
www.allitebooks.com

http://www.allitebooks.org

Access Data Analysis Cookbook

Ken Bluttman and Wayne S. Freeze

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

www.allitebooks.com

http://www.allitebooks.org

Access Data Analysis Cookbook
by Ken Bluttman and Wayne S. Freeze

Copyright © 2007 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Simon St.Laurent
Production Editor: Sumita Mukherji
Copyeditor: Rachel Head
Proofreader: Sumita Mukherji

Indexer: Julie Hawks
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrators: Robert Romano and Jessamyn Read

Printing History:

May 2007: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. The Cookbook series designations, Access Data Analysis Cookbook, the image of a
crab-eating mongoose, and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN-10: 0-596-10122-8

ISBN-13: 978-0-596-10122-0

[M]

www.allitebooks.com

http://safari.oreilly.com
mailto:corporate@oreilly.com
http://www.allitebooks.org

I dedicate this book to Chestnut

(September 29, 1995–April 16, 2007),

my ever-faithful cocker spaniel who followed me

around like the puppy dog he was, even in his old

age. I always watched over him, and now he is

watching over us. We miss you.

—Ken Bluttman

To my father, Jay B. Freeze, who taught me how

to survive when things get rough. I miss you.

—Wayne S. Freeze

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

v

Table of Contents

Preface . ix

1. Query Construction . 1
1.1 Finding Unmatched Records 1
1.2 Making AND and OR Do What You Expect 4
1.3 Working with Criteria Using the IN Operator 7
1.4 Excluding Records with the NOT Operator 10
1.5 Parameterizing a Query 11
1.6 Returning a Top or Bottom Number of Records 16
1.7 Returning Distinct Records 19
1.8 Returning Random Records 24
1.9 Fine-Tuning Data Filtering with Subqueries 26
1.10 Combining Data with Union Queries 31
1.11 Inserting On-the-Fly Fields in Select Queries 35
1.12 Using Aliases to Simplify Your SQL Statements 37
1.13 Creating a Left Join 39
1.14 Creating a Right Join 41
1.15 Creating an Outer Join 43

2. Calculating with Queries . 46
2.1 Finding the Sum or Average in a Set of Data 46
2.2 Finding the Number of Items per Group 50
2.3 Using Expressions in Queries 52
2.4 Using Custom Functions in Queries 54
2.5 Using Regular Expressions in Queries 57
2.6 Using a Cartesian Product to Return All Combinations of Data 61
2.7 Creating a Crosstab Query to View Complex Information 65

www.allitebooks.com

http://www.allitebooks.org

vi | Table of Contents

3. Action Queries . 73
3.1 Running an Update Query 73
3.2 Appending Data 79
3.3 Deleting Data 83
3.4 Creating Tables with Make-Table Queries 88

4. Managing Tables, Fields, Indexes, and Queries . 92
4.1 Creating Tables Programmatically 92
4.2 Altering the Structure of a Table 99
4.3 Creating and Using an Index 102
4.4 Programmatically Removing a Table 104
4.5 Programmatically Creating a Query 106

5. Working with String Data . 109
5.1 Returning Characters from the Left or Right Side of a String 109
5.2 Returning Characters from the Middle of a String When the

Start Position and Length Are Known 111
5.3 Returning the Start Position of a Substring When

the Characters Are Known 112
5.4 Stripping Spaces from the Ends of a String 115
5.5 Stripping Spaces from the Middle of a String 116
5.6 Replacing One String with Another String 119
5.7 Concatenating Data 121
5.8 Sorting Numbers That Are Stored as Text 124
5.9 Categorizing Characters with ASCII Codes 127

6. Using Programming to Manipulate Data . 131
6.1 Using Excel Functions from Access 131
6.2 Working with In-Memory Data 136
6.3 Working with Multidimensional Arrays 140
6.4 Sorting an Array 144
6.5 Flattening Data 147
6.6 Expanding Data 151
6.7 Encrypting Data 153
6.8 Applying Proximate Matching 157
6.9 Using Transaction Processing 160
6.10 Reading from and Writing to the Windows Registry 162
6.11 Creating Charts 165
6.12 Scraping Web HTML 170

www.allitebooks.com

http://www.allitebooks.org

Table of Contents | vii

6.13 Creating Custom Report Formatting 173
6.14 Rounding Values 177
6.15 Running Word Mail Merges 180
6.16 Building a Multifaceted Query Selection Screen 183

7. Importing and Exporting Data . 188
7.1 Creating an Import/Export Specification 188
7.2 Automating Imports and Exports 194
7.3 Exporting Data with the FileSystemObject 197
7.4 Importing Data with the FileSystemObject 199
7.5 Importing and Exporting Using XML 204
7.6 Generating XML Schemas 207
7.7 Using XSLT on Import or Export 209
7.8 Working with XML via the MSXML Parser 212
7.9 Reading and Writing XML Attributes 216
7.10 Creating an RSS Feed 218
7.11 Passing Parameters to SQL Server 221
7.12 Handling Returned Values from SQL Server Stored Procedures 223
7.13 Working with SQL Server Data Types 224
7.14 Handling Embedded Quotation Marks 226
7.15 Importing Appointments from the Outlook Calendar 227
7.16 Importing Emails from Outlook 230
7.17 Working with Outlook Contacts 232
7.18 Importing Data from Excel 235
7.19 Exporting Data to Excel 238
7.20 Talking to PowerPoint 240
7.21 Selecting Random Data 244

8. Date and Time Calculations . 246
8.1 Counting Elapsed Time 246
8.2 Counting Elapsed Time with Exceptions 249
8.3 Working with Time Zones 252
8.4 Working Around Leap Years 255
8.5 Isolating the Day, Month, or Year 256
8.6 Isolating the Hour, Minute, or Second 258
8.7 Adding Time 260

9. Business and Finance Problems . 263
9.1 Calculating Weighted Averages 263

www.allitebooks.com

http://www.allitebooks.org

viii | Table of Contents

9.2 Calculating a Moving Average 265
9.3 Calculating Payback Period 266
9.4 Calculating Return on Investment 268
9.5 Calculating Straight-Line Depreciation 269
9.6 Creating a Loan Payment Schedule 272
9.7 Using PivotTables and PivotCharts 274
9.8 Creating PivotTables 276
9.9 Charting Data 281
9.10 Finding Trends 283
9.11 Finding Head and Shoulders Patterns 287
9.12 Working with Bollinger Bands 299
9.13 Calculating Distance Between Zip Codes 301

10. Statistics . 307
10.1 Creating a Histogram 307
10.2 Finding and Comparing the Mean, Mode, and Median 310
10.3 Calculating the Variance in a Set of Data 314
10.4 Finding the Covariance of Two Data Sets 316
10.5 Finding the Correlation of Two Sets of Data 317
10.6 Returning All Permutations in a Set of Data 318
10.7 Returning All Combinations in a Set of Data 321
10.8 Calculating the Frequency of a Value in a

Set of Data 323
10.9 Generating Growth Rates 324
10.10 Determining the Probability Mass Function for a Set of Data 327
10.11 Computing the Kurtosis to Understand the Peakedness

or Flatness of a Probability Mass Distribution 330
10.12 Determining the Skew of a Set of Data 333
10.13 Returning a Range of Data by Percentile 335
10.14 Determining the Rank of a Data Item 337
10.15 Determining the Slope and the Intercept of a Linear Regression 338
10.16 Measuring Volatility 340

Index . 345

www.allitebooks.com

http://www.allitebooks.org

ix

Preface1

Business users are often surprised at Access’ power and flexibility. People frequently
say to me things like “Access won’t work for this—we have 13,000 records!” I just
have to laugh when I hear such statements. As I (and, I imagine, many of you read-
ing this book) know, Access can easily handle that much data, and then some.

So, just how powerful is Access? Access has the goods under the hood to do a lot of
things that may not be obvious. How can you find out about them? Well, you’ve
come to the right place. This book showcases many mini-solutions in Access that
have likely befuddled some and had others wondering what other types of data
Access can be coerced into providing.

Access Data Analysis Cookbook is about solutions to real-world problems. This is not
a book about designing forms, learning about primary keys, or discussing the use of
built-in wizards to make easy queries or reports. This book is about applying Access
to the business grindstone.

Within the dozens of recipes contained in this book, you will learn new ways to
query data, how to move data in and out of Access in several different ways, how to
calculate answers to financial and investment questions, and much, much more.

As of this writing, Access 2007 has just become available. The recipe
solutions in this book apply to all version of Access, and the figures are
from both Access 2007 and Access 2003. The bells and whistles and
new interface of the new release are not factors here; across versions,
SQL, VBA, DAO, and ADO have remained constant.

Who Should Read This Book
I would not suggest this book for brand-new Access users, but anyone with some
Access experience should do well with it. As long as you understand how to get
around the Access user interface, basic table structures and relations among them,
and how to construct simple queries, you should be able to follow along. Even

www.allitebooks.com

http://www.allitebooks.org

x | Preface

seasoned developers will pick up new tips and techniques. Considering that many
recipes center around business issues rather than technical issues, everyone should
be able to gain some smarts about analysis and reporting—the world that users
inhabit.

What’s in This Book
Access Data Analysis Cookbook focuses on data. The recipes provide example que-
ries, programming tips, and a smattering of math, all with a view to getting answers
from your data. Here is a summary of the chapters’ contents:

Chapter 1, Query Construction
Explores ways of developing basic and sophisticated queries. In this chapter, a
variety of query issues are addressed, including the use of the AND, OR, IN, and NOT
operators; creating union queries; and understanding join types.

Chapter 2, Calculating with Queries
Illustrates further ways of using queries to find answers to real problems. It dem-
onstrates how to apply aggregate functions, custom functions, regular expressions,
and crosstabs.

Chapter 3, Action Queries
Shows how to apply queries to perform nonpassive activities such as inserting,
updating, and deleting data.

Chapter 4, Managing Tables, Fields, Indexes, and Queries
Introduces programmatically creating and manipulating tables and queries.

Chapter 5, Working with String Data
Delivers a plateful of recipes to manage text-based data. This chapter introduces
methods to isolate parts of a string, methods to remove spaces at the ends of and
in the middle of strings, and how to work with numbers that are stored as text.

Chapter 6, Using Programming to Manipulate Data
Discusses several ways to use arrays, how to read from and write to the Win-
dows Registry, how to encrypt data, and how to use transaction processing.
Recipes here also cover search methods, charts, manipulating data relationships,
and more.

Chapter 7, Importing and Exporting Data
Covers the various methods of moving data into and out of Access: import/
export specifications, using the FileSystemObject, XML with XSLT, and commu-
nicating with SQL Server. Exchanging data with other applications in the Office
suite is also covered. Ever wondered how to create an RSS feed? You can read all
about that in this chapter, too.

Preface | xi

Chapter 8, Date and Time Calculations
Shows the various ways to get answers from time-based data. This chapter
shows how to add time, count elapsed time, work with leap years, and manage
time zones in your calculations.

Chapter 9, Business and Finance Problems
Covers a variety of real-life business issues. Methods for calculating depreciation,
loan paybacks, and return on investment (ROI) are introduced, and investment
concerns such as moving averages, Head and Shoulders patterns, Bollinger Bands,
and trend calculations are explored. One recipe explains how latitude and longi-
tude are used to determine distances between geographical areas. This is the basis
for the service many web sites offer of helping you find doctors, stores, or other
services within a given mileage.

Chapter 10, Statistics
Is a great chapter for math enthusiasts (myself included). Many statistical tech-
niques are explored in this chapter, including frequency, variance, kurtosis, linear
regression, combinations, and permutations. All the recipes here have value in
data analysis. And after all, Access is all about data and what to do with it!

Conventions Used in This Book
The following typographical conventions are used in this book:

Plain text
Used for table and field names, menu options, dialog box options, queries, and
keyboard shortcuts

Italic
Used for new terms and URLs, commands, file extensions, filenames, directory
or folder names, and UNC pathnames

Constant width
Used for command-line elements, SQL keywords, VBA functions, variables,
properties, objects, methods, and parameters, as well as computer output and
code examples

Constant width italic
Indicates a placeholder (for which you substitute an actual name) in an example
or registry key

Indicates a tip, suggestion, or general note

Indicates a warning or caution

xii | Preface

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example
code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Access Data Analysis Cookbook by
Ken Bluttman and Wayne S. Freeze. Copyright 2007 O’Reilly Media, Inc., 978-0-
596-10122-0.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

We’d Like Your Feedback!
The information in this book has been tested and verified to the best of our ability,
but mistakes and oversights do occur. Please let us know about any errors you find,
as well as your suggestions for future editions, by writing to:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the U.S. or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

You can also send us messages using email. To be put on our mailing list, or to
request a catalog, send email to:

info@oreilly.com

To ask technical questions or comment on the book, send email to:

bookquestions@oreilly.com

For corrections and amplifications to this book, check out O’Reilly Media’s online
catalog page at:

http://www.oreilly.com/catalog/9780596101220

mailto:permissions@oreilly.com
mailto:info@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com/catalog/9780596101220

Preface | xiii

Acknowledgments

From Ken Bluttman
My many thanks to the extreme patience of Simon St.Laurent. Simon has been great
in working with me around my crazed schedule and endless personal interruptions.
While I was writing this book, my car got smashed by a tree, I broke my shoulder,
my wife conquered her battle with cancer, and my dad passed away. Life really is a
roller coaster!

Much gratitude to Wayne S. Freeze, who came to our aid at a point where I had to
take a break. Wayne picked up where I left off and wrote a substantial portion of the
second half of the book. Kudos to Wayne!

Special thanks to all the support staff at O’Reilly. A lot of players behind the scenes
have their hands in any book project. It’s a big stretch from my typing and testing to
the finished product in your hands.

Special thanks to Doug Klippert and Michael Schmalz for their technical reviews. I
have worked with both of these gentlemen on a number of books and am deeply
grateful to them for their knowledge and insight.

This book is in honor of my father, Herbert Bluttman, with whom I battled much
over many issues, and to whom the winds of fortune blew in such a way that while I
had several books published, he could not get his one and only work out to the world.
I used to dread your phone calls, but as soon as they no longer came, I realized how
much I missed hearing from you. Displeasure is temporary, but love is forever.

From Wayne S. Freeze
To Ken (aka Mr. Access Analyst)—I enjoyed working with you on this book, and I’m
happy your world is getting back to normal. To Simon (aka the Tireless Editor)—
thank you for your patience when things got challenging. One of these days, I hope
to write another, less stressful book with you. To Sumita (aka Ms. Eagle Eye)—thank
you for transforming my raw words into something that sounds great. To all the staff
members at O’Reilly that left their mark on this book (aka the Quality Team)—y’all
did an incredible job, and I’m proud to be associated with you.

To Christopher and Samantha (aka My Wonderful Children)—remember to chase
your dreams, for without dreams, life isn’t worth living. To Jill (aka the Best Writer
in the Family and My Bestest Friend)—like any great artist, you’re never truly satis-
fied with your work, even when someone manages to pry it out of your hands. I
know that someday soon, you’ll search for new dreams to replace the ones that have
come true. And always remember, I love you.

1

Chapter 133 CHAPTER 1

Query Construction1

Select queries are an essential part of any database system. These queries, which pas-
sively gather data (without changing the source data), are what we rely on to answer
our questions about our data. In its most basic form, a select query merely returns
records from a table verbatim. That’s not of much interest, since viewing the table
itself would provide the same information. It’s when you add criteria, joins, and useful
SQL functions and methods that select queries become valuable.

This chapter provides several tips for getting select queries to go the extra mile. Reci-
pes in this chapter explain how to prompt for criteria at runtime, how to use logic
operators to get the criteria just the way you need them, and how to handle duplicate
records.

To make queries easier to read and work with, you’ll also find a recipe on using
aliases, which provides a neat method to give nicknames to your tables. Another
recipe explains how to use union queries to work around the problem of how to
combine data from different tables so it can be treated as one source.

1.1 Finding Unmatched Records

Problem
I have a table that lists expenses incurred by employees. Some of these records do
not match any records in the Employees table. How can I easily get a list of these
unmatched expense records without having to examine every record in the table?

Solution
A special type of join called a left join (see Recipe 1.13) is used to identify records in
one table that do not have matches within another table. The match, of course, has
to be tested on a common field between tables—usually the unique key field of the
parent table. The technique depends on having the criterion call for the matching
field to be Null in the parent table. In other words, the query should return records
from the child table in which no record (a Null) is found in the parent table.

2 | Chapter 1: Query Construction

Confused? Luckily, you can spare yourself the challenge of creating that query by
using the Find Unmatched Query Wizard. The wizard will create the underlying SQL
and run the query for you.

Figure 1-1 shows two tables: one lists employees, and the other lists expenses for
which employees need to be reimbursed.

A number of records in the EmployeeReimbursements table are “orphan” records—
that is, they do not match any employee records in the table on the left (the parent
table). The Find Unmatched Query Wizard will identify these records for you. From
the Query tab in the Access database window, click the New button, or use the
Insert ➝ Query menu option to display the New Query dialog box shown in
Figure 1-2. Select Find Unmatched Query Wizard, and click the OK button.

The wizard runs through a few screens. You’ll need to:

1. Select the table or query that contains the records you want to identify. In this
example, the EmployeeReimbursements table contains the records of interest
(that is, the records that have no matches to the employee records themselves).

2. Select the table that contains the records to match against.

3. From each table, select the field to match on. Often this is the key field in one
table and a foreign key in the other table.

4. Select which fields from the table or query chosen in the first step should be
included in the returned records.

Figure 1-1. Employees and EmployeeReimbursements tables

Finding Unmatched Records | 3

Figure 1-3 shows the returned records from the EmployeeReimbursements table that
do not have matches in the Employees table, based on the EmployeeID field.

Figure 1-2. Selecting the Find Unmatched Query Wizard

Figure 1-3. Unmatched records have been identified

4 | Chapter 1: Query Construction

Discussion
The wizard assembled this SQL statement:

SELECT EmployeeReimbursements.*
FROM EmployeeReimbursements LEFT JOIN
Employees ON
EmployeeReimbursements.EmployeeID =
Employees.EmployeeID
WHERE (((Employees.EmployeeID) Is Null));

The SQL looks for records that do not exist in the matching table (i.e., that return a
Null). It is not possible to include any fields from the matching table because no
records are returned from the matching table; all the returned fields are from the
table in which unmatched records are expected.

See Also
• Recipe 1.13

1.2 Making AND and OR Do What You Expect

Problem
Logic operators are not conceptually difficult to follow, but combining and nesting
them does add complexity. If you don’t construct complex SQL statements very care-
fully, they may return incorrect or incomplete results, sometimes without reporting
any errors.

Solution
Logic operators provide the flexibility to construct criteria in any way that suits your
requirements. The AND operator returns true when all conditions are met; the OR
operator returns true as long as one condition is met. In terms of how this applies to
SQL construction, OR is used to set criteria for which one condition must be met,
while AND is used to set criteria for which all the conditions must be met. Some
examples are presented in Table 1-1.

Table 1-1. Examples of using logic operators

SQL statement Description

SELECT DISTINCT State, City,
Count(LastName) AS Customers
FROM tblCustomers
GROUP BY State, City
HAVING State="NY" AND City="Yonkers"

This gives a count of customers located in Yonkers, NY. Only
customer records in which both the state is New York and the
city is Yonkers are counted.

Making AND and OR Do What You Expect | 5

Discussion
OR is applied amongst records; AND is applied across fields. What does this mean?
Figure 1-5 shows the tblCustomers table that is used as the example in this recipe.
The OR operation involves evaluating the value in a particular field in each record. A
single record cannot contain both Albany and Yonkers in its City field; it can con-
tain at most one of those values. So, searching for customers in Albany or Yonkers
requires looking for these values in the City field of each record (or, in our example,
at least those records in which the state is New York). Thought of another way,
when using OR, you can apply the statement multiple times to the same field. For
example:

City="Albany" OR City="Syracuse" Or City="Yonkers"

The AND operator, however, is not used on the same field. A SQL condition like this:

City="Albany" AND City="Yonkers"

SELECT DISTINCT State, City,
Count(LastName) AS Customers
FROM tblCustomers
GROUP BY State, City
HAVING State="NY" AND City="Yonkers" OR
City="Albany"

This gives a count of customer records for which the state is
New York and the city is either Yonkers or Albany.

This produces an unintended result. The OR statement does
not properly apply to both Yonkers and Albany. Any Yonkers
customers must be in New York, but the way this SQL state-
ment is constructed, Albany customers do not have to be in
New York. Consequently, as Figure 1-4 shows, customers in
Albany, GA will also be returned.

SELECT DISTINCT State, City,
Count(LastName) AS Customers
FROM tblCustomers
GROUP BY State, City
HAVING State="NY" AND (City="Yonkers" OR
City="Albany")

This correctly returns customer records for customers located
only in Yonkers, NY and Albany, NY. Enclosing the cities and
the OR operator in parentheses ensures that both cities must
also match the state of New York on a record-by-record basis.

Figure 1-4. The second query returns all Albany customers

Table 1-1. Examples of using logic operators (continued)

SQL statement Description

www.allitebooks.com

http://www.allitebooks.org

6 | Chapter 1: Query Construction

would make no sense. No records can be returned because there cannot be any
records in which the single City field holds two values. Instead, AND is applied to pull
together the values of two or more fields, as in:

State="New York" AND City="Yonkers"

The query grid in Access is flexible enough to handle any combination of OR and AND
operators. Figure 1-6 shows how the grid is used to return customer records from
New York where the customer type is Retail or Wholesale, as well as customer
records from Florida where the customer type is Internet or Mail Order. Internet and
Mail Order customers from New York will not be returned, nor will Retail or
Wholesale customers from Florida.

Along a single Criteria row, all of the conditions set in the different fields must be met
(i.e., this is an AND operation). The SQL statement Access generates bears this out:

SELECT [FirstName] & " " & [LastName] AS Customer,
City, State, CustomerType
FROM tblCustomers
WHERE
(((State)="NY") AND
((CustomerType)="Retail" Or (CustomerType)="Wholesale"))
OR
(((State)="FL") AND
((CustomerType)="Mail Order" Or (CustomerType)="Internet"))
ORDER BY tblCustomers.CustomerType;

Figure 1-5. Each customer is in a single city

Working with Criteria Using the IN Operator | 7

As you can see, the SQL condition for NY is followed by AND to get Retail and
Wholesale customers from that state.

1.3 Working with Criteria Using the IN Operator

Problem
Using multiple OR operators in the query grid makes for an unmanageable experi-
ence. If too many values and ORs are placed in a grid column, the column may
expand to be bigger than the viewable area.

Solution
A way to save space in the query grid is to use the IN operator. IN is used in conjunc-
tion with a list of values from which any value can be returned. This essentially
means that the IN operator works in the same fashion as the OR operator. It is not
required that all conditions be met; meeting one of the conditions suffices.

Here is a SQL statement that returns records for students that took at least one of the
listed courses:

SELECT Students.Student, Student_Grades.Course,
Student_Grades.Instructor
FROM Students INNER JOIN Student_Grades ON
Students.StudentID = Student_Grades.StudentID

Figure 1-6. Applying AND and OR in the query grid

8 | Chapter 1: Query Construction

WHERE
(((Student_Grades.Course)="Beginner Access"))
OR
(((Student_Grades.Course)="Beginner Excel"))
OR
(((Student_Grades.Course)="Advanced Access"))
OR
(((Student_Grades.Course)="Advanced Excel"));

Using IN provides a more streamlined SQL statement. Notice how the WHERE section
has shrunk:

SELECT Students.Student, Student_Grades.Course,
Student_Grades.Instructor
FROM Students INNER JOIN Student_Grades ON
Students.StudentID = Student_Grades.StudentID
WHERE Student_Grades.Course In
("Beginner Access","Beginner Excel",
"Advanced Access","Advanced Excel");

Discussion
The IN operator provides a syntax convenience. It makes it easier to eyeball a set of
criteria values to which OR logic is applied. Figure 1-7 shows an example of using IN
to return records where the instructor is either Brown or Maxwell.

That’s simple enough to follow: when the instructor is either Brown or Maxwell, the
record is returned. Figure 1-8 shows an example of using IN in two fields.

The example shown in Figure 1-8 returns records in which either Brown or Maxwell
taught Beginner Access, Advanced Access, or Intro to VBA. In other words, all com-
binations of these instructors and courses are returned.

Figure 1-7. Using the IN operator to specify the instructor

Working with Criteria Using the IN Operator | 9

Adding criteria to other fields will further cut down the number of returned records.
The next example adds new criteria to the row. The Instructor and Course fields still
have IN operators, but now only records that have a MidTerm Grade and a Final
Grade of 85 or better are returned. Here is the SQL statement for this query:

SELECT Student_Grades.Instructor, Student_Grades.Course,
Students.Student, Student_Grades.[MidTerm Grade],
Student_Grades.[Final Grade]
FROM Students INNER JOIN Student_Grades ON
Students.StudentID = Student_Grades.StudentID
WHERE (((Student_Grades.Instructor) In
("Brown","Maxwell")) AND ((Student_Grades.Course) In
("Beginner Access","Advanced Access","Intro to VBA")) AND
((Student_Grades.[MidTerm Grade])>=85) AND
((Student_Grades.[Final Grade])>=85))
ORDER BY Student_Grades.Course, Students.Student;

The IN operator is handy when using subqueries. A subquery returns a set of records
to which the rest of a query can apply further criteria. The following SQL statement
returns information for those students who got a 90 or better in either Advanced
Access or Advanced Excel and took either Beginner Access or Beginner Excel last year:

SELECT Student_Grades.Instructor, Student_Grades.Course,
Students.Student, Student_Grades.[MidTerm Grade],
Student_Grades.[Final Grade]
FROM Students INNER JOIN Student_Grades ON
Students.StudentID = Student_Grades.StudentID
WHERE (((Student_Grades.Course) In
("Advanced Access","Advanced Excel")) AND
((Student_Grades.[Final Grade])>=90) AND
((Students.StudentID) In
(Select Stud_ID From LastYear Where

Figure 1-8. Using the IN operator for both the Instructor and Course fields

10 | Chapter 1: Query Construction

(Course="Beginner Access") Or (Course="Beginner Excel"))))
ORDER BY Student_Grades.Course, Students.Student;

The IN operator is applied to the LastYear table through a subquery. Here is the
portion of the SQL that does this:

((Students.StudentID) In
(Select Stud_ID From LastYear Where
(Course="Beginner Access") Or (Course="Beginner Excel"))))

The Select statement within the larger SQL statement is where the subquery starts.
The subquery returns StudentIDs that have matches in the LastYear table (on the
Stud_ID field) for those students who took Beginner Access or Beginner Excel.

See Also
• Recipe 1.9

1.4 Excluding Records with the NOT Operator

Problem
I have a large number of client names in my data. I need to return a list of clients that
are not on the Hold list. Most clients are OK, so most will be returned in the query.
How do I keep out the few clients who are on hold?

Solution
The method here is to exclude records from being returned, rather than the typical
approach of identifying records that are to be returned. Figure 1-9 shows two data-
base tables. The table on the left is a list of client orders. The table on the right is a
list of clients (by ClientID) who are “on hold”—that is, clients whose accounts are in
arrears and whose orders should not be shipped. Running a query that causes the cli-
ents identified in the OnHold table to be excluded from the Clients table is the key to
this recipe.

A subquery works well here to gather the records from the second table into the
query result. Using the NOT operator provides the twist to make the records excluded
instead of included.

The NOT operator is placed in front of the subquery to reverse the logic. If NOT were
left out, the query would return records that match in both tables. When NOT is
applied, only those records from the Clients table that do not have matching records
in the OnHold table are returned. Here is the SQL statement:

SELECT Clients.ClientID, Clients.Client,
Clients.OrderDate, Clients.OrderAmount
FROM Clients
WHERE (((Clients.ClientID)
NOT In (Select ClientID from OnHold)));

Parameterizing a Query | 11

Discussion
NOT is a logic operator that reverses a Boolean state, so NOT true equals false, and NOT
false equals true. When a query calls for matching criteria, preceding the criteria con-
struct with NOT flips this around and calls for records that specifically do not match
the criteria.

Our sample Clients table has 200 records, and the OnHold table has 8 records. The
result is that the query returns 192 records—that is, all orders for clients who are not
on hold.

See Also
• Recipe 1.9

1.5 Parameterizing a Query

Problem
I need to construct a query that takes a criterion, but the criterion’s value will not be
known until the query is run. When it’s time to run the query, the user needs a way
to supply the criterion without going into the design of the query.

Solution
A query can be designed to accept parameters at the time it is run. Typically, an
input box will appear in which the user enters the value for the criterion. A query can

Figure 1-9. A table of clients and a table of clients on hold

12 | Chapter 1: Query Construction

have any number of criteria entered in this fashion. A set of brackets defines the
question asked in the input box. The brackets and the prompt to the user are placed
in the Criteria row of the query grid for the given field. For example, using “[Enter an
age]” as the criterion for a field instructs Access to present this prompt in a dialog
box, as shown in Figure 1-10.

Discussion
When a query is run, a traditional form is often displayed to enable users to enter
parameter values or make selections from a list. But the ability to place parameters
directly in the structure of a query provides a great alternative to having to build a
form that gathers input. When the criteria are simple, just using brackets in the
query design will suffice.

Figure 1-11 shows the query design that prompts the user to enter an age. When the
query is run, the dialog shown in Figure 1-10 will appear, and the returned records
will be filtered to those that match the entered value.

Figure 1-10. Prompting the user to enter a parameter into a query

Figure 1-11. The design of the query with the age parameter

Parameterizing a Query | 13

Here is the actual SQL statement that is built using the query grid:

SELECT Name_City_Age.ID, Name_City_Age.FirstName,
Name_City_Age.LastName, Name_City_Age.City,
Name_City_Age.Age
FROM Name_City_Age
WHERE (((Name_City_Age.Age)=[Enter an age]));

Note that in the WHERE clause the phrase “Enter an age” appears enclosed in brackets.

Although the phrase “Enter an age” is used here to define the criterion
for a field named Age, there is no strict requirement to use the word
“age” in the bracketed phrase. We could just as well have used “Enter
a number”; it wouldn’t matter because the text in the brackets does
not have to contain the name of the field for which it is used.

A query can have multiple parameters, and these parameters fit in with the structure
of the SQL WHERE clause. A common criterion structure is to use a range of values to
determine which records to return. In the current example, a query might need to
return all records that fit within a range of ages. The Between/And SQL construct is
used for this purpose. Figure 1-12 shows the modification in the query design.

Here’s the updated SQL:

SELECT Name_City_Age.ID, Name_City_Age.FirstName,
Name_City_Age.LastName, Name_City_Age.City,
Name_City_Age.Age
FROM Name_City_Age
WHERE (((Name_City_Age.Age) Between
[Enter the lowest age] And
[Enter the highest age]));

When this query is run, two prompts will appear: one asks for the lowest age, and
the other asks for the highest age. Figure 1-13 shows a sample of returned records
when the range was defined as between the ages of 20 and 40.

Figure 1-12. A query that uses two parameters to filter a single field

14 | Chapter 1: Query Construction

The SQL Like operator can also be used with a bracketed prompt. Like is used with a
wildcard to return records in which the criterion fits a pattern. For example, in a
query that returns all those whose last names start with the letter D, the WHERE portion
of the SQL statement looks like this:

WHERE (((LastName) Like "D*"));

Using the Like operator with a parameter prompt requires the brackets, of course, and
careful placement of the wildcard character (*) and the quotation marks, as follows:

WHERE (((LastName) Like
[Enter the first letter of the last name:] & "*"));

Figure 1-14 shows how this is entered in the query grid.

To return a smaller set of results, you can match on a more complex pattern; for
example, the user can enter “De” to have names such as Deere returned, but not
names such as Dole. In this case, you’ll need to adjust the phrasing of the prompt
accordingly. Phrasing prompts correctly is as much art as it is SQL.

The example here uses an asterisk wildcard. Any number of characters can be
returned in place of that wildcard, but the character(s) entered as the parameter are
what fine-tunes the record filtering.

Specifying a data type for the parameter

In certain situations, you must indicate the data type of the parameter. You do this
when:

Figure 1-13. Returned records for the age range 20–40

Parameterizing a Query | 15

• Using a crosstab query

• Using a query as the source for a chart

• Prompting for Boolean (true/false) values

• Prompting for fields from a table in an external database

Parameter data types are entered in the Query Parameters dialog (see Figure 1-15).

To display the dialog, select the Query ➝ Parameters menu option. In the left side of
the dialog, enter the prompts that you’ve established in the design grid. Then select
the data types in the right side of the dialog.

Figure 1-14. Using the Like operator

Figure 1-15. Using the Query Parameters dialog to establish data types

www.allitebooks.com

http://www.allitebooks.org

16 | Chapter 1: Query Construction

1.6 Returning a Top or Bottom Number of Records

Problem
I have a large table of data that contains thousands of records and several dozen
fields. I create models based on various fields and/or ranges of values in the fields. I
use queries to set up the sums using SQL aggregates and expressions. This is exactly
what I need, but the problem is that the number of records slows down the process-
ing. When I’m testing calculations, I don’t need all the records. How can I pull out
just a handful of them to use for testing?

Solution
The SQL TOP predicate is just what is called for here. It lets you specify how many
records to return, either as an exact number or as a percentage of the total number of
records in the underlying table or query.

Let’s say you have a standard select query such as the one shown in Figure 1-16. The
SQL statement is:

SELECT SampleNum, Identifier, Fact1, Fact2,
Fact3, Fact4, Fact5, Fact6, Fact7, Fact8
FROM ConsumerTrendData;

To specify a subset of records to search through to test the query—say, 40—use the
TOP predicate, as follows:

SELECT TOP 40 SampleNum, Identifier, Fact1,
Fact2, Fact3, Fact4, Fact5, Fact6,
Fact7, Fact8
FROM ConsumerTrendData;

Figure 1-16. A simple select query returns all records

Returning a Top or Bottom Number of Records | 17

TOP comes directly after the SELECT keyword, and is followed by the number of
records to return. Instead of reducing the number of returned records based on
criteria, TOP reduces the number of returned records without any bias.

When working with the Access query grid, you can opt to use TOP by going into the
query properties. To do this, use the View ➝ Properties menu option while design-
ing the query. The properties sheet that opens may display the properties for a field.
If this is the case, click on the top pane of the query designer (above the grid) but not
on any tables—in other words, click on the empty area. This will ensure that the
properties sheet displays the query properties (see Figure 1-17).

One of the properties is Top Values. In Figure 1-17, you can see that the value of 40
is already entered.

Discussion
To return a percentage of the records, you can place a percent sign (%) after the
entered number in the Top Values property on the properties sheet, or you can enter
the word PERCENT directly in the SQL statement. Here, for example, is the SQL to
return the top 20 percent of the records:

SELECT TOP 20 PERCENT SampleNum, Identifier,
Fact1, Fact2, Fact3, Fact4, Fact5,
Fact6, Fact7, Fact8
FROM ConsumerTrendData;

Figure 1-17. The Query Properties sheet

18 | Chapter 1: Query Construction

Using TOP to return the “top” X number of records begs the question of what makes
the hierarchy of records in a table. Only the application of an index or sort provides
any structure to the records. We often use AutoNumber fields, which order the
records. But what happens when we sort on another field? The “top” records change.

Using the TOP predicate requires that the use of a sort, or lack thereof, always be
considered. Here is an example of returning the top five records of a sorted table:

SELECT TOP 5 SampleNum, Identifier, Fact1,
Fact2, Fact3, Fact4, Fact5, Fact6,
Fact7, Fact8
FROM ConsumerTrendData
ORDER BY Identifier;

Now that we’ve sorted the data in ascending order (the default sort direction) with
the ORDER BY clause, asking for the top five records has some relevance. Turning this
upside down would provide the bottom five records. But how could we do that?
There is no “bottom” predicate. Instead, we simply change the sort to descending
using the DESC keyword:

SELECT TOP 5 SampleNum, Identifier, Fact1,
Fact2, Fact3, Fact4, Fact5, Fact6,
Fact7, Fact8
FROM ConsumerTrendData
ORDER BY Identifier DESC;

This example requests a descending sort on the Identifier field. Requesting the top
five records will now return what were the bottom five records when we did an
ascending sort. Figure 1-18 shows the results of running these two queries. The sort
on the Identifier field is ascending in one query and descending in the other.

Figure 1-18. Ascending and descending sorts

Returning Distinct Records | 19

1.7 Returning Distinct Records

Problem
When running select queries, you may need to control whether duplicate records are
returned in the query result. However, there could be disagreement about what
constitutes uniqueness and duplication. Often, a few fields may contain duplicate
information among records, and it’s the additional fields that bring unique values to
the records. How can queries be managed with regard to controlling how duplicate
information is handled?

Solution
Figure 1-19 shows a table in which there are records that are near duplicates. None
are exact duplicates since the CustomerID field ensures uniqueness. However, the
two records for Vickie Storm could be seen as duplicates, as all fields except the
CustomerID field hold duplicate information. The records for Ebony Pickett also
contain some duplicate information, although two different cities are listed.

SQL provides ways of handling how records such as these are returned or excluded
when select queries are run. Access makes use of the SQL predicates Distinct and
DistinctRow:

Distinct
Bearing in mind that not all fields need to be included in a select query, Distinct
will exclude duplicates when the duplication occurs within just the selected
fields, regardless of whether the complete set of record fields would prove the
records to be unique.

Figure 1-19. A table with duplicates

20 | Chapter 1: Query Construction

DistinctRow
DistinctRow is used to manage duplicates in a query that joins tables. Assuming
unique records in the parent table, DistinctRow lets you avoid having duplicates
returned from the child table.

You can incorporate these predicates by using the query designer or writing them
directly into the SQL statement. With a query in design mode, use the View ➝ Prop-
erties menu option to display the Query Properties dialog box, shown in Figure 1-20.
Two properties are of interest here: Unique Values and Unique Records. These can
both be set to No, but only one at a time can be set to Yes.

Setting Unique Values to Yes places the DISTINCT predicate in the SQL statement. For
example:

SELECT DISTINCT Customers.FirstName,
Customers.LastName, Customers.Address,
Customers.City, Customers.State
FROM Customers;

Similarly, setting the Unique Records property to Yes places the DISTINCTROW predi-
cate just after the SELECT keyword.

Figure 1-20. Setting the Unique Values and Unique Records properties

Returning Distinct Records | 21

Discussion
For our sample table, a simple select query of the Customers table on just the First-
Name and LastName fields would return nine records, without regard to the fact
that the returned results would show two records for Ebony Pickett and two records
for Vickie Storm. Using Distinct in the SQL statement will change the returned
count to seven records. In particular, this SQL statement:

Select Distinct FirstName, LastName From Customers
Order By LastName

produces the result shown in Figure 1-21.

When the City and State fields are added to the SQL statement, like this:

Select Distinct FirstName, LastName, City, State
From Customers
Order By LastName

eight records are returned (see Figure 1-22). The additional record appears because
Ebony Pickett is listed in two unique cities. As far as the query goes, there are now
two unique Ebony Pickett records, and they are both returned. Vickie Storm still has
just one record returned, however, because the source data for her city and state are
identical in both of her records.

Using DistinctRow

Now, let’s take a closer look at using DistinctRow, which manages duplicates in multi-
table joins. Figure 1-23 shows two tables: a Customers table (this table does not
contain any duplicates) and a table of purchases related back to the customers.

Figure 1-21. Distinct records are returned

22 | Chapter 1: Query Construction

Figure 1-22. Distinct records are returned based on additional fields

Figure 1-23. Customers and Purchases tables

Returning Distinct Records | 23

Say you want to find out which customers have placed orders. A SQL statement that
joins the tables but does not use DistinctRow will return a row count equivalent to
the number of records in the child (Purchases) table. Here is a simple SQL statement
that returns the names of the customers who placed each of the orders:

SELECT Customers.CustomerID, Customers.FirstName,
Customers.LastName
FROM Customers INNER JOIN Purchases ON
Customers.CustomerID = Purchases.CustomerID;

The result of running this query is shown in Figure 1-24. No fields from the Pur-
chases table have been included, but the effect of the multiple child records is seen in
the output—a customer name is listed for each purchase.

Adding the DistinctRow predicate ensures that the returned master records are free of
duplicates:

SELECT DistinctRow Customers.CustomerID,
Customers.FirstName, Customers.LastName
FROM Customers INNER JOIN Purchases ON
Customers.CustomerID = Purchases.CustomerID;

The result is shown in Figure 1-25.

Figure 1-24. The simple query returns duplicate master records

24 | Chapter 1: Query Construction

1.8 Returning Random Records

Problem
For efficient analysis work, I need to pull random records out of my source table.
Each time I run a query, I’d like to have the records returned in an unknown order.

Solution
The technique to apply here is to sort the records on a random value using the Rnd
function. Figure 1-26 shows a table with three fields. To return the records in a ran-
dom order, pass the name of one of the fields as the argument to the Rnd function in
the ORDER BY clause of the SQL statement.

For example, using the Temperature field, the SQL statement necessary to return the
records in random order is:

SELECT Samples.Location, Samples.Temperature, Samples.Date
FROM Samples
ORDER BY Rnd(Samples.Temperature);

Figure 1-27 shows the result of running the query. Bear in mind that each time the
query is run, the records will be returned in a different order.

Discussion
Using the Rnd function on one field while performing an ascending or descending
sort on another field provides an interesting, sometimes useful result. For example,
this SQL statement performs sorts on two fields (one ascending and one random):

SELECT Samples.Location, Samples.Temperature,
Samples.Date
FROM Samples
ORDER BY Samples.Location, Rnd(Samples.Temperature);

Figure 1-25. Using DistinctRow avoids duplicate records

Returning Random Records | 25

Figure 1-26. A table from which random records are required

Figure 1-27. Queried records are returned in a random order

www.allitebooks.com

http://www.allitebooks.org

26 | Chapter 1: Query Construction

Figure 1-28 shows the result of running this query. An ascending sort is done on the
Location field, so Facility A records float to the top. However, the temperatures are
sorted randomly. Thus, each time this query is run, all the Facility A records will be
on top, but the Facility A records will be randomly sorted based on the way the
Temperature field is handled.

1.9 Fine-Tuning Data Filtering with Subqueries

Problem
I need to determine which records in a table have above-average values for a particu-
lar quantitative field. How can I calculate the average and filter the records in one
query?

Solution
The AVG aggregate function calculates the average value of a field across the records
included in a query. While that is a straightforward operation, comparing the value
in each record to the average presents a challenge. One way to do this is to use a sub-
query. A subquery is literally a query within a query, typically located within the
WHERE section of the main query.

Figure 1-28. One field is sorted in ascending order and another is randomly sorted

Fine-Tuning Data Filtering with Subqueries | 27

Figure 1-29 shows a table of teams and their scores for the season. The task is to
identify which teams have a season score that is greater than the average of all the
scores.

A little finesse with SQL is required to identify the teams that beat the average. The
AVG aggregate function (see Recipe 2.1) is needed, but it is not applied in the typical
way in the query grid. Figure 1-30 shows how the query is entered into the query
grid. Select View ➝ Totals while designing the query to display the Total row in the
grid. Then, create an additional column in the grid based on the SeasonScore field.
Don’t select AVG in the Total row; instead, select Where from the drop-down list,
and enter the subquery in the Criteria row.

Figure 1-29. A table of teams and scores

Figure 1-30. A subquery design in the query grid

28 | Chapter 1: Query Construction

In this example, the greater-than sign (>) precedes the subquery, since we are look-
ing for scores that are greater than the average. The AVG function appears in the
subquery itself, which has the following syntax:

Select AVG(SeasonScore) From SeasonScores

Here’s the full SQL statement:

SELECT Team, SeasonScore
FROM SeasonScores
WHERE (((SeasonScore)>
(Select AVG(SeasonScore) From SeasonScores)))
GROUP BY Team, SeasonScore
ORDER BY Team;

Discussion
In the preceding example, the subquery resides in the WHERE section of the outer
query. An alternative is to have the subquery act as one of the fields in the outer
query’s SELECT section. Figure 1-31 shows two tables and a query. On the left is the
SeasonScores table presented earlier. On the right is a related child table that lists
game dates and locations for each team in the first table. The query, whose result is
shown underneath the tables, has returned the date of the last game played by each
team.

Figure 1-31. A subquery that queries a second table

Fine-Tuning Data Filtering with Subqueries | 29

Here is the SQL statement of the Last Game Played Per Team query in Figure 1-31:

SELECT SeasonScores.Team,
(Select Max(Date) From Games Where
Games.TeamID = SeasonScores.TeamID)
AS [Date Of Last Game]
FROM SeasonScores;

The subquery is placed where a field would typically go. It is encased in parentheses
and is given an alias for the field name (Date Of Last Game) outside of the subquery.
Within the subquery is the join between the two tables.

There are other ways to return the same information, using different
query constructs—for example, the tables could be joined and a Max of
Date could be used. Working it in as a subquery serves here to illus-
trate a new method.

Removing excessive queries

One of the advantages of using subqueries is the avoidance of nested queries. Let’s
look at an example. Say you have two tables: tblCustomers, which contains
customer names; and tblCustomerReachOut, which contains the dates at which cus-
tomers were contacted. The CustomerID field is present in both tables, as shown in
Figure 1-32. Now, consider the task of gathering a list of customers who have not
been contacted in more than 60 days.

Let’s look at a common approach to extracting the desired information. First, a
query is constructed that returns—from the table of contact dates—records in
which the last contact date is more than 60 days from the present date, as shown in
Figure 1-33.

Figure 1-32. A table of customers and a table of contact dates

30 | Chapter 1: Query Construction

The query in Figure 1-33 is then queried from another query. This next query effec-
tively takes the records from the first query and matches them with customer names
from the tblCustomers table. This second query is shown in Figure 1-34.

To summarize, two queries have been constructed, though one would do the trick.
When this inefficient design is perpetuated repeatedly in a database, the database
can become laden with dozens of queries that seem isolated on the surface. When
viewing a list of all the queries in a database (on the Queries tab), there is no immedi-
ate method to know which queries are called by others. Nested queries do work, but
they’re often unnecessary.

Figure 1-33. A query that returns records based on elapsed time

Figure 1-34. A query that uses the returned records of another query

Combining Data with Union Queries | 31

In contrast to the approach just described, here is the SQL of a query/subquery
construction that returns the same records:

SELECT DISTINCT tblCustomers.CustomerFirstName,
tblCustomers.CustomerLastName, tblCustomers.CustomerAddr1
FROM tblCustomers
WHERE (((tblCustomers.CustomerID)
In (Select tblCustomerReachOut.CustomerID FROM tblCustomerReachOut
WHERE DateDiff("d",[ContactDate],Now())>60)));

This SQL statement uses a subquery to return the CustomerIDs from the
tblCustomerReachOut table for customers who were last contacted more than 60
days earlier (the DateDiff function is used to calculate the elapsed time). The
returned CustomerIDs are matched with related records in the tblCustomers table,
thereby returning the customer names. Note that the SQL statement uses the
DISTINCT predicate (discussed in Recipe 1.7), as the returned records from the
tblCustomerReachOut table can include duplicate CustomerIDs. This makes sense
because customers are likely to be contacted more than once. Using the DISTINCT
predicate ensures that the final returned list of names will not contain duplicates.

1.10 Combining Data with Union Queries

Problem
I need to combine sets of data so I can run analyses on them. The sets of data are
identical but sit in different tables. There’s no way to combine the data in the query
grid. I could use append queries to copy data from the various tables to a master
table, but this is inefficient. The data in the smaller tables changes from time to time,
and having to rerun the appends is a nuisance. Isn’t there a way to simply combine the
data at any time as needed, so the latest data in the smaller tables is always present?

Solution
A union query is the perfect vehicle for combining identically structured data. To
create a union query, place Union SQL clauses between the Select statements that
query the tables.

Figure 1-35 shows three tables with an identical structure. Let’s take a look at how to
combine the data from these three tables.

Union queries must be written in the SQL pane of the query designer. It is not possi-
ble to represent them in the query grid. Here’s a SQL statement written in the SQL
pane of the query designer:

SELECT * From SeasonScores_Putnam
Union
SELECT * From SeasonScores_Rockland
Union
SELECT * From SeasonScores_Westchester;

32 | Chapter 1: Query Construction

Running the query returns a single set of data, shown in Figure 1-36.

Figure 1-35. Three tables with identically structured data

Figure 1-36. The result of running a union query

Combining Data with Union Queries | 33

All the records from the three tables are now together in one place. This query can be
saved and then used as the source for other queries and further analysis. For exam-
ple, this saved query can be used in a query that calculates an average or some other
summarization. If and when any data changes back in the source tables, the new data
will flow through to the output of this union query, as each time it is rerun, it uses
the latest data from the source tables.

Discussion
A hard-and-fast rule is that all the selects feeding into a union query must have the
same number of fields. In the previous example, this was a given because the three
source tables were identical in structure. However, imagine assembling a list of
names from various data tables, such as a Contacts table, a Prospects table, and a
HolidayList table.

Figure 1-37 shows the design of these three tables. Each table has a field for a first
name and a last name, although the fields are not named exactly the same. Also note
that the number of fields is not consistent among all the tables. To avoid this being
an issue, you must specify actual field names in the Select statements and ensure
that you specify the same number of fields from each table.

A union SQL statement that will combine the first and last names from these tables
can be written like this:

SELECT FirstName, LastName From Contacts;
Union
Select [First Name], [Last Name] From HolidayList
Union

Figure 1-37. Three tables with similar information

34 | Chapter 1: Query Construction

Select [Prospect First Name], [Prospect Last Name]
From Prospects
Order By LastName, FirstName

Brackets ([]) must be placed around field and table names that
contain spaces.

The result of the query is shown in Figure 1-38. The field names presented in the
query (FirstName and LastName) are taken from the first Select statement.

While each source table on its own may be free of duplicates, it is possible that some
duplicates will occur in the combined output. For example, the same person might
be in the Contacts table and the Prospects table. SQL provides a way to handle
duplicates that appear when union queries are run.

By default, a union query will drop duplicates. If you want to include them in the
result, you’ll need to use the Union All construct, as shown here:

SELECT FirstName, LastName From Contacts;
Union All
Select [First Name], [Last Name] From HolidayList
Union All
Select [Prospect First Name], [Prospect Last Name]
From Prospects
Order By LastName, FirstName

Including the All keyword forces duplicates to be preserved in the query result.

Figure 1-38. A union query based on three tables

Inserting On-the-Fly Fields in Select Queries | 35

1.11 Inserting On-the-Fly Fields in Select Queries

Problem
I need to include additional information in a query’s output. The information is
sometimes based on the fields in the query, but at other times, it just needs to be
inserted as a fixed message. How can I do this?

Solution
In the Field row of the Access query design grid, you can enter a name that will
appear in the output as a field name, as any standard field name would. Follow this
with a colon (:) and the value that will go into the new field, and you have created a
new output field that exists only during the run of the query. This field is not saved
back into any source tables. The value that goes into the new field can be dependent
on other fields in the query, or it can be completely independent.

Figure 1-39 shows a table of clients and balances due.

Figure 1-40 shows a query based on the table. In the query are two created fields that
do not actually exist in the table. The first is named Client. The value for the Client
field comes from a concatenation of the FirstName and LastName table fields.

Figure 1-39. A table of clients and balances due

www.allitebooks.com

http://www.allitebooks.org

36 | Chapter 1: Query Construction

Another new field—Message—provides a fixed string when the query is run. The
Message field is populated with an expression that has nothing to do with any table
fields.

As shown in Figure 1-41, the query result contains two fields that list the clients’ full
names and the fixed message.

Discussion
Using expression-based fields in queries provides ways to treat records with some
intelligence. A useful example involves using an expression to return a message for
certain records based on the value of a table field. Figure 1-42 shows how the IIf
function is incorporated into our derived Message field. Now, the message about the
Spring Special will appear only in records that have a balance of 100 or less.

Figure 1-40. A query with expression-based fields

Figure 1-41. The result of running the query

Using Aliases to Simplify Your SQL Statements | 37

Here is the SQL statement for the query in Figure 1-42:

SELECT [FirstName] & " " & [LastName] AS Client,
IIf([Balance]<=100,"Don't Miss Our Spring Special!","")
AS Message
FROM tblClients;

When you run this query, you’ll find that clients with balances over 100 do not have
the message written into their records. What is the point of this? This technique may
be useful in a mail merge, for example. When creating letters or statements to clients,
you may wish to advertise the Spring Special to just those customers with a low
balance or a balance of zero.

1.12 Using Aliases to Simplify Your SQL Statements

Problem
Table names precede field names in SQL statements, so queries that use multiple
fields and tables wind up being very long. Is there a way to use shortcut identifiers
instead for the table names?

Solution
Yes, there is! In a SQL statement, any table name can be given an alias. The place to
do this is after the FROM keyword, where the table name is entered. Follow the table
name with an alias of your choosing (make sure it is not a reserved word, an existing
field name, etc.). Then, use the alias instead of the table name in the other areas of
the SQL statement. Let’s look at an example.

Figure 1-42. Using a condition in a field expression

38 | Chapter 1: Query Construction

Using the Access query grid to assemble the query results in this SQL statement that
addresses a single table:

SELECT tblCustomers.CustomerCompanyName,
tblCustomers.CustomerFirstName,
tblCustomers.CustomerLastName,
tblCustomers.CustomerAddr1,
tblCustomers.CustomerAddr2,
tblCustomers.CustomerCity,
tblCustomers.CustomerState,
tblCustomers.CustomerZip,
tblCustomers.CustomerHomePhone,
tblCustomers.CustomerWorkPhone
FROM tblCustomers;

Here is the same query, this time using the alias C for tblCustomers. The alias is
placed just after the table name in the FROM section, and all references to the table
name in the rest of the query just use the alias:

SELECT C.CustomerCompanyName,
C.CustomerFirstName, C.CustomerLastName,
C.CustomerAddr1, C.CustomerAddr2, C.CustomerCity,
C.CustomerState, C.CustomerZip, C.CustomerHomePhone,
C.CustomerWorkPhone
FROM tblCustomers C;

This SQL statement is much shorter and easier to follow.

Discussion
Aliases are also useful—perhaps even more so—with queries that address multiple
tables. Here is the SQL statement of a query that addresses three tables (tblCustomers,
tblInvoices, and tblInvoicePayments). Inner joins connect the tables on key fields:

SELECT tblCustomers.CustomerCompanyName,
tblCustomers.CustomerFirstName,
tblCustomers.CustomerLastName,
tblCustomers.CustomerAddr1,
tblCustomers.CustomerAddr2,
tblCustomers.CustomerCity,
tblCustomers.CustomerState,
tblCustomers.CustomerZip,
tblInvoices.InvoiceNumber,
tblInvoices.InvoiceDate,
tblInvoices.Status,
tblInvoices.Hours, tblInvoices.Rate,
tblInvoicePayments.PaymentAmount,
tblInvoicePayments.PaymentDate,
tblInvoicePayments.PaymentType
FROM (tblCustomers INNER JOIN tblInvoices ON
tblCustomers.CustomerID = tblInvoices.CustomerID)
INNER JOIN tblInvoicePayments ON
tblInvoices.InvoiceID = tblInvoicePayments.InvoiceID;

Creating a Left Join | 39

Now, here is the same SQL statement, but with aliases of C for tblCustomers, I for
tblInvoices, and P for tblInvoicePayments:

SELECT C.CustomerCompanyName, C.CustomerFirstName,
C.CustomerLastName, C.CustomerAddr1,
C.CustomerAddr2, C.CustomerCity, C.CustomerState,
C.CustomerZip, I.InvoiceNumber, I.InvoiceDate,
I.Status, I.Hours, I.Rate, P.PaymentAmount,
P.PaymentDate, P.PaymentType
FROM (tblCustomers C INNER JOIN tblinvoices I ON
C.CustomerID=I.CustomerID) INNER JOIN
tblInvoicePayments P ON I.InvoiceID=P.InvoiceID;

Clearly, the SQL statement with aliases is shorter. Again, each table is assigned its
alias just after its name appears in the FROM and INNER JOIN sections.

1.13 Creating a Left Join

Problem
I have a table of students and a table of courses they have taken. Not every student
has taken a course. I want a listing of all the students and any courses they have
taken, including students who have not yet taken a course. However, when I run the
query normally, I only get back records of students who have taken at least one
course.

Solution
Figure 1-43 shows the standard query you would use to query from two tables. This
query will return all records from Students who have related records in Courses
Taken. If, for a given student, there is more than one record in Courses Taken, the
number of related records in Courses Taken is the number of records that will be
returned for that given student. But students with no matched courses are left out of
the returned records altogether.

Figure 1-43 shows an inner join. To ensure that all records from the master table
(Students) appear in the results, the query must be changed to a left join. This is easy
to do when the query is in design mode: either use the View ➝ Join Properties menu
option, or double-click on the line that connects the table to display the Join
Properties dialog box, shown in Figure 1-44.

In the Join Properties dialog box are three numbered options. The first one is the
standard inner join. The second one creates a left join. The third option creates a
right join (see Recipe 1.14). Select the second option and click OK. Now, when the
query is run, all records from the Students table will appear, as shown in Figure 1-45.

40 | Chapter 1: Query Construction

Discussion
A left join returns all records from the master table, and probably all records from
the child table (here, Courses Taken). This last fact depends on whether referential
integrity exists between the tables. In other words, if referential integrity is enforced,
each record in the Courses Taken table must match to a record in the Students table.
Then, even though there are student records with no matching courses, all course
records must belong to students and hence are returned in the query.

Figure 1-43. An inner join query returns only matched records

Figure 1-44. Setting the properties for a left join

Creating a Right Join | 41

If referential integrity is not applied, any records in Courses Taken that do not relate
to records in the Students table will not be included in the query’s returned records.

1.14 Creating a Right Join

Problem
I have a parent table and a child table. The parent table contains customers, and the
child table contains purchases, but some records in the Purchases table do not
belong to any customer. I need to run a query that returns all the records from the
Purchases table, even if there is no matching customer. At the very least, this will
help me identify purchases that are not being billed to anyone.

Solution
The request here is for a right join. In a right join, all records are returned from the
child table, including those that have no match in the parent table. For any such
records to exist in the child table, referential integrity must not exist between the

Figure 1-45. The result of running a left join query

42 | Chapter 1: Query Construction

tables. The presence of orphan records is possible only when such records can exist
outside the confines of referential integrity with the parent table.

Figure 1-46 shows how a right join is created: use the third option in the Join Proper-
ties dialog box (displayed via the View ➝ Join Properties menu command).

Discussion
When a right join query is run, the number of returned records matches the number
of records in the child table (assuming no criteria were used). For fields from the par-
ent table, there will be blank data for the records in which there is no match between
tables. Figure 1-47 shows the result of running the right join query.

Figure 1-46. Setting up a right join in a query

Creating an Outer Join | 43

1.15 Creating an Outer Join

Problem
I wish to combine the output of both a left join and a right join into a single query,
but I can’t get Access to do this type of “outer join.”

Solution
A left join will return all the records from the table on the right side (the parent) and
any related records from the table on the left side (the child). A right join will return
all the records from the table on the left side and any related records from the table
on the right side. An outer join combines these two outputs into one.

Figure 1-47. The result of running a right join query

44 | Chapter 1: Query Construction

Access doesn’t directly support outer joins, but because it is reasonable to create left
and right joins, these two constructs can be brought together with a union query (see
Recipe 1.10).

Figure 1-48 shows two database tables. Not all the teams in the Teams table have
matching records in the Games table, and the Games table contains some records
that have no relation to the teams in the Teams table.

To create an outer query, you must be in the SQL pane of the query designer. The fol-
lowing is the SQL that would simulate an outer query for these tables by combining
the output of a left join with a right join:

SELECT Teams.Team, Games.Date, Games.Location
FROM Games LEFT JOIN Teams ON
Games.TeamID=Teams.TeamID
UNION
SELECT Teams.Team, Games.Date, Games.Location
FROM Games RIGHT JOIN Teams ON
Games.TeamID = Teams.TeamID
ORDER BY Team, Date;

Discussion
When the query is run (see Figure 1-49), there are, as expected, some blanks in the
fields from the Teams table and the Games table (from Figure 1-48). The majority of
records are matched. Running a standard inner join query on these tables returns 35
records—the count of records that match. This outer join result returns 49 records.
There are 14 records that have blanks for the source from one table or the other.

Figure 1-48. Two tables with some related and some orphan records

Creating an Outer Join | 45

See Also
• Recipe 1.13

• Recipe 1.14

• Recipe 1.10

Figure 1-49. The result of running an outer join

www.allitebooks.com

http://www.allitebooks.org

46

Chapter 2CHAPTER 2

Calculating with Queries 2

Queries can tell you a lot about your data. In addition to simply returning records,
you can use aggregate functions that are part of the SQL language to return summa-
ries of your data. There are aggregate functions that can sum, average, count, find
the highest or lowest value, or return the standard deviation in the data, just to name
a few. Not all are covered in the recipes in this chapter, but once you have a general
idea of how aggregate functions work, you should be able to use any of them.

In this chapter, you’ll also find recipes that showcase how to use your own custom,
non-SQL functions from within a query. This is a very powerful technique because it
enables you to design functions that deliver values that meet your exact require-
ments. And that’s not all! There is also a recipe that describes how to use regular
expressions, which provide powerful pattern-matching abilities, as well as recipes
that demonstrate how to return all possible combinations of your data using a
Cartesian product and how to construct crosstab queries.

2.1 Finding the Sum or Average in a Set of Data

Problem
Sometimes I need to summarize numerical data in a table. I know how to do this in a
report—by using a calculation in a text box, in the report’s footer. But how can I get
a sum or average without having to create a report (or pull out a calculator)?

Solution
SQL provides aggregate functions that provide summaries of data. Two popular
aggregate functions are Sum and Avg (for calculating the average). You can easily
incorporate these into your query’s design right within the query grid.

To use an aggregate function, select the View ➝ Totals menu option while in the
query grid (or, in Access 2007, click the Sigma (Σ) button in the Ribbon). This makes
the Total row display in the grid. The Total row provides the assorted aggregate
functions in a drop-down list.

Finding the Sum or Average in a Set of Data | 47

Say you have a tblSales table containing a Customer_ID field, a PurchaseDate field,
and an Amount field. There are records spanning dates from 2002 through 2005. To
get a fast grand total of all the amounts in the table, just apply the Sum function to the
Amount field. Figure 2-1 shows the design of the query, with the Sum function
selected from the drop-down list in the Total row for the Amount field.

Figure 2-2 shows the result of running the query.

Note that a derived field name, SumOfAmount, has been used in the result. If you
want, you can change this name in the SQL or by using an expression in the Field
row of the query grid. Figure 2-3 shows how you can change the returned field name
to Grand Total by using that name in the Field row, along with a colon (:) and the
real field name.

Figure 2-1. Selecting the Sum aggregate function

Figure 2-2. The result of running the Sum query

48 | Chapter 2: Calculating with Queries

To return an average of the values, use the same approach, but instead of Sum, select
Avg from the drop-down list in the Total row.

Discussion
Aggregate functions are flexible. You can apply criteria to limit the number of
records to which the aggregation is applied—for example, you can calculate the aver-
age amount from purchases in just 2005. Figure 2-4 shows how to design a query to
do so. Note that the criterion to limit the Amount field is placed in the second col-
umn, not in the same column that contains the Avg function. Also, the Show box is
unchecked in the column with the criterion, so only the average in the first column is
displayed when the query is run.

Figure 2-5 shows another example: a query design to calculate an average amount
from amounts that are greater than or equal to 200. The average returned by this
query will be higher than that returned by a query based on all the records.

The SQL generated from this design is:

SELECT Avg(tblSales.Amount) AS AvgOfAmount
FROM tblSales
WHERE (((tblSales.Amount)>=200));

Figure 2-3. Specifying a dynamic field name

Finding the Sum or Average in a Set of Data | 49

Figure 2-4. Calculating the average of purchases in 2005

Figure 2-5. Calculating an average of purchases above a threshold

50 | Chapter 2: Calculating with Queries

2.2 Finding the Number of Items per Group

Problem
I have a table of data containing customer address information. One of the fields is
State. How do I create a query to return the number of customers in each state?

Solution
When a query uses aggregate functions, the Group By clause is a keystone. This SQL
clause provides a grouping segregation, which then allows aggregation summaries to
be applied per grouping. In this example, the Group By clause is applied to the State
field. Then, the Count aggregate function is used to return the count of customers per
group (i.e., per state).

Figure 2-6 shows the design of the query. The first column groups the State field. In
the second column, the Count function is selected from the drop-down list in the
Total row.

Figure 2-6. Using Count with Group By

Finding the Number of Items per Group | 51

Figure 2-7 shows the result of running the query. The number of customers in each
state is returned.

Discussion
The Group By clause can be applied to more than one field. In such a case, in
sequence, each field that uses Group By further defines the narrowness of the count at
the end.

Let’s refine our count so we can see how many customers are in each city within each
state. Figure 2-8 shows the breakdown of customers in Alaska by city. In the query
result shown in Figure 2-7, Alaska has a count of 20 customers. In the query result
shown in Figure 2-8, there are still 20 customers listed in Alaska, but now you can
see the counts per city.

The SQL statement for the query in Figure 2-8 is this:

SELECT tblCustomers.State, tblCustomers.City,
Count(tblCustomers.CustomerID) AS Customers
FROM tblCustomers
GROUP BY tblCustomers.State, tblCustomers.City;

Figure 2-7. Returned counts per state

52 | Chapter 2: Calculating with Queries

2.3 Using Expressions in Queries

Problem
I know how to create on-the-fly fields in a query (see Recipe 1.11), and how to
include some conditional intelligence. How, though, do I access a value that is not in
an underlying table or query, but instead comes from another table altogether? How
can I develop comprehensive expressions in a query?

Solution
Expressions are a powerful feature in Access. Expressions are used in a number of
ways, such as for referencing forms and controls (whether from a macro, from a
query, or from VBA). For this example, we’ll use an expression within a query that
accesses data from tables not included in the query’s Select statement.

Figure 2-9 shows a query based on two tables: tblClients and tblPets. The key
between these tables is ClientID. A field called PetID is the unique key for pets in the
tblPets table. Two external tables, tblServiceDates and tblServiceDates_New, con-
tain records of visits made by each pet. The first service date table, tblServiceDates,
contains records for pets with PetIDs of up to 299. Higher PetIDs have service date
records in the tblServiceDates_New table.

In the query in Figure 2-9 is a field based on a built-up expression, shown here:

Last Service Date: IIf([PetID]<300,
DLookUp("Max(DateOfService)",
"tblServiceDates","[Pet_ID]=" & [PetID]),
DLookUp("Max(DateOfService)",
"tblServiceDates_New",
"[Pet_ID]=" & [PetID]))

Figure 2-8. Count of customers grouped by state and city

Using Expressions in Queries | 53

This expression combines functions (IIf, DLookup, and Max) to find the last service
date for each pet from the respective service date tables.

The full SQL statement that is generated from this design is:

SELECT tblPets.PetID, tblClients.ClientLastName,
tblPets.PetType, IIf([PetID]<300,
DLookUp("Max(DateOfService)",
"tblServiceDates","[Pet_ID]=" & [PetID]),
DLookUp("Max(DateOfService)","tblServiceDates_New",
"[Pet_ID]=" & [PetID])) AS [Last Service Date]
FROM tblClients INNER JOIN tblPets ON
tblClients.ClientID = tblPets.ClientID;

In summary, within a query, it is possible to build up a sophisticated expression that
uses functions to address data and calculate results that stand outside of the standard
SQL syntax.

Discussion
Entering complex expressions into a single row in the query grid can be difficult,
given the limited width of a computer monitor. One workaround is to use the Zoom
box, as demonstrated in Figure 2-9. To display the Zoom box, right-click on the
query grid where you want the entry to go, and select Zoom from the pop-up menu.
Pressing Shift-F2 also displays the Zoom box.

Another choice on the pop-up menu is Build. Selecting this displays the Expression
Builder dialog box, seen in Figure 2-10. This utility makes it easy to assemble com-
plex expressions, as it makes all the database objects, functions, and more available
for you to use with just a few mouse clicks.

Figure 2-9. A query with an expression

54 | Chapter 2: Calculating with Queries

2.4 Using Custom Functions in Queries

Problem
I often write long code routines to read through a table and process its data. It would
be great if I could reduce the amount of code required by not creating and reading
through a recordset. A select query addresses the table just as well. Is there a way to
just apply the processing portion of the code direct from a query?

Solution
Calling a function from a query is relatively easy. Just use an extra column in the
query grid to create a derived field. In that field, place an expression that calls the
function; the returned value from the function is what will appear in the query result.

Figure 2-11 shows a table with records of activities performed for different clients.
The records list the client name, the date when the work was done, the number of
hours it took, and the type of work that was performed. The task is to calculate how
much to charge for the work, per record.

First, let’s develop a function that we can call from a query. It’s important that this is
a function and not just a sub. We need a returned value to appear in the query results,
and while functions return values, subs do not. Here is the bill_amount function:

Function bill_amount(the_date As Date, the_hours As Integer, _
 the_client As String, WorkType As String) As Single
bill_amount = 0 'in case of unexpected input
Select Case WorkType

Figure 2-10. The ever-popular Expression Builder

Using Custom Functions in Queries | 55

 Case "Training"
 bill_amount = the_hours * 80
 Case "Development"
 bill_amount = the_hours * 120
 Case "Maintenance"
 'Parker gets reduced rate regardless of day of week
 'Other clients have separate weekday and weekend rates
 If the_client <> "Parker" Then
 If Weekday(the_date) = 1 Or Weekday(the_date = 7) Then
 bill_amount = the_hours * 95
 Else
 bill_amount = the_hours * 75
 End If
 Else
 bill_amount = the_hours * 60
 End If
End Select
End Function

The function takes four arguments—one each for the four fields in the table—and
calculates the amount to bill based on different facets of the data. The type of work
performed, the client for whom it was performed, and whether it was done on the
weekend (determined with the Weekday function) all determine which hourly rate to
use. The hourly rate and the number of hours are then multiplied to determine the
billing amount.

Figure 2-12 shows the query design. Note that you don’t have to place the table
fields in the grid unless you want them to appear with the values returned from the
function.

Figure 2-11. A table containing records of work performed for clients

www.allitebooks.com

http://www.allitebooks.org

56 | Chapter 2: Calculating with Queries

The function is called in the query in a separate column. The structure of the expres-
sion is:

Bill Amount: bill_amount([Date],[Hours],[Client],[WorkPerformed])

Bill Amount is the name of the temporary field. bill_amount is the name of the func-
tion, and the four fields are included as arguments. The fields are each encased in
brackets, consistent with the standard Access field-handling protocol.

When the query is run, the fifth column contains the billable amount, as shown in
Figure 2-13.

Figure 2-12. A custom function is called from a query

Figure 2-13. The billable amounts are returned

Using Regular Expressions in Queries | 57

Discussion
Calling functions from queries opens up many ways of working with your data. The
function used in this example is short and processes an easy calculation. But do note
that this function actually calls another function, Weekday. The point is that you can
develop sophisticated functions that perform all types of processing.

Both custom functions and built-in functions can be called from a query. Further, the
query does not have to be a select query; you can call functions from action queries
(discussed in Chapter 3) as well. Figure 2-14 shows an example of using two built-in
functions, IIf and Weekday, to update the value in a field. If the date falls on the
weekend, -Weekend is appended to the client name.

Take a closer look at the expression used in the Update To row:

IIf(Weekday([Date])=1 Or Weekday([Date])=7,[Client] & "-Weekend",[Client])

If the weekday is a 1 or a 7 (a Sunday or a Saturday), -Weekend is appended to the cli-
ent name; otherwise, the client name is used for the update as is. In other words,
every row is updated, but most rows are updated to the existing value.

2.5 Using Regular Expressions in Queries

Problem
Regular expressions provide the ability to set up sophisticated string patterns for
matching records. Can a regular expression be used as the criterion in a query?

Figure 2-14. Built-in functions used in an update query

58 | Chapter 2: Calculating with Queries

Solution
Regular expressions, popularized by Perl and other Unix-based languages, provide
powerful string-matching capabilities. For Access and other Windows-based applica-
tions, adding a reference to the VBScript Regular Expressions library makes using
regular expressions possible. You can set up the reference in the Visual Basic Editor
(VBE). To display the VBE from Access, just press Alt-F11. While in the VBE, use the
Tools ➝ References menu option to display the References dialog. Then set a refer-
ence to Microsoft VBScript Regular Expressions 5.5 (your version number may be
different), as shown in Figure 2-15.

Figure 2-16 shows a table with hypothetical transaction records.

The values in the TransactionRecord field are concatenations of separate codes and
values that follow this pattern:

• The first character is a letter that signifies a type of transaction. For example, an
A could mean an adjustment, and a D could mean a deposit.

• The next two characters are numbers that represent a transaction type.

• The next two characters are a department code. For example, LE is Legal, SA is
Sales, HR is Human Resources, WA is Warehouse, and so on.

• The last three numbers are an amount.

Figure 2-15. Setting a reference to the VBScript Regular Expressions library

Using Regular Expressions in Queries | 59

Given this pattern, let’s construct a query that will identify transactions that are
either adjustments or deposits, are for the Sales department, and are for amounts of
500 or greater. Put another way, our task will be to identify transaction records con-
sisting of an A or a D, followed by any two numbers, followed by SA, followed by a
number that is 5 or greater, and any two other numbers.

To make use of pattern matching, we’ll use a custom function to create a regular
expression (regexp) object. In a separate code module, enter this function:

Function validate_transaction(transaction_record As String, _
 match_string As String) As String
 validate_transaction = "Invalid Record"
 Dim regexp As regexp
 Set regexp = New regexp
 With regexp
 .Global = True
 .IgnoreCase = True
 .Pattern = match_string
 If .Test(transaction_record) = True Then
 validate_transaction = "Valid Record"
 End If
 End With
 Set regexp = Nothing
End Function

Figure 2-16. A table with transaction records

60 | Chapter 2: Calculating with Queries

The transaction record and the regular expression pattern to match are given to the
function as arguments. The function code initially sets the return value to Invalid
Record. A regexp object is set, and the transaction record is tested against the
pattern. If the transaction record matches the pattern, the return value is changed to
Valid Record.

Now, we’ll call this function from a query. Figure 2-17 shows a select query that
places the call to the function in the second column. Note that the column with the
function to call is set to a descending sort. This is so all valid records will appear at
the top. Unlike a typical select query that returns just the records that match the cri-
teria, in this case all records are returned, so it makes sense to group together all the
valid records.

Figure 2-18 shows the result of running the query. The valid records are at the top.

Discussion
The pattern used for matching the transaction records look like this:

^(A|D)[0-9][0-9](SA)[5-9][0-9][0-9]

A detailed explanation of regular expression syntax is beyond the scope of this
recipe, but in a nutshell, here is what the pattern calls for:

• (A|D) indicates to match an A or a D.

• [0-9] indicates to match any single numerical digit between 0 and 9 (effectively,
any number).

• (SA) indicates to match SA.

• [5-9] indicates to match any numerical digit between 5 and 9. Since this is fol-
lowed in the pattern by two more occurrences of [0-9] (i.e., any number), taken
together, a value of 500 or greater is sought.

Figure 2-17. A regular expression pattern coded into a query

Using a Cartesian Product to Return All Combinations of Data | 61

Test is just one method of the regexp object. There also are Execute and Replace meth-
ods. Execute creates a collection of matches. This is useful in code-centric applications,
where further processing would take place in a routine. The Replace method replaces
a match with a new string.

See Also
• Recipe 2.4

• Mastering Regular Expressions by Jeffrey E. F. Friedl (O’Reilly)

• Regular Expression Pocket Reference by Tony Stubblebine (O’Reilly)

2.6 Using a Cartesian Product to Return All
Combinations of Data

Problem
I have a list of teams and a list of locations with ballparks. I wish to create a master
list of all the combinations possible between these two lists.

Figure 2-18. Records are validated using a regular expression

62 | Chapter 2: Calculating with Queries

Solution
We typically use queries to limit the amount of returned records, and at the very
least, we expect the number of returned records to be no greater than the number of
records in the largest table or query being addressed.

However, there is a special type of join, called a Cartesian join, that returns the multi-
plicative result of the fields in the query (otherwise known as the Cartesian product).
A Cartesian join is the antithesis of standard joins—it works as if there is no join.
Whereas the other join types link tables together on common fields, no field linking
is required to return a Cartesian product.

Figure 2-19 shows a table of teams and a table of locations. Simply put, we are look-
ing for all the combinations that can exist between these two tables.

Figure 2-20 shows the design of a query that essentially has no join. There is no line
connecting the tables. In fact, the single fields in each table really don’t relate to each
other.

The SQL generated by the design in Figure 2-20 looks like this:

SELECT Teams1.Team, Locations.Location
FROM Teams1, Locations;

Figure 2-19. A table of teams and a table of locations

Using a Cartesian Product to Return All Combinations of Data | 63

Note that even in the SQL, no join is stated.

When the query is run, all possible combinations are returned. The Teams1 table has
18 records, and the Locations table has 10 records. Figure 2-21 shows the query
result, which returns 180 records.

Discussion
What if, for example, you needed a master list of all possible team versus team com-
binations? This task is a little different, as it involves creating a Cartesian product of
a single field. If you design a query with one table and just pull the field into two col-
umns, you will not gain any new records or combinations. You need a duplicate
teams table to make this work.

Copy the Teams1 table and name the copy Teams2. You now have two tables that
are identical, apart from their names. When making a Cartesian query that’s based
on two identical fields, your aim will typically be to get all possible combinations
except for an entity combined with itself. For example, there is no point in matching
a team with itself—the Carmel Carriers will never play against the Carmel Carriers!

Figure 2-22 shows a design that will return all possible match combinations, except
those where the teams are the same. The SQL statement for this query is:

SELECT Teams1.Team, Teams2.Team
FROM Teams1, Teams2
WHERE (((Teams1.Team)<>[Teams2].[Team]))
GROUP BY Teams1.Team, Teams2.Team;

Figure 2-20. Design of a Cartesian join

64 | Chapter 2: Calculating with Queries

Figure 2-21. The number of returned records equals the product of the numbers of records in the
source tables

Figure 2-22. A Cartesian join designed to avoid same-name matches

Creating a Crosstab Query to View Complex Information | 65

Figure 2-23 shows the result of running the query. Notice that there is no record in
which the Ardsley Achievers appear in both columns—this type of duplication has
been avoided. To confirm this, you can check the number of returned records. There
are 18 teams, and 18 multiplied by 18 is 324, yet only 306 records were returned.
The 18 records that would have shown the same team name in both columns did not
make it into the result.

2.7 Creating a Crosstab Query to View Complex
Information

Problem
How can I view my relational data in a hierarchical manner? I know I can use Group
By clauses in a query, but with an abundance of data points, this becomes cumber-
some and creates many records. Is there another way to see summaries of data based
on groupings?

Figure 2-23. A Cartesian product without same-name matches

66 | Chapter 2: Calculating with Queries

Solution
A crosstab query is a great alternative to a standard select that groups on a number of
fields. Figure 2-24 shows the Student_Grades table, which has five fields: StudentID,
Instructor, MidTerm Grade, Final Grade, and Course.

Using the information in the Student_Grades table, it is possible to get a per-
instructor count of how many students attended each course. Figure 2-25 shows the
design of a standard select query that accomplishes this. The Group By clauses create
delineations of Instructor and Course, and within each combination, a Count of the
StudentID field returns the count of students. The SQL for this query is:

SELECT Student_Grades.Instructor,
Student_Grades.Course,
Count(Student_Grades.StudentID) AS CountOfStudentID
FROM Student_Grades
GROUP BY Student_Grades.Instructor, Student_Grades.Course;

Running the query in Figure 2-25 produces a result with 25 records, shown in
Figure 2-26.

Now for the alternative. A crosstab query will return the same student counts, per
instructor, per course; however, the layout will be smaller. The design of the crosstab
query is shown in Figure 2-27. Crosstabs require a minimum of one Row Heading
field, one Column Heading field, and one Value field in which the reporting is done.

Figure 2-24. A table with instructors, courses, and grades

Creating a Crosstab Query to View Complex Information | 67

In this case, the Value field is the StudentID field, and Count is the selected aggregate
function (as it was in the equivalent select query). The Instructor field is designated
as a Row Heading, and the Course field is designated as the Column Heading.

Figure 2-25. A select query that returns the count of students per instructor, per class

Figure 2-26. Returned student counts from a select query

68 | Chapter 2: Calculating with Queries

The SQL behind the crosstab query reads like this:

TRANSFORM Count(Student_Grades.StudentID) AS CountOfStudentID
SELECT Student_Grades.Instructor
FROM Student_Grades
GROUP BY Student_Grades.Instructor
PIVOT Student_Grades.Course;

Note the TRANSFORM and PIVOT statements. These are unique to creating a crosstab and
are explained in the Discussion section. Figure 2-28 shows the result of running the
query. Just five rows are returned—one for each instructor—and there is a column
for each course.

Figure 2-27. The design of the crosstab query to count student records

Figure 2-28. The result of running the crosstab query

Creating a Crosstab Query to View Complex Information | 69

Discussion
To recap, a crosstab query requires:

• One or more Row Heading fields

• One Column Heading field

• One Value field

To create a crosstab query, select the Query ➝ Crosstab Query menu option while in
the query designer. This will cause the Crosstab row to display in the query grid.
Alternatively, you can use the Crosstab Query Wizard. To launch the wizard, click
the New button while the Queries tab is on top in the database window. Then, select
Crosstab Query Wizard in the New Query dialog box.

In Access 2007, click the Create tab in the Ribbon, and then click the
Query Wizard.

In the SQL syntax, a TRANSFORM statement is what designates the query as a crosstab.
Following directly after the TRANSFORM keyword are the aggregate function and the
Value field to be used. The one or more fields following the SELECT statement are the
Row Headings. The field following the PIVOT keyword is the field from which the
column headings will be drawn.

The previous query produced results in which the row headings were the instructor
names and the column headings were the course names (Figure 2-28). Swapping the
fields in the SELECT and PIVOT sections reverses the structure of the output. In other
words, using this SQL:

TRANSFORM Count(Student_Grades.StudentID) AS CountOfStudentID
SELECT Student_Grades.Course
FROM Student_Grades
GROUP BY Student_Grades.Course
PIVOT Student_Grades.Instructor;

creates the output shown in Figure 2-29. Now, the courses are listed as rows and the
column headings are the instructor names. Regardless of the layout, the counts are
consistent.

Sophisticated crosstabs

In the examples we’ve looked at so far in this recipe, after the TRANSFORM keyword,
we’ve applied an aggregate function to a single field. A limitation of crosstab queries is
that only one Value field can be evaluated; attempting to include a second aggregation
would result in an error. But what if you need to process information from more
than one field?

70 | Chapter 2: Calculating with Queries

While only one value can be returned for each row and column intersection, there
are options for how that value is calculated. Let’s say we need to find the overall
average for each course—that is, the combined average of the MidTerm Grade and
Final Grade fields. This will provide an overall average per course, per instructor.
The catch here is that two fields contain values that need to be considered: MidTerm
Grade and Final Grade.

To accomplish this task, we’ll place a function call where the Value field is usually
specified, and we’ll select Expression in the Total row. Figure 2-30 shows the query
design.

The full expression reads like this:

Overall Average: overall_average(Sum([MidTerm Grade]),
Sum([Final Grade]),Count([StudentID]))

Figure 2-29. The crosstab with a different layout

Figure 2-30. Using a function to return the single crosstab value

Creating a Crosstab Query to View Complex Information | 71

The SQL statement looks like this:

TRANSFORM overall_average(Sum([MidTerm Grade]),
Sum([Final Grade]),Count([StudentID])) AS [Overall Average]
SELECT Student_Grades.Course
FROM Student_Grades
GROUP BY Student_Grades.Course
PIVOT Student_Grades.Instructor;

As the query runs, the overall_average function is called. The arguments it receives are
the midterm grade, the final grade, and the count of students. Bear in mind that, one at
a time, these three arguments are providing information based on a combination of
instructor and course.

The overall_average function calculates the overall average by adding together the
sum of each grade type (which creates a total grade), and then dividing the total by
twice the student count—each student has two grades in the total, so to get the
correct average, the divisor must be twice the student count. Here is the function:

Function overall_average(midterm_sum As Long, _
 final_sum As Long, student_count As Integer) As Single
 overall_average = (midterm_sum + final_sum) / (student_count * 2)
End Function

Figure 2-31 shows the result of running this crosstab. The returned values are the
overall averages of the combined grades.

The returned values in Figure 2-31 are drawn out to several decimal places. Using the
Round function helps pare them down. Here is the updated function, with the rounded
values shown in Figure 2-32:

Function overall_average(midterm_sum As Long, _
 final_sum As Long, student_count As Integer) As Single
 overall_average = Round((midterm_sum + final_sum) / (student_count * 2))
End Function

Figure 2-31. Result of the crosstab with a calculated value field

72 | Chapter 2: Calculating with Queries

While you can only display a single value in the result, you have many options for
calculating that value. The approach presented here—using a function to calculate a
value it’s not possible to determine with the singular aggregate functions—is a useful
and flexible one.

Figure 2-32. Rounded crosstab values

73

Chapter 3 CHAPTER 3

Action Queries3

There are passive queries and there are action queries. A passive query, such as the
standard select, pulls data into a result set, but does not alter any data (either in the
source, or by virtue of persisting the returned data past the time the query has been
run and left active).

Action queries, on the other hand, can alter source records and persist the returned
records indefinitely. A delete query, for example, removes records from source
tables—a completely destructive procedure. If the data hasn’t been backed up, it’s
gone for good. Update queries also affect source data by changing the existing data.
Again, unless the original data is backed up before the operation is carried out, it’s
irrecoverable.

Append and make-table queries are types of action queries that do not alter source
data but do persist the returned records into permanent results. An append query
places returned records into an existing table, and a make-table query places
returned records into a new table. We’ll explore all of these types of queries in this
chapter.

3.1 Running an Update Query

Problem
I need to edit the data in my table. The State field contains two-character acronyms,
but I need to change these to the full state names. How can I do this?

Solution
Update Query is one of the types you can select when designing a query. Use the
Query ➝ Update Query menu option to prepare the grid.

74 | Chapter 3: Action Queries

In Access 2007, create a blank grid using the Ribbon, and select the Update query
type in the query design view of the Ribbon.

When you create an update query, an Update To row appears in the query grid;
you’ll also find that the Sort and Show rows from the standard select query are no
longer present.

Figure 3-1 shows the design of an update query that will replace all occurrences of
NY in the State field with New York.

Note that the Criteria row holds the NY value—this is the value that already exists in
the data and needs to be replaced. The value in the Update To row—New York—is
the new replacement value. Using criteria here is vital, because you only want to
update the records that have NY in the State field.

There is no requirement that an update query have a Where clause (which filters the
records to be updated to those that match the criteria). An update query can simply
update all records. At times that will be what you need, but in this example, updat-
ing all of the records would be catastrophic (remember, unless you have a backup,
you can’t undo the changes made by an update query).

When you run the query, a warning message like the one in Figure 3-2 will prompt
you to confirm the operation. Click Yes to proceed.

This method completes an update for one state value. This is a workable solution,
but running the update 50 times (once for each state) would be rather time-
consuming. Fortunately, there are more efficient methods.

Figure 3-1. A simple update query

Running an Update Query | 75

One approach is to use a custom function in the query. A function that takes two-
character state acronyms and returns the full state names is what’s needed. Here is
just such a function:

Function new_state_name(current_state_name As String) As String
 new_state_name = current_state_name
 If current_state_name = "NY" Then new_state_name = "New York"
 If current_state_name = "CT" Then new_state_name = "Connecticut"
 If current_state_name = "MA" Then new_state_name = "Massachusetts"
 If current_state_name = "CA" Then new_state_name = "California"
End Function

I’ve coded only a few states into this function for simplicity’s sake, but you could
code all 50, or just the states you need changed. Coding all 50 states this way would
be tedious, but at least you would end up with a reusable function.

The function first assigns its return value to the incoming value (the current state
acronym). This assures that if no match is found in the function, the original value is
returned as if nothing happened. When the incoming value does match an If
statement, the function’s return value becomes the full state name.

Figure 3-3 shows how this query is set up in the query grid. Note that there are no
criteria. All records are processed, so no criteria are set. The function call is in the
Update To row, and the State field itself is sent as the function argument.

The result of running the query is shown in Figure 3-4. For states that have existing
If statements in the function, the full state names are returned; for all other states,
the original acronyms are left intact.

Yet another way to handle converting the acronyms to full state names is to use the
built-in DLookup function. In this scenario, a table of state names is used. In the table
are two fields: StateAcronym and StateName. Figure 3-5 shows the table.

The query setup is shown in Figure 3-6.

The call to the DLookup function in the Update To row reads like this:

DLookUp("[StateName]","States","[StateAcronym]='" & [State] & "'")

StateName and StateAcronym are the two fields in the States table, and State is the
field in the Customers table. The States table has a record for each of the 50 states.
Therefore, barring any misspellings, all the state acronyms in the Customers table
will be updated to full state names when the query is run.

Figure 3-2. Confirmation to complete the update

76 | Chapter 3: Action Queries

Figure 3-3. Using a custom function in an update query

Figure 3-4. Records are updated

Running an Update Query | 77

Figure 3-5. A table of state acronyms and names

Figure 3-6. An update query uses the DLookup function

78 | Chapter 3: Action Queries

Discussion
The update queries presented so far have all addressed a single field. The SQL state-
ment for the query in Figure 3-1 is short. Here it is:

UPDATE Customers SET Customers.State = "New York"
WHERE (((Customers.State)="NY"));

Update queries start with the UPDATE SQL keyword, followed by the name of the
table and a SET clause indicating the field to be updated (more than one field can be
updated, as explained below). Any criteria used to limit which records receive an
update are specified in the WHERE clause.

The criteria do not have to be based on the field receiving the update. The preceding
example does use criteria based on the same field, but compare that with this SQL
statement:

UPDATE Customers SET Customers.State = "New York"
WHERE (((Customers.City)="New York City"));

In this example, the State field is updated to New York when the value in the City
field is New York City.

Any number of fields can be updated at once, although they will all share any crite-
ria applied in the query. Figure 3-7 shows a query design in which three fields are
updated to None when a fourth field’s value equals Discontinued.

Here’s the SQL statement for the query in Figure 3-7:

UPDATE Customer_Status SET
Customer_Status.Customer = "None",
Customer_Status.City = "None",
Customer_Status.State = "None"
WHERE (((Customer_Status.Status)="Discontinued"));

Figure 3-7. An update on multiple fields

Appending Data | 79

In accordance with SQL syntax, the query begins with the UPDATE keyword, followed
by the table name, followed by the SET clause. Then, all the fields that are being
updated are listed, with each of these fields being assigned a new value. Finally, if
criteria are used, the WHERE statement specifies them.

3.2 Appending Data

Problem
When I run a query that selects certain records from my data table, I need to have
the returned records added to a different table.

Solution
You’ll often need to archive older data, completed transactions, and the like. This is
commonly done by moving the identified records into another table. This second
table is typically structurally the same as the first one, so the records transfer neatly
from one table to the next. However, this is not a strict requirement—the archive
table may have additional fields listing information such as the date the record was
written into the archive, who authorized the archive, and so on.

One of the action queries—the append query—is the workhorse for getting this
done. An append query tacks records onto an existing table. Often, these records are
drawn from a different table, but they could come from a process, or as calculated
fields, or even from the same table.

When appending records to the same table from which they are
drawn, take care to avoid any key violations.

Figure 3-8 shows a table of transaction records for various clients. The records are
for various dates and various amounts, and the transactions have differing statuses.

A likely task is to clear the transaction table of older, completed records. Say you have
an archive table (Transactions_Archive) in which you store such records. You can easily
arrange a query in the query grid that will filter out the completed records from the
transaction table so that you can move them into your archive table. Figure 3-9 shows
the design of an append query with criteria that look for records dated earlier than 4/1/
2006 that have a status of “Paid in Full.” Running this query will place the identified
records into the Transactions_Archive table (this is not readily apparent in Figure 3-9,
but as part of the query design, the target table was selected in the Append dialog box).

Assuming that the fields in the Transactions_Archive table are identical to those in
the Transactions table, the field names in the Append To row will appear automati-
cally, without you needing to identify them. If you’re appending to a table that has
different field names, you will need to match the source and destination fields.

80 | Chapter 3: Action Queries

The SQL statement of the query in Figure 3-9 looks like this:

INSERT INTO Transactions_Archive
(ClientID, TransactionDate, TransactionAmount, Status)
SELECT Transactions.ClientID,
Transactions.TransactionDate, Transactions.TransactionAmount,
Transactions.Status
FROM Transactions
WHERE (((Transactions.TransactionDate)<#4/1/2006#)
AND ((Transactions.Status)="Paid in Full"));

Append queries begin with the unique Insert Into SQL lingo, followed by the desti-
nation table name and the field names from the destination table, in parentheses.
Then a SELECT statement gets the records from the source table (here, Transactions),
filtered according to the criteria. Note that the number of fields designated in the
source must match the number of fields designated in the target. However, not all
the fields from the source table have to be used.

Figure 3-8. A table of transaction records

Appending Data | 81

When this query is run, the records are added to the Transactions_Archive table. But
that’s just half the story—the records have been copied into the archive table, but
they still exist in the source table. A separate delete query must be used to delete
them. Delete queries are discussed in Recipe 3.3.

Discussion
The solution just described illustrates how append queries are typically put to use: a
subquery gathers records, filtered or not, from the source table, and these records are
placed in the destination table.

Now, let’s look at another insertion method. You can insert actual values instead of
using fields as the source of values. The following SQL statement again targets the
Transactions_Archive table, but this time actual hardcoded values are inserted. The
Values clause contains those values, within a set of parentheses:

Insert Into Transactions_Archive
Values (2000, #4/10/2006#, 35.25, 'Paid in Full')

There are a couple of key points to mention here:

• Insert Into <table name> is the correct way to begin the SQL statement.

• The Values keyword contains hardcoded values. Each value must be treated in a
specific way, according to the data type of the field into which it is being
inserted. Numeric values need no qualifiers; they can just be entered as integers,
real numbers, etc. (e.g., 2000 or 35.25). Dates must be enclosed in pound signs
(#), and text must be enclosed in quotation marks (single or double will work).

Figure 3-9. An append query

82 | Chapter 3: Action Queries

The four source values in the previous example match the order and data types of the
four fields in the destination table, so it was not necessary to list the table fields.
However, doing so would not cause any errors, and, because it’s clearer, might even
be preferable. Here is the SQL for this case:

Insert Into Transactions_Archive
(ClientID, TransactionDate, TransactionAmount, Status)
Values (2000, #4/10/2006#, 35.25, 'Paid in Full')

This works exactly the same as the last SQL statement.

Indicating the field names of the destination table is required when the values are not
in the correct order, or when some fields are skipped. For example, a new record to
be inserted may only have values in the ClientID and TransactionAmount fields; the
other fields’ values may not yet be known, so they are skipped. The SQL in this
situation might look like this:

Insert Into Transactions_Archive(ClientID, TransactionAmount)
Values (2000, 35.25)

In this case, only two destination fields receive values. This is perfectly valid, and
provided the fields that are not filled in can accept null or zero-length values, the
insert will complete.

Appending from a recordset

The Insert Into statement is often used as part of VBA/ADO processing. As a
recordset is looped through, a table is populated. This code illustrates:

Sub append_routine()
 Dim conn As ADODB.Connection
 Set conn = CurrentProject.Connection
 Dim rs_transactions As New ADODB.Recordset
 Dim ssql As String
 'get all records from Transactions
 ssql = "Select * From Transactions"
 rs_transactions.Open ssql, conn, adOpenKeyset, adLockOptimistic
 Do Until rs_transactions.EOF
 'If the transaction date is April 1, then
 'insert into archive table with 0 amount
 If rs_transactions.Fields("TransactionDate") = #4/1/2006# Then
 ssql = "Insert Into Transactions_Archive Values ("
 ssql = ssql & rs_transactions.Fields("ClientID") & ", "
 ssql = ssql & "#" & _
 rs_transactions.Fields("TransactionDate") & "#, "
 ssql = ssql & 0 & ", "
 ssql = ssql & "'April''s Fools Day Free Giveaway')"
 conn.Execute ssql
 End If
 rs_transactions.MoveNext
 Loop
 'delete from transactions all 4/1/2006 records
 ssql = "Delete * From Transactions Where "

Deleting Data | 83

 ssql = ssql & " Transactions.TransactionDate=#4/1/2006#"
 conn.Execute ssql
 rs_transactions.Close
 Set rs_transactions = Nothing
 conn.Close
 MsgBox "done"
End Sub

In this code example, a recordset (rs_transactions) contains all the records from the
Transactions table. As the recordset is looped through, the TransactionDate field is
tested to see if its value is 4/1/2006. If it is, an Insert Into SQL statement is assembled.
For example:

Insert Into Transactions_Archive Values
(106, #4/1/2006#, 0, 'April''s Fools Day Free Giveaway')

A few sharp eyes, I’m sure, will have noticed the two sequential single
quotation marks in April''s. This prevents the error that would other-
wise occur when you attempt to insert a text value containing an
apostrophe.

This statement copies all April 1 records to the archive table, and, in the process,
gives each of them a zero transaction amount. After the recordset is finished loop-
ing, a delete query is run to delete all the April 1, 2006 records from the Transactions
table. Here is the snippet of code that handles the delete:

 'delete from transactions all 4/1/2006 records
 ssql = "Delete * From Transactions Where "
 ssql = ssql & " Transactions.TransactionDate=#4/1/2006#"
 conn.Execute ssql

Using VBA code to run through a set of data and make decisions on how to append
the data to another table is great when the conditions become complex. For exam-
ple, what if the rules were to reduce the balance to 0, but only for certain clients, for
transactions made on specific dates, and, further, only if the client’s overall balance
is less than 100, and the last order was placed sometime in the past 30 days?

That type of filtering gets tricky with just the query grid, so knowing how to assem-
ble SQL weaved within lines of conditional testing done with VBA is an excellent
skill to have in your proverbial programmer’s toolbox.

3.3 Deleting Data

Problem
I have to delete some data from a table. The records that need to be deleted should
match my specified criteria, and the other records must be left intact. What is a safe
way to do this?

84 | Chapter 3: Action Queries

Solution
A delete query will delete from a table records that match the specified criteria. If no
criteria are used, certainly precaution should prevail. A delete query with no filtering
will completely empty out a table.

A delete query deletes data, but leaves the table intact. The table itself
is not deleted.

To delete just some data from a table, design a delete query that filters to records
that should be deleted. Figure 3-10 shows a delete query that will delete records in
which the state is CA (California). This means only those records that have CA in the
State field will be deleted; other records will be left intact. Bear in mind that even
though only a single field is placed in the query grid in Figure 3-10, running the
query won’t just delete any matching values found in that field—any matching
records will be deleted completely. It is not necessary to place all the fields in the
query grid; just place the ones in which criteria will be applied. When using a query
to delete all records (no criteria), you can drag the table asterisk to the grid. The
asterisk means all fields.

Figure 3-10. A delete query with criteria

Deleting Data | 85

When designing a query, use the Query ➝ Delete Query menu option to have the
query act as a delete query. In Access 2007, use the appropriate buttons on the
Ribbon. The SQL for the query in Figure 3-10 is this:

DELETE Customers.State
FROM Customers
WHERE (((Customers.State)="CA"));

This is a fairly straightforward SQL. It’s quite similar to that of a select query, other
than the fact this query begins with the DELETE keyword. An interesting twist,
though, is that the message implied in the above SQL is not quite accurate. As
explained earlier, the action deletes entire records, not just values in the State field. A
better structure of the syntax would be:

DELETE Customers.*
FROM Customers
WHERE (((Customers.State)="CA"));

The difference is using an asterisk to indicate all fields instead of using the entered
name of a single field. Sometimes the way Access writes out SQL that is defined in
the grid is not the best representation of the intended action. It works, but it can be
confusing.

Discussion
When deleting records from a table that participates in a relationship, further
consideration and steps come into play. Because a parent and child table are related (a
one-to-many relationship), it would be a violation of referential integrity to delete
records in the parent table that would leave “orphans” in the child table.

Access provides a facility to take care of this dilemma for you, but it’s important to
understand the issue. Let’s consider an example. Figure 3-11 shows an established
relationship between a Customers table and a Transactions table. Note that the
Enforce Referential Integrity option is checked in the Edit Relationships dialog (dis-
played by double-clicking on the line connecting the tables, or selecting the Tools ➝

Edit Relationships menu option). This means records in the Transactions table must
match records in the Customers table. Specifically, each record in the Transactions
table must contain in its CustomerID field a value that matches the value in the Cus-
tomerID field of a record in the Customers table.

Each record in the Customers table must have a unique value in the CustomerID
field. Therefore, the number of records in the Customers table is the same as the
number of unique CustomerIDs. This is how the Customers table plays the role of
the “one” or parent table in the relationship.

In contrast, the CustomerID field in the Transactions table does not have to contain
unique values. You will likely find that many of the customers (records in the Cus-
tomers table) will have several matching child records (records in the Transactions
table)—a successful business is sure to have loyal customers that are repeat buyers.

86 | Chapter 3: Action Queries

Again, the only requirement for records in the Transactions table is that the value in
the CustomerID field must match a value in the same field in the Customers table.

Now, suppose you want to delete a customer from the Customers table. Because
referential integrity is on, but cascading deletes are not enabled (see Figure 3-11),
if the customer record has any matching transaction records, Access will prevent
you from simply deleting the customer. Referential integrity will not allow an
action to create orphan records. Customers are not required to have transaction
records, so the deletion of a customer with no related transaction records is
allowed, but if there are any related transaction records, the customer cannot be
deleted.

If the customer has related transactions, you must first delete those transaction
records before you can delete the customer record. There is no restriction on delet-
ing transaction records because you cannot create an orphan customer. Orphan
records can exist only in the child or “many” table.

So, how do you delete all of a customer’s transactions? The delete query in
Figure 3-12 will delete records in the Transactions table for the customer named
April Kramer. April Kramer has a CustomerID, which the query uses to identify the
correct records to delete. Note that the first two columns have Where in the Delete
row—these are the criteria. The third column identifies the table from which the
records will be deleted (Transactions); it has From in the Delete row.

Figure 3-11. Reviewing the relationship between two tables

Deleting Data | 87

The Access-generated SQL for the query in Figure 3-12 is as follows:

DELETE Customers.FirstName, Customers.LastName, Transactions.*
FROM Customers INNER JOIN Transactions ON
Customers.CustomerID = Transactions.CustomerID
WHERE (((Customers.FirstName)="April") AND
((Customers.LastName)="Kramer"));

This is confusing because the field names from the Customers table (FirstName and
LastName) appear after the DELETE keyword. Based on this, one might conclude that
the record from the Customers table will be deleted. However, that is not the case.
The child transaction records are deleted, but the customer record remains. The
customer record is then deleted in a second query, as shown in Figure 3-13.

Deleting the April Kramer customer record in this manner is problem-
atic, because there could be more than one April Kramer. The use of
the name serves the point of the recipe, but in practice, CustomerID is
the only field in which a guarantee exists that you’ll delete the
intended target customer.

You only have to take the step of deleting the child records first if cascading deletes
are not enabled (i.e., if the Cascade Delete Related Records option is not checked in
the Edit Relationships dialog). When this option is selected, deleting records from a
parent table automatically deletes related records in child tables. In this case, simply
deleting April Kramer from the Customers table will cause her transaction records to
be removed as well without any further effort.

Figure 3-12. Deleting records from one table based on criteria in another table

88 | Chapter 3: Action Queries

This is a real time-saver, but it comes with a price. Cascading deletes make it easy to
delete a lot of valuable data. If you’re going to enable this option, be sure to archive
your old data frequently. Deletes are final, and unless you’ve copied your records to
archive tables, you’ll have no way to undo these operations. Without some backup
facility in place, the dangers of using cascading deletes may outweigh any time-
savings. Be sure to consider this option carefully before using it.

3.4 Creating Tables with Make-Table Queries

Problem
How do you create a new table to hold the records returned from a select query?

Solution
When you query records from an existing table or tables, you may want to place the
returned records into a new table. This is accomplished with a make-table query.

If data already exists in tables, why bother making new tables holding the same data?
Here are a couple of reasons:

• To combine related, nonhierarchical data into a single table.

• To segregate a larger table of data into a number of smaller tables. The segrega-
tion is typically based on values in one or more key fields.

Figure 3-13. A second query to delete the customer

Creating Tables with Make-Table Queries | 89

To illustrate the first example, Figure 3-14 shows two tables that are essentially
related—they share a common EmployeeID field. However, there is no one-to-many
relationship. Each table contains a single record per employee. Keeping the employee
names in one table, and the hire date/department information in another table,
might have some business relevance, but it serves no particular design purpose.
Combining this data into a single table has merit. The combined table will have one
EmployeeID field and three data fields.

To produce the combined table, place the two existing tables into an Access query
design, and place all the fields in the grid (including only one instance of the
EmployeeID field). Designate the query as a make-table query by using the Query ➝

Make-Table Query menu option. (In Access 2007, use the buttons on the Ribbon.)
When you specify this type of query, the Make Table dialog box appears. In this dia-
log, you can either enter the name of a new table, or select an existing one from the
drop-down list.

Figure 3-15 shows a query that returns records from the two tables and combines
them into a new table named EmployeeFullHireData.

The SQL statement looks like this:

SELECT Employees.EmployeeID, Employees.Employee,
HireDates_Departments.HireDate,
HireDates_Departments.Department INTO EmployeeFullHireData
FROM Employees INNER JOIN HireDates_Departments ON
Employees.EmployeeID = HireDates_Departments.EmployeeID;

Note that the key part of the SQL when a table is created is SELECT fields INTO
newTableName, followed by the FROM clause, and any joins and/or criteria.

Figure 3-14. Two tables with one-to-one data

90 | Chapter 3: Action Queries

Figure 3-16 shows the result of running the make-table query. All the information
now sits together in one table. No data relationships are lost; each employee’s name,
hire date, and department are listed.

Figure 3-15. Designing a make-table query

Figure 3-16. A combined table created with a make-table query

Creating Tables with Make-Table Queries | 91

As stated earlier, another use for a make-table query is to segregate a large table of
data into smaller sets of data. An example of this would be to separate out the
records from the table in Figure 3-16 by department. For example, from this table,
you could create a table of just Sales employees; here is the SQL statement:

SELECT EmployeeFullHireData.EmployeeID,
EmployeeFullHireData.Employee,
EmployeeFullHireData.HireDate,
EmployeeFullHireData.Department
INTO SalesDepartmentStaff
FROM EmployeeFullHireData
WHERE (((EmployeeFullHireData.Department)="Sales"));

Keep in mind that creating the new table containing the Sales department employee
records does not delete these records from the original table. A separate delete query
would take care of that.

Discussion
You can use a make-table query to overwrite an existing table. When an existing
table name is placed after the INTO keyword, the structure of the existing table and its
data are completely overwritten by whatever field structure is provided by the make-
table query. The table name remains the same, but the before and after states of the
table are not required to be similar in any way.

Another way to use a make-table query is to use temporary fields in the SQL syntax.
This creates a new table with a single record. The fields and the data are specified in
the SQL. Here is an example:

Select 123 as myValue, 'Ken' as myName into myNewTable

Running this simple SQL statement creates a new myNewTable table with a single
record. It has two fields: the myValue field contains the value 123, and the myName
field contains Ken. Notice there are no From or Where sections in the SQL, since no
source table is addressed.

92

Chapter 4CHAPTER 4

Managing Tables, Fields, Indexes,
and Queries 4

We use tables to store data, indexes to organize and order data, and queries to work
with data. In a perfect world, when a database goes into production, our development
effort is finished.

Alas, this is not a typical scenario. New requirements come along. Table structures
have to be changed. New indexes are needed. New queries are called for to match
the new schema. The recipes in this chapter address how to manage these things pro-
grammatically. If you have done much work with Access, you know how tedious it
can be to manually create tables. Often, you have no choice but to manually create
database objects, but when you’re faced with having to create a number of tables or
queries that are similar, having a way to automate their creation is a boon. Knowing
how to programmatically add and delete fields—and create and use indexes—can
also save you a lot of time.

4.1 Creating Tables Programmatically

Problem
Creating tables manually on the Tables tab of the database window is a tedious pro-
cess, especially when you’re designing several tables. What are the programmatic
alternatives?

Solution
There are four good programmatic methods for creating tables: DAO, ADOX, SQL,
and XML/XSD. Other methods do exist, such as getting a table definition from a
web service, but the four options just mentioned are the most common.

This recipe will demonstrate how to use each of these methods to create a table with
the following properties and fields:

Creating Tables Programmatically | 93

• The table name is Sales.

• There is a SalesID field, which is an AutoNumber field, and serves as the pri-
mary key.

• There is a SalesPerson field, which is a Text data type.

• There is a SalesDate field, which is a Date data type.

• There is a SalesAmount field, which is a Single data type (numeric with a decimal
portion).

Using DAO to create a table

Data Access Objects (DAO) is a mature standard that has been around through
many previous versions of Access. In Access 2003, DAO is still alive and kicking and
enjoys a dedicated reference, i.e., you don’t have to go out of your way to reference
the library.

If you are not using Access 2003, you may have to set the DAO refer-
ence. To learn how to do so, read the next section, which explains
how to set the reference for ADOX. The instructions are the same for
DAO, except that you’ll need to check the box for Microsoft DAO 3.6
Object Library in the reference list (your version number may be
different, but that’s fine).

The following code uses DAO to create the Sales table:

Sub make_DAO_table()
 Dim tbl As DAO.TableDef
 Dim fld As DAO.Field
 Dim ndx As DAO.Index
 Set tbl = New TableDef
 With tbl
 .Name = "Sales"
 Set fld = .CreateField("SalesID", dbLong)
 fld.Attributes = dbAutoIncrField
 .Fields.Append fld
 .Fields.Append .CreateField("SalesPerson", dbText)
 .Fields.Append .CreateField("SalesDate", dbDate)
 .Fields.Append .CreateField("SalesAmount", dbSingle)
 Set ndx = .CreateIndex("PrimaryKey")
 With ndx
 .Fields.Append .CreateField("SalesID")
 .Primary = True
 End With
 .Indexes.Append ndx
 End With
 CurrentDb.TableDefs.Append tbl
 MsgBox "done"
End Sub

94 | Chapter 4: Managing Tables, Fields, Indexes, and Queries

Using ADOX to create a table

ADOX is an extension of ActiveX Data Objects (ADO). You’ll need to add a refer-
ence to ADOX manually if you want to use this method of creating tables. In a code
module, use the Tools ➝ References menu option to display the References dialog
box, shown in Figure 4-1. Scroll through the list and find “Microsoft ADO Ext. 2.7
for DDL and Security.” (Your version number may be different; that’s fine.) Check
the reference, and click the OK button.

The following code uses ADOX to create the Sales table:

Sub make_ADOX_table()
 'must set reference to
 'Microsoft ADO Ext. 2.7 for DDL and Security
 Dim cat As New ADOX.Catalog
 Dim tbl As New ADOX.Table
 Dim col As New ADOX.Column
 cat.ActiveConnection = CurrentProject.Connection
 With col
 Set .ParentCatalog = cat
 .Name = "SalesID"
 .Type = adInteger
 .Properties("Autoincrement") = True
 End With
 With tbl
 .Name = "Sales"
 .Columns.Append col
 .Columns.Append "SalesPerson", adVarWChar, 100

Figure 4-1. Setting a reference to ADOX

Creating Tables Programmatically | 95

 .Columns.Append "SalesDate", adDate
 .Columns.Append "SalesAmount", adSingle
 .Keys.Append "PrimaryKey", adKeyPrimary, "SalesID"
 End With
 cat.Tables.Append tbl
 Set cat = Nothing
 Set col = Nothing
 MsgBox "done"
End Sub

Using SQL to create a table

Structured Query Language (SQL) contains a subset of statements collectively known
as Data Definition Language (DDL).

Don’t confuse DDL with DLL (Dynamic Link Library). DDL manages
database objects. A DLL is a compiled procedure library.

SQL is the standard for querying and manipulating data. However, the DDL state-
ments are used to manipulate database structures. The following SQL does just that,
using the Create Table construct:

Sub make_SQL_table()
 Dim conn As ADODB.Connection
 Set conn = CurrentProject.Connection
 Dim ssql As String
 ssql = "Create Table Sales (" & _
 "[SalesID] AutoIncrement PRIMARY KEY, " & _
 "[SalesPerson] Text (50), " & _
 "[SalesDate] DateTime, " & _
 "[SalesAmount] Real)"
 conn.Execute ssql
 MsgBox "done"
End Sub

Note that ADO is used to execute the SQL statement. This has no bearing on the
previous ADOX example. You may need to set a reference to the ADO library; to do
this, follow the instructions in the preceding section for referencing ADOX. The
ADO library is named Microsoft ActiveX Data Objects 2.1 Library (your version
number may be different).

Using an XSD schema definition to create a table

An eXtensible Markup Language (XML) schema holds the definition of a data struc-
ture. Schema files have the .xsd (XML Schema Definition) file extension.

The following code deviates a bit from the previous examples. The small subroutine
calls the built-in ImportXML Access method, which imports an external schema file:

Sub make_schema_table()
 Application.ImportXML _

96 | Chapter 4: Managing Tables, Fields, Indexes, and Queries

 Application.CurrentProject.Path & "\sales.xsd", acStructureOnly
MsgBox "done"
End Sub

Access creates the Sales tables based on the instructions in the schema file, presented
in Example 4-1.

To create this schema file, create the Sales table using one of the previously described
methods (or manually, for that matter), and export the table as XML. When doing
so, select the option to export the schema, as shown in Figure 4-2.

Example 4-1. A schema file containing the definition for a table

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:od="urn:schemas-microsoft-com:officedata">
<xsd:element name="dataroot">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="Sales" minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="generated" type="xsd:dateTime"/>
</xsd:complexType>
</xsd:element>
<xsd:element name="Sales">
<xsd:annotation>
<xsd:appinfo>
<od:index index-name="PrimaryKey" index-key="SalesID "
 primary="yes" unique="yes" clustered="no"/>
</xsd:appinfo>
</xsd:annotation>
<xsd:complexType>
<xsd:sequence>
<xsd:element name="SalesID" minOccurs="1" od:jetType="autonumber"
 od:sqlSType="int" od:autoUnique="yes" od:nonNullable="yes" type="xsd:int"/>
<xsd:element name="SalesPerson" minOccurs="0"
 od:jetType="text" od:sqlSType="nvarchar">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:maxLength value="255"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
<xsd:element name="SalesDate" minOccurs="0"
 od:jetType="datetime" od:sqlSType="datetime" type="xsd:dateTime"/>
<xsd:element name="SalesAmount" minOccurs="0"
 od:jetType="single" od:sqlSType="real" type="xsd:float"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>

Creating Tables Programmatically | 97

Discussion
The methods just discussed illustrate four different approaches to creating the Sales
table with the four required fields. The first field, SalesID, is created as an AutoNum-
ber field, and is the primary key. One of the key differences between the DAO,
ADOX, and SQL approaches is how this is handled. The DAO method creates
SalesID as a Long data type, and then, to make it an AutoNumber field, sets the
field’s attribute to autoincrement:

 .Name = "Sales"
 Set fld = .CreateField("SalesID", dbLong)
 fld.Attributes = dbAutoIncrField
 .Fields.Append fld

AutoNumber fields are always Long, but with the functionality to increment the
value as each new record is placed in the table.

Later in the DAO code example, an index is created and applied to the SalesID field,
and the Primary property is set to True:

 Set ndx = .CreateIndex("PrimaryKey")
 With ndx
 .Fields.Append .CreateField("SalesID")
 .Primary = True
 End With
 .Indexes.Append ndx

In the ADOX example, the data type for SalesID is set to Integer. In ADO, the Inte-
ger type is the same as the Long type in Access. (The ADO SmallInt type is the
equivalent of the Integer type in Access.) The Autoincrement property is then set to
True. The result is the creation of an AutoNumber type for the SalesID field:

 With col
 Set .ParentCatalog = cat
 .Name = "SalesID"
 .Type = adInteger
 .Properties("Autoincrement") = True
 End With

Figure 4-2. Selecting to export the table design as a schema

98 | Chapter 4: Managing Tables, Fields, Indexes, and Queries

The SalesID field is then set to be the primary key by using the Keys.Append
method, and specifying the the name of the index, the type of key, and the name of
the field. The type of key can be adKeyPrimary for a primary key, adKeyUnique for a
unique key, and adKeyForeign for foreign keys. Note that when appending a foreign
key, you will also have to specify the name of the table and column:

 .Keys.Append "PrimaryKey", adKeyPrimary, "SalesID"

The SQL example is simpler. The single line that specifies the SalesID field includes
the parameters that make it both the primary key and an AutoNumber field:

[SalesID] AutoIncrement PRIMARY KEY

Testing for the table’s existence

It’s a good idea to check whether a table exists before you try to create it. An effi-
cient way of doing this is to wrap the table-creation routine inside a call to a func-
tion that tests all the existing tables to see if one has the name you are going to use
for the new table. Here is a revision of the routine that uses SQL to create a table.
The routine now includes a call to the DoesTableExist function, which is listed under
the SQL routine in Example 4-2. The table name (Sales) is passed to the function. If
the function does not find a Sales table, the table is created; otherwise, a message
appears indicating that the table already exists.

Example 4-2. Testing to see whether a table exists before creating it

Sub make_SQL_table()
 If DoesTableExist("Sales") = False Then
 Dim conn As ADODB.Connection
 Set conn = CurrentProject.Connection
 Dim ssql As String
 ssql = "Create Table Sales (" & _
 "[SalesID] AutoIncrement PRIMARY KEY, " & _
 "[SalesPerson] Text (50), " & _
 "[SalesDate] DateTime, " & _
 "[SalesAmount] Real)"
 conn.Execute ssql
 MsgBox "done"
 Else
 MsgBox "Sales table already exists"
 End If
End Sub

Function DoesTableExist(table_name As String) As Boolean
 Dim db As Database
 Dim tbl As TableDef
 Set db = CurrentDb()
 DoesTableExist = False
 For Each tbl In db.TableDefs
 If tbl.Name = table_name Then DoesTableExist = True
 Next tbl
End Function

Altering the Structure of a Table | 99

Which method should you use?

There is no definitive answer. If you’re already comfortable with one of the meth-
ods, stick to it. Your application may call for table creation, but chances are you
won’t have to make a huge number of tables that often. Performance (speed) is there-
fore not likely to be a big issue, and all of these methods will leave manual table cre-
ation in the dust. On the other hand, if you don’t need to create multiple tables,
there isn’t much sense in automating table creation.

Let’s put automated multiple table creation to the test. Example 4-3 contains two
routines: the make_a_bunch_of_tables routine repeatedly calls the make_a_table rou-
tine, each time passing a table name and a set of field names. This quickly makes a
number of tables.

The routines in Example 4-3 create three tables in an instant. The tables (Cars,
Tools, and Hats) are structured the same, so only the table name and field names are
passed to the make_a_table routine. However, if desired, you can add more argu-
ments (for example, to accept data types and other properties). This gives you a lot
of control over the automated table-creation process.

4.2 Altering the Structure of a Table

Problem
How can I programmatically change the structure of an existing table? How do I add
fields, drop fields, or just change the data types for existing fields?

Example 4-3. Automated multiple table creation

Sub make_a_bunch_of_tables()
 make_a_table "Cars", "CarID", "CarType", "PurchaseDate", "Amount"
 make_a_table "Tools", "ToolID", "ToolType", "PurchaseDate", "Amount"
 make_a_table "Hats", "HatID", "HatType", "PurchaseDate", "Amount"
 MsgBox "All Tables Made"
End Sub

Sub make_a_table(Table As String, F1 As String, _
 F2 As String, F3 As String, F4 As String)
 Dim conn As ADODB.Connection
 Set conn = CurrentProject.Connection
 Dim ssql As String
 ssql = "Create Table " & Table & "(" & _
 "[" & F1 & "] AutoIncrement PRIMARY KEY, " & _
 "[" & F2 & "] Text (50), " & _
 "[" & F3 & "] DateTime, " & _
 "[" & F4 & "] Real)"
 conn.Execute ssql
 conn.Close
End Sub

100 | Chapter 4: Managing Tables, Fields, Indexes, and Queries

Solution
You can carry out all of these tasks manually, in the design of a table, or program-
matically, using DAO, ADOX, or SQL. Either way, each of these actions comes with
some considerations:

Adding new fields
The only restriction is that you cannot add an AutoNumber field to a table that
already has such a field. Only one AutoNumber field is allowed per table.

If you add an AutoNumber field to a table that does not already have one, the
existing records will be filled in with the sequential numbering scheme in the
new field. This is helpful.

Deleting fields
Aside from any issues involved in deleting data from a table that participates in a
relationship, the obvious caution to heed is that you will permanently lose the
data in the deleted fields.

Changing a field type
The success of this action depends on the actual data types in question. For
example, an alphanumeric value that contains letters will not convert to a num-
ber type. You can convert a Text type to a numeric type, but you will lose your
data in the process.

Also, you can’t change a field to an AutoNumber type if there are any records in
the table. The only way to get an AutoNumber field into a table with existing
records is to add it as a new field. Then, if it makes sense, you can delete the
field it was meant to replace.

Programmatically adding and deleting a field

Example 4-4 shows how to add and delete a field using DAO, ADOX, and SQL.
There is a separate routine for each method that adds a Comments field to the Sales
table and then deletes it. The Comments field is a Text data type, and is set at a size
of 100 characters.

Example 4-4. Three methods to add and delete fields

Sub field_DAO()
 Dim db As DAO.Database
 Dim tbl As DAO.TableDef
 Dim fld As DAO.Field
 Set db = CurrentDb
 Set tbl = db.TableDefs("Sales")
 With tbl
 'add new field
 .Fields.Append .CreateField("Comments", dbText, 100)
 'delete field
 .Fields.Delete ("Comments")
 End With

Altering the Structure of a Table | 101

Refer to Recipe 4.1 for instructions on how to create the Sales table, then use one of
the approaches listed here to add and delete the Comments field. There’s one caveat:
because the field is added and then immediately deleted, you will not see it when
viewing the Sales table. To work around this, comment out the code line that deletes
the field. For example, in the field_ADOX example, put an apostrophe in front of the
line that deletes the field. The line will then look like this:

 '.Columns.Delete ("Comments")

Changing a field’s data type

SQL provides an Alter Column construct that’s useful for changing a field’s data type.
The following code shows how the Alter statement is used to change the existing
Comments field to the Integer type (in Access, this appears as the Long data type):

Sub alter_field_SQL()
 Dim conn As ADODB.Connection
 Set conn = CurrentProject.Connection
 Dim ssql As String
 'alter field to be Integer (Long)

 MsgBox "done"
End Sub

Sub field_ADOX()
 'must set reference to
 'Microsoft ADO Ext. 2.7 for DDL and Security
 Dim cat As New ADOX.Catalog
 cat.ActiveConnection = CurrentProject.Connection
 With cat.Tables("Sales")
 'add field
 .Columns.Append "Comments", adVarWChar, 100
 'drop field
 .Columns.Delete ("Comments")
 End With
 Set cat = Nothing
 MsgBox "done"
End Sub

Sub field_SQL()
 Dim conn As ADODB.Connection
 Set conn = CurrentProject.Connection
 Dim ssql As String
 ssql = "Alter Table Sales " & _
 "ADD COLUMN Comments TEXT(100)"
 conn.Execute ssql
 ssql = "Alter Table Sales " & _
 "Drop COLUMN Comments"
 conn.Execute ssql
 MsgBox "done"
End Sub

Example 4-4. Three methods to add and delete fields (continued)

102 | Chapter 4: Managing Tables, Fields, Indexes, and Queries

 ssql = "Alter Table Sales " & _
 "Alter COLUMN Comments Integer"
 conn.Execute ssql
 conn.Close
 MsgBox "done"
End Sub

Discussion
Typically, you will be changing data types to accommodate larger data. For exam-
ple, increasing the size of a text field from 50 to 100 characters makes sense, as does
changing a data type from Long to Double to allow for large numbers with decimals.

Changing to a smaller data type can cause data loss. Make sure you have a justifiable
need to alter a field to a smaller type or another type that will cause data loss, such as
going from Text to a numeric type. Practical sense shows that being able to accom-
modate occasional larger pieces of data is better than trying to gain small
optimizations by squeezing fields.

For example, you might expect a phone number field to need to accommodate only
up to 14 characters for U.S./Canadian-style phone numbers in the format (111)-111-
1111. Most of the time, that will be sufficient. But what happens if you need to enter
a phone number that has an extension? The insert will bomb, or the data will be
truncated. A lost phone number could cause more of a problem for a company than
a tiny bit of extra required memory. With that in mind, it might make more sense to set
the phone number field to a larger size—say, 30 characters—capable of accommodat-
ing occasional nonstandard phone numbers.

4.3 Creating and Using an Index

Problem
Tables usually have a primary key. How can other table indexes be created and used?

Solution
While in the design view of a table, use the View ➝ Indexes menu option to display
the Indexes dialog box. (In Access 2007, use the Table Tools ➝ Design view of the
Ribbon.) Figure 4-3 shows the dialog sitting over the table for which it is displaying
index information.

A table can have up to 32 indexes, and each index can contain up to 10 fields. In
this case, there is a single index named PrimaryKey, which is based on the ClientID
field. Values in the ClientID field must be unique because the Unique property is set
to Yes.

Creating and Using an Index | 103

What if the tblClients table didn’t have this unique ClientID field? You could use a
combination of other fields to ensure uniqueness among records. For example,
combining the fields that contain the first name, last name, and address should
ensure unique records. Providing a name and selecting these fields in the Indexes
dialog box, as shown in Figure 4-4, creates the new index.

Figure 4-3. A table index

Figure 4-4. A new index is created

104 | Chapter 4: Managing Tables, Fields, Indexes, and Queries

As shown in Figure 4-4, the Primary property for the Name_Address index is set to
Yes. This means that when this table is opened in Datasheet view, the sort estab-
lished in the Name_Address index will sort the records. Only one index at a time can
be the Primary index.

Discussion
A table can have multiple indexes. It’s good practice to provide indexes on fields that
are often sorted on, but this is not a requirement, and it’s not generally necessary for
tables that contain a small or moderate number of records. Still, knowing how to
create and apply an index is handy when performance issues do pop up.

Indexes are also useful when working with DAO or ADO recordsets. In this situa-
tion, applying a predesigned index provides an immediate ordering of the table.
Indexes are applied only to table-type recordsets.

Here is an example of opening a table-type recordset and applying an index:

Sub apply_index()
 Dim db As DAO.Database
 Set db = CurrentDb
 Dim recset As DAO.Recordset
 Set recset = db.OpenRecordset("tblClients")
 recset.Index = "Name_Address"
 ''
 'perform processing here
 ''
 recset.Close
 db.Close
 Set recset = Nothing
 Set db = Nothing
End Sub

Once the table-based recordset is opened, the index is applied, and the order of the
records follows the sorting scheme of the index.

Indexes can be created programmatically. See Recipe 4.1 for examples.

4.4 Programmatically Removing a Table

Problem
Is there a way to programmatically delete a table?

Solution
First, let’s make clear the distinction between clearing out a table and removing a
table. One action involves deleting the data from a table. A delete query (see Recipe
3.3) is the best bet for that. The other action involves removing the table entirely.

Programmatically Removing a Table | 105

There are two useful approaches for this. One option is to use the DoCmd object with
the DeleteObject method:

 DoCmd.DeleteObject acTable, "tblTransactions"

When using the DeleteObject method, you specify the object type, and then the
name of the object to delete.

The other method uses SQL and the Drop statement:

Sub drop_table()
 Dim conn As ADODB.Connection
 Set conn = CurrentProject.Connection
 Dim ssql As String
 ssql = "Drop Table tblServices"
 conn.Execute ssql
 conn.Close
End Sub

The SQL syntax is similar to that for the DeleteObject method: the Drop statement is
followed by the object type, and then the name of the object to delete.

Discussion
Regardless of which method you use, it is wise to ask for confirmation first. Deleting a
table accidentally can be catastrophic. Here is a routine that prompts for confirma-
tion before deleting a table:

Sub delete_table()
 Dim proceed As Integer
 proceed = MsgBox("Do you wish to delete the table?", _
 vbYesNo, "Confirm Table Delete")
 If proceed = vbYes Then
 DoCmd.DeleteObject acTable, "tblTransactions"
 MsgBox "Table deleted"
 Else
 MsgBox "Delete canceled"
 End If
End Sub

When the routine is run, the message shown in Figure 4-5 is displayed. Only a Yes
answer will run the table delete.

Figure 4-5. Confirming a table delete

106 | Chapter 4: Managing Tables, Fields, Indexes, and Queries

4.5 Programmatically Creating a Query

Problem
It’s one thing to assemble SQL statements in code and run them. But how do you cre-
ate permanent queries with programming code that will then appear on the Queries tab?

Solution
You can easily create stored queries programmatically with either DAO or SQL.
Figure 4-6 shows a query that was manually assembled and saved. It is a permanent
object in the Access database, and appears under Queries in the database window.

The query contains three fields: the CustomerID field from the tblCustomers table, and
the PurchaseDate and Amount fields from the tblSales table. There is a one-to-many
relationship between these tables—each customer has zero or more sales records.

Here is DAO code that will create this query programmatically:

Sub create_querydef()
 Dim db As DAO.Database
 Set db = CurrentDb
 Dim qd As DAO.QueryDef
 Dim ssql As String
 ssql = "SELECT tblCustomers.CustomerID, "
 ssql = ssql & "tblSales.PurchaseDate, tblSales.Amount "
 ssql = ssql & "FROM tblCustomers INNER JOIN tblSales ON "
 ssql = ssql & "tblCustomers.CustomerID = tblSales.Customer_ID;"

Figure 4-6. A saved query

Programmatically Creating a Query | 107

 Set qd = db.createquerydef("DAO_Query", ssql)
 db.Close
 Set db = Nothing
 MsgBox "done"
End Sub

In DAO, the QueryDef object can either represent a saved query (of the QueryDefs col-
lection) or be used with the createquerydef method of the DAO Database object. In
the preceding example, the SQL statement is assembled and used with the
createquerydef method. The name for the query to be saved as—DAO_Query, in this
example—is also supplied.

Alternatively, you can use SQL to create and store a query. The SQL term for a query
is a view, and the Create View construct is used:

Sub createview()
 Dim conn As ADODB.Connection
 Set conn = CurrentProject.Connection
 Dim ssql As String
 ssql = "Create View qryCustomerSales (CustID, PurchDate, Amt) As "
 ssql = ssql & "SELECT tblCustomers.CustomerID, "
 ssql = ssql & "tblSales.PurchaseDate, tblSales.Amount "
 ssql = ssql & "FROM tblCustomers INNER JOIN tblSales ON "
 ssql = ssql & "tblCustomers.CustomerID = tblSales.Customer_ID;"
 conn.Execute ssql
 conn.Close
 MsgBox "done"
End Sub

The SQL statement, beginning with Create View, is assembled, and the Execute
method of the ADO Connection object applies the SQL statement and creates the
query.

Discussion
Let’s explore how the Create View SQL statement works. After the Create View key-
words, a list of field names is supplied. These names serve as aliases for the fields
listed in the subsequent Select statement. In other words, the aliases CustID,
PurchDate, and Amt are provided for the CustomerID, PurchaseDate, and Amount
fields. The SQL statement that is stored looks like this:

SELECT tblCustomers.CustomerID AS CustID,
tblSales.PurchaseDate AS PurchDate, tblSales.Amount AS Amt
FROM tblCustomers INNER JOIN tblSales ON
tblCustomers.CustomerID = tblSales.Customer_ID;

Creating action queries

The preceding examples created select queries. To create permanent action queries
(e.g., update, append, or delete queries), use the DAO model. The SQL approach
requires an inner Select statement, which limits the query to being one that selects
data. The DAO approach, on the other hand, simply stores whatever SQL statement
it is handed.

108 | Chapter 4: Managing Tables, Fields, Indexes, and Queries

Here is an example of creating a delete query:

Sub create_querydef_Delete()
 Dim db As DAO.Database
 Set db = CurrentDb
 Dim qd As DAO.QueryDef
 Dim ssql As String
 ssql = "Delete * From tblSales"
 Set qd = db.createquerydef("Delete_Sales", ssql)
 db.Close
 Set db = Nothing
 MsgBox "done"
End Sub

In this code, the simple Delete * From tblSales is stored as a delete query.

The following code uses DAO to create a make-table query (in this case, the query
creates a table of sales records for customers from Texas):

Sub create_querydef_MakeTable()
 Dim db As DAO.Database
 Set db = CurrentDb
 Dim qd As DAO.QueryDef
 Dim ssql As String
 ssql = "Select tblCustomers.CustomerID,tblSales.PurchaseDate, "
 ssql = ssql & " tblSales.Amount Into tblTexasCustomerSales "
 ssql = ssql & "FROM tblCustomers INNER JOIN tblSales ON "
 ssql = ssql & "tblCustomers.CustomerID = tblSales.Customer_ID "
 ssql = ssql & "Where tblCustomers.State='TX'"
 Set qd = db.createquerydef("Create_Texas_Sales", ssql)
 db.Close
 Set db = Nothing
 MsgBox "done"
End Sub

To be clear, running this routine simply creates the query and saves it within the
Access database; it does not run the query. When the query is run, a table named
tblTexasCustomerSales, populated with sales information for Texas customers, will
be created.

109

Chapter 5 CHAPTER 5

Working with String Data5

Text-based data can contain more than just the letters of the alphabet. Numbers can
be treated as text, and there are many characters that are neither letters nor numbers,
but are vital to text-based work. Consider tabs, carriage returns, spaces, backspaces,
and many of the symbols used in everyday work (hyphens, currency symbols, etc.).
These all need to be as accessible and pliable as the letters and numbers.

In this chapter, you’ll find recipes illustrating how to find text strings within other text
strings, how to replace text strings with others, and how to remove unwanted spaces
from text strings. There’s also a recipe that discusses different methods for combining
text strings, and one that reveals how to sort numbers that are stored as text.

5.1 Returning Characters from the Left or Right Side
of a String

Problem
How can I isolate a certain number of characters at the beginning or end of a text
string? Going a step further, is there a way to return the left and right portions of a
text string based on a character found in the string itself?

Solution
The Left and Right functions return characters from the beginning and end of a text
string, respectively. Both functions take two arguments: the string being addressed,
and the number of characters to return. For example:

• Left("cat", 1) returns “c”

• Left("cat", 2) returns “ca”

• Right("Apple Pie", 3) returns “Pie”

• Right("Apple Pie", 15) returns just “Apple Pie,” even though 15 characters were
requested—there are only nine characters, so nine characters are returned

110 | Chapter 5: Working with String Data

Discussion
Since Left and Right are functions, they are usually structured to return the result to
a variable. For example:

Sub test_left_function()
 Const phrase = "The cow jumped over the moon"
 Dim phrase_part As String
 phrase_part = Left(phrase, 7)
 'further processing
End Sub

In this example, phrase_part is assigned the seven leftmost characters of the con-
stant phrase; phrase_part therefore receives the value “The cow” (don’t forget the
space counts as a character).

Sometimes you know how many characters you need to retrieve from the start or end
of a string. At other times, though, the number of characters to return depends on
the data itself. The classic example of this is parsing full names into first and last
names. The key to how many characters to grab from the start or end depends on the
position of the space between the first and last names. In each of these full names,
for example, the space between the first and last names occurs in a different position:

• George Washington

• Mark Twain

• Isaac Newton

Therefore, simply assigning a set number of characters to return from the beginning
or end of each of these strings won’t work as a way to isolate the first and last names
of these three historical figures.

In this case, finding the position of the space is key to knowing how many characters
to return with both the Left and Right functions. Here, the InStr and Len functions
work in tandem with the Left and Right functions to successfully parse the names:

Sub parse_name(full_name)
 Dim first_name As String
 Dim last_name As String
 first_name = _
 Left(full_name, InStr(full_name, " ") - 1)
 last_name = _
 Right(full_name, Len(full_name) - InStr(full_name, " "))
 'further processing
End Sub

The routine is structured to take a full name as an argument. InStr returns the posi-
tion of the space. The first name occupies all characters to the left of the space. The
last name occupies the characters to the right of the space.

Returning Characters from the Middle of a String When the Start Position and Length Are Known | 111

5.2 Returning Characters from the Middle of a String
When the Start Position and Length Are Known

Problem
In the data I work with, a key part of the data is embedded in a string. It’s six charac-
ters long, and starts in the third position. Is there any easy way to extract these
characters?

Solution
The easy fix for this recipe is to use the Mid function. Mid takes three arguments: the
string, the starting position within the string, and the number of characters to return.
Here are some examples:

• Mid("banana", 3, 3) returns “nan”

• Mid("banana split", 6, 7) returns “a split”

• Mid("abcdefghijklm", 3, 6) returns “cdefgh”

Discussion
As a function, Mid is usually structured to return the result to a variable:

Sub mid_test()
 Const phrase = "A stitch in time saves nine"
 Dim phrase_part As String
 phrase_part = Mid(phrase, 3, 6)
 'further processing
End Sub

In this example, phrase_part is assigned the value “stitch.”

As stated earlier, in addition to the string itself, the Mid function accepts the start
position within the string and the length of the substring to return. What if the
length is not known, but is dependent on the position of a certain character? That is,
say you wish to return a substring that is identified by starting at a certain position
and ending with a certain letter. Here is a way to combine the Mid and InStr functions
to get this to work:

Sub mid_test_2()
 Const phrase = "A stitch in time saves nine"
 Dim phrase_part As String
 phrase_part = Mid(phrase, 3, InStr(1, phrase, "e") - 2)
 'further processing
End Sub

Here, the substring to be returned starts at the third position; InStr determines that
first occurrence of the letter “e” is at the sixteenth position. One less than the value of
the starting position is subtracted from the result of the InStr function to determine
the length of the substring to return. This formula neatly returns “stitch in time.”

112 | Chapter 5: Working with String Data

5.3 Returning the Start Position of a Substring When
the Characters Are Known

Problem
My data contains a sequence of characters embedded in a larger text string. The
sequence of characters is always the same, but the starting position of the characters
differs between records. What is an easy way to determine the starting position in
each record?

Solution
The InStr function is useful in this situation. It determines the starting position of a
string within a larger string. Since the string being sought is already known,
determining its length is not an issue.

Figure 5-1 shows a table with records. Within each record is the substring 7XR3G.
The positioning of this substring is not consistent across records.

Figure 5-1. Each record contains the same substring

Returning the Start Position of a Substring When the Characters Are Known | 113

You can use a query to determine the substring’s start position in each record. You’ll
need to build a temporary field as an expression with the InStr function, as shown in
Figure 5-2.

Figure 5-3 shows the result of running the query.

Discussion
InStr returns the starting position for a given substring. But what if the substring
occurs more than once in the larger string? You may need to be able to determine
where each occurrence begins, not just the first occurrence.

A little VBA code helps out in this situation. InStr returns 0 when the substring is
not found, so the trick is to keep testing until it returns that value. Until that point,
each time the substring is found, the next starting position to test from is the posi-
tion where it was just found, plus one. Here is a routine that searches for all
occurrences of the substring ABC in the Data field of each record in the sample
recordset:

Sub multiple_InStr()
 Dim conn As ADODB.Connection
 Set conn = CurrentProject.Connection
 Dim rs As New ADODB.Recordset
 Dim ssql As String
 Dim found_pos As Integer
 ssql = "Select * From Data2"
 rs.Open ssql, conn, adOpenKeyset, adLockOptimistic
 Do Until rs.EOF
 found_pos = 0
 found_pos = InStr(1, rs.Fields("Data"), "ABC")

Figure 5-2. Using InStr in a query

114 | Chapter 5: Working with String Data

 If found_pos > 0 Then
 Do Until found_pos = 0
 Debug.Print rs.Fields("Data") & " " & found_pos
 found_pos = InStr(found_pos + 1, _
 rs.Fields("Data"), "ABC")
 Loop
 End If
 rs.MoveNext
 Loop
 rs.Close
 Set rs = Nothing
 Set conn = Nothing
End Sub

If the initial test returns a value greater than zero, a Do Until loop is used to keep test-
ing until zero is returned. The found_pos variable holds the starting position for the
next search in the current record.

This example is structured to write the complete string followed by the position at
which the substring is found to the immediate window. The results are shown in
Figure 5-4. Strings containing more than one occurrence of the substring ABC are
listed more than once, with the numbers to the right indicating the start positions of
each occurrence.

Figure 5-3. The start position in each record is returned

Stripping Spaces from the Ends of a String | 115

5.4 Stripping Spaces from the Ends of a String

Problem
We have data that is imported from an external system. Often, the data is padded
with spaces at one or both ends. What is the best way to remove these spaces? Do we
need a routine that counts spaces until a valid character is found?

Solution
The Trim, LTrim, and RTrim functions all serve to remove spaces: Trim removes spaces
at both ends of a string, while LTrim and RTrim remove spaces from the left or right
side of a string, respectively.

Here are some examples:

• Trim(" apple ") returns “apple”

• LTrim(" apple ") returns “apple ”

• RTrim(" apple ") returns “ apple”

Neither Trim, LTrim, nor RTrim removes spaces from the inside of a
string. The functions remove only leading and trailing spaces. If you
need to remove internal spaces, check out Recipe 5.5.

Figure 5-4. Finding the starting positions of all occurrences of a substring

116 | Chapter 5: Working with String Data

Discussion
The Trim functions return trimmed strings, but do not tell you how many spaces
were removed. If this information is important, you can use a small routine that will
handle both the trim operation and the count of removed spaces.

All that is required is to compare the length of the string before and after the trim. A
short code routine works well here:

Sub trim_and_count()
 Dim conn As ADODB.Connection
 Set conn = CurrentProject.Connection
 Dim rs As New ADODB.Recordset
 Dim ssql As String
 Dim original_length As Integer
 Dim trimmed_name As String
 ssql = "Select * From Data3"
 rs.Open ssql, conn, adOpenKeyset, adLockOptimistic
 Do Until rs.EOF
 original_length = Len(rs.Fields("Name_Before_Trim"))
 rs.Fields("Name_After_Trim") = _
 Trim(rs.Fields("Name_Before_Trim"))
 rs.Fields("Number_Of_Spaces_Removed") = _
 original_length - Len(rs.Fields("Name_After_Trim"))
 rs.MoveNext
 Loop
 rs.Close
 Set rs = Nothing
 Set conn = Nothing
End Sub

This routine allows you to compare the original and trimmed strings, and see at a
glance how many spaces were removed. The result is shown in Figure 5-5. The origi-
nal names, some of which have leading and/or trailing spaces, appear in the first
field; the second field is populated with the names (with spaces removed), and the
third field displays the number of spaces removed from each name.

During the processing, the length of the “before” name is stored in the original_
length variable; the “after” length is then subtracted from this value, providing the
number of removed spaces.

5.5 Stripping Spaces from the Middle of a String

Problem
Data comes into our system with embedded spaces. These need to be removed.
What is the best way to do this?

Stripping Spaces from the Middle of a String | 117

Solution
Removing spaces from the inner part of a string involves two operations: identifying
the spaces, and concatenating the remaining parts of the string once the spaces have
been removed.

To remove all the spaces from a string in one easy step, use the Replace function.
Replace works on a string by replacing one substring with another. In this case, you
want to replace each space with a zero-length string. For example:

Replace("Good Morning Have A Nice Day"," ","")

returns:

GoodMorningHaveANiceDay

Here, the Replace function takes as arguments a string, a substring to search for (a
space, signified as " "), and a second substring to replace the first one (a zero-length
string, signified as two quotation marks with no space in between).

Additional uses for the Replace function are discussed in Recipe 5.6.

Figure 5-5. Names treated with the Trim function

118 | Chapter 5: Working with String Data

Discussion
What if you need more control over the removal of spaces? Another approach is to
read through the string character by character, analyzing each space, and making a
decision about what to do with it—a framework might look like this:

Sub spaces(full_string As String)
 Dim str_length As Integer
 Dim pos As Integer
 str_length = Len(full_string)
 For pos = 1 To str_length
 If Mid(full_string, pos, 1) = " " Then
 'processing goes here
 End If
 Next pos
End Sub

A practical example is removing just the first space encountered. Here is how the
routine can be altered to do just that:

Sub test_function()
 MsgBox remove_first_space("apple banana orange")
End Sub

Function remove_first_space(full_string As String) As String
 Dim str_length As Integer
 Dim pos As Integer
 str_length = Len(full_string)
 For pos = 1 To str_length
 If Mid(full_string, pos, 1) = " " Then
 remove_first_space = Left(full_string, pos - 1) & _
 Right(full_string, Len(full_string) - pos)
 Exit For
 End If
 Next pos
End Function

In this example, the test_function sub sends the “apple banana orange” argument to
the remove_first_space function, which loops through each character of the argu-
ment looking for spaces. When a space is encountered, the function’s return value is
set to the part of the string argument to the left of the space, concatenated with the
portion of the string to the right of the space. Then, the Exit For statement breaks
out of the loop and the function completes. In other words, when “apple banana
orange” is sent to the function, it returns “applebanana orange”—the first space is
removed.

Replacing One String with Another String | 119

5.6 Replacing One String with Another String

Problem
I need to replace one subset of characters in my data with another set. There’s a
catch, though—if the subset of characters exists more than once in the larger text
string, the requirement is to replace the last subset only. How can I do this?

Solution
Replace is the best function to easily change one substring for another within a larger
string. Replace has three required arguments and three optional ones:

• The string to search (required)

• The substring to search for (required)

• The replacement substring (required)

• The position from which to start searching (if omitted, the default is 1)

• The number of replacements to make (if omitted, all occurrences of the search
string will be replaced)

• The Compare format (optional; we can ignore this for this recipe)

Even with these options, it would be impossible to isolate and replace just the last
occurrence of the search string using Replace. Instead, use the InStr function to find
the start position of the last occurrence of the search string, and then use InStr’s
return value as the position from which the Replace function should begin searching:

Sub find_last_occur()
 Dim original_string
 Dim search_string As String
 Dim replace_string
 Dim new_string As String
 Dim found_pos As Integer
 Dim last_found_pos As Integer

 original_string = "abcdefgabcd"
 search_string = "abc"
 replace_string = "xyz"

 found_pos = InStr(1, original_string, search_string)
 'if one occurence exists then keep checking
 'and store each successive found position in last_found_pos
 If found_pos > 0 Then
 last_found_pos = found_pos
 Do Until found_pos = 0
 found_pos = InStr(found_pos + 1, _
 original_string, search_string)

120 | Chapter 5: Working with String Data

 If found_pos > 0 Then last_found_pos = found_pos
 Loop
 'now use Replace, knowing where last occurence starts
 new_string = Left(original_string, last_found_pos - 1) & _
 Replace(original_string, search_string, replace_string, last_found_pos)
 End If
End Sub

In summary, this routine uses the InStr function to locate the last occurrence of the
search string, then the Replace function to replace it with the desired value. The
result is that the portion of the original string that appeared to the left of the last
occurrence of the search string is concatenated with the portion that appeared to the
right, with the replacement in place.

This method works, but it’s a little difficult to follow. Is there an easier way?

Discussion
Of course there is! The problem was that we couldn’t easily tell where the last occur-
rence of the search string was within the larger string. But what if we reverse the
original string? Now, the last occurrence of the search string appears first. It’s also
reversed, but that’s no matter. Using the StrReverse function on all the pertinent
strings keeps them all in sync.

Here is a routine that produces the same result as the previous one, but with less
code:

Sub reverse_and_find()
 Dim original_string
 Dim search_string As String
 Dim replace_string
 Dim new_string As String
 original_string = "abcdefgabcd"
 search_string = "abc"
 replace_string = "xyz"
 new_string = Replace(StrReverse(original_string), _
 StrReverse(search_string), _
 StrReverse(replace_string), 1, 1)
 new_string = StrReverse(new_string)
End Sub

This smaller routine simply reverses all the involved strings, then does a replacement
on the first occurrence of the reversed search string (which was the last occurrence
before the original string was reversed). There is no guesswork involved in finding
the first occurrence—simply supplying the value of 1 to the Replace function takes
care of everything. At the end of the routine, the new_string variable itself is reversed
back to the original order.

Both routines return “abcdefgxyzd” as the value of new_string.

Concatenating Data | 121

5.7 Concatenating Data

Problem
How can I combine text strings together?

Solution
The ampersand character (&) is the concatenation character. Here are some examples:

• "Hello" & "Goodbye" returns “HelloGoodbye”

• "Hello " & "Goodbye" returns “Hello Goodbye”

• "Hello" & " " & "Goodbye" returns “Hello Goodbye”

Notice that in both the second and third examples, there’s a space between Hello
and Goodbye. The second example provides the space because there is a space after
the Hello within the quotation marks, and the third example provides the space as an
independent string that is concatenated with the two others.

The + operator can also be used for string concatenation.

Discussion
You often need to consider spaces when concatenating text. Simply combining two
values may not produce the desired result—for example, concatenating George and
Washington produces GeorgeWashington, which is probably not what you need.
Therefore, concatenating a space between other words is a common requirement.

Usually, manually adding a space to the end of each of the first strings (for example,
changing George to George) is infeasible. When processing a large number of records,
this method would take an impractical amount of time, and would also be error-prone.

Continuing with this example, say you need to combine all of the first and last names
in your records into single full-name values. The technique, as previously men-
tioned, is to concatenate a space between the first and last names. But what about
any stray spaces that may already be included before or after the names in your
records? Including the Trim function as well will remove any such spaces before the
single desired space is added with the concatenation.

Figure 5-6 shows a query based on a table with a FirstName field and a LastName
field. Two expression-based fields have been added to the query design. Both concate-
nate the values in these fields into a single full name with a space in between; however,
the second expression field first applies Trim on the FirstName and LastName fields.

122 | Chapter 5: Working with String Data

Figure 5-7 shows the results returned by the two expression fields. Note that several
extra spaces appear in the source fields (FirstName and LastName). These could be
from the external source that created the data (assuming the data was imported), or
just from sloppy user entry.

Both expression fields correctly add a space between the first and last names. How-
ever, the second expression field cleanses the data first via the Trim function. The
result is a clean concatenation of first name, space, and last name.

Figure 5-6. Concatenating first names and last names

Figure 5-7. Running the query with the concatenation

Concatenating Data | 123

Using the Join function

The Join function provides an alternative method for concatenating strings. Join
takes any number of strings, presented as an array, and concatenates them together,
using an optional delimiter (a character or characters) to place in between each
string. Here is an example:

Sub join_example()
 Dim myArray(5) As String
 myArray(0) = "up"
 myArray(1) = "down"
 myArray(2) = "here"
 myArray(3) = "there"
 myArray(4) = "beyond"
 Dim joined As String
 joined = Join(myArray, ",")
 Debug.Print joined
End Sub

Running this code results in:

up,down,here,there,beyond,

Notice that the delimiter is a comma (,), and notice that it is placed after each array
element—even the last one! The comma after beyond is not likely desirable, so here is
an update of the routine that removes it:

Sub join_example()
 Dim myArray(5) As String
 myArray(0) = "up"
 myArray(1) = "down"
 myArray(2) = "here"
 myArray(3) = "there"
 myArray(4) = "beyond"
 Dim joined As String
 joined = Join(myArray, ",")
 joined = Left(joined, Len(joined) - 1)
 Debug.Print joined
End Sub

Including the line that uses the Left and Len functions removes the trailing single-
character delimiter.

To concatenate the array elements without any intervening characters or spaces, use
an empty string for the delimiter:

joined = Join(myArray, "")

The result is:

updownheretherebeyond

Using the delimiter is optional, but when it is left out, a space is assumed. And yes,
there will be an extra space at the end of the concatenation!

124 | Chapter 5: Working with String Data

5.8 Sorting Numbers That Are Stored as Text

Problem
Our system stores certain numeric data as text. When it comes to sorting the data, it
sorts alphanumerically, which is not appropriate for the reporting we need. How can
the text-based numbers be coerced to sort as real numbers?

Solution
Figure 5-8 shows how apparently numeric data sorts when it is saved as the Text
data type. All the ones come first, so numbers such as 1, 10, 100, 101, and so on will
all appear before the number 2 in the list.

Figure 5-8. Numbers in a text format sort as text

Sorting Numbers That Are Stored as Text | 125

To sort this data in the expected numerical way, you must add an extra field that, for
each record, holds a converted value of the text-based number. The converted value
becomes the real numeric data point. Then, the sort is placed on the new field.

Figure 5-9 shows a query design that includes an expression field that converts the
text numbers to integers (with the CInt function). The sort is placed on this new field.

Note that it is not necessary to have the expression field appear in the output.
Figure 5-10 shows the result of running the query.

Discussion
An alternative method is to pad the text-based numbers with leading spaces or
zeroes. The technique is to find the largest number and determine its length (i.e.,
how many characters long it is). You can then use this as a guide to determine how
many spaces or zeroes to put in front of the other numbers in the data set.

In this example, the largest number is 1,000, which is four characters long. There-
fore, values from 100 to 999 will be preceded with a single zero, values from 10 to 99
will be preceded with two zeroes, and values from 1 to 9 will be preceded with three
leading zeroes.

Assuming the text-based numbers are in the Table2 table, here is a routine that will
attend to these various padding requirements:

Sub pad_zeroes()
 Dim conn As ADODB.Connection
 Set conn = CurrentProject.Connection

Figure 5-9. Sorting text-based numbers as valid numbers

126 | Chapter 5: Working with String Data

 Dim rs As New ADODB.Recordset
 rs.Open "Select * From Table2", conn, adOpenKeyset, adLockOptimistic
 Do Until rs.EOF
 Select Case Len(rs.Fields(0))
 Case 1
 rs.Fields(0) = "000" & rs.Fields(0)
 Case 2
 rs.Fields(0) = "00" & rs.Fields(0)
 Case 3
 rs.Fields(0) = "0" & rs.Fields(0)
 End Select
 rs.MoveNext
 Loop
 rs.Close
 Set rs = Nothing
 Set conn = Nothing
End Sub

Rather than checking the values themselves, the code checks the length of each
value. So, for example, when the length is 2 (indicating any number from 10 to 99),
two zeroes are placed in front of the value, and the concatenated value is saved back
into the table.

Figure 5-11 shows the result of running the routine. The values, still text-based, have
been padded with zeroes. When a sort is now applied, the numbers line up and
appear in the correct sorted order.

Figure 5-10. Text-based numbers now sort correctly

Categorizing Characters with ASCII Codes | 127

5.9 Categorizing Characters with ASCII Codes

Problem
We receive continuous data streams, and we need to categorize each character as a
number, a lowercase letter, a capital letter, or “other” (tabs, carriage returns, etc.).
We have set up an elaborate matching system that takes each character as it is read
in and tests it against all the possible characters so we can identify and classify it.
This approach is very inefficient. Is there an easier way to categorize a character as
simply being an upper- or lowercase letter, a number, and so on?

Solution
The Asc function returns an integer that represents the character code of the first
character in a string. If the string contains more than one character, just the first
character is addressed.

Figure 5-11. Padded text-based numbers now sort correctly

128 | Chapter 5: Working with String Data

Alphanumeric and other characters belong to a character set, such as that designed
by the American National Standards Institute (ANSI). ASCII (American Standard
Code for Information Interchange) is the standard used for the character codes.

Each character has a numeric equivalent. Within a given range, all uppercase letters
follow each other, all lowercase letters follow each other, and so on. Specific charac-
ter codes are also defined for commonly used nonalphanumeric characters. Table 5-1
displays a few of the character codes.

As individual characters are processed, they can be categorically identified by their
numeric values. For example, the number 9 has a code of 57, the uppercase letter A
has a code of 65, and the lowercase letter “z” has a code of 122. Here is a routine
that takes a string of random characters, tests the character code of each one in turn,
and adds to a count of uppercase, lowercase, numeric, or other type characters:

Sub what_am_i()
Dim data As String
Dim data_length As Integer
Dim char_loop As Integer
Dim number_count As Integer
Dim upper_case_count As Integer
Dim lower_case_count As Integer
Dim other_count As Integer

data = "Hu46TTjsPR2e!#Y8"
data_length = Len(data)

number_count = 0
upper_case_count = 0
lower_case_count = 0
other_count = 0

For char_loop = 1 To data_length
 Select Case Asc(Mid(data, char_loop, 1))
 Case 48 To 57

Table 5-1. Common character codes

Character(s) Character code(s)

Tab 9

Carriage return 13

Space 32

Numbers (0–9) 48–57

Uppercase letters (A–Z) 65–90

Lowercase letters (a–z) 97–122

Categorizing Characters with ASCII Codes | 129

 number_count = number_count + 1
 Case 65 To 90
 upper_case_count = upper_case_count + 1
 Case 97 To 122
 lower_case_count = lower_case_count + 1
 Case Else
 other_count = other_count + 1
 End Select
Next char_loop
Debug.Print number_count & " numbers found"
Debug.Print upper_case_count & " upper case letters found"
Debug.Print lower_case_count & " lower case letters found"
Debug.Print other_count & " other characters found"
End Sub

In the routine itself, the data string variable is set to a series of random characters.
When adopting this routine, you can populate the data string with data from a table
or an external system.

A loop is used to test each character and add to the appropriate count based on a
range of character code values.

Discussion
The Asc function takes a character and returns its numeric character code. The com-
plementary function is Chr, which takes a numeric value and returns the actual
character. For example:

• Asc("A") returns “65”

• Chr(65) returns “A”

For more information, go into the Access Help system and look up character codes,
ASCII codes, or the Asc and Chr functions. Navigating through some of the help
topics will reveal the tables listing the actual character codes.

Many useful characters do not have related keys on a standard U.S. keyboard, but do
have dedicated character codes. For example:

• For the copyright symbol (), the character code is 0169.

• For the registered symbol (), the character code is 0174.

• For the trademark symbol (), the character code is 0153.

• For the cents symbol (¢), the character code is 0162.

• For the British pound symbol (£), the character code is 0163.

• For the Japanese yen symbol (), the character code is 0165.

130 | Chapter 5: Working with String Data

To enter these characters in an Access table field or on a form, hold down the Alt key
while entering their character codes. Be sure to include the leading 0, and note that
you must enter the character code using your keyboard’s numeric keypad only.
Figure 5-12 shows these symbols entered into an Access table.

Figure 5-12. Nonkeyboard characters entered in an Access table

131

Chapter 6 CHAPTER 6

Using Programming to Manipulate Data6

The ability to work with data and database functionality is greatly enhanced when
programmed routines can be put to the task. Using VBA and other programming
disciplines, developers can create sophisticated applications that reach beyond the
capabilities of plain select and action queries.

This chapter offers a number of examples that show how code routines can be used
to improve and enhance applications. Arrays are showcased, with discussions focus-
ing on working with multiple dimensions and sorting. One recipe shows how to tap
into Excel’s extensive function library from Access, while others introduce simple
and sophisticated methods of encrypting data and illustrate transaction processing.
Working with charts, getting to the HTML source of web pages, and running Word
mail merges directly from Access are also covered. There is even a recipe that illus-
trates how to build a user-friendly query construction form that lets users point and
click their way through selecting criteria and running a query.

6.1 Using Excel Functions from Access

Problem
My work involves financial and statistical number crunching. The business data is
stored in Access, but I use many of the functions available in Excel to get my work
done. Is there a way to use the Excel functions directly from Access, rather than
copying and pasting my data from Access into Excel?

Solution
Thanks to the availability of an object model paradigm for coding, it’s relatively easy
to hook into Excel and make use of Excel functions from within Access. An example
will illustrate this clearly.

132 | Chapter 6: Using Programming to Manipulate Data

Figure 6-1 shows an Access table named tblLoans with parameters about different
possible loans. For each record, the loan amount (the Principal, or Pv), the annual
interest rate, the total number of monthly payments, and the period of interest are
specified. The interest payment for the particular specified period needs to be calcu-
lated. The InterestPaid field can be populated using Excel’s ISPMT function.

Here is the code routine that accomplishes this task:

Sub use_excel_1()
 Dim rs As New ADODB.Recordset
 Dim xcl As Object
 Set xcl = CreateObject("Excel.Application")
 rs.Open "Select * from tblLoans", CurrentProject.Connection, _
 adOpenKeyset, adLockOptimistic
 Do Until rs.EOF
 rs.Fields("InterestPaid") = _
 xcl.WorksheetFunction.ISPMT(rs.Fields("AnnualInterestRate") / 12, _
 rs.Fields("PeriodNumber") _
 rs.Fields("TotalNumberOfPayments"), _
 rs.Fields("Principal"))
 rs.MoveNext
 Loop
 rs.Close
 Set rs = Nothing
 Set xcl = Nothing
 MsgBox "done"
End Sub

To use this routine, you will first need to add a reference to the Excel
Object Library to your application. Choose Tools ➝ References from
the Visual Basic Editor’s main menu to display the References dialog
box. Scroll though the list of libraries until you find Microsoft Excel
11.0 Object Library (your version number may differ; don’t worry).
Place a checkmark next to it and press OK.

Figure 6-1. A table filled with loan details

Using Excel Functions from Access | 133

These two lines create a reference to Excel:

 Dim xcl As Object
 Set xcl = CreateObject("Excel.Application")

Next, a recordset is opened based on the tblLoans table. As each record is addressed,
the values in the four table fields are sent to the ISPMT function. The key to making
this happen is WorksheetFunction. This property belongs to the created Excel object
(xcl); the Excel function we want to use is placed after the property name. Leaving
out the function arguments for the moment, the syntax looks like this:

 xcl.WorksheetFunction.ISPMT()

Each Excel function requires a particular number of arguments. The best way to
learn about a specific Excel function is to start up Excel itself and research the func-
tion. Figure 6-2 shows a screen from the Insert Function Wizard in Excel. This
screen shows the arguments for the actual ISPMT (Payment) function:

Rate
The interest rate per payment period of the loan

Per
The particular period for which the interest rate is calculated

Nper
The number of payments over the life of the loan

Pv
The present value (this is the same as the principal of the loan)

Figure 6-2. Researching a function with Excel’s Insert Function Wizard

134 | Chapter 6: Using Programming to Manipulate Data

The four required arguments are passed to the Excel function as each Access record
is processed. The function returns the periodic interest payment amount, which is
placed in the InterestPaid field:

 rs.Fields("InterestPaid") = _
 xcl.WorksheetFunction.ISPMT(rs.Fields("AnnualInterestRate") / 12, _
 rs.Fields("PeriodNumber") _
 rs.Fields("TotalNumberOfPayments"), _
 rs.Fields("Principal"))

Note that the order of the fields is dictated not by the order in which they appear in
the Access table, but by the order in which the ISPMT function expects them. Also,
note that the value for the annual interest field is divided by 12 because the purpose
is to calculate the monthly payment. Therefore, the interest rate value that should be
passed to the function therefore is one-twelfth of the annual interest rate.

Figure 6-3 shows the result of running the routine. The InterestPaid field is filled in
for all records. Note that the values are negative numbers. This is normal, since Excel
considers a payment a “cash flow out,” and represents it as a negative.

Discussion
Excel has dozens of useful functions that can be called from Access. The best way to
learn about them is to try out the different functions in Excel. They are categorized in
the Insert Function dialog box, shown in Figure 6-4.

An Excel function might take a single argument, no arguments, dozens of argu-
ments, or even arrays as arguments. This next example places values from the Access
tblData table into two arrays and sends the arrays to Excel’s Correl (correlation
coefficient) function:

Sub use_excel_2()
 Dim rs As New ADODB.Recordset
 Dim xcl As Object
 Dim observ1() As Integer
 Dim observ2() As Integer

Figure 6-3. Interest payments for particular periods have been calculated

Using Excel Functions from Access | 135

 Dim fill_array As Integer
 Dim answr
 Dim ssql As String
 ssql = "Select Observation1, Observation2 From tblData"
 rs.Open ssql, CurrentProject.Connection, adOpenKeyset, adLockOptimistic
 ReDim observ1(rs.RecordCount - 1)
 ReDim observ2(rs.RecordCount - 1)
 For fill_array = 0 To rs.RecordCount - 1
 observ1(fill_array) = rs.Fields("Observation1")
 observ2(fill_array) = rs.Fields("Observation2")
 rs.MoveNext
 Next fill_array
 Set xcl = CreateObject("Excel.Application")
 answr = xcl.WorksheetFunction.Correl(observ1, observ2)
 MsgBox answr
 rs.Close
 Set rs = Nothing
 Set xcl = Nothing
End Sub

Two arrays, observ1 and observ2, are dimensioned and filled with values. The two
arrays are then passed to Excel:

 answr = xcl.WorksheetFunction.Correl(observ1, observ2)

The answr variable holds the result of the calculation. Figure 6-5 shows the source
data and the result returned from Excel’s Correl function.

Figure 6-4. Excel’s Insert Function dialog box

136 | Chapter 6: Using Programming to Manipulate Data

6.2 Working with In-Memory Data

Problem
In my applications, I tend to create many variables. For example, I might have 12
variables, one for each month of the year. Is there a better way to manage my data
during processing? Can I somehow cut down on the number of variables I use?

Solution
Arrays are a popular mechanism to store like values. Arrays work on a system of
elements—that is, an array is a group of elements. While not required, arrays are typ-
ically used to group together common variables, such as the months of the year. Such
an array would have 12 elements, and could itself be named after the year or with
some other meaningful name.

Consider dimensioning these 12 unique variables:

Dim january As Single
Dim february As Single
Dim march As Single
Dim april As Single
Dim may As Single
Dim june As Single
Dim july As Single
Dim august As Single
Dim september As Single
Dim october As Single
Dim november As Single
Dim december As Single

Figure 6-5. Access data and the result returned from Excel

Working with In-Memory Data | 137

That’s 12 variables to keep track of in your code. Now, consider this dimensioning of
an array with 12 elements:

Dim year_2006(12) As Single

Here, one line of code makes the memory space to hold 12 pieces of data.

When using an array, you address individual elements by their positions. By default,
arrays are zero-based, which means the first element is referenced as 0, and the last
element is referenced as (count of elements) minus 1. So, to fill a value for January,
you would use syntax like this:

year_2006(0) = 27.75

And December would be addressed like this:

year_2006(11) = 38.25

Figure 6-6 shows a table in which each record contains a year’s worth of data, broken
out by month.

The following routine fills the 12 individual month variables, without using an array:

Sub process_year_data_1()
 Dim january As Single
 Dim february As Single
 Dim march As Single
 Dim april As Single
 Dim may As Single
 Dim june As Single
 Dim july As Single
 Dim august As Single
 Dim september As Single
 Dim october As Single
 Dim november As Single
 Dim december As Single
 Dim rs As New ADODB.Recordset
 rs.Open "Select * From tblYears Where Year=2006", _
 CurrentProject.Connection, adOpenKeyset, adLockOptimistic
 january = rs.Fields(1)
 february = rs.Fields(2)

Figure 6-6. A table of monthly data

138 | Chapter 6: Using Programming to Manipulate Data

 march = rs.Fields(3)
 april = rs.Fields(4)
 may = rs.Fields(5)
 june = rs.Fields(6)
 july = rs.Fields(7)
 august = rs.Fields(8)
 september = rs.Fields(9)
 october = rs.Fields(10)
 november = rs.Fields(11)
 december = rs.Fields(12)
 rs.Close
 Set rs = Nothing
 'further processing goes here
End Sub

By contrast, this shorter routine dimensions an array and fills it with the same 12
pieces of data:

Sub process_year_data_2()
 Dim year_2006(12) As Single
 Dim fill_array As Integer
 Dim rs As New ADODB.Recordset
 rs.Open "Select * From tblYears Where Year=2006", _
 CurrentProject.Connection, adOpenKeyset, adLockOptimistic
 For fill_array = 0 To 11
 year_2006(fill_array) = rs.Fields(fill_array + 1)
 Next fill_array
 rs.Close
 Set rs = Nothing
 'further processing goes here
End Sub

With either approach, the monthly data is available. However, using an array pro-
vides certain coding efficiencies. In the preceding routine, for example, the array was
filled with a simple loop that matched each array element with a corresponding
recordset field.

Discussion
As mentioned earlier, arrays are traditionally zero-based: the elements start at zero,
and the last element is referenced by a number that is one less than the count of ele-
ments. As an alternative, you can instruct VBA to handle arrays as one-based. This is
accomplished by including the Option Base 1 directive at the top of the module:

Option Compare Database
Option Base 1
Sub process_year_data_3()
 Dim year_2006(12) As Single
 Dim fill_array As Integer
 Dim rs As New ADODB.Recordset
 rs.Open "Select * From tblYears Where Year=2006", _
 CurrentProject.Connection, adOpenKeyset, adLockOptimistic
 For fill_array = 1 To 12
 year_2006(fill_array) = rs.Fields(fill_array)

Working with In-Memory Data | 139

 Next fill_array
 rs.Close
 Set rs = Nothing
 'further processing goes here
End Sub

The fill_array loop now cycles from 1 to 12 instead of the previous range of 0 to 11.
This is a personal choice; switching base is not required, but one-based arrays are
easier for some developers to follow.

Using collections

An alternative to using an array for in-memory temporary storage is to use a custom
collection. Like arrays, collections are often used to store like data. Here is the code
to create a collection of 12 months and populate the collection with values from the
sample table:

Sub make_collection()
 Dim months As New Collection
 Dim rs As New ADODB.Recordset
 Dim monthname As String
 Dim monthvalue As Single
 rs.Open "Select * From tblYears Where Year=2006", _
 CurrentProject.Connection, adOpenKeyset, adLockOptimistic
 For fill_coll = 1 To 12
 monthvalue = rs.Fields(fill_coll)
 monthname = rs.Fields(fill_coll).Name
 months.Add monthvalue, monthname
 Next fill_coll
 rs.Close
 Set rs = Nothing
 'further processing goes here
End Sub

In the first code line (after the Sub declaration), the variable months is dimensioned as
a new collection. Further down, the names of the months and the values are read out
of the recordset and into the two variables monthname and monthvalue. These, in turn,
are used with the Add method of the collection.

The interim step of storing the month names and values from the recordset into the
monthname and monthvalue variables is necessary. While this line of code will work to
populate the collection:

 months.Add rs.Fields(fill_coll), rs.Fields(fill_coll).Name

if the recordset is subsequently closed, the collection will lose the values and become
useless.

Working with a collection is easy. For example, to use the value for July, this type of
syntax will do the trick:

 july_data = months.Item("July")

Collections have Add, Item, and Remove methods, and the single Count property. You
can learn more about collections by looking them up in the Access Help system.

140 | Chapter 6: Using Programming to Manipulate Data

6.3 Working with Multidimensional Arrays

Problem
I know how to use arrays that are based on one dimension, but I have a new project
in which I need to keep track of values in two dimensions. I have a number of
departments, and now for each department I will have three years of total expenses
to maintain in memory while processing. How can I use an array to hold this multi-
faceted data?

Solution
One of the best ways to think about a multidimensional array is to use the example
of an Excel worksheet. A single-dimensional array is like a set of values going down
Column A. Adding a second dimension is like adding a set of values going down Col-
umn B. Figure 6-7 shows an Excel worksheet with two-dimensional data. There are
three departments, and for each department there are three values. The departments
are one dimension, and the numeric values are the second dimension.

In an Access code module, dimensioning an array with two dimensions listed in the
Dim statement creates this type of structure. In this particular example, you have
three departments and three years’ worth of data. The following code shows you
how to dimension and populate a two-dimensional array to hold this data. Note that
the Option Base 1 statement is included so that the array elements are numbered
starting with 1, not 0:

Option Base 1
Sub multi_array_1()

Figure 6-7. Two-dimensional data

Working with Multidimensional Arrays | 141

 Dim myArray(3, 3) As Double
 myArray(1, 1) = 12256.54
 myArray(1, 2) = 14360.18
 myArray(1, 3) = 13874.25
 myArray(2, 1) = 8620.58
 myArray(2, 2) = 7745.35
 myArray(2, 3) = 7512.95
 myArray(3, 1) = 3003.15
 myArray(3, 2) = 3455.82
 myArray(3, 3) = 3599.62
End Sub

Note how the Dim statement sets two dimensions for the array, each with three ele-
ments. This creates nine (three times three) distinct places to store values. Also, note
that this array is set to the Double type to hold the decimal-based values.

When working with this data in code, you simply address the necessary array position
to use the data. For example:

sales_year_3 = myArray(2, 3)

Discussion
With multidimensional arrays, consideration should be given to how to enumerate
each dimension. That is, the data itself should drive the order of the dimensions. For
example, the following are two subroutines that work with the same data. The data
contains the names of five cities, and the department that belongs to each city. An
array to hold this data will have 10 distinct places to hold data because two pieces of
information must be stored for each city (the name of the city, and the department
name associated with that city). Here are the two subroutines:

Sub multi_array_2()
 Dim myArray(5, 2) As String
 myArray(1, 1) = "Atlanta"
 myArray(2, 1) = "Chicago"
 myArray(3, 1) = "Cleveland"
 myArray(4, 1) = "Houston"
 myArray(5, 1) = "Portland"
 myArray(1, 2) = "Sales"
 myArray(2, 2) = "Headquarters"
 myArray(3, 2) = "Warehouse"
 myArray(4, 2) = "Customer Service"
 myArray(5, 2) = "International Sales"
End Sub

Sub multi_array_3()
 Dim myArray(2, 5) As String
 myArray(1, 1) = "Atlanta"
 myArray(1, 2) = "Chicago"
 myArray(1, 3) = "Cleveland"
 myArray(1, 4) = "Houston"
 myArray(1, 5) = "Portland"

142 | Chapter 6: Using Programming to Manipulate Data

 myArray(2, 1) = "Sales"
 myArray(2, 2) = "Headquarters"
 myArray(2, 3) = "Warehouse"
 myArray(2, 4) = "Customer Service"
 myArray(2, 5) = "International Sales"
End Sub

In the first subroutine, the array is dimensioned as:

 Dim myArray(5, 2) As String

In the second subroutine, the array is dimensioned as:

 Dim myArray(2, 5) As String

To be clear, the order of (5, 2) or (2, 5) makes the difference here. Either arrange-
ment stores the data, and a subjective decision drives the choice of arrangement.
Figure 6-8 shows both arrangements of the data on an Excel worksheet. Visualizing
the data and its layout in this fashion may help you think through organizing your
multidimensional arrays.

Working with three-dimensional data

Adding a third dimension to an array allows storage of even more complex data.
Here is a code routine that dimensions and populates an array with three dimen-
sions: (2, 3, 4). Multiplying the element numbers returns the number of distinct
memory locations that are created for the array. In this case, there are 24:

Sub multi_array_4()
 Dim myArray(2, 3, 4) As Integer
 myArray(1, 1, 1) = 1
 myArray(1, 1, 2) = 2

Figure 6-8. Two arrangements of data

Working with Multidimensional Arrays | 143

 myArray(1, 1, 3) = 3
 myArray(1, 1, 4) = 4
 myArray(1, 2, 1) = 5
 myArray(1, 2, 2) = 6
 myArray(1, 2, 3) = 7
 myArray(1, 2, 4) = 8
 myArray(1, 3, 1) = 9
 myArray(1, 3, 2) = 10
 myArray(1, 3, 3) = 11
 myArray(1, 3, 4) = 12
 myArray(2, 1, 1) = 13
 myArray(2, 1, 2) = 14
 myArray(2, 1, 3) = 15
 myArray(2, 1, 4) = 16
 myArray(2, 2, 1) = 17
 myArray(2, 2, 2) = 18
 myArray(2, 2, 3) = 19
 myArray(2, 2, 4) = 20
 myArray(2, 3, 1) = 21
 myArray(2, 3, 2) = 22
 myArray(2, 3, 3) = 23
 myArray(2, 3, 4) = 24
End Sub

When Excel is used to model this data, the rows and columns of a worksheet are use-
ful in showing only two of the dimensions. The trick is to add Excel’s ability to
present 3D data. This effect is accomplished by stacking worksheets.

Figure 6-9 shows how the data is placed in Excel. The figure displays two different
worksheets. You can see this by looking at the worksheet tabs, named 1 and 2. These
names match the first dimension of the array, which is sized to two elements. The
first 12 array assignments, in which the first element is numbered as 1, are displayed
on the first worksheet. The second 12 are on the adjacent worksheet.

Figure 6-9. Three-dimensional data modeled in Excel

144 | Chapter 6: Using Programming to Manipulate Data

6.4 Sorting an Array

Problem
How can values in an array be sorted?

Solution
Several sorting algorithms are available. The bubble sort serves well to in sorting most
arrays. This sort works by comparing two side-by-side elements in an array, and
swapping them if they are in the wrong order of size. The array can be sorted in
either ascending or descending order.

In an ascending sort, the bubble sort compares the values of the first two elements,
and places the larger value in the higher (second) element. This testing is then con-
tinued for each successive pair of elements, such that the largest value floats to the
top (like a bubble).

In the following example, a single-dimensional array is created and populated with
values in a random order. Then the sort routine arranges the elements:

Sub bubble_sort()
 Dim temp As Variant
 Dim elements As Integer
 Dim test As Integer
 Dim swap_elements_flag As Boolean
 Dim result As String

 'create array
 Dim arr(10)
 arr(0) = 4
 arr(1) = 3
 arr(2) = 7
 arr(3) = 8
 arr(4) = 1
 arr(5) = 44
 arr(6) = 25
 arr(7) = 9
 arr(8) = 15
 arr(9) = 12

 'sort array
 iteration_count = 0
 For elements = 0 To (UBound(arr) - 1)
 swap_elements_flag = False
 For test = 1 To (UBound(arr) - 1) - iteration_count
 If arr(test) < arr(test - 1) Then
 temp = arr(test)

Sorting an Array | 145

 arr(test) = arr(test - 1)
 arr(test - 1) = temp
 swap_elements_flag = True
 End If
 Next test
 If swap_elements_flag = False Then Exit For
 iteration_count = iteration_count + 1
 Next elements

 'print result
 result = ""
 For elements = 0 To (UBound(arr) - 1)
 result = result & arr(elements) & " "
 Next elements
 Debug.Print result
End Sub

In a nutshell, the routine loops through the array, comparing successive pairs of ele-
ments. If their values need to be swapped, this is accomplished by using a temporary
variable called temp. This variable holds the value of one of the elements while its
position is overwritten with the element value next to it; the temp value then goes
into that element.

This is repeated until no more element values are out of sync. The loop is then exited
because the sorting is done. At the end of the routine, the array is written out to the
immediate window. Figure 6-10 shows the result. Compare this with the order of the
values when the array was created in the code routine (4 3 7 8 1 44 25 9 15 12).

Discussion
An array can be sorted in ascending or descending order. In the preceding code, a
simple change of operator (from less than to greater than) will swap the order. For a
descending sort, change the appropriate line to:

 If arr(test) > arr(test - 1) Then

This produces the result seen in Figure 6-11.

Figure 6-10. The sorted array

146 | Chapter 6: Using Programming to Manipulate Data

Sorting multidimensional arrays

Sorting multidimensional arrays is done in the same way as sorting single-dimensional
arrays—you just have to select the dimension to sort. This next example is similar to
the previous one, except the array has two dimensions, and a new variable, sort_
element, controls which element to sort:

Sub bubble_sort_multi()
 Dim temp As Variant
 Dim elements As Integer
 Dim test As Integer
 Dim swap_elements_flag As Boolean
 Dim result As String

 Dim sort_element As Integer
 sort_element = 1

 'create two-dimensional array
 Dim arr(10, 2)
 arr(0, 0) = 4
 arr(1, 0) = 3
 arr(2, 0) = 7
 arr(3, 0) = 8
 arr(4, 0) = 1
 arr(5, 0) = 44
 arr(6, 0) = 25
 arr(7, 0) = 9
 arr(8, 0) = 15
 arr(9, 0) = 12

 arr(0, 1) = "zebra"
 arr(1, 1) = "eel"
 arr(2, 1) = "cat"
 arr(3, 1) = "dog"
 arr(4, 1) = "aardvark"
 arr(5, 1) = "lion"
 arr(6, 1) = "lamb"
 arr(7, 1) = "bear"
 arr(8, 1) = "goose"
 arr(9, 1) = "hamster"

 'sort array
 iteration_count = 0

Figure 6-11. The array sorted in descending order

Flattening Data | 147

 For elements = 0 To (UBound(arr) - 1)
 swap_elements_flag = False
 For test = 1 To (UBound(arr) - 1) - iteration_count
 If arr(test, sort_element) < arr(test - 1, sort_element) Then
 temp = arr(test, sort_element)
 arr(test, sort_element) = arr(test - 1, sort_element)
 arr(test - 1, sort_element) = temp
 swap_elements_flag = True
 End If
 Next test
 If swap_elements_flag = False Then Exit For
 iteration_count = iteration_count + 1
 Next elements

 'print result
 result = ""
 For elements = 0 To (UBound(arr) - 1)
 result = result & arr(elements, sort_element) & " "
 Next elements
 Debug.Print result
End Sub

For this example, the sort_element variable can be assigned a value of 0 or 1. If the
value is 0, the sort is applied to the numerical values that occupy the first set of posi-
tions of the second dimension. When sort_element has a value of 1, the sort is
applied to the animal names, which occupy the second set of positions. Figure 6-12
shows the result of such a sort.

As with a single-dimensional array sort, the use of the greater-than or less-than sign
drives whether the sort is done in ascending or descending order.

6.5 Flattening Data

Problem
How can relational data in a parent-child table relationship be combined to fit into
one table? The data is meant for analysis in Excel, where the concept of one-to-many
data is not well supported.

Figure 6-12. The array sorted on the second dimension

148 | Chapter 6: Using Programming to Manipulate Data

Solution
Whenever you run a select query based on parent and child tables, you’ll usually see
a higher degree of duplication in the data returned than you’ll see when you run a
query based on a single table. Of course, different factors are at play here, such as
which fields (particularly those from the child table) are used. The use/avoidance of
the Distinct and DistinctRow predicates (see Recipe 1.7) also affects the result.

Figure 6-13 shows the Access Relationships window. In this schema, for each client
record from tblClients, there can be zero or more pet records in the tblPets table.
Likewise, for each pet record from tblPets, there can be zero or more appointment
records in the tblAppointments table.

Because many of the parent records will have multiple child records, when a select
query includes fields from a child table, fields from the parent table are likely to be
duplicated. Figure 6-14 shows a query design that returns records based on data
from the parent and child tables.

When this query is run, each client will be listed once for each pet she owns: if a cli-
ent has three pets, the client’s name will appear three times. A run of this query is
shown in Figure 6-15. Nancy A. Armstrong is listed twice; she owns a dog and a cat.

This query effectively combines the data from the two tables into a single table (a
process known as flattening). You can now copy this flattened-down relational data
into Excel for further analysis.

Flattened data has other uses as well—for example, it’s commonly used as the source
for a mail merge (see Recipe 6.15).

Figure 6-13. Related one-to-many data

Flattening Data | 149

Discussion
Optimizing relational data to remove all redundant data points is a goal of good
database design. However, sometimes it’s necessary to give portability preference
over efficiency.

Looking back at Figure 6-13, you’ll see that the data model in this recipe has three
levels of hierarchal data. Moving this data intact into Excel would be a chore, and

Figure 6-14. A query based on parent and child tables

Figure 6-15. The query returns flattened data

150 | Chapter 6: Using Programming to Manipulate Data

even then it wouldn’t be readily usable. But how can you combine the data from all
three tables so that you can work with it in Excel?

Figure 6-16 shows a query based on all three tables of the data model.

Figure 6-17 shows the result of running the query. It is easy to see the redundancy in
the client names, and even in the pet names (which come from the middle table).
Only the appointment dates stand as a unique factor in the records.

Figure 6-16. A select query based on three levels of hierarchal data

Figure 6-17. Three levels of data are flattened

Expanding Data | 151

6.6 Expanding Data

Problem
I have data that is redundant. In a single table, some fields have duplication. What is
a good way to programmatically turn this table of data into a set of parent and child
tables?

Solution
This problem is best illustrated with a real-life example. On a project I worked on
recently, I built a data collection screen in which people could fill in their names and
addresses, and make selections identifying their interests. This was an unbound form
that was essentially capturing both the “one” and “many” sides of the data. The
respondents’ name and address information made up the data for the parent table.
The interests each respondent selected became their associated child records. The
form essentially was an entry vehicle for flat data that had to be promoted to fit the
relational model. A simplified version of the form is shown in Figure 6-18.

Figure 6-18. A data collection form

152 | Chapter 6: Using Programming to Manipulate Data

A click of the Save button ran this code:

Private Sub cmdSave_Click()
'assume name, address, city, and state are filled in and validated
'assume at least one interest has been selected

Dim conn As ADODB.Connection
Set conn = CurrentProject.Connection
Dim recset As New ADODB.Recordset
Dim ssql As String
Dim max_contact_id As Long
Dim itm As Variant

'insert contact information
ssql = "Insert Into tblContacts(Name, Address, City, State) "
ssql = ssql & " Values ("
ssql = ssql & "'" & Replace(Me.txtName, "'", "''") & "', "
ssql = ssql & "'" & Replace(Me.txtAddress, "'", "''") & "', "
ssql = ssql & "'" & Replace(Me.txtCity, "'", "''") & "', "
ssql = ssql & "'" & Replace(Me.txtState, "'", "''") & "')"
conn.Execute ssql

'get highest ContactID value
ssql = "Select Max(ContactID) as MaxContactID From tblContacts"
recset.Open ssql, conn, adOpenKeyset, adLockOptimistic
max_contact_id = recset.Fields("MaxContactID")
recset.Close

'store interests in tblInterests, using max_contact_id
For Each itm In Me.lstInterests.ItemsSelected
 ssql = "Insert Into tblInterests(ContactID, Interest)"
 ssql = ssql & " Values(" & max_contact_id & ", '" & _
 Me.lstInterests.ItemData(itm) & "')"
 conn.Execute ssql
Next
conn.Close
Set recset = Nothing
MsgBox "data saved"
End Sub

The code places the parent information (the contact name and address) into the
tblContacts table. Then, a query is done on the key of the table, the ContactID
AutoNumber field. Using the Max function, the highest value of ContactID is
returned to the max_contact_id variable. This value must be from the record that was
just written. Once the ContactID is known, the associated child records can be writ-
ten into the tblInterests table. The ItemsSelected collection of the listbox is used to
return each selected item, and a record is written for each selection.

Discussion
Expanding data, promoting data, normalizing data—whatever you wish to call it, it’s
a big subject in regard to database theory and practice. The overall goal is to remove
redundancy in data. In the example in this recipe, the flat data entered via the form

Encrypting Data | 153

was manipulated into a relation. The full contact information was not written into
the records along with the interests—only the ContactID was written, and it was
used properly here as a foreign key.

Flat data that is already stored in a database table (or just in a text file or worksheet)
can be promoted to a relational model in a similar fashion to that described here.
You will need to decide which fields will go to the parent table, and which will go to
the child table, but as long as the parent table that will become populated as you
process the data has an AutoNumber field, you can always attain the max value from
that field and use it as the foreign key in the child table.

6.7 Encrypting Data

Problem
How can I keep my data private? Is there a way to obscure the data so no one but me
can make sense of it?

Solution
Encryption comes in many forms and levels of complexity. In many cases, a rela-
tively easy encryption scheme is all that is needed. For example, the following code
will encrypt the passed-in data by offsetting the character values in the data:

Function encrypt_decrypt_offset _
 (text As String, encrypt As Boolean) As String
Dim new_string As String
Dim loop1 As Integer
If text = "" Then
 encrypt_decrypt_offset = ""
 Exit Function
End If
new_string = ""
Select Case encrypt
 Case True
 For loop1 = 1 To Len(text)
 new_string = new_string & Chr(Asc(Mid(text, loop1, 1)) + 5)
 Next loop1
 Case False
 For loop1 = 1 To Len(text)
 new_string = new_string & Chr(Asc(Mid(text, loop1, 1)) - 5)
 Next loop1
End Select
encrypt_decrypt_offset = new_string
End Function

Sub test1()
Dim altered_text As String
altered_text = encrypt_decrypt_offset("All good things in time", True)

154 | Chapter 6: Using Programming to Manipulate Data

MsgBox altered_text
altered_text = encrypt_decrypt_offset(altered_text, False)
MsgBox altered_text
End Sub

The encrypt_decrypt_offset function takes two arguments: a string of data, and a
Boolean value to tell the function whether to encrypt or decrypt (actually, all the
Boolean value does is control whether the function shifts character values up or
down). The function works by converting the characters in the string to their
numeric character codes (see Recipe 5.9), adjusting those values up or down, and
then converting them back into letters, numbers, etc. An offset of 5 is hardcoded into
the function, but any small number will do.

When the function runs, each character in the passed-in string is replaced with the
character whose ASCII value is 5 greater or lower. For example, when the encrypt
Boolean value is true, an “a” will be replaced with an “f”; when the encrypt Boolean
value is false, an “f” will be replaced with an “a.” These two operations are the
reverse of each other.

In the preceding code, the test1 routine calls the function, passing it the hardcoded
phrase “All good things in time.” Figure 6-19 shows the returned encrypted message.

The test1 routine then continues with another call to the function, this time
reversing the encryption back to the plain text, as shown in Figure 6-20.

Figure 6-19. The encrypted message

Figure 6-20. The decrypted message

Encrypting Data | 155

For semivaluable information, and for a use with a nontechnical user community,
this encryption scheme is probably adequate. Depending on how you code it, you
can apply it to a table of data, or even just certain columns in a table.

Those with a keen eye, however, might see the weakness of this method. Each letter
is encrypted with the same offset. Comparing the encrypted phrase in Figure 6-19
with the plain text in Figure 6-20, it’s easy to see that all the spaces were changed to
percent signs (%), that the two “l’s” in All became two “q’s,” and so on. This encryp-
tion is easy to implement, but it wouldn’t be too hard to crack either.

Discussion
You may require a stronger encryption method for your data. The following func-
tion takes a different approach, using a separate phrase (called a key phrase) to
encrypt the data. One character at a time, the code loops through both the phrase to
be encrypted and the key phrase (repeating this phrase as necessary). The XOR func-
tion is applied to each pair of characters to determine how to change the character in
the plain text. This is known as XOR encryption.

XOR is a logic operator that works on the bits of the character to be converted (a sin-
gle character, which is 1 byte long, has 8 bits; that is, 1 byte = 8 bits). Each character
is converted to its binary value, which consists of 1s and 0s—for example, the lower-
case letter “a” is converted to the binary 01100001. XOR then compares the bits in
each position for the two characters. When the two bits are the same (e.g., 0 and 0), a 1
is returned for that bit position; when the bits are different (e.g., 0 and 1), a 0 is
returned. The resulting binary number is then converted back into its ASCII
equivalent.

This operation typically converts letters into nonalphabetic characters, which makes
the encryption difficult to break. Using a lengthy key phrase further enhances the
strength of the encryption. Let’s look at an example:

Public Function encrypt_decrypt _
 (normal_text As String, encrypt_text As String)
Dim loop1 As Integer
Dim encrypt_char_pos As Integer
Dim encrypt_char_value As Integer
Dim normal_text_length As Integer
Dim encrypt_text_length As Integer
normal_text_length = Len(normal_text)
encrypt_text_length = Len(encrypt_text)
encrypt_char_pos = 0
For loop1 = 1 To normal_text_length
 encrypt_char_pos = encrypt_char_pos + 1
 If encrypt_char_pos > encrypt_text_length Then
 encrypt_char_pos = 1

156 | Chapter 6: Using Programming to Manipulate Data

 End If
 encrypt_char_value = Asc(Mid(encrypt_text, encrypt_char_pos, 1))
 Mid(normal_text, loop1, 1) = _
 Chr(Asc(Mid(normal_text, loop1, 1)) Xor encrypt_char_value)
Next loop1
encrypt_decrypt = normal_text
End Function

Sub alter_text()
Dim altered_text As String
altered_text = _
 encrypt_decrypt("This is the time to put new plans into action", _
 "apples and oranges are two fruits that come in a basket")
MsgBox altered_text
altered_text = _
 encrypt_decrypt(altered_text, _
 "apples and oranges are two fruits that come in a basket")
MsgBox altered_text
End Sub

The function is called from the alter_text routine. Within this example, two hard-
coded phrases are passed. “This is the time to put new plans into action” is the
phrase to be encrypted, and “apples and oranges are two fruits that come in a bas-
ket” is the key phrase used with XOR on a character-by-character basis. These two
phrases are passed to the encrypt_decrypt function, and the altered_text variable
receives the encrypted text (shown in Figure 6-21).

The second part of the alter_text routine reverses the encryption by sending the
encrypted text (as the altered_text variable) along with the same key phrase to the
function. Applying XOR to the encrypted text simply reverses the text back to its plain
state, which is shown in Figure 6-22.

Figure 6-21. Encryption created with the XOR operator and a key phrase

Figure 6-22. The decrypted text

Applying Proximate Matching | 157

6.8 Applying Proximate Matching

Problem
At times, it is necessary to look for data that is similar. This could mean words or
names that are spelled just a bit differently, or that are the same length, or that start
with the same character and are the same length even though the rest of the characters
are different. How does one go about coding a routine to find such values?

Solution
Matching items that are similar is as much an art as it is a programming discipline.
There are many rules that can be implemented, so it is best to determine your exact
needs or expectations of how the data might be similar, and then code appropriately.

Figure 6-23 shows a table containing similar names. This recipe will discuss a few
methods to compare each of these with the name Johnson (which just happens to be
the first name anyway).

Discussion
To demonstrate, we’ll consider three matching approaches:

1. The first approach compares the lengths of the two strings and returns a percent-
age value indicating the closeness of the match. A result of 1 means the strings
are exactly the same length; a lower result indicates that the record value is
shorter, and a higher result indicates that it’s longer.

2. The second approach returns a count of characters that match at the same posi-
tion in each string, and the overall percentage of the match.

3. The third approach returns a 1 or a 0, respectively, to indicate whether the first
character in the two strings matches.

Figure 6-23. A table of similar names

158 | Chapter 6: Using Programming to Manipulate Data

The read_from_table routine opens the table shown in Figure 6-23 and loops through
the records. The how_close routine is called, and it’s sent three arguments: the value
from the record, the name to match against (Johnson), and a flag to indicate which
match type to use (1, 2, or 3). Here’s the complete code:

Sub read_from_table()
Dim conn As ADODB.Connection
Set conn = CurrentProject.Connection
Dim rs As New ADODB.Recordset
Dim ssql As String
ssql = "Select * from Table1"
rs.Open ssql, conn, adOpenKeyset, adLockOptimistic
Do Until rs.EOF
 how_close rs.Fields(0), "Johnson", 1
rs.MoveNext
Loop
rs.Close
Set rs = Nothing
conn.Close
Set conn = Nothing
End Sub

Sub how_close(source_text As String, test_text As String, _
 match_type As Integer)
Dim source_length As Integer
Dim test_length As Integer
Dim match_strength As Single
Dim loop1 As Integer

source_length = Len(source_text)
test_length = Len(test_text)
match_strength = 0

'match_types are 1=comparison of length
' 2=same characters
' 3=same first character

Select Case match_type
 Case 1
 If source_length = test_length Then
 match_strength = match_strength + 1
 Else
 match_strength = source_length / test_length
 End If
 Debug.Print source_text & " " & test_text & " " & match_strength
 Case 2
 If source_length < test_length Then
 For loop1 = 1 To source_length
 If Mid(source_text, loop1, 1) = Mid(test_text, loop1, 1) Then _

Applying Proximate Matching | 159

 match_strength = match_strength + 1
 Next loop1
 Else
 For loop1 = 1 To source_length
 If Mid(source_text, loop1, 1) = Mid(test_text, loop1, 1) Then _
 match_strength = match_strength + 1
 Next loop1
 End If
 Debug.Print source_text & " " & test_text & " " & _
 match_strength & " of " & test_length & " " & _
 match_strength / test_length
 Case 3
 If Left(source_text, 1) = Left(test_text, 1) Then _
 match_strength = match_strength + 1
 Debug.Print source_text & " " & test_text & " " & match_strength
End Select

End Sub

Each match type (the third argument) writes its results—the record value, the hard-
coded name, and an indication of the strength of the match—to the immediate
window. Figure 6-24 shows the result when the first match type is sent as an argu-
ment, causing the match algorithm to test solely on length. Each record value is
compared with Johnson, and a number is returned that indicates how close the
lengths of the two strings are. A value of 1 indicates a perfect match.

When the second match type is sent as an argument, the match algorithm tests the
characters in each position in the record values with their counterparts in the other
string. When the characters are the same, a 1 is added to the value of the match_
strength variable. As shown in Figure 6-25, the result in the immediate window indi-
cates the number of matches out of the total number of characters in the hardcoded
Johnson name, followed by the percentage of matches found. For example, compar-
ing Jensen with Johnson resulted in just the first letter matching, producing only a
14.3 percent match.

Figure 6-24. Matching on length

160 | Chapter 6: Using Programming to Manipulate Data

The last match test is just on the first character. If the first character of both strings is
the same, the match is made, regardless of the rest of the strings’ compositions. As
seen in Figure 6-26, only one match failed.

This recipe should have given you some ideas about how to set up proximate matching
algorithms. The exact rules to follow will be determined by your particular needs.

6.9 Using Transaction Processing

Problem
During a processing loop with a calculation, occasionally (because of incorrect data)
the calculated value is not within the expected range. This can occur after dozens of
good records have been processed. If/when a record with incorrect data is encoun-
tered, is there a way to reverse all of the processing that’s taken place, back to the
first record?

Solution
When processing is wrapped inside a transaction, it is easy to reverse the processing.
Working with ADO, there are three methods of the connection object that are used
with transaction processing:

Figure 6-25. Matching on positional characters

Figure 6-26. Matching on just the first character

Using Transaction Processing | 161

BeginTrans
This statement is strategically placed at the position you want Access to reverse.
All data writes are considered pending once BeginTrans is initiated.

RollbackTrans
This statement reverses the processing. It is optional, and is expected to be used
only if an unexpected condition arises.

CommitTrans
This statement completes the transaction(s). The data updates to this point are
considered pending. Issuing a CommitTrans is necessary to complete the pending
updates.

Figure 6-27 shows a table with mileage per truck, client names, and start-and-end
dates. The task is to calculate values that will populate the Expense column. Notice
that the mileage value in the eighth record is –36. This is an unacceptable data point.

The following routine creates a recordset and loops through the records. Before the
looping starts, the BeginTrans method is set on the connection object (conn). Multi-
plying the mileage values by 1.25 fills the Expense column. However, before the
calculation is performed, the mileage is tested to see if the value is at least 1:

Sub rollback_all()
 Dim conn As ADODB.Connection
 Set conn = CurrentProject.Connection
 Dim rs As New ADODB.Recordset
 Dim ssql As String
 ssql = "Select * from tblTrucksDates"
 rs.Open ssql, conn, adOpenKeyset, adLockOptimistic
 conn.BeginTrans 'starts before loop
 Do Until rs.EOF
 If rs.Fields("Mileage") < 1 Then
 conn.RollbackTrans 'rolls back all

Figure 6-27. A table with mileage data

162 | Chapter 6: Using Programming to Manipulate Data

 MsgBox "Processing rolled back"
 Exit Sub
 End If
 rs.Fields("Expense") = rs.Fields("Mileage") * 1.25
 rs.MoveNext
 Loop
 conn.CommitTrans 'commits once at the end
 rs.Close
 MsgBox "done"
End Sub

If the mileage value is less than 1, the RollbackTrans method is called, and the rou-
tine is exited. Because the BeginTrans method was placed before the loop, all the
calculations are reversed, which leaves the table data in its original state. If all the
data is valid (i.e., all the mileage values are 1 or higher), the CommitTrans method
toward the end of the procedure commits the calculations.

Discussion
The placement of the transaction methods is key to how the commit or rollback
operates. In the preceding example, the BeginTrans method was placed before the
main processing loop, which kept all the calculations in a pending mode so that they
could all be rolled back easily.

This illustrates the power of using transaction processing. If we hadn’t used this
approach, when the negative mileage value was found, we would have had to run an
update query to initialize the Expense values in all the records back to 0. That might
not sound like a big deal, but imagine the dilemma if the values to return to were all
different. A simple update query would not help you roll back the changes. In such a
case, using transaction processing ensures that you can roll back to initial values
without a hitch.

6.10 Reading from and Writing to the Windows
Registry

Problem
Through the years, I have used .ini files to store application data. But .ini files are vul-
nerable and can be moved around or deleted. This creates production issues. What is
a safer way to store data that needs to be held outside of the application itself?

Solution
The Windows Registry is the ideal repository for data that is stored outside of
Access. It is less vulnerable than independent .ini files, and because there are built-in
programming commands for working with the Registry, using the Registry to store
data is a breeze.

Reading from and Writing to the Windows Registry | 163

Data stored in the Registry has a hierarchical structure, similar to the way .ini files
are arranged. Data is stored by application name, a section name within the applica-
tion name, and then by key. A particular key holds a setting that can be saved or
retrieved. There can be multiple key/setting pairs (also known as name/value pairs)
withineachsection.

Discussion
You don’t have to become intricately familiar with the Registry to use it—the VBA
commands ease the burden. There are four VBA commands that make use of the
Registry:

SaveSetting
This command is used to write data into the Registry. Four pieces of informa-
tion are required: the application name, the section name, the key name, and the
setting (the actual value being stored). Here is an example of creating two
sections with varied key/setting pairs:

Sub write_registry()
 SaveSetting "my_app", "User", "Name", "Ken"
 SaveSetting "my_app", "User", "Registration", "12345"
 SaveSetting "my_app", "User", "Level", "Manager"
 SaveSetting "my_app", "Preferences", "OpeningForm", "frmMain"
 SaveSetting "my_app", "Preferences", "DefaultPrinting", "Preview"
End Sub

GetSetting
This command returns data from the Registry. Three pieces of information are
required: the application name, the section name, and the key name. The
returned data point is a single value (the setting that matches the supplied key
name). For example:

Sub read_registry()
 Dim z As String
 z = GetSetting("my_app", "User", "Name")
 'process something with z
 z = GetSetting("my_app", "Preferences", "OpeningForm")
 'process something with z
End Sub

Typically, a variable is assigned the returned value, and further processing takes
place. In the preceding example, the variable z is used to house the returned
setting value.

GetAllSettings
This command also returns data from the Registry. Two pieces of informa-
tion are required: the application name and the section name. Instead of
returning a single value, GetAllSettings returns a two-dimensional array that
contains all of the key/setting pairs within the designated section. You can use
the returned data by working with the array. In this example, the variable

164 | Chapter 6: Using Programming to Manipulate Data

app_settings is used as the array to hold the returned key/setting pairs from
the User section:

Sub get_all_settings()
 Dim app_settings
 Dim array_loop As Integer
 app_settings = GetAllSettings("my_app", "User")
 For array_loop = LBound(app_settings, 1) To _
 UBound(app_settings, 1)
 Debug.Print app_settings(array_loop, 0), _
 app_settings(array_loop, 1)
 Next array_loop
End Sub

The first dimension of the array holds the key names, and the second dimension
holds the setting values. The returned data is written to the immediate window.
The data is the same as that written to the Registry with the write_registry rou-
tine presented earlier. Compare the returned data shown in Figure 6-28 with the
values written to the Registry. They are the same values for the User section.

DeleteSetting
This command deletes Registry entries. Two pieces of information are required:
the application name and the section name. Optionally, a key name can also be
included. When just the application name and the section name are provided,
the entire section is removed, including all the key/setting pairs within it. The
following code shows how to delete the entire Preferences section:

Sub delete_section_from_registry()
 DeleteSetting "my_app", "Preferences"
End Sub

You can include a key name to delete just one key/setting pair from within the
specified section. For example, the following code deletes just the Level key (and
its associated setting) from the User section:

Sub delete_key_from_registry()
 DeleteSetting "my_app", "User", "Level"
End Sub

Writing to and reading from the Registry is an easy way to share cross-database or
cross-application information. Within a single database application, it is feasible to
store such data within a database table. However, if you store the information out-
side of the database application, it’s readily available to other applications. Even

Figure 6-28. Returned key/setting pairs

Creating Charts | 165

non-Access applications can use the information, because Registry data is available
to any application that can read from the Registry. For example, an Excel workbook
can read the values written by an Access application.

6.11 Creating Charts

Problem
I know how to place a simple chart on a form and have it display summary informa-
tion. But what if I need more sophistication, such as showing information that is
related, but not within the current bound record or table?

Solution

This solution applies to Access 2003 and earlier versions. At the end of
the recipe, you’ll find comments about charts in Access 2007.

Let’s start with the basics. Access has a basic chart control that is bound to a form
via a parent and child key, in the same manner that a subform is in sync with the par-
ent form on which it’s placed. In Access 2003 and earlier versions, you add a chart to
a form using the Insert ➝ Chart menu command.

Figure 6-29 shows a form based on a table of customers. The Record Source of the
form is the tblCustomers table. The chart is bound to the Customer records, but the
Row Source of the chart is this SQL statement, based on the tblAnnualSales table:

SELECT tblAnnualSales.yr, tblAnnualSales.Amount FROM tblAnnualSales;

Figure 6-29. A form with a bound chart

166 | Chapter 6: Using Programming to Manipulate Data

Figure 6-30 shows the two tables. The tables relate in the CustomerID field. This field
isn’t included in the SQL statement; it isn’t necessary because the chart and the form
are CustomerID-related in the Link Child Fields and Link Master Fields properties.

As the user browses records on the form, the chart updates to show the annual sales
for the currently displayed customer. There is no need for coding past setting the
properties mentioned earlier.

Discussion
An alternative chart control is the MS Chart. While in a form’s design mode, click on
the More Controls button on the Toolbox, and scroll down to Microsoft Chart Con-
trol 6.0 (your version may be different). Draw the control on the form. At first, it might
seem unrelated to the data you are working with (see the example in Figure 6-31), but
once you’ve set some properties and written some code to manipulate the control, its
appearance will support the data.

Figure 6-32 shows the two types of chart controls on one form. On the left is the
standard chart control from Figure 6-29. On the right is the MS Chart control.

Unlike a standard chart control, the MS Chart control is not bound to the data; it
needs to be seeded with data to graph. This is accomplished in the On Current event
of the form. As a record is made current, this code runs and updates the MS Chart:

Figure 6-30. Tables of customers and annual sales

Creating Charts | 167

Private Sub Form_Current()
Dim rec_count As Integer
Dim current_rec As Integer
Dim conn As ADODB.Connection
Set conn = CurrentProject.Connection
Dim ssql As String
Dim rs As New ADODB.Recordset
ssql = "SELECT tblAnnualSales.yr, tblAnnualSales.Amount "
ssql = ssql & "FROM tblAnnualSales Where tblAnnualSales.CustomerID=" & _
 Me.txtCustomerID

Figure 6-31. The plain MS Chart control

Figure 6-32. Two charts on one form

168 | Chapter 6: Using Programming to Manipulate Data

rs.Open ssql, conn, adOpenKeyset, adLockOptimistic
rec_count = rs.RecordCount
current_rec = 1
With Me.MSChart1
 .Plot.Axis(VtChAxisIdX, 1).AxisTitle.Visible = True
 .chartType = VtChChartType2dBar
 .ColumnCount = 1
 .RowCount = rec_count
 Do Until rs.EOF
 .Column = 1
 .Row = current_rec
 .RowLabel = rs.Fields("yr")
 .Data = rs.Fields("Amount")
 current_rec = current_rec + 1
 rs.MoveNext
 Loop
End With
End Sub

You have a great amount of programmatic control with an MS Chart. In a nutshell,
you can code the chart type, factors about the axes, the series, and other appearance
and data attributes. In this example, the data to be plotted is returned from a record-
set based on the tblAnnualSales table, so the two charts display the same information.
Now let’s look at retooling the MS Chart control to display some other data.

Figure 6-33 shows the form with the chart on the right displaying the number of
items purchased per year, instead of the amount spent.

Figure 6-33. Amount Spent and Items per Year charts

Creating Charts | 169

In this example, a different SQL statement to different data drives what the chart on
the right displays. Here is the updated code:

Private Sub Form_Current()
Dim rec_count As Integer
Dim current_rec As Integer
Dim conn As ADODB.Connection
Set conn = CurrentProject.Connection
Dim ssql As String
Dim rs As New ADODB.Recordset
ssql = "SELECT Year([PurchaseDate]) As Yr, Count(tblSales.Amount) "
ssql = ssql & "As CountofAmount FROM tblSales "
ssql = ssql & "GROUP BY tblSales.CustomerID, Year([PurchaseDate]) "
ssql = ssql & "HAVING tblSales.CustomerID=" & Me.txtCustomerID
rs.Open ssql, conn, adOpenKeyset, adLockOptimistic
rec_count = rs.RecordCount
current_rec = 1
With Me.MSChart1
 .Plot.Axis(VtChAxisIdX, 1).AxisTitle.Visible = True
 .chartType = VtChChartType2dBar
 .ColumnCount = 1
 .RowCount = rec_count
 Do Until rs.EOF
 .Column = 1
 .Row = current_rec
 .RowLabel = rs.Fields("yr")
 .Data = rs.Fields("CountOfAmount")
 current_rec = current_rec + 1
 rs.MoveNext
 Loop
End With
End Sub

The displayed data is queried from the tblSales table, which contains detailed records
about purchases. The purchase count per year, per current customer, is queried and
used to populate the chart.

Charts in Access 2007

In Access 2007, MS Graph is the tool used to create charts (you may be familiar with
this tool from Word or PowerPoint). Additionally, there is a custom ActiveX chart
control that can be placed on a form. Figure 6-34 shows a chart created with the cus-
tom control, along with a properties sheet showing the datasheet that provides the
source of the data. This control can also display data from SQL Server and many
other sources. Variations of the properties sheet let you control the many facets of
the chart: series formatting, axes settings, and so on. In the upper-right corner of
Figure 6-34, the mouse pointer shows where to find the control. It is not a standard
tool; you must manually select it from the Controls drop-down list.

170 | Chapter 6: Using Programming to Manipulate Data

6.12 Scraping Web HTML

Problem
How can I access web sites’ HTML code so I can collect data from varied sources to
include in my database?

Solution
Setting a reference to the Microsoft Internet Controls provides a way, through code,
to navigate to web sites and access their HTML source code. To set the reference,
launch the Visual Basic Editor from Access by pressing Alt-F11, then use the Tools ➝

References menu option to display the References dialog box. Check the box next to
Microsoft Internet Controls, as shown in Figure 6-35, and click OK.

In a code module, you can use the InternetExplorer control to navigate to and access
the HTML of a web page:

Sub get_html_1()
Dim myExplorer As InternetExplorer

Figure 6-34. Using the ActiveX chart control

Scraping Web HTML | 171

Set myExplorer = New InternetExplorer
Dim page_source As String
On Error Resume Next

retry1:
myExplorer.Navigate URL:="http://www.bluttman.com"
If Err.Number <> 0 Then 'GoTo retry1
 Err.Clear
 GoTo retry1
End If

retry2:
page_source = myExplorer.Document.documentElement.innerhtml
If Len(page_source) > 0 Then
 Debug.Print page_source
Else
 GoTo retry2
End If
Set myExplorer = Nothing
Debug.Print "done"
End Sub

Since Internet connections can be intermittent, the code is structured such that the
connection is tried over and over until it succeeds. In the section that starts with the
retry1: label, the myExplorer object attempts to navigate to a site, using the Navigate
method. If it fails, the error is caught, and the navigation is attempted again. This
cycles until the navigation is successful.

Figure 6-35. Setting a reference to Microsoft Internet Controls

172 | Chapter 6: Using Programming to Manipulate Data

Reading the HTML is also wrapped in an error-testing construct. Once the HTML is
read, it is sent to the immediate window. Figure 6-36 shows an example.

You can adapt the get_html_1 routine to use the HTML in the way that makes sense
for your needs.

Discussion
The preceding example showed how to navigate to a site and capture its HTML. The
following example expands on this, showing how to search multiple sites for a
phrase:

Sub search_site()
 get_html_2 "http://www.6finestrings.com", "guitar"
 get_html_2 "http://www.logicstory.com", "VBA"
End Sub

Sub get_html_2(site As String, Optional key_phrase As String)
Dim myExplorer As InternetExplorer
Set myExplorer = New InternetExplorer
Dim page_source As String
Dim found_pos As Integer
On Error Resume Next

retry1:
myExplorer.Navigate URL:=site
If Err.Number <> 0 Then
 Err.Clear
 GoTo retry1
End If

retry2:
page_source = myExplorer.Document.documentElement.innerhtml
If Len(page_source) > 0 Then
 If Len(key_phrase) > 2 Then

Figure 6-36. HTML gathered through programming

Creating Custom Report Formatting | 173

 found_pos = 0
 found_pos = InStr(1, page_source, key_phrase)
 If found_pos > 0 Then
 Do Until found_pos = 0
 Debug.Print Mid(page_source, found_pos, 50)
 found_pos = InStr(found_pos + 1, page_source, key_phrase)
 Loop
 End If
 Else
 Debug.Print page_source
 End If
Else
 GoTo retry2
End If
Set myExplorer = Nothing
Debug.Print "done"
End Sub

The get_html_2 routine takes as arguments a web site URL, and an optional phrase.
If just the URL is supplied, the routine returns the full HTML for the page. If a
phrase is supplied, the HTML of the site is searched for occurrences of the phrase. If
the phrase is found, 50 characters beginning from the position of the start of the
phrase are returned (this number, of course, can be changed).

The get_html_2 routine is called by the search_site routine, which passes the
argument(s).

This recipe shows how to access the HTML of a web page. Once the HTML is avail-
able within code, you can do a lot with it. For example, you may want to examine
the HTML for links, keywords, graphic file names, or other data.

6.13 Creating Custom Report Formatting

Problem
How can I control the appearance of items on a report? I want to be able to accentu-
ate particular values when they pass a threshold I provide. The overall purpose is to
highlight exceptional reportable values.

Solution
Since reports have code-behind modules, there are many ways to alter their format-
ting. Each control on a report can be addressed individually. The trick is to know
what properties you can manipulate. All properties are accessed via the Properties
collection, but you need to know how to specify the individual properties by name.
For example, here is how to change the foreground color of a text box on a report:

Me.txtQ1.Properties("ForeColor") = vbBlue

174 | Chapter 6: Using Programming to Manipulate Data

This routine, which can be placed in the report’s Open event, cycles through the prop-
erties and lists their names and values in the immediate window:

Private Sub Report_Open(Cancel As Integer)
 On Error Resume Next
 For z = 0 To Me.txtAvgQ1.Properties.Count - 1
 Debug.Print Me.txtAvgQ1.Properties(z).Name & Chr(9) & _
 Me.txtAvgQ1.Properties(z).Value
 Next z
End Sub

The On Error Resume Next statement is included because not every property has a
value. The result of running this code can be seen in Figure 6-37 (of course, there are
more properties than just those shown in the figure). Bear in mind that this is a list of
properties for a text box. Other controls, and the report sections, will have some
properties that are unique to those particular objects.

Discussion
Figure 6-38 shows a simple report design. In the Detail section are four text box con-
trols, named txtQ1, txtQ2, txtQ3, and txtQ4. In the Report Footer section are four
text box controls named txtAvgQ1, txtAvgQ2, txtAvgQ3, and txtAvgQ4. We’ll spec-
ify some formatting to be applied to these text box controls when the report is run, if
certain values are present in the data.

Figure 6-37. Properties for a text box control on a report

Creating Custom Report Formatting | 175

Code that tests values and formats the controls is found in two routines: the Format
event of the detail section, and the Format event of the report footer. The first routine
formats the controls in the detail section. The controls are first initialized to be black
and not italic. This is necessary because the routine will be run multiple times (once
for each record).

After the initialization, each of the data fields (Q1, Q2, etc.) is tested for its value. If
the value is over the given threshold for that field, the control that houses that piece
of data is changed to be blue and italic. Note how precisely you can control the for-
matting: if the values of Q1, Q2, or Q3 are >80, the formatting is applied; the value
of Q4, however, must be greater than 85 for the formatting to be applied. Here’s the
complete routine:

Private Sub Detail_Format(Cancel As Integer, FormatCount As Integer)
 Me.txtQ1.Properties("ForeColor") = vbBlack
 Me.txtQ2.Properties("ForeColor") = vbBlack
 Me.txtQ3.Properties("ForeColor") = vbBlack
 Me.txtQ4.Properties("ForeColor") = vbBlack
 Me.txtQ1.Properties("FontItalic") = False
 Me.txtQ2.Properties("FontItalic") = False
 Me.txtQ3.Properties("FontItalic") = False
 Me.txtQ4.Properties("FontItalic") = False

 If Me.Q1 > 80 Then
 Me.txtQ1.Properties("ForeColor") = vbBlue
 Me.txtQ1.Properties("FontItalic") = True
 End If
 If Me.Q2 > 80 Then
 Me.txtQ2.Properties("ForeColor") = vbBlue
 Me.txtQ2.Properties("FontItalic") = True

Figure 6-38. A simple report design

176 | Chapter 6: Using Programming to Manipulate Data

 End If
 If Me.Q3 > 80 Then
 Me.txtQ3.Properties("ForeColor") = vbBlue
 Me.txtQ3.Properties("FontItalic") = True
 End If
 If Me.Q4 > 85 Then
 Me.txtQ4.Properties("ForeColor") = vbBlue
 Me.txtQ4.Properties("FontItalic") = True
 End If
End Sub

The second routine tests which of the four averages in the report footer is highest.
The control holding the highest average is given a blue border:

Private Sub ReportFooter_Format(Cancel As Integer, FormatCount As Integer)
 If Me.txtAvgQ1 > Me.txtAvgQ2 Then
 If Me.txtAvgQ1 > Me.txtAvgQ3 Then
 If Me.txtAvgQ1 > Me.txtAvgQ4 Then
 Me.txtAvgQ1.Properties("BorderStyle") = 1
 Me.txtAvgQ1.Properties("BorderColor") = vbBlue
 Else
 Me.txtAvgQ4.Properties("BorderStyle") = 1
 Me.txtAvgQ4.Properties("BorderColor") = vbBlue
 End If
 Else
 If Me.txtAvgQ3 > Me.txtAvgQ4 Then
 Me.txtAvgQ3.Properties("BorderStyle") = 1
 Me.txtAvgQ3.Properties("BorderColor") = vbBlue
 Else
 Me.txtAvgQ4.Properties("BorderStyle") = 1
 Me.txtAvgQ4.Properties("BorderColor") = vbBlue
 End If
 End If
 Else
 If Me.txtAvgQ2 > Me.txtAvgQ3 Then
 If Me.txtAvgQ2 > Me.txtAvgQ4 Then
 Me.txtAvgQ2.Properties("BorderStyle") = 1
 Me.txtAvgQ2.Properties("BorderColor") = vbBlue
 Else
 Me.txtAvgQ4.Properties("BorderStyle") = 1
 Me.txtAvgQ4.Properties("BorderColor") = vbBlue
 End If
 Else
 If Me.txtAvgQ3 > Me.txtAvgQ4 Then
 Me.txtAvgQ3.Properties("BorderStyle") = 1
 Me.txtAvgQ3.Properties("BorderColor") = vbBlue
 Else
 Me.txtAvgQ4.Properties("BorderStyle") = 1
 Me.txtAvgQ4.Properties("BorderColor") = vbBlue
 End If
 End If
 End If
End Sub

Rounding Values | 177

Figure 6-39 shows the report after it is run. As expected, for Q1, Q2, and Q3, any
value over 80 is italicized and appears in blue; for Q4, the value is italicized and
printed in blue only if it is over 85. Also, the highest average on the bottom has a
blue border around it.

Working at the level of controls, within the report events, opens the door for many
formatting possibilities. This recipe touched on the basics, but some experimentation
on your part will reveal numerous ways to enhance your reports.

6.14 Rounding Values

Problem
What are some ways I can control rounding of Single or Double number types? How
does the Round function work, and are there alternatives?

Solution
The Round function takes a decimal value and rounds it to the number of decimal
points supplied to the function. It accepts two arguments: the number being treated,
and the number of decimal places to round to. Here are some examples:

• Round(45.8645618, 0) returns 46

• Round(45.8645618, 1) returns 45.9

• Round(45.8645618, 2) returns 45.86

• Round(45.8645618, 3) returns 45.865

• Round(45.8645618, 4) returns 45.8646

• Round(45.8645618, 5) returns 45.86456

• Round(45.8645618, 6) returns 45.864562

Figure 6-39. The report with custom formatting

178 | Chapter 6: Using Programming to Manipulate Data

Using the Round function in a routine is straightforward. Here is an example of apply-
ing Round to a set of table records:

Sub access_round()
 Dim conn As ADODB.Connection
 Set conn = CurrentProject.Connection
 Dim rs As New ADODB.Recordset
 Dim z As Integer
 Dim ssql As String
 ssql = "Select * from data"
 rs.Open ssql, conn, adOpenKeyset, adLockOptimistic
 For z = 1 To 3
 Debug.Print rs.Fields(1)
 Debug.Print Round(rs.Fields(1), 0)
 Debug.Print Round(rs.Fields(1), 1)
 Debug.Print Round(rs.Fields(1), 2)
 Debug.Print Round(rs.Fields(1), 3)
 Debug.Print Round(rs.Fields(1), 4)
 Debug.Print Round(rs.Fields(1), 5)
 Debug.Print Round(rs.Fields(1), 6)
 rs.MoveNext
 Next z
End Sub

Discussion
The Access Round function is not as strong as its Excel cousin, so this is a good place
to use Excel for some extra muscle. (For an introduction to using Excel functions
from within Access, see Recipe 6.1.)

There are three ways that Excel can run circles around Access’ rounding. First, if you
pass a negative number to Access’ Round function as the second argument (the num-
ber of places to round to), an error will be generated. Not so with the Excel Round
function. Here is a routine that calls the Round function in Excel to manipulate the
Access values:

Sub excel_round()
 Dim xcl As Object
 Set xcl = CreateObject("Excel.Application")
 Dim conn As ADODB.Connection
 Set conn = CurrentProject.Connection
 Dim rs As New ADODB.Recordset
 Dim z As Integer
 Dim ssql As String
 ssql = "Select * from data"
 rs.Open ssql, conn, adOpenKeyset, adLockOptimistic
 For z = 1 To 3
 Debug.Print rs.Fields(1)
 Debug.Print xcl.WorksheetFunction.Round(rs.Fields(1), 6)
 Debug.Print xcl.WorksheetFunction.Round(rs.Fields(1), 5)
 Debug.Print xcl.WorksheetFunction.Round(rs.Fields(1), 4)
 Debug.Print xcl.WorksheetFunction.Round(rs.Fields(1), 3)
 Debug.Print xcl.WorksheetFunction.Round(rs.Fields(1), 2)
 Debug.Print xcl.WorksheetFunction.Round(rs.Fields(1), 1)

Rounding Values | 179

 Debug.Print xcl.WorksheetFunction.Round(rs.Fields(1), 0)
 Debug.Print xcl.WorksheetFunction.Round(rs.Fields(1), -1)
 Debug.Print xcl.WorksheetFunction.Round(rs.Fields(1), -2)
 rs.MoveNext
 Next z
End Sub

Note that the last two Debug.Print lines send -1 and -2, respectively, as the number
of decimal places to round to. Figure 6-40 shows the values written to the immedi-
ate window. The plain value 46 is returned with 0 as the decimal argument. In other
words, the value is rounded to the ones position. When the decimal argument is -1,
the value 50 is returned. In this case, the number is rounded a further position point
to the left; i.e., to the tens position. When the decimal argument is -2, the value is
rounded to the nearest hundred. The initial value of 45.8645618 is on the low side of
100, so the returned value is 0.

Excel provides two additional functions that offer control on rounding: RoundUp and
RoundDown. As their names imply, these functions can be used to force the rounding
effect to all up or all down. Here is a variation of the preceding routine in which all
occurrences of the Round function have been changed to RoundDown:

Sub excel_rounddown()
 Dim xcl As Object
 Set xcl = CreateObject("Excel.Application")
 Dim conn As ADODB.Connection
 Set conn = CurrentProject.Connection
 Dim rs As New ADODB.Recordset
 Dim z As Integer
 Dim ssql As String
 ssql = "Select * from data"
 rs.Open ssql, conn, adOpenKeyset, adLockOptimistic
 For z = 1 To 3
 Debug.Print rs.Fields(1)
 Debug.Print xcl.WorksheetFunction.RoundDown(rs.Fields(1), 6)
 Debug.Print xcl.WorksheetFunction.RoundDown(rs.Fields(1), 5)

Figure 6-40. Rounded values created with Excel’s help

180 | Chapter 6: Using Programming to Manipulate Data

 Debug.Print xcl.WorksheetFunction.RoundDown(rs.Fields(1), 4)
 Debug.Print xcl.WorksheetFunction.RoundDown(rs.Fields(1), 3)
 Debug.Print xcl.WorksheetFunction.RoundDown(rs.Fields(1), 2)
 Debug.Print xcl.WorksheetFunction.RoundDown(rs.Fields(1), 1)
 Debug.Print xcl.WorksheetFunction.RoundDown(rs.Fields(1), 0)
 Debug.Print xcl.WorksheetFunction.RoundDown(rs.Fields(1), -1)
 Debug.Print xcl.WorksheetFunction.RoundDown(rs.Fields(1), -2)
 rs.MoveNext
 Next z
End Sub

As you might imagine, the results (shown in Figure 6-41) are different.

Of course, the RoundUp function returns another variation of results. For example,
using RoundUp, the value 100 is returned from this line:

 Debug.Print xcl.WorksheetFunction.RoundUp(rs.Fields(1), -2)

6.15 Running Word Mail Merges

Problem
How can I run a dynamic Word mail merge from Access? The goal is to have the
source of the merge be based on a query of data from the database itself, and to have
the database start the merge operation and use the selected set of records.

Solution
With programmatic control over Word, it is easy to run a mail merge from Access.
This example assumes that you’ve already created a Word mail merge document—
and that the merge fields are in place within the document—and have been associ-
ated with database fields. The remaining task is to select which records (based on
criteria) should be included in the merge.

Figure 6-42 shows the design of a sample merge document.

Figure 6-41. Values returned with Excel’s RoundDown function

Running Word Mail Merges | 181

The fields shown in the Word document match fields from the source Access table,
shown in Figure 6-43. Note that not all of the fields in the table are placed in the
Word document. The extra fields can be used for filtering the records that will be
used as the mail merge source, if desired. This Access routine runs the merge: a
Word application object and a Word document object are created and used to open
the mail merge document (Newsletter.doc):

Sub mail_merge()
 Dim this_path As String
 Dim this_db As String
 this_path = Application.CurrentProject.Path & "\"
 this_db = this_path & Application.CurrentProject.Name
 Dim word_app As Word.Application
 Dim word_doc As Word.Document
 Set word_app = CreateObject("Word.Application")
 Set word_doc = word_app.Documents.Open(this_path & "Newsletter.doc")
 word_app.Visible = True

 If word_doc.MailMerge.State <> wdMainAndDataSource Then
 word_doc.MailMerge.OpenDataSource _
 Name:=this_db, _
 ReadOnly:=True, LinkToSource:=True, _
 SQLStatement:="SELECT * FROM [People] "

Figure 6-42. A simple mail merge document

182 | Chapter 6: Using Programming to Manipulate Data

 word_doc.MailMerge.Destination = wdSendToNewDocument
 word_doc.MailMerge.Execute
 End If
End Sub

Within the code, the source is set as a select of all the records in the People table:

 SQLStatement:="SELECT * FROM [People] "

The destination for the merge is set to a new document (instead of email or straight to
a printer), and the Execute method runs the merge. The result is shown in Figure 6-44.
The People table has 800 records, and the merge has created 800 letters.

Figure 6-43. A table of data to be used in a mail merge

Figure 6-44. The merge is complete

Building a Multifaceted Query Selection Screen | 183

Discussion
Altering the SQL statement will enable you to use a filtered set of records as the
source of the merge. For example, to pull out only records for people who are
members, and who live in NY as the source for the merge, you could use this SQL
statement:

SQLStatement:="SELECT * FROM [People] Where State= 'NY' And Member=-1"

Using these criteria, just 45 letters are generated. To prove that this is the correct
number, try running a query on the People table, setting State to NY and Members
to True. Doing this returns the expected 45 records.

Being able to alter the SQL statement just prior to running a mail merge gives you an
unusual degree of flexibility—you can change the results of the merge without
changing the source from within the Word document.

6.16 Building a Multifaceted Query Selection Screen

Problem
What is the best way to build a form that allows a user to query data through a series
of selections? In other words, how can you use a series of controls on a form to cre-
ate a SQL statement without forcing the user to understand the nuts and bolts of the
SQL language?

Solution
Query construction forms are a great way to let users build queries and select crite-
ria in a paradigm they understand. Of course, the structure of such a form is
dependent on the actual schema of the database in question. That is, the fields
from which users will make selections are dependent on the database and the busi-
ness case of the data.

Figure 6-45 shows two related tables. Each customer can have multiple purchases. A
form, shown in Figure 6-46, has been designed that lets users filter records based on
state, customer type, and total amount spent.

The custom query form has been designed to allow the user to select any mix of mul-
tiple states and multiple customer types, and to specify a minimum amount spent.
All of the criteria are optional. If no selections are made, all records are returned.
Each time the Go button is clicked, the query SQL is assembled, and the results are
put in a new table. The user is required to enter the new table name on the form; if
he does not provide a value, he will be prompted to do so.

184 | Chapter 6: Using Programming to Manipulate Data

Discussion
The form is unbound—that is, it has no underlying table or query. The listboxes are
filled by querying the actual values from the table fields themselves. For example,
this query, which is the Row Source of the States listbox, fills the box:

Figure 6-45. Related customer and sales tables

Figure 6-46. A custom query form

Building a Multifaceted Query Selection Screen | 185

SELECT tblCustomers.State
FROM tblCustomers
GROUP BY tblCustomers.State
ORDER BY tblCustomers.State;

The Click event of the Go button is where the workhorse code appears:

Private Sub cmdGo_Click()
 On Error GoTo err_end
 Dim conn As ADODB.Connection
 Set conn = CurrentProject.Connection
 Dim ssql As String
 Dim z As Integer
 Dim state_criteria As Boolean
 Dim customer_type_criteria As Boolean
 Dim amount_criteria As Boolean
 Dim criteria_flag As Boolean

 criteria_flag = False

 'is a name provided for the new table?
 If IsNull(Me.txtTableName) Or Len(Me.txtTableName) < 1 Then
 MsgBox "Must provide a name for the new table"
 Exit Sub
 End If

 'delete table, if it exists
 On Error Resume Next
 DoCmd.DeleteObject acTable, Me.txtTableName
 On Error GoTo err_end

 'any amount entered?
 amount_criteria = False
 If IsNumeric(Me.txtAmount) Then
 amount_criteria = True
 criteria_flag = True
 End If

 'any customer types selected?
 customer_type_criteria = False
 For z = 0 To Me.lstCustomerTypes.ListCount - 1
 If Me.lstCustomerTypes.Selected(z) = True Then
 customer_type_criteria = True
 criteria_flag = True
 End If
 Next z

 'any states selected?
 state_criteria = False
 For z = 0 To Me.lstStates.ListCount - 1
 If Me.lstStates.Selected(z) = True Then
 state_criteria = True
 criteria_flag = True
 End If
 Next z

186 | Chapter 6: Using Programming to Manipulate Data

 ssql = "SELECT FirstName, LastName, Address, City, State, CustomerType, "
 ssql = ssql & "Sum(Amount) AS SumOfAmount INTO " & Me.txtTableName
 ssql = ssql & " FROM tblCustomers INNER JOIN tblSales ON "
 ssql = ssql & "tblCustomers.CustomerID = tblSales.CustomerID "
 ssql = ssql & "GROUP BY FirstName, LastName, Address, "
 ssql = ssql & "City, State, CustomerType "

 If criteria_flag = True Then
 ssql = ssql & " Having "
 If state_criteria = True Then
 ssql = ssql & "("
 For z = 0 To Me.lstStates.ListCount - 1
 If Me.lstStates.Selected(z) = True Then
 ssql = ssql & " State='" & _
 Me.lstStates.ItemData(z) & "' Or "
 End If
 Next z
 ssql = Left(ssql, Len(ssql) - 4)
 ssql = ssql & ") AND "
 End If

 If customer_type_criteria = True Then
 ssql = ssql & "("
 For z = 0 To Me.lstCustomerTypes.ListCount - 1
 If Me.lstCustomerTypes.Selected(z) = True Then
 ssql = ssql & " CustomerType='" & _
 Me.lstCustomerTypes.ItemData(z) & "' Or "
 End If
 Next z
 ssql = Left(ssql, Len(ssql) - 4)
 ssql = ssql & ") AND "
 End If

 If amount_criteria = True Then
 ssql = ssql & "(Sum(Amount)>=" & Me.txtAmount & ")"
 End If
 'remove trailing AND, if it is there
 If Right(ssql, 5) = " AND " Then
 ssql = Left(ssql, Len(ssql) - 5)
 End If
 End If

 conn.Execute ssql
 MsgBox "done"
 Exit Sub
err_end:
 MsgBox Err.Description
End Sub

The code assembles a SQL statement that is executed near the end of the routine.
Along the way, the existence of criteria is tested, and any supplied criteria are
included in the SQL assembly. An important point about the criteria is the consider-
ation of AND and OR logic. Multiple states are treated with OR (for example, AZ or CA
or ID). Customer types are treated the same way. However, AND statements are used

Building a Multifaceted Query Selection Screen | 187

to bring these individual criteria points together. Here is the SQL statement that is
generated by the conditions shown in Figure 6-46:

SELECT FirstName, LastName, Address, City, State, CustomerType,
 Sum(Amount) AS SumOfAmount
INTO MyTable
FROM tblCustomers
INNER JOIN tblSales ON tblCustomers.CustomerID = tblSales.CustomerID
GROUP BY FirstName, LastName, Address, City, State, CustomerType
HAVING (State='AZ' Or State='CA' Or State='ID')
 AND (CustomerType='Internet') AND (Sum(Amount)>=1000)

OR statements separate the states, and AND statements separate the states, customer
types, and amount.

To learn more about the logic operators AND and OR, see Recipe 1.2.

Figure 6-47 shows the new table that is created to display the results when this query
is run. Displaying the results in a new table is a subjective decision; other processing
could be done with the results instead.

Figure 6-47. A table filled from a query

188

Chapter 7CHAPTER 7

Importing and Exporting Data 7

In many cases, the data you want to analyze isn’t in the tool you want to use. This
means that you’ll frequently need to import data from other applications into Access
so that you can use Access’ tools, or, if you want to use a different tool to look at
your Access data, you’ll need to export your data. There are a number of possible
approaches for doing this.

In this chapter, you’ll learn how to import and export data using Access’ tools, how
to write Access code to save or load data, and how to process data using XML files.
You’ll also learn how to exchange data between Access and other Office tools (Excel,
PowerPoint, and Outlook). Additional recipes detail sharing data with SQL Server,
creating an RSS feed from Access, and more.

7.1 Creating an Import/Export Specification

Problem
I have to import the same information into my Access database on a regular basis.
Having to specify all of the options each time I import the file can lead to mistakes,
not to mention extra work. Is there a way to save the specifications I choose when I
import or export a file?

Solution
You can store the information you specify while importing or exporting a file as an
import/export specification. The specification becomes part of your Access database,
which you can use each time you import or export a file.

To create an import/export specification, you simply use the appropriate Import or
Export Wizard, and, after you’ve finished making all your choices, save the
specification to the database. The next time you use the wizard, you can select the
specification, and all of the settings will be restored, leaving you free to just press
Finish to complete the import or export.

Creating an Import/Export Specification | 189

The instructions in this recipe apply to Access 2007. Creating import/
export specifications in earlier versions of Access is quite similar.

Let’s walk through an example. Choose the External Data command tab, then locate
the Import gallery, and choose the Text File command. Access will display the win-
dow shown in Figure 7-1. Specify the name of the file to import by typing it or using
the Browse button. Choose the way you want to store the data in the database, and
then press OK to launch the Import Text Wizard.

The Import Text Wizard (see Figure 7-2) allows you to choose how you want to
import the text file.

Once you’ve set all of the import options, press the Finish button to run the import.
When the data has been imported, Access will prompt you to save the choices you’ve
just made (Figure 7-3). Checking the “Save import steps” checkbox allows you to
add the task to your list of Data Tasks. Enter a name and a description, then press
the Save button.

Once the import steps have been saved, you can run them again by choosing the
External Data command tab, and then by choosing the Saved Imports command
from the Import gallery. This will end up displaying the Manage Data Tasks window
(see Figure 7-4). Select the task you want to execute, and press the Run button.

Figure 7-1. Starting the Import Text Wizard

190 | Chapter 7: Importing and Exporting Data

Figure 7-2. Running the Import Text Wizard

Figure 7-3. Saving the import steps

Creating an Import/Export Specification | 191

Discussion
Sometimes it’s useful to save more detailed import/export information—for exam-
ple, information about how individual fields should be treated. Information such as
this can also be included in an import/export specification.

Let’s step back through the previous example. Once you’ve set all of the import
options through the wizard, instead of clicking Finish to run the import, press the
Advanced button to display the Import Specification dialog box (see Figure 7-5).
This dialog box allows you to tweak settings beyond those you can set in the wizard.
For example, you can change the way date and time information is imported, along
with other things, such as how text fields are qualified, and how numbers are
formatted.

The Import/Export Specification dialog displays a summary of your settings. You can
save these settings by pressing the Save As button. Then, you’ll be prompted to give
your specification a name (as shown in Figure 7-6). Press OK to save the specification
to your database.

Once you’ve saved your import/export specification, you can select it the next time
you import or export a file. To access your saved import/export specifications, press
the Advanced button in the Import or Export Wizard.

Using import/export specifications can simplify dealing with data that
you import or export regularly, as you won’t have to specify the
detailed field information each time you import or export the file.
However, bear in mind that while all of the field information is saved
in the specification, some of the other information you specified in the
wizard—such as the name of the primary key, and the name of the
table to be created—may not be saved. So, if you’re using an import/
export specification, it’s a good idea to specify these options in the
wizard before selecting the specification.

Figure 7-4. Selecting a saved import or export task

192 | Chapter 7: Importing and Exporting Data

In the Import/Export Specification dialog box (shown in Figure 7-5), press the Specs
button to display a list of import/export specifications in your database (see
Figure 7-7).

Choose the specification you want to use and press Open. Then, press the Finish
button to complete the import or export. You’ll find that all of the settings you chose
when you created the specification will be replicated.

Unfortunately, you can’t browse the details of an import or export specification. The
only way to see the results of the specification is to actually import or export a file.
This can complicate matters if you wish to create a new database file. You can’t drag
and drop the specifications to the new database because you can’t see them. However,
you can import the specifications into your new database.

Figure 7-5. The Import Specification dialog box

Figure 7-6. Choosing a name for your import/export specification

Creating an Import/Export Specification | 193

First, create a new, blank database. Choose the External Data command tab, then
locate the Import gallery, and choose the Access command. This will display the
Import Objects dialog box. Press the Options button to see the hidden portion of the
dialog box (see Figure 7-8).

At the bottom of the dialog box are three sections: Import, Import Tables, and
Import Queries. Check the Import/Export Specs box in the Import frame. If you only
want to import the specifications, uncheck the Relationships box and press OK. Oth-
erwise, review the rest of the information in the dialog box, and choose those items
you want to import before pressing OK.

When the import is complete, your import/export specification will be ready to use
in your new database.

Figure 7-7. Selecting an import/export specification

Figure 7-8. The Import Objects Wizard for an Access database file

194 | Chapter 7: Importing and Exporting Data

7.2 Automating Imports and Exports

Problem
Is there a way to automate import and export processes so that my users don’t have
to use the Import/Export Wizards?

Solution
Access provides a set of actions that you can use from a macro or a Visual Basic pro-
cedure to automate the transfer process. You can choose to transfer data to or from
an Access database, a spreadsheet, a SQL Server database, or a text file.

Suppose you simply want to enable your users to transfer a table from one database to
another. Create a macro, and select TransferDatabase as the action (see Figure 7-9). In
the Action Arguments section, specify the transfer type, the database type, the data-
base name, the type of object to be transferred, the source and destination, and
whether you want to copy only the structure.

Figure 7-9. Creating a transfer database macro

Automating Imports and Exports | 195

Running this macro transfers the selected material from one database to another.
While this example transfers only a single table, you can transfer multiple items by
adding multiple actions to the macro.

You can use the TransferDatabase action to transfer several different
kinds of databases, including dBase, Paradox, and any OLE DB-
compliant database. If you need to work with SQL Server, however,
you should use the TransferSQLDatabase action.

Text files can be transferred using the TransferText action. Like the TransferDatabase
action, the TransferText action relies on a set of arguments to control how it works (see
Figure 7-10). You can import or export delimited data, fixed-width data, and HTML
tables. You can also export data to Microsoft Word, or set up links to external data.

The TransferText action relies on import/export specifications (see Recipe 7.1) to
determine how the data is transformed. Beyond choosing the import/export specifi-
cation, all you need to do is specify the table you want to use, and the name of the
file containing the data. The Transfer Type argument determines whether the table is
the source of the data, or the destination for the data.

Figure 7-10. Creating a transfer text macro

196 | Chapter 7: Importing and Exporting Data

Discussion
Macros are one option, but, as mentioned earlier, you can also invoke these transfer
actions through the Visual Basic DoCmd object. The following routine uses this tech-
nique to export a database table:

Sub Example7_2()

Dim fso As FileSystemObject

Set fso = New FileSystemObject

If fso.FileExists("C:\AccessData\Chapter7-2.csv") Then
 fso.DeleteFile "C:\AccessData\Chapter7-2.csv"

End If

On Error Resume Next

DoCmd.TransferText acExportDelim, "NASDAQ Import Specification", _
 "NASDAQ", "C:\AccessData\Chapter7-2.csv"
If Err.Number <> 0 Then
 MsgBox "An Error occured during the transfer (" & Err.Description & ")"

End If

On Error GoTo 0

End Sub

To use this approach, you’ll need to add a reference to the Microsoft
Scripting Runtime library. See Recipe 7.3 for instructions on adding
this reference.

This routine begins by deleting the output data file if it already exists. Then, it uses
the DoCmd.TransferText method to export a table as a disk file. Note that the parame-
ters are the same as those you would have entered as arguments to the macro.

Including the On Error Resume Next statement before starting the transfer forces Visual
Basic to automatically execute the next statement, if it encounters an error during the
transfer. Following the transfer, the routine checks the Err object to see whether an
error occurred. If an error is detected, it displays a message box with a description of
the error. Finally, On Error GoTo 0 is used to resume normal error handling.

One advantage of using VBA code to process an import or export is that you can do
a lot of interesting things before and after the transfer. For instance, if you wanted to
keep a history of the last three exports, you could use statements like these to rename
the destination file before executing the transfer:

If fso.FileExists(BaseFile & "Backup2.csv") Then
 fso.DeleteFile BaseFile & "Backup2.csv"

Exporting Data with the FileSystemObject | 197

End If

fso.MoveFile BaseFile & "Backup1.csv", BaseFile & "Backup2.csv"
fso.MoveFile BaseFile & ".csv", BaseFile & "Backup1.csv"

You can also modify any of the values passed to the TransferText method. For
example, you can easily use different table names each time you import data.

7.3 Exporting Data with the FileSystemObject

Problem
Working with files (especially for text-oriented files) using normal VBA code can be
challenging. The FileSystemObject—and its related objects—provide a simpler way
to process external files.

Solution
By default, Access doesn’t load the library containing the FileSystemObject. So, the
first step is to choose Tools ➝ References from the Visual Basic Editor’s main menu
to display the References dialog box. Scroll though the list of libraries until you find
Microsoft Scripting Runtime (see Figure 7-11). Place a checkmark next to it, and
press OK.

Figure 7-11. Adding the Microsoft Scripting Runtime library to your Access application

198 | Chapter 7: Importing and Exporting Data

Despite its name, the Microsoft Scripting Runtime library contains only the
FileSystemObject and its related objects. Once you’ve added a reference to this
library, you can use the following routine to copy a series of rows from your database
into a simple comma-separated values (CSV) text file:

Sub Example7_3()

Dim fso As FileSystemObject
Dim txt As TextStream
Dim rs As ADODB.Recordset
Dim s As String

Set fso = New FileSystemObject
Set txt = fso.CreateTextFile("c:\AccessData\Chapter7-2.txt", True)

Set rs = New ADODB.Recordset
rs.ActiveConnection = CurrentProject.Connection
rs.Open "Select Date, Open, Close From NASDAQ", , adOpenForwardOnly, adLockReadOnly

txt.WriteLine "Date, Open, Close"
Do While Not rs.EOF
 s = """" & FormatDateTime(rs("Date"), vbShortDate) & """, "
 s = s & FormatNumber(rs("Open"), 2, vbFalse, vbFalse, vbFalse) & ", "
 s = s & FormatNumber(rs("Close"), 2, vbFalse, vbFalse, vbFalse)
 txt.WriteLine s

 rs.MoveNext

Loop

rs.Close
txt.Close

End Sub

The routine begins by declaring variables for the FileSystemObject, TextStream, and
ADODB.Recordset. Next, a new instance of the FileSystemObject is created and used to
create a new TextStream file. This object provides the method to write data to the
external disk file.

With the external file ready for data, the routine opens a Recordset object that maps
to one of the tables in the database. Then, before any data is processed, a single line
of text containing the column headers is written out using the TextStream’s WriteLine
method. Next, a Do While loop is used to iterate through each row in the Recordset.
Inside the loop, the routine creates a string that formats each field to output, fol-
lowed by a comma. The WriteLine method is then used to output the string to the
text file.

Finally, when all of the rows have been processed, the Recordset and TextStream
objects are closed. The output generated by the routine is shown in Figure 7-12.

Importing Data with the FileSystemObject | 199

Discussion
The FileSystemObject family of objects provides an easy and powerful way for your
Access application to interact with external files. While this example showed how to
export data into a simple CSV text file, you can easily format the data any way you
want.

In addition to a method for creating TextStream objects, the FileSystemObject con-
tains a number of other methods that allow you to browse drives and folders on your
computer, along with tools to copy and move files from one location to another.

The TextStream object includes methods to read and write character data. While you
can choose to read your data by specifying the number of characters to be read, more
than likely you’ll choose to use the ReadLine method, which reads all of the charac-
ters from the file until the first newline character is found, or the ReadAll method,
which loads the entire file into a single string variable.

7.4 Importing Data with the FileSystemObject

Problem
How can I import data using the FileSystemObject?

Figure 7-12. The text file generated by the routine

200 | Chapter 7: Importing and Exporting Data

Solution
You learned how to export information using the FileSystemObject in Recipe 7.3,
but the import process is a bit more challenging. When importing data, you don’t
just have to read the file, you have to disassemble the file into each piece that goes
into the database.

To keep this example simple, I’ll assume that the table into which the data will be
imported exists and is empty. I’ll also assume that the data is properly formatted,
and that there’s no need for error checking. You can easily add data-formatting and
error-checking features if and when you need them.

Let’s assume that the data is structured as shown in Figure 7-13. The first line of the
data contains the name of the table to be used. In this case, we will import the data
into Table7-4.

The second line of the text file contains the names of the fields to be imported. The
field names are separated by commas. Note that there is no comma following the last
field name.

The data type for each field is found in the third line of the text file. These values
don’t have to match up with the data types available in Access, as only the import
program uses this information.

Following these three lines of information is the data. Each line of data represents
one row in the table. The values are separated by commas, just like the field names
and data types.

Once you’ve constructed your data file, you can use the following routine to read the
file, parse it, and load the information into the database:

Figure 7-13. Some data to be imported into Access

Importing Data with the FileSystemObject | 201

Sub Example7_4()

Dim fso As FileSystemObject
Dim txt As TextStream

Dim rs As ADODB.Recordset
Dim Fields() As String
Dim Table As String
Dim Types() As String

Dim s As String
Dim x() As String

Dim i As Integer

Set fso = New FileSystemObject
Set txt = fso.OpenTextFile("c:\AccessData\Chapter7-4.txt", ForReading, False)

'get table name
Table = txt.ReadLine

Set rs = New ADODB.Recordset
rs.ActiveConnection = CurrentProject.Connection
rs.Open Table, , adOpenDynamic, adLockOptimistic

'get field names
s = txt.ReadLine
x = Split(s, ",")
ReDim Fields(UBound(x))
For i = 0 To UBound(x)
 Fields(i) = GetString(x(i))

Next i

'get field types
s = txt.ReadLine
x = Split(s, ",")
ReDim Types(UBound(x))

For i = 0 To UBound(x)
 Types(i) = GetString(x(i))

Next i

'load data
Do While Not txt.AtEndOfStream
 s = txt.ReadLine
 x = Split(s, ",")
 rs.AddNew
 For i = 0 To UBound(Fields)
 Select Case Types(i)

 Case "Date"
 rs.Fields(Fields(i)) = GetDate(x(i))

202 | Chapter 7: Importing and Exporting Data

 Case "Double"
 rs.Fields(Fields(i)) = GetDouble(x(i))

 Case "String"
 rs.Fields(Fields(i)) = GetString(x(i))

 End Select

 Next i
 rs.Update

 Loop

rs.Close
txt.Close

End Sub

While this routine is rather long, it’s pretty straightforward. It begins by declaring
some variables that will be used later. Then, it opens the text file using the
OpenTextStream method, and, using the ReadLine method, reads the first line of the
file to get the name of the table.

The table is then opened using optimistic locking and a dynamic cursor. This allows
us to add the new records to the database as they’re decoded.

The next block of code reads the second line of text from the file, and uses the Split
function to break the single string into a string array whose elements represent the
text between the commas (the first element contains the text before the first comma;
the last element contains the text following the last comma).

Because the Split function returns all of the text apart from the commas, you may
find that additional spaces that you may or may not want are included with the text.
Rather than dealing with this issue here, I’ve created a separate function called
GetString that cleans up the raw text (as described in the next section) and returns it;
the result is saved in Fields.

The process used to get the names of the fields is then repeated to get the data types
for each field, and the result is saved in the Types array.

We’re now ready to load the data. The next line of data from the file is read in, and
the Split function is used to break it apart into a string array. Then, a new row is
added to the database, and a For loop is used to process each individual field.

Based on the type of the field, one of the string conversion routines (GetDate,
GetDouble, and GetString) is called to get the string value into the proper format. The
result is then saved into the corresponding database field.

Once all of the fields have been processed, the Update method is used to save the new
row to the database. When all of the data has been processed, the Recordset and
TextStream objects are closed, and the routine ends.

Importing Data with the FileSystemObject | 203

Discussion
The GetDate and GetDouble functions are nearly identical: they merely call the appro-
priate conversion functions to convert the string read from the text file to the desired
data format. In the case of the GetDouble function, the CDbl function is used. In the
case of the GetDate function (shown here), the CDate function is used to convert the
supplied value into a Date value:

Function GetDate(val As String) As Date

GetDate = CDate(val)

End Function

While it would have been easy to call the CDate function directly in the appropriate
Case clause in the Example7_4 routine, that probably isn’t a good idea. In reality, you
might want to do something like this, which returns the current date whenever it has
to process an invalid date:

Function GetDate(val As String) As Date

If IsDate(val) Then
 GetDate = CDate(val)

Else
 GetDate = Now

End If

End Function

The GetString function, on the other hand, is slightly different. First, the Trim func-
tion is used to eliminate any extra spaces at the beginning and end of the string.
Then, the routine examines the first character of the string, looking for a quotation
mark. If it finds one, it looks at the last character in the string. If both are quotes, it
throws them away, and returns the contents inside without any further processing.
Otherwise, the value it returns is the trimmed string value. Here is the function:

Function GetString(val As String) As String

Dim r As String

r = Trim(val)

If Left(r, 1) = """" Then
 If Right(r, 1) = """" Then
 r = Mid(r, 2, Len(r) - 2)

 End If

End If

204 | Chapter 7: Importing and Exporting Data

GetString = r

End Function

These conversion functions let you create data types that are processed differently by
the import than normal data types. For instance, you may choose to create a GetField
or GetTable function that automatically appends square brackets ([]) around field or
table names to ensure that there is no confusion inside Access.

Likewise, you may wish to automatically convert some strings to all capital letters to
simplify processing, or your data may contain Social Security numbers with dashes
that need to be removed before you store them in your database.

Another obvious extension to this process would be to create a new table using the
table name, field names, and data types. This is a relatively straightforward process
using either DAO or ADOX (see Recipe 4.1), and it’s something you may wish to
consider if you choose to write your own import program.

7.5 Importing and Exporting Using XML

Problem
How do I save data from my database using an XML format? Also, how can I import
XML-formatted data into my database?

Solution
To export an XML file, right-click on the name of the table or query you want to
export, and choose Export from the context menu. Select the filename you want to
use, and change the “Save as” type to XML. When you press the Export button,
Access will display the Export XML dialog box (see Figure 7-14).

Make sure that only the Data (XML) checkbox is selected, and press OK to finish
exporting your data. Access will generate a file similar to the one shown in
Figure 7-15.

Figure 7-14. The Export XML dialog box

Importing and Exporting Using XML | 205

While Access normally saves only one table per file, if your Access
database design includes Lookup fields, these tables will be exported
as well.

To import an XML file, simply choose File ➝ Get External Data ➝ Import from
Access’ main menu, and then select the file containing your data. The Import XML
dialog box will be displayed, containing the structure of your data (see Figure 7-16).
Press OK to load the data into your database.

Discussion
When you export a table or query to XML, you’ll see something like this (note that
XML files can be opened and viewed with simple text editors such as Notepad):

<?xml version="1.0" encoding="UTF-8"?>
<dataroot xmlns:od="urn:schemas-microsoft-com:officedata"
generated="2006-01-29T17:09:13">
 <Query7-5>
 <Date>2005-12-01T00:00:00</Date>
 <Open>10806.03</Open>
 <High>10985.01</High>
 <Low>10675.64</Low>
 <Close>10717.5</Close>
 <Volume>625469488</Volume>
 <Adj_x0020_Close>10717.5</Adj_x0020_Close>
 </Query7-5>
 <Query7-5>
 <Date>2005-11-01T00:00:00</Date>

Figure 7-15. Data generated by the XML export process

206 | Chapter 7: Importing and Exporting Data

 <Open>10437.51</Open>
 <High>10997.5</High>
 <Low>10347.7</Low>
 <Close>10805.87</Close>
 <Volume>4101536464</Volume>
 <Adj_x0020_Close>10805.87</Adj_x0020_Close>
 </Query7-5>
</dataroot>

The first line indicates that this is an XML file. After this declaration, all XML data
consists of pairs of tags, whose names are contained within less-than (<) and greater-
than (>) signs. The opening tag differs from the closing tag, in that the closing tag
includes a slash (/) character immediately following the less-than sign. For example,
<Date> and </Date> represent a matching pair of XML tags.

The characters inside the tags are case-sensitive, so <Date> can’t be
paired with </date>. An XML parser will treat them as two separate
tags, and will probably generate an error message.

Each matching pair of tags is called a node. A node can contain other nodes, which
makes for a very structured document. In the preceding example, the nodes are
indented so that it’s easy to determine which tags are paired. Unfortunately, Access
doesn’t bother with this indentation—but then again, you’ll probably rarely need to
look at the XML files it generates.

Take a look at the topmost node in the file (<dataroot>). You’ll notice some addi-
tional information following the node’s name. These pieces of information are
known as attributes, and they contain values that are associated with the node itself.
Working with attributes is discussed further in Recipe 7.9.

Figure 7-16. The Import XML dialog box

Generating XML Schemas | 207

Inside the <dataroot> node is a pair of <Query7-5> nodes. These nodes represent a
single row of data, exported from the Query7-5 table. Within the <Query7-5> node
are a series of nodes representing the fields that make up the row. The tags are
named after the fields, and the actual values for the fields are stored inside the nodes.
For example, the <Date> node from the first row contains the date/time value
2005-12-01T00:00:00.

As long as you construct a file with the proper node names for your table and fields,
you can easily import that data into Access, which will read the file and extract the
table and field names directly from the nodes.

7.6 Generating XML Schemas

Problem
I like the idea of exporting data using XML, but I need to preserve more information
about the structure of the data (such as the data types for each field and the primary
key). Can Access supply this information?

Solution
If you need to include additional information in your exported data, begin the export
of the table or query using the steps described in Recipe 7.5, but, when you reach the
Export XML dialog box (look back to Figure 7-14), also check the box marked
“Schema of the data (XSD)” before clicking OK. Access will automatically create a
second file with the same filename as your XML file, but with .xsd as the file exten-
sion. This file contains the schema for the data you just exported.

If you wish to combine the exported data and the schema definition, press the More
Options button on the Export XML dialog box to see all of the options available
when exporting data in XML format (see Figure 7-17). To embed the schema in the
same file, select the Schema tab, and choose “Embed schema in exported XML data
document.”

Note that Access will allow you to include information about any related tables when
your table’s definition is exported. These tables must have a defined relationship:
choose Tools ➝ Relationship from the Access main menu (Datasheet ➝ Relationships
in Access 2007) to verify whether the relationship exists, and define it, if necessary.

Discussion
Microsoft’s tool for exporting XML is somewhat limited, in that it allows you to
export only a single table at a time. However, you can easily write a little routine like
this one that will export multiple pieces of information at once:

Sub Example7_6()

Dim AddData As AdditionalData

208 | Chapter 7: Importing and Exporting Data

Set AddData = CreateAdditionalData

AddData.Add "S&P500"
AddData.Add "DowJones"

ExportXML acExportTable, "NASDAQ", _
 "c:\accessdata\chapter7-6A.xml", , , , , acEmbedSchema, , AddData

End Sub

Rather than starting at the top, let’s look first at the ExportXML statement toward the
end of this routine. This statement does all the real work. acExportTable tells the
statement to export the table. The next parameter is the DataSource, which contains
the name of the table (in this case, NASDAQ).

I’ve omitted the SchemaTarget, PresentationTarget, and ImageTarget parameters,
which would specify separate filenames for the XSD and XSLT information, and the
path where any images would be stored. I’ve also omitted the Encoding argument,
which would instruct Access to write the text in either UTF8 (the default) or UTF16.

The OtherFlags argument specifies acEmbedSchema in this example, but you can add
other flags, such as acExcludePrimaryKeyAndIndexes, if you don’t want to export pri-
mary key and index information when you export a schema, and acRunFromServer, if
you want Access to generate XSLT for a web server rather than for a client computer.

The next-to-last parameter, FilterCriteria, allows you to specify a filter so that the
contents of the entire table are not processed. The final parameter, AdditionalData, is
a reference to an AdditionalData object containing a collection of other tables to be
exported.

Figure 7-17. More options for exporting XML data

Using XSLT on Import or Export | 209

This object was created at the beginning of the routine: the variable AddData was
defined as AdditionalData, and the CreateAdditionalData function was used to cre-
ate a new instance of the AdditionalData object. The Add method was then used to
add the names of the tables to export to the object.

7.7 Using XSLT on Import or Export

Problem
I’d like to transform my data using XSLT while I’m importing or exporting. Where
do I begin?

Solution
XSLT (Extensible Stylesheet Language Transformations) is a powerful and complex
language that you can use to transform your data, including both the values and the
XML tags used. An XSLT transform (OK, I really mean “program,” but an XSLT pro-
gram is unlike anything you might create in any other programming language) is
written in XML.

Let’s assume that your XML data looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<dataroot xmlns:od="urn:schemas-microsoft-com:officedata"
generated="2006-01-30T22:11:30">
 <Query7-7>
 <Date>2005-12-01T00:00:00</Date>
 <DowJonesClose>10717.5</DowJonesClose>
 <NASDAQClose>2205.32</NASDAQClose>
 </Query7-7>
 <Query7-7>
 <Date>2005-11-01T00:00:00</Date>
 <DowJonesClose>10805.87</DowJonesClose>
 <NASDAQClose>2232.82</NASDAQClose>
 </Query7-7>
</dataroot>

But, say the system to which you’re sending your data doesn’t like the format of the
date. Instead, it wants dates to be formatted this way:

<Date>
 <Year2006</Year>
 <Month>01</Month>
 <Day>30</Day>
</Date>

You can easily accomplish this change using this XSLT transform:

<?xml version="1.0"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="/">

210 | Chapter 7: Importing and Exporting Data

 <StockInfo>
 <xsl:apply-templates/>
 </StockInfo>
 </xsl:template>

 <xsl:template match="Query7-7">
 <Row>
 <Date>
 <Year><xsl:value-of select="substring(Date,1,4)"/></Year>
 <Month><xsl:value-of select="substring(Date,6,2)"/></Month>
 <Day><xsl:value-of select="substring(Date,9,2)"/></Day>
 </Date>
 <DowJones>
 <xsl:value-of select="DowJonesClose"/>
 </DowJones>
 <NASDAQ>
 <xsl:value-of select="NASDAQClose"/>
 </NASDAQ>
 </Row>
 </xsl:template>

</xsl:stylesheet>

The transform begins by specifying that it’s an XML file. The root node for this tem-
plate declares that it’s an xsl:stylesheet. All of the elements that transform the data
are nested inside this node.

The first element is an xsl:template. The match attribute instructs the processor to
match the root node and follow the instructions inside. This node contains
<StockInfo> and </StockInfo> tags. These are called literal result elements, and will be
copied exactly as shown to the output file.

In between the <StockInfo> tags is another XSL node that instructs the processor to
apply templates. This means that the processor will examine the rest of the
document, looking for other templates that may match a supplied value. Any data
generated by these templates will be inserted before the </StockInfo> tag.

The only other template in the transform looks for nodes that match Query7-7. In
our input XML file, the <Query7-7> tag indicates the start of a new row of data. So,
when a match occurs, the processor will display a formatted result built around a set
of literal result elements that maps into our new row of data.

Inside the <Date> tag enclosed within the <Row> tags, you’ll see three separate tags
that break out the date into year, month, and day. Because we can’t simply copy over
the value of the old <Date> tag, we need to do a little string processing. This means
extracting the first four characters of the date value for <Year>, the two characters
beginning at position 6 for <Month>, and the two characters beginning at position 9
for <Day>.

The two remaining tags are <DowJones> and <NASDAQ>. When the <DowJones> element
is processed, the xsl:value-of element indicates that the value of the <DowJonesClose>

Using XSLT on Import or Export | 211

tag from the original XML document should be listed. The same is true for the
<NASDAQ> tag. Applying the XSLT transform results in a new file that looks like this:

<?xml version="1.0"?>
<StockInfo>
 <Row>
 <Date>
 <Year>2005</Year>
 <Month>12</Month>
 <Day>01</Day>
 </Date>
 <DowJones>10717.5</DowJones>
 <NASDAQ>2205.32</NASDAQ>
 </Row>
 <Row>
 <Date>
 <Year>2005</Year>
 <Month>11</Month>
 <Day>01</Day>
 </Date>
 <DowJones>10805.87</DowJones>
 <NASDAQ>2232.82</NASDAQ>
 </Row>
</StockInfo>

Discussion
While you can use a separate program to perform the transformation, Access
includes the necessary tools for you to embed it in your application. The following
routine will perform the export of the XML data and the transformation into its new
form:

Sub Example7_7()

ExportXML acExportQuery, "Query7-7", "C:\AccessData\Chapter7-7.xml"
TransformXML "C:\AccessData\Chapter7-7.xml", "C:\AccessData\Chapter7-7.xslt", _
 "c:\AccessData\Chapter7-7Out.xml"

End Sub

This routine calls the ExportXML method to export the results of a query into a disk
file. Then the TransformXML method is called with three parameters: the names of the
input file, the XSLT file, and the output file.

This recipe barely scratches the surface of how to use XSLT with
Access. If you’re looking for more information about XSLT, you may
want to refer to XSLT Cookbook, by Sal Mangano (O’Reilly).

One caution: Access 2003 is limited to version 1 of XSLT, meaning
that the new features found in version 2 can’t be used with that ver-
sion of Access. So, be careful if you are applying knowledge gained
from general-purpose XSLT books. They should make it clear which
features are available for version 1 and which require version 2.

212 | Chapter 7: Importing and Exporting Data

7.8 Working with XML via the MSXML Parser

Problem
XML seems like a good solution for my problem, but none of Access’ tools can handle
the type of data I need to display. How can I build my own XML documents?

Solution
Included with Access 2003 is an external library that you can add to your VBA pro-
grams. It provides a complete set of objects that allow you to build a tree structure
that will eventually form your XML file.

To use this library, you need to add it to your application. Choose Tools ➝ Refer-
ences in the Visual Basic Editor to display the References dialog box (as shown in
Figure 7-18), and select Microsoft XML, v5.0 from the list of references.

There are several versions of the Microsoft XML library. As long as
you choose v3.0 or later, it really shouldn’t matter which version you
use. I chose v5.0 because it’s installed along with Access 2003/2007.

The following routine uses two objects from the Microsoft XML library: the
DOMDocument object, which provides the overall structure for the document, and the
IXMLDOMElement object, which stores the information for a single node.

Figure 7-18. Adding Microsoft XML v5.0 to your application

Working with XML via the MSXML Parser | 213

When working with the objects from this library, you use the New keyword to create
an instance of the DOMDocument object, and then you use the appropriate Create
method from the DOMDocument object to create any other objects you need. Once
you’ve created an object, it’s in a state of limbo until you append it to the appropri-
ate parent object. The act of appending one object to another is the way you create
the tree structure that characterizes an XML document.

The following example creates an XML document based on the results of a Select
statement. Note that several IXMLDOMElement objects are needed, as we can’t recycle
one of the objects until it’s appended to its parent object:

Sub Example7_8A()

Dim rs As ADODB.Recordset
Dim doc As MSXML2.DOMDocument
Dim root As MSXML2.IXMLDOMElement
Dim row As MSXML2.IXMLDOMElement
Dim fld As MSXML2.IXMLDOMElement
Dim procinst As MSXML2.IXMLDOMProcessingInstruction

Set doc = New MSXML2.DOMDocument
Set procinst = doc.createProcessingInstruction("xml", _
 "version=""1.0"" encoding='utf-8'")
doc.appendChild procinst

Set root = doc.createElement("Document")

Set rs = New ADODB.Recordset
rs.ActiveConnection = CurrentProject.Connection
rs.Open "Select Top 5 [Date], [Close] From NASDAQ Order By Date Desc", , _
 adOpenForwardOnly, adLockReadOnly

Do While Not rs.EOF
 Set row = doc.createElement("Row")

 Set fld = doc.createElement("Date")
 fld.Text = FormatDateTime(rs("Date"), vbShortDate)
 row.appendChild fld

 Set fld = doc.createElement("Close")
 fld.Text = FormatNumber(rs("Close"))
 row.appendChild fld

 root.appendChild row

 rs.MoveNext

Loop

rs.Close

214 | Chapter 7: Importing and Exporting Data

doc.appendChild root
doc.Save "C:\AccessData\Chapter7-8.xml"

End Sub

This routine begins by creating a new DOMDocument object and a new object that will
be the document’s root. Then, it creates the XML header by using the
createProcessingInstruction method and appending the results to the document.

Next, a Recordset object is created with the data to be converted to XML. In this
case, a Select statement is used to retrieve the five most current rows from the table.

A new XML element that represents the first row is created, and within the Row ele-
ment, a Date element is created. This element’s Text property is set to a formatted
date/time value. (Remember that XML is a character-oriented language, so you can’t
store binary information in XML unless you first convert it to a string.) The Date ele-
ment is then appended to the Row element using the appendChild method. Next, this
process is repeated for the Close element.

Once the Row element is complete, it’s appended to the root element, and we move
on to the next row in the Recordset.

When all the rows in the Recordset have been processed, the root element is
appended to the XML document itself. Note that only one element can be appended
to the document, as XML allows only one root element per document.

The final action is to save the document to disk. The Save method takes a single
parameter, the name of the output file. If you open the resulting file with WordPad,
you’ll see something like Figure 7-19.

Discussion
If you’re having trouble reading Figure 7-19, you’re obviously not a computer. By
default, XML ignores spaces, carriage returns, and line feeds between nodes, so
there’s really no need to preserve this information if a human isn’t going to be read-
ing it. In fact, those extra characters can add up to quite a bit of space that you may
not want when you’re dealing with larger XML documents. The following listing
shows the same material in a form that’s much easier to read:

Figure 7-19. Your own custom XML document

Working with XML via the MSXML Parser | 215

<?xml version="1.0" encoding="utf-8"?>
<Document>
 <Row>
 <Date>1/3/2006</Date>
 <Close>2,283.00</Close>
 </Row>
 <Row>
 <Date>12/1/2005</Date>
 <Close>2,205.32</Close>
 </Row>
 <Row>
 <Date>11/1/2005</Date>
 <Close>2,232.82</Close>
 </Row>
 <Row>
 <Date>10/3/2005</Date>
 <Close>2,120.30</Close>
 </Row>
 <Row>
 <Date>9/1/2005</Date>
 <Close>2,151.69</Close>
 </Row>
</Document>

Microsoft’s XML library also includes facilities to load an XML document from a
disk file, allowing you to parse your own XML documents. The following routine
loads the XML file created earlier, parses it into its individual pieces, and loads them
into a database table:

Sub Example7_8B()

Dim rs As ADODB.Recordset
Dim doc As MSXML2.DOMDocument
Dim root As MSXML2.IXMLDOMElement
Dim row As MSXML2.IXMLDOMElement
Dim fld As MSXML2.IXMLDOMElement

Set doc = New MSXML2.DOMDocument
doc.Load "C:\AccessData\Chapter7-8.xml"
Set root = doc.childNodes(0)

Set rs = New ADODB.Recordset
rs.ActiveConnection = CurrentProject.Connection
rs.Open "[Table7-8]", , adOpenDynamic, adLockOptimistic

For Each row In root.childNodes
 rs.AddNew

 For Each fld In row.childNodes
 Select Case fld.nodeName

 Case "Date"
 rs("Date").Value = CDate(fld.Text)

216 | Chapter 7: Importing and Exporting Data

 Case "Close"
 rs("Close").Value = CDbl(fld.Text)

 End Select

 Next fld

 rs.Update

Next row

rs.Close

End Sub

This routine begins by declaring the same variables used in the previous example. It
then creates a new DOMDocument object, and calls the Load method to load in an XML
file. The XML nodes contained in each element are found in the childNodes collec-
tion. Since the DOMDocument object contains a single child, which is the root of the
XML document, the root variable is set to point to doc’s first child. The routine then
opens a Recordset object to the table to be updated so it’s ready to process the XML
data.

Because the data in the document is nested root ➝ rows ➝ fields, a nested pair of For
loops can be set up to process all of the rows in the root and all of the fields in a row.
Inside the outer For loop, we add a new row to the Recordset, process the fields, and
then call Update. In the inner loop, we determine the name of the field by examining
the nodeName property, and then convert the node’s Text value into the proper type
and save it into the appropriate field in the Recordset object.

7.9 Reading and Writing XML Attributes

Problem
How do I store additional information in an XML node?

Solution
XML supports attributes, which are values that are stored inside the node’s tag, like
this:

<Row Date="1/3/2006" Close="2,283.00" />

As you might expect, Microsoft’s XML library makes it easy to use attributes in your
XML data. To illustrate their use, we’ll use the framework of the Example7_8A rou-
tine from Recipe 7.8. Handling the nodes was discussed in that recipe, so here I’ll
simply focus on the differences in the routine, which appear inside the Do While loop.

Reading and Writing XML Attributes | 217

The following code fragment begins by creating a new XML element that will hold
the row’s data. The setAttribute method is then used to create two attributes with
the specified names and values. Once the attributes are set, the row is appended to
the root object, and the loop moves on to the next row:

Do While Not rs.EOF
 Set row = doc.createElement("Row")

 row.setAttribute "Date", FormatDateTime(rs("Date"), vbShortDate)
 row.setAttribute "Close", FormatNumber(rs("Close"))

 root.appendChild row

 rs.MoveNext

Loop

Running the routine with this Do While loop in place of the original one creates an
XML document that looks like this (I’ve added a little formatting to make it easier to
read):

<?xml version="1.0" encoding="utf-8"?>
<Document>
 <Row Date="1/3/2006" Close="2,283.00"/>
 <Row Date="12/1/2005" Close="2,205.32"/>
 <Row Date="11/1/2005" Close="2,232.82"/>
 <Row Date="10/3/2005" Close="2,120.30"/>
 <Row Date="9/1/2005" Close="2,151.69"/>
</Document>

This document contains the same information as the one produced in the previous
recipe, but it’s much more compact.

The code to read the XML file likewise differs only in the main processing loop. (To
see the code in its entirety, look back at the Example7_8B routine in Recipe 7.8.) In the
new version of the For loop, the getAttribute method retrieves the value of the
attribute as a string, so a simple conversion is all that’s necessary to populate the
value for the field:

For Each row In root.childNodes
 rs.AddNew

 rs("Date").Value = CDate(row.getAttribute("Date"))
 rs("Close").Value = CDbl(row.getAttribute("Close"))

 rs.Update

Next row

218 | Chapter 7: Importing and Exporting Data

Discussion
Using attributes generally takes up less space in an XML file than using nested nodes,
but you also lose flexibility in how you represent the data: you’re limited to a flat
arrangement, where there is a one-to-one correspondence between the node and the
attributes in the node. If your data is hierarchal in nature, you need to stick with
nested nodes. However, you’re not limited to one approach or the other. You can use
a mix of attributes and nested nodes to represent your data, which is what I fre-
quently do when designing XML files for my own use.

7.10 Creating an RSS Feed

Problem
How can I create an RSS feed in Access?

Solution
Really Simple Syndication (RSS) RSS is an XML-based format aimed at content dis-
tribution. It’s typically used to let people know about updates when content is added
to a web site. RSS provides an easy way to package and distribute your most recent
changes.

If you dig deep enough, you’ll find that an RSS feed is nothing but an XML file struc-
tured according to a specific set of rules. Unfortunately, there are many different sets
of rules, some of which are compatible and some of which are not. I won’t debate the
merits of one format over the other, but will simply use version 2, which is compatible
with virtually all RSS tools.

In RSS, you typically create an XML document containing summary information
about the blog or other Internet site for which you want to provide a content distri-
bution feed. Here’s a sample RSS file. This represents the minimum you really need
to put in the file:

<?xml version="1.0" ?>
<rss version="2.0">
<channel>

 <title>Blog title</title>
 <link>Blog URL</link>
 <description>Description of the Blog</description>

 <item>
 <title>article title</title>
 <link>article link</link>
 <description>Description of the article</description>
 <pubDate>Thu, 2 Feb 2006 19:21:36 CST</pubDate>
 </item>

Creating an RSS Feed | 219

</channel>
</rss>

The file begins with the normal XML header, followed by an <rss> tag. The <rss> tag
indicates the version of RSS used in this document. Inside the <rss> tag is a
<channel> tag, which contains the actual feed. In the case of a blog, this represents
the core information about the blog itself.

Inside the <channel> tag, you need to include three main pieces of information: the
feed’s title, which is contained inside the <title> tag; a description of the feed, which
is stored inside the <description> tag; and a link to the blog, which is stored inside
the <link> tag.

Following these tags are a set of one or more <item> tags. Each <item> tag represents
a single article on the blog. Within each <item> tag are a <title> tag, a <link> tag, a
<description> tag, and a <pubDate> (publication date) tag. (Yes, the D is capitalized
inside the <pubDate> tag; recall that XML is case-sensitive.)

Generating the RSS feed document is merely a matter of using the techniques
demonstrated in Recipe 7.8 and Recipe 7.9, as you can see in the following routine:

Sub Example7_10()

Dim rs As ADODB.Recordset
Dim doc As MSXML2.DOMDocument
Dim rss As MSXML2.IXMLDOMElement
Dim channel As MSXML2.IXMLDOMElement
Dim item As MSXML2.IXMLDOMElement
Dim subitem As MSXML2.IXMLDOMElement
Dim procinst As MSXML2.IXMLDOMProcessingInstruction

Set doc = New MSXML2.DOMDocument
Set procinst = doc.createProcessingInstruction("xml", _
 "version=""1.0"" encoding='utf-8'")
doc.appendChild procinst

Set rss = doc.createElement("rss")
rss.setAttribute "version", "2.0"

Set channel = doc.createElement("channel")

Set item = doc.createElement("title")
item.Text = "Access World"
channel.appendChild item

Set item = doc.createElement("link")
item.Text = "www.JustPC.com/AccessWorld.htm"
channel.appendChild item

Set item = doc.createElement("description")
item.Text = "This is my blog about Microsoft Access."
channel.appendChild item

220 | Chapter 7: Importing and Exporting Data

Set rs = New ADODB.Recordset
rs.ActiveConnection = CurrentProject.Connection
rs.Open "[Table7-10]", , adOpenForwardOnly, adLockReadOnly

Do While Not rs.EOF
 Set item = doc.createElement("item")

 Set subitem = doc.createElement("title")
 subitem.Text = rs("Title")
 item.appendChild subitem

 Set subitem = doc.createElement("link")
 subitem.Text = rs("Link")
 item.appendChild subitem

 Set subitem = doc.createElement("description")
 subitem.Text = rs("Description")
 item.appendChild subitem

 Set subitem = doc.createElement("pubDate")
 subitem.Text = MakeDate(rs("PubDate"))
 item.appendChild subitem

 channel.appendChild item

 rs.MoveNext

Loop

rs.Close

rss.appendChild channel
doc.appendChild rss
doc.Save "C:\AccessData\Chapter7-10.xml"

End Sub

This example begins by declaring a Recordset object, along with a group of XML
objects (one for each major RSS node). Next, the routine creates a new DOMDocument
object to hold the XML data, and an IXMLDOMElement object for the rss element. It sets
the IXMLDOMElement object’s version attribute to 2.0. Then, it creates a channel ele-
ment, to which it appends elements for the site’s title, link, and description nodes.

Once the header information is set up for the RSS feed, the individual items are
added. These are extracted from the database using an ADODB Recordset. The cur-
rent row for the Recordset contains the fields Title, Link, Description, and PubDate.
Each field is stored in a new XML element object, which is then added to the item
element object.

After all of the rows have been processed, the channel object is appended to the rss
object, and the rss object is appended to the doc object. The results are then saved to
a disk file for publication. The contents of the disk file look like this:

Passing Parameters to SQL Server | 221

<?xml version="1.0" encoding="utf-8"?>
<rss version="2.0">
 <channel>

 <title>Access World</title>
 <link>www.JustPC.com/AccessWorld.htm</link>
 <description>This is my blog about Microsoft Access.</description>

 <item>
 <title>Archiving Access Automatically</title>
 <link>http://www.JustPC.com/aaa</link>
 <description>Archiving Access data.</description>
 <pubDate>Sat, 1 Jul 2006 0:0:0 CST</pubDate>
 </item>

 <item>
 <title>Building Better Building Blocks</title>
 <link>http://www.JustPC.com/bbb</link>
 <description>Creating reusable code.</description>
 <pubDate>Tue, 1 Aug 2006 0:0:0 CST</pubDate>
 </item>

 <item>
 <title>Creating Crafty Code</title>
 <link>http://www.JustPC.com/ccc</link>
 <description>Scripting with VBA.</description>
 <pubDate>Fri, 1 Sep 2006 0:0:0 CST</pubDate>
 </item>

 </channel>
</rss>

Discussion
There is a lot more to using RSS feeds than simply generating the XML file. For more
information, check out Developing Feeds with RSS and Atom, by Ben Hammersley
(O’Reilly). This book covers everything you need to know about creating and pub-
lishing your own feeds in much more depth than I can provide here. Just remember,
you can create your own XML files from an Access database, and make your
database a player in the RSS world.

7.11 Passing Parameters to SQL Server

Problem
Most of my data is stored in a SQL Server database. The DBA only allows me to
access the database by using a stored procedure, but the stored procedures require
parameters. How can I pass parameters to SQL Server to get the data I want?

222 | Chapter 7: Importing and Exporting Data

Solution
Let’s assume that the following stored procedure exists on the SQL Server database.
The stored procedure takes two parameters, @StartDate and @StopDate, both of
which have a type of datetime:

Select *
From DowJones
Where [Date] Between @StartDate And @StopDate

To call this procedure from an Access VBA script, you can use an ADO Command
object to populate a Recordset object, like this:

Dim rs As ADODB.Recordset
Dim cmd As ADODB.Command

Set cmd = New ADODB.Command
cmd.ActiveConnection = "provider=sqloledb;Data Source=Athena;" & _
 "Database=Access;Uid=sa;pwd="

cmd.CommandText = "GetData"
cmd.CommandType = adCmdStoredProc

cmd.Parameters.Refresh

cmd.Parameters("@StartDate").Value = CDate("1/1/2005")
cmd.Parameters("@StopDate").Value = CDate("1/1/2006")

Set rs = cmd.Execute

After creating a new instance of the Command object, you need to specify how to con-
nect to your database. This value is known as a connection string, and it can be
assigned to the Command object’s ActiveConnection property.

Next, specify the name of the stored procedure in CommandText, and indicate that this
value refers to a stored procedure, not a table or a SQL statement. The Parameters.
Refresh method instructs ADO to connect to the database to get the definitions of all
the parameters. The results are saved in the Parameters collection.

Finally, you can specify the value for each parameter, and use the Execute method to
create a new Recordset object populated with the results of the stored procedure.

Discussion
The Refresh method is a powerful tool because it is able to retrieve all the informa-
tion you’d normally have to add manually in your program. Using the Refresh
method forces your program to do extra work at runtime because it must communi-
cate with the database server to retrieve each parameter’s information. However, this
information is easy to add using the Command object’s CreateParameter method, as you
can see in the following code fragment:

Handling Returned Values from SQL Server Stored Procedures | 223

Dim p As ADODB.Parameter

Set p = cmd.CreateParameter("@StartDate", adDate, adParamInput, , _
 CDate("1/1/2005"))
cmd.Parameters.Append p
Set p = cmd.CreateParameter("@StopDate", adDate, adParamInput, , _
 CDate("1/1/2006"))
cmd.Parameters.Append p

To use CreateParameter, you need to declare a variable of type ADODB.Parameter. This
method take five values: the name of the parameter; the SQL Server data type;
whether the parameter is used as input to the stored procedure, an output from the
stored procedure, or both; the size of the data type, which is used only for character
data (i.e., char, varchar, etc.); and the parameter’s value. Once the parameter is cre-
ated, you then must add it to the Command object’s Parameters collection by using the
Parameter.Append method.

7.12 Handling Returned Values from SQL Server
Stored Procedures

Problem
The stored procedures I want to use in my SQL Server database return values
through their parameters rather than returning Recordsets. How can I retrieve this
information?

Solution
This SQL Server stored procedure takes one parameter (@Date) as an input value, and
uses it to select two other values from the database (@Open and @Close):

Select @Open=[Open], @Close=[Close]
From DowJones
Where [Date] = @Date

To use these values, you need to either define each parameter explicitly, as shown in
the following code, or use the Refresh method discussed in Recipe 7.11. Note that
both the @Open and @Close parameters are defined as output parameters, meaning
that SQL Server will return values for them. Also, you need not assign them initial
values when you create them, as these values will be discarded when the data is
returned. The following routine implements this:

Sub Example7_12()

Dim rs As ADODB.Recordset
Dim cmd As ADODB.Command
Dim p As ADODB.Parameter

224 | Chapter 7: Importing and Exporting Data

Set cmd = New ADODB.Command
cmd.ActiveConnection = "provider=sqloledb;Data Source=Athena;" & _
 "Database=Access;Uid=sa;pwd="

cmd.CommandText = "FetchData"

cmd.CommandType = adCmdStoredProc

Set p = cmd.CreateParameter("@Date", adDate, adParamInput, , CDate("12/1/2005"))
cmd.Parameters.Append p

Set p = cmd.CreateParameter("@Open", adCurrency, adParamOutput)
cmd.Parameters.Append p

Set p = cmd.CreateParameter("@Close", adCurrency, adParamOutput)
cmd.Parameters.Append p

cmd.Execute

MsgBox cmd.Parameters("@Open").Value

End Sub

Because this stored procedure doesn’t return a Recordset object, you can simply use
the Execute method, as shown. When the call completes, you can access the returned
values through the Parameters collection, as was done here when using MsgBox to
display the value for @Open.

Discussion
When you’re using stored procedures, the order of the parameters doesn’t matter.
However, you do have to have the right number of parameters, and each parameter
must have the correct data type; otherwise, SQL Server will return an error when you
attempt to call it. This is a big advantage of the Command.Refresh method. Because the
Refresh method returns all of the parameters with their correct types, you’ll always
have the proper definitions.

Like Access’ underlying Jet database engine, SQL Server supports Null
values. Therefore, it’s a good idea to verify that the data returned is
not Null before attempting to use it.

7.13 Working with SQL Server Data Types

Problem
SQL Server and Access use different data types. How do I know which data types to
use in Access?

Working with SQL Server Data Types | 225

Solution
Table 7-1 contains a list of normal Jet data types, the corresponding SQL Server data
types, and the types of variables you would use in your VBA program.

Discussion
SQL Server supports every data type available in Jet, and quite a few more. So, if you
need to move data from a Jet database to a SQL Server database, you shouldn’t run
into any problems.

Moving data from SQL Server to Jet is a little more complex, but it isn’t difficult if
you keep a few things in mind:

• Text fields in Jet are limited to 255 characters, while SQL Server can store strings
of up to 8,192 characters. If you have a large SQL Server string, simply use a
Memo field instead of a Text field to hold it.

• SQL Server can store more precise time values in a datetime value than Jet can
store in a Date/Time value. However, you’ll run into very few situations where
you need to store Date/Time values with an accuracy down to a few millisec-
onds. If you do need that level of accuracy, you can easily create a SQL Server
query to extract the detailed time information into a separate field and download
both fields.

• When dealing with data types supported by SQL Server, but not by Jet, such as
decimal or bigint, first check to see whether the data stored in SQL Server actu-
ally requires the higher precision used in SQL Server. If not, use the equivalent

Table 7-1. Access (Jet), SQL Server, and Visual Basic data types

Access (Jet) data type SQL Server data type Visual Basic data type Storage size

Currency money Currency 8 bytes

Date/Time datetime, shortdatetime Date 8 bytes

Image image Byte Array 1 byte per character

Memo text String 1 byte per character

Number (Byte) tinyint Byte 1 byte

Number (Decimal) decimal Currency 8 bytes

Number (Double) double Double 8 bytes

Number (Integer) smallint Integer 2 bytes

Number (Long Integer) int Long 4 bytes

Number (Single) single Single 4 bytes

Text char, varchar, nchar, nvchar String 1 byte per character

Uniqueidentifier GUID String 16 bytes

Yes/No bit Boolean 1 byte

226 | Chapter 7: Importing and Exporting Data

Jet data type referenced in Table 7-1. If the extra precision is necessary, split the
data value into two pieces as part of a SQL Server query, and store both pieces in
your Jet database. If that isn’t practical, simply store the data as a string in Jet
until you find an alternate way to handle the accuracy problem.

In practice, you’ll rarely run into situations where there are data type compatibly
problems between SQL Server and Jet.

7.14 Handling Embedded Quotation Marks

Problem
What’s the best way to handle embedded quotation marks in my application?

Solution
One way to handle embedded quotation marks is to convert them to some other for-
mat. For example, the following routines convert all quotation marks into the string
" and back again (a commonly used approach in web development), using the
Replace function to handle the conversions:

Function RemoveQuotes(s As String) As String

RemoveQuotes = Replace(s, """", """)

End Function

Function RestoreQuotes(s As String) As String

RestoreQuotes = Replace(s, """, """")

End Function

These routines can be used to process data that you store in and retrieve from a data-
base. For example, the following SELECT statement will retrieve a string of text from
the database and restore the quotes:

SELECT [Table7-14].Id, RestoreQuotes([Value]) AS NewValue
FROM [Table7-14];

Discussion
The real issue is why you should care about embedded quotation marks in the first
place. The answer is to protect yourself from SQL injection attacks. This type of
attack occurs when someone enters data into an input field that is designed to allow
that person to execute a SQL statement.

For example, consider the following statement:

SQLText = "Select * From MyData Where MyData = """ & UserField & """"

Importing Appointments from the Outlook Calendar | 227

This query statement uses the data stored in the UserField field (or parameter). Now
assume that this query ends up using this data for UserField:

123"; Delete From MyData;

This gives you the following query:

Select * From MyData Where MyData = "123"; Delete From MyData;"

You now have two legal SQL statements in a row, followed by a double quote. Execut-
ing this statement as part of an ADO Command object against a SQL Server database
would delete all of the data from the table MyData. Obviously, this is a serious security
concern.

If you had used the RemoveQuote function in the original statement, the query produced
would look like this:

Select * From MyData Where MyData = "123"; Delete From MyData;"

This new statement would probably cause some sort of error, but because all of the
quotes have been removed from the user’s input data, the attack would fail, and your
database would remain safe.

Another way to avoid injection attacks is to use parameterized que-
ries. In such queries, any user-supplied data is handled independently
of the SQL statement, meaning that users can’t add their own SQL
statements to yours.

7.15 Importing Appointments from the Outlook
Calendar

Problem
Is there a way that I can import information from my Outlook calendar into an
Access table?

Solution
To import your data, you’ll first need to build a table to hold the information.
Table 7-2 lists the fields associated with Outlook’s calendar appointments that you’ll
need to include in your table.

Table 7-2. Fields in the Outlook calendar table

Field Data type

Id AutoNumber

Start Date/Time

End Date/Time

228 | Chapter 7: Importing and Exporting Data

Next, you’ll need to add a reference to the Outlook Object Library (see Figure 7-20).
To display the References dialog, choose Tools ➝ References from the Visual Basic
Editor’s main menu.

Finally, here is a routine that will do the work. It begins by declaring a bunch of vari-
ables needed to access Outlook’s data, plus an ADO Recordset object that will be
used to save the information into Access:

Sub Example7_15()

Dim Outlook As Outlook.Application
Dim namespace As Outlook.namespace
Dim root As Outlook.MAPIFolder
Dim cal As Outlook.MAPIFolder

Subject Text(255)

Location Text(255)

Body Memo

Duration Number(Long Integer)

RequiredAttendees Text(255)

OptionalAttendees Text(255)

Resources Text(255)

Figure 7-20. Adding the Outlook Object Library to your application

Table 7-2. Fields in the Outlook calendar table (continued)

Field Data type

Importing Appointments from the Outlook Calendar | 229

Dim item As Object
Dim appt As Outlook.AppointmentItem

Dim rs As ADODB.Recordset

Set Outlook = New Outlook.Application
Set namespace = Outlook.GetNamespace("MAPI")
Set root = namespace.Folders("Mailbox - Wayne S. Freeze")
Set cal = root.Folders("Calendar")

Set rs = New ADODB.Recordset
rs.ActiveConnection = CurrentProject.Connection
rs.Open "[Table7-15]", , adOpenDynamic, adLockOptimistic

For Each item In cal.Items
 If item.Class = olAppointment Then
 Set appt = item

 rs.AddNew
 rs("Start") = appt.Start
 rs("End") = appt.End
 rs("Subject") = appt.Subject
 rs("Location") = appt.Location
 rs("Body") = appt.Body
 rs("Duration") = appt.Duration
 rs("RequiredAttendees") = appt.RequiredAttendees
 rs("OptionalAttendees") = appt.OptionalAttendees
 rs("Resources") = appt.Resources

 rs.Update

 End If

Next item

rs.Close

End Sub

To get to Outlook’s data, you must create an instance of Outlook.Application. This
essentially loads the Outlook program without showing its user interface, which
gives you complete access to all of the data and functions available in Outlook.

Once Outlook is running, you use the GetNamespace method to return a Namespace
object, which contains the data specific to your system. Using Namespace makes it
possible to open the mailbox folder associated with your local user. In my case, it’s
Mailbox – Wayne S. Freeze; check your system to make sure you have the right folder
name. Once you have the root folder for your mailbox, you can use it to open the
folder containing the calendar items.

The next three lines of code create a new instance of the ADO Recordset object and
use it to open the table that will hold the imported data.

230 | Chapter 7: Importing and Exporting Data

The data from the calendar folder can be accessed through the Items collection, so
you can use a For Each statement to iterate through the entire collection. But because
there is no guarantee that the items will be the correct data type, you’ll need to verify
that each item contains the data you want before using it. The routine does this by
verifying that the item’s Class property has a value of olAppointment.

Once you’re sure you have an appointment item, you can point the appt object vari-
able to the same instance of the item object, and rely on Visual Basic’s IntelliSense to
help you pick the appropriate property. Then, it’s merely a matter of copying the
properties you want into the appropriate database fields, and saving the row to the
database.

Discussion
One of the downsides of using Outlook’s object model is that Outlook displays a
dialog box (see Figure 7-21) whenever someone tries to access its data. This mecha-
nism exists primarily to protect email data from viruses and trojans, but it also makes
it more difficult for users to use their own data in other places.

7.16 Importing Emails from Outlook

Problem
I want to import selected messages from my Outlook inbox into an Access database.

Solution
The first step in the import process is to create a table in your Access database to
hold the imported messages. Table 7-3 contains the list of fields associated with each
message in Outlook.

Figure 7-21. Asking for permission to access Outlook’s data

Importing Emails from Outlook | 231

After you’ve constructed your table, running this routine will load all of the mes-
sages from the specified inbox into your database. The routine begins by declaring
two ADO Recordset objects and an ADO Field object:

Sub LoadInbox(inboxName As String)

Dim InTable As ADODB.Recordset
Dim OutTable As ADODB.Recordset
Dim fld As ADODB.Field

Set InTable = New ADODB.Recordset
InTable.ActiveConnection = "Provider=Microsoft.Jet.OLEDB.4.0;" & _
 "Exchange 4.0;MAPILEVEL=Mailbox - " & inboxName & "|;Database=c:\temp;"

InTable.Open "Select * From inbox", , adOpenDynamic, adLockReadOnly

Set OutTable = New ADODB.Recordset
OutTable.ActiveConnection = CurrentProject.Connection

Table 7-3. Fields in the Outlook inbox table

Field Data type

Id AutoNumber

Importance Number(Long Integer)

Message Class Text(255)

Priority Number(Long Integer)

Subject Text(255)

From Text(255)

Message To Me Yes/No

Message CC To Me Yes/No

Sender Name Text(255)

CC Text(255)

To Text(255)

Received Date/Time

Message Size Number(Long Integer)

Body Memo

Creation Time Date/Time

Subject Prefix Text(255)

Has Attachments Yes/No

Normalized Subject Text(255)

Object Type Number(Long Integer)

Content Unread Number(Long Integer)

232 | Chapter 7: Importing and Exporting Data

OutTable.Open "inbox", , adOpenDynamic, adLockOptimistic

Do While Not InTable.EOF
 OutTable.AddNew

 For Each fld In InTable.Fields
 OutTable.Fields(fld.Name) = fld.Value

 Next fld

 OutTable.Update
 InTable.MoveNext

Loop

InTable.Close
OutTable.Close

End Sub

The InTable variable holds the data from Outlook. It uses a special connection string
that specifies the name of the mailbox, along with some other parameters that are
needed to talk to Outlook. Then, it opens the OutTable Recordset object, which
points to a local table containing the fields listed in Table 7-3.

The remaining logic simply steps through the input table one row at a time, and, for
each input row, adds a new output row. Then, it copies each field from the input
table to the output table before calling Update to save the new output row. Finally,
both tables are closed when all of the data has been processed.

Discussion
This routine simply copies every row and every field from the input table to the out-
put table. This probably isn’t desirable in most situations, as it’s unlikely that you’ll
want to copy every message in your inbox into the database.

However, once you have a complete copy of the data loaded into your program, you
can use functions such as InStr or Mid to search the subject line or message body for
particular words that mean the data is interesting. You can also discard any fields
that aren’t important. You might even want to extract just the important content
from certain messages, and throw away all of the other data.

7.17 Working with Outlook Contacts

Problem
I want to import my Outlook contact list into Access.

Working with Outlook Contacts | 233

Solution
The technique demonstrated in Recipe 7.16 can also be used to import your contact
list. First, you’ll need to create an Access table to hold the imported data. Table 7-4
lists the fields to include.

Then you need some code to open an ADO Recordset object that can read the Out-
look contacts table. Substitute the following code fragment into the routine found in
Recipe 7.16:

Table 7-4. Fields in the Outlook contacts table

Field Data type

Id AutoNumber

First Text(255)

Last Text(255)

Title Text(255)

Company Text(255)

Department Text(255)

Office Text(255)

Post Office Box Text(255)

Address Text(255)

City Text(255)

State Text(255)

Zip code Text(255)

Country Text(255)

Phone Text(255)

Mobile Phone Text(255)

Pager Phone Text(255)

Home2 Phone Text(255)

Assistant Phone Number Text(255)

Fax Number Text(255)

Telex Number Text(255)

Display name Text(255)

E-mail type Text(255)

E-mail address Text(255)

Alias Text(255)

Assistant Text(255)

Send Rich Text Yes/no

Primary Text(255)

234 | Chapter 7: Importing and Exporting Data

Set InTable = New ADODB.Recordset
InTable.ActiveConnection = "Provider=Microsoft.JET.OLEDB.4.0;" & _
 "Exchange 4.0;MAPILEVEL=Outlook Address Book\;PROFILE=Outlook;" & _
 "TABLETYPE=1;DATABASE=c:\temp"
InTable.Open "SELECT * FROM [Contacts]", , adOpenStatic, adLockReadOnly

The resulting routine will copy all of your contact information into your newly
created table.

Discussion
Using ADO to access your Outlook folders avoids a lot of the problems encountered
when using the normal Outlook objects. Because the process is read-only, you don’t
run into the issue of the user being prompted each time the data is accessed; also,
you have an easy way to extract the data you want through the use of Where clauses
and programmed code.

On the other hand, navigating an Outlook folder can be a challenge. Many of the
fields are dynamic, and while I’ve included sample table structures in these recipes,
it’s probably a good idea to use some code like this to verify the table’s structure
before you get started:

Sub Example7_17B()

Dim rs As ADODB.Recordset
Dim fld As ADODB.Field

Set rs = New ADODB.Recordset
rs.ActiveConnection = "Provider=Microsoft.Jet.OLEDB.4.0;" & _
 "Exchange 4.0;MAPILEVEL=Mailbox - Wayne S# Freeze|;Database=c:\temp;"

rs.Open "Select * From inbox", , adOpenDynamic, adLockReadOnly

Do While Not rs.EOF
 For Each fld In rs.Fields
 Debug.Print fld.Name & ": " & fld.Value

 Next fld

 rs.MoveNext

Loop

rs.Close

End Sub

Data aside, the real trick to processing data via a database connection is the connec-
tion string. The connection string includes a few parameters specific to Outlook. The
Exchange 4.0 parameter allows ADO to connect to Outlook/Exchange via a MAPI
interface. The MAPILEVEL parameter indicates the name of the folder containing the
Outlook folders you want to search. Not specifying a value (MAPILEVEL=;) means that

Importing Data from Excel | 235

the top-level folders will be made available. If you don’t know the name of your main
folder, you can use code like this to get a list of all the folders:

Sub Example7_17C()

Dim cat As ADOX.Catalog
Dim tbl As ADOX.Table

Set cat = New ADOX.Catalog
cat.ActiveConnection = "Provider=Microsoft.Jet.OLEDB.4.0;" & _
 "Exchange 4.0;MAPILEVEL=;Database=c:\temp;"

For Each tbl In cat.Tables
 Debug.Print "FOLDERS:" & tbl.Name

Next tbl

End Sub

Finally, the Database parameter points to a temporary directory where the ADO
drivers build a temporary file containing the available fields from the collection of
folders. You can safely ignore this file, as the drivers will create a new version each
time you open your Outlook folders.

7.18 Importing Data from Excel

Problem
Importing data from Excel is a straightforward task using the standard Office tools,
but I want to process the information before storing it in my database.

Solution
One way you can import data from Excel is to use ADO and treat the Excel work-
book as a database. Within the workbook, each worksheet is a table, and the first
row can contain the field names. Data types are a little tricky, but, realistically, your
VBA program can treat the data as strings. Excel will recognize the data according to
its usual rules. Values that contain valid numbers will be treated as numbers, and the
same goes for valid dates. All other values will be treated as strings.

The key to the import process is the ADO connection string. The following connec-
tion string uses the workbook C:\AccessData\Chapter7-18.xls. Setting the HDR field
to Yes indicates that the first row of the worksheet contains the column headings.
Setting the IMEX field to 1 specifies that values in columns containing a mixture of
text and numbers should be treated as text:

InTable.ActiveConnection = "Provider=Microsoft.Jet.OLEDB.4.0;" & _
 "Data Source=C:\AccessData\Chapter7-18.xls;" & _
 "Extended Properties=""Excel 8.0;HDR=Yes;IMEX=1"""

236 | Chapter 7: Importing and Exporting Data

While this connection string grants you access to the workbook, you have to address
the individual worksheets by their names, as you would if they were tables. How-
ever, you need to format the names properly in order for the database driver to locate
the right worksheets. This means appending a dollar sign ($) to the end of the work-
sheet name and enclosing the entire string in brackets ([]). In other words, you
would access Sheet1 as [Sheet1$].

You can then use the following code (based on the example in Recipe 7.16) to copy
data from Excel to Access:

Sub Example7_18A()

Dim InTable As ADODB.Recordset
Dim OutTable As ADODB.Recordset
Dim fld As ADODB.Field

Set InTable = New ADODB.Recordset
InTable.ActiveConnection = "Provider=Microsoft.Jet.OLEDB.4.0;" & _
 "Data Source=C:\AccessData\Chapter7-18.xls;" & _
 "Extended Properties=""Excel 8.0;HDR=Yes;"""
InTable.Open "SELECT * FROM [Sheet1$]", , adOpenStatic, adLockReadOnly

Set OutTable = New ADODB.Recordset
OutTable.ActiveConnection = CurrentProject.Connection
OutTable.Open "[Table7-18]", , adOpenDynamic, adLockOptimistic

Do While Not InTable.EOF
 OutTable.AddNew

 For Each fld In InTable.Fields
 OutTable.Fields(fld.Name).Value = fld.Value

 Next fld

 OutTable.Update
 InTable.MoveNext

Loop

Set InTable = Nothing
Set OutTable = Nothing

End Sub

Discussion
You don’t have to use ADO to read data from Excel. However, ADO has the
advantage of being faster than using Excel objects. Excel objects force the Excel
application to be loaded in the background, consuming both memory and processor
cycles. Also, each time you reference a piece of information inside Excel, you’re
forced to make an expensive out-of-process call. On the other hand, ADO runs in the
same process as Access, which saves a lot of resources when retrieving pieces of data.

Importing Data from Excel | 237

However, from a practical viewpoint, unless you’re dealing with a lot of data, or
you’re running this as part of a real-time application, there won’t be much of a per-
formance difference. The logic to process the data isn’t that different either, as you
can see in the following routine:

Sub Example7_18B()

Dim OutTable As ADODB.Recordset
Dim i As Long

Dim ex As Excel.Application
Dim wb As Excel.WorkBook
Dim ws As Excel.WorkSheet

Set ex = New Excel.Application
Set wb = ex.Workbooks.Open("C:\AccessData\Chapter7-18.xls")
Set ws = wb.Sheets("Sheet1")

Set OutTable = New ADODB.Recordset
OutTable.ActiveConnection = CurrentProject.Connection
OutTable.Open "[Table7-18]", , adOpenDynamic, adLockOptimistic

i = 2
Do While ws.Cells(i, 1) <> ""
 OutTable.AddNew

 OutTable.Fields("Date") = ws.Cells(i, 1)
 OutTable.Fields("Open") = ws.Cells(i, 2)
 OutTable.Fields("High") = ws.Cells(i, 3)
 OutTable.Fields("Low") = ws.Cells(i, 4)
 OutTable.Fields("Close") = ws.Cells(i, 5)
 OutTable.Fields("Volume") = ws.Cells(i, 6)
 OutTable.Fields("Adj Close") = ws.Cells(i, 7)

 OutTable.Update
 i = i + 1

Loop

OutTable.Close
Set OutTable = Nothing

Set ws = Nothing
wb.Close
Set wb = Nothing
Set ex = Nothing

End Sub

The primary difference between this routine and the previous one is that it uses Excel
objects explicitly. You can add the Excel Object Library to your application by
choosing Tools ➝ References in the Visual Basic Editor, and checking the box next to

238 | Chapter 7: Importing and Exporting Data

Microsoft Excel 11.0 Object Library, as shown in Figure 7-22. (Your version number
may differ; don’t worry.)

The Excel.Application object is created to grant access to Excel’s functions. This
object allows you to open the workbook where your data is stored, and to gain
access to the particular worksheet containing your data.

Once you have the Worksheet object, the rest of the application revolves around using
the Cell object to retrieve the particular piece of data you want, using the specified
row and column values. Both the row and column numbers start with 1, so the nor-
mal Excel cell address of A1 is translated into Cell(1, 1), while cell A5 is Cell(5, 1),
and cell C7 becomes Cell(7, 3). Note that since row 1 contains column headers, the
data begins in row 2.

Access is smart enough to perform the proper type conversions between the Cell
object and the Field object, so you don’t need to worry about handling type
conversions explicitly.

7.19 Exporting Data to Excel

Problem
I want to process my data in Access and use ADO to store the results in an Excel
workbook.

Figure 7-22. Adding the Excel Object Library to your application

Exporting Data to Excel | 239

Solution
You can’t.

Because of a legal judgment, Microsoft was forced to disable the ability to interac-
tively update data in an Excel workbook from Access.

The only supported option is to save your data in Access, start Excel, load your data,
make your changes, and save it again. Finally, you can load your data in Access and
resume working.

This applies to Microsoft Access 2007, Access 2003 with SP2, and
Access 2002 with the update KB904018 applied. For more informa-
tion on this subject, refer to Knowledge Base article KB904953 on
Microsoft’s web site.

Discussion
While the judgment prevents the use of ADO to store data into Excel, you can use
the Excel Object Library to store your data. Here’s an example that is similar to the
one found in Recipe 7.18, but that has been modified to save the data instead:

Sub Example7_19()

Dim InTable As ADODB.Recordset
Dim i As Long

Dim ex As Excel.Application
Dim wb As Excel.WorkBook
Dim ws As Excel.WorkSheet

Set ex = New Excel.Application
Set wb = ex.Workbooks.Add
Set ws = wb.Sheets("Sheet1")

Set InTable = New ADODB.Recordset
InTable.ActiveConnection = CurrentProject.Connection
InTable.Open "DowJones", , adOpenDynamic, adLockOptimistic

ws.Cells(1, 1) = "Date"
ws.Cells(1, 2) = "Open"
ws.Cells(1, 3) = "High"
ws.Cells(1, 4) = "Low"
ws.Cells(1, 5) = "Close"
ws.Cells(1, 6) = "Volume"
ws.Cells(1, 7) = "Adj Close"

i = 2
Do While Not InTable.EOF

 ws.Cells(i, 1) = FormatDateTime(InTable.Fields("Date"), vbShortDate)

240 | Chapter 7: Importing and Exporting Data

 ws.Cells(i, 2) = FormatNumber(InTable.Fields("Open"), 2)
 ws.Cells(i, 3) = FormatNumber(InTable.Fields("High"), 2)
 ws.Cells(i, 4) = FormatNumber(InTable.Fields("Low"), 2)
 ws.Cells(i, 5) = FormatNumber(InTable.Fields("Close"), 2)
 ws.Cells(i, 6) = FormatNumber(InTable.Fields("Volume"), 2)
 ws.Cells(i, 7) = FormatNumber(InTable.Fields("Adj Close"), 2)

 InTable.MoveNext
 i = i + 1

Loop

InTable.Close
Set InTable = Nothing

Set ws = Nothing
wb.Close True, "C:\AccessData\Chapter7-19.xls"
Set wb = Nothing
Set ex = Nothing

End Sub

The routine first creates a new instance of the Excel application, then adds a new
workbook to the Workbooks collection. The Worksheet object, ws, is then set to point
to the worksheet labeled Sheet1 inside the new workbook.

Next, the column names for the data are saved in the first row of the worksheet.
Then, inside the main loop, each field is copied from the database to the worksheet.
The data is formatted as a string so that Excel can interpret it.

Once all of the data has been processed, the workbook is closed and saved using the
specified filename. At this point, you’re ready to start Excel and begin using your
data.

7.20 Talking to PowerPoint

Problem
I want to create a small table in PowerPoint using my Access data.

Solution
While you can’t use ADO to access a table in PowerPoint, you can use the Power-
Point Object Library. Choose Tools ➝ References from the main menu in Visual
Basic Editor, and select the latest version of the PowerPoint Object Library (see
Figure 7-23).

The following routine uses the object library to extract data from Access and create a
PowerPoint presentation:

Talking to PowerPoint | 241

Sub Example_20()

Dim InTable As ADODB.Recordset

Dim pp As PowerPoint.Application
Dim p As PowerPoint.Presentation
Dim sl As PowerPoint.slide
Dim sh As PowerPoint.Shape
Dim i As Long

Set pp = New PowerPoint.Application
Set p = pp.Presentations.Add

Set sl = p.Slides.Add(1, ppLayoutBlank)
sl.Name = "Dow Top 5 Days by Volume"

Set sh = sl.Shapes.AddLabel(msoTextOrientationHorizontal, 1, 10, 750, 75)
sh.TextFrame.TextRange.Text = "Dow Top 5 Days by Volume"
sh.TextFrame.TextRange.Font.Size = 48
sh.TextFrame.TextRange.ParagraphFormat.Alignment = ppAlignCenter

Set sh = sl.Shapes.AddTable(6, 4)

With sh.Table.Cell(1, 1).Shape.TextFrame
 .TextRange.Text = "Date"
 .TextRange.ParagraphFormat.Alignment = ppAlignCenter

Figure 7-23. Adding the PowerPoint Object Library to your application

242 | Chapter 7: Importing and Exporting Data

End With

With sh.Table.Cell(1, 2).Shape.TextFrame
 .TextRange.Text = "High"
 .TextRange.ParagraphFormat.Alignment = ppAlignCenter

End With

With sh.Table.Cell(1, 3).Shape.TextFrame
 .TextRange.Text = "Low"
 .TextRange.ParagraphFormat.Alignment = ppAlignCenter

End With

With sh.Table.Cell(1, 4).Shape.TextFrame
 .TextRange.Text = "Volume"
 .TextRange.ParagraphFormat.Alignment = ppAlignCenter

End With

Set InTable = New ADODB.Recordset
InTable.ActiveConnection = CurrentProject.Connection
InTable.Open "Select Top 5 Date, High, Low, Volume From DowJones Order " & _
 "By Volume Desc", , adOpenDynamic, adLockOptimistic

i = 2
Do While Not InTable.EOF

 With sh.Table.Cell(i, 1).Shape.TextFrame
 .TextRange.Text = FormatDateTime(InTable.Fields("Date"), vbShortDate)
 .TextRange.Font.Size = 18
 .TextRange.ParagraphFormat.Alignment = ppAlignLeft

 End With

 With sh.Table.Cell(i, 2).Shape.TextFrame
 .TextRange.Text = FormatNumber(InTable.Fields("High"), 2, _
 vbFalse, vbFalse, vbTrue)
 .TextRange.Font.Size = 18
 .TextRange.ParagraphFormat.Alignment = ppAlignLeft

 End With

 With sh.Table.Cell(i, 3).Shape.TextFrame
 .TextRange.Text = FormatNumber(InTable.Fields("Low"), 2, _
 vbFalse, vbFalse, vbTrue)
 .TextRange.Font.Size = 18
 .TextRange.ParagraphFormat.Alignment = ppAlignLeft

 End With

 With sh.Table.Cell(i, 4).Shape.TextFrame

Talking to PowerPoint | 243

 .TextRange.Text = FormatNumber(InTable.Fields("Volume") / 1000000, _
 2, vbFalse, vbFalse, vbTrue)
 .TextRange.Font.Size = 18
 .TextRange.ParagraphFormat.Alignment = ppAlignLeft

 End With

 InTable.MoveNext
 i = i + 1

Loop

p.SaveAs "c:\AccessData\Chapter7-20.ppt"

pp.Quit

End Sub

The routine begins by creating a new PowerPoint presentation, and then it adds the
first slide and gives it a name in a label at the top. Next, it adds a table to the slide
and sets the values for the column headers. It then runs a query that returns the data
for the table. For each row returned, the data is formatted and stored in the appro-
priate cells in the table. Once all of the data has been processed, the table is saved.
The final results can be seen in Figure 7-24.

Figure 7-24. The PowerPoint slide created from the Access database

244 | Chapter 7: Importing and Exporting Data

Note in the code that the Volume value in Access is divided by 1,000,000 when
placed in the PowerPoint table. This provides a cleaner presentation of the Volume
data in the slide. A thoughtful further step would be to go into PowerPoint and high-
light that the Volume values are in millions.

Discussion
Using this technique to store your data in a PowerPoint slide may be overkill, as you
can simply run a query in Access and paste the results directly into PowerPoint with
a lot less effort. However, if you have a lot of tables in your presentation that need to
be updated on a regular basis, you may want to employ this technique to minimize
cutting-and-pasting errors.

7.21 Selecting Random Data

Problem
I want to create a new table consisting of randomly selected rows of data from my
database.

Solution
Sometimes you have too much data to analyze in detail. To make the data more
manageable, you may want to choose a random sample.

One trick you can use is to make a copy of the table and assign a randomly gener-
ated number to each row. Then, you can pull out a random subset of your data
based on those random values.

In theory, you can accomplish this with a SELECT statement like this:

SELECT DowJones.Date, DowJones.Close, DowJones.Volume
INTO [Table7-21]
FROM DowJones
WHERE Rnd() < .1;

However, this statement won’t work. Access is too smart—it assumes that the Rnd
function generates the same value for each row, so it only evaluates the function once
and assigns that value to every row. If the value happens to be below .1, it returns all
records; if it’s above .1, it returns no records.

Instead, you need to use a statement like this one:

SELECT DowJones.Date, DowJones.Close, DowJones.Volume
INTO [Table7-21]
FROM DowJones
WHERE Rnd(DowJones.Volume) < .1;

Selecting Random Data | 245

In this statement, the value of Rnd changes for each row because it is evaluated once
per row. This statement will select a random sample consisting of approximately 10
percent of your total data elements.

Discussion
When choosing a random subset of data using the random key concept, it’s very
important that the random number be totally independent of any of the data in the
row. If the random number is affected by the data in any way, it isn’t really random,
so your selected data won’t be truly random either.

The Rnd function returns a random value greater than or equal to 0.0, but always less
than 1.0. You can use this number as-is, or you can scale it by multiplying it by a
constant and/or adding a constant to it. For instance, you can return a set of random
integers between 1 and 100 inclusive by multiplying Rnd by 100, truncating the val-
ues beyond the decimal point, and adding 1. This can be accomplished using an
expression like this:

Int(Rnd() * 100) + 1

The Rnd function takes an optional parameter. If its value is less than zero, the same
random number will be returned each time. When you omit the parameter or supply
a value greater than zero, the next random number in the sequence will be returned.

Passing a value of zero returns the most recently generated random number. Passing
a negative value for the first call, and then omitting this parameter, or passing a posi-
tive number for the remaining calls, will generate a repeatable sequence of random
numbers. The negative value you send is also called the seed value. Having a repeat-
able sequence of random numbers can be useful, especially when you want to run a
program multiple times and get the exact same set of answers.

Another approach you might use to generate a random selection of data is to add a
new field called RandomKey to your table, and then use an UPDATE statement like this
one to populate the new field with random values:

UPDATE [Table7-21A]
SET NewTable.RandomKey = Rnd(NewTable.Volume);

Then you can create multiple Select statements like this one:

Select *
From [Table7-21A]
Where RandomKey < .1

Using this approach, you can create multiple subsets of data of varying sizes,
depending on the value you use to compare with the RandomKey field. Just make
sure that RandomKey is either a Number(Single) or Number(Double) type, so that
you don’t lose any accuracy when saving your random numbers.

246

Chapter 8CHAPTER 8

Date and Time Calculations 8

Nearly every database that has ever existed has contained some sort of date and time
data. Yet date and time data is often the most challenging type of data to analyze.
While you can analyze date/time values mathematically, the results you get may not
be what you expect. Sometimes, you need to do a little programming to get the infor-
mation you want from your date/time data.

In this chapter, you’ll learn how to correctly perform mathematical operations using
date/time values—for example, you’ll see how to compute the time elapsed between
two date/time values, and how to compensate for holidays and weekends. You’ll also
learn how to work with date/time values recorded in different time zones, and how
to extract the components of a date/time value (such as the month, day, and year).

8.1 Counting Elapsed Time

Problem
I record the start and end times for tasks I perform at work, and I need to compute
how much time I’ve spent on each task. How can I do this without getting out my
calculator?

Solution
Access allows you to include VBA functions in calculated fields. The DateDiff func-
tion provides an easy way to subtract one date/time value from another and return
the difference as a number measured in the units of your choice.

Suppose you have a table containing task identifiers along with start times and stop
times for each task (see Figure 8-1), and you want to compute the number of minutes
between the two date/time values.

As Figure 8-2 illustrates, you can use the Expression Builder tool to create an
expression using the DateDiff function that will compute the values for you.

Counting Elapsed Time | 247

Figure 8-1. A table containing date/time values

Figure 8-2. Computing the difference between the start time and the stop time

248 | Chapter 8: Date and Time Calculations

Or, if you’re more comfortable writing out the SQL by hand, you can create an
expression that looks like this:

SELECT [Chapter8-1].StartTime, [Chapter8-1].StopTime,
 DateDiff("n",[Chapter8-1]![StartTime],[Chapter8-1]![StopTime]) AS ElapsedTime
FROM [Chapter8-1];

Running this query will generate a new column, ElapsedTime, containing the number
of minutes between StartTime and StopTime (see Figure 8-3).

Discussion
The ability to use functions like DateDiff in a query means that you don’t always
have to resort to writing a program to analyze your data. But, as with all program-
ming tools, you need to understand how the function works to use it properly.

DateDiff takes a total of five arguments: interval, date1, date2, firstdayofweek, and
firstweekofyear.

date1 and date2 are the two values to compare. If date1 occurs before date2, the
value returned will be positive, while if date1 occurs after date2, a negative value will
be returned.

Figure 8-3. Computing the difference in time

Counting Elapsed Time with Exceptions | 249

interval determines the units of the return value (see Table 8-1). Note that the val-
ues d and y will produce identical results if you want to count the number of days
between date1 and date2, and w and ww will return the number of weeks between
date1 and date2. However, there’s a subtle difference in how the number of elapsed
weeks is determined. When interval is w (weekday), DateDiff returns the number of
weeks starting from that day of the week (i.e., if date1 falls on a Monday, DateDiff
counts the number of Mondays until date2; date2 is counted if it also falls on a Mon-
day, but date1 is not counted). If interval is ww (week), however, the DateDiff func-
tion returns the number of calendar weeks between the two dates—that is, it counts
the number of Sundays between date1 and date2. DateDiff counts date2 if it falls on
a Sunday, but not date1. Also, note that minutes are represented with n, since m is
used for months.

firstdayofweek and firstweekofyear are both optional parameters, and are impor-
tant only if you use a nonstandard calendar. By default, firstdayofweek is Sunday.
However, you can choose to use the system value based on the National Language
Support (NLS) setting or any other day of the week you choose.

firstweekofyear defaults to the week containing 1 January, meaning that the first
week will be numbered 1, and the following week will be numbered 2. However, you
can override this setting by choosing to use the NLS setting, the first week that
contains at least four days, or the first full week of the year.

8.2 Counting Elapsed Time with Exceptions

Problem
Can I use the DateDiff function to count intervals that aren’t contiguous? Specifi-
cally, I need to compute the number of working days between two dates, taking into
account weekends and holidays.

Table 8-1. Possible values for interval

Value Description

yyyy Returns the number of years between the date/time values

q Returns the number of quarters (three-month intervals) between the date/time values

m Returns the number of months between the date/time values

y Returns the number of days between the date/time values

d Returns the number of days between the date/time values

w Returns the number of weeks between the date/time values

ww Returns the number of weeks between the date/time values

h Returns the number of hours between the date/time values

n Returns the number of minutes between the date/time values

s Returns the number of seconds between the date/time values

250 | Chapter 8: Date and Time Calculations

Solution
With a little creativity, you can easily compute the number of days between two
date/time values, skipping any weekends and holidays that fall between them. First,
you need to create a table containing the holidays you wish to subtract (like the one
shown in Figure 8-4). Next, you’ll need to create a similar table containing weekend
dates.

You can then compute the number of working days between any two dates by
finding the total number of days between the dates and subtracting the number of
holidays and weekend days. If you use this SQL statement, your results should look
like the datasheet view shown in Figure 8-5:

SELECT [Chapter8-2A].TaskId, [Chapter8-2A].StartDate, [Chapter8-2A].StopDate,
DateDiff("d",[StartDate],[StopDate]) AS Days,
DateDiff("d",[StartDate],[StopDate])
-(Select count(*) From Holidays Where Holiday Between StartDate And StopDate)
AS NoHolidays,
DateDiff("d",[StartDate],[StopDate])

Figure 8-4. A list of holidays

Counting Elapsed Time with Exceptions | 251

-(Select count(*) From Weekends Where Weekend Between StartDate And StopDate)
AS NoWeekends,
DateDiff("d",[StartDate],[StopDate])
-(Select count(*) From Weekends Where Weekend Between StartDate And StopDate)
-(Select count(*) From Holidays Where Holiday Between StartDate And StopDate)
AS NoWeekendsOrHolidays
FROM [Chapter8-2A];

You can verify these results using the calendar shown in Table 8-2.

Figure 8-5. Counting days, excluding weekends and holidays

Table 8-2. Calendar

Sunday Monday Tuesday Wednesday Thursday Friday Saturday

1 2 3 4

5 6 7 8 9 10 11

12 13 14 15 16 17 18

19 20 21 22 23 24 25

26 27 28 29 30

252 | Chapter 8: Date and Time Calculations

Discussion
This technique relies on SQL’s ability to execute a Select statement within a Select
statement. The first nested Select statement uses the values in the StartDate and
StopDate fields to identify the number of holidays that occur within the specified
time period. Simply subtracting this value from the number of days between the two
dates computed by the DateDiff function returns the number of nonholiday days.
The same approach is used with the Weekends table to determine the number of
weekend days to subtract.

If you prefer, you can combine the Holidays and Weekends tables into one table list-
ing all of the days to ignore when performing the calculation. If you do this, you’ll
only need to execute one nested Select statement to get the desired value.

8.3 Working with Time Zones

Problem
Date/time values depend on two things: the location of the computer, and the loca-
tion of the person changing the data on the computer. If both happen to be in the
same place, there’s no problem. But if they aren’t, you may end up with values that
can’t be compared with each other.

Solution
There are two solutions to this problem—both affect the overall design of the data-
base. The first approach is to store all date/time values using a single time zone, and
then to convert them to local time as necessary. The second approach is to capture
the local time zone whenever a date/time value is entered into the database; then,
when you need to compare values, you can convert them to a common time zone.

Regardless of which approach you choose, the first thing you’ll need is a table con-
taining the information that will allow you to convert one time zone to another (see
Figure 8-6). The important elements in this table are TimeZone, Location, and Offset.

The TimeZone field contains the standard abbreviations for the time zones. The val-
ues in this field are not unique, but the people that originally defined time zones did
so in a way that would allow everyone to understand the appropriate time zone given
their geographical location. Offset contains the number of hours that need to be
added to Coordinated Universal Time, or UTC, to get the local time (for further
details, see the Discussion section).

Assuming that all of the time values in your database are stored in UTC, the following
SQL statement will convert these time values into Central Standard Time (CST):

Working with Time Zones | 253

SELECT [Chapter8-3A].TaskId, [Chapter8-3A].StartTime, [Chapter8-3A].StopTime,
StartTime+[Offset]/24 AS CSTStartTime,
StopTime+[Offset]/24 AS CSTStopTime, [Offset]
FROM [Chapter8-3A], TimeZones
WHERE TimeZones.TimeZone="CST" And TimeZones.Location="North America";

The results are shown in Figure 8-7.

To compare time values, you must convert them all into a single time zone (usually
UTC). You can accomplish this by merely reversing the offset formula and subtracting
the Offset value from the local time, as illustrated in this SELECT statement:

SELECT [Chapter8-3B].StartTime, [Chapter8-3B].StartTimeZone, TimeZones.Offset,
StartTime-Offset/24 AS UTCTime
FROM [Chapter8-3B], TimeZones
WHERE TimeZone=StartTimeZone and Location="North America";

The results are shown in Figure 8-8.

Figure 8-6. A table of time zones

254 | Chapter 8: Date and Time Calculations

Discussion
There is a town in England known as Greenwich, whose longitude is zero degrees,
zero minutes, and zero seconds. The time at this location is known as Greenwich
Mean Time (GMT). It is also known as Zulu time, but most people now refer to this
time as Coordinated Universal Time (UTC). This is the base time for all time zones
in the world. In other words, all other time zones are measured relative to this zone.
This relative measurement is known as the time offset.

The time offset can range from +12 to –12 hours, depending on the location of the
time zone. To convert from UTC to your local time zone, merely add the offset value
to the UTC time value. To convert your local time zone to UTC, subtract the offset
value.

While the preceding discussion applies to UTC, you can pick any time
zone as the “zero” time zone for your database and convert all values
to or from that zone. This may seem like a poor solution, but remem-
ber that even big web sites like eBay that are based on Pacific Time
don’t attempt to convert to your local time zone.

Figure 8-7. Converting UTC into CST

Working Around Leap Years | 255

8.4 Working Around Leap Years

Problem
On some computer systems, doing calculations involving leap years can cause big
problems. This is because some years include 29 February, while others do not.

Solution
This isn’t a problem in Access.

Discussion
The extra day is added to the month of February when the year is divisible by 4,
except when the year ends in 00, in which case it isn’t added, except when the cen-
tury is divisible by 4, in which case it is added. Confused? The year 2008 will have a 29
February, but the year 2100 will not; however, the year 2000 did have a 29 February.

The reason leap years are not a problem in Access is that all date/time values are stored
using two parts. The first part is a positive or negative integer, where 0 means 30
December 1899, 1 means 31 December 1899, –1 means 29 December 1899, and so on.

Figure 8-8. Converting local time into UTC

256 | Chapter 8: Date and Time Calculations

Time values are stored as decimal values, where midnight = 0 and noon = 0.5. This
means that 6 A.M. = .25 and 6 P.M. = .75. Another way to think of this value is the
number of hours past midnight divided by 24.

This approach also applies to minutes and seconds. For instance, 12:01 A.M. would
be stored internally as 0.0006944. To arrive at this value, just convert the minutes
and seconds into fractional hours, and then divide by 24.

One nice thing about this technique for storing date and time information is that you
can easily add a value containing a specified number of days, hours, etc., to this field
to arrive at a new value.

Key to making this work is the ability to convert normal date and time expressions to
and from this internal format. Fortunately, Microsoft includes a number of VBA
functions that you can use (see Table 8-3).

8.5 Isolating the Day, Month, or Year

Problem
I need to be able to collect statistics on my data by day, month, or year. In other
words, I need a way to extract only that part of a date/time value.

Solution
Access provides a number of VBA functions that allow you to extract various parts of
a date, including Year, Month, Day, and Weekday. These functions can be incorporated
into a SQL SELECT statement like this:

SELECT Holidays.Holiday, Holidays.Description,
Year([holiday]) AS [Year],
Month([holiday]) AS [Month],
Day([Holiday]) AS [Day],
Weekday([holiday]) AS Weekday,
MonthName(Month([holiday])) AS MonthName,

Table 8-3. Selected VBA date and time functions

Function Description

DateAdd Adds the specified number of date/time units to the specified date

DateDiff Returns the difference between two date/time values using the requested units

DateSerial Constructs a date/time value using the specified day, month, and year values

DatePart Returns the requested date value from the specified date/time value

DateValue Converts the specified string with a formatted date value into a date/time value

Now Returns the current date and time

TimeSerial Constructs a date/time value using the specified hours, minutes, and seconds values

TimeValue Converts the specified string with a formatted time value into a date/time variable

Isolating the Day, Month, or Year | 257

WeekdayName(Weekday([holiday])) AS WeekdayName
FROM Holidays;

You can see the results of this query in Figure 8-9.

Discussion
The Year, Month, Day, and Weekday functions each return an integer value with the
requested information. These values in turn can be used as part of a more complex
query that sorts and/or summarizes the data by these values.

To make your reports easier to understand, you may want to convert
the numbers returned by the Month and Weekday functions into text
values. You can do this with the MonthName and WeekdayName functions.

Another way to extract more detailed date information from a date/time value is to
use the DatePart function. The DatePart function returns the same values that you
can get from the Year, Month, Day, and Weekday functions, but it can also return the
quarter, the day of the year, and the week of the year.

Figure 8-9. Extracting information from a date/time value

258 | Chapter 8: Date and Time Calculations

DatePart takes four arguments: interval, date, firstdayofweek, and firstweekofyear.

interval determines the units of the return value (see Table 8-4). date is the date/
time value from which the value determined by interval will be extracted.

firstdayofweek and firstweekofyear are both optional parameters, and are impor-
tant only if you use a nonstandard calendar. By default, firstdayofweek is Sunday.
However, you can choose to use the system value based on the NLS setting, or any
other day of the week you choose.

firstweekofyear defaults to the week containing 1 January, meaning that this week
will be numbered 1, and the following week will be numbered 2. However, you can
override this setting by choosing to use the NLS setting, the first week that contains
at least four days, or the first full week of the year.

Figure 8-10 shows the results produced by these functions when the following query
is run:

SELECT Holiday, Description,
DatePart("q", Holiday) as Quarter,
DatePart("y", Holiday) as DayOfYear,
DatePart("ww", Holiday) as WeekOfYear
FROM Holidays;

8.6 Isolating the Hour, Minute, or Second

Problem
What functions can I use to extract the hour, minute, or second value from a time
field?

Table 8-4. Possible values for interval

Value Description

yyyy Returns the year (this is the same as the Year function)

q Returns the quarter

m Returns the month (this is the same as the Month function)

y Returns the day of the year

d Returns the day of the month (this is the same as the Day function)

w Returns the weekday (this is the same as the Weekday function)

ww Returns the week number of the year

Isolating the Hour, Minute, or Second | 259

Solution
Like the Year, Month, Day, and Weekday functions described in Recipe 8.5, you can use
the Hour, Minute, and Second VBA functions to extract those values from a date/time
field. For example, the following SQL statement will generate the results in
Figure 8-11:

SELECT [Chapter8-6].TaskId, [Chapter8-6].Time,
Hour([time]) AS [Hour],
Minute([time]) AS [Minute],
Second([time]) AS [Second]
FROM [Chapter8-6];

Discussion
The Minute and Second functions return integer values in the range of 0 to 59. The
Hour function returns an integer value in the range of 0 to 23 because there isn’t a
practical way to return an A.M. or P.M. indicator along with the hour value.

Figure 8-10. Extracting the quarter, day of year, and week of year values from a date/time value

260 | Chapter 8: Date and Time Calculations

8.7 Adding Time

Problem
Occasionally I want to analyze my data by selecting records around a particular date.
For example, given a specific date, I might want to select all of the records in the
range of seven days before that date to seven days after that date.

Solution
The DateAdd VBA function allows you to add date or time values to a specified date/
time value. Thus, you can generate new date/time values relative to that value.

Let’s assume that you have the data shown in Figure 8-12.

Running the following query prompts the user for two values (DateArg, which is the
date around which the rows will be selected, and DateInterval, which is the offset
from DateArg that determines the range of dates to be selected):

Figure 8-11. Extracting the hour, minute, and second values from a date/time value

Adding Time | 261

SELECT [Chapter8-7].TaskId, [Chapter8-7].StartDateTime, DateArg, DateInterval
FROM [Chapter8-7]
WHERE [Chapter8-7].StartDateTime Between DateAdd("d",-DateInterval,DateArg)
And DateAdd("d",DateInterval,DateArg);

If the user supplies values of 24 Jan 06 and 2 for DateArg and DateInterval, respec-
tively, you should see the results shown in Figure 8-13.

Discussion
The DateAdd function gives you the ability to add many different types of offset val-
ues to compute a new date. In addition to days, you can add years, quarters, months,
weeks, hours, minutes, and seconds to a date/time value.

The DateAdd function takes three arguments: interval, number, and date.

The interval argument determines the units of the number (an integer value) to be
added to date (a date/time value). Possible values for interval are listed in Table 8-5.
Negative values for number will result in a new value that is earlier than date, while
positive values will result in a new value that is later than date.

Figure 8-12. A list of date/time values

262 | Chapter 8: Date and Time Calculations

Figure 8-13. Selecting dates around 24 Jan 06

Table 8-5. Possible values for interval

Value Description

yyyy Adds the specified number of years to the date/time value

q Adds the specified number of quarters to the date/time value

m Adds the specified number of months to the date/time value

y Adds the specified number of days to the date/time value (same as d and w)

d Adds the specified number of days to the date/time value (same as y and w)

w Adds the specified number of days to the date/time value (same as d and y)

ww Adds the specified number of weeks to the date/time value

h Adds the specified number of hours to the date/time value

n Adds the specified number of minutes to the date/time value

s Adds the specified number of seconds to the date/time value

263

Chapter 9 CHAPTER 9

Business and Finance Problems9

The need to solve business and finance problems is common to many Access users.
While you can always export your data to Excel for analysis, it might be easier for
you to find ways to solve these problems inside Access. Fortunately, using the capa-
bilities found in the Access database engine and the VBA scripting language, you can
tackle nearly any business or finance task.

In this chapter, you’ll learn how to solve a number of common problems, such as
computing return on investment, straight-line depreciation, accelerated depreciation,
interest, and moving averages. You’ll also learn how to use Access’ PivotTables and
PivotCharts, which will help you decode some of the hidden information in your data.

9.1 Calculating Weighted Averages

Problem
I want to calculate a weighted average for a series of values.

Solution
You can use a SELECT statement like this to compute a weighted average:

SELECT Sum(Value * Weight) / Sum(Weight) AS WeightedAverage
FROM [Table9-1];

This statement will return the value in Figure 9-1 for the data found in Figure 9-2.

Discussion
To compute a weighted average, take the sum of the products of the values and the
weights, and then divide the result by the sum of the weights. That is:

Σ Vi * Wi
Weighted Average = --------

Σ Wi

where Vi represents the ith value and Wi represents the ith weight.

264 | Chapter 9: Business and Finance Problems

The key to understanding when to use weighted averages rather than simple aver-
ages is to look at how the items are related to each other. If all items have the same
impact, you can use a simple average. But if the relative impacts of the items are
different, you should use a weighted average.

Figure 9-1. The computed weighted average

Figure 9-2. Sample data used to compute a weighted average

Calculating a Moving Average | 265

For instance, when you are trying to compute the average price paid for a set of
items, you should use a weighted average if the prices of the items vary. In this case,
the price is the value, and the number of items is the weight. Computing the
weighted average will give you an average price that is biased toward the price you
paid for the most items.

9.2 Calculating a Moving Average

Problem
I want to compute a moving average for my data.

Solution
You can use a SELECT statement like the following to compute a moving average:

SELECT A.Date, DisneyClose,
 (Select Avg(DisneyClose)
 From Stocks B
 Where B.Date Between A.Date And DateAdd("d", -7, A.Date)) AS MovingAverage
FROM Stocks AS A
WHERE A.Date Between #1-1-2000# And #12-31-05#
ORDER BY Date DESC;

This statement scans a table containing daily values, and uses a nested query to
compute the average across the previous seven days.

You can easily adjust this range to change how the moving average is computed. For
example, you could use a Where clause like this to compute the moving average over a
14-day window, with the current date in the middle:

Where B.Date Between DateAdd("d", 7, A.Date) And DateAdd("d", -7, A.Date)

Discussion
A moving average is used to smooth time-series data that contains noticeable jumps
between observations. The time scale for the observations can be days (as in the
preceding example), months, or even years. Alternatively, you can use a simple
AutoNumber column in place of a date field, since the values in that column will also
increase over time.

The larger the range used to compute the moving average is, the smoother the result-
ing curve will be. In Figure 9-3, you can see how a moving average smoothes the
individual observations of a stock price.

See Also
• Recipe 9.10

266 | Chapter 9: Business and Finance Problems

9.3 Calculating Payback Period

Problem
I want to know how long it will take to recover my original investment.

Solution
You can use the following routine to compute the payback period:

Function PaybackPeriod(rs As ADODB.Recordset, Time As String, _
 Interest As String, CashFlow As String, InitialInvestment As Currency) _
 As Double

Dim OldNPV As Currency
Dim OldTime As Long
Dim NPV As Currency
Dim Temp As Currency

NPV = 0
OldTime = 0
Do While Not rs.EOF
 OldNPV = NPV
 Temp = (1 + rs.Fields(Interest)) ^ rs.Fields(Time)
 NPV = NPV + rs.Fields(CashFlow) / Temp

Figure 9-3. Using a moving average to smooth a set of values

Calculating Payback Period | 267

 If NPV > InitialInvestment Then
 PaybackPeriod = OldTime + _
 (NPV - InitialInvestment) / (NPV - OldNPV) * (rs.Fields(Time) - OldTime)
 Exit Function

 End If

 Debug.Print NPV, OldNPV, rs.Fields(Time), OldTime
 OldTime = rs.Fields("Time")
 rs.MoveNext

Loop

PaybackPeriod = -1

End Function

To use this routine, you need to pass a Recordset object containing the information
used to compute the net present value, along with the value of the initial investment.
The result will be returned as a Double, representing the number of time periods
needed to recover the initial investment. If the initial investment is not recovered
within the series of data in the table, a value of -1 will be returned.

The following code shows how to call PaybackPeriod:

Sub Example9_5()

Dim rs As ADODB.Recordset
Dim pp As Currency

Set rs = New ADODB.Recordset
Set rs.ActiveConnection = CurrentProject.Connection

rs.Open "Select Time, InterestRate, CashFlow From [Table9-3]", , _
 adOpenStatic, adLockReadOnly

pp = PaybackPeriod(rs, "Time", "InterestRate", "CashFlow", 300)

rs.Close

Debug.Print "Payback period = ", pp

End Sub

Discussion
Calculating the payback period is a way to determine the amount of time required to
break even on an initial investment. Essentially, the PaybackPeriod routine computes
the net present value for the supplied data on a time period-by-time period basis.
When the current net present value exceeds the value of the initial investment, the
initial investment is considered “paid back.”

268 | Chapter 9: Business and Finance Problems

Rather than simply returning the time period during which the investment was
recovered, however, this routine also attempts to approximate the actual point at
which it was recovered. Assuming a linear cash flow during each time period, the
routine determines the percentage of the current time period’s cash flow that was
needed to pay back the initial investment. This value is then multiplied by the differ-
ence in time between the current time period and the previous time period to give the
approximate point during the current time period at which the investment was
recovered.

9.4 Calculating Return on Investment

Problem
I need to know what the return on investment (ROI) will be for a particular set of
cash flows.

Solution
This routine computes the ROI:

Function ReturnOnInvestment(rs As ADODB.Recordset, Time As String, _
 Interest As String, CashFlow As String, InitialInvestment As Currency) _
 As Double

Dim ROI As Currency
Dim NPV As Currency

NPV = NetPresentValue(rs, Time, Interest, CashFlow)

ROI = (NPV - InitialInvestment) / InitialInvestment

End Function

Function NetPresentValue(rs As ADODB.Recordset, Time As String, _
 Interest As String, CashFlow As String) As Currency

Dim NPV As Currency
Dim temp As Currency

NPV = 0

Do While Not rs.EOF
 temp = (1 + rs.Fields(InterestRate)) ^ rs.Fields(Time)
 NPV = NPV + rs.Fields(CashFlow) / temp

 rs.MoveNext

Loop

Calculating Straight-Line Depreciation | 269

rs.Close

NetPresentValue = NPV

End Function

The routine first calls the NetPresentValue function, using values returned in a
recordset. It then computes the ROI by dividing the difference between the net
present value and the initial investment by the initial investment.

Discussion
ROI gives you an indication of potential gain or loss on a particular investment. It is
calculated using the following simple formula:

 Net Present Value – Initial Investment
Return on Investment = ---
 Initial Investment

Subtracting the initial investment from the net present value gives you the amount of
money that the investment would yield; dividing this value by the initial investment
gives you the percentage of change relative to the initial investment.

9.5 Calculating Straight-Line Depreciation

Problem
How do I calculate straight-line depreciation for a series of items?

Solution
You can use the following function to compute straight-line depreciation:

Function StraightLineDepreciation(Purchase As Currency, Salvage As Currency, _
 UsefulLife As Long, Year As Long)

StraightLineDepreciation = (Purchase - Salvage) / UsefulLife

End Function

The StraightLineDepreciation function takes four parameters, but only three are
used here. Purchase contains the initial purchase price of the item, while Salvage rep-
resents the salvage value of the item at the end of its useful life. UsefulLife contains
the useful life of the item, in years. Year contains the year for which you wish to com-
pute the depreciation; it’s ignored in this function, but was included to maintain the
same set of parameters used in other depreciation functions.

The following routine shows how to use this function. It begins by opening an input
table containing the items to be depreciated (see Figure 9-4). Then, it opens an
empty table, which will hold the calculated depreciation for each year of each item’s
useful life:

270 | Chapter 9: Business and Finance Problems

Sub Example9_7()

Dim intable As ADODB.Recordset
Dim outtable As ADODB.Recordset

Dim Year As Long
Dim Purchase As Currency
Dim Salvage As Currency
Dim UsefulLife As Long

Set intable = New ADODB.Recordset
Set intable.ActiveConnection = CurrentProject.Connection
intable.Open "Select Id, InitialPurchasePrice, SalvageValue, UsefulLife " & _
 "From Inventory", , adOpenStatic, adLockReadOnly

Set outtable = New ADODB.Recordset
Set outtable.ActiveConnection = CurrentProject.Connection
outtable.Open "[Table9-7]", , adOpenDynamic, adLockOptimistic

Do While Not intable.EOF

 Purchase = intable.Fields("InitialPurchasePrice")
 Salvage = intable.Fields("SalvageValue")
 UsefulLife = intable.Fields("UsefulLife")

 For Year = 1 To UsefulLife
 outtable.AddNew
 outtable.Fields("Id") = intable.Fields("Id")
 outtable.Fields("Year") = Year

Figure 9-4. Creating inventory data for depreciation

Calculating Straight-Line Depreciation | 271

 outtable.Fields("StraightLine") = StraightLineDepreciation(Purchase, _
 Salvage, UsefulLife, Year)
 outtable.Update

 Next Year

 intable.MoveNext

Loop

intable.Close
outtable.Close

End Sub

For each item in the Inventory table, the data values used to compute depreciation
are stored in a set of local variables. Then, a For loop is executed for each year of the
item’s useful life. Inside the loop, a new row is added to the output table. This row
contains Id, Year, and the newly computed depreciation value (see Figure 9-5). After
all of the data has been processed, both tables are closed.

Figure 9-5. Calculating depreciation

272 | Chapter 9: Business and Finance Problems

Discussion
Depreciation is a way to account for the fact that most items used in business lose
value from the beginning of their lives until the end. Straight-line depreciation
spreads the loss equally over each year of the item’s useful life:

 Initial Purchase Price – Salvage Value
Straight-Line Depreciation = --------------------------------------
 Useful Life

Of course, most items lose more of their value in earlier years than in later years. For
example, consider a new car. Just driving it off the showroom floor decreases its
value significantly, but the decrease in value between, say, years 10 and 11 is
minimal. A more sophisticated version of this routine might attempt to calculate
depreciation on a sliding scale. This is known as declining-balance depreciation.

9.6 Creating a Loan Payment Schedule

Problem
I would like to create a loan payment schedule that identifies the monthly payment
amounts and the percentages of those amounts that are applied to interest and the
principal, respectively.

Solution
You can use the following routine to calculate a loan payment schedule:

Sub Example9_11()

Dim intable As ADODB.Recordset
Dim outtable As ADODB.Recordset

Dim Year As Long
Dim Principal As Currency
Dim Interest As Double
Dim LoanPeriod As Long
Dim Payment As Currency
Dim CurrentPrincipal As Currency
Dim CurrentInterest As Double
Dim i As Long

Set intable = New ADODB.Recordset
Set intable.ActiveConnection = CurrentProject.Connection
intable.Open "Select Id, InitialPurchasePrice, LoanInterest, LoanPeriod " & _
 "From Inventory", , adOpenStatic, adLockReadOnly

Set outtable = New ADODB.Recordset

Creating a Loan Payment Schedule | 273

Set outtable.ActiveConnection = CurrentProject.Connection
outtable.Open "[Table9-11]", , adOpenDynamic, adLockOptimistic

Do While Not intable.EOF

 Principal = intable.Fields("InitialPurchasePrice")
 Interest = intable.Fields("LoanInterest") / 12
 LoanPeriod = intable.Fields("LoanPeriod")
 Payment = LoanPayment(Principal, Interest, LoanPeriod)

 For i = 1 To LoanPeriod
 CurrentInterest = Principal * Interest
 CurrentPrincipal = Payment - CurrentInterest
 Principal = Principal - CurrentPrincipal

 outtable.AddNew
 outtable.Fields("Id") = intable.Fields("Id")
 outtable.Fields("Period") = i
 outtable.Fields("Payment") = Payment
 outtable.Fields("Principal") = CurrentPrincipal
 outtable.Fields("Interest") = CurrentInterest
 outtable.Update

 Next i

 intable.MoveNext

Loop

intable.Close
outtable.Close

End Sub

This routine begins by defining two Recordset objects, intable and outtable. The
intable Recordset reads an item from the Inventory table and extracts the informa-
tion necessary to calculate the interest on a loan. The outtable Recordset maps to an
empty table that will hold the loan payment schedules.

Next, the routine loops through the rows in the input table. Inside the loop it
extracts the key fields into variables, taking care to ensure that the interest rate is
converted from an annual rate to a monthly rate.

Once the variables are set, a For loop is used to process each month of the loan. The
current principal and interest are calculated. Once the calculations are complete, the
information for the month is written to the output table; once all of the months have
been processed, the next row is read from intable.

Discussion
Storing the routine’s result in a table enables you to create reports to present the
data. Figure 9-6 shows a simple report that lists key information about an item,
including the repayment schedule for the loan taken out to purchase it.

274 | Chapter 9: Business and Finance Problems

9.7 Using PivotTables and PivotCharts

Problem
Tables and reports are nice, but are there any other tools that can help me analyze
my data?

Solution
Access includes two data analysis tools that are similar to those found in Excel. A
PivotTable (see Figure 9-7) is a way to summarize your data into a compact report
while including the ability to expand particular sets of values to show the underlying
detail. A PivotChart (see Figure 9-8) has the same basic features as a PivotTable, but
the results are displayed graphically instead of as a tabular report.

Discussion
PivotTables and PivotCharts are ideal tools to use when you’re trying to understand
your data, but don’t know where to begin. Because of their dynamic nature, you can

Figure 9-6. A loan repayment report

Using PivotTables and PivotCharts | 275

quickly change the way the data is organized. This allows you to identify the
information you want to present.

Excel also has PivotTables and PivotCharts, and Excel’s implementations are much
more powerful than Access’. If you prefer, you can export your data to Excel and use

Figure 9-7. A sample PivotTable

Figure 9-8. A sample PivotChart

276 | Chapter 9: Business and Finance Problems

Excel’s tools to analyze it. However, using PivotTables in Access has the advantage
that you can quickly change the underlying query to retrieve different data and/or
compute different values. One useful option is to use Access to tune your query and
test your PivotTables and PivotCharts, and then export the data into Excel and use
Excel’s capabilities to fine-tune the presentation of your data.

See Also
• Recipe 9.8

• Recipe 9.9

9.8 Creating PivotTables

Problem
How do I create a PivotTable?

Solution
You can create a PivotTable from a table or a query. First, open the table or query by
double-clicking on its name. Then, in datasheet view, right-click on the window and
choose PivotTable from the context menu. This will display an empty PivotTable
similar to that shown in Figure 9-9.

There are four main areas in the PivotTable: the column area, the row area, the filter
area, and the detail area. The column and row areas contain the fields whose values
form the basic grid, while the filter area contains fields that can be used to include or
exclude rows from the query.

The detail area occupies the bulk of the space in the PivotTable window, and repre-
sents the individual cells that make up the grid. In Figure 9-9, the detail section
contains only the entry No Totals.

In addition to the PivotTable window itself, there are two other windows that you’ll
use to create the table. The Field List window (the top-right window in Figure 9-9)
contains the fields that you can use with your PivotTable. The Properties window
(the lower-right window in Figure 9-9) contains properties of the PivotTable. These
windows float above the other windows, and can easily be moved elsewhere on the
screen, including outside the main Access window.

To populate your PivotTable, simply drag fields from the Field List window to the
desired area in the PivotTable window. You can drag more than one field into each
area. When you drag multiple fields into the row or column area, these fields are
combined to form a nested index (see Figure 9-10).

Creating PivotTables | 277

Figure 9-9. An empty PivotTable

Figure 9-10. A PivotTable with two fields in the row area and one field in the column area

278 | Chapter 9: Business and Finance Problems

The Grand Total column shown in Figure 9-10 represents the sum of the values dis-
played in each row. Hidden values are not included in this calculation, though there
is an option you can choose that will perform calculations on all data, rather than
just the visible data. You can choose which values are displayed by clicking on the
arrows next to the field names and choosing values from the drop-down lists (see
Figure 9-11).

Discussion
By default, Access computes the sum of the values you select. However, this isn’t
appropriate in all circumstances. For example, if you were dealing with stock prices
rather than populations, computing averages would be more appropriate. To see a
list of the options that you can use to summarize the data in the PivotTable, either
right-click on the value you wish to change and choose AutoCalc from the pop-up
menu, or choose AutoCalc from the toolbar (see Figure 9-12).

If your data includes date values, Access will automatically generate a set of fields
that you can use as columns or rows, which represent aggregations of date values.
You can choose from three basic sets of fields: Date, Date By Week, and Date By
Month (see Figure 9-13). These three fields also include automatically summarized
fields that span years, quarters, months, weeks, days, hours, minutes, and seconds.

Figure 9-11. Choosing information for your PivotTable

Creating PivotTables | 279

Setting properties in an Access PivotTable is a little different than it is in most
applications. You can display the Properties window (shown in Figure 9-14) by right-
clicking on the PivotTable window and choosing Properties from the context menu.
While this appears to be a normal properties window, it behaves somewhat differ-
ently. Under “General commands” is a drop-down list. Choosing a different option
from this list will display a different set of tabs, which contain properties specific to
the selected item.

If you click on a field, you’ll be able to change the way the field is displayed in the
PivotTable, along with its behavior. Clicking elsewhere on the PivotTable allows you
to change the way information is displayed in the drag-and-drop areas (e.g., rows,
columns, and filters), along with other general properties related to the PivotTable.

Figure 9-12. Choosing alternate calculation methods

280 | Chapter 9: Business and Finance Problems

Figure 9-13. Automatically generated date fields

Figure 9-14. Modifying PivotTable properties

Charting Data | 281

9.9 Charting Data

Problem
I want to analyze my data for trends, but looking at numbers is difficult for me. Is
there a better alternative?

Solution
You can easily create a PivotChart using the result from any query. Simply run the
query, right-click on the result, and choose PivotChart. Alternatively, you can work
out which data you want to display in a PivotTable before switching the view to Piv-
otChart (creating and working with PivotTables is covered in Recipe 9.8). Much of
the structure will be carried over, including fields in the row, column, filter, and
detail areas. If you’ve defined how the information is summarized in the PivotTable,
those specifications will also be carried over. For example, the PivotTable shown in
Figure 9-15 could be converted into the PivotChart shown in Figure 9-16 simply by
right-clicking on the PivotTable and selecting PivotChart from the context menu.

Discussion
When dealing with PivotCharts, you need to consider the amount of data you want
to display. As with any chart, it’s very easy to try to include too much data.
Figure 9-17 shows what this can look like.

Of course, the amount of data you can comfortably include depends partly on the
type of chart you’re displaying. Access supports most, but not all, of the chart types

Figure 9-15. This PivotTable…

282 | Chapter 9: Business and Finance Problems

offered by Excel (see Figure 9-18). You can change the chart type by right-clicking a
blank area in the chart and choosing Chart Type from the context menu.

As with a PivotTable, you can easily modify the way the data is displayed on a
PivotChart. The interface for working with PivotCharts is the same as that for
PivotTables; for more information, see Recipe 9.8.

Figure 9-16. …becomes this PivotChart

Figure 9-17. Way too much data in a chart

Finding Trends | 283

9.10 Finding Trends

Problem
I have financial data that spans several months. At times, an upward or downward
trend is apparent, but in some ranges of dates, the data is volatile and it’s hard to
discern a trend.

What are some techniques to apply to large data sets to determine the overall trend?

Solution
The moving average (discussed in Recipe 9.2) is the de facto standard for pulling a
trend out of seemingly random data. The approach used in Recipe 9.2 computed an
average based on calendar days, with all seven days of the week counted in the calcu-
lation. In this example, however, we’ll need to use actual data points without regard
to the calendar.

Say you want to calculate 20- and 50-day moving averages for your data. Twenty
data points are needed to get a 20-day moving average. But in financial markets, data
is based on days the market is open (which excludes weekends and holidays). Thus,
while the 20-day average will be based on 20 days of activity, the calendar spread will
cover more than 20 days.

Figure 9-18. Types of PivotCharts supported by Access

284 | Chapter 9: Business and Finance Problems

This routine calculates a 20- and 50-day moving average:

Sub compute_moving_averages()
Dim db As DAO.Database
Dim rs As DAO.Recordset
Dim ssql As String
Dim sumit As Integer
Dim avg20 As Single
Dim avg50 As Single
Set db = CurrentDb
ssql = "Select * From Yahoo Order By Date"
Set rs = db.OpenRecordset(ssql, dbOpenDynaset)
'move down to the 20th row to start
rs.Move 19
Do While Not rs.EOF
 avg20 = 0
 rs.Move -19
 For sumit = 1 To 20
 avg20 = avg20 + rs.Fields("Close")
 rs.MoveNext
 Next sumit
 If rs.EOF Then GoTo do_50
 rs.Move -1 'put avg with correct ending date
 rs.Edit
 rs.Fields("20 day moving average") = avg20 / 20
 rs.Update
 rs.Move 1
Loop
do_50:
rs.MoveFirst
'move down to the 50th row to start
rs.Move 49
Do While Not rs.EOF
 avg50 = 0
 rs.Move -49
 For sumit = 1 To 50
 avg50 = avg50 + rs.Fields("Close")
 rs.MoveNext
 Next sumit
 If rs.EOF Then GoTo endd
 rs.Move -1 'put avg with correct ending date
 rs.Edit
 rs.Fields("50 day moving average") = avg50 / 50
 rs.Update
 rs.Move 1
Loop
endd:
rs.Close
Set rs = Nothing
db.Close
Set db = Nothing
MsgBox "done"
End Sub

Finding Trends | 285

In this case, the 20-day moving average starts on the 20th day in the data, and the
50-day moving average starts on the 50th day. Figure 9-19 shows the data points of
the closing values for Yahoo! stock for July through December 2005. Between Octo-
ber and December, the data points are more erratic. The 20-day and 50-day moving
averages provide a clearer picture of the stock’s direction.

There are other trend lines besides the moving average. Each follows a mathematical
pattern, as illustrated in Table 9-1.

In all the formulas in Table 9-1, y represents the positioning on the vertical (value)
axis, and x represents the positioning on the horizontal (category) axis. While the
formulas may look a bit complex if you are not math-savvy, an easy way to think of
them is that y changes as x changes. On a chart, there is always a place where x and y
intersect. Of course, other variables influence the value of y in each of these formulas.

Figure 9-19. Moving averages

Table 9-1. A sample of trend line formulas

Type of trend line Formula

Linear y = mx + b (m is the slope and b is the intercept)

Logarithmic y = cln x + b

Polynomial y = b + c1x + c2x2 + c3x3…

Power y = cxb

Exponential y = cebx

286 | Chapter 9: Business and Finance Problems

Detailed explanations of the different types of trends are more in the realm of a good
algebra or finance book, but let’s look briefly at a few examples. Figure 9-20 and
Figure 9-21 show the Yahoo! data coupled with a linear trend line and a polynomial
trend line, respectively. The trend lines appear different, but still clearly show the
direction of the trend.

Figure 9-20. Yahoo! linear trend

Figure 9-21. Yahoo! polynomial trend

Finding Head and Shoulders Patterns | 287

Discussion
Finding trends in data can help you intelligently guesstimate the direction the data
may take within some future period (this is known as forecasting).

However, it’s important to consider that trends may be cyclical. Cyclical trends are
trends that are expected to move in certain directions at different times, usually over
the course of a year. This is a common phenomenon in some commodity markets.
For example, the price of heating oil generally increases during cold months and
decreases in warmer months. This is a standard case of prices being determined by
supply and demand. More heating oil is needed in the winter than in the summer,
and, all other things being equal, an increase in demand will raise prices, while a
decrease in demand will lower prices.

A related but nearly opposite example is the cost of electricity. In summertime, the
demand for electricity goes up (because all of the air conditioners are turned on);
conversely, demand decreases in winter. Prices, to the extent of any market regula-
tions, will go up along with the higher demand. Anyone care to guess the trend of air
conditioner sales as the summer ends and autumn heads toward winter?

9.11 Finding Head and Shoulders Patterns

Problem
I’ve been studying the technical analysis of stocks, and I’ve read a lot about the so-
called “Head and Shoulders” pattern. This is reasonably easy to identify when viewing
a chart, but what’s a good routine that will look for the pattern just by testing data?

Solution
Head and Shoulders patterns found in sequential security prices serve as an invest-
ment tool to predict future price moves. The Head and Shoulders pattern does
indeed resemble the general look of a head with a shoulder on each side. The pattern
has these attributes:

• A left shoulder, determined by ensuring that it is a pinnacle—that is, that the
data point before and the data point after are both less than the shoulder data
point.

• A dip, or a point that is lower than the left shoulder, and is a nadir—that is, the
data points before and after must be higher than the dip data point.

• The head, which is a point higher than both shoulders. The head is a pinnacle.

• A second dip, after the head, that is lower than the head and is a nadir.

• The right shoulder, a pinnacle that comes after the second dip. This shoulder
must be of a value that is between the head and the second dip.

288 | Chapter 9: Business and Finance Problems

That being said, there are variations on how to measure these data points. For exam-
ple, must the second dip be lower than the first shoulder? Must the head be a certain
percentage higher than the shoulders? Must all the data points lie within a given
range of points? Clearly, identifying Head and Shoulders patterns involves a bit of art
as well as financial acumen.

Figure 9-22 shows a chart in which the five key data points are enhanced with markers.

These points were identified via a code routine written in Access VBA. Working with
a table of financial data containing the closing prices for Apple Computer stock, the
shoulder, dip, and head points were determined with a couple of parameters used in
the routine. In this case, a user enters the parameter values on an Access form. The
first parameter is the range, which indicates how many sequential data points should
be tested to see if a particular key data point (shoulder, dip, or head) has been found.

The second parameter is a percentage. This percentage is used in the routine as a
guide for the minimum required difference between the vital data points. For example,
the first dip must be at least the percentage amount lower than the first shoulder, the
head must be at least the percentage amount above the first shoulder, and so on.
Figure 9-23 shows the form and the results of running the procedure with the
entered parameters. The listbox on the form displays the results of dates and data
points that met the criteria. A complete set of points—shoulder1, dip1, head, dip2,
shoulder2—is always returned. (By the way, the purported line running from dip1 to
dip2 is called the “neckline.”)

Here is the code that locates the key values:

Private Sub cmdFindPattern_Click()
Dim head_flag As Boolean
Dim shoulder1_flag As Boolean

Figure 9-22. A Head and Shoulders top formation

Finding Head and Shoulders Patterns | 289

Dim shoulder2_flag As Boolean
Dim dip1_flag As Boolean
Dim dip2_flag As Boolean
Dim head_date As Date
Dim shoulder1_date As Date
Dim shoulder2_date As Date
Dim dip1_date As Date
Dim dip2_date As Date
Dim head_value As Single
Dim shoulder1_value As Single
Dim shoulder2_value As Single
Dim dip1_value As Single
Dim dip2_value As Single
Dim rec_count As Integer
Dim check_point As Single
Dim last_close As Single
Dim loop_1 As Integer
Dim loop_2 As Integer
Dim loop_3 As Integer
Dim loop_4 As Integer
Dim loop_5 As Integer
Dim loop_6 As Integer
Dim period_count As Integer
Dim total_periods As Integer

Figure 9-23. Finding key Head and Shoulders data points

290 | Chapter 9: Business and Finance Problems

Dim percentage As Single
Dim current_row As Integer
Dim item_count As Integer

'clear listbox
For item_count = Me.listDataPoints.ListCount - 1 To 0 Step -1
 Me.listDataPoints.RemoveItem (item_count)
Next item_count

'add headers to listbox
With Me.listDataPoints
 .AddItem "Date;Close;Point Type", 0
End With

percentage = CSng(Me.txtPercent)

Dim db As DAO.Database
Set db = CurrentDb
Dim rs As DAO.Recordset
Set rs = db.OpenRecordset("Select * from Apple order by Date")
rs.MoveLast
rs.MoveFirst
rec_count = rs.RecordCount
period_count = 0
total_periods = Me.txtPeriods
head_flag = False
shoulder1_flag = False
shoulder2_flag = False
dip1_flag = False
dip2_flag = False
'make sure that the number of units to analyze is not
'bigger than the entire data set!
If CInt(Me.txtPeriods) > rec_count Then
 MsgBox "# of units bigger than recset"
 Exit Sub
End If

On Error GoTo err_end
start_row = 0
current_row = 0
For loop_1 = start_row To rec_count - 1
 shoulder1_flag = False
 shoulder1_date = Date
 shoulder1_value = 0
 dip1_flag = False
 dip1_date = Date
 dip1_value = 0
 head_flag = False
 head_date = Date
 head_value = 0
 dip2_flag = False
 dip2_date = Date
 dip2_value = 0
 shoulder2_flag = False

Finding Head and Shoulders Patterns | 291

 shoulder2_date = Date
 shoulder2_value = 0
 total_datapoints = 0
 period_count = 0
 last_close = rs.Fields("Close")
 rs.MoveNext
 For loop_2 = current_row To rec_count - 1
 If rs.Fields("Close") > (last_close * _
 (1 + percentage)) Then
 'shoulder must be a pinnacle - higher than the
 'value before it and the value after it
 rs.MovePrevious
 check_point = rs.Fields("Close")
 rs.MoveNext 'back to current position
 If rs.Fields("Close") > check_point Then
 rs.MoveNext
 check_point = rs.Fields("Close")
 rs.MovePrevious 'back to current position
 If rs.Fields("Close") > check_point Then
 shoulder1_flag = True
 shoulder1_date = rs.Fields("Date")
 shoulder1_value = rs.Fields("Close")
 current_row = rs.AbsolutePosition
 period_count = 0
 Exit For
 End If
 End If
 Else
 period_count = period_count + 1
 If period_count = total_periods Then Exit For
 rs.MoveNext
 End If
 Next loop_2
 Select Case shoulder1_flag
 Case True
 last_close = rs.Fields("Close")
 rs.MoveNext
 For loop_3 = current_row To rec_count - 1
 If rs.Fields("Close") > shoulder1_value And shoulder1_flag = True Then
 shoulder1_date = rs.Fields("Date")
 shoulder1_value = rs.Fields("Close")
 End If

 If rs.Fields("Close") <= shoulder1_value * (1 - percentage) Then
 'dip must be a nadir - lower than the value before it
 'and the value after it
 rs.MovePrevious
 check_point = rs.Fields("Close")
 rs.MoveNext 'back to current position
 If rs.Fields("Close") < check_point Then
 rs.MoveNext
 check_point = rs.Fields("Close")
 rs.MovePrevious 'back to current position
 If rs.Fields("Close") < check_point Then

292 | Chapter 9: Business and Finance Problems

 dip1_flag = True
 dip1_date = rs.Fields("Date")
 dip1_value = rs.Fields("Close")
 current_row = rs.AbsolutePosition
 period_count = 0
 Exit For
 End If
 End If
 Else
 period_count = period_count + 1
 If period_count = total_periods Then Exit For
 rs.MoveNext
 End If
 Next loop_3
 Select Case dip1_flag
 Case True
 last_close = rs.Fields("Close")
 rs.MoveNext
 For loop_4 = current_row To rec_count - 1
 If rs.Fields("Close") < dip1_value And dip1_flag = True Then
 dip1_date = rs.Fields("Date")
 dip1_value = rs.Fields("Close")
 End If
 If (rs.Fields("Close") >= (shoulder1_value * (1 + percentage))) Then
 'head must be a pinnacle - higher than the
 'value before it and the value after it
 rs.MovePrevious
 check_point = rs.Fields("Close")
 rs.MoveNext 'back to current position
 If rs.Fields("Close") > check_point Then
 rs.MoveNext
 check_point = rs.Fields("Close")
 rs.MovePrevious 'back to current position
 If rs.Fields("Close") > check_point Then
 head_flag = True
 head_date = rs.Fields("Date")
 head_value = rs.Fields("Close")
 current_row = rs.AbsolutePosition
 period_count = 0
 Exit For
 End If
 End If
 Else
 period_count = period_count + 1
 If period_count = total_periods Then Exit For
 rs.MoveNext
 End If
 Next loop_4
 Select Case head_flag
 Case True
 last_close = rs.Fields("Close")
 rs.MoveNext
 For loop_5 = current_row To rec_count - 1
 If rs.Fields("Close") > head_value And head_flag = True Then

Finding Head and Shoulders Patterns | 293

 head_date = rs.Fields("Date")
 head_value = rs.Fields("Close")
 End If
 If rs.Fields("Close") < shoulder1_value Then
 'dip must be a nadir - lower than the value before it
 'and the value after it
 rs.MovePrevious
 check_point = rs.Fields("Close")
 rs.MoveNext 'back to current position
 If rs.Fields("Close") < check_point Then
 rs.MoveNext
 check_point = rs.Fields("Close")
 rs.MovePrevious 'back to current position
 If rs.Fields("Close") < check_point Then
 dip2_flag = True
 dip2_date = rs.Fields("Date")
 dip2_value = rs.Fields("Close")
 current_row = rs.AbsolutePosition
 period_count = 0
 Exit For
 End If
 End If
 Else
 period_count = period_count + 1
 If period_count = total_periods Then Exit For
 rs.MoveNext
 End If
 Next loop_5
 Select Case dip2_flag
 Case True
 last_close = rs.Fields("Close")
 rs.MoveNext
 For loop_6 = current_row To rec_count - 1
 If rs.Fields("Close") < dip2_value And dip2_flag = True Then
 dip2_date = rs.Fields("Date")
 dip2_value = rs.Fields("Close")
 End If
 If (rs.Fields("Close") >= (dip2_value * _
 (1 + (percentage)))) And rs.Fields("Close") _
 < head_value Then
 'shoulder must be a pinnacle - higher than the
 'value before it and the value after it
 rs.MovePrevious
 check_point = rs.Fields("Close")
 rs.MoveNext 'back to current position
 If rs.Fields("Close") > check_point Then
 rs.MoveNext
 check_point = rs.Fields("Close")
 rs.MovePrevious 'back to current position
 If rs.Fields("Close") > check_point Then
 shoulder2_flag = True
 shoulder2_date = rs.Fields("Date")
 shoulder2_value = rs.Fields("Close")
 current_row = rs.AbsolutePosition

294 | Chapter 9: Business and Finance Problems

 period_count = 0
 Exit For
 End If
 End If
 Else
 rs.MoveNext
 period_count = period_count + 1
 If period_count = total_periods Then Exit For
 End If
 Next loop_6
 Select Case shoulder2_flag
 Case True
 'success!
 With Me.listDataPoints
 .AddItem "" & shoulder1_date & ";" & shoulder1_value & _
 ";Shoulder 1"
 .AddItem "" & dip1_date & ";" & dip1_value & ";Dip 1"
 .AddItem "" & head_date & ";" & head_value & ";Head"
 .AddItem "" & dip2_date & ";" & dip2_value & ";Dip 2"
 .AddItem "" & shoulder2_date & ";" & shoulder2_value & _
 ";Shoulder 2"
 End With
 Case False 'shoulder2_flag
 End Select 'shoulder2
 Case False 'dip2
 End Select 'dip2
 Case False 'head
 End Select 'head
 Case False 'dip1
 End Select 'dip1
 Case False 'shoulder1
 End Select 'shoulder1
Next loop_1
If Me.listDataPoints.ListCount = 0 Then
 MsgBox "no patterns found"
End If
Exit Sub
err_end:
MsgBox "ran out of data - pattern not found"
Err.Clear
End Sub

This routine is a comprehensive shot at finding occurrences of the pattern in a data
set. You might consider it as a springboard to a more intricate solution—for exam-
ple, you might prefer to input a separate percentage for each leg of the pattern. Also,
as it is, the routine uses the range input to control how many data points can exist
between any two successive key data points. An additional input could control the
overall range within which the five key data points must fall.

Finding Head and Shoulders Patterns | 295

Discussion
Figure 9-22 showed the typical Head and Shoulders pattern generally used to find a
reversal from an uptrend to a downtrend. This is also known as a “top” Head and
Shoulders pattern.

The opposite and equally valid pattern is the “bottom” Head and Shoulders pattern,
which resembles an upside-down head and shoulders. The dips are the two highest
points, and the head is lower than the shoulders. This structure is used to find a
reversal of a downtrend to an uptrend. Figure 9-24 shows what a bottom Head and
Shoulders plot looks like.

The code to locate the key values in a bottom Head and Shoulders pattern is an alter-
ation of the preceding routine. Only the portion of the routine that changes is shown
here. The variables, Dim statements, and such are the same in both routines. Here is
the rewritten section:

 For loop_2 = current_row To rec_count - 1
 If (last_close - rs.Fields("Close")) / last_close > percentage Then
 'shoulder must be a nadir - lower than the
 'value before it and the value after it
 rs.MovePrevious
 check_point = rs.Fields("Close")
 rs.MoveNext 'back to current position
 If rs.Fields("Close") < check_point Then
 rs.MoveNext
 check_point = rs.Fields("Close")
 rs.MovePrevious 'back to current position
 If rs.Fields("Close") < check_point Then
 shoulder1_flag = True
 shoulder1_date = rs.Fields("Date")
 shoulder1_value = rs.Fields("Close")
 current_row = rs.AbsolutePosition
 period_count = 0

Figure 9-24. A Head and Shoulders bottom formation

296 | Chapter 9: Business and Finance Problems

 Exit For
 End If
 End If
 Else
 period_count = period_count + 1
 If period_count = total_periods Then Exit For
 rs.MoveNext
 End If
 Next loop_2
 Select Case shoulder1_flag
 Case True
 last_close = rs.Fields("Close")
 rs.MoveNext
 For loop_3 = current_row To rec_count - 1
 If rs.Fields("Close") < shoulder1_value And shoulder1_flag = True Then
 shoulder1_date = rs.Fields("Date")
 shoulder1_value = rs.Fields("Close")
 End If
 If rs.Fields("Close") > shoulder1_value * (1 + percentage) Then
 'dip must be a pinnacle - higher than the value before it
 'and the value after it
 rs.MovePrevious
 check_point = rs.Fields("Close")
 rs.MoveNext 'back to current position
 If rs.Fields("Close") > check_point Then
 rs.MoveNext
 check_point = rs.Fields("Close")
 rs.MovePrevious 'back to current position
 If rs.Fields("Close") > check_point Then
 dip1_flag = True
 dip1_date = rs.Fields("Date")
 dip1_value = rs.Fields("Close")
 current_row = rs.AbsolutePosition
 period_count = 0
 Exit For
 End If
 End If
 Else
 period_count = period_count + 1
 If period_count = total_periods Then Exit For
 rs.MoveNext
 End If
 Next loop_3
 Select Case dip1_flag
 Case True
 last_close = rs.Fields("Close")
 rs.MoveNext
 For loop_4 = current_row To rec_count - 1
 If rs.Fields("Close") > dip1_value And dip1_flag = True Then
 dip1_date = rs.Fields("Date")
 dip1_value = rs.Fields("Close")
 End If
 If (shoulder1_value - rs.Fields("Close")) / _
 shoulder1_value > percentage Then

Finding Head and Shoulders Patterns | 297

 'head must be a nadir - lower than the value before it
 'and the value after it
 rs.MovePrevious
 check_point = rs.Fields("Close")
 rs.MoveNext 'back to current position
 If rs.Fields("Close") < check_point Then
 rs.MoveNext
 check_point = rs.Fields("Close")
 rs.MovePrevious 'back to current position
 If rs.Fields("Close") < check_point Then
 head_flag = True
 head_date = rs.Fields("Date")
 head_value = rs.Fields("Close")
 current_row = rs.AbsolutePosition
 period_count = 0
 Exit For
 End If
 End If
 Else
 period_count = period_count + 1
 If period_count = total_periods Then Exit For
 rs.MoveNext
 End If
 Next loop_4
 Select Case head_flag
 Case True
 last_close = rs.Fields("Close")
 rs.MoveNext
 For loop_5 = current_row To rec_count - 1
 If rs.Fields("Close") < head_value And head_flag = True Then
 head_date = rs.Fields("Date")
 head_value = rs.Fields("Close")
 End If
 If rs.Fields("Close") > shoulder1_value * (1 + percentage) Then
 'dip must be a pinnacle - higher than the value before it
 'and the value after it
 rs.MovePrevious
 check_point = rs.Fields("Close")
 rs.MoveNext 'back to current position
 If rs.Fields("Close") > check_point Then
 rs.MoveNext
 check_point = rs.Fields("Close")
 rs.MovePrevious 'back to current position
 If rs.Fields("Close") > check_point Then
 dip2_flag = True
 dip2_date = rs.Fields("Date")
 dip2_value = rs.Fields("Close")
 current_row = rs.AbsolutePosition
 period_count = 0
 Exit For
 End If
 End If
 Else
 period_count = period_count + 1

298 | Chapter 9: Business and Finance Problems

 If period_count = total_periods Then Exit For
 rs.MoveNext
 End If
 Next loop_5
 Select Case dip2_flag
 Case True
 last_close = rs.Fields("Close")
 rs.MoveNext
 For loop_6 = current_row To rec_count - 1
 If rs.Fields("Close") > dip2_value And dip2_flag = True Then
 dip2_date = rs.Fields("Date")
 dip2_value = rs.Fields("Close")
 End If
 If (dip2_value - rs.Fields("Close")) / dip2_value > _
 percentage And rs.Fields("Close") > head_value Then
 'shoulder must be a nadir - lower than the
 'value before it and the value after it
 rs.MovePrevious
 check_point = rs.Fields("Close")
 rs.MoveNext 'back to current position
 If rs.Fields("Close") < check_point Then
 rs.MoveNext
 check_point = rs.Fields("Close")
 rs.MovePrevious 'back to current position
 If rs.Fields("Close") < check_point Then
 shoulder2_flag = True
 shoulder2_date = rs.Fields("Date")
 shoulder2_value = rs.Fields("Close")
 current_row = rs.AbsolutePosition
 period_count = 0
 Exit For
 End If
 End If
 Else
 rs.MoveNext
 period_count = period_count + 1
 If period_count = total_periods Then Exit For
 End If
 Next loop_6
 Select Case shoulder2_flag
 Case True
 'success!
 With Me.listDataPoints
 .AddItem "" & shoulder1_date & ";" & shoulder1_value & _
 ";Shoulder 1"
 .AddItem "" & dip1_date & ";" & dip1_value & ";Dip 1"
 .AddItem "" & head_date & ";" & head_value & ";Head"
 .AddItem "" & dip2_date & ";" & dip2_value & ";Dip 2"
 .AddItem "" & shoulder2_date & ";" & shoulder2_value & _
 ";Shoulder 2"
 End With

Working with Bollinger Bands | 299

9.12 Working with Bollinger Bands

Problem
How can I create Bollinger Bands? What are they used for?

Solution
Bollinger Bands are a financial indicator that relates volatility with price over time.
Given a set of sequential prices, to create Bollinger Bands, a moving average is cre-
ated, and then the bands themselves are created on each side of the moving average.
The bands are positioned two standard deviations away from each side of the mov-
ing average line. In other words, one band is created above the moving average line
by adding the doubled standard deviation value to the moving average line. The
other band sits under the moving average and is calculated by subtracting the
doubled standard deviation from the moving average line.

Assuming you have a table filled with dates and prices, this query will return the
moving average, the standard deviation, the doubled standard deviation value, the
upper band, and the lower band. Price data from closing prices of McDonald’s stock
is used in this statement. Substitute the table name with your table, and field names
with yours, if required:

SELECT A.Date, A.Close, (Select Avg(Close)
From McDonalds B
Where B.Date Between A.Date And DateAdd("d", -20, A.Date)) AS
[20 Day Moving Average], (Select StDevP(Close)
From McDonalds B
Where B.Date Between A.Date And DateAdd("d", -20, A.Date)) AS
[Standard Deviation], (Select StDevP(Close) * 2
From McDonalds B
Where B.Date Between A.Date And DateAdd("d", -20, A.Date)) AS
[2 Standard Deviations],
[20 Day Moving Average]+[2 Standard Deviations] AS [Upper Band],
[20 Day Moving Average]-[2 Standard Deviations] AS [Lower Band]
FROM McDonalds AS A
ORDER BY A.Date;

Figure 9-25 shows the result of running the query, and Figure 9-26 shows a plot of
the data. Three series are in the chart: the moving average, the upper band, and the
lower band. The standard deviation and doubled standard deviation values are
included in the query for reference, but are not plotted.

Discussion
Bollinger Bands contract and expand around the moving average. This is an indica-
tor of the volatility of the underlying price. Viewing the chart in Figure 9-26, it is
apparent that the upper and lower bands are widest apart in the September–October
period, and closer together in the rest of the plot. The wider the difference in the
bands, the higher the volatility of the underlying data points. In fact, you could

300 | Chapter 9: Business and Finance Problems

subtract the lower band from the upper band, over the time frame of the chart, to
glean a clear picture of the deviation between the bands.

The chart shown in Figure 9-26 does not include the actual prices as a chart series,
but you could include these in the chart. When price is included in the plot, it is the
least smooth line, and it can actually cross the upper or lower band (providing buy or
sell guidance).

For further information about Bollinger Bands, visit http://www.bollingerbands.com,
or check out any comprehensive financial web site, such as Yahoo! Finance, or http://
www.stockcharts.com.

Figure 9-25. Using a query to calculate Bollinger Bands

Figure 9-26. Chart with Bollinger Bands

http://www.bollingerbands.com
http://www.stockcharts.com
http://www.stockcharts.com

Calculating Distance Between Zip Codes | 301

9.13 Calculating Distance Between Zip Codes

Problem
I’ve seen several web sites where one can enter a zip code and a mileage amount, and
then a list of stores, doctors, and other information within the defined region is
returned. How is this done?

Solution
The trick is to use longitude and latitude settings. Each zip code is centered around a
particular longitude and latitude intersection, and you’ll need a table containing
these values. Lists are available on the Web. Some cost a bit, but others are free—run
a search with “zip,” “longitude,” and “latitude” as keywords, and you’re bound to
find many choices.

Figure 9-27 shows a section of a table that contains the necessary information.

Now, let’s consider the process. When a user enters a zip code on the web page, it has
to be found in the zip code table to access its longitude and latitude values. A second
scan of the zip table is then run to identify zip codes near the entered zip code. How
near is “near” depends on the selected mileage setting. There is a formula to calculate
what other zips are within the mileage parameter.

Figure 9-27. Table of zip codes

302 | Chapter 9: Business and Finance Problems

Longitude and latitude are measured in degrees, minutes, and seconds. Roughly, a
degree is 69 miles, a minute is one-sixtieth of a degree (or 1.15 miles), and a second is
about 100 feet.

These are approximations—nautical miles are measured differently than land miles,
and there are other factors that affect longitude and latitude calculations.

A 1-mile variance of a longitude and latitude setting is a factor of approximately .008.
A 10-mile variance is about .08.

This routine calculates a range around the entered zip code, in parameters of 10, 20,
and 30 miles:

Private Sub cmdFindZips_Click()
Dim this_lat As Double
Dim this_long As Double
Dim conn As ADODB.Connection
Dim rs As New ADODB.Recordset
Dim drop_it As Integer
'validation
If Len(Me.txtZip) <> 5 Then
 MsgBox "Enter a 5 digit zip code"
 Exit Sub
End If
If IsNull(Me.lstMiles.Value) Then
 MsgBox "Select a mileage range"
 Exit Sub
End If
'setup
For drop_it = Me.lstResults.ListCount - 1 To 0 Step -1
 Me.lstResults.RemoveItem (drop_it)
Next
lblMatches.Caption = "Matches=0"
'processing
Set conn = CurrentProject.Connection
ssql = "Select * from tblUSZipData Where Zip='" & Me.txtZip & "'"
rs.Open ssql, conn, adOpenKeyset, adLockOptimistic
If rs.RecordCount = 0 Then
 rs.Close
 Set rs = Nothing
 Set conn = Nothing
 MsgBox "Zip Not Found"
 Exit Sub
Else
 this_lat = rs.Fields("Latitude")
 this_long = rs.Fields("Longitude")
 rs.Close
 Select Case Me.lstMiles.Value
 Case 10
 ssql = "Select Zip, State, City from tblUSZipData Where " & _
 "(Latitude Between " & this_lat + 0.08 & " and " _
 & this_lat - 0.08 & ") And " & _

Calculating Distance Between Zip Codes | 303

 "(Longitude Between " & this_long + 0.05 & " and " _
 & this_long - 0.05 & ")"
 Case 20
 ssql = "Select Zip, State, City from tblUSZipData Where " & _
 "(Latitude Between " & this_lat + 0.17 & " and " _
 & this_lat - 0.17 & ") And " & _
 "(Longitude Between " & this_long + 0.17 & " and " _
 & this_long - 0.17 & ")"
 Case 30
 ssql = "Select Zip, State, City from tblUSZipData Where " & _
 "(Latitude Between " & this_lat + 0.26 & " and " _
 & this_lat - 0.26 & ") And " & _
 "(Longitude Between " & this_long + 0.26 & " and " _
 & this_long - 0.26 & ")"
 End Select
 rs.Open ssql, conn, adOpenKeyset, adLockOptimistic
 If rs.RecordCount = 0 Then
 rs.Close
 Set rs = Nothing
 Set conn = Nothing
 MsgBox "No Zips in Radius"
 Exit Sub
 Else
 match = 0
 Do Until rs.EOF
 Me.lstResults.AddItem rs.Fields("Zip") & ";" & _
 rs.Fields("City") & ";" & rs.Fields("State")
 match = match + 1
 rs.MoveNext
 Loop
 lblMatches.Caption = "Matches=" & match
 End If 'If rs.RecordCount = 0 Then
End If 'If rs.RecordCount = 0 Then
rs.Close
Set rs = Nothing
Set conn = Nothing
MsgBox "Done"
End Sub

Figure 9-28 shows the entry form with a zip code entered and a mileage factor selected.
The zip codes found within the designated range of the entered zip code are returned
in a listbox.

The calculation in this routine looks for longitude and latitude set-
tings that fit in a geographical box. Searching within a given radius
requires a more complex calculation—check the Web for details.
There is a lot more to know about how longitude and latitude work;
with a little online research, you’ll be able to fine-tune your calcula-
tions to get more accurate results than those produced by the general
solutions shown here.

304 | Chapter 9: Business and Finance Problems

Discussion
Finding zip codes in a certain area is useful if all you need are the zip codes.
However, a more realistic application is to return a list of stores that are in the area
surrounding the entered zip code.

The following code is a variation of the preceding routine. This time, a second table
containing store names and addresses is involved. The tblCustomers table also con-
tains the longitude and latitude for each store. In this variation, the tblCustomers
table is queried, and the stores found within the area defined by the entered zip code
and mileage range are returned in the listbox:

Private Sub cmdFindStores_Click()
Dim this_lat As Double
Dim this_long As Double
Dim conn As ADODB.Connection
Dim rs As New ADODB.Recordset
Dim drop_it As Integer
'validation
If Len(Me.txtZip) <> 5 Then
 MsgBox "Enter a 5 digit zip code"

Figure 9-28. Finding zip codes in a given area

Calculating Distance Between Zip Codes | 305

 Exit Sub
End If
If IsNull(Me.lstMiles.Value) Then
 MsgBox "Select a mileage range"
 Exit Sub
End If
'setup
For drop_it = Me.lstResults.ListCount - 1 To 0 Step -1
 Me.lstResults.RemoveItem (drop_it)
Next
lblMatches.Caption = "Matches=0"
'processing
Set conn = CurrentProject.Connection
ssql = "Select * from tblUSZipData Where Zip='" & Me.txtZip & "'"
rs.Open ssql, conn, adOpenKeyset, adLockOptimistic
If rs.RecordCount = 0 Then
 rs.Close
 Set rs = Nothing
 Set conn = Nothing
 MsgBox "Zip Not Found"
 Exit Sub
Else
 this_lat = rs.Fields("Latitude")
 this_long = rs.Fields("Longitude")
 rs.Close
 Select Case Me.lstMiles.Value
 Case 10
 ssql = "Select Store, Address, City, State, Zip from tblCustomers " & _
 "Where (Latitude Between " & this_lat + 0.08 & " and " _
 & this_lat - 0.08 & ") And " & _
 "(Longitude Between " & this_long + 0.05 & " and " _
 & this_long - 0.05 & ")"
 Case 20
 ssql = "Select Store, Address, City, State, Zip from tblCustomers " & _
 "Where (Latitude Between " & this_lat + 0.17 & " and " _
 & this_lat - 0.17 & ") And " & _
 "(Longitude Between " & this_long + 0.17 & " and " _
 & this_long - 0.17 & ")"
 Case 30
 ssql = "Select Store, Address, City, State, Zip from tblCustomers " & _
 "Where (Latitude Between " & this_lat + 0.26 & " and " _
 & this_lat - 0.26 & ") And " & _
 "(Longitude Between " & this_long + 0.26 & " and " _
 & this_long - 0.26 & ")"
 End Select
 rs.Open ssql, conn, adOpenKeyset, adLockOptimistic
 If rs.RecordCount = 0 Then
 rs.Close
 Set rs = Nothing
 Set conn = Nothing
 MsgBox "No Zips in Radius"
 Exit Sub
 Else
 match = 0

306 | Chapter 9: Business and Finance Problems

 Do Until rs.EOF
 Me.lstResults.AddItem rs.Fields("Store") & ";" & _
 rs.Fields("Address") & ";" & rs.Fields("City") & ";" & _
 rs.Fields("State") & ";" & rs.Fields("Zip")
 match = match + 1
 rs.MoveNext
 Loop
 lblMatches.Caption = "Matches=" & match
 End If 'If rs.RecordCount = 0 Then
End If 'If rs.RecordCount = 0 Then
rs.Close
Set rs = Nothing
Set conn = Nothing
MsgBox "Done"
End Sub

Figure 9-29 shows a returned list of stores found within the specified number of
miles from the entered zip code.

Figure 9-29. Finding stores in a given area

307

Chapter 10 CHAPTER 10

Statistics10

You can’t write a book about data analysis and not talk about statistics. Statistics is
the science of collecting and analyzing data. When combined with probability theory,
you can use statistics to make guesses about the future.

Access is a good tool for collecting data, and it offers a number of features that can
help you analyze that data. In this chapter, you’ll learn how to compute statistics
using aggregate functions and how to build custom tools to analyze your data. You’ll
also learn how to display useful types of charts that will give you new insights into
your data.

10.1 Creating a Histogram

Problem
I’d like to understand how the values of a data element I’m collecting are distributed.

Solution
You can use a frequency table and a histogram to identify how the data values are
distributed.

A frequency table begins by defining a set of “buckets,” and associating a range of
data values with each bucket. Each row is then read from the database, and each ele-
ment is placed in the appropriate bucket based on its value. Once all of the rows
have been processed, the frequency table can be constructed by counting the number
of data elements in each bucket.

For example, consider the following list of values:

43, 45, 17, 38, 88, 22, 55, 105, 48, 24, 11, 18, 20, 91, 9, 19

Table 10-1 contains the number of data elements for each given set of ranges.

308 | Chapter 10: Statistics

While you may think that this process sounds complicated enough that you’d have
to write a VBA program to do the counting, it turns out that it’s fairly easy to build a
SQL SELECT statement that does the job without a single line of code. Consider the
following statement:

SELECT Sum(IIf([DisneyClose]<25,1,0)) AS Below25,
 Sum(IIf([DisneyClose]>=25 And [DisneyClose]<30,1,0)) AS 25to29,
 Sum(IIf([DisneyClose]>=30 And [DisneyClose]<34,1,0)) AS 30to34,
 Sum(IIf([DisneyClose]>=35 And [DisneyClose]<39,1,0)) AS 35to39,
 Sum(IIf([DisneyClose]>=40,1,0)) AS Above40
FROM Stocks
WHERE (((Stocks.Date)>#1/1/2000# And (Stocks.Date)<#1/1/2006#));

This statement returns a single row of data representing the frequency table and a
total of five columns, where each column represents a particular range, and the value
of the column represents the number of values that fall into that range.

The statement uses the Sum and IIf functions. The Sum function is an aggregate func-
tion that returns the sum of all the values generated by the expression inside. The IIf
function takes three parameters: the first is a Boolean expression, the second is the
value returned if the Boolean expression is true, and the third is the value returned if
the Boolean expression is false.

The real trick to this statement is the way the IIf function returns 1 if the value is in
the column’s range, and 0 if it isn’t. This means that for any particular row, one col-
umn will have a 1, while the rest of the columns will have 0s. The Sum function thus
returns the number of rows that contain values in each given range. Running the
query will return a result table similar to Figure 10-1.

Table 10-1. A simple frequency table

Below 25 25 to 50 50 to 75 75 to 100 Above 100

8 4 1 2 1

Figure 10-1. Running the query results in this simple frequency table

Creating a Histogram | 309

You can convert a frequency table into a histogram in one of two ways: by exporting
the data to Excel and using its charting tools to create a bar or column chart, or you
by viewing the result table in Access as a PivotChart (see Figure 10-2).

To create the PivotChart, right-click on the datasheet view of the query result, and
choose PivotChart from the context menu. Then, drag the fields from the Chart Field
List (see Figure 10-3) onto the plot area to create your histogram.

Discussion
If you need a neatly formatted chart, you should export your data into Excel, where
you’ll have more control over the chart’s formatting. On the other hand, using
Access’ PivotCharts makes it easy to determine the right level of granularity.

If you don’t like how the chart looks, you can easily change the ranges in the query
and see the results much faster than you would in Excel.

Figure 10-2. Using a PivotChart to display a histogram

310 | Chapter 10: Statistics

10.2 Finding and Comparing the Mean, Mode, and
Median

Problem
I want to compute the mean, mode, and median of a particular column.

Solution
To compute the mean of a column, you can simply use the Avg aggregate function,
like this:

SELECT Avg(Stocks.DisneyClose) AS Average
FROM Stocks

The result of this query is shown in Figure 10-4.

Computing the mode of a column is a little more complex, but the following SELECT
statement should give you an idea of how to do it:

SELECT Top 1 Stocks.DisneyClose, Count(*) AS [Count]
FROM Stocks
GROUP BY Stocks.DisneyClose
ORDER BY Count(*) DESC;

You can see the result in Figure 10-5.

Figure 10-3. The list of fields that can be displayed in the PivotChart

Finding and Comparing the Mean, Mode, and Median | 311

Computing the median of a column is more complicated still. The following SELECT
statement will generate the result shown in Figure 10-6:

SELECT A.DisneyClose
FROM Stocks AS A, Stocks AS B
GROUP BY a.DisneyClose
HAVING (((Sum(IIf(a.DisneyClose<=b.DisneyClose,1,0)))>=(Count(*)/2))
 And ((Sum(IIf(a.DisneyClose>=b.DisneyClose,1,0)))>=(Count(*)/2)));

Discussion
The mean is really just the average of the numbers. In other words, to get the mean,
you need to compute the sum of the values and divide the result by the number of
values, which is what the Avg function does for you.

Figure 10-4. Computing the mean for a set of data

Figure 10-5. Computing the mode of a column

312 | Chapter 10: Statistics

On the other hand, to find the mode, you must create a list of all of your numbers,
order them, and find the most common value. Note that this value is not necessarily
the same as the average. Consider the following set of numbers:

1, 1, 1, 1, 496

The average of these numbers is 100, while the mode is 1.

The SELECT statement that returns the mode works by using the GROUP BY clause to
count the number of occurrences of each individual value, then orders them from the
value with the highest count to the one with the lowest count. Finally, it returns the
number or numbers that have the largest count:

SELECT Top 1 Stocks.DisneyClose, Count(*) AS [Count]
FROM Stocks
GROUP BY Stocks.DisneyClose
ORDER BY Count(*) DESC;

The median is the most complicated value to compute. To find the median, you
arrange the numbers in order, and then select either the middle value (if there is an
odd number of values) or the average of the two values in the middle (if there is an
even number of values). Thus, in this set of numbers, 3 is the median:

1, 2, 3, 4, 5

while in this set of numbers, the median is 3.5:

1, 2, 3, 4, 5, 6

The following SQL statement may look tricky at first, but it’s really easy to follow. It
begins by using the GROUP BY clause to reduce the number of individual data values to
process. Then, it uses the IIf function to determine how many numbers appear
before and after the current value in the sequence. When the number of data values
before and after are the same, you’ve found the median value:

Figure 10-6. Computing the median of a column

Finding and Comparing the Mean, Mode, and Median | 313

SELECT A.DisneyClose
FROM Stocks AS A, Stocks AS B
GROUP BY a.DisneyClose
HAVING (((Sum(IIf(a.DisneyClose<=b.DisneyClose,1,0)))>=(Count(*)/2))
 And ((Sum(IIf(a.DisneyClose>=b.DisneyClose,1,0)))>=(Count(*)/2)));

The downside to using a SELECT statement to compute the median is the amount of
processing that’s required. Basically, this approach reads the entire table for each
value it processes. For small tables this is fine, but if your table contains a thousand
or more rows, you’ll find that running the query takes a long time. However, the
following VBA routine is very quick, no matter what the size of your table is:

Sub Example10_2Median()

Dim rs As ADODB.Recordset
Dim d As Double

Set rs = New ADODB.Recordset
rs.ActiveConnection = CurrentProject.Connection

rs.Open "Select DisneyClose From Stocks Order By DisneyClose", , _
 adOpenStatic, adLockReadOnly

If rs.RecordCount Mod 2 = 1 Then
 rs.Move rs.RecordCount / 2 + 1
 d = rs.Fields("DisneyClose")

Else
 rs.Move rs.RecordCount / 2
 d = rs.Fields("DisneyClose")

 rs.MoveNext
 d = (d + rs.Fields("DisneyClose")) / 2

End If

rs.Close

Debug.Print "Median = ", d

End Sub

The routine begins by opening a static, read-only Recordset. Once the Recordset is
open, the code determines whether the RecordCount property is even or odd. If the
value of RecordCount is odd, it uses the Move method to skip to the exact center of the
table, and retrieves the middle value. To find the center row, the routine divides the
value of RecordCount by 2, rounds down the result to the nearest integer value, and
then adds 1. The value in this row is then returned as the median.

If the value of RecordCount is even, the same process is followed, but after retrieving the
value in the “center” row, the routine moves to the next row and retrieves its value as
well. Then, it computes the average of the two values and returns this as the median.

314 | Chapter 10: Statistics

10.3 Calculating the Variance in a Set of Data

Problem
I’d like to understand how much my data varies by using standard statistical functions
like standard deviation and variance.

Solution
Given a column of data, the following SELECT statement returns a Recordset contain-
ing the average, minimum, maximum, variance, and standard deviation values, using
the Avg, Min, Max, Var, and StDev functions:

SELECT Avg([DisneyClose]) AS Average,
 Min([DisneyClose]) AS Minimum,
 Max([DisneyClose]) AS Maximum,
 Var([DisneyClose]) AS Variance,
 StDev([DisneyClose]) AS StdDeviation
FROM Stocks

The results are shown in Figure 10-7.

Discussion
The variance is a measure of the spread of a list of numbers. It’s computed by first
determining the average value, and then, for each individual number, calculating the
square of the difference between that number and the average. Finally, these values
are summed and divided by the total number of values.

Here is the formula to calculate variance:

Σ (x - X)2
Variance = ------------
 N

where N is the number of values, x is the current value, and X is the average value.

Consider the following set of numbers:

1, 2, 3, 4, 5

The average is 3, and the sum of the difference of the squares is 10. There are five
values, so the variance is 2.

If you replace the 5 with a 10, the average becomes 4, but the variance becomes 10.
This indicates that this list of numbers is more spread out than the original list.

One of the issues with using variance is that the number returned as the variance
isn’t measured in the same units as the original numbers. Instead, the variance is
measured in units squared. If the original numbers were in dollars, for example, the
variance would be measured in dollars squared.

Calculating the Variance in a Set of Data | 315

Because this isn’t always useful, you can compute the standard deviation by taking
the square root of the variance. Standard deviation is measured in terms of the origi-
nal units. For the set of numbers 1 through 5 (whose variance was 2), the standard
deviation is 1.41; for the numbers 1 through 4 and 10, the standard deviation is 3.16.

One way to use variance and standard deviation is to compare two lists of numbers.
Consider the following query, which computes the standard deviation for four different
stock prices over a five-year period:

Select StDev(DisneyClose) As Disney,
 StDev(TimeWarnerClose) As TimeWarner,
 StDev(GeneralMotorsClose) As GeneralMotors,
 StDev(FordClose) As Ford
From Stocks
Where Date Between #1-1-2000# and #12-31-2005#;

The results are shown in Figure 10-8.

Figure 10-7. Computing the variance, standard deviation, and other summary values for a column

Figure 10-8. Using standard deviation to understand stock prices

316 | Chapter 10: Statistics

Notice that Disney has a standard deviation of 21.42, while Ford has a standard devi-
ation of 11.47. This means that the stock prices for Disney varied much more than
the stock prices for Ford during the same period of time. This doesn’t necessarily tell
you which stock to buy, but it does help you understand how volatile stock prices
are when compared with each other.

10.4 Finding the Covariance of Two Data Sets

Problem
I want to compute the covariance of two sets of data.

Solution
You can use a SELECT statement like the following to compute the covariance for two
columns of data:

SELECT
 Sum(
 (DisneyClose –
 (Select Avg(DisneyClose)
 From Stocks
 Where Date Between #1-1-2000# And #12-31-2005#))
 * (TimeWarnerClose -
 (select Avg(TimeWarnerClose)
 From Stocks
 Where Date Between #1-1-2000# And #12-31-2005#))
)
 / Count(*) AS Covariance
FROM Stocks
WHERE Date Between #1/1/2000# And #12/31/2005#;

The result is shown in Figure 10-9.

The SELECT statement begins by computing the sum of the products of the differences
between each of the values and their average. Then, the covariance is computed by
dividing the sum by the number of values processed.

Discussion
Here is the formula to calculate covariance:

 (x - X)(y – Y)
Covariance = -----------------
 N

where N is the number of values, x is the current value for the first column, X is the
average value for the first column, y is the current value for the second column, and Y
is the average value for the second column.

Finding the Correlation of Two Sets of Data | 317

Variance, discussed in Recipe 10.3, provides an indication of how much the values
for a single variable vary. Covariance, by contrast, measures how much the values for
two separate variables vary together. A positive value for covariance means that as
the value of one variable increases, so does the value of the other. A negative value
for covariance means that as one variable increases, the other one decreases. A value
of 0 implies that the two variables are linearly independent—that is, there is no linear
relationship between one variable and the other.

10.5 Finding the Correlation of Two Sets of Data

Problem
I want to compute the correlation of two columns of data.

Solution
To compute the correlation, which is an indication of the strength and direction of
the linear relationship between two variables, you merely divide the covariance by
the product of the two standard deviations. The SELECT statement from Recipe 10.4
can easily be modified for this purpose. All we have to do is divide the result by the
standard deviation aggregate functions described in Recipe 10.3. The resulting
SELECT statement looks like this:

SELECT
 Sum(
 (DisneyClose –
 (Select Avg(DisneyClose)
 From Stocks
 Where Date Between #1-1-2000# And #12-31-2005#))
 * (TimeWarnerClose -

Figure 10-9. Computing the covariance between two columns of data

318 | Chapter 10: Statistics

 (select Avg(TimeWarnerClose)
 From Stocks
 Where Date Between #1-1-2000# And #12-31-2005#))
)
 / Count(*) AS Covariance / StDev(DisneyClose) / StDev(TimeWarnerClose)
FROM Stocks
WHERE Date Between #1/1/2000# And #12/31/2005#;

Discussion
Unlike covariance, correlation returns a result within a strict range. This makes it
possible to compare multiple correlations and draw conclusions.

Correlations return a value between -1 and 1. A value of 0 implies that the two sets of
data do not have a linear relationship. A positive value indicates that the two sets of
data are linearly related (i.e., as one set of values rises, so does the other). The larger
the value is, the stronger the relationship. If you use the same column for both sets of
data, you should get a value of 1.

A negative value, on the other hand, means that the data values move in opposite
directions from each other. As the correlation coefficient becomes closer to -1, the
relationship becomes stronger, with the strongest possible relationship being -1. This
would happen if the data values in the second set of data were identical to those in
the first (except for their signs).

10.6 Returning All Permutations in a Set of Data

Problem
I’d like to create a table containing all possible permutations of the data that could
be returned from a table of values for the specified number of output columns.

Solution
The following routine selects all of the values from a table and generates all possible
permutations for a given number of slots. It begins by loading the entire source table
into an array. While this might seem to waste a lot of memory, it isn’t nearly as bad
as you might think. An array of 10,000 names that are 100 characters long occupies a
single megabyte of memory. This will save a huge amount of I/O over processing the
set of data multiple times.

The sample table we’ll use in this recipe contains 12 values, and we’ll aim to calcu-
late all the possible permutations when 3 of those values are selected at random.
Here’s the routine:

Sub Example10_6()

Dim rs As ADODB.Recordset
Dim StockNames() As String

Returning All Permutations in a Set of Data | 319

Dim i As Long
Dim j As Long
Dim k As Long

Set rs = New ADODB.Recordset
rs.ActiveConnection = CurrentProject.Connection

rs.Open "SELECT StockName From StockNames Order By StockName", , _
 adOpenForwardOnly, adLockReadOnly

i = 0
ReDim StockNames(0)

Do While Not rs.EOF
 ReDim Preserve StockNames(i)
 StockNames(i) = rs.Fields("StockName")
 i = i + 1
 rs.MoveNext

Loop

rs.Close

rs.Open "StockPermutations", , adOpenDynamic, adLockOptimistic

For i = 0 To UBound(StockNames)
 For j = 0 To UBound(StockNames)
 For k = 0 To UBound(StockNames)

 If i <> j And j <> k And i <> k Then
 rs.AddNew
 rs.Fields("First") = StockNames(i)
 rs.Fields("Second") = StockNames(j)
 rs.Fields("Third") = StockNames(k)
 rs.Update

 End If

 Next k

 Next j

Next i

rs.Close

End Sub

After the data has been loaded, the output table is opened. Note that the output
table has already been created and has three columns: First, Second, and Third.

Because we want to fill all three fields, a three-deep nested loop is set up to process
the array. If the loop variables are all different (meaning that they point to three
unique names), the routine adds a new row to the output table and saves the three

320 | Chapter 10: Statistics

selected values to their respective fields. It then updates the row and loops around to
process the next set of names.

You can easily modify this routine to accommodate the number of choices you want
by adding or subtracting nested For loops. One For loop is required for each choice
you wish to generate. You’ll also have to modify the If statement to ensure that you
never have two subscripts with the same value.

Discussion
Permutations describe the possible ways that a group of items can be ordered.
Assume that you have three different items: A, B, and C. Here is a list of all possible
permutations:

A B C
A C B
B A C
B C A
C A B
C B A.

Mathematically, you can compute the number of permutations using the factorial
method. To compute the factorial of a number, simply multiply it by all of the num-
bers smaller than it. Thus, three items have 3! (i.e., 6) permutations:

3 x 2 x 1

The problem with generating permutations is that the number of permutations
grows incredibly quickly. Four items have 24 permutations, five items have 120, six
items have 720, seven items have 5,040, and eight items have 40,320. By the time
you reach 14 items, there are already more than 87 billion possible permutations.

Now, let’s return to the task of choosing a subset of items at random from a larger
group of items. The number of possible permutations can be computed by the fol-
lowing formula, where n represents the total number of items, and r represents the
number of items to return:

n!/(n-r)!

If, for example, you wanted to choose three items out of a set of five, the equation
would look like this:

5!/(5-3)! = 5!/2! = 60

Thus, when choosing three items out of five, there are a total of 60 possible permuta-
tions. When choosing 3 items out of a set of 12, as was done in the code routine
presented earlier, there are a total of 1,320 possible permutations; consequently,
1,320 rows will be generated when the routine is executed.

Returning All Combinations in a Set of Data | 321

10.7 Returning All Combinations in a Set of Data

Problem
I’d like to create a table containing all possible combinations from another table of
data values for the specified number of output columns.

Solution
You can use the following routine to compute the number of possible combinations:

Sub Example10_7()

Dim rs As ADODB.Recordset
Dim StockNames() As String
Dim i As Long
Dim j As Long
Dim k As Long

Set rs = New ADODB.Recordset
rs.ActiveConnection = CurrentProject.Connection

rs.Open "SELECT StockName From StockNames Order By StockName", , adOpenForwardOnly,
adLockReadOnly

i = 0
ReDim StockNames(0)

Do While Not rs.EOF
 ReDim Preserve StockNames(i)
 StockNames(i) = rs.Fields("StockName")
 i = i + 1
 rs.MoveNext

Loop

rs.Close

rs.Open "StockCombinations", , adOpenDynamic, adLockOptimistic

For i = 0 To UBound(StockNames) - 2
 For j = i + 1 To UBound(StockNames) - 1
 For k = j + 1 To UBound(StockNames)

 rs.AddNew
 rs.Fields("First") = StockNames(i)
 rs.Fields("Second") = StockNames(j)
 rs.Fields("Third") = StockNames(k)
 rs.Update

 Next k

322 | Chapter 10: Statistics

 Next j

Next i

rs.Close

End Sub

The routine begins by loading the source table into memory, and then it opens a new
Recordset object referencing the output table. Note that the output table has already
been created and has three columns: First, Second, and Third.

The actual combinations are generated by a set of three nested For loops. The loops
are structured such that the ranges of index variables never overlap, which guaran-
tees that each set of names will be unique.

Assume that the UBound of the array is 11. When i is 0, j will start at 1 and go to 10,
and k will start at 2 and go to 11. When j is 2, k will start at 3, and so forth, until j
reaches 10. At that point, k can only take on the value of 11. The last combination of
data is generated when i reaches 9, at which point j is 10 and k is 11.

If you need a different number of choices, be sure to include one loop for each
choice. The key is to ensure that the loop variables never overlap.

Discussion
Combinations represent unordered groups of data. This differs from permutations (see
Recipe 10.6), in which the order of the items is important. Just like with permutations,
each item can appear in the list only once. But since the order isn’t important, the
number of combinations will always be less than the number of permutations.

For example, suppose you have a list of five items: A, B, C, D, and E. If you look for every
possible combination of three items from the list, you’ll get these 10 combinations:

A B C
A B D
A B E
A C D
A C E
A D E
B C D
B C E
B D E
C D E

If you take a look back at Recipe 10.6, however, you will see that there are 60 possi-
ble permutations.

Calculating the Frequency of a Value in a Set of Data | 323

You can compute the number of possible combinations using the following formula,
where n represents the total number of items, and r represents the number of items
to include:

n!/r!(n-r)!

So, for the preceding example of choosing three items out of five, you’ll have the fol-
lowing equation:

5!/3!(5-3)! = 5!/3!(2!) = 10

And, in the earlier code example, choosing 3 items out of 12 results in 220 possible
combinations.

10.8 Calculating the Frequency of a Value in a
Set of Data

Problem
I’d like to know how many times a particular value appears in a table.

Solution
The following Select statement will determine the number of times the specified
value appears in the table. Simply modify the Where clause to select the desired value:

Select Count(*) As Frequency
From Stocks
Where DisneyClose = 24.76;

Discussion
Suppose you want to identify the frequency of each unique value in the table. For
this, you can use a SELECT statement like the following:

SELECT DisneyClose, Count(*) AS Frequency
FROM Stocks
WHERE DisneyClose Is Not Null
GROUP BY DisneyClose
ORDER BY Count(*) DESC, DisneyClose;

The results for the sample table are displayed in Figure 10-10.

If you break down the SELECT statement, you’ll see that the WHERE clause eliminates
any Null values from the result. The GROUP BY statement collapses all of the rows with
the same value into a single row and returns the selected items (in this case, the value
they have in common and a count of the number of rows in that particular group).
Finally, the ORDER BY clause sorts the grouped rows by their frequency so that the
values that occur most frequently are displayed first.

324 | Chapter 10: Statistics

10.9 Generating Growth Rates

Problem
How do you calculate a growth rate?

Solution
You can use a SELECT statement like this to compute annual growth rate:

SELECT Year(Date) As Year, Avg(DisneyClose) As Average,
 (Select Avg(DisneyClose) From Stocks b Where Year(b.date) = Year(a.Date) -1)
 As LastYear,
 (Average - LastYear) / LastYear * 100 As Growth
FROM Stocks A
Where DisneyClose Is Not Null
Group By Year(Date)
Order By Year(Date) Desc

The result is displayed in Figure 10-11.

Figure 10-10. Determining the frequency of each value in a table

Generating Growth Rates | 325

Discussion
The formula for calculating the growth rate looks like this:

GrowthRate = (ThisYear – LastYear) / LastYear * 100

where ThisYear represents an average or sum of the values for the current year, and
LastYear represents the same value computed for the previous year. GrowthRate rep-
resents the percentage increase or decrease over the previous year.

Note that you aren’t restricted to computing annual growth rates. As long as you’re
consistent, you can use any time period (months, quarters, etc.). The key is that the
growth rate is calculated by comparing values for the current time period with values
for the previous time period and examining the percentage difference.

In addition, you don’t have to use averages to compute your statistics. In this case,
they’re appropriate, as we’re looking at the average value of a stock price. However,
if you’re looking at a different value, such as sales, it may be appropriate to compare
the total sales rather than average sales figures.

Figure 10-11. Computing annual growth rate

326 | Chapter 10: Statistics

A shortcoming of the SELECT statement used to generate the result in Figure 10-11 is
that it computes the LastYear value by physically retrieving the rows for the previous
year and calculating the average. This slows down the process considerably. You can
compute the growth factor faster if you precalculate the average values for each year
and store them in another table so you can access those values directly.

The following routine does exactly that. It opens two tables: one for input and the
other for output. The input table uses a SELECT statement to get the averages by year,
and orders the results in increasing order by year:

Sub Example10_9()

Dim InTable As ADODB.Recordset
Dim OutTable As ADODB.Recordset
Dim LagAverage As Double

Set InTable = New ADODB.Recordset
InTable.ActiveConnection = CurrentProject.Connection

InTable.Open "SELECT Year(Date) As ThisYear, Avg(DisneyClose) As Average " & _
 "From Stocks Where DisneyClose Is Not Null " & _
 "Group By Year(Date) Order By Year(Date)", , adOpenForwardOnly, adLockReadOnly

Set OutTable = New ADODB.Recordset
OutTable.ActiveConnection = CurrentProject.Connection

OutTable.Open "Growth", , adOpenDynamic, adLockOptimistic

LagAverage = InTable.Fields("Average")
OutTable.AddNew
OutTable.Fields("Year") = InTable.Fields("ThisYear")
OutTable.Fields("Growth") = Null
OutTable.Update

InTable.MoveNext

Do While Not InTable.EOF
 OutTable.AddNew
 OutTable.Fields("Year") = InTable.Fields("ThisYear")
 OutTable.Fields("Growth") = (InTable.Fields("Average") - LagAverage) _
 / LagAverage * 100#
 OutTable.Update

 LagAverage = InTable.Fields("Average")
 InTable.MoveNext

Loop

InTable.Close
OutTable.Close

End Sub

Determining the Probability Mass Function for a Set of Data | 327

The average value for the first year is written to the output table. Growth is set to Null,
as there isn’t a previous year’s data to use to perform the growth calculation. The
average value for this year is saved into LagAverage.

Then, for each of the rest of the input rows, the corresponding output row is con-
structed by copying in the current year’s average value and computing the growth
factor, using the average for this year and the previous year (stored in LagAverage).
After the output row is saved, the current year’s average is saved into LagAverage
before moving to the next row.

10.10 Determining the Probability Mass Function for a
Set of Data

Problem
I’d like to compute a probability for each item in a table.

Solution
You can use a SELECT statement like this to determine the probability of each data
item:

SELECT Round(DisneyClose,0) AS StockValue, Count(*) AS Days,
 (Select Count(*) From Stocks Where Date Between #1-1-2000# And #12-31-2005#)
 AS Total, Days/Total AS Probability
FROM Stocks
WHERE Date Between #1/1/2000# And #12/31/2005#
GROUP BY Round(DisneyClose,0)
ORDER BY Round(DisneyClose,0);

The result of this query is displayed in Figure 10-12.

In this statement, each data item is rounded to the nearest dollar using the Round
function. You can instead round to one or more decimal places by changing the 0 in
the function to the number of decimal places you want to keep.

While the nested Select statement may seem expensive, it really isn’t. Jet only com-
putes the value once because it doesn’t depend on anything from the current row. It
can then return the value for each row it returns.

Discussion
Figure 10-13 shows the probability distribution curve for the probability mass function.
This was created by viewing the query results as a PivotChart, using StockValue as a
category field and Sum of Probability as a series field, and dropping Probability onto
the chart.

328 | Chapter 10: Statistics

While this doesn’t fit the traditional normal distribution, often called the “bell
curve,” you can see that most of the stock prices fall within a narrow range of val-
ues. However, since the data spans five years, and the stock price varies over time,
you may want to break it out by year.

If you rewrite the query to include a new column, Year(Date), and include this field
in the GROUP BY clause, you can construct a new PivotChart in which you can select
data from one or more years:

SELECT Round(DisneyClose,0) AS StockValue, Year(Date) As Year, Count(*) AS Days,
 (Select Count(*) From Stocks Where Date Between #1-1-2000# And #12-31-2005#) AS
 Total,
 Days/Total AS Probability
FROM Stocks
WHERE Date Between #1/1/2000# And #12/31/2005#
GROUP BY Round(DisneyClose,0), Year(Date)
ORDER BY Round(DisneyClose,0), Year(Date)

You can then easily compare the distribution of the data for different years. The dis-
tribution for 2000, for example (shown in Figure 10-14), is significantly different
from the distribution for 2005 (shown in Figure 10-15).

Figure 10-12. Computing the probability mass function for a set of data

Determining the Probability Mass Function for a Set of Data | 329

Figure 10-13. The probability distribution curve for the probability mass function

Figure 10-14. In 2000, stock prices ranged between $42 and $117, with a price of $70 occurring
most often

330 | Chapter 10: Statistics

10.11 Computing the Kurtosis to Understand the
Peakedness or Flatness of a Probability Mass
Distribution

Problem
I’d like to learn more about my data’s distribution by computing the kurtosis.

Solution
You can use the following routine to compute the kurtosis (i.e., the “peakedness” of
the distribution of values) of a data set:

Sub Example10_11()

Dim rs As ADODB.Recordset
Dim DisneyAvg As Double
Dim DisneyVal As Double
Dim Sum2 As Double
Dim Sum4 As Double
Dim TotalRows As Double

Figure 10-15. In 2005, stock prices ranged between $24 and $28, with a price of $25 occurring
most often

Computing the Kurtosis to Understand the Peakedness or Flatness of a Probability Mass Distribution | 331

Dim temp As Double
Dim Kurtosis As Double
Dim StdError As Double

Set rs = New ADODB.Recordset
rs.ActiveConnection = CurrentProject.Connection

rs.Open "SELECT Avg(DisneyClose) AS AvgDisney, " & _
 "Count(*) As TotalRows FROM Stocks " & _
 "WHERE Date Between #1/1/2000# And #12/31/2005#", , _
 adOpenForwardOnly, adLockReadOnly

DisneyAvg = rs.Fields("AvgDisney")
TotalRows = rs.Fields("TotalRows")

rs.Close

rs.Open "Select DisneyClose From Stocks " & _
 "Where Date Between #1-1-2000# And #12-31-2005#", , _
 adOpenStatic, adLockReadOnly

Sum2 = 0
Sum4 = 0

Do While Not rs.EOF
 DisneyVal = rs.Fields("DisneyClose")

 temp = (DisneyVal - DisneyAvg) * (DisneyVal - DisneyAvg)

 Sum2 = Sum2 + temp
 Sum4 = Sum4 + temp * temp

 rs.MoveNext

Loop

rs.Close

Kurtosis = (TotalRows * Sum4 / (Sum2 * Sum2)) - 3
StdError = Sqr(24 / TotalRows)

Debug.Print "Kurtosis = ", Kurtosis
Debug.Print "Standard error = ", StdError

If Kurtosis > 2 * StdError Then
 Debug.Print "Peaked distribution"

ElseIf Kurtosis < -2 * StdError Then
 Debug.Print "Flat distribution"

Else
 Debug.Print "Normal distribution"

End If

End Sub

332 | Chapter 10: Statistics

The routine begins by executing a SELECT statement to return the number of rows in
the sample along with the average value for the specified column. It then retrieves
each of the individual values from the table, and sums the differences between the val-
ues and the average squared, and the differences between the values and the average
raised to the fourth power.

When customizing this routine for your own use, you’ll need to mod-
ify the first SELECT statement to compute the average of the column.
Then, you’ll need to modify the second Select statement to return the
same column.

Once all of the rows in the table have been processed, kurtosis can be computed by
multiplying the number of rows times the sum of the difference between the current
value and the average value raised to the fourth power. This value is then divided by
the square of the sum of the differences between the current value and the average
value squared. Finally, subtracting from the previous result completes the calculation
for kurtosis.

Discussion
Here is the formula to compute kurtosis:

 N * Σ (x – X)4

Kurtosis = -------------- - 3
 (Σ (x – X)2)2

N is the number of values, x is the current value, and X is the average value.

A perfect normal distribution will return a kurtosis of 0. A negative value indicates
the distribution is relatively flat, while a positive value means the distribution is rela-
tively peaked.

Looking at the kurtosis can reveal what has caused the variance in a distribution. A
higher value for kurtosis indicates the variance was caused by infrequent extreme
deviations, while a lower value indicates it was caused by more frequent, modestly
sized deviations.

To determine if the kurtosis value is significantly different from zero, you can use the
following formula to compute the standard error:

sqrt(24/number of items)

One advantage of computing kurtosis is that you can use the result to determine
whether the data is outside the range of a normal distribution. If so, you won’t be
able to trust the results from any statistical tests that assume a normal distribution.

Determining the Skew of a Set of Data | 333

10.12 Determining the Skew of a Set of Data

Problem
How can I determine if my data has asymmetric “tails” when compared to the tails
associated with a normal distribution?

Solution
The following code computes the skew (i.e., the asymmetry of the distribution of val-
ues) for a given column of data:

Sub Example10_12()

Dim rs As ADODB.Recordset
Dim DisneyAvg As Double
Dim DisneyVal As Double
Dim Sum2 As Double
Dim Sum3 As Double
Dim TotalRows As Double
Dim Skewness As Double
Dim StdError As Double

Set rs = New ADODB.Recordset
rs.ActiveConnection = CurrentProject.Connection

rs.Open "SELECT Avg(DisneyClose) AS AvgDisney, " & _
 "Count(*) As TotalRows FROM Stocks " & _
 "WHERE Date Between #1/1/2000# And #12/31/2005#", , _
 adOpenForwardOnly, adLockReadOnly

DisneyAvg = rs.Fields("AvgDisney")
TotalRows = rs.Fields("TotalRows")

rs.Close

rs.Open "Select DisneyClose From Stocks " & _
 "Where Date Between #1-1-2000# And #12-31-2005#", , _
 adOpenStatic, adLockReadOnly

Sum2 = 0
Sum3 = 0

Do While Not rs.EOF
 DisneyVal = rs.Fields("DisneyClose")

 Sum2 = Sum2 + (DisneyVal - DisneyAvg) * (DisneyVal - DisneyAvg)
 Sum3 = Sum3 + (DisneyVal - DisneyAvg) * (DisneyVal - DisneyAvg) * _
 (DisneyVal - DisneyAvg)

334 | Chapter 10: Statistics

 rs.MoveNext

Loop

rs.Close

Skewness = Sqr(TotalRows) * Sum3 / (Sum2 ^ 1.5)
StdError = Sqr(6 / TotalRows)

Debug.Print "Skewness = ", Skewness
Debug.Print "Standard error = ", StdError

If Skewness > 2 * StdError Then
 Debug.Print "Skewed to the right"

ElseIf Skewness < -2 * StdError Then
 Debug.Print "Skewed to the left"

Else
 Debug.Print "Normal distribution"

End If

End Sub

The code used to compute skew is similar to the one used to compute kurtosis (see
Recipe 10.11).

The total number of values and the average value are computed for the entire set of
data. Then, each row of data is processed, and the square and the cube of the differ-
ence between each item’s value—and the average for all values—are summed over
the selected rows. Finally, the square root of the number of rows is multiplied by the
sum of cubes, and then the total is divided by the sum of squares raised to the 1.5
power.

Discussion
Here is the formula to compute skew:

 N1/2 * Σ (x – X)3

Skew = ----------------
 (Σ (x – X)2)3/2

where N is the number of values, x is the current value, and X is the average value.

In a perfect normal distribution, both tails of the distribution will mirror each other,
and the skew will have a value of 0. However, in real life, the tails are likely to be asym-
metric. Testing for skewness determines whether the distribution is skewed to one
side. A positive value means the distribution is skewed to the right, while a negative
value means the data is skewed to the left.

Returning a Range of Data by Percentile | 335

Because most data can have a random component, however, you may compute a
nonzero value for skew and still have a normal distribution. The standard error for
skew can be computed with the following formula:

sqrt(6/number of items)

Generally, skew values that are greater than twice the standard error are considered
outside the range of a normal distribution.

10.13 Returning a Range of Data by Percentile

Problem
I want to extract a range of data from my database by percentile.

Solution
Suppose you want to choose the top 10 percent of values in a particular column. You
can do this with a SELECT statement that retrieves all possible values for the column,
sorts them in descending order so that the highest values are listed first, and then
returns the top 10 percent of the values:

SELECT Top 10 Percent DisneyClose
FROM Stocks
ORDER BY DisneyClose Desc

If you want the bottom 10 percent, simply change the ORDER BY clause to sort the data
in ascending order, like this:

SELECT Top 10 Percent DisneyClose
FROM Stocks
ORDER BY DisneyClose Asc

What if you want to choose a range of values from the middle? You might be
tempted to use a SELECT statement like this:

SELECT Top 10 Percent DisneyClose
FROM Stocks
WHERE Not DisneyClose In
 (Select Top 10 Percent DisneyClose
 From Stocks
 Order By DisneyClose Desc)
ORDER BY DisneyClose Desc

This statement retrieves the top 10 percent of the rows from the table, but only if
they’re not already in the top 10 percent. In other words, it effectively returns the
second 10 percent.

The big problem with this approach is that the query is very inefficient because it
runs the nested Select statement each time it processes a new row. A better
approach would be to select the top 20 percent of the rows, place them into a sepa-
rate table, and then select the bottom half of the new table. This would give you the

336 | Chapter 10: Statistics

same result, but with a lot less processing (although it does require you to run two
queries and use a temporary table to get your result).

Discussion
If you frequently select rows this way, you’d be better off using the following routine
to precalculate the percentile value for each row and storing the results in a separate
table:

Sub Example10_13()

Dim intable As ADODB.Recordset
Dim outtable As ADODB.Recordset
Dim Count As Long

Set intable = New ADODB.Recordset
intable.ActiveConnection = CurrentProject.Connection

intable.Open "SELECT Date, DisneyClose As [Value], " & _
 "(Select Count(*) From Stocks " & _
 " Where DisneyClose Is Not Null) As Total " & _
 "From Stocks " & _
 "Where DisneyClose Is Not Null " & _
 "Order By DisneyClose", , adOpenStatic, adLockReadOnly

Set outtable = New ADODB.Recordset
outtable.ActiveConnection = CurrentProject.Connection
outtable.Open "Percentage", , adOpenDynamic, adLockOptimistic

Count = 0

Do While Not intable.EOF
 outtable.AddNew
 outtable.Fields("Date") = intable.Fields("Date")
 outtable.Fields("Value") = intable.Fields("Value")
 outtable.Fields("Percentage") = Count / intable.Fields("Total") * 100#
 outtable.Update
 intable.MoveNext

 Count = Count + 1

Loop

intable.Close
outtable.Close

End Sub

This routine begins by selecting all of the data you may wish to use and sorting it in
the proper order. It also computes the total number of rows that will be returned to
avoid querying the database twice. Next, it opens a second Recordset that will hold
the processed data.

Determining the Rank of a Data Item | 337

The routine then loops through each row of the input table and copies the Date and
Value fields to the output table. It also computes the row’s relative percentile, and
stores that value in the output table. Finally, it closes both tables before returning.

Once this work table has been generated, you can construct statements to retrieve
data between any two percentiles. For example, this Select statement retrieves all
rows between the 80th and 90th percentiles:

Select Date, Value
From Percentage
Where Percentage Is Between 80 and 90

10.14 Determining the Rank of a Data Item

Problem
I’d like to know the rank of a particular data value in my database.

Solution
One way to compute the rank of a particular data value is to create an append query
like this one:

INSERT INTO Rank
SELECT Date AS [Date], DisneyClose AS [Value]
FROM Stocks
WHERE DisneyClose Is Not Null
ORDER BY DisneyClose DESC;

You’ll also need to create an empty table with matching fields and an AutoNumber
field. When you run the query, the AutoNumber field will automatically assign a
sequential number to each new row. Because the rows are stored in the table from
highest to lowest, the highest value will have a rank of 1, while the lowest will have a
rank equal to the number of rows in the table.

Discussion
Using this approach to automatically generate ranks has the advantage of requiring
no programming. However, each time you run the append query, you’ll need to
delete and re-create the output table to ensure that the AutoNumber field starts
numbering from 1. Alternatively, you could create a generic Rank table and create a
new copy of the table each time you want to run the query.

However, a better approach would be to modify the routine used in Recipe 10.13 to
regenerate the data each time, thus avoiding the problems with the AutoNumber
field.

Here’s the updated routine:

Sub Example10_14()

Dim intable As ADODB.Recordset

338 | Chapter 10: Statistics

Dim outtable As ADODB.Recordset
Dim Count As Long

Set intable = New ADODB.Recordset
intable.ActiveConnection = CurrentProject.Connection

intable.Open "SELECT Date, DisneyClose As [Value] " & _
 "From Stocks " & _
 "Where DisneyClose Is Not Null " & _
 "Order By DisneyClose Desc", , adOpenStatic, adLockReadOnly

Set outtable = New ADODB.Recordset
outtable.ActiveConnection = CurrentProject.Connection
outtable.Open "[Table10-14]", , adOpenDynamic, adLockOptimistic

Count = 1

Do While Not intable.EOF
 outtable.AddNew
 outtable.Fields("Date") = intable.Fields("Date")
 outtable.Fields("Value") = intable.Fields("Value")
 outtable.Fields("Rank") = Count
 outtable.Update
 intable.MoveNext

 Count = Count + 1

Loop

intable.Close
outtable.Close

End Sub

The routine begins by creating an input Recordset containing the desired data items
in the proper order. Next, it opens the output Recordset. After that, each row is cop-
ied from the input Recordset to the output Recordset, and a sequential counter is
assigned to each new row’s Rank field. Finally, the routine finishes the process by
closing the input and output Recordsets.

10.15 Determining the Slope and the Intercept of a
Linear Regression

Problem
I’d like to use linear regression to determine the slope and intercept point for two
columns of data.

Determining the Slope and the Intercept of a Linear Regression | 339

Solution
The following routine computes the slope and y intercept point for two sets of values.
It’s based on the code originally used in Recipe 10.11:

Sub Example10_15()

Dim rs As ADODB.Recordset
Dim DisneyAvg As Double
Dim TimeWarnerAvg As Double
Dim DisneyVal As Double
Dim TimeWarnerVal As Double
Dim Sum1 As Double
Dim Sum2 As Double
Dim TotalRows As Double
Dim Slope As Double
Dim YIntercept As Double

Set rs = New ADODB.Recordset
rs.ActiveConnection = CurrentProject.Connection

rs.Open "SELECT Avg(DisneyClose) AS AvgDisney, " & _
 "Avg(TimeWarnerClose) As AvgTimeWarner " & _
 "FROM Stocks WHERE Date Between #1/1/2000# And #12/31/2005#", , _
 adOpenForwardOnly, adLockReadOnly

DisneyAvg = rs.Fields("AvgDisney")
TimeWarnerAvg = rs.Fields("AvgTimeWarner")

rs.Close

rs.Open "Select DisneyClose, TimeWarnerClose " & _
 "From Stocks Where Date Between #1-1-2000# And #12-31-2005#", , _
 adOpenStatic, adLockReadOnly

Sum1 = 0
Sum2 = 0

Do While Not rs.EOF
 DisneyVal = rs.Fields("DisneyClose")
 TimeWarnerVal = rs.Fields("TimeWarnerClose")

 Sum1 = Sum1 + (DisneyVal - DisneyAvg) * (TimeWarnerVal - TimeWarnerAvg)
 Sum2 = Sum2 + (DisneyVal - DisneyAvg) * (DisneyVal - DisneyAvg)

 rs.MoveNext

Loop

rs.Close

Slope = Sum1 / Sum2
YIntercept = TimeWarnerAvg - Slope * DisneyAvg

340 | Chapter 10: Statistics

Debug.Print "Slope= ", Slope
Debug.Print "Y intercept= ", YIntercept

End Sub

The routine begins by getting the average values for the two different columns. It
then opens a Recordset that retrieves each individual pair of values. Next, it pro-
cesses the data. Two sums are kept. The first sum is computed by subtracting each
value from its column average and then multiplying the two resulting values
together. The second sum is the square of the difference between the first value and
its column average.

Once all the data has been processed, the routine computes the slope by dividing the
first sum by the second. The y intercept point is then computed by plugging the
average values for each column into the basic equation for a line using the newly
computed value for slope.

Discussion
Linear regression attempts to find the best possible straight line that matches a given
set of pairs of data. The line is represented by slope and y intercept, where:

Σ (x – X) (y – Y)
Slope = --------------------------

Σ (x – X)2

and:

y intercept = Y – Slope X

x and y are individual data points, and X and Y represent the averages for of all of the
x and y values, respectively.

10.16 Measuring Volatility

Problem
I’d like to measure the volatility of my data to know how much values move around.

Solution
Volatility is a measure of uncertainty (risk) in the price movement of a stock, option,
or other financial instrument. An alternate definition is that volatility is the dispersion
of individual values around the mean of a set of data.

There are various approaches to calculating volatility, and, in a nutshell, there are
two basic types of volatility: historical and implied. Historical volatility is easier to
measure because the calculation is based on known values. Implied volatility is trick-
ier because the purpose here is to guesstimate the level of volatility that will occur in
the future (be that tomorrow, next month, or next year). In other words, implied vol-
atility is calculated for forecasting purposes.

Measuring Volatility | 341

One reasonable approach to calculating volatility is to simply use the standard devia-
tion as the measure. A standard deviation measurement requires >1 data points to
provide a value. Figure 10-16 shows a table of values on the left, and the result of
running a query against this data using the StDev aggregate function.

The volatility (as interpreted in this approach) is 2.7226562446208. But what does
this tell us about the data? As a rule:

• The higher the standard deviation, the higher the volatility.

• The closer together the source data points are, the lower the volatility is. A wide
variance of data points results in a high volatility. A set of identical values pro-
duces a standard deviation of 0—i.e., there is no dispersion among the values.

A standard deviation of 2.722656 is relatively small; therefore, the risk is also small.
Standard deviation values can run from 0 to very large numbers—in the thousands
or more. The standard deviation is a representation of the variance of the datum
around the mean.

The SQL of the query in Figure 10-16 is:

SELECT StDev(Table1.num) AS StDevOfnum FROM Table1

As you can see, it’s quite simple. A snapshot like the one this query provides can be
useful, but in numerical analysis, trends are worth their weight in gold (or at least in
silver). A series of volatility values may enable better analysis of the data. To determine
the trend, a moving volatility line (similar to a moving average) is needed. Decision
one is how many data points to base each standard deviation on. In the following
example, we’ll use 20-day intervals.

Figure 10-17 shows a table listing a year’s worth of closing prices for Ford Motor
Company stock (not all data is visible in the figure). The third column contains com-
putations of volatility based on the given range (that is, from the closing price 20
days ago through the current date’s closing price).

Figure 10-16. Calculating the standard deviation of a set of numbers

342 | Chapter 10: Statistics

As shown in Figure 10-18, we can use this data to plot a moving volatility line along
with the prices. The figure contains two charts, one on top of the other. The bottom
chart is a plot of the second column from Figure 10-17, and the top chart is a plot of
the third column.

In Figure 10-17, you’ll notice that the first 14 rows show the same value in the third
column. This is because a change in the volatility calculation’s result will not appear
until 20 days into the data. The 14 rows actually comprise 20 calendar days because
the column of dates does not include weekends or holidays (when the markets are
closed). Considering this factor alone, it is obvious that there are numerous ways to
calculate the volatility. For example, a similar but more developed process might
include only trading days in the 20-day ranges.

Figure 10-17. Ford dates, prices, and volatility

Measuring Volatility | 343

Because the values for the first 20 days do not vary (as there is no preceding data),
the first bit of the volatility line in Figure 10-18 is flat. Only after 20 days does the
line vary.

Here is the VBA code routine that produced the results in the third column in
Figure 10-17:

Sub fill_volatility()
Dim conn As ADODB.Connection
Set conn = CurrentProject.Connection
Dim rs As New ADODB.Recordset
rs.Open "Select * From Ford", conn, adOpenDynamic, adLockOptimistic
Dim rs2 As New ADODB.Recordset
Dim arr(20)
Dim arr_count As Integer

Do Until rs.EOF
 ssql = "Select Clos from Ford Where" & _
 "(Dte Between #" & rs.Fields("Dte") - 20 & _
 "# And #" & rs.Fields("Dte") & "#) Order By Dte "
 rs2.Open ssql, conn, adOpenKeyset, adLockOptimistic
 arr_count = 0

Figure 10-18. Ford closing prices charted along with volatility

344 | Chapter 10: Statistics

 Do Until rs2.EOF
 arr(arr_count) = rs2.Fields("Clos")
 arr_count = arr_count + 1
 rs2.MoveNext
 Loop

 rs.Fields("Volatility") = Excel.WorksheetFunction.StDev(arr())
 rs2.Close

rs.MoveNext
Loop
rs.Close
Set rs = Nothing
Set conn = Nothing
MsgBox "done"
End Sub

The standard deviation is returned using Excel’s version of the StDev function. A ref-
erence to the Excel library is therefore required to run this routine. You can set the
reference in the VB Editor, under Tools ➝ References.

Discussion
Those who attempt to make profits on fast price changes, such as day or swing traders,
view high volatility as a positive thing. Conversely, investors who are in for the long
haul tend to prefer securities with low volatility. Volatility has a positive correlation
with risk, which means an investment with high volatility is, well, risky—not some-
thing that’s typically seen as desirable in long-term investments.

There are many formulas for calculating risk, and people tend to select methods that
suit their particular circumstances (often having to do with the type of investment
vehicle—stock, option, etc.). Unlike other formulas, volatility is broadly used to deter-
mine the variance among a set of values. However, as you’ve seen, many different
approaches can be taken to determine the volatility.

A major consideration is whether you’re attempting to calculate historical volatility
(which provides answers based on existing data and is useful for backtesting, or
seeing whether a given investing approach would have been successful) or implied
volatility (which provides a guess as to the level of volatility in the future). Clearly,
the latter is more involved because “assumptions” must be included within the calcu-
lations. This leads to complex formulas. Perhaps the best-known implied volatility
method is the Black-Scholes model. This model is a standard for determining the
future volatility of options. Options have more data points to consider than vanilla
stock investments; calculations must involve the price of the option, the length of the
option until expiration, and the expected value at the end of the option’s life.

345

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

Symbols
% (percent sign), 17
& (ampersand character), 121–122
+ operator, 121
: (colon), 35, 47
[] (brackets) and parameterized queries, 12

A
action queries, 73–91

appending data, 79–83
from record set, 82–83
to table that has different field

names, 79
creating programmatically, 107
delete query, 84–88

cascading deletes, 88
make-table query, 88–91
update queries, 73–79

ADO (ActiveX Data Objects), 94
indexes, 104
using to export data to Excel, 238–240
using to import Excel data, 235–238

ADOX, 92, 94
aggregate functions, 46–48
aliases, 37–39
All keyword, 34
Alter Column construct, 101
amount function, 54
ampersand character (&), 121–122
AND operator, 4–7
append queries, 73, 79–83

appending from record set, 82–83

appending to table that has different field
names, 79

rank of a particular data value, 337
appending data, 79–83

from record set, 82–83
to table that has different field names, 79

appointments, importing, 227–230
arrays, 136–139

multidimensional, 140–143
sorting, 144–147
three-dimensional, 142

Asc function, 129
ASCII codes, categorizing characters

with, 127–130
asterisk wildcard, 14
attributes, 206
AutoCalc, 278
automating data imports and

exports, 194–197
AutoNumber field, 18, 100
averages

moving, 265
weighted, 263

averaging records, 26–31
AVG function, 26–31
Avg function, 46–48, 314

B
Between/And SQL construct, 13
Black-Scholes model, 344
Bollinger Bands, 299–300
brackets and parameterized queries, 12
bubble sort, 144
business and finance problems, 263–306

346 | Index

C
Cartesian join, 61–65
Cartesian product, 62
Central Standard Time (CST), 252
character codes, 128
charting data, 281–282
charts, 165–169
Chr function, 129
CInt function, 125
code routines, 131–187
collections, 139
colon (:), 35, 47
column areas, 276
connection strings, 222
Coordinated Universal Time (UTC), 254
Count function, 50–51
covariance, calculating, 316–317
Create View SQL statement, 107
criterion (see parameters)
crosstab query, 65–72

sophisticated crosstabs, 69
custom functions, 54–57
cyclical trends, 287

D
DAO (Data Access Objects), 92, 93

creating action queries, 107
creating stored queries, 106
Database object, 107
indexes, 104
QueryDef object, 107

data
appending, 79–83

from record set, 82–83
to table that has different field

names, 79
charting, 281–282
charts, creating, 165–169
correlation of two sets of, 317–318
deleting, 84–88

cascading deletes, 88
encrypting, 153–156

key phrases, 155
XOR, 155

exporting, 188–245
automating, 194–197
creating import/export

specification, 188–193
DoCmd object, 196
Excel, 238–240
Export Wizard, 188

FileSystemObject, 197–199
Visual Basic and, 196
XML, using, 204–207
XSLT, 209–211

frequency of a value in, 323
Head and Shoulders pattern, 287–299
importing, 188–245

automating, 194–197
creating import/export

specification, 188–193
embedded quotation marks,

handling, 226
Excel, 235–238
FileSystemObject, 200–204
Import Wizard, 188
Outlook calendar

appointments, 227–230
Outlook contact lists, 232–235
Outlook emails, 230–232
PowerPoint, 240–244
randomly selected data, creating a new

table from, 244
RSS feed, 218–221
SQL Server, passing parameters, 221
TransferText action, 195
XML, using, 204–207
XSLT, 209–211

optimizing, 149
peakness of distribution of values

in, 330–332
permutations, 318–320
programming to manipulate, 131–187

arrays, 136–139
Excel functions, 131–135
expanding to a set of parent and child

tables, 151–153
flattening, 147–150
mail merges, 180–183
multidimensional arrays, 140–143
query selection screen, 183–187
removing redundancy, 152
report formatting, custom, 173–177
rounding values, 177–180
scraping Web HTML, 170–173
sorting arrays, 144–147

proximate matching, 157–160
rank of a particular data value, 337–338
returning all combinations in, 321–323
returning range of data by

percentile, 335–337
skew of, 333–335
transaction processing, 160–162

Index | 347

trends, finding, 283–287
volatility of, 340–344
Windows Registry, reading from and

writing to, 162–165
Data Access Objects (DAO), 93
Data Definition Language (DDL), 95
Datasheet view, 104
DateAdd function, 256, 260–262

interval, 261
DateDiff function, 246–249, 256

date1, 248
date2, 248
firstdayofweek, 248
firstweekofyear, 248
interval values, 249

DatePart function, 256, 257
dates

isolating day, month, or year, 256–258
leap years, 255–256
time zones, 252–254

DateSerial function, 256
DateValue function, 256
Day function, 256–258
day, isolating, 256–258
declining-balance depreciation, 272
DELETE keyword, 85, 87
delete query, 84–88

cascading deletes, 88
DeleteObject method, 105
deleting data, 84–88

cascading deletes, 88
depreciation, 269–272
DESC keyword, 18
detail areas, 276
Distinct in SQL statement, 21
DISTINCT predicate, 31
DistinctRow predicate, 23
DLookup function, 75
Do, 114
Do Until loop, 114
DoCmd object, 196
DoesTableExist function, 98
Drop statement, 105

E
Edit Relationships dialog, 85
embedded quotation marks, handling, 226
encrypting data, 153–156
Excel

data exporting, 238–240
data, importing, 235–238

functions, 131–135, 136–139
rounding values, 179

Excel Object Library, 132
Execute method (regexp object), 61
Exit For statement, 118
Expression Builder dialog box, 53
expressions in queries, 52–53
eXtensible Markup Language (XML), 95–96
Extensible Stylesheet Language

Transformations (see XSLT)

F
fields, temporary, 91
FileSystemObject, 197–204
filter areas, 276
Find Unmatched Query Wizard, 2
For loops, nested, 320, 322
forecasting, 287
found_pos variable, 114
frequency of a value in a data set, 323
FROM keyword, 35–37, 39
functions, custom, 54–57, 75

G
Greenwich Mean Time (GMT), 254
GROUP BY clause, 312, 323
Group By clause, 50–51

alternatives, 65
growth rates, 324–327

H
Hammersley, Ben, 221
Head and Shoulders patterns, 287–299
histograms, 307–309
historical volatility, 340
Hour function, 259
hour, isolating, 258–259

I
IIf function, 36
implied volatility, 340
import/export specification, 188
importing and exporting data, 188–245
importing Outlook calendar

appointments, 227–230
ImportXML Access method, 95
IN operator, 7–10

subqueries, 9
WHERE, 8

348 | Index

injection attacks, protecting against, 226
INNER JOIN, 39
Insert Into statement, 80, 81, 82
InStr function, 111–114, 120
intercept point, 338–340

J
Join function, 123
Join Properties menu option, 39
joins

Cartesian, 61–65
INNER JOIN, 39
left, 1–4
LEFT JOIN, 39–41
OUTER JOIN, 43–44
RIGHT JOIN, 41

K
key phrases, 155
kurtosis, 330–332

L
LagAverage, 327
leap years, 255–256
Left function, 109–110
left join, 1–4
Len function, 110
Like operator, 14
linear regression, 338–340
linear trend line, 286
literal result elements, 210
loan payment schedule, 272–273
logic operators, 4
longitude and latitude settings, using to

calculate distance, 301
LTrim function, 115–116

M
mail merges, 180–183
make-table queries, 73, 88–91
Max function, 314
mean, computing, 310–313
median, computing, 310–313
Microsoft XML library, 212
Mid function, 111
Min function, 314
Minute function, 259
minute, isolating, 258–259
mode, computing, 310–313
Month function, 256–258

month, isolating, 256–258
moving averages, 283
moving averages, calculating, 265
MS Graph, 169
MSXML parser, 212–216

N
National Language Support (NLS), 249
neckline, in Head and Shoulders

pattern, 288
nested queries, 29–31
nodes, XML tags and, 206
NOT operator, 10–11
Now function, 256

O
on-the-fly fields in queries, 35–37
optimizing relational data, 149
OR operator, 4–7

multiple, 7
ORDER BY clause, 18, 335

Rnd function, 24
Outlook calendar, importing

appointments, 227–230
Outlook contact lists, importing, 232–235
Outlook emails, importing, 230–232
overall_average function, 71
overwriting tables, 91

P
parameters, 11–15

brackets, 12
Like operator, 14
multiple, 13
specifying data type, 14

parameters, passing to SQL Server, 221
passive queries, 73
pattern matching, 59
payback period, calculating, 266–268
PERCENT, 17
percent sign (%), 17
percentile, returning range of data

by, 335–337
Perl, 58
permutations, 318–320
PIVOT keyword, 69
PivotCharts, 274–282, 309, 327
PivotTables, 274–279
polynomial trend line, 286
PowerPoint, importing data from, 240–244
primary key, 102

Index | 349

probability, 327–328
programming data, 131–187

arrays, 136–139
collections, 139
Excel functions, 131–135
expanding to a set of parent and child

tables, 151–153
flattening, 147–150
in-memory data, 136–139
multidimensional arrays, 140–143
removing redundancy, 152
sorting arrays, 144–147
three-dimensional data, 142

proximate matching, 157–160

Q
queries

action (see action queries)
append (see append queries)
creating programmatically, 106–108
make-table (see make-table queries)
nested, 29–31
passive (see passive queries)
update, 73–79

queries, calculating with, 46–72
Avg function, 46–48
Cartesian join, 61–65
crosstab query, 65–72

sophisticated crosstabs, 69
custom functions, 54–57
expressions, 52–53
number of items per group, 50–51
regular expressions, 57–61
returning all combinations of data, 61–65
Sum function, 46–48

query construction, 1–44
aliases, 37–39
AND operator, 4–7
combining data, 31–34
data filtering with subqueries, 26–31
DistinctRow predicate, 21
excluding records, 10–11
finding unmatched records, 1–4
IN operator, 7–10
LEFT JOIN, 39–41
left join, 1–4
NOT operator, 10–11
on-the-fly fields, 35–37
OR operator, 4–7
OUTER JOIN, 43–44
parameters, 11–15

brackets, 12
Like operator, 14
multiple, 13
specifying data type, 14

returning distinct records, 19–23
returning random records, 24–26
returning top or bottom number of

records, 16–18
RIGHT JOIN, 41
UNION clause, 31–34

query grid, 6
Query Parameters dialog, 15
query selection screen, building, 183–187
QueryDef object, 107
quotation marks, embedded, handling, 226

R
random data, importing, 244
rank of a particular data value, 337–338
ReadAll method, 199
ReadLine method, 199
RecordCount property, 313
records

averaging, 26–31
excluding, 10–11
finding unmatched, 1–4
returning distinct, 19–23
returning random, 24–26
returning top or bottom number

of, 16–18
Recordset object, 267
Recordset, opening, 313
redundancy in data, removing, 152
regular expressions, 57–61

pattern matching, 59
remove_first_space function, 118
Replace function, 117, 119–120
Replace method (regexp object), 61
report formatting, 173–177
return on investment (ROI), calculating, 268
Right function, 109–110
Rnd function, 24, 245
Round function, 71, 327
rounding values, 177–180
row areas, 276
RSS, creating a feed, 218–221
RTrim function, 115–116

S
schemas, XML, 207–209
scraping Web HTML, 170–173

350 | Index

Second function, 259
second, isolating, 258–259
seed value, 245
SELECT keyword

TOP predicate, 17
Select statement, executing within another

Select statement, 252
skew of data, 333–335
slope point, 338–340
sorting, 18
sorting numbers stored as text, 124–126
spaces, stripping from end of

string, 115–116
spaces, stripping from middle of

string, 116–118
SQL (Structured Query Language), 92

creating stored queries, 106
creating tables, 95
deleting tables, 105

SQL Server
Access data types versus, 224
data types, 224
injection attacks, protecting against, 226
Jet data types versus, 225
Null values and, 224
passing parameters, 221
returned values, handling from stored

procedures, 223
Visual Basic data types versus, 224

standard deviation, 315, 344
standard error, 332
statistics, 307–344

Black-Scholes model, 344
computing mean, mode, and

median, 310–313
correlation of two sets of data, 317–318
covariance, 316–317
frequency of a value in a data set, 323
growth rates, 324–327
histograms, 307–309
kurtosis, 330–332
linear regression, 338–340
peakness of distribution of values in data

set, 330–332
permutations, 318–320
probability, 327–328
rank of a particular data value, 337–338
returning all combinations in data

set, 321–323
returning range of data by

percentile, 335–337

skew of data, 333–335
variance, 314–316
volatility of data, 340–344

StDev function, 314, 341, 344
straight-line depreciation,

calculating, 269–272
StraightLineDepreciation function, 269
string data, 109–130

categorizing characters with ASCII
codes, 127–130

concatenating data, 121–123
+ operator, 121
ampersand character (&), 121–122
Join function, 123

replacing one string with
another, 119–120

returning characters from left or right
side, 109–110

returning characters from middle of
string, 111

returning start position, 112–114
sorting numbers stored as text, 124–126
stripping spaces from end of

string, 115–116
stripping spaces from middle of

string, 116–118
StrReverse function, 120
Structured Query Language (see SQL)
subqueries, 10, 29–31

advantages, 29
data filtering with, 26–31
IN operator and, 9

Sum function, 46–48

T
tables

altering structure
programmatically, 99–102

adding new fields, 100
Alter Column construct, 101
AutoNumber field, 100
changing field data type, 101
changing field type, 100
deleting fields, 100

creating programmatically, 92–99
ADOX, 94, 97
DAO, 93, 97
multiple, 99
SQL, 95, 97
XSD schema, 95–96

Index | 351

creating queries
programmatically, 106–108

creating with make-table query, 88–91
deleting programmatically, 104–105
indexes, 102–104
overwriting, 91
primary key, 102
testing for existence, 98

tags, XML and, 206
temporary fields, 91
Test method (regexp object), 61
test_function sub, 118
text-based data (see string data)
three-dimensional data, 142
time

adding, 260–262
counting elapsed, 246–249
counting elapsed time with

exceptions, 249–252
isolating hour, minute, or

second, 258–259
offset, 254
zones, 252–254

TimeSerial function, 256
TimeValue function, 256
TOP predicate, 16–18
Totals menu option, 46
transaction processing, 160–162
TransferDatabase action, 194
TransferText action, 195
TRANSFORM keyword, 69
trends in data, finding, 283–287
trends, charting data for, 281–282
trends, cyclical, 287
Trim function, 115–116, 121, 122

U
UBound, 322
UNION clause, 31–34
UPDATE keyword, 78, 79
update queries, 73–79

V
Values keyword, 81
Var function, 314

variance, calculating, 314–316
VBScript Regular Expressions library, 58
Visual Basic

data exporting and, 196
MSXML parser and, 212

volatility of data, 340–344
historical, 340
implied, 340

W
Weekday function, 256–258
weighted averages, calculating, 263
WHERE clause

paramerterized queries, 13
wildcard, 14
Windows Registry, 162–165
Word mail merges, 180

X
XML

attributes, reading and writing, 216–218
importing and exporting, using, 204–207
MSXML parser, 212–216
RSS feed, 218–221
schemas, 207–209

XML/XSD, 92
XOR encryption, 155
XSD schema, 95–96
XSLT

importing or exporting data, 209–211
literal result elements, 210
transforms, 209

Y
Year function, 256–258
year, isolating, 256–258
years, leap, 255–256

Z
zip codes, calculating distance

between, 301–306
Zoom box, 53

About the Authors
Ken Bluttman has written many articles and computer books, including Excel Charts
for Dummies and O’Reilly’s Access Hacks. His technical chops include Microsoft
Office, XML, VBA, VB.NET, SQL Server, and assorted web technologies.

Wayne S. Freeze is head of software development for Electrical Controls, Inc., where
he builds software 3D graphics applications. He has also written several books and
articles on Visual Basic, SQL Server, DirectX, ASP.NET, Microsoft Office, and many
other Microsoft technologies.

Colophon
The animal on the cover of Access Data Analysis Cookbook is a crab-eating mongoose
(Herpestes urva), an endangered, essentially nocturnal mammal that is also an expert
swimmer.

Comparable in size to the stripe-necked mongoose, the four-foot crab-eating mongoose
is grayish-brown in color, with a white, contoured stripe running from a corner of its
mouth to its shoulder. It has a long, tapered head with a protruding snout, a some-
what rotund body, short, lean legs, and five claws on each paw. An elongated tail
normally accounts for two-thirds of its body length.

More aquatic by nature than others of its species, the crab-eating mongoose not only
hunts freshwater crabs, it also preys on reptiles, fish, snails, rodents, frogs, insects,
birds, and whatever else it can snatch from underneath stones and pull from rock
crevices along stream banks and other damp parcels of land.

Though native to Southeast Asia, sightings of the creature in the wild have been rela-
tively rare—in India, the last sighting occurred more than 75 years ago; in Hong
Kong, one sighting occurred more than 50 years ago, but, by luck, a healthy popula-
tion was apparently discovered in 1988. Other countries that have reported sightings
of the crab-eating mongoose include Nepal, Vietnam, Thailand, Myanmar, China,
Laos, and Malaysia.

The cover image is from Lydekker’s Royal History. The cover font is Adobe ITC
Garamond. The text font is Linotype Birka; the heading font is Adobe Myriad
Condensed; and the code font is LucasFont’s TheSans Mono Condensed.

	Access Data Analysis Cookbook
	Table of Contents
	Preface
	Who Should Read This Book
	What’s in This Book
	Conventions Used in This Book
	Using Code Examples
	We’d Like Your Feedback!
	Acknowledgments
	From Ken Bluttman
	From Wayne S. Freeze

	Query Construction
	1.1 Finding Unmatched Records
	Problem
	Solution
	Discussion
	See Also

	1.2 Making AND and OR Do What You Expect
	Problem
	Solution
	Discussion

	1.3 Working with Criteria Using the IN Operator
	Problem
	Solution
	Discussion
	See Also

	1.4 Excluding Records with the NOT Operator
	Problem
	Solution
	Discussion
	See Also

	1.5 Parameterizing a Query
	Problem
	Solution
	Discussion
	Specifying a data type for the parameter

	1.6 Returning a Top or Bottom Number of Records
	Problem
	Solution
	Discussion

	1.7 Returning Distinct Records
	Problem
	Solution
	Discussion
	Using DistinctRow

	1.8 Returning Random Records
	Problem
	Solution
	Discussion

	1.9 Fine-Tuning Data Filtering with Subqueries
	Problem
	Solution
	Discussion
	Removing excessive queries

	1.10 Combining Data with Union Queries
	Problem
	Solution
	Discussion

	1.11 Inserting On-the-Fly Fields in Select Queries
	Problem
	Solution
	Discussion

	1.12 Using Aliases to Simplify Your SQL Statements
	Problem
	Solution
	Discussion

	1.13 Creating a Left Join
	Problem
	Solution
	Discussion

	1.14 Creating a Right Join
	Problem
	Solution
	Discussion

	1.15 Creating an Outer Join
	Problem
	Solution
	Discussion
	See Also

	Calculating with Queries
	2.1 Finding the Sum or Average in a Set of Data
	Problem
	Solution
	Discussion

	2.2 Finding the Number of Items per Group
	Problem
	Solution
	Discussion

	2.3 Using Expressions in Queries
	Problem
	Solution
	Discussion

	2.4 Using Custom Functions in Queries
	Problem
	Solution
	Discussion

	2.5 Using Regular Expressions in Queries
	Problem
	Solution
	Discussion
	See Also

	2.6 Using a Cartesian Product to Return All Combinations of Data
	Problem
	Solution
	Discussion

	2.7 Creating a Crosstab Query to View Complex Information
	Problem
	Solution
	Discussion
	Sophisticated crosstabs

	Action Queries
	3.1 Running an Update Query
	Problem
	Solution
	Discussion

	3.2 Appending Data
	Problem
	Solution
	Discussion
	Appending from a recordset

	3.3 Deleting Data
	Problem
	Solution
	Discussion

	3.4 Creating Tables with Make-Table Queries
	Problem
	Solution
	Discussion

	Managing Tables, Fields, Indexes, and Queries
	4.1 Creating Tables Programmatically
	Problem
	Solution
	Using DAO to create a table
	Using ADOX to create a table
	Using SQL to create a table
	Using an XSD schema definition to create a table

	Discussion
	Testing for the table’s existence
	Which method should you use?

	4.2 Altering the Structure of a Table
	Problem
	Solution
	Programmatically adding and deleting a field
	Changing a field’s data type

	Discussion

	4.3 Creating and Using an Index
	Problem
	Solution
	Discussion

	4.4 Programmatically Removing a Table
	Problem
	Solution
	Discussion

	4.5 Programmatically Creating a Query
	Problem
	Solution
	Discussion
	Creating action queries

	Working with String Data
	5.1 Returning Characters from the Left or Right Side of a String
	Problem
	Solution
	Discussion

	5.2 Returning Characters from the Middle of a String When the Start�Position and Length Are Known
	Problem
	Solution
	Discussion

	5.3 Returning the Start Position of a Substring When the Characters Are Known
	Problem
	Solution
	Discussion

	5.4 Stripping Spaces from the Ends of a String
	Problem
	Solution
	Discussion

	5.5 Stripping Spaces from the Middle of a String
	Problem
	Solution
	Discussion

	5.6 Replacing One String with Another String
	Problem
	Solution
	Discussion

	5.7 Concatenating Data
	Problem
	Solution
	Discussion
	Using the Join function

	5.8 Sorting Numbers That Are Stored as Text
	Problem
	Solution
	Discussion

	5.9 Categorizing Characters with ASCII Codes
	Problem
	Solution
	Discussion

	Using Programming to Manipulate Data
	6.1 Using Excel Functions from Access
	Problem
	Solution
	Discussion

	6.2 Working with In-Memory Data
	Problem
	Solution
	Discussion
	Using collections

	6.3 Working with Multidimensional Arrays
	Problem
	Solution
	Discussion
	Working with three-dimensional data

	6.4 Sorting an Array
	Problem
	Solution
	Discussion
	Sorting multidimensional arrays

	6.5 Flattening Data
	Problem
	Solution
	Discussion

	6.6 Expanding Data
	Problem
	Solution
	Discussion

	6.7 Encrypting Data
	Problem
	Solution
	Discussion

	6.8 Applying Proximate Matching
	Problem
	Solution
	Discussion

	6.9 Using Transaction Processing
	Problem
	Solution
	Discussion

	6.10 Reading from and Writing to the Windows Registry
	Problem
	Solution
	Discussion

	6.11 Creating Charts
	Problem
	Solution
	Discussion
	Charts in Access 2007

	6.12 Scraping Web HTML
	Problem
	Solution
	Discussion

	6.13 Creating Custom Report Formatting
	Problem
	Solution
	Discussion

	6.14 Rounding Values
	Problem
	Solution
	Discussion

	6.15 Running Word Mail Merges
	Problem
	Solution
	Discussion

	6.16 Building a Multifaceted Query Selection Screen
	Problem
	Solution
	Discussion

	Importing and Exporting Data
	7.1 Creating an Import/Export Specification
	Problem
	Solution
	Discussion

	7.2 Automating Imports and Exports
	Problem
	Solution
	Discussion

	7.3 Exporting Data with the FileSystemObject
	Problem
	Solution
	Discussion

	7.4 Importing Data with the FileSystemObject
	Problem
	Solution
	Discussion

	7.5 Importing and Exporting Using XML
	Problem
	Solution
	Discussion

	7.6 Generating XML Schemas
	Problem
	Solution
	Discussion

	7.7 Using XSLT on Import or Export
	Problem
	Solution
	Discussion

	7.8 Working with XML via the MSXML Parser
	Problem
	Solution
	Discussion

	7.9 Reading and Writing XML Attributes
	Problem
	Solution
	Discussion

	7.10 Creating an RSS Feed
	Problem
	Solution
	Discussion

	7.11 Passing Parameters to SQL Server
	Problem
	Solution
	Discussion

	7.12 Handling Returned Values from SQL Server Stored Procedures
	Problem
	Solution
	Discussion

	7.13 Working with SQL Server Data Types
	Problem
	Solution
	Discussion

	7.14 Handling Embedded Quotation Marks
	Problem
	Solution
	Discussion

	7.15 Importing Appointments from the Outlook Calendar
	Problem
	Solution
	Discussion

	7.16 Importing Emails from Outlook
	Problem
	Solution
	Discussion

	7.17 Working with Outlook Contacts
	Problem
	Solution
	Discussion

	7.18 Importing Data from Excel
	Problem
	Solution
	Discussion

	7.19 Exporting Data to Excel
	Problem
	Solution
	Discussion

	7.20 Talking to PowerPoint
	Problem
	Solution
	Discussion

	7.21 Selecting Random Data
	Problem
	Solution
	Discussion

	Date and Time Calculations
	8.1 Counting Elapsed Time
	Problem
	Solution
	Discussion

	8.2 Counting Elapsed Time with Exceptions
	Problem
	Solution
	Discussion

	8.3 Working with Time Zones
	Problem
	Solution
	Discussion

	8.4 Working Around Leap Years
	Problem
	Solution
	Discussion

	8.5 Isolating the Day, Month, or Year
	Problem
	Solution
	Discussion

	8.6 Isolating the Hour, Minute, or Second
	Problem
	Solution
	Discussion

	8.7 Adding Time
	Problem
	Solution
	Discussion

	Business and Finance Problems
	9.1 Calculating Weighted Averages
	Problem
	Solution
	Discussion

	9.2 Calculating a Moving Average
	Problem
	Solution
	Discussion
	See Also

	9.3 Calculating Payback Period
	Problem
	Solution
	Discussion

	9.4 Calculating Return on Investment
	Problem
	Solution
	Discussion

	9.5 Calculating Straight-Line Depreciation
	Problem
	Solution
	Discussion

	9.6 Creating a Loan Payment Schedule
	Problem
	Solution
	Discussion

	9.7 Using PivotTables and PivotCharts
	Problem
	Solution
	Discussion
	See Also

	9.8 Creating PivotTables
	Problem
	Solution
	Discussion

	9.9 Charting Data
	Problem
	Solution
	Discussion

	9.10 Finding Trends
	Problem
	Solution
	Discussion

	9.11 Finding Head and Shoulders Patterns
	Problem
	Solution
	Discussion

	9.12 Working with Bollinger Bands
	Problem
	Solution
	Discussion

	9.13 Calculating Distance Between Zip Codes
	Problem
	Solution
	Discussion

	Statistics
	10.1 Creating a Histogram
	Problem
	Solution
	Discussion

	10.2 Finding and Comparing the Mean, Mode, and Median
	Problem
	Solution
	Discussion

	10.3 Calculating the Variance in a Set of Data
	Problem
	Solution
	Discussion

	10.4 Finding the Covariance of Two Data Sets
	Problem
	Solution
	Discussion

	10.5 Finding the Correlation of Two Sets of Data
	Problem
	Solution
	Discussion

	10.6 Returning All Permutations in a Set of Data
	Problem
	Solution
	Discussion

	10.7 Returning All Combinations in a Set of Data
	Problem
	Solution
	Discussion

	10.8 Calculating the Frequency of a Value in a Set of Data
	Problem
	Solution
	Discussion

	10.9 Generating Growth Rates
	Problem
	Solution
	Discussion

	10.10 Determining the Probability Mass Function for a Set of Data
	Problem
	Solution
	Discussion

	10.11 Computing the Kurtosis to Understand the Peakedness or Flatness of a Probability Mass Distr...
	Problem
	Solution
	Discussion

	10.12 Determining the Skew of a Set of Data
	Problem
	Solution
	Discussion

	10.13 Returning a Range of Data by Percentile
	Problem
	Solution
	Discussion

	10.14 Determining the Rank of a Data Item
	Problem
	Solution
	Discussion

	10.15 Determining the Slope and the Intercept of a Linear Regression
	Problem
	Solution
	Discussion

	10.16 Measuring Volatility
	Problem
	Solution
	Discussion

	Index

