
www.allitebooks.com

http://www.allitebooks.org

Agent-Based
Modeling and Simulation

with Swarm

K15964_FM.indd 1 5/10/13 11:03 AM

www.allitebooks.com

http://www.allitebooks.org

Stochastic Relations: Foundations for Markov Transition Systems

Ernst-Erich Doberkat

Conceptual Structures in Practice

Pascal Hitzler and Henrik Schärfe

Context-Aware Computing and Self-Managing Systems

Waltenegus Dargie

Introduction to Mathematics of Satisfiability

Victor W. Marek

Ubiquitous Multimedia Computing

Qing Li and Timothy K. Shih

Mathematical Aspects of Logic Programming Semantics

Pascal Hitzler and Anthony Seda

Agent-Based Modeling and Simulation with Swarm

Hitoshi Iba

PUBLISHED TITLES

SERIES EDITOR

G. Q. Zhang
Department of EECS

Case Western Reserve University
Cleveland, Ohio, U.S.A.

Chapman & Hall/CRC
Studies in Informatics Series

K15964_FM.indd 2 5/10/13 11:03 AM

www.allitebooks.com

http://www.allitebooks.org

Chapman & Hall/CRC
Studies in Informatics Series

Agent-Based
Modeling and Simulation

with Swarm

Hitoshi Iba

K15964_FM.indd 3 5/10/13 11:03 AM

www.allitebooks.com

http://www.allitebooks.org

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2013 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20130429

International Standard Book Number-13: 978-1-4665-6240-0 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable
efforts have been made to publish reliable data and information, but the author and publisher cannot
assume responsibility for the validity of all materials or the consequences of their use. The authors and
publishers have attempted to trace the copyright holders of all material reproduced in this publication
and apologize to copyright holders if permission to publish in this form has not been obtained. If any
copyright material has not been acknowledged please write and let us know so we may rectify in any
future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information stor-
age or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copy-
right.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222
Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that pro-
vides licenses and registration for a variety of users. For organizations that have been granted a pho-
tocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are
used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

www.allitebooks.com

http://www.copyright.com/
http://www.taylorandfrancis.com
http://www.crcpress.com
www.copyright.com
http://www.allitebooks.org

Contents

List of Tables ix

List of Figures xi

Preface xvii

1 Introduction 1
1.1 What is simulation? . 1
1.2 Simulation of intelligence . 3
1.3 Criticism of simulation . 6
1.4 Swarm and the Santa Fe Institute 8

2 Evolutionary Methods and Evolutionary Computation 13
2.1 What is evolutionary computation? 13
2.2 What are genetic algorithms? 14

2.2.1 Data representation 14
2.2.2 Selection . 14
2.2.3 Genetic operations . 16
2.2.4 Flow of the algorithm 19
2.2.5 Initialization . 19
2.2.6 Extension of the GA 20
2.2.7 Traveling salesman problem (TSP) 21

2.3 What is genetic programming? 25
2.3.1 Description of individuals in GP 25
2.3.2 Flow chart of GP . 27
2.3.3 Initialization of tree structures 29
2.3.4 Fitness evaluation . 31
2.3.5 Crossover and mutation 31
2.3.6 Simulating wall following robots 33

2.4 What is interactive evolutionary computation? 35
2.4.1 Interactive music composition based on Swarm simula-

tion . 42

3 Multi-Agent Simulation Based on Swarm 45
3.1 Overview of Swarm . 45
3.2 Tutorial . 50

v

www.allitebooks.com

http://www.allitebooks.org

vi Contents

3.2.1 simpleCBug . 50
3.2.2 simpleObjCBug and simpleObjCBug2 51
3.2.3 simpleSwarmBug . 54
3.2.4 simpleSwarmBug2 . 57
3.2.5 simpleSwarmBug3 . 59
3.2.6 simpleObserverBug . 60
3.2.7 simpleObserverBug2 64
3.2.8 simpleExperBug . 68

4 Evolutionary Simulation 73
4.1 Simulation of sexual selection 73

4.1.1 Sexual selection in relation to markers, handicaps, and
parasites . 73

4.1.2 The Kirkpatrick model 77
4.1.3 Simulation using GAs 79

4.2 Swarm-based simulation of sexual selection 82
4.3 Simulation of the prisoner’s dilemma 84

4.3.1 The prisoner’s dilemma 84
4.3.2 Iterated prisoner’s dilemma 87
4.3.3 IPD using GAs . 94
4.3.4 IPD simulation by Swarm 97
4.3.5 IPD as spatial games 102

4.4 Evolving artificial creatures and artificial life 103
4.4.1 What is artificial life? 103
4.4.2 Artificial life of Karl Sims 104
4.4.3 Evolutionary morphology for real modular robots . . . 105

5 Ant Colony–Based Simulation 111
5.1 Collective behaviors of ants 111
5.2 Swarm simulation of the pheromone trails of ants 114
5.3 Ant colony optimization (ACO) 116
5.4 Ant-clustering algorithms . 118
5.5 Swarm-based simulation of ant-clustering 120
5.6 Ant colony–based approach to the network routing problem . 121
5.7 Ant-based job separation . 124
5.8 Emergent cooperation of army ants 126

5.8.1 Altruism of army ants 126
5.8.2 Defining the problem 127
5.8.3 Judgment criteria for entering the altruism state . . . 127
5.8.4 Judgment criteria with reference to chain formation . 132
5.8.5 Changes in strategy based on number of agents 135
5.8.6 Comparative experiment 135
5.8.7 Simulation with fixed role assigned 137

www.allitebooks.com

http://www.allitebooks.org

Contents vii

6 Particle Swarm Simulation 139
6.1 Boids and flocking behaviors 139
6.2 Simulating boids with Swarm 143
6.3 Swarm Chemistry . 146
6.4 PSO: particle swarm optimization 148

6.4.1 PSO algorithm . 149
6.4.2 Comparison with GA 150
6.4.3 Examples of PSO applications 154

6.5 ABC algorithm . 156
6.6 BUGS: a bug-based search strategy 163

6.6.1 Evolution of predatory behaviors using genetic search 164
6.6.2 A bug-based GA search 170

6.7 BUGS in Swarm . 175

7 Cellular Automata Simulation 179
7.1 Game of life . 179

7.1.1 Rule 184 . 186
7.2 Conway class with Swarm . 188
7.3 Program that replicates itself 196
7.4 Simulating forest fires with Swarm 197

7.4.1 Simulation of forest fires 198
7.5 Segregation model simulation with Swarm 200

7.5.1 Swarm-based simulation of segregation model 202
7.6 Lattice gas automaton . 203

7.6.1 LGA simulation with Swarm 207
7.7 Turing model and morphogenesis simulation 208

7.7.1 Simulation of morphogenesis by the Turing model . . 210
7.8 Simulating percolation with Swarm 212
7.9 Silicon traffic and its control 215

7.9.1 Simulating traffic jams with Swarm 216
7.10 The world of Sugarscape . 218

7.10.1 A simple Sugarscape model 219
7.10.2 Life and birth . 222
7.10.3 Breeding . 222
7.10.4 Environmental changes 225
7.10.5 Introduction of culture 230
7.10.6 Introduction of combat 233
7.10.7 Introduction of trade 237
7.10.8 Swarm simulation in Sugarscape 243

8 Conclusion 249

www.allitebooks.com

http://www.allitebooks.org

viii Contents

A GUI Systems and Source Code 257
A.1 Introduction . 257
A.2 PSO simulator and benchmark functions 258
A.3 TSP simulator by a GA . 261
A.4 Wall-following simulator by GP 262
A.5 CG synthesis of plants based on L-systems 263
A.6 LGPC for art . 263

B Installing Swarm 267
B.1 Installation . 267

B.1.1 Java2 SDK installation 267
B.1.2 Installing the Swarm package 268
B.1.3 Setting environment variables 268
B.1.4 Compiling . 268
B.1.5 Confirming operation 269

B.2 Objective-C version . 269
B.2.1 Objective-C and Swarm 269
B.2.2 Material related to the Objective-C version of Swarm 270
B.2.3 Running Swarm under various environments 270

B.3 Useful online resources . 271

References 273

Index 287

Swarm Index 295

Name Index 297

www.allitebooks.com

http://www.allitebooks.org

List of Tables

3.1 Tutorial contents. 53

4.1 Benefit and cost in the prisoner’s dilemma. 86
4.2 The strategy of vampire bats. 88
4.3 Codes and benefit chart in the IPD. 88
4.4 Comparison of the performance of the four strategies when

pitted against each other. 90
4.5 Comparison between Pavlov and TFT strategies. 93
4.6 IPD benefit chart and codes (binary representation). 98
4.7 IPD benefit chart and codes (continuous representation). . . 99

5.1 Parameters of the pheromone trails of ants. 115
5.2 Comparison between ACO and metaheuristics. 117
5.3 States and behaviors of agents. 130
5.4 Properties used in Models 1 and 2. 130

6.1 Search space for test functions. 153
6.2 PSO and GA parameters. 153
6.3 Average best fitness of 100 runs for experiments. 153
6.4 Experimental results (sexual vs. asexual selection). 171
6.5 Flow chart of the reproduction process in BUGS-GA. 173
6.6 BUGS vs. a real-valued GAs. 175

7.1 State of cell in the next step. 180
7.2 Majority rules. 183
7.3 Performance in the majority problem. 183
7.4 Rule 184. 186
7.5 Self-reproducing loop transition rules 194
7.6 State of forest fire. 199
7.7 Parameters of forest fire. 200
7.8 Parameters of the separation model. 203
7.9 Meanings of the colors of the cells. 204
7.10 Parameters for Turing model simulation. 212
7.11 Potential child genotypes. 224
7.12 Direction of trade. 241
7.13 Parameters of Sugarscape. 246

ix

www.allitebooks.com

http://www.allitebooks.org

x List of Tables

7.14 GUI display of Sugarscape. 247

8.1 Relations between related research and the constructive ap-
proach (1). 252

8.2 Relations between related research and the constructive ap-
proach (2). 253

A.1 De Jong’s standard functions. 260

List of Figures

1.1 Bottom-up and top-down approaches. 2
1.2 Turing test. 4
1.3 A Chinese room. 5
1.4 Simulation of humanoid robot motions. 7
1.5 Real-world motions of a humanoid robot. 7
1.6 Mesa Verde National Park. 9

2.1 GTYPE and PTYPE. 15
2.2 GA operators. 17
2.3 GA crossovers: (a) one-point crossover, (b) n-point crossover,

and (c) uniform crossover. 18
2.4 Examples of good and bad initialization. 20
2.5 TSP simulator. 21
2.6 TSP crossover example. 23
2.7 Results of TSP simulation. 24
2.8 Example of a (a) function and (b) program. 26
2.9 Example of a tree structure. 26
2.10 Initialization of a tree structure using FULL and GROW

methods. 29
2.11 Initial population obtained with the RAMPED HALF &

HALF method. 30
2.12 An example of the wall following problem. 31
2.13 Genetic operations in GP. 32
2.14 Robot sensors. 34
2.15 Wall following by GP. 35
2.16 IEC algorithm. 36
2.17 CG synthesis of plants based on L-systems. 37
2.18 An overview of LGPC for art. 39
2.19 An example rock rhythm generated by CONGA. 40
2.20 A four-handed performance on the piano and Swarm. 43

3.1 Bottom-up model. 46
3.2 Swarm modeling. 46
3.3 Object-oriented simulation. 47
3.4 Model and observer. 48
3.5 Swarm as a virtual computer. 49

xi

xii List of Figures

3.6 Elements of Activity library. 49
3.7 Recursive structures in Swarm. 50
3.8 Probes. 50
3.9 Probe and GUI. 51
3.10 GUI widgets. 52
3.11 Class hierarchy in simpleSwarmBug. 54
3.12 Execution sequence in simpleSwarmBug. 57
3.13 simpleSwarmBug2. 58
3.14 Display of object distribution (ZoomRaster). 61
3.15 Display with Swarm. 61
3.16 simpleObserverBug. 62
3.17 Swarm hierarchy. 64
3.18 Class hierarchy in simpleObserverBug2. 65
3.19 Probes in simpleObserverBug2. 65
3.20 Objects and probes. 66
3.21 simpleObserverBug2. 67
3.22 Probes for Bug. 68
3.23 Execution sequence in simpleExperBug. 69
3.24 ExperSwarm. 71

4.1 Sexual selection. 75
4.2 The handicap principle. 76
4.3 The parasite principle. 77
4.4 Kirkpatrick model and its equilibrium state. 79
4.5 Evolutionary results after 500 generations. 80
4.6 Evolutionary transition in the case where a new gene is in-

serted. 81
4.7 Survival ratios (male) vs. generations. 82
4.8 Swarm simulation based on Kirkpatrick’s model. 84
4.9 Sexual selection in a two-dimensional space. 85
4.10 The prisoner’s dilemma. 86
4.11 IPD simulation. 100
4.12 Evolutionary kaleidoscope. 103
4.13 Designed examples of genotype graphs and corresponding

creature morphologies. 105
4.14 Creatures evolved for swimming. 106
4.15 Evolved competing creatures. 106
4.16 Various individuals. 107
4.17 Best individuals with generations. 107
4.18 The suboptimal individual and the movement. 108
4.19 Cross-shaped robot. 108
4.20 Wheel robot. 108
4.21 The best evolved individuals. 109

5.1 Ant trail. 112

List of Figures xiii

5.2 Bridge-shaped paths. 113
5.3 The ratio of ants that used the shorter path. 113
5.4 Pheromone trails of ants. 115
5.5 Path selection rules of ants. 116
5.6 TSP simulator by ACO. 118
5.7 Ant-clustering. 120
5.8 Ant-clustering with Swarm. 121
5.9 Routing table. 122
5.10 Agent-based routing. 122
5.11 Comparison of AntNet and other routing methods (from [15]). 124
5.12 A scene of building a living bridge by army ants. 126
5.13 Simulation environment. 127
5.14 Swarm-based simulation of army ants. 128
5.15 State transition of agents. 129
5.16 Maps for experiment. 129
5.17 Simple map – experimental results. 131
5.18 Difficult map – experimental results 1. 131
5.19 Difficult map – experimental results 2. 132
5.20 Performance comparison in terms of foraging time. 133
5.21 Performance comparison in terms of altruistic activity. . . . 133
5.22 Comparison of bridge construction sites. 134
5.23 Maps used to study the effect of the number of agents. . . . 135
5.24 Effect of neighborhood knowledge (Map 1). 136
5.25 Effect of neighborhood knowledge (Map 2). 136
5.26 Changes in size of bridge. 137
5.27 Changes in size of chain. 137
5.28 Experimental results with task assignment. 138

6.1 Do the movements of a school of fish follow a certain set of
rules? . 140

6.2 Simple behavior of boids ((a)⇒(b)⇒(c)⇒(d)). 141
6.3 Boids in a situation with obstacles ((a)⇒(b)). 141
6.4 Avoid collision (1). 142
6.5 Avoid collision (2). 142
6.6 Ahead or behind a line that crosses the boid’s eyes. 142
6.7 Updating the velocity vector. 143
6.8 Each boid has its own field of view. 144
6.9 Behavior in Swarm Chemistry (1). 147
6.10 Behavior in Swarm Chemistry (2). 147
6.11 A snapshot of Swarm Chemistry. 148
6.12 Flow chart of the PSO algorithm. 150
6.13 In which way do birds fly? 151
6.14 PSO simulator. 152
6.15 Concept of searching process by PSO with a Gaussian muta-

tion. 152

xiv List of Figures

6.16 Rastrigin’s function (F8). 154
6.17 Griewangk’s function (F9). 154
6.18 Standard PSO versus PSO with a Gaussian mutation for F8. 155
6.19 Standard PSO versus PSO with a Gaussian mutation for F9. 156
6.20 A bee colony. 157
6.21 Waggle dance. 158
6.22 ABC simulator with Swarm. 161
6.23 ABC optimization with Swarm. 162
6.24 Bug world: (a)166th generation, (b) 39, 618th generation. . . 165
6.25 Bug’s gene code. 166
6.26 A schematic illustration of bugs. 167
6.27 Types of bugs. 168
6.28 Performance comparison. 169
6.29 Garden of Eden (a) 69th generation (b) 72, 337th generation

(c) 478, 462nd generation. 170
6.30 Bugs’ motions for F2: (a) 5th generation, (b) 13th generation,

(c) 25th generation, (d) 53rd generation. 174
6.31 Illustration of bug-based search. 177
6.32 BUGS simulator. 178

7.1 CA carrying out majority voting. 182
7.2 Behavior of CA driven by GA. 182
7.3 Explanation of CA behavior from collision of particles. . . . 184
7.4 Examples of patterns. 185
7.5 Congestion simulation using BCA. 187
7.6 Simulation of silicon traffic. 188
7.7 Game of life. 189
7.8 One-dimensional cellular automaton. 191
7.9 Execution of Wolfram’s experiment. 192
7.10 Self-replicating loop of Langton. 195
7.11 Forest fire examples. 199
7.12 Examples of forest fires. 201
7.13 Schelling’s simulation of the segregation model. 203
7.14 An example of a collision process in the HPP model

((a)→(b)→(c)→(d)). 205
7.15 Collision process in the FHP model. 206
7.16 Simulation examples of rain drops using the LGA method. 207
7.17 LGA simulation with the HPP model. 208
7.18 An example of simulation using the LGA method. 208
7.19 CA patterns found on shells. 209
7.20 Turing model simulation results. 211
7.21 Parameters probe for the Turing model. 212
7.22 The whole structure for percolation. 214
7.23 patternSpace: the dark portion is the largest cluster. 214
7.24 Percolation probability. 214

List of Figures xv

7.25 Histograms in Swarm. 215
7.26 An example of the flow of cars. 216
7.27 Simulating a traffic jam (with SlowtoStart). 217
7.28 Simulating a traffic jam (without SlowtoStart). 218
7.29 ASEP model simulation. 218
7.30 Two sugar (green) mountains in the Sugarscape model. . . . 219
7.31 Agent aggregation in (G1,M). 221
7.32 Population and feature changes in (G1,M). 221
7.33 Features (vision, metabolism) in (G1, {M,R[60,100]}) 223
7.34 Wealth in (G1, {M,R[60,100]}). 223
7.35 Features in (G1, {M,R[60,100], S}). 225
7.36 Wealth in (G1, {M,R[60,100], S}). 225
7.37 Agent aggregation due to seasonal variation:

(S50,8,1, {M,R[60,100], S}). 227
7.38 Population changes due to seasonal variation:

(S50,8,1, {M,R[60,100], S}). 227
7.39 Feature and wealth changes due to seasonal variation:

(S50,8,1, {M,R[60,100], S}). 228
7.40 Agent aggregation due to pollution:

({G1, D1}, {M,P1,1}). 229
7.41 Feature and wealth changes due to pollution:

(S50,8,1, {M,R[60,100], S}). 230
7.42 Agent aggregation with culture propagation (100 steps later):

(G1, {M,K}). 231
7.43 Diffusion process of two tribes: without culture propagation. 232
7.44 Diffusion process of two tribes: with culture propagation (100

steps later). 232
7.45 Diffusion process of two tribes: with culture propagation (no.

of tags = 7; 200 steps later). 233
7.46 Introduction of combat (without culture propagation):

(G1, C∞). 235
7.47 Introduction of combat (with culture propagation): (G1, C∞). 236
7.48 Combat introduced at the 200th step. 236
7.49 Introduction of spice. 237
7.50 Agent aggregation with spice: (G1,M). 239
7.51 MRS values with spice: (G1,M). 239
7.52 Agent aggregation with spice and combat. 240
7.53 Agent aggregation with trade. 242
7.54 Traded amounts and prices. 242
7.55 Trading prices and reserves in the case of seasonal change and

trade. 243
7.56 Agent aggregation when only red agents are capable of trad-

ing. 244
7.57 Sugarscape in Swarm. 245

xvi List of Figures

8.1 The classification of artificial life and the constructive ap-
proach. 251

A.1 PSO simulator. 258
A.2 Benchmark functions. 259
A.3 LGPC for art. 265

Preface

This book provides a methodology for a multi-agent based modeling approach
with the integration of computational techniques, e.g., artificial life, cellular
automata, and bio-inspired optimization. The development of such tools con-
tributes to better modeling when addressing tasks from such areas as biology,
sociology, civil engineering, economics, granular physics, and art. This attracts
attention as a method of understanding complicated phenomena which cannot
be solved analytically, in material sciences, ecology, and social science.

In this book, the method of constructing a simulation program is intro-
duced kindly and carefully. Several simulation models with a common theme
are treated in each chapter. Each chapter consists of how to assemble the algo-
rithm for realizing a simulation model, a program, a method for visualization,
and further research tasks, etc. These models can be automatically learned
step by step. While most of the multi-agent simulation is described using the
Swarm system, i.e., a commonly used multi-agent simulator, the description is
general enough so that the reader can model and develop the same simulation
with his own simulator.

The book will provide an overview of multi-agent simulation and support-
ing materials, organized into seven chapters. Each chapter begins with an
overview of the problem and of the current state-of-the-art of the field, and
ends with a detailed discussion about multi-agent frameworks. In addition, the
appendices provided at the end of this book contain a description of available
multi-agent simulation based on such simulators as PSO, ACO, and Swarm
systems and source codes available to readers for download.

Chapter 1 provides the background and a basic introduction to simulation
and complex systems. It also gives pros and cons of simulation. The limitations
of simulation are the subject of lengthy discussions in the field of robotics. We
will explain some of these criticisms of simulation.

Chapter 2 provides background and basic introduction to evolutionary
computation, i..e., genetic algorithms (GAs), genetic programming (GP), and
interactive evolutionary computation (IEC). These are key techniques of sim-
ulating multi-agent systems described in the following chapters.

In Chapter 3, we describe the Swarm system, which has been developed
by the Santa Fe institute and has been widely used for simulating complex
systems. Swarm is a bottom-up model based simulator which consists of bio-
logical agents (such as bugs) and abiotic agents (such as a wall or an obstacle)
in an artificial world. The motions of the agents are described by simple rules,

xvii

xviii Preface

and the emergence of complex phenomena due to the interaction between the
agents is observed. This chapter focuses mainly on the Java library for the
Windows edition and gives a tutorial on how to use Swarm, aiming to imple-
ment a practical simulation. In later chapters, we will explain the programs
of complex systems simulation implemented in Swarm. All software sources
described in the text are available from our on-line server for educational
purposes.

Chapter 4 describes evolutionary simulation examples by means of GA.
Most of them are provided with supplementary demonstration based upon
our multi-agent simulation. First, we present a simulation of sexual selection.
In this chapter, we present several hypotheses explaining the excessive beauty
of certain animals, together with verification experiments based on GAs. This
experiment is a remarkable demonstration of the power of female preferences
and sexual selection. We also explain an extended version of the prisoner’s
dilemma known as the “iterated prisoner’s dilemma” (IPD), in which the pris-
oner’s dilemma is repeated a number of times with the same participants,
and a final score is obtained as the sum of the scores in all iterations. In this
section, we first give a detailed discussion of the evolution of cooperation in
IPD. Next, we explain the concept of an evolutionarily stable state (ESS),
whereby once a certain strategy becomes dominant in a population, invasion
by another strategy is difficult. Then we describe an experiment based on re-
search conducted by Cohen, where an IPD strategy evolves using a GA. With
these experiments, we have observed that a cooperative relationship emerges
in a certain network structure. Subsequently, we give a brief explanation of
A-life and its philosophy. Finally, we give a detailed description of remarkable
examples, i.e., artificial creatures evolved by Karl Sims.

Marching is a cooperative ant behavior that can be explained by the
pheromone trail mode. Many of the ants return to the shorter path, secreting
additional pheromones; therefore, the ants that follow also take the shorter
path. This model can be applied to the search for the shortest path and is
used to solve the traveling salesman problem (TSP) and routing of networks.
In Chapter 5, we give a detailed description of ant trail simulation and ant
colony optimization (ACO). We also give an advanced topic on the simulation
of cooperative behavior of army ants. Army ants build bridges using their
bodies along the route from a food source to the nest. Such altruistic behavior
helps to optimize the food gathering performance of the ant colony. We present
a multi-agent simulation inspired by army ant behavior in which interesting
cooperation is observed in the form of philanthropic activity. As a real-world
application, we describe an ACO-based approach to solving network routing
problems.

In Chapter 6, we describe flocking behaviors of birds or fish (called “boids”).
Microscopically, the behavior is very simple and can be modeled using cellu-
lar automata; however, macroscopically, the behavior is chaotic and very com-
plex. The models are dominated by interactions between individual birds, and
their collective behavior is the result of rules to keep the optimum distance

Preface xix

between an individual and its neighbors. Recently researchers designed an
effective optimization algorithm using the mechanism behind this collective
behavior. This is called particle swarm optimization (PSO), and numerous
applications of PSO are reported. In this chapter, details of these methods
are provided with several multi-agent simulation examples. Finally, we ex-
plain “Swarm chemistry” by Hiroki Sayama. Swarm chemistry is an artificial
chemistry framework that employs artificial swarm populations as chemical re-
actants. Swarm agents steer their motion according to a set of simple kinetic
rules, similar to those in boids. We give some simulation results of Swarm
chemistry and report on the research results about the application of IEC
(interactive evolutionary computation) to evolving desirable motions.

Simulations based on cellular automata (CA) are applied in various fields.
These simulations are considered to be an effective method for observing crit-
ical behavior in phase transitions. Chapter 7 provides a variety of application
examples of cellular automata, e.g., game of life, segregation model, lattice gas
automata, Turing model, percolation, traffic simulation, and the Sugarscape
model. For instance, we explain the game of life, in which self-organizing ca-
pabilities can be used to configure a universal Turing machine. In the area of
the game of life, research has been done to find effective rules through GA or
GP. The concept of Boolean functions is applied when GP is used. The fitness
value is defined by the percentage of correctly processed sequences. Here, the
rules obtained using GP were very effective. We give a detailed discussion of
this evolutionary learning process. We also discuss the concept of the “edge
of chaos” from the behavior of CA proposed by Kauffman and Packard. This
concept represents “Class IV” patterns where periodic, aperiodic, and chaotic
patterns are repeated. The working hypothesis in artificial life is “life on the
edge of chaos.” The CA model has been extensively studied for the purpose
of simulating emergent properties resulting from multi-agent modeling. We
provide a wide range of experimental results based on Swarm in this chapter.

Chapter 8 provides conclusions obtained from the simulation results based
on Swarm. We describe a “constructive approach” to “create and understand”
complex systems and categorize various multi-agent simulation tests imple-
mented in this book. The significance of bottom-up simulation is analyzed in
the summary of the book.

We hope that the multi-agent simulations discussed in this book will con-
tribute to the understanding of complex systems and artificial life.

Hitoshi Iba
Tokyo, Japan

Acknowledgments

To all those wonderful people, the author owes a deep sense of gratitude
especially now that this book project has been completed. Especially, the
author appreciates the pleasant research atmosphere created by colleagues and
students from the research laboratory associated with the Graduate School of

www.allitebooks.com

http://www.allitebooks.org

xx Preface

Frontier Sciences and Information Science and Technology at the University
of Tokyo.

The author is grateful to his previous group at the Electro-Technical Lab-
oratory (ETL), where he worked for ten years, and to his current colleagues
at the Graduate School of Engineering of the University of Tokyo. Particular
thanks are due to Dr. Hirochika Inoue and Dr. Taisuke Sato for providing pre-
cious comments and advice on numerous occasions. He also wishes to thank Dr.
Benedikt Stefansson. The tutorial in Chapter 3 is based on his material from
the Swarmfest of 1999. His original version was implemented in Objective-C.
We re-implemented this system in Java and modified his materials in accor-
dance with our purpose. However, the author takes full responsibility for any
errors in the text and source code.

The author gratefully acknowledges permission from MIT Press to use
Figures 4.4, 4.5, 4.6, 4.7, and 4.15, from Prof. Salvacion P. Angtuaco to use
Figure 5.12, from Springer-Verlag GmbH to use Figures 5.2 and 5.3, and from
Oxford University Press to use Figures 7.1, 7.2, and 7.3.

And last, but not least, he would like to thank his wife Yumiko and his sons
and daughter, Kohki, Hirono, and Hiroto, for their patience and assistance.

Chapter 1

Introduction

Suppose that you have to get on an airplane, and that you can
choose one of two pilots.

Pilot A: “Although I have 100 hours of flight experience, it
is all based on computer simulations. I do not have any
real-world experience.”

Pilot B: “I have piloted two round trips to the West coast,
which means that I have 30 hours of experience.”

Which airplane would you get on?

1.1 What is simulation?

A simulation is a modeled experiment. There are other similar-sounding
words, such as

Emulation Achievement of an equivalent or better level—for example, the
term is used in reference to computer emulators.

Assimilation Incorporation of two or more objects to produce a single entity,
or the absorption of objects by other objects—for example, the process
of assimilation of carbon dioxide.

“Simulation” is becoming an everyday word. Computer simulations are
widely used as conventional procedures for verifying the efficiency of models
and processes. This increase in popularity of simulations is attributed to the
following advantages.

1. Low cost: simulations are considerably cheaper to implement compared
with the cost of setting up an actual experimental facility.

2. Speed: simulated experiments are completed substantially faster than
experiments using real-world phenomena.

3. Reproducibility: while real-world verification is difficult to conduct re-
peatedly, a computer-based experiment can easily be reset and restarted.

1

2 Agent-Based Modeling and Simulation with Swarm

Mathematical models

Phenomena

Complex systems

Top-down approach

Bottom-up approach

FIGURE 1.1: Bottom-up and top-down approaches.

There are two approaches to the simulation of any phenomenon (Fig. 1.1).

Top-down approach The phenomenon is expressed as a numerical model
and simulated by using differential equations or queuing. Such calcula-
tions are based mainly on numerical analysis.

Bottom-up approach The phenomenon is expressed as a complex system
and simulated through local interaction between elements of the system.

The top-down approach is the conventional simulation procedure where
the system under consideration is modeled with equations and the process at
each time step is obtained by solving models. However, there is a limit to this
process when complex systems are concerned, due to the increasing difficulty in
modeling such systems. In reality, the dynamics of the system usually cannot
be captured using differential equations. Furthermore, the model equations
cannot always be solved analytically and must be solved numerically instead,
in which case the effects of numerical errors and noise cannot be neglected.

Therefore, this book discusses bottom-up simulation of complex systems,
which is a fundamental paradigm shift in science and engineering. The bottom-
up approach for the simulation of complex systems can be applied to a large
number of phenomena found, for instance, in science, engineering, the natural
world, biological systems, and society. The aim is to model phenomena such
as the following:

• Self-organization

• Artificial intelligence

• Evolution

The fundamental principles of a complex system can be summarized as follows:

Introduction 3

• The system consists of multiple elements (referred to as agents), forming
a multi-agent system.

• The behavior of individual agents is determined by simple rules.

• The rules pertaining to an individual agent describe its behavior in re-
sponse to local events in its environment, such as encounters with other
agents.

• There are no rules that determine the behavior of the system as a whole.

As a result, complex systems display higher-order behavior in comparison to
individual-agent systems. Such behaviors are referred to as “emergent proper-
ties.” A familiar example is the stock market, where individual agents (share-
holders) trade shares in accordance with their own rules (heuristics). These
rules, such as “buy if the price is expected to increase, sell if the price is
expected to decrease,” are generated from local information (news, rumors,
personal opinions, or memes [59, ch. 2]). Although the stock market is built
upon these simple rules, when considered as a whole, the market exhibits
emergent fluctuations, for instance, “nervous price trends” or “wait-and-see
behavior,” leaving the impression that the stock market possesses a will of its
own. Emergent properties are explained in Section 4.4.1.

1.2 Simulation of intelligence

There are several intriguing topics of discussion regarding simulation. The
most well-known of these is in the field of artificial intelligence (AI).

AI refers to the implementation of intelligence on a computer and is divided
into two hypotheses.

Strong AI The viewpoint that true intelligence can be implemented on a
computer.

Weak AI The viewpoint that computers can merely give the impression of
intelligence.

In the same manner, artificial life (AL), which is mentioned later, can be
defined in terms of strong AL and weak AL.

Here, we consider simulation in the sense of “strong AI.” More precisely, the
rationale behind this approach is that “the appropriately programmed com-
puter really is a mind, in the sense that computers given the right programs
can be literally said to understand and have other cognitive states.”

However, realizing such a computer is nontrivial, since the definition of
“intelligence” is difficult in the first place. Therefore, if a claim is made that

4 Agent-Based Modeling and Simulation with Swarm

????

FIGURE 1.2: Turing test.

AI (in the strong sense) has been created, what would be the most appropriate
way to evaluate it?

To this end, Alan Turing proposed a test of a machine’s capacity to exhibit
intelligent behavior, now called the “Turing test,” which, despite being pow-
erful, is the subject of numerous disputes (Fig. 1.2). The question of whether
machines can think was considered in great depth by Turing, and his final
opinion was affirmative. The Turing test can be translated into modern terms
in the form of a game involving the exchanging of messages via a discussion
board:

• One day, two new users, A and B, join the discussion board.

• When a message is sent to A and B, they both return apt responses.

• Of A and B, one is human and the other is a computer.

• However, it is impossible to determine which is which, regardless of the
questions asked.

If a program passes this test (in other words, the computer cannot be
identified), the program can be said to simulate intelligence (as long as the
questions are valid). A similar contest, named the “Loebner prize” after its
patron, the American philanthropist Hugh Loebner, is already held on the
Internet.1 Although an award of US $100,000 and a solid gold medal has been
offered since 1990, so far not a single machine participating in the contest has
satisfied the criteria for winning.

Nevertheless, a number of problems with the Turing test have been pointed
out, and various critical remarks have been issued about potential implemen-
tation of AI. A notable example is the challenge to the very “definition of

1http://www.loebner.net/Prizef/loebner-prize.html

http://www.loebner.net/Prizef/loebner-prize.html

Introduction 5

…

Chinese-English Dictionary

No understanding
of Chinese

Understanding
Chinese?

FIGURE 1.3: A Chinese room.

intelligence” by John Searle, who upturned the foundations of the Turing test
by creating a counter thought experiment. Known as the “Chinese room,”
Searle’s thought experiment can be summarized as follows.

A person is confined to a room with a large amount of written material on
the Chinese language (Fig. 1.3). Looking inside the room is impossible, and
there are only input and output boxes for submitting sentences and obtaining
responses. Having no understanding of Chinese, the person cannot distinguish
between different Chinese characters (for this purpose, we assume that the
person is British and not Japanese). Furthermore, the person is equipped with
a comprehensive manual (written in English) containing rules for connecting
sets of Chinese characters. Let us consider that a person who understands
Chinese is leading a conversation by inserting questions written in Chinese
into the input box and retrieving answers from the output box. Searle provides
the following argument.

Suppose that soon the person becomes truly proficient at manipulating
Chinese characters in accordance with the instructions, and that the person
outside the room also becomes proficient at providing instructions. Then, the
answers prepared by the person inside the room would become indistinguish-
able from answers provided by a Chinese person. Nobody would consider,
simply by looking at the provided answers, that the person inside the room
does not understand Chinese. However, in contrast to English, in the case of
Chinese, the person in the room prepares the answers by formally manipulat-
ing characters, without any understanding whatsoever.

It cannot be said that true understanding is achieved simply by looking
at the typeface while performing manipulations in accordance with a formal
set of rules. However, as demonstrated by the “Chinese room” thought ex-

6 Agent-Based Modeling and Simulation with Swarm

periment, under specific conditions, human-like behavior can be fabricated by
both humans and machines if appropriate formal rules are provided. Searle
therefore argues that strong AI is impossible to realize.

Various counterarguments have been considered in response to Searle, and
questions that would probably occur to most people include

• Can conversion rules be written for all possible inputs?

• Can such an immense database actually be searched?

However, these counterarguments are devoid of meaning. The former rejects
the realization of AI in the first place, and the latter cannot be refuted in
light of the possibility that ultra-high-speed parallel computing or quantum
computing may exist in the future. Thus, neither one can serve as the basis
of an argument.

One powerful counterargument is based on system theory. Although the
person in the room certainly lacks understanding, he constitutes no more than
a single part of a larger system incorporating other elements, such as the paper
and the database, and this system as a whole does possess understanding. This
point is integral to the complex systems regarded in this book. The level at
which intelligence is sought depends on the observed phenomenon, and if the
phenomenon is considered as being an emergent property, the validity of the
above system theory can be recognized. Moreover, a debate is ongoing about
whether intelligence should be thought of as an integrated concept or as a
phenomenon that is co-evolving as a result of evolution.

1.3 Criticism of simulation

It should be kept in mind that a simulation is not an omnipotent tool,
which is reflected in the pilots example (see the quote at the beginning of this
chapter). The limitations of simulation are the subject of lengthy discussions
in the field of robotics.

The ultimate goal in robotics is setting actual machines in motion. How-
ever, the process of enabling robots to move is costly, and its implementa-
tion is not straightforward. Thus, simulation is actively used for experimental
purposes, and an increasing number of studies employ only simulation for
conducting experiments, without any verification using actual machines. In
conducting research on humanoid robots at our laboratory, an elaborate sim-
ulator is always prepared as a preliminary experiment (see Figs. 1.4 and 1.5),
and movements realized in the simulator are often impossible to perform with
an actual robot. The primary reasons for performing these simulations in-
clude locating unforeseen sensor errors, monitoring fatigue due to prolonged

Introduction 7

FIGURE 1.4: Simulation of humanoid robot motions.

FIGURE 1.5: Real-world motions of a humanoid robot.

use, and studying differences in the friction with the floor. However, the ques-
tion is whether it would ever be possible to simulate all these circumstances
a priori.

In 1991, Rodney Brooks, an eminent scholar in the AI field who proposed
concepts such as “intelligence without representation” and “subsumption ar-
chitecture,” presented a highly intriguing argument at the International Joint
Conference on Artificial Intelligence (IJCA91). He stipulated that to faithfully
recreate the real world in a simulation is impossible, and on the basis of this
he emphasized the importance of the following in AI research.

Physical grounding This hypothesis states that intelligence should be
grounded in the interaction between a physical agent and its environ-
ments.

Embodiment General intelligence cannot be produced in a vacuum. Com-

8 Agent-Based Modeling and Simulation with Swarm

puters with human intelligence should have a solid sensor-motor base
upon which higher cognitive functioning can be built (or evolved).

This statement also serves as a warning regarding both simulation techniques
and AI arguments that are likely to become purely theoretical abstractions.
With this in mind, simulation experiments must be performed with extreme
care.

1.4 Swarm and the Santa Fe Institute

We now present a description of Swarm, which is a multi-agent simulation
library developed at the Santa Fe Institute, which is renowned for its research
on complex systems. Since Swarm supports Java and Objective-C, it can be
easily utilized in object-oriented modeling of phenomena. More specifically,
Swarm allows for straightforward implementation of the following functions,
each of which is extremely useful in complex systems research.

• Interactive access to fields and methods of objects in the simulation

• Graphical representation of different aspects of the simulation (such as
the distribution of agents on a two-dimensional surface and various sta-
tistical markers, which can be represented through linear graphs and
histograms)

• Assignment of an independent clock (scheduler) to each layer of the
simulation

The Santa Fe Institute, which acts as the headquarters for complex systems
research, is introduced below. Santa Fe is the capital of the U.S. state of New
Mexico, and is located at the center of the state. New Mexico contains a num-
ber of settlements known as pueblos that are, even now, populated by Native
Americans. Santa Fe is a city that is becoming increasingly popular as a travel
destination for American tourists, mainly owing to the preserved landscapes
and buildings reminiscent of old times. The famous Mesa Verde National Park
is also located nearby, where the escarpments reveal a large number of ruins
left behind by a mysterious people, the Anasazi Indians (Fig. 1.6). This tribe
thrived as a highly developed civilization about 1400 years ago, and then 700
years later vanished suddenly. This process of thriving and demise is a research
topic in Swarm simulations.

The Santa Fe Institute was originally constructed in the ruins of an abbey
as part of the Los Alamos National Laboratory. A number of prominent schol-
ars worked at this institute, including Kenneth Arrow (winner of the No-
bel Prize in Economics), Murray Gell-Mann (winner of the Nobel Prize in

Introduction 9

FIGURE 1.6: Mesa Verde National Park.

Physics for his work on quarks), Robert Axelrod (prisoner’s dilemma; see Sec-
tion 4.3.2), John Holland (the creator of genetic algorithms), and Christopher
Langton (who proposed the concept of artificial life).

The “general impossibility theorem” proposed by Arrow is outlined here,
since this theorem is related to the concept of complex systems. In this theo-
rem, three bored students (A, B, and C) are discussing which of the following
three entertainment options they should choose.

• Movie

• Television

• Karaoke

Let us assume that the order of preference for each person is as follows:

Preference order for A Movie>television>karaoke
.

Preference order for B Television>karaoke>movie
.

Preference order for C Karaoke>movie>television
.

They decide to determine their choice democratically and adopt a majority
vote. First, in deciding between a movie and TV, the following distribution
determines that a movie is preferable.

A movie is preferable to television: A and C.

Television is preferable to a movie: B.

www.allitebooks.com

http://www.allitebooks.org

10 Agent-Based Modeling and Simulation with Swarm

∴ Movie (two votes) > television (one vote).

Next, in deciding between television and karaoke, the distribution yields tele-
vision as the winning choice:

Television is preferable to karaoke: A and B.

Karaoke is preferable to television: C.

∴ Television (two votes) > karaoke (one vote).

From the above results, the order of preference is as follows:

Movie > television > karaoke.

Accordingly, the final decision is to watch a movie. However, looking at the
preferences for a movie and karaoke, the distribution leaves karaoke as the
winning choice:

A movie is preferable to karaoke: A.

Karaoke is preferable to a movie: B and C.

∴ Karaoke (two votes) > movie (one vote).

In other words, the two results contradict each other.
Arrow generalized this result and demonstrated that serious contradictions

arise even in cases with a larger number of people. For example, by considering
the relation between the preferences of 100 people, the following result can be
obtained by skillfully manipulating the order of preference in a majority vote.

• From a number of majority votes, the overall conclusion is that “x is
preferable to y.”

• However, only one person prefers x over y.

• The remaining 99 people prefer y over x.

Arrow’s general impossibility theorem proved that a “democratic decision”
that satisfies the following four criteria does not exist.

1. All preference orders are allowed.

2. Citizen sovereignty is assumed. In other words, x is selected when ev-
eryone agrees that x > y.

3. The preference order between two choices depends only on the individual
preferences, and is not affected by other alternatives.

4. There is no dictator.

The third criterion is called “independence of irrelevant alternatives,” and
is an important assumption. The following is a situation where this assumption
does not hold.

Introduction 11

1. I was ordering lunch at a restaurant.

2. The waitress told me that there was a fish plate and a meat plate, and
I ordered the fish plate.

3. The waitress returned a few minutes later and told me that I could also
choose pasta.

4. I then ordered the meat plate.

Such a situation actually happened: once, in figure skating where judges score,
the existence of a skater who came in fourth place caused the order of the first
and second place skaters to be reversed [97].

A more classic example that questions whether democracy is fair is Con-
dorcet’s paradox. Condorcet was a mathematician, philosopher, and politician
in 18th century France, and is known for investigating the paradox of voting.
This paradox appears when voting for three candidates, X, Y, and Z. The
result of voting by 60 people was as follows.

• 23 votes for X

• 19 votes for Y

• 18 votes for Z

The question is, should we choose X?
Condorcet clarified that the following paradox exists.
If:

• Z > Y in all 23 people who voted for X

• Z > X in all 19 people who voted for Y

• Y > X in two people, and X > Y in 16 people in a total of 18 people
who voted for Z

Then:

• X to Y is 25 to 35, and X to Z is 23 to 37 → X: 0 wins, 2 losses

• Y to X is 35 to 25, and Y to Z is 19 to 41 → Y: 1 win, 1 loss

• Z to X is 37 to 23, and Z to Y is 41 to 19 → Z: 2 wins, 0 losses

Therefore, Z > Y > X, which is the opposite of the vote.
On the other hand, if

• Y > Z in all 23 people who voted for X

• Z > X in 17 people, and X > Z in two people in a total of 19 people
who voted for Z

12 Agent-Based Modeling and Simulation with Swarm

• Y > X in 10 people, and X > Y in eight people in a total of 18 people
who voted for Z

Then:

• X to Y is 33 to 27, and X to Z is 25 to 35 → X: 1 win, 1 loss

• Y to X is 27 to 33, and Y to Z is 42 to 18 → Y: 1 win, 1 loss

• Z to X is 35 to 25, and Z to Y is 18 to 42 → Z: 1 win, 1 loss

Therefore, X, Y, and Z become even.
In this way, Arrow proved that the majority vote, which is the funda-

mental principle in democracy, can be manipulated in an arbitrary manner.
For this achievement Arrow received the 4th Nobel Prize in Economics in
1972. The above phenomenon, which appears to undermine the foundations
of democracy, can be viewed as the emergence of irrationality in a society con-
sisting of multiple agents. Specifically, although the actions of each individual
are rational, this might not necessarily maximize the benefit for society as a
whole.

While residing in the United States in 1997, the author had the opportunity
to visit the Santa Fe Institute, which left the impression of an extremely
open and intellectual environment. During the visit, the author was convinced
that innovative research was literally “emerging” from the institute. A notable
example of this was the research of Brian Arthur, who proposed the concept
of “increased returns,” which revolutionized the fundamentals of economics.

Brian Arthur considered economics as a complex system driven by interac-
tion between multiple agents. In conventional economics, common knowledge
has dictated that an overall equilibrium exists between supply and demand
guided by “the invisible hand,” the result of which is that the economy is sta-
ble. However, recent trends in financing and stock prices have demonstrated
that this assumption is invalid. There are cases where no equilibrium points
exist, and the economy as a whole can start to shift in a certain direction as a
result of changes in an associated factor. Nothing is capable of stopping this
shift once it commences (this process is known as “the bandwagon effect” [59,
ch. 2]). A well-known example was competition between videotape standards
(Video Home System (VHS) versus Betamax). Although the Betamax format
was superior in terms of functionality, VHS eventually prevailed. Thus, if one
of two products is considered superior in the spur of the moment, the revenue
can start to snowball, even if the actual superiority of the chosen product is
unclear.

Hence, a number of complex and unpredictable emergent properties exist
in a society constituting an assembly of agents. The mechanisms by which the
various phenomena emerge in such complex systems are explained in this book.
The next chapter presents an exposition of evolutionary methods, important
fundamental techniques (simulation tools) that are used for these explanatory
purposes.

Chapter 2

Evolutionary Methods and Evolutionary

Computation

Science is – and how else can I say it – most fun when it plays
with interesting ideas, examines their implications, and recog-
nizes that old information might be explained in surprisingly
new ways. Evolutionary theory is now enjoying this uncom-
mon vigor (Stephen Jay Gould [44]).

2.1 What is evolutionary computation?

EAs (evolutionary algorithms) and EC (evolutionary computation) are
methods that apply the mechanism of biological evolution to problems in
computer science or in engineering. EAs consider the adaptation process of
organisms to their environments as a learning process. Organisms evolve over a
long period of time by repeating the evolution process whereby species that do
not adapt to the environment become extinct and species that adapt thrive.
This can be applied to practical problems by replacing “environment” with
“problem” or “information that was learned” and “fitness” with “goodness of
the solution.”

The most important operators in EAs are selection and genetic operations.
Evolution of individuals does not happen if individuals that adapt better to
their environments are surviving but nothing else is happening. Mutation and
crossover by sexual reproduction result in the generation of a diverse range of
individuals, which in turn promotes evolution. Selection is a procedure where
good individuals are selected from a population. Species that adapt better to
the environment are more likely to survive in nature. The selection procedure
artificially carries out this process.

The typical examples of EAs are genetic algorithms (GAs) and genetic
programming (GP). They are the basic mechanisms for simulating complex
systems. The next sections describe these methods in detail with practical
applications.

13

14 Agent-Based Modeling and Simulation with Swarm

2.2 What are genetic algorithms?

GAs have the following characteristics:

• Candidate solutions are represented by sequences of characters

• Mutation and crossover are used to generate solutions of the next gen-
eration

Elements that constitute GAs include data representation (genotype or
phenotype), selection, crossover, mutation, and alternation of generation. The
performance of a search is significantly influenced by how these elements are
implemented, as discussed below.

2.2.1 Data representation

The data structure in GAs is either genotype (GTYPE) or phenotype
(PTYPE). The GTYPE structure corresponds to chromosomes of organisms
(see Fig. 2.1), and is a sequence representing a candidate solution (for example,
a bit sequence having a fixed length). This structure is subject to genetic
operations such as crossover and mutation. The implementer can design how to
convert candidate solutions into sequences. For instance, a GTYPE structure
can be obtained by conversion of a candidate solution into a sequence of
integers that is then concatenated. On the other hand, PTYPE structures
correspond to organisms, and are candidate solutions obtained by interpreting
GTYPE structures. The fitness values of candidate solutions are calculated
for PTYPE structures.

2.2.2 Selection

The GA is based on the concept of Darwinian evolution, where individuals
who adapt better to their environments leave more offspring, while less fit
individuals are eliminated. Individuals who adapt to their environments are
candidate solutions that are better solutions to a problem, and the measure
is the fitness of PTYPE structures.

The following selection methods have been proposed. In particular, the
tournament selection is frequently used because scaling is not necessary. In all
methods, individuals who have higher fitness are more likely to be selected.

• Roulette selection
Roulette selection selects individuals with a probability in proportion to
their fitness. This is the most general method in EAs; however, proce-
dures such as scaling are necessary to perform searches efficiently.

Evolutionary Methods and Evolutionary Computation 15

FIGURE 2.1: GTYPE and PTYPE.

16 Agent-Based Modeling and Simulation with Swarm

• Tournament selection
Tournament selection is widely used in EAs. The selection rate in
roulette selection is determined by the absolute value of fitness. How-
ever, the selection pressure may become too high or too low with roulette
selection in problems where the hierarchy of fitness is important but the
absolute value is not. Tournament selection uses only the hierarchy of
fitness; therefore the above problem does not occur. The computational
cost of tournament selection is high because many individuals are se-
lected and fitness values are compared for the number of tournaments.

• Truncate selection
Individuals are sorted based on fitness and the top Ps ×M individuals
(Ps is the selection rate) are selected in truncate selection. The selection
pressure is very high; therefore this method is not used in standard GP,
but is often used in the estimation of distribution algorithm (EDA),
which is an expansion of the GA. The computation cost of this method
besides the cost for sorting is very low.

Selection significantly influences the diversity of the population and the
speed of convergence; therefore the choice of the selection algorithm and its
parameters is very important. For instance, good solutions are often observed
with a small number of fitness evaluations by using tournament selection be-
cause the selection pressure is very high with a large tournament size. However,
the calculations are more likely to quickly converge to and be trapped in an
inappropriate local solution.

A different strategy is elitist selection (good individuals are always included
in the next generation). The fitness of the best individual never decreases in
this strategy with increasing number of generations if the environment against
which fitness is measured does not change. However, using elitist selection too
early in a search may result in a local solution, or premature convergence.

2.2.3 Genetic operations

When reproduction occurs, the operators shown in Fig. 2.2 are applied to
the selected GTYPE to generate a new GTYPE for the subsequent generation.
These operators are called GA operators. To keep the explanation simple,
we express the GTYPE as a one-dimensional array here. Each operator is
analogous to the recombination or mutation of a gene in a biological organism.
Generally, the frequency with which these operators are applied, as well as the
sites at which they are applied, are determined randomly.

Crossover is an analogy of sexual reproduction where new offspring are gen-
erated by combining two parent individuals. There are a number of crossover
methods based on the level of granularity in separating each individual, for
example, the one-point crossover and the uniform crossover.

The crossover shown in Fig. 2.2 has one crossover point, so it is called a

Evolutionary Methods and Evolutionary Computation 17

FIGURE 2.2: GA operators.

one-point crossover. Following are some methods for performing the crossover
operation.

1. One-point crossover

2. Multi-point crossover (n-point crossover)

3. Uniform crossover

We have already explained the one-point crossover operation (Fig. 2.3(a)).
The n-point crossover operation has n crossover points, so if n = 1, this is
equivalent to the one-point crossover operation. With this crossover method,
genes are carried over from one parent alternately between crossover points.
A case in which n = 3 is shown in Fig. 2.3(b). Two-point crossovers, in which
n = 2, are often used. Uniform crossovers are a crossover method in which
any desired number of crossover points can be identified, so these are realized
using a mask for a bit string consisting of 0, 1. First, let’s randomly generate
a character string of 0s and 1s for this mask. The crossover is carried out
as follows. Suppose the two selected parents are designated as Parent A and
Parent B, and the offspring to be created are designated as Child A and Child
B. At this point, the genes for offspring Child A are carried over from Parent
A when the corresponding mask is 1, and are carried over from Parent B
when the mask is 0. Conversely, the genes for offspring Child B are carried
over from Parent A when the corresponding mask is 0, and are carried over
from Parent B when the mask is 1 (Fig. 2.3(c)).

Mutation in organisms is considered to happen by mutation of nucleotide
bases in genes. The GA mimics mutation in organisms by changing the value of
a gene location (for example, changing 0 to 1 or 1 to 0). Mutation corresponds

18 Agent-Based Modeling and Simulation with Swarm

(a)

(b)

(c)

FIGURE 2.3: GA crossovers: (a) one-point crossover, (b) n-point crossover,
and (c) uniform crossover.

Evolutionary Methods and Evolutionary Computation 19

to errors during copying of genes in nature, and is implemented in GAs by
changing a character in an individual after crossover (inversion of 0 and 1 in a
bit sequence, for instance). Using crossover generally only results in a search
of combinations of the existing solutions; therefore using mutation to destroy
part of the original gene is expected to increase the diversity of the population
and hence to widen the scope of the search. The reciprocal of the length of
GTYPE structures is often used as the mutation rate, meaning that one bit per
GTYPE structure mutates on average. Increasing the mutation rate results
in an increase of diversity, but with the tradeoff of a higher probability of
destroying good partial solutions.

2.2.4 Flow of the algorithm

The flow of a GA is as follows:

1. Randomly generate sequences (GTYPE) of the initial population.

2. Convert GTYPE into PTYPE and calculate fitness for all individuals.

3. Select parents according to the selection strategy.

4. Generate individuals in the next generation (offspring) using genetic
operators.

5. Check against convergence criteria and go back to 2 if not converged.

Replacing parent individuals with offspring generated through operations
such as selection, crossover, and mutation to obtain the population of the
next generation is called the alternation of generation. Iterations finish when
an individual with an acceptable fitness is found or a predetermined number
of generations have been generated. It is also possible to continue the calcula-
tions for as long as possible if resources are available, and to terminate when
sufficient convergence is achieved or further improvement of fitness appears
difficult.

2.2.5 Initialization

All individuals in the first generation are randomly generated individuals
in EAs. EAs use genetic operators and therefore have less dependence on the
initial state compared to the hill-climbing method, but an extremely biased
initial population will decrease the performance of searches. Hence, the initial
individuals must be generated to distribute in the search space as uniformly
as possible. Figure 2.4 shows an example of a good initialization and a bad
initialization. If the triangle △ in Fig. 2.4 is the optimal solution, the optimal
solution is expected to be found in a relatively short time from the initial
state in Fig. 2.4(a) because the initial individuals are relatively randomly dis-
tributed over the search space. On the other hand, the initial distribution in

www.allitebooks.com

http://www.allitebooks.org

20 Agent-Based Modeling and Simulation with Swarm

(a) Random initialization (b) Nonuniform initialization

FIGURE 2.4: Examples of good and bad initialization. The triangles △
indicate the optimal solution.

Fig. 2.4(b) has fewer individuals near the optimal solution and more individ-
uals near the local optimal solution; therefore it is more likely that the search
will be trapped at the local optimal solution and it will be difficult to reach
the optimal solution.

The initial individuals in GAs are determined by randomly assigning 0 or 1
in each gene location, and as the lengths of genes in GAs are fixed, this simple
procedure can result in a relatively uniform distribution of initial individuals
over the solution space.

2.2.6 Extension of the GA

Many researchers proposed many extensions after John Holland proposed
the GA [52], which was the first EA.

The above description considered GTYPE as a sequence with a fixed
length; however, modified GAs have been proposed that do not have this
restriction. Examples are the real-valued GA that uses GTYPEs of vectors
of real numbers and the Messy GA that accommodates sequences of various
lengths by pairing the position of a gene and a value. Genetic programming
using a tree structure, which is discussed in the next chapter, is another ex-
ample of a variable length GA. Fitness evaluation methods have also been
extended into interactive evolutionary computing (the user determines the
fitness and simulates breeding, which allows the GA to be applied in areas
where an objective function cannot be explicitly given, such as in designing
or the arts; see Section 2.4) and multi-objective optimization (simultaneous
optimization of multiple objective functions), and these extensions are known
to be very effective in fields like design and the arts.

Evolutionary Methods and Evolutionary Computation 21

FIGURE 2.5: TSP simulator.

2.2.7 Traveling salesman problem (TSP)

In TSP (traveling salesman problem), there are a number of cities located
in different places on a map, and the aim is to look at all of the paths that
go through every city exactly once and return to the starting point (called a
Hamiltonian cycle or path) and determine the shortest route.

There is no efficient algorithm that will solve the traveling salesman prob-
lem; in all cases, an exhaustive investigation is required in order to find the
optimum solution. Consequently, as the number (N) of cities grows, we see a
dramatic leap in the complexity of the problem. This is called a “combinato-
rial explosion,” and is an important issue (an NP-complete problem) in the
field of computer science. The traveling salesman problem is applied in areas
such as commodity distribution cost and large scale integration (LSI) pattern
technology.

To better understand this problem, let us try using the TSP simulator
(Fig. 2.5). Detailed information about this simulator can be found in Ap-
pendix A.3.

When using a GA to solve the TSP, the fitness value will be the inverse of
the path length, and is defined as follows:

Fitness(PTYPE) =
1

Length(PTYPE)
, (2.1)

22 Agent-Based Modeling and Simulation with Swarm

where Length(PTYPE) is the length of the PTYPE path. As a result, this
will be a positive number, and the larger the number, the better.

Now consider how we can solve the traveling salesman problem using a GA.
To do this, we will design a GTYPE/PTYPE for this particular problem. If
the path is defined as the GTYPE just as it is, we will end up producing points
other than the path as a result of crossovers. For example, suppose that we
have a route that includes five cities, a, b, c, d, and e. We will assign numbers
to these, calling them 1, 2, 3, 4, and 5. Let’s pick out the following two paths
and examine them.

Name GTYPE PTYPE
P1 13542 a→ c→ e→ d→ b→ a
P2 12354 a→ b→ c→ e→ d→ a

Suppose that a crossover occurs between the second and the third cities.
This will produce the following:

Name GTYPE PTYPE
C1 12542 a→ b→ e→ d→ b→ a
C2 13354 a→ c→ c→ e→ d→ a

This does not solve the traveling salesman problem, i.e., these GTYPEs
are not even feasible candidates, because C1 and C2 both visit the same city
(2 = b and 3 = c) more than once. This type of GTYPEs (genetic codes) is
called “lethal genes.” We need to suppress the occurrence of these lethal genes
to do an effective search.

The following shows one way to design a GTYPE for a traveling salesman
problem. First, we assign a sequence 1,2,3,4,5 to the cities to be visited, which
are a, b, c, d, and e. This is a relative sequence in the following sense. Here,
the GTYPE of the path called acedb (PTYPE) is configured as follows. City
“a” is the first city in the above sequence, so we write this as “1.” Then we
delete “a” from this sequence, leaving bcde in the sequence of 1234. In this
new sequence, “c” is the second city after “a,” so we write “2.” We continue in
the same way until the GTYPE for acedb is found to be 12321.

City Sequence Genetic code
a abcde → 12345 1
c bcde → 1234 2
e bde → 123 3
d bd → 12 2
b b → 1 1

Using the same method, the GTYPE for the path abced will be 11121.
Reversing the procedure makes it easy to determine the path from one city
to another (PTYPE) from the GTYPE expression. What is important about
this GTYPE expression is that the GTYPE obtained as a result of normal

Evolutionary Methods and Evolutionary Computation 23

FIGURE 2.6: TSP crossover example.

crossovers indicates the path from one city to the next (Hamiltonian path),
i.e., it never becomes a lethal gene. For example, let’s consider the crossover
we saw earlier (Fig. 2.6).

Name GTYPE PTYPE
P1 12321 a→ c→ e→ d→ b→ a
P2 11121 a→ b→ c→ e→ d→ a
C1 12121 a→ c→ b→ e→ d→ a
C2 11321 a→ b→ e→ d→ c→ a

Thus, the GTYPE resulting from the crossover now expresses the path from
one city to the next as well. This GTYPE expression is called an “ordinal
representation.”

Mutations and crossovers are used as GA operators for an ordinal rep-
resentation. These are basically the same as the operators explained in Sec-
tion 2.2.3. However, since the GTYPE is expressed as an ordinary character
string, rather than a binary expression (a string comprising 0s and 1s), we
need to select the gene that will mutate from an appropriate character set.

24 Agent-Based Modeling and Simulation with Swarm

FIGURE 2.7: Results of TSP simulation.

For example, let’s consider the GTYPE of the above P1 (12321). Generally,
with ordinal representations, allowed characters for the i-th gene, when the
number of cities is N , will be 1, 2, 3, · · ·N − i+1. As a result, if the first gene
(1) mutates in the above GTYPE, possible characters following the mutation
will be 2, 3, 4, and 5. With the second gene (2), they will be 1, 3, and 4.

Figure 2.7 shows the experimental result of a TSP simulator for 10 cities.
This TSP simulator can dynamically change the position of cities while search-
ing by the GA. You will observe that the performance decreases temporar-
ily, but the desired solution evolves quickly. This is a characteristic of GAs
with population diversity. A population-based search around the current so-
lution allows a somewhat flexible reaction to dynamic changes in environment
(change of position of cities). Here, there is no need to search for a new so-
lution from scratch, but improvement of performance from other individuals
can be expected. This shows robustness to changes in the environment. See
Appendix A.3 for more details.

Evolutionary Methods and Evolutionary Computation 25

2.3 What is genetic programming?

Genetic programming (GP, [76]) is one of the most significant extensions
for EAs. The key difference between GP and GAs is the description of in-
dividuals: the standard GA uses a fixed-length one-dimensional array for an
individual, whereas GP uses tree structures. The use of tree structures allows
the handling of structural descriptions such as functions and programs that
were difficult to handle in GAs. Therefore, GP can be applied to a wide range
of applications, and its effectiveness has been confirmed in fields including
robotics, circuit design, the arts, and financial engineering. GP has rediscov-
ered inventions that have been accepted as patents, and some results of GP
are even superior to technology directly invented by humans [57].

2.3.1 Description of individuals in GP

GP is an expansion of the GA, and one of the main differences is that GP
uses tree structures to describe individuals. Each bit has a meaning based on
its position in a one-dimensional array with a fixed length that is a description
of an individual, which is typically the case in GAs. Therefore partial struc-
tures, for instance 01000, do not have any meaning by themselves. Therefore,
GAs are applied mainly to problems that search parameters, but there are
many limitations in searching structural descriptions such as functions and
programs using one-dimensional arrays with a fixed length. GP is an exten-
sion designed to search for structural descriptions by using tree structures
to describe individuals. GP uses tree structures; therefore partial structures
such as sinx + z have a meaning by themselves. Use of tree structures in
GP originates from the use of tree structures as programs (S-expressions) in
functional programming, for instance in Lisp. GP can represent S-expressions
in Lisp, and therefore GP has strong expressive power because of the ability
to represent programs in functional programming languages. GP is known to
be Turing complete by adding reading and writing of memory and recursion.
General graphs, which are more complex than tree structures, may be used
as descriptions, and in fact there is a GP variant that actually uses graphs
to describe individuals [114]. However, tree structures usually have sufficient
expressive power; therefore standard GP often uses tree structures.

Tree structures are a class of acyclic graphs with nodes and edges. Fig-
ure 2.8 is used to explain the components in a tree structure.

• Nodes
Nodes correspond to the trunk of a tree. The nodes in Fig. 2.9 are
{A,B,C,D,E}.

• Root

26 Agent-Based Modeling and Simulation with Swarm

(a) function structure (b) program structure

FIGURE 2.8: Example of a (a) function and (b) program.

FIGURE 2.9: Example of a tree structure.

This is a node without a parent node. There is one root in each tree
structure. The root in Fig. 2.9 is {A}.

• Terminal nodes
These are nodes with zero arguments. The terminal nodes in Fig. 2.9
are T = {B,C,E}.

• Non-terminal nodes
These are function nodes with one or more arguments. The non-terminal
nodes in Fig. 2.9 are F = {A,D}.

• Child node
A child node is an argument of another node. The child nodes of node
A in Fig. 2.9 are B,C, and D.

• Parent node
This is the “parent” of a child node: the parent node of node D in Fig. 2.9
is A.

The use of tree structures as descriptions of individuals in GP originates
from the use of tree structures as programs in functional programming, as
described earlier. Describing programs using one-dimensional arrays, as in
GAs, may result in destruction of programs through crossover or mutation.
Consider two individuals in GP that are described by

Evolutionary Methods and Evolutionary Computation 27

x+ sin y

and

10×
√
x− 1.

These can be expressed as linear arrays through the following conversion.

+ x sin y

and

× 10
√ − x 1.

This representation brings the function up front. For example, x + y is
expressed as + x y.

If the crossover point is chosen between x and sin in the individual above
and between − and x in the individual below, the individuals after crossover
are

+ xx 1

and

× 10
√ − sin y.

However, these two individuals cannot be evaluated because the syntax is
wrong. GP performs genetic operations on partial trees, as discussed later,
and therefore can satisfy the requirement that the syntax must be correct.

The use of tree structures allows representation of functions and programs.
Fig. 2.8 shows an example of a function (a) and a program (b) that GP can
handle. The function in Fig. 2.8(a) represents x×y+sin y. Functions in general
can be represented using a tree structure with appropriate non-terminal nodes
and terminal nodes as in the above example. Fig. 2.8(b) is an example of a
program for a robot that does the following: the robot has a sensor node that
detects obstacles and the robot changes direction if there is an obstacle and
moves forward if there is no obstacle. In conclusion, GP can represent a very
wide range of knowledge by using tree structures.

As you can see from the above description, the algorithm of GP is almost
the same as the GA except that GP uses tree structures as GTYPEs. Thus,
we will explain the difference from GA in later sections.

2.3.2 Flow chart of GP

This section describes the typical flow in GP. The following must be de-
cided before using GP when there is a problem to be solved.

• Fitness function

28 Agent-Based Modeling and Simulation with Swarm

• Nodes to be used

• Design of parameters in the problem

The fitness function evaluates the appropriateness of a solution to the
problem. The design of this fitness function can completely change the ten-
dencies in the solutions that will be obtained. Actual examples of the fitness
function will be given later.

Which nodes to use, which is the second factor, is important because it
determines the size of the solution space. For instance, when the training
data in a function regression problem is generated by sinx + x, the solution
generated by GP will not be a good approximation of the training data if
the non-terminal nodes consist only of +,−,×, and ÷. On the other hand,
using too many nodes would result in the solution space becoming too big.
This means that more calculations are necessary before arriving at a solution.
Therefore, the nodes to be used must be chosen appropriately, not more and
not less.

The third factor is the choice of parameters in GP, and parameters that
determine the performance of searches in GP include population size, mutation
rate, crossover rate, tournament size (in the case of tournament selection),
and maximum tree depth. Searches in a GA are typically carried out with a
small number of individuals (∼ 100), whereas more individuals are used in GP
(generally 1000–10,000 but it depends on the problem). The mutation rate is
the ratio of individuals in the population that mutate and is usually about
0.1–0.2. The crossover rate is a similar parameter, and is typically about 0.8.
GP uses tree structures and therefore the length is not fixed; however, a limit
is usually imposed on the size of the tree structures. The number of nodes
increases exponentially in GP due to the bloat phenomenon. Limiting the
maximum depth and maximum number of nodes can prevent the generation
of excessively large tree structures. Solutions are searched in GP after the
above three factors are determined.

Algorithms in GP include the following steps:

1. Random generation of initial population
M individuals are generated if the number of individuals in the popula-
tion is M . The initial individuals are generated randomly.

2. Fitness evaluation
Fitness scores are determined by the fitness function for all M individ-
uals.

3. Selection
Good solutions are selected through a predetermined selection algo-
rithm.

4. Mutation and crossover
Mutation and crossover operations are performed on selected good so-
lutions.

Evolutionary Methods and Evolutionary Computation 29

(a) FULL (b) GROW

FIGURE 2.10: Initialization of a tree structure using FULL and GROW
methods.

5. The search ends if the criteria to end the search are satisfied; return to
2 if not.

Each step is described in detail below.

2.3.3 Initialization of tree structures

In contrast to GAs, GP using tree structures, and thus a uniform distri-
bution of initial individuals, is difficult to achieve.

Methods to generate initial individuals in GP usually belong to one of two
types, namely “FULL” (full depth) and “GROW” (growing).

• FULL method
The tree structures can have variable length, but a limit is usually im-
posed on the maximum depth of tree structures. The FULL method
randomly selects from non-terminal nodes until the maximum depth is
reached, and then selects from terminal nodes once the maximum depth
is reached (Fig. 2.10(a)). Therefore, terminal nodes only exist at the
maximum depth in the FULL method.

• GROW method
In the FULL method, nodes are selected from non-terminal nodes only
until the maximum depth is reached; however, in the GROW method,
nodes are selected randomly from all nodes until the maximum depth
is reached. Once the maximum depth is reached, nodes are randomly
chosen from terminal nodes as in the FULL method (Fig. 2.10(b)).

Using the GROW method only or the FULL method only results in biased
initial individuals. FULL structures are less likely to be generated when the
GROW method is used, and most of the structures that can be generated

www.allitebooks.com

http://www.allitebooks.org

30 Agent-Based Modeling and Simulation with Swarm

FIGURE 2.11: Initial population obtained with the RAMPED HALF &
HALF method.

with the GROW method are not generated when the FULL method is used.
Uniformity of tree structures can be defined as follows.

• Uniformity of size
Groups where most structures have few nodes and groups where most
structures have many nodes are not considered to have a uniform distri-
bution over the solution space. Groups where tree structures of various
sizes are distributed evenly are more preferable.

• Uniformity of structure
A population where all individuals are complete trees cannot be consid-
ered uniform even though the distribution of size is uniform.

An initialized method called RAMPED HALF & HALF has been proposed,
which is a combination of the GROW and FULL methods.

• RAMPED HALF & HALF method
For a population of M individuals, the population is separated into five
groups of M/5 individuals each with different depths, e.g., 2, 3, 4, 5, and
6. Half of the individuals in each group are generated with the GROW
method, and the other half with the FULL method (Fig. 2.11).

A uniform distribution of initial individuals is important in evolutionary
computation because a satisfactory solution cannot be reached if the initial
individuals are not uniformly distributed, as discussed before. The RAMPED
HALF & HALF method intentionally improves the diversity of the initial
individuals, and using this initialization method has been reported to increase
the performance of searches.

Evolutionary Methods and Evolutionary Computation 31

FIGURE 2.12: An example of the wall following problem. The black squares
in the figure are walls, and the gray squares are tiles adjacent to walls.

2.3.4 Fitness evaluation

Fitness evaluation is a procedure to quantify how an individual in GP
(a tree structure) is adapting to its environment (problem). GP is used to
generate programs that determine the motion of robots, and various fitness
functions are used depending on the problem in this type of program genera-
tion. One famous benchmarking problem in GP is the wall following problem.
In this problem, a program to control a robot is searched such that the robot
moves as adjacently to a wall as possible in a room with walls, shown in
Fig. 2.12. The fitness in this case is

fitnessj = (tiles adjacent to a wall that the robot passed)

−(tiles away from a wall that the robot passed)

GP finds a program where the robot actually moves along a wall with this
fitness evaluation.

The wall following task and its simulator will be described in detail in
Section 2.3.6.

2.3.5 Crossover and mutation

Mutation in GP, which uses tree structures, is a natural expansion of mu-
tation in the GA. The most general method is the mutation of partial trees.
A node is randomly selected in this mutation method. Next, the partial tree
where this node is the root node is replaced with a randomly generated par-
tial tree (Fig. 2.13). The changes from mutation in GAs are relatively small,
whereas the changes in GP are large. For instance, the original tree structure
becomes a completely new structure if the root node of the original tree was
chosen. Therefore, mutation methods with less impact have been proposed,

32 Agent-Based Modeling and Simulation with Swarm

FIGURE 2.13: Genetic operations in GP. The left is a mutation of a partial
tree, and the right is a crossover of partial trees.

Evolutionary Methods and Evolutionary Computation 33

one of which is the mutation of nodes. Here, only the selected node is replaced
with another node.

The crossover operator in GAs and GP significantly differ from other prob-
abilistic optimization mechanisms. The mutation operator searches nearby
structures by slightly changing good solutions. On the other hand, the
crossover operator aims to obtain better solutions by combining good so-
lutions. For instance, in a function identification problem to identify x4, the
partial structure x2 has higher fitness compared to x. In fact, x2 can be a
partial structure of x4. The concept behind GP is that better solutions can be
obtained by repeatedly using crossover to combine good small partial struc-
tures called building blocks that formed, for example, through mutation.

Crossover in GAs is an exchange of partial sequences, and crossover in
GP is an extension where partial trees are exchanged. Here, partial trees are
chosen in two individuals selected through selection, and these selected partial
trees are exchanged. Figure 2.13(right) is an example of crossover in GP. 1+x
and sin z are chosen as partial trees in this example. The crossover points
are selected at random; however, randomly selecting nodes without distin-
guishing terminal and non-terminal nodes results in many exchanges of labels
between terminal nodes. Terminal nodes cannot be building blocks by them-
selves; therefore non-terminal nodes are preferentially chosen for crossover in
standard GP.

An important condition in genetic operations in GP is that only individuals
with correct syntax are always generated when the above crossover or mutation
(except mutation of entire nodes) is used. GP uses tree structures to represent
genes so that the meaning is not destroyed by genetic operators.

2.3.6 Simulating wall following robots

Let us attempt to evolve a program for controlling a robot using GP. The
task here is to obtain a program that causes the robot to follow a wall (this
could be useful for controlling a cleaning robot, since dust tends to gather
against walls). The robot is capable of four motions: to move forward, move
back, turn right, and turn left. It has a group of sensors that provide a 360-
degree view. It is placed in an irregular room (i.e., an asymmetric room) and
commanded to move about the periphery of the room, following the wall as
accurately as possible.

This kind of program is easy to write in Lisp [76]. Let us begin with the
adaptive learning necessary to solve this problem with the GP.

The robot is assumed to have 12 sonar sensors (s00–s11) (see Fig. 2.14).
The four motions permitted to the robot are straight ahead, straight back,
turn left (+30 degrees), and turn right (−30 degrees). Since this GP carries
out learning, the terminal nodes T are

T = {S00, S01, · · · , S11,ℜ}

where S00, S01, · · · , S11 are the values output by the 12 distance sensors. ℜ is

34 Agent-Based Modeling and Simulation with Swarm

S06=12.5

S03=11.5

S04=7.5

S02=11.5S01=10.5

S07=12.5S08=11.5

S09=7.5

S00=12.0

S11=11.5

S10=8.0

S05=5.5

FIGURE 2.14: Robot sensors.

a random number variable (it is generated randomly when initially evaluated,
i.e., it is generated once per terminal node). The non-terminal nodes F are

F = {TR,TL,MF,MB, IFLTE,PROGN2},

where TR and TL are functions for turning the robot 30 degrees right and
left, respectively, whereas MF and MB are functions for moving the robot 1
foot forward or back, respectively. These functions do not accept arguments.
It is assumed that execution of these functions takes 1 time unit, and that the
sensor outputs are changed dynamically after execution. Two more functions
are incorporated in order for the model to learn the appropriate control rela-
tionships. IFLTE (if-less-than-equal) takes four arguments and is interpreted
as follows:

(IFLTE a b x y) ⇒ if a ≤ b, then execute x and return the result.
if a > b, then execute y and the result.

PROGN2 takes 2 arguments, executes them in order and returns the value
of the second.

Figure 2.15 presents the wall following simulator by means of GP. The
robot moves about the displayed field. Use this simulator to create a program
for the desired robot. The robot program will be executed according to a
program displaying the GTYPE for a period of 400 time units. The fitness
will be determined by how many of the round green circles (tiles) are crossed.
Readers should refer to Appendix A.4 for instructions about this simulator.

The generated program always has to cope with even small changes in the
environment (such as shifts of the position of the chair in the room). This
is what is meant by “robustness” of the program. It is not easy for a human
to write this kind of program for a robot; in contrast, GP can perform the
necessary searches quite efficiently in order to write such a program.

Evolutionary Methods and Evolutionary Computation 35

FIGURE 2.15: Wall following by GP.

2.4 What is interactive evolutionary computation?

Let us consider the application of evolutionary computation (EC) to prob-
lems such as designing tables that match the atmosphere of a room or com-
posing unobtrusive ringtones for mobile phones.

EC might seem applicable to these problems if they are considered in
terms of optimizing the size and color of the boards in the case of the tables,
or the frequencies, filters, and other parameters in the case of the synthe-
sizers. However, the problem in this situation is how to evaluate each unit.
An evolutionary system based on the survival of the fittest must include a
method for evaluating whether individual units are suitable for their environ-
ment; in other words, how close they are to the optimal solution. For example,
when using GA to evolve to a solution to the shortest path for the traveling
salesman problem (TSP), the solution represented by each unit is assigned a
degree of fitness in terms of path length (see Section 2.2.7). Is it possible to
use a computer in the same manner to determine whether a table matches
the atmosphere of a room? Unfortunately, modeling a subjective evaluation
process based on human preferences and feelings, and then implementing such
a model on a computer, is an extremely difficult task.

For instance, consider the fitness function in the case of a computer drawing
a portrait. Conceivably, the first step is to compute the Euclidean distance
between the structural information of a face extracted from a photograph and

36 Agent-Based Modeling and Simulation with Swarm

1

FIGURE 2.16: IEC algorithm.

the portrait drawn by the computer. However, drawing a portrait is not the
same as creating a photorealistic representation of a face—rather, drawing a
portrait involves the more interesting process of capturing the unique features
of the face and then drawing them in a stylized manner. However, can a
computer determine whether a person is identical in a facial photograph and
a portrait in which specific facial features are captured and stylized? This
fitness problem is considered to be extremely difficult to implement using the
existing level of technology.

Nevertheless, there is something close to all of us that is capable of per-
forming such evaluations instantaneously: the brain. Humans have evolved a
method for direct evaluation of individual units, and in this regard, the hu-
man evaluation system can be incorporated into an optimization system as
an evaluation function. Thus, when EC is employed for optimization based
on human subjective evaluation, this process is then referred to as interactive
evolutionary computation (IEC) [10, 116].

Put simply, IEC is EC in which a human is substituted for the fitness
function. In IEC, the person using the system (the user) directly evaluates each
unit, and the viability (fitness) of subsequent generations is derived depending
on user preferences (Fig. 2.16). When implementing this system, personal
preferences and sensations are not modeled, and evaluation based on user
subjectivity is incorporated into the system as a black box. In contrast to
conventional EC, where evolution is modeled as the result of a struggle for
survival, IEC is inspired by the process undertaken by humans of intentionally
breeding agricultural products and domestic animals.

Modern keywords such as “emotional (kansei) engineering” and “humanized
technology” reveal the increasing tendency for technology to make use of hu-
man subjectivity. As part of this trend, IEC is beginning to attract attention
as a method able to incorporate the user’s subjective evaluation system.

Evolutionary Methods and Evolutionary Computation 37

FIGURE 2.17: CG synthesis of plants based on L-systems.

Various types of human evaluation scales are used in IEC. For example,
psychological experiments often use a scale with at most 7 grades, although
a scale with 10 or 100 grades would certainly increase clarity in everyday
situations. In contrast, for two-step evaluation, members of the population can
be either selected (or not) as a parent for the next generation. This process
is referred to as “simulated breeding” [121], since it is analogous to artificial
breeding, in which desirable features are selected and then bred.

In his 1986 book The Blind Watchmaker [24], Richard Dawkins, the well-
known author of The Selfish Gene, describes how images created according
to simple rules can evolve into extremely complex and intriguing images as a
result of rule mutation and user selection. These image sequences were called
biomorphs, since they appear to resemble animals (e.g., insects) at first sight.
Biomorphs can be regarded as the first example of IEC, specifically, evolu-
tion artificially created with a computer through selection based on human
subjective preferences.

Hence, IEC offers a new creative technique based on user selections. Since
many artists and researchers were attracted to this method after being cap-
tivated by biomorphs, the initial focus of IEC research was in artistic fields,
particularly the application of IEC in computer graphics (CG) [106]. Such
applications cover a number of areas, including CG synthesis of plants based
on L-systems (Fig. 2.17, see also Appendix A.5), portrait synthesis, graphic
art, three-dimensional (3D) CG synthesis for virtual reality, avatar motion
design [122], and animation [10]. Below, we focus on graphic art and design
as a representative IEC application.

Simulated Breeding for ART (SBART) [121] uses genetic programming
(GP) to create 2D images and is an example of an IEC-based graphic art

38 Agent-Based Modeling and Simulation with Swarm

system. Drawing in SBART is performed on the basis of a set of equations
defining 3D vector operations on variables x and y. Beautiful images are cycli-
cally generated by substituting the x- and y-coordinates of the current image’s
pixels into the equations and transforming the resulting values back into image
information. Specifically, each vector component obtained through the substi-
tution process is colored in hue–saturation–brightness space, and movies can
be generated from images by introducing time, t, as a separate variable.

A simulator named LGPC for Art (see Fig. 2.18) is currently being devel-
oped by the author’s laboratory, which uses SBART as a reference platform.
It has the following basic procedure.

Step 1 Click Clear if you do not like any of the pictures in the 20 windows.
This re-initializes all of the windows.

Step 2 Click one of the pictures to select it if you like it. The frame will turn
red. You can choose as many as you like.

Step 3 Press the OK button to display the population of the next generation
of genes produced from the image you selected.

Step 4 Repeat from Step 1 to Step 3.

Any image you like can be stored (with the Gene_Save command) and
any stored image can be loaded (with the Gene_Load command) to replace
the currently displayed image. The 20 original windows loaded with the View
tab are numbered (#1 is at the upper left, and numbering proceeds left to
right, then up to down).

With this simulator, users can experience the excitement of “breeding”
custom images. In fact, the author used this system to design the cover of his
own book, and the design process of creating a camera-ready image, which
would normally require several days for a graphic designer, was completed
within several hours.

Refer to Appendix A.6 for instructions about the installation and usage of
LGPC for Art. Play with this process to “cultivate” new images.

The main purpose of the above mentioned systems is the generation of aes-
thetically pleasing CG. However, another viewpoint is to focus on the human–
computer interaction that occurs during the IEC process (between computer
generation of units and user selections).

Karl Sims, one of the pioneers of IEC-based graphic art, developed an IEC
system that in itself was a work of art. The system was named Galápagos
and consisted of 12 monitors, each with a foot sensor. Individual monitors
displayed computer-simulated virtual creatures with abstract morphologies
and independent movements. Visitors were able to choose the parents for the
next generation by stepping on the sensors of the monitors displaying their
preferred creatures. Through repetition of this process of heterogenesis, the
simulator could evolve virtual creatures pleasing to the eye able to perform
intriguing movements.

Evolutionary Methods and Evolutionary Computation 39

FIGURE 2.18: An overview of LGPC for art.

The developed virtual creatures carried genotypes (symbolic expressions)
that were considerably more complex and incomprehensible than Sims had
ever envisaged. The interaction between artist, computers, and visitors gave
rise to forms that were impossible for either the artist or computers to inde-
pendently create. One of the difficult aspects of biology is that humans know
only about life based on DNA (life as we know it); however, by considering
evolutionary mechanisms, this installation showed forms that could poten-
tially exist (life as it could be), and presented an extremely interesting view
of artificial life (see also Section 4.4.1).

IEC has also been applied to music through the celebrated MIDI-based
jazz improvisation system, GenJam [12]. GenJam uses a population of double-
layered genotypes in which one layer contains units consisting of eight ordered
digitized musical notes and the other layer contains units that determine the
arrangement of the notes. These two layers correspond to bars and musical
phrases consisting of sequences of bars, respectively. Following a predefined
rhythm section and the code progression, GenJam plays a melody by mixing
the two sets of units. An evaluator presses “g” (good) if he likes the melody
and “b” (bad) otherwise, and so assigns a score to the corresponding units.
Selection and heterogenesis are thus iterated on the basis of these scores,
and the generated bars and phrases are continuously improved (or, at the
least, become closer to the evaluator’s preferences). Conceivably, this process
corresponds to jazz musicians building a melody through repeated trial and
error.

Al Biles, the creator of GenJam and a veteran jazz player, performs jam
sessions with GenJam trained in this way. At times, GenJam is capable of cre-
ating surprises since it presents renditions that a human would rarely consider.
Hence, the system represents another example of this new form of human–
computer interaction.

www.allitebooks.com

http://www.allitebooks.org

40 Agent-Based Modeling and Simulation with Swarm

FIGURE 2.19: An example rock rhythm generated by CONGA.

Undertaking similar research, the author has developed a rhythm genera-
tion system named CONGA [120]. A characteristic feature of this system is
that the search technique is based on a combination of a GA and GP. First,
short rhythms with a length of one bar are represented as the character se-
quences of genes, which are then used by a GA. Conversely, GP uses functions
such as “repeat” to arrange the rhythms represented by GA units, with the
aim of realizing a musical structure. In this way, more pleasant musical pieces
can be generated by combining the short gene expressions implemented using
a GA and the structural representation implemented using GP. Figure 2.19
shows an example rock rhythm generated with CONGA. Sample tunes gen-
erated with this system can be downloaded from the author’s website.

Other practical examples of IEC application can be given for various de-
sign fields, such as bridge construction, the automotive industry, and fashion.
Caldwell et al. [14] applied IEC to the preparation of composite portraits
(montages) by using an interactive GA to optimize parameters, such as the
shapes and positions of the eyes, mouth, and other facial features. Generally,
the recollection of an eyewitness tends to be vague, and they experience diffi-
culty conveying their impression of a face. However, by using Caldwell et al.’s
system, witnesses can generate portraits by repeatedly selecting the face most
closely resembling that of the suspect. In fact, Caldwell et al. created this
system as a result of his frustration after an incident in which 20 U.S. dollars
was stolen from him during a drug store robbery. The portraits of the robbers
that Caldwell et al. constructed with this system were extremely precise, and
consequently they were arrested without difficulty.

Although IEC was initially applied to subjective fields, such as the arts,
the use of IEC has recently been extended to domains where objective crite-
ria are needed. Explicitly, IEC has been applied to “humanized technology,”
in which the aim is to integrate human sensations and subjectivity into sys-
tems. We explain IEC-based automatic adjustment of digital hearing aids as
a representative example of such applications [115].

Hearing aids provide assistance by increasing the sound pressure level of
frequencies that are difficult for the user to hear. To maximize the capabilities
of a hearing aid, it must be adjusted to match the user’s hearing characteris-

Evolutionary Methods and Evolutionary Computation 41

tics. In the conventional adjustment method, hearing test results are compared
with the typical audible frequency range for humans, and parameters of the
hearing aid are adjusted by professional doctors and technicians. In addition
to being rather time-consuming, this method is limited in terms of the hearing
characteristics that can be measured. Moreover, in reality, only the user can
determine their hearing ability, which cannot be adequately determined even
by the most capable doctors and technicians.

Hence, research is being conducted on IEC systems where users adjust the
parameter levels of the hearing aid signal based on their own hearing [115].
In this method, a “compensation surface” that represents the input sound
pressure, frequency, and compensation level is constructed by combining 3D
Gaussian surfaces. The parameters of these Gaussian surfaces are optimized
interactively using a GA. According to the results of a user survey, about 70%
of users ranked hearing aids optimized by IEC as considerably improved over
hearing aids optimized by the conventional method.

In recent years, kansei (affective) engineering, which utilizes human emo-
tions, has also enjoyed considerable attention. As in the above mentioned case
of adjusting hearing aids, the most anticipated fields for application of IEC
are engineering applications that utilize the sensations and preferences of the
user, which are difficult to measure quantitatively.

As we have seen above, IEC allows the combining of computational power
and the evaluative abilities of humans in order to perform “optimization” and
“retrieval” based on user subjectivity and preferences. Nevertheless, IEC suf-
fers from problems that do not arise in standard EC. First, the psychologi-
cal burden placed on users to evaluate units is rather heavy. IEC users are
required to perform the repetitive mechanical operations of comparing and
evaluating a large number of units and assigning fitness scores to numerous
generations. Such repetitive work is likely to induce psychological discomfort
and fatigue. Therefore, an important challenge in IEC research is the reduction
of this burden. For this purpose, various human–computer interaction setups
(the process of inputting evaluations and displaying units using an interface)
have been devised. Devising such setups is an extremely important research
topic, considering the expected wide application of IEC (refer to Takagi and
Ohsaki; [115] for details). Another problematic aspect is the evaluation of the
system and the results obtained. This issue is a challenge not only for IEC but
also for all systems in which subjective evaluation is utilized. Solution requires
the development of a framework that allows for investigating both the system
operability and the resultant content.

In the future, IEC is expected to develop as a fundamental technology,
enabling completely new methods of human–computer interaction.

42 Agent-Based Modeling and Simulation with Swarm

2.4.1 Interactive music composition based on Swarm simula-
tion

Ando and the author implemented an interactive music creation by link-
ing Swarm and external software [8]. This musical product imports the MIDI
signals of the piano performance of humans, and reflects it in the state of multi-
agent simulation constructed in Swarm. Furthermore, the backward conver-
sion, that is, creating a piano performance from the simulation environment
and the conversion of actual piano performance, are also carried out. These
conversions are done in real time while the music is being played. A human per-
former and the swarm intelligence in Swarm influence each other and perform
alternatively. Performances like 4 bar exchange jazz can be created. Using the
MIDI piano (in which the computer’s signals move the keyboard and produce
sound) of the Yamaha Company, a real piano performance is created in the
computer. This way, a kind of interaction is created as if a human performer
and Swarm are doing a duet on a single piano (see Fig. 2.20). The computer
for Swarm is connected to the MIDI piano through the computer for music.
Both the flows from Swarm to piano and from piano to swarm are realized. In
the connection between the computers, to ensure the real-time characteristic,
the network protocol called OpenSoundControl is used. OpenSoundControl is
extended such that it can be given from Swarm as well. Apart from interactive
performances using the game of life, sound effects were also created based on
the state transition of boid and pheromone trail. Musical performances using
the Swarm system are actually being done at concerts and have been receiving
positive feedback.

Evolutionary Methods and Evolutionary Computation 43

FIGURE 2.20: A four-handed performance on the piano and Swarm.

This page intentionally left blankThis page intentionally left blank

Chapter 3

Multi-Agent Simulation Based on Swarm

Once Zhuangzi dreamt he was a butterfly, a butterfly flitting
and fluttering around, happy with himself and doing as he
pleased. He didn’t know he was Zhuangzi. Suddenly he woke
up and there he was, solid and unmistakable Zhuangzi. But
he didn’t know if he was Zhuangzi who had dreamt he was
a butterfly, or a butterfly dreaming he was Zhuangzi. Be-
tween Zhuangzi and a butterfly there must be some distinc-
tion! This is called the Transformation of Things. (“The But-
terfly Dream,” Zhuangzi, B.C. 369?–B.C. 286?, translated by
Burton Watson)

3.1 Overview of Swarm

In this chapter, we describe the tutorial on how to use Swarm, and aim to
implement a practical simulation.1

Swarm is a bottom-up model-based simulator which consists of biological
agents (such as bugs) and abiotic agents (such as a wall or an obstacle) in
an artificial world. The motions of the agents are described by simple rules,
and the emergent phenomena due to the interaction between the agents are
observed (Fig. 3.1).

The basic characteristics of Swarm are as follows:

1. Swarm is a collection of object-oriented software libraries to assist sim-
ulation/programming.

2. Users build simulations by incorporating Swarm library objects in their
own programs.

3. Swarm libraries are provided for Java and Objective-C. For the imple-
mentation of graphic user interface (GUI), Tcl/Tk has been used.

4. UNIX, Linux, Windows, and Mac OS editions have been published.

1This tutorial is based on the material by Benedikt Stefansson (UCLA) in Swarmfest
1999 [82, ch. 1]. The original version was implemented in Objective-C.

45

46 Agent-Based Modeling and Simulation with Swarm

Agent organization

Animate agents

dataArtificial World

observer

Inanimate agents

If

<condition>

then

<action1>

else

<action2>

FIGURE 3.1: Bottom-up model.

Model Observer

Animate agents

Inanimate agents

Agent organization

FIGURE 3.2: Swarm modeling.

This chapter focuses mainly on the Java library for the Windows edition. For
other versions, refer to the appendix.

Swarm simulation is made up of following two parts (Fig. 3.2):

• Model: models the artificial world abstractly, and simulates it.

• Observer: observes the simulation of the model and displays it.

The fundamental concept of Swarm is discrete event-driven simulation. In
other words, the simulation proceeds in discrete time steps, and further, the
interaction between the agents and the simulation procedure has its own sched-
ule of events. Here, let us consider describing the simulation by a usual pro-
cedural programming language like C or FORTRAN which can be written as
follows:

1: get parameters

Multi-Agent Simulation Based on Swarm 47

Animate agents

Inanimate agentsInanim

Scheduler of events

FIGURE 3.3: Object-oriented simulation.

2: initialize /* initializing data*/

3: for 1 to timesteps do:

4: for 1 to num_agents do:

5: agent-i-do-something

6: end for

7: show state /* output the results*/

8: end for

9: quit

In the 5th line, the behavior of the ith agent has been described. The user
provides the data structure that holds the state of the agent and the action
must be implemented. This should be repeated for all agents (“for” loop of
line 4). By contrast, in Swarm, each agent holds its actions and states itself,
and other agents or schedulers act only when called. Thus, the event loop for
this purpose is implemented as an object that sends messages to the agent or
objects (Fig. 3.3).

Swarm is an object that implements memory allocation and scheduling of
events. The basic simulation consists of Observer Swarm and Model Swarm
(Fig. 3.4). Furthermore, Swarm is also being implemented as a virtual ma-
chine. In other words, in contrast to normal CPUs that execute instructions,
Swarm is the kernel of the virtual CPU that executes Model and GUI events
(Fig. 3.5).

“Activity” is an important concept in Swarm. Multiple Swarm is grouped
into a nested structure so that the schedule execution of “activity” takes
place in a single execution. “Activity” object is an abstraction of scheduling
events in an artificial world that can be used by the users. This makes it easy
to summarize multiple actions and also to arrange the events in the preferred

48 Agent-Based Modeling and Simulation with Swarm

Agents

Inanimate agents

Widgets Probes

Observer

Model

FIGURE 3.4: Model and observer.

order. Since schedule itself is an object, by communicating to other objects,
an agent can schedule an event and can also stop any unexpected behavior.

The elements of the “Activity” library are as follows (Fig. 3.6):

• ActivityGroup: a collection of simultaneous events.

• Schedule: (a group of) a collection of sequential events.

• SwarmActivity: virtual machine to run schedule.

In Swarm, “model” is treated as a structure (Fig. 3.7). “Schedule” also merges
in accordance with the nested structure and gets executed. In other words,
each sub-Swarm schedule merges into the schedule of the Swarm which is one
level above. This is repeated recursively. Finally, all the schedules merge with
the highest level Swarm.

Memory management is mandatory for dynamic programming that han-
dles large amounts of data such as a multi-agent system. In fact, this is pro-
vided in the Swarm library which is available to users. An object is created
and annihilated through the idea of a memory zone. “Collection” (object or
collection) or “sub-Swarm” can be erased by erasing the memory zone.

All the agents and objects in Swarm can be observed. To observe, a probe is
pasted on the agent and a message is sent. This way we can change the internal
variables of an agent or read their values (Fig. 3.8). In addition, the probe
is also used to perform real-time communication between objects through
the GUI. The default probemap of the agent displays all the functions and
variables (Fig. 3.9). In other words, by using the probe, it is possible to collect
information dynamically (at runtime) from one or more agents. Moreover, it
is also possible to define a method invocation during the execution of Swarm.

Swarm provides a rich GUI. For example, it has objects to handle line
graphs, histograms, raster images, and collection of data. Calculations and

Multi-Agent Simulation Based on Swarm 49

Operating system

Swarm kernel

GUI Model

CPU

FIGURE 3.5: Swarm as a virtual computer.

• ActivityGroup

• Schedules

• SwarmActivity

Sleep

Dream

Eat

FIGURE 3.6: Elements of Activity library.

updates are carried out through objects and it also provides widgets for the
GUI. Displaying averages of data from multiple agents, graph plotting, or
plotting using other widgets is done by dynamic access to the dataprobe of an
agent (Fig. 3.10). Swarm’s “collection” (collection of classes like lists) also
supports this.

www.allitebooks.com

http://www.allitebooks.org

50 Agent-Based Modeling and Simulation with Swarm

Swarm

Sub-Swarm

agent

scheduler

Interface

Model
Probes

Sub-sub-Swarm

ProbesProbes

FIGURE 3.7: Recursive structures in Swarm.

var=10.2

FIGURE 3.8: Probes.

3.2 Tutorial

This tutorial is an example of an agent which does random walks and
consists of 5 steps shown in Table 3.1.

3.2.1 simpleCBug

The first program is a procedural simulation. After generating a bug agent,
it is placed on a two-dimensional plane (of the size worldXSize×worldYSize=
80 × 80) on the grid. The initial position of the bug is xPos= 40,yPos= 40.
Then a random walk is performed 100 times. Let us explain the program
briefly. First,

import swarm.*;

is a kind of charm that imports useful packages of random numbers, etc. Under
that is the main function, where the program starts. Main takes the argument

Multi-Agent Simulation Based on Swarm 51

Method execution

Input values of variables

Probe object class
Close probe

FIGURE 3.9: Probe and GUI.

(args) from the command-line, and the function initSwarm below checks the
args and performs the necessary initialization.

Globals.env.initSwarm("bug", "0.2", "foo@nifty.com", args);

Here, we specify the “default file” (file named bug.scm) of the “parameter set-
tings.” 0.2 is the version name. Other than that, settings such as the address of
the author, etc., are specified. This is detailed in the section simpleSwarmBug3.

Then, the initial coordinates of the bug are displayed, and function

Globals.env.uniformIntRand.getIntegerWithMin$withMax(-1,1);

generates the random numbers (integers; -1,0,1), which are added to xPos and
yPos, enabling a random walk.

xPos = (xPos + worldXSize) % worldXSize;

yPos = (yPos + worldYSize) % worldYSize;

Note that if the bug is outside the field, wrapping becomes necessary (i.e.,
% worldXSize).

3.2.2 simpleObjCBug and simpleObjCBug2

These two are meant to verify the object-oriented programming, and have
no specific significance with regard to Swarm.

Let us first look at simpleObjCBug. It is the simplest version of the object-
oriented program. Except for the main function, it consists of only one class
and its instance. The “main” function imports the basic library of Swarm,
launches the initSwarm, and performs the memory allocation.

Class “Bug” is defined in Bug.java:

mailto:foo@nifty.com

52 Agent-Based Modeling and Simulation with Swarm

Derive the

price average
Derive the cost

average

Probe
Probe

Agent
Collection

Graph

widget

FIGURE 3.10: GUI widgets.

public class Bug extends SwarmObjectImpl {

This is to declare the class Bug as the subclass of SwarmObjectImp1. This
allows the use of the following function:

• construction: memory allocation

• drop: memory creation and annihilation

In fact, in Bug.java, the following definition is the constructor:

public Bug(Zone aZone){

super(aZone);

}

Zone is the memory space of Swarm. Since “super” is the function, it executes
the constructor of SwarmObjectImp1, which is the super class of Bug.

Described in the main function,

Bug aBug=new Bug(Globals.env.globalZone);

aBug.setX$Y(xPos,yPos);

aBug.setWorldSizeX$Y(worldXSize,worldYSize);

are the typical procedures for the generation of an “instance.” First, we gen-
erate an “instance” of class Bug using “new,” which is then assigned to a vari-
able aBug. Memory allocation takes place here. In the next two steps, neces-
sary parameter setting takes place. These methods for the Bug are defined in
Bug.java.

Next, let us move on to simpleObjCBug2. In this program, the world
where bug walks around and eats the bait is created. This world is defined as

Multi-Agent Simulation Based on Swarm 53

TABLE 3.1: Tutorial contents.
simpleCBug Procedural programming
simpleObjCBug 1 Object-oriented programming

2 Bug and FoodSpace interaction
simpleSwarmBug 1 Object responsible for the simulation

Schedule
2 Multiple Bugs
3 Parameter settings with files

simpleObserverBug 1 Display on the 2-dimensional plane
2 Probe to access the object

simpleExperBug Multiple models
Hierarchical schedules
Graphical display

FoodSpace, and is the subclass of Discrete2dImp1. The following lines, inside
FoodSpace.java,

public FoodSpace(Zone aZone,int x,int y){

super(aZone,x,y);

}

contain a constructor, in which super executes the constructor of
Discrete2dImp1.

FoodSpace inherits the internal variables and methods from
Discrete2dImp1. It makes the retention and retrieval of values of the two-
dimensional space possible. The newly added method by FoodSpace is only
seedFoodWithProb. Note that the getSizeX, getDoubleWithMin$withMax

methods used in this definition are inherited from Discrete2dImp1. In
seedFoodWithProb, at each point in the FoodSpace a random number be-
tween 0 and 1 is generated. If the value of the position is less than seedProb,
it changes the value to 1 (that is, putValueatXY(1,x,y)). This is to
achieve the bait at concentration of seedProb. In this program, the variable
(foodSpace) of FoodSpace is defined as an internal variable of Bug. It holds
the world in which it moves. In the part below the method “step,” if the new
location has bait, it eats the bait (substitutes the value of 0) and displays that
position.

if (foodSpace.getValueAtX$Y(xPos,yPos) == 1){

foodSpace.putValueatXY(0,xPos,yPos);

System.out.println("I found food at X = " + xPos + " Y = "

+ yPos +"!");

}

54 Agent-Based Modeling and Simulation with Swarm

+buildObjects()

+buildActions()

+activateIn(in context)

-worldXSize

-worldYSize

-seedProb

-Schedule

ModelSwarm

+step()

Bug

FoodSpace

+getActivity()

Swarm

+run()

<<interface>>

Activity

11

11

FIGURE 3.11: Class hierarchy in simpleSwarmBug.

3.2.3 simpleSwarmBug

The typicality of Swarm can be shown with this program. In the
simpleSwarmBug of the third phase, the object ModelSwarm is introduced
(Fig. 3.11). It manages all the models (object of Bug and FoodSpace, etc.,
parameters such as the size of the world, schedule, etc.). Often, Model be-
comes the nested structure of multiple swarms.

The generation of Swarm is done by the following steps:

1. construction: initialization of memory and parameters

2. buildObjects: construction of all agents and objects in the model

3. buildActions: sequence of events and definition of schedule

4. activate: beginning of the execution and merging into the top level swarm

The above steps correspond to the following lines in the simpleSwarmBug.
java:

observerSwarm=new ObserverSwarm(Globals.env.globalZone);

observerSwarm.buildObjects();

observerSwarm.buildActions();

observerSwarm.activateIn(null);

The details of these will be explained below.

3.2.3.1 Initialization

The constructor of ModelSwarm.java is as follows:

1: public ModelSwarm(Zone aZone){

2: super(aZone);

3:

4: worldXSize = 80;

5: worldYSize = 80;

6: seedProb = 0.5;

Multi-Agent Simulation Based on Swarm 55

7: bugDensity = 0.1;

8: }

The “super” in the second line executes the constructor of the super class
“SwarmImp” and allocates the memory. In lines 4–7, initial values are being
assigned. Its own object (this) can be omitted here. More precisely, this
should be written as follows:

4: this.worldXSize = 80;

4: this.worldXSize = 80;

5: this.worldYSize = 80;

6: this.seedProb = 0.5;

7: this.bugDensity = 0.1;

Here, let us explain the “aZone” in the first line. In Swarm, all the objects
are created in the memory region called “zone.” Methods for allocating and
freeing the memory for that purpose are provided. Memory for “instance” and
it’s internal variables are also supplied. Moreover, “zone” keeps track of all
the objects created there, and memory can be re-used simply by dropping the
“zone.” In other words, a signal to all objects can be sent for self-destruction.

The three main parts of “zone” are summarized as follows:

1. The initSwarm(...) function inside the “main,” executes various func-
tions that generate global memory areas.

2. In modelSwarm=newModelSwarm(Globals.env.globalZone) inside the
“main” function, instances are created.

3. ModelSwarm class’ constructor modelSwarm() is executed.

3.2.3.2 Construction of Agents

This is defined in buildObjects of ModelSwarm.java. The purpose of this
method is to generate the instance of the class required for the representation
of objects in simulation, and to set the parameters in them. As we can see
from the definition of setFoodSpace, it is an advantage of object-oriented
programming that the functions for the settings of variables are ready through
inheritance.

3.2.3.3 Construction of Schedules

A schedule is constructed by the following method called buildActions

in ModelSwarm.java.

1: public Object buildActions(){

2: modelSchedule=new ScheduleImpl(this,1);

3: try {

4: modelSchedule.at$createActionTo$message(0,aBug,

56 Agent-Based Modeling and Simulation with Swarm

5: new Selector(Class.forName("Bug"),"step",false));

6: } catch (Exception e) {

7: System.out.println ("Exception: " + e.getMessage ());

8: System.exit(1);

9: }

10:

11: return this;

12: }

In the second line, the instance of the class “Schedule” is generated. The
second argument “1,” means “Execute this schedule at each time step.” If
we write the natural number n here, that schedule will be executed ev-
ery n time steps. In lines 4–5, an event is assigned to the schedule. Here,
in the instance “aBug” of class “Bug,” “Action” is generated which ex-
ecutes the method called “step.” The first argument indicates the time
of first boot. In other words, in this case it executes at time step 0.
Lines 6–9 are for handling errors if the occurred. That means, by sending
at$createActionTo$message (start, instance, method) method to the
instance modelSchedule of schedule, Action is generated. Here, the first ar-
gument “start” is the starting time of “Action,” and an event called Action

is set which sends “method” to “instance.”
Furthermore, the method Selector(Class, string, boolean) retrieves

the method defined by the string-name “string” of the class “Class.” The
third argument “boolean” is false when it retrieves the methods of Java and
true in the case of Objective-C.

3.2.3.4 Activation of Swarm

In the “main” function, by calling

modelSwarm.activateIn(null);

a schedule gets activated. Since there is only one Swarm in simpleSwarmBug,
the argument becomes “null.” Specifically, the following method is called:

public Activity activateIn(Swarm context){

super.activateIn (context);

modelSchedule.activateIn(this);

return getActivity ();

}

Merge and activation of schedule are initiated by this method.

3.2.3.5 State of Execution

As the program starts, first the “ModelSwarm” is executed, and ModelSwarm

generates Bug and FoodSpace (method: buildObjects).
In the body of the simulation, Bug repeats the method “step.” This is

Multi-Agent Simulation Based on Swarm 57

simpleSwarmBug

ModelSwarm

FoodSpace

Bug

create()

create()

seedFoodWithProb()

create()

setFoodSpace()

setWorldSizeX$Y()

setX$Y()

*step()
getValueAtX$Y()

putValueatXY()

activateIn()

getActivity()

run()

buildObjects()

buildActions()

FIGURE 3.12: Execution sequence in simpleSwarmBug.

implemented (in the method “buildActions”) by registering “action” in the
schedule: “Send the “step” method execution message to the “Bug” instance”
while “starting at time 0 and repeating with a time interval of 1.” Schedule is
activated by the method “activateIn,” and is executed by “run.” The state
of execution is shown in Fig. 3.12.

3.2.4 simpleSwarmBug2

Multiple agents are handled in this program. Since multiple bugs are han-
dled as a set, the instance “bugList” of class “List” is used (Fig. 3.13). The
concentration of bugs is set by the variable “bugDensity.”

if (Globals.env.uniformDblRand.getDoubleWithMin$withMax(0.0,1.0)

< bugDensity){

58 Agent-Based Modeling and Simulation with Swarm

main

bugList

World

ModelSwarm

Food

Space

FIGURE 3.13: simpleSwarmBug2.

contains that creation part, in which random variables from 0 to 1 are gener-
ated. If that value is smaller than the “bugDensity,” then an instance of Bug
is created and initialized as shown below:

aBug=new Bug(this);

aBug.setWorld$Food(world,food);

aBug.setX$Y(x,y);

In the following line:

bugList.addLast(aBug);

a newly created instance is being added at the back of bugList. Moreover,

reportBug=(Bug)bugList.removeFirst();

bugList.addFirst(reportBug);

substitutes the variable “reportBug” at the front of the list. As will be men-
tioned in a later section, reportBug is used for outputting the position.

At the same time, multiple “action” messages are organized into one for
activation, and then implemented as the class instance of “ActionGroupImp1,”
which is the implementation of the “ActionGroup” interface. This is useful for
denoting the concurrent execution for multiple bugs. For this purpose, we
need to declare the variable modelActions in

ActionGroup modelActions;

and then, using the buildActions method, the following instance is created:

modelActions=new ActionGroupImpl(this);

After that, in the following lines:

Multi-Agent Simulation Based on Swarm 59

modelActions.createActionForEach$message(bugList,

new Selector(Class.forName("Bug"),"step",false));

modelActions.createActionTo$message(reportBug,

new Selector(Class.forName("Bug"),"report",false));

multiple actions are defined. Here, through createActionForeach$message,
“action” executes for all the elements of bugList. Moreover, methods
(report) for other instances (reportBug) are also added.

Next, schedule is created with the following lines:

modelSchedule=new ScheduleImpl(this,1);

modelSchedule.at$createAction(0,modelActions);

Here, the frequency of schedule execution is 1 time step, starting at time
0. To ensure that there is only one bug in a particular location, “world” is
created as the instance of class “Grid2d.” For the method “buildObjects”
inside ModelSwarm.java, creation and initialization are done by the following
lines (each is filled with “null”):

world=new Grid2dImpl(this,worldXSize,worldYSize);

world.fillWithObject(null);

For the method “step” in “Bug,” using the following lines:

if (world.getObjectAtX$Y(newX,newY) == null){

world.putObjectatXY(null,xPos,yPos);

xPos = newX;

yPos = newY;

world.putObjectatXY(this,newX,newY);

}

the past position (xPos,yPos) is cleared (null), and the instance of “Bug” is
described in a new location (newX,newY). In the following “if” loop,

if (foodSpace.getValueAtX$Y(xPos,yPos) == 1){

foodSpace.putValueatXY(0,xPos,yPos);

haveEaten=1;

}

if there is a bait in the new location, the bug eats it (resets to 0), and makes the
“haveEaten” flag 1. This flag is used to determine the display in the method
“report.”

3.2.5 simpleSwarmBug3

This is not much different from “simpleSwarmBug3.” The only difference
is that it reads the default parameters from an external file for initialization.
The description for this is in the following line of the “main” function:

60 Agent-Based Modeling and Simulation with Swarm

Globals.env.initSwarm("bug", "0.2", "foo@nifty.com", args);

Here, the setting of the default file of parameter settings is done. The extension
“scm” added to the first argument becomes the filename (that is, bug.scm).
The conetents of this file are written as follows:

(list

(cons ’modelSwarm

(make-instance ’ModelSwarm

#:worldXSize 80

#:worldYSize 80

#:seedProb 0.9

#:bugDensity 0.01)))

This specifies the initial values of parameters using the description of “Scheme”
(one of the dialects of the “Lisp” language). By changing this number, we can
set the initialization parameters without having to recompile.

Furthermore, in this program, the “ModelSwarm” method inside
“ModelSwarm.java” also sets the initialization parameters as follows:

worldXSize = 80;

worldYSize = 80;

seedProb = 0.8;

bugDensity=0.1;

However, this setting is given priority over the one described in the “scm” file.

3.2.6 simpleObserverBug

In simpleObserverBug, we can learn how to use the GUI. Perhaps the
biggest advantage of “swarm” is that the GUI can be easily constructed. The
possible GUI features are summarized as follows:

• Provides interactive access (probe) to the object.

• Displays the state of distribution of objects and numerical values over
the two-dimensional plane.

• Displays line graphs and histograms.

Although “Object2dDisplay” handles the monitor display, “ZoomRaster”
is responsible for the actual display (window). ZoomRaster displays the data
from the grid (Fig. 3.14).

This program displays the distribution of bait from “FoodSpace” and
makes the bugs display their positions. For this purpose it uses the follow-
ing three classes (Fig. 3.15):

• ColorMap: associates the numbers and colors on the palette.

mailto:foo@nifty.com

Multi-Agent Simulation Based on Swarm 61

FIGURE 3.14: Display of object distribution (ZoomRaster).

bugList

Raster

Holds food as

0/1 value

Holds a bug in

2D coordinate

Object2dDisplay

Value2dDisplay

Colormap

ModelSwarmObserverSwarm

World

Food

Space

FIGURE 3.15: Display with Swarm.

• Value2dDisplay: maps the x- and y-grid data on the raster.

• Object2dDisplay: processes the mouse clicks and the data display from
the agents.

The generation of the “ObserverSwarm” is done in the following steps
(Fig. 3.16):

1. construction: initializes memory and parameters.

2. buildObjects: constructs ModelSwarm, i.e., graph, raster, and probe.

3. buildActions: defines the schedules and order of events for GUI.

4. activate: merges into the top-level “swarm” and starts “swarm” execution.

All these are equivalent to the following lines in simpleSwarmBug.java.

Globals.env.initSwarm("bug", "0.2", "foo@nifty.com", args);

observerSwarm=new ObserverSwarm(Globals.env.globalZone);

observerSwarm.buildObjects();

mailto:foo@nifty.com

62 Agent-Based Modeling and Simulation with Swarm

main

Value2dDisplay

Object2dDisplay

Colormap

bugList

World

ModelSwarm

Food

Space

Observer

Swarm

FIGURE 3.16: simpleObserverBug.

observerSwarm.buildActions();

observerSwarm.activateIn(null);

They will be explained in detail below.

3.2.6.1 Initialization

Initialization is done with the following method in ObserverSwarm.java:

public ObserverSwarm(Zone aZone){

super(aZone);

displayFrequency=1;

}

where the memory is allocated and the display frequency is set.

3.2.6.2 Generation of object

By using the “buildObjects” method inside ObserverSwarm.java, the
generation of ModelSwarm is done in the following way:

super.buildObjects();

modelSwarm = new ModelSwarm(this);

getControlPanel().setStateStopped();

modelSwarm.buildObjects();

The message “getControlPanel” is the command which waits for the sim-
ulation to start until the “Start” button is pressed.

After this, processing is performed as follows:

• colorMap: it allocates the numbers to the display colors. Specifically, it
allocates 0 to black (blank), 1 to red (bait), 2 to green (bug).

• Generation of worldRaster: displays a two-dimensional grid. “title”
and “colorMap” are allocated for that purpose.

Multi-Agent Simulation Based on Swarm 63

• Generation of foodDisplay: foodDisplay is generated as an instance
of “value2dDisplayImp1” and bait (red) is drawn using the inheritance
feature of this class. The fourth argument “modelSwarm.getFood” is
defined inside “modelSwarm” and returns “food,” which is an instance of
FoodSapce.

• Generation of bugDisplay: bugDisplay is generated as an instance of
“object2dDisplayImp1” and a bug (green) is drawn using the inheri-
tance feature of this class. “drawSelfOn,” included in the argument, is
the method defined at the end of Bug.java, and draws the insects with
the value of 2 (i.e., green).

3.2.6.3 Construction of scheduling

By using the method “buildActions” inside ObserverSwarm.java:, a
schedule is constructed as follows:

1. Generation of actions for modelSwarm: modelSwarm.buildActions();

2. Generation of ActionGroup: displayActions=new ActionGroupImp1

(this);

• action for foodDisplay: execution of display

• action for bugDisplay: execution of display

• action for worldRaster: execution of drawSelf

• action for updating the GUI: execution of doTkEvents

3. Generation of displaySchedule: schedule with the frequency of
displayFrequency, taking the starting time as 0.

3.2.6.4 Activation of Swarm

By calling

observerSwarm.activateIn(null);

in the “main” function, the schedule gets activated. Specifically, the method
below is being called:

public Activity activateIn(Swarm context){

super.activateIn(context);

displaySchedule.activateIn(this);

return getActivity();

}

Swarm has a hierarchical structure as shown in Fig. 3.17. In the top
level Swarm, if the activation starts by calling activateIn(null), the ac-
tivation gets transmitted to the lower levels one after the other. This can
start the merging and activation of the schedule. The “main” function gen-
erates ObserverSwarm, and the ObserverSwarm generates ModelSwarm in its
own memory as a sub-swarm. Moreover, ModelSwarm generates an agent and
activates itself inside ObserverSwarm.

64 Agent-Based Modeling and Simulation with Swarm

Operating System

Swarm kernel

GUI Model

CPU
Sub-Swarm

ModelSwarm

ObserverSwarm

Swarm kernel

FIGURE 3.17: Swarm hierarchy.

3.2.7 simpleObserverBug2

In “simpleObserverBug2,” the probe and two-dimensional plane display
are implemented (Fig. 3.18). Through the use of the probe, it becomes easy
to access the field of an object or to call methods. The probe has the types
mentioned below:

• Object and interface

– VarProbe: probes interface variables

– MessageProbe: probes methods

• Generation of GUI for objects:

– ProbeMap: collective use of VarProbe and MessageProbe

An example is shown in Fig. 3.19. Steps to generate a probe are given below
(see Fig. 3.20):

1. Generate an EmptyProbeMap instance.

2. Make the GUI usable by pasting VarProbe or MessageProbe in the
variable and message.

3. Put each probe in ProbeMap.

4. Request the generation of a real widget from probeDisplayManager.

Let us look at a particular program of simpleObserverBug2. First, the
following description is given in the constructor of ObserverSwarm:

Multi-Agent Simulation Based on Swarm 65

+xPos

+yPos

Bug

+getBugList()

+worldXSize

+worldYSize

+seedProb

+bugDensity

ModelSwarm

+displayFrequency

ObserverSwarm

+setButton$Client$Message()

ZoomRaster

+makeProbeAtX$Y()

Object2dDisplay

+addProbe()

ProbeMap

+setProbeMap$For()

+getProbeForVariable$inClass()

+getProbeForMessage$inClass()

ProbeLibrary

+createArchivedProbeDisplay()

Global.env

1

*

1 1

1
1

FIGURE 3.18: Class hierarchy in simpleObserverBug2.

ProbeMap

with four VariableProbe

ProbeMap

with one MessageProbe

ControlPanel

Provided by Kernel

ModelSwarm Observer

Swarm

FIGURE 3.19: Probes in simpleObserverBug2.

1: probeMap=new EmptyProbeMapImpl(aZone,this.getClass());

2: probeMap.addProbe(Globals.env.probeLibrary.

getProbeForVariable$inClass("displayFrequency",this.getClass()));

3: Globals.env.probeLibrary.setProbeMap$For(probeMap,

this.getClass());

In the first line, the instance of the implemented class “emptyProbeMapEmp1”
is being generated for the interface “emptyProbeMap.” In the second line, in or-
der to make the internal variable “displayFrequency” displayable, VarProbe
is pasted to this probe. The third line does the setting of the probe as
“probeMap.”

Again, inside the constructor of ModelSwarm, a different probe is generated
as follows:

probeMap=new EmptyProbeMapImpl(aZone,this.getClass());

66 Agent-Based Modeling and Simulation with Swarm

Object

VarProbes

MessageProbe
A ProbeMap

FIGURE 3.20: Objects and probes.

probeMap.addProbe(Globals.env.probeLibrary.getProbeForVariable$inClass

("worldXSize",this.getClass()));

probeMap.addProbe(Globals.env.probeLibrary.getProbeForVariable$inClass

("worldYSize",this.getClass()));

probeMap.addProbe(Globals.env.probeLibrary.getProbeForVariable$inClass

("seedProb",this.getClass()));

probeMap.addProbe(Globals.env.probeLibrary.getProbeForVariable$inClass

("bugDensity",this.getClass()));

Globals.env.probeLibrary.setProbeMap$For(probeMap,this.getClass());

“varProbe” is set, which displays the the internal variables, i.e., worldXSize,
worldYSize, seedProb, and bugDensity.

After that, in “buildObjects” inside ObserverSwarm.java, the following
lines request probeDisplayManager for the generation of a specific “widget”:

Globals.env.createArchivedProbeDisplay (modelSwarm,

"modelSwarm");

Globals.env.createArchivedProbeDisplay (this, "observerSwarm");

Here, “this” is observerSwarm itself. The second argument’s string is the title
to be displayed when displaying the probe. The next line shows the instruction
to wait to start the execution in response to pressing the “start” button.

getControlPanel().setStateStopped();

The execution screen is shown in Fig. 3.21. As can be seen in the figure, four
windows are generated. These are

• Control button (Start, Stop, etc.)

• Fields (bug and bait) that worldRaster displays

• ModelSwarm’s variable display window

Multi-Agent Simulation Based on Swarm 67

FIGURE 3.21: simpleObserverBug2.

• ObserverSwarm’s variable display window

Out of these, the last two windows are the ones generated under the probe.
If some object is displayed, that object’s probe can be called by clicking it.

By “setButton$Client$Message” of “ZoomRaster,” it is possible to specify
an action taken when the mouse is clicked. For example, let us have a look at
the following definition of buildObjects inside the ObserverSwarm.java:

worldRaster.setButton$Client$Message(

3,bugDisplay,new Selector(bugDisplay.getClass(),

"makeProbeAtX$Y",true));

Here, the method “makeProbeAtX$Y” of Object2dDisplay is called, and the
probe of the object (instance of Bug) is generated as shown in Fig. 3.22(a).
By executing this method, if you right-click “bug,” you can see the variable
value. However, for that purpose, the internal variables inside Bug.java,

int xPos, yPos;

have to be changed to “public” declaration as follows:

public int xPos, yPos;

Let us confirm this feature by rewriting and then recompiling (note that
“*.class” files should be deleted before recompiling). After pressing “stop,”
you can right-click on the appropriately chosen bug. By doing that, the coor-
dinates (xPos, yPos) of the bug will be displayed on the window (Fig. 3.22(a)).

Again, let us try to change the coordinates of the bug, which are displayed
on pressing “stop” (do not forget to press “enter” at this point). Next, one

68 Agent-Based Modeling and Simulation with Swarm

(a) Default probe (b) Complete probe

FIGURE 3.22: Probes for Bug.

step at a time is executed every time “step” is pressed. Now you can confirm
whether the changed bug moves properly or not.

The first argument of worldRaster.setButton$Client$Message contains
the following meanings:

• 1. display on left-click

• 2. display on middle-click

• 3. display on right-click

The third argument of the function “selector” is true since the retrieving
method has been described in Objective-C.

Fig. 3.22(a) is the probe for Bug, and public methods can be registered
if specified. By default, only the fields are registered. If you right-click the
class name on the top left, all public fields and methods will be displayed
(Fig. 3.22(b)). In addition, if you click the button on the top right, all public
fields and methods of the superclass will be displayed. Therefore, the probe is
a powerful tool when working with a simulator.

3.2.8 simpleExperBug

“simpleExperBug” repeats the execution of models and displays those
statistics as a line graph.

It boots the ExperSwarm from the “main” function. Then, in the acti-
vation of ObserveSwarm, ModelSwarm goes in sequence (Fig. 3.23). Here we
use Swarm itself to control the repeated execution of ModelSwarm. The num-
ber of iterations of the experiments is retained in the internal variable called
“numModelsRun.” In “experSwarm,” the execution is made as follows:

1. “numModelsRun” is initialized to be 0 by the constructor of ExperSwarm.
It also provides VarProbe for the numModelsRun.

2. EZGraph is provided to display line graphs for the results inside
“buildObjects” methods.

Multi-Agent Simulation Based on Swarm 69

+xPos

+yPos

Bug

+getBugList()

+worldXSize

+worldYSize

+seedProb

+bugDensity

ModelSwarm

+displayFrequency

ObserverSwarm

+setButton$Client$Message()

ZoomRaster

+makeProbeAtX$Y()

Object2dDisplay

+addProbe()

ProbeMap

+setProbeMap$For()

+getProbeForVariable$inClass()

+getProbeForMessage$inClass()

ProbeLibrary

+createArchivedProbeDisplay()

Global.env

1

*

1 1

1
1

FIGURE 3.23: Execution sequence in simpleExperBug.

3. The action group “experActions” is generated which is made inside
“buildActions” and is set as a schedule, with the starting time as 0
and repeating every one time step.

• buildModel: Generates “varProbe”(modelProbeMap) of internal
variables only at the initial execution (when numModelsRun is 0).
Also sends the initializeModel method to parameterManager

and sets the parameters (parameters are updated at checkToStop).
Moreover, it executes buildObjects, buildActions, activateIn
for modelSwarm so as to construct the modelSwarm.

• RunModel: Sends the “run” method to modelSwarm and executes
once. After that, it increments the number of executions after dis-
playing (numModelsRun++).

• doStats: Displays the execution time of models. Execution time is
obtained by sending the method called “setTime” to modelSwarm

(described later).

• showStats: Performs the display of results.

• logResults: Displays the log of results (this part is not yet imple-
mented).

• dropModel: Frees the memory of modelSwarm.

• checkToStop: Sends the stepParameters method to
parameterManager and changes the parameters. As defined in
ParameterManager.java, this increases the value of seedProb and
bugDensity, by the specified value (seedProbInc, bugDensityInc).
In case the value exceeds the maximum set value (seedProbMax,
bugDensityMax), “null” is returned by the execution of the

70 Agent-Based Modeling and Simulation with Swarm

“stepParameters” method and the execution ends. In other
words, it depends on the execution of getControlPanel().

setStateStopped().

Whenever modelSwarm is constructed by the buildObjects method
of modelSwarm.java, the “time” variable is initialized to 0. In the next
buildActions method, the “modelSwarm” action group is generated consist-
ing of the following actions, and at starting time 0, it is set as a schedule of 1
time step.

• Execution of the “step” method for all the “bug” objects of bugList

• Execution of the “checkToStop” method for modelSwarm

In the “checkToStop” method, it terminates if no bait is left, else the time is in-
cremented (time++). The “setTime” method of modelSwarm only returns the
variable “time.” Therefore, by sending the method “setTime” to modelSwarm

at the execution termination time, you can obtain the time steps elapsed until
the execution termination for that iteration.

The object that displays the line graph in this way is “EZGraph.” EZGraph
is a wrapper of some of the objects, and is set by following steps:

1. Generation of instance

2. Settings of title and axis labels

3. Settings of display series

These correspond to the following parts of buildObjects inExperSwarm.java:

1: resultGraph=new EZGraphImpl(

1: this,"Model Run Times","Model #","Run Time","resultGraph");

2: resultGraph.enableDestroyNotification$notificationMethod

2: (this, new Selector(getClass(),"_resultGraphDeath_",false));

3: resultGraph.createSequence$withFeedFrom$andSelector(

3: "runTime",this,new Selector(this.getClass(),"getModelTime",

false));

The value of the time variable obtained by the method “setModelTime” is
successively displayed as the value of the y-coordinate. “runTime” in the last
line is an example name of this line graph.

The execution screen when ExperSwarm is executed is shown in Fig. 3.24.
Note that, in the declaration of class Bug of Bug.java, the “final” represents
the class that cannot be extended (cannot be inherited).

public final class Bug extends SwarmObjectImpl {

Multi-Agent Simulation Based on Swarm 71

FIGURE 3.24: ExperSwarm.

The method “setActionCache” is being used for making the scheduler as
a thread. For more information, see the manual.

In public Object buildObjects() of ModelSwarm.java, random num-
ber seeds can be provided as follows:

Globals.env.randomGenerator.setStateFromSeed(randomSeed);

where randomSeed is an integer value. Using the same seed can reproduce
specific simulation results. If we use a time variable in a seed, every time we
boot, simulations with different behaviors can be observed.

This page intentionally left blankThis page intentionally left blank

Chapter 4

Evolutionary Simulation

But we really know little about the minds of the lower an-
imals. It cannot be supposed, for instance, that male birds
of paradise or peacocks should take such pains in erecting,
spreading, and vibrating their beautiful plumes before the fe-
males for no purpose. We should remember the fact given on
excellent authority in a former chapter, that several peahens,
when debarred from an admired male, remained widows dur-
ing a whole season rather than pair with another bird (Charles
Robert Darwin [23, p. 490]).

4.1 Simulation of sexual selection

Why does the peacock have such wastefully beautiful feathers?
Why did the zebra develop such a striped pattern?
Biologists are divided in their opinions regarding the excessive beauty of

certain animals. Does it fulfill a function of distinguishing individuals, of pro-
moting mutual grooming, of protecting the body from harmful insects, or of
adjusting the body temperature? Perhaps the aesthetics are a handicap?

Researchers conceive that such wonderful patterns might be unsuitable for
adaptation. The maintenance of beauty requires energy (cost) and prevents
the animal from hiding effectively when discovered by predators. The feathers
of a peacock do not provide an advantage when running away from a threat.

Even Darwin was troubled by this problem when building arguments for
his theory of evolution. Why did evolution produce certain traits (behavioral
and physical characteristics) that are seemingly detrimental to individuals?
In this chapter, we present several hypotheses explaining this, together with
verification experiments based on genetic algorithms (GAs).

4.1.1 Sexual selection in relation to markers, handicaps, and
parasites

In the following paragraphs, let us consider the difference in opinion be-
tween Darwin and Wallace in regard to the striped pattern of the zebra.

73

74 Agent-Based Modeling and Simulation with Swarm

The zebra is conspicuously striped, and stripes on the open plains
of South Africa cannot afford any protection. Here we have no ev-
idence of sexual selection, as throughout the whole group of the
Equidae the sexes are identical in colour. Nevertheless he who at-
tributes the white and dark vertical stripes on the flanks of various
antelopes to sexual selection, will probably extend the same view
to the Royal Tiger and beautiful Zebra. [23, p. 302]

It may be thought that such extremely conspicuous markings as
those of the zebra would be a great danger in a country abounding
with lions, leopards, and other beasts of prey; but it is not so.
Zebras usually go in bands, and are so swift and wary that they
are in little danger during the day. It is in the evening, or on
moonlight nights, when they go to drink, that they are chiefly
exposed to attack; and Mr. Francis Galton, who has studied these
animals in their native haunts, assures me, that in twilight they are
not at all conspicuous, the stripes of white and black so merging
together into a gray tint that it is very difficult to see them at a
little distance. [123, p. 220]

Being the subject of “a delicate arrangement [13],” Wallace is famous in a
paradoxical sense (one of his achievements in biology was the proposal of the
Wallace boundary found in biota). He and Darwin independently and almost
simultaneously devised the theory of evolution by natural selection, and the
paper sent by Wallace from the Malay Archipelago surprised the slow writer
Darwin. Eventually, both papers were presented simultaneously in 1858 at the
Linnean Society after Darwin had made “minor adjustments” in relevant parts
of his paper.

In On the Origin of Species, Darwin argues that a female chooses a mate
after seeing a display of marvelous plumage and unusual, outlandish body
movements [21A]. Being chosen by the opposite sex in this way is known as
“elimination through sexual selection” or simply “sexual selection.”

The law of battle for the possession of the female appears to prevail
throughout the whole great class of mammals. Most naturalists will
admit that the greater size, strength, courage, and pugnacity of the
male, his special weapons of offence, as well as his special means
of defence, have been acquired or modified through that form of
selection which I have called sexual. This does not depend on any
superiority in the general struggle for life, but on certain individ-
uals of one sex, generally the male, being successful in conquering
other males, and leaving a larger number of offspring to inherit
their superiority than do the less successful males. [23, ch. XVIII]

Fisher supported the theory of sexual selection proposed by Darwin
(Fig. 4.1). In a seminal work entitled The Genetical Theory of Natural Se-

Evolutionary Simulation 75

FIGURE 4.1: The sexual selection.

lection, Fisher presented an adequate explanation of the female animal pref-
erences described by Darwin in his theory [36A]. The premise of Fisher’s the-
ory is that successful achievement generates further successful achievement,
resulting in positive feedback with the potential for explosive growth. For ex-
ample, if the preference for a long tail becomes increasingly successful, the
tails of males in later generations will become longer, and females will prefer
the males with even longer tails. This results in the development of yet longer
tails and a preference for long tails in females. Since success depends on the
rate of occurrence, the process progresses in a self-reinforcing manner.

The optimal strategy is that practiced by the majority, and mimicking the
actions adopted by most individuals is thus preferable. Therefore, selection
based on a long tail and the preference for a long tail progress together. The
appearance of males and the preference in females for a certain appearance
evolve hand-in-hand in such a way that they reinforce each other. This process
is considered to have eventually given rise to the extraordinary tail feathers
of the peacock, and explains why the evolution and preference of a certain
appearance often exceeds a moderate level and becomes a runaway process [21,
p. 284]. Such rapid growth is referred to as “the runaway effect” by Fisher.

In contrast, Wallace adopted the point of view that coloration is ultimately
derived from “protective colors and marks.” This idea about protective colors
explains both concealing coloration (which hides the body by deceiving the
eyes of an adversary) and conspicuous coloration. In other words, Wallace
points out that although it might appear at first sight that the coloration of
some animals is extremely noticeable, this coloration is in fact concealing in
the natural habitat of the animal. Examples supporting this view include the
zebra, the tiger, and the giraffe, which blend seamlessly into their respective
native environments. In addition, inedible animals that use bright coloration as
a warning, and animals that mimic such coloration, are in excellent agreement
with this explanation. Furthermore, colored markings distinguish individuals

76 Agent-Based Modeling and Simulation with Swarm

FIGURE 4.2: The handicap principle.

of the same species, which serves as an aid for social animals (such as ants and
bees) to stay together or to recognize potential partners. The bright coloration
of various birds can also be explained in this way [21, pp. 176–178].

Although all the details about coloration as proposed by Wallace do not
necessarily hold true, and despite the large number of demonstrated coun-
terexamples, the general outline of Wallace’s argument is well constructed,
and has been adopted as a fundamental viewpoint in Darwinian theory.

Conversely, the “handicap principle” proposed by the Israeli biologist
Amotz Zahavi accounts for the seemingly paradoxical existence of animals
that pay an extraordinarily high cost for their appearance. With its extrava-
gant feathers, the peacock makes a statement that it can afford its beautiful
appearance, since its nourishment is plentiful and its agility and stamina elim-
inate the risk of being discovered by predators. Thus, the peacock is in a supe-
rior position even with the disadvantage imposed by this handicap (Fig. 4.2).
In the same manner, bucks with extraordinary horns make a statement that
despite their handicap, their nourishment is sufficient and they are strong
enough to win a fight.

Why does the gazelle reveal itself to a predator that might not
otherwise spot it? Why does it waste time and energy jumping up
and down (stotting) instead of running away as fast as it can? The
gazelle is signaling to the predator that it has seen it; by “wasting”
time and by jumping high in the air rather than bounding away,
it demonstrates in a reliable way that it is able to outrun the
wolf. [130, pp. xiii–xiv]

A third theory that emphasizes the role of parasites was recently proposed,
sparking controversy. This theory was developed by the animal behaviorist
Hamilton, and resembles the handicap principle. Using the male’s feathers as
a clue, a female assumes that she is choosing a partner with superior genes. A
male’s genes determine its immunological resistance to parasitic agents (bac-

Evolutionary Simulation 77

FIGURE 4.3: The parasite principle.

teria, viruses, and parasites), since maintaining large beautiful feathers is diffi-
cult if the body has been severely damaged by parasites. Therefore, choosing a
male with spectacular feathers equals choosing that with strong resistance to
parasites (and hence strong capability; Fig. 4.3). Although, up to this point,
Hamilton’s theory shares the same line of thought as the handicap theory,
it differs drastically from the latter in the following sense. While predators
in Zahavi’s theory are more or less known, new parasites constantly emerge,
and the parasites themselves are extremely diverse. Therefore, a consider-
ably stronger resilience must be maintained than that necessary for avoiding
predators. The magnificence of a male’s feathers clearly shows its resilience
against current parasites, and the female wishes to obtain this information
by all means possible. Hence, the feathers of the peacock have acquired this
extravagance, which also appeals to the female.

To verify his theory, Hamilton investigated several species of birds (Passer-
iformes living in North America) in terms of their resistance to parasites, by
ranking on a six-level scale the plumage and the song complexity of males.
The results were subsequently compared with research data on the concentra-
tion of trematodes and protozoans in the blood of these birds, and a correla-
tion with assigned ranks was investigated. Unsurprisingly, species with more
extravagant feathers and more complex songs also had greater resilience to
parasites. Investigating the feathers of the females, the correlation was almost
indistinguishable from that observed in males. Hamilton’s parasite hypothesis
was thus considered to be verified. However, a number of problems with this
experiment have been pointed out, and the debate continues.

We now turn our attention to the use of GAs in sexual selection research.

4.1.2 The Kirkpatrick model

Mark Kirkpatrick [69] studied a mathematical model of sexual selection
based on population genetics. In this model, each individual carries two types
of genes denoted T (traits, features) and P (preferences), and each gene has
a pair of alleles (T0, T1 and P0, P1, respectively). P encodes the preference
of a female with respect to trait T of a male such that females carrying Pi

78 Agent-Based Modeling and Simulation with Swarm

prefer males carrying Ti (i = 0, 1). These preferences depend on the rate of
occurrence, and the probability of a Pi female breeding with a Tj male is set
as

P (T0 | P0) =
a0t

′
0

t′1 + a0t′0
, (4.1)

P (T1 | P1) =
a1t

′
1

t′0 + a1t′1
, (4.2)

P (T1 | P0) = 1− P (T0 | P0), (4.3)

P (T0 | P1) = 1− P (T1 | P1). (4.4)

Here, t′k denotes the rate of occurrence of mature Tk males.
Let us assume that trait T1 is detrimental to survival. This precisely re-

flects the scenario that predators can easily discover peacocks with beautiful
feathers, which are preferred by peahens. We therefore consider it more diffi-
cult for males carrying T1 to survive than males carrying T0. Specifically, we
take the probability of survival of T1 males as 1 − s times that for T0 males
(where 0 < s < 1 is a real number). Although males also carry P , this gene is
not expressed in their appearance, and similarly for T in females.

In the Kirkpatrick model, the initial population has the same number of
males and females. In each successive generation, a proportion of T1 males
die before procreating; explicitly, s times the number of T1 males are killed.
Each female then chooses a male for mating, where Pi females prefer Ti males
following Eqs. 4.1 and 4.2. After breeding, the next generation is produced,
and this process is repeated for a certain number of generations.

Kirkpatrick performed a simulation without devising an actual version of
this system. As a result, Kirkpatrick derived an equation where the rate of
occurrence of P1 females and T1 males is balanced (a state of equilibrium,
where no further changes occur). Here, taking p1 and t1 as the respective
occurrence rates of P1 and T1, Kirkpatrick presented the following equilibrium
equation.

t1 =

0 p1 ≤ V1,
(a0a1−1)(1−s)

(a0+s−1)[a1(1−s)−1]p1 − 1
a1(1−s)−1

V1 < p1 < V2,
1 V2 ≤ p1.

(4.5)

Here,

V1 =
a0 + s− 1

(a0a1 − 1)(1− s)
,

V2 =
a1(a0 + s− 1)

(a0a1 − 1)
.

In Fig. 4.4, Eq. 4.5 is plotted with respect to several parameters. If t1 and p1
are now taken to be the respective proportions of T1 and P1 genes, depending

Evolutionary Simulation 79

FIGURE 4.4: Kirkpatrick model and its equilibrium state (with permission
of MIT Press [20]).

on the parameters and the initial conditions, the occurrence rate of T1 takes
an arbitrary value between 0 and 1. For both T0 and T1 to be preserved in
the population, the following condition must be satisfied:

1− a0 < s < 1− 1

a1
, (4.6)

otherwise the population becomes stationary with respect to either T0 or T1.
The results indicate that an infinite number of equilibrium states exist for

the occurrence rates of the genes. Hence, the equilibrium states lie on a curve
rather than discrete points. Intuitively, natural selection should favor males
carrying T0; however, if the occurrence of P1 is sufficiently high, T1 males are
preferred due to sexual selection, resulting in competition between natural
and sexual selection.

In this model, changes in the occurrence rate of P depend only on the
occurrence rate of T , which shows that once the population has entered an
equilibrium state, it remains on this equilibrium path. However, this situation
does not necessarily hold true when the occurrence rates of the genes are al-
tered by external forces (such as genetic drift, migration, or sudden mutation).

4.1.3 Simulation using GAs

Collins and Jefferson simulated the Kirkpatrick model by using genetic
algorithms [20], whereby each individual contained two chromosomes—one
carrying gene P and the other carrying gene T . In females, only P was ex-
pressed, while in males only T was expressed, and each gene took one of two
values (T0 or T1 for T and P0 or P1 for P). The population contained 131,072
individuals, with the same number of males and females at initiation. For each
new generation, a fixed proportion of the T1 males died before procreating,

80 Agent-Based Modeling and Simulation with Swarm

FIGURE 4.5: Evolutionary results after 500 generations (with permission of
MIT Press [20]).

after which each female chose a mate from the remaining males, where mating
consisted of gene recombination. Additionally, a sudden mutation could occur
in all genes with a probability of 0.00001. This simulation weakened several
assumptions of the Kirkpatrick model by assuming sudden mutations and a
finite population size.

Figure 4.5 shows the results after 500 generations, where a0 = 2.0, a1 = 3.0,
s = 0.2, µ = 0.00001, and N = 131, 072 are taken as the parameter values.
The gene occurrence (of T1 corresponding to P1) in the final population is
plotted over 51 iterations for various initial occurrences, and the results of
Kirkpatrick’s analysis are also included. The figure clearly shows that even
with weaker assumptions the numerical results almost completely coincide
with the analytical results.

Next, let us consider the evolutionary course until the population reaches
equilibrium in the case where a new gene is inserted. Figure 4.6 shows the
transitions for a population with an abundance of P1 genes, but no T1 genes.
The initial generation thus had P1 and T1 proportions of p1 = 0.7 and t1 = 0.0,
respectively, and the parameter values were a0 = 2.5, a1 = 2.0, s = 0.2, µ =
0.00001, and N = 131,072. The rhomboids in the figure indicate the states
for every 50 generations. Although 100 generations were required for a suffi-
cient number of T1 genes to emerge, after that point the population rapidly
converged toward equilibrium.

This experiment is a remarkable demonstration of the power of female
preferences and sexual selection. The females are less interested in the males
whose survival is easier (a0 > a1), and since these T0 males are not chosen as
often, eventually the number of males carrying T1, whose survival is more dif-
ficult, increases rapidly and dominates the population. Figure 4.7 shows that
the average number of surviving T0 males decreases as the number of T1 males
increases. This result is a clear demonstration of the “runaway effect” proposed

Evolutionary Simulation 81

FIGURE 4.6: Evolutionary transition in the case where a new gene is in-
serted (with permission of MIT Press [20]).

by Fisher. Regardless of the fact that P and T are located in different chro-
mosomes, a positive correlation is formed between P1 and T1. The increased
preference for T1 is also shown by the simulation, with the proportion of P1

increasing from 0.7 to over 0.8.
Moreover, Collins and Jefferson conducted experiments with weakened as-

sumptions. In one of these experiments a spatial restriction for choosing a
mating partner was imposed (a more realistic model, since most animals do
not mate with distant partners). In another experiment, diploidic organisms
were provided with dominant and recessive genes. These two experiments are
difficult to understand from a mathematical viewpoint, and in both experi-
ments Collins and Jefferson found considerably different behavior compared
with Kirkpatrick’s original model. In the case where a spatial restriction was
imposed on mating, T1 spread slowly across the population; however, in the
case of diploidic organisms, T1 was unable to spread across the population
unless the gene was prevalent from the beginning.

Apart from the research mentioned above, several other intriguing studies
on sexual selection have been reported recently. For example, Werner exam-
ined the changing of characteristics in a population as a result of sexual se-
lection, claiming that these changes are almost unlimited [124]. In addition,
Werner and Todd showed that sexual selection in which detrimental features
are preferred can result in the extinction of a species, and he also conducted
simulations where evolution of the signal used by males to attract females
was modeled through sexual selection [125]. Geoffrey Miller compared sexual
selection to a venture company, and stated a theory emphasizing the possi-
bility for progressive evolution that supports slow and conservative natural
selection [85]. Furthermore, the application of sexual selection to engineering
is also conceivable, for example, in interactive design systems, where certain

82 Agent-Based Modeling and Simulation with Swarm

S
u
rv

iv
a
l
ra

ti
o
s
 o

f
m

a
le

s

Generations

FIGURE 4.7: Survival ratios (male) vs. generations (with permission of MIT
Press [20]).

types of runaway effect might prove to be productive. Such applications con-
stitute an important topic for future research.

In this section, we introduced sexual selection together with several alter-
native theories as examples of simulations based on a GA. These arguments
are not yet settled, and three of the theories presented (sexual selection, the
handicap principle, and the parasite theory) cannot be considered in terms of
being correct or incorrect. This matter is implied in the words of Darwin (see
the quote at the beginning of this chapter).

4.2 Swarm-based simulation of sexual selection

Let us try to implement the simulation of gender selection based on the
“Kirkpatrick” model in Swarm. In this model, the selection process for each
generation is implemented as follows:

1. Each individual dies at a certain rate. Similarly, individuals die when
they reach their life span.

2. At a rate corresponding to the gene frequency, the surviving females
pair up with males and choose their traits (T gene).

3. Females mate with the male with chosen traits, and give birth to chil-
dren. The child’s genotype is determined by a genetic variation of the
parents’ genotype.

In this program, parameters to be specified are described in
“sexSelection.scm” and are as follows:

Evolutionary Simulation 83

• The initial group size: N

• The initial female male ratio (ratio of males to total population):
male_femaleRatio

• The initial T genotype ratio (ratio of T1 genotype to total population):
tGeneratio

• The initial P genotype ratio (ratio of P1 genotype to total population):
pGeneRatio

• The probability of death of males of T0 genotype: maleDeathProb

• The probability of extinction of males of T genotype: sRatio, males of
T1 genotype will survive with (1−sRatio) times the probability as T0

genotype males

• The probability of extinction of females: femaleDeathProb

• Mating probability a0 by the Kirkpatrick model: a0Coeff

• Mating probability a1 by the Kirkpatrick model: a1Coeff

• End generation of simulation: EndTime

• Lifetime of an individual: lifetime

• Children born by mating once: numChild

Executing the program displays the genotype frequency of each genotype
and the number of individuals in each genotype (Fig. 4.8). Simulation stops
when either males or females become extinct or the end generation is reached.

An individual’s life and/or number of children can be specified by the
parameters mentioned above. Furthermore, setting the extinction probability
other than the T0 genotype is also possible. Through this, the simulation of
very reproductive individuals and individuals with longer life can be done.

Note that in the Kirkpatrick model, geographical conditions are not used,
and basically random mating is done. Let’s try to implement the gender se-
lection process in a two-dimensional grid model in Swarm. In the simulation
below, the rules of movement of an individual are as follows:

1. Female chooses one mating partner from among the males in sight (a
square with side lengths of 2×visibility+1) depending on the fre-
quency and a0, a1, and produces a child.

2. After that, the male and the female both move randomly.

The state of execution is shown in Fig. 4.9. The display in simulation and
graphs is as follows:

84 Agent-Based Modeling and Simulation with Swarm

FIGURE 4.8: Swarm simulation based on Kirkpatrick’s model.

Orange male_t0 Male expressing the traits of T0

Blue male_t1 Male expressing the traits of T1

Green female_p0 Female expressing the traits of P0

Yellow female_p1 Female expressing the traits of P1

4.3 Simulation of the prisoner’s dilemma

4.3.1 The prisoner’s dilemma

Two suspects (A and B) have been arrested by the police for a certain crime
(Fig. 4.10). Although the suspects are accomplices and their guilt is strongly
suspected, insufficient evidence exists to prove their guilt beyond doubt, and
therefore the police separate the suspects and wait for a confession. A and B
can adopt one of two strategies, namely, to confess (i.e., to defect, denoted
by D below) or refuse to confess (i.e., to cooperate, denoted by C below),
as shown in Table 4.1. The case where A does not confess is labeled A1,
and the case where A confesses is labeled A2. Similarly for B, B1 denotes a
refusal to confess and B2 denotes a confession. If neither suspect confesses,
both of them would receive two-year sentences; however, if only one of them
confesses, the one confessing would be sentenced to only one year due to
extenuating circumstances, while the other suspect would receive a five-year

Evolutionary Simulation 85

FIGURE 4.9 (See Color Insert): Sexual selection in a two-dimensional
space.

sentence. Finally, if both suspects confess, both of them would receive three-
year sentences.

Therefore, although the sentence is only two years for both suspects if
neither of them confesses, the loss for one suspect is considerably greater
if a confession is obtained from only their accomplice. The dilemma here is
whether A and B should confess. In terms of pure strategy, it is straightfor-
ward to show that the pair (A2, B2) is an equilibrium point, and that no
other equilibrium points exist. Here, the equilibrium point indicates that if
either suspect adopts confession as their strategy, their accomplice is at a dis-
advantage if they do not adopt the same strategy. Conversely, if the suspects
adopt the strategic pair (A1, B1), neither suspect confesses in the belief that
their accomplice will not confess either, and the sentence for both of them is
only two years. This sentence is obviously a more favorable outcome than the
equilibrium point for both suspects, but since the suspects are separated from
each other when taken into custody, they are unable to cooperate. This type
of game is known as the prisoner’s dilemma.

Situations such as those arising in the prisoner’s dilemma are also often
encountered in biology as well as in human society. For example, if an appro-

86 Agent-Based Modeling and Simulation with Swarm

FIGURE 4.10: The prisoner’s dilemma.

TABLE 4.1: Benefit and cost in the prisoner’s dilemma.

(a) Benefit and cost from the viewpoint of A
B1 B2

B: not confess (C) B: confess (D)

A1 −2 −5
A: not confess (C) Two years of imprisonment Five years of imprisonment

A2 −1 −3
A: confess (D) One year of imprisonment Three years of imprisonment

(b) Benefit and cost from the viewpoint of B
B1 B2

B: not confess (C) B: confess (D)

A1 −2 −1
A: not confess (C) Two years of imprisonment One year of imprisonment

A2 −5 −3
A: confess (D) Five years of imprisonment Three years of imprisonment

Evolutionary Simulation 87

priate incentive is present, the following situations can be modeled similarly
to the prisoner’s dilemma.

• Social interaction between animals in nature:

– Social grooming in primates

– Cleaner fish and the fish that they clean

– Parasites and hosts

• Social interaction between humans:

– Interaction between countries

– Interaction between tribes

4.3.2 Iterated prisoner’s dilemma

This section considers an extended version of the prisoner’s dilemma known
as the “iterated prisoner’s dilemma” (IPD), in which the prisoner’s dilemma
is repeated a number of times with the same participants, and a final score
is obtained as the sum of the scores in all iterations. Hereinafter, the choice
made at each step is referred to as a move, or more precisely, a move indicates
either cooperation (C: no confession) or defection (D: confession).

As with the prisoner’s dilemma, situations similar to an IPD can regularly
be observed in nature and in human society. A well-known example is regur-
gitation in vampire bats [25]. These small bats, living in Central and South
America, feed on mammalian blood at night. However, their bloodsucking en-
deavors are not always successful, and at times they face starvation. Therefore,
vampire bats that successfully fed will regurgitate part of their food and share
it with other vampire bats that were unable to find food. Bats who receive food
in this manner later return the favor. Wilkinson et al. observed 110 instances
of regurgitation in vampire bats, of which 77 cases were from a mother to her
children, and other genetic relations were typically involved in the remaining
cases [120A]. Nevertheless, in several cases regurgitation was also witnessed
between companions sharing the same den, with no genetic affinity. Model-
ing this behavior on the basis of the prisoner’s dilemma, where cooperation
is defined as regurgitation and defection is defined as the lack thereof, yields
results similar to those in Table 4.2. A correlation between weight loss and the
possibility of death due to starvation has also been found in bats. Therefore,
the same amount of blood is of completely different value to a well-fed bat
immediately after feeding and to a bat that has almost starved to death. In
addition, it appears that individual bats can identify each other to a certain
extent, and as a result they can conceivably determine how a certain compan-
ion has behaved in the past. Thus, it can be said that bats will donate blood
to “old friends.”

To set up the IPD, one player is denoted as P1 and the other party is

88 Agent-Based Modeling and Simulation with Swarm

TABLE 4.2: The strategy of vampire bats [25].
Companion cooperates Companion defects

I cooperate Reward: high Compensation: zero

On the night of an unsuccess-
ful hunt, I receive blood from
you and avoid death by starva-
tion. On the night of a success-
ful hunt, I donate blood to you,
which is an insignificant expen-
diture to me at that time.

Although on a successful night
I donate blood to you and save
your life, you do not donate
blood to me when my hunt is
unsuccessful and I face death by
starvation.

I defect Temptation: high Penalty: severe

You save my life when my hunt
is unsuccessful. However, on a
successful night, I do not donate
blood to you.

I do not donate blood to you
even when my hunt is successful,
and death through starvation is
a real threat to me on the night
of an unsuccessful hunt.

TABLE 4.3: Codes and benefit chart in the IPD.

The other party (P2) does
not confess

The other party (P2) con-
fesses

P2 = C P2 = D

I (P1) do not confess Benefit: 3 Benefit: 0
P1 = C Code: R Code: S

I (P1) confess Benefit: 5 Benefit: 1
P1 = D Code: T Code: P

denoted as P2. Table 4.1 is then used to create Table 4.3, describing the
benefit for P1. In this table, larger values indicate a higher benefit (which in
the prisoner’s dilemma is in the form of shorter imprisonment terms for the
suspects).

Here, the following two inequalities define the conditions required for the
emergence of the dilemma:

T > R > P > S, (4.7)

R >
T + S

2
. (4.8)

The first inequality is self-explanatory, while the implications of the second
one will be explained later.

Strategies that can be considered for the IPD include

1. All-C: Cooperation (no confession) regardless of the move of P2

Evolutionary Simulation 89

2. All-D: Defection (confession) regardless of the move of P2

3. Repeated cooperation and defection

4. RANDOM: a move is decided randomly for each iterate

The cooperative solution, which does not appear in a single game, evolves
in the IPD. Cooperation becomes inevitable since defection entails subsequent
revenge. An example of a well-known cooperation strategy is “tit for tat”
(TFT):

1. The first move is performed at random.

2. All subsequent moves mirror P2’s move in the previous iteration.

In other words, this strategy follows the maxim “Do unto others as they have
done unto you (an eye for an eye).” Thus, P1 confesses if P2 has confessed
in their previous move, and vice versa. This strategy is recognized as being
strong in comparison with other strategies (i.e., the total score is usually high).
Variants of TFT include the following.

1. Tolerant TFT: Cooperate until P2 defects in 33% of their moves.

2. TF2T: Defect only if P2 has defected twice in a row.

3. Anti-TFT: The opposite strategy to TFT.

The benefit at each move and the total score are compared for All-C, All-D,
TFT, and Anti-TFT strategies when pitted against each other in Table 4.4.
The following can be inferred from the results presented in the table:

1. TFT is equivalent or superior to All-C.

2. TFT is generally superior to anti-TFT. However, anti-TFT is superior
if P2 adopts the All-C strategy.

3. All-C yields a lower score against Anti-TFT and All-D; however, it per-
forms well against a TFT strategy.

4. All-D can outperform TFT.

In 1979, Axelrod extended an invitation to a number of game theorists and
psychologists to submit their strategies for IPD [5]. Subsequently, a tourna-
ment was held using the 13 submitted strategies in addition to the RANDOM
strategy. In this tournament, each strategy was set in turn against the oth-
ers, including itself, in a round-robin pattern. To avoid stochastic effects, five
matches were held for each strategic combination. Each match consisted of
200 iterations of the prisoner’s dilemma in order to ensure a sufficiently long

90 Agent-Based Modeling and Simulation with Swarm

TABLE 4.4: Comparison of the performance of the four strategies when
pitted against each other.

Strategy of P2 (score/total score)
Strategy of P1 All-C TFT anti-TFT All-D

All-C 3333/12 3333/12 0000/0 0000/0
TFT 3333/12 3333/12 0153/9 0111/3

Anti-TFT 5555/20 5103/9 1313/8 1000/1
All-D 5555/20 5111/8 1555/16 1111/4

interaction, as described below. Rather than considering the outcome of indi-
vidual matches, the ultimate ranking was determined on the basis of the total
score.

The winner of the contest was the TFT strategy proposed by Anatol
Rapoport, a psychologist (and philosopher) at the University of Toronto. This
program was the smallest of those submitted, consisting of only four lines of
BASIC code. Upon analyzing the results, Axelrod derived the following two
morals:

1. One should not deliberately defect from the other party (politeness).

2. Even if the other party defects, one should respond with defection only
once and should not hold a grudge (tolerance).

Any strategy abiding by these morals is referred to as being “nice.” Axelrod
considered that a superior strategy could be derived based on these two morals.
He held a second tournament, this time running a wide advertising campaign
asking for entries through general computer magazines and publicizing the
above two morals as a reference for the participants. Although this call for
entries attracted a broad spectrum of participants from six countries, the TFT
strategy proposed by Rapoport again emerged victorious, and Axelrod stated
various other morals upon analyzing the results from both contests [5].

Looking at the scores obtained in the tournaments, nice strategies similar
to TFT dominated the top half of the list. In contrast, the majority of the
strategies in the bottom half of the list involved deliberate defection, while the
lowest score was obtained by the RANDOM strategy. The question naturally
arises as to why this set of circumstances occurs.

Let us consider the strength of the TFT strategy. First, we focus on the
case where two nice strategies are competing. Since both strategies denounce
deliberate defection, each of the 200 moves is one of cooperation. As a result,
the two parties receive a total of 3 × 200 = 600 points. This situation is dif-
ferent when a nice strategy is competing against one that promotes defection.
For example, consider competition between JOSS and TFT strategies. JOSS
behaves almost identically to TFT; however, it defects on random occasions,
corresponding to a player with a nice strategy occasionally being tempted

Evolutionary Simulation 91

to cheat. Thus, JOSS occasionally obtains five points by outperforming TFT
(which supports cooperation and denounces defection), and although they are
almost identical, JOSS appears to provide a greater benefit.

In the competition, TFT and JOSS cooperated for the first five moves.

TFT: CCCCC

JOSS: CCCCC

At this point, JOSS switched its tactics and defected (cheated).

TFT: CCCCCC

JOSS: CCCCCD

^

Although at the next move JOSS returned to its nice tactics, TFT took revenge
by defecting.

TFT: CCCCCCD

JOSS: CCCCCDC

^

From here on, the moves of the two strategies alternated between defection
and cooperation,

TFT: CCCCCCDCDCD

JOSS: CCCCCDCDCDC

^^^^

and the respective scores at that juncture became

JOSS: 5 0 5 0 Ąc

TFT: 0 5 0 5 Ąc

giving an average of 0+5
2 = 2.5, which is less than the 3 points obtained if the

two parties had continually cooperated (cf. the assumption in eq. 4.8).
Next, JOSS cheated again and defected on the 25th move,

TFT: CCCCCCDCDCD...D

JOSS: CCCCCDCDCDC...D

^

resulting in reciprocal defection until the end of the match.

TFT: CCCCCCDCDCD...DDDDDDD

JOSS: CCCCCDCDCDC...DDDDDDD

^^^^^^

92 Agent-Based Modeling and Simulation with Swarm

This chain of enmity yielded an average score of 1, and the match ended
unchanged since neither side was able to forgive the other’s defection and
restore cooperation.

At the conclusion of the match, the total score was 241 to JOSS and 236
to TFT, lower than the 600 points that they could have obtained if they had
cooperated throughout.

Hence, TFT has the following characteristics:

1. TFT never attacks the other party. The score obtained by TFT is the
same or lower than that of the other party.

2. TFT does not hold a grudge. TFT seeks revenge only once, rather than
punishing the other party repeatedly. In this way, TFT does not disre-
gard the chance for reconciliation with the other party.

3. TFT does not require a victim, in other words, it does not exploit the
other party. As a result, two players adopting the TFT strategy can
enjoy a mutually beneficial relationship.

Conversely, although the All-D strategy can obtain the highest score of 5
points when competing against the All-C (victim) approach, the performance
of using All-D is lower when competing against a different strategy.

An important assumption in the IPD is that the players do not know
when the competition ends, otherwise it would allow for tactics based on “the
ultimate defense measure” (always defecting on the last move). In addition,
cooperative evolution requires a long competition since a relationship of trust,
which is a prerequisite for cooperation, cannot be established in the short
term. This idea can be explained using examples such as a student canteen
(which adopts an honest business policy of expecting repeat clients in order
to establish a long-standing relationship with students) and seaside noodle
shops (which survive due to first-time customers, even with expensive and
unappetizing food).

Next, we explain the concept of an evolutionarily stable strategy (ESS),
whereby once a certain strategy becomes dominant in a population, invasion
by another strategy is difficult. In the case of two competing strategies, A
and B (B ĄĆ A), by denoting the benefit associated with A as E(A,B),
the condition for an ESS is that either E(A,A) > E(B,A) or both E(A,A) =
E(B,A) and E(A,B) > E(B,B) are satisfied. Hence, All-C is obviously not an
ESS. For example, if the All-D strategy is introduced into an All-C population,
the entire All-C population would be destroyed by a single individual with the
All-D strategy. Curiously, TFT is also not an example of an ESS.

Some disadvantages of TFT include

• In response to noise (when unintentional actions are made by mistake),
TFT’s moves begin to alternate between cooperation and defection.

• TFT cannot exploit the All-C strategy (since it usually cooperates).

Evolutionary Simulation 93

TABLE 4.5: Comparison between Pavlov and TFT strategies.
preceding move
P1 P2 Pavlov strategy TFT strategy
C C C C
C D D D
D C D C
D D C D

To address these issues in TFT tactics, the so-called Pavlov strategy has been
proposed, whereby P1’s current move is determined not only by the previous
move of P2, but also by P1’s preceding move (Table 4.5). For example, if an
incorrect choice has been made (e.g., if P1 cooperates or defects, expecting
P2 to cooperate, and instead P2 defects), the previous choice is reversed in
the current move. On the contrary, if P2 cooperated while P1 defected in the
previous move, changing this choice in the current move is not necessary. The
Pavlov strategy is considered to be robust with respect to noise. For example,
in a competition where both players have adopted the Pavlov strategy, even if
the cooperative relationship is broken due to noise and results in moves (C,D),
a cooperative relationship is returned to via moves (D,D) followed by (C,C).
Nevertheless, this does not imply that the Pavlov strategy is superior to the
TFT strategy. For instance, although the TFT strategy consistently defects
against the All-D strategy, the Pavlov strategy alternates between cooperation
and defection, and its average score is lower than that for TFT.

IPD has been extended in various ways and has been actively used in
research in the fields of AI, AL, and evolutionary economics [70]. Examples
include studies in which strategic sexual selection is implemented by intro-
ducing the concept of gender, and studies where competition is extended to
include three or more individuals, resulting in the emergence of cooperation
and conspiracy.

Axelrod added norms to the prisoner’s dilemma [6]. Here, defectors may
be socially sanctioned by reduction of their score. Defecting players had a
possibility to be detected by other players, and a strategy to decide whether
to penalize a defector that was found (whether to reduce the score of the
defector) was added to the strategy to play the prisoner’s dilemma.

All players play one game with all other players in each generation. Every
time a player defects, its defection may be detected by other players in the
population. The detected defector is penalized according to the detector’s
tendency to retaliate, which is given as a probability.

The evolution process is applied after all battles finish. The strategy of
children may change by mutation, and children may have boldness and a
strong tendency to retaliate that are different from their parents. Setting no
norms would result in the entire population becoming defectors.

In addition, Axelrod added metanorms, which is a norm to penalize de-

94 Agent-Based Modeling and Simulation with Swarm

tectors that do not penalize defectors, because collaborators will not always
evolve when only norms exist. When players that penalize other players who
forgive defectors were introduced, there was a tendency for former players to
evolve to penalize defectors and for defectors that were penalized to become
cooperative.

4.3.3 IPD using GAs

This section describes an experiment based on research conducted by Co-
hen et al. [19], where an IPD strategy evolves by using a GA. As before, the
first player is denoted as P1 and the other party is denoted as P2, and the
benefit chart in Table 4.3 is used to score the moves.

In this experiment, errors (i.e., when an unintentional move is made) and
noise (where the move communicated to the opponent is different from the
actual move) are introduced, and the emergence of cooperation in the case
of incomplete information is examined. There are 256 players in the IPD,
arranged on a 16× 16 lattice, and the competition between players consists of
four iterations. A single experiment consists of 2500 periods, where a single
period comprises the following steps:

• Competitions between all players

• Learning and evolution of strategies in accordance with an appropriate
process

The basic elements of the experiment are as follows.

1. Strategy space—an expression of the strategy adopted by a player, which
is divided into the following two types.

(a) Binary: pure strategy

(b) Continuous: mixed strategy (stochastic strategy)

2. Interaction process—the set of opponents competing with a player is
referred to as the neighborhood of that player. The neighborhood can
be chosen in six ways.

(a) 2DK (2 Dimensions, Keeping): the neighbors above, left, below, and
right (NEWS: north, east, west, and south) of each player on the
lattice are not changed, and the neighborhood is symmetrical. In
other words, if B is in the neighborhood of A, then A is necessarily
in the neighborhood of B.

(b) FRNE (Fixed Random Network, Equal): for each agent, there is
a neighborhood containing a fixed number of agents (four). These
agents are selected at random from the entire population and re-
main fixed until the end. The neighborhood is symmetrical.

Evolutionary Simulation 95

(c) FRN (Fixed Random Network): almost the same as FRNE, al-
though with a different number of agents in the neighborhood of
each agent. The neighborhood is unsymmetrical. The average num-
ber of agents is set to 8.

(d) Tag: a real number between 0 and 1 (a tag or sociability label)
is assigned to each agent, introducing a bias whereby agents with
similar tags can more easily compete with each other.

(e) 2DS (2 Dimensions, 4 NEWS): the same as 2DK, except that the
agents change their location at each period; thus NEWS is set anew.

(f) RWR (Random-With-Replacement): a new neighborhood can be
chosen at each period. The average number of agents in the neigh-
borhood is set to 8, and the neighborhood is unsymmetrical.

3. Adaptation Process: the evolution of a strategy can follow any of the
following three paths.

(a) Imitation: searching the neighborhood for the agent with the high-
est average score and copying its strategy if this score is larger than
one’s own score.

(b) BMGA (Best-Met-GA): almost the same as Imitation; however, an
error is generated in the process of copying. The error can be any
of the following.

i. Error in comparing the performance: the comparison includes
an error of 10%, and the lower estimate is adopted.

ii. Miscopy (sudden mutation): the mutation rate for genes in the
mixed strategy (Continuous) is set to 0.1, with the addition of
Gaussian noise (mean, 0; standard deviation, 0.4). In addition,
the rate of sudden mutation per gene in the pure strategy (Bi-
nary), in which probabilities p and q are flipped (i.e., 0 and 1
are swapped), is set to 0.0399. When p mutates, probability i
is also changed to the new value of p.

(c) 1FGA (1-Fixed-GA): BMGA is applied to agents selected at ran-
dom from the entire population.

The strategy space is expressed through the triplet (i, p, q), where i is the
probability of making move C at the initial step, p is the probability of making
move C when the move of the opponent at the previous step was C, and q
is the probability of making move C when the move of the opponent at the
previous step was D.

By using this representation, various strategies can be expressed as follows:

All-C i = p = 1, q = 1
All-D i = p = 0, q = 0
TFT i = p = 1, q = 0

Anti-TFT i = p = 0, q = 1

96 Agent-Based Modeling and Simulation with Swarm

Here, the value of each of i, p, and q is either 0 or 1. This form of representation
of the strategy space is known as a binary (or pure) strategy.

Conversely, the values of p and q can also be real numbers between 0 and
1, and this representation is known as a continuous strategy. In particular,
since 256 players took part in the experiment conducted by Cohen, the initial
population was selected from among the following combinations:

p =
1

32
,
3

32
, · · · , 31

32
, (4.9)

q =
1

32
,
3

32
, · · · , 31

32
. (4.10)

Specifically, each of the 16× 16 combinations is set as a single agent (player)
with values p, q. Moreover, the value of i is set to that of p.

The performance (the average score of all players in each competition)
is calculated as the average value over 30 runs. Note that the occurrence of
defection is high if the average value of the population performance is close
to 1.0, while cooperation dominates if the value is close to 3.0. Nevertheless,
the value does not necessarily reach 3.0 even if the entire population adopts
the TFT strategy due to (1) sensor noise in the comparison and (2) copying
errors in the adaptation process.

The score of the population can be obtained from the following measures:

• Av1000: the average score of the last 1000 periods

• NumCC: the number of periods where the average score for the entire
population was above 2.3

• GtoH: out of 30 iterations, the number of iterations in which the average
score for the entire population was above 2.3

• FracH: the proportion of periods with a score exceeding 2.3 after the
average score for the entire population has reached 2.3

• FracL: the proportion of periods with a score below 1.7 after the average
score for the entire population has reached 2.3

• Rstd: the averaged score distribution for each period during iteration

Here, an average score of 2.3 is regarded as the threshold above which the
population is cooperative, and a score below 1.7 indicates a population is
dominated by defection.

The results for all interaction and adaptation processes, in addition to all
combinations of representations in the experiments (2× 6× 3 = 36 combina-
tions), are shown in Tables 4.6 and 4.7.

In conducting the experiments, an oscillatory behavior at the cooperation
level was observed for all combinations, namely, the average score oscillated
between high (above 2.3) and low (below 1.7) cooperation. This oscillation
can be explained from repetition of the following steps.

Evolutionary Simulation 97

1. If a TFT player happens to be surrounded by TFT players, defecting
players are excluded.

2. TFT players soon establish a relationship of trust with other TFT play-
ers, and in the course of time the society as a whole becomes considerably
more cooperative.

3. Defecting players begin to exploit TFT players.

4. Defecting players take a course to self-destruction after exterminating
the exploited players.

5. Return to 1.

Two important factors exist in the evolution of cooperation between play-
ers. The first factor is preservation of the neighborhood in the interaction
process, where the neighborhood is not limited to two-dimensional lattices. A
cooperative relationship similarly emerges in fixed networks, such as FRN. In
addition, agents that stochastically select their neighborhoods by using tags
are more cooperative than agents with random neighborhoods.

The second factor is the process of generating and maintaining the versa-
tility of the strategy. For example, cooperation is not common in adaptation
processes that are similar to Imitation. Since errors do not exist in Imita-
tion, the versatility of the strategy is soon lost, which often results in an
uncooperative population. However, on rare occasions, extremely cooperative
populations arise even in Imitation, and Imitation was the strategy producing
the highest scoring population.

4.3.4 IPD simulation by Swarm

This section describes the Swarm simulation of Cohen’s iterated prisoner’s
dilemma. Figure 4.11 shows the state of execution screen. The player is placed
in the two-dimensional grid of worldSize×worldSize. worldSize is set to 16
(inside the file GridPD.smc).

According to Cohen’s definition, this IPD’s basic elements are as follows:

1. Strategy Space: Binary, actually of only four types: All-C, TFT, Anti-
TFT, All-D.

2. Iteration Process: 2DK, vertical-horizontal agent is set as the neigh-
borhood. Sending the method “setNeighbourhood” for each player
“aPlayer” sets this. If we look at the definition of the method
“setNeighborhood” inside “modelSwarm.java”

setNeighborhood$atDX$DY(aPlayer,-1,0);

setNeighborhood$atDX$DY(aPlayer,1,0);

setNeighborhood$atDX$DY(aPlayer,0,-1);

setNeighborhood$atDX$DY(aPlayer,0,1);

98 Agent-Based Modeling and Simulation with Swarm

T
A

B
L
E

4
.6

:
IP

D
b
en

efi
t

ch
ar

t
an

d
co

de
s

(b
in

ar
y

re
pr

es
en

ta
ti
on

).
In

te
ra

ct
io

n
pr

oc
es

s
A

da
pt

at
io

n
pr

oc
es

s
A
v1

00
0

N
um

C
C

G
to

H
F
ra

cH
F
ra

cL
R

st
d

2D
K

1F
G

A
2.

56
0

(.
01

3)
30

19
.9

14
.0

01
0.

17
3

(.
01

7)
B

M
G

A
S

2.
55

2
(.
00

6)
30

10
.9

70
.0

00
0.

12
2

(.
00

6)
Im

it
S

3.
00

0
(.
00

0)
30

7
1.

00
.0

00
0.

00
0

(.
00

0)
F
R

N
E

1F
G

A
2.

55
8

(.
01

5)
30

21
.9

15
.0

00
0.

17
1

(.
01

2)
B

M
G

A
S

2.
56

4
(.
00

7)
30

9
.9

68
.0

00
0.

12
7

(.
00

7)
Im

it
S

2.
99

1
(.
02

2)
30

6
1.

00
.0

00
0.

00
0

(.
00

0)
F
R

N
1F

G
A

2.
69

1
(.
00

8)
30

22
.9

90
.0

00
0.

12
0

(.
01

0)
B

M
G

A
S

2.
62

9
(.
01

0)
30

14
.9

13
.0

06
0.

22
9

(.
01

6)
Im

it
S

1.
86

9
(1

.0
1)

13
7

1.
00

.0
00

0.
00

0
(.
00

0)
T
ag

1F
G

A
2.

65
2

(.
01

0)
30

15
.9

75
.0

00
0.

13
2

(.
01

0)
B

G
M

A
S

1.
44

9
(.
18

6)
30

25
5

.1
91

.7
63

0.
55

4
(.
17

0)
Im

it
S

1.
13

3
(.
50

7)
2

6
1.

00
.0

00
0.

00
0

(,
00

0)
2D

S
1F

G
A

2.
52

2
(.
02

4)
30

26
.8

67
.0

00
0.

19
7

(.
02

0)
B

M
G

A
S

2.
05

3
(.
12

8)
30

95
.4

43
.2

80
0.

53
2

(.
06

4)
Im

it
S

1.
00

0
(.
00

0)
0

-
-

-
0.

00
0

(.
00

0)
R
W

R
1F

G
A

2.
68

5
(.
00

09
)

30
54

.9
85

.0
00

0.
12

7
(.
01

3)
B

M
G

A
S

1.
17

5
(.
09

9)
13

97
2

.1
91

.7
63

0.
10

9
(.
18

2)
Im

it
S

1.
00

0
(.
00

0)
0

-
-

-
0.

00
0

(.
00

0)

Evolutionary Simulation 99

T
A

B
L
E

4
.7

:
IP

D
b
en

efi
t

ch
ar

t
an

d
co

de
s

(c
on

ti
nu

ou
s

re
pr

es
en

ta
ti
on

).
In

te
ra

ct
io

n
pr

oc
es

s
A

da
pt

at
io

n
pr

oc
es

s
A
v1

00
0

N
um

C
C

G
to

H
F
ra

cH
F
ra

cL
R

st
d

2D
K

1F
G

A
2.

02
5

(.
06

9)
30

12
7

.2
13

.1
72

0.
31

3
(.
04

5)
B

M
G

A
S

2.
55

4
(.
00

9)
30

26
.9

98
.0

00
0.

07
5

(.
00

6)
Im

it
S

2.
21

3
(.
35

2)
15

27
.8

68
.0

00
0.

01
6

(.
00

3)
F
R

N
E

1F
G

A
2.

03
5

(.
08

9)
30

12
2

.2
26

.1
61

0.
29

2
(.
04

9)
B

M
G

A
S

2.
57

2
(.
00

7)
30

26
.9

96
.0

00
0.

07
7

(.
00

7)
Im

it
S

2.
17

6
(.
50

7)
14

26
.9

01
.0

00
0.

01
7

(.
01

4)
F
R

N
1F

G
A

1.
88

4
(.
12

0)
30

16
2

.1
82

.3
11

0.
37

9
(.
04

4)
B

M
G

A
S

2.
47

6
(.
02

6)
30

40
.9

39
.0

03
0.

12
4

(.
06

2)
Im

it
S

1.
36

2
(.
43

4)
3

12
1.

00
.0

00
0.

00
9

(.
00

4)
T
ag

1F
G

A
2.

19
8

(.
05

7)
30

80
.3

80
.0

64
0.

24
8

(.
05

8)
B

G
M

A
S

1.
61

3
(.
27

7)
30

33
1

.1
17

.4
99

0.
46

9
(.
09

3)
Im

it
S

1.
57

3
(.
18

7)
0

-
-

-
0.

01
2

(.
00

4)
2D

S
1F

G
A

1.
48

4
(.
08

6)
30

69
5

.0
40

.7
64

0.
27

3
(.
08

0)
B

M
G

A
S

1.
08

9
(.
00

3)
1

97
8

.0
01

.9
77

0.
02

4
(.
00

9)
Im

it
S

1.
09

6
(.
01

3)
0

-
-

-
0.

00
6

(.
00

0)
R
W

R
1F

G
A

1.
50

2
(.
10

9)
30

61
2

.0
55

.7
29

0.
33

2
(.
06

4)
B

M
G

A
S

1.
09

8
(.
03

6)
9

13
84

.0
21

.8
83

0.
06

3
(.
09

7)
Im

it
S

1.
10

4
(.
03

2)
0

-
-

-
0.

00
6

(.
00

1)

100 Agent-Based Modeling and Simulation with Swarm

FIGURE 4.11: IPD simulation.

it is as above. We can define another iteration process by rewriting this
part.

3. Adaptive Process: Imt. (Imitation), in other words, looks for the agent
with the largest average gain among the agents, and copies it if it has
larger average gain than itself. Sending the method adaptType for each
player “aPlayer” sets this.

Keeps/holds the four types of strategies (All-C, TFT, Anti-TFT, All-D)
agents in num[0], num[1], num[2], and num[3], respectively. This program
keeps cooperation (C) and deception (D) as 0. Let us look at the declaration
inside “Player.java.”

static final int iParam[] = {1, 1, 0, 0};

static final int pParam[] = {1, 1, 0, 0};

static final int qParam[] = {1, 0, 1, 0};

Here, iParam works first, pParam works next once before the time of C, qParam
works next once before the time of D. Again, 0 to 3 of the array corresponds
to the four types of strategies (All-C, TFT, Anti-TFT, All-D). For example,
iParam[0], pParam[0], and qParam[0] are the strategies of All-C. Recall
that each agent’s numbers are kept in num[0], num[1], num[2], and num[3].
num[0], num[1], num[2], and num[3] values (1/4 each by default) are set
at the initialization part of the model (buildObjects of ModelSwarm.java).
After this, the list of players is initialized and placed in the two-dimensional
grid. Note that the following method swaps the order of the list randomly
(if this is not done, they will be placed in “world” with the following order:
All-C, TFT, Anti-TFT, All-D).

shuffle(playerList);

The four values num[0], num[1], num[2], and num[3] are displayed on a line
graph (EZGraph) for each period. Their colors, as described in the definition,

Evolutionary Simulation 101

are red, blue, orange, and black, respectively. This display is done in the
following part by the buildObjects method of the ObserverSwarm:

numGraph.createSequence$withFeedFrom$andSelector(

"all-C",modelSwarm,new Selector(

modelSwarm.getClass(),"getNum0", false));

numGraph.createSequence$withFeedFrom$andSelector(

"TFT",modelSwarm,new Selector(

modelSwarm.getClass(),"getNum1", false));

numGraph.createSequence$withFeedFrom$andSelector(

"aTFT",modelSwarm,new Selector(

modelSwarm.getClass(),"getNum2", false));

numGraph.createSequence$withFeedFrom$andSelector(

"all-D",modelSwarm,new Selector(

modelSwarm.getClass(),"getNum3", false));

Here, “setNum0,” etc., are the methods that return the number of array ele-
ments (num).

Each player keeps its strategy type in “type” (integer value from 0 to 3).
This corresponds to the four types of strategies above (All-C, TFT, Anti-
TFT, All-D). By sending the “step” method to the player’s object, a hand
is obtained, and is substituted in the internal variable “newAction” inside
Player.java, the definition of “step” is as follows:

public void step(int t){

numPlays++;

if(t==0) // is it the first hand?

newAction=iParam[type];

else

if(memory==1) // is C the hand of the previous opponent?

newAction=pParam[type];

else

newAction=qParam[type];

}

In the “memory” variable, the previous opponent’s hand is kept. Calling the
“remember” method after each play sets this variable.

The first play is defined in “runTournament” of ModelSwarm.java. Inside
this, for the following method, each player player executes the play for each
neighborhood (neigh).

runTournament$against(player,neigh);

The play part is defined as follows in Tournament.java:

public Object run(){

int t;

102 Agent-Based Modeling and Simulation with Swarm

numIter = 4; // let the play be of four rounds

for (t=0; t<numIter; t++) {

updateMemories(); // stores the hand of previous opponent

player1.step(t); // obtains the hand of player 1

player2.step(t); // obtains the hand of player 2

distrPayoffs(); // calculates the gain from play result

}

return this;

}

4.3.5 IPD as spatial games

The iterated prisoner’s dilemma (IPD) is being extensively researched in
various fields.

When the prisoner’s dilemma is configured as a spatial game, it results in
interesting patterns such as the “big bang” or the “kaleidoscope” [93].

The rules of the spatial game are as follows. Each player occupies a point
on a two-dimensional lattice, and battles with all adjacent players. The scores
from these battles are added to obtain the gain. Each player on a lattice point
changes its strategy to that of its opponent with the highest gain.

The players are displayed in the following colors:

• Blue: C in last generation, C in current generation

• Red: D in last generation, D in current generation

• Green: D in last generation, C in current generation

• Yellow: C in last generation, D in current generation

Figure 4.12 shows a kaleidoscope obtained from evolution with Swarm.
The parameter probe in ModelSwarm has the following meanings:

• isBigbang: select big bang if 1

• isKaleidoscope: select kaleidoscope if 1

The kaleidoscope appears from a single defector that enters a square of
cooperators of fixed size. Rows of symmetric patterns that continuously change
appear for a surprisingly long period. The number of possible configurations
is finite; therefore the kaleidoscope reaches a stable pattern or cycle after a
long period of time.

Huberman and Glance expanded this model by adding asynchronous ele-
ments in this spatial model [53]. They chose the procedure of the game such
that selection is carried out after a number of battles between nearby groups,
and again after battles between different groups. As a result, such a simple
change typically results in the entire plane becoming defectors.

Evolutionary Simulation 103

4.4 Evolving artificial creatures and artificial life

4.4.1 What is artificial life?

Artificial Life (AL) aims to solve fundamental problems of biology on a
computer. The first Artificial Life Symposium was held at the Santa Fe In-
stitute in the fall of 1987 [78]. Christopher Langton, the organizer of this
symposium, defined the credo of artificial life researchers as “those who pur-
sue ghosts in a machine, or the nature of what comes out of, but is independent
of materials.”

AL is difficult to define, but the following outlines the basic features of AL
in computers [78, p. 3]:

• They consist of populations of simple programs or specifications.

• There is no single program that directs all of the other programs.

• Each (microscopic) program details the way in which a simple entity
reacts to local situations in its environment, including encounters with
other entities.

• There are no rules in the system that dictate global (macroscopic) be-
havior.

• Any behavior at levels higher than the individual programs is therefore
emergent.

The term “emergent property” was originally used in biology, and a good
example is the social behavior of ants. Individual ants perform only simple
mechanical actions; however, the ant colony as a whole performs highly in-
tellectual collective behavior based on the distribution patterns of food and
enemies to increase the survival rate of the entire group. As a result, a caste

FIGURE 4.12: Evolutionary kaleidoscope.

104 Agent-Based Modeling and Simulation with Swarm

system of specialized individuals that do different work is formed, and social
division of labor and cooperative phenomena arise. This is an example of an
emergent property because no rule (program) exists that governs the action
of the entire colony, but the collective action of simple programs (individual
ants) results in intellectual action of the entire group.

Artificial life aims to study “behavior like that in organisms” and uses
synthetic research approaches rather than analytic methods to investigate life
phenomena. The significance of discovering a mechanism that results in the
emergence of behavior in organisms is two-fold:

• Scientific significance: Deeper understanding of existing life, fundamen-
tal properties of life in particular.

• Engineering significance: Formation of an artificial product that can
adapt to its surroundings.

Artificial life researchers aim to model complex phenomena, such as life,
on a computer. Modeling is expected to accurately predict and control the
behavior of organisms and be utilized in engineering applications.

Artificial life aims to expand conventional biology regarding biological life
(Blife) and establish a new branch of evolutionary biology that is verifiable
through simulation or other methods. The difference between Alife and Blife
can be summarized as

Alife: Life as it could be

Blife: Life as we know it

Kauffman recently expanded the methodologies used in artificial life and pro-
posed the concept of “general biology” and the hypothesis that life has been
building a search space (fitness landscape) such that the search process will
succeed [62]. The validity of this hypothesis is not known, but an interest-
ing task in the future would be to re-investigate evolutionary computational
methods from this viewpoint.

Some examples of artificial life are presented in the following sections and
chapters.

4.4.2 Artificial life of Karl Sims

Karl Sims did pioneering work on the “artificial evolution” of artificial
life [106]. Virtual organisms are created in three-dimensional space on a com-
puter. The virtual organisms have genes represented by directed graphs, and
their shape (body) consists of multiple blocks as the expression type. The
organisms have a number of sensors, and output some action based on the
input (output to effectors). Genes (directed graphs) consist of intranode con-
nection information of nodes that represent component blocks (Fig. 4.13). The

Evolutionary Simulation 105

GTYPE : directed graph PTYPE : hierarchy of 3D parts

(segment)

(body

segment)

(leg

segment)

(head)

(body)
(limb

segment)

FIGURE 4.13: Designed examples of genotype graphs and corresponding
creature morphologies [106].

graphs are neural networks that control multiple blocks and act as stimulus-
and-reaction systems that generate action based on sensor input.

Physical simulations were used to calculate the motion of bodies, numer-
ical integration, detection of collisions, and collision reaction from friction to
achieve evolution of virtual life. This follows the standard methodology of vir-
tual reality, and allowed accurate fitness calculations in virtual space. Genetic
operators in evolution included grafting in addition to mutation and crossover
of networks that are used in standard GP.

Virtual organisms with various shapes and actions appeared through evo-
lutionary processes in response to problems such as “walking,” “swimming”
(Fig. 4.14), and “jumping.” The evolutionary process was reminiscent of the
Cambrian Explosion. Furthermore, co-evolution of virtual organisms was ob-
served (Fig. 4.15) where generated organisms fought against each other for
common resources, and only the winner survived and reproduced.

4.4.3 Evolutionary morphology for real modular robots

The author has extended Sims’s approach to evolving real-world robots
and successfully applied EC to the morphology for cubic creatures [117, 118].
We proposed a new approach based on a GA and CA (cellular automata;
see Chapter 7) to automatically building patterns of block-type elements.
We observed the emergence of the effective patterns in both virtual and real
worlds, some of which seemed to be surprisingly counterintuitive.

One experiment was made to attempt the evolutionary morphology of the
working leg parts instead of wheels, without using sensors. Fitness was com-
puted by the moving distance on the plane multiplied by the stable movement
time.

106 Agent-Based Modeling and Simulation with Swarm

FIGURE 4.14: Creatures evolved for swimming [106].

FIGURE 4.15: Evolved competing creatures (with permission of MIT
Press [108]).

Evolutionary Simulation 107

FIGURE 4.16: Various individuals.

FIGURE 4.17: Best individuals with generations.

Figures 4.16 and 4.17 show some of the individuals that emerged during the
evolution, and Fig. 4.18 shows the second optimal individual resulting from
the evolution. The optimal individual uses the leg part as a support during
rotation, and the central rollers handle the rotating movement. We performed
the same experiment with the actual machines and observed the behavior in
the real world.

It may be easy to imagine individuals that adopt a controller of constant
rotation, maximizing the diameter of the leg parts; however, an individual as
in Fig. 4.18 was actually obtained. The moving distance was maximized by
rotation using the rollers attached to the body, which was realized by spreading
the leg part in one direction. In reality, the individuals that maximize the
diameter, such as the one with the cross-shaped feet (Figure 4.19), cannot
take advantage of friction as a driving force, thereby spinning around and
going nowhere. We performed the same experiment with the actual machines
and the same tendency was also seen.

108 Agent-Based Modeling and Simulation with Swarm

FIGURE 4.18: The suboptimal individual and the movement.

FIGURE 4.19: Cross-shaped robot. FIGURE 4.20: Wheel robot.

From the viewpoint of the practical movement method of modular robots,
they can be classified into those that transform like ameba to change a whole
location and those that use leg parts or wheels (Figure 4.20). Although this
result is an option due to a higher velocity than wheels, it requires sufficient
strength and a function to shift directions.

Another experiment was attempted to ascend stairs via morphogenesis
using GP.

Figure 4.21 shows the “good” individuals that emerged in each generation.
The light-colored blocks in the center are normal blocks, and the dark-colored
blocks at the edge are motor blocks.

Figure 4.21(a) shows an individual that emerged in the third generation.
Because only one motor emerged, which made proceeding straight ahead dif-
ficult, it was not able to achieve a meaningful task. Figure 4.21(b) shows
an individual that emerged in the eighth generation, featuring five vertically
aligned blocks.

The robot supported itself using its long vertical part and got on the
gap between the stairs, but the tilt could not be supported. Afterward, the
robot deviated from the right orbit. The individual that emerged in the 14th
generation, shown in Fig. 4.21(c), ascended the stairs, supported by the five
central blocks as well. Starting with the eighth generation, there were two
more blocks at the front. The wider shape could avoid deviation from the
orbit caused by the tilting at the time of climbing over the gap in the stairs.

Figure 4.21(d) shows the best individual during the simulation, which
emerged in the 16th generation. Putting the three blocks on the right-side
front of the robot upon the next stair, the robot could start climbing the
staircase. Compared with Fig. 4.21(c), there were fewer front blocks, thereby

Evolutionary Simulation 109

(a) 3rd generation (b) 8th generation

(c) 14th generation (d) 16th generation

FIGURE 4.21: The best evolved individuals.

eliminating the front block obstacles and allowing the robot to ascend over
the gap in the stairs and shorten the time to realize the task.

This page intentionally left blankThis page intentionally left blank

Chapter 5

Ant Colony–Based Simulation

We enter my study, candle in hand. One of the windows had
been left open, and what we see is unforgettable. With a soft
flick-flack the great Moths fly around the bell-jar, alight, set
off again, come back, fly up to the ceiling and down. They
rush at the candle, putting it out with a stroke of their wings;
they descend on our shoulders, clinging to our clothes, grazing
our faces [37, pp. 168–169].

5.1 Collective behaviors of ants

Ants march in a long line. There is food at one end, a nest at the other. This
is a familiar scene in gardens and on roads, but the sophisticated distributed
control by these small insects was recognized by humans only a few decades
ago.

Ants established their life in groups, or colonies, more than a hundred
million years before humans appeared on Earth. They formed a society that
handles complex tasks such as food collection, nest building, and division of
labor through primitive methods of communication. As a result, ants have
a high level of fitness among species, and can adapt to harsh environments.
New ideas including routing, agents, and distributed control in robotics have
developed based on simple models of ant behavior. Applications of the ant
behavior model have been used in many papers, and are becoming a field of
research rather than a fad.

Marching is a cooperative ant behavior that can be explained by the
pheromone trail model (Fig. 5.1). Cooperative behavior is frequently seen
in ant colonies, and has attracted the interest of entomologists and behavioral
scientists. Pheromones are volatile chemicals synthesized within the insect,
and are used to communicate with other insects of the same species. Exam-
ples are sex pheromones that attract the opposite sex, alarm pheromones that
alert group members, and trail pheromones that are used in ant marches.
Pheromones are discussed in a chapter of the well-known Souvenirs Ento-
mologiques by Jean-Henri Fabre (see the quote at the beginning of this chap-
ter).

However, recent research indicates that pheromones are effective within a

111

112 Agent-Based Modeling and Simulation with Swarm

FIGURE 5.1: Ant trail.

distance of only about 1 m from the female. Therefore, it is still not known if
males are attracted only because of the pheromones.

Many species of ants leave a trail of pheromones when carrying food to
the nest. Ants follow the trails left by other ants when searching for food.
Pheromones are volatile matter that is secreted while returning from the food
source to the nest. The experiments shown in Fig. 5.2 by Deneubourg and
Goss using Argentine ants linked this behavior to the search for the shortest
path [43]. They connected bridge-shaped paths (two connected paths) between
the nest and the food source, and counted the number of ants that used each
path. This seems like a simple problem, but because ants are almost blind
they have difficulty recognizing junctions, and cannot use complex methods
to communicate the position of the food. Furthermore, all the ants must take
the shorter path to increase the efficiency of the group. Ants handle this task
by using pheromones to guide the other ants.

Figure 5.3 shows the ratio of ants that used the shorter path [43]. Almost
every ant used the shorter path as time passed. Many of the ants return to
the shorter path, secreting additional pheromones; therefore, the ants that
followed also take the shorter path. This model can be applied to the search
for the shortest path, and is used to solve the traveling salesman problem
(TSP) and routing of networks. There are many unknown factors about the
pheromones of actual ants; however, the volatility of pheromones can be uti-
lized to build a model that maintains the shortest path while adapting to
rapidly changing traffic. The path with a greater accumulation of pheromones
is chosen at junctions, but random factors are inserted to avoid inflexible
solutions in a dynamic environment.

Ant Colony–Based Simulation 113

1

2

food

nest

1
2

.5
cm

nest

food

FIGURE 5.2: Bridge-shaped paths (adapted from Fig. 1a in [43], with per-
mission of Springer-Verlag GmbH).

FIGURE 5.3: The ratio of ants that used the shorter path (adapted from
Fig. 1a in [43], with permission of Springer-Verlag GmbH).

114 Agent-Based Modeling and Simulation with Swarm

5.2 Swarm simulation of the pheromone trails of ants

An easy model can describe the actions of ants as follows:

• In the case of nothing, a random search is done.

• If the food is found, it takes it back to the hive. A homing ant knows
the position of the hive, and returns almost straight back.

• Ants that take the food back to the hive drop their pheromone.
Pheromones are volatile.

• Ants not having the food have the habit of being attracted to the
pheromone.

Figure 5.4 is the execution state in Swarm. Here, the hives are placed in
the center, and there are three (lower right, upper left, lower left) food sources.
Figure 5.4(a) is the first random search phase. In (b), the closer lower right
and lower left food is found, and the pheromone trail is formed. The upper
left is in the middle of the formation. In (c), pheromone trails are formed
for all three sources, which makes the transport more efficient. The lower
right source is almost exhaustively picked. In (d), the lower right food source
finishes, and the pheromone trail is already dissipated. As a result, a vigorous
transportation for the two sources on the left is being done. After this, all the
sources finish, and the ants return to random search again. The parameters
in the simulation are shown in Table 5.1.

In this program, at the time of stopping, food locations and various pa-
rameters can be changed dynamically. For this purpose, the probe method is
used, as described in Section 3.2.7. Specific operations are as follows:

• To change evaporation and diffusion coefficients: Enter the variable and
press “enter.” Then click “initializeEvaporationAndDiffusionRate.”

• To change the bugs’ parameters or colony size: Enter the variable and
press “enter.” Then click “initializeBugAndColonySize.”

• To change foods’ positions: Enter x, y coordinates and press “enter.”
Then click “initializeFood.”

• To add a food source: Enter x, y coordinates and radius and press “enter.”
Then click “initializeFood.”

• To delete a food source: Enter the minus value in the food’s radius and
press “enter.” Then click “initializeFood.”

Let us try and check how the ants’ behavior changes when the food loca-
tion is changed. Especially, how robust is the search using pheromones under
disturbances?

Ant Colony–Based Simulation 115

(a) (b)

(c) (d)

FIGURE 5.4 (See Color Insert): Pheromone trails of ants.

TABLE 5.1: Parameters of the pheromone trails of ants.
Parameter Meaning Range

amountOfReleasingPheromone Amount of pheromone dropped. 0∼
evaporationRate Ratio of pheromone that evapo-

rates to the amount dropped on
the ground.

0 1

diffusionRate Proportion of the evaporated
pheromone that diffuses.

0∼0.2

awayFromColonyRate The proportion of priority given
to the pheromone away from
the hive. Ignores the direction of
hive when 1.

1∼

turnRate The proportion of not go-
ing straight when searching for
food. Becomes a random walk
when 1.

0∼1

116 Agent-Based Modeling and Simulation with Swarm

5.3 Ant colony optimization (ACO)

Optimization algorithms based on the collective behavior of ants are called
ant colony optimization (ACO) [31].

ACO using a pheromone trail model for the TSP uses the following algo-
rithm to optimize the travel path.

1. Ants are placed randomly in each city.

2. Ants move to the next city. The destination is probabilistically deter-
mined based on the information on pheromones and given conditions.

3. Repeat until all cities are visited.

4. Ants that make one full cycle secrete pheromones on the route according
to the length of the route.

5. Return to 1 if a satisfactory solution has not been obtained.

The ant colony optimization (ACO) algorithm can be outlined as follows.
Take ηij as the distance between cities i and j. The probability pkij(t) that
an ant k in city i will move to city j is determined by the reciprocal of the
distance 1/ηij and the amount of pheromone τij(t) (eq. (5.1)):

pkij(t) =
τij(t)× ηαij

∑

h∈Jk
i
τih(t)× ηαih

. (5.1)

Here, Jk
i is the set of all cities that the ant k in city i can move to (has

not visited). The condition that ants are more likely to select a route with
more pheromone reflects the positive feedback from past searches as well as

j1

j2
j3

i
tij

ij

1

amount of pheromone

distance

FIGURE 5.5: Path selection rules of ants.

Ant Colony–Based Simulation 117

TABLE 5.2: Comparison between ACO and metaheuristics.
TSP ACO GA EP SA Optimal

Oliver 30 420 421 420 424 420
[830] [3200] [40,000] [24,617]

Eil 50 425 428 426 443 425
[1,830] [25,000] [100,000] [68,512]

Eil 75 535 545 542 580 535
[3,480] [80,000] [325,000] [173,250]

KroA 100 21,282 21,761 N/A N/A 21,282
[4,820] [103,00] [N/A] [N/A]

a heuristic for searching for a shorter path. The ACO can thereby include an
appropriate amount of knowledge unique to the problem.

The pheromone table is updated by the following equations:

Q(k) = the reciprocal of the path that ant k found (5.2)

∆τij(t) =
∑

k∈Aij

Q(k) (5.3)

τij(t+ 1) = (1 − ρ) · τij(t) + ∆τij(t) (5.4)

The amount of pheromone added to each path after one iteration is inversely
proportional to the length of the paths that the ants found (eq. (5.2)). The re-
sults for all ants that moved through a path are reflected in the path (eq. (5.3)).
Here, Aij is the set of all ants that moved on a path from city i to city j. Neg-
ative feedback to avoid local solutions is given as an evaporation coefficient
(eq. (5.4)), where the amount of pheromone in the paths, or information from
the past, is reduced by a fixed factor (ρ).

The ACO is an effective method to solve the traveling salesman problem
(TSP) compared to other search strategies. Table 5.2 shows the optimized
values for four benchmark problems and various minima found using other
methods (smaller is better, obviously) [31]. The numbers in brackets indicate
the number of candidates investigated. The ACO is more suitable for this
problem compared to methods such as a genetic algorithm (GA, Section 2.2),
simulated annealing (SA), and evolutionary programming (EP). However, it
is inferior to the Lee–Kernighan method (the current TSP champion code).
The characteristic that specialized methods perform better in static problems
is shared by many metaheuristics (high-level strategies which guide an under-
lying heuristic to increase its performance). Complicated problems, such as
TSPs where the distances between cities are asymmetric or where the cities
change dynamically, do not have established programs and the ACO is con-
sidered to be one of the most promising methods.

The length and pheromone accumulation of paths between cities are stored

118 Agent-Based Modeling and Simulation with Swarm

FIGURE 5.6: TSP simulator by ACO.

in a table (Fig. 5.5). Ants can recognize information on their surroundings,
and probabilistically decide the next city to visit. The amount of pheromones
added to each path after every cycle is inversely proportional to the length of
the cycle path.

An applet to solve the TSP using ants is provided for self-study (Fig. 5.6).
Operation procedures and displayed contests are almost the same as those
with the TSP by a GA (see Section 2.2.7 and Appendix A.3). The paths
between cities are color-coded based on the pheromone amount (a darker color
means more pheromones). The position of cities can be changed using the GUI;
therefore, the effects of pheromones and convergence are easy to understand.
Cities can be dynamically changed, yet ants can search with certain accuracy.

5.4 Ant-clustering algorithms

ACO is used in clustering and sorting. The following is a description of
ant-clustering.

Ants farm aphids and rear larvae in nests. Livestock and larvae are spa-
tially categorized and placed by size in “farms” and “nurseries” in ant nests.
It is considered that this ecology was developed to make feeding work more
efficient.

Ant Colony–Based Simulation 119

The above behavior can be described by a distributed control model for
the probability that an agent picks up (Ppick) or drops (Pdrop) an object.

Ppick = (1− χ) ·
(

kpick
kpick + f(i)

)2

(5.5)

Pdrop = χ ·
(

f(i)

kdrop + f(i)

)2

(5.6)

Here, f(i) is the density of nearby objects similar to i. To be more precise, this
is defined as a function that decreases with an increasing number of similar
objects nearby.

f(i) =

{ ∑
j∈N(i) d(i,j)

|N(i)| if N(i) 6= φ

1 if N(i) = φ
(5.7)

d(i, j) is the similarity (distance in feature space) between objects i and j,
and N(i) is a set of neighbors of object i. d(i, j) is normalized such that
0 ≤ d(i, j) ≤ 1. d(i, j) = 0 means that two objects are identical. Values kpick
and kdrop are parameters that indicate thresholds in picking up and dropping
behavior, respectively. χ is a reaction coefficient determined by the number of
objects n in the Moore neighborhood (neighbors in eight directions: top and
bottom, right and left, four diagonals).

χ =
n2

n2 + k2crowd
(5.8)

kcrowd is the threshold, and χ = 1/2 when n = kcrowd. χ approaches 1
when there are more objects in the neighborhood, and the behavior is biased
towards dropping. On the contrary, fewer objects mean a higher likelihood of
picking up behavior.

Equations (5.5) and (5.6) represent a model where agents (ants) randomly
acting on a plane move objects based on environmental parameters. In other
words, the probability that an agent picks up or drops an object is deter-
mined by the density of similar objects in the neighborhood. Agents pick up
objects in low-density neighborhoods and drop objects in high-density neigh-
borhoods while moving randomly, and as a result, clusters of similar features
are segregated.

The result of ant-clustering, where ants pick up or drop an object based on
the above rules and move one step in a randomly chosen direction, is shown
in Fig. 5.7. Here, objects of a different color belong to a different class. This
two-dimensional space has a torus topology (the right edge is connected to
the left edge, and the top edge is connected to the bottom edge). Ants move
randomly at first, and then start to form small pre-clusters. These pre-clusters
gradually attract similar objects to form larger clusters. Transport by ants

120 Agent-Based Modeling and Simulation with Swarm

(a) (b) (c)

FIGURE 5.7: Ant-clustering.

and accumulation of objects form a positive feedback loop that increases the
cluster size, resulting in a clusterization process.

Details on ant-clustering are given in references [28, 45].

5.5 Swarm-based simulation of ant-clustering

The state of execution of ant-clustering by ACO is shown in Fig. 5.8. In
this simulation, variables kpick, kdrop, kcrowd, etc., in Equations (5.5), (5.6),
(5.8), number of ants, and number of objects (number of red and blue objects)
can be set during execution. Since the “seed” of a random number can be set,
re-execution with a different random number is also possible.

Feature values of an object are defined by the buildObjects method in
the ModelSwarm.java file as follows:

// Feature vector of red object

v = new double[] { 0.1 + rGen.nextDouble()*0.15,

0.1 + rGen.nextDouble()*0.15,

0.1 + rGen.nextDouble()*0.15};

// Feature vector of blue object

v = new double[] { 0.7 + rGen.nextDouble()*0.15,

0.7 + rGen.nextDouble()*0.15,

0.7 + rGen.nextDouble()*0.15};

Features in this case are a three-dimensional vector. For generating those
objects, a uniform random number vector (each element in the range of 0.0–
0.15) is added to (0.1, 0.1, 0.1) or (0.7, 0.7, 0.7). Similarity between two objects
is calculated by using the norm of the difference of those feature vectors (the
calcDistance method inside DataUnit.java).

Ant Colony–Based Simulation 121

FIGURE 5.8: Ant-clustering with Swarm.

Ant-clustering can be applied to more practical problems by extending this
part.

5.6 Ant colony–based approach to the network routing
problem

The Internet is one of the most extensively engineered objects today.
Packet switching, a method to transfer data developed in the 1960s, breaks
down data into small packets, sends these packets to the destination along
totally different paths, and recovers the data at the destination. The power of
packet switching changed the Internet from an academic and military tool to
a mass medium. However, the traffic on the Internet cannot be predicted, and
the utilization efficiency is not necessarily high. The routing on the Internet is
large-scale and dynamic, so it is not easy to understand the entire structure.
Furthermore, throughput and quality of service (QoS) must be increased de-
spite the difficulty of centralized control. The objective in the routing problem
is to optimize the routing table (a table specifying the node to which a packet
for a predetermined destination should be forwarded) for each node such that
the throughput of the entire system is increased (Fig. 5.9).

Each node can only recognize nearby traffic; therefore there is a table
for every node. The SPF (shortest path first) routing currently used in the
Internet compiles routing tables from information that can be recognized by
the respective node. In contrast, Dorigo et al. proposed AntNet routing based

122 Agent-Based Modeling and Simulation with Swarm

K

B

C

A
Y

Z

X

K

 X Y Z

 A B C

crowded

unknown

Routing table for node K

destination

next node

FIGURE 5.9: Routing table.

out-bound: table reference

in-bound: table update

FIGURE 5.10: Agent-based routing.

Ant Colony–Based Simulation 123

on ACO. This method deploys software agents on the network that collect
routing data by moving back and forth between the source and the destination
and updating routing tables in intermediate nodes (Fig. 5.10).

Agent-based routing results in an overhead that is not necessary in static
routing; therefore the total traffic and cost performance are important factors.

The steps in AntNet are as follows:

1. Ants are regularly released from each node to random destinations.

2. Ants select paths using pheromones and heuristics and reach their re-
spective destinations. Ants remember the time that they took and the
nodes that they visited.

3. Ants that reach their respective destinations return to the origin by
moving along the path in reverse order while updating the table in each
node.

4. Return to 1.

Similar to the example in the TSP (see eq. (5.5)), the probability that a node
is selected as the next node is determined using a weight ω by the following
equation:

pkij(t) =
ω · τij(t) + (1− ω) · ηij(t)

∑

h∈Jk
i
ω · τih(t) + (1 − ω) · ηih(t)

, (5.9)

where Jk
i is the set of all cities that ant k in city i can move to (but has not yet

visited). The pheromone table in each node is updated through the following
equations:

τij(t+ 1) ⇐ (1− ρ) · τij(t) + ∆τij(t) (update) (5.10)

∆τij(t) =

n
∑

k=1

Q(k) (addition) (5.11)

τij(t+ 1) ⇐ τij(t)

1 + ∆τij(t)
(evaporation) (5.12)

The status of the network is not constant in AntNet unlike in ACOs.
Therefore, ants move along the paths that packets move to evaluate the status
of the network, and return along the same path to reflect the evaluation. As
a consequence, the updating of the pheromone tables is not synchronic.

Dorigo et al. tested the AntNet system on a simulator of network file sys-
tem (NSF), a core network in the USA, and compared it with routing methods
such as Bellman–Ford, SPF, and OSPF (open shortest path first) [15]. Fig-
ure 5.11 shows the results of tests when there are hot spots. A constant bit
rate (CBR) with constant traffic patterns and a variable bit rate (VBR) were

124 Agent-Based Modeling and Simulation with Swarm

FIGURE 5.11: Comparison of AntNet and other routing methods
(from [15]).

tested. The performance under low network load was high with all algorithms,
and the throughput when the load was high became similar. In both condi-
tions, AntNet achieved shorter delays with high throughput. In particular,
AntNet showed superior performance when the load suddenly changed (hot
spots had formed). The overhead of ant agents was negligible in the tests.
There are many examples of research on routing using ACOs; for instance,
Telecom Bretagne is working on smoothing of QoS. Applications to ATM
networks and wireless environments are also being investigated.

5.7 Ant-based job separation

Another well-known ecology of ants is social division of labor. Ant colonies
consist of ants with various roles such as queen ants, soldier ants, and worker
ants. These roles are called “castes,” and some of these (e.g., queen ants) have
physically specialized functions. However, general work including collecting
and looking after larvae is carried out by worker ants in turn, and no individual
is designated to perform a given task. It is also known that for a species
where soldier ants divide labor with other worker ants, soldier ants do the
work of worker ants if worker ants are removed from the nest. Distributing an

Ant Colony–Based Simulation 125

appropriate number of ants to each task is necessary to increase the fitness of
the colony as a whole. Ants can divide labor without any centralized control;
such autonomous distribution of tasks would be useful in the field of robotics or
scheduling in factories. The next equation is proposed as a model for assigning
workers to multiple tasks through distributed control.

Tθ(s) =
sn

sn + θn
(5.13)

For instance, T is defined as tasks such as feeding larvae. The probability that
a given ant does this task Tθ is determined by the amount of pheromone s
that the larvae emit and the threshold for each individual θ.

In reality, larvae secrete more pheromone when they are hungry, and reduce
the amount of pheromone secretion when caretakers perform their tasks. In-
dividual ants go out to collect food when the amount of detected pheromone
becomes lower than a threshold value, and conversely, when the amount of
pheromone from larvae exceeds a threshold, ants that returned from collect-
ing food become caretakers. There is a distribution of the threshold in each
individual; therefore appropriate numbers of individuals can be distributed to
multiple tasks.

Such a behavior model can be applied to the problem of task distribution
in robots capable of multiple tasks or fault-tolerant systems. For example, a
solution that uses agents called routing wasps has been proposed for scheduling
tasks in a factory [16]. In this system, pseudo-pheromones are emitted from
tasks in a queue based on priority and wait time. Agents are assigned to each
assembly machine, and thresholds to perform specific tasks are determined
based on the status of each machine. Agents assign tasks to each machine
with probabilities determined by threshold values and amounts of pheromone.
Such a system was shown to increase throughput of a factory.

Ant methods are being implemented in various ways in industry. For ex-
ample, Bios Group1 based in New Mexico is a consulting firm which builds
systems based on swarm intelligence, and has provided methods to make
scheduling efficient to Southwest Airlines and P&G, for example. P&G uses
distributed scheduling where collaborative decisions such as transport of raw
materials and management of factories are made by agents on a network. The
swarm approach is used to build a system where the transport path is deter-
mined by taking into account the utilization of overcrowded warehouses in the
candidate paths.

1http://www.biosgroup.com/

http://www.biosgroup.com/

126 Agent-Based Modeling and Simulation with Swarm

FIGURE 5.12: A scene of building a living bridge by army ants (photo
courtesy of Prof. Salvacion P. Angtuaco [4]).

5.8 Emergent cooperation of army ants

This section presents a multi-agent simulation inspired by army ant behav-
ior. Such cooperation in a multi-agent system can be very valuable for engi-
neering applications. The purpose of this section is to model and comprehend
this biological behavior by computer simulation. The following description is
mainly based on our previous research results [60].

5.8.1 Altruism of army ants

Altruism refers to behavior that prioritizes benefits to others rather than
self and sometimes involves acts of self-sacrifice in order to aid others. Some
army ants construct living bridges with their own bodies when they find holes
or gullies as obstacles to their marching routes, as shown in [1] (see Fig. 5.12).
Such philanthropic acts are different from the regular behavior of the ants,
e.g., foraging for and transport of food. However, if more ants participate
in bridge construction than is required or if they construct bridges at sites
where those are unnecessary, they may actually hamper the food gathering
performance of the whole colony. But, in nature, the ants are very keen to
balance these actions as per requirements, and it has been confirmed that
because of such altruistic activity performance is improved for the group as a
whole. In an experiment by Powell and Franks, it was found that the foraging
capacity of the army ant colony increased by up to 26% due to this altruistic
behavior [98]. In this section, this altruism of ants is modeled and examined
in a multi-agent simulation environment (see Fig. 5.13).

Ant Colony–Based Simulation 127

FIGURE 5.13: Simulation environment.

5.8.2 Defining the problem

This section explains the problems handled in the multi-agent simulation.
The present simulation serves as a model for the foraging behavior and the
altruism of ants. The simulation was performed using the Swarm library. Fig-
ure 5.14 shows a screenshot of the simulation screen where an agent represents
an ant movement.

The actions include foraging for and transport of food and communications
with neighboring ants using pheromone. The nest is the starting point of the
agents and also the point to which the agents return with food. The pheromone
is released by an agent when it finds food. Just as in nature, once secreted, the
pheromone attenuates and disperses, thus disseminating information among
the ants about the food locations. A gully hinders movement of agents and
fundamentally prevents the agents from passing over it. However, if an agent
shows altruism and forms a living bridge over the gully, other agents can
pass over the gully. The agents move in accordance with the state transition
diagram shown in Fig. 5.15. The behavior of agents in different states is shown
in Table 5.3.

The problem is to determine the conditions that induce the transition to
the altruism state. But it is not concretely known how ants decide the site and
timing of living-bridge construction and when they cease the bridge forma-
tion. Therefore, in this section, several hypotheses are proposed as altruism
initiation conditions, and experiments were performed for verification.

5.8.3 Judgment criteria for entering the altruism state

5.8.3.1 Hypotheses

Two hypotheses have been proposed as the judgment criteria for altruistic
activity by army ants.

128 Agent-Based Modeling and Simulation with Swarm

FIGURE 5.14: Swarm-based simulation of army ants.

Model 1: Based on the presence of neighboring ants

An ant will start the formation of a living bridge over a gully only when
neighboring ants are present. Hypothetically, this approach will be more effi-
cient compared to forming a bridge blindly because when there are neighboring
ants the probability is high that they will utilize the shortcut.

Model 2: Based on the presence of pheromone

As described earlier, agents secrete pheromone when they find food, and
this pheromone is used to disseminate information among ants about the
location of the food source. The places where pheromone concentrations are
higher than a fixed level are the locations that many ants have passed and/or
will pass through in the future. Therefore, a living bridge can be formed by
judging the pheromone concentration.

In both models, agents leave the bridge after a fixed amount of time passes.
We actually used fixed properties optimized by genetic algorithms (shown in

Ant Colony–Based Simulation 129

Altruism

Search Return

???

Discover

Stock

FIGURE 5.15: State transition of agents.

FIGURE 5.16: Maps for experiment.

Table 5.4, [60]). In order to judge their validity, these hypotheses were fed into
the simulation and their usefulness was verified empirically.

5.8.3.2 Experiment to verify the hypotheses

The two scenarios shown in Fig. 5.16 were used in the experiment. In
these experiments, performance was measured using the number of food items
collected within a fixed period of time. Each experiment was repeated 10 times
with 20 to 180 agents, increased by 20 at a time, and the mean values were
compared.

The experimental results from the simple map are shown in Fig. 5.17.
The numbers of agents is shown along the horizontal axis and the number of
food items collected within a fixed amount of time is shown along the vertical
axis. In the simple map, Model 1 showed slightly higher performance, but

130 Agent-Based Modeling and Simulation with Swarm

TABLE 5.3: States and behaviors of agents.

State Behavior
Search This is the initial condition of the agent and it continues random

work until food is found. When food is found, there is a transition
to the Return state. Transition to the Altruism state is also pos-
sible under “certain” conditions. When pheromone is sensed, the
ants are drawn to the higher concentrations.

Return The food is returned to the nest. In this state the agent moves
toward the nest secreting pheromone. After reaching the nest, the
agent transits to the Search state. An agent in the Return state
knows the position of the nest.

Altruism A bridge is constructed across the gully. While in this state, move-
ment is impossible for an agent. When certain conditions are met,
the bridge is abandoned and the agents transit to the Search state.

TABLE 5.4: Properties used in Models 1 and 2.
Model 1 Model 2

Number of Steps 700 700
Time 10 150

Radius 2 -
Pheromone Threshhold - 30

the differences were small and almost no difference in overall efficiency was
observed.

Experimental results using the difficult map are shown in Fig. 5.18 and
Fig. 5.19. On the whole, Model 2 performed better in the difficult map. Fig-
ure 5.19 shows experimental observations for the difficult map on a different
scale. Just as before, the horizontal axis represents the number of agents; how-
ever, the vertical axis represents the ratio of the total number of times agents
crossed bridges to the total number of times agents helped to form bridges.
This ratio indicates how useful the bridges formed were. From the data, it was
found that Model 2 yielded higher values than Model 1. For Model 1, the ra-
tio was usually about one. This means that even though a bridge was formed,
neighboring agents would not have used it efficiently. This was because in the
difficult map, unlike the simple map, gullies were present at various locations,
causing bridges to be formed at unnecessary sites with Model 1. With Model 2
higher ratios were found compared to that found with Model 1. Although it is
not evident from the graph, in Model 2 the bridges were formed only at those
sites that were necessary for bringing food to the nest. This was because the
pheromone was secreted along the way from the food source to the nest. The
concentration of pheromone indicated the optimal sites for bridge construc-

Ant Colony–Based Simulation 131

FIGURE 5.17: Simple map – experimental results.

FIGURE 5.18: Difficult map – experimental results 1.

tion. Hence, both the timing and sites of bridge construction were superior
in Model 2. However, Model 2 suffers from the drawback that bridges cannot
be formed until the foraging sites have been found. In nature, cases are also
observed where bridges are formed at necessary sites before foraging sites are
found. Thus, for altruistic activity like bridge formation, ants may use the
pheromone method along with some other judgment criteria such as the one
stated in Model 1.

132 Agent-Based Modeling and Simulation with Swarm

FIGURE 5.19: Difficult map – experimental results 2.

5.8.4 Judgment criteria with reference to chain formation

5.8.4.1 What is chain formation?

Chain formation is another philanthropic cooperative behavior similar to
bridge formation. Chains in this case refer to structures formed by the bodies
of the ants when the ants encounter extreme differences in heights during
their marches. In this way, it is possible for other ants to move safely from
one height to another. In their research, Lioni et al. [80] observed the chain
formation behavior of ants in nests installed in the laboratory. The results
showed that the probability of participation in chain formation Pe and the
probability of abandoning chain formation Ps can be approximated by the
following equations:

Pe = Ce0 +
Ce1X

Ce2 +X
(5.14) Ps = Cs0 +

Cs1X

Cs2 +Xν
, (5.15)

where X is the number of ants participating in chain formation and the other
numbers are constants. According to these equations, if many ants are con-
tained in the formed chain then it is easier for them to participate in chain
formation but more difficult for them to stop.

Using these formulas as judgment criteria for chain formation, an exper-
iment was conducted to verify the proposed hypotheses, as discussed in the
next sections.

5.8.4.2 Experiment to verify the chain formation system

To justify the proposed model of pheromone concentration as the criteria
for transition to the altruism state, a comparative study was performed with
Lioni’s model of chain formation.

In Fig. 5.20, the number of agents is shown on the horizontal axis and

Ant Colony–Based Simulation 133

FIGURE 5.20: Performance comparison in terms of foraging time.

FIGURE 5.21: Performance comparison in terms of altruistic activity.

the time until the completion of foraging on the vertical axis. It was found
that for some population sizes, when pheromone concentration is used as the
judgment criteria, foraging takes a shorter time than that required for chain
formula.

In Fig. 5.21, the number of agents is shown on the horizontal axis and the
cumulative time during which the agents are engaged in altruistic behavior
on the vertical axis. It was also observed that when pheromone concentration
is used as the judgment criterion, the total time during which the agents are
engaged in altruistic activity is shorter and is less affected by the population
size. On the other hand, when the formulas of Lioni et al. are applied, the time
engaged in altruistic behavior increases with the number of agents. Fig. 5.22
compares another aspect of the models. When pheromone concentration was
used as the judgment criterion, bridges were constructed at the required sites,

134 Agent-Based Modeling and Simulation with Swarm

FIGURE 5.22: Comparison of bridge construction sites.

but when the formulas of Lioni et al. were applied, bridges were constructed
at many sites other than the required sites. It is also clear from Fig. 5.22 that
with the Lioni et al. model, fewer agents are in the Search state as many of
them are in the Altruism state.

Procedures using formula (1) of Lioni et al. featured a higher probability
of altruistic behavior at sites where agents are apt to congregate. Therefore,
more altruistic behavior is expected to occur close to the foraging site and
the nest or in between these sites. In Lioni’s model, the altruistic behavior is
possible without finding foraging sites and this is an advantage over the pro-
posed model based on pheromone concentrations. Nevertheless, the simulation
results showed that in terms of performance, measured as foraging speed, the
proposed model was superior to Lioni’s model. The possible reason behind
this could be that in the Lioni et al. experiment calculations were performed
by limiting the chain formation sites to one; hence, their model could not
be directly applied to an environment with a series of bridge formation sites
as used here. Therefore, in consideration of the biology, etc., of army ants,
we need to combine the pheromone concentration based model with other
judgment criteria.

Ant Colony–Based Simulation 135

FIGURE 5.23: Maps used to study the effect of the number of agents.

5.8.5 Changes in strategy based on number of agents

5.8.5.1 Deciding group behavior of army ants

It has been confirmed that the group behavior of army ants is seriously
affected by the number of ants that are active [80, 81]. For example, when few
ants are available for chain formation, chains are not formed, but when a large
number of ants is available, chains are formed at several sites. However, when
the number of active ants is moderate, initially several chains are formed.
But after a certain time, extension of most of the chains stops and the chains
gradually decrease in size; eventually the extension of only one chain continues.
However, it is still not clear how the ants count the number of neighboring
ants and how this number affects their behavior.

5.8.6 Comparative experiment

In order to monitor the effect of group size on the activity of agents,
we performed experiments using the Lioni et al. formulas extended with a
minimum limit on group size as an additional condition of chain formation. We
compared this scheme with the one that does not take into account the group
size. The experiment was performed using two maps, shown in Fig. 5.23. The
results of the experiments are shown in Fig. 5.24 and Fig. 5.25. The horizontal
axis shows the number of agents, and the vertical axis shows the performance
in terms of the number of food items collected within a fixed time. In these
figures, “with Check Neighbor” represents the procedure taking the number of
neighboring ants into consideration and “without Check Neighbor” indicates
the procedure not taking the number of neighboring ants into consideration.

In Map 1, the method that did not take into account information about

136 Agent-Based Modeling and Simulation with Swarm

FIGURE 5.24: Effect of neighborhood knowledge (Map 1).

FIGURE 5.25: Effect of neighborhood knowledge (Map 2).

neighboring ants showed high performance. This was because the conditions
for bridge formation were relaxed and hence bridges could be formed at an
early stage and food could be found easily.

Map 2 was used to investigate whether intelligent behavior can be achieved
by avoiding unnecessary bridge formation where a shortcut is not especially
necessary for food collection. In this case, better results were obtained with
the method that checks the number of neighboring ants.

Figure 5.26 shows how the bridges extend in size with time for Map 1.
In the figure, “1st” refers to the largest bridge at the time and “2nd” refers
to the next largest bridge. The horizontal axis shows time and the vertical
axis shows the two largest bridges. It is apparent from the graph that at first
several bridges coexist and extend for about the same length, but finally the
differences become greater. Figure 5.27 shows the data obtained in a biological

Ant Colony–Based Simulation 137

FIGURE 5.26: Changes in size of bridge.

FIGURE 5.27: Changes in size of chain (data plot from [81]).

experiment in the research of Lioni et al. [81]. When chains were formed at
two sites, records were kept on how each of the chains extended. In the figure,
“1st” and “2nd” show the sizes of the chains at each site.

As can be seen from the two figures, these curves, i.e., simulation data and
data from the biological experiment, look quite similar.

5.8.7 Simulation with fixed role assigned

From the previous experiments, it seems that our model has many proper-
ties similar to actual army ant behavior. To emphasize the similarity between
the simulator agents and the actual army ants, it is important to compare
experimental data. We can do that by corresponding the agents’ behavior to
the army ants’ behavior.

138 Agent-Based Modeling and Simulation with Swarm

FIGURE 5.28: Experimental results with task assignment.

As a first step, the experiment was performed using a simulator that has
agents with a fixed task assigned. Task assignment is one of the signatures
that is observed in army ants. Army ants have tasks that depend on someone’s
rank. Here we consider two different roles for agents in our simulator.

• role A: Search and transport food.

• role B: Build a bridge to support role A.

We carried out the experiment by assigning agents to these two roles with
different ratios. Figure 5.28 shows the experimental results where the perfor-
mance was compared in terms of the number of food items collected within
a fixed time. Rate 0.1 means that 10% of the agents were assigned to role B
in the simulation. “Dynamic Assignment” labels the experimental results ob-
tained by the simulator used in Section 5.8.5 where the agents have no fixed
role.

The results in Fig. 5.28 indicate that a fixed division of roles may be
better than a dynamic one. Particularly, Rate 0.5 and Rate 0.6 are better than
other ratios. Although “Dynamic Assignment” was not the best, it performed
competitively on an average.

This section points out the possibility of role assignment in our simulator.
In the real world, it is not possible to know the role assignments of ants to
solve this problem. The improvement of Swarm-based simulation with more
realistic knowledge is a future research concern.

Chapter 6

Particle Swarm Simulation

In theory at least, individual members of the school can profit
from the discoveries and previous experience of all other mem-
bers of the school during the search for food. This advantage
was documented earlier with reference to bird flocks. It can
become decisive, outweighing the disadvantages of competi-
tion for food items, whenever the resource is unpredictably
disturbed in patches. Thus, larger fish that prey on schools
of smaller fish or cephalopods might be expected to hunt in
groups for this reason alone [126, p. 442].

6.1 Boids and flocking behaviors

Many scientists have attempted to express the group behavior of flocks
of birds and schools of fish, using a variety of methods. Two of the most
well-known of these scientists are Reynolds and Heppner, who simulated the
movements of birds. Reynolds was fascinated by the beauty of bird flocks [101],
and Heppner, a zoologist, had an interest in finding the hidden rules in the
instantaneous stops and dispersions of flocks [50]. These two shared a keen
understanding of the unpredictable movements of birds; at the microscopic
level, the movements were extremely simple, as seen in cellular automata,
while at the macroscopic level, the motions were very complicated and ap-
peared chaotic. This is what is called an “emergent property” in the field of
Artificial Life (Alife). Their model places a very high weight on the influence
of individuals on each other. Similarly, it is known that an “optimum distance”
is maintained among individual fish in a fish school (see Fig. 6.1).

This approach is probably not far from the mark as the basis for the social
behavior of groups of birds, fish, animals, and, for that matter, human beings.
The sociobiologist E.O.Wilson made an interesting suggestion with respect to
schools of fish (see the quote at the beginning of this chapter).

As one can understand from this quote, the most useful information to
an individual is what is shared from other members of the same group. This
hypothesis forms the basis for the particle swarm optimization (PSO) method,
which will be explained in Section 6.4.

139

140 Agent-Based Modeling and Simulation with Swarm

FIGURE 6.1: Do the movements of a school of fish follow a certain set of
rules? (@Coral Sea in 2003)

The collective behavior of a flock of birds emphasized the rules for keeping
the optimum distance between an individual and its neighbors.

The computer graphics (CG) video by Reynolds features a group of agents
called “boids.” Each boid moves according to the sum of three vectors: (1)
force to move away from the nearest individual or obstacle, (2) force to move
toward the center of the flock, and (3) force to move toward its destination.
Adjusting coefficients in this summation results in many behavioral patterns.
This technique is often used in special effects and videos in films. Figure 6.2
(simple behavior of flocks) and Fig. 6.3 (situation with obstacles) are examples
of simulations of boids.

The following are the details of the algorithm that boids follow. Many
individuals (boids) move around in space, and each individual has a velocity
vector. The three factors below result in a flock of boids.

1. Avoid collision: attempt to avoid collision with nearby individuals.

2. Match pace: attempt to match the velocity of nearby individuals.

3. Move to center: attempt to be surrounded by nearby individuals.

Each boid has an “optimum distance” to avoid collision, and behaves so as
to maintain this distance with its nearest neighbor [102]. Collision becomes
a concern if the distance between nearby boids becomes shorter than the
“optimum distance.” Therefore, to avoid collision, each boid slows down if the
nearest boid is ahead and speeds up if the nearest boid is behind (Fig. 6.4).

The “optimum distance” is also used to prevent the risk of straying from
the flock. If the distance to the nearest boid is larger than the “optimum
distance,” each boid speeds up if the nearest boid is ahead and slows down if
it is behind (Fig. 6.5).

Particle Swarm Simulation 141

(a) (b)

(c) (d)

FIGURE 6.2: Simple behavior of boids ((a)⇒(b)⇒(c)⇒(d)).

(a) (b)

FIGURE 6.3: Boids in a situation with obstacles ((a)⇒(b)).

142 Agent-Based Modeling and Simulation with Swarm

Smaller than “optimal

distance”

front boid:

speed up

rear boid:

slow down

FIGURE 6.4: Avoid collision (1).

Greater than

“optimal distance”

front boid:

slow down

rear boid:

speed up

FIGURE 6.5: Avoid collision (2).

Here, “ahead” and “behind” are defined as ahead or behind a line that
crosses the boid’s eyes and is perpendicular to the direction in which the boid
is moving (Fig. 6.6). Boids try to move parallel to (with the same vector as)
their nearest neighbor. Here, there is no change in speed. Furthermore, boids
change velocity so as to always move toward the center of the flock (center of
gravity of all boids).

In summary, the velocity vector (~vi(t)) of the i-th boid is updated at time
t as follows (see Fig. 6.7):

~vi(t) = ~vi(t− 1) + ~Nexti(t− 1) + ~Gi(t− 1) (6.1)

where ~Nexti(t − 1) is the velocity vector of the nearest boid to individual

ahead

behind

FIGURE 6.6: Ahead or behind a line that crosses the boid’s eyes.

Particle Swarm Simulation 143

nearest boid

center of gravity
i-th boid

FIGURE 6.7: Updating the velocity vector.

i, and ~Gi(t − 1) is the vector from individual i to the center of gravity. The
velocity at one step before, i.e., ~vi(t−1), is added to take inertia into account.

Each boid has its own field of view (Fig. 6.8) and considers boids within
its view when finding the nearest neighbor. However, the coordinates of all
boids, including those out of view, are used to calculate the center of gravity.

Kennedy and Eberhart designed an effective optimization algorithm using
the mechanism behind boids [71]. This is called particle swarm optimization
(PSO), and numerous applications are reported. The details are provided in
Section 6.4.

6.2 Simulating boids with Swarm

As explained in Section 6.1, the velocity update equation (~vi(t)) of boid i
at time t was defined as follows:

~vi(t) = ~vi(t− 1) + ~Nexti(t− 1) + ~Gi(t− 1) (6.2)

where ~Nexti(t − 1) is the velocity vector of the boid closest to object i, and
~Gi(t− 1) is the vector toward the center of gravity from object i.

In the easiest Boid program, this is achieved by the “step” method of
Bug.java as follows:

144 Agent-Based Modeling and Simulation with Swarm

boids within the field

of view

FIGURE 6.8: Each boid has its own field of view.

// the number of ‘‘boid’’ in the field of sight is substituted

// in ‘‘Num’’ in the lines above these.

gX /= Num;

gY /= Num;

// coordinates of the center of gravity are obtained in (gX, gY).

// in the lines above,

// the coordinates of the closest boid are obtained in (minDx,

minDy).

Bug nearestBug =

(Bug)world.getObjectAtX$Y((minDX+worldXSize)%worldXSize,

(minDY+worldYSize)%worldYSize);

// the closest boid is kept in nearestBug.

//direction of center of gravity is obtained in this variable

float gVX = 0.0f, gVY = 0.0f;

float tmp = (float)Math.sqrt((float)((gX-xPos)*(gX-xPos)+(gY-

yPos)*(gY-yPos)));

gVX = (float)(gX - xPos) / tmp;

gVY = (float)(gY - yPos) / tmp;

// (xPos, yPos) shows the current position of boid.

float sVX = 0.0f, sVY = 0.0f; // obtains its own velocity vector

sVX = (float)Math.cos(direction);

sVY = (float)Math.sin(direction);

Particle Swarm Simulation 145

float nVX = 0.0f, nVY = 0.0f;

// obtains the velocity vector of the closest boid

nVX = (float)Math.cos(nearestBug.direction);

nVY = (float)Math.sin(nearestBug.direction);

float fVX, fVY; // obtains the new directional vector

fVY = gravityWeight * gVY + sVY + nearWeight * nVY;

newDirection = Vector2Direction(fVX, fVY);

float dX = (float)(minDX - xPos);

float dY = (float)(minDY - yPos);

// from the current position,

// obtains the directional vector towards the closest boid

float inner = dX * fVX + dY * fVY; // used to determine the

proximity

float nearestDist = (float)Math.sqrt(dX * dX + dY * dY);

// obtains the new speed ‘‘new speed’’

// by changing the current speed ‘‘speed’’

if(inner > 0){ // If the closest boid was in front of self

if(nearestDist > optDistance){

newSpeed = speed * accel; // speed up

else{

newSpeed= speed / accel; // speed down

}

}else{ // if the closest boid was behind

if(nearestDist > optDistance){

newSpeed= speed / accel; // speed down

}else{

newSpeed = speed * accel; //speed up

}

}

}

After that, the following lines obtain the new coordinates (newX, newY) of the
boid.

newX = xPos + (int)(newSpeed * Math.cos(newDirection));

newY = yPos + (int)(newSpeed * Math.sin(newDirection));

Note that the behavior of the “boid” group slightly differs by changing
gravityWeight and nearWeight to various values. Apart from this, the ex-
tended versions of “boid” are also provided as follows:

• Two types of tribes/races of boid are introduced.

• Obstacles are placed in the map.

146 Agent-Based Modeling and Simulation with Swarm

6.3 Swarm Chemistry

Swarm Chemistry is a system designed by Sayama [104] to model and
simulate the behavior of groups of, for example, fish and ants.

Agents in Swarm Chemistry move in two-dimensional space according to
simple rules based on a number of parameters. The position vector X′

i and
velocity vector V ′

i at the next step of the agents in the population are deter-
mined from the current position vector Xi and velocity vector Vi according
to the following process.

1. Find agents near an agent Xi with Euclidean distance less than r.

2. If there are no agents nearby, a random value of [−0.5, 0.5] is added to
the x and y components of the acceleration Ai of Xi.

3. If there is at least one agent nearby, the acceleration Ai of Xi is updated
using the following equation. Here, X̄i is the average position and V̄i is
the average velocity of nearby agents.

Ai = c1(Xi− X̄i)+ c2(Vi− V̄i)+ c3Σ
N
j=1(Xi−Xj)/|Xi−Xj|2 (6.3)

In addition, a random value of [−0.5, 0.5] is added to the x and y com-
ponents of Ai with a probability c4.

4. Add Ai to V ′

i .

5. If |V ′

i | > vm, multiply V ′

i by a constant value such that the absolute
value becomes vm.

6. Update V ′

i using the equation:

V
′

i ← c5(vn/|V ′

i | · V ′

i) + (1− c5)V
′

i (6.4)

7. Perform the above procedure on all agents.

8. Substitute the velocity Vi of each agent with V ′

i to update the velocity.

9. Add Vi to the positions of each agent Xi to obtain the positions at the
next step X′

i.

There are eight control parameters in the update process: r, vn, vm, c1, c2, c3,
c4, c5. Using multiple populations with different parameters results in interac-
tions between populations, and complex behavior can be observed.

The populations shown in Fig. 6.9 are an example of behavior arising from
this system, where a swarm group rotates around another swarm group. The
control parameters are

Particle Swarm Simulation 147

FIGURE 6.9: Behavior in Swarm Chemistry (1).

→ →

→ → →

FIGURE 6.10: Behavior in Swarm Chemistry (2).

60*{73.03, 0.61, 5, 0.75, 0.17, 28.81, 0.32, 0.37}

140*{93.28, 5.15, 10.71, 0.64, 0.58, 96.71, 0.07, 0.41}

Where 60 and 140 are the number of boids in each population.
Figure 6.10 shows a behavior where the large swarm group is reflected at

the walls and is sometimes attracted to the small swarm group. The control
parameters are

164*{52.86, 9.69, 13.19, 0.93, 0.5, 23.84, 0.3, 0.85}

36*{73.31, 0.76, 3.47, 0.35, 0.32, 7.47, 0.09, 0.22}

Figure 6.11 is a screenshot of a system where the control parameters are
adjusted through interactive evolutionary computation (IEC) to obtain a sys-
tem that behaves according user preferences. This system is a Java applet that
is openly available online.1

1http://www.iba.t.u-tokyo.ac.jp/~akio/swarm_chemistry.html

http://www.iba.t.u-tokyo.ac.jp/~akio/swarm_chemistry.html

148 Agent-Based Modeling and Simulation with Swarm

FIGURE 6.11: A snapshot of Swarm Chemistry.

A user observes the behavior of two systems to the right and left, and
chooses the system that he likes. Repeating this pairwise comparison optimizes
the parameter to what the user likes. When a system very close to what the
user wants appears, the user can fine-tune it by clicking the “Local Search
Mode” button at the top.

6.4 PSO: particle swarm optimization

This section introduces the optimization method “particle swarm optimiza-
tion” (PSO), which differs slightly from GA and GP. PSO is an algorithm from
the field of Swarm Intelligence. It was first described by Kennedy and Eberhart
as an alternative to GA in 1995 [71]. The algorithm for PSO was conceived
on the basis of observations of certain social behavior in lower-class animals
or insects. In contrast to the concept of modifying genetic codes using genetic
operations as used in GA, in PSO the moving individuals (called “particles”)
are considered where the next movement of an individual is determined by the
motion of the individual itself and that of the surrounding individuals. It has
been established that PSO has capabilities equal to those of GA for function
optimization problems. There have been several comparative studies on PSO
and standard GA (see [3, 35, 51, 73]).

Below we describe the origins of PSO, outline the procedure, compare its
search efficiency with that of GA, and provide some examples of its applica-
tion.

Particle Swarm Simulation 149

6.4.1 PSO algorithm

The classic PSO was intended to be applied to optimization problems. It
simulates the motion of a large number of individuals (or “particles”) moving in
a multi-dimensional space [71]. Each individual stores its own location vector
(~xi), velocity vector (~vi), and the position at which the individual obtained
the highest fitness value (~pi). All individuals also share information regarding
the position with the highest fitness value for the group (~pg).

As generations progress, the velocity of each individual is updated using
the best overall location obtained up to the current time for the entire group
and the best locations obtained up to the current time for that individual.
This update is performed using the following formula:

~vi = χ(ω~vi + φ1 · (~pi − ~xi) + φ2 · (~pg − ~xi)) (6.5)

The coefficients employed here are the convergence coefficient χ (a random
value between 0.9 and 1.0) and the attenuation coefficient ω, while φ1 and
φ2 are random values unique to each individual and the dimension, with a
maximum value of 2. When the calculated velocity exceeds some limit, it is
replaced by a maximum velocity Vmax. This procedure allows us to hold the
individuals within the search region during the search.

The locations of each of the individuals are updated at each generation by
the following formula:

~xi = ~xi + ~vi (6.6)

The overall flow of the PSO is as shown in Fig. 6.12. Let us now consider
the specific movements of each individual (see Fig. 6.13). A flock consisting of
a number of birds is assumed to be in flight. We focus on one of the individuals
(Step 1). In the figure, the © symbols and linking line segments indicate the
positions and paths of the bird. The nearby ◦© symbol (on its path) indicates
the position with the highest fitness value on the individual’s path (Step 2).
The distant ◦© symbol (on the other bird’s path) marks the position with the
highest fitness value for the flock (Step 2). One would expect that the next
state will be reached in the direction shown by the arrows in Step 3. Vector
1© shows the direction followed in the previous steps; vector 2© is directed
toward the position with the highest fitness for the flock; and vector 3© points
to the location where the individual obtained its highest fitness value so far.
Thus, all these vectors, 1©, 2©, and 3©, in Step 3 are summed to obtain the
actual direction of movement in the subsequent step (see Step 4).

A simulator is available for investigating the PSO search process. Fig-
ure 6.14 is a screenshot of the simulator. Interested readers are referred to
Appendix A.2 for a detailed description of how the simulator is operated.

The efficiency of this type of PSO search is certainly high because focused
searching is available near optimal solutions in a relatively simple search space.
However, the canonical PSO algorithm often gets trapped in a local optimum
in multimodal problems. Because of that, some sort of adaptation is necessary
in order to apply PSO to problems with multiple sharp peaks.

150 Agent-Based Modeling and Simulation with Swarm

FIGURE 6.12: Flow chart of the PSO algorithm.

To overcome the above limitation, a GA-like mutation can be integrated
with PSO [51]. This hybrid PSO does not follow the process by which every
individual of the simple PSO moves to another position inside the search area
with a predetermined probability without being affected by other individuals,
but leaves a certain ambiguity in the transition to the next generation due to
Gaussian mutation. This technique employs the following equation:

mut(x) = x× (1 +Gaussian(σ)), (6.7)

where σ is set to be 0.1 times the length of the search space in one dimension.
The individuals are selected at a predetermined probability and their positions
are determined at the probability under the Gaussian distribution. Wide-
ranging searches are possible at the initial search stage and search efficiency is
improved at the middle and final stages by gradually reducing the appearance
ratio of the Gaussian mutation at the initial stage. Figure 6.15 shows the
PSO search process with a Gaussian mutation. In the figure, Vlbest represents
the velocity based on the local best, i.e., ~pi − ~xi in eq. (6.5), whereas Vgbest

represents the velocity based on the global best, i.e., ~pg − ~xi.

6.4.2 Comparison with GA

Let us turn to a comparison of the performance of PSO with that of the
GA using benchmark functions to examine the effectiveness of PSO.

Particle Swarm Simulation 151

FIGURE 6.13: In which way do birds fly?

For the comparison, F8 (Rastrigin’s function) and F9 (Griewangk’s func-
tion) are employed. These are defined as:

F8(x1, x2) = 20 + x2
1 − 10 cos(2πx1) + x2

2 − 10 cos(2πx2)

−(−5.11 ≤ xi ≤ 5.11)

F9(x1, x2) =
1

4000

2
∑

i=1

(xi − 100)2 −
2
∏

i=1

cos

(

xi − 100√
i

)

+ 1(−10 ≤ xi ≤ 10)

Figures 6.16 and 6.17 show the shapes of F8 and F9, respectively. F8 and
F9 seek the minimum value. F8 contains a large number of peaks so that its
optimization is particularly difficult.

Comparative experiments were conducted with PSO and GA using the
above benchmark functions. PSO and GA were repeatedly run 100 times.
Search space ranges for the experiments are listed in Table 6.1. PSO and GA
parameters are given in Table 6.2.

The performance results are shown in Figs. 6.18 and 6.19, which plot the
fitness values against the generations. Table 6.3 shows the averaged best fit-
ness values over 100 runs. As can be seen from the table and the figures, the

152 Agent-Based Modeling and Simulation with Swarm

FIGURE 6.14: PSO simulator.

V
lbest

V
lbest

V
gbest

V
gbest

VV

FIGURE 6.15: Concept of searching process by PSO with a Gaussian mu-
tation.

combination of PSO with a Gaussian mutation allows us to achieve a perfor-
mance that is almost equal to that of the canonical PSO for the unimodals,
and a better performance than the canonical PSO for the multimodals. The
experimental results with other benchmark functions are further discussed
in [58].

PSO is a stochastic search method, as are GA and GP, and its method
of adjustment of ~pi and ~pg resembles crossover in GA. It also employs the
concept of fitness, as in evolutionary computation. Thus, the PSO algorithm
is strongly related to evolutionary computation (EC) methods. In conceptual
terms, one could place PSO somewhere between GA and EP.

However, PSO has certain characteristics that other EC techniques do
not have. GA operators directly operate on the search points in a multi-
dimensional search space, while PSO operates on the motion vectors of parti-
cles which in turn update the search points (i.e., particle positions). In other
words, GA operators are position specific and PSO operators are direction

Particle Swarm Simulation 153

TABLE 6.1: Search space for test functions.
Function Search space

F8 −65.535 ≤ xi < 65.536
F9 −10 ≤ xi ≤ 10

TABLE 6.2: PSO and GA parameters.
Parameter PSO, PSO with Gaussian Real-valued GA
Population 200 200

Vmax 1
Generation 50 50

φ1,φ2 upper limits = 2.0
Inertia weight 0.9
Crossover ratio 0.7(BLX-α)

Mutation 0.01 0.01
Elite 0.05

Selection tournament (size=6)

TABLE 6.3: Average best fitness of 100 runs for experiments.

Gen GA PSO PSO with Gaussian
F8 1 4.290568 3.936564 3.913959

10 0.05674 0.16096 0.057193
20 0.003755 0.052005 0.002797
30 0.001759 0.037106 0.000454
40 0.001226 0.029099 0.000113
50 0.000916 0.02492 3.61E-05

F9 1 0.018524 0.015017 0.019726
10 0.000161 0.000484 0.000145
20 1.02E-05 0.000118 1.43E-05
30 3.87E-06 6.54E-05 4.92E-06
40 2.55E-06 5.50E-05 2.04E-06
50 1.93E-06 4.95E-05 1.00E-06

154 Agent-Based Modeling and Simulation with Swarm

 5

 2.5

0

2.5

5
 5

 2.5

0

2.5

5

0

20

40

60

80

 5

 2.5

0

2.5

FIGURE 6.16: Rastrigin’s function (F8).

 10

 5

0

5

10
 10

 5

0

5

10

5

6

7

0

 5

0

5

FIGURE 6.17: Griewangk’s function (F9).

specific. One of the reasons PSO has gathered so much attention is the ten-
dency of its individuals to proceed directly toward the target. This feature
resembles the behavior of BUGS, which is described in Section 6.6.

In the chapter “The Optimal Allocation of Trials” in his book [52], Holland
ascribes the success of EC to the balance of “exploitation,” through search of
known regions, with “exploration,” through search, at finite risks, of unknown
regions. PSO is adept at managing such subtle balances. These stochastic fac-
tors enable PSO to make thorough searches of the relatively promising regions
and, due to the momentum of speed, also allows effective searches of unknown
regions. Theoretical research is currently underway to derive optimized values
for PSO parameters by mathematical analysis, for stability and convergence
(see [18, 72]).

6.4.3 Examples of PSO applications

PSO has been applied to an analysis of trembling of the human body [34].
Trembling has two types, ordinary shivering and the type of shaking that is

Particle Swarm Simulation 155

1e-005

0.0001

0.001

0.01

0.1

1

10

0 5 10 15 20 25 30 35 40 45 50

lo
g

(F
it
n

e
s
s
)

Generation

original Rastrigin function

GA
PSO

PSO with Gaussian

FIGURE 6.18: Standard PSO versus PSO with a Gaussian mutation for F8.

caused by Parkinson’s disease or other illnesses. The authors used a combi-
nation of PSO and a neural network to distinguish between the types. The
sigmoid function given below was optimized with PSO in a layered network
with 60 input units, 12 hidden nodes, and 2 output units, thus:

output =
1

1 + e−k
∑

wixi
,

where xi and wi were the inputs and weights to each of the hidden layers
and output layers, respectively. Optimization of the weight indirectly causes
changes in the network structure. Ten healthy controls and twelve patients
took part in this experiment. The system succeeded in distinguishing correctly
between the types of shaking in the subjects with 100% accuracy.

PSO has been applied to problems of electric power networks [86]. In their
research, the experiments were conducted employing selection procedures that
were effective for standard PSO and an extended version (EPSO) with a self-
adaptive feature. The problem of “losses” in electric power networks refers to
searching out the series of control actions needed to minimize power losses.
The objective function for this included the level of excitation of generators
and adjustments to the connections to transformers and condensers, i.e., the
control variables included both continuous and discrete types. The maximum
power flow and the permitted voltage level were imposed as boundary con-
ditions, and the algorithm searched for the solution with the minimum loss.
Miranda and Fonseca [81] conducted a comparative experiment with EPSO
and simulated annealing (SA), conducting 270 runs in each system and com-
paring the mean of the results. EPSO rapidly identified a solution that was
close to the optimal one. SA converged more slowly. Comparison of the mean
square errors indicated that SA did not have as high a probability of arriv-
ing at the optimal solution as EPSO. PSO has also been successfully applied

156 Agent-Based Modeling and Simulation with Swarm

1e-006

1e-005

0.0001

0.001

0.01

0.1

0 5 10 15 20 25 30 35 40 45 50

lo
g

(F
it
n

e
s
s
)

Generation

generalized Rastrigin function

GA
PSO

PSO with Gaussian

FIGURE 6.19: Standard PSO versus PSO with a Gaussian mutation for F9.

to the economic load dispatch (ELD) problem for least cost power genera-
tion [42, 95]. These findings indicate that PSO can be trusted as a sufficiently
robust method for solving real problems.

Practical research has also been conducted applying PSO to optimize
the mixing of materials for the production of valuable excretions by micro-
organisms [72]. The authors compared PSO with traditional methods of exper-
imental design, finding that the mixture indicated by PSO resulted in more
than a doubling of performance. When materials of low quality were used,
the search efficiency was quite poor in the initial stages, but ultimately, PSO
provided superior results. These findings confirmed that PSO offers good ro-
bustness against changes in the environment.

6.5 ABC algorithm

Bees, along with ants, are well-known examples of social insects (Fig. 6.20).
Bees are classified into three types: employed bees, onlooker bees, and scout
bees. Employed bees fly in the vicinity of feeding sites they have identified,
sending information about food to onlooker bees. Onlooker bees use the in-
formation from employed bees to perform selective searches for the best food
sources from the feeding site. When information about a feeding site is not
updated for a given period of time, its employed bees abandon it and become
scout bees that search for a new feeding site. The objective of a bee colony
is to find the highest-rated feeding sites. The population is approximately
half employed bees and scout bees (about 10–15% of the total); the rest are
onlooker bees.

Particle Swarm Simulation 157

FIGURE 6.20: A bee colony.

The waggle dance (a series of movements) performed by employed bees to
transmit information to onlooker bees is well known (Fig. 6.21). The dance
involves shaking the hindquarters and indicating the angle with which the sun
will be positioned when flying straight to the food source, with the sun rep-
resented as straight up. For example, a waggle dance performed horizontally
and to the right with respect to the nest combs means “fly with the sun at 90
degrees to the left.” The speed of shaking the rear indicates the distance to
the food; when the rear is shaken quickly, the food source is very near, and
when shaken slowly it is far away. Communication via similar dances is also
performed with regard to pollen and water collection, as well as the selection
of locations for new hives.

The Artificial Bee Colony (ABC) algorithm [65, 66], initially proposed by
Karaboga et al., is a swarm optimization algorithm that mimics the foraging
behavior of honey bees. Since ABC was designed, it has been proved that
ABC, with fewer control parameters, is very effective and competitive with
other search techniques such as Genetic Algorithm (GA), Particle Swarm Op-
timization (PSO), and Differential Evolution (DE).

In ABC algorithms, an artificial swarm is divided into employed bees,
onlooker bees, and scouts. N d-dimensional solutions to the problem are ran-
domly initialized in the domain and referred to as food sources. Each employed
bee is assigned to a specific food source xi and searches for a new food source

158 Agent-Based Modeling and Simulation with Swarm

60 degrees

60 degrees
food source

nest

sun

FIGURE 6.21: Waggle dance.

vi by using the following operator:

vij = xij + rand(−1, 1)× (xij − xkj), (6.8)

where k ∈ {1, 2, · · · , N}, k 6= i, and j ∈ {1, 2, · · · , d} are randomly chosen
indices. vij is the jth element of the vector vi. If the trail to a food source is
outside of the domain, it is reset to an acceptable value. The vi obtained is
then evaluated and put into competition with xi for survival. The bee prefers
the better food source. Unlike employed bees, each onlooker bee chooses a
preferable source according to the food source’s fitness to do further searches
in the food space using eq. (6.8). This preference scheme is based on the fitness
feedback information from employed bees. In classic ABC [65], the probability
of the food source xi that can be exploited is expressed as

pi =
fiti

∑N
j=1 fitj

, (6.9)

where fiti is the fitness of the ith food source, xi. For the sake of simplicity,
we assume that the fitness value is non-negative and that the larger, the
better. If the trail vi is superior to xi in terms of profitability, this onlooker
bee informs the relevant employed bee associated with the ith food source,

Particle Swarm Simulation 159

xi, to renew its memory and forget the old one. If a food source cannot
be improved upon within a predetermined number of iterations, defined as
Limit, this food source is abandoned. The bee that was exploiting this food
site becomes a scout and associates itself with a new food site that is chosen
via some principle. In canonical ABC [65], the scout looks for a new food site
by random initialization.

The details of the ABC algorithm are described below. The pseudocode of
the algorithm is shown in Algorithm 1.

Step 0: Preparation The total number of search points (N), total number of
trips (Tmax), and a scout control parameter (Limit) are initialized. The
numbers of employed bees and onlooker bees are set to be the same
as the total number of search points (N). The value of the objective
function f is taken to be non-negative, with larger values being better.

Step 1: Initialization 1 The trip counter k is set to 1, and the number of
search point updates si is set to 0. The initial position vector for each
search point xi = (xi1, xi2, xi3, · · · , xid)

T is assigned random values.
Here, the subscript i (i = 1, · · · , N) is the index of the search point,
and d is the number of dimensions in the search space.

Step 2: Initialization 2 Determine the initial best solution best.

ig = argmax
i

f(xi) (6.10)

best = xig (6.11)

Step 3: Employed bee search The following equation is used to calculate
a new position vector vij from the current position vector xij .

vij = xij + φ · (xij − xkj) (6.12)

Here, j is a randomly chosen dimensional number, k is the index for
some randomly chosen search point other than i, and φ is a uniform
random number in the range [−1, 1]. The position vector xi and the
number of search point updates si are determined according to the
following equation:

I = {i | f(xi) < f(vi)} (6.13)

xi =

{

vi i ∈ I
xi i /∈ I

(6.14)

si =

{

0 i ∈ I
si + 1 i /∈ I

(6.15)

Step 4: Onlooker bee search The following two steps are performed.

160 Agent-Based Modeling and Simulation with Swarm

Algorithm 1 The ABC algorithm
Require: Tmax, #. of employed bees (=No. of onlooker bees),Limit

Initialize food sources
Evaluate food sources
i = 1
while i < Tmax do

Use employed bees to produce new solutions
Evaluate the new solutions and apply greedy selection process
Calculate the probability values using fitness values
Use onlooker bees to produce new solutions
Evaluate new solutions and apply greedy selection process
Determine abandoned solutions and use scouts to generate new ones ran-
domly
Remember the best solution found so far
i = i+ 1

end while
Return best solution

1. Relative ranking of search points
The relative probability Pi is calculated from the fitness fiti, which
is based on the evaluation score of each search point. Note that
fiti = f(xi). The onlooker bee search counter l is set to 1.

Pi =
fiti

∑N
j=1 fitj

(6.16)

2. Roulette selection and search point updating
Search points are selected for updating based on the probability Pi,
calculated above. After search points have been selected, perform a
procedure as in Step 3 to update the search point position vectors.
Then, let l = l+ 1 and repeat until l = N .

Step 5: Scout bee search Given a search point for which si ≥Limit, ran-
dom numbers are used to exchange generated search points.

Step 6: Update best solution Update the best solution best.

ig = argmax
i

f(xi) (6.17)

best = xig when f(xig) > f(best) (6.18)

(6.19)

Step 7: End determination End if k = Tmax. Otherwise, let k = k+1 and
return to Step 3.

Particle Swarm Simulation 161

FIGURE 6.22: ABC simulator with Swarm.

ABC has recently been improved in many aspects. For instance, we ana-
lyzed the mechanism of ABC to show a possible drawback of using parame-
ter perturbation. To overcome this deficiency, we have proposed a new non-
separable operator and embedded it in the main framework of the cooperation
mechanism of bee foraging (see [47] for details).

A swarm-based ABC simulation has been provided (Fig. 6.22). In this im-
plementation of ABC, optimization is performed using CEC2005 benchmark
functions [110] as the objective function set. Figure 6.23 shows an example of
optimizing the F8 Shifted Rotated Ackley’s function. When scout bees find a
local solution one can see them actively approaching an optimal solution. In
the window on the left, the movement of employed bees will be in green, that
of onlooker bees will be in yellow, and that of scouts will be drawn in red. The
window to the upper right shows the average and maximum fitness values by
generation. The window in the bottom right shows the number of scout bees
over time.

Control of ABC is as follows (Fig. 6.22).

• Start button
Starts the simulation.

• Stop button
Pauses the simulation.

• Next button
Advances the simulation one time step.

• Save button
Not used in this simulation.

• Quit button
Terminates the simulation.

162 Agent-Based Modeling and Simulation with Swarm

(a) (b)

(c)

FIGURE 6.23: ABC optimization with Swarm.

• ObserverSwarm parameter probe

– displayFrequency: Screen refresh frequency

– zoomFactor: Display zoom factor

• ModelSwarm parameter probe

– seed: Random number generator seed

– worldXSize,worldYSize: ABC screen width

– beeNum: Number of bees (= number of search points)

– limit: Scout bee activation parameter

– tmax: Maximum number of generations. When tmax= 0, the simu-
lation will continue to run until “stop” is pressed.

– functype: Benchmark function settings

– dim: Dimensions in the simulation space

ModelSwarm parameters can be changed before the simulation starts (be-
fore pressing “Start” or “Next”). Note that changed parameters will not take
effect until the Enter key is pressed after input.

The objective functions implemented are F1–F12 of the CEC2005 bench-
mark functions [110] (see also Fig. A.2; note that these functions are differ-
ently numbered). Setting the parameter functype to a value 1–12 will set the
associated function as the objective function.

Particle Swarm Simulation 163

An arbitrary function can be defined as the objective function. For this
purpose, after setting the desired function, you should proceed as follows:

1. Change the following parts of ModelSwarm.java (the setFunc and func

functions) and make appropriate definitions under case 0.

/* Define range */

void setFunc(){

....

case 0:

xMax= (define this here; range will be [-xMax,xMax])

break;

....

....

/* Define function */

double func(double po[]){

....

case 0:

result = (The function result;

point coordinates are stored in po[], dimensions

in dim)

break;

....

2. After recompiling, execute as functype:0.

It is also possible to change the dimensions and domain of the function.
Note that the display in the left Swarm window is for two dimensions.

6.6 BUGS: a bug-based search strategy

This section describes another new approach to strategic learning, based on
the concept of swarm intelligence. Simple GAs optimize functions by adaptive
combination (crossover) of coded solutions to problems (i.e., points in the
problem’s search space). In this approach, an analogy is made between the
value (at a given point) of a function to be maximized and the density of
bacteria at that point. More specifically, the adaptive learning used in this
system, called BUGS (a bug-based search strategy), is due to evolving choice of
directions, rather than positions (as with usual real-valued GA methods) [55].
The bugs evolved by the BUGS program learn to search for bacteria in the
highest density regions and are thus likely to move toward those points where
the function has a maximum value. This strategy combines a hill-climbing
mechanism with the adaptive method of GA, and thus overcomes the usual
weakness of simple GAs (which do not include such local search mechanisms).

164 Agent-Based Modeling and Simulation with Swarm

6.6.1 Evolution of predatory behaviors using genetic search

This section introduces the fundamental idea of BUGS. We can exper-
imentally verify the evolution of bugs which possess “predatory behaviors,”
i.e., the evolution of bugs that learn to hunt bacteria. The original motivation
for these experiments was derived from [29]. Bugs learn to move to those re-
gions in the search space where the bacterial concentration is highest. Since
the bug concentration is set up to be proportional to the local value of the
function to be maximized in the search space, the “stabilized” bug concen-
trations are proportional to these search space values. Hence the bugs learn
(GA style) to be hill climbers. A Swarm-based BUGS simulator is available
for readers’ self-study. The details are given in Section 6.7.

6.6.1.1 Bugs hunt bacteria

Figure 6.24(a) illustrates the world in which bugs (large dots) live (a 512×
512 cellular grid). They feed on bacteria (small dots) which are continually
being deposited. The normal bacterial deposition rate is roughly 0.5 bacterium
per (GA) generation over the whole grid. Each bug has its internal energy
source. The maximum energy supply of a bug is set at 1500 units. When a bug’s
energy supply is exhausted, the bug dies and disappears. Each bacterium eaten
provides a bug with 40 units of energy, which is enough to make 40 moves,
where a move is defined to be one of six possible directional displacements of
the bug, as shown in Fig. 6.25.

A bug’s motion is determined by coded instructions on its gene code.
The six directions a bug can move are labeled F, R, HR, RV, HL, and L for
Forward, Right, Hard Right, Reverse, Hard Left, and Left, respectively. The
GA chromosome format for these bugs is an integer vector of size six where
the elements of the vector correspond to the directions in the following order:
(F,R,HR,RV,HL,L), e.g., (2,1,1,1,3,2) (as shown in the window in Fig. 6.24(a)).
When a bug is to make a move, it will move in the direction di (e.g., d3 = HR)
with a probability p(di), which is determined by the following formula:

p(di) =
eai

∑6
j=1 e

aj

(6.20)

where ai is the ith component value of the chromosome vector (e.g., a5 = 3
above). Once a move is made, a new directional orientation should be deter-
mined. Figure 6.25 shows the new Fnext directions, e.g., if the move is R, the
new forward direction will be to the right (i.e., east). For instance, a bug with
a gene code of (1,9,1,1,1,1) turns frequently in direction R so that it is highly
likely to move in a circle.

After 800 moves (i.e., when it attains an “age” of 800), the bug is said
to be “mature” and is ready to reproduce if it is “strong” (i.e., its energy is
greater than a threshold value of 1000 energy units). There are two types of
reproduction, asexual and sexual (see Fig. 6.26). With asexual reproduction,
a strong mature bug disappears and is replaced by two new bugs (in the same

Particle Swarm Simulation 165

(a
)

(b
)

F
IG

U
R

E
6
.2

4
:
B

ug
w

or
ld

:
(a

)1
6
6
th

ge
ne

ra
ti
on

,
(b

)
3
9
,6
1
8
th

ge
ne

ra
ti
on

.

166 Agent-Based Modeling and Simulation with Swarm

FIGURE 6.25: Bug’s gene code.

cell on the grid). Each daughter bug has half the energy of its parent. The
genes of each daughter bug are mutated as follows. One of the components of
the directional 6-vector is chosen with uniform probability. The value of the
direction is replaced by a new value chosen with uniform probability (over
the integer range of, e.g., [0,10]). Sexual reproduction occurs when two strong
mature bugs “meet” (i.e., they move within a threshold distance from each
other called the “reproductive radius”). The distance between two parents is
defined as the Euclidean distance between the two parents. The reproductive
radius is set at 10.0. The two parents continue to live and are joined by
the two daughter bugs. Each parent loses half of its energy in the sexual
reproductive process. As a result, two children are born whose energies are
half the average of the parents’ energies. The children’s genes are obtained
by applying mutation and uniform crossover operators to the parents’ genes.
Thus, these reproductions are constrained by probabilities.

Figure 6.24(b) shows the results of the first simple evolutionary experi-
ment. The simulation began with ten bugs with random genetic structures.
Most of the bugs jittered from side to side unpredictably and are called “jitter-
bugs.” They are likely to starve to death because they eat up most of the food
in their immediate vicinity and are unable to explore widely. In time “cruiser”
bugs evolve, which move forward most of the time and turn left or right oc-
casionally. Note that if a bug hits an edge of the grid, it stays there until an
appropriate move displaces it away from that grid edge. These “cruiser” bugs
succeed in finding food and thus dominate the entire population. A typical
chromosome for a “cruiser” bug is shown in the sub-window of Fig. 6.24(b),

Particle Swarm Simulation 167

(a) Bugs hunt for bacteria

(b) Asexual reproduction (c) Sexual reproduction

FIGURE 6.26: A schematic illustration of bugs.

i.e., (9,6,0,2,4,1). The remarkable features of this chromosome vector are as
follows:

(1) The forward gene (F) is large (9).

(2) The reverse gene (RV) is small (2).

(3) One of the Right (R), Left (L), Hard Right (HR), and Hard Left (HL)
is of moderate size (6).

The second feature is important because bugs with large “reverse” (RV)
gene values create “twirlers,” which make too many turns in one direction.
Such unfortunate creatures usually die. The third feature is also essential,
because intelligent bugs have to avoid loitering around wall edges.

168 Agent-Based Modeling and Simulation with Swarm

FIGURE 6.27: Types of bugs.

6.6.1.2 Effectiveness of sexual reproduction

Dewdney’s original paper used only mutation operators, i.e., asexual re-
production. Sexual reproduction is introduced in bugs to increase the effective
evolution of bugs [54]. It can be experimentally shown that the speed of evo-
lution is higher with sexual reproduction. In the first experiment, we can
statistically compare the performance rates, where the performance of bugs
at generation t is defined as follows:

Performance(t) =
9
∑

i=0

Perf(t− i), (6.21)

where

Perf(k) =
#Eaten(k)

#Bac(k)×#Bug(k)
(6.22)

#Bug(k) = (no. of bugs at the kth generation) (6.23)

#Bac(k) = (no. of bacteria at the kth generation) (6.24)

#Eaten(k) = (no. of bacteria eaten by bugs at the kth generation) (6.25)

This indicates how many bacteria are eaten by bugs as a whole in the last

Particle Swarm Simulation 169

0 1 2 3 4 5

x 10
4

6

8

10

12

14

16

18

Generation

P
e
rf

o
rm

a
n
c
e

Asexual

Sexual

Mature Age

FIGURE 6.28: Performance comparison.

ten generations. As can be seen in Fig. 6.28, sexual reproduction after the
mature age (800) performs better than asexual reproduction, which is tested
statistically.

In a second experiment, the bacteria in the lower left-hand corner (called
the Garden of Eden, a square of 75 × 75 cells) are replenished at a much
higher rate than normal (Fig. 6.29(a)); the normal bacterial deposition rate is
roughly 0.5 bacterium per (GA) generation over the whole grid. In the Garden
of Eden, this rate is 0.5 over the 75×75 area, i.e., a rate roughly 512×512

75×75 = 47
times greater than normal. As the (GA) generations proceeded, the cruisers
evolved as before. But within the Garden of Eden, the jitterbugs were more
rewarded for their jittering around small areas (see Fig. 6.27). Thus, two kinds
of “species” evolved (i.e., cruisers and twirlers) (Fig. 6.29(c)). Note how typical
gene codes of these two species differed from each other. In this second exper-
iment, three different strategies (asexual reproduction, sexual reproduction,
and sexual reproduction within a reproductive radius) are compared in four
different situations. The aim is to evolve a mix of bugs, namely, the cruis-
ers and twirlers. Two initial conditions are tested: a) randomized initial bugs
and b) cruisers already evolved. In addition, the influence of an empty area
in which no bacteria exist is investigated. Obviously this empty-area condi-
tion makes the problem easier. The results of these experiments are shown in
Table 6.4.

As shown in the table, sexual reproduction with a reproductive radius
is superior to the other two strategies and the performance improvement is
significant for more difficult tasks such as non-empty-area conditions.

170 Agent-Based Modeling and Simulation with Swarm

(a) (b)

(c)

FIGURE 6.29: Garden of Eden (a) 69th generation (b) 72, 337th generation
(c) 478, 462nd generation.

Therefore, it was confirmed that crossover is useful for the evolution of
predatory behavior. The method described contrasts with traditional GAs in
two ways: the bugs’ approach uses search directions rather than positions,
and selection is based on energy. This idea leads to a bug-based GA search
(BUGS) whose implementation is described in the next section.

6.6.2 A bug-based GA search

Those individuals which perform the search in this scheme are called
“bugs.” The function that these bugs maximize is defined as:

f(x1, x2, · · · , xn) where xi ∈ Domi, (6.26)

where Domi represents the domain of the ith parameter xi.

Particle Swarm Simulation 171

TABLE 6.4: Experimental results (sexual vs. asexual selection).

Task Asexual Sexual Sexual
empty mutation crossover Proximity crossover

initial area mutation mutation
Random © ◦ © ⊙

Cruisers © ◦ © ⊙

Cruisers × △ △ ©
Random × △ △ ©

△ difficult ◦ possible © fast
⊙

faster

Each bug in the BUGS program is characterized by 3 parameters:

Bugi(t) : position ~Xi(t) = (xi
1(t), · · · , xi

n(t)) (6.27)

direction ~DXi(t) = (dxi
1(t), · · · , dxi

n(t)) (6.28)

energy ei(t) (6.29)

where t is the generation count of the bug, xj is its jth component of the
search space, and ~DXi is the direction in which the bug moves next. The
updated position is calculated as follows:

~Xi(t+ 1) = ~Xi(t) + ~DXi(t) (6.30)

The fitness of each bug is derived with the aid of the function (6.26). The
energy ei(t) of bug i at time (or generation) t is defined to be the cumulative
sum of the function values over the previous T time steps or generations, i.e.,

ei(t) =

T
∑

k=0

f(~Xi(t− k)) (6.31)

The format of a bug’s “chromosome” which is used in the BUGS program
is the bug’s real numbered DX vector, i.e., an ordered list of N real numbers.

With the above definitions, the BUGS algorithm can now be introduced:

Step 1 The initial bug population is generated with random values:
Pop(0) = {Bug1(0), · · · , BugN(0)}
where N is the population size. The generation time is initialized to
t := 1. The cumulative time period T (called the Bug-GA Period) is set
to a user-specified value.

Step 2 Move each bug using eq. (6.30) synchronously.

Step 3 The fitness is derived using eq. (6.26) and the energy is accumulated
using:
for i := 1 to N do ei(t) := ei(t− 1) + fi(~X(t))

172 Agent-Based Modeling and Simulation with Swarm

Step 4 If t is a multiple of T (T -periodical), then execute the GA algorithm
(described below) called BUGS-GA(t), and then go to Step 6.

Step 5 Pop(t+ 1) := Pop(t), t := t+ 1, and then go to Step 2.

Step 6 for i := 1 to N do ei(t) := 0
t := t+ 1. Go to Step 2.

In Step 1, initial bugs are generated on conditions that for all i and j,

xi
j(0) := Random(a, b) (6.32)

dxi
j(0) := Random(−|a− b|, |a− b|) (6.33)

ei(0) := 0 (6.34)

where Random(a,b) is a uniform random generator between a and b. The
BUGS-GA period T specifies the frequency of bug reproductions. In general,
as this value becomes smaller, the performance becomes better, but at the
same time, the convergence time is increased.

For real-valued function optimization, real-valued GAs are preferred over
string-based GAs (see [58] for details). Therefore, the real-valued GA approach
is used in BUGS-GA. The BUGS version of the genetic algorithm, BUGS-
GA(t), is as follows (Table 6.5):

Step 1 n := 1.

Step 2 Select two parent bugs Bugi(t) and Bugj(t) using a probability dis-
tribution over the energies of all bugs in Pop(t) so that bugs with higher
energy are selected more frequently.

Step 3 With probability Pcross, apply the uniform crossover operation to the
~DX of copies of Bugi(t) and Bugj(t), forming two offspring Bugn(t+1)

and Bugn+1(t+ 1) in Pop(t+ 1). Go to Step 5.

Step 4 If Step 3 is skipped, form two offspring Bugn(t+1) and Bugn+1(t+1)
in Pop(t+ 1) by making copies of Bugi(t) and Bugj(t).

Step 5 With probability Pasex, apply the mutation operation to the two off-
spring Bugn(t+1) and Bugn+1(t+1), changing each allele in ~DX with
probability Pmut.

Step 6 n := n+ 2.

Step 7 If n < N then go to Step 2.

The aim of the BUGS-GA subroutine is to acquire bugs’ behavior adap-
tively. This subroutine works in much the same way as a real-valued GA,
except that it operates on the directional vector (~DX), not on the positional

Particle Swarm Simulation 173

TABLE 6.5: Flow chart of the reproduction process in BUGS-GA.

Sexual reproduction:

individual energy gene individual energy gene

Parent1 Bugi(t) E1 G1 ⇒ Parent′
1

Bugn(t + 1) (E1/2) G1

Parent2 Bugj(t) E2 G2 ⇒ Parent′
2

Bugn+1(t + 1) (E2/2) G2

Child1 Bugn+2(t + 1) (E1 + E2/4) G′

1

Child2 Bugn+3(t + 1) (E1 + E2/4) G′

2

Reproduction condition ⇒

(E1 > Reproduction energy threshold) ∧ (E2 > Reproduction energy threshold)
∧ (distance between Parent1 and Parent2 < Reproduction Radius)

Recombination ⇒

G′

1, G
′

2: uniform crossover of G1 and G2 with Pcross, mutated with Pmut

Pasex?

✟
✟
✟

❍
❍

❍

❍
❍
❍

✟
✟

✟

❄

❄
Yes

✲
No

Return

Asexual reproduction:

individual energy gene individual energy gene

Parent Bugi(t) E G ⇒ Child1 Bugn(t + 1) (E/2) G′

⇒ Child2 Bugn+1(t + 1) (E/2) G′′

Reproduction condition ⇒ (E > producible energy)

G′, G′′: mutation of G with Pmut

vector (~X). Positions are thus untouched by the adaptive process of the GA,
and are changed gradually as a result of increment by eq. (6.30). On the
other hand, fitness is evaluated using positional potential by eq. (6.26), which
is the same as for a real-valued GA. Furthermore, chromosome selection is
based on cumulative fitness, i.e., energy. The summary of differences between
a real-valued GA and BUGS is presented in Table 6.6.

The main difference lies in the GA target (i.e., ~X vs ~DX) and the selec-
tion criteria (i.e., energy vs. fitness). Remember that the basic idea of this
combination is derived from a paper [29] which simulated how bugs learn to
hunt bacteria (as described in Section 6.6.1.1).

Figure 6.30 shows the evolution (over 5 to 53 time steps) of the positions
and directions of the bugs in the BUGS program. These bugs were used to
optimize the following De Jong’s F2 function (modified to the maximization
problem; see Appendix A.2 for details):

Maximize f(x1, x2) = −(100(x2
1 − x2)

2 + (1 − x1)
2)

where − 2.047 ≤ xi < 2.048. (6.35)

174 Agent-Based Modeling and Simulation with Swarm

(a) (b)

(c) (d)

FIGURE 6.30: Bugs’ motions for F2: (a) 5th generation, (b) 13th genera-
tion, (c) 25th generation, (d) 53rd generation.

Particle Swarm Simulation 175

TABLE 6.6: BUGS vs. a real-valued GAs.

BUGS Real-valued GA

Fitness evaluation ~X ~X

GA operator target ~DX ~X

Selection criteria Energy Fitness

The main window shows a bird’s eye view of a two-dimensional projection
of the F2 function domain. The bugs are represented as black dots. The larger
the black dot, the greater the bug’s cumulative energy, and hence its fitness.
The “tail” of a bug indicates the direction vector of its motion. The energy
and fitness distributions are shown as bar graphs to the right of the windows.
It is clear that each bug climbs the (F2) potential hill. As the generations
pass (i.e., the time steps), the tails become shorter and shorter (as shown in
Fig. 6.30(b),(c),(d)). This shows that the bugs evolved the correct directions in
which to move, and thus “converged” to the top of the hill. It was confirmed
that for optimizing various benchmark functions, the approach used in the
BUGS program has the same or greater search power than real-valued GAs [54,
55, 58].

As the generations proceed, the bugs in the BUGS program are converged
to the top of the hill via position-based fitness selection (see Fig. 6.31). In the
meantime, the motion directions are gradually refined by the GA mechanism.
We consider this BUGS-type adaptation to be closely related to the building-
block hypothesis and to a schema-based adaptation. In some cases, the BUGS
approach has been shown to be a more efficient search strategy than a real-
valued GA. This is justified by the comments of Rechenberg [100]. He claimed
that, in general, the essential dimensions for search are relatively few in higher
dimensions and that an effective optimization is realized by following the
gradient curve in these essential dimensions. We think that direction-based
(rather than position-based) building blocks produce a more efficient search
strategy in the sense that essential dimensions are adaptively acquired in bugs’
motions, similar to a PSO search.

6.7 BUGS in Swarm

This program simulates the evolution of predatory activity of bugs. Fig-
ure 6.32 is a screenshot of the program.

The bugs are colored green (young) or yellow (adults). They survive by
consuming bacteria (the red dots), which are randomly generated throughout

176 Agent-Based Modeling and Simulation with Swarm

the space. A bug obtains 40 units of energy for each bacterium it consumes.
A bug uses up one unit of energy for each step it moves, and dies if its energy
reserve reaches zero. It must optimize its method of motion in order to live
a long life. Its motion is determined by genetic codes; these consist of the six
integer values expressing the directions {Forward, Right, Hard Right, Reverse,
Hard Left, Left} (see Fig. 6.25). The greater the value of any one integer,
the higher the probability that the individual will move in that direction. An
individual reaches maturity after 800 steps, and after its energy exceeds 1,000,
it engages in sexual reproduction. In this process, if there is another equally
mature and strong bug nearby, the two individuals perform genetic crossover
and mutation, and produce two child bugs. The energy of each parent is then
cut in half and each child receives one-half the mean energies of the parents.
If an individual has traveled 1,000 steps and has over 1,300 units of energy, it
engages in asexual reproduction. In asexual reproduction, the parent’s genetic
code is mutated to produce two child bugs, and the parent dies. Each child
receives one-half the parent’s energy.

The lower right region of the figure is called the “Garden of Eden”; it has a
higher generation rate of bacteria. The bugs near the Garden of Eden evolve
a tendency to move so as to remain within this area. The “Eden” parameter
in the “ModelSwarm” probe activates or deactivates the Garden of Eden.

The age of bugs in a population (how many steps they have moved) and
the distribution of energy are shown on a bar graph. The horizontal axis
represents age (energy) and the vertical axis represents the number of bugs.

The following buttons are used to operate BUGS:

• Start button: Initiates the simulation.

• Stop button: Temporarily stops the simulation.

• Next button: Advances the stimulation to the next time step.

• Save button: Cannot be used in this simulation.

• Quit button: Stops the simulation.

The following relationships are included in the “ModelSwarm” parameter
probes:

• worldXSize: Extent of space (horizontal axis)

• worldYSize: Extent of space (vertical axis)

• seedProb: Growth rate of bacteria under initial conditions

• bugDensity: Growth rate of bugs under initial conditions

• Eden: Application of the Garden of Eden, i.e., 1 (Yes) or 0 (No)

Particle Swarm Simulation 177

FIGURE 6.31: Illustration of bug-based search.

178 Agent-Based Modeling and Simulation with Swarm

FIGURE 6.32 (See Color Insert): BUGS simulator.

Chapter 7

Cellular Automata Simulation

This intelligent behavior would be just another one of those or-
ganizational phenomena like DNA which contrived to increase
the probability of survival of some entity. So one tends to sus-
pect, if oneĄfs not a creationist, that very very large LIFE
configurations would eventually exhibit intelligent [character-
istics]. Speculating what these things could know or could find
out is very intriguing . . . and perhaps has implications for our
own existence [79, pp.139–140].

7.1 Game of life

The eminent mathematician John von Neumann studied self-reproducing
automata in 1946, shortly before his death. He found that self-reproduction
is possible with 29 cell states, and proved that a machine could not only re-
produce itself, but could also build machines more complex than itself. The
research stopped because of his death; however, in 1966, Arthur Burks edited
and published von Neumann’s manuscripts. John Conway, a British mathe-
matician, expanded on the work of von Neumann and, in 1970, introduced the
Game of Life, which attracted immense interest. Some people became “Game
of Life hackers,” programmers and designers more interested in operating com-
puters than in eating; they were not the criminal hackers of today. Hackers
at MIT rigorously researched the Game of Life, and their results contributed
to advances in computer science and artificial intelligence. The concept of the
Game of Life evolved into the “cellular automaton” (CA), which is still widely
studied in the field of artificial life. Most of the research on artificial life shares
much in common with the world where hackers played in the early days of
computers.

The Game of Life is played on a grid of equal-sized squares (cells). Each
cell can be either “on” or “off.” There are eight adjacent cells to each cell in a
two-dimensional grid (above and below, left and right, four diagonals). This
is called the Moore neighborhood. The state in the next step is determined
by the rules outlined in Table 7.1. The “on” state corresponds to a “•” in the
cell, whereas the “off” state corresponds to a blank. The following interesting
patterns can be observed with these rules.

179

180 Agent-Based Modeling and Simulation with Swarm

TABLE 7.1: State of cell in the next step.
Current state of cell States of neighbor cells State in the next step

On two or three are “on” On
Other cases Off

Off three are “on” Off
Other cases Off

(1) Disappearing pattern (diagonal triplet)

•
• ⇒ • ⇒ disappears
•

(7.1)

(2) Stable pattern (2 × 2 block)

• • • • • •
• • ⇒ • • ⇒ • • ⇒ remains stable

(7.2)

(3) Two-state switch (Flicker, where vertical triplets and horizontal triplets
appear in turn)

• •
• ⇒ • • • ⇒ • ⇒ repeats
• •

(7.3)

(4) Glider (pattern moving in one direction)

•
• •

• • • ⇒ • ⇒ • ⇒ moves to bottom right
• • • •

• • •

(7.4)

“Eaters” that stop gliders and “glider guns” that shoot gliders can be defined,
and glider guns are generated by the collision of gliders. Such self-organizing
capabilities mean that the Game of Life can be used to configure a universal
Turing machine. The fundamental logic gates (AND, OR, NOT) consist of
glider rows and disappearing reactions, and blocks of stable patterns are used
as memory. However, the number of cells needed in a self-organizing system
is estimated at about 10 trillion (3 million × 3 million). The size would be a
square whose sides are 3 km long, if 1 mm2 cells are used.

Consider a one-dimensional Game of Life, one of the simplest cellular au-
tomata. The sequence of cells in one dimension at time t is expressed as
follows:

Cellular Automata Simulation 181

a1t , a
2
t , a

3
t , · · · (7.5)

Here, each variable is either 0 (off) or 1 (on). The general rule used to deter-
mine the state ait+1 of cell i at time t + 1 can be written as a function F of
the state at time t as

ait+1 = F (ai−r
t , ai−r+1

t , · · · , ait, · · · , ai+r−1
t , ai+r

t) (7.6)

Here, r is the radius, or range of cells that affects this cell.
For instance, a rule for r = 1,

ait+1 = ai−1
t + ait + ai+1

t (mod 2) (7.7)

results in the determination of the next state as follows:

time t : 0010011010101100

time t+1 : *11111001010001*

An interesting problem is the task of finding the majority rule. The task
is to find a rule that would ultimately end in a sequence of all 1 (0) if the
majority of the cells are 1 (0) with the minimum radius (r) possible for a
one-dimensional binary sequence of a given length. The general solution to
this problem is not known.

A famous example is a majority rule problem with length 149 and radius
3. The problem is reduced to finding a function that assigns 1 or 0 to an input
with 7 bits (= 3+ 1 + 3, radius of 3 plus itself); therefore, the function space
is 22

7

.
How can a cellular automaton (CA) obtain a solution to the majority

problem?
One method is to change the color (black or white) of a cell to the majority

of its neighboring cells. However, this method does not work well, as shown
in Fig.7.1 because it results in a fixed pattern divided into black and white.

In 1978, Gacs, Kurdyumov [37A], and Levin found the rules (GLK) re-
garding this problem. Lawrence Davis obtained an improved version of these
rules in 1995, and Rajarshi Das proposed another modification. There is also
research to find effective rules through GA or GP. The concept of Boolean
functions is applied when GP is used. The fitness value is defined by the
percentage of correctly processed sequences out of 1000 randomly generated
sequences of length 149.

Rules determined by various methods are summarized in Table 7.2. Here,
the transition rules are shown from 0000000 to 1111111 in 128-bit form. In
other words, if the first bit is 0,

F (000 0 000) = 0 (7.8)

Table 7.3 is a comparison of different rules. The rules obtained using GP were
very effective; reference [2] contains the details of this work.

182 Agent-Based Modeling and Simulation with Swarm

FIGURE 7.1 (See Color Insert): CA carrying out majority voting (with
permission of Oxford University Press, Inc. [88]).

FIGURE 7.2: Behavior of CA driven by GA (with permission of Oxford
University Press, Inc. [88]).

Fig.7.2 shows how a CA obtained by GA can solve this problem well [87,
88]. The regions that were initially dominated by black or white cells become
regions that are completely occupied by either black or white cells. A vertical
line always exists at locations where a black region to the right meets a white
region to the right. In contrast, a triangular region with a chessboard pattern
forms where a white region to the right meets a black region to the right.

The two edges of the growing triangular region at the center with a chess-
board pattern grow at the same pace, progressing the same distance per unit
time. The left edge extends until it collides with a vertical boundary. The
right edge barely avoids the vertical boundary at the left (note that the right
and left edges are connected). Therefore, the left edge can extend for a shorter
length, which means that the length of the white region limited by the left edge
is shorter than the length of the black region limited by the right edge. The
left edge disappears at the collision point, allowing the black region to grow.

Cellular Automata Simulation 183

TABLE 7.2: Majority rules.

Name of Transition rules
rule (year)

GKL (1978) 00000000 01011111 00000000 01011111 00000000 01011111 00000000
01011111 00000000 01011111 11111111 01011111 00000000 01011111
11111111 01011111

Davis (1995) 00000000 00101111 00000011 01011111 00000000 00011111 11001111
00011111 00000000 00101111 11111100 01011111 00000000 00011111
11111111 00011111

Das (1995) 00000111 00000000 00000111 11111111 00001111 00000000 00001111
11111111 00001111 00000000 00000111 11111111 00001111 00110001
00001111 11111111

GP (1995) 00000101 00000000 01010101 00000101 00000101 00000000 01010101
00000101 01010101 11111111 01010101 11111111 01010101 11111111
01010101 11111111

TABLE 7.3: Performance in the majority problem.
Rule Performance Number of tests

GKL 81.6% 106

Davis 81.8% 106

Das 82.178% 107

GA 76.9% 106

GP 82.326% 107

Furthermore, the two edges disappear at the bottom vertex and the entire
lattice row becomes black, showing that the correct answer was obtained.

Melanie Mitchell analyzed the information processing structure on CA
that evolved through GA by using the behavior of dynamic systems [87, 88].
The boundaries between simple regions (edges and vertical boundaries) are
considered carriers of information, and information is processed when these
boundaries collide. Figure 7.3 shows only the boundaries in Fig. 7.2. These
boundary lines are called “particles” (similar to elementary particles in a cloud
chamber used in physics). The particles are represented by Greek letters fol-
lowing the tradition in physics. Six particles are generated in this CA. Each
particle represents a different type of boundary. For instance, η is the bound-
ary between a black region and a chessboard-patterned region. A number
of collisions of particles can be observed. For example, β + γ results in the
generation of a new particle η, and both particles annihilate in µ+ η.

It is easy to understand how information is coded and calculated when the
behavior of CA is expressed in the language of particles. For instance, α and
β particles are coded with different information on the initial configuration.

184 Agent-Based Modeling and Simulation with Swarm

FIGURE 7.3: Explanation of CA behavior from collision of particles (with
permission of Oxford University Press, Inc. [88]).

γ particles contain information that this is the boundary with a white region,
and a µ particle is a boundary with a white region. When a γ particle collides
with a β particle before colliding with a µ particle, this means that the in-
formation carried by the β and γ particles becomes integrated, showing that
the initial large white region is smaller than the initial large black region that
shares a boundary. This is coded into the newly generated η particle.

Stephen Wolfram [128] systematically studied the patterns that form when
different rules (eq. (7.6)) are used. He grouped the patterns generated by one-
dimensional CA into four classes.

Class I All cells become the same state and the initial patterns disappear.
For example, all cells become black or all cells become white.

Class II The patterns converge into a striped pattern that does not change
or a pattern that periodically repeats.

Class III Aperiodic, chaotic patterns appear.

Class IV Complex behavior is observed, such as disappearing patterns or
aperiodic and periodic patterns.

Examples of these patterns are shown in Fig. 7.4. The following are the rules
behind these patterns (radius 1):

• Class I: Rule 0

• Class II: Rule 245

• Class III: Rule 90

• Class IV: Rule 110

Cellular Automata Simulation 185

(a) Class I (b) Class II

(c) Class III (d) Class IV

FIGURE 7.4: Examples of patterns.

186 Agent-Based Modeling and Simulation with Swarm

TABLE 7.4: Rule 184.

ai−1
t , ait, a

i+1
t 111 110 101 100 011 010 001 000

ait+1 1 0 1 1 1 0 0 0

Here, transition rules are expressed in 22
3

bits from 000 to 111, and the number
of the rule is the decimal equivalent of those bits. For instance, the transition
rules for Rule 110 in Class IV are as follows [83]:

01101110binary = 2 + 22 + 23 + 25 + 26 = 110decimal (7.9)

In other words, 000, 100, and 111 become 0, and 001, 010, 011, 101, and 110
become 1.

Rule 110 has the following interesting characteristics in computer science.

(1) Is computationally universal [128].

(2) Shows 1/f fluctuation [91].

(3) Prediction is P-complete [90].

Kauffman proposed the concept of the “edge of chaos” from the behavior of
CA as discussed above [67]. This concept represents Class IV patterns where
periodic patterns and aperiodic, chaotic patterns are repeated. The working
hypothesis in artificial life is “life on the edge of chaos.”

7.1.1 Rule 184

Rule 184 is known as the Burgers cell automaton (BCA), and has the
following important characteristics (Table 7.4).

(1) The number of 1s is conserved.

(2) Complex changes in the 0-1 patterns are initially observed; however, a
pattern always converges to a right-shifting or left-shifting pattern.

Take ait as the number of cars on lattice point i at time t. The number
is 1 (car exists) or 0 (no car exists). The car on lattice point i moves to the
right when the lattice point is unoccupied, and stays on the lattice point when
occupied at the next time step. This interpretation allows a simple description
of traffic congestion using rule 184.

BCA can be expanded as follows:

• BCA with signals: restrict traffic to the right at each lattice point

• Probabilistic BCA: move with a probability

Cellular Automata Simulation 187

(a) α = 1.0, no signal (b) α = 0.8, no signal (c) α = 0.8, signal type 110

FIGURE 7.5: Congestion simulation using BCA.

An in-depth explanation of CAs describing traffic congestion is given in section
7.9.

Figure 7.5 shows a result of BCA simulation. Cars are shown in black
in this simulator. Continuous black areas represent congestion because cars
cannot move forward. Congestion is more likely to form when the probability
that a car moves forward α is small. Figure 7.5(a) shows how congestion forms
(black bands wider than two lattice points form where a car leaves the front
of the congestion and another car joins at the rear). A signal is added at the
center in Figure 7.5(c). The signal pattern is shown in blue when 1 and red
when 0, and the pattern in this simulation was 110 (i.e., blue, blue, red, blue,
blue, red,. . .).

The Swarm simulator using BCA is an application of one-dimensional CA,
and the parameter probe in ObserverSwarmdisplays the following parameters.

• worldSizeX: size of the space (horizontal axis)

• worldSizeY: size of the space (vertical axis)

• Alpha: probability that a car moves to the right

• Signal1: pattern of signal 1

• Signal2: pattern of signal 2

The probability that cars move to the right and the pattern of signals can
be changed during runs by clicking the “Stop” button, changing values, and
re-running. Here, after changing the parameters, you need to press “Enter”
and click the applyRule button.

A simulation of silicon traffic based on these models is shown in Fig. 7.6.
A two-dimensional map is randomly generated, and cars are also placed at
random. Two points are randomly chosen from the nodes on the map and
are designated as the origin and the destination. The path from the origin to
the destination is determined by Dijkstra’s algorithm. Here, a cost calculation
where the distances between nodes are weighted with the density of cars in
each edge is performed to determine a path that avoids congestion. The signal

188 Agent-Based Modeling and Simulation with Swarm

FIGURE 7.6 (See Color Insert): Simulation of silicon traffic.

patterns are designed to change the passable edge in a given order at a constant
time interval.

7.2 Conway class with Swarm

A standard class to describe cellular automaton is

Class ConwayLife2dImpl

The advantages of using the Conway class are

(1) The description of a cell automaton is easy.

(2) Faster execution of update rules is possible.

For example, let us make a life game program (Fig. 7.7). You might guess that
in this game cells are spread all over the square lattice, and either take up life
(1, on) or death (0, off). The state of cells is updated by the following rules:

(1) If the state of cells is death, it comes back to life next time if out of the
eight surrounding places three are alive.

(2) If the state of cells is life, it stays alive next time if out of the eight
surrounding places two or three are alive. Else, it dies in the next time.

Cellular Automata Simulation 189

FIGURE 7.7: Game of life.

As before, implementation by allocating one Bug (object) to one cell
can also be done. In this case, update rules are described in the “step”
method of Bug.java as follows. This can be thought of as an application
of simpleObserverBug2.

public void step(){

int i,j;

int sx, sy;

int num=0;

Bug b;

// Number of live cells around is obtained in ‘‘sum’’

for(i=xPos-1;i<xPos+2;i++){

for(j=yPos-1;j<yPos+2;j++){

if(!(i==xPos && j==yPos)){

sx = (i+worldXSize)%worldXSize;

sy = (j+worldYSize)%worldYSize;

b = (Bug) world.getObjectAtX$Y(sx, sy);

if(b.isAlive()) num++;

}

}

}

// Execution of update rules of life and death

if(is_alive){

if(num==2 || num==3){

next_is_alive=true;

}else{

next_is_alive=false;

190 Agent-Based Modeling and Simulation with Swarm

}

}else{

if(num==3){

next_is_alive = true;

}else{

next_is_alive = false;

}

}

}

On the other hand, writing lattice plane and rules in one class using
“ConwayLife2dImpl” is also possible. Let us look at the stepRule method
inside ConwayWorld.java. Here, all coordinates (x, y),

sum += this.getValueAtX$Y(xm1, ym1); // down left

sum += this.getValueAtX$Y(x,ym1); // down

sum += this.getValueAtX$Y(xp1,ym1); // lower right

sum += this.getValueAtX$Y(xm1,y); // left

sum += this.getValueAtX$Y(xp1, y); // right

sum += this.getValueAtX$Y(xm1, yp1); // upper left

sum += this.getValueAtX$Y(x, yp1); // up

sum += this.getValueAtX$Y(xp1, yp1); // upper right

count the number of lives (1) in cells in the eight neighbors. However,

xm1 = (x + xsize - 1) % xsize; // left

xp1 = (x + 1) % xsize; // right

ym1 = (y + ysize - 1) % ysize; // down

yp1 = (y + 1) % ysize; // up

Dividing by xsize, ysize and obtaining the remainder is because it is con-
sidered to be connecting the vertical and horizontal (torus structure) of the
lattice plane. Moreover, the part below calculates the next state:

if(this.getValueAtX$Y(x,y)==1) // am I alive (1) ?

newState = (sum==2 || sum==3) ? 1 : 0;

else // if I am dead (0)

newState = (sum==3) ? 1 :0;

Let us try to implement the cellular automaton explained in Section 7.1
by applying Bug (Fig. 7.8). This sample program is a 2 state 3 neighbor one-
dimensional automaton, and update rules are according to odd parity. In other
words, it takes the majority state in the three cells as the next state. In fact,
a process such as the one given below is performed by laying Bug (object) in
the last line of a two-dimensional FoodSpace grid:

Step1 Bug looks at the state of the bait placed in its neighborhood.

Cellular Automata Simulation 191

FIGURE 7.8 (See Color Insert): One-dimensional cellular automaton.

Step2 This state decides whether the bait should be placed in the next time
or not.

Step3 FoodSpace is shifted one space up.

Step4 Bug places the food.

Step5 Return to Step1.

Note that to change the rules of state transition, the contents of the method
“step” of Bug.java, which decides the next state, should be changed. For
example, it is as follows in the sample program:

public void step(){

int x;

int sx;

int[] v = new int [3];

// radius r is 1, therefore, an array of r + 1 + r =3 is prepared

// xPos is its own coordinates

// the three values xPos-1, xPos, xPos+1 are substituted in

v[0], v[1], v[2]

for(x = xPos-1; x < xPos+2; x++){

sx = (x + worldXSize) % worldXSize;

v[x - (xPos-1)] = foodSpace.getValueAtX$Y(sx, yPos);

}

// nextvalue is the next state of xPos

// next state is obtained after checking the parity of v[0], v[1],

v[2]

if((v[0]+v[1]+v[2])%2 ==1)

nextvalue = 1;

192 Agent-Based Modeling and Simulation with Swarm

FIGURE 7.9: Execution of Wolfram’s experiment.

else

nextvalue = 0;

}

Furthermore, in order to increase the states, follow the steps below:

(1) Add the number of colors equal to the number of states you want to use
in colorMap inside ObserverSwarm.java.

(2) Increase the types of bait equal to the number of states you want to use
inside Bug.java.

(3) Modify the state transition rules accordingly.

To do the experiment by Wolfram as explained in Section 7.1, let us try to
improve the program. The execution example of the system for that is shown
in Fig. 7.9. Since in this program, the rule number can be entered in "Rule,"
observation of the behavior of various classes mentioned above is also possible.
Rule number can also be changed during execution, by the following steps:

(1) If during execution, press the Stop button.

(2) Enter the number to be changed in the "Rule" field. Then press the
Enter key.

(3) Press the "applyRule" button.

(4) If required when you press the "randomize" button, the cell state is
initialized randomly.

Cellular Automata Simulation 193

(5) Execution starts with new conditions when the "Start" button is pressed.

As the last example, we will explain the self-replicating loop of Langton.
This is a two-dimensional cell automaton with eight states and five neighbors,
and it is something that replicates its own pattern through 219 transition rules
(refer to Table 7.5). In this chart, the sequence of six numbers represents one
transition rule (in order, state before transition, states of four adjacent cells,
and state after transition). Four cells’ states are considered to be clockwise,
and may begin in any direction. For example, in the last rule: 7 0272 0 shows
that the next state of the center cell, i.e., 7, will be 0 for the following four
cases:

0 2 7 2

272 770 272 077

7 2 0 2

Please note that, in the infinite space, situations not in transition states do
not occur. In fact, since the space is a torus structure, the occurrence of
situations not in the transition rules is possible. However, in that case the
state is updated to 0.

As defined in "initvalue" in FoodSpace.java, the initial state pattern is
a loop as follows:

2 2 2 2 2 2 2 2

2 1 7 0 1 4 0 1 4 2

2 0 2 2 2 2 2 2 0 2

2 7 2 2 1 2

2 1 2 2 1 2

2 0 2 2 1 2

2 7 2 2 1 2

2 1 2 2 2 2 2 2 1 2 2 2 2 2

2 0 7 1 0 7 1 0 7 1 1 1 1 1 2

2 2 2 2 2 2 2 2 2 2 2 2 2

Here, the part without numbers is the part with state 0. How self-replication
goes on through transition of initial patterns is shown in Fig. 7.10. The repe-
tition of the extended protruded part bending to the left and the continuation
of the self-replication of the initial state loop can be observed. Cells’ states
loosely mean the following:

• State 0: Background with nothing

• State 1: Transmission passage of signal

• State 2: Transmission passage’s covered portion

• State 4 to 7: Transmitted signal

194 Agent-Based Modeling and Simulation with Swarm

TABLE 7.5: Self-reproducing loop transition rules
0 0000 0 0 0001 2 0 0002 0 0 0003 0 0 0005 0
0 0006 3 0 0007 1 0 0011 2 0 0012 2 0 0013 2
0 0021 2 0 0022 0 0 0023 0 0 0026 2 0 0027 2
0 0032 0 0 0052 5 0 0062 2 0 0072 2 0 0102 2
0 0112 0 0 0202 0 0 0203 0 0 0205 0 0 0212 5
0 0222 0 0 0232 2 0 0522 2 0 1232 1 0 1242 1
0 1252 5 0 1262 1 0 1272 1 0 1275 1 0 1422 1
0 1432 1 0 1442 1 0 1472 1 0 1625 1 0 1722 1
0 1725 5 0 1752 1 0 1762 1 0 1772 1 0 2527 1
1 0001 1 1 0006 1 1 0007 7 1 0011 1 1 0012 1
1 0021 1 1 0024 4 1 0027 7 1 0051 1 1 0101 1
1 0111 1 1 0124 4 1 0127 7 1 0202 6 1 0212 1
1 0221 1 1 0224 4 1 0226 3 1 0227 7 1 0232 7
1 0242 4 1 0262 6 1 0264 4 1 0267 7 1 0271 0
1 0272 7 1 0542 7 1 1112 1 1 1122 1 1 1124 4
1 1125 1 1 1126 1 1 1127 7 1 1152 2 1 1212 1
1 1222 1 1 1224 4 1 1225 1 1 1227 7 1 1232 1
1 1242 4 1 1262 1 1 1272 7 1 1322 1 1 2224 4
1 2227 7 1 2243 4 1 2254 7 1 2324 4 1 2327 7
1 2425 5 1 2426 7 1 2527 5 2 0001 2 2 0002 2
2 0004 2 2 0007 1 2 0012 2 2 0015 2 2 0021 2
2 0022 2 2 0023 2 2 0024 2 2 0025 0 2 0026 2
2 0027 2 2 0032 6 2 0042 3 2 0051 7 2 0052 2
2 0057 5 2 0072 2 2 0102 2 2 0112 2 2 0122 2
2 0142 2 2 0172 2 2 0202 2 2 0203 2 2 0205 2
2 0207 3 2 0212 2 2 0215 2 2 0221 2 2 0222 2
2 0227 2 2 0232 1 2 0242 2 2 0245 2 2 0252 0
2 0255 2 2 0262 2 2 0272 2 2 0312 2 2 0321 6
2 0322 6 2 0342 2 2 0422 2 2 0512 2 2 0521 2
2 0522 2 2 0552 1 2 0572 5 2 0622 2 2 0672 2
2 0712 2 2 0722 2 2 0742 2 2 0772 2 2 1122 2
2 1126 1 2 1222 2 2 1224 2 2 1226 2 2 1227 2
2 1422 2 2 1522 2 2 1622 2 2 1722 2 2 2227 2
2 2244 2 2 2246 2 2 2276 2 2 2277 2 3 0001 3
3 0002 2 3 0004 1 3 0007 6 3 0012 3 3 0042 1
3 0062 2 3 0102 1 3 0122 0 3 0251 1 4 0112 0
4 0122 0 4 0125 0 4 0212 0 4 0222 1 4 0232 6
4 0252 0 4 0322 1 5 0002 2 5 0021 5 5 0022 5
5 0023 2 5 0027 2 5 0052 0 5 0202 2 5 0212 2
5 0215 2 5 0222 0 5 0224 4 5 0272 2 5 1212 2
5 1222 0 5 1242 2 5 1272 2 6 0001 1 6 0002 1
6 0212 0 6 1212 5 6 1213 1 6 1222 5 7 0007 7
7 0112 0 7 0122 0 7 0125 0 7 0212 0 7 0222 1
7 0225 1 7 0232 1 7 0252 5 7 0272 0

Cellular Automata Simulation 195

FIGURE 7.10: Self-replicating loop of Langton.

The Swarm implementation of the Langton loop on the two-dimensional
FoodSpace grid contains eight types of bait, while only bug is updated. How-
ever, state [] stores (5 digit number) the current state (own state and 4
neighbors’ states). The array that represents the next state is nextstate[].
Here, if the current state is represented by x (5 digit number),

state[i]==x

finds i, and the next state x_next is decided as follows:

x_next = nextstate[i]

This process is executed by the method getRuleArrayValue, as shown below,
inside Bug.java.

private int getRuleArrayValue(int v[]){

int val=-1;

int i;

int index=getMinIndex(v);

index+=v[0]*10000;

for(i=0;i<state.length;i++){

if(state[i]==index){

val = nextstate[i];

break;

}

}

return val;

}

However, getMinIndex is a process to implement the transition rule shown in
Table 7.5 and it is alright if it matches any of the 4 directions, in a clockwise
direction. The colors of 8 states are defined as below in buildObjects of
ObserverSwarm.java.

196 Agent-Based Modeling and Simulation with Swarm

colorMap=new ColormapImpl(this);

colorMap.setColor$ToName((byte)0,"black");

colorMap.setColor$ToName((byte)1,"red");

colorMap.setColor$ToName((byte)2,"green");

colorMap.setColor$ToName((byte)3,"red");

colorMap.setColor$ToName((byte)4,"red");

colorMap.setColor$ToName((byte)5,"red");

colorMap.setColor$ToName((byte)6,"red");

colorMap.setColor$ToName((byte)7,"red");

In other words, state 0 is black, state 2 is green, and all others are being
turned red.

7.3 Program that replicates itself

Making a program that outputs its source code looks easy but is a very
difficult problem. In particular, care is necessary in treating newline characters
and spaces. The following is an example of a self-replicating code in C.

#include <stdio.h>

char *s="#include <stdio.h>%cchar *s=%c%s%c;main(){printf(s,10,34,s,34,10);return 0;}%c";main(){printf(s,10,34,s,34,10);return 0;}

Character strings are used effectively. There should be no carelessly in-
serted newline characters in this code: when a newline character is inserted,
the code must be changed to output this additional newline character. Note
that 10 and 34 in ASCII code are the newline and " characters, respectively.
Therefore, executing printf(s,10,34,s,34,10); in the main function prints
the first and second lines of the code.

To confirm that the above is a self-replicating code, copy the above file
as a source file such as ev.c and execute the following. You can confirm that
the output file and the source code are the same (it is recommended that you
use the diff command that displays the difference between two files). The
following is an example of how the self-replicating code is executed.

iba@fs(~/tmp)[514]: cat ev.c

#include <stdio.h>

char *s="#include <stdio.h>%cchar *s=%c%s%c;main(){printf(s,10,34,s,34,10);return 0;}%c";main(){printf(s,10,34,s,34,10);return 0;}

iba@fs(~/tmp)[515]: gcc ev.c

iba@fs(~/tmp)[516]: ./a.out > ev2.c

iba@fs(~/tmp)[517]: diff ev.c ev2.c

It is also possible to compile code that outputs its source code in languages
other than C. For example, the following line in Lisp which is used in artificial
intelligence,

(setf f ’(lambda (x) ‘(,x ’,x)))

Cellular Automata Simulation 197

results in self-replication. The famous computer scientist Knuth said the fol-
lowing in his lecture after receiving the Turing award, the equivalent of the
Nobel Prize in computer science [74, p. 672]:

Some years ago the students at Stanford were excited about finding
the shortest FORTRAN program which prints itself out, in the
sense that the program’s output is identical to its own source text.
The same problem was considered for many other languages. I
don’t think it was a waste of time for them to work on this.

7.4 Simulating forest fires with Swarm

Simulations based on CA are applied in various fields such as the following:

• Life sciences, especially in heredity, immunity, ecological formation

• Prediction of freeway congestion (silicon traffic)

• Disasters: marine pollution from oil spills, forest fires

• Materials and manufacturing

• Fractal formation

These simulations are considered to be an effective method for observing crit-
ical behavior in phase transitions.

This section is on the simulation of disasters. The area over which a forest
fire can spread depends on the percentage of empty space with no trees. A
CA model can therefore be used to observe the ratio between the percentage
of empty space and the affected area.

The forest fire model uses CA and follows these rules:

(1) There are three states: trees, fire, and empty space.

(2) Trees can grow on empty space with a fixed probability.

(3) Trees catch fire with a fixed probability.

(4) Fire extends to neighboring trees.

(5) There will be no fire on an empty space.

(6) Spaces will be empty after the fire.

This simple model can show how a fire will spread.
The following is a specific algorithm used in a forest fire model. Cells on

a square lattice can be either trees (value 1), trees on fire (value 2), or empty
space (value 0). All cells are updated under the following rules:

198 Agent-Based Modeling and Simulation with Swarm

• If the cell has trees:

– It will catch fire with probability (1 − g) if at least one adjacent
cell is on fire.

– It will catch fire with probability f × (1− g) if no adjacent cells are
on fire.

• A cell on fire will become an empty space.

• Empty space will become trees with probability p.

Here, the parameters are the probability of catching fire f , immunity g, and
the probability of tree growth p. The following parameter values are used:
probability of catching fire f = 0, immunity g = 0.01, and probability of tree
growth p = 0. Figure 7.11 shows the area of forest fire with respect to various
percentages F of area with trees in the forest before the fire starts. Red cells
are fire, green cells are trees, and black cells are empty space in the figure.
The large black area indicates the burned area.

The experiments showed that the fire spread over the entire forest when
F > 0.59 and did not when F < 0.59. Threshold values such as F = 0.59
are called critical values and are important parameters in the simulation of
complex systems.

7.4.1 Simulation of forest fires

A forest fire model is simulated using Swarm. Here, the intermediate
state is newly defined by extending the model of the three traditional states
(trees/wood, fire, nothing). In other words, a total of seven states—three states
of fire and forest each and a state of nothing—are taken to simulate a more
complex model.

The definition of fire and states, and the list of parameters used are shown
in Tables 7.6 and 7.7, respectively. If we assume our own cell state of “state”
of four neighboring cells as N1, N2, N3, N4 and the random number in the
range [0,1] is “rand,” then the rules of fire will be as follows:

if (state=0 & rand<grow1) then state=1

if (state=1 & rand<grow2) then state=2

if (state=2 & rand<grow3) then state=3

if (state=4 & rand<cool1) then state=5

if (state=5 & rand<cool2) then state=6

if (state=6 & rand<cool3) then state=0

if (state=3 & rand<fire) then state=4

if (state=3 &

(N1=4 or N2=4 or N3=4 or N4=4) & rand<diffuse)

then state=4

Cellular Automata Simulation 199

(a) (b)

FIGURE 7.11 (See Color Insert): Forest fire examples.

TABLE 7.6: State of forest fire.

State Display color Meaning Explanation

0 black Ash State of nothing
1 light green Forest 1 State of grass, nonflammable
2 green Forest 2 State of shrubs, nonflammable
3 dark green Forest 3 State of complete forest, flammable
4 yellow Fire 1 The hottest state, fire spreads to the sur-

rounding forest 3
5 orange Fire 2 State of lower temperature, fire does not

spread
6 red Fire 3 State of fire declines, fire does not spread

Example results are shown in Fig. 7.11. Here, cool1= 1.0, cool2= 0.8,
cool3= 0.8, grow1= 0.2, grow2= 0.1, grow3= 0.1, diffus= 0.8, fire= 2.0−5

parameters have been adopted.
Figure 7.12 shows a Swarm simulation of a forest fire, where

• (a) A fire started from the left end. Red, green, and black squares indi-
cate fire, trees, and empty space, respectively. Large black areas repre-
sent areas where trees were burned.

• (b) Result when F = 0.55. Fire extended a little to the right and then
extinguished.

• (c) Result when F = 0.58. Fire extended to the right end, but the forest
as a whole was not burned.

• (d) Result when F = 0.59. This is a marginal case.

200 Agent-Based Modeling and Simulation with Swarm

TABLE 7.7: Parameters of forest fire.

Parameter Meaning Explanation

grow1 Growth 1 Probability of changing from state 0 (ash) to state 1
(Forest 1)

grow2 Growth 2 Probability of changing from state 1 (Forest 1) to
state 2 (Forest 2)

grow3 Growth 3 Probability of changing from state 2 (Forest 2) to
state 3 (Forest 3)

cool1 Fire extinction 1 Probability of changing from state 4 (Fire 1) to
state 5 (Fire 2)

cool2 Fire extinction 2 Probability of changing from state 5 (Fire 2) to
state 6 (Fire 3)

cool3 Fire extinction 3 Probability of changing from state 6 (Fire 3) to
state 0 (ash)

fire Ignition Probability of igniting at state 3 (Forest 3) and
changing to state 4 (Fire 1)

diffuse Fire spread Probability of state 4 (Fire 1) spreading to the
surrounding four neighborhoods of state 3 (Forest
3)

• (e) Result when F = 0.63. Fire extended to the right end, and the forest
as a whole was burned.

7.5 Segregation model simulation with Swarm

Another example of a critical value arises in the well-known segregation
model by Thomas Schelling [105]. Schelling designed a virtual space consisting
of agents of two colors. Each agent prefers neighbors of the same color as itself
in the virtual space. Schelling investigated the macroscopic phenomena that
arise from microscopic preference. Here, preference is the threshold percentage
of how many neighbors should be of the same color. The following are the basic
rules of Schelling’s model.

• All agents belong to one of two groups, and have a preference value on
neighbors of the same color.

• Agents calculate the ratio of neighbors of the same color.

• The agent stays if the ratio is above the preference value. Otherwise, the
agent randomly moves to an empty space where the preference criterion
is satisfied.

Cellular Automata Simulation 201

(a) (b) (c)

(d) (e)

FIGURE 7.12: Examples of forest fires.

Schelling’s results can be summarized as follows:

(1) Two colors segregated when the preference value exceeded 0.33.

(2) When the preference of one color was set higher than that of the other
color, the color with the low preference spread out while the color with
the high preference came together.

(3) The two colors also segregated when the preference criterion was changed
to “the agent stays when there are three or more neighbors of the same
color.”

In summary, two colors ultimately segregated, and all agents wanted all neigh-
bors to be of the same color. Schelling also found that the addition of relatively
small changes to the preferences resulted in drastic changes to the macroscopic
segregation patterns. In particular, the “prejudice,” or bias in preference, of
each agent and the segregation pattern are correlated. “Color blind” (pacifists
with a preference criterion of zero) agents act to mix the colors. However,
many critical values exist for these effects. The most significant finding is that
society as a whole moves toward segregation even when agents only slightly dis-
like the other color (low preference threshold). Schelling’s results highlighted
many problems regarding racial discrimination and prejudice, and extensive
research using improved versions of this model is still being conducted.

Schelling’s results have raised many problems on “segregation” and “prej-
udice.” A related issue is affirmative action (policies that actively counter

202 Agent-Based Modeling and Simulation with Swarm

discrimination to benefit under-represented groups based on historic and so-
cial environmental reasons).

An example is Starrett City in Brooklyn, NY, the largest federally assisted
public rental housing scheme in the United States for middle-income residents
that started construction in the mid-1970s. There was a requirement for resi-
dents that “limited the number of African-American and Hispanic residents to
less than 40% of the total number of residents” to create a community where
different races co-exist. The reason behind this policy is the theory of the
“critical value” in the segregation model. Races do not mix when the ratio of
whites becomes less than a certain value because of “white flight.” Therefore,
an attempt was made to build a stable community where people of various
races live by keeping an appropriate balance of race and ethnicity. This policy
was a success in one aspect: many families wanted to live in the development,
and there was a waiting list (three to four months for white households and
two years for black households).

However, whether these policies (e.g., preferential admission of minorities)
are “righteous” is fiercely debated [103].

7.5.1 Swarm-based simulation of segregation model

This is an extension of the “Schelling” model with a “Church” in it. In this
simulation, a maximum of three types of races can be introduced.

Rules for each individual’s movement are as follows:

(1) Capacity per cell is one individual, and multiple individuals cannot exist.

(2) At each step, the candidate for the destination is selected randomly from
a total of nine candidates (current position and the surrounding eight
positions).

(3) If the satisfaction value obtained from the information of the eight sur-
rounding neighbors is greater than the satisfaction value of the current
position, then the move takes place.

(4) Basically, living in the church is not possible, but staying there is allowed
if moving to some surrounding area is not possible.

The satisfaction value is calculated as follows:

• Satisfaction value increases by one if the agents of the same race exist
in the surrounding eight places.

• Satisfaction value increases by one if a church exists in the surrounding
eight places.

• Satisfaction value increases by three if the destination is a church.

Cellular Automata Simulation 203

FIGURE 7.13 (See Color Insert): Schelling’s simulation of the segregation
model.

TABLE 7.8: Parameters of the separation model.
Parameter Meaning

worldXSize Extent of space (horizontal axis)
worldYSize Extent of space (vertical axis)
seedChurch Proportion of churches as compared to the ex-

tent of space
raceNum Number of races (maximum value 3)
seedPhilan Proportion of philanthropists (ratio against

the total population)
personDensity Population density against extent of space

• Satisfaction value increases by one if an agent exists in the surrounding
eight places, in the case of a philanthropist.

The parameters inside the default file “seg.scm” are given in Table 7.8.
An example of separation results is shown in Fig. 7.13. Parameters are:
populationDensity= 0.8, seedChurch= 0.01, seedPhilan= 0.01. The mean-
ing of cell colors is explained in Table 7.9.

7.6 Lattice gas automaton

Research conducted to model problems in fluids using cellular automaton
(CA) has attracted interest since the 1980s. The lattice gas automaton (LGA)

204 Agent-Based Modeling and Simulation with Swarm

TABLE 7.9: Meanings of the colors of the cells.
Color Meaning

Brown Race 1
Dark green Race 2

Navy (deep blue) Race 3
Red Philanthropist of race 1

Green Philanthropist of race 2
Blue Philanthropist of race 3

Magenta Church of race 1
Light blue Church of race 2

Cyan Church of race 3
White The state of church with a person in it (for all races)

model is used to simulate fluids, where particles are placed on a lattice and
then move to a neighboring lattice or collide with other particles based on
predetermined rules at specified time units. The direction in which the particle
moves after a collision is defined by simple rules.

The first LGA model was proposed in 1973 by Hardy, Pomeau, and de
Pazzis, and thus is called the HPP model [41A]. Collision and scattering are
repeated on a square lattice in this model. Only head-on collisions are con-
sidered, and particles scatter and change direction by 90◦ as in the following
picture.

↑
•

• → ← • =⇒
•
↓

(7.10)

•
↓

=⇒ ← • • →
↑
•

(7.11)

Note that the number of particles and the momentum are conserved in this
model. Fig. 7.14 is an example of a collision process in the HPP model. How-
ever, false physical quantities and anisotropy of stress tensors (pressure) be-
come issues in this model. This arises from a biased reaction because no reac-
tions happen in the diagonal direction on the square lattice. Simulations on
such models are in conflict with physical phenomena such as that described
by the Navier–Stokes equations.

Cellular Automata Simulation 205

(a) (b)

(c) (d)

FIGURE 7.14: An example of a collision process in the HPP model
((a)→(b)→(c)→(d)).

206 Agent-Based Modeling and Simulation with Swarm

FIGURE 7.15: Collision process in the FHP model.

In 1987, Frisch, Hasslacher and Pomeau proposed an LGA method on a tri-
angular lattice to resolve these issues [37A]. This is known as the FHP model.
A collision process in the FHP model is shown in Fig. 7.15. The FHP method is
used to simulate the flow of fluids around obstacles, for instance. This method
is also used to model phase separation, phase transition, microemulsion by
surfactants, heat flow, reaction, and diffusion.

The following advantages are obtained by analyzing fluids in the LGA
method.

(1) Simulation is numerically stable because particles can take states of 0
and 1 only. Therefore, rounding errors do not need to be considered as
in experiments.

(2) Reaction rules are very simple because the model is a repetition of col-
lisions and diffusion.

(3) Each particle reacts independently; therefore, simulation can be highly
parallelized.

(4) Complex boundary conditions can be set, making this suitable for sim-
ulation of complex systems.

However, the following disadvantages are known in the LGA method.

(1) Visualization is difficult because particles can take one of 0 and 1 states
only. In other words, statistical procedures are necessary to obtain more
relevant physical quantities.

Cellular Automata Simulation 207

FIGURE 7.16: Simulation examples of rain drops using the LGA method.

(2) Non-physical elements may appear.

(3) Dynamic parameters such as temperature are difficult to handle.

The lattice Boltzmann method incorporating probabilistic generation rules
has recently been used in simulations of physical systems to overcome these
drawbacks. Figure 7.16 is an example of simulation using the LGA method.
Numerous videos of LGA simulations are also available online (see [30], for
example).

7.6.1 LGA simulation with Swarm

LGA simulation by Swarm is shown in Fig. 7.17. Here, gas particles col-
lision by the HPP model is implemented. The particles flow into the hollow
(cavity) part from the horizontal and vertical directions, and their diffusion
can be observed. As mentioned earlier, note that, since the collisions in the
diagonal direction in a square lattice (grid) are not taken into account, there
is a deviation in the reaction. Due to this limitation, false physical quantities
and anisotropy of the stress tensor are caused.

Next, we show an example of simulation of fluid according to the lattice
Boltzman law, created in Swarm. The lattice Boltzman law is an extension of
the LGA law and has also been used extensively in fluid analysis. The LGA
law describes by 0, 1 (integer number) the presence or absence of particles
moving in some direction. However, in the lattice Boltzman law, the particle
is represented by the local mean distribution function (real number), and
deals with an equation of motion for the distribution function. In the lattice
Boltzman law, by adjusting the coefficients of the distribution function, it
can be implemented to eliminate non-physical elements. Therefore, a square
lattice can also be used. Figure 7.18 is an example of the simulation. The gray
color part represents a slab. For flow velocity, 0 is black, and becomes bigger

208 Agent-Based Modeling and Simulation with Swarm

FIGURE 7.17: LGA simulation with the HPP model.

(a) (b)

(c) (d)

FIGURE 7.18 (See Color Insert): An example of simulation using the
LGA method.

as it moves toward white from red. The number of lattice points is 50× 100.
By initial conditions, for all lattice points, a uniform velocity ~u = (0.1, 0) and
a density of ρ = 1.0 have been specified. In the inflow boundary, uniform flow
is assumed, and the distribution function is obtained by extrapolating the
velocity of the outflow boundary.

7.7 Turing model and morphogenesis simulation

“Morpho” means “shape,” and “genesis” means “generation.” Alan Turing
believed that the morphogenesis of organisms could be explained by the re-

Cellular Automata Simulation 209

(a) various shells (b) chambered nautilus
(@PNG in 2005)

FIGURE 7.19 (See Color Insert): CA patterns found on shells.

action and diffusion of morphogens, which are hypothetical chemicals, and
he proposed the model described below. It is very interesting that von Neu-
mann and Turing, pioneers in computer science, were exploring models of life
phenomena in the early days of computers.

Two morphogens, X and Y , activate and inhibit, respectively. X and Y
are governed by the following reaction and diffusion equations. x, y are the
concentrations of X and Y ; f , g are the generation rates of X and Y ; and D
is the diffusion coefficient.

∂x

∂t
= f(x, y) +Dx∇2x, (7.12)

∂y

∂t
= g(x, y) +Dy∇2y. (7.13)

The first term on the right-hand side is a generation term from a chemical
reaction, and the second term represents movement by diffusion. These are
called reaction–diffusion equations.

Using this model, Turing hypothesized that stable patterns would form if
the evolution of the inhibitor is slower than that of the activator (∂x

∂t
> ∂y

∂t
),

and the diffusion of the inhibitor is faster than the activator (Dyy > Dxx). In
fact, the formation of various patterns can be simulated by changing f(x, y)
and g(x, y). The following are simulations of the Turing model using cellular
automata (CA).

Kusch and Markus defined the CA rules for reaction and diffusion as shown
below, and simulated the Turing model [77]. These are one-dimensional CA to
reproduce patterns such as those found on shells and animal fur. Figure 7.19
shows a well-known pattern on a shell. The objective here is to generate such
patterns.

Each cell has two variables, u(t) and v(t), corresponding to the amount of
activator and inhibitor, respectively. u(t) may be 0 or 1, where 0 is the dormant

210 Agent-Based Modeling and Simulation with Swarm

state (white) and 1 is the activated state (black). u(t) and v(t) transition to
u(t + 1) and v(t + 1) through two intermediate steps, each according to the
following rules.

(1) If v(t)>=1, then v1=[v(t)(1-d)-e],

else v1=0

(2) If u(t)=0, then u1 = 1 with possibility p,

and u1 = 0 with possibility 1-p.

else u1=1

(3) If u1=1, then v2=v1+w1,

else v2=v1

(4) If u1=0 and nu>{m0+m1*v2}, then u2=1,

else u2=u1

(5) v(t+1)={<v2>}

(6) If v(t+1)>=w2, then u(t+1)=0,

else u(t+1)=u2

Here, {} indicates the closest integer, < > is the average within distance rv,
and nu is the number of activated cells within distance ru. (1) expresses the
decrease in inhibitors per time step. In particular, a linear decrease is observed
with d = 1 and e = 1, and an exponential decrease with 0 < d < 1 and
e = 0. Dormant cells are activated at a fixed probability according to (2). (3)
shows that activated cells emit inhibitors. (4) states that a cell is activated if
the number of activated cells within a distance (nu) is larger than the linear
function (m0+m1×v2) of inhibitors (v2). This is the description of diffusion
of activators. (5) means that the inhibitor becomes the average within the
distance rv, showing how inhibitors diffuse. (6) states that a cell becomes
inactive if the inhibitor mass is larger than the constant value.

Figure 7.20 shows the results of experiments along with the parameters
of d = 0.0, e = 1.0, and initial probability InitProb= 0.0. Other parameters
are shown in Table 7.10. Note that branching and interruption as seen in the
figures are difficult to reproduce in differential equation based models, but are
easily reproduced in CA models by using appropriate parameters. Results (e)
and (h)–(k) correspond to Class IV described in Section 7.1.

In addition to organisms, waves from chemical reactions form patterns
that have a rhythm. The Belousov–Zhabotinsky reaction is one representative
example. The biologist Belousov from the former USSR discovered this reac-
tion in the tricarboxylic acid cycle, an important reaction cycle in the energy
metabolism of organisms.

7.7.1 Simulation of morphogenesis by the Turing model

To see the time evolution of one-dimensional cellular automata (CA),
PatternSpace (discrete2d) is drawn. In the case of implementation of two-
dimensional CA like the life game, it is good to use DblBuffer2d having two
buffers. The CA used here has 10 parameters. By registering them in the

Cellular Automata Simulation 211

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k)

FIGURE 7.20: Turing model simulation results (see Table 7.10 for the pa-
rameters).

212 Agent-Based Modeling and Simulation with Swarm

TABLE 7.10: Parameters for Turing model simulation.
(a) ru=1,rv=17,w1=1,w2=1,m0=m1=0,p=0.002
(b) ru=16,rv=0,w1=8,w2=21,m0=0,m1=1,p=0.002
(c) ru=2,rv=0,w1=10,w2=48,m0=m1=0,p=0.002
(d) ru=1,rv=16,w1=8,w2=6,m0=m1=0,p=0.002
(e) ru=1,rv=17,w1=1,w2=1,m0=m1=0,p=0.002
(f) ru=3,rv=8,w1=2,w2=11,m0=0,m1=0.3,p=0.001
(g) ru=1,rv=23,w1=4,w2=61,m0=m1=0,p=0,d=0.05,e=0,initProb=0.1
(h) ru=3,rv=8,w1=2,w2=11,m0=0,m1=0.3,p=0.001
(i) ru=3,rv=0,w1=5,w2=12,m0=0,m1=0.22,p=0.004,d=0.19,e=0.0
(j) ru=2,rv=0,w1=6,w2=35,m0=0,m1=0.05,p=0.002,d=0.1,e=0.0
(k) ru=1,rv=2,w1=5,w2=10,m0=0,m1=0.3,p=0.002

FIGURE 7.21: Parameters probe for the Turing model.

probe, they are made to be changed interactively (Fig. 7.21). As described
earlier, parameters can be changed during execution by putting the values in
the window (do not forget to input “return”). Note that in this simulation, the
“initialize” method should be called for this setting.

7.8 Simulating percolation with Swarm

Let us consider a model of an infinite number of trees placed on lattice
points where one tree is infected with a disease. This disease infects a neigh-
boring tree with a certain probability p. The disease should stop spreading
at some point if p is small, whereas it spreads infinitely if p exceeds a certain
probability. Therefore, this model undergoes a phase transition at a certain
value of the variable p. The value of p at the phase transition point is called

Cellular Automata Simulation 213

the “critical probability” pc. This model can be simplified as described in the
next paragraph.

Suppose there is an infinite number of lattice points, and the probability
that each lattice point is painted black is p. The black points are sparsely
distributed on a plane when the probability p is low. However, there will be
many chunks or clusters of lattice points painted black when the probability p
becomes sufficiently high. An infinitely extending cluster will appear when the
probability p exceeds the critical probability pc. Such an infinitely extending
cluster is called a percolated cluster, and the state where a percolated cluster
exists is called a percolated state.

Percolation is a model for discussing the phase transition leading to per-
colated clusters.

We put points in a two-dimensional square lattice randomly. Adjacent
points are considered connected. As the points increase, large clusters of con-
nected points are formed. This is one of the models of the phenomenon called
percolation.

When the space is infinitely large and the points exceed a certain density,
it is well known that the size of the cluster also increases indefinitely. The
probability of arbitrarily selected grid (lattice) points becoming a part of the
infinitely large cluster is called the percolation probability. This is the ratio
of the number of points in the largest cluster to the total number of lattice
points.

Here, we will examine the percolation probability in the case of finite space.
Starting with nothing, the gird is filled randomly, and the determination of the
size of the cluster is repeated. At that time, since the process of calculation
of clustering is computationally expensive, it should not be repeated each
time a grid/lattice is filled. Preparing two schedules and separately registering
grid filling action and clustering action can easily accomplish this. The whole
structure looks like Fig. 7.22.

If we look at “patternSpace,” it can be observed that there is a point
when a small cluster (dense portion) suddenly increases to become the largest
(Fig. 7.23).

The percolation probability changes as in Fig. 7.24. It is very small (0
in the case of infinitely large) until a critical value (0.5927 in the case of a
two-dimensional square grid) called the threshold percolation, and increases
suddenly beyond that. Here, the transition of the number of clusters is also
graphed (divided by 15% of the number of grids). It can be seen that it rapidly
decreases with the increase in percolation probability.

Histograms are also provided in Swarm. By specifying the targeted ob-
jects collection and the methods to retrieve, the values can easily create them
(Fig. 7.25). EZBin displays the histograms. EZBin is the wrapper about the
objects, and specifies the number of the “bin” and the interval between the
displays. The following steps set this object:

(1) Generation of instance

214 Agent-Based Modeling and Simulation with Swarm

+getPercolationProb()

+showStats()

+showHist()

+checkToStop()

+graphInterval

-colorMap

-displayActions

-displaySchedule

-statActions

-statSchedule

ObserverSwarm

+checkToStop()

+getPattern()

+width

+height

ModelSwarm

+remainingQ()

+update()

+trace()

-traceCluster()

+getClusterNum()

+getClusterSizeData()

+getPercolationProb()

-largestCluster

-remainingPoints

-clusterData

-clusterSizeData

PatternSpace

1 1 1 1

+step()

EZGraph

+reset()

+update()

+output()

EZBin

1

1

1
1

FIGURE 7.22: The whole structure for percolation.

FIGURE 7.23: patternSpace: the dark portion is the largest cluster.

FIGURE 7.24: Percolation probability.

Cellular Automata Simulation 215

FIGURE 7.25: Histograms in Swarm.

(2) Setting of title

(3) Setting of collection

(4) Setting of “selector” of probe

(5) Setting of number of “bin”

(6) Setting of upper and lower limits of display

7.9 Silicon traffic and its control

The following is an explanation of traffic modeling. Nagel and Shreckenberg
modeled traffic congestion using a one-dimensional CA [89]. In their model,
each cell corresponds to a position where cars can pass, and each cell can take
one of two states (one or no car is in the cell) in every time step. Every car
moves at a characteristic speed (integer value from 0 to vmax). The speed of
the cars and the state of the cells are updated based on the following rules.

Acceleration Increase the speed by one unit (v := v+1) if the speed of a car
v is less than vmax and the distance from the first car ahead is greater
than v + 1.

Deceleration Decrease the speed of a car at i to j − 1 (v = j − 1) if the first
car ahead is located at i+ j and j ≤ v.

Random number Decrease the speed of all cars by 1 (if larger than 0) at
possibility p (v := v − 1).

Move Move all cars at their respective speed v.

216 Agent-Based Modeling and Simulation with Swarm

tim
e

space (road)

FIGURE 7.26: An example of the flow of cars.

The most important parameter in this simulation is the density of cars ρ,
defined as

ρ =
total number of cars
total number of cells

(7.14)

Figure 7.26 is an example of the flow of cars with vmax = 5 and ρ = 0.1. Cars
move from left to right, and the right end is connected to the left end. The
numbers indicate the speed of the cars, and the dots show cells with no cars.
Consecutive cars at speed 0 at the center indicate traffic congestion.

Nagel and Shreckenberg conducted various experiments and found that the
nature of congestion changes at ρ = 0.08. Note that congestion is measured by
the average speed of all cars. Thus, the critical value for this traffic simulation
is ρ = 0.08.

7.9.1 Simulating traffic jams with Swarm

Nagels and Shreckenberg performed the modeling of traffic jams using a
one-dimensional lattice. In their model, each cell corresponds to the vehicle’s
passage, at each time-step, and the cells take one of the two states (vacant or

Cellular Automata Simulation 217

FIGURE 7.27 (See Color Insert): Simulating a traffic jam (with Slow-
toStart).

occupied by one vehicle). All the vehicles move with a specific speed (integer
number, 0 to vmax). This model was visualized and implemented on Swarm.
To see the time change of one-dimensional cellular automaton (CA), it is
drawn on PatternSpace (Discrete2d). To implement a two-dimensional CA
like the life game, it is good to use DblBuffer2d, which has two buffers. For
example, the movement of a car with vmax = 10, ρ = 0.1 is shown in Fig. 7.27.
The vehicle moves in the right-hand direction, and the right end and the left
end are connected. The top row shows the current road conditions, and the
time passed as we move down (displayed for 200 steps). In Swarm, the vehicles’
speed is represented by shades of colors. In fact, green becomes darker with the
increase in speed, and the red becomes darker as the speed decreases (as set
in colorMap). A chunk of red color is the point of occurrence of a traffic jam,
and the black part shows a cell without a vehicle. In Fig. 7.27, the occurrence
of a series of vehicles with speed 0 in the middle is a traffic jam. We can see
that the traffic jam moves forward with time.

In this model, SlowtoStart has been introduced to realize the effect of
inertia. This is a rule that says once the vehicle has stopped, it starts moving
after 1 time step even if the front is open to move. This is considered important
to bring the model closer to actual metastability. If SlowtoStart is used, it takes
time to accelerate, which leads to more stationary vehicles and worsens the
traffic jam (Fig. 7.27). On the other hand, without SlowtoStart, the line of
the stationary vehicles will not elongate unless there is a slowdown due to a
random number, and therefore as a result, the traffic jam is eased (Fig. 7.28).

Recently ASEP (Asymmetric Simple Exclusion Process) has been studied
extensively as a model of traffic flow [99]. In this model, the maximum speed
of each vehicle existing in each cell is taken as 1; if the cell in front is vacant,
the vehicle moves to it with a probability p (stops with a probability 1 − p).
Let us take the inflow and outflow probabilities of new cars as α and β,
respectively (in other words, right and left ends are not connected, and the
number of vehicles is not fixed). Figure 7.29 shows the ASEP model simulation
in Swarm. Parameters are α = 0.3, β = 0.9, p = 0.5 for (a) free phase, α = 0.3,

218 Agent-Based Modeling and Simulation with Swarm

FIGURE 7.28 (See Color Insert): Simulating a traffic jam (without Slow-
toStart).

(a) free phase (b) shockwave phase (c) maximum flow phase

FIGURE 7.29: ASEP model simulation.

β = 0.3, p = 0.5 for (b) shockwave phase, and α = 0.6, β = 0.6, p = 0.5 for
(c) maximum flow phase. In this case, colorMap is set such that black points
show cells with vehicles, and the white part shows vacant cells. As explained
earlier, the topmost row is the current road situation. As we go down, it shows
the time already passed. In the ASEP model, various mathematical analyses
are done for the equilibrium state [99].

7.10 The world of Sugarscape

In this section, we discuss Sugarscape models and their simulation. Sug-
arscape was presented by Joshua M. Epstein and Robert Axtell as an ex-
perimental model environment for creating artificial societies. Sugarscape is
based on the simulation of an unlimited number of ants walking around in
search of sugar. The model can construct artificial societies with the aim of
examining the mechanisms driving various social phenomena, and allows the

Cellular Automata Simulation 219

sugar
sugar

green mountain
green mountain

FIGURE 7.30: Two sugar (green) mountains in the Sugarscape model.

incorporation of concepts such as breeding, pollution, culture, combat, trade,
and disease.

The notations and definitions regarding Sugarscape presented in this sec-
tion are based on [33].

7.10.1 A simple Sugarscape model

Agents live in a space named Sugarscape, which is a two-dimensional
square lattice toroidally connected at the top, bottom, and left and right
edges. Each lattice point contains sugar, and the maximum quantity of sugar
is set on a per-point basis. The amount of sugar increases at a predefined rate
(cf. regeneration rules Gα and G∞, which are described below). The agents
collect sugar from lattice points, and the sugar at each point is restored to its
maximum if not collected by agents for a short period of time. Sugar is thus
maximized at all points at the initial iteration step.

Figure 7.30 shows an example Sugarscape model. Green mountains are
located at the northeast (top right) and southwest (bottom left) corners of
the lattice, where areas of the mountains with greater elevation represent
larger amounts of sugar, with the maximum quantity at the peaks set to 4.
In contrast, the areas toward the northwest and southeast corners eventually
become completely devoid of sugar. Note that since the lattice is toroidally
connected, when an agent crosses the right (left) edge, it reappears on the
left (right) edge. We will now explain this simple environment for the initial
model.

Initially, the quantity of sugar everywhere increases according to the simple
rule described next [33, p. 23]. Various other rules for sugar growth have been
devised, and the rule given here is extended in later sections.

Sugarscape growth rule Gα:
The sugar grows at a rate of α units per step, where the maximum growth is
such that the upper limit of the quantity for that position is attained.

220 Agent-Based Modeling and Simulation with Swarm

In particular, the following rule is known as the instantaneous growth
rule [33, p. 27].

Sugarscape growth rule G∞:
Sugar instantaneously grows to the maximum quantity for that position.

Two important agent features are their vision and metabolic rate. These
features are different for each agent and can be genetically transferred from
parent to child. Therefore, although the agents consume (burn) sugar at each
step, the consumption of sugar depends on the metabolic rate. In the following
experiment the metabolic rate for the population forms a uniform distribution
with a minimum value of 1 and a maximum of 4. The vision of the agents is
limited to the four directions of the lattice (up, down, left, and right), and
the agents are unable to see across a diagonal. Furthermore, the distribution
of vision is uniform, with a minimum of 1 and a maximum of 6, and an agent
with a vision of 3 can see up to three units away in each direction.

The agents thus accumulate sugar while moving around in the Sugarscape,
and each agent is capable of stockpiling an unlimited amount of sugar.

Agents move in accordance with the rule given below [33, p. 25], in which
they process local information (such as the current amount of sugar at each
position) within their field of view, and subsequently compute their order of
preference for relocation.

Agent movement rule M :

• Survey the lattice in all four directions (up, down, left, and right) and
search for positions within the field of vision containing the largest quan-
tity of sugar and no other agents.

• If more than one such position exists, choose the nearest.

• Move to the new position.

• Collect all the sugar at the new position.

Agents can move only once at each step of the iteration, and the order in
which agents move is random. When they arrive at the new position, their
sugar reserve is increased by the amount of sugar at the new position minus
the amount of metabolized sugar. Metabolized sugar cannot be accumulated,
and if an agent’s reserve becomes zero or negative, the agent dies of starvation
and disappears from Sugarscape.

In the following discussion, if Sugarscape follows growth rule E and the
agents follow movement rule A, the set of experimental conditions is denoted
(E,A). For example, if sugar is replenished by the instantaneous regeneration
rule and the agents move in accordance with rule M , then the experimental
conditions are given by (G∞,M).

Let us conduct a simulation with the (G1,M) rule set. Applying these rules
to a group of agents distributed at random, agents located at positions with

Cellular Automata Simulation 221

One step later 10 steps later 50 steps later

FIGURE 7.31: Agent aggregation in (G1,M).

(a) population (b) average and std. values (vi-
sion, metabolism)

FIGURE 7.32: Population and feature changes in (G1,M).

little sugar exhaust their food and die, and only agents in positions relatively
rich in sugar survive. Moreover, since agents rely on their field of view to
discover and move to positions rich in sugar, the agents aggregate at the two
mountains of sugar after 50 steps (Fig. 7.31).

After 50 steps, the population of agents has been reduced to about 100
from a value of 400 at the start of the simulation, and although the average
metabolic rate for all agents is initially 2.5, this value converges to about 1.
However, no improvement in vision is found even after 100 steps. Thus, vision
can be considered as not being of prime importance in this environment, or
perhaps vision is already sufficiently advanced in this case (Fig. 7.32).

Next, let us experiment with the (G∞,M) rule set. In this environment,
the survival rate is low for agents with high metabolic rates and poor vision.
Therefore, such agents die while the remaining agents settle at the most suit-
able locations and form a stable state. As a result, it can be observed that
rather than aggregating at the peaks of the two mountains, the agents arrange
themselves in a formation resembling contour lines along the mountain ridges
(terraces) of Sugarscape [33]. Epstein and Axtell explained this phenomenon
as originating from the vision of the agents:

222 Agent-Based Modeling and Simulation with Swarm

Specifically, suppose you are an agent with vision 2 and you are
born on the terrace of sugar height 2, just one unit south of the
sugar terrace of level 3. With vision 2, you can see that the nearest
maximum sugar position is on the ridge of the sugar terrace of
height 3, so, obeying rule M, you go there and collect the sugar.
Since there is instant growback, no point on the level 3 sugar
terrace is an improvement; and with vision of only 2, you cannot
see the higher terrace of sugar level 4. So you stick on the ridge
[33, p. 28].

This description suggests that while Sugarscape constitutes a simple envi-
ronment, by conducting demonstrative simulations of complex systems, Sug-
arscape is an exceedingly effective tool for studying human society. Let us
consider one such experiment in detail in the following paragraphs.

7.10.2 Life and birth

To increase the model dynamics, agents are born with a certain lifespan
between 60 and 100 iterations that is selected at random from a uniform
distribution. Since all agents perish after 100 steps under these conditions, a
rule for replacing agents is also added to the rule set [33, p. 33].

Agent replacement rule R[a, b]
An agent that dies is replaced by a new agent with an age of 0 and a random
set of genes, lifespan (with an interval set as [a, b]), initial reserve, and location.

Explicitly, since a single dead agent is replaced by a single agent generated
at random, the population is maintained at 400. The implementation of this
rule results in small fluctuations in the average values of the agents’ attributes
owing to the addition of the random attribute values of the new agent. Under
these conditions, the metabolic rate decreases rapidly, whereas vision remains
almost unchanged (Fig. 7.33). Additionally, although the agents accumulate
the surplus sugar and thus possess considerable reserves, the average stored
quantity appears to settle around 30 due to the limited lifespan of the agents.
The maximum size of a reserve is about 100 (Fig. 7.34).

7.10.3 Breeding

The last basic setting is a breeding rule. Agents are divided into males
and females, and adjacent agents of opposite sex breed and produce offspring.
However, for successful breeding, the following conditions must be satisfied.

• Age limit: both males and females can start breeding when they are
between 12 and 15 steps of age, and breeding stops between 40 and 50
for females and between 50 and 60 for males. Each agent is assigned

Cellular Automata Simulation 223

FIGURE 7.33: Features (vision, metabolism) in (G1, {M,R[60,100]}) (aver-
age and std. values).

(a) Average and std. values (b) Maximum values

FIGURE 7.34: Wealth in (G1, {M,R[60,100]}).

224 Agent-Based Modeling and Simulation with Swarm

TABLE 7.11: Potential child genotypes [33].
Metabolic rate

Vision m M

v (m, v) (M, v)

V (m,V) (M,V)

a lower and upper breeding age taken from uniform distributions over
these two intervals.

• Reserve: to become a parent, an agent must possess at least as much
sugar in its reserve as at its birth.

In addition, the father and mother of a child each give the child half of the
quantity of sugar that they possessed at birth. In other words, a child is born
with a quantity of sugar equal to the sum of the amounts donated by its
parents.

In the breeding process, each attribute (e.g., metabolic rate, vision, and
maximum lifespan) is randomly inherited by the child from one of its parents.
Therefore, rather than being generated at random, the attributes of a newly
born agent represent a uniform crossover of the genetic elements of its parent
agents. Taking metabolic rate and vision as an example, if the genotype of
one parent is (m, v) and the genotype of the other is (M,V), the child can
obtain one of four genotype combinations with equal probability (Table 7.11):
(m, v), (M, v), (m,V), and (M,V). The following rule is adopted for breeding
agents [33, p. 56].

Agent breeding rule S:

• Select an adjacent agent at random.

• If the selected agent is of the opposite sex and is capable of breeding,
and if there is at least one empty position for child next to either agent,
then the agents produce one child.

• Repeat for all agents.

In an experiment where the lifespan was left unchanged and the breeding
rule was substituted for the replacement rule, the agent population initially
decreased in barren regions and then increased rapidly through breeding in
rich regions, before eventually settling at around 700. Here, average values for
both the vision and metabolic rate of the agents changed; the metabolic rate
decreased even more rapidly as compared with the case without crossovers,
and the vision improved (Fig. 7.35). The reason for this improvement in sight,
in addition to evolution, is that the agents experienced difficulty in finding free
space as the population increased, and therefore the importance of having a

Cellular Automata Simulation 225

(a) Average and std. values
(vision, metabolism)

(b) Numbers of births and deaths

FIGURE 7.35: Features in (G1, {M,R[60,100], S}).

(a) Average and std. values (b) Maximum values

FIGURE 7.36: Wealth in (G1, {M,R[60,100], S}).

wide field of vision also increased. Furthermore, the average reserve decreased
to 6 as a result of agents donating part of their reserve to their newly born
child, and the maximum reserve decreased to about 15 (Fig. 7.36).

7.10.4 Environmental changes

In this section, we observe the behavior of the agents when their environ-
ment is changed. The basic rules in the following discussion are the breeding
rule from Section 7.10.3 and the rule that says lifespans are uniformly dis-
tributed over the interval 60–100.

7.10.4.1 Nutritive ratio

Let us lower the nutritive ratio of sugar to 40%; in other words, only 4 out
of 10 collected units of sugar can be digested, which is equivalent to reducing
the consumption of sugar to 40%. When the experiment is conducted under
these conditions, the sugar collected by the agents is unable to cover the energy
needs of their metabolisms. As a result, the agents exhaust their reserves, and

226 Agent-Based Modeling and Simulation with Swarm

the entire population perishes at the 25th step. The minimum nutritive ratio
of sugar at which the agents survive is about 50%.

7.10.4.2 Alternating seasons

Next, alternating seasons are introduced as a form of dynamic environmen-
tal change. Taking the upper half of Sugarscape as the northern hemisphere
and the lower half as the southern hemisphere, the hemispheres alternate be-
tween summer and winter every 50 steps such that both hemispheres have
opposing seasons. The sugar yield in winter is 1/8 of that in summer. The
season rule is summarized as follows [33, p. 45].

Rule for season-dependent sugar growth Sαβγ :

• The season is set to summer in the upper (northern) half and winter in
the lower (southern) half of Sugarscape.

• The seasons are swapped after a period of time α (summer becomes
winter and winter becomes summer).

• Sugar grows at a rate of γ units per step in summer, and a rate of γ
units per β steps in winter.

Conducting the experiment under these conditions, the agents in the win-
ter hemisphere ultimately consume all of the sugar, and their population is
drastically reduced. Only agents located around the equator can survive by
migrating to the summer hemisphere. However, once the seasons are swapped
after 50 steps, the agents that have been consuming generous amounts of sugar
during the summer suddenly face a severe winter (Fig. 7.37), and agents die
in large numbers if they do not reach the summer hemisphere. Agents that
successfully relocate produce offspring and increase in number (Fig. 7.38).

If the seasons are swapped an odd number of times, values of the average
vision and metabolic rate both improve, whereas with an even number of swaps
these attributes degenerate slightly. Agents with superior features adapt well
to the change in season and gather together inside the summer hemisphere.
However, since after an odd number of swaps the season in that hemisphere
is winter, a large number of agents die, and the remaining agents in the oppo-
site hemisphere produce offspring and increase the population. Therefore, the
effect of location-based selection is stronger than that of superior or inferior
features, resulting in an overall degeneration of the attributes. Furthermore,
the average reserve size increases rapidly immediately after the swap, owing to
the small number of agents refilling their reserves in the summer hemisphere
(Fig. 7.39).

7.10.4.3 Generation of pollution

When the climate alternates, the environment exerts a unidirectional in-
fluence on the agents. In contrast, in this section we introduce pollution as an

Cellular Automata Simulation 227

(a) 25 steps later; winter in the
lower hemisphere (south-
ern)

(b) 50 steps later; winter in the
upper hemisphere (north-
ern)

FIGURE 7.37: Agent aggregation due to seasonal variation: (S50,8,1,
{M,R[60,100], S}).

(a) population (b) numbers of births and deaths

FIGURE 7.38: Population changes due to seasonal variation: (S50,8,1,
{M,R[60,100], S}).

228 Agent-Based Modeling and Simulation with Swarm

(a) average and std. values (vi-
sion, metabolism)

(b) average and std. values
(wealth)

FIGURE 7.39: Feature and wealth changes due to seasonal variation:
(S50,8,1, {M,R[60,100], S}).

example to show agents affected by their environment. Upon collecting and
digesting sugar, an agent generates a corresponding amount of pollutant at its
position, which makes it difficult for the agent to continue living there. The
rule for generation of pollution is as follows [33, p. 47]:

Pollution generation rule Pαβ :

• Agents generate α · s units of pollutant upon collecting s units of sugar
(production waste) and β ·m units of pollutant upon digesting m units
of sugar (consumption waste).

• The total amount of pollutant p(t) at time t for a given position is the
sum of the production waste, the consumption waste, and the existing
amount of pollutant, which can be expressed as

p(t) = p(t− 1) + α · s+ β ·m. (7.15)

The experiment below is conducted with α = 1 and β = 1, and the move-
ment rule is adjusted as follows [33, p. 48]:

Movement rule M adjusted to account for pollution:

• As vision permits, search for the position with the highest sugar-to-
pollutant ratio and with no other agents.

• If more than one such position exists, choose the nearest.

• Move to the selected position and collect all of the available sugar.

In addition, the pollutant is dispersed with a fixed ratio in accordance with
the following rule [33, p. 48]:

Pollution dispersal rule Dφ:

Cellular Automata Simulation 229

(a) 55 steps later (b) 105 steps later

FIGURE 7.40: Agent aggregation due to pollution: ({G1, D1}, {M,P1,1}).

• Calculate the input pollutant per interval φ for each cell, where the input
is the averaged pollution level of the cells above, below, left, and right
of the cell of interest (the von Neumann neighborhood).

• The input pollutant is set as the new pollution level at that cell.

Here, we take φ = 1, and pollution generation and dispersal begin at the 50th
and 100th step, respectively. This model thus matches historic processes where
pollution increases in response to industrialization, after which efforts to pre-
serve the environment expand as a result of technological development. When
the experiment is conducted under these conditions, the moment that pollu-
tion generation begins, agents move away from the mountains and distribute
themselves over a wide area. However, once pollution dispersal commences,
agents return to the mountains (Fig. 7.40).

Although the population decreases temporarily when pollution is gener-
ated, curiously it recovers even before pollution dispersal initiates and the
population reaches higher levels (about 800) than in the no pollution case.
When pollution dispersal begins, the population returns to the typical level of
about 700. This process occurs since, under normal conditions, the agents are
preferentially distributed around the centers of the two mountains. However,
pollution widens the agents’ distribution and relaxes this bias; in other words,
sugar collection becomes more efficient, covering a wide area that reaches the
bases of the two sugar mountains, and the overall accommodated population
increases.

When pollution is generated, agents’ vision deteriorates on average,
whereas their average reserves increase. The pollution-driven movement of
the agents causes a decrease in population density. Thus, agents can collect
sugar from their neighborhood without interference from other agents and
this in turn decreases the importance of vision. This tendency is lost when
pollution dispersal begins, and the agents resume their usual state (Fig. 7.41).

230 Agent-Based Modeling and Simulation with Swarm

(a) average and std. values (vi-
sion, metabolism)

(b) average and std. values (wealth)

FIGURE 7.41: Feature and wealth changes due to pollution: (S50,8,1,
{M,R[60,100], S}).

7.10.5 Introduction of culture

In this section, we introduce interaction between agents. Each agent is
provided with a fixed-length character array composed of 0s and 1s, which
represents the culture of that agent. Agents belonging to a specific culture
form a tribe, where the definition of cultures and tribes is as follows [33,
p. 73]:

Cultures (tribes) defined by majority rule based on tags:

• Each agent carries a tag (a string array containing 0s and 1s).

• Agents whose tags contain more (less) 1s than 0s belong to the blue
(red) culture.

Through breeding, parents produce offspring that inherit a random mix-
ture of the parents’ culture tags. When an attempt is made to divide the
agents by their color, the two tribes mix at random. Furthermore, there is
a gradation in nuance depending on the proportion of 1s in the tags, which
indicates that although only two tribes (red and blue) are specified, each tribe
includes a stepwise cultural division.

In general, the current features of agents do not change upon the inheri-
tance of culture tags. Therefore, we introduce a new rule that enables tags to
be propagated by flipping 0s and 1s in the tags of adjacent agents [33, p. 72].

Culture propagation rule (tag flip) K:

• A tag-flipping agent selects random positions in the tags of each of its
neighboring agents.

• If the values at the selected positions are equal to those in the tag of
the tag-flipping agent itself, they remain unchanged; otherwise they are
flipped to match those of the tag-flipping agent.

Cellular Automata Simulation 231

FIGURE 7.42: Agent aggregation with culture propagation (100 steps later):
(G1, {M,K}).

The tag length is taken as 3 in the following experiment. Although features,
such as vision and metabolic rate, correspond to genes that can be transferred
only through congenital inheritance, culture tags are memes, transferrable
through secondary contact [25]. Upon application of the culture propagation
rule, instead of diffusing at random, the red and blue tribes become more
segregated than previously (Fig. 7.42).

The preceding example exhibits the formation of groups from randomly
mixed blue and red tribes. In contrast, the next example shows the process
of diffusion of the two tribes when they are completely separated initially.
The experiment commences after placing the red tribe in the lower left-hand
corner and the blue tribe in the top right-hand corner, and the interaction
between the two tribes at the center of Sugarscape is then observed. If cul-
ture propagation is not implemented, only a small number of agents are born
with mixed culture through inter-tribal breeding (Fig. 7.43). However, culture
propagation causes rapid diffusion of the two cultures, and a large number of
agents with intermediate culture are born, advancing deep into both tribes
(Fig. 7.44).

While cases exists where, as the iterations advance, one culture vanishes
and all agents become approximately evenly distributed within a single tribe,
other cases again give rise to the vanished tribe through culture propagation
(or inheritance). For example, even though agents with tags 001 and 100
belong to the red tribe, if they meet and influence each other, both agents
acquire tags of 101, and they then belong to the blue tribe. In this way,
preservation of cultural diversity is possible.

When the length of the tag is increased from 3 to 7, agents with inter-
mediate culture again appear in a stepwise manner; however, neither tribe is
completely converted even after 200 steps (Fig. 7.45).

232 Agent-Based Modeling and Simulation with Swarm

(a) Initial state (b) 100 steps later

FIGURE 7.43: Diffusion process of two tribes: without culture propagation.

FIGURE 7.44: Diffusion process of two tribes: with culture propagation (100
steps later).

Cellular Automata Simulation 233

FIGURE 7.45: Diffusion process of two tribes: with culture propagation (no.
of tags = 7; 200 steps later).

7.10.6 Introduction of combat

We now introduce combat between the two tribes, where each agent pos-
sesses a strength value dependent on its reserve. A strong agent can kill a
weaker agent from the rival tribe and steal its reserve. The combat rule is
summarized as follows [33, p. 83]:

Combat rule Cα:

• Survey the lattice in four directions (up, down, left, and right) as vision
permits.

• Exclude cells occupied by members of the same tribe.

• If a cell is occupied by a weaker member of the other tribe (i.e., one
with a smaller reserve), add a premium (of at most α) to the existing
resource at the cell.

• Exclude cells occupied by stronger members of the enemy tribe (to avoid
being attacked).

• Of the remaining cells, move to the nearest cell with the largest combined
value of resource and premium.

• Collect the resource at the new location together with the reserve of the
previous occupant and the premium α.

• The previous occupant of the cell dies.

When the combat rule is applied without culture propagation, an intriguing
war unfolds between the two tribes (Fig. 7.46). The population graph shows

234 Agent-Based Modeling and Simulation with Swarm

that one of the tribes almost completely conquers the other, after which the
low-population tribe, which was on the verge of extinction, suddenly recovers
and reverses the combat. The population of the winning tribe is then reduced
to almost complete annihilation. This phenomenon repeats indefinitely.

To explain this cycle, we consider Fig. 7.46 in greater detail. In this figure,
in addition to division of the tribes by color, agents with large reserves (i.e.,
strong agents) are shown in a bright color, whereas agents with smaller reserves
(weaker agents) are shown in a dark color.

At step 120, the blue tribe contains a large number of agents, and the
mountain in the lower part of Sugarscape is inhabited only by blue agents.
With no combatant, blue agents are unable to obtain a premium, and there-
fore their only means of support is to collect sugar from the land. Moreover,
the relative amount of food per agent decreases, since their population den-
sity increases. Hence, the strength of the populous blue tribe is reduced. In
contrast, only a small number of red agents survive at the mountain in the
upper part of Sugarscape, and because they fight the blue agents, the local
population density is lower, allowing for large quantities of sugar to be ac-
cumulated. Since the winner receives the sugar reserve of a defeated enemy,
agents that are strong in combat become even stronger. Consequently, when
a small number of red agents haphazardly win a continuous series of fights
with the surrounding blue agents, they rapidly accumulate large amounts of
sugar and become exceedingly powerful. These strong red agents then begin
to systematically eradicate the weakened blue agents. As a result, the red
agents successfully conquer the mountain in the lower half of Sugarscape at
step 250. However, the red agents at the mountain in the upper half have
already started to weaken, and the few blue agents struggling for survival
suddenly accumulate large amounts of sugar, become powerful and expel the
red agents. The cyclic combat history of the two tribes is formed in this way.

Next, we consider the addition of culture propagation, where agents are
affected by the culture of the enemy tribe, and in certain cases even defect to
the enemy side. Although dynamic combat can still be observed under these
conditions (Fig. 7.47), fluctuations in population sizes are not as extreme as in
the absence of cultural propagation. As expected, conversion can occur during
combat and the less populous tribe recovers before an extreme bias in the
distribution arises. Cases are rare where the less populous tribe is completely
converted to the culture of the more populous tribe and the latter wins.

To observe the effects of combat, Cα is introduced at the 200th step of an
experiment initially without combat. The blue and red agents naturally coexist
in peace until the introduction of combat, at which point they swiftly separate
into tribes and display dynamic behavior (Fig. 7.48). With the introduction
of combat, the total population considerably decreases due to combat losses,
and the average agent reserve increases following the theft of resources and
the decrease in population.

While the same conditions were applied to both tribes in the preceding
examples, finally we introduce differences in the personalities of the agents in

Cellular Automata Simulation 235

10 steps 30 steps 40 steps 50 steps

70 steps 80 steps 90 steps 100 steps

120 steps 140 steps 170 steps 200 steps

220 steps 230 steps 250 steps 280 steps

FIGURE 7.46: Introduction of combat (without culture propagation):
(G1, C∞).

236 Agent-Based Modeling and Simulation with Swarm

350 steps 370 steps 380 steps 400 steps

270 steps 290 steps 310 steps 330 steps

FIGURE 7.47: Introduction of combat (with culture propagation):
(G1, C∞).

100 steps 200 steps 210 steps

250 steps 290 steps 300 steps

FIGURE 7.48 (See Color Insert): Combat introduced at the 200th step.

Cellular Automata Simulation 237

sugar mountain spice mountain

FIGURE 7.49: Introduction of spice.

both tribes. Cα contains a condition whereby an agent does not move toward
a cell if a stronger agent from the rival tribe is in sight. Here, we define a new
movement rule where an agent deliberately moves to a cell containing large
amounts of food and a large premium, even if a strong enemy is in sight. The
former behavior is regarded as being cautious, while the latter is regarded as
being brave (or reckless).

When the experiment is conducted by taking the blue agents as brave
and the red agents as cautious, the previously mentioned oscillation in the
tribes’ populations does not occur, and instead the population of the blue
tribe increases and remains stable. The same process is observed when the
roles are reversed and we have brave red agents and cautious blue agents.
This result arises from the limited movement of the cautious agents due to
fear of the enemy, in which they miss opportunities to consume large quantities
of sugar or to steal resources. In this model, a brave personality proves to be
more rewarding than a cautious one.

7.10.7 Introduction of trade

In this section, we introduce a second type of food (spice) in addition to
sugar such that agents trade sugar and spice with neighboring agents whenever
necessary. Thus, we attempt to create a bottom-up emergent market.

Agents consume both sugar and spice, and die if either is lacking. Spice
also forms two mountains and grows at a predefined rate. The sugar mountains
are shown in green and the spice mountains are shown in red (Fig. 7.49). Spice
occupies the northwest and southeast corners of Sugarscape, which are poor
in sugar. In the successive paragraphs, the metabolic rates of sugar and spice
for each agent are uniformly distributed between 1 and 3, and metabolic rates
are transferred independently to offspring.

We also introduce a welfare function, representing the cumulative reserve

238 Agent-Based Modeling and Simulation with Swarm

of sugar and spice. This welfare function is expressed in the form of a Cobb–
Douglas function:

W (w1, w2) = w
m1
mT

1 w
m2
mT

2 . (7.16)

Here, w1 is the amount of sugar, w2 is the amount of spice, m1 is the metabolic
rate for sugar, m2 is the metabolic rate for spice, and mT is the sum of m1

and m2. This welfare function changes the movement rule for an agent at a
given time [33, p. 100].

Movement rule, M , for an agent at a given time in the presence of multiple
types of food:

• Survey the lattice in four directions as vision permits.

• Search for cells where the welfare function is maximized and no agents
are present.

• If more than one such cell exists, choose the nearest.

• Move to the chosen cell and consume all resources.

With this rule, agents move toward cells that provide the optimal balance
in satisfying their energy needs with respect to their metabolic rates of sugar
and spice.

Additionally, an equation for the marginal rate of substitution (MRS) is
provided as an indicator showing the required relative proportion of sugar and
spice:

MRS =
τ1
τ2
, (7.17)

where

τ1 =
w1

m1
, τ2 =

w2

m2
. (7.18)

A larger (smaller) MRS value indicates that the agent requires relatively more
sugar (spice) than spice (sugar) to survive. Moreover, τ1 and τ2 correspond
to the respective times until the agent dies of starvation if the amounts of
procured sugar and spice fall below the necessary levels.

When spice is introduced into the experiment, agents located outside of the
areas where the sugar and spice mountains overlap die in the initial iterations,
since these agents can collect only one type of food. Lucky agents located in
the region where the two mountains overlap procreate and gradually become
capable of living in wider areas as their metabolic rates improve (Fig. 7.50).

Agents with high MRS (i.e., those that demand greater quantities of sugar
than spice) are shown in a color close to cyan (light blue), agents with lower
MRS (those that demand more spice than sugar) are shown in a color close
to magenta (purple), and agents that have equal requirements for both foods

Cellular Automata Simulation 239

1 step 25 steps

75 steps 200 steps

FIGURE 7.50: Agent aggregation with spice: (G1,M).

1 step 25 steps

50 steps 100 steps

FIGURE 7.51: MRS values with spice: (G1,M).

240 Agent-Based Modeling and Simulation with Swarm

175 steps 300 steps

25 steps 75 steps

FIGURE 7.52: Agent aggregation with spice and combat.

are shown in a neutral color (Fig. 7.51). In the case here, agents located at
the sugar mountains lack spice, and vice versa.

The average logarithmic MRS value for each agent stabilizes around 0 and
shows that agents’ overall collection of sugar and spice is well balanced.

Next, when the combat rule Cα from Section 7.10.6 is applied, the red and
blue tribes fight over both sugar and spice. Although the average logarithmic
MRS value for sugar and spice again stabilizes around 0, the blue tribe is
annihilated, leaving only red agents (Fig. 7.52). The low-population tribe is
unable to recover, unlike in the sugar-only case, because the remaining blue
agents are located at the spice mountains and thus die due to a lack of sugar.

We now establish a rule for trading sugar and spice. Trade is conducted by
adjacent agents, and the amounts traded are determined by the MRS values
of both agents. Agents with sugar deficiency can obtain sugar by trading large
quantities of spice, and vice versa. Furthermore, the direction of trade (i.e.,
which agent offers the sugar or spice) is determined by comparing the MRS
values of both agents, and the agent that requires relatively more sugar trades
spice, while the agent that requires more spice trades sugar. By conducting
trade in this way, the difference between the MRS values of both agents de-
creases, and if the traded amounts exceed a certain value, the magnitudes of
the agents’ MRS values are reversed, indicating an exchange in the relative
demands of sugar and spice. Therefore, further trade becomes counterproduc-
tive, and the ideal trading amounts are such that the MRS values of the two
agents become equal.

Considering the above, the trading prices are determined as follows. When
agents A and B exchange one unit of sugar for p units of spice, p is referred to
as the trading price. Specifically, sugar is the product and p is the currency,
where p is defined as the geometric mean of the MRS values of the two agents:

Cellular Automata Simulation 241

TABLE 7.12: Direction of trade [33].
MRS

Agent MRSA >MRSB MRSA <MRSB

A Buying sugar and selling spice Buying spice and selling sugar
B Buying spice and selling sugar Buying sugar and selling spice

p =
√

MRSA ·MRSB. (7.19)

Since the amounts of sugar and spice in Sugarscape are always integers, p is
taken to be the closest integer value. Additionally, the direction of trade is de-
termined in accordance with Table 7.12. The trading rule can be summarized
as follows [33, p. 106]:

Trading rule T :

• Compare MRS values with an adjacent agent. Terminate the process if
the values are equal, otherwise continue.

• The flow of spice is from the agent with high MRS toward the one with
low MRS, and the flow of sugar is in the opposite direction.

• The geometric mean of the MRS values of the two agents is taken to be
the trading price p.

• If p > 1, one unit of sugar is exchanged for p units of spice, and if p < 1,
one unit of spice is exchanged for 1/p units of sugar.

• Repeat the trade until the step before the MRS values of the two agents
are reversed.

The above trading rule is applied at each step for all adjacent agents.
In experimenting with this rule, scattering in the MRS values decreases

when compared with the no trade case, and both sugar and spice are dis-
tributed in a well-balanced manner (Fig. 7.53). The traded amounts are about
50 units at each step, and the average trading price stabilizes at 1:1 approxi-
mately (Fig. 7.54). Since the respective amounts of sugar and spice growing in
Sugarscape are approximately equal, their distribution becomes logarithmic.
In addition, the metabolic rates of sugar and spice for all agents are set under
identical conditions, and sugar and spice are expected to settle into an overall
equivalence relation, demonstrating that an adequate distribution of wealth is
achieved through skillful trade. Conversely, looking at the highest and lowest
trading prices, cases exist where the values are different from 1 and do not
converge even after 300 steps. Even if sugar and spice are used equivalently
as a whole, local bias still exists, and trading continues. Such circumstances
are easily overlooked in traditional economic analyses, which focus only on

242 Agent-Based Modeling and Simulation with Swarm

300 steps 400 steps

25 steps 150 steps

FIGURE 7.53: Agent aggregation with trade.

(a) Minimum, maximum, average,
and std. values of prices (loga-
rithmic chart)

(b) Traded amounts

FIGURE 7.54: Traded amounts and prices.

top-down balance. In other words, observing this type of behavior is one of
the advantages of bottom-up multi-agent simulations.

Finally, macroscopic differences are introduced between sugar and spice.
These differences are implemented by introducing alternating seasons, in
which the growth rate of sugar is seasonally affected while that of spice is not.
In this experiment, the seasons in the northern and southern hemispheres are
swapped every 50 steps, and the growth rate for sugar in winter is set to 1/8.

Under these conditions, the average price oscillates over 50 step intervals
(Fig.7.55). Comparing these results with the graph showing the average sugar
reserves, it can be seen that the price of sugar increases as the sugar reserves
decrease and clearly demonstrates the influence of environmental changes on
trading prices. To elucidate the effects of trading on the agents, they are
divided such that red agents are capable of trading and blue ones are not

Cellular Automata Simulation 243

(a) Average and std. values of
prices (logarithmic chart)

(b) Average amounts of sugar
and spice reserves

FIGURE 7.55: Trading prices and reserves in the case of seasonal change
and trade.

(Fig. 7.56). In this case, the red tribe becomes more populous, while the
population of the non-trading blue tribe decreases.

However, bias in the tribal populations is observed even when the exper-
iment is conducted under the same conditions for both tribes. Hence, these
results alone do not show whether trade contributes to the superiority of the
red tribe. A further experiment is therefore conducted where trading capa-
bilities are initially provided to the blue tribe and not to the red tribe, and
after 300 steps these conditions are reversed. The trading blue tribe becomes
consistently more populous until the 300th step, at which point the red tribe
gradually starts to trade and its population increases to that of the blue tribe.
Eventually, the red tribe became more populous than the blue tribe, demon-
strating the role of trade in determining the superiority of a tribe.

7.10.8 Swarm simulation in Sugarscape

The main files of the system that implements “Sugarscape” are as follows:
Sugarscape.java Source file of the main
ObserverSwarm.java Source file of ObserverSwarm
ModelSwarm.java Source file of the whole Swarm
SugarAgent.java Source file of the agents
SugarSpace.java Source file of the landscapes
sugarspace.pgm File to place sugar
spicespace.pgm File to place spices

The main parameters in ModelSwarm are shown in Table 7.13. Parameters
0 and 1 mean off and on, respectively. Do not forget to press “return” after
entering each parameter. Even after the execution starts, you can change
the parameters such as “color” if you stop to enter new values and press the
“start” button. The meaning of the GUI window of ObserverSwarm is given
in Table 7.14. “displayFrequency” and “stopPeriod” variables specify the

244 Agent-Based Modeling and Simulation with Swarm

400 steps 500 steps

25 steps 300 steps

FIGURE 7.56: Agent aggregation when only red agents are capable of trad-
ing.

frequency of drawing and the interval of stopping, repectively. Figure 7.57
shows the state during the execution.

Cellular Automata Simulation 245

FIGURE 7.57 (See Color Insert): Sugarscape in Swarm.

246 Agent-Based Modeling and Simulation with Swarm

TABLE 7.13: Parameters of Sugarscape.
Variable name Meaning

numAgents Number of initial agents
alpha Foods’ (sugar, spice) nutritive ratios

(higher value, higher nutrition)
pollute Generates pollution
season Changes the seasons (1: sugar and spices, 2: only sugar,

3: only spices)
How to display agents: 0: Red color

color 1: Visibility (lower: blue higher: white)
2: Metabolic rate (lower: blue higher: white)
3: Wealth (little: blue bigger: white)
4: Age (smaller: blue higher: white)
5: Visibility (higher: aqua) and metabolic rate

(higher: magenta)
6: Visibility (higher: aqua) and wealth (bigger: magenta)
7: Cultural tags (all 1: aqua all 0: magenta)
8: Cultural tags (more 1s: blue, more 0s: red)
9: Marginal rate of substitution MRS
High: preference of sugar: aqua
Low: preference of spice: magenta
10: Cultural tags (8 color display)

mating Mates to have children
replacement If one bug dies, one bug is generated randomly
dbg Debug mode
tagSize Length of cultural tag
propagation Propagates a culture
boxstart Separates the initial positions of red tribe and blue tribe.
datafile The file name of sugar placement
datafile2 The file name of spice placement
battle Fights with other tribes to rob sugar:

1: Careful
2: Without gun
3: Blue: without gun, Red: careful
4: Blue: careful, Red: without gun

maxPlunder The maximum value of robbed sugar
spice Feeds the spices after placement
trade Trades sugar and spices

(1: all agents, 2: only red tribe, 3: only blue tribe)

Cellular Automata Simulation 247

TABLE 7.14: GUI display of Sugarscape.

GUI name Meaning

drawPopulationGraph Graph of population (total, red tribe, blue tribe)
drawAttributeGraph Graph (average, standard deviation) of visibility (av-

erage, standard deviation), metabolic rate (sugar,
spice)

drawBirthGraph Graph of number of births and deaths and number
killed in battle

drawMRSGraph Graph of marginal rate of substitution (average,
maximum, minimum, standard deviation) of sugar
and spice

drawPriceGraph Graph of transaction costs (average, maximum, min-
imum, std dev)

drawTradeGraph Graph of scale of trade
drawWealthGraph Graph of wealth distribution
drawWealthMaxGraph Graph of maximum value of wealth
drawWealthHistogram Histogram of wealth distribution
drawAgeHistogram Histogram of age distribution

This page intentionally left blankThis page intentionally left blank

Chapter 8

Conclusion

What is “real”? How do you define “real”? (from The Matrix

movie quotes)

This book discussed the simulation of complex systems from the basics
to implementation, applicable to a wide range of fields. In particular, imple-
mentation in Swarm, a simulation suite for complex systems, was explained
in order to assist the reader to easily construct simulations. Complex systems
and artificial life are actively being researched, which finds a place in many
practical applications in the fields of animation and design, among others.
Therefore, the objective of this book is to explain the fundamental concepts
of artificial life and complex systems, and then to outline multi-agent simula-
tion and bottom-up simulation principles.

The significance of bottom-up simulation of complex systems is analyzed
in the summary of this chapter. The simulations presented in this book take
a “constructive approach.” This is an engineering approach that deepens un-
derstanding by building fundamental models and then observing the behavior
of entire models built with those fundamental building blocks. The goal is to
“create and understand” complex systems and artificial life.

The complex systems covered here are limited to actual systems in the
real world because the objective of the constructive approach is to under-
stand actual phenomena. Research is carried out sequentially in five stages.
It gradually shifts from an abstract level to more concrete levels, and insights
obtained in previous stages will be applied in subsequent stages. The research
will go back to stage 1 after the completion of stage 5, and this procedure is
repeated to increase understanding of the subject.

Stage 1 Make something, which may not necessarily correspond to the subject,
that mimics the behavior of the subject. For example, models may be
simulated as multi-agent simulations of complex systems such as in
Swarm (Chapter 3).

Stage 2 Make something that qualitatively mimics the behavior of the subject.
An example is the reproduction of ant marches (Section 5.1).

Stage 3 Make something that quantitatively mimics the behavior of the subject.
Appropriate adjustment of the parameters of the simulator and compar-
isons with observable examples are necessary at this stage.

249

250 Agent-Based Modeling and Simulation with Swarm

Stage 4 Hypotheses are tested, and the behavior of the model is adjusted to
correspond to the actual behavior of the subject in the real world. Hy-
potheses are built to explain phenomena in natural science. Experiments
are designed to verify whether the hypotheses hold. Similarly, the results
of simulations are compared with the results of experiments in the real
world as “hypothesis verification,” aiming to connect the model to the
real world.

Stage 5 Understand the origin of behavior in the subject, relate to the real world,
and explain the cause and effect based on actual physical and chemical
mechanisms. The goal is to understand not only the behavior of the
subject but also to understand the underlying factors and the effects that
the behavior causes. In biological terms, the objective is to understand
proximate (physiological) and final (biological or evolutional) causes.

There has been much discussion on the guiding methodology on how to
carry out research in the field of artificial life (see Section 4.4.1). For example,
Barandiaran and Moreno categorized artificial life into following four mod-
els [9].

Generic model Aims to deduce generic properties that exist in any complex
system.

Conceptual model Aims to formulate and understand concepts such as evo-
lution or emergence.

Functional model Aims to understand specific systems with emergent prop-
erties.

Mechanistic model Aims to realistically reproduce the behavior of the sub-
ject model.

The relation between this classification of artificial life and the constructive
approach is shown in Fig. 8.1. The complete correspondence to the subject in
stage 5 is close to the mechanistic model. However, while the goal of a mech-
anistic model is to relate to the behavior of the subject, our approach aims
to relate to factors that cause the behavior of the subject. Functional models
model existing systems and correspond to stage 4 because the focus is mainly
on emergence and evolution. In contrast, generic and conceptual models do not
model actual subjects; therefore, strictly there is no one-to-one relationship
with the stages in the constructive approach. However, these models can be
considered as components of stages 2 to 4 because of the common objective of
qualitatively and quantitatively clarifying the properties of complex systems.

Each model in artificial life research has a different viewpoint. On the
other hand, the constructive approach progresses with research in steps with
different viewpoints to understand existing phenomena. Deeper insight is ob-
tained by connecting to the actual world, and then research is started from

Conclusion 251

Functional model

Mechanistic model

Generic
model

Conceptual
model

FIGURE 8.1: The classification of artificial life and the constructive ap-
proach.

stage 1 again using this insight. Repeating this approach will allow deeper
understanding of the subject.

Tables 8.1 and 8.2 show the relations between related research and the
constructive approach. Below we explain how this research corresponds to the
stages.

Related research 1: Pattern formation
Alan Turing proposed that morphogenesis can be modeled by the reaction–

diffusion of morphogens, which are virtual chemicals (see Section 7.7 for de-
tails). Genes corresponding to morphogens have been found recently, and re-
search is under way. For instance, Yamaguchi et al. are investigating how pat-
terns found on fish skin form at the genetic level based on Turing’s reaction–
diffusion model [129]. This work first built hypotheses based on the behavior
of an actual model, and then simulations were carried out to finally derive the
relationship to the model at the experimental biology level. Hence, this is an
example where the constructive approach is taken.

Takeuchi et al. expanded the Turing model into a model that can explain
the formation of bacteria and cancer cell colonies [112]. By controlling pa-
rameters, they verified that sufficient nutrition conditions would result in a
spherical cancer tissue whereas deficient nutrition results in slow growth and
an irregular, complicated colony.

Synthetic biology is a promising new field of genetic engineering in this
direction [7, 111]. In synthetic biology, mathematical models are used to test
biological hypotheses and observations, and to predict the possible behaviors
of a designed gene circuit [49, 92]. These models serve as blueprints for novel
synthetic biological systems, making the engineering of biology easier and
more reliable. Evolutionary computation is a key tool in this field [58, ch. 6.5].

Related research 2: Artificial societies and artificial markets

252 Agent-Based Modeling and Simulation with Swarm

T
A

B
L
E

8
.1

:
R

el
at

io
ns

b
et

w
ee

n
re

la
te

d
re

se
ar

ch
an

d
th

e
co

ns
tr

uc
ti
ve

ap
pr

oa
ch

(1
).

St
ag

e
1

St
ag

e
2

St
ag

e
3

St
ag

e
4

St
ag

e
5

P
at

te
rn

fo
rm

at
io

n
R

ep
ro

du
ct

io
n

in
a

si
m

ul
at

or
[t
hi

s
b
oo

k,
C

ha
pt

er
7]

A
pp

ro
pr

ia
te

ad
ju

st
-

m
en

t
of

pa
ra

m
et

er
s

fo
r

pa
tt

er
n

fo
rm

at
io

n,
hy

p
ot

he
si

s
ve

ri
fic

at
io

n
on

re
ac

ti
on

–d
iff

us
io

n
m

od
el

fo
r

pa
tt

er
ns

of
fis

h
[7

5]
,

co
lo

ny
fo

rm
at

io
n

of
sk

in
ca

nc
er

[6
1]

G
en

et
ic

-l
ev

el
un

de
rs

ta
nd

-
in

g
of

re
ac

ti
on

–d
iff

us
io

n
m

od
el

fo
r

pa
tt

er
ns

of
fis

h
[7

5]
,

un
de

rs
ta

nd
in

g
co

nc
re

te
cr

it
er

ia
fo

r
ch

oo
s-

in
g

m
al

es
an

d
it
s

st
im

-
ul

us
pr

oc
es

s
[1

29
].

Sy
n-

th
et

ic
bi

ol
og

y
ap

pr
oa

ch
[7

,
49

,
92

,
11

1]
A

rt
ifi

ci
al

so
ci

et
ie

s
an

d
ar

-
ti
fic

ia
l

m
ar

ke
ts

R
ep

ro
du

ct
io

n
in

a
si

m
ul

at
or

[t
hi

s
b
oo

k,
C

ha
pt

er
6]

C
on

fir
m

in
g

si
m

ila
ri

ti
es

in
w

ar
s

an
d

de
al

in
g

[t
hi

s
b
oo

k,
Se

ct
io

ns
6.

5
an

d
6.

7]
,
ve

ri
fic

at
io

n
of

hy
p
ot

he
se

s
su

ch
as

th
e

ba
nd

w
ag

on
eff

ec
t

[6
2]

U
nd

er
st

an
di

ng
em

er
ge

nc
e

ph
en

om
en

a
at

th
e

m
i-

cr
os

co
pi

c
le

ve
l

(f
re

qu
en

cy
di

st
ri

bu
ti
on

of
ra

te
flu

c-
tu

at
io

n,
co

nt
ra

ry
op

in
io

n
ph

en
om

en
a)

th
ro

ug
h

in
-

te
rv

ie
w

s
w

it
h

de
al

er
s

[6
2]

A
co

us
ti
c

co
ns

o-
na

nc
e

an
d

di
ss

on
an

ce
p
er

ce
pt

io
n

m
od

el

T
he

or
y

of
b
ea

ts
(H

el
m

ho
lt
z)

,
di

ss
on

an
ce

p
er

-
ce

pt
io

n
m

od
el

(K
am

eo
ka

an
d

K
ur

iy
a-

ga
w

a)
[6

3,
64

]

In
ve

st
ig

at
in

g
si

m
ila

ri
ty

to
co

ns
on

an
ce

an
d

di
ss

on
an

ce
p
er

ce
iv

ed
by

hu
m

an
s

[6
3,

64
]

A
gr

ee
m

en
t

w
it
h

ps
yc

ho
-

lo
gi

ca
l

ex
p
er

i-
m

en
ts

[6
3,

64
]

P
re

di
ct

io
n

an
d

ve
ri

fic
a-

ti
on

of
co

ns
on

an
ce

in
ar

bi
tr

ar
y

so
un

d
[6

3,
64

]

F
re

qu
en

cy
p
er

ce
pt

io
n

m
ec

ha
ni

sm
of

th
e

in
ne

r
ea

r
an

d
re

la
ti
on

to
m

od
el

Conclusion 253

T
A

B
L
E

8
.2

:
R

el
at

io
ns

b
et

w
ee

n
re

la
te

d
re

se
ar

ch
an

d
th

e
co

ns
tr

uc
ti
ve

ap
pr

oa
ch

(2
).

St
ag

e
1

St
ag

e
2

St
ag

e
3

St
ag

e
4

St
ag

e
5

B
io

lo
gi

ca
l

sp
ec

ia
ti
on

R
ep

ro
du

ct
io

n
in

a
si

m
ul

at
or

[1
7,

84
]

In
ve

st
ig

at
in

g
th

e
nu

m
b
er

of
sp

ec
ie

s
th

at
w

ill
em

er
ge

[1
7,

84
]

In
ve

st
ig

at
io

n
of

ho
w

m
ut

a-
ti
on

in
flu

en
ce

s
sp

ec
ia

ti
on

[8
4]

A
gr

ee
m

en
t

w
it
h

ex
-

p
er

im
en

ts
on

ba
ct

e-
ri

a
[8

4]

F
or

ag
in

g
of

an
im

al
s

Si
m

ul
at

io
n

us
in

g
a

cl
as

si
fie

r
sy

st
em

[5
6]

A
cq

ui
si

ti
on

of
op

-
ti
m

iz
ed

fo
ra

gi
ng

ru
le

s
[5

6]

F
or

ag
in

g
ba

se
d

on
a

nu
m

er
i-

ca
l

m
od

el
[2

6]
,

m
im

ic
ry

an
d

se
ar

ch
[9

4]

E
xp

er
im

en
t

to
ve

ri
fy

m
od

el
on

co
gn

it
io

n
du

ri
ng

fo
ra

gi
ng

[3
6]

E
vo

lu
ti
on

-
ar

y
ro

b
ot

ic
s

E
vo

lv
in

g
vi

rt
ua

l
cr

ea
tu

re
s

[1
07

],
bu

ild
in

g
ro

b
ot

s
th

at
ca

n
p
er

fo
rm

sp
ec

ifi
c

ta
sk

s
[1

1,
27

,
39

]

G
O

L
E

M
pr

o
je

ct
(N

A
SA

)
[9

6]
,

m
or

ph
og

en
es

is
of

ro
b
ot

s
[1

17
],

bu
ild

in
g

ro
b
ot

s
ca

pa
bl

e
of

au
-

to
no

m
ou

s
le

ar
n-

in
g

[1
1,

27
,
39

]

E
xp

er
im

en
t

w
it
h

w
al

ki
ng

hu
m

an
oi

ds
w

it
h

br
ai

ns
m

im
ic

ki
ng

m
on

ke
ys

[6
8]

,
ex

p
er

im
en

t
w

it
h

ro
b
ot

s
th

at
co

nt
ro

li
n-

se
ct

s
[1

13
],

bu
ild

in
g

ro
b
ot

s
th

at
ca

n
p
er

fo
rm

sp
ec

ifi
c

ta
sk

s
[1

1,
27

,
39

]

E
m

er
ge

nc
e

in
ar

m
y

an
ts

R
ep

ro
du

ct
io

n
in

a
si

m
ul

at
or

[t
hi

s
b
oo

k,
ar

m
y

an
t]

R
ep

ro
du

ct
io

n
of

ap
-

pr
op

ri
at

e
sh

or
tc

ut
s

[t
hi

s
b
oo

k,
ar

m
y

an
t]

O
bs

er
va

ti
on

of
co

lle
ct

iv
e

de
te

r-
m

in
at

io
n

[t
hi

s
b
oo

k,
Se

ct
io

n
2.

5]

H
yp

ot
he

si
s

ve
ri

fic
at

io
n

of
co

lle
ct

iv
e

de
te

r-
m

in
at

io
n

[t
hi

s
b
oo

k,
Se

ct
io

n
2.

6]

C
on

ne
ct

io
n

w
it
h

ac
-

tu
al

ar
m

y
an

ts

254 Agent-Based Modeling and Simulation with Swarm

Sugarscape, which was proposed by Joshua Epstein and Robert Axtell [32],
is a model that forms an artificial society (see Section 7.10 for details). This
is basically a simulation where ants move around looking for sugar, but its
objective is to understand mechanisms behind social behavior by taking into
account concepts such as mating, warfare, and dealing. Understanding the
environments around each agent and under what conditions agents engage
in warfare or make deals would help us understand the behavior of actual
economies. For example, Kiyoshi Izumi [62] attempted to explain macroscopic
phenomena such as the frequency distribution of rate fluctuation or contrary
opinion by laws of cause and effect at the microscopic level through interviews
with dealers (see [59]). This corresponds to stage 5 research that aims to
connect emergent phenomena to the actual world.

Related research 3: Acoustic consonance and dissonance perception
model

Humans perceive two or more combined sounds as a pleasant consonance
or an unpleasant dissonance. Perception models of consonance and dissonance
are based on Helmholtz’s theory of beats where the extent of consonance de-
pends on the closeness of harmonics [48]. This theory was formulated math-
ematically by Kameoka and Kuriyagawa [63, 64], and its internal parameters
were determined by psychological experiments. The mechanism of the inner
ear that picks up frequency, which corresponds to the input in the model, has
been clarified; however, the relation to the internal mechanism of the brain is
still not understood. This connection would correspond to stage 5.

Related research 4: Biological speciation
Clement researched biological speciation through an investigation of the

ecology of fish [17]. Artificial life that simulated fish was created to research
what kind of clustering is effective in speciation. Metivier et al. investigated
how stress affects speciation of individuals through a simulator called Life
Drop [84]. The simulator developed showed that stress from the environment
increases the possibility of crossover between species, which in turn affects
speciation. The conclusion was that stress strongly influences evolution. The
simulation results agreed with the results of biological experiments using bac-
teria, and hence this corresponds to stage 5 in the constructive approach.

Related research 5: Foraging of animals
There has been much research on optimization of the foraging strategy

of animals in mathematical ecology [61] and behavioral ecology [26]. For
instance, assume the nutrition values (gi) and the cost necessary for intake
(hi) are given for multiple types of food. The hypotheses derived from the
theory to optimize foraging are the following.

Claim 1 If every type of food exists with the same distribution, the food
with higher g

h
has higher preference.

Conclusion 255

Claim 2 If there is an abundance of a preferred food (food with large g
h
),

only that food should be eaten.

Claim 3 The decision to eat or not to eat a preferred food does not depend
on the amount of less-preferred foods.

The author used simulations, for instance to learn optimization strategies
using classifier systems, and confirmed that rules that are consistent with
these hypotheses could be obtained [56]. There is also an investigation on
the searching pattern that results in optimized foraging (cognitive model for
efficient foraging). Erichsen et al. experimentally verified cognitive models
using paridae [36].

Related research 6: Evolutionary robotics
Karl Sims [107] created evolved virtual creatures, or creatures made of

directional graphs that have actions to mimic creatures (see Section 4.4.2 for
details). These creatures may show shapes and actions that people cannot
even conceive of, and one study applied these creatures to morphogenesis of
robots [117]. A project, RobotCub, aims to create robots with the learning
ability of human toddlers through a constructive approach [11, 27, 39]. The
objective of this research is to clarify how toddlers learn specific tasks and what
is necessary in the learning process. Mitsuo Kawato created walking robots
that reproduce information on brain activity in walking monkeys to gain a
deeper understanding of the brain [68]. Creating actual models to understand
actual subjects and to make connections corresponds to stage 5. Takashima
et al. carried out research to understand the mechanisms in the brain by
connecting silkworms or their brains to robots to make silkworms intelligence
control robots [113].

Related research 7: Emergence in army ants
The research introduced in Section 5.8 aims to reproduce and understand

the cooperative behavior of army ants. Experiments using simulators designed
to reproduce cooperative behavior in army ants showed that agents built
bridges in appropriate places to make shortcuts. This is an accomplishment of
stage 2. Incorporating different collaborative behavior and hypotheses consid-
ering the ecology of ants in the simulator resulted in agents initially attempt-
ing to build bridges in various positions and later concentrating on building
existing bridges located in various positions. This is similar to the collective
decision-making of ants in nature, and corresponds to stage 3. However, this
simulation does not connect directly to the actual world; therefore, the current
goal is to repeat hypothesis verification to connect more closely to the results
of experiments involving animals (stage 4). The environments in a simulator
in which agents move around are currently limited to simple environments.
Connection to the actual world will be attempted by adjusting factors such
as the field in which the agents move, the size of the agents, or the variation
in velocity of agents to make the environment in the simulator similar to the

256 Agent-Based Modeling and Simulation with Swarm

real environment (examples include the size of the experimental equipment,
number of ants, and speed of ants [80, 81]) in experiments involving animals.

In this book, both the constructive approach and actual examples have
been introduced to help clarify complex systems and artificial life. Past re-
search studies in this field show that the investigation of cause and effect is
of paramount importance. Therefore, current research has been presented as
actual examples for showing how to perform research using the bottom-up ap-
proach. Various multi-agent simulation tests implemented in this book have
been categorized and discussed in relevant sections.

The approach explained in this book may not be applicable for research
studies dealing with some types of complex systems. However, structural mod-
els that can be imagined and constructed are necessary for simulations in
complex systems science, and the models become closer to reality by “iden-
tification of simulations.” The multi-agent simulations discussed in this book
will increase the understanding of target phenomena when actual models ex-
ist. This approach aims to investigate the behavior of actual targets, i.e., the
cause and effect phenomenon, and then proceed to researching the systems in
a step-by-step manner. This book would immensely contribute to research in
the fields of complex systems and artificial life.

Appendix A

GUI Systems and Source Code

A.1 Introduction

For the sake of better understanding GP and its extensions, software de-
scribed in this book can be downloaded from the website of the author’s
laboratory (http://www.iba.t.u-tokyo.ac.jp/). They are LGPC for Art, TSP
by GA, GP, PSO, etc.

The intention of making these software packages available is to allow users
to “play” with emergent systems. We request interested readers download these
packages and experience the emergent properties. The web pages contain (1)
instructions for downloading the packages, (2) a user’s manual, and (3) a
bulletin board for posting questions. Readers are invited to use these facilities.

Users who download and use these programs should bear the following
items in mind:

(1) We accept no responsibility for any damage that may be caused by
downloading these programs.

(2) We accept no responsibility for any damage that may be caused by
running these programs or by the results of executing such programs.

(3) We own the copyright to these programs.

(4) We reserve the right to alter, add to, or remove these programs without
notice.

In order to download the software mentioned in this book, please follow
the following link, which contains further instructions:

http://www.iba.t.u-tokyo.ac.jp/english/BeforeDownload.htm

If inappropriate values are used for the parameters (for instance, elite size
greater than population size), the program may crash. Please report any bugs
found to stroganoff@iba.t.u-tokyo.ac.jp.

257

http://www.iba.t.u-tokyo.ac.jp/
http://www.iba.t.u-tokyo.ac.jp/english/BeforeDownload.htm
mailto:stroganoff@iba.t.u-tokyo.ac.jp

258 Agent-Based Modeling and Simulation with Swarm

FIGURE A.1: PSO simulator.

A.2 PSO simulator and benchmark functions

The PSO search process could be observed using this simulator (see
Fig. A.1). The user is able to freely define the functions for the search.

In addition, this simulator uses De Jong’s standard functions. De Jong’s
standard functions are benchmark tests for GAs, and are used for determining
the minimum value. The definitions of these functions, along with the defi-
nition fields and optimum values, are shown in Table A.1. The form of the
functions and plots projected on the x1 − x2 plane are shown in Fig. A.2.
Benchmark functions F4 and F5 seem to be more difficult than the others.
The +GAUSS(0, 1) of F4 shows the addition of values from the normal dis-
tribution with average 0 and dispersion 1. In other words, noise is included in
the various points in F4. With F5, there is a series of 5 × 5 valleys lined up
in a grid alignment, but the valleys do not have a uniform depth. The trough
of the valley at the lowermost left is the minimum value (≈ 1), while the local
minimum values of the remaining troughs increase sequentially from left to
right and from bottom to top, as 2, 3, etc. When leaving these troughs, it
rapidly approaches the maximum value of 500. Note that the coordinates of
aij are as follows:

int a[2][25] = {
{-32, -16, 0, 16, 32, -32, -16, 0, 16, 32, -32, -16, 0, 16, 32,
-32, -16, 0, 16, 32, -32, -16, 0 16, 32},

{-32, -32, -32, -32, -32, -16, -16, -16, -16, -16, 0, 0, 0, 0,
0, 16, 16, 16, 16, 16, 32, 32, 32, 32, 32}

};

Originally, F1, F2, and F3 can have generalized definitions with three or

GUI Systems and Source Code 259

(a) F1 (b) F2

(c) F3 (d) F4

(e) F5

FIGURE A.2: Benchmark functions.

260 Agent-Based Modeling and Simulation with Swarm

TABLE A.1: De Jong’s standard functions.

Function Definition Domain Optimum
Name Value
F1

∑3
i=1 x

2
i −5.11 ≤ xi < 5.12 0

Paraboloidal surface
F2 100(x2

1 − x2)
2 + (1− x1)

2 −2.047 ≤ xi < 2.048 0
Rosenbrock’s saddle

F3
∑5

i=1⌊xi⌋ −5.11 ≤ xi < 5.12 −30
Step function

F4
∑30

i=1 ix
4
i + GAUSS(0, 1) −1.27 ≤ xi < 1.28 0

Quartic function with noise

F5

[

1
500 +

∑25
j=1

1
j+

∑
2
i=1(xi−aij)6

]−1

−65.535 ≤ xi < 65.536 1

Shekel’s foxholes

more variables, but here we reduced the number of dimensions in the functions
to make two-variable problems that are much simpler to work with.

For convenience, the Z axis was greatly compressed in the view of F5 in
the PSO simulation, so it looks somewhat different from the previous figure.

Download and unzip the file “Particle Swarm Optimization ver1.0” (402
kB). It contains 3 files: EquToDbl.dll, EquToDbl.txt, and PSO.exe. Click
PSO.exe to start the simulator.

The following commands allow the user to make basic use of the simulator:

• Set button
When pressed, an initial population is generated.

• Run button
When pressed, execution is initiated.

• Stop button
Pressing this button halts calculations. It is used when the user wants
to observe the movement of individuals during the simulation.

• Step button
This button can be used after pressing the Stop button to sequentially
observe motions at each generation.

• Reset button
After a simulation has been completed, pressing this will re-start execu-
tion.

The following parameters can be set by the user.

GUI Systems and Source Code 261

• Population size
Number of individuals in the population.

• Maximum velocity
The maximum velocity of any individual in motion. All individuals are
prevented from moving any faster.

• Maximum iteration
Maximum number of replications of the simulation.

• Inertia weight
Attenuation coefficient. The default value is 0.9, causing the speed to
gradually decrease with time.

• Input?
If this box is checked, the user is able to freely define the functions.

After execution is started, the fitness transition is plotted in the chart area
at the center of the screen. The following items are displayed in the “Result”
panel beneath the plot:

• Iteration
Number of the current replication. This corresponds to the number of
generations in a GA.

• Best fitness
Best (minimum) fitness value among all individuals.

• Average fitness
Average fitness value of all individuals. If this box is checked, the average
fitness is plotted in the above graph.

• Coordinates
This shows the coordinates of the best fitness.

A.3 TSP simulator by a GA

The TSP simulator works as follows.

(1) Set values for number of city, population size, max generation in the
text boxes next to the labels City, Population Size and Max Generation,
respectively.

(2) Also set crossover and mutation rates. Select “selection method” and
“replacement strategy” by clicking the choice provided. If you choose
elitism replacement, provide the percentage value for elite replacement.
If none is changed, default values are used.

262 Agent-Based Modeling and Simulation with Swarm

(3) Either click the Random Point button or click on the drawing area and
put city locations one by one.

(4) Click the Run button.

Parameters and execution conditions can be changed through the following
procedure during runtime.

• When in Running mode, you can change the Selection Method, Re-
placement Strategy, Delay Rate, Crossover Rate, Mutation Rate, and
Elitism.

• When in Running mode, you can change the city location by clicking
the city point and dragging it to a new location.

You can just click the Stop button to stop running. You can rerun the
program by just clicking the Run button after clicking the Stop button or
after normal stopping. This can be done only when the Run button is enabled.
When the Reset button is enabled, you may click it and put the desired values
in the corresponding text boxes.

When in running mode, RED LINES and YELLOW LINES show the best-
ever tour found and the best tour in the current generation, respectively.

The best-ever tour and the best tour in the current generation are dis-
played along with their distances in the textboxes next to the labels: Overall
Best, Current Generation, and Distance, respectively. The Current Generation
number is displayed in the textbox labeled Generation#.

A.4 Wall-following simulator by GP

A robot learns through genetic programming (GP) in this code such that
it is programmed to move along a wall in a room with obstacles (Fig. 2.12).
A jar file is released, and a Java runtime environment is necessary to execute
this code.

Each individual (robot) is shown by a blue circle (the front side of the
robot is indicated with a line). The size indicates the fitness (Fig. 2.15), where
the fitness is the number of tiles adjacent to a wall that the robot passed, and
larger size means better fitness.

The robots evolve such that they follow walls better as the number of
generations increases. The robots become larger, showing that performance
is improving. The behavior of all individuals in the population is displayed
simultaneously, but there is no cooperation between them.

The three lines at the bottom show the following information.

• Best Fitness: the fitness of the best individual in this generation

GUI Systems and Source Code 263

• Best tree: the S-expression (a notation for tree-structured data) of the
best individual in this generation

A.5 CG synthesis of plants based on L-systems

This system draws trees based on an L-system using interactive evolution-
ary computation (IEC) (Fig. 2.17).

This can be executed by entering

java -jar treeIEC.jar

from a terminal, or by double-clicking treeIEC.jar in Windows.
When you pick two trees from eight trees and click a button, eight new

trees are generated that have the characteristics of the two trees. Repeating
this procedure by continuing to click on two trees generates a tree that you
like. The same tree can be clicked twice to generate next-generation trees that
reflect the characteristics of this tree only.

A data file with the name data will be saved in the folder when the save

button is clicked. Tree data can be loaded from the data file when the load

button is clicked.

A.6 LGPC for art

This simulator designs abstract figures (wallpaper) based on IEC methods
(Fig. 2.18). The basic procedure for using this simulator is as follows.

(1) Click Clear if you do not like the pictures shown in the 20 windows in
the View tab; all windows will be initialized.

(2) If you like any of the pictures, select by clicking on it (its frame becomes
red). Any number of pictures can be selected.

(3) When you click OK, the selected pictures are used as parent candidates
to generate and show a population of next-generation genes.

(4) Repeat (1) to (3)ĄD

You can save genes that you like (Gene_Save command), or load a picture that
you had previously saved and replace a displayed picture with it (Gene_Load
command). The 20 windows in the View tab are numbered to allow replace-
ment (the top-left picture is No. 1; the number increases from left to right,
top to bottom up to No. 20).

264 Agent-Based Modeling and Simulation with Swarm

The following parameter settings and items are shown on the GP Param-
eters screen.

• coordinate
This determines the origin of the coordinates in showing the expressions.
Selecting the upper-left results in an origin at the top-left corner of the
frame, whereas selecting the center results in an origin at the center
(this makes the pattern more likely to make the top and bottom halves
and/or the right and left halves symmetric).

• OK
This is possible when at least one figure is selected. Clicking this button
results in derivation of a new generation where genes of selected pictures
are parent candidates, and a new generation is generated and displayed.

• Clear
This is possible when no figure is selected. Clicking this button initializes
the gene population.

The other parameters and status are as follows.

• Results screen (Fig. A.3(a)): Settings and display of GTYPE

– Functions
This determines the functions used as non-terminal symbols in GP.
Functions to be used should be checked.

– Constants
This determines the constants used as terminal symbols in GP. The
range and interval to be used should be entered.

– Best Individual
The GTYPE of the best individual (in case of LGPC for Art, all
individuals) in the generation is displayed.

• GP Parameters screen (Fig. A.3(b)): The problem is defined.

– Number of Populations (not available in LGPC for Art)
This determines the number of populations. Each population can
evolve using different parameters.

– Population Size (not available in LGPC for Art)
This determines the number of individuals.

– Generation (not available in LGPC for Art)
This determines the number of generations.

– Selection Method (not available in LGPC for Art)
The selection strategy is determined from proportional, tourna-
ment, or random. Whether to implement an additional elitist strat-
egy is also determined.

GUI Systems and Source Code 265

(a
)

R
es

ul
ts

sc
re

en
(b

)
G

P
P
ar

am
et

er
s

sc
re

en

F
IG

U
R

E
A

.3
:
L
G

P
C

fo
r

ar
t.

266 Agent-Based Modeling and Simulation with Swarm

– Restriction on Genes
This determines the largest size of a gene.

– Rate of GP Operations
This determines the probabilities of crossover and mutation.

– Initial Ratio of the Nodes
This determines the probability of assigning nodes in each individ-
ual as function symbols or terminal symbols (constants or variables)
when generating the initial population.

– Break Point (not available in LGPC for Art)
Searches can be stopped after the designated number of generations
elapses.

Appendix B

Installing Swarm

In this section, we explain how to install the Java version of Swarm 2.2 on a
Windows machine (as of August 2012). Users can search the web or visit the
author’s home page1 for the latest information related to installing Swarm on
other operating systems or on other Windows versions.

B.1 Installation

The following components are required to use Swarm:

• the Java SDK

• the Swarm package

• the modified scripts

These are described below.

B.1.1 Java2 SDK installation

Download the JS2E SDK (approximately 52 MB) from the Java home
page.2 J2EE can also be used. Click “Accept” when asked if you accept the
license terms, then “Continue.” Next, download the following file:

Windows Offline Installation, Multi-language

j2sdk-1_4_2_11-windows-i586-p.exe

Start the installer, and answer the questions that are displayed.
It is also possible to use the latest version J2SE (Standard Edition 5.0,

jdk-1_5_0_07-windows-i586-p.exe, 63.43 MB), but see the author’s
web site3 for information related to compatibility with Swarm 2.2.

1http://www.iba.t.u-tokyo.ac.jp/~yanase/swarmlecwiki/?Install
2http://java.sun.com/j2se/1.4.2/ja/download.html
3http://www.iba.t.u-tokyo.ac.jp/~yanase/swarmlecwiki/?Install

267

http://www.iba.t.u-tokyo.ac.jp/~yanase/swarmlecwiki/?Install
http://java.sun.com/j2se/1.4.2/ja/download.html
http://www.iba.t.u-tokyo.ac.jp/~yanase/swarmlecwiki/?Install

268 Agent-Based Modeling and Simulation with Swarm

B.1.2 Installing the Swarm package

Download the latest version of the Windows binary Swarm package from
the stable version download page4 (Swarm-2.2-java.zip is approximately
6.3 MB).

Unzip the file to C:\ (or to some other location) and mount it. After
unzipping the file, you should have a directory like C:\Swarm-2.2-java.

Next, create the source folder (which is where the program that we
are about to create will be stored). Below, we will use the example
C:\Swarm-2.2-java\home.

B.1.3 Setting environment variables

Open a command prompt and go to the source directory.

cd C:\Swarm-2.2-java\home

Next, enter the following commands at the prompt:

set PATH=%PATH%;C:\j2sdk1.4.2_11\bin

set PATH=%PATH%;C:\Swarm-2.2-java\bin

set CLASSPATH=%CLASSPATH%;C:/Swarm-2.2-java/share/swarm/swarm.jar

set CLASSPATH=%CLASSPATH%;C:/Swarm-2.2-java/share/swarm/kawa.jar

set SWARMHOME=C:/Swarm-2.2-java

Note that the path separator for SWARMHOME must be a “/” character.
The CLASSPATH setting can also use “\” characters.

It is also possible to set the environment variables by copying the above
into a batch file (e.g., setup.bat) and executing it. Another possibility is
adding the above environment variables to your system environment so that
the above process does not have to be performed with each launch.

B.1.4 Compiling

To compile the program, execute the following in the directory with the
java file:

javac *.java

To execute the program, type

java "class file containing the main() function"

For example,

java StartHeatbugs

4http://www.swarm.org/wiki/Swarm:_stable_release

http://www.swarm.org/wiki/Swarm:_stable_release

Installing Swarm 269

B.1.5 Confirming operation

The Santa Fe Institute distributes two sample files, jheatbugs and
jmousetrap. Below we will demonstrate the compilation and execution of
jheatbugs.

Download jheatbugs-2.1.tar.gz from within java→sdg on the Swarm
official website:

http://ftp.swarm.org/pub/swarm/apps/

After downloading, unzip it and run the following command:

javac *.java

java StartHeatbugs

If the build fails, or when you wish to compile again, please recompile after
running the following command to delete all class files:

del *.class

You can also execute jmousetrap-2.1.tar.gz in a manner similar to the
above.

B.2 Objective-C version

This book describes the Java version of Swarm, but there is also an
Objective-C version of the program. The following is a supplemental descrip-
tion of that version.

B.2.1 Objective-C and Swarm

The Objective-C programming language is an extension of C for object-
oriented programming. The language is based on Smalltalk and is currently
the standard language for Mac OS X programming. On Linux and other
Unix-compatible systems, the GNU GCC compiler also supports Objective-C
through a suite of libraries called GNUStep.

Swarm was originally developed in Objective-C, and while a Java version
exists, the Objective-C version remains the primary development target (mak-
ing the Java version something of a side project). In the Java version, all class
design and method naming rules follow Objective-C standards. This in turn
means that Java conventions are often not followed, which can be somewhat
confusing to a user who is used to Java norms.

In terms of implementation, the Java version of Swarm is somewhat un-
stable. The Windows edition of the Java version has also been reported to be
slow.

http://ftp.swarm.org/pub/swarm/apps/

270 Agent-Based Modeling and Simulation with Swarm

When using the Java version of Swarm, should you feel that the simulation
speed is too slow to be usable, or that bugs are preventing desired operation,
you can consider switching to the Objective-C version.

B.2.2 Material related to the Objective-C version of Swarm

The Swarm tutorial described in Chapter 3 is actually an adaptation of
documents originally written for the Objective-C version by Dr. Benedikt
Stefansson, rewritten for Java by our staff members.

Differences in the languages have resulted in some differences in the code,
but the description should be sufficient for understanding the Objective-C
version.

Note that there is also an Objective-C programming guide on the main
Swarm site.5

B.2.3 Running Swarm under various environments

It is possible to use the Objective-C version of Swarm on all platforms
that Swarm supports. In fact, under Mac OS X the Objective-C version is the
only one available. Below are some notes related to running the Objective-C
version under various operating systems.

B.2.3.1 Windows

When running the Objective-C version of Swarm under Windows, it is
necessary to use a version of the Unix compatibility environment Cygwin6

specially prepared for Swarm. It is difficult to simultaneously use both the
Swarm version of Cygwin and the normal Cygwin, so if you normally use
Cygwin for other purposes please consider using VMWare Player,7 coLinux,8

or some other free virtual machine environment to create a Linux guest envi-
ronment and run Swarm within it.

B.2.3.2 Unix

The Objective-C version of Swarm should run bug-free under Solaris, IRIX,
HP-UX, and other flavors of Unix, as well as PC-Unix and, in particular,
Linux.

The current main target for Swarm development is Linux, and the various
distribution binaries are available on many websites. RPMs for Red Hat-based
Linux distributions such as Fedora are available from the Swarm site. There
is also a package for Debian.

For other Linux distributions, as well as PC-Unix and Unix, it is necessary

5http://www.swarm.org/swarmdocs-2.2/set/set.html
6http://cygwin.com/
7http://www.vmware.com/products/player/
8http://www.colinux.org/

http://www.swarm.org/swarmdocs-2.2/set/set.html
http://cygwin.com/
http://www.vmware.com/products/player/
http://www.colinux.org/

Installing Swarm 271

to compile the program from source and install manually.9 Note, however,
that the source code packages use autoconf, so there should be no need to edit
makefiles and the like, making installation relatively painless.

There might be some rare cases where the default GCC compiler on some
Linux and PC-Unix distributions does not support Objective-C. This will
prevent successful compilation of the Swarm libraries, but this problem can
be remedied by installing a version of GCC that supports Objective-C.

B.2.3.3 Mac OS X

It is not currently possible to use the Java version of Swarm under Mac
OS X, making the Objective-C version the only option.

Under Mac OS X, Swarm runs under X11.app, Apple’s X-Window envi-
ronment. This means that it is necessary to install X11.app when installing
the operating system.

Packages containing binaries for OS X are distributed on the main Swarm
site.10 Simply downloading and installing these binaries should allow the cre-
ation of a Swarm environment.

B.3 Useful online resources

There is a wealth of information about Swarm available on the Internet.
Below is a list of just some. We have omitted some resources that are very
easily found by a web search.

SwarmWiki Developer site.11 The latest information about Swarm should
be available here.

Swarm Development Group The main site before creation of the Wiki.
The tutorials here12 are an excellent place to start (but note that most
use Objective-C).

Swarm On-Line FAQ The first place to visit when you have a question.13

There are also many usage cases here.

Swarm API reference A reference for the Swarm API.14 This will be ab-
solutely necessary if you intend to write your own Swarm applications.
You will also want to keep the Java API reference15 handy.

9http://www.swarm.org/wiki/Swarm:_platforms
10http://www.swarm.org/wiki/Swarm:_MacOS_X_binaries
11http://www.swarm.org/wiki/Main_Page
12http://www.swarm.org/intro-tutorial.html
13http://www.ku.edu/~pauljohn/SwarmFaq/
14http://www.santafe.edu/projects/swarm/swarmdocs/refbook-java/index.html
15http://java.sun.com/j2se/1.3/ja/docs/ja/api/index.html

http://www.swarm.org/wiki/Swarm:_platforms
http://www.swarm.org/wiki/Swarm:_MacOS_X_binaries
http://www.swarm.org/wiki/Main_Page
http://www.swarm.org/intro-tutorial.html
http://www.ku.edu/~pauljohn/SwarmFaq/
http://www.santafe.edu/projects/swarm/swarmdocs/refbook-java/index.html
http://java.sun.com/j2se/1.3/ja/docs/ja/api/index.html

272 Agent-Based Modeling and Simulation with Swarm

SwarmFest The international Swarm conference. Joining will allow you to
view many examples of research done using Swarm.

Another excellent reference is Dr. Taro Yabuki’s development notes page
and collection of help answers.16

16http://www.iba.t.u-tokyo.ac.jp/~yabuki/tip/swarm/swarm.html

http://www.iba.t.u-tokyo.ac.jp/~yabuki/tip/swarm/swarm.html

References

[1] Anderson, C., Theraulaz, G. and Deneubourg, J.L.:
“Self-assemblages in insect Societies,” Insectes soci-
aux, vol. 49, no.2, pp. 99–110, 2002.

[2] Andre, D., Bennett III, F.H., and Koza, J.: “Evolu-
tion of intricate long-distance communication sig-
nals in cellular automata using genetic program-
ming,” in Artificial Life V: Proceedings of the Fifth
International Workshop on the Synthesis and Sim-
ulation of Living Systems, 1996.

[3] Angeline, P.J.: “Evolutionary optimization versus
particle swarm optimization: Philosophy and Per-
formance differences,” Evolutionary Programming
VII, Porto, V.W., Saravanan, N., Waagen, D., and
Eiben, A.E. (eds.), pp. 601–610, Berlin, Springer,
1998.

[4] Angtuaco, S.P.: “Amazing Ants: How to Form
a Bridge,” http://jill-of-alltrades.hubpages.com/
hub/Amazing-Ants.

[5] Axelrod, R.: The Evolution of Cooperation, Basic
Books, New York, 1984.

[6] Axelrod, R.: “An evolutionary approach to norms,”
American Political Science Review, vol. 80, no.4,
pp. 1095–1111, 1986.

[7] Basu, S., Gerchman, Y., Collins, C.H., Arnold,
F.H., and Weiss, R.: “A synthetic multicellular sys-
tem for programmed pattern formation,” Nature,
vol. 434, pp. 1130–1134, 2005.

[8] Ando, D. and Iba, H.: “Real-time musical inter-
action between musician and multi-agent system,”
Proceedings of the 8th International Conference on
Generative Art 2005, Milan, Italy, pp. 93–100, 2005.

273

http://jill-of-alltrades.hubpages.com/hub/Amazing-Ants

274 References

[9] Barandiaran, X. and Moreno, A.: “ALife models as
epistemic artefacts,” Artificial Life X: Proceedings
of the Tenth International Conference on the Sim-
ulation and Synthesis of Living Systems, pp. 513–
519, 2006.

[10] Bentley, P.J.: Evolutionary Design by Computers,
Morgan Kaufmann, San Francisco, CA, 1999.

[11] Berthouze, L. and Metta, G.: “Epigenetic robotics:
modelling cognitive development in robotic sys-
tems,” Cognitive Systems Research, vol. 6, Issue 3,
pp. 189–192, 2008.

[12] Biles., J.A.: “Life with GenJam: Interacting with
a musical IGA,” Proceedings of IEEE Interna-
tional Conference on Systems, Man, and Cybernet-
ics, pp. 652–656, 1999.

[13] Brackman, A.C.: A Delicate Arrangement: The
Strange Case of Charles Darwin and Alfred Russel
Wallace, Times Books, New York, 1980.

[14] Caldwell, C. and Johnston., V.S.: “Tracking a crim-
inal suspect through “face-space” with a genetic al-
gorithm,” Proceedings of the Fourth International
Conference on Genetic Algorithms (ICGA91),
pp. 416–421, 1991.

[15] Caro, G. and Dorigo, M.: “AntNet: A mobile
agents approach to adaptive routing,” Tech. Rep.
IRIDIA/97-12, Universite Libre de Bruxelles, Bel-
gium, 1997.

[16] Cicirello, V. and Smith, S.: “Improved routing
wasps for distributed factory control,” Proceedings
of IJCAI-01 Workshop on Artificial Intelligence and
Manufacturing: New AI Paradigms for Manufactur-
ing, pp. 26–32, 2001.

[17] Clement, R.: “Visualising speciation in models of
cichlid fish,” Proceedings of the 17th European Sim-
ulation Multiconference, pp. 344–348, 2003.

[18] Clerc, M. and Kennedy, J.: “The particle swarm:
Explosion, stability, and convergence in a multidi-
mentional complex space,” IEEE Transactions on
Evolutionary Computation, vol. 6, no.1, pp. 58–73,
2002.

References 275

[19] Cohen, M.D., Riolo, R.L., and Axelrod, R.:
“The emergence of social organization in the
prisoner’s dilemma: how context-preservation
and other factors promote cooperation,” Santa
Fe Institute Working Paper 99-01-002, URL:
http://cscs.umich.edu/research/techReports.html,
1999.

[20] Collins, R.J., and Jefferson, D.R.: “The evolution
of sexual selection and female choice,” Proceedings
of the First European Conference on Artificial Life
(ECAL92), pp. 327–336, MIT Press, Cambridge,
MA, 1992.

[21] Cronin, H.: The Ant and the Peacock: Altruism and
Sexual Selection from Darwin to Today, Cambridge
University Press, New York, 1993.

[22] Darwin, C., On the Origin of Species by Means of
Natural Selection, or the Preservation of Favoured
Races in the Struggle for Life, John Murray, Lon-
don, 1859.

[23] Darwin, C.: The Descent of Man, D. Appleton and
Company, New York, 1871.

[24] Dawkins, R.: The Blind Watchmaker, W.W. Nor-
ton, New York, 1986.

[25] Dawkins, R.: The Selfish Gene, Oxford University
Press, Oxford, UK, 1991.

[26] Krebs, J.R. and Davies, N.B.: An Introduction to
Behavioural Ecology, Wiley-Blackwell, Oxford, UK,
1993.

[27] Degallier, S., Righetti, L., Natale, L., Nori, N.,
Metta, G. and Ijspeert, A.: “A modular, bio-inspired
architecture for movement generation for the infant-
like robot iCub,” Proceedings of IEEE RAS/EMBS
International Conference on Biomedical Robotics
and Biomechatronics (BioRob2008), 2008.

[28] Deneubourg, J.L., Gross, S., and Franks, N.R.:
Sendova-Franks, A., Detrain, C., and Chretien,
L.: “The dynamics of collective sorting: Robot-like
ants and ant-like robots,” Proceedings of Simula-
tion of Adaptive Behavior: From Animals to Ani-
mats (SAB91), pp. 356–363, 1991.

http://cscs.umich.edu/research/techReports.html

276 References

[29] Dewdney, A.K.: “Simulated evolution: Wherein
bugs learn to hunt bacteria,” Scientific American,
pp. 138–141, 1989.

[30] Dirk, M.: Max-Planck-Institut fur Radioas-
tronomie, http://www.mpifr-bonn.mpg.de/staff/
dmuders/

[31] Dorigo, M. and Gambardella, L.M.: “Ant colonies
for the traveling salesman problem”, Tech. Rep.
IRIDIA/97-12, Universite Libre de Bruxelles, Bel-
gium, 1997.

[32] Epstein, J.M. and Axtell, R.: Growing Artificial So-
cieties: Social Science from the Bottom Up, A Brad-
ford Book, 1996.

[33] Epstein, J.M. and Axtell, R.: Growing Artificial So-
cieties, MIT Press, 1996.

[34] Eberhart, R.C. and Hu, X.: “Human tremor analy-
sis using particle swarm optimization,” Proceedings
of IEEE Congress on Evolutionary Computeration
1999, pp. 1927–1930, 1999.

[35] Eberhart, R.C. and Shi, Y.: “Comparison between
genetic algorithms and particle swarm optimiza-
tion,” Proceedings of the Seventh Annual Confer-
ence on Evolutionary Programming, pp. 611–619,
1998.

[36] Erichsen, J.T., Krebs, J.R., and Houston, A.I.: “Op-
timal foraging and cryptic prey,” Journal of Animal
Ecology, vol. 49, pp. 271–276, 1980.

[37] Fabre, J.-H.: Insect Adventures Jean-Henri Fabre,
Alexander Teixeira De Mattos (Translator),
Kessinger Publishing, Whitefish, Montana, 2005.

[38] Fisher, R.A., The Genetical Theory of Natural Se-
lection, Clarendon Press, New York, 1930.

[39] Fitzpatrick, P., Needham, A., Natale, L., and
Metta, G.: “Shared challenges in object perception
for robots and infants,” Infant and Child Develop-
ment, vol. 17, Issue 1, pp. 17–24, 2008.

http://www.mpifr-bonn.mpg.de/staff/dmuders/

References 277

[40] Frisch, U., B. Hasslacher, B., and Pomeau, Y.,
Lattice-gas automata for the Navier-Stokes equa-
tion. Physical Review Letters, vol. 56, pp. 1505–
1508, 1986.

[41] Gacs, P., Kurdyumov, G. L., and Levin, L. A., “One-
dimensional uniform arrays that wash out finite
islands,” Problemy Peredachl Informatsii, vol. 12,
pp. 92–98, 1978.

[42] Gaing, Z.-L.: “Particle swarm optimization to solv-
ing the economic dispatch considering the genera-
tor constraints,” IEEE Transactions on Power Sys-
tems, vol. 18, no.3, pp. 1187–1195, 2003.

[43] Goss, S., Aron, S., Deneubourg, J.L., and Pas-
teels, J.M.: “Self-organized shortcuts in the Argen-
tine ant,” Naturwissenschaften, vol. 76, pp. 579–
581, 1989.

[44] Gould, S.J.: Evolution as fact and theory, Hen’s
Teeth and Horse’s Toes, W. W. Norton & Com-
pany, New York: pp. 253–262, 1994.

[45] Handl, J., Knowles, J., and Dorigo, M., “On the
performance of ant-based clustering,” Frontiers in
Artificial Intelligence and Applications, vol. 104,
pp. 204–213, 2003.

[46] Hardy, J., Pomeau, Y and de Pazzis, O., “Time evo-
lution of a two-dimensional model system,” Jour-
nal of Mathematical Physics, vol. 14, no.1746–1759,
1973.

[47] He, C., Noman, N., and Iba, H.: “An improved ar-
tificial bee colony algorithm with non-separable op-
erator,” in Proceedings of International Conference
on Convergence and Hybrid Information Technol-
ogy, 2012.

[48] Helmholtz, H.: On the Sensations of Tone, Dover
Publications, Mineola, NY, 1954.

[49] Heiner, M., Gilbert, D. and Donaldson, R.: “Petri
nets for systems and synthetic biology,” Proceed-
ings of the 8th International Conference on Dor-
mal Methods for Computational Systems Biol-
ogy, Lecture Notes in Computer Science, Volume

278 References

5016/2008, pp. 215–264, Springer-Verlag Berlin,
2008.

[50] Heppner, F. and Grenader, U.: A Stochastic Non-
linear Model for Coordinated Bird Flocks, AAAS
Washington,DC, 1990.

[51] Higashi, N. and Iba, H.: “Particle swarm optimiza-
tion with Gaussian mutation,” Proceedings of IEEE
Swarm Intelligence Symposium (SIS03), pp. 72–79,
2003.

[52] Holland, J.H.: Adaptation in Natural and Artificial
Systems. University of Michigan Press, Ann Arbor,
1975.

[53] Huberman, B.A. and Glance, N.S.: “Evolutionary
games and computer simulations,” Proceedings of
the National Academy of Sciences, vol. 90, no. 16,
pp. 7716–7718, 1993.

[54] Iba, H., Akiba, S., Higuchi, T. and Sato, T.: “Bugs:
A bug-based search strategy using genetic algo-
rithms,” in Proceedings of Parallel Problem Solving
from Nature, pp. 165–174, 1992.

[55] Iba, H., Higuchi, T., de Garis, H. and Sato, T.: “Evo-
lutionary learning strategy using bug-based search,”
Proceedings of the 13th International Joint Confer-
ence on Artifical Intelligence, pp. 960–966, 1993.

[56] Iba, H., deGaris, H., and Higuchi, T.: “Evolutionary
learning of predatory behaviors based on structured
classifiers,” Proceedings of the Second International
Conference on From Animals to Animats 2: Simu-
lation of Adaptive Behavior, pp. 356–363, 1993.

[57] Iba, H., Paul, T.K., and Hasegawa, Y.: Applied Ge-
netic Programming and Machine Learning, Taylor
& Francis, Inc., Boca Raton, 2010.

[58] Iba, H. and Noman, N.: New Frontiers in Evolution-
ary Algorithms: Theory and Applications, World
Scientific Publishing Company, London, UK, 2011.

[59] Iba, H. and Aranha, C.: Practical Applications of
Evolutionary Computation to Financial Engineer-
ing: Robust Techniques for Forecasting, Trading and
Hedging, Springer-Verlag, New York, 2012.

References 279

[60] Ishiwata, H., Noman, N., and Iba, H.: “Emergence of
cooperation in a bio-inspired multi-agent system,”
Proceedings of Australasian Conference on Artifi-
cial Intelligence 2010(AI2010), LNAI, vol. 6464,
pp. 364–374, Springer, 2010.

[61] Iwasa, Y., Higashi, M., and Yamamura, N.: “Prey
distribution as a factor determining the choice of
optimal foraging strategy,” American Naturalist,
vol. 117, pp. 710–723, 1981.

[62] Izumi, K.: “An artificial market analysis of devel-
opment of market complexity,” Agent-Based Ap-
proaches in Economic and Social Complex Systems,
IOS Press, Amsterdam, pp. 47–58, 2001.

[63] Kameoka, A. and Kuriyagawa, M.: “Consonance
theory, part I: Consonance of dyads,” Journal of
the Acoustical Society of America, vol. 45, no.6,
pp. 1451–1459, 1969.

[64] Kameoka, A. and Kuriyagawa, M.: “Consonance
theory, part II: Consonance of complex tones and
its computation method,” Journal of the Acoustical
Society of America, vol. 45, no.6, pp. 1460–1469,
1969.

[65] Karaboga, D. and Basturk, B.: “A powerful and effi-
cient algorithm for numerical function optimization:
Artificial bee colony (ABC) algorithm,” Journal of
Global Optimization, vol. 39, pp. 459–471, 2007.

[66] Karaboga, D., Gorkemli, B., Ozturk. C, and
Karaboga, N.: “A comprehensive survey: Artifi-
cial bee colony (ABC) algorithm and applications,”
Artificial Intelligence Review, Doi:10.1007/s10462-
012-9328-0, 2012.

[67] Kauffman, S.A.: The Origins of Order: Self-
Organization and Selection in Evolution, Oxford
University Press, Oxford, UK, 1993.

[68] Kawato, M.: “From ‘Understanding the brain by
creating the brain’ toward manipulative neuro-
science,” Yanagida, T., Okano, H. and Iriki, A.,
(Eds.), Philosophical Transactions B, vol. 363,
pp. 2201-2214, 2008.

280 References

[69] Kirkpatrick, M.: “Sexual selection and the evolution
of female choice,” Evolution, vol. 36, pp. 1–12, 1982.

[70] Kendall, G., Yao, X. and Chong, S.-Y.: The Iterated
Prisoners’ Dilemma: 20 Years On, World Scientific
Publishing Co., Inc., Singapore, 2007.

[71] Kennedy, J. and Eberhart, R.C.: “Particle swarm
optimization,” Proceedings of the IEEE Interna-
tional Conference on Neural Networks, pp. 1942–
1948, 1995.

[72] Kennedy, J. and Eberhart, R.C.: Swarm Intelli-
gence, Morgan Kaufmann Publishers, San Fran-
cisco, 2001.

[73] Kennedy, J. and Spears, W.M.: “Matching algo-
rithms to problems: An experimental test of the
particle swarm and some genetic algorithms on
the multimodal problem generator,” Proceedings of
the IEEE Congress on Evolutionary Computation
(CEC), pp. 78–83, 1998.

[74] Knuth, D.E.: “Computer programming as an art,”
ACM Turing Award Lectures, Communications of
the ACM, vol. 17, no.12, pp. 667–673, 1974.

[75] Kondo, S. and Asai, R.: “A viable reaction-diffusion
wave on the skin of Pomacanthus, a marine an-
gelfish,” Nature, 376, pp. 765–768, 1995.

[76] Koza, J.R.: “Hierarchical genetic algorithms operat-
ing on populations of computer programs,” Proceed-
ings of the Eleventh International Joint Conference
on Artificial Intelligence IJCAI-89, vol. 1, pp. 768–
774, Morgan Kaufmann, San Francisco, 1989.

[77] Kusch, I. and Markus, M.: “Mollusc shell pigmenta-
tion: Cellular automaton simulations and evidence
for undecidability,” Journal of Theoretical Biology,
vol. 178, pp. 333–340, 1996.

[78] Langton, C.G.(ed.): Artificial Life, Addison-Wesley,
Boston, 1989.

[79] Levy, S.: Hackers: Heroes of the Computer Revo-
lution, Anchor Press/Doubleday, Garden City, NY,
1984.

References 281

[80] Lioni, A., Theraulaz, G. and Deneubourg, J.L.:
“The dynamics of chain formation in Oecophylla
longinoda,” Journal of Insect Behavior, vol. 14,
no.5, pp. 679–696, 2001.

[81] Lioni, A. and Deneubourg, J.: “Collective deci-
sion through self-assembling,” Naturwissenschaften,
vol. 91, no.5, pp. 237–241, 2004.

[82] Luna, F. and Stefansson, B.: Economic Simulations
in Swarm: Agent-Based Modelling and Object Ori-
ented Programming, Kluwer Academic Publishers,
Norwell, MA, 2000.

[83] Martinez, G.J.: “Introduction to Rule
110,” Rule 110 Winter WorkShop, 2004
http://www.rule110.org/amhso/results/rule110-
intro/introRule110.html.

[84] Metivier, M., Lattaud, C., and Heudin, J.C.: “A
stress-based speciation model in lifedrop,” Artificial
life VIII: Proceedings of the Eighth International
Conference on Artificial Life, pp. 121–126, 2003.

[85] Miller, G.: The Mating Mind: How Sexual Choice
Shaped the Evolution of Human Nature, Anchor,
New York, 2001.

[86] Miranda, V. and Fonseca, N.: “EPSO—Best of
two worlds meta-heuristic applied to power system
problems,” Proceedings of the 2002 World Congress
on Computational Intelligence (WCCI2002),
pp. 1080–1085, 2002.

[87] Mitchell, M.: “Life and evolution in computers,”
History and Philosophy of the Life Sciences, vol. 23,
pp. 361–383, 2001.

[88] Mitchell, M.: Complexity: A Guided Tour, Oxford
University Press, New York, 2009.

[89] Nagel, K. and Shreckenberg, M.: “A cellular au-
tomaton model for freeway traffic,” Journal de
Physique I, vol. 2, no.12, pp. 2221–2229, 1992.

[90] Neary, T. and Woods, D.: “P-completeness of cel-
lular automaton Rule 110,” Proceedings of ICALP
2006 - International Colloquium on Automata Lan-
guages and Programming, Lecture Notes in Com-
puter Science, vol. 4051, pp. 132-143, 2006.

http://www.rule110.org/amhso/results/rule110-intro/introRule110.html

282 References

[91] Ninagawa, S.: “1/f noise in elementary cellular au-
tomaton rule 110,” Proceedings of the 5th Inter-
national Conference on Unconventional Computa-
tion, UC06, Lecture Notes in Computer Science,
vol. 4135/2006, pp. 207–216, 2006.

[92] Noman, N. and Iba, H.: “Evolutionary computation
for synthetic biology,” New Generation Computing,
vol. 31, 2013.

[93] Nowak, M.A.: Evolutionary Dynamics: Exploring
the Equations of Life, Belknap Press of Harvard
University Press, Cambridge, MA, 2006.

[94] Ohsaki, N.: “Preferential predation of female butter-
flies and the evolution of Batesian mimicry,” Nature,
378, pp. 173–175, 1995.

[95] Park, J.-B., Lee, K.-S., Shin, J.-R. and Lee, K.Y.:
“A particle swarm optimization for economic dis-
patch with nonsmooth cost functions,” IEEE Trans-
actions on Power Systems, vol. 20, no.1, pp. 34–42,
2005.

[96] Pollack, J.P. and Lipson, H.: “The GOLEM Project:
Evolving hardware bodies and brains,” Proceedings
of The Second NASA/DoD Workshop on Evolvable
Hardware (EH’00), p.37, 2000.

[97] Poundstone, W.: Gaming the Vote: Why Elections
Aren’t Fair (and What We Can Do About It), Hill
& Wang, New York, 2008.

[98] Powell, S. and Franks, N.R.: “How a few help all:
living pothole plugs speed prey delivery in the army
ant Eciton burchellii,” Animal Behaviour, vol. 73,
no.6, pp. 1067–1076, 2007.

[99] Rajewsky, N., Santen, L., Schadschneider, A., and
Schreckenberg, M.: “The asymmetric exclusion pro-
cess: Comparison of update procedures,” Journal of
Statistical Physics, vol. 92, pp. 151–194, 1998.

[100] Rechenberg, I.: “Human decision making and man-
ual control,” in Willumeit, H.P., (ed.), Evolution
Strategy and Human Decision Making, pp. 349–359,
North-Holland, Amsterdam, Netherlands, 1986.

References 283

[101] Reynolds, C.W.: “Flocks, herds and schools: a dis-
tributed behavioral model,” Computer Graphics,
vol. 21, no.4, pp. 25–34, 1987.

[102] Rucker, R.: Artificial Life Lab, Waite Group Press,
Bolinas, CA, 1993.

[103] Sandel, M.: Justice: What’s the Right Thing to Do?
Penguin, London, 2010.

[104] Sayama, H.: “Swarm chemistry,” Artificial Life,
vol. 15, no.1, pp. 105–114, 2009.

[105] Schelling, T.C.: “Dynamic models of segregation,”
Journal of Mathematical Sociology, vol. 1., pp. 143–
186, 1971.

[106] Sims, K.: “Artificial evolution for computer graph-
ics,” ACM Computer Graphics, vol. 25, no.4,
pp. 319–328, 1991.

[107] Sims, K.: “Evolving virtual creatures,” Proceedings
of Computer Graphics (SIGGRAPH’94), pp. 15–22,
1994.

[108] Sims, K.: “Evolving 3D morphology and behavior
by competition,” Proceedings of Artificial Life IV,
Brooks,R. & Maes,P. (eds.), pp. 28–39, MIT Press,
Cambridge, MA, 1994.

[109] Sims, K.: Galápagos, http://www.genarts.com/
galapagos/
http://www.ntticc.or.jp/, 1997.

[110] Suganthan, P.N., Hansen, N., Liang, J.J., Deb, K.,
Chen, Y.P., Auger, A., and Tiwari, S.: “Problem
definitions and evaluation criteria for the CEC 2005
Special Session on Real-Parameter Optimization,”
Technical Report, Nanyang Technological Univer-
sity, Singapore, May, 2005.

[111] Tabor, J.J., Salis, H.M., Simpson, Z.B., Chevalier,
A.A., Levskaya, A., Marcotte, E.M., Voigt, C.A.,
and Ellington, AD.: “A synthetic genetic edge. de-
tection program,” Cell, vol. 137, no.7, pp. 1272–
1281, 2009.

http://www.ntticc.or.jp/
http://www.genarts.com/galapagos/

284 References

[112] Takeuchi, Y., Iwasa, Y., and Sato, K.: Mathematics
for Ecology And Environmental Sciences (Biologi-
cal and Medical Physics, Biomedical Engineering),
Springer-Verlag, Berlin, Germany, 2007.

[113] Takashima, A., Minegishi, R., Kurabayashi, D., and
Kanzaki, R.: “Construction of a brain-machine hy-
brid system to analyze adaptive behavior of silk-
worm moth,” Proceedings of 2010 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Sys-
tems (IROS2010), pp. 2389–2394, 2010.

[114] Teller, A. and Veloso, M.: “PADO: Learning tree
structured algorithms for orchestration into an ob-
ject recognition system,” Technical Report CMU-
CS-95-101, Pittsburgh, PA, USA, 1995.

[115] Takagi, H. and Ohsaki, M.: “IEC-based hearing aids
fitting,” Proceedings of the IEEE International Con-
ference on Systems, Man, and Cybernetics (IEEE
SMC99), pp. 12–15, 1999.

[116] Takagi, H. and Iba, H.: “Interactive evolution-
ary computation,” (special issue) New Generation
Computing, vol. 23, no.1, pp. 113–114, 2005.

[117] Tohge, T. and Iba, H.: “Evolutionary morphology
for polycube robots,” International Journal of Ad-
vanced Robotic Systems, Frontiers in Evolutionary
Robotics, pp. 567–586, 2008.

[118] Tohge, T. and Iba, H.: “Evolutionary morphol-
ogy for cubic modular robot,” Proceedings of 2006
IEEE World Congress on Computational Intelli-
gence (CEC2006), pp. 1995–2001, 2008.

[119] Torrance, S.B.: The Mind and the Machine: Philo-
sophical Aspects of Artificial Intelligence, Ellis Hor-
wood, Harlow, UK, 1984.

[120] Tokui, N. and Iba, H.: “Music composition with in-
teractive evolutionary computation,” Proceedings of
the 3rd Annual International Conference on Gener-
ative Art, Milan, Italy, 2000.

[121] Unemi, T.: “SBART2.4: Breeding 2D CG images
and movies, and creating a type of collage,” Pro-
ceedings of the Third International Conference on

References 285

Knowledge-Based Intelligent Information Engineer-
ing Systems, pp. 288–291. 1999.

[122] Wakaki, H. and Iba, H.: “Motion design of a 3d-cg
avatar using interactive evolutionary computation,”
Proceedings of 2002 IEEE International Conference
on Systems, Man and Cybernetics (SMC02), IEEE
Press, 2002.

[123] Wallace, A.R.: Darwinism: An Exposition of the
Theory of Natural Selection, with Some of its Ap-
plications, Macmillan, New York, 1889.

[124] Werner, G.M.: “Why the peacock’s tail is so short,
limits to sexual selection,” in Artificial Life V, Lang-
ton, C.G. and Shimohara, K.(eds.) pp. 85–91, MIT
Press, Cambridge, MA, 1996.

[125] Werner, G.M. and Todd, P.M.: “Too many love
songs: Sexual selection and the evolution of commu-
nication,” Proceedings of the Fourth European Con-
ference on Artificial Life (ECAL97), pp. 434–443,
MIT Press, Cambridge, MA,1997.

[126] Wilson, E.O.: Sociobiology: The new synthesis,
Belknap Press, Cambridge, MA, 1975.

[127] Wilkinson, G. S. “Reciprocal food sharing in the
vampire bat,” Nature 308: 181–184.

[128] Wolfram, S.: A New Kind of Science, Wolfram Me-
dia, Champaign, IL, 2002.

[129] Yamaguchi, M., Yoshimoto, E., and Kondo, S.:
“Pattern regulation in the stripe of zebrafish sug-
gests an underlying dynamic and autonomous
mechanism,” Proceedings of the National Academy
of Sciences, vol. 104, no. 12, pp. 4790–4793, 2007.

[130] Zahavi, A. and Zahavi, A.: The Handicap Principle:
A Missing Piece of Darwin’s Puzzle, Oxford Univer-
sity Press, Oxford, UK, 1999.

This page intentionally left blankThis page intentionally left blank

FIGURE 4.9: Sexual selection in a two-dimensional space.

(a) (b)

(c) (d)

FIGURE 5.4: Pheromone trails of ants.

FIGURE 6.32: BUGS simulator.

FIGURE 7.6: Simulation of silicon traffic.

FIGURE 7.8: One-dimensional cellular automaton.

(a) (b)

FIGURE 7.11: Forest fire examples.

FIGURE 7.13: Schelling’s simulation of the segregation model.

(d)(c)

(a)(a)

FIGURE 7.18: An example of simulation using the LGA method.

(b) chambered nautilus (@PNG in 2005)(a) various shells

FIGURE 7.19: CA patterns found on shells.

FIGURE 7.27: Simulating a traffic jam (with SIS).

FIGURE 7.28: Simulating a traffic jam (without SIS).

100 steps 200 steps 210 steps

250 steps 290 steps 300 steps

FIGURE 7.48: Combat introduced at the 200th step.

FIGURE 7.57: Sugarscape in Swarm.

	Front Cover
	Contents
	List of Tables
	List of Figures
	Preface
	Chapter 1: Introduction
	Chapter 2: Evolutionary Methods and Evolutionary Computation
	Chapter 3: Multi-Agent Simulation Based on Swarm
	Chapter 4: Evolutionary Simulation
	Chapter 5: Ant Colony–Based Simulation
	Chapter 6: Particle Swarm Simulation
	Chapter 7: Cellular Automata Simulation
	Chapter 8: Conclusion
	Appendix A: GUI Systems and Source Code
	Appendix B: Installing Swarm
	References

