressions of happiness and surprise were reported to be the best well-identified
with accuracies of 95% and 90.8%, respectively. Comparison with the results obtained using
the Gabor-wavelet and the Topographic Context 2D appearance feature-based methods on the
same database showed that the 3D solution outperforms the 2D methods. Soyel and Demirel
(2007) also performed 3D facial expression recognition on the BU-3DFE database. Among
the 83 facial landmarks labeling the 3D faces of the BU-3DFE database, only six distance
measures maximizing the differences of facial expressions were selected. These six distance
values were used to form a distance vector for the representation of facial expressions as
defined by the MPEG-4 Facial Definition Parameter Set (Pandzic and Forchheimer, 2005).
The results obtained from a neural-network classifier using the 3D distance vectors reached up
to 98.3% in the recognition of the surprise facial expression, whereas the average recognition
performance is 91.3%. Tang and Huang (2008) first extracted a set of candidate features
composed of normalized Euclidean distances between the 83 facial landmarks of the BU-
3DFE database. Then they used a feature-selection method on the basis of the maximizing
the average relative entropy of marginalized class-conditional feature distributions to retain
only the most informative distances. Using a regularized multiclass AdaBoost classification
algorithm, they obtained a 95.1% average recognition rate for the six basic facial expressions
on a subset of the BU-3DFE database. The neutral facial expression was not classified rather,
as a preprocessing step, its features served as fiducial measures that were subtracted from the
features of the six basic facial expressions of the corresponding subject. The approach proposed
in Venkatesh et al. (2009) on the other hand, used a modified PCA to classify facial expressions
using only the shape information at a finite set of fiducial points that were extracted from the
3D neutral and expressive faces of the BU-3DFE database. The approach used 2D texture
images of the face to mark interest regions around the eyebrows, eyes, nose, and mouth, and
extracted facial contours in those regions with the help of an active contour algorithm. Then,
these contours were uniformly sampled, and the sampled points were mapped onto the 3D data
set to generate a shape and color descriptor of the interest-regions. An average recognition
rate of 81.67% was reported. Maalej et al. (2010) proposed an approach based on the shape
analysis of local facial patches. The patches were extracted around the 83 manually annotated
facial landmarks of the BU-3DFE database, and the shape of each patch described by a set
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of curves representing the surface points at the same Euclidean distance from the landmark.
A Riemannian framework was then applied to compare the shape of curves undergoing to
different facial expressions. The length of the geodesic path that separates corresponding
curves provided quantitative information about their shape similarity. The best expression
recognition results on the BU-3DFE database have been obtained using these measures as
entries of a MultiBoost classifier. An improved version of this approach is reported in Maalej
et al. (2011) with new experiments and results given. The work presented in Berretti et al.
(2010e) exploits the local characteristics of the face around a set of facial landmarks to classify
facial expressions. In particular, the facial landmarks are a subset of the 83 facial landmarks
of the BU-3DFE plus a set of facial keypoints automatically identified starting from the given
landmarks. SIFT descriptors are computed around the facial keypoints, combined together and
used as feature vector to represent the face. Before to perform classification of the extracted
descriptors, a feature selection approach is used to identify a subset of features with minimal-
redundancy and maximal-relevance among the large set of features extracted with SIFT. The
set of selected features is finally used to feed a set of classifiers on the basis of support vector
machines (SVM).
From the previous discussion, it emerges that the large part of existing works on 3D

facial expression recognition relies on the presence of landmarks accurately identified on the
face. Methods based on the generic facial model use landmarks to establish correspondences
between faces in the construction of a deformable template face. Usually, these approaches
are also computationally demanding because of the deformation process. Solutions based
on feature classification in many cases compute distances between landmarks and evaluate
how these distances change between expressional and neutral scans. That several landmarks
are not automatically detectable and the precision required for their positioning demand for
manual annotation in both training and testing stages. Furthermore, several solutions require
a neutral scan for each subject in order to evaluate the differences generated in the 3D scans
by facial expressions with respect to neutral reference scans. In practice, these factors limit
the applicability of many approaches.
In the following sections, we provide more details on two facial expression recognition

methods that are semi-automatic and fully automatic.

5.4.2 Semi-automatic 3D Facial Expression Recognition

In the following paragraphs, we discuss an approach that uses local descriptors called local
patches of the face represented by a set of local curves to perform person independent 3D facial
expression recognition. This approach was originally proposed in Maalej et al. (2010, 2011).
In this work, sets of level curves {cl

λ}1≤λ≤λ0 are associated to N reference points (landmarks)
{rl}1≤l≤N (Figure 5.11(a)) (Figure 5.11(b)).
These curves are extracted over the patches centered at these points. Here λ stands for the

value of the distance function between the reference point rl and the point belonging to the
curve cl

λ, and λ0 stands for the maximum value taken by λ. Accompanying each facial model
are 83 manually picked landmarks; these landmarks are practically similar to the MPEG-4
feature points and are selected on the basis of the facial anatomy structure. Given these points,
the feature region on the face can be easily determined and extracted. We were interested in
a subset of 68 landmarks laying within the face area, discarding those marked on the face
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Figure 5.11 (a) 3D annotated facial shapemodel (70 landmarks); (b) 3D closed curves extracted around
the landmarks; (c) 3D curve-based patches composed of 20 level curves with a size fixed by a radius
λ0 = 20 mm; (d) extracted patches on the face

border. Contrary to the MPEG-4 feature points specification that annotates the cheeks center
and bone, in BU-3DFE there were no landmarks associated with the cheek regions. Thus, two
extra landmarks at both cheeks, obtained by extracting the middle point along the geodesic
path between the mouth corner and the outside eye corner was added.
We propose to represent each facial scan by a set of patches around the landmarks. Let rl

be the reference point and Pl a given patch centered on this point and localized on the facial
surface denoted by S. Each patch will be represented by an indexed collection of level curves.
To extract these curves, we use the Euclidean distance function ‖rl − p‖ to characterize the
length between rl and any point p on S. Indeed, unlike the geodesic distance, the Euclidean
distance is sensitive to deformations. Besides it enables deriving curve extraction in a fast and
simple way. Using this function, the curves as level sets is defined as the following:

‖rl − .‖ : cl
λ = {p ∈ S | ‖rl − p‖ = λ} ⊂ S, λ ∈ [0, λ0]. (5.5)

Each cl
λ is a closed curve, consisting of a collection of points situated at an equal distance λ

from rl . Figure 5.11 summarizes the scheme of patches extraction.

Framework for 3D Shape Analysis

Once the patches are extracted, we aim to study their shape and design and a similarity measure
between corresponding ones on different scans under different expressions. This is motivated
by the common belief that people smile, or convey any other expression, the sameway, or more
appropriately certain regions taking part in a specific expression undergo practically the same
dynamical deformation process. We expect that certain corresponding patches associated with
the same given expression will be deformed in a similar way, whereas those associated with
two different expressions will deform differently. The following sections describe the shape
analysis of closed curves in R

3, initially introduced by Joshi et al. (2007), and its extension to
analyze shape of local patches on facial surfaces.
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We start by considering a closed curve β in R
3. Although there are several ways to analyze

shapes of closed curves, an elastic analysis of the parametrized curves is particularly appro-
priate in 3D curves analysis. This is because (1) such analysis uses a square-root velocity
function representation which allows us to compare local facial shapes in presence of elastic
deformations, (2) this method uses a square-root representation under which the elastic metric
reduces to the standard L

2 metric and thus simplifies the analysis, and (3) under this metric
the Riemannian distance between curves is invariant to the reparametrization. To analyze the
shape of β, we shall represent it mathematically using a square-root representation of β as
follows ; for an interval I = [0, 1], let β : I −→ R

3 be a curve and define q : I −→ R
3 to be

its square-root velocity function (SRVF), given by

q(t)
.= β̇(t)√

‖β̇(t)‖
. (5.6)

Here t is a parameter ∈ I and ‖.‖ is the Euclidean norm in R
3. We note that q(t) is a special

function that captures the shape of β and is particularly convenient for shape analysis, as
we describe next. The classical elastic metric for comparing shapes of curves becomes the
L
2-metric under the SRVF representation (Srivastava et al., 2011). This point is very important
as it simplifies the calculus of elastic metric to the well-known calculus of functional analysis
under the L

2-metric. Also, the squared L
2-norm of q, given by: ‖q‖2 = ∫

S1
< q(t), q(t) >

dt = ∫
S1

‖β̇(t)‖dt, which is the length of β. To restrict our shape analysis to closed curves,
we define the set: C = {q : S1 −→ R

3| ∫
S1

q(t)‖q(t)‖dt = 0} ⊂ L
2(S1, R

3). Notice that the
elements of C are allowed to have different lengths. Because of a nonlinear (closure) constraint
on its elements, C is a non-linear manifold. We can make it a Riemannian manifold by using
the metric: For any u, v ∈ Tq (C), we define

〈u, v〉 =
∫

S1
〈u(t), v(t)〉dt. (5.7)

So far we have described a set of closed curves and have endowed it with a Riemannian
structure. Next we consider the issue of representing the shapes of these curves. It is easy
to see that several elements of C can represent curves with the same shape. For example, if
we rotate a curve in R

3, we get a different SRVF but its shape remains unchanged. Another
similar situation arises when a curve is reparametrized; a reparameterization changes the SRVF
of curve but not its shape. To handle this variability, we define orbits of the rotation group
SO(3), and the reparameterization group � as the equivalence classes in C. Here, � is the
set of all orientation-preserving diffeomorphisms of S

1 (to itself) and the elements of � are
viewed as reparameterization functions. For example, for a curve β : S1 → R

3 and a function
γ : S1 → S

1, γ ∈ �, the curve β ◦ γ is a reparameterization of β. The corresponding SRVF
changes according to q(t) �→ √

γ̇ (t)q(γ (t)). We set the elements of the orbit

[q] = {
√

γ̇ (t)Oq(γ (t))|O ∈ SO(3), γ ∈ �} (5.8)

to be equivalent from the perspective of shape analysis. The set of such equivalence classes,
denoted by S .= C/(SO(3)× �) is called the shape space of closed curves in R

3. S inherits a
Riemannian metric from the larger space C because of the quotient structure.
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The main ingredient in comparing and analysing shapes of curves is the construction of
a geodesic between any two elements of S, under the Riemannian metric given in Equation
5.7. Given any two curves β1 and β2 represented by their SRVFs q1 and q2, we want to
compute a geodesic path between the orbits [q1] and [q2] in the shape space S. This task
is accomplished using a path-straightening approach, which was introduced in Klassen and
Srivastava (2006). The basic idea here is to connect the two points [q1] and [q2] by an
arbitrary initial path α and to iteratively update this path using the negative gradient of an
energy function E[α] = 1

2

∫
s〈α̇(s), α̇(s)〉ds. The interesting part is that the gradient of E has

been derived analytically and can be used directly for updating α. As shown in Klassen
and Srivastava (2006), the critical points of E are actually geodesic paths in S. Thus, this
gradient-based update leads to a critical point of E , which, in turn, is a geodesic path between
the given points. In the remainder of the chapter, we will use the notation dS (β1, β2) to
denote the length of the geodesic in the shape space S between orbits q1 and q2 to reduce
the notation.

3D Patches Shape Analysis

Now, we extend ideas developed in the previous section from analyzing shapes of curves to
the shapes of patches. As mentioned earlier, we are going to represent a number of l patches
of a facial surface S with an indexed collection of the level curves of the ‖rl − .‖ function
(Euclidean distance from the reference point rl ). That is, Pl ↔ {cl

λ, λ ∈ [0, λ0]},where cl
λ is the

level set associated with ‖rl − .‖ = λ. Through this relation, each patch has been represented
as an element of the set S [0,λ0]. In our framework, the shapes of any two patches are compared
by comparing their corresponding level curves. Given any two patches P1 and P2, and their
level curves {c1λ, λ ∈ [0, λ0]} and {c2λ, λ ∈ [0, λ0]}, respectively, our idea is to compare the
patches curves c1λ and c2λ, and to accumulate these differences over all λ. More formally, we
define a distance dS [0,λ0] given by

dS [0,λ0] (P1, P2) =
∫ L

0
dS (c1λ, c2λ)dλ. (5.9)

In addition to the distance dS [0,λ0] (P1, P2), which is useful in biometry and other classification
experiments, we also have a geodesic path in S [0,λ0] between the two points represented by
P1 and P2. This geodesic corresponds to the optimal elastic deformations of facial curves
and, thus, facial surfaces from one to another. Figure 5.12 shows some examples of geodesic
paths that are computed between corresponding patches associated with shape models sharing
the same expression, and termed intraclass geodesics. In the first column we illustrate the
source, which represents scan models of the same subject, but under different expressions.
The third column represents the targets as scan models of different subjects. As for the middle
column, it shows the geodesic paths. In each row we have both the shape and the mean
curvature mapping representations of the patches along the geodesic path from the source to
the target. The mean curvature representation is added to identify concave/convex areas on the
source and target patches and equally spaced steps of geodesics. This figure shows that certain
patches, belonging to the same class of expression, are deformed in a similar way. In contrast,
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Figure 5.12 Examples of intraclass (same expression) geodesic paths with shape and mean curvature
mapping between corresponding patches

Figure 5.13 shows geodesic paths between patches of different facial expressions. These
geodesics are termed interclass geodesics. Unlike the intra-class geodesics shown in Figure
5.12, these patches deform in a different way.

Feature Vector Generation for Classification

To classify expressions, we build a feature vector for each facial scan. Given a candidate facial
scan of a person j , facial patches are extracted around facial landmarks. For a facial patch Pi

j ,
a set of level curves {cλ}i

j are extracted centered on the i th landmark. Similarly, a patch Pi
ref is

extracted in correspondence to landmarks of a reference scans ref. The length of the geodesic
path between each level curve and its corresponding curve on the reference scan are computed
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Figure 5.13 Examples of interclass (different expressions) geodesic paths between source and target
patches

using a Riemannian framework for shape analysis of 3D curves. The shortest path between two
patches at landmark i , one in a candidate scan and the other in the reference scan, is defined
as the sum of the distances between all pairs of corresponding curves in the two patches as
indicated in Equation 5.9. The feature vector is then formed by the distances computed on
all the patches and its dimension is equal to the number of used landmarks N = 70 (i.e.,
68 landmarks are used out of the 83 provided by BU-3DFED and the two additional cheek
points). The i th element of this vector represents the length of the geodesic path that separates
the relative patch to the corresponding one on the reference face scan. All feature vectors
computed on the overall data set will be labeled and used as input data to machine learning
algorithms such as MultiBoosting and SVM, where MultiBoosting is an extension of the
successful Adadoost technique for forming decision committees.

Recognition Experiments

To investigate facial expression aforementioned, the above approach is applied to a data set
that is appropriate for this task. In this section, we describe the experiments, obtained results,
and comparisons with related work.
For the goal of performing identity-independent facial expression recognition, the experi-

ments were conducted on the BU-3DFE static database. A data set captured from 60 subjects
were used, half (30) of them were female and the other half (30) male, corresponding to the
high and highest intensity levels 3D expressive models (03–04). These data are assumed to be
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Table 5.7 Classification results using local shape analysis and several classifiers

MultiBoost LDA MultiBoost NB MultiBoost NN SVM-Linear

Recognition rate 98.81% 98.76% 98.07% 97.75%

scaled to the true physical dimensions of the captured human faces. Following a similar setup
as in Gong et al. (2009), we randomly divided the 60 subjects into two sets, the training set
containing 54 subjects (648 samples), and the test set containing 6 subjects (72 samples).
To drive the classification experiments, we arbitrarily choose a set of six reference subjects

with its six basic facial expressions.We point out that the selected reference scans do not appear
either in the training or in the testing set. These references, with their relative expressive scans
corresponding to the highest intensity level, are taken to play the role of representative models
for each of the six classes of expressions. For each reference subject, we derive a facial
expression recognition experience.
Several facial expression recognition experiments were conducted with changing at each

time the reference. Using the Waikato Environment for Knowledge Analysis (Weka) (Hall
et al., 2009), we applied the MultiBoost algorithm with three weak classifiers, namely, Linear
Discriminant Analysis (LDA), Naive Bayes (NB), and Nearest Neighbor (NN), to the extracted
features, and we achieved average recognition rates of 98.81%, 98.76%, and 98.07%. We
applied the SVM linear classifier as well, and we achieved an average recognition rate of
97.75%. We summarize the resulting recognition rates in Table 5.7.
We note that these rates are obtained by averaging the results of the 10 independent and

arbitrarily run experiments (10-fold cross validation) and their respective recognition rate
obtained using theMultiBoost–LDAclassifier.We note that different selections of the reference
scans do not affect significantly the recognition results and that there is no large variation in
recognition rates values. The reported results represent the average over the six performed
experiments. The MultiBoost–LDA classifier achieves the highest recognition rate and shows
a better performance in terms of accuracy than do the other classifiers. This is mainly as
a result of the capability of the LDA-based classifier to transform the features into a more
discriminative space and, consequently, result in a better linear separation between facial
expression classes.
The average confusion matrix relative to the best performing classification using Multi-

Boost–LDA is given in Table 5.8.

Table 5.8 Average confusion matrix given by MultiBoost-LDA classifier

AN DI FE HA SA SU

AN 97.92 1.11 0.14 0.14 0.69 0.0
DI 0.56 99.16 0.14 0.0 0.14 0.0
FE 0.14 0.14 99.72 0.0 0.0 0.0
HA 0.56 0.14 0.0 98.60 0.56 0.14
SA 0.28 0.14 0.0 0.0 99.30 0.28
SU 0.14 0.56 0.0 0.0 1.11 98.19
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Figure 5.14 Selected patches at the early few iterations of MultiBoost classifier for the six facial
expressions (anger, disgust, fear, happiness, sadness, and surprise) with their associated weights

To better understand and explain the results mentioned earlier, the Multiboost algorithm is
applied on feature vectors built from distances between patches for each class of expression.
In this case, we consider these features as weak classifiers. Then, we look at the early iterations
of the MultiBoost algorithm and the selected patches in each iteration.
Figure 5.14 illustrates for each class of expression the most relevant patches. Notice that,

for example, for the happy expression the selected patches are localized in the lower part of
the face, around the mouth and the chin. As for the surprise expression, we can see that most
relevant patches are localized around the eyebrows and the mouth region. It can be seen that
patches selected for each expression lie on facial muscles that contribute to this expression.

Comparison with Related Work

Table 5.9 shows a comparison of semi-automatic approaches proposed in the state-of-the-art
methods using the same experimental setting (54-versus-6-subject partitions) of the BU-
3DFE database. In general, results are obtained by averaging many trials where the subjects
partitioning between train and test are randomly changed. Although not all the methods use
the same number of trials, and just the work in Maalej et al. (2011) evidences the differences
between different trials, we can assume that the reported results can be compared giving an
idea of the effectiveness of the different solutions.

5.4.3 Fully Automatic 3D Facial Expression Recognition

Some recent works have shown that local descriptors computed at salient keypoints of 3D
objects can be usefully applied to capture relevant 3D shape features. For example, in (Mian
et al., 2008) a 3D keypoint detector and descriptor has been defined for the purpose of 3D

Table 5.9 Comparison of state of the art methods on the BU-3DFE data set

Maalej et al. (2011) Gong et al. (2009) Berretti et al. (2011a) Zhao et al. (2011)

RR 98.0 ±1.6% 76.2% 77.5% 82.0%
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face recognition. In (Mayo and Zhang, 2009), SIFT keypoints detected on multiple 2D depth
images have been used to perform 3D face recognition. SIFT descriptors computed on a
sampling grid of points in 2D depth images have been used in (Ohbuchi and Furuya, 2004)
for 3D object retrieval by visual similarity. Finally, SIFT descriptors have been also used in
(Zheng et al., 2009) to perform 2D expression recognition from non-frontal face images.
Grounding on these studies, in the following we discuss an approach that uses local descrip-

tors of the face to perform person independent 3D facial expression recognition. This approach
has been originally proposed in (Berretti et al., 2010e), (Berretti et al., 2010a), and subsequently
developed to a completely automatic solution that exploits the local characteristics of the face
around a set of facial keypoints automatically detected (Berretti et al., 2011a). In this solu-
tion, some facial landmarks are first identified, and then SIFT descriptors computed at these
landmarks are combined together as feature vector representing the face. A feature selection
approach is then applied to these vectors inorder to extract the subset of most relevant fea-
tures, and the selected features are finally classified using SVMs. As it emerges from the
experimental evaluation, this approach is capable to achieve state of the art results on the
BU-3DFE database just relying on few keypoints that are automatically detected and without
using neutral scans as reference.
In the rest of this section, we will first briefly provide a solution for the automatic identi-

fication of facial keypoints. Then we will address the adaptation of SIFT descriptors to the
proposed case and the feature selection approach used to reduce the set of SIFT features and
the SVM based classification of the selected features. We will also provide a summary of the
results obtained with this approach.

Automatic Identification of Facial Keypoints

TheBU-3DFEdatabase is the standard benchmark to compare 3D facial expression recognition
algorithms (see Section 5.2). However, the fact that this database provides a set of manually
identified landmarks, and the inherent difficulty in automatically detecting the majority of
these landmarks has oriented the research towards semi-automatic solutions for 3D facial
expression recognition as illustrated in Section 5.4.2. In semi-automatic solutions, the position
of facial landmarks is assumed to be known to achieve high facial expression recognition
rates (see Section 5.4.1), but this hinders the applicability of these solutions to the general
case in which manual annotation of the landmarks in 3D is not available or even possible. To
overcome this limitation, in Berretti et al. (2011a) a completely automatic solution to identify
fiducial points of the face is proposed, which is shortly reviewed in the following paragraphs.
As first pre-processing step, the 3D face scans were transformed to depth images where

the gray-value of each image pixel represents the depth of the corresponding point on the 3D
surface. As an example, Figure 5.15 shows the depth images derived from the 3D face scans
of a same subject under three different facial expressions.
On the depth images, the point with maximum gray value has been used as initial estimate

of the tip of the nose. This point was used to crop a rectangular region of the face (following
anthropometric statistical measures (Farkas, 1994), the cropped region extends 50 mm on the
left and 50 mm on the right of the nose tip, and 70 mm above and 50 mm below the nose tip).
The cropped region of the face is used for all the subsequent steps of the processing.
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(a) (b) (c)

Figure 5.15 BU-3DFE database: depth images derived from the 3D face scans of subject. The highest
level of intensity is reported for expressions anger, disgust, and fear. Copyright C© 2011, Springer

Then the approach starts from the consideration that just a few fiducial points of the face
can be automatically identified with sufficient robustness across different individuals and
ethnicities. This is supported by recent studies as that in Gupta et al. (2010), where methods
are given to automatically identify 10 facial fiducial points on the 3D face scans of the
Texas 3D Face Recognition Database. Following this idea, a general method to automatically
identify nine keypoints of the face is given. The points are the tip of the nose (pronasale, prn),
the two points that define the nose width (alare, al), the points at the inner and outer eyes
(endocanthion, en and exocanthion, ex, respectively), and the outer mouth points (cheilion,
ch), as evidenced on the 3D face scan and depth image of Figures 5.16a,b.
Different algorithms are used in order to detect the keypoints.

• For the nose tip and the two alare points, the proposed solution develops on the methods
given in Gupta et al. (2010). In particular, the nose tip is determined in the convex part of
the central region of the face as the point with a local maximum of the elliptic Gaussian
curvature, which is closest to the initial estimate of the nose tip. For the alare points, first
the edges of the facial depth images are identified using a Laplacian of Gaussian (LoG)

(b)(a)

Figure 5.16 BU-3DFE database: The 9 facial keypoints that are automatically detected. Points are
evidenced on a textured 3D face scan and on the depth image of the scan in (a). Copyright C© 2011,
Springer
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edge detector and points along the nasal boundary with high curvature (“critical” points) and
negative curvature values are detected. Then, the two alare points are selected as the outer
left and outer right critical points.

• For the remaining points (inner and outer eyes and outer mouth) a solution based on the SIFT
detector applied to local search windows is applied. In particular, the extraction of these
points proceeds in cascade using the location of the nose tip and the alare points to identify
a set of the search windows on the face. In the en-en, ex-ex and ch-ch search windows the
SIFT detector algorithm is ran. In fact, SIFT has been defined on 2D grayscale images and
includes a keypoints detector and a feature extractor (Lowe, 2004). By definition, keypoints
detected by SIFT are mainly located at corner points of an image, so that they can be useful
to capture significant anthropometric face points. The SIFT point detected at the highest
scale is retained as the keypoint of the search window. Experiments on the accuracy of the
keypoints detection using this approach can be found in Berretti et al. (2011a).

Face Representation with Selected SIFT Features at Facial Keypoints

The nine keypoints automatically detected are used as reference to derive a set of sampling
points of the face. This is obtained by considering 8 lines that connect pairs of keypoints, as
shown in Figure 5.17a. In particular, these lines connect the nose tip to the lower point of
the face (line 1), the outer mouth with the outer eyes (lines 2, 3), the inner eyes with the mid
points of lines 2 and 3 (lines 4, 5), the outer mouth points each other (line 6), and the alare
points with the outer mouth (lines 7, 8). Lines are sampled uniformly with a different number
of points as reported in the table of Figure 5.17b. According to this, the face is sampled with
a total number of 79 keypoints.
To capture salient features that characterize different facial expressions in 3D, local descrip-

tors are computed around the 79 sample points of the face. The SIFT feature extraction
algorithm has been used for this purpose to derive SIFT descriptors. By computing the
128-dimensional SIFT descriptor at each of the 79 keypoints, a feature vector with 10,112
components is obtained to represent each depth image.

indices#pointsline

1 12
2 16
3 16
4 9
5 9
6 9
7 4
8 4

1–12
13–28
29–44
45–53
54–62
63–71
72–75
76–79

(b)(a)

Figure 5.17 (a) The eight lines along which the sample points are located (the cropped region of the
face is also reported); (b) the number of points and their indices grouped according to the surface line
they belong to. Copyright C© 2011, Springer



184 3D Face Modeling, Analysis and Recognition

To reduce the dimensionality and improve the significativeness of the features, only the
features with maximal relevance and minimal redundancy have been selected using a feature
selection analysis. In particular, feature selection is performed using the minimal redundancy
maximal relevance (mRMR) model (Peng et al., 2005). For a given classification task, the
aim of mRMR is to select a subset of features by taking into account the ability of features to
identify the classification label, as well as the redundancy among the features. These concepts
are defined in terms of the mutual information between features.
In our approach, the mRMR algorithm is applied to the set of 10112-dimensional feature

vectors representing the faces. Each vector v f = ( f1, . . . , f10112) is constructed by concate-
nating the 128-dimensional SIFT descriptors computed at the face keypoints, orderly from 1 to
79. A data discretization into three levels is applied to the vectors as preprocessing step. This
is obtained by computing the mean value μk and the standard deviation σk for every feature
fk . Then, discretized values f̂k are obtained. The overall set of discretized feature vectors is
used to feed the mRMR algorithm so as to determine the features which are most relevant in
discriminating between different facial expressions of 3D face scans of different subjects.
The facial expression recognition problem is a multiclassification task that is faced as a

combination of separated instances of one-versus-all classification subproblems. For each
subproblem, face scans showing one expression are assumed as targets (positive examples),
whereas all the other scans with any different expression are considered as negative examples.
Repeatedly, the target expression is changed among the six basic expressions provided by the
BU-3DFE database, hence, the sets of positive and negative examples change. Because of
this, mRMR feature selection is performed independently for each classification subproblem.
In general, this results into different features providing the minimal redundancy and maximal
relevance for the purpose of discriminating across different facial expressions. Then, just the
most relevant features identified for every expression are retained from the original feature
vectors in order to train the classifiers. This results into vectors vexpr

f̂
= ( f̂ p1 , . . . , f̂ pNexpr ), where

p1, . . . , pNexpr are the indices of the features components selected in the original vector, and
the subscript the label of a particular expression.
The selected features are then used to perform facial expression recognition using amaxima

rule between six one-versus-all SVM classifiers, each with a radial basis function kernel of
standard deviation equal to one (the publicly available SVMLight implementation of SVM
has been used: http://svmlight.joachims.org/).

5.5 4D Facial Expression Recognition

The use of 4D data for face analysis applications is still at its nascent stages, with no research
on face recognition from sequences of 3D face scans and very little research focusing on
facial expression recognition. The first approach addressing the problem of facial expression
recognition from dynamic sequences of 3D scans was proposed by Sun et al. Sun and Yin
(2008). Their approach basically relies on the use of a generic deformable 3D model whose
changes are tracked both in space and time in order to extract a spatio-temporal descriptor
of the face. In the temporal analysis, a vertex flow tracking technique is applied to adapt the
3D deformable model to each frame of the 3D face sequences, and the vertex flow estimation
is derived by establishing point to point correspondences between 3D meshes on the basis
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of a conformal mapping approach. The vertex correspondence across 3D model sequences
provides a set of motion trajectories (vertex flow) of 3D face scans. Consequently, the vertex
flow can be depicted on the adapted generic model (tracking model) through estimation of the
displacement vector from the tracked points of the current frame to the corresponding points of
the first frame (assumed to have a neutral expression). A facial motion vector is then obtained to
describe the dynamics of facial expression across a 3D frame sequence. In the spatial analysis,
an automatic surface labelling approach is applied on the tracked locations of the range models
in order to classify the 3Dprimitive surface features into eight basic categories. As a result, each
depth scan in the sequence can be represented by a spatiotemporal feature vector that describes
both shape and motion information and provides a robust facial surface representation. Once
spatiotemporal features are extracted, a two-dimensional Hidden Markov Model (HMM) is
used for classification. In particular, a spatial HMM and a temporal HMMwere used to model
the spatial and temporal relationships between the extracted features. Exhaustive analysis was
performed on the BU-4DFE database, with a reported average recognition rate equal to 83.7%
for identity-independent facial expression recognition. The main limit of this solution resides
in the use of the 83 manually annotated landmarks of the BU-4DFE that are not released for
public use.
The approach proposed by Sandbach et al. (2011) exploits the dynamics of 3D facial

movements to analyse expressions. This is obtained by first capturing motion between frames
using free-form deformations and extracting motion features using a quad-tree decomposition
of several motion fields. GentleBoost classifiers are used to simultaneously select the best
features to use and perform the training using two classifiers for each expression: one for
the onset temporal segment, and the other for the offset segment. Then, HMMs are used for
temporal modeling of the full expression sequence, which is represented as the composition
of four temporal segments, namely, neutral-onset-apex-offset, which model a sequence with
an initial neutral segment followed by the activation of the expression, maximum intensity
of the expression, deactivation of the expression and closing of the sequence again with a
neutral expression. The average correct classification results for three prototypic expressions
(i.e., happiness, anger, surprise) of the BU-4DFE database is equal to 81.93%.
In Le et al. (2011) a level curve–based approach is proposed to capture the shape of 3D

facial models. The level curves are parametrization using the arclength function. The Chamfer
distance is applied to measure the distances between the corresponding normalized segments,
partitioned from these level curves of two 3D facial shapes. These measures are then used
as spatiotemporal features to train HMM, and since the training data were not sufficient for
learning HMM, the authors proposed to apply the universal background modeling to overcome
the overfitting problem. Using the BU-4DFE database to evaluate their approach, they reached
an overall recognition accuracy of 92.22% for three prototypic expressions (i.e., happiness,
sadness, surprise).
The work of Fang et al. (2011) proposes a fully automatic 4D facial expression recognition

approachwith a particular emphasis on 4D data registration and dense correspondence between
3D meshes along the temporal line. The variant of the local binary patterns (LBP) descriptor
proposed in Zhao and Pietikäinen (2007), which computes LBP on three orthogonal planes is
used as face descriptor along the sequence. Results are provided on the BU-4DFE database
for all expressions and for the subsets of expressions used in Sandbach et al. (2011) and Le
et al. (2011), showing improved results with respect to competitor solutions.
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5.5.1 The BU-4DFE Database

The 3D and 4D databases used for facial expression recognition have been summarized in
Section 5.2 and further details on can be found in Yin et al. (2008). To make the discussion
simpler, we recall, in the following sections, the main features of the dynamic 3D facial
expression database that recently created at Binghamton University (Yin et al., 2008).
The 3D scans have been constructed by capturing a sequence of stereo images of subjects

exhibiting facial expressions and producing a depth map for each frame. The range maps are
then combined to produce a temporally varying sequence of 3D scan. Subjects were requested
to perform the six prototypic expressions, separately, in such a way that each expression
sequence contained neutral expressions in the beginning and at the end. In particular, each
expression was performed gradually from neutral appearance, low intensity, high intensity,
and back to low intensity and neutral. Each 3D sequence captures one expression at a rate of
25 frames per second and each 3D sequence lasts approximately 4 seconds with about 35,000
vertices per scan (i.e., 3D frame). The database consists of 101 subjects including 606 3D
model sequences with six prototypic expressions. Examples of 2D and 3D frames sampled
from the happy 4D sequences of subject F021 are given in Figure 5.18.
An example of a 3D dynamic facial sequence of a subject with the happy expression is

shown in Figure 5.18a, where 2D frames (not used in our solution) and 3D frames before
preprocessing are reported. For each row, five frames are given (out of the 98 total frames of
the specific sequence) each representing a sample of the start and end of the sequence (first
and last frame), of the intensity of the facial expression in the onset and offset intervals of the
sequence, and of the interval of the sequence with the larger intensity of the expression (apex).
From a preliminary analysis, we note that the resolution of the individual scans of 3D

sequences is not very high. In fact, the average number of vertices per scan is reasonable

2D
frames

frontal

3D
frames

side
#18 onset#0 neutral #47 apex #82 offset #97 neutral

(b)(a)

Figure 5.18 BU-4DFE: (a) Frames from the dynamic sequence of subject F021 (happy expression).
For each row, five frames are reported out of 98 total frames of the sequence; (b) a raw 3D frame before
preprocessing is shown from frontal and side view
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(about 35,000), but the number of vertices used to represent the face region is considerably
lower as a result of the large outliers acquired in the hair and shoulder regions (see Figure
5.18b). The lack of facial geometric details makes the 3D sequences quite challenging to be
used for facial expression recognition and face recognition.

5.5.2 3D Shape Motion Analysis

The raw data obtained from even the most accurate 3D scanners is far from being perfect
and clean because it contains spikes, holes, and significant noise. A preprocessing step must
be applied to remove these anomalies before any further operations can be performed. Thus
the preprocessing is an important stage of the recognition systems, especially when knowing
that all the features will be extracted from the output of this step. An automatic preprocessing
pipeline is developed and applied according to the following steps:

1. Filling holes: Several BU-4DFE scans are affected with holes that often lie in the mouth
region and that take part in an acquisition session that meets an open mouth expression. In
this case the mouth area is not visible and cannot be acquired by the stereo sensors, which
causes missing data. A linear interpolation technique is used to fill the missing regions of
a given raw 3D face image.

2. Nose detection: The nose tip is a keypoint that is needed for both preprocessing and facial
surface representation stages. Knowing that in most 3D images, the nose is the closest
part of the face to the 3D acquisition system, in this step the nose tip is detected using
horizontal and vertical slicing of the facial scan in order to search for the maximum value
of the z-coordinate along these curved profiles. Once this is done for the first frame, for the
remaining frames of the sequence this detection technique is refined and the search area
in a current frame is reduced to a small sphere centered on the nose tip detected in the
previous frame.

3. Cropping: Face boundaries, hair, and shoulders are irrelevant parts for the study, and they
are usually affected with outliers and spikes. The nose tip detected in the previous step is
used to crop out the required facial area from the raw face image. Using a sphere, centered
on the nose tip and of a radius determined empirically, the 3D range model is cut and the
mesh structure kept inside the sphere is retained.

4. Pose correction: In this step a global registration technique (i.e., ICP) is applied to align
meshes of the current frame and the first frame of the sequence. After this rigid alignment,
the pose of the 3D face is adjusted and made similar enough to the pose in the first frame.

Geometric Facial Deformation

One basic idea to capture facial deformations across 3D video sequences is to track meshes
vertices densely along successive 3D frames. Because the meshes resolutions vary across
3D video frames, establishing a dense matching on consecutive frames is necessary. For this
purpose, Sun and Yin (2008) proposed to adapt a generic model (a tracking model) to each 3D
frame using a set of 83 predefined facial landmarks to control the adaptation based on radial
basis functions. The main limitation of this approach was that 83 landmarks were manually
annotated in the first frame of each sequence. Moreover, the adaptation decreased the accuracy
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of expression recognition when emotions were manifested by subtle changes of the face.
In another solution presented by Sandbach et al. (2011, 2012), the authors used an existing
nonrigid registration algorithm (FFD) (Rueckert et al., 1999) on the basis of the B-splines
interpolation between a lattice of control points. Here, dense matching was a preprocessing
step used to estimate a motion vector field between 3D frames t and t-1. The problem of
quantifying subtle deformations along the sequence still remains a challenging task, and the
results presented in Sandbach et al. (2011) were limited to just three facial expressions:
happiness, anger, and surprise.
In the following paragraphs we discuss an approach that uses a collection of radial curves

to represent a 3D face. A Riemannian shape analysis is applied to effectively quantify defor-
mations induced by facial expressions in subsequent 3D frames. This is obtained by a dense
scalar field defined in Chapter 3 (Section 3.8.5), which denotes the shooting directions of the
geodesics paths constructed between pairs of corresponding radial curves of two expressive
faces. This approach has been originally proposed in Drira et al. (2012). The first step to
capture the deformation between two given 3D faces F1 and F2 is to extract the radial curves
originating from the nose tip. Let β1α and β2α denote the radial curves that make an angle α

with a reference radial curve on faces F1 and F2, respectively. The tangent vector field ψ̇∗
α that

represents the energy E needed to deform β1α to β2α is then calculated for each index α. We
consider the magnitude of this vector field at each point k of the curve to construct the DSFs
of the facial surface. In this way, the DSF quantifies the local deformation between points of
radial curves β1 and β2, respectively, of the faces F1 and F2. In the practice, we represent each
face with 100 radial curves and 50 points on each curve so that the DSFs between two 3D
faces is expressed by a 5000-dimensional vector.

Mean Shape Deformation with Random Forest Classifier

In this section, we propose a pattern-based approach for expression classification in 3D video.
The idea is to capture a mean deformation of the face in the sliding window on the 3D
expression sequence, and consider it as a pattern for classification. To get this pattern, the first
frame of each subsequence is considered as the reference one, and the dense deformation is
computed from this frame to each of the remaining frames of the sub-sequence. Let Fref denote
the reference frame of a sub-sequence and Fi the i th successive frame in the subsequence; the
successive frame, for example, is denoted by F1. The DSF is calculated between Fref and Fi ,
for different values of i (i = 1 . . . n − 1), and the mean deformation is then given by

¯DSF = 1

n − 1
n−1∑
i=1
DSF(Fref, Fi ). (5.10)

Figure 5.19 illustrates one subsequence for each expression with n = 6 frames. Each expres-
sion is illustrated in two rows, the upper row gives the reference frame of the subsequence and
the n − 1 successive frames of the subsequences. Later, the corresponding dense scalar fields
computed for each frame are shown. The mean deformation map is reported at the right and
represents the feature vector for each subsequence. The feature vector for this subsequence is
built on the basis of the mean deformation of the n − 1 calculated deformations. Thus, each
subsequence is represented by a feature vector of size equal to the number of points on the
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Figure 5.19 Calculus of dynamic shape deformation on subsequences taken from the BU-4DFE
database. Each expression is illustrated by two rows: The upper one gives the reference frame of
the subsequence and the n-1 successive frames of the subsequences. The corresponding deformation
fields computed for each frame with respect to the reference one are illustrated in the lower row. The
mean deformation map is given at the right of each lower row
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face. To provide a visual representation of the scalar field, an automatic labeling scheme is
applied: The warm colors (red, yellow) are associated with high DSF(Fref, Ft ) values and cor-
respond to facial regions affected by high deformations, whereas the cold colors are associated
with regions that remain stable from one frame to another. Thus, this dense deformation filed
summarizes the temporal changes of the facial surface when a particular facial expression is
conveyed.
According to this representation, the deformation of each subsequence is captured by the

mean DSF V̄ k
α defined in Equation 5.10. Because the dimensionality of the feature vector is

high, we use LDA-based transformation to map the present feature space to an optimal one
that is relatively insensitive to different subjects while preserving the discriminative expression
information. LDA defines the within-class matrix Sw and the between-class matrix Sb. It
transforms a n-dimensional feature to an optimized d-dimensional feature where d < n. For
our experiments, the discriminative classes are the 6 expressions, thus the reduced dimension
d is 5.
For the classification, we used the multiclass version of the random forest algorithm. The

random forest algorithm was proposed by Breiman (2001) and defined as a meta-learner
comprising many individual trees. It was designed to operate quickly over large data sets and
more importantly to be diverse by using random samples to build each tree in the forest. A
tree achieves highly nonlinear mappings by splitting the original problem into smaller ones,
solvable with simple predictors. Each node in the tree consists of a test, whose result directs a
data sample towards the left or the right child. During training, the tests are chosen to group
the training data in clusters where simple models achieve good predictions. Such models are
stored at the leaves, computed from the annotated data, which reached each leaf at train time.
Once trained, random forest classifies a new expression from an input feature vector by putting
it down each of the trees in the forest. Each tree gives a classification decision by voting for
that class. Then, the forest chooses the classification having the most votes (over all the trees
in the forest).

Experimental Results

Deformations following facial expressions across 3D video sequences are characterized by
subtle variations induced mainly by the motion of facial points. These subtle changes are
important to perform effective expression recognition, but they are also difficult to be analyzed
because of the face movements. To handle this problem, as described in the previous section,
we propose a curve-based parametrization of the face that consists in representing the facial
surface by a set of radial curves. According to this representation, the problem of comparing
two facial surfaces, a reference facial surface and a target one, is reduced to the computation
of the DSFs between them.
To make possible starting the recognition process from any frame of a given video, we

considered subsequences of n frames. Thus, we chose the first n frames as the first subse-
quence. Then, we chose n-consecutive frames starting from the second frame as the second
subsequence. This process was repeated by shifting the starting index of the sequence every
one frame till the end of the sequence.
Following the experimental protocol proposed in Sun and Yin (2008), a large set of sub-

sequences were extracted from the original expression sequences using a sliding window.
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Figure 5.20 4D expression recognition results using RandomForest classifier when varying the number
of trees

The subsequences have been defined in Sun and Yin (2008) with a length of six frames with
a sliding step of one frame from one subsequence to the following one. For example, with
this approach, a sequence of 100 frames originates a set of 6× 95 = 570 subsequences, each
subsequence differing from one frame from the previous one. This accounts for the fact that,
in general, the subjects can come into the system not necessarily starting with a neutral expres-
sion, but with a generic expression. Classification of these short sequences is regarded as an
indication of the capability of the expression recognition framework to identify individual
expressions.
According to this, we first computed for each subsequence the Mean Deformation, which

was then presented to multiclass Random Forest, as outlined in Section 5.5.2. The performance
of the Random Forest classifier varied with the number of trees. Thus, we performed the
experiments with different numbers of trees; the results of this experimentation are shown in
Figure 5.20. As illustrated by this figure, the average recognition rate rose with the increasing
number of trees until 40, when the recognition rate reached 93.21%, and then became stable.
Thus, in the following paragraphs, we considered 40 trees and the detailed results (confusion
matrix) with this number of trees are shown in Table 5.10.We recall that the rates were obtained
by averaging the results of the 10-independent and arbitrarily run experiments (10-fold cross
validation).

Table 5.10 Confusion matrix for Mean Deformation and Random Forest classifier (for 6-frames
window)

% An Di Fe Ha Sa Su

An 93.11 2.42 1.71 0.46 1.61 0.66
Di 2.3 92.46 2.44 0.92 1.27 0.58
Fe 1.89 1.75 91.24 1.5 1.76 1.83
Ha 0.57 0.84 1.71 95.47 0.77 0.62
Sa 1.7 1.52 2.01 1.09 92.46 1.19
Su 0.71 0.85 1.84 0.72 1.33 94.53

Average recognition rate = 93.21%
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Table 5.11 Comparison of 3D Dynamic Facial expression Recognition Approachs

Authors Features Classification RR3 (%)

Sun and Yin (2008) 12 Motion Units HMM 70.31
Sun and Yin (2008) Tracking model HMM 80.04
Sun and Yin (2008) Curvature+Tracking model HMM 82.19
Sun and Yin (2008) Curvature+Tracking model 2D-HMM 90.44
Sandbach et al. (2011) FFD+Quad-tree GentleBoost+HMM 73.61, 81.93
Le et al. (2011) Level curve-based HMM 92.22
Fang et al. (2011) LBP-TOP SVM-RBF 74.63
Drira et al. (2012) Geometric Mean Deformation LDA-Random Forest 93.21

It can be noted that the lower recognitionwas obtained for the fear (Fe) expression (91.24%),
which is mainly confused with the anger (An) and disgust (Di) expressions. Interestingly, these
three expressions capture negative emotive states of the subjects so that similar facial muscles
can be activated. The best classified expressions are happiness (Ha) and surprise (Su) with
recognition accuracy of 95.47% and 94.53%, respectively.

5.5.3 Discussion and Comparative Evaluation

To the best of our knowledge, the only four works reporting results on expression recognition
from dynamic sequences of 3D scans are Sun and Yin (2008), Sandbach et al. (2011), Le et al.
(2011), and Fang et al. (2011). These works have been evaluated on the BU-4DFE data set,
but the testing protocols used in the experiments are sometimes different, so that a direct com-
parison of the results reported in these papers is difficult. In the following, we present in Table
5.11 the last results published on 3D facial expression recognition from dynamic 3D scans.

Exercises

1. What are the main limitations of 2D facial expression recognition systems?

2. We consider the following ROC Figure 5.21 curves of two 3D face authentication
approaches evaluated using the same experimental protocol:
1. How do you interpret these curves?
2. You have been asked as an expert in Biometrics to choose between these two approaches
to design two different access control systems. Complete the table below. Explain your
choices?

Approach 1 Approach 2

Access Control system for Canteen for children
Access Control system for safe of a bank

3. Give one application of facial expression recognition in medical application.



Applications 193

0,4

0,6

0,8

1,0

False Acceptance Rate

V
er

ifi
ca

tio
n 

R
at

e

Approach 1

Approach 2

0 1

Figure 5.21 ROC Curves

Glossary

In the following we provide a brief introduction to the machine learning algorithms used in
the manuscript. For more details, please refer to some textbooks on machine learning such as
Bishop (2006).

AdaBoost

AdaBoost is a very successful machine-learning method that permits to build an accurate
prediction rule, its principle is based on finding many rough rules of thumb instead of finding
a one highly accurate rule. More simpler, the idea is to build a strong classifier by combining
weaker ones. AdaBoost is proven to be an effective and powerful classifier in the category of
ensemble techniques. The algorithm takes as input a training examples (x1, y1), . . . , (xN , yN )
where each xi (i = 1, . . . , N ) is an example that belongs to some domain or instance space
X , and each label yi is a boolean value that belongs to the domain Y = {−1,+1}, indicating
whether xn is positive or negative example. Along a finite number of iterations t = 1, 2, . . . , T
the algorithm calls, at each iteration t , the weak classifier (or learner). After T times it
generates a set of hypothesis {ht }T

t=1 such that ht −→ {−1, 1}. The final classifier H (X )
is the strongest one, and is given by the combination of these hypothesis, ponderated by
their respective weight factors {αt }T

t=1. The hypothesis ht and its corresponding weight αt

are determined at each iteration t , the selection of the best hypothesis ht , at each time t , is
done among a set of hypothesis {h j }J

j=1, where J stands for the number of features consid-
ered for the classification task. ht is equal to h j that gives the smallest error of classifica-
tion ε j . The error ε j corresponds to samples that are misclassified, and that will see their
associated weight increased in the next iteration t + 1. These procedures are presented in
Algorithm 9.
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Algorithm 9 AdaBoost algorithm

• Input: set of examples (x1, y1), . . . , (xN , yN ) where xi ∈ X and yi = {−1,+1}.
• Let m be the number of negatives examples and l be the number of positive examples.
Initialize weights w1,n = 1

2m , 12l depending on the value of yn .
• For t = 1, . . . , T x:

1. Normalize the weights wt,n so that
∑N

n=1 wt,n = 1.
2. For each feature f j , train a weak classifier h j .
3. The error ε j of a classifier h j is determined with respect to the weights

wt,1, . . . , wt,N :

ε j =
N∑
n

wt,n|h j (xn)− yn|

4. Choose the classifier h j with the lowest error ε j and set (ht , εt ) = (h j , ε j ).
5. Update the weights wt+1,n = wt,nβ

1−en
t , where βt = εt

1−εt
and en = 0, if example xn

is classified correctly by ht and 1 otherwise

• The final strong classifier is given by:

H (x) =

⎧⎪⎨
⎪⎩
1 if

∑T
t=1 log

1

βt
ht (x) ≥ 1

2

T∑
t=1

log(
1

βt
);

0 otherwise.

MultiBoost

Given a set of training data (x1, c1) , . . . , (xn, cn) where xi is the input, and each output
ci ∈ 1, . . . , K is a class label. We use K to denote the number of possible class labels. Using
training data, MultiBoost, which is an extension of the original AdaBoost method, permits to
find a classification rule so that when given a new input x , we can assign it a class label c from
1, . . . , K . Let T (x) denote a weak multi-class classifier that assigns a class label to x . Then
the MultiBoost algorithm, called also AdaBoostM1, proceeds as reposted in Algorithm 10.

Algorithm 10 AdaBoostM1 algorithm

• Initialize the observation weights wi = 1
n , i = 1, 2, . . . , n.

• For m = 1 to M :
– Fit a classifier Tm(x) to the training data using weights wi

– Compute errm =
∑

i=1 nwi
∏
(ci �=Tm (xi ))∑

i=1 nwi
.

– Compute αm = log( 1−errmerrm
)

– Set wi ← wi · exp(αm · ∏
(ci �= Tm(xi ))), i = 1, . . . , n.

– Re-normalize wi .
• OutputC(x) = argmaxk

∑
m=1 Mαm

∏
(Tm(x) = K ).
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MultiBoost with LDA Classifier

MultiBoost with LDA classifier incorporates linear discriminant analysis (LDA) algorithm
to implement linear combinations between selected features and generate new combined
features. The combined features are used along with the original features in boosting algorithm
for improving classification performance. Given a binary classification problem with linear
classifiers that are specified by discriminant functions, LDA assumes the covariance matrices
of both classes to be equal,

∑
. We denote the means byμ1 andμ2, and arbitrary feature vector

by x define

D (x) = [b;w]T . [1; x]

w = ∑−1
.(μ2 − μ1)

b = −w T .μ

μ = 1
2 .(μ1 + μ2).

D (x) is the difference in the distance of the feature vector x to the separating hyperplane
described by its normal vector w and the bias b. If D (x) is greater than 0, the observation x
is classified as class 2 and otherwise as class 1.

MultiBoost with NB Classifier

The Naive Bayes classifier estimates the posterior probability that an instance belongs to
a class, given the observed attribute values for the instance. It builds a simple conditional
independence classifier. Formally, the probability of a class label value y for an unlabeled
instance x containing n attributes 〈A1, A2, . . . , An〉 is given by

P(y|x) =
= P (x |y) . P(y)

P(x)
∝ P (A1, A2, . . . , An) .P(y)
= ∏

j+1 n P(A j |y).P(y).

The preceding probability is computed for each class and the prediction is made for the class
with the largest posterior probability. The probabilities in the aforementioned formulas must
be estimated from the training set.

MultiBoost with NN Classifier

The Nearest Neighbor pattern classifier has shown to be a powerful tool for multi-class
classification. The basic idea of the NN classifier is that whenever we have a new instance to
classify, we find its K nearest neighbors from the training data. Given a query instance xi to
be classified

• let x1, x2, . . . , xk denote the k instances from training examples that are nearest to xq ;
• return the class that represents the maximum of the k instances.
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Figure 5.22 (a) Linearly separable data samples represented in a plane and separated by a straight line;
(b) non-linearly separable data samples represented in a plane and separated by a curved line

Support Vector Machine (SVM)

SVM is based on the use of functions that can optimally separate data. When considering the
case of two classes for which data are linearly separable, there exists an infinite number of
hyperplanes for separating the observations. SVM’s goal is to find the optimal hyperplane that
separates datawithmaximizing the distance between the two classes and that goesmiddle of the
two points classes of examples. The nearest points, which are used only for the determination
of the hyperplane, are called support vectors. Among the models of SVM, there is linear-SVM
and nonlinear-SVM. The first are the simplest SVM because they can linearly separate data,
whereas the second ones are used for data that are not linearly separable. In the last case the
data are transformed to be represented in a large space where they are linearly separable.
The evaluation of classification techniques is a recurrent problem which often depends on

the difficult task of measuring generalization performance, that is, the performance on new,
previously unseen data. For most real-world problems we can only estimate the generalization
performance. To evaluate a certain learning algorithm, we usually apply a cross-validation
scheme.

(a) (b)

X1

X2

X1

X2

Figure 5.23 (a) Non-linearly separable data samples represented in a plane and separated by a curved
line; (b) plan separation after a transformation of of the same data samples into a 3D space
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Cross-validation

The traditional approach of cross-validation consists in dividing the data to classify into training
and testing partitions a number of times. In our studies, we applied K -fold cross-validation
procedure (with k = 10), where the data was first partitioned into k equally (or nearly equally)
sized segments or folds. Subsequently k iterations of training and validation were performed
such that within each iteration a different fold of the data was held out for validation, while
the remaining k − 1 folds were used for learning. Following this procedure we measured the
classification accuracy of the considered classifier.

Hidden Markov Model

HMM consists of < S, s0, O, A, B >:

• S: the set of states;
• s0: the initial state where everything begins;
• O: the sequence of observations, each of which is drawn from a vocabulary, 〈o1, o2, . . . , oT 〉;
• A: the transitional probability matrix;
• B: the emission probabilities, where bi (ot ) is the probability of observation ot generated
from state i.

Forward–Backward Probability

• Forward probability: At time t , the probability that
– we are in state i
– the observation thus far has been o1 . . . ot

– αt (i) = P(st = i, o1, . . . , ot |λ).
• Backward probability: At time t and we are in state i , the probability that

– the observation that follows will be ot+1 . . . oT

– βt (i) = P(ot+a . . . oT |st = i, λ).

Baum–Welch Algorithm

The Baum–Welch algorithm is used to estimate the parameters of a Hidden Markov model. It
can compute maximum likelihood estimates and posterior mode estimates for the parameters
(transition and emission probabilities) of an HMM,when given only emissions as training data.

Algorithm 11 Baum–Welch algorithm

1. Initialize the parameters to some values;
2. Calculate “forward-backward” probabilities based on the current parameters;
3. Use the forward-backward probabilities to estimate the expected frequencies;

•Expected number of transitions from state i (to state j);
•Expected number of being in state j (and observing ot );
•Expected number of starting in state j ;

4. Use the expected frequencies to estimate the parameters;
5. Repeat 2 to 4 until the parameters converge.
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point-to-point correspondence, 52–3
polygon mesh, 41, 43
Polygonal Mesh Representation, 41

pose correction, 42, 60, 63, 67
pose estimation, 52
pose normalization, 121, 122, 136
post-processing, 2, 14, 27
preprocessing, 40, 53, 71
principal component analysis, 61–4
principal curvatures, 54, 57, 59, 65
principal directions, 66, 68, 73

QEM, 50–51
quaternion rotation, 48
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radial curve, 81, 82, 84, 88–93, 95, 97
random forest, 188, 190–92
range image, 40, 42, 45, 46, 51, 56, 59, 61–3, 65,

68, 69, 70, 72–3
range image decimation, 51–2
range image representation, 43–5, 46
RANSAC, 59
redundancy, 120, 129, 130, 134, 136–8, 140, 145
region-based, 67
registration error, 60–62, 67
rigid approaches, 52, 60, 71
rigid 3D transformations, 39–40, 47, 54–5, 60–61
ROC curve, 158, 169, 193
root mean square (RMS), 122–5, 127, 129,

136–8
rotation, 47–9, 60, 61, 69, 70

saliency, 164, 166, 167
scanners, 40
segmentation, 40, 53, 57, 58, 68
self-occlusion, 40, 53
shape-from-Shading (SFS), 5, 6, 32
shapes of curves, 78, 81, 83
SIFT, 162–7, 173, 180, 183, 184
simple adjacency mesh, 43
small sample size, 64
smoothing, 120, 126, 133, 135
spacetime, 3, 25–8
square-root velocity function (SRVF), 83, 85, 89,

91–3, 95, 97, 98, 99, 101, 115
static face, 2, 32
stripes, 103, 106, 107, 109, 110, 112, 113, 114

structured-light, 3, 5, 8, 14, 19, 32, 33
subspace, 61–4
support vector machines, 161, 173, 178, 179, 181,

184, 192, 196
inter-stripe, 114
intra-stripe, 114
iso-geodesic stripes, 103, 106, 109, 110, 113,

114
surface features, 39, 41, 57
surface representations, 39, 65
the symmetry of the human face, 52
symmetry profile, 52

template, 27, 29–31
textured point clouds, 40
time-of-Flight (Tof), 3, 6, 32, 34
topologies, 39
topology, 49, 51
triangular mesh, 41, 43
triangulation, 2–7, 21, 25, 32, 35

UND, 121, 126, 127, 129, 136, 137, 138, 142–5

vertex-polygon mesh, 43
vertex clustering, 49
vertex removal, 50

voting, 134, 135, 142

weights, 122–5, 131, 133–5, 141, 144
winged-edge mesh, 43

XY-based range representation, 45


