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Preface

Revised versions of selected papers presented at the Joint Conference of the German
Classification Society (GfKl) — 35th Annual Conference — GfKIl 2011 — , the
German Association for Pattern Recognition (DAGM) — 33rd annual symposium —
DAGM 2011 — and the Symposium of the International Federation of Classification
Societies (IFCS) — IFCS 2011 — held at the University of Frankfurt (Frankfurt am
Main, Germany) August 30 — September 2, 2011, are contained in this volume of
“Studies in Classification, Data Analysis, and Knowledge Organization”.

One aim of the conference was to provide a platform for discussions on results
concerning the interface that data analysis has in common with other areas such
as, e.g., computer science, operations research, and statistics from a scientific
perspective, as well as with various application areas when “best” interpretations
of data that describe underlying problem situations need knowledge from different
research directions.

Practitioners and researchers — interested in data analysis in the broad sense — had
the opportunity to discuss recent developments and to establish cross-disciplinary
cooperation in their fields of interest. More than 420 persons attended the con-
ference, more than 180 papers (including plenary and semiplenary lectures) were
presented. The audience of the conference was very international.

Fifty-five of the papers presented at the conference are contained in this. As an
unambiguous assignment of topics addressed in single papers is sometimes difficult
the contributions are grouped in a way that the editors found appropriate. Within
(sub)chapters the presentations are listed in alphabetical order with respect to the
authors’ names. At the end of this volume an index is included that, additionally,
should help the interested reader.

The editors like to thank the members of the scientific program committee:
D. Baier, H.-H. Bock, R. Decker, A. Ferligoj, W. Gaul, Ch. Hennig, I. Herzog,
E. Hiillermeier, K. Jajuga, H. Kestler, A. Koch, S. Krolak-Schwerdt, H. Locarek-
Junge, G. McLachlan, FR. McMorris, G. Menexes, B. Mirkin, M. Mizuta,
A. Montanari, R. Nugent, A. Okada, G. Ritter, M. de Rooij, I. van Mechelen,
G. Venturini, J. Vermunt, M. Vichi and C. Weihs and the additional reviewers of
the proceedings: W. Adler, M. Behnisch, C. Bernau, P. Bertrand, A.-L. Boulesteix,
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vi Preface

A. Cerioli, M. Costa, N. Dean, P. Eilers, S.L. France, J. Gertheiss, A. Geyer-Schulz,
W.J. Heiser, Ch. Hohensinn, H. Holzmann, Th. Horvath, H. Kiers, B. Lorenz, H.
Lukashevich, V. Makarenkov, F. Meyer, I. Morlini, H.-J. Mucha, U. Miiller-Funk,
J.W. Owsinski, P. Rokita, A. Rutkowski-Ziarko, R. Samworth, I. Schméidecke and
A. Sokolowski.

Last but not least, we would like to thank all participants of the conference
for their interest and various activities which, again, made the 35th annual GfKI
conference and this volume an interdisciplinary possibility for scientific discussion,
in particular all authors and all colleagues who reviewed papers, chaired sessions
or were otherwise involved. Additionally, we gratefully take the opportunity to
acknowledge support by Deutsche Forschungsgemeinschaft (DFG) of the Sympo-
sium of the International Federation of Classification Societies (IFCS) — IFCS 2011.

As always we thank Springer Verlag, Heidelberg, especially Dr. Martina Bihn,
for excellent cooperation in publishing this volume.

Colchester, UK Berthold Lausen
Ghent, Belgium Dirk Van den Poel
Marburg, Germany Alfred Ultsch
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Size and Power of Multivariate Qutlier
Detection Rules

Andrea Cerioli, Marco Riani, and Francesca Torti

Abstract Multivariate outliers are usually identified by means of robust distances.
A statistically principled method for accurate outlier detection requires both avail-
ability of a good approximation to the finite-sample distribution of the robust
distances and correction for the multiplicity implied by repeated testing of all the
observations for outlyingness. These principles are not always met by the currently
available methods. The goal of this paper is thus to provide data analysts with useful
information about the practical behaviour of some popular competing techniques.
Our conclusion is that the additional information provided by a data-driven level of
trimming is an important bonus which ensures an often considerable gain in power.

1 Introduction

Obtaining reliable information on the quality of the available data is often the first
of the challenges facing the statistician. It is thus not surprising that the systematic
study of methods for detecting outliers and immunizing against their effect has a
long history in the statistical literature. See, e.g., Cerioli et al. (2011a), Hadi et al.
(2009), Hubert et al. (2008) and Morgenthaler (2006) for recent reviews on this
topic. We quote from Morgenthaler (2006, p. 271) that “Robustness of statistical
methods in the sense of insensitivity to grossly wrong measurements is probably
as old as the experimental approach to science”. Perhaps less known is the fact that
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similar concerns were also present in the Ancient Greece more than 2,400 years ago,
as reported by Thucydides in his History of The Peloponnesian War (III 20): “The
Plataeans, who were still besieged by the Peloponnesians and Boeotians, ... made
ladders equal in length to the height of the enemy’s wall, which they calculated by
the help of the layers of bricks on the side facing the town ... A great many counted
at once, and, although some might make mistakes, the calculation would be oftener
right than wrong; for they repeated the process again and again ...In this manner
they ascertained the proper length of the ladders™.!

With multivariate data outliers are usually identified by means of robust dis-
tances. A statistically principled rule for accurate multivariate outlier detection
requires:

(a) An accurate approximation to the finite-sample distribution of the robust
distances under the postulated model for the “good” part of the data;

(b) Correction for the multiplicity implied by repeated testing of all the observa-
tions for outlyingness.

These principles are not always met by the currently available methods. The
goal of this paper is to provide data analysts with useful information about the
practical behaviour of popular competing techniques. We focus on methods based
on alternative high-breakdown estimators of multivariate location and scatter, and
compare them to the results from a rule adopting a more flexible level of trimming,
for different data dimensions. The present thus extends that of (Cerioli et al.
2011b), where only low dimensional data are considered. Our conclusion is that
the additional information provided by a data-driven approach to trimming is an
important bonus often ensuring a considerable gain in power. This gain may be
even larger when the number of variables increases.

2 Distances for Multivariate Outlier Detection

2.1 Mahalanobis Distances and the Wilks’ Rule

Let yy,..., y, be a sample of v-dimensional observations from a population with
mean vector i and covariance matrix Y. The basic population model for which
most of the results described in this paper were obtained is that

yi ~N(u, X) i=1,...,n. (D

'The Authors are grateful to Dr. Spyros Arsenis and Dr. Domenico Perrotta for pointing out this
historical reference.
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The sample mean is denoted by /1 and Y is the unbiased sample estimate of X'. The
Mahalanobis distance of observation y; is

d? = (yi — ' 27 i — ). )

For simplicity, we omit the fact that d? is squared and we call it a distance.
Wilks (1963) showed in a seminal paper that, under the multivariate normal
model (1), the Mahalanobis distances follow a scaled Beta distribution:

—1) -1
di2~uBeta A i=1....n. 3)
n 2 2

Wilks also conjectured that a Bonferroni bound could be used to test outlyingness
of the most remote observation without losing too much power. Therefore, for a
nominal test size «, Wilk’s rule for multivariate outlier identification takes the
largest Mahalanobis distance among d2,...,d?, and compares it to the 1 — a/n
quantile of the scaled Beta distribution (3). This gives an outlier test of nominal test
size < a.

Wilks’ rule, adhering to the basic statistical principles (a) and (b) of Sect. 1,
provides an accurate and powerful test for detecting a single outlier even in small
and moderate samples, as many simulation studies later confirmed. However, it can
break down very easily in presence of more than one outlier, due to the effect of
masking. Masking occurs when a group of extreme outliers modifies ji and Y in
such a way that the corresponding distances become negligible.

2.2 Robust Distances

One effective way to avoid masking is to replace i and Y in (2) with high-
breakdown estimators. A robust distance is then defined as

d} = (i — )/ 27 (i — ), )

where i and ¥ denote the chosen robust estimators of location and scatter. We can
expect multivariate outliers to be highlighted by large values of d 1_2’ even if masked in
the corresponding Mahalanobis distances (2), because now /i and ¥ are not affected
by the outliers.

One popular choice of i and ¥ is related to the Minimum Covariance Deter-
minant (MCD) criterion (Rousseeuw and Van Driessen 1999). In the first stage,
we fix a coverage |n/2] < h < n and we define the MCD subset to be the sub-
sample of /& observations whose covariance matrix has the smallest determinant.
The MCD estimator of w, say jfi(vcp), is the average of the MCD subset, whereas
the MCD estimator of ¥, say Z:‘(MCD), is proportional to the dispersion matrix of this
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subset (Pison et al. 2002). A second stage is then added with the aim of increasing
efficiency, while preserving the high-breakdown properties of ftvcp) and fJ(MCD).
Therefore, a one-step reweighting scheme is applied by giving weight w; = 0 to
observations whose first-stage robust distance exceeds a threshold value. Otherwise
the weight is w; = 1. We consider the Reweighted MCD (RMCD) estimator of u
and X, which is defined as

YWV o« kYo wi(yi — flemen) (Vi — firmc))’
= YrRMCD = —

fARMCD = ,
where w = Z?: , wi and the scaling «, depending on the values of m, n and v,
serves the purpose of ensuring consistency at the normal model. The resulting robust
distances for multivariate outlier detection are then

dipmc) = (i — firmep) Sayep (Vi — firmep) i =1,....n. ()

Multivariate S estimators are another common option for ji and Y. Forji € R
and X' a positive definite symmetric v X v matrix, they are defined to be the solution
of the minimization problem | ¥'| = min under the constraint

|
— pd) =¢ (©6)

i=1

where cfl.z is given in (4), p(x) is a smooth function satisfying suitable regularity and
robustness properties, and { = E{p(z'z)} for a v-dimensional vector z ~ N(0, I).
The p function in (6) rules the weight given to each observation to achieve
robustness. Different specifications of p(x) lead to numerically and statistically
different S estimators. In this paper we deal with two such specifications. The first
one is the popular Tukey’s Biweight function

p(x) = 6ct - 7

where ¢ > 0 is a tuning constant which controls the breakdown point of S
estimators; see Rousseeuw and Leroy (1987, pp.135-143) and Riani et al. (2012)
for details. The second alternative that we consider is the slightly more complex
Rocke’s Biflat function, described, e.g., by Maronna et al. (2006, p. 190). This
function assigns weights similar to (7) to distance values close to the median, but
null weights outside a user-defined interval. Specifically, let

XZ
n:mm(ﬂfﬁ—LQ, (8)
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where y2,.  isthe | — uantile of y2. Then, the weight under Rocke’s Biflat
XV*(l v) v q Xy g

function is 0 whenever a normalized version of the robust distance cf,z is outside the
interval [1 — 1,1 4 n]. This definition ensures better performance of S estimators
when v is large. Indeed, it can be proved (Maronna et al. 2006, p. 221) that the
weights assigned by Tukey’s Biweight function (7) become almost constant as
v — oo. Therefore, robustness of multivariate S estimators is lost in many practical
situations where v is large. Examples of this behaviour will be seen in Sect. 3.2 even
for v as small as 10.

Given the robust, but potentially inefficient, S estimators of pu and X, an
improvement in efficiency is sometimes advocated by computing refined location
and shape estimators which satisfy a more efficient version of (6) (Salibian-Barrera
et al. 2006). These estimators, called MM estimators, are defined as the minimizers
of

1 « z
— =), ©)

i=1
where 5 B
d? = (i—)' 27 (i — ) (10)
and the function p«(x) provides higher efficiency than p(x) at the null model (1).
Minimization of (9) is performed over all fLen and all b)) belonging to the set
of positive definite symmetric v X v matrices with |2:J | = 1. The MM estimator

of w is then ﬁ, while the estimator of ¥ is a rescaled version of ¥. Practical
implementation of MM estimators is available using Tukey’s Biweight function only
(Todorov and Filzmoser 2009). Therefore, we follow the same convention in the
performance comparison to be described in Sect. 3.

2.3 The Forward Search

The idea behind the Forward Search (FS) is to apply a flexible and data-driven
trimming strategy to combine protection against outliers and high efficiency of
estimators. For this purpose, the FS divides the data into a good portion that agrees
with the postulated model and a set of outliers, if any (Atkinson et al. 2004). The
method starts from a small, robustly chosen, subset of the data and then fits subsets
of increasing size, in such a way that outliers and other observations not following
the general structure are revealed by diagnostic monitoring. Let m be the size of
the starting subset. Usually mo = v + 1 or slightly larger. Let S be the subset of
data fitted by the FS at step m (m = my,...,n), yielding estimates [1(m), f}(m)
and distances

d(m) = {y; — pm)Y Em) My —pom)y  i=1.....n.
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These distances are ordered to obtain the fitting subset at step m + 1. Whilst S
remains outlier free, they will not suffer from masking.
The main diagnostic quantity computed by the FS at step m is

cffmn (m) : Imin = arg min c?iz(m) fori ¢ S, (11
i.e. the distance of the closest observation to S "), among those not belonging to this
subset. The rationale is that the robust distance of the observation entering the fitting
subset at step m + 1 will be large if this observation is an outlier. Its peculiarity will
then be revealed by a peak in the forward plot of dl%nin (m).

All the FS routines, as well as the algorithms for computing most of the com-
monly adopted estimators for regression and multivariate analysis, are contained
in the FSDA toolbox for MATLAB and are freely downloadable from http://www.
riani.it/ MATLAB or from the web site of the Joint Research Centre of the European
Commission. This toolbox also contains a series of dynamic tools which enable the
user to link the information present in the different plots produced by the FS, such
as the index or forward plot of robust Mahalanobis distances cjiz (m) and the scatter
plot matrix; see Perrotta et al. (2009) for details.

3 Comparison of Alternative Outlier Detection Rules

Precise outlier identification requires cut-off values for the robust distances when
model (1) is true. If & = jigmcp and X = Zgrmep, Cerioli et al. (2009) show
that the usually trusted asymptotic approximation based on the y2 distribution can
be largely unsatisfactory. Instead, Cerioli (2010) proposes a much more accurate
approximation based on the distributional rules

= w—1)? v w—v—1 )
diz(RMCD) ~ (TBeta (E, T) if w; = 1 (12)
w+1w-—1)v

w w—=v

Fv,w—v if w; =0, (13)

where w; and w are defined as in Sect.2.2. Cerioli and Farcomeni (2011) show
how the same distributional results can be applied to deal with multiplicity of tests
to increase power and to provide control of alternative error rates in the outlier
detection process.

In the context of the Forward Search, Riani et al. (2009) propose a formal outlier
test based on the sequence (jl%nin (m),m = my,...,n—1, obtained from (11). In this

test, the values of c?ifnin (m) are compared to the FS envelope

Vi ol o (m)?,


http://www.riani.it/MATLAB
http://www.riani.it/MATLAB

Size and Power of Multivariate Outlier Detection Rules 9

where V2 is the 100a % cut-off point of the (m -+ 1)th order statistic from the

m.,x
scaled F distribution
(m*—1)v

i (14)

and the factor s )
P(Xv+2 < Xv,m/n)

m/n (15)

or(m)* =

allows for trimming of the 7 —m largest distances. In (15), X7\, ~ 134, and 15, ),
is the m/n quantile of y2.

The flexible trimming strategy enjoyed by the FS ensures a balance between
the two enemy brothers of robust statistics: robustness against contamination and
efficiency under the postulated multivariate normal model. This makes the Forward
Search a valuable benchmark against which alternative competitors should be
compared. On the other hand, very little is known about the finite sample behaviour
of the outlier detection rules which are obtained from the multivariate S and MM
estimators summarized in Sect.2.2. In the rest of this section, we thus explore the
performance of the alternative rules with both “good” and contaminated data, under
different settings of the required user-defined tuning constants. We also provide
comparison with power results obtained with the robust RMCD distances (5) and
with the flexible trimming approach given by the FS.

3.1 Size

Size estimation is performed by Monte Carlo simulation of data sets generated
from the v-variate normal distribution N (0, 1), due to affine invariance of the robust
distances (4). The estimated size of each outlier detection rule is defined to be the
proportion of simulated data sets for which the null hypothesis of no outliers, i.e.
the hypothesis that all n observations follow model (1), is wrongly rejected. For S
and MM estimation, the finite sample null distribution of the robust distances d,2 is
unknown, even to a good approximation. Therefore, these distances are compared to
the 1 — a/n quantile of their asymptotic distribution, which is y2. As in the Wilks’
rule of Sect. 2.1, the Bonferroni correction ensures that the actual size of the test of
no outliers will be bounded by the specified value of « if the y? approximation is
adequate.

In our investigation we also evaluate the effect on empirical test sizes of
each of some user-defined tuning constants required for practical computation of
multivariate S and MM estimators. See, e.g., Todorov and Filzmoser (2009) for
details. Specifically, we consider:

* Dbdp: breakdown point of the S estimators, which is inherited by the MM
estimators as well (the default value is 0.5);
» eff: efficiency of the MM estimators (the default value is 0.95);
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» effshape?: dummy variable setting whether efficiency of the MM estimators is
defined with respect to shape (effshape =1) or to location (ef fshape =0,
the default value);

* nsamp: number of sub-samples of dimension (p+1) in the resampling algorithm
for fast computation of S estimators (our default value is 100);

* refsteps: maximum number of iterations in the Iterative Reweighted Least
Squares algorithm for computing MM estimators (our default value is 20);

* gamma: tail probability in (8) for Rocke’s Biflat function (the default value
is 0.1).

Tables 1 and 2 report the results forn = 200, v = 5 and v = 10, when « = 0.01
is the nominal size for testing the null hypothesis of no outliers and 5,000
independent data sets are generated for each of the selected combinations of
parameter values. The outlier detection rule based on S estimators with Tukey’s
Biweight function (7) is denoted by ST. Similarly, SR is the S rule under Rocke’s
Biflat function. It is seen that the outlier detection rules based on the robust S and
MM distances with Tukey’s Biweight function can be moderately liberal, but with
estimated sizes often not too far from the nominal target. As expected, liberality is
an increasing function of dimension and of the breakdown point, both for S and MM
estimators. Efficiency of the MM estimators (e f £) is the only tuning constant which
seems to have a major impact on the null behaviour of these detection rules. On the
other hand, SR has the worst behaviour under model (1) and its size can become
unacceptably high, especially when v grows. As a possible explanation, we note
that a number of observations having positive weight under ST receive null weight
with SR (Maronna et al. 2006, p. 192). This fact introduces a form of trimming in
the corresponding estimator of scatter, which is not adequately taken into account.
The same result also suggests that better finite-sample approximations to the null
distribution of the robust distances d,.2 with Rocke’s Biflat function are certainly
worth considering.

3.2 Power

We now evaluate the power of ST, SR and MM multivariate outlier detection rules.
We also include in our comparison the FS test of Riani et al. (2009), using (14),
and the finite-sample RMCD technique of Cerioli (2010), relying on (12) and (13).
These additional rules have very good control of the size of the test of no outliers
even for sample sizes considerably smaller than n = 200, thanks to their accurate
cut-off values. Therefore, we can expect a positive bias in the estimated power of all
the procedures considered in Sect. 3.1, and especially so in that of SR.

2In the RRCOV packege of the R software this option is called eff . shape
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Table 2 Estimated size of the test of the hypothesis of no
outliers for n = 200 and nominal test size « = 0.01, using
S estimators with Rocke’s Biflat function (SR), for different
values of y in (8). Five thousand independent data sets are
generated for each of the selected combinations of parameter
values

gamma
0.15 0.10 0.05 0.025 0.01 0.001

v=5 0066 0.057 0055 0.056 0.056 0.061
=10 0.089 0.080 0.079 0.078 0.077 0.081

Average power of an outlier detection rule is defined to be the proportion
of contaminated observations rightly named to be outliers. We estimate it by
simulation, in the case n = 200 and for v = 5 and v = 10. For this purpose,
we generate v-variate observations from the location-shift contamination model

yi ~ (1= 8§)NO, 1)+ SNO + re, 1), i=1,....n, (16)

where 0 < § < 0.5 is the contamination rate, A is a positive scalar and e is a column
vector of ones. The 0.01 /71 quantile of the reference distribution is our cut-off value
for outlier detection. We only consider the default choices for the tuning constants
in Tables 1 and 2, given that their effect under the null has been seen to be minor.
We base our estimate of average power on 5,000 independent data sets for each of
the selected combinations of parameter values.

It is worth noting that standard clustering algorithms, like g-means, are likely to
fail to separate the two populations in (16), even in the ideal situation where there
is a priori knowledge that g = 2. For instance, we have run a small benchmark
study with n = 200, v = 5 and two overlapping populations by setting A = 2 and
8 = 0.05 in model (16). We have found that the misclassification rate of g-means
can be as high as 25 % even in this idyllic scenario where the true value of g is
known and the covariance matrices are spherical. The situation obviously becomes
much worse when g is unknown and must be inferred from the data. Furthermore,
clustering algorithms based on Euclidean distances, like g-means, are not affine
invariant and would thus provide different results on unstandardized data.

Tables 3—5 show the performance of the outlier detection rules under study for
different values of § and A in model (16). If the contamination rate is small, it
is seen that the four methods behave somewhat similarly, with FS often ranking
first and MM always ranking last as A varies. However, when the contamination
rate increases, the advantage of the FS detection rule becomes paramount. In that
situation both ST and MM estimators are ineffective for the purpose of identifying
multivariate outliers. As expected, SR improves considerably over ST when v = 10
and § = 0.15, but remains ineffective when § = 0.3. Furthermore, it must be
recalled that the actual size of SR is considerably larger, and thus power is somewhat
biased.
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Table 3 Estimated average power for different shifts A in the contamination
model (16), in the case n = 200, v = 5 and v = 10, when the contamination
rate § = 0.05. Five thousand independent data sets are generated for each of
the selected combinations of parameter values

Mean shift A
2 22 24 2.6 2.8 3
v=>5 ST 0.344 0525 0.696 0.827 0912 0.963
SR 0.387 0549 0.698 0.820 0.908  0.957
MM 0.148 0280 0466 0.672 0.836  0.935
RMCD 0227 0390 0574 0.732 0.856 0.936
FS 0.359 0567 0.730 0.840 0909 0.953
v=10 ST 0.758 0919 0978 0995  0.999 1
SR 0.856 0946 0986 0997  0.999 1
MM 0.479  0.782 0942 0990 0.998 1
RMCD 0.684 0.839 0956 0987 0.997 1
FS 0.808 0911 0968  0.991 0.998 1
Table 4 Quantities as in Table 3, but now for § = 0.15
Mean shift A
2 24 2.6 2.8 3 34
v=>5 ST 0.073 0532 0.772 0901 0.960 0.996
SR 0.275 0433 0594 0.742 0.854 0.925

MM 0.006 0.010 0.012 0.016 0.026 0.397
RMCD 0.096 0428 0.652 0.815 0.913 0.988

FS 0.580 0.803 0.878 0.935 0965 0.993
v=10 ST 0.006 0.007 0.008 0.01 0.013  0.041

SR 0.696 0.825 0.895 0.923 0931 0.946

MM 0.001 0.001 0.001 0.001 0.003 0.030

RMCD 0.530 0938 0.959 0993 1 1

FS 0.887 0.938 0974 0.991 0998 1

A qualitative explanation for the failure of multivariate MM estimators is
shown in Fig. 1 in the simple case v = 2. The four plots display bivariate ellipses
corresponding to 0.95 probability contours at different iterations of the algorithm
for computing MM estimators, for a data set simulated from the contamination
model (16) with n = 200, § = 0.15 and A = 3. The data can be reproduced using
function randn (200, 2) of MATLAB and putting the random number seed to 2.
The contaminated units are shown with symbol o and the two lines which intersect
the estimate of the robust centroid are plotted using a dash-dot symbol. The upper
left-hand panel corresponds to the first iteration (il), where the location estimate
is i = (0.19,0.18)" and the value of the robust correlation r derived from 3 is
0.26. In this case the robust estimates are not too far from the true parameter values
u = (0,0) and ¥ = I, and the corresponding outlier detection rule (i.e., the ST
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Table 5 Quantities as in Table 3, but now for § = 0.30

A. Cerioli et al.

Mean shift A
2 2.4 2.6 2.8 3 4 6
v=5 ST 0.003 0.005 0.006 0.007 0.009 0.016 0.092
SR 0.006 0.033 0.286 0.372 0458 0.557 1
MM 0.002 0.003 0.004 0.005 0.006 0.012 0.085
RMCD 0.010 0.159 0.381 0.637 0.839 1 1
FS 0.627 0915 0.920 0.941 0967 1 1
v=10 ST 0.002 0.002 0.003 0.003 0.003 0.004 0.011
SR 0.002 0.005 0.004 0.005 0.009 0.011 0.039
MM 0.001 0.001 0.001 0.001 0.001 0.001 0.001
RMCD 0.207 0.842 0969 0.994 0999 1 1
FS 0.904 0.929 0961 0.980 0.989 0.995 1

il, i = (0.19,0.18), r =0.26

o

i, i = (0.36,0.31), r =0.46

Fig. 1 Ellipses corresponding to 0.95 probability contours at different iterations of the algorithm
for computing multivariate MM estimators, for a data set simulated from the contamination

model (16) withn = 200,v=2,§ =0.15and A = 3

rule in Tables 3-5) can be expected to perform reasonably well. On the contrary,
as the algorithm proceeds, the ellipse moves its center far from the origin and the
variables artificially become more correlated. The value of r in the final iteration
(i8) is 0.47 and the final centroid ,L:L is (0.37;0.32)’. These features increase the bias
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Fig. 2 Index plots of robust scale residuals obtained using MM estimation with a preliminary
S-estimate of scale based on a 50 % breakdown point. Left-hand panel: 90 % nominal efficiency;
right-hand panel: 95 % nominal efficiency. The horizontal lines correspond to the 99 % individual
and simultaneous bands using the standard normal

of the parameter estimates and can contribute to masking in the supposedly robust
distances (10).

A similar effect can also be observed with univariate (v = 1) data. For instance,
Atkinson and Riani (2000, pp. 5-9) and Riani et al. (2011) give an example of a
regression dataset with 60 observations on three explanatory variables where there
are six masked outliers (labelled 9, 21 30, 31, 38 47) that cannot be detected using
ordinary diagnostic techniques. The scatter plot of the response against the three
explanatory variables and the traditional plot of residuals against fitted values, as
well as the gq plot of OLS residuals, do not reveal observations far from the bulk of
the data. Figure 2 shows the index plots of the scaled MM residuals. In the left-hand
panel we use a preliminary S estimate of scale with Tukey’s Biweight function (7)
and 50 % breakdown point, and 90 % efficiency in the MM step under the same
p function. In the right-hand panel we use the same preliminary scale estimate as
before, but the efficiency is 95 %. As the reader can see, these two figures produce
a very different output. While the plot on the right (which is similar to the masked
index plot of OLS residuals) highlights the presence of a unit (number 43) which
is on the boundary of the simultaneous confidence band, only the plot on the left
(based on a smaller efficiency) suggests that there may be six atypical units (9, 21
30, 31, 38 47), which are indeed the masked outliers.

4 Conclusions

In this paper we have provided a critical review of some popular rules for identifying
multivariate outliers and we have studied their behaviour both under the null
hypothesis of no outliers and under different contamination schemes. Our results
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show that the actual size of the outlier tests based on multivariate S and MM
estimators using Tukey’s Biweight function and relying on the y? distribution is
larger than the nominal value, but the extent of the difference is often not dramatic.
The effect of the many tuning constants required for their computation is also seen
to be minor, except perhaps efficiency in the case of MM estimators. Therefore,
when applied to uncontaminated data, these rules can be considered as a viable
alternative to multivariate detection methods based on trimming and requiring more
sophisticated distributional approximations.

However, smoothness of Tukey’s Biweight function becomes a trouble when
power is concerned, especially if the contamination rate is large and the number
of dimensions grows. In such instances our simulations clearly show the advantages
of trimming over S and MM estimators. In particular, the flexible trimming approach
ensured by the Forward Search is seen to greatly outperform the competitors, even
the most liberal ones, in almost all our simulation scenarios and is thus to be
recommended.

Acknowledgements The authors thank the financial support of the project MIUR PRIN
MISURA - Multivariate models for risk assessment.
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Clustering and Prediction of Rankings
Within a Kemeny Distance Framework

Willem J. Heiser and Antonio D’Ambrosio

Abstract Rankings and partial rankings are ubiquitous in data analysis, yet there is
relatively little work in the classification community that uses the typical properties
of rankings. We review the broader literature that we are aware of, and identify a
common building block for both prediction of rankings and clustering of rankings,
which is also valid for partial rankings. This building block is the Kemeny distance,
defined as the minimum number of interchanges of two adjacent elements required
to transform one (partial) ranking into another. The Kemeny distance is equivalent to
Kendall’s T for complete rankings, but for partial rankings it is equivalent to Emond
and Mason’s extension of t. For clustering, we use the flexible class of methods
proposed by Ben-Israel and Iyigun (Journal of Classification 25: 5-26, 2008), and
define the disparity between a ranking and the center of cluster as the Kemeny
distance. For prediction, we build a prediction tree by recursive partitioning, and
define the impurity measure of the subgroups formed as the sum of all within-node
Kemeny distances. The median ranking characterizes subgroups in both cases.

1 Introduction

Ranking and classification are basic cognitive skills that people use every day to
create order in everything that they experience. Many data collection methods in the
life and behavioral sciences often rely on ranking and classification. Grouping and
ordering a set of elements is also a major communication and action device in social
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life, as is clear when we consider rankings of sport-teams, universities, countries,
web-pages, French wines, and so on. Not surprisingly, the literature on rankings is
scattered across many fields of science.

Statistical methods for the analysis of rankings can be distinguished in (1) data
analysis methods based on badness-of-fit functions that try to describe the structure
of rank data, (2) probabilistic methods that model the ranking process, and assume
substantial agreement (or homogeneity) among the rankers about the underlying
order of the rankings, and (3) probabilistic methods that model the population of
rankers, assuming substantial disagreement (or heterogeneity) between them. Let us
look at each of these in turn.

Two examples of data analysis methods based on badness-of-fit functions that
have been applied to rankings are principal components analysis (PCA, see Cohen
and Mallows 1980; Diaconis 1989; Marden 1995, Chap. 2), and multidimensional
scaling (MDS) or unfolding (Heiser and de Leeuw 1981; Heiser and Busing 2004).
In psychometrics, PCA on rankings was justified by what is called the vector model
for rankings, going back to the independent contributions of Guttman (1946); Slater
(1960) and Tucker (1960) and popularized by Carroll (1972, pp. 114-129) through
his MDPREF method. It is also possible to perform a principal components analysis
while simultaneously fitting some optimal transformation of the data that preserves
the rank order (in a program called CATPCA, cf. Meulman et al. 2004). By contrast,
the unfolding technique is based on the ideal point model for rankings, which
originated with Coombs (1950, 1964, Chaps. 5-7), but his analytical procedures
were only provisional and had been soon superseded by MDS methods (Roskam
1968; Kruskal and Carroll 1969). Unfortunately, however, MDS procedures for
ordinal unfolding tended to suffer from several degeneracy problems for a long time
(see Van Deun 2005; Busing 20009 for a history of these difficulties and state-of-the-
art proposals to resolve them). One of these proposals, due to Busing et al. (2005),
is available under the name PREFSCAL in the IBM-SPSS Statistics package.

Probabilistic modeling for the ranking process assuming homogeneity of rankers
started with Thurstone (1927, 1931), who proposed that judgments underlying
rank orders follow a multivariate normal distribution with location parameters
corresponding to each ranked object. Daniels (1950) looked at cases in which the
random variables associated with the ranked objects are independent. Examples of
more complex Thurstonian models include Bockenholt (1992), Chan and Bentler
(1998), Maydeu-Olivares (1999) and Yao and Bockenholt (1999). A second class
of models assuming homogeneity of rankers started with Mallows (1957), and
was also based upon a process in which pairs of objects are compared, but now
according to the Bradley-Terry-Luce (BTL) model (Bradley and Terry 1952; Luce
1959), thus excluding intransitivities. These probability models amount to a negative
exponential function of some distance between rankings, for example the distance
related to Kendall’s 7 (see Sect. 3); hence their name distance-based ranking models
(Fligner and Verducci 1986). A third class of models assuming homogeneity of
rankers decompose the ranking process into a series of independent stages. The
stages form a nested sequence, in each of which a Bradley-Terry-Luce choice
process is assumed for selecting 1 out of j options, with j=m, m — 1, ..., 2; hence
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their name multistage models (Fligner and Verducci 1988). We refer to Critchlow
et al. (1991) for an in-depth discussion of all of these models. Critchlow and
Fligner (1991) demonstrated how both the Thurstonean models and the multistage
BTL models can be seen as generalized linear models and be fitted with standard
software.

Probabilistic models for the population of rankers assuming substantial hetero-
geneity of their rankings are of at least three types. First, there are probabilistic
versions of the ideal point model involving choice data (Zinnes and Griggs
1974; Kamakura and Srivastava 1986), or rankings (Brady 1989; Van Blokland-
Vogelesang 1989; Hojo 1997, 1998). Second, instead of assuming one probabilistic
model for the whole population, we may move to (unknown) mixtures of subpop-
ulations, characterized by different parameters. For example, mixtures of models
of the BTL type were proposed by Croon (1989), and mixtures of distance-based
models by Murphy and Martin (2003). Gormley and Murphy (2008a) provided a
very thorough implementation of two multistage models with mixture components.
Third, heterogeneity of rankings can also be accounted for by the introduction
of covariates, from which we can estimate mixtures of known subpopulations.
Examples are Chapman and Staelin (1982), Dittrich et al. (2000), Bockenholt
(2001), Francis et al. (2002), Skrondal and Rabe-Hesketh (2003), and Gormley
and Murphy (2008b). All of these authors use the generalized linear modeling
framework.

Most methods that are mainstream in the classification community follow the
first approach, that is, they use an algorithm model (e.g., hierarchical clustering,
construction of phylogenetic trees), or try to optimize some badness-of-fit function
(e.g., K-means, fuzzy clustering, PCA, MDS). Some of them analyze a rank
ordering of dissimilarities, which makes the results order-invariant, meaning that
order-preserving transformations of the data have no effect. However, there are
very few proposals in the classification community directly addressing clustering
of multiple rankings, or prediction of rankings based on explanatory variables
characterizing the source of them (covariates). Our objective is to fill this gap, and
to catch up with the statisticians.'

Common to all approaches is that they have to deal with the sample space of
rankings, which has a number of very specific properties. Also, most methods either
implicitly or explicitly use some measure of correlation or distance among rankings.
Therefore, we start our discussion with a brief introduction in the geometry of
rankings in Sect. 2, and how it naturally leads to measures of correlation and
distance in Sect. 3. We then move to the median ranking in Sect. 4, give a brief
sketch in Sect. 5 of how we propose to formulate a clustering procedure and to build
a prediction tree for rankings, and conclude in Sect. 6.

'During the Frankfurt DAGM-GfKI1-2011-conference, Eyke Hiillermeier kindly pointed out that
there is related work in the computer science community under the name “preference learning” (in
particular, Cheng et al. (2009), and more generally, Fiirnkranz and Hiillermeier 2010).

Iwvww . allitebooks.cond
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Fig. 1 Permutation polytope for all 24 full rankings of four objects, supplemented by all partial
rankings with one tie-block of two or three objects, or two tie-blocks of two objects. Full rankings
have equal distance towards the center; partial rankings lie strictly within this sphere. For clarity,
mirror images at the back of the polytope are not labeled

2  Geometry of Rankings

The 24 full rankings that can be formed from four objects form a permutation
polytope that has the shape of a truncated octahedron (cf. Thompson 1993; Heiser
2004). Thompson offered an thorough study of the permutation structure of partial
rankings, showing that the 12 partial rankings with a tie in last position form a
truncated tetrahedron, as do the 12 partial rankings with a tie in first position. The 12
partial rankings with a tie in middle position, however, are the intersection of a cube
and an octahedron, forming a cuboctahedron. Then there are six partial rankings
with two tie-blocks forming an octahedron, and finally four partial rankings with
tie-blocks of three in last position or in first position, each forming a tetrahedron.

It should be noted that these generalized permutation polytopes can be connected
with each other in a single graph if we introduce nodes in the original truncated
octahedron that are half-way the nodes of the full rankings. This integrated graph of
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all full and partial rankings is given in Fig. 1. All lines in this graph now indicate
a reversal or switch from one inequality to an equality, or vice versa, except for the
lines in the hexagons that connect to partial rankings with tie-blocks of three, which
represent two switches. The natural graphical distance in the integrated permutation
polytope is the sum of the line segments that need to be traversed along the shortest
path in going from one node to another, and this distance is equivalent to the
count of the minimum number of interchanges of two adjacent elements required
to transform one (partial) ranking into another.

More generally, it will be clear that the sample space of rankings has the
following characteristic properties: it is finite and discrete, it has many symmetries
(for every ranking there is a reverse ranking), it is endowed with a graphical
metric, and it intersects with a hypersphere: all full rankings are equidistant towards
the zero ranking in which all objects are tied. All partial rankings lie strictly
within the hypersphere. For a discussion of the consequences of this geometry for
various ranking and choice models, we refer to Zhang (2004). Rankings can also
arise indirectly as a consequence of doing pairwise discriminant analyses among
m populations (Kamiya and Takemura 1997, 2005). Under the unfolding model,
only a limited amount of rankings can occur (Coombs 1964; Kamiya et al. 20006,
2011). The probabilistic models mentioned in the Introduction describe specific
distributions across the polytope.

3 Kendall’s T and the Kemeny Distance

Although there was earlier relevant work (see Kruskal 1958, Sect. 17), Kendall
(1938) marks the beginnings of the first wave of contributions to the study of
rankings as a separate topic in statistics. Kendall defined t as a coefficient that
“measures the closeness of correspondence between two given rankings in the sense
that it measures how accurate either ranking would be if the other were objective”
(Kendall 1938, p. 85). He then derived its exact sampling distribution and standard
error, assuming one given order and a universe in which all the possible rankings
occur an equal number of times, and he showed that this distribution is already
close to normal for relatively small sample size. In Kendall (1948), he also gave a
second definition of t as a “coefficient of disarray”. Calling the minimum number
of switches which transform any ranking into any other ranking of the same number
of objects s, he showed that

2s

T=1-4 .
En(n—l)

This equivalence between t and s establishes their connection with the permu-
tation polytope, and thus their fundamental relevance for the study of rankings,
because s is just the graphical distance defined in the previous section. The minimum
move metric s is called the Kendall distance (cf. Marden 1995, p. 25).
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Emond and Mason (2002) noted that there is a problem with the Kendall distance
in the case of partial rankings. In that case, it is easy to show that it violates the
triangle inequality (e.g., consider A(BC), ABC, and (AB)C), so it is not a proper
metric. This anomaly is due to the way in which Kendall (1948, Chap. 3) defined
when there are tied ranks.

Fortunately, there is a well-founded distance without these problems, called the
Kemeny distance, conceived independently in the context of social choice theory
(Kemeny 1959; Kemeny and Snell 1962). Kemeny had set up a set of reasonable
axioms of which perhaps the most characteristic one is that the distance be invariant
under addition of equally ranked first and/or last objects. The unique distance
satisfying all axioms turns out to be:

dKem (Rm Rt) = %

m m
i=

> v = x|

1j=1

where R, and R; are any two rankings, m is the number of objects, and x,); is defined
as equal to 1 if object i is preferred to object j in ranking s, equal to —1 if the reverse
is true, and equal to O if the two objects are tied. Clearly, the Kemeny distance is of
the city-block type in the space of pair comparisons.

When there are no ties, the Kemeny distance is equal to the Kendall distance.
From its definition, it is not hard to see that it counts the number of interchanges
of pairs of elements required to transform one (partial) ranking into another, so
it is equal to the graphical distance among any two elements in the integrated
permutation polytope in Fig. 1.

4 Finding a Central Ranking: The Median Ranking

There is an extensive literature on finding a central ranking for a given set
of individual rankings, also called the social choice problem, or the consensus
problem. But when the Kemeny distance is the metric of choice, it will lead us to one
specific central ranking. Consider a set of individual rankings R;, withs =1, ..., n,
and let us indicate the center to be found by S. Then we have

S = argmsm ZWSdK‘—”" (Rs,S).

s=1

Here we have used a weighted version, with weights w; for ranking R; (one
obvious choice of weights is the relative frequency with which each unique ranking
occurs). Center S so defined is usually called the consensus ranking in the social
choice literature, as well as in discrete mathematics, and the median ranking in
statistics. For a review of ranking models for the consensus problem, see Cook
(2006).
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Emond and Mason (2002) proposed a new rank correlation coefficient for the
case of partial rankings, called tx (r-extended), to resolve the difficulty with the
Kendall distance mentioned in the previous section. It is equal to Kendall’s t
for complete rankings, while for partial rankings 1 — tx is equivalent to Kemeny
distance. Maximizing the weighted sum of tx leads to the same median ranking.
Now, it is well known that finding § is an NP-hard problem (Barthélemy et al. 1989).
Emond and Mason’s reformulation has the advantage that it allows a branch-and-
bound algorithm that is practical up to about 20 objects and an unlimited number of
rankers, and deals correctly with partial rankings.

S Application to Clustering and Recursive Partitioning

We will now give a brief sketch of how we are using the Kemeny distance and
the median ranking for classification of multiple rankings. First, we outline a non-
hierarchical clustering algorithm and next we show how to use explanatory variables
(covariates) to build a prediction tree. For clustering, we follow a generalized
K-means method, and for building the prediction tree, we use standard CART
methodology (Breiman et al. 1984) involving a binary segmentation procedure that
recursively partitions the set of rankings, with a specific impurity measure in the
splitting rule. But of course, other choices are possible.

Ben-Israel and lyigun’s (2008) probabilistic distance clustering framework
allows for probabilistic allocation of cases to classes. So it is a form of fuzzy
clustering, rather than hard clustering. It is based on the principle that probability
and distance are inversely related. Shepard (1987) accumulated lots of evidence for
a similar principle governing contingencies of behavior. Under this principle, we
define a loss function for K-Median Cluster Component Analysis (CCA) as follows:

n K

CCA(P. Sy, . Sk) = > _ > pi (Ry) dkem (Rs. St) .

s=1 k=1

where p(R;) is the probability of allocating ranking s to cluster component k, Sy is
the center of component k for k=1, ..., K, and P is the n x K matrix of allocation
probabilities. If we differentiate the CCA function with respect to pi(Ry), subject
to the constraint that allocation probabilities for a given ranking sum to one, we
obtain the stationary equation pi(R;) dkem(R;s, Sk) = constant depending on R;. So
the stationary equations of the CCA optimization problem are consistent with the
principle of probability being inversely related to distance. Since the CCA function
splits into K parts, finding S; given some given values of the allocation probabilities
P reduces to finding a median ranking using the kth column of P. For finding P given
K median rankings an explicit formula is available. A more detailed description and
evaluation of K-median cluster component analysis is in preparation (Heiser and
D’ Ambrosio 2011).
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Now consider the case in which we have a set of explanatory variables (or
covariates) giving one point z, in predictor space for each ranking R,. The aim is
to predict the differences between the rankings. Tree-based methods partition the
predictor space into a set of rectangular regions parallel to the coordinate axes (i.e.,
the explanatory variables), and fit a simple model in each of them (Hastie et al.
2001). During the recursive partitioning process in which we form a nested sequence
of subsamples, we have to determine, for each possible split along the coordinate
axis of any variable, the impurity of the subsamples formed. The impurity measure
Q(T) that we choose for a subsample in subtree T at node / representing a region
G; containing the profiles of n; rankings is

n n
Q/(T) =71 L Z Z dKem (RSa Rl‘) s with s > 1.
Fn(n=1)
€6 721 €G;

Alternatively, we could have chosen the weighted sum of Kemeny distances
towards the median ranking, but that would force us to solve a hard combinatorial
problem many times when growing the tree. Our pruning strategy is cost-complexity
pruning (Hastie et al. 2001, p. 270; also see: Mingers (1989); Cappelli et al. 2002).
For the pruned tree, we calculate in each terminal node the consensus ranking as
described in Sect. 4 and its corresponding Ty, and determine for the internal nodes
of the tree the weighted average tx. For a more detailed description and evaluation
of our distance-based prediction tree, we refer to D’ Ambrosio and Heiser (2011),
which is based on earlier work of D’ Ambrosio (2007).

In one of our test applications, on a real dataset with 500 rankings of 15 objects
and 128 explanatory variables, we first obtained a maximum tree with 24 terminal
nodes. In Fig. 2, the top panel shows how the impurity in the training sample (bottom
line) goes down monotonically, while in the test sample (upper line) the impurity
goes up when tree size passes 11, which is the size of the pruned tree. The bottom
panel of Fig. 2 shows the average tx weighted by node size, which gives a better
interpretable scale. At the root node, overall 7y =0.387, a moderate correlation,
which reaches tx = 0.489 on average for the maximum tree. Some of the terminal
nodes in the pruned tree even reach tx = 0.510, but others are lower.

6 Concluding Remarks

Kemeny distance is the natural graphical distance on the permutation polytope,
which is the sample space of rankings. The polytope can be extended to accom-
modate partial rankings. It provides a standard for other approaches that use
more assumptions or proceed by first embedding the polytope in Euclidean space.
Minimizing the sum of Kemeny distances leads to the median ranking as a center.
For full rankings, one minus Kendall’s 7 is equivalent to the Kemeny distance. Often
the median ranking has ties, or the data are partial rankings to start with. In that
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Fig. 2 Pruning sequence to decide on the depth of the tree. Training error rate is based on 350
rankings, cross-validated error rate is based on 150 rankings (using tenfold cross-validation). Top
panel gives error rates (impurity), bottom panel gives the average Ty

case, one minus Kendall’s 7 is faulted as a distance, because it no longer satisfies
the metric axioms. Emond and Mason (2002) provided a different definition of ¢
for partial rankings, called ty, for which 1 —tx is equal to the Kemeny distance.
The new definition is welcome, because the scale of ty is easier to interpret than a
distance scale: it is comparable across different numbers of objects.

We believe that loss-function based methods enjoy general advantages compared
to methods based on probability models. They do not depend on assumptions that
may be unrealistic for certain data. For rankings, in particular, the probability
rationale often refers to replicated judgment processes, which is not so relevant
for ranking the States of the United States (O’Leary Morgan and Morgan 2010),
where the raw data are rates or percentages in the population. Note that in our
use of probabilistic distance clustering, the term “probabilistic” merely expresses
the uncertainty in the allocation of rankings to clusters, and does not imply an
assumption about the data generating process, as in probability models.

Loss-function based methods generally tend to lead to better understood compu-
tational processes. Inclusion of weights in loss functions allows greater flexibility
and generality, and in our case we profit from it in the median ranking and in the
clustering algorithm. But weights can also be useful to emulate maximum likelihood
estimation or to down-weight unreliable parts of the data. Some people hold, for
example, that the beginning and the end of a ranking is more reliable than the
middle.

Our clustering method could be compared with probabilistic models like Croon
(1989), Murphy and Martin (2003), and Gormley and Murphy (2008a). Note that
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when we cluster rankings, we are clustering variables, not objects. For applications
where objects are to be clustered on the basis of ordinal variables, a method like
GROUPALS (Van Buuren and Heiser 1989) would be a good possibility. The
here adopted framework also gives us a way to adjust for cluster size (Iyigun and
Ben-Israel 2008), or to develop semi-supervised learning techniques (Iyigun and
Ben-Israel 2010). Our distance-based prediction tree method enjoys the general
advantages of CART-like methods, such as easy interpretability and well-understood
computational processes. It could be compared to methodology known under the
name hierarchical mixtures of experts, based on probability models. An example
of the mixture of experts approach is Gormley and Murphy (2008b). Another
competitor for our method would be the ordinal unfolding approach with restrictions
on the ideal points (Busing et al. 2010).
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Solving the Minimum Sum of L1 Distances
Clustering Problem by Hyperbolic Smoothing
and Partition into Boundary and Gravitational
Regions

Adilson Elias Xavier, Vinicius Layter Xavier, and Sergio B. Villas-Boas

Abstract The article considers the minimum sum of distances clustering problem,
where the distances are measured through the L1 or Manhattan metric (MSDC-L1).
The mathematical modelling of this problem leads to a min-sum-min formulation
which, in addition to its intrinsic bi-level nature, has the significant characteristic of
being strongly non differentiable.

We propose the AHSC-L1 method to solve this problem, by combining two
techniques. The first technique is Hyperbolic Smoothing Clustering (HSC), that
adopts a smoothing strategy using a special C* completely differentiable class
function. The second technique is the partition of the set of observations into
two non overlapping groups: “data in frontier” and “data in gravitational regions”.
We propose a classification of the gravitational observations by each component,
which simplifies of the calculation of the objective function and its gradient. The
combination of these two techniques for MSDC-L1 problem drastically simplify
the computational tasks.

1 Introduction

Cluster analysis deals with the problems of classification of a set of patterns or
observations. In general the observations are represented as points in a multidi-
mensional space. The purpose of cluster analysis is to define the clusters to that
each observation belongs, following two basic and simultaneous objectives: patterns
in the same clusters must be similar to each other (homogeneity objective) and
different from patterns in other clusters (separation objective) Hartigan (1975) and
Spith (1980).

A.E. Xavier (04) - V.L.. Xavier - S.B. Villas-Boas
Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
e-mail: adilson@cos.uftj.br; vinicius @cos.ufrj.br; sbvb@cos.ufrj.br

B. Lausen et al. (eds.), Algorithms from and for Nature and Life, Studies in Classification, 33
Data Analysis, and Knowledge Organization, DOI 10.1007/978-3-319-00035-0_3,
© Springer International Publishing Switzerland 2013


mailto:adilson@cos.ufrj.br
mailto:vinicius@cos.ufrj.br
mailto:sbvb@cos.ufrj.br

34 A.E. Xavier et al.

In this paper, a particular clustering problem formulation is considered. Among
many criteria used in cluster analysis, a frequently adopted criterion is the mini-
mum sum of L1 distances clustering (MSDC-L1); see for example Bradley and
Mangasarian (1996). This criterion corresponds to the minimization of the sum
of distances of observations to their centroids, where the distances are measured
through the L1 or Manhattan metric. As broadly recorded by the literature, the
Manhattan distance is more robust against outliers.

For the sake of completeness, we present first the Hyperbolic Smoothing Cluster-
ing Method (HSC), Xavier (2010). Basically the method performs the smoothing of
the non differentiable min-sum-min problem engendered by the modelling of a broad
class of clustering problems, including the minimum sum of L1 distances clustering
(MSDC-L1) formulation. This technique was developed through an adaptation of
the hyperbolic penalty method originally introduced by Xavier (1982). By smooth-
ing, we fundamentally mean the substitution of an intrinsically non differentiable
two-level problem by a C *° unconstrained differentiable single-level alternative.

Additionally, the paper presents an accelerated methodology applied to the
specific considered problem. The basic idea is to partition the set of observations
into two non overlapping parts. By using a conceptual presentation, the first set
corresponds to the observation points relatively close to two or more centroids. The
second set corresponds to observation points significantly closer to a single centroid
in comparison with others. The same partition scheme was presented first by Xavier
and Xavier (2011) in order to solve the specific minimum sum of squares clustering
(MSSC) formulation. In this paper, specific features of the minimum sum of L1
distances clustering (MSDC-L1) formulation are explored in order to take additional
advantages of the partition scheme.

2 The Minimum Sum of L1 Distances Clustering Problem

Let S = {s1,...,5,} denote a set of m patterns or observations from an Euclidean
n-space, to be clustered into a given number ¢ of disjoint clusters. To formulate the
original clustering problem as a min — sum — min problem, we proceed as follows.
Letx;,i = 1,...,q be the centroids of the clusters, where each x; € R". The set of
these centroid coordinates will be represented by X € R"9.

Given a point s; of S, we initially calculate the L1 distance from s; to the nearest
center. This is given by z; = min;=__4 [|s; —x;| 1. A frequent measurement of the
quality of a clustering associated to a specific position of g centroids is provided by
the sum of the L1 distances, which determines the MSDC-L1 problem:

m
minimize Z Z;j (D
j=1

subjectto  z; = iiIilinq lls; — xill. j=1....m
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3 The Hyperbolic Smoothing Clustering Method

Considering its definition, each z; must necessarily satisfy the following set of
inequalities: z; — [ls; — x;|li < 0,i = 1,...,q. Substituting these inequalities
for the equality constraints, Problem (1) produces the relaxed problem:

m
minimize sz (2)
j=1
subjectto  z; —|ls; —x;|1 0, j=1,....m, i=1,...,4q.

Since the variables z; are not bounded from below, the optimization procedure
will determine z; — oo, j = 1,...,m. In order to obtain the desired equivalence,
we must, therefore, modify Problem (2). We do so by first letting ¢(y) denote
max{0, y} and then observing that, from the set of inequalities in (2), it follows
that >/ @(z; — |ls; —xi1 ) =0,/ = 1,...,m. In order to bound the variables
zj, j =1,...,m weinclude an ¢ > 0 perturbation.

m
minimize Yz 3)
—

q
subjectto Y @z — s —xili) = e. j=1...m

i=1

Since the feasible set of Problem (1) is the limit of that of (3) when ¢ — 04,
we can then consider solving (1) by solving a sequence of problems like (3) for a
sequence of decreasing values for ¢ that approaches 0.

Analysing the Problem (3), the definition of function ¢ and the definition of L1
distance endows it with an extremely rigid non differentiable structure, which makes
its computational solution very hard. In view of this, the numerical method we adopt
for solving Problem (1), takes a smoothing approach. From this perspective, let us
define the approximation functions below:

¢>(y,t)=(y+\/y2+r2)/2 4)

O(s;, xi,y) = Z (Sﬁ'_xil)z + 72 ®)

By using the asymptotic approximation properties of the functions 6; and ¢, the
following completely differentiable problem is now obtained:
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m
minimize Z Z;j (6)
Jj=1

q
subject to Z(}S(zj—@l(sj,x,-,y),t)ze, j=1,...,m.

i=1

So, the properties of functions ¢ and 6, allow us to seek a solution to Problem (3)
by solving a sequence of subproblems like Problem (6), produced by the decreasing
of the parameters y — 0,7 — O and ¢ — 0.

On the other side, the constraints will certainly be active and Problem (6) will at
last be equivalent to problem:

m
minimize Yz @)
—

q
subject to h;(zj.x) = Y ¢(zj —0i(s;. 5. y). 1) —e =0, j=1...m.

i=1

Problem (7) has a separable structure, because each variable z; appears only in
one equality constraint. Therefore, as the partial derivative of &(z;, x) with respect

toz;, j = 1,...,m is not equal to zero, it is possible to use the Implicit Function
Theorem to calculate each componentz;, j = 1,...,m as afunction of the centroid
variables x;, i = 1, ..., q. In this way, the unconstrained problem
m
minimize f(x) = Z Z;j (x) (8)
j=1

is obtained, where each z; (x) results from the calculation of a zero of each equation

q
hi(j.x) =Y ¢z —0i(s;.xi.y).1) —e =0, j=1L...m (9

i=1

Again, due to the Implicit Function Theorem, the functions z;(x) have all
derivatives with respect to the variables x;, i = 1,...,q, and therefore it is possible
to calculate the gradient of the objective function of Problem (8),

Vf(x) =) Vz(x) (10)

j=1
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where

0h;(z;,x)
0z, ’

while V i (z;,x) and 04 (z;,x)/0z; are obtained from Eqs. (4), (5) and (9).

In this way, it is easy to solve Problem (8) by making use of any method based
on first or second order derivative information. At last, it must be emphasized that
Problem (8) is defined on an (n g)—dimensional space, so it is a small problem, since
the number of clusters, ¢, is, in general, very small for real applications.

The solution of the original clustering problem can be obtained by using the
Hyperbolic Smoothing Clustering Algorithm, described below in a simplified form.

Vzj(x) = = Vhj(z;,x) / (11

4 The Simplified HSC-L1 Algorithm

Initialization Step:

Choose initial values: x°, y!, t!, gl

Choose values0 < p; <1, 0<pa <1, O0<p3<l;letk =1.

Main Step: Repeat until a stopping rule is attained

Solve Problem (8) with y = y*, r = ¥ and ¢ = &, starting at the initial point
x¥=1 and let x* be the solution obtained.

Let yA+l = piyk | ohtl = pyok [ ghtl = piek k= k + 1. [

Just as in other smoothing methods, the solution to the clustering problem is
obtained, in theory, by solving an infinite sequence of optimization problems. In
the HSC-L1 algorithm, each problem to be minimized is unconstrained and of low
dimension.

Notice that the algorithm causes t and y to approach 0, so the constraints of the
subproblems as given in (6) tend to those of (3). In addition, the algorithm causes
¢ to approach 0, so, in a simultaneous movement, the solved Problem (3) gradually
approaches the original MSDC-L1 Problem (1).

S The Accelerated Hyperbolic Smoothing Clustering Method

The calculation of the objective function of the Problem (8) demands the determi-
nation of the zeros of m Eq. (9), one equation for each observation point. This is a
relevant computational task associated to HSC-L1 Algorithm.

In this section, it is presented a faster procedure. The basic idea is the partition
of the set of observations into two non overlapping regions. By using a conceptual
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presentation, the first region corresponds to the observation points that are relatively
close to two or more centroids. The second region corresponds to the observation
points that are significantly close to a unique centroid in comparison with the other
ones.

So, the first part Jp is the set of boundary observations and the second is the set
J¢ of gravitational observations. Considering this partition, Eq. (8) can be expressed
in the following way:

m

minimize f(x) = Y zj(x)= Y z;(x) + Y z;(x), (12)

j=1 J€JB Jj€Jg
so that the objective function can be presented in the form:
minimize f(x) = fp(x) + fo(x), (13)

where the two components are completely independent.

The first part of expression (13), associated with the boundary observations, can
be calculated by using the previously presented smoothing approach, see (8) and (9).
The second part of expression (13) can be calculated by using a faster procedure, as
we will show right away.

Let us define the two parts in a more rigorous form. Letbe X;, i = 1,...,q be
a referential position of centroids of the clusters taken in the iterative process.

The boundary concept in relation to the referential point X can be easily specified
by defining a § band zone between neighbouring centroids. For a generic point s €
R”, we define the first and second nearest distances from s to the centroids:

di(s,X) = ||s—x;, || = miin ls—%i| (14)

dy(s, %) = s =X || = min s =%l . (15)
LF1]

where i and i, are the labelling indexes of these two nearest centroids.
By using the above definitions, let us define precisely the § boundary band zone:

Zs(xX) = {s e R" | da(s,X) — di(s,X) < 26} (16)
and the gravity region, this is the complementary space:

Gs(x) = {s eR" — Z5(x) }. 7)

Figure 1 illustrates in R? the Z;(X) and G;(X) partitions. The central lines form
the Voronoi polygon associated with the referential centroids X;, i = 1,...,g. The
region between two parallel lines to Voronoi lines constitutes the boundary band
zone Zs(X).
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Fig. 1 The Z;(x) and Gs(X) partitions

Now, the sets Jp and J can be defined in a precise form:
Jp(@) ={j =1.....m|s; € Zs(x)}, (18)

Jg(f)z{jzl,...,m|sjEGg(Y)}. (19)

In Xavier and Xavier (2011) it is shown the proof of proposition below.
Proposition 1. Let s be a generic point belonging to the gravity region Gs(X),
with nearest centroid i. Let x be the current position of the centroids. Let A x =

max; ||x; — X;|| be the maximum displacement of the centroids. If Ax < § then s
will continue to be nearer to centroid x;, than to any other one. |

Since § > Ax, Proposition 1 makes it possible to calculate exactly expres-
sion (12) in a very fast way. First, let us define the subsets of gravity observations
associated with each referential centroid:

Ji(X) = jEJG|p£}inq||sj—fp | =]si—x| (20)

Let us consider the second sum in expression (12).

q q n q
fe(x) = Z Zj(x):ZZ ”s,-—xi”l =Z Z Z |s[/-—xf|=Z Z |s§—x£|.

j€lc i=1jel; i=1jeJ; I=1 i=11=1j€eJ;
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Let us now perform the partition of each set J; into 3 subsets for each component
[ in the following form:

i@ =i e i@ |s; % = 5} e
i@ = {jes®|s, -5 < -5 22)
JOF) = {jeJ,-(f)|—5<s§.—)—cf <8} (23)

By using the defined subsets, it is obtained:

q n
Jfa(x) =ZZ |:Z |s§—x{|+ Z |s§—x{|+ Z |s§—xil|:| =
J€ly

i=1 =1 L+ jedy

n
| e | | e | I _ .
[ Do lsy T AT AL+ Y sy -E AT x|+ ) |Sj—xi|}
i=li=1L ;ept JE€Ty jeJy

Let us define the component displacement of centroid A xil = xil - Yf Since

| Ax!'| <8, from the above definitions of the subsets, it follows that:

=il =l =F |- Ax for jesi o @d

1

|sh—xl| = |si =%l | + Ax] for jelJ;

4

So, it follows:

q n
fc(x)zZ:Z[ > (s =F—ax)+ 3 (Ish =71+ ax )+ ) |s}—x5|}=

i=ti=1L ¢+ jeir jedd

q n
[ Solsh = = 1axt + 3 Ish =+ g laxl+ Y sg.—x{]

TSy j€r

i=11=1

jest

(25)

where | J;1 | and | J; | are the cardinalities of two first subsets.
When the position of centroids x; ,i = 1,...,q moves within the iterative
process, the value of the first two sums of (25) assumes a constant value, since the
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i
J
displacements A xi[ ,i=1,....,q,1 = 1,...,n, and evaluate the last sum, that

normally has only a few number of terms because § assumes in general a relatively
small value.

The function f(x) above specified is non differentiable due the last sum, so in
order to use gradient information, it is necessary to use a smooth approximation:

q n
fa(x) =ZZ[ Dok =X =111 Ax+

i=t1=1 L jes+

values s, and )_cf are fixed. So, to evaluate f(x) it is only necessary to calculate the

> lsﬁ-—fﬁl+|JJ|Ax5+Zo<s§-,x5,y)} (26)

J€Jy jer)

where o is the smoothing function for each unidimensional distance: o (s ﬁ , x} ,Y) =
((sh = x)? + y)/2,

So, the gradient of the smoothed second part of objective function is easily
calculated by:

q n
Vi) =Y > [ — IS+ 1T+ Y —Gh=xD foshxly) | en
i=1 [=1 ]‘ejl_(l)

27)

where e;; stands for a unitary vector with the component / of centroid i equal to 1.

Therefore, if § > A x was observed within the iterative process, the calculation
of the expression jedg 2 (x) and its gradient can be exactly performed by very
fast procedures, Egs. (26) and (27).

By using the above results, it is possible to construct a specific method, the
Accelerated Hyperbolic Smoothing Method Applied to the Minimum of Sum of
L1 Distances Clustering Problem, which has conceptual properties to offer a faster
computational performance for solving this specific clustering problem given by
formulation (13), since the calculation of the second sum ( fg(x)) is very simple.

A fundamental question is the proper choice of the boundary parameter &.
Moreover, there are two main options for updating the boundary parameter ¢, inside
the internal minimization procedure or after it. For simplicity sake, the AHSC-L1
method connected with the partition scheme presented below adopts the second
option, which offers a better computational performance, in spite of an eventual
violation of the § > A x condition, which gets corrected in the next partition
update.
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6 The Simplified AHSC-L1 Algorithm

Initialization Step:

Choose initial start point: x°;

Choose parameter values: y!, t!,&!;
Choose reduction factors:
O<p<,0<p<l,0<ps<1;
Specify the boundary band width: §';
Letk = 1.

Main Step: Repeat until an arbitrary stopping rule is attained
For determining the Z5(X) and Gs() partitions, given by (16) and (17), use

X = x*~!and § = §*.

Determine the subsets J ﬂ+ ,J; and J i(z) and calculate the cardinalities of two first
sets: |J;F| and [J;7].

Solve Problem (13) starting at the initial point x
obtained:

For solving the equations associated to the first part given by (9), take the
smoothing parameters:

y =yt =1Fande =& .

For solving the second part, given by (26), use the above determined subsets and
their cardinalities.

Updating procedure:

Let yk+1 = py pk | tkH1 = py ok gkl = py ek

If necessary redefine the boundary value: §+1.

Letk :=k + 1. [ ]

The efficiency of the AHSC-L1 algorithm depends strongly on the parameter §.
A choice of a small value for it will imply an improper definition of the set
Gs(X), and frequent violation of the basic condition Ax <§, for the validity of
Proposition 1. Otherwise, a choice of a large value will imply a decrease in
the number of gravitational observation points and, therefore, the computational
advantages given by formulation (26) will be reduced.

As a general strategy, within first iterations, larger § values must be used, because
the centroid displacements are more expressive. The § values must be gradually
decreased in the same proportion of the decrease of these displacements.

k=1 and let x* be the solution

k

7 Computational Results

The numerical experiments have been carried out on a PC Intel Celeron with
2.7GHz CPU and 512MB RAM. The programs are coded with Compac Visual
FORTRAN, Version 6.1. The unconstrained minimization tasks were carried out by
means of a Quasi-Newton algorithm employing the BFGS updating formula from
the Harwell Library, obtained in the site: (http://www.cse.scitech.ac.uk/nag/hsl/).

Iwvww . allitebooks.cond
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Table 1 Results of AHSC-L1 applied to TSPLIB-1060 and TSPLIB-3038 Instance

TSPLIB 1060 TSPLIB 3038
q JAHSC—Ligey Occur Epean Tepu JAHSC—Ligey Occur Evean T pu
2 0.386500E7 2 0.00 0.10 0.373171E7 2 0.88 0.76
3 0.313377E7 1 0.22 0.14 0.300708E7 1 1.33 0.76
4 0.258205E7 5 0.43 0.21 0.254499E7 1 0.67 0.79
5 0.231098E7 1 0.76 0.29 0.225571E7 1 1.28 0.95
6 0.213567E7 1 0.79 0.35 0.206006E7 1 1.12 0.95
7 0.196685E7 1 1.41 0.48 0.189650E7 1 1.34 1.06
8 0.183280E7 1 222 0.53 0.176810E7 1 1.14 1.13
9 0.168634E7 1 342 0.60 0.164559E7 1 2.13 1.21
10 0.155220E7 1 2.74 0.68 0.154550E7 1 1.97 1.28
Table 2 Results of AHSC-L1 applied to D15112 and P1a85900 Instance
D15112 P1a85900

q Jarsc—Lig,  Occur  Enyean T JAHSC—L1 oy Occur  Eyean Topu

2 0.822872E8 6 0.97 10.35  0.883378E10 2 0.00 242.74
3 0.655831E8 1 1.43 7.56  0.667961E10 1 0.21 166.48
4 0.567702E8 1 1.60 6.21  0.551287E10 2 0.06 129.30
5 0.511639E8 1 1.17 573  0.482328E10 1 1.43 112.95
6 0.462612E8 1 1.67 533 0432972E10 1 2.47 103.02
7 0.425722E8 1 2.30 496  0.401388E10 1 1.87 98.25
8 0.398389E8 1 1.83 5.02  0.373878E10 1 3.47 92.14
9 0.376863E8 1 1.60 5.03  0.355741E10 1 2.40 82.33
10 0.354762E8 1 2.41 5.01 0.341472E10 1 1.77 87.41

In order to exhibit the distinct performance of the AHSC-L1 algorithm, Tables 1
and 2 present the computational results of AHSC-L1 applied to four bench-
mark problems, all from TSPLIB (Reinelt 1991; http://www.iwr.uni-heidelberg.
de/groups/comopt/software). Table 1 represent two instances frequently used as
benchmark clustering problems. Table 2 left contains data of 15,112 German cities.
Table 2 right is the largest symmetric problem of TSPLIB.

The AHSC-L1 is a general framework that bears a broad number of implemen-
tations. In the initialization steps the following choices were made for the reduction
factors: py = 1/4,p, = 1/4 and p3 = 1/4. The specification of initial smoothing
and perturbation parameters was automatically tuned to the problem data. So, the
initial max function smoothing parameter (4) was specified by ! = 0/10 where
02 is the variance of set of observation points: S = {s1,...,S,}. The initial
perturbation parameter (3) was specified by €! = 4t! and the Euclidian distance
smoothing parameter by y! = 7!/100.

All experiments where done using ten initial points. The adopted stopping
criterion was the execution of the main step of the AHSC-L1 algorithm in a fixed
number of six iterations.
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Table 3 Speed-up of

AHSC-L1 compared to q TSP1060 TSP3038 DI15112 P1a85900
HSC-L1 (the larger the better) 2 2.60 1.33 0.94 0.82

3 3.79 1.84 1.43 0.95

4 3.24 3.08 1.95 1.30

5 4.41 3.16 3.17 1.76

6 5.23 4.69 4.60 2.58

7 4.96 5.84 5.94 3.80

8 6.94 7.09 8.44 4.44

9 6.30 7.97 10.34 6.78

10 7.66 12.07 13.26 8.75

The meaning of the columns Tables 1 and 2 is as follows. ¢ = the number of
clusters. fagsc—r1—Bess = the best results of cost function using points obtained
from AHSC-L1 method out of all the ten random initial points. Occur. = number
of times the same best result was obtained from all the tenl random initial points.
Eyean = the average error of the ten solutions in relation to the best solution
obtained (famsc—ri1—Bes)- Finally, T, = the average execution time per trial, in
seconds.

The “A” of AHSC-L1 means “accelerated”, that is, the technique that partitions
the set of observations into two non overlapping groups: “data in frontier” and
“data in gravitational regions”. The sample problems were solved using HSC-L1
and AHSC-L1 methods. Both algorithms obtain the same results with three decimal
digits of precision. The Table 3 shows the speed-up produced by the acceleration
technique. The meaning of the columns of Table 3 is as follows. g = the number of
clusters. Speed-up for TSPLIB-1060 Instance. Speed-up for TSPLIB-3038 Instance.
Speed-up for D15112 Instance. Speed-up for P1a85900 Instance.

The speed-up was calculated as the ratio between execution times Txsc—r1 and
Tansc—r1, as shown in Eq. (28).

Speed — up = —HSC=LL (28)
Tansc—r1

The results in the Table 3 show that in most cases the “accelerated” technique

produces speed-up of the computation effort. In some cases, the speed-up is > 10.

In a few cases (e.g. ¢ = 2, 85,900), the gains produced by the acceleration do not

compensate the fixed costs introduced by the calculus of partition. In these cases the

speed-up is less than one, that is, AHSC-L1 takes longer to run when compared to
HSC-L1.

8 Conclusions

In this paper, a new method for the solution of the minimum sum of L1 Manhattan
distances clustering problem is proposed, called AHSC-L1 (Accelerated Hyperbolic
Smoothing Clustering — L1). It is a natural development of the original HSC
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method and its descendant AHSC-L2 method, linked to the minimum sum-of-
squares clustering (MSSC) formulation, presented respectively by Xavier (2010)
an by Xavier and Xavier (2011).

The special characteristics of L1 distance were taken into account to adapt inside
the AHSC-L1 method from the AHSC-L2. The main idea proposed in this paper is
the acceleration of the AHSC-L1 method by the partition of the set of observations
into two non overlapping parts — gravitational and boundary. The classification
of gravitational observations by each component, implemented by Eqgs. (21)—(23),
simplifies of the calculation of the objective function (26) and its gradient (27).
This classification produces a drastic simplification of computational tasks. The
computational experiments confirm the speed-up, as shown in Table 3.

The computational experiments presented in this paper were obtained by using a
particular and simple set of criteria for all specifications. The AHSC-L1 algorithm
is a general framework that can support different implementations.

We could not find in the literature any reference mentioning the solution of
cluster L1 problem with instances of sizes similar to those presented in this paper.
So, our results represent a challenge for future works.

The most relevant computational task associated with the AHSC-L1 algorithm
remains the determination of the zeros of the Eq.(9), for each observation in the
boundary region, with the purpose of calculating the first part of the objective
function. However, since these calculations are completely independent, they can
be easily implemented using parallel computing techniques.

It must be observed that the AHSC-L1 algorithm, as presented here, is firmly
linked to the MSDC-L1 problem formulation. Thus, each different problem formu-
lation requires a specific methodology to be developed, in order to apply the partition
into boundary and gravitational regions.

Finally, it must be remembered that the MSDC-L1 problem is a global optimiza-
tion problem with several local minima, so both HSC-L1 and AHSC-L1 algorithms
can only produce local minima. The obtained computational results exhibit a
deep local minima property, which is well suited to the requirements of practical
applications.
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On the Number of Modes of Finite Mixtures
of Elliptical Distributions

Grigory Alexandrovich, Hajo Holzmann, and Surajit Ray

Abstract We extend the concept of the ridgeline from Ray and Lindsay (Ann
Stat 33:2042-2065, 2005) to finite mixtures of general elliptical densities with
possibly distinct density generators in each component. This can be used to obtain
bounds for the number of modes of two-component mixtures of ¢ distributions
in any dimension. In case of proportional dispersion matrices, these have at most
three modes, while for equal degrees of freedom and equal dispersion matrices, the
number of modes is at most two. We also give numerical illustrations and indicate
applications to clustering and hypothesis testing.

1 Introduction

Finite mixtures are a popular tool for modeling heterogenous populations. In
particular, multivariate finite mixtures are often used in cluster analysis, see
e.g. McLachlan and Peel (2000). Here, analysis is mainly based on mixtures with
multivariate normal components. However, mixtures of multivariate ¢-distributions
offer an attractive, more flexible and more robust alternative, see McLachlan and
Peel (2000).
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An important feature of these mixtures are their analytic properties, in particular
their modality structure. Modes are essential for a proper interpretability of the
resulting density. For example, in cluster analysis, when there are less modes than
components in a mixture, it is reasonable to merge several components into a single
cluster based on their modality structure, see Hennig (2010). On the other hand,
having more modes than components in a mixtures as can happen in dimensions > 1
is an undesirable feature.

The most important tools for assessing the number of modes of finite mixtures
of multivariate normal distributions are the concepts of the ridgeline and the
IT-function as introduced in Ray and Lindsay (2005). Recently, Ray and Ren (2012)
showed that for two-component mixtures of normals in dimension D, the number
of modes is at most D + 1, and further constructed examples which achieved these
bounds.

Here, we extend their concept of the ridgeline to finite mixtures of general
elliptical densities with possibly distinct density generators in each component. This
can be used to obtain bounds for the number of modes of two-component mixtures
of ¢ distributions with possibly distinct degrees of freedom in any dimension. In case
of proportional dispersion matrices, we show that these have at most three modes,
while for equal degrees of freedom and equal dispersion matrices, the number of
modes is at most two.

The paper is structured as follows. In Sect.2 we introduce the concept of the
ridgeline and the IT-function for mixtures of general elliptical distributions, and
state some basic properties. These are used in Sect. 3 to assess the model structure
of two-component 7-mixtures. In Sect. 4 we give numerical illustrations and indicate
some statistical applications to clustering and hypothesis testing.

2 Ridgeline Theory for General Elliptical Distributions

As indicated in Ray and Lindsay (2005), several of their results extend from finite
mixtures of multivariate normal distributions to finite mixtures of general elliptical
densities. In this section we formulate the relevant statements, for the proofs see
Alexandrovich (2011).

First, we introduce some notation. A nonnegative measurable function ¢
[0, 00) — [0, 00) for which ¢, := fRD o(xTx)dx < oo is finite is called a density
generator of a D-dimensional spherical distribution. Evidently, f(x) = ¢, To(xTx)
is then a D-dimensional density w.r.t. Lebesgue measure. If u € R? and ¥ > 0 is
a positive definite D x D matrix, then

S D) =ko((x =)' x =), k= (c, det(x)"/?)7"

is a density from the associated family of elliptical distributions. For further details
on elliptical distributions and their density generators see Fang et al. (1989). We
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consider general finite mixtures of elliptical densities with possibly distinct density
generators in each component, i.e. densities of the form

K
g p B i =1 K) = ) mi ki i ((r— ) T2 (e — ), (D)
i=1
where u; € RP, %, > 0 are positive definite D x D matrices, ¢; are density
generators with k; = (Cw det(x;)"/ 2)_l the appropriate normalizing constant, and
K
7; € [0,1] with Y 7; = 1. Typically, the density generators ¢; will all be equal
i=1
as in case of normal mixtures, or at least belong to a parametric family of density
generators such as t-distributions with distinct degrees of freedom. Set

K
SK = {Ol = (Oll,...,OlK)T ERK Lo € [0, 1],20[,‘ = 1}

i=1

Ray and Lindsay (2005) introduced the map x* : Sy — R?,

_ T _ _
(@) =[S 4+ ok DR [ D e .+ ax D k],

the so-called ridgeline function. The next theorem summarizes the connection
between the modes of the finite mixture g in (1) and the ridgeline. For the proof
in this general setting see Alexandrovich (2011).

Theorem 1. Suppose that the density generators @; in the finite mixture g (see (1))
are continuously differentiable and strictly decreasing. Then

1. All critical points of g as defined in (1) are contained in x* (SK), the image of
Sk under the mapping x*.

2. Set h(e) = g(x*(a)), @ € Sk. Then o is a critical point (resp. local
maximum) of h if and only if x*(aeri) is a critical point (resp. local maximum)

of g.
3. If D > K —1, then g has no local minima, only local maxima and saddle points.

Thus, looking for modes of g it is sufficient to look for modes of 4.
For a two component mixture, setting

S(x,i) = (x — w) =7 — ), i=1,2, )
we can write

glxim, pr, 2, T1. T2, @1, ¢2) = ki1 (8(x, 1)) 4 (1 — 1) ka2 (8(x. 2)).

For the ridgeline, we write in slightly different notation than in the above section

@) =8, (1 —a)7 " w1 + 25" o), Se =(1—a)Z;' +axy".
3)
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As above, set h(a) = g(x*(a)). Then solving
0 h(a) = ki 0,01 (S(x*(ot), 1)) + (1 —mk, 8aq02(5(x*(ot), 2)) =0
for r, where 9, is the derivative w.r.t. the real parameter o/, we get

k2 3402 (8(x* (@), 2))

" 0 @.2) k(@ 1)

T

the so-called II-function. Note that the II-function depends on parameters
Wi, i, @i, 1 = 1,2, but not on the weight w. For given m, it can be used to
find the critical points of g. Further, it provides general bounds on the number of
modes as follows.

Theorem 2. (a) I1(0) = 1, TI(1) = 0 and I1(x) € [0, 1].
Let N be the number of zeros of the derivative 0, I1(a) of I1(a) w.r.t. @ within
the interval [0, 1]. Then

(b) N is even, and for any w € [0, 1] the equation I1(a) = 7w has at most N + 1
solutions, the smallest of which, oy, gives a mode x* (1) of g.

(c) Forany m, g has at most 1 + N /2 modes.

We can compute general expressions for the II-function and its derivative as
follows. This will be refined for the ¢ distribution in the next section.

Proposition 1. Ler ¢/(t) = dg;/dt(t), t € R, i = 1,2 be the derivatives of the
density generators. Then for 0 < o < 1

(1 —a) ks ¢

H e
@ = ke +ak g

! A

o1 ¢y +2a(1 —a) p(a)((1 — a)p| ¢y + apip))

9o TI(@) = —k1ks :
(1 —a) k2 ¢) + a ki 9f)

“

where @5 and ¢ are evaluated at 8(x*(0{),2) (see (2)), while ¢| and ¢| are
evaluated at 8(x*(a), 1), and

ple) = (o — p) 27" S 23S RS BT (e — ). (5)

3 Modes of Two Components Mixtures of ¢ Distributions

In this section, based on the results of the previous section we give bounds on the
number of modes of two-component 7-mixtures. Observe that from Theorem 2(c),
for given parameters u;, ¥;, i = 1,2 (and degrees of freedom 7; in case of the t
distribution), the number of modes of the resulting mixture g for any weight r can
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be bounded by the number of zeros of d,I1 in [0, 1]. Thus, if we can bound this
number of zeros in [0, 1] for any parameter combination y;, ¥; (and n;), we obtain
bounds in the number of modes of the mixture g.

For mixtures of 7-distributions, the density generators are given by

—(ni+D) (Ll
oy =k (14 5) o TG
|Zi[2T (i /2) (ni )P/

n;

i=1,2,

where n; denotes the degrees of freedom in the ith component. The general two-
component -mixture is given by

glxim, i, o, 1, Taonimy) = whig(8(x, 1) 1) + (1 — m)kag(8(x,2); n2),
(6)

Lemma 1. Consider a general t-mixture as in (6). Set
2 =55 =5 - ) (7

and let ©* = QD*QT, where D = diag(A},...,A%) and Q is an orthogonal
matrix, denote the spectral decomposition of X*. Then the number of modes
of g(x;m, j1, o, 1, T, 11, 12) is the same as that of g(x, 7, QT u*,0,D* Ip,
nl ’ n2)'

This follows along similar lines as Theorem 4 in Ray and Ren (2012). Using this
simplification, by bounding the number of zeros of d, [1-function one can obtain

Theorem 3. 1. Let g(x:m, [, o, 1, To,n1,n2) = mk1p(8(x, 1);n1) +(1—mn)
kao (5 (x,2); nz) be a two-component mixture of t distributions in dimension D,
and let d be the number of distinct eigenvalues of the matrix 22_1/22122_1/2.
Then the number of modes of g is at most 1 + 2d.

2. Let g(x;m, by, 2, 2, X/A,ny,n3), A > 0, be a two-component mixture of t
distributions in dimension D with proportional covariance matrices. Then the
number of modes of g in any dimension is at most three.

3. A two-component t-mixture with equal degrees of freedom and dispersion
matrices, g(x; w, L1, o, 2, 1) has at most two modes in any dimension D.

4 Illustrations and Applications

4.1 Numerical Illustrations

We start by giving some numerical illustrations of some of the results in the paper.

1. First, we investigate the effect of varying the degrees of freedom in a mixture of
two t-distributions while keeping the covariances of components fixed. We also

Iwvww . allitebooks.cond



http://www.allitebooks.org

54 G. Alexandrovich et al.

1.0 o Normal mixture 10 o ny=10 10 < ny=5
nz=10 np=5 {
| | i
08 - 08 - ! 08 /
| {
{ !
/
06 06 - 06 - |
/ /
' 'f ’ / /
04|/ | 04| ] 04| |
| /
[ !
02 02 |/ 02 /
0.0 — 0.0 o 0.0
T T T T T T T T T T T T T T T T T T
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10

02+

Fig. 1 II-functions for Gauss- and z-mixtures with various degrees of freedom

consider a corresponding Gauss mixtures which can be considered as a limit case
in which the degrees of freedom tend to co. Specifically, the parameters of the
mixtures are

0 1 10 0.05 0
“‘:(0)’“2:(1)’El:(oo.os)’zzz( 0 1)' ®

-2

In the case of t-mixtures we scale the matrices X;, i
in order to retain equal covariances in each constellation of degrees of freedom
Figure 1 contains plots of the IT-functions for various combinations of degrees

of freedom, while Fig. 2 has the corresponding for the weight # = 0.65. From
Fig. 1 we see that with decreasing degrees of freedoms, the range of mixture
weights for which the mixture has three modes decreases as well. For the choice
7w = 0.65, the first (normal), second (n; = n, = 10) and forth (n; = 10,n, = 3)
have three modes, otherwise there are only two.

2. Second, we consider the transformation in Lemma 1 to diagonal dispersion
matrices for a two-component #-mixture with 15 degrees of freedom and & = 0.5
for a special parameter combination. Specifically, consider

(05 _(15) g _( 1 014) o _ (006014
Fr=VYos5) "= \1s5) T \o14006) “>*~ \o014 1 )
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10 < Normal mixture ¢+

f

8 = A

Fig. 2 The corresponding contours for the mixtures for 7 = 0.65

Then the transformed parameters are given by

(0 _ (439 5 _(10) g _ (2419 0
Fr=to )2 =\t ) = T \o1 ) 227\ o o0041)

Figure 3 contains plots of the corresponding densities, which look quite distinct.
Thus, it is not apparent that the transformation keeps the number of modes

3. Third, we investigate the effect when rotating one component while keeping
everything else fixed. We consider a two-component #-mixture with 15 degrees
of freedom in each component, and parameters as in (8). We rotate the second
component clockwise, with angles ranging from 45 % up to 135 % in equidistant
steps. The corresponding densities are plotted in Fig. 4. In the process a third
mode appears at an angle around 90 % and vanishes again for higher angles.

4.2 Statistical Applications
Finally, we indicate two potential statistical application of the above theory.

1. Merging components in mixtures of ¢-distributions. McLachlan and Peel (2000)
recommend the use of finite mixtures of z-distributions as a more robust
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0.00

Fig. 3 Two-component 7-mixture before (left) and after (right) transformation to diagonal disper-
sion matrices

Fig. 4 The clockwise rotation of one mixture component
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alternative to normal mixtures. While ¢z-mixtures allow for heavier tails of
the components, asymmetry can still not be dealt with, and thus, the number
of components may exceed the actual number of clusters in the data. Thus,
modality-based merging algorithms like in Hennig (2010) for normal mixtures,
based on the ridgeline as in Theorem 1, can be employed.

2. Testing for the number of modes. If two-component mixtures under suitable
parameter restrictions allow at most two modes, such as two-component normals
with proportional covariances, or f-mixtures with equal degrees of freedom
and covariances, one can use parametric methods to test for one against two
modes in such a model by likelihood-ratio based methods, see Holzmann and
Vollmer (2008) for univariate normal and von Mises mixtures. This requires
explicit characterizations of the parameter constellations which yield unimodal
or bimodal mixtures. For two-component normals with proportional covariances,
these are given in Ray and Lindsay (2005), Corollary 4, while corresponding
characterizations based on Theorem 3 (2) and (3) still need to be derived.
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Implications of Axiomatic Consensus Properties

Florent Domenach and Ali Tayari

Abstract Since Arrow’s celebrated impossibility theorem, axiomatic consensus
theory has been extensively studied. Here we are interested in implications between
axiomatic properties and consensus functions on a profile of hierarchies. Such
implications are systematically investigated using Formal Concept Analysis. All
possible consensus functions are automatically generated on a set of hierarchies
derived from a fixed set of taxa. The list of implications is presented and discussed.

1 Introduction

The problem of combining rival structures into a representative one is the central
focus of the consensus problem. Arrow’s celebrated work (Arrow 1951), followed
by May’s (1952), opened the door to impossibility results for linear orders, where
consensus satisfying desirable properties were characterized as dictatorial (see
Powers and White (2008) for some impossibility results on hierarchies). Although
several consensus methods were developed for supertrees (Semple and Steel 2000),
i.e. when the phylogenetic trees have distinct (but overlapping) sets of taxa, in this
paper we will focus on the classical case where the consensus tree has the same taxa
set as every input tree. An exhaustive survey on consensus theories can be found in
Day and McMorris (2003) and Hudry and Monjardet (2010).
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Despite the fact that several studies had investigated the statistical behavior
of consensus methods (Degnan et al. 2009) or their relationships (see Bryant
(2003) for a classification based on refinement), none were interested in their
inherent structure in conjunction with fundamental axioms. Our study doesn’t aim to
exhaustively enumerate all existing consensus functions: we focused on a selection
of 13 functions, either for their commonality or their distinctiveness, and 9 axioms.

The rest of the paper is organized as follows: in Sect.2 we recall fundamental
definitions of consensus functions and axiomatic properties on such functions. We
introduce Formal Concept Analysis together with implications in Sect. 3. Finally, in
Sect. 4, we discuss the results obtained by systematically generating any possible
input trees and any possible consensus tree and testing axioms and consensus
functions on it.

2 Consensus Methods

Let S be a finite set with n elements, usually called taxa or operational taxonomic
units. A hierarchy H on S, also called n-tree, is a family of nonempty subsets
of S (called the clusters of H) such that S € H, {s} € H forall s € §, and
AN B e{0,A,B}forall A, B € H. We will denote the set of all hierarchies on S
by 7. All the hierarchies considered here are defined on the same set S.

A series of properties can be defined on hierarchies. Two sets A and B are
compatible if AN B € {0, A, B}, and a set A is compatible with a hierarchy H if it
is compatible with every cluster of H (or, equivalently, if AU H € J¢). Hierarchies
can also be defined (Colonius and Schulze 1981) through triplets ab|c, a,b,c € S,
denoting the grouping of a and b relative to c. We say that ab|c in H if there exists
acluster X € H suchthata,b € X butc ¢ X. Adams (1986) extended that idea
to nestings, where X nests in Y in H, denoted as X <y Y iff X C Y and there
is Z € Hsuchthat X € Z and Y & Z. The canonical height no(X) of a cluster
X C S is defined as no(S) = 0 and n9(X) = h iff there is a maximal sequence
SDOXID...D X1 DX, = X. n(H) is the maximal cluster partition for H
with blocks equal to the maximal clusters of H.

Let H* = (Hy, H», ..., Hy) be a profile of hierarchies on S, and K will denote
the set of indices of the hierarchies of H*, K = {l,...,k}. A consensus function
on  isamap c : % — A with k > 2 and % the k cartesian product, which
associate to any profile H* a unique hierarchy consensus, ¢(H*). We will denote
the set of hierarchies of the profile H* containing the cluster X by Kx(H™*), i.e.
Kx(H*)={ieK:Xe H}.SetKyx(H*)={i € K: XUH,; &}

Given a profile H* of hierarchies, many different consensus functions can be
defined. The most famous one is the strict consensus, where the consensus tree
is only the common clusters. The majority consensus (Margush and McMorris
1981) considers clusters appearing in at least half of the trees, while the loose
consensus (Barthélemy 1992) (originally called combinable component (Bremer
1990)) will consider subsets as long as they are compatible with all trees. They
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were recently (Dong et al. 2011) extended to the majority-rule (4) by adding
some compatible clusters. As noted in the literature, those rules may miss some
structural features of the hierarchies, particularly the fact that two elements could
be closer than a third one. It might be desirable for these elements to be separated
in the consensus hierarchy — which is what Adams’ function (1972) achieves.
Other functions can be based on clusters’ frequency (Nelson-Page (Nelson 1979;
Page 1990), frequency difference), on height assignment (Durchschnitt (Neumann
1983)) or distance between trees (median, asymmetric median (Phillips and Warnow
1996)). One can refer to Bryant (2003) for a discussion about their respective
advantages and drawbacks. Following is the list of consensus functions we have
implemented:

(Str) Strict: Str(H™*) = N;ex H;

(Prj) Projection: 3/ € K : Prj(H*) = H;

(a1 Oligarchy:3J € K : Ol(H*) = Njes H;

(Maj)  Majority: Maj(H*) = {X € S : |[Kx(H*)| > &}

(Lo) Loose: L(H*) = | {X € S:3j € K, X € HiandVi € K, X U
H,‘ S %}

(LM) Loose and Majority Function Property: LM(H*) = Maj(H*) U L(H™)

(Maj+) Majority-rule (+) : Majt (H*) = {X C S : |[Kx(H*)| > |Kx(H™")|}

(NIP) Nelson-Page: The consensus tree is made of maximum weight (w(X) =
|Kx (H*)| — 1) compatible clusters. If there is a tie, take the intersection.

(FD) Frequency Difference:
FD(H*) = {X : |Kx(H*)| > max{|Ky(H™*)| : Y not compatible
with X }}

(Dur) Durchschnitt: Dur(H*) = Uj')=1{ﬂiel< X;: X; € Hiand no(X;)=J},
with @ = min;exgmaxyep, No(X)

(Ad) Adams (from Bryant (2003)): Procedure AdamsTree(Hy, ..., Hy)
Construct 7 (H ), the product of 7 (H,), ..., w(Hy).
For each block B of n(H) do AdamsTree(H,|3, ..., Hi|p)

Med)  Median: Med(H*) = {H € 77 : Zﬁ;l |H A H;| is minimum}

(AM) Asymmetric Median: AMed(H*) = {H € 3 : Zﬁ;l |H; — H| is
minimum}

Arrow’s result (for linear orders) characterize consensus functions satisfying
some desirable properties. We have considered the following, taken from Day and
McMorris (2003):

(PO)  Pareto Optimality: (VX C S)(X € ", H; = X € c(H*))
(Dct)  Dictatorship: (3j € K)(VX € S)(X € Hj = X € c(H"))
(cPO)  co-Pareto Optimality: (c(H*) C Ule H;)
(TPO) Ternary Pareto Optimality:
(Vx,y,2z€ S)((Vi € K)(xy|z € Hi) = xy|lz€ c(HY))
(NP) Nesting Preservation:
(YO # XY € S)(Vi € K)X <, ¥) = (X <cus) Y))
(SP) Strong Presence: (V0 # X, Y C S)(X <cuv Y = (Vie K)(X <y, Y))



62 F. Domenach and A. Tayari

(QSP)  Qualified Strong Presence:
VX, Y ec(H*))(X <euv Y = (Vi e K)(X <, V))

(USP) Upper Strong Presence:
(VX € c(H))(X <cur S = (Vi € K)(X <y, S))

(Btw)  Betweenness: (for any family (X;);ex with X; € H;)(3Y € c(H*))(ﬂf;l
XicvcUiZ, X

3 Formal Concept Analysis

Formal Concept Analysis (FCA) (Ganter and Wille 1996) was developed in
Darmstadt as a mathematical theory for modeling the notion of “concept”. It starts
from a formal context (G, M, I'), with a set G of objects, a set M of attributes, and
a binary relation I € G x M. (g,m) € [ is read as “object g has attribute m”.
To this formal context, one can associate to a set of objects A C G its intension
A'={me M :Vg e A, (g,m) e I} of all properties shared by A. Dually, we can
define B’ = {g € G : Vm € B,(g,m) € I}, the extension of a set of properties
B C M.Apair(A,B),A C G,B C M,isaformal conceptif A’ = Band B’ = A.

The set of all formal concepts, ordered by inclusion of their intent, forms a lattice
(Barbut and Monjardet 1970), called concept lattice. It generates and visualizes
hierarchies of concepts. For more terms and definitions on lattice theory, one can
refer to Birkhoff (1967) and Davey and Priestley (2002). FCA is intensively used
in data mining, together with the (equivalent) implicational system. An implication
X — Y represents the fact that every object satisfying the set of attributes X will
also satisfy the set of attributes Y, or, equivalently in FCA terminology, X C Y”.
This set of implications can be reduced to the Duquenne-Guigues canonical basis
(Guigues and Duquenne 1986), a minimal set of implications from which any
implication can be generated.

4 Results and Discussion

Our simulation has been implemented using C++, as it takes advantage of low
level optimization. Initially, it generates all possible hierarchies based on a given
set of n taxa. Then it exhaustively traverses through all possible profiles of k
hierarchies, together with all possible consensus trees, creating what we called
a configuration. A configuration (H*, H) is a pair of input trees (a profile)
together with a consensus tree. Each configuration was compared against axiomatic
properties and consensus functions in order to create the formal context (G, M, I),
with G the set of configurations, M the set of axiomatic properties and consensus
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functions, and (g, m) € [ if a configuration g has the (axiomatic) property m. For
example, (H*, H), (PO)) € I if H contains all common clusters of H*; likewise,
((H*,H),(Str)) e I it H = Str(H™).

A first issue arose from the number of possible configurations. Given the number
of n-trees (Felsenstein 1978), and the NP-hard nature of some consensus functions
(Phillips and Warnow 1996), we were able to run our application only forn < 5.
Forn = 4 (resp.n = 5,n = 6) and k = 3, we have 73,125 configurations (resp.
514,807,450, 9.57 x 10'2), and, for each, 22 properties (9 axioms and 13 functions)
were tested on a laptop intel-core 15, 2.3 Gh. In order to significantly improve the
running time, the consensus trees set was reduced to a more compact set of structure-
based trees. All the trees were divided into equivalent classes such that all trees in a
class are isomorphic up to a permutation of their labels. Consider two consensus
trees H and H’ in the same class and o the permutation between their labels,
the configuration (H*, H) has the same properties satisfied as the configuration
(c(H*), H').

Since the running time of the simulation increases exponentially with slight
addition to n or k, in order to have partial results from otherwise computationally
impossible simulations, randomly selected profiles were chosen for every unique
representative consensus tree in order to have a more accurate context and so a
more precise set of implications.

Figure 1 shows the overall concept lattice, having 2,821 concepts. Although
such a huge lattice is hard to read, it is strongly well-structured. There are only
82 implications on the canonical basis (Table 1). The lower (in the lattice) a
property is, the less specific it is: the atoms define four big (overlapping) families
of functions: (USP), (NIP), (cPO) and (PO), setting Nelson-Page function apart.
Under (PO) and (cPO), we can find the family of consensus functions satisfying
both: (LM), (FD), (Med), (Maj+), (Ol).

A few (well known) implications arise from the lattice. The meet of (NP) and
(QSP) is the Adams’ consensus rule, thus uniquely defining it (Adams 1986). (USP)
is a weakening of (QSP), which is a weakening of (SP). Relationships amongst
axioms (Fig. 2, left) are becoming clearer too: (PO) is satisfied if we have (Btw)
(Neumann 1983), which is satisfied if we have (Dct). While considering the lattice
of consensus functions (Fig.2, right), it is similarly well-structured. Apart from
obvious special cases ((Str) and (Prj) implying (Ol), (Lo) implying (LM)) and
previously known implications ((Maj) implying (Med)), all consensus functions are
clearly independent and well-defined.

Our main result is a negative one: there are few unknown implications, and
the consensus functions studied are independent. Unfortunately, a drawback of
our approach is that we cannot implement fundamental (and desirable) axioms
like Independence or Neutrality by construction as these properties are on two
different profiles. We are planning to code more consensus functions (such as
MREP, local, ...) in order to reach some exhaustive,or as close as it can be, study
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Fig. 1 Concept lattice on 9 axioms and 13 consensus functions (Drawn with ConExp Yevtushenko
(2000))

of consensus functions on hierarchies. Similar work is scheduled to extend the
simulation software to more general structures, such as weak hierarchies (Bandelt
and Dress 1989), 2-3 hierarchies (Bertrand 2000), pyramids (Bertrand and Diday
1985), and different classes of lattices.
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Table 1 Implications associated with the lattice

1. Btw — PO 42. PO cPO SP — Str

2. TPO — PO 43. Dct TPO USP Med — Prj

3. Dct — Btw 44. Dct USP NIP Maj+ — Ol

4. NP — TPO Btw 45. TPO Dur Maj+ — QSP

5.QSP — USP 46. Dct USP NIP FD — Ol

6. SP — cPO QSP 47. Maj+ Amed — Btw FD

7. Med — PO cPO 48. TPO USP NIP Maj+ — QSP

8. 01 — PO cPO 49. Btw Med LM Amed — Maj

9. Maj+ — PO cPO 50. Str Med — LM

10. FD — PO cPO 51. TPO USP NIP FD — QSP

11. Prj — Dct cPO Ol 52. TPO USP Med FD — QSP

12.Lo - LM 53. Dct TPO USP NIP — cPO Prj Ad Dur
13. Maj — Med LM; 54. TPO QSP Ol Dur Maj+ — Ad

14. Dur — USP Btw 55. Maj Ol Lo NIP Maj+ — FD

15. Amed — PO 56. Dct TPO Lo Med — NP

16. Ad — NP QSP Btw 57. TPO Dur FD — QSP

17.LM — PO cPO 58. Btw NIP LM Amed — Dct

18. Str — SP Ol 59. Str TPO Dur — Ad

19. Lo FD — Maj+ 60. Str Maj+ — Lo Med

20. NP USP Btw — QSP Ad 61. Dct TPO Lo NIP — NP

21. Dct USP Dur — cPO Prj 62. TPO QSP Ol Dur FD — Ad

22. Dct QSP — Prj Dur 63. USP Amed — Btw

23. Dct TPO USP Ol — Prj 64. Btw NIP Maj+ FD Amed — Dct

24. Dct NIP Med — Ol 65. Str FD — Lo Med Maj+

25. FD Amed — Btw 66. TPO QSP Maj FD — Ol

26. Maj NIP FD — Ol 67. Btw NIP Med Amed — Prj

27. TPO Dur Med — Ad 68. PO cPO Btw Lo LM Amed — Dct Maj+ FD
28. Dct USP NIP LM — Ol 69. Btw Med Maj+ FD Amed — Maj

29. TPO Ol Dur LM — Ad 70. Str NIP — Med LM

30. USP Maj NIP — Ol 71. TPO Btw Maj+ FD Amed — Dct
31.LM Amed — Btw 72. Str Lo NIP Med — Maj+ FD

32. TPO USP Ol NIP — QSP 73. USP Btw LM Amed — Dct

33. TPO USP NIP LM — QSP 74. USP Btw FD Amed — Dct

34.Dct TPO OINIP LM — Prj  75. Str Btw NIP Med LM — TPO

35. Ol Amed — Prj 76. USP Btw NIP Amed — Prj FD

36. TPO NIP Dur — Ad 77. USP Btw Med Amed — Maj Prj

37. TPO USP NIP Med — QSP  78. Dct TPO Lo Maj+ FD Amed — NP
38. Dct TPO OI NIP Med — Prj  79. Str SP Prj Lo Dur Med Maj+ — Maj
39. TPO USP Lo Med — QSP 80. Str TPO SP Prj NIP Ad Dur Med LM — Maj
40. Dct TPO Ol Lo — Prj 81. QSP Btw Amed — Str Maj Prj Lo Dur Maj+ FD
41. NIP Amed — Btw 82. USP Btw Dur Amed — Str QSP SP Maj Prj Lo

Maj+ FD
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Fig. 2 Concept lattice associated with axioms (left) and consensus functions (right) (Drawn with
ConExp Yevtushenko (2000))
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Comparing Earth Mover’s Distance
and its Approximations for Clustering Images

Sarah Frost and Daniel Baier

Abstract There are many different approaches to measure dissimilarities between
images on the basis of color histograms. Some of them operate fast but generate
results in contradiction to human perception. Others yield better results, especially
the Earth Mover’s Distance (EMD) (Rubner et al., Int J Comput Vis, 40(2):
99-121, 2000), but its computational complexity prevents its usage in large
databases (Ling et al., IEEE Trans Pattern Anal Mach Intell, 29(5):840-853,
2007). This paper presents a new intuitive intelligible approximation of EMD. The
empirical study tries to answer the question whether the good results of EMD
justify its long computation time. We tested several distances with images that were
changed by normally-distributed failures and evaluate their results by means of the
adjusted Rand index (Hubert et al., J Classif, 2:193-218, 1985).

1 Introduction

The aim of our research is to cluster image databases. One purpose will be in
marketing, e.g. it could be used for clustering consumers based on their favorite
holiday pictures (Baier and Daniel 2011). There will also be a private use, e.g users
would be able to organize their image databases automatically. Therefore we are
searching for reliable distance measures to cluster images with the smallest number
of misclassifications according to some prespecified criteria.

The Earth Mover’s Distance is already known in the area of image retrieval
but it has not been used for image clustering. There are already some empirical
evaluations (e.g. Puzicha et al. (1999) or Ling and Okada (2007)) verifying that
EMD is one of the most suitable distances for content based image retrieval (CBIR).
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In CBIR applications the EMD between the query image and every contemplable
image of the database has to be computed. Therefore n — 1 distances are required
for a database with n images. For clustering images of the same database, usually
% (n2 — n) distances have to be calculated. The high number of required distances
is one more reason to search for a faster metric for the area of image clustering.
The rest of this paper is organized as follows: Sect. 2 will briefly summarize the
theoretical foundations for our study. In Sect. 3 the mathematical background of the
original EMD and our own approximation algorithm will be presented. The results
of our experiments are illustrated and declared in Sect. 4. Finally we conclude our

findings and particularize our plans for future work.

2 Comparing Images Using Color Histograms

2.1 Color Histograms for Images

In the following we assume that an image A (or B, C, ... ) can be summarized as a
collection of 74 pixels with color measurements C* = {c{', ..., ¢/, }. The measure-
mented (r = 1,...,T4) takes values from X = {xy,...,xp} C RX which reflects
the possible intensities in a underlying prespecified K-dimensional color space. In
digital image processing, K = 3 has proven to be useful e.g. when the 8-bit-coded
RGB (Red-Green-Blue) color space X = {(0,0,0), (0,0, 1),...,(255,255,255)}is
used with M = 256° = 16,777,216 different colors (= RGB intensity triples).

For characterizing the distribution of these measurements across the image (and
for comparing images), (color) histograms can be used. A histogram is a fixed-
size discrete distributional function with an a priori declared number N of disjoint
color ranges X; C X (i = 1,..., N), the so-called bins. So, e.g., if each possible
color of the 8-bit-coded RGB space would be declared as a bin, we would have
N = M = 16,777,216 bins. Alternatively, if 8 subsequent intensities in each of the
K = 3 dimensions would be summarized, one would receive only N = (%%)3 =
323 = 32,768 bins. For each bin i of histogram h* = {(p{', h{"), ..., (p&. hyy)} we
can calculate its number of colors in its range N;, its position (mean color) in the
color space p; and the corresponding number of pixels A in image A4 according to

M r
1
N; = E Lix,exips Pi = N Z X, b = Zl{cf‘EXi}' M
i t=1

m=1 X €X;

Usually, to make images comparable with different numbers of pixels
(TA,TB,..)), the histogram values are transformed into shares of pixels, i.e. the
frequency A is replaced by the weight (share) w! = h#/T4. Thus we get the
normalized histogram w = {(p/l, wi'), ..., (p4, wH)}. Also, instead of histograms
w.r.t. to the same color ranges across all images, so-called signatures can be used,
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Fig. 1 The CIE L*a*b* color space (left) and an example of a color intensity histogram (right) of
a macaw picture (middle)

which describe the color distribution of an image via image-specific non-empty
bins. An adequate coding for a signature for image 4 with N4 bins could be
q' = {(p{".w).....(py.. wy.)} (N* < N). The positions and weights are
calculated in the same way as above. This is especially useful when parts of the
color space are expected to have no weights, e.g. when comparing underwater-
images without red or yellow colored pixels. However, in the following, we restrict
our discussions to histograms and weights.

2.2 The CIE L*a*b* Color Space

In our experiments we use distances between color histograms to compare images.
For humans, the similarity of colors has proven to be very important (see Swain
and Ballard 1991). So, e.g. humans use colors to interpret traffic signs and to decide
whether food is healthy or not, animals use colors to send messages or warnings.
There are many different color spaces. Probably the best known is the above
mentioned RGB space which uses an additive mixing of primary color intensities.
Initially it was used for photographic experiments by James Clerk Maxwell in 1861
using three color-filtered separate takes. Later it became popular for TV, computer
displays and other electronic devices. It bases on the human processing of color
stimuli via three types of retinal cones in the eye. But it was not designed to
produce color codings whose distances reflect perceived color differences. Here,
the CIE (Commission Internationale de 1’Eclairage) L*a*b* color space — also
a three-dimensional color space — has proven to be more adequate (see, e.g. the
experiments conducted by Schwarz et al. (1987)). The first dimension represents
the lightness (L*), the second and third are opponent red-green (a*) and yellow-
blue (b*) color-axes (see Fig. 1). Every visible color is represented in this space,
thus no output-device can display all colors of the L*a*b* color space. The color
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Table 1 Overview of the six traditional distance measures used in our experiments. The distance
is calculated on the basis of the normalized histograms w4 and w? with m; = (w* + w?)/2 and
w; = Z']:l w;. The computational complexity (abbreviated: CC) relates to the number of bins N

Distance Type Formula CC
Euclidean Bin-by-bin dp, (w4, wh) = \/Z, (wit —wk)2 O(N)
distance
Jeffrey Bin-by-bin dy(wi, wh) = O(N)
. wi wh
divergence Y (W’A log (r_n‘,_) +w¥ log (;:‘,_))
in(w? wh
Histogram- Bin-by-bin dn(wt, w8) =1— % O(N)
Intersection o
Quadratic-form Cross-bin dor(wi, w8) = O(N?)
\/(WA _ wB)TS(wA _ wB)
Match distance Cross-bin dy(wh,wh)y =3 | vl =3B | O(N)
Kolmogorov- Cross-bin dgs(wh, w8y = (max; | Wil — W8 |) O(N)

Smirnov-dist.

similarity functions developed by the CIE are based on so called ‘supplementary
standard colorimetric observers’ to get a relation between the perceived color and
the physical reason for a color-stimulus (Wyszecki and Stiles 1982). It is one of
the common color feature spaces in computer vision (see: Rubner et al. (1997) or
Puzicha et al. (1999)) and even professional image processing software like Adobe
Photoshop uses the L*a*b* color space for internal color processing. The L*a*b*
coordinates can be obtained by transforming RGB coordinates into the XYZ system,
which is able to normalize the colors with respect to the source of illumination. The
second step is a nonlinear transformation from the normalized XYZ-system into
the L*a*b*-system. In this special color space the calculated Euclidean distance
between two colors corresponds to the human perception of color dissimilarity. As
a result the ground distance (Sect. 3.1) for the EMD will be the Euclidean distance,
while using this color space in our experiments.

2.3 Traditional Distance Measures

Puzicha et al. (1999) compared the EMD with seven other distance measures on
histograms w.r.t. image retrieval. They compared the number of correct retrieved
images relative to total number of retrieved images. Unfortunately, their results
don’t solve our problem. For example, Kullback-Leibler divergence yielded a small
percentage of classification errors but because of its asymmetry it is not usable for
hierarchical clustering approaches. Table 1 lists the traditional distance measures
we used in our evaluation. All distances between image A and B make use of the
corresponding normalized histograms w#, w® w.r.t. the L*a*b* color space and
the same color ranges (bins). The quadratic-form distance additionally uses the
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symmetric similarity matrix § € R¥*V with s =1-— % (Rubner et al. 2000),
ij
where g;; is the distance (we used Euclidean dist.) between the positions plA and pf

of the bins i and ;.

3 EMD and its Approximations

3.1 Theoretical Background of Earth Mover’s Distance

The basis for comparing images via minimum histogram transformation costs
was firstly presented by Peleg et al. (1989). Rubner et al. (1997) than introduced
signatures to shrink the problem and firstly named this measure Earth Mover’s
Distance (EMD) according to a common transportation problem, which searches
for the ‘cheapest’ way to put earth from a set of regionally spread piles (suppliers)
to a set of regionally spread holes (demanders). That also makes clear, why empty
bins can be removed; since suppliers without earth or demanders without demands
are unimportant for this problem. Assuming that the color signature of one image
is the available earth distributed across a set of regions (= bins) and the signature
of the second image is the distributed demand across the same set of regions, the
EMD computes the minimum cost that has to be paid to distribute the available
earth according to the demands.

The units of earth transported from a supplier (pile) i to demander (hole)
j are called flow f; and the distance the flow has to take is called ground
distance. The ground distance g; represents the costs to transport one unit of
earth from supplier i to demander j. Usually the Euclidean distance between the
corresponding bin positions is used. Rubner et al. (1997) formally defined the
problem as follows: For two given signatures g1 = {(p{,w{),..., (pﬁA,ng)}
and % = {(pB,wh),..., (pf,B , wf,,,)}, where p/ and pf are the positions and w!
and wf the weights of the bins, with g;; =|| pA — pf |l2 GGif the Euclidean distance is
used as ground distance) we search for the flow, that minimizes transportation costs

NA NB

EMD(q", q®) = min Z Z figij st )

i=1j=1

N4
N4 Y fi<wh Vi<i<N%

i=1

IA

NB
fiz 0 Y fi<w! VI<i
j=1

NA NB

NA NB
o A B
2D Si=min| Y owly ]

i=1j=1 i=1 j=l1
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s 3 3 Algorithm: EMD,, (h* ,h®)
h= h*-h?®
h? 2 hP 2 2 sum = sum(h®) = sum(h®)

r=1, EMD;y,=0

while (sum>e) {
I I . for (i=1...N with: h{>0){

A A I A A B B B B B .. 1f (Ipf-pSi<r && h5<0){
b, b, <N b, < IS b, P, b, b, . £=min (|nS|, INS])
.. hf=h{-f
(h*-h®), (h*-n®), . . . h§=hS+f
1 1 1 1 e EMD;gpy=EMDp,+£*r
ro=1 ro=1 r,=2 .. . sum=sum-f
/ \ — ... r=r+1
Bf p, p P B P} 12 I

-}
}Return EMDyg,

Fig. 2 A visualization of the IRA algorithm using a sample calculation (/eft) and the pseudo code
(right). h* and h® are two one-dimensional histograms. (h* — h®), is the difference-histogram.
In the first step, where the radius equals one, there is a hole in a circuit of the pile at position p$
and bin p4C. After filling this holes there is one unit left. In (h* — h?), the radius is increased. The
last hole can be filled because it is in a circuit of the pile at p§

The theoretical computation complexity of the traditional EMD is &'(z*log z%)
where z is the number of non-empty bins if signatures are used. Empirical running
times are given by Rubner et al. (2000). The main advantage of EMD for image
clustering is that it is a cross-bin distance with adjustable ground distances. That
means, the ground distance can be adapted to the corresponding feature space
(e.g. L*a*b*-color space, texture-distributions, etc.). So, in contrast to bin-by-bin
distances, that only compare corresponding bins, the EMD notices if there is a small
color shift between two images and calculates only a small difference between these
images.

3.2 Increasing Radius Algorithm (IRA)

Now we want to introduce our own approximation, the Increasing Radius Algorithm
(IRA), which is much more intelligible than other approximations and fast to
implement. The first step is to calculate the difference-histogram (Fig. 2). Positive
values now will be the piles and negative ones the holes of earth.

The first radius o = 1. The algorithm runs through the difference histogram and
adds as much mass as possible to all negative bins that are located within a circuit
(with radius rp = 1) around a positive bin. After every iteration the radius will be
increased (r; = 2). In the example in Fig.2 there are two units of earth that are
transported over a ground distance of rp = 1 and one unit that is transported over
a ground distance of r; = 2. The result is a distance between the histograms of
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2% 14 1x%2 = 4, which still has to be divided by the total weight 11. After at
most N2 iterations the algorithm finishes. The results are presented in Sect. 4. At
the moment the Increasing Radius Algorithm (IRA) only works with histograms
up to three dimensions. But we are going to extend of the algorithm for higher-
dimensional feature spaces, where the radius will determine a hyper sphere around
positive bins.

4 Experimental Comparison of Distance Measures

We compared the traditional EMD with six other common distance measures, and
the referred Increasing Radius Algorithm. In image retrieval mostly the number of
correct retrieved images is counted. To make the clustering result comparable we
used the adjusted Rand index (Hubert and Arabie 1985).

For our tests we used 15 holiday pictures from three categories: sunset,
mountains, and cities at night. We did the test with low-level, medium-level, and
high-level failures (see: Table 2). In each test set-up every of the 15 images was
copied 10 times. The copies were changed by normally-distributed failures. In each
case we did one of the following distortions: decreasing resolution, decreasing
contrast, decreasing the red color-band, increasing brightness, and adding Gaussian
noise. We picked out these distortions, because they seem to be common in digital
photography. To make an empirical evaluation we repeated every test set-up five
times with new random values to make a Monte Carlo analysis. We decreased the
resolution e.g. in high-level distortion up to 95 %, but nearly all metrics were robust
to this change. We also decreased the contrast from the original (0:255) range down
to a minimum of (108:147). The brightness was increased up to 192, where the
maximum 255 would be a totally white image. In the case of color distortion we
decreased the percentage of the red color band, what means that the image became
more cyan. The last distortion was to add Gaussian noise with a standard deviation
up to 800 (in high-level case) (Bordese and Alini 2010, pp. 37-38).

In average the EMD yielded the highest adj. Rand indices but also the IRA,
quadratic-form, histogram-intersection, and Jeffrey-div. achieved high values. With
an Intel core i7 2,6 GHz PC (Windows 7) with 4GB of RAM the average
computation times for one distance are shown in Fig. 3 (software was implemented
by our own with C++ using Qt application framework).

5 Conclusion

We found out, that distances that produce good CBIR results are not necessarily
usable for image clustering. But the EMD proved to be an appropriate measure
to cluster images because it is robust to changes in color, resolution, and noise,
it yielded the best average adjusted Rand index (0.91), and for a limited number
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Fig. 3 A log-log plot of average computation times of the five best distance measures of our
experiment in relation to the number of histogram bins

of colors it is even faster than quadratic-form. There are other distances, that are
almost as good as EMD and only take a fraction of the time EMD needed. For
example histogram-intersection and Jeffrey-divergence are bin-by-bin distances and
yielded an average adjusted Rand index of about 0.85. But they only took 0.10 ms to
calculate one distance. Our own Increasing Radius Algorithm achieved the second
best results but it admits of improvement.

In the next time we will check more approximations for their usability in
image clustering and extend our own algorithm for multi-dimensional features and
different ground distances.
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A Hierarchical Clustering Approach
to Modularity Maximization

Wolfgang Gaul and Rebecca Klages

Abstract The problem of uncovering clusters of objects described by relationships
that can be represented with the help of graphs is an application, which arises in
fields as diverse as biology, computer science, and sociology, to name a few. To
rate the quality of clusterings of undirected, unweighted graphs, modularity is a
widely used goodness-of-fit index. As finding partitions of a graph’s vertex set,
which maximize modularity, is NP-complete, various cluster heuristics have been
proposed. However, none of these methods uses classical cluster analysis, where
clusters based on (dis-)similarity data are sought. We consider the lengths of shortest
paths between all vertex pairs as dissimilarities between the pairs of objects in order
to apply standard cluster analysis methods. To test the performance of our approach
we use popular real-world as well as computer generated benchmark graphs with
known optimized cluster structure. Our approach is simple and compares favourably
w.r.t. results known from the literature.

1 Introduction

Graph clustering, sometimes also referred to as community structure detection in
graphs, combines the research areas of graph theory (where binary, symmetric re-
lations between objects are illustrated by undirected, unweighted edges between the
vertices of a graph which represent the objects) and cluster analysis (where groups
of vertices revealing special graph structures have to be found).

While in standard cluster analysis of dissimilarity data homogeneous clusters are
sought that are heterogeneous among each other, in graphs we try to find tightly knit
groups of vertices with few edges between these groups.
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A popular goodness-of-fit index to estimate and compare the quality of this
kind of clusterings in graphs is called modularity, which was suggested in 2004
(see, e.g., Newman and Girvan 2004; Newman 2004a,b; Clauset et al. 2004). Other
suggestions to measure graph clustering solutions are known (see, e.g., Brandes and
Erlebach (Eds.) 2005), but will not be addressed here. A definition of modularity
as well as a discussion concerning approaches using modularity are presented in
Sect.2. The application of shortest path dissimilarities in order to cluster graphs
is motivated and explained in Sect. 3, where we also propose our approach, which
consists of the following main steps: (1) computation of all shortest path lengths,
(2) application of standard hierarchical clustering, (3) search for possible local
improvements with the help of a vertex exchange algorithm. In Sect.4 we show
how our approach performs on benchmark graphs from the literature with known
cluster structure. Finally, we give a summary as well as a brief outlook in Sect. 5.

2 Modularity as a Goodness-of-Fit Index

By G = (V, E) we denote an undirected, unweighted graph with a set V' of n
vertices and a set £ of m edges that link pairs of vertices, i.e., e = (i, j) € E
with i, j, € V, where no parallel edges (for each pair of vertices at most one edge
exists) and no loops (e = (i,i),i € V') are considered. A = (A4;;) with 4;; = 1, if
e =(i,j) € E,and A;; = 0, otherwise, describes the adjacency information of the
graph.

Formally, modularity is defined using the entries A;; of the adjacency matrix
A, the degrees k; of vertices i (number of edges incident to i), and the underlying
graph clustering, where ¢; denotes the cluster that contains vertex 7. In modularity
calculations only relationships between vertices in the same cluster are considered
which is achieved by using the Kronecker-Delta §(c;, c;) (equalto 1if ¢; = c¢;, and
equal to 0, otherwise). Then, as formula for the modularity Q one can use

1 ki-k;
0= %Z (A,,» — Zm’)-S(ci,c,»). (1)

i.j

Note that every edge is incident to exactly two vertices, so 2m is equal to the sum
of all vertex degrees. [—0.5; 1] is a theoretical interval for values of Q (see, e.g.,
Brandes et al. 2007), which depend on the graph’s structure, i.e., two clusterings
in different graphs cannot be compared using modularity. In real-world graphs
(Newman and Girvan 2004) state that optimized values of Q are often elements
of the interval [0.3;0.7].

Modularity has been applied in quite a number of contributions, which shows the
importance of this measure in scientific context. Originally introduced by Newman
and Girvan (2004) as a new goodness-of-fit index along with a divisive hierarchical
graph clustering procedure, Newman (2004a) suggested an agglomerative clustering
method, which merges those two clusters in each agglomerative step whose fusion
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causes the largest increase or smallest decrease of modularity. Brandes et al. (2008)
showed that modularity maximization over all partitions of the vertex set V' is NP-
complete. Therefore, various heuristics to tackle this problem have been proposed.
A modification of Newman’s agglomerative algorithm was given by Schuetz and
Caflisch (2008), which enables the fusion of more than two communities in
each iteration step. Other hierarchical approaches were given by Radicchi et al.
(2004), Xiang et al. (2008) as well as Mann et al. (2008). Algorithms similar to
hierarchical clustering have been proposed by Arenas et al. (2007), Djidjev (2008),
Zhu et al. (2008), and Blondel et al. (2008), who developed different procedures
to coarsen the graph in question. Then, the coarsened copies of the original graph
are either clustered or the coarsest version of the graph is defined as a clustering,
whose cluster solutions are conveyed and refined to fit the original graph using
iterative uncoarsening. Also, approaches using heuristics known from other fields
of research have been applied, for example mathematical optimization (Duch and
Arenas (2005) employ an extremal optimization procedure, Agarwal and Kempe
(2008) express the problem with the help of linear and vector programming).
The application of probabilitic flows on random walks in graphs (Rosvall and
Bergstrom 2008) and matrix factorization (Ma et al. 2010) have also been suggested.
A significant number of authors (see e.g.,.Newman 2006) use spectral clustering
algorithms (see Nascimento and de Carvalho (2010) for a recent overview).

Besides the development of various procedures that aim to find a partition of the
vertex set with highest possible modularity, the concept has also been criticized.
Fortunato and Barthélemy (2007) showed that there is a lower bound to the sizes of
clusters that can be detected using heuristics which strive to maximize modularity.
This lower bound depends on the number of vertices n and the interconnectedness of
the clusters. Variations of modularity were proposed to avoid this weakness (see e.g.,
Li et al. (2008), who suggested a local measure that takes the density of subgraphs
into account). However, the original definition of modularity is still widely used and
extensions to weighted graphs (Newman 2004b) as well as to directed graphs (e.g.,
Arenas et al. 2007; Leicht and Newman 2008; Kim et al. 2010) have been presented.
Good et al. (2010) review the performance of modularity maximization in practical
contexts.

3 A New Heuristic to Find Clusters in Graphs

Given the many contributions in which modularity was used for community struc-
ture detection we considered the following idea to cluster a graph into subgraphs
with closely connected vertices and comparatively few edges between different
subgraphs: In a graph the important information is stored in the adjacency matrix
A = (A;;). While A;; = 1 might be a reason to put vertex i and j into the same
cluster, for a pair of vertices i and j with A;; = O there is no information how
similar i and j might be. They could have a common neighbour but they could also
be in completely different areas of the graph. Therefore, we define the dissimilarity
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between two vertices as length of a shortest path that connects them in the graph.
If no path exists a sufficiently large constant is used to indicate this situation.
Now, the solution of the underlying problem in terms of standard cluster analysis
is straightforward and, as writing restrictions do not allow to describe the single
steps of the new heuristic in mathematical terms, we give the following verbal
explanations: First, we determine the lengths of the shortest paths between all pairs
of vertices in the graph (see, e.g., Floyd 1962; Warshall 1962). Second, we apply
a hierarchical clustering method to the shortest path length matrix computed in the
first step and calculate the modularity for the clusterings given by the hierarchy.
(Average and Weighted Average Linkage were well-suited for our data.) Third, an
exchange algorithm called vertex mover (Schuetz and Caflisch 2008) is applied to
the clustering in the hierarchy with highest modularity, which also provides the
number of clusters needed to check whether improvements by exchange operations
are still possible.

4 Performance on Benchmark Graphs

To test the performance of our approach we used several well-known undirected,
unweighted real-world as well as computer generated benchmark graphs.

Example 1. The first example is a well-known real-world graph by Zachary (1977),
who examined the relations between 34 members of a karate club. Two vertices of
the graph are adjacent, if the corresponding people spent a significant amount of
time together during the examination (see Fig. 1).

By chance there was a dispute between the principal karate teacher (vertex 33)
and the administrator (vertex 1) of the club while Zachary studied the relations
in this group, which caused the club to spilt into two subgroups. This real-life
partition is depicted in Fig. 1 by a black line. The modularity of this spilt is 0.3715.
Interestingly, a better Q for a solution with two clusters is 0.3718. Not only is this
value only slightly larger, the clusters are also almost the same, just for vertex 10 the
group membership has to be changed. This shows that modularity can successfully
be used to predict the clusters of the split of this social network which separated into
two groups. Our approach finds the two-cluster-solution with the better modularity
mentioned above, which was also detected by Newman and Girvan (2004).

Additionally, our method finds the largest known modularity value for a cluster-
ing of this graph which is Q = 0.4198 as also reported by Duch and Arenas (2005).
This value is obtained for the division into four clusters, which is also shown in
Fig. 1, where the four different colors of the vertices indicate the four groups. These
clusters happen to be subgroups of the real-life decomposition that Zachary (1977)
observed.

Example 2. As real-world graphs known from the literature can be very specific
and sometimes need lengthy explanations of the relationships that underly the
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Fig. 1 The Zachary network of friendship ties between members of a karate club

described situation we tested our new method on a class of computer generated
benchmark graphs with built-in community structures introduced by Lancichinetti
et al. (2008). Although the authors argue that there is no guarantee that the bulit-
in community structures constitute solutions with highest modularity these graphs
provide the up-to-now best known benchmarks. They can be constructed for any
choice of the following three parameters: n (the number of vertices), k,, (the average
vertex degree), and u (a mixing parameter which denotes the fraction of a vertex
v’s neighbours not in c¢,). Heterogeneous vertex degrees are modeled by a power
law distribution with parameter t;, heterogeneous cluster sizes are modeled by
a power law distribution with parameter t,. To take into account restrictions for
real-life graphs the authors propose 7; € [2,3], 2 € [1,2], and report on results
of testgraphs with all four combinations of the extreme cases of t; and 1, for
which a very similar behaviour of the modularity calculation was found in all cases.
Therefore we chose 7; = 2 and 1, = 1. So far we used different numbers of vertices
n € {100; 500; 1,000} with adequate average degrees k,, € {10; 15;20} and mixing
parameters & € {0.1;0.2;0.3;0.4;0.5}. Note that © = 0.1 indicates a strong cluster
structure as 90 % of the neighbours of each vertex v are in the same cluster ¢,, while
in graphs with p = 0.5 half of the neighbours of each vertex are in other clusters
than v. A minimal and a maximal value for the cluster sizes can also be selected. The
software to construct these benchmarks is explained in a read-me file provided by
the authors, in which the cluster sizes are chosen to be in the interval [20, 50], so we
also used these values. In order to better analyze the results found by our method, we
did not only compare our findings with the built-in community structures given by
Lancichinetti et al. (2008), but also implemented the spectral approach proposed by
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Table 1 Results on benchmark graphs by Lancichinetti et al. (2008) with 100 vertices

Benchmark graphs Spectral approach Shortest path approach

n kav 22 m Q Bench (gBench Q Spec (gSpec Rand Q SP | (gSP | Rand
100 10 0.1 503 0.7618 8 0.7618 8 1 0.7618 8 1

100 10 0.2 494 0.6610 8 0.6610 8 1 0.6610 8 1

100 10 03 488 0.5871 9 0.5871 9 1 0.5871 9 1

100 10 04 488 04997 11 0.4997 11 1 0.4976 10 0.9836

100 10 0.5 495 0.3977 11 0.3871 8 0.9453  0.3899 10 0.9675

Table 2 Results on benchmark graphs by Lancichinetti et al. (2008) with 500 vertices

Benchmark graphs Spectral approach Shortest path approach
n kav 14 m QBench CgBench QSpec CgSpec Rand QSP CgSP Rand
500 15 0.1 3948 0.8203 14 0.8203 14 1 0.8203 14 1
500 15 0.2 3,889 0.7247 17 0.7247 17 1 0.7247 17 1
500 15 03 3,855 0.6320 17 0.6320 17 1 0.6320 17 1

500 15 04 3918 0.5330 16 0.5207 17 0.9960 0.5330 16 1
500 15 0.5 3,853 04262 15 0.4037 12 09563 04229 14 09921
500 20 0.1 4,663 0.8187 15 0.8187 15 1 0.8187 15 1

500 20 0.2 5,041 0.7262 16 0.7262 16 1 0.7262 16 1
500 20 03 4801 0.6167 13 0.6167 13 1 0.6167 13 1
500 20 04 5,065 0.5238 14 0.5238 14 1 0.5238 14 1
500 20 0.5 4906 04202 13 0.4202 13 1 04170 12 09913

Newman (2006) to see which results a known algorithm obtains on these graphs. Of
course, comparisons to other modularity optimizing techniques could be performed.
We selected spectral clustering because of the recent overview of Nascimento and
de Carvalho (2010).

In the Tables 1-3 we present a comparison between the modularity value Q gencn
of the built-in community structures @pencn to the modularity values Qgpe of
solutions €sp.. found by our implementation of Newmans spectral method and to
Qsp of clusterings Gsp constructed by our own SP (Shortest Path) approach. With
|€| as cardinality of a clustering %', the numbers |€gench|, |Espec|, and |€sp| of the
clusters of the three solutions are given along with the Rand indices (see, e.g., Hubert
and Arabie 1985) comparing the clusterings of the spectral procedure and of our
method with the benchmark solution.

From the 25 (n, kv, 1, m) benchmark graphs in the Tables 1-3 in three cases
((100, 10, 0.4, 488), (500, 20, 0.5, 4,906), and (1,000, 20, 0.4, 9,731)) the spectral
approach performed slightly better while in seven cases ((100, 10, 0.5, 495), (500,
15, 0.4, 3,918), (500, 15, 0.5, 3,853), (1,000, 15, 0.3, 7,609), (1,000, 15, 0.4, 7,631),
(1,000, 15, 0.5, 7,571), and (1,000, 20, 0.5, 9,581)) our shortest path approach was
in front. In the other 15 cases both approaches showed identical outcomes. These are
convincing results that the enrichment of the adjacency information by shortest path
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Table 3 Results on benchmark graphs by Lancichinetti et al. (2008) with 1,000 vertices

Benchmark graphs Spectral approach Shortest path approach
n kav 22 m Q Bench (gBench Q Spec CgSpec Rand Q SP (gSP Rand
1,000 15 0.1 7,930 0.8594 29 0.8594 29 1 0.8594 29 1
1,000 15 0.2 7,858 0.7624 31 0.7624 31 1 0.7624 31 1

1,000 15 03 7,609 0.6617 30 0.6516 30 0.9969 0.6617 30 1
1,000 15 04 7,631 0.5615 29 0.5522 28 0.9965 0.5583 25 0.9901
1,000 15 05 7,571 0.4639 30 0.4293 16 0.9396 0.4555 21  0.9755

1,000 20 0.1 9834 08585 30 0.8585 30 1 0.8585 30 1
1,000 20 0.2 10,017 0.7582 29 0.7582 29 1 0.7582 29 1
1,000 20 03 9,765 0.6622 30 0.6622 30 1 06622 30 1
1,000 20 04 9,731 0.5659 31 0.5659 31 1 0.5596 25  0.9868

1,000 20 0.5 9,581 0.4633 30 0.4581 24 0.9875 0.4609 23  0.9880

lengths and the application of standard cluster analysis leads to a useful alternative
to known community structure detection techniques.

5 Conclusion

Against the background that finding a partition of a graph’s vertex set with
maximal modularity is a NP-complete problem, we proposed the application of
standard cluster analysis methods developed for dissimilarity data to the problem
of graph clustering. As dissimilarities between pairs of objects, in our case vertices,
are needed, we transformed the adjacency matrix into a matrix of shortest path
lengths between all vertex pairs of the graph. From all clusterings of the hierarchy
that was computed by a standard agglomerative cluster procedure we chose the
one with highest modularity as starting solution for an exchange algorithm. On
several benchmark graphs we obtained promising results showing that our approach
compares favorably with findings from the literature. A next challenge is to transfer
the ideas presented in this paper to directed graphs.

References

Agarwal, G., & Kempe, D. (2008). Modularity-maximizing graph communities via mathematical
programming. European Physical Journal B, 66, 409-418.

Arenas, A., Duch, J., Fernandez, A., & Gomez, S. (2007). Size reduction of complex networks
preserving modularity. New Journal of Physics, 9, 176.

Blondel, V. D., Guillaume, J.-L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of
community hierarchies in large networks. Journal of Statistical Mechanics, 10, P10008.

Brandes, U., & Erlebach, T. (Eds.). (2005). Network analysis: methodological foundations. In
Lecture notes in computer science (Vol. 3418). Berlin/Heidelberg: Springer.



86 W. Gaul and R. Klages

Brandes, U., Delling, D., Gaertler, M., Goerke, R., Hoefer, M., Nikoloski, Z., & Wagner, D. (2007).
On finding graph clusterings with maximum modularity. In Lecture notes in computer science
(Vol. 4769, pp. 121-132). Berlin/Heidelberg: Springer.

Brandes, U., Delling, D., Gaertler, M., Goerke, R., Hoefer, M., Nikoloski, Z., & Wagner, D. (2008).
On modularity clustering. IEEE Transactions on Knowledge and Data Engineering, 20(2),
172-188.

Clauset, A., Newman, M. E., & Moore, C. (2004). Finding community structure in very large
networks. Physical Review E, 70, 066111.

Djidjev, H. N. (2008). A scalable multilevel algorithm for graph clustering and commu-
nity structure detection. In Lecture notes in computer science (Vol. 4936, pp. 117-128).
Berlin/Heidelberg: Springer.

Duch, J., & Arenas, A. (2005). Community detection in complex networks using extremal
optimization. Physical Review E, 72, 027104.

Floyd, R. W. (1962). Algorithm 97: shortest path. Communications of the ACM, 5(6), 345-345.

Fortunato, S., & Barthélemy, M. (2007). Resolution limit in community detection. Proceedings of
the National Academy of Sciences, 104(1), 36-41.

Good, B. H., de Montjoye, Y.-A., & Clauset, A. (2010). The performance of modularity
maximization in practical contexts. Physical Review E, 81, 046106.

Hubert, L., & Arabie, P. (1985). Comparing partitions. Journal of Classification, 2, 193-218.

Kim, Y., Son, S.-W., & Jeong, H. (2010). LinkRank: finding communities in directed networks.
Physical Review E, 81,016103.

Lancichinetti, A., Fortunato, S., & Radicchi, F. (2008). Benchmark graphs for testing community
detection algorithms. Physical Review E, 78, 046110.

Leicht, E. A., & Newman, M. E. (2008). Community structure in directed networks. Physical
Review Letters, 100, 118703.

Li, Z., Zhang, S., Wang, R.-S., Zhang, X.-S., & Chen, L. (2008). Quantitative function for
community detection. Physical Review E, 77, 036109.

Ma, X., Gao, L., Yong, X., & Fu, L. (2010). Semi-supervised clustering algorithm for community
structure detection in complex networks. Physica A, 389, 187-197.

Mann, C. E, Matula, D. W., & Olinick, E. V. (2008). The use of sparsest cuts to reveal the
hierarchical community structure of social networks. Social Networks, 30, 223-234.

Nascimento, M. C., & de Carvalho, A. C. (2010). Spectral methods for graph clustering — a survey.
European Journal of Operational Research, 211(2), 221-231.

Newman, M. E. (2004a). Fast algorithm for detecting community structure in networks. Physical
Review E, 69, 066133.

Newman, M. E. (2004b). Analysis of weighted networks. Physical Review E, 70, 056131.

Newman, M. E. (2006). Finding community structure in networks using the eigenvectors of
matrices. Physical Review E, 74, 036104.

Newman, M. E., & Girvan, M. (2004). Finding and evaluating community structure in networks.
Physical Review E, 69, 026113.

Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., & Parisi, D. (2004). Defining and identi-
fying communities in networks. Proceedings of the National Academy of Sciences, 101(9),
2658-2663.

Rosvall, M., & Bergstrom, C. T. (2008). Maps of random walks on complex networks reveal
community structure. Proceedings of the National Academy of Sciences, 105, 1118-1123.

Schuetz, P., & Caflisch, A. (2008). Efficient modularity optimization by multistep greedy algorithm
and vertex mover refinement. Physical Review E, 77, 046112.

Warshall, S. (1962). A theorem on Boolean matrices. Journal of the ACM, 9(1), 11-12.

Xiang, J., Hu, K., & Tang, Y. (2008). A class of improved algorithms for detecting communities in
complex networks. Physica A, 387, 3327-3334.

Zhu, Z., Wang, C., Ma, L., Pan, Y., & Ding, Z. (2008). Scalable community discovery of large
networks. In Proceedings of the 2008 ninth international conference on web-age information
management, Zhangjiajie, China, pp. 381-388.

Zachary, W. W. (1977). An information flow model for conflict and fission in small groups. Journal
of Anthropological Research, 33(4), 452-473.



Mixture Model Clustering with Covariates
Using Adjusted Three-Step Approaches

Dereje W. Gudicha and Jeroen K. Vermunt

Abstract When using mixture models, researchers may investigate the associations
between cluster membership and covariates by introducing these variables in a
(logistic) regression model for the prior class membership probabilities. However,
a very popular alternative among applied researchers is a three-step approach in
which after estimating the mixture model (step 1) and assigning subjects to clusters
(step 2), the cluster assignments are regressed on covariates (step 3). For mixture
models for categorical responses, (Bolck et al., Political Anal 12:3-27, 2004) and
(Vermunt, Political Anal 18:450-469, 2010) showed this approach may severely
downward bias covariate effects, and moreover showed how to adjust for this bias.
This paper generalizes their corrections methods to be applicable also with mixture
models for continuous responses, where the main complicating factor is that a
complex multidimensional integral needs to be solved to obtain the classification
errors needed for the corrections. We propose approximating this integral by a
summation over the empirical distribution of the response variables. The simulation
study showed that the approaches work well, except for the combination of very
badly separated components and a small sample size.

1 Introduction

Most applied researchers using mixture models not only aim at finding a meaningful
set of clusters, but also wish to investigate which factors are associated with the
cluster membership of subjects. This profiling of clusters (or latent classes) as a
function of external variables (covariates) can either be achieved using a one-step
approach or a three-step approach (Bolck et al. 2004). In the one-step approach,
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the mixture model is expanded by including the relevant covariates in a regression
model for the prior class membership probabilities (Bandeen-Roche et al. 1997;
Dayton and Macready 1988). The parameters defining the mixture components —
the cluster specific means and (co)variances — and the covariate effects on the cluster
membership are estimated simultaneously. Alternatively, in the much more popular
three-step approach, the analysis is done in a stepwise manner. First, a standard mix-
ture model clustering is performed without covariates; second, the class membership
is predicted, typically using the Bayes modal rule; third, the association between
external variables and the predicted class membership is assessed, for example, via
a logistic regression analysis. Bolck et al. (2004) and Vermunt (2010) showed for
latent class models with categorical responses that this three-step approach may
yield severely downward biased estimates for the covariate effects. These authors
also showed how to adjust for this bias in step 3 by using information on the
classification errors introduced in step 2. Bolck et al. proposed a weighted analysis
with the inverse of the classification errors as weights whereas Vermunt proposed a
maximum likelihood method that takes the classification errors into account.

While the use of mixture models with continuous response variables is very
common, it is not immediately clear how the adjusted three-step methods should
be implemented when the response variables used in the mixture model are not
categorical but continuous. The aim of the current paper is to come up with such a
generalization. The main complicating factor is that the computation of the classi-
fication error matrix needed in step 3 requires solving a complex multidimensional
integral. We propose using Monte Carlo integration for this purpose, which if the
model holds can be replaced by a summation over the observed data points. The
performance of this approach is investigated in a simulation study.

The remainder of this paper is organized as follows. First, the mixture model of
normal distributions is introduced and the estimation of the class memberships and
the quantification of the classification errors is discussed. Subsequently, the relevant
one- and three-step approaches for investigating the association between external
variables and class membership are presented. These approaches are evaluated in a
simulation study. The paper ends with conclusions and practical recommendations.

2 Mixture Modeling and Classification

2.1 Mixture Models

The first step of the three-step approach involves estimating the parameters of a
mixture model without covariates (i.e., the class proportions and the cluster specific
means and (co)variances). Suppose that we have information on p response vari-
ables and that the interest lies in clustering of n observations into k exhaustive and
mutually exclusive homogeneous subgroups (latent classes). Let 7' be an unobserv-
able random variable containing the labels of the k subpopulations with realizations
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t=1,2,3,...,kandlet y;1, yis, ..., yip be the p-dimensional continuous random
variable of interest with joint probability density function f(y;,6) on R¥ for
i =1,2,3,...n, where 0 represents the vector of unknown parameters. The joint
density of y; can be defined as:

k
[0 =Y 7 f(3i.60), )

t=1

where m; = P(T =1t), with ZLI m; =1 and 7; >0V ¢, and where 6, denote the
vector of unknown parameters for cluster 7. Each of the component density functions
are assumed to come from a multivariate normal distribution parameterized by mean
vector u, and variance covariance matrix X;; thatis, 6, = (s, X;). The unknown
parameters are typically estimated using maximum likelihood, using an algorithm
for finding the maximum of the likelihood such as the Expectation-Maximization
algorithm (McLachlan and Peel 2000). Various software packages implementing
mixture of normals are currently available (e.g., Latent GOLD; Vermunt and
Magidson 2005).

2.2 C(lassification Rules and Classification Errors

Once the cluster-specific parameters of the mixture distribution are estimated,
the second step in the three-step approach involve allocating each subject to one
of the k classes. We will denote the predicted class membership by W, with

realizations = 1,2, 3, ..., k. The prediction for observation i is based on the cluster
membership probabilities which can be obtained using Bayes’ theorem:
7 f (i, 0r)
P(T =tly;,0) = ———. )
l f(i,0)

Let wi; = P(W = s|y;, 0) be the likelihood of being assigned to class s given the
assignment rule that is used. The most common rule is modal assignment, in which
case wj, is a hard indicator; that is,

| 1if P(T =s|y:,0) > P(T =t|y;,0)Vs #1t
"] 0 otherwise

3

is

An alternative rule is proportional assignment, in which case w;; = P(T = s]|y;, 0)
(Vermunt 2010).

Except for the situation in which P(T = t|y;, 8) is either O or 1 for all i, there
will be misclassifications. As discussed in more detail below, the total amount of
classification errors can be quantified as the probability that a respondent belonging
to cluster ¢ is assigned to cluster s, which can be expressed as follows:
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PW =sT =
POW =5IT =1) = (P(Tszt) & )

The numerator of Eq. (4) is the joint marginal probability of W and T', which can
be expressed in terms of the mixture model density. This yields:

PW =sT=1ly.0)f(y.0)dy

P(W:s|T:t):/

P(T =1)
_ / P(T =1y, 0)P(W =s|y.0) f(y.0)dy )
N P(T =1) '

The last step follows from the fact that W is independent of T conditional on y.

A complication factor in the computation of P(W =s|T =t) is that the expres-
sion in Eq.(5) contain an intractable higher-dimensional integral. We propose
solving this integral using Monte Carlo integration, which implies sampling say
m units from f(y, #) and computing the average of this sample. It should, however,
be noted that if the mixture model holds, the sample used to solve integral can also
be the n data points in the sample used to estimate the mixture model. This implies
that P(W = s|T = t) is approximated as follows:

1 Zn: P(T =1y, 0) P(W = s5|yi.0)

POV =sT=0)~~ P = . (6)

i=1

3 Relationship Between Class Membership and Covariates

3.1 One-Step Full Information ML Approach

Let z; denote the vector with covariate values for subject i . In the one-step approach,
inclusion of covariates involves expanding the standard mixture model defined in
Eq. (1) as follows (Vermunt and Magidson 2005; Dayton and Macready 1988):

k
fi.0lz) =Y P(T = tlz) f (i, 6). (7)
t=1

As can be seen, the prior class membership probabilities are now a function of
covariates. These probabilities are typically modelled using a logistic regression
equation; that is,

exp()/ot + ZqQ=1 Vthiq)
k .
Zm=l eXp(VOm + ZqQ=1 )/qmziq)

P(T =t|z) =
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The parameters of the mixture distribution and the covariate effects on the latent
cluster membership can be estimated simultaneously using maximum likelihood
estimation.

3.2 Standard Three-Step Approach

An alternative is to use a three-step procedure. After estimating a standard mixture
model and assigning individuals to classes, the relationship between the predicted
class (W) and external variables is investigated using a standard multinomial logistic
regression model:

eXp(yOS + ZqQ=1 yqsziq)

PW =slz) = : ®)
Z;ﬁ:l eXp(VOm + ZqQ=1 quziq)
The y parameters are estimated by maximizing the log-likelihood function:
n k
10g Lagps = »_ > _wislog P(W = slz;). ©)

i=1s=1

where in the case of modal assignment w;; is the hard indicator defined in Eq. (3).

3.3 Two Adjusted Three-Step Approaches

The standard three-step approach defines a model for the relationship between
external variables and the predicted cluster membership W instead of the true cluster
membership 7', which results in downward biased estimates for the covariate effects.
However, Bolck et al. (2004) and Vermunt (2010) showed how to adjust for this bias
by making use of the known relationship between P(W = s|z;) and P(T = t|z).

More precisely, the adjustment methods described below are based on the
following simple relationship:

k
P(W=s|z,~)=ZP(T=1|Zi)P(W=S|T:t)’ (10)

t=1

where P(W = s|T =t) was defined in Eqs. (4)—(6). It can be seen that P(W =s|z;)
is a weighted sum of P(T =t|z;) where the P(W = s|T =t) serve as weights.
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The logic of the correction method proposed by Bolck et al. (2004) — which
we refer to as the BCH approach — is that if (10) holds, P(T = t|z;) can also be
expressed as a weighted sum of P(W = s|z;); that is,

k
P(T =tlz) =) P(W = s|z)dy, (11)

s=1

where d;; is an element of the inverse of the k-by-k matrix with elements
P(W =s|T =t). Bolck et al. (2004) proposed re-weighting the data on W (the
class assignment weights w;;) by d; to obtain approximate data on 7. As shown by
Vermunt (2010), the BCH approach can be implemented by creating an expanded
data matrix containing k records per individual. The weight associated with the ¢th
record equals w} = Zf=1 wisdg. A logistic regression model for 7' can now be
estimated by maximizing the following weighted log-likelihood function:

n k
log Lgcy = Y »_wilog P(T = t|z). (12)

i=11t=1

Vermunt (2010) proposed using a sandwich variance estimator to take into account
the weighting and the multiple observations per individual.

Vermunt (2010) proposed another simpler adjusted three-step method. It is based
on the observation that Eq. (10) is in fact the equation of a latent class model with
a single response variable W and with covariates. Since P(W = s|T = t) is
estimated step 2, it can be treated as known in step 3. Because this three-step
approach involves maximizing a standard log-likelihood function in step 3, we refer
to it as the ML approach. More specifically, the parameters for the effects of the
covariates on cluster membership can be estimated by maximizing the following
log-likelihood function:

n k k
log Ly = » Y wilogy  P(T =t|z)P(W = s|T =1) (13)

i=1s=1 t=1

4 Simulation Study

4.1 Simulation Design

A simulation study was conducted to evaluate the performance of the various
approaches for dealing with covariates in mixture models for continuous responses;
i.e., the one-step ML, standard three-step, three-step BCH, and three-step ML
method. Data sets were generated from a three-class mixture model for six
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Table 1 Results averaged

over the nine combinations of Model Estimate SE SD MSE
sanlp]e size and sepa_rati()n Standard 1.013 0.079 0.096 0.852
between components for a y ML correction 1.962 0.210 0.223 0.231
parameter with a true One step 2.043 0.187 0.194 0.200
value of 2 BCH 1.982 0551 0390  0.393

continuous response variables and three covariates. The six responses were assumed
to come from univariate normal distributions within classes. The residual variance
was assumed to be equal across clusters and was used to manipulate the level of sep-
aration between clusters. The two independent factors that were manipulated were
the separation between components, quantified using an entropy based R? measure,
with low (R? = 0.43), medium (R? = 0.66) and high (R? = 0.86) separation, and
sample size (n =500; n = 1,000; n = 10,000). We looked at the averages of the
covariate effects across replications, their standard deviations across replications,
the averages of the standard errors of the estimates, and the mean square errors of
the estimates. The Latent GOLD program Vermunt and Magidson 2005 was used
in all stages of the simulation study such as generating data, estimating parameters
in the various modeling approaches, getting classifications, and preparing expanded
data sets. For this purpose, the program was called in a loop from a batch file.

4.2 Results

Table 1 presents the results averaged over all nine conditions for one of the covariate
effect having a true value of 2. It can be seen that the standard three-step approach
severely underestimates the parameter of interest, whereas both the ML and BCH
correction method reduce the bias considerably. The correction methods drop the
percentage of bias from 50 % in the standard three-step approach to less than 2 %,
which is similar to the bias of the one-step approach. The mean square error (MSE)
of the estimates indicates that the ML correction method is almost as accurate as the
one step method, whereas the BCH method is much less stable.

The performances of the various methods across the different simulation condi-
tions were also investigated. The results reveal that except for the small sample size
(n=500) and low separation (entropy = 0.43) combination, the BCH correction is
found to have less bias than the ML correction and the one-step method. Consistent
with the results of Table 1, the ML correction method is almost as efficient as
the one-step method especially for the better separation and larger sample size
conditions. In sum, the BCH method substantially reduces bias but is less efficient
than the one-step and the ML correction method, while the ML correction provides
estimates of a quality similar to the one-step approach for the more favorable
conditions (larger sample sizes and higher separation levels).
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5 Conclusions

This paper showed how to generalize the correction method for three-step latent
class analysis with categorical response variables proposed by Bolck et al. (2004)
and Vermunt (2010) to be applicable also in mixture models with continuous
response variables. In agreement with theory on Monte Carlo integration, it was
proposed to approximate the integral over the population density for the response
variables by a summation over the observations in the data set at hand. What
is clearly understood from the simulation results is that both the BCH and
ML correction method performs quite well, except when the separation between
components is extremely low and the sample size is small. This is in agreement
with simulation results by Vermunt (2010) for mixture models with categorical
responses. The practical advise to applied research is that one should not to use
an uncorrected three-step method, but instead use one of the adjusted method. Only
with extremely low separation levels combined with small samples, the one-step
approach is clearly the best choice.

One issue requires further research, that is, finding an explanation for the
instability of the BCH method and its overestimation of the SEs when used under
the least favorable conditions. Further extensions of the correction methods would
include situations where other categorical or continuous latent variables are used to
explain the class membership, or more in general to any situation in which results
from a mixture model clustering are used in subsequent analyses. These kinds of
extension seems to be more straightforward with the ML method than with the BCH
method.
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Efficient Spatial Segmentation of Hyper-spectral
3D Volume Data

Jan Hendrik Kobarg and Theodore Alexandrov

Abstract Segmentation of noisy hyper-spectral imaging data using clustering
requires special algorithms. Such algorithms should consider spatial relations
between the pixels, since neighbor pixels should usually be clustered into one group.
However, in case of large spectral dimension (p), cluster algorithms suffer from
the curse of dimensionality and have high memory requirements as well as long
run-times.

We propose to embed pixels from a window of w X w pixels to a feature space
of dimension pw?. The effect of implicit denoising due to the window is controlled
by weights depending on the spatial distance. We propose either using Gaussian
weights or data-adaptive weights based on the similarity of pixels. Finally, any
vectorial clustering algorithm, like k-means, can be applied in this feature space.
Then, we use the FastMap algorithm for dimensionality reduction.

The proposed algorithm is evaluated on a large simulated imaging mass spec-
trometry dataset.
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1 Introduction

Clustering is an excellent tool to divide a dataset into distinct groups. Especially
if no prior knowledge of the underlying structure is given, a representative can be
found for each group. Clustering of image pixels is a method of image segmentation,
where spatial smoothness of the segmentation map is often desired.

Image segmentation is used for mining of matrix assisted laser desorp-
tion/ionisation (MALDI) imaging mass spectrometry (IMS) datasets, to highlight
spatial regions of similar chemical composition (e.g. a tumor region). Given a
thin flat sample, like a biological tissue slice, IMS measures high-dimensional mass
spectra at their spatial points, providing a hyper-spectral image. Each channel in this
hyper-spectral image represents numbers of particles of the corresponding mass-to-
charge ratio (7m/z). With a mass spectrum measured at each pixel, IMS produces
large datasets which are considerable difficult to process with most clustering
algorithms: the number of spectra (pixels) is around 10* to 10° (e.g. 200 x 100
pixels), the length of each spectrum is around 10,000. Figure 1 shows the intensity
plot of a typical mass spectrum. For processing such a large dataset, one should
use suitable dimensionality reduction and incorporate denoising to suppress the
noise. Several strategies have been proposed for the spatial segmentation of an
IMS dataset. Popular choices are feature extraction with principal components
analysis (PCA) and then either hierarchical clustering (Deininger et al. 2008) or
clustering with k-means (McCombie et al. 2005) of features obtained by PCA.
However, clustering can be inefficient due to the number of spectra or returns
implausible results, because spatial relations are neglected. Recently, Alexandrov
et al. (2010) proposed denoising by spatial smoothing of each channel prior to
clustering.

We propose a noise-suppressing efficient segmentation based on a spatially aware
embedding approach. This merges denoising and dimensionality reduction into one
step. We define our embedding function @ based on a window of w x w pixels and
weights {o;; } used in @. The embedding function and the weights are used to project
n spectra of length p into a high dimensional feature space of dimension pw?. The
points in the feature space can be processed with standard clustering algorithms.
Furthermore, we show how to apply the efficient dimensionality reduction algorithm
FastMap (Faloutsos and Lin 1995) to speed up the procedure and to reduce
the memory requirements. We will extend the basic principle of our mapping
strategy to make the procedure edge-preserving. The concept of embedding the
spatial information in the data was reported earlier (Alexandrov and Kobarg 2011),
where we applied it for segmentation of 2D MALDI IMS data. Here, we extend
the proposed procedure to 3D and apply it to a simulated 3D MALDI IMS
dataset.
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Fig. 1 Measured mass spectrum after compensating baseline effect

2 Methods

Throughout this paper we will denote s; = s(x;, y;) € R” as an intensity vector of
a mass spectrum measured at spatial points (x;, y;) € Z? fori = 1,...,n spectra.
Later we will extend the spatial point to (x;, y;,z;) € Z>.

Probably, the most apparent way to embed the spatial relations between pixels
into a clustering algorithm is to use a distance-based clustering. With distance-based
clustering it is easy to replace the default distance function, such as the Euclidean
distance d(s1, s2) = ||s1 — $2||2 between the intensity vectors, by one working with
a filter window of width w = 2r 4+ 1. A distance function, that uses information
from neighboring spectra in small window of radius r then looks like

drfwpy(s1,9° = Y aylls@i+iy+j)—s@+in+)E, O

—r<i,j<r

where {a;; } are factors weighting the influence of pixels from the neighborhood. It
is natural to choose weights {o;; } which decrease with increasing i 2+ j 2. For pixels
distant from the neighborhood center the weights will be small. In a neighborhood
of radius r, we define the Gaussian weights as a;; = exp ((—i* — j?)/(20?)) , with
o = (2r 4+ 1)/4 selected according to the two-sigma rule.

Unfortunately, this approach is both time and memory-consuming for datasets
with many spectra, since it requires calculating a distance matrix of size (n> —n)/2
and storage space for each of those values. Therefore, we propose to map the spectra
of length p into a Euclidean feature space .% using a mapping @: R” — .%. The
feature space is selected such that within .% the standard Euclidean distance

||¢(S]) - d)(SZ)”Z = dr,{a,-j}(sls S2) (2)
equals the desired distance (1). This can be achieved by using the mapping
D(s) = D(s(x,y) = [Voa— = s" (x—ry—r)....
T
V0o s X,y Sy STy +0)] . (3)
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which describes the concatenation of spectra s(x+i, y+j),i, j = —r,...,r,inthe
neighborhood of spectrum s(x, y) to one single vector. Each neighboring spectrum
is multiplied by a square root of the corresponding weight. Naturally, the feature
space .7 is R”" for such @. If n >> p and r is small, then storing the mapped data
of size n x pw? is significantly cheaper than (n? — n)/2 pairwise distances.

In the case of high dimensional data, it is useful to reduce the number of
dimensions and preserve some of its properties i.e. the distance between each
spectrum. Distance preserving projection can be achieved with multidimensional
scaling (MDS, Hastie et al. 2009). However, the original distance matrix D of size
n x n is needed and an eigenvalue decomposition has to be computed. The FastMap
algorithm (Faloutsos and Lin 1995) is a related method better suited in this context
as the computational cost is much smaller. Compared to MDS, FastMap does not
need the full distance matrix D, but only a small subset, so that implementation
wise it can work on the dataset itself. This allows FastMap to be much more memory
preserving than MDS. Instead of O (n?) operations for computing the entire distance
matrix in advance only O(3n) computations per iteration are needed. The iterative
projection of the high-dimensional data into a lower dimensional hyperspace returns
pseudo-Euclidean vectors. The distances between these new vectors are similar to
the inter-distances originally present in the dataset.

The basic idea of FastMap is to use the two p dimensional spectra s, and s,
with greatest inter-distance d,, = d(s,, sp) as pivot elements to form a new axis.
Computing the scale

d} —d? +d?
=L —bi ab 25:,;) @b i=1,...m, )
on this new axis exploits only the distances from the two rows {d(s,,s;)} and
{d(s», si)}. These rows and the inter-distance d, 5 are the only parts of the distance
matrix needed in Eq. (4), explaining why the dataset itself is sufficient to preserve
the distances. By design of the algorithm, these two rows are even the same ones
needed to find the pivot elements s, and s;, and will be computed on-the-fly.

Before proceeding to a new iteration, the spectra’s projections s; into a p — 1
dimensional hyperspace .7#” orthogonal to the s,-s-axis are calculated. In this new
iteration pairwise distances d;; = d(5;, 5;) between the projected spectra §;, §5; in
2 will be needed. However, as s,-55-axis is orthogonal to .7#” Pythagoras’ theorem
is true and df ;= df ;— (@ = zi)? holds. Being dependent only on the scales
for each spectrum, this again makes full computation unnecessary. After finishing ¢
iterations of FastMap, the scales z}, v = 1, ..., g, correspond to the new coordinates
for all mapped spectra §; = (z,...,20),i =1,...,n.

Using FastMap’s ability to create a vectorial representation of data while
preserving specified distances between the objects can be exploited in another
setting. Tomasi and Manduchi (1998) proposed bilateral filtering with data adaptive
weights for edge-preserving greyscale image denoising. Being applied in our
context, the weights &;; (x, ¥) = «;; -exp (—%A‘zﬂs(x +i,y+j)—s(x, y)||2)n0t
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only respect the spatial relation, but adjust for differences between spectra, too. The
parameter A controls the strength of smoothing. Due to the usage of the norm, the
effect of A depends on the number of image channels p. Usually p varies from
experiment to experiment, which is not the case for grey or RGB images considered
in bilateral filtering. Therefore, we propose to choose A in each neighborhood such
that min; ; @; = e’ instead of finding a global parameter for each experiment. If
the weights {&;; } are chosen to become structure adaptive, the weights are no longer
constant for two different neighborhoods. However, without constant weights, the
mapping function (3) for embedding spatial information directly into the data does
not work. Consequently, there is no set of vectors that can be clustered directly.
However, FastMap can be used to find vectors which possess pairwise distances
(1) with adaptive weights and still allows to employ the concept of clustering in a
higher, structure aware dimensional space.

All of the employed algorithms scale linearly to the number of present image
pixels. For datasets with three spatial dimensions this is extremely important, as with
each layer the total number of pixels increases. Our proposed algorithm (Alexandrov
and Kobarg 2011) was designed to embed the spatial information directly into
the data. Furthermore, the calculation of the weights and the mapping can be
extended to allow the mapping of three dimensional hyper-spectral data. Hence,
the segmentation problem is separated from the number of spatial dimensions.

3 Results

The proposed method was already applied to 2D real-life imaging mass spectrom-
etry (IMS) data. Here, we will demonstrate the performance of our method with a
simulated 3D IMS dataset. For a detailed description of biological application and
IMS measurement, see Alexandrov et al. (2010). Next step will be to solve several
technical aspects of real-life 3D IMS data, which we will discuss at the end of this

paper.
We simulated a dataset with n = 45 x 45 x 15 spectra located at three spatial
dimensions. The spectra belong to k = 5 classes which form simple geometric

shapes, see Fig.2. These objects are background (1), sticks (2), upper rectangle
(3), ball (4), pyramid (5a), and lower rectangle (5b), with the last two belonging to
the same class. Based on the true class assigned to the voxel, each spectrum was
simulated independently of other voxels. For each class a template spectrum with
d = 6,972 channels was selected from a real-life dataset. The dataset used is a
rat kidney, which is well known for its simplicity. The selection of the template
spectra was based on an initial segmentation of the unsmoothed real-life dataset
into five classes. We selected those five spectra as templates that were closest to the
computed class means. The abundances at p = 145 peak positions found in the
template spectra were used within this class. As in the real world, the peak positions
vary by small differences in atom weight which add up to mass offset errors. This
effect is simulated by using the physical model of particles traversing a flight tube



100 J.H. Kobarg and T. Alexandrov

z=1,15 z=2,14
I " l "
~ L8

z=25,11 z =06, 10

histogram

”“\ -

Ji“'h.,._]

Fig. 3 Two selected channel images, along with histogram of intensities
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(Coombes et al. 2005). MALDI spectra have the peaks superimposed to a noise
level that forms a baseline. Such a baseline can be approximated by the sum of two
exponential functions which in turn are characterized by four parameters in total. For
the baselines found in the five template spectra estimation of their parameters is done
according to the method described by House et al. (2011). These parameters are
taken as estimates of the true parameters for baselines in the dataset. In the last step
the function is used as the estimate of the general noise level in the m/z channels
of the spectrum. The effect of noise can be seen in Fig. 3, where two channels are
displayed.

The simulated data was treated like any raw IMS data in the way that standard
preprocessing routines were applied before segmentation was computed. Total ion
count normalization was applied to the data—such that each intensity vector has the
same area under its curve—followed by baseline estimation and their subtraction
(Alexandrov and Kobarg 2011). Furthermore, the number of image channels is
reduced to those that contain peaks in the mass spectra (Alexandrov et al. 2010).
Standard k-means was then applied directly, with constant weights and adaptive
weights, each with a neighborhood of width w = 5.

As can be seen in Fig.4, the objects cannot be discriminated if the dataset is
clustered directly and is rather split within groups. This prevents the upper rectangle
class to be detected even after increasing the number of clusters. While in the case of
k = 6 three structures are well separated from background, the background itself is
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Fig. 4 k-means clustering, without smoothing vs. smoothing (w = 5)

Table 1 Balanced accuracy for clustering results against ground truth
(in percent)

Classes Unsmoothed Smoothed Bilateral
k=4 72.32 98.72 99.38
k=5 56.71 96.30 89.30
k=6 67.40 75.52 76.24

further divided into three groups, none of them related to the rectangle. The class of
stick pixels is lost within the noise for k = 5 even though it can be clearly identified
withk =4ork =6.

Once the approach with spatial information embedding is employed, the segmen-
tation map is not affected by noise. In the case of k = 4, the isolated stick structures
cannot be found by k-means, because the number of classes is too restrictive. As
soon as k > 5, the pixels belonging to this class form their own segment. Also
for k > 5 an artifact starts to appear, namely that the pixels which are located
next to two different classes are all put into the same group. Bilateral filtering
seems to work perfect in the case of k = 4 and z = 6, as there appear no
misclassifications, however z = 8 shows small errors on the edge of both rectangle
classes. Furthermore, for k = 5 classes the weights are too adaptive to the data
and the segmentation map is again affected by noise and an even stronger boundary
effect.

As the true classes are known, the comparison of the clustering results is possible
with standard classification measures based on confusion matrices (Hastie et al.
2009). As each class has different number of members we use the balanced accuracy
ba = %(tp/(tp + fn) +tn/(tn + fp)), which is the mean of sensitivity and
specificity. As can be seen in Table 1, both types of smoothing outperform direct
clustering. The visual deficits of bilateral with k = 5 are also visible in the score.
Even with k& = 6, i.e. more classes than truly exist, they outperform direct clustering.
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During our processing we also recorded the run-times of the individual steps,
here we excluded data loading and preprocessing, as those steps are not affected
by our algorithm. The most computational effort lies in calculating the lower
dimensional representation of the data in the feature space. This step needs
approximately 2 min. Clustering itself of the low dimensional data is carried out in
under 2 s. If the reduction with FastMap was not be employed, k-means would have
to find the clustering of data with the initial pw? dimensional data. In this setting the
algorithm does not finish in under 15 min. However, this paper was aimed to prove
that our algorithm (Alexandrov and Kobarg 2011) can also be applied to IMS data
with three spatial dimensions, which will be the next step. Therefore, none of the
algorithms was optimized towards speed, but simply adapted for the third spatial
dimension.

4 Conclusion

In this paper we showed how to produce smooth 3D segmentation maps for a
noisy hyper-spectral image if spatial relations between pixels are exploited. In
comparison with a plain spectra clustering, our segmentation maps reveal more
spatial features and have higher accuracy with fewer misassignments as compared
with the gold standard. We successfully showed that the embedding of spatial
information into the dataset does not depend on the number of spatial dimensions.
The proposed procedures based on the FastMap dimensionality reduction have
linear computational complexity and linear memory requirements (both in the
number of spectra) and does not depend on the length of spectra. The use of
FastMap allows the integration of spatial and structural information, permitting data
adaptive weights. Additionally it avoids the need to store large data matrices and
it saves computation time during clustering, both by finding a low dimensional
representation of the data in advance.

Even though it has been shown that the segmentation results have high accuracy
compared against the underlying ground truth, several technical issues have to be
solved before the method can be applied to real-life 3D data, where the gold standard
is not given. In the current setting, the distance (1) assumes perfect alignment of all
pixels in a grid. This is usually not the case for real life datasets where each slice
of tissue has to be converted in a common world coordinate system of the unsliced
object. Such an interpolation might cause further, unwanted smoothing to the data.
Furthermore, selection of the smoothing level based on the window size becomes a
problem. While most parts of our algorithm scale linear in the number of inputs, the
window size grows cubic in a three dimensional setting. This implementation issue
has to be solved, before application to real-life data is feasible.
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Cluster Analysis Based on Pre-specified
Multiple Layer Structure

Akinori Okada and Satoru Yokoyama

Abstract Cluster analysis can be divided into two categories; hierarchical and non-
hierarchical cluster analyses. In the present study, a method of cluster analysis
which does not utilize hierarchical nor non-hierarchical procedures is introduced.
The present cluster analysis pre-specifies a structure having multiple layers, e.g.,
the species, the genus, the family, and the order. The highest layer or layer O
has one cluster which all objects belong to. The cluster at layer O has the pre-
specified number of clusters at the next lower layer or layer 1. Each cluster at
layer 1 has the pre-specified number of clusters at the next lower layer or layer 2,
and so on. The cluster analysis classifies the object into one of the clusters at all
layers simultaneously. While the cluster structure is hierarchical, the procedure
is not hierarchical which is different from that of the agglomerative or divisive
algorithms of the hierarchical cluster analysis. The algorithm tries to optimize the
fitness measure at all layers simultaneously. The cluster analysis is applied to the
data on whisky molts.

1 Introduction

There are two categories of cluster analysis; one is the hierarchical cluster analysis
and the other is the non-hierarchical cluster analysis. In the hierarchical cluster
analysis, two clusters are agglomerated into one cluster at each stage in the case
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Fig. 1 Cluster structure having multiple layers

of the agglomerative procedure, or one cluster is divided into two clusters at each
stage in the case of the divisive procedure. At each stage, the object is classified into
one of the clusters. In the non-hierarchical cluster analysis or the partitioning, the
object is classified into one of the clusters of pre-specified number. The algorithms
of both the hierarchical and the non-hierarchical cluster analyses allocate the object
to one of the clusters at each stage or at the pre-specified number of clusters. The
algorithm does not deal with more than one stage nor more than one pre-specified
number of clusters simultaneously.

The cluster analysis introduced in the present study pre-specifies a cluster
structure having layers (Okada and Yokoyama 2010). The highest layer or layer O
has one cluster which all objects belong to. The cluster at layer O consists of clusters
at the next lower layer or layer 1. The cluster at layer 1 consists of clusters at the
next lower layer or layer 2, ---, the cluster at layer n consists of clusters at layer
(n + 1), and so on. The cluster structure having multiple layers is similar to the
structure comprises the species, the genus, the family, and the order (Gordon 1999;
Mirkin 1996) as shown in Fig. 1.

While the cluster structure is hierarchical, the structure is not same as that derived
by the hierarchical cluster analysis (cf. Arabie and Hubert 1994) and its algorithm
is not hierarchical. The object is allocated to one of the clusters at each of all layers
simultaneously. This means that the object is classified into the hierarchical structure
consists of multiple layers, but the algorithm itself is not hierarchical as that of
the hierarchical cluster analysis. The purpose of the present study is to introduce
a cluster analysis method pre-specifying the cluster structure which has multiple
layers, and to apply the cluster analysis to the data on whisky molts.
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2 The Algorithm

The present cluster analysis deals with two-mode two-way data; such as object x
variable or subject x attribute data. The algorithm to fit the cluster structure to two-
mode two-way data is described below. The objective of the algorithm is to allocate
the object to one of the clusters at each layer of the cluster structure specified in
advance, where the sum of squared deviations within the cluster at all layers is
minimized, i.e. the sum of the within cluster sum of squared deviations from the
centroid of the cluster at all layers is minimized. Let the sum of the within cluster
sum of squared deviations from the centroid of the cluster at all layers be SSW;

N
SSW = ZSSWn, (1)

n=1

where SSWhr is the sum of the within cluster sum of squared deviations from the
centroid of the cluster at layer n, and N is the number of layers. SSWn is defined by

Mn
SSWn = Z SSWmn, (2)

m=1

where SSWmn is the sum of the within cluster sum of squared deviations from the
centroid of cluster m at layer n, and Mn is the number of clusters at layer n. SSWmn
is defined by
Jmn P
SSWmn =3 "> " (xj1 — Euy)*. 3)

j=li=1

where Jmn is the number of objects in cluster m at layer n, x j; is the value of object
J along variable ¢, P is the number of variables, and X;,); is the mean value of
objects in cluster m at layer n along variable ¢.

The algorithm to minimize SSW of Eq.(1) is iterative, which comprises nine
steps. The algorithm below is described when the cluster structure has three layers;
layers 0, 1 and 2, which is the most simple case of the multiple layer cluster structure
(e.g., Fig.2).

e Step 1: Determine the initial center of each cluster at layer 1 by randomly
selecting an object.

* Step 2: Classify the object into the cluster at layer 1 whose center is nearest to
the object.

* Step 3: In each cluster at layer 1, determine the center of each cluster at layer 2
by randomly selecting an object in each cluster.

* Step 4: Classify the object into the cluster at layer 2 whose center (centroid) is
nearest to the object. In this step, the object can be classified into the cluster at
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Fig. 2 Cluster structure of the present study
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layer 2 which belongs to the different cluster at layer 1 from the cluster the object
originally belonged to at layer 1.

* Step 5: Determine the centroid of objects in each cluster at layer 1.

* Step 6: Classify the object into the cluster at layer 1 whose centroid is nearest to
the object.

* Step 7: In each cluster at layer 1, determine the centroid of objects in each cluster
at layer 2.

* Step 8: Return to Step 4, and iterate Steps 4 through 7.

* Step 9: Stop the iteration of Steps 4 through 7 when the allocation of the object
to the cluster at all layers stabilized.

3 The Application

In this section, the present cluster analysis is applied to the data on whisky molts
shown in Wishart (2002).

3.1 The Data

The data consists of 35 whisky molts measured on 12 features describing the whisky
molt (body, sweetness, ---, and, floral) on a rating scale. The 35 whisky molts
consists of four types (types D, E, F, and G). They consist of 10 whisky molts of
type D, 9 whisky molts of type E, 10 whisky molts of type F, and 6 whisky molts
of type G. The data are two-mode two-way (whisky molt x feature), and are arrayed
in a 35 x 12 table. The 35 whisky molts are represented in the first and the seventh
columns, and their types are represented in the second and the eighth columns of
Table 1.
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Table 2 The correspondence

between clusters at layer 2 of Type

the present cluster analysis Layer2 D E F G

and the type of the whisky Al 0 9 0 0

molt A2 0 0 0 0
B1 0 0 0 6
B2 0 0 10 O

3.2 The Analysis and the Result

The analysis was done by pre-specifying the model which have one cluster at
layer O, two clusters at layer 1 (clusters A and B), and four clusters at layer 2 where
each cluster at layer 1 consists of two clusters at layer 2 (cluster A at layer 1 consists
of clusters Al and A2 at layer 2, and cluster B at layer 1 consists of clusters B1 and
B2 at layer 2). The pre-specified cluster structure is shown in Fig. 2.

The data were analyzed without any normalization. The resulting clusters at
layers 1 and 2 are shown in Table 1. The third and the ninth columns show the
cluster at layer 1, and the fourth and the 10th columns show the cluster at layer 2.
Table 1 also shows the result of the analysis by k-means cluster analysis (MacQueen
1967) at the 5th, the 6th, the 11th and the 12th columns which will be discussed later.

From Table 2 we can see that there is a perfect correspondence between four
clusters at layer 2 and the type of the whisky molt. At layer 2, cluster A1 corresponds
to type E, cluster A2 corresponds to type D, cluster B1 corresponds to type G, and
cluster B2 corresponds to type F. At layer 1 the correspondence is almost perfect;
cluster A corresponds to types D and E, and cluster B corresponds to types F and
G. The hierarchical relationships between clusters (A and B) at layer 1 and clusters
(Al, A2, B1, and B2) at layer 2 are coincide with the relationships among these
types suggested in Wishart (2002).

4 Discussion

A model of cluster analysis pre-specifying a cluster structure which has multiple
layers and an associated algorithm to fit the model were introduced. While the
algorithm of the cluster analysis is not hierarchical, the resulting tree diagram of
clusters is hierarchical. The application of the model to the data on whisky molts
was done using the model which has two clusters at layer 1, where each of them
consists of two clusters at layer 2.

The present cluster analysis can be regarded as one sort of the constrained clas-
sification (Everitt et al. 2011; Gordon 1996; Murtagh 1985), where the constraint is
given not on the contiguity among objects but on the tree diagram. The constraint
on the tree diagram seems different from those suggested in the past studies, but
assumes a priori hierarchical structure (Arabie and Hubert 1994). The present
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cluster analysis also can be regarded as an equivalence of the external analysis
of multidimensional scaling (Borg and Groenen 2005; Coombs 1964) in cluster
analysis, where the externally given cluster structure is utilized in allocating the
object to the cluster. In the case of multidimensional scaling, the external analysis
is done to facilitate the interpretation of the resulting configuration, for example
by imbedding the ideal point or the ideal vector, or to derive a configuration of
sources based on an externally given configuration of objects (the external analysis
of INDSCAL by Carroll and Chang 1970). In the present cluster analysis, the pre-
specified cluster structure can make it easy to interpret the resulting tree diagram.

The advantageous aspect of the present cluster analysis is that the cluster
structure having multiple layers seems easy to interpret, because layer 1 provides
the classification of objects at the most coarse classification, and the next lower
layer provides the next less coarse or finer classification of objects to the cluster at
layer 2 which is formed by dividing the cluster at layer 1, and so on. One possible
usage of it is to find the primary concern, e.g., brand primary or form primary, of
a market (Arabie and Hubert 1994) by assuming specific cluster structures and by
comparing the goodness of fit of the results.

The algorithm described as steps 1 through 9 in Sect.2 is similar to k-means
algorithm or the simple hill-climbing algorithm of Ball and Hall (1967), where
objects are simultaneously relocated but not singly. But it does not comprise
k-mean algorithms (one k-means algorithm at each layer except layer 0). The
algorithm deals with multiple layers which causes some discrepancies from k-means
algorithm. At lower layers (not layer 0), objects are relocated across all clusters
including those belong to different clusters at the upper layer. The simulated
annealing algorithm might be useful to improve the algorithm (cf. Everitt et al.
2011, p. 123; Gordon 1999, p. 43). While the algorithm determined the initial center
randomly, in the case of examining brand primacy of a market, it is not difficult to
select the initial center based on the supposed structure reflecting brand primacy of
a market.

The data were analyzed by k-means cluster analysis (MacQueen 1967) for k = 2
and k = 4 (two and four clusters). The resulting classification when the number
of clusters is two (k = 2) is shown in the 5th and the 11th columns of Table 1.
That when the number of clusters is four (k = 4) is shown in the 6th and the 12th
columns of Table 1. Table 1 tells that the classification at layer 2 given by the present
cluster analysis and that given by k-means cluster analysis when k = 4 completely
coincide.

Table 1 tells that cluster 1 of k-means cluster analysis when k = 4 corresponds
with cluster A2 and with type D, cluster 2 corresponds with cluster B2 and with type
F, cluster 3 corresponds with cluster Al and with type E, and cluster 4 corresponds
with cluster B1 and with type G. Cluster 1 derived by the k-means cluster analysis
when k = 2 corresponds to types F and G (four anomalies). Cluster 2 corresponds to
types D an E (four anomalies). While layers 1 (clusters A and B) and 2 (clusters A1,
A2, B1, and B2) derived by the present cluster analysis are inherently hierarchical,
clusters 1 and 2 derived by the k-means cluster analysis when k = 2 and clusters 1,
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Table 3 The correspondence k— 4

between clusters when k = 2

and k = 4 of the k-means k

cluster analysis 1 0o 10 2 4
2

2, 3, and 4 derived by the k-means cluster analysis when k = 4 are not hierarchical
as shown in Table 3.

The sum of the within cluster sum of squared deviations from the centroid of
the cluster at layer 2 SSW, = 104.3 (22.9(cluster Al) + 25.0(A2) + 17.7(B1) +
38.7(B2)). The sum of the within cluster sum of squared deviations from the centroid
of the cluster derived by the k-means cluster analysis when k = 4 was also 104.3,
because the layer 2 of the present cluster analysis and the k-means cluster analysis
when k = 4 resulted in exactly the same clusters. The sum of the within cluster
sum of squared deviations from the centroid of the cluster at layer 1 SSW; = 135.7
(67.6(cluster A) + 68.1(B)). The sum of the within cluster sum of squared deviations
from the centroid of the cluster derived by the k-means cluster analysis when
k = 2 was 132.3 (71.6(clusterl) + 60.7(2)), which is smaller than SSW; given
by the present cluster analysis. This is natural, because two clusters given by the
k-means cluster analysis when k = 2 was obtained so that the sum of the within
cluster sum of squared deviations from the centroid of the cluster for the two clusters
was minimized, while the present cluster analysis derived the hierarchical structure
where SSW 4+ SSW, was minimized. The hierarchical structure, which the latter
has to subject, deteriorated the goodness of fit but makes the interpretation of the
resulting tree diagram easier.

The algorithm was executed only on the simplest cluster structure having three
layers. While in principle the algorithm can deal with the cluster structure having
more than three layers, whether the algorithm is effective in dealing with the
structure having more than three layers has to be examined. The algorithm is valid
only for the cluster structure where all clusters at a layer consist of the same number
of clusters at the next lower layer. This is the reason of using the model shown in
Fig.2 in analyzing the data. This limitation restricts the application of the present
cluster analysis. To relax the limitation so that clusters at a layer consist of different
number of clusters at the next lower layer is desirable, which will increase the
versatility of the present cluster analysis.
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Factor PD-Clustering

Cristina Tortora, Mireille Gettler Summa, and Francesco Palumbo

Abstract Probabilistic Distance (PD) Clustering is a non parametric probabilistic
method to find homogeneous groups in multivariate datasets with J variables and n
units. PD Clustering runs on an iterative algorithm and looks for a set of K group
centers, maximising the empirical probabilities of belonging to a cluster of the n sta-
tistical units. As J becomes large the solution tends to become unstable. This paper
extends the PD-Clustering to the context of Factorial clustering methods and shows
that Tucker3 decomposition is a consistent transformation to project original data
in a subspace defined according to the same PD-Clustering criterion. The method
consists of a two step iterative procedure: a linear transformation of the initial data
and PD-clustering on the transformed data. The integration of the PD Clustering
and the Tucker3 factorial step makes the clustering more stable and lets us consider
datasets with large J and let us use it in case of clusters not having elliptical form.

1 Introduction

Organising data into homogeneous groups is one of the most fundamental tasks in
many research domains. To cope with many different analysis conditions, several
clustering approaches and thousands of clustering algorithms have been proposed
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in literature. Cluster analysis is commonly defined as a multivariate problem where
the aim is to identify homogeneous groups of units. In a geometrical view, given
a set of n statistical units represented as points in the multidimensional space
spanned by J variables, clustering aims at finding dense regions in the original
feature space or embedded in a properly defined subspace. We do not consider
hierarchical algorithms in this paper, but only probabilistic and geometric non
hierarchical strategies. Probabilistic approaches assume that data are generated from
a mixture distribution, where each cluster is generated by one (or more) mixture
component. Two main types of methods have been developed in this context,
parametric approaches and non parametric ones. On the other hand, in the geometric
framework, dense regions are defined on the basis of proper distance measures; the
most known algorithm is the k-means (Jain 2010).

In the last two decades, the increased data storage capacity has made even more
large datasets available, where the number of units and the number of variables is
very large. In some web mining applications, for example, there are hundreds of
thousands of variables .

The clustering in high dimensional spaces issue is drawing many researchers’
attention.

A larger number of variables does not necessarily ensure better results and can
mask the existing clusters structure. Several different preprocessing approaches have
been proposed to reduce the dimensionality problem before performing a cluster
analysis. They can be divided into two main strategies: the first one consists in
selecting the most relevant attributes by removing the redundant variables from the
analysis, the other one linearly combines the variables into a reduced number of
latent variables according to the task of the overall analysis. See Parsons et al. for
more details (Parsons et al. 2004). However, strategies combining the dimensionality
reduction and the clustering into one consistent iterative algorithm have recently
been proposed in the literature, both in the probabilistic case (Montanari and Viroli
2011) and in the geometric framework (Vichi and Kiers 2001).

In the probabilistic and non parametric framework, this paper proposes an
integrated clustering approach that combines the Probabilistic Distance (PD) clus-
tering algorithm of Ben-Israel And Iyigun (2008) and the Tucker3 dimensionality
reduction (Kroonenberg 2008) to consistently combine the clustering and the
dimensionality reduction into one iterative procedure.

The paper consists of the following sections. Section 2 provides a description of
Probabilistic Distance Clustering. In Sect. 3 Factor Probabilistic Distance Clustering
is presented and developed. Section 4 contains an application on a real dataset.

2 Probabilistic Distance Clustering

Given a set of n statistical units described by J continuous variables, PD-clustering
is a non hierarchical clustering algorithm that assigns the n units to K clusters
according to the probability of them belonging to the cluster.
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We introduce PD-clustering (Ben-Israel and Iyigun 2008) according to
Ben-Israel and Iyigun notation. Given X a generic data matrix with n units and
J variables, given K clusters that are assumed not empty, PD-Clustering is based
on two quantities: the distance of each data point x; from the K cluster centers cy,
d(x;, cx), and the probabilities for each point to belong to a cluster, p(x;, cx) with
k=1,...,Kandi = 1,...,n. The relation between them is the basic assumption
of the method, the probability of any point to belong to each class is assumed to
be inversely proportional to the distance from the centers of the clusters. Let us
consider the general term x; of X and a center matrix C, of elements c;; with
k=1,...,K,i =1,...,nand j = 1,...,J, the distances between each point
and all centers can be computed according to different criteria; the squared norm
is one of the most commonly used. The quantity d(x;, c;) represents the distance
of the generic point i to the generic center k. The probability p(x;,cx) of each
point to belong to a cluster is computed according to the following assumption:
for any k, given i the product between the distance d(x;, cx) and the probability
p(x;, cx) is a constant F(x;) depending on x;. For short we use py = p(x;, cx) and
di(x;) = d(x;, cx). PD-clustering basic assumption is:

Pixdi(xi) = F(x;). (1

Looking at the (1) we notice that as the distance of the point from the cluster
center decreases, the belonging probability of the point to the cluster increases. The
constant depends only on the point and does not depend on the cluster k.

The quantity F(x;), also called Joint Distance Function (JDF), is a measure of
the closeness of x; from all cluster centers. It measures the classificability of the
point x; with respect to the centers c;, with k = 1, ..., K. The point coincides with
one of the cluster centers if it is equal to zero; in that case the point belongs to the
class with probability 1. If all the distances between the point x; and the centers of
the classes are equal to d;, F(x;) = d;/k and all the belonging probabilities to each
class are equal: py = 1/K. The smaller the JDF value, the higher the probability
for the point to belong to one cluster. The whole clustering problem consists in the
identification of the centers that minimise the JDF. The function in (1) is nonsmooth,
a smoothed version of it is: pizkdk(x,-) = F(x;) (Iyigun 2007). Without loss of
generality the PD-Clustering optimality criterion can be demonstrated according to
K =2.

PD-Clustering aims at finding cluster centers such that:

min (dl (xi)p + dz(xi)pi22> st.opit+pi2=1 pi1,pi2 = 0. 2
The Lagrangian of this problem is:

Z(pir. piz, V) = di(x;) pjy + da(xi) piy — A(pit + piz — 1). (3
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Setting to zero the partial derivates with respect to p;; and p;» and considering the
principle p;1di(x;) = pi>da(x;) Ben-Israel and Iyigun obtain the optimal value of
the Lagrangian (See Ben-Israel and Iyigun 2008 for the proof.):

di(x;)da(x;)

f i’ i’k :—'
(Pin P }) = G o)

“)

This value coincides with the JDF. The matrix of centers that minimises
this principle minimises the JDF too. Substituting the generic value di(x;) with
|lx; — ck||, we can find the equations of the centers that minimise the JDF (and
maximize the probability of each point to belong to only one cluster):

ur (xi)
= = |x, 5
“ i=12:N (Zj:l N“k(xj))x ©)

2
p.
where uy (x;) = dk(l«ii).

As shown before, the value of JDF at any center k is equal to zero and it is
necessarily positive elsewhere. So centers are the global minimiser of the JDF. Other
stationary points may exist because the function is not convex or even quasi-convex,
but they are saddle points.

For the sake of brevity we don’t go into distance choice details; in this paper we
consider the squared form:

J
di(x;) = Z(-xii — c)?, (6)
j=1
wherek =1,...,Kandi = 1,..., N. Starting from the (6) the distance matrix D

of order n x K is defined, where the general element is dj (x;). Indicating with ¢
the generic center, the final solution JDF is obtained minimising the quantity:

n K n J K
IDF =Y "> "de(xi)pi =D D> > (x5 — c)* P
i=1 k=1 i=1j=1lk=1

n J K
IDF = argmin > > > (xy =)’ Pi @

i=1j=1k=1

An iterative algorithm allows one to compute the solution of PD-clustering
problem. The algorithm properties are illustrated in Iyigun (2007), where the Author
demonstrates the convergences, too. Each unit is then assigned to the kth cluster
according to the highest probability that is computed a posteriori.
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3 Factor PD-Clustering

PD-clustering is stable dealing with a large number of units but it becomes unstable
as the number of variables increases. A linear transformation of original variables
into a reduced number of orthogonal ones can significantly improve the algorithm
performance. The linear transformation of variables and the PD-Clustering need to
optimize a common criterion.

The FPDC consists in an integrated procedure based on the Tucker3 decompo-
sition (Kroonenberg 2008) and PD-Clustering; an algorithm is then proposed to
perform the method.

The minimization problem in (7) corresponds to the Tucker3 decomposition of
the 3-way distance matrix G of general element g = |x;;—cy|, wherei =1,...,n
indicates the units, j = 1, ..., J the variablesand k = 1,..., K the occasions. For
any ¢ an x J a Gy distance matrix is defined. In matrix notation:

G = X — hey, (8

where A is an nx 1 column vector with all terms equalto 1; X and ¢, (k = 1,..., K)
has already been defined in Sect. 2.

The Tucker3 method decomposes the matrix G in three components, one for each
mode, in a full core array A, and in an error term E:

R 0 S
8ijk = Z Z Z A'rqs(I/lirquvks) + Cijk 9
r=1g=1s=1

where A, and e are respectively the general term of the three way matrix A of
order R x § x Q and E of order n x J x K; u;, b, and vy, are respectively the
general term of the matrix U of order n x R, B of order J x Q and V of order
KxS,withi=1,....,n,j=1,...,J,k=1,...,K.

As in all factorial methods, factorial axes in the Tucker3 model are sorted
according to their explained variability. The first factorial axes explain the greatest
part of the variability; the latest factors represent the ground noise. According to
Kiers and Kinderen (2003), the choice of the parameters R, Q and S is a ticklish
problem as they define the overall explained variability. Interested readers are
referred to Kroonenberg (2008) for the theoretical aspects concerning that choice.
We propose an heuristic approach based on the eigenvalues scree plot to cope with
this crucial issue.

The coordinates x;‘] of the generic unit x; into the space of variables obtained
through a Tucker3 decomposition are obtained by the following expression:

J
X =Y xibjg. (10)
=1
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Finally, on the xi’; coordinates a PD-Clustering is applied in order to solve the
clustering problem (2). Let us start considering the expression (7); it is worth noting
that minimising the quantity:

JDF = 377_, Z,J'=1 Z/f=1(xii - ckj)zpizk st D ZI§=1 pizk =n, (1D

is equivalent to computing the maximum of — ) /_, Z/J‘=l Zle(xij — )’ pa,
under the same constraints.

In Tortora et al. (2011) it is demonstrated that, given py and ci, bj, is obtained
according to a Tucker3 transformation of the distance matrix G minimising the JDF.

An iterative algorithm alternatively calculates c;; and pj on one hand, and b, on
the other hand, until the convergence is reached. It can be summarized in the follow-
ing steps: (i) random initialization of center matrix C; (ii) computation of distance
matrix G; (iii) Tucker3 decomposition of G = UA(V' ® B’); (iv) projection of data
point in the new space X* = XB; (v) PD-clustering of X* uploading C. Steps ii—v
are iterated until the convergence is reached. The minimisation of the quantity in the
formula (11) converges at least to local minima, it can be empirically demonstrated.

A simulation study (Tortora 2011) has demonstrated that difference of variance
among clusters does not affect the algorithm efficiency. Classic PD-clustering
becomes less efficient when the number of elements in each cluster is different,
FPDC results are not affected by this issue. The method performs well in presence
of outliers, it can detect the right clustering structure in presence of 20 % of outliers.
Using FPDC, unit weights are inversely proportional to the distance from the cluster
center, thanks to this characteristic, outliers have a low weight in the determination
of the centers. The Tucker3 method looks for the decomposition that divides clusters
better, according to the partition obtained in the PD-clustering step. Therefore
FPDC, that is based on the two methods, is not affected by outliers.

4 Application on a Real Dataset

The method has been applied to Water Treatment Plant dataset.' This dataset comes
from the daily measures of sensors in a urban waste water treatment plant. The
objective is to classify the operational state of the plant in order to predict faults
through the state variables of the plant at each of the stages of the treatment
process. It is composed of 527 units and 38 variables. The number of clusters K has
been chosen equal to 4. To appreciate the FPDC, a comparative study graphically
compares the following methods: k-means, PD-clustering and Factorial k-means.
Results are shown in Fig. 1. Each method has been iterated 100 times. Applying
k-means at each iteration the value of the within variance has been measured.
Results obtained show that there are two minima, the first is obtained in 39 % of the

Thttp://archive.ics.uci.edu/ml/index.html
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Fig. 1 (a) Value of standardized heterogeneity index at each iteration of the k-means algorithm on
100 iterations; (b) value of standardized JDF at each iteration of the PD-clustering algorithm on
100 iterations
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Fig. 2 (a) Value of standardized heterogeneity index at each iteration of the Factorial k-means
algorithm; (b) value of standardized JDF at each iteration of the FPDC algorithm (on 100 iterations)

cases and the second in 54 %. When PD-clustering is applied, in order to measure
the stability of the method, the JDF has been measured. In this case results are very
unstable.

Applying factorial clustering methods the stability of the results improve, Fig. 2.
In the Factorial k-means output (Vichi and Kiers 2001) there is only one minimum
reached in 37 % of the cases. Factor PD-clustering presents a high improvement of
stability, the modal value is obtained in 58 % and in other cases the value of the JDF
is not far from the modal value.

A Density Based Silhouette plot (DBS) is helpful to evaluate the cluster partition.
According to this method the DBS index is measured for all the observations
x;, all the clusters are sorted in a decreasing order with respect to DBS and
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Fig. 3 DBS plot on clusters
obtained in the modal value
of the JDF on 100 FPDC
iterations

Cluster
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plotted on a bar graph, Fig. 3. Usually Euclidean distance is used to measure the
distance between cluster centers and each datapoint; however Euclidean distance
is not suitable dealing with probabilistic clustering. A measure of DBS for the
probabilistic clustering method is proposed in Menardi (2011), an adaptation of this
measure for FPDC is the following one:

DBS; = lg(%) (12)

Pimy ’
max;=1,..n Ilog(m)l

Where pj,, is referred to x; that belongs to cluster k and p;,, is the maximum for
m # my. Figure 3 shows the separability of the clusters according to FPDC.

5 Conclusion

Integrated strategies for dimensionality reduction and non hierarchical clustering
have been receiving wide interest as a tool for performing clustering and dimension
reduction simultaneously. In this framework, the present paper proposes a new strat-
egy that combines the Tucker3 analysis with the Probabilistic Distance Clustering.
Simulation studies, whose results are not reported here, have demonstrated that the
algorithm ensures good, and in some cases excellent, improvement in the cluster
solution. We have performed some comparative studies with the Vichi and Kiers’
Factorial k-means algorithm and we have outlined the conditions in which the
Factor PD-clustering outperforms the k-means. At the current developing state, the
procedure has a semi-automatic workflow. Assuming that the parameter K is known
or already defined, Factor PD-clustering requires the choice of the sub-dimensions
to be performed by the analyst using an exploratory strategy.
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Clustering Ordinal Data via Latent Variable
Models

Damien McParland and Isobel Claire Gormley

Abstract Item response modelling is a well established method for analysing
ordinal response data. Ordinal data are typically collected as responses to a number
of questions or items. The observed data can be viewed as discrete versions of
an underlying latent Gaussian variable. Item response models assume that this
latent variable (and therefore the observed ordinal response) is a function of both
respondent specific and item specific parameters. However, item response models
assume a homogeneous population in that the item specific parameters are assumed
to be the same for all respondents. Often a population is heterogeneous and clusters
of respondents exist; members of different clusters may view the items differently.
A mixture of item response models is developed to provide clustering capabilities
in the context of ordinal response data. The model is estimated within the Bayesian
paradigm and is illustrated through an application to an ordinal response data set
resulting from a clinical trial involving self-assessment of arthritis.

1 Introduction

Ordinal data arise naturally in many different fields and are typically collected as
responses to a number of questions or items. A common approach to analysing such
data is to view the observed ordinal data as discrete versions of an underlying latent
Gaussian ‘generating’ variable. Many models such as graded response models and
ordinal regression models (Albert and Chib 1993) make use of this concept of latent
generating variables.

Item response modelling (Fox 2010) is an established method for analysing
ordinal response data. It is assumed that the observed ordinal response to an
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item will be level k, say, if the underlying latent variable lies within a specified
interval. Item response models further assume that the latent generating variable
(and therefore the observed ordinal response) is a function of both respondent
specific and item specific parameters. The respondent specific parameters are often
called latent traits. The probability of a certain response from a respondent is related
to both the value of their latent trait and also some item specific parameters.

Item response models assume that the item specific parameters are the same
for all respondents, i.e. a homogeneous population is assumed. Often a population
is heterogeneous however and clusters of respondents exist; members of different
clusters may view the items differently. Here an item response model is embedded in
a mixture modelling framework to facilitate clustering of respondents in the context
of ordinal response data. Under the mixture of item response models the probability
that a respondent gives a certain response depends on their latent trait and on group
specific item parameters. An alternative approach to this problem is given in Von
Davier and Yamamoto (2004).

The mixture of item response models is developed and estimated within the
Bayesian paradigm using Markov chain Monte Carlo methods. A key issue is choos-
ing the optimal model or equivalently, the number of components in the optimal
mixture model. The marginal likelihood is employed here to choose between models
and a bridge sampling approach to estimating the marginal likelihood is used.

The model is illustrated through an application to an ordinal response data set
resulting from a clinical trial involving self-assessment of arthritis pain levels.

The paper proceeds as follows. In Sect. 2 the arthritis pain levels data set used to
demonstrate the model is introduced. Item response models and their extension to a
mixture of item response models are considered in Sect. 3. Section 4 is concerned
with Bayesian model estimation and also model selection. The results from fitting
the model to the illustrative data set are presented in Sect. 5. Finally, discussion of
the model takes place in Sect. 6.

2 Arthritis Pain Data

An ordinal data set is employed to illustrate the mixture of item response models.
The data come from a clinical trial in which patients suffering from rheumatoid
arthritis are randomly assigned to a treatment group or a placebo group. The patients
self-assess their arthritis related pain as 1 (poor), 2 (fair) or 3 (good) at 1 and 5 month
examinations. Some covariate information associated with each patient such as their
age and sex are also recorded. Further details are given in Lipsitz and Zhao (1994)
and Agresti (2010).

Here only the ordinal response data are analysed. Interest lies in determining
if there is an underlying group structure among the group of 289 patients in the
clinical trial. Members of the same group would be expected to have similar arthritis
pain profiles. In particular, whether or not patients in the treatment group are
differentiated from the patients in the placebo group is of interest.
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3 Item Response Models and Mixtures of Item
Response Models

The concepts behind item response models and the proposed extension to a mixture
of item response models are explained in this section.

3.1 Item Response Models for Ordinal Data

Suppose the responses of N individuals to each of J items are observed. Since the
data are ordinal, the set of possible responses to item j is {1,2,..., K;} where K
denotes the number of possible responses to item j . Thus the data can be represented
by an N x J matrix, Y, where y;; is the response of individual i to item .

Corresponding to each ordinal response, y;;, is a latent Gaussian variable, z;;.
A Gaussian link function is used here but other link functions, such as the logit (Fox
2010), can be employed. For each item there exists a vector of threshold parameters
v, = (¥j.0:Vj1s- -+, Vjk;) This vector is subject to the constraint:

—00 = Vj,Of)/j,l S 5 )/j,Kj = 0
The observed ordinal response, y;;, serves as an indicator to the latent variable z;;:
Yi=k = Vjik-1 =2 S Vjk

In addition to the latent variable, z;;, it is assumed that there exists a latent trait
vector, §,, of dimension g corresponding to each individual. Here g is user specified.

The mean of the conditional distribution of z; is related to this latent trait:
T
zjl0; ~ N(A; 0, —b;, 1)

In the item response literature the item parameters A; and b; are usually termed
item discrimination parameters and item difficulty parameters respectively. The
conditional probability that a response takes a certain ordinal value can then be
expressed as the difference between two standard Gaussian cumulative density
functions:

P(yy=klA;.bj.y . 0;) = Plyjx — AL0, — b)) — lyju—1 — (A)6; — b))]

3.2 A Mixture of Item Response Models (MIRM)
Jor Ordinal Data

A mixture modelling framework can be imposed on the item response model for
cases where there is an underlying group structure in the data. The aim of this
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mixture of item response models is to cluster individuals into their unobservable
groups. Under the MIRM, the latent variable z;; is a mixture of G Gaussian densities:

G
flzy) = Z”gN@;Qi — by, 1)
g=1
The probability of belonging to group g is denoted 7, while A,; and b; are group
specific item discrimination and difficulty parameters respectively.
A latent indicator variable, £; = ({1, ..., ;) is introduced for each individ-
ual i. This binary vector indicates to which group individual i belongs i.e. /;, = 1

if i belongs to group g; all other entries in the vector are 0. Thus, conditional on ¢;,
the probability of observing a particular ordinal response is:

Py = Kldyo by v 8. lig = 1) = @ [y = (AL6, — by
-@ [Vj,k—l - @;Qz - bg/)]

The augmented likelihood, £ (A, B, I',®, L, Z|Y), is given by:

Lig

N G J
TTTTITS | ot a2 = vi) 1 (v = k) [ N (A6, — by 1)

i=1g=1j=1 | | k=1

An assumption of local independence is implicit here, i.e. conditional on the latent
trait 6, the J responses by individual i are independent. The responses of different
individuals are also regarded as independent.

4 Parameter Estimation and Model Selection

The Bayesian framework in which the model is estimated, the Markov chain Monte
Carlo (MCMC) algorithm used to fit the model and the bridge sampling algorithm
which facilitates model selection are all described in what follows.

4.1 Prior and Posterior Distributions

To implement the model described above in a Bayesian framework prior distri-
butions must be specified for all unknown parameters. Priors are required for the
threshold parameters Y, the item parameters, A,; and b,,, and for the mixing weights
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x(forj =1,...,J and g = 1,..., G). Specifically, a uniform prior is specified
for the threshold parameters and for the other parameters the prior distributions are:

P(hy) = MVN, (1, %) p(by) = MVN,(1,., 5;1) p(z) = Dir(a)

The posterior distribution is:
p(A B, I, 0,L,Z|Y) < L(A, B, I,0,L, Z|Y) p(A) p(B) p(I') p(®) p(L|z) p(x)

where p(A), p(B), p(I") and p(x) are the prior distributions detailed above.
The latent trait variable 8; is assumed to have a standard multivariate Gaussian
distribution; the latent indicator variables /; follow a Multinomial(1, ) distribution.

This model suffers from non-identifiability. To identify the model (as in Johnson
and Albert (1999)) the second element of each of the threshold vectors, 7, for j =

1,...,J,is fixed at 0. The model is also rotationally invariant. Therefore, a specific
form is imposed on each matrix of discrimination parameters A, forg =1,...,G.
As in Geweke and Zhou (1996), the first g rows of this matrix are constrained to
have a lower triangular form. In what follows, the free and fixed elements of the jth
row of A, are denoted by Ag; and Ag; respectively.

4.2 Estimation via a Markov Chain Monte Carlo Algorithm

The marginal distributions of the unknown parameters cannot be obtained analyti-
cally for this model so a MCMC algorithm is used to produce estimates of the model
parameters. The algorithm used here is similar to the algorithm proposed in Cowles
(1996). A Gibbs sampler is used to sample all latent variables and parameters, except
the threshold parameters, y .. These are sampled using a Metropolis-Hastings step.

Full conditional distributions for the model parameters and latent variables are:

e 4[... ~Multinomial(1l, p = (p1....., pg)) where

J K
Dg X Tg l—[ Z 1 ()/j,k—l =z = )/j,k) 1(y; = k) N(&gT,'Qi — by, 1)
j=1| k=1
e 7m|...~ Dirichlet(n; + «i,...,ng + ag) where ny = Zf\;l Lig.

o zjl... ~ NT (&;Ql — by, 1) where the distribution is truncated to [y} (y;—1),
Vil

e 6;]... ~ MVN, [D‘lAg (gl. +l_)g) ,D;l] where, z, = (z1,....ziy)" and
Dy = Al A, +1,.



132 D. McParland and I.C. Gormley

8]

e 2°[...~MVN {S—l [@;T (;g,. —OIAY + bg,l) + E;‘b] , S—l} where § =
[2_1 + @°T@°] and 1 = (1,...,1)7. The ith row of ©, consists of the

elements of §; which multiply A )k for all individuals i in group g. Similarly &
consists of the elements which multlply A o+ The elements of the jth column of
the N x J matrix Z corresponding to individuals in group g are denoted by Ly

o bgl... ~ N [(ng + 5,07 AT O Ay + 5,2 1) —ggle),(ng + 5,2 _1] where
the rows of ®, are the latent trait vectors @, for all individuals i in group g.

The posterior full conditional distribution of each of the threshold parameters,
¥;k can be shown to be uniform. When there are a large number of observations
in adjacent categories this interval tends to be small which results in minimal
movement of the Gibbs sampler. The algorithm therefore converges slowly. This
difficulty is overcome by sampling from the posterior of the threshold parameters
using a Metropolis-Hastings step, as in Cowles (1996) and Johnson and Albert
(1999). Candidate values v are proposed for y; « from the Gaussian distribution

NT (y(t D , 0%, ;) truncated to the interval (v x—1, y ik +1) where y k +1 is the value

of y;k+1 at iteration (¢ — 1). The tuning parameter ch g 18 selected to achieve
appropriate acceptance rates.

4.3 Model Selection via the Bridge Sampler

Since the proposed model is a finite mixture model, the number of components G in
the mixture must be chosen. A bridge sampling algorithm (Meng and Wong 1996;
Frithwirth-Schnatter 2004) is employed to approximate the marginal likelihood of a
G component model. The marginal likelihood is evaluated for a range of models
with different values of G and the model with the highest marginal likelihood
is chosen as optimal. Here, the posterior mean of the latent Gaussian variable Z
is treated as the ‘observed data’. This approach removes the need to work with
the intractable marginal distribution of the ordinal data, Y, and also the posterior
distribution of the threshold parameters.

In order to use bridge sampling to approximate the marginal likelihood it is
important that the MCMC algorithm mixes well over all posterior modes. The
random permutation MCMC sampler (Frithwirth-Schnatter 2001) is used to achieve
this. For more details on the bridge sampling estimator of the marginal likelihood
of a mixture model see Frithwirth-Schnatter (2006).

5 Arthritis Pain Data: Results

The mixture of item response models (MIRM) was fitted to the ordinal arthritis
pain data described in Sect.2. A number of mixture of item response models were
fitted to the data with the number of components G ranging from one to five, and



Clustering Ordinal Data via Latent Variable Models 133

Fig. 1 Estimated marginal Estimated Marginal Likelihood Values
likelihood values for a range
of mixture of item response _950 4
models with a one
dimensional latent trait
5 —960 -
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Table 1 Posterior mean P P -
estimates (and 95 % arameter osterior mean
quantile-based confidence b —0.18 [—1.02, 0.47]
regions) for the optimal b1 —0.20 [—1.11, 0.70]
model by —2.29 [—3.35, —1.50]
by —2.27 [—3.35, —1.44]
An 0.59 [—0.25, 1.49]
Az 0.81 [—0.32, 1.71]
Ao 0.96 [—0.02, 1.79]
A 0.75 [—0.10, 1.54]
V12 2.10 [1.59,2.97]
V22 1.78 [1.30, 2.63]
T 0.40 [0.22, 0.60]
7T, 0.60 [0.40, 0.78]
with a user specified ¢ = 1 dimensional latent trait. The marginal likelihood of

each of the models was estimated using the bridge sampling technique described
in Sect.4.3. The values obtained are illustrated in Fig. 1. The highest marginal
likelihood value is obtained when a two component MIRM is fitted. Posterior mean
parameter estimates for the optimal model are detailed in Table 1.

Inspection of the responses of individuals in each cluster suggests that the
patients have been partitioned into a group (group 1) who judge the state of their
arthritis to be poor to fair and a group (group 2) who consider the state of their
arthritis to be fair to good. Although the item difficulty parameters for both groups
are negative, the parameters for group 1 [b; = (—0.18, —0.20)] are smaller in mag-
nitude than those for group 2 [b, = (—2.29, —2.27)]. This difference means that the
values of the latent Gaussian variable Z (with marginal mean —b g forg =1,2)are
lower in group 1, reflecting the generally lower observed ordinal responses found in
group 1. The confidence regions for the discrimination parameters include 0 which
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indicates that even the one dimensional latent trait may be unnecessary for this data
set. Interestingly, the two groups uncovered by the model do not correspond to the
treatment and placebo group (Rand index = 0.51, Adjusted Rand index = 0.015).

6 Discussion

Ordinal data arise in many different fields. The mixture of item response models
presented here facilitates the clustering of such data. This is achieved by assuming
the observed ordinal data are discrete versions of an underlying latent Gaussian
variable. The clustering is achieved by fitting a mixture model to the latent
Gaussian data. The model is closely related to the mixture of factor analysers model
(McLachlan and Peel 2000; McNicholas and Murphy 2008) for continuous data; in
the case of the mixture of item response models however, only a discrete version of
the data are observed.

Bridge sampling was employed for model selection. Simulation studies and the
illustrative data example suggest that the bridge sampling approach works well in
the context of the mixture of item response models. However, it should be noted that
as the bridge sampler relies on the posterior mean of the latent Gaussian data Z,
the same ‘data’ are not used when evaluating the marginal likelihood for different
models. Again, simulation studies suggest that given a sufficiently large data set
(both in terms of number of observations and cell counts for the ordinal variables)
the results are not very sensitive to this approximation to Y.

There are a number of ways in which the model could be extended. The
model selection technique employed here is used only to choose the number of
components in the mixture. Extending the bridge sampling technique to determine
the optimal number of dimensions (g) for the latent trait would be very beneficial
(Lopes and West 2004). Additionally, in the illustrative data set used here covariate
data were available. Incorporating these data in the model would be potentially
informative and could be achieved within a mixture of experts framework (Jacobs
et al. 1991; Gormley and Murphy 2008). Finally, as with most clustering models,
the set of variables on which the clustering is based strongly influences the MIRM,;
incorporating a variable selection step while clustering would potentially improve
clustering performance.
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Sentiment Analysis of Online Media

Michael Salter-Townshend and Thomas Brendan Murphy

Abstract A joint model for annotation bias and document classification is pre-
sented in the context of media sentiment analysis. We consider an Irish online media
data set comprising online news articles with user annotations of negative, positive
or irrelevant impact on the Irish economy. The joint model combines a statistical
model for user annotation bias and a Naive Bayes model for the document terms.
An EM algorithm is used to estimate the annotation bias model, the unobserved
biases in the user annotations, the classifier parameters and the sentiment of the
articles. The joint modeling of both the user biases and the classifier is demonstrated
to be superior to estimation of the bias followed by the estimation of the classifier
parameters.

1 Introduction

Sentiment analysis involves extracting contextual information from documents
(Pang and Lee 2008). Media sentiment has been shown to be of importance in
economic contexts (Tetlock 1139-1168). We examine a corpus of Irish news articles
that have been annotated by a number of inexpert volunteers as having a sentiment
which has positive, negative or irrelevant impact on the Irish economy. The aim
of the analysis is to develop a classification method that can estimate the correct
labelling of the articles in the corpus as well as the correct classification for other
news articles. A core goal is to increase the accuracy of both the annotation based
labelling and the classifier. Whilst the methods outlined herein are developed in the
context of the media sentiment, they are readily applicable in any context where a
classifier is trained on (potentially) biased and noisy annotations.

M. Salter-Townshend (><) - T.B. Murphy

School of Mathematical Sciences and Complex and Adaptive Systems Laboratory,
University College Dublin, Dublin 4, Ireland

e-mail: michael.salter-townshend @ucd.ie; brendan.murphy @ucd.ie

B. Lausen et al. (eds.), Algorithms from and for Nature and Life, Studies in Classification, 137
Data Analysis, and Knowledge Organization, DOI 10.1007/978-3-319-00035-0_13,
© Springer International Publishing Switzerland 2013


mailto:michael.salter-townshend@ucd.ie
mailto:brendan.murphy@ucd.ie

138 M. Salter-Townshend and T.B. Murphy

The media sentiment analysis involves a classification task where the sample
labels are noisy and biased user annotations. Many existing classifiers do not take
into account user (annotator) bias in reporting and a simple majority vote is used to
select the true article type from the observed annotations; this majority vote labelling
is particularly problematic in the presence of user bias. Some previous work has
been proposed to help address the annotator bias issue. Smyth et al. (1994) applied
the method of Dawid and Skene (1979) to correct for annotator bias and estimate the
true labeling before developing a classifier in an object recognition problem. Most
recently Rogers et al. (2010) and Raykar et al. (2010) propose methods to address
the problem of multiple imperfect annotations and classification. Rogers et al.
(2010) deals with the labelling of clinical reports and uses Bayesian models with
Gaussian processes for classification and ordinal regression. Raykar et al. (2010)
address the problem of training a classifier with multiple imperfect annotations by
extending the model of Dawid and Skene (1979) to learn a classifier at the same
time as the annotator biases via maximum likelihood; this work is similar to the
approach developed herein. Specifically, they train a logistic regression classifier
and learn the sensitivity and specificity of the annotators in the context of binary
labelling. The model that we present differs from that paper in that we explore a
trinary labelling system (an arbitrary finite number of categories is possible) and
train a Naive Bayes classifier. The contribution of our work is to demonstrate the
method with another classifier, a greater number of potential labels and to report
upon the comparative effectiveness of our approach in the context of the Irish online
media sentiment analysis.

We validate our approach on a simulated dataset and calculate performance
scores for both the decoupled estimator (learn the biases and then train the classifier)
and the joint estimator model. We demonstrate the superiority of the joint estimator
for various levels of bias and then apply it to the media dataset.

1.1 Sentiment Data

The Irish media dataset that we analyze is a subset of the data described in
detail in Brew et al. (2010a,b). The dataset is comprised of 1,024 articles col-
lected from 3 online Irish news services (rte.ie, irishtimes.com and
independent. ie), collected from July to October 2009. Thirty one volunteers
have annotated an average of 834 of these articles as having either negative, positive
or irrelevant impact on the Irish economy at time of press. There are 70,873 word
terms appearing in these articles. In order to reduce the impact of words that are
too common (such as “at”, “the”, “and”, etc) we eliminate words that appear in
more than 1,000 articles. We also eliminate words that appeared in less than 30
articles. To further reduce the dimensionality of the data, we selected the top 300
most negative words (as indicated by a simple majority vote classifier), the top
300 most positive words and the top 300 most irrelevant words only.



Sentiment Analysis of Online Media 139

Brew et al. (2010b) note that 45 % of the articles do not have consensus annota-
tions and that “there is some evidence that the learning process would be better off
without them [articles with low consensus]”. The authors of that paper examined
k-nearest neighbours (kNN) and support vector machine (SVM) classifiers also but
settled on Naive Bayes following an assessment of the performance of the methods
under cross-validation.

2 Model
Let yt(zk) = (yyf), yig), cee yc(l];) ) be the annotation of article a by annotator k, where
yt(j) = 1 if article a is annotated as being of type j and yt(j) = 0 otherwise. We

model the annotator bias as per Dawid and Skene (1979). Error rates, or biases in
reporting, are modelled via a matrix of conditional probabilities for each annotator,
that is, the probability that annotator k records annotation j given a true (but

unobserved) type i is denoted by ni(jk). These probabilities sum to unity across j

for each i and k. The observed annotations are thus a probabilistic (multinomial)
function of these 7 matrices.

If we let the true type of article a be T,, where T,; = 1 if the article is of
type i and 7,; = 0 otherwise. Then, the likelihood for the recorded annotations
—_ (v @ (K) . . .
Ya = a’'sYa »---,Ya ) onarticle a given a true type T, is given by
Tai
J [k J o
L(lya. To) o< [T ] 1)
i ko

where J is three for our sentiment levels (negative, positive and irrelevant).
Hence, the complete-data likelihood of the full annotation dataset (including
unobserved true types) across all A4 articles is

Tai
(k)

A T K J
g(”vPl)’l»}’LJ’A,Tl,Tz,,TA)O(HH pll_[n(ﬂ;k))yal (2)
a i k J

where p; is the marginal probability of type i.

Another goal of the sentiment analysis described in Brew et al. (2010b) is to
train a classifier to distinguish which word terms appear in which types of article.
The trained classifier may then be used to automatically label un-annotated articles.
Although word-term frequencies are available in the dataset, we model only the
presence or absence of these features (word terms). Let w, = (Wa1, Wa2, - - -, WaN)
be a binary vector that indicates the presence and absence of words in document a.
We employ a Bernoulli likelihood for term w, given that the article is of type i, that
is T,; = 1. That is, we use a Naive Bayes classifier to learn the probability of an
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article type given the words that appear in the article. Although the Naive Bayes
assumption is unlikely to hold exactly in practice, there is much evidence to suggest
that it can yield excellent classification results (Domingos and Pazzani 1997; Hand
and Yu 2001).

The product of Bernoullis likelihood for all N word terms w, appearing in article
a given T, is then

J Tai

N
$(9|Wa, Ta) = l_[ (Qni)w(m(l _ Qni)l—w,m (3)

4

where 6,; is the probability that word term w;,, appears in an article of type i.
The full likelihood for the data is then a product of Eq. (2) and a term in the form
of Eq. (3) for each article, yielding Eq. (4),

T,:
N ai

A J K J
20 p.abw.y. T) = [[TT1 2 [TTTE T (1 = 6,
a i k J

n

“)

3 EM Algorithm

Since T', p and m are unknown in Eq.(2), we proceed as per Dawid and Skene
(1979). We then extend the EM algorithm to yield a joint estimation that learns
within the same EM iterations as it learns the values of missing data 7', the marginal
probabilities p and annotator bias matrices 7. The algorithm proceeds as follows:

1. for all articlesa:

2. initialize T using T, = E[T,] = >k yt(l]f)/K

3. initialize pusing p; =) , Tu/A

4, estimate all w values via maximum likelihood
expression

5 (k)
EYON 2 Taiyy

—_— (5)
y (k)
Zj Zu Taiyaj
5. estimate all f and pvia maximum likelihood
expressions
R Wan Tui . T
Op = —Z“ * Y and p; = Lo «. (6)

Za Tai A
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6. re-estimate T using

K17/ A0\ ® 17N A \w A \l—w
P TTETT G Y T By er (1 = ) —en

K17 a0y N A A Nlew,
Yoo pir TIE TTL G TTY B ) e (1 = )=

Tui = E[T,] = (7

7. repeat 4 to 6 until convergence

with convergence assumed once the change in log-likelihood fell below 107*.

In contrast, the decoupled estimator of the above method estimates the biases ,
document types T and marginal probabilities p first, as in Dawid and Skene (1979).
The Naive Bayes parameters 6 are then fitted using the final estimates of the missing
data values from the first stage; the decoupled estimation approach is similar to that
taken by Smyth et al. (1994).

4 Results

4.1 Simulated Data

To test and compare the algorithm described in Sect. 3 with the decoupled estimator,
we simulated data 200 times. For each run, we use the marginal probabilities
p =(0.3,0.3,0.4) of each of the three types of “article”. True types for A “articles”
are simulated directly with these marginal probabilities. We then construct K
conditional probability matrices 7*) of size 3 x 3, one for each “annotator”. The
value of n;»k) gives the probability that annotator k annotates an article of type i
with label ;. Finally, we also simulate observed word terms w for each article using
the conditional probabilities of words occurring in each type of article as given in 6.

Two hundred such simulated data sets were analysed and for each data set the
biases were randomly sampled uniformly over the range 0.1-0.5 and split evenly
between the two wrong types with the balance allocated to the correct type. This
was done identically for all simulated annotators which is equivalent to having a
single random annotator performing multiple annotations and the number of these
annotators was sampled uniformly between 2 and 6. The words were assigned a type
according to p and the word-type probabilities 8 were 0.1 to appear in an article of
opposite type and 0.8 to appear in an article of the same type.

Both models are then evaluated on four performance metrics:

1. The mean error in expectation of type:

> (1-E[T,])/A ®)

a

where the true value of article a is type i.
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Fig. 1 Kernel density estimates of comparative performance measurements across multiple
simulations. Two hundred runs of the simulated dataset analysis were performed and the difference
in performance measure is computed for decoupled model (M) and the joint model (M).
(a) shows the difference in mean error of type 7. (b) shows the difference in mean squared error
of bias 7. (c) shows the AUC difference and (d) shows the mean squared error difference of word
association 6

2. The mean squared error from the 7 matrix of bias probabilities.
3. The mean area under the ROC curve (AUC) for each of the three possible types.
4. The mean squared error from the € matrix of word-type probabilities.

We subtracted the above four statistics under the joint estimation model M; from
the decoupled estimation model M, for repeated simulations. The mean paired
difference between the above performance measures were 0.193, 0.009, —0.103 and
0.009, respectively. All four were strongly statistically significantly different from
zero under a ¢-test for the paired differences with p-values all less than 2.2 x 10716,
Figure 1 shows kernel density estimates of these differences for the above statistics
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Fig. 2 Comparison of performance across 200 iterations of simulated data. (a) shows the mean
error in type 7 (as per Eq. (8)) and (b) shows the mean squared error in word-to-type association 6.
The size of the circles in the plot is proportional to the bias and each circle represents a single run.
Lines with unit slope are added for reference

Table 1 Cross-tabulation of article classification and model

Majority vote Decoupled estimator Joint estimator

Negative 540 493 424
Positive 288 289 206
Irrelevant 196 242 394

across the 200 simulation runs. Figure 2 indicates that the joint estimator’s increase
in performance is greater for higher biases. The size of the circles in the plot is
proportional to the sampled bias and each circle represents a single run.

4.2 Sentiment Data

We next present our results on the sentiment dataset. The interquartile range for
the bias matrix off diagonal terms is (0.110,0.517), indicating a level of bias
comparable to the simulated dataset. Table 1 shows the breakdown of classification
with model for the media sentiment dataset. Figure 3 depicts tag clouds for
word terms that have the strongest power for the negative, positive and irrelevant
article types, under the joint estimation procedure. These tag clouds appear to
show sensible word term associations to both positive and negative sentiment; for
example, the names of the finance minister (“Brian”, “Lenihan”) and the new agency
to deal with toxic debt (“NAMA”) are included in the negative tag cloud and words

like (“Germany”, “recovery”) are included in the positive tag cloud. The tag cloud
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Fig. 3 Tag clouds for the top 100 word terms most strongly associated with (a) negative and
(b) positive and (c) irrelevant articles. Most of the words appear to have an intuitively correct
association with article type

for the word terms for with the strongest predictive power for the irrelevant article
types are given in Fig. 3c. Interestingly, most of the words in this tag cloud are non
economic terms.

5 Discussion

We have demonstrated that the joint estimator makes use of the word term
association with article type and thus outperforms the decoupled estimator for both
bias estimation and classification. This boost in performance is related to the ratio
of information in the features to the biases; if the annotators are all in agreement
then the word term classifier will contribute little to the model. If there is bias in
the annotations and the word terms are influenced by the article type then they will
have a larger impact on the model and the joint estimation model will outperform
the decoupled estimation model.

The joint estimator can achieve a target level of accuracy in article labelling
using fewer biased annotators than the decoupled or majority vote labeling. This
suggests that our method could be used to generate savings in the context of crowd-
sourcing with inexpert or otherwise biased annotators. There is a computational
cost associated with the joint estimation; the time to perform 100 iterations for the
decoupled and joint algorithms was approximately 16 and 50s respectively. The
joint algorithm does not seem to take more iterations to converge; for example,
using the criterion that a change in log-likelihood of less than 10~3 required 38 and
36 iterations respectively. For a change of less than 1072 they took 33 and 35.

The methodology outlined in the paper could be easily adapted to other model-
based classifiers where samples are labeled using noisy annotations.
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Visualizing Data in Social and Behavioral
Sciences: An Application of PARAMAP
on Judicial Statistics
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Abstract In this paper, we describe a technique called PARAMAP for the visual-
ization, scaling, and dimensionality reduction of data in the social and behavioral
sciences. PARAMAP uses a criterion of maximizing continuity between higher
dimensional data and lower dimensional derived data, rather than the distance
based criterion used by standard distance based multidimensional scaling (MDS).
We introduce PARAMAP using the example of scaling and visualizing the voting
patterns of Justices in the US Supreme Court. We use data on the agreement rates
between individual Justices in the US Supreme Court and on the percentage swing
votes for Justices over time. We use PARAMAP, metric MDS, and nonmetric
MDS approaches to create a voting space representation of the Justices in one
and two dimensions. We test the results using a metric that measures neighborhood
agreement of points between higher and lower dimensional solutions. PARAMAP
produces smooth, easily interpretable, solutions, with no clumping together of
points.
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1 Introduction

This paper was inspired by a set of New York Times articles (Stevenson 2005;
Stevenson et al. 2005) on the retiring centrist Supreme Court Justice Sandra Day
O’Connor. The articles describe the pivotal role that Justice O’Connor played on
the United States Supreme Court. The articles detail both agreement rates and swing
voting patterns for the Justices sitting on the U.S. Supreme Court as of July 2005.
The articles use this information to show the influence of Justice O’Connor, given
her role as a centrist Justice, between the liberal and conservative blocks on the
court.

Each judgment in the Supreme Court is a binary decision, with each Justice
voting on one of two outcomes. There are nine Justices in the court, with the overall
judgment made by majority voting. The votes cannot be split, and given the odd
number of Justices in the court, a majority decision will always be made.

We analyze the Supreme Court decisions using the agreement rate and swing vote
tables given in the aforementioned NYT article. Table 1 gives a lower triangular
matrix of percentage agreement rates in judgments between pairs of Justices.
O’Connor was closest to the center of the court, with the least variation in agreement
rates. The Justices most in agreement were Scalia and Thomas, while the Justices
least in agreement were Scalia and Stevens. Table 2 details how often each Justice
was on the winning side of a 5—4 vote, i.e. how often they were the “swing vote”.
The data show how O’Connor sided with the winning majority on 77 % of 5—4 votes,
more than any other Justice. The second most influential Justice in this respect is
Kennedy, who sided with the winning majority on 72 % of 5—4 votes.

In the Political Science literature, both Factor Analysis (MacDonald et al. 1991)
and MDS (Brazill and Grofman 2002) have been used to analyze voting patterns
and to give spatial representations of voting data. Factor analysis has been used to
investigate the relationship between the political party position and the evaluation of
parties in a democratic multi-party system (MacDonald et al. 1991). In Brazill and
Grofman (2002), it is shown that MDS outperforms Factor Analysis in recovering
lower dimensional spatial representations of binary voting data and that when the
data fit a unidimensional Guttman scale the MDS recovered solution is perfect with
1O erTor.

The purpose of the analyses given in this paper is to provide a visual represen-
tation of the voting patterns of the Justices. In order to create lower dimensional
representations of proximity, we use the techniques of multidimensional scaling
(MDS) and of a procedure called “Parametric mapping” (or “PARAMAP”). The
PARAMAP technique was originally proposed by Carroll in Shepard and Carroll
(1966). We compare the PARAMAP solutions with those gained from both metric
and nonmetric MDS. PARAMAP works by minimizing an index of continuity,
which is derived from a metric proposed by von Neumann (1941)). This metric
gives an inverse measure of trend based upon the ratio of the mean square successive
difference of the data to the variance of the data. The derived measure is called kappa
(k) and is given in 1. Here, for a pair of points i and j, d;; is the input configuration
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distance, and D;; is the output configuration distance. By default, the distances are
calculated with the Euclidean metric. Detailed derivations of (k) can be found in
Akkucuk (2004) and Akkucuk and Carroll (2006). A more general definition of a
larger class of measures of continuity or smoothness is given in Shepard and Carroll

(1966).
-2

dz 1
=22 5 [\ 2l pr M

it i

2 Experimental Design

We used both the agreement and swing vote data (Tables 1 and 2) and visualized the
data in one and two dimensions. To create the metric and nonmetric MDS lower
dimensional solutions, we used the KYST application (Kruskal et al. 1997). To
create the PARAMAP solutions we used a combination of the software developed by
Akkucuk and the KNITRO solver (Byrd et al. 2006) in conjunction with an AMPL
script.

A 9x9 proximity matrix was created for the swing data. Each element of the
matrix was the Euclidean distance between the swing votes for each Justice. Each
dimension y in the multidimensional space corresponded to one of the years from
1994 to 2004. We define the Euclidean distances between Justices i and j for the
swing votes, with p;, and p;, defined as the swing votes for year y.

WAL
Dz(SW)ij =11 Z (piy - Piy)2 2

y=1

A 9x9 proximity matrix was created for the agreement rates. Each distance
between Justices i and j was defined as the Euclidean distance between the Justices’
agreement rates with the agreement rates for each individual Justice k. This matrix,
derived from what can already be defined as a proximity matrix for the Justices, is a
second order proximity matrix.

9
D*(AG);; = é (Z (a — ajk)z) 3)
k=1

The two 9x9 matrices defined in (2) and (3) were averaged. The resulting matrix
was then processed using KYST, for both metric and nonmetric MDS. The resulting
KYST solutions were then used as a starting point for subsequent solutions.

A new combined matrix was created from the agreement matrix and the
transposed raw swing vote matrix. Both matrices were scaled; each entry in the
agreement matrix was multiplied by the square root of 1/9 (1/3), so that the squared
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Table 1 Agreement matrix S B G O C K R L
B 62
G 66 72
O 63 71 78
C 33 55 47 55
K 36 47 49 50 67
R 25 43 43 44 71 78
L 14 25 28 31 44 58 66
T 15 24 26 29 44 59 68 79

S Stevens; B Breyer; G Ginsburg; O Souter;
C OConnor; K Kennedy; R Rehnquist; L Scalia;
T Thomas

Table 2 Swing vote matrix C XK T R L O S B G

9495 69 81 50 63 56 38 50 44 50
95-96 82 82 64 64 64 36 27 36 45
9%-97 72 78 56 67 56 50 50 39 33
9798 67 87 73 60 47 33 40 53 40
98-99 69 56 63 56 63 50 50 39 44
99-00 83 72 83 72 78 33 28 22 28
0o-01 78 78 67 67 67 41 33 33 37
01-02 81 71 67 71 67 33 38 43 29
02-03 93 50 43 57 50 57 50 57 43
03-04 79 63 63 53 53 47 47 42 47
0405 65 65 53 59 59 59 47 53 47

Codes as per Table 1

distances were effectively multiplied by 1/9. The swing vote matrix was multiplied
by the square root of 1/11, so that each squared distance was effectively multiplied
by 1/11. Given the rescaled 9x9 agreement matrix A and the rescaled 9x11 swing
vote matrix SW, the combined matrix is defined as:

Ay - Ao SWig--- SWin
v Lo . . @
Agy -+ Ago SWoy -+ SWoi1

The matrix Y was used as input to the PARAMAP and MDS algorithms, with
n = 9 points embedded in a 20 dimensional space. Each technique was tested with
2,000 random starting configurations. Multiple random starting solutions were used
due to the fact that both MDS and PARAMAP functions produce a non-convex
solution space. The problem of local minima can be mitigated (if not completely
eliminated) by using a large number of different starting configurations.
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3 Experimentation and Results

When reporting results, we give the derived solutions for 1 and 2 dimensions. We
also include both the criteria for minimizing the algorithm (STRESS for Nonmetric
and Metric MDS, or « for PARAMAP) and the solution agreement rate. For each
method, the solution reported in this section is the one that has the best value of the
minimization criterion among the 2,000 solutions.

The agreement rate (Akkucuk 2004; Akkucuk and Carroll 2006) is a measure
of similarity between solution configurations and is analogous to the Rand index
of cluster solution agreement (Hubert and Arabie 1985). For both the input and
output configurations, the k nearest neighbors are calculated for each solution point
i. Let a; represent the number of points in both the higher and lower dimensional
neighborhoods of point i. The agreement rate A is equal to the sum of a; across all
i divided by (k * n), where k is the size of the neighborhood and » is the number of
solution points. For reporting purposes, the value of k =3 was used, as this value
of k gave the best spread of results. The one dimensional output solutions are shown
in Fig. 1 and the two dimensional output solutions are shown in Fig. 2.

For the one dimensional derived solutions, the PARAMAP and metric MDS
solutions have the highest agreement rate (0.8148). Both these solutions have the
same ordering of Justices. The nonmetric MDS solution has a lower agreement
rate (0.6293), as several of the points have co-located in a degenerate solution. We
also ran multiple runs of a combinatorial seriation (or ordering) algorithm (Hubert
et al. 1977). The algorithm found the same ordering as the optimal metric MDS and
PARAMAP solutions. We can give an interpretation of the solution as the political
alignment of the Justices. Each solution has a mirror image solution with symmetry
across the O value of the axis, but we use the solution with the more “liberal”
Justices to the left and the more “conservative” Justices to the right, as per political
convention.

The PARAMAP solution gives a smooth continuum of Justices, with O’Connor
in the center of the continuum. This fits in with the original NYT article, which
had O’Connor as the swing Justice. The nonmetric MDS solution has the Justices
in two clumps; we can interpret these clumps as splitting the Justices into liberal
and conservative groups. This solution gives less interpretation than the PARAMAP
solution; we cannot for example distinguish between O’Connor, who is a centrist
Justice, and Thomas, who has the most conservative voting pattern of all the
Justices. The metric MDS solution is intermediate to the PARAMAP and nonmetric
MDS solutions. The Justices are displayed in a similar order to the PARAMAP
solution, but the spacing is more uneven. Nonmetric MDS uses a monotonic
regression procedure, which emphasizes order over distance, which can lead to the
clumping seen in the solution. Metric MDS uses standard linear regression to fit the
parameters, and thus derived solutions recreate distances as accurately as possible.
The continuity criterion for PARAMAP leads to smooth, evenly spaced points.

For the two dimensional derived solutions, the PARAMAP solution has the
highest agreement rate (0.9630), followed by the metric MDS solution (0.9259), and
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Fig. 1 1D solutions for PARAMAP, nonmetric MDS, and metric MDS

then the nonmetric MDS solution (0.9253). As per the one dimensional solution, the
nonmetric MDS solution has some clumping together of points, while the metric
MDS solution and the PARAMAP solution are more spread out. The clumping
is not as severe for the two dimensional nonmetric MDS solution as for the one
dimensional nonmetric MDS solution, but three of the liberal Justices are clumped
together (Ginsberg, Breyer, and Souter) and there are two groups of conservative
Justices. We can interpret these groups as highly conservative (Scalia and Thomas)
and centrist conservative (Rehnquist and Kennedy). In the PARAMAP solution
there are two distinct clusters of Justices. The first cluster contains Souter, Stevens,
Ginsburg, and Breyer, and the second contains Scalia, Thomas, and Rehnquist.
The two outliers are O’Connor and Kennedy, who are closer to the second cluster
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Fig. 2 2D solutions for PARAMAP, nonmetric MDS, and metric MDS

than the first. One could label the first group of four Justices as liberal and the
second group of three Justices as conservative. The other two Justices are outliers,
closer to the second group than to the first. This configuration implies that these
outliers are the swing Justices, deciding votes where the two major voting blocs
disagree. Looking back to the original swing vote data in Table 2, both O’Connor
and Kennedy have far higher percentages of swing votes than the other Justices.
The metric MDS solution is similar to the PARAMAP solution, but gives a
slightly different interpretation for the five conservative Justices. Here, the two most
conservative Justices (Scalia and Thomas) are grouped together and there is a group
of three more centrist Justices, who are oriented vertically, so that the swing Justices
(Kennedy and O’Connor) are furthest away from Scalia and Thomas.
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4 Conclusions and Future Work

The optimal PARAMAP agreement rate was better than both MDS techniques for
two dimensions and tied with metric MDS for one dimension. The nonmetric MDS
solutions had the points clumped together, particularly for the one dimensional
solution. Overall, we have presented a set of judicial data and we have shown
how dimensionality reduction techniques can be used to interpret these data and
give visualizations of the Justices. We have introduced a nonlinear dimensionality
reduction technique called PARAMAP and have shown that PARAMAP gives
output solutions that have strong agreement rates and interpretable visualizations.

For future work, it would be useful to utilize larger voting data sets, for example
the voting records of politicians. The data used for the analyses were summarized
from the original voting data. Testing dimensionality reduction techniques using the
original binary data would improve the generalizability of our results.
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Properties of a General Measure
of Configuration Agreement

Stephen L. France

Abstract Variants of the Rand index of clustering agreement have been used
to measure agreement between spatial configurations of points (Akkucuk 2004;
Akkucuk and Carroll 2006; Chen 2006; Chen and Buja 2009). For these measures,
the k-nearest neighbors of each point are compared across configurations. The
agreement measure can be generalized across multiple values of k (France and
Carroll 2007). The generalized agreement metric is denoted as . In this paper,
we further generalize ¥ to the case of more than two configurations. We develop a
partial agreement measure as a neighborhood agreement equivalent of the partial
correlation coefficient. We demonstrate the use of ¥ and partial ¥ using an
illustrative example. (MATLAB implementations of routines for calculating ¥ and
partial ¥ are available at https://sites.google.com/site/psychminegroup/.)

1 Introduction

This paper describes a methodology for comparing configurations of points.
Consider a set of solution configurations C;, C,, ..., C;, ..., C,. Each solution con-
figuration C; contains n points embedded in an m; dimensional space. The similarity
or agreement between any two solution configurations i and j can be expressed
as a function s(C;,C;). There are a whole host of applications for which the
calculation of a similarity/agreement metric between configurations could be useful.
Applications are described in France and Carroll (2007) and Lueks et al. (2011). A
summary list is given below.
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1. Dimensionality reduction techniques can be used to take data embedded in
a higher dimensional space and create an embedding of the data in a lower
dimensional space. As the number of degrees of freedom for the data is positively
correlated to the data dimensionality, it may not be possible to perfectly embed
the data. Different dimensionality reduction techniques may use different quality
or optimization criteria, so a suitable agreement metric can be used to provide
a neutral measure of solution quality. A dimensionality reduction technique can
generate multiple solutions. An agreement metric can be used in several ways.

(a) Some dimensionality reduction methods are parameterized. For example,
Isomap (Joshua et al. 2000 ) and Local MDS (Chen 2006; Chen and Buja
2009) have an input parameter for neighborhood size. An agreement metric
can be used to help find the optimal parameter values.

(b) Some dimensionality reduction methods minimize a criterion function. The
criterion function is not necessarily convex, so solution procedures may not
be guaranteed to find a globally optimal solution. For example, distance
based MDS (DDMDS) (Kruskal 1964) and PARAMAP (Akkucuk 2004;
Akkucuk and Carroll 2006) both have non-convex optimization functions. An
agreement metric can be used to help compare solutions and evaluate solution
stability (France and Carroll 2009).

2. An agreement metric can be used to test longitudinal data. For example, a
marketing manager may wish to test how a perceptual map of product preferences
changes over time.

3. One may wish to examine interactions between more than two configurations.
For example, given configurations A, B, and Z, one may wish to discount the
effect of configuration Z on the relationship between configurations A and B.

In this paper we describe a methodology for testing agreement between item
configurations. This methodology utilizes neighborhood agreements or rankings to
give a rank order measure of agreement between configurations. We review the
current literature and methodology. We extend the methodology by describing a
partial agreement metric and we give a short illustrative example to show how both
the agreement metric and partial agreement metric can be used in social science
applications.

2 Literature Review

The agreement metrics described in this paper are based upon the Rand index for
clustering agreement. The Rand index (Rand 1971) was devised to compare clus-
tering configurations and to help test the reliability of cluster analysis techniques.
A version of the Rand index, adjusted for random agreement, is described in Hubert
and Arabie (1985). Versions of the Rand index to calculate agreement between
solutions were developed independently in Akkucuk (2004), Akkucuk and Carroll
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(2006), Chen (2006), and Chen and Buja (2009). The basic agreement rate metric
(AR) is described below.

Consider two solution configurations A and B. A is an n x m;| matrix and B is
an n X my matrix. Given a distance metric function f that conforms to the distance
axioms, let f(A) = D4 and f(B) = Dg. For each item i, item j is one of the k
nearest neighbors of i if d(i,j) is one of k smallest values of d(i,/), wherel = 1...n
and / # i. An n x k matrix of nearest neighbor indexes can be created for each
configuration. Let N4 be the matrix of nearest neighbors for configuration A and
N3 be the matrix of nearest neighbors for configuration B. Let a; be the number of
indexes in both row i of N4 and row i of Ng. The overall agreement is given in (1).

1 n
AR = EZ‘" (1)

An adjusted agreement metric (4*) is described in Akkucuk (2004) and Akkucuk
and Carroll (2006). Random agreement is subtracted from the agreement metric by
averaging the agreement from multiple empirically generated random samples. In
Chen (2006) and Chen and Buja (2009) an adjusted agreement metric is created by
assuming a hyper-geometric distribution. The expected agreement is given in (2)
and the adjusted agreement is given in (3).

1 < 1 ¢ kn [k k
FURGM = Y= Sk p =1 () =g @

i=1 i=1

n 2
AR* = |:a,-— k } A3)

knl_=l n—1

A generalized agreement metric (France and Carroll 2007) is given in (4). This
agreement metric is denoted as . It is calculated across all k and takes account of
random agreement.

‘([/:

“

n—1
kX_:l (AR(k) — E[AR (K)])

1
(I - E[AR (K)])
k=1

In (4), equal weights are given for all values of k. A further generalization of v,
given in (5), allows for a weighting function.

n—1
> (f (k) (AR(k) — E [AR (K)]))
Viw == (5)

—1
1;1 (f (k) (1= E[AR (K)]))
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The function can be restricted to certain values of k. For example, setting
f(k) = 1fork = 1...4 averages evenly over the 4 nearest neighbors. A weighting
that is even for values of k from 1 to n/4 and then linearly declines to O at n/2 is
given in (6). The weighting scheme used is reliant on the application. For example,
a cellphone company marketing manager may wish to examine a perceptual map
of brand positions. The manager may want the answer to the question, “Am I
competing more closely with Samsung or Nokia?” Thus, a good quality solution
would have strong recovery of nearest neighbors. However, for visualization of a
large scale nonlinear manifold, the overall global recovery of the manifold shape
may be more important than the recovery of nearest neighbors.

I 0<k=n/4

Several properties of { are given in France and Carroll (2007). These properties
are listed below. The proofs are given in France and Carroll (2007).

1. AR is not monotonic with respect to k.

2. sup { s} = 1 and is independent of f (k).

3. If f(k) = c for some constant ¢ then inf {{ y¢)} =
.

(n—z) where Y is defined in

[n/2] n 1J+l n
—22(,1_(2 (= 1) /2]) + 2. z)/(L%JH) @

i=1

The ¥ metric can be thought of as analogous to a discrete GINI coefficient
(Corrodo 1921), but with the “inequality” curve above rather than below the line
of equality (or random agreement). Given a line of random agreement over k and
the value of AR plotted across k, an unweighted ¢ coefficient measures the total
proportion of the area above the random agreement line that is below the AR line.

The AR and ¥ metrics described in this section measure the proportion of items
that are in both configurations. These metrics are symmetric and they are not
affected by the order of the configurations. If one was to define a; as the number of
indexes in row i of N4 but not in row i of Ng or vice versa then the metrics would
be asymmetric. Asymmetric agreement metrics are described in Kaski et al. (2003).
A framework for both symmetric and asymmetric agreement metrics is given in
Lee and Verleysen (2009). The framework assumes a source high dimensional
configuration and a derived low dimensional configuration. The nearest neighbor
ranking of item j for item i is 7;; for the input configuration and r;; for the output
configuration. Hard and soft deviations from agreement are listed below.

1. Hard Intrusion: r;; < k < 7;;
2. Soft Intrusion: r;; < 7jj <k

3. Hard Extrusion: r;; < k < 7;;
4. Soft Extrusion: 7; < rij <k
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The intrusions and extrusions can be summarized in a “co-ranking” matrix. The
AR and ¥ agreement metrics measure cases where there is a hard intrusion or
extrusion. A method of using a diagonal subset of the co-ranking matrix is described
in Lueks et al. (2011). What may be a hard inclusion or exclusion at one value of
k may be a soft inclusion or exclusion at a larger value of k. For example, consider
a situation where item [ is the second nearest neighbor of item i in configuration
A and the fourth nearest neighbor of item i in configuration B. Item [ gives a hard
intrusion/extrusion for k = 2 and k = 3, but a soft intrusion/extrusion for k > 4.
For v, item [ affects the agreement rate for k = 2 and k = 3, creating a range of
“non-agreement”.

3 Extension

We extend previous work by describing a partial agreement metric. The partial
agreement metric is analogous to the partial correlation coefficient (Fisher 1924).
The rationale behind the partial agreement metric is to discount some configuration
Z when calculating the agreement between configurations A and B. A marketing
example could be the calculation of the agreement between perceptual product maps
for a consumer after two different promotions A and B. The configuration for the
consumer’s previous perceptual map Z would be discounted from the equation in
order to emphasize the differences between configuration A and configuration B.
The equation for partial agreement is given in (8).

Vnpy = Yap — YazV¥pz ®)

V1=V 1-v3,

As per the properties of the partial correlation coefficient; if —1 < Yy < 1,
—1<vYuz=<1l,and -1 < ypz < 1then —1 < Yupz < 1.1 Yuz = 1, Yaz = -1,
Yz = 1, or Yz = —1 then the partial agreement metric is undefined.

4 Illustrative Example

To illustrate the use of the partial agreement metric (partial ¥), we give an
illustrative example. Data were taken from a survey on international educational
achievement (Barro and Lee 2001). The data contain details of schooling achieve-
ment at various levels (primary, secondary, and tertiary). We used a subset of the
data that contains information for all respondents aged 25 plus. Data are included
for the years 1965-2000 at 5 year intervals. There are nine continuous variables
detailing educational attainment. The data are given at the country and year level
and are grouped into six regions. We range scaled the data and calculated Euclidean
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Fig. 2 MDS recovery agreement (GAAgree = ) for Europe and North America

distances between countries in each region. We created MDS embeddings from
2 to 8 dimensions for each combination of region and year. As an example, the
2 dimensional MDS maps for the Europe and North America region are given in
Fig. 1.

We calculated the unweighted ¥ value between each lower dimensional embed-
ding and its source higher dimensional configuration. Agreements were calculated
for all 6 regions, but for the sake of brevity, we only give agreements for the Europe
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Europe and North America
W 1960 1965 1gg_q] 1975 1980 1985 1990 1995 2009]

1960 1

1965 1

1970| 0.46258] 050754 1

1975| 0.360726] 0.40644| 0.585421 1

1980| 0.350851| 0.376349| 0.462979] 0.601564 1

1985| 0.378848| 0.404712| 0.504833| 0.570006 1

1990 0.2449] 0.255952| 0.337062) 0.498731| 0.546054] 0.550954 1

1995| 0.186175| 0.212287| 0.309803| 0.461391| 0.497316] 0.502662 1

2000| 0.187667| 0.200313| 0.286543] 0.43126] 0.476317] 0.487007 1
Partial @ 1960 1965 1970| 1975 1980 1985 1990 1995

1965 1

1970 0.2689 1

1975| 0.217088] 0.506184 1

1980 0.178811] 0.362172| 0.543865 1

1985] 0.192564] 0.401692] 0.502052] 0.6; E.B‘I12[ 1

1990 0.109732| 0.260331] 0.453834] 0.50779| 0.510627 1

1995| 0.110344] 0.256787| 0.430213] 0.469531] 0.475245 1

2000| 0.089614] 0.22935] 0.39686] 0.446267| 0.457538 1
Middle East and North Africa (MENA)

[ 1960 1965 19?g] 1975 1980 1985 1990 1995 2000|

1960 1

1965 1

1970 1

1975] 0. ] 1

1980| 0.638945| 0.666963] 0.6 ! 1

1985) 0.59414] 0.622158| 0.609431] 0685923 1

1990 0.441325] 0.523337| 0.55501] 0.661151| 0.580367 1

1995| 0.451932| 0.495984| 0.507488| 0.626816| 0.549759| 0.608706 1

2000] 0.347811] 0.408337] 0.460414] 0.547924| 0.478924] 0.538993] 0.654064 1
Partial 1960 1965 1970 1975 1980 1985 1990 1995

1965 1

1970 0.555433 1

1975| 0.438763] 0.453202 1

1980| 0.332550| 0.320583 O,EBSZDBI 1

1985| 0.299885| 0.471462| 0.499049] 0.569535 1

1990 0.315397| 0.375855| 0.54979| 0.432261

1995| 0.248939| 0.280271

2000] 0.23047] 0.321956

Fig. 3 Values of  and partial ¥ between configurations

and North America region, which are plotted in Fig.2. For each year, the value of
Y is plotted against output dimensionality. The value of ¥ increases with output
dimensionality (and available degrees of freedom) and for k = n — 1 dimensions,
there is perfect agreement.

For each region, we calculated ¥ as per (4) between every combination of years.
We then calculated partial i between every combination of years, but attempted
to remove influence of the original 1960 configuration by using 1960 as the
“covariate”. The rationale behind the use of partial v is to discount a region’s
initial educational attainment. When comparing configurations, the agreement is
not a measure of overall change, but of change in the relative positions of the
countries. Thus a region with an uneven increase in educational attainment will have
lower rates of agreement than a region with a more even increase in educational
attainment. Fig. 3 gives tables of ¥ and partial ¥ between year configurations for
the Europe and North America region and for the MENA (Middle East and North
Africa) region. Values of ¢ greater than 0.5 are shaded in gray, with darker gray
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shades corresponding to higher levels of agreement. There is very strong agreement
for the MENA region, particularly for the years from 1965-1985. The partial
values are less than the ¥ values, as any changes in the configurations are amplified
due to the removal of the starting configuration. The results suggest a slow, even
pace of educational development in MENA in these years relative to Europe and
North America. One reason for these results is that tertiary eduction expanded
rapidly in parts of Europe and North America during these years, but did not expand
to such a great degree in the MENA region.

5 Conclusions and Future Work

In this paper, we review work on the generalized agreement metric ¥. We introduce
a measure of partial agreement (partial ¥). An illustrative example shows how
partial ¢ can be used to emphasize changes in agreement relative to a base
configuration. There is much scope for future work on 1 and on similar agreement
metrics. The interpretation of i is currently subjective and there are no rigorous
statistical techniques for testing the significance of 1. Future work could examine
the statistical properties of ¥ and could explore bootstrapping approaches for
calculating confidence intervals for . While the agreement metrics described in this
paper utilize ordinal data, they are reliant on the distance metric used to calculate
the rank order nearest neighbors representations. Work could be done to test the
effects of different distance metrics on the value of ¥. Work could be done to
optimize V¥ for a given dimensionality reduction problem. This could build on work
on optimizing the Rand index (Brusco and Steinley 2008).
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Convex Optimization as a Tool for Correcting
Dissimilarity Matrices for Regular Minimality

Matthias Trendtel and Ali Unlii

Abstract Fechnerian scaling as developed by Dzhafarov and Colonius (e.g.,
Dzhafarov and Colonius, J Math Psychol 51:290-304, 2007) aims at imposing
a metric on a set of objects based on their pairwise dissimilarities. A necessary
condition for this theory is the law of Regular Minimality (e.g., Dzhafarov EN,
Colonius H (2006) Regular minimality: a fundamental law of discrimination. In:
Colonius H, Dzhafarov EN (eds) Measurement and representation of sensations.
Erlbaum, Mahwah, pp. 1-46 ). In this paper, we solve the problem of correcting a
dissimilarity matrix for Regular Minimality by phrasing it as a convex optimization
problem in Euclidean metric space. In simulations, we demonstrate the usefulness
of this correction procedure.

1 Preliminaries

For a set of stimuli X = {x;,x2,...,x,},let ¢ : X x X — R4 be some discri-
minability measure, mapping pairs of stimuli x; € X and x; € X into the set of
nonnegative reals. For example, a pair of line segments (xi X j) may be repeatedly
presented to an observer (or a group of observers), and (x,», by j) may be estimated
by the frequency of responses “they are different (in length)”. Possible examples
are numerous, and more can be found in Dzhafarov and Colonius (2006b). In such
a pairwise presentation paradigm, even if stimuli x; and x; have the same value
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(say, they are line segments of the same length), they must occupy different spatial
and/or temporal positions. This difference in spatial or temporal locations does not
enter in the comparison, but it may affect the way people perceive lengths, and this in
turn may lead to ¥ (x;, x;) being larger than ¥ (x,-, X j) for some distinct x; and x;,
in the same way as it may lead to ¥ (x;,x;) # ¥ (x;, x;). Therefore the notion of
observation area was introduced (Dzhafarov 2002; Dzhafarov and Colonius 2006b).
Henceforth we call first observation area the set of stimuli presented, say, first in
time or on the left, and second observation area the set of stimuli presented second
or on the right.

In the context of pairwise same-different comparisons, it is a well-established
empirical fact that ¢ (xi X j), however obtained, is not a metric. So the data have
to be modified to make such data-analytic procedures as multidimensional scaling
(MDS; e.g., Kruskal and Wish 1978) applicable. Also, the class of allowable
metrics in MDS is usually a priori restricted to Minkowskian metrics in low-
dimensional spaces of real-component vectors. By contrast, Fechnerian scaling (FS)
deals directly with 1r-data subject to same-different comparisons, and it imposes no
a priori restrictions on the class of metrics computed from . The only property of
the 1-data which is required by FS is Regular Minimality (RM).

This principle postulates the existence of pairs of stimuli that are mutually the
most similar ones to each other. In regard to discrimination probability matrices
(discrimination probabilities being presented as an n x n matrix ¥ = (Wii)
this means that a matrix ¥ satisfies RM, iff every row has a unique minimum entry
which is also the unique minimum entry in its column. For instance, the matrix of
Y-data

X1 X2 X3
x10.20.10.5
x20.70.30.2
x30.10.60.3

satisfies RM, with (xi, x3), (x2,x3), and (x3,x;) being pairs of mutually most
similar stimuli. Here, the first symbol in every pair refers to a row object (all row
objects belonging to one, the “first”, observation area) and the second symbol refers
to a column object (in the “second” observation area).

FS imposes a metric G, if RM is satisfied. For every pair of objects (x,-,x j)
we consider all possible chains of objects (xi s Xlkps oo Xy X j). Presupposing RM,
for each such a chain we compute what is called its psychometric length. Then we
find a chain with minimal psychometric length, and take this minimal value for
the quasidistance from x; to x; (referred to as the oriented Fechnerian distance).
Quasidistance is a pairwise measure which satisfies all metric properties except for
symmetry. In FS we symmetrize this quasimetric and transform it into a metric,
taking it for the “true” or “overall” Fechnerian distance G(x;, x;) between x; and
x ;. (For a detailed discussion refer to Dzhafarov (2002), Dzhafarov and Colonius
(2006a), Dzhafarov and Colonius (2006b), Dzhafarov and Colonius (2007), and
Dzhafarov et al. (2011).)
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RM can be generalized to nonnegative reals:

Definition 1. Let S, = {o:{1,...,n} — {1,...,n}: 0 apermutation} be the
group of permutations on {1,...,n}. A matrix ¥ = (1//0-)[,.].:1 L, € R’f, viewed as

the vector (Vi1, Y12, -« Wins Y21, Y22, -« o Wans e oo s Unts W2y« + - > W) T, Of dis-

criminability measures satisfies RM, iff there exists an o € S, such that, for any
i=1,...,n,

Yioy < Y for j # o(i), and
Vioti) < Vjo for j # 1.

Then, o is also uniquely determined, and we say that ¥ satisfies RM in o-form. The
set of all n x n matrices satisfying RM in o-form (for one given permutation o) is
denoted by RM.,.

The square matrix ¥ is the matrix of true (unknown) discrimination probabilities
Y;; in the population of reference. Same-different comparisons can be modeled
by a Bernoulli random variable: 1 if the response is “different”, with “success”
probability v;, and O if the response is “same”, with probability 1 — ;. The
relative success counts 1},] from independent samples of independent responses are
the maximum likelihood estimators (MLEs) for the y;;’s. The population matrix ¥

is unknown and estimated from the data using its MLE U= (1&,})

N

The observed data matrix ¥ may not satisfy RM, although the underlying
population matrix ¥ may do. In other words, the compliance of a matrix of
discrimination probabilities with RM must be tested statistically. In the literature,
a parametric hypothesis test based on a measure was proposed by Unlii et al. (2010)
and a nonparametric test based on permutations was derived in Dzhafarov et al.
(2011). However, these tests do not allow correcting the data for RM.

In this paper, a method is proposed for correcting a dissimilarity matrix for RM
in an “optimal” way, with respect to the Euclidean metric. We interpret ¥ and v
as points in the n2-dimensional nonnegative orthant and propose finding that RM-
compliant point M of the orthant which minimizes the Euclidean norm ||lI} - M|
(up to arbitrary € > 0; see Sect. 3). Stated in terms of convex optimization, this
problem is solved by expressing it as an equivalent convex optimization problem:

ij=l,n

minimize g(M)

subjectto M € 2,

2 . . 2. .
where g : R, — R is a convex function and Z C R’} is a convex feasible set.
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2 Convexity and Regular Minimality

We apply convex geometry (e.g., Dattorro 2009; Ekeland and Temam 1999) to
discriminability measure matrices. We prove the convexity of the set RM7. of all
n x n matrices satisfying RM in a specified o-form. This allows us to abstract the
constraints of the optimization problem.

Lemmal. Let M = (my). ._

i,j=l,...n peney
that satisfy RM in o -form. Then any convex combination of M and M’ also satisfies
RM in o-form. In particular, the set RM?, of all matrices satisfying RM in o-form is
convex.

Proof. Let 0 < A < 1. Obviously, the convex combination AM + (1 — A)M’
defines a discriminability measure matrix, with entries in R4 = [0, 00). Let i, k, [ €
{l,...,n}suchthatk # o(i) and [ # i. According to Definition 1,

I ! I !
Mig(iy < Mik, Mio(i) < Mig@) and M,y < My, Mgy < Mg ;).
Therefore,

Amia() + (1= Dmig ) < Amix + (1 = )ymj, and

io(i

)Lm,-a(i) + (1 — A)mgg(i) < Am;a(i) =+ (1 — A)m;a(i).

Since the inequalities in Definition 1 are strict, the set RM/, is not closed. To
apply fundamental results in convex geometry, however, it is necessary to consider
its topological closure RM, . This means, inter alia, that a matrix which is an element
of RM” \ RM" violates RM by ties only. Since RM" is convex, so is its closure RM".
As a consequence of the Hahn-Banach separation theorem (e.g., Hiriart-Urruty and

Lemaréchal 2001) a closed convex set in R" is the intersection of all halfspaces
that contain it. In our case, every inequality in Definition 1 represents a halfspace
bounded by a hyperplane, which can be represented using a matrix variable.

As an example, consider an 3 x 3 matrix M € RMi _id

mi My M3
M = | ma my mo3
ms3 M3 M33

with nonnegative entries m;;, and with o = id the identity. Since M satisfies RM in
(0 = id)-form except for ties, the diagonal entries m;, my, and m33 are minimal

in the rows and columns, and, for instance,

myp < mjp.
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Reading M as the vector M = (m, mz, M3, Moy, My, Ma3, M31, M3, m33)T this
inequality is equivalent to

b-M<O,

where b = (1,—1,0,0,0,0,0,0,0) and “-” is the matrix product. In this case, the
set 2 = {M € R32|b -M < 0} forms a halfspace, which is bounded by the
hyperplane 0.7 = {M € R3’ |b - M = 0}. If we construct such vectors b for every
inequality according to Definition 1 and merge them row-wise into a matrix B, we
obtain

|
o
|
I o
| |
L oocoo lLoo
COoO R~ 0000~ =0 o
|
L ocoo
|
L oocooo
| ccocoo
o

SO O O O oo
(=R e)

|
—_
S o oo ooC oo

S o oo o oo
I
—_
o oo

S OO O ==, O O OO ==
—_—_- 0 OO o = = O o o O

c oo
o |

L
cocoocoo
|

—

co oo
oo |

and then the following equivalence holds
MeRM)_, < B-M=0.

This example is now generalized. The matrix B can be constructed systematically
for a given dimension n and a specified o-form using the following procedure: For
I =1,...,n,let

BII(H,U) = (bll(n,o'),:i) €{-1,0, l}n—lxn
and 2
Blz(n,U) = (blz(n,a)lj) e {-1,0, l}n—lxn
with
1 for j = o(l),
—1 fori :] and i <U(l),

—1 fori =j—1and o(l) <1i,
0 else,

bl (n,0); =
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and
1 forj =(—-1)n+ao(l),
—1l forj=@G—-Dn+! and i <ao(l),
b2 ’ ij =
(. 0); —1 forj=i-n+1and o(l) <i,
0 else.
Define
Bl(n.o) 0 .. 0 0
0 Bmo 0 .. 0
B(n,o) = 0 ... 0 Bln,o) |,
Bi(n,o)
BX(n,o)

which is a matrix with 27n(n — 1) rows and n? columns (and entries in {—1,0, 1}).
Now, for a matrix M = (my), ._, € R’_’:,

M € RM" < B(n,o)-M <0. (1)

This equivalence gives a matrix representation for the closed convex set of all n x n
matrices satisfying RM in o-form except for ties.

3 Convex Optimization and Regular Minimality

Setting up the convex optimization problem is now straightforward. Assume we
have observed a data matrix ¥ € R’f which violates RM in o-form. The question
posed is this: can one correct the data for RM in a principled way?

As a possible answer, we propose to consider the following convex optimization
problem:

minimize || v—M I

subjectto M € RM?.,

where ||.|| is the Euclidean norm. Using the matrix representation in Eq. 1, this
problem can be expressed as
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minimize \/Z?=1 Z?:l(lﬁé — 2ymy; + my)
subject to B(n,o) - M <0,
M e R,

The data g@,-j are constants, and JeXxex+ec, and x +— 2x are strictly increasing
monotone functions. Therefore, an equivalent formulation of this program is

e . 1 n n 2 n n A
minimize 3 >/, Zj=l my;— Dzt Zj:l Vijmi;
subject to B(n,o0) - M <0,

2
M e R

This problem is a quadratic program (QP). The constraints describe a polyhedron,
the optimality conditions for convex optimization are satisfied, and there exists a
unique global optimum for this problem. For details, see, for instance, Boyd and
Vandenberghe (2009) and Roberts and Varberg (1973).

The solution M 7" of this QP comes with two caveat:

Caveat 1. If ¥ ¢ R_Mf’, is observed, M " obtained from the QP by such popular
algorithms as Goldfarb and Idnani (1983) will be an element of the boundary of
IWZ. That is, M °" will violate RM by at least one tie. Yet, to obtain a “solution”
M* satisfying RM, geometrically speaking, we “proceed a tiny bit further into”
the interior of RM?.

More precisely, for some feasible small € > 0 (e.g., machine accuracy), we take

M* =¥ 4+ (14 €)(M™ —¥) € RM"

as the final solution, that is, the “optimal” RM-compliant approximation to v
This correction procedure was used in the simulation study in the next section.
Caveat 2. f ¥ € RM? \ RM, that is, if ¥ lies on the boundary of RM”., then
¥ violates RM in o-form by ties only, and & will be the solution of the QP. In
this case, ¥ belongs to at least one hyperplane bounding the polyhedron m,
and we would have to choose a direction (e.g., a combination of inward normal
vectors) along which “to proceed a tiny bit further into” the interior of RM’,. This
procedure is not discussed in this paper.

4 Simulation Study

We present the results of a simulation study. To investigate the usefulness of
the presented correction procedure, we considered dimensions n of the stimulus
space ranging from 5 to 8, and sample sizes of m = 10,50, 100, 150. We set
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€ = 107 (see Caveat 1). For each stimulus space dimension 7, 1,000 population

matrices ¥ = (1//0-)[4.].:1 _, of discrimination probabilities satisfying RM (0 =

id) were drawn. For each ¥ and for any sample size m, 1,000 sample matrices

U = (WAU) were simulated, using binomial distributions Bi (v, m). The
ij=1,..n

correction procedure was performed to obtain M *. The Euclidean distance between
¥ and M* was compared to the distance between ¥ and @, All computations
were done in the software environment R (www.r-project.org), and the algorithm
by Goldfarb and Idnani (1983) was used.

Table 1 reports the results of the simulation study.

For any setting of n and m, there was not a single case out of 1,000,000
simulations that produced a worsening. Whenever a solution M* ;élf/ of the
optimization procedure was returned, an improvement in the Euclidean distance
was observed. Taking into account the fact that the set of all matrices satisfying RM
becomes very (very) small in relation to all possible matrices in the unit hypercube
(see Trendtel et al. 2010), this result is not very surprising. If the true discrimination
probability matrix ¥ satisfies RM and the observed matrix & does not, it is very
likely that almost every matrix M satisfying RM is closer to ¥ than ¥ is, with
respect to the Euclidean distance.

5 Discussion

RM is an important property in psychophysics. In this paper we have proposed a
correction procedure for RM based on convex optimization.

The relative frequencies of violations by ties only are high enough to justify
further research on the problem described in Caveat 2. For instance, the geometrical
properties of IW’; may be investigated in order to justify an “optimal” direction
into the interior of this set. Or, the interior of the feasible region may be traversed
to reach an optimal solution. In future research, the discussion must be extended
incorporating such additional constraints as ones that represent confidence intervals.
Such an endeavor may allow, both, testing and correcting for RM simultaneously.

Acknowledgements We are deeply indebted to Professor Ehtibar N. Dzhafarov for introducing
us to this topic.
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Principal Components Analysis for a Gaussian
Mixture

Carlos Cuevas-Covarrubias

Abstract Given a p-dimensional random variable X, Principal Components
Analysis defines its optimal representation in a lower dimensional space. In this
article we assume that X is distributed according to a Mixture of two Multivariate
Normal Distributions and we project it onto an optimal vector space. We propose
an original combination of principal components and linear discriminant analysis
where the area under the ROC curve appears as the link between both methods.
We represent X in terms of a small number of independent factors with maximum
contribution to the area under the ROC curve of an optimal linear discriminant
function. A practical example illustrates how these factors describe the differences
between two categories in a simple classification problem.

1 Introduction

Principal Components Analysis (PCA) and Linear Discriminant Analysis (LDA) are
very important methods of Multivariate Statistics. Given a p-dimensional random
variable X, PCA defines its optimal representation in a lower dimensional space;
this representation is usually assessed in terms of a percentage of total variation
expressed as a function of the eigenvalues of the covariance matrix (Izenman 2008).
LDA assumes that £2, the sample space of X, is partitioned into two different
categories: £2p and £2;. Given X, a particular realization of X, LDA is used to
infer whether x corresponds to an observation from £2y or §2; (Izenman 2008). The
area under the ROC curve is one many criteria to assess the global quality of this
clasification procedure. Probably, the earliest discussion about PCA for a Gaussian
Mixture is the one given in Kullback (1968), where PCA and LDA are discussed
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from an information theoretic point of view. Chang (1983) presents an interesting
discussion about PCA for Gaussian Mixtures and proves that those components
associated to the largest eigenvalues do not necessarily contain the largest amount
of information. More recently, Caprihan (2008) present an interesting application
of the proposal in Chang (1983) in a medical diagnosis context. They calculate
the eigenvectors of the total sum of squares matrix and select those factors that
maximize the Mahalanobis distance between both considered categories. In this
article, we assume that X is distributed according to a mixture of two multivariate
normal distributions, and we explore an original combination of PCA and LDA
where the area under the ROC curve appears as the link between both methods.
Our objective is to represent X in terms of a small number of factors. In a similar
way to Chang (1983) and Caprihan (2008) we miximize the separability between
£2y and £2,. However, we select those eigenvectors with maximum contribution
to the area under the ROC curve of an optimal dicriminant function. Contrasting
with Chang (1983) and Caprihan (2008) we diagonalize both covariance matrices
in the probability model; therefore, the final result is a set of factors simultaneously
independent in both elements' of the Gaussian mixture. We call this idea “Mutual
Principal Components” (MPCA).

2 Risk Scores and ROC Curves

In its simplest form, discriminant analysis is used to summarize a vector of
covariates X into a univariate risk score S, and to discriminate between two groups
or populations (£2¢,2;) according to the following decision rule:

.Qll:f S >t

Classify in Q0if S <1,

ey

where ¢ is a decision threshold. Given a fixed ¢ in (1), the classification rule can
be assessed in terms of its error rates: B(¢t) = Pr[S < t|§2;] (false negative rate)
and a(t) = Pr[S > t|§2y] (false positive rate). Some times the assessment is based
on 1 — B(¢t) and 1 — «(t). Given a score S with class conditional distribution
functions Fo(t) = Pr[S < t|£2] and F;(z) = Pr[S <t|2], its ROC? curve is the
following set

ROC ={(x,y)|x =1—=Fy(t),y =1— Fi(t),—00 < t < 00}. 2)

The ROC curve is a plot of the sensitivity (1 — 8(¢)) expressed as a function of
the false positive rate («(¢)) for every possible ¢ (Krzanowski and Hand 2008).

IClass conditional distributions

2Receiver Operating Characteristic
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The area covered by the ROC curve (denoted as A) is a global measure of the
performance of S (Bamber 1975). In general terms, the closer A4 is to 1, the better
the performance of S. When both class conditional distributions are equal, then S
is not informative; in this case A = %

ROC curves are invariant to monotonous transformations of the score (Bamber
1975). Therefore, if there is a monotonous transformation 7'(S) of S such that its
class conditional distributions are both normal, then its ROC curve is given by

ROC = {(u,v)lu =1 — &(1),v = 1—<p(¥),—oo<z <ol (3)

E(T(S)|20)—E(T(S)|20)
V/ Var(T(8)]20)
Any variable S with this property is said to be a binormal

where @ denotes a standard normal distribution function; d =
Var(T(S)|£21)
Var(T(S)[£20) *
score with parameters (d, r?) (Krzanowski and Hand 2008; Metz and Xiaochuan
1999). The area under the ROC curve of such a score is

and r2 =

d
A= (—/T) ' @

3 Linear Discriminant Analysis

Let X be a p-dimensional vector of covariates such that its class conditional
distributions are both multivariate normal. Thus, its class conditional density given
£2; is:

1
fi(x) = p—z(x—ﬂf)’ﬂfl(x—u,-), )

1
2 7
withi = 0, 1. The parameters u; and X; represent the class conditional expectation
and class conditional covariance matrix of X given £2; respectively. When a vector
X is normally distributed in both classes we refer to it as a Multivariate Normal
Score (MNS). Let X be a MNS and let € be a constant vector. In principle, any
linear combination S = 6"(X — p) could be used in a classification rule like the
one given in Eq. (1). Thus, it is important to find that linear score with the best global
performance. Given the normality assumption on X, any linear combination of its
components is a binormal score. The area under its ROC curve, given by Eq. (4),

; . _ 0 (k1 —10o) :
takes the following form: Ag(f) = @[m] (Su and Liu 1993). We are

interested on finding 6, such that Ag(6,) is maximum; this optimal score is given
in Theorem 1 (see demonstration in Su and Liu (1993)).

Theorem 1. Let X be a MNS and let A = (., — o) (e, — o) and B = (Zo+Xy).
Then, no linear combination of the elements of X has an area under its ROC curve
larger than Ag(0y) = ®(./@), where ¢ is the only positive eigenvalue of B~'A
and 0 « its corresponding normalized eigenvector.
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It is possible to show that in Theorem 1

9= (1, — o) B~ (1) — o) (6)
and

1
O = ﬁB_l(ﬂl_ﬂo)- (N

4 Mutual Principal Components

A MNS X is expressed in its canonical form (Kullback 1968) when (X]|£2p) ~
N(0,1) and (X|£2) ~ N(8, A), where I is the identity matrix and A is diagonal.
The canonical form of X implies that its class conditional covariance matrices are
both diagonal; therefore, its components are independent in both classes. Every
MNS can be transformed to its canonical form with just a linear transformation.

Definition 1. Let X be a multivariate score such that its class conditional covariance
matrices (X, ) are both positive definite and with all their eigenvalues with
multiplicity one; also let (1o, 1t1) be its class conditional expectations. The Principal
Components Vector (PCV) of X is given by the following linear transformation

Z=T"3"*(X = ). (8)

where 'AI'T is the spectral decomposition of 261/22120_1/2, and Eé/z is any

square root of Xy. We referto T =X, 1/2

mation Matrix.

When X is a MNS, Z is just its canonical form. Therefore, (Z|2;) ~ N(§, A),
where § = FTEO_I/Z(,ul — 1t0) and A = diag{A;}’_, is the matrix of eigenvalues
of 20_1/221 20_1/2. Thus, according to Egs. (6) and (7) , the linear combination of

the elements of Z with maximum area under its ROC curve is given in terms of the
following vector of coefficients:

5 5 5, 7
*x — N gy . 9
] [1+A1 T+ T4, ©)

I' as the Principal Components Transfor-

The area under its ROC curve is

Az(E) =@ (10)
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Something interesting about this principal components transformation is that

6, = 5, T&,. (1)

The columns of T form a set of linearly independent® eigenvectors of R =
X' %) and the diagonal of A contains their respective eigenvalues (see Harville
1997, p. 562).

Each principal component Z; is a linear score itself and the area under its ROC
curve is
8

A =@
144

12)

The main objective of PCA is to represent random vectors in a linear space of lower
dimension. Az (£x«) can be used as a criterion to asses and control this reduction of
dimensionality (see Egs. (10) and (14)). Once X is transformed into its PCV Z, its
p components can be ordered as Z (1), Z(3), ..., Z() where

2 2
S - Sy

13
IL+Ae) — 14+ Ai+y (13)

withi = 1,2,... p — 1. After ordering the components of Z, the sequence {pk}f -

AZlk
log =
of log odds ratios py = % is computed. In this ratio
log =47 &0
Azlk = @ (14)

is the maximum area under the ROC curve that can be obtained with a linear com-
bination of the first k principal components (Z1y, Z(3), . .., Zx)). Any dimension
reduction can imply a smaller area under the ROC curve of the final linear score.
Therefore, if the minimum log odds ratio that can be afforded is the 100(1 — p)%
of log ; fjf&i 3> the new multivariate score in a lower dimension is obtained by
selecting the first kK components, where k is the minimum & such that p; > p.

As we mentioned before, the columns of our transformation matrix T are linearly
independent eigenvectors of X! ;. If the inner product (u, v)g = u’Bv is now
considered*; the columns of T are not only linearly independent, but actually
orthogonal. Therefore, 65 can be expressed as a linear combination of the columns

of T:ie. 0x = ait; +asty + ... +apt, witha; = %. However, we know that
illB

TTBT = I + A, therefore ||7;||3 = 1 + A;. On the other hand,

3But not necessarily orthogonal
4remember that B = (X, + X))
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1

8i
(Ox, ti)p = —=[B™" (1 — )] " Bti = — (15)
k 1 \/a 1 \/a
p &
where ¢ = » ;_, 175, Therefore,
1 8;
= — —t— 16
Vo 1+ (16)
and Eq. (11) takes the form
31 P Sy
0 = t t t,. 17
A T T A I W P 1n

The fact that T is B-orthogonal can be used in a reduction of dimensionality process.
In order to identify those components with the largest contribution to S we can use
the squared cosine of the angle between 6, and each column of T. If we denote this
angle as 7;, then

(9*5 tl) _ 1 81‘
10«lwlitills o VT+X:

Thus, each squared cosine measures the contribution of its corresponding principal
component to ¢, the squared Mahalanobis distance between the centers of both
class conditional distributions.’ Again, the principal components can be ordered
as {Zq), Z), . .., Zp)} according to their contribution to ¢. To reduce the dimen-
sionality, we select just enough components to get a minimum proportion of ¢ (or
a maximum angle with respect to 6x%). This approach is analogous to the one based
on the contributions to Az (€x). Given Theorem 1 and Eq. (18), we can see that

cos T = (18)

k
¢ ) (cosm)?

i=1

A = @[ Jpcosm;| and Az = @ (19)

Showing that A; = % for any principal component such that (t;, 6.)p = 0.

S A Practical Example

Consider the species §2¢ = Versicolour and §2¢ = Virginica from the Fisher’s Irises
data set. Each sample unit is represented in terms of a vector of four variables
X = (X| =sepal length, X, =sepal width, X3 = petal length, X, = petal width).

3This makes our proposal similar to the methodology applied in Caprihan (2008).
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Table 1 Fisher’s Irises: Principal components analysis

N 2
Zi A Rank  Agy; log lfj‘;“ 100% 0% Y. li)ti (cosm;)?> i (°)
1 0.780 3) 0.960 3.1911 57.33 3.0887 0.4344 48.76
2 0.950 2) 0.993 4.9840 89.91 6.1139 0.8599 21.98
3 0.730 4) 0.995 5.3343 96.23 6.7303 0.9466 13.36
4 0.960 (1) 0.996 5.5428 100.00 7.1094 1.0000 0.00

This data set is frequently analyzed in the literature; its class conditional distri-
butions are approximately multivariate normal. Thus, the optimal linear score S is
assumed to be binormal with d = 3.93 and r> = 1.17. The principal components
transformation matrix is

043 157 112 235
—1.13 —2.49 326 —1.23

T = (20)
330 033 —1.25 —2.67
892 2.58 —0.96 —0.18

The canonical form of X is given as in def. (1) with § = (2.02,2.76, —0.89, —2.30)7
and A = diag[5.65,1.53,1.13,0.71] Table (1) shows the principal components
analysis of X. The first set of columns shows, for each component, the area under
its ROC curve and its corresponding rank. The second set of columns contains the
sequence of cumulative areas for the first kK components and its corresponding log
odds ratio. The final set shows the angle between 6* and the coefficients for the best
linear combination of (Z(1), Z(z), ... Z)); its squared cosine is also given.

According to Table 1, X can be represented by its first two principal components
keeping almost the 90% of the total information in X. The angle between 6, and
the linear space generated by the coefficients of (Z(j) and Z(y)) is less than 22
degrees.® We conclude that X can be satisfactorily represented in a bidimensional
space. Figure 1 shows the plot of Z (1) vs Z(y); it is evident how both groups can
be separated by a straight line. The coefficients of Z() and Z(,) are given by the
forth and second columns of T respectively. In a simplistic interpretation, we could
say that Z (1) mainly indicates the difference of the sepal and petal lengths and Z )
indicates the difference of the petal and sepal widths. Taking this into account, Fig. 1
would suggest that the Virginica irises tend to have longer and wider petals with
shorter and narrower sepals than the Versicolour ones.

SThis is less than angle formed by the hands of a clock at five past twelve.
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PC1

Fig. 1 First vs second discriminant components: Versicoulor = 0, Virginica = 1

6 Conclusion

We have explored an original application of ROC curves to Principal Components
Analysis. Given a random sample coming from a mixture of two normal distribu-
tions, we diagonalize both covariance matrices simultaneously. The area under the
ROC curve helps to identify those components with the largest contribution to an
optimal discriminant function. Our discussion concentrates on the two categories
problem. However, this method can be applied in a three categories context as long
as the covariance matrices involved are proportional to each other (see Harville
1997). Mutual Principal Components is similar to other methods reported in the
literature. As in Chang (1983) and Caprihan (2008), it identifies those principal
components that maximize the Mahalanobis distance between both class conditional
distributions. However, our proposal produces independent factors.
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Interactive Principal Components Analysis:
A New Technological Resource in the Classroom

Carmen Villar-Patiiio, Miguel Angel Mendez-Mendez,
and Carlos Cuevas-Covarrubias

Abstract Principal Components Analysis (PCA) is a mathematical technique
widely used in multivariate statistics and pattern recognition. From a statistical point
of view, PCA is an optimal linear transformation that eliminates the covariance
structure of the data. From a geometrical point of view, it is simply a convenient
axes rotation. A successful PCA application depends, at a certain point, on the
comprehension of this geometrical concept; however, to visualize these axes rotation
can be an important challenge for many students. At the present time, undergraduate
students are immersed in a social environment with an increasing amount of collabo-
rative and interactive elements. This situation gives us the opportunity to incorporate
new and creative alternatives of knowledge transmission. We present an interactive
educational software called Mi-iPCA, that helps students understand geometrical
foundations of Principal Components Analysis. Based on the Nintendo’s Wiimote
students manipulate axes rotation interactively in order to get a diagonal covariance
matrix. The graphical environment shows different projections of the data, as well
as several statistics like the percentage of variance explained by each component.
Previous applications of this new pedagogical tool suggest that it constitutes an
important didactic support in the classroom.
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1 Introduction

Principal Component Analysis (PCA) is a mathematical technique widely used in
multivariate statistics for finding patterns in data of high dimension spaces. The
mathematical procedure to get the principal components transformation is defined
in terms of the correlation structure between the variables considered. From a
geometrical point of view, this transformation is an axes rotation. For many students,
to visualize this axes rotation and understand its meaning may be a difficult task.

Technological advances and better understanding of psychological and social
aspects of Human Computer Interaction (HCI) have lead to a recent explosion of
new interaction forms. The time where human computer interfaces was limited to
desktop computers using mouse and keyboard for interaction is passing away. Novel
input devices like Wiimote and multi-touch surfaces are increasing in popularity
(Shaer 2009). Some theoretical foundations of HCI , suggest that embodiment
and physical engagement are becoming a key issue (Holmquist et al. 2010). With
87.4 million of Nintendo’s Wii consoles sold by August 2011 (VGChartz Network
2011), the Wiimote became a familiar device for most of young people, who find it
enjoyable. According to O’Malley and Fraser (2004):

It is commonly believed that physical action is important in learning, and there is a good
deal of research evidence in psychology to support this. Piaget and Bruner showed that
children can often solve problems when given concrete materials to work with before they
can solve them symbolically ... So evidence suggests that young children (and adults as
well) can in some senses ‘know’ things without being able to express their understanding
through verbal language or without being able to reflect on what they know in an explicit
sense.

In our project, students use Mi-iPCA in order to manipulate axes rotations
interactively. They control this device using a simple twist of their wrist. They rotate
axes to diagonalize the covariance matrix of the actual coordinates representing
data. There are three different graphical projections to visualize the data set. Mi-
iPCA was developed using free GNU/GPL libraries and was evaluated in two ways:
subjective using an opinion questionnaire and objective with a learning experiment
that includes a comprehension test.

2 Previous Work

There are several educational tools using the Wiimote as an interaction device.
There are also commercial and open source software to visualize PCA. However, it
seems that Mi-iPCA is the first educational tool specifically designed to facilitate the
understanding on how PCA works through an ingenious application of the Wiimote.

Shaffer et al. (2005), discuss how video games have the potential to change
the nowadays landscape of education. They describe an approach where they
design learning environments built on the educational properties of games. They
promote a new model of learning “through meaningful activity in virtual worlds
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as a preparation for meaningful activity in our post-industrial, technology-rich, real
world”. Mi-iPCA is not a key stone in a new model of learning, but we realize that
undergraduate students are immersed in a social environment with an increasing
amount of collaborative and interactive elements. This situation brings us the
opportunity to incorporate new and creative alternatives of knowledge transmission.
Many examples of the usage of Wii related technology can be found in the literature.
Pearson and Bailey (2007) evaluate and identify the accessibility of the Nintendo
Wii console for supporting disabled learners in an educational context. Holmquist
et al. (2010) describe a collaborative project between Standford University, Sdertn
University and two primary schools (one from Sweden and one from US) to
introduce science education through the use of computers and video games; the
Wiimote was selected as the interaction device for this project. They believe that by
integrating elements of video game technologies into their educational curricula,
they can enhance students’ interest in their educational activities, materials and
technologies. Daniels (2009) reported that since 2008, undergraduate students from
Towa State University participate in a laboratory based Wiimotes interaction, as part
of their course: “Introduction to Computer Engineering and Problem Solving I”.
Promising results were obtained.

Jeong et al. (2009) developed an interactive system for PCA called iPCA. The
objective is to help users to get a better understanding of PCA applications. It was
designed as a statistical analysis tool rather than a pedagogical device. This system
allows users to visualize data in four views: projection view, data view, eigenvector
view and correlation view. In order to demonstrate the usefulness of their system,
they conducted a comparative evaluation in relation with SAS/INSIGTH’s; a well-
known commercial tool. Their evaluation consisted on performing four analysis
tasks in high dimensional data sets. This tasks were solved by 12 undergraduate
students. The time needed to solve the problem with each system was measured.
They applied a subjective questionnaire asking the participant to feedback about the
system. They found that the use of iPCA for analysis increased the performance of
the students because the interface design and the set of interactions facilitated the
discovering of the relation between coordinate spaces and data dimensions.

3 Mi-iPCA and PCA

PCA is an exploratory tool designed by Karl Pearson in 1901 to identify unknown
trends in a multidimensional data. The algorithm was introduced to psychologist’s
in 1933 by Harold Hotelling. Today we know that implementing PCA is equivalent
to obtain the Spectral Decomposition of the covariance matrix of the data set (Garcia
2008). PCA is a useful statistical technique that is widely used for applications
such as dimensionality reduction, feature extraction and data visualization (Bishop
2006).
Any real symmetric m X m matrix A has a spectral decomposition of the form:

A=U0AUT (D)
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where U is an orthonormal matrix and A is a diagonal matrix. The columns of
U are the eigenvectors of A and the diagonal elements of A are their corresponding
eigenvalues. The eigenvalue equation can be expressed as:

Ax = Ax )

In Mi-iPCA we incorporate two commonly PCA definitions: PCA as the
orthogonal projection of data onto a lower dimensional space where the variance
of the projected data is maximized (the principal subspace), and PCA as the linear
projection that minimizes the mean squared distances between the data points
and their projections (just as originally suggested by Karl Pearson). Because it
is designed with a pedagogical objective, Mi-iPCA works on a three dimensional
space only. The original data must be standardized (subtract mean and divide by the
standard deviation). The covariance matrix is continuously computed and displayed.
The definition for the covariance matrix for 3 dimensional data set, represented by
X, y and z coordinates is Smith (2002):

cov(x,x) cov(x,y) cov(x,z)
A = cov(y,x) cov(y,y) cov(y,z) 3
cov(z, x) cov(z,y) cov(z,z)

The actual PCA is determined by the eigenvectors and eigenvalues of the
covariance matrix A which are calculated numerically. Each position of the Wiimote
defines an orthonormal basis for the three dimensional Euclidean space. Thus,
every element of the sample is projected to this basis and displayed on the screen.
This task is performed continuously as long as the student keeps on moving the
Wiimote. The projection on the computer screen is updated automatically, giving
a clear sensation of real movement. The PCA problem is solved once the Wiimote
projection space coincides with the actual eigenvectors of the covariance matrix.
Students can compare the quality of the solution obtained by direct comparison
of the orthonormal basis with these eigenvectors. The covariance matrix of the
projected data is also displayed. Thus, students can constantly analyze it and stop
once it is diagonal.

4 Software Description and Implementation

Mi-iPCA uses free GNU/GPL libraries and was developed and tested in various
Linux distributions with the 2.6 kernel. GNU Scientific Library (GSL) (GNU
Scientific Library 2011) was used for the statistics and mathematical procedures.
OpenGL and GLUT libraries were applied for the graphical interface. Cwiid was
employed to establish the Wiimote remote communication through Bluetooth.
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Table 1 Wiimote interaction

Interaction description Wiimote

Turn on/off accelerometer Button “A”

Select axis rotation: X Y Z Button “B”

Increment and decrement rotation axis Wrist twist, increment(ccw) and decrement(cw)
Switch between interfaces Button “1”

Start from the beginning Button “Home”

Rotate Cube at 3D perspective 4-directional D-Pad

Zoom at 3D perspective Buttons “+” and “—"

Toggle between 1-0.1 angle increments Button “2”

4.1 Wiimote Limitations

The original Wiimote has some limitations due to the small set of values obtained
in each of the accelerometers. There are only 256 values for each accelerometer, but
when the device is at rest, there are only about 50 values for the 180° rotations for
each axis. This is because the accelerometers are designed to get a range of values
from —3g to +3g Analog Devices (2011). The original Wiimote lacks of gyroscopes
that would allow us getting the position of the Wiimote in a three-dimensional space.
Because of these limitations, the software was developed to detect motions in a
desired chosen direction (i.e. in the x, y and z axes); therefore, users must indicate
which axis will act as a pivot for rotation.

4.2 Interface Description

The program is executed in command line with a data filename as an argument. For
testing purposes we used the Fisher’s Iris data set (Setosa variety) and only three
dimensions were considered (sepal length, sepal width and petal length). The data
is processed and PCA is obtained satisfactorily. The rotation angles obtained from
the PCA analysis are stored in order to be compared with the angles defined from the
user movements through the Wiimote device (Parent 2002). The graphic interface
shows a projection of the data and it can be viewed in the main window interface as
shown in Fig. 1. The axes are related with other important parameters (as projection
variances for instance) through colors: red for x-axis, green for y-axis and blue for
Z-axis.

The right hand side of the screen shows, from top to bottom, the following:
Correlation matrix (remember that data are standardized), percentage of variance
explained by each component and rotation angle, discrepancy of the solution
obtained with respect to the actual PCA solution, sum of the squared distance
between each data points and the line of best fit (Pearson’s criteria), rotation
matrix. At the bottom the percentage of variance explained by each component is
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Table 2 Groups schedule

Group Stage 1 Stage2 Stage3
Red Theory Test Mi-iPCA
Green Theory Mi-iPCA Test
Blue Mi-iPCA Theory Test
Boxplot of Grades
[
o
B|L‘Je Réd Gréen
Group

Fig. 2 Students grades boxplot

graphically reported on a scree plot. Student can choose between three ways to
visualize data: scatter plot of the projected data and its projection over the axes;
a 3D isometric perspective; or three separate 2D scatter plots plus an isometric
representation. We show an example of these three interfaces in Fig. 1.

The Wiimote has a set of buttons, that can be used besides the accelerometers.
We provide the student with the interaction possibilities described in Table 1:

5 Testing Mi-iPCA

The application was tested by 24 undergraduate students selected at random, 16
from the Actuarial Sciences Programme and 8 Engineering Students. The students
attended a theoretical lecture on PCA and a computer practice using Mi-iPCA. Then,
a test with 9 questions about geometrical foundations of PCA was applied to all
of them. This group of students was divided at random into three groups ( green
with 6 students, blue with 5 students and red whit 13 students); proportions between
actuaries and engineers were preserved within each group. The order between theory
and practice was controlled, and applied according to Table 2:

The theoretical lecture had a 20 min duration. During the computer practice,
students worked in pairs for 20 min. The test was designed to measure the PCA
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Table 3 Mann-Whitney test applied to students grades

Blue + green Red Blue Green Blue Red
Median 6.66 5.55 6.667 5 6.667 5.556
Mann-Whitney 154.0 39.5 65.0
P Value 0.17 0.05 0.04

geometrical comprehension. A subjective questionnaire about the facility on the
use, graphical interface design and information quality given by Mi-iPCA was also
applied. Test students scores are shown in Fig. 2.

In order to analyze the results, we applied the nonparametric Mann-Withney test
on the scores obtained by the students. Results are shown on Table 3.

When we compared the effect of Mi-iPCA, red students versus blue plus green
students, no significant differences were found. However, when we analyzed the
effect of Mi-iPCA applied before the theoretical lecture, a significant effect was
found: p-value = 0.05 & 0.04. This suggest that the tool helps to develop an intuitive
comprehension of PCA, facilitating the geometrical foundations discussed during
the theoretical lecture.

6 Conclusion and Future Work

Using the Wiimote, the user can change the visualized projection, the rotation
of axes and the 3D projection. Students can evaluate how close their empirical
rotation is to the actual PCA solution. The results suggest that the use of Mi-iPCA
is effective to develop intuitive comprehension of principal components analysis.
The responses to the subjective questionnaire, indicate that students consider Mi-
iPCA useful. They liked the interface and enjoyed the axes rotation interaction.
When the user is near from the analytical solution, the Wiimote interaction may be
too sensitive, making harder to reach the actual analytical solution. To incorporate
the Wiimotion plus, with a gyroscope integrated could give us a new interesting
interaction environment. The results are encouraging and new experiments will take
place in order to confirm the effect before/after theory. The authors have special
interest in studying the effect of Mi-iPCA in different statistical courses for non
technical and non mathematician students, like pedagogy, psychology and medicine.
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One-Mode Three-Way Analysis Based on Result
of One-Mode Two-Way Analysis

Satoru Yokoyama and Akinori Okada

Abstract Several analysis models for proximity data have been introduced. While
most of them were for one-mode two-way data, some analysis models which are
able to analyze one-mode three-way data have been suggested in recent years.
One-mode three-way multidimensional scaling and overlapping cluster analysis
models were suggested. Furthermore, several studies were done for comparison
between the results of analyses by one-mode two-way and by one-mode three-
way data, where both of them are generated from the same source of data. In the
present study, the authors suggest the analysis of one-mode three-way data based
on one-mode two-way analysis for overlapping clusters. To evaluate the necessity
of one-mode three-way analysis, firstly one-mode three-way data are reconstructed
from the clusters and weights obtained by one-mode two-way overlapping cluster
analysis. Secondly the reconstructed one-mode three-way data are subtracted from
original one-mode three-way data. The subtracted data were analyzed by one-mode
three-way overlapping cluster analysis model. The result of analysis discloses the
components of proximities which can be expressed by one-mode three-way analysis
but not by one-mode two-way analysis.

1 Background

Various analysis models for proximity data have been introduced. For example,
multidimensional scaling (MDS) and cluster analysis models are suggested. Most
of them were for one-mode two-way data. In recent years, some analysis models
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which are able to analyze one-mode three-way data have been suggested. De Rooij
and Heiser (2000) and Nakayama (2005) suggested MDS models. Yokoyama et al.
(2009) suggested an overlapping cluster analysis model. The purpose of one-mode
three-way analysis is to obtain the results which cannot be obtained in one-mode
two-way analysis.

In Yokoyama et al. (2009) and Yokoyama and Okada (2010a), one-mode two-
way and one-mode three-way data were generated from the same source, such
as POS (Point Of Sale) data, and were analyzed by using overlapping cluster
analysis models. The results of one-mode two-way and of one-mode three-way
analyses were compared. However, the research on differences between one-mode
two-way results and one-mode three-way results or the necessity of one-mode three-
way analysis are not performed. Yokoyama and Okada (2010a,b) investigated the
necessity of one-mode three-way analysis to use the correlation coefficient between
one-mode three-way data and the index calculated from the triplet of one-mode
two-way data which were obtained from the three objects corresponding to the one-
mode three-way data, and Yokoyama and Okada (2010c, 2011a) applied one-mode
two-way result to one-mode three-way data as the external analysis.

In the present study,to evaluate the necessity of one-mode three-way analysis, or,
to investigate the effect of the one-mode two-way results on the one-mode three-
way data, the authors introduce the procedure descripted below. To associate with
authours’ earlier works, they decided to used overlapping cluster analysis models
in the present study. One-mode three-way data are reconstructed from the clusters
and weights which are obtained by one-mode two-way overlapping cluster analysis.
Then, the reconstructed one-mode three-way data are subtracted from original one-
mode three-way data. The subtracted one-mode three-way data are analyzed by
overlapping cluster analysis model. The analysis discloses the components of data
which can be expressed by one-mode three-way analysis but not by one-mode two-
way analysis. The present procedure was applied to several data to evaluate it.

2 Overlapping Cluster Analysis Models and Principle
of the Present Study

Overlapping cluster analysis model was suggested by Shepard and Arabie (1979).
In this model called ADCLUS (ADditive CLUStering), similarity between objects
i and j, s;;, is predicted as

R R+1
5 = Z Wr@) Pir@ Pir@) + C2) = Z Wr(2) Pir) Pir(2)» (D

r=1 r=1

where w, (2 is the nonnegative weight of the r-th cluster, ¢(y) is the additive constant,
the (R + 1)-th weight is the additive constant. p;.() is binary; if object i belongs to
cluster r, pjx) is 1, otherwise it is 0.
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Yokoyama et al. (2009) suggested a one-mode three-way overlapping clustering
model, and proposed an algorithm fitting that model for one-mode three-way
similarities. In this model, one-mode three-way similarity among objects i, j, and
k, sij, is predicted as

R+1
Sijk = Z Wr(3) Pir(3) Pjr(3) Pkr(3)- 2

r=1

Moreover, Yokoyama et al. (2010) have improved the algorithm to eliminate
negative weights.

In the present study, one-mode three-way data §;; which were reconstructed from
the one-mode two-way result are calculated by the following equation:

R+1
Siie = > Wr@)Pir(2) Pir2) Phr(2)- 3)

r=1

One-mode three-way reconstructed data ;. are subtracted from original one-mode
three-way data:

Sijk = Sijk — Sijk- “)

Finally, the subtracted one-mode three-way data 5y are analyzed by one-mode tree-
way overlapping cluster analysis, then the results are compared with one-mode two-
way and one-mode three-way results.

By the present procedure, we can say the following. If §j =~ sy, the results
of the analyses of original and subtracted one-mode three-way data are similar. The
two VAF (Variance Accounted For) values which was defined by Arabie and Carroll
(1980) should be almost equal. The effect of one-mode two-way result is very small.
If §;% =~ 0, the effect of one-mode two-way results is very large. The result of the
analysis of subtracted one-mode three-way data does not have any meaning. Thus,
it is not necessary to analyze one-mode three-way data.

3 Applications

In the present study, to evaluate the necessity of one-mode three-way analysis, the
procedure which introduced in Sect. 2 is applied to two kinds of data. One is the
POS data of convenience stores, and the other is the access log data.
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3.1 The Analysis of POS Data

From the POS data of convenience stores in residential areas frequencies of joint
purchases were derived. The data were drawn from the Nikkei POS Data. In the
data, all customers bought at least Beer. The items in the data were classified into 14
categories: Liquors, Soft drinks, Tabaco, Ice creams, Frozen foods, Cooked foods,
Bread, Sweets, Snacks, Dessert, Processed foods, Instant foods, Dairy products, and
Daily necessities. One-mode two-way and one-mode three-way data were calculated
from the frequency of the joint purchases among two or three categories.

In the one-mode two-way analysis, the resulting maximum VAFs in seven
through three clusters were 0.944, 0.931, 0.911, 0.890, and 0.860, respectively.
Because of the VAF values and the interpretation of the results, the six cluster
result is adopted as the solution in the present analysis. The result is shown in
the left side of Table 1. Liquors belong to all clusters, Soft drinks and Sweets
belong to all clusters except cluster 4. Tabaco, Cooked foods, Processed foods, and
Dairy products belong more than three clusters. These seven categories were jointly
purchased. In addition, the combination of Sweets and Snacks were appeared in
clusters 2 and 5, and Cooked foods, Bread, and Sweets were appeared in clusters 3
and 6, these combinations of categories were also often jointly purchased.

Then, one-mode three-way reconstructed data were calculated by this result and
subtracted data were calculated, and the subtracted data were analyzed by one-mode
three-way overlapping cluster analysis under the same condition of one-mode two-
way analysis. We set the maximum number of clusters to six and the minimum
number of clusters to three. The largest VAF for each number of clusters determined
the maximum VAF at that number of clusters. In the analysis of the subtracted data,
the resulting maximum VAFs in six through three clusters were 0.300, 0.293, 0.261,
and 0.259. To simplify the comparison, the six cluster result was adopted as the
solution. The result is shown in the right side of Table 1. It is thought that the VAF
was quite small and additive constant ¢ was large in the present result, the subtracted
data seem not have the structures.

Moreover, original one-mode three-way data were analyzed. The VAFs in seven
through three clusters were 0.703, 0.707, 0.700, 0.710, and 0.670. The result of six
clusters is shown in Table 2.

By the comparison between the results of one-mode two-way and original
one-mode three-way data analyses, we can see that the cluster structures are not
completely same but similar. For example, Liquors, Soft drinks, and Sweets belong
to many clusters, and clusters 4 and 5 are similar to clusters 2 and 3 in the result of
one-mode two-way analysis (right side of Table 1).

In the present POS data analyses,original one-mode three-way data analysis does
not have new interpretation of the analysis,and from the result of the analysis for
subtracted data, it is concluded that the necessity of the one-mode three-way data
analysis is low.
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Table 1 Results of one-mode two-way and subtracted data analyses of POS data

One-mode two-way analysis Subtracted data analysis

cluster cluster
Category 1 2 3 4 5 6 1 2 3 4 5 6
Liquors 1 1 1 1 1 1 1 0 1 0 1 0
Soft drinks 1 1 1 0 1 1 0 1 1 1 0 1
Tabaco 1 0 1 1 0 0 0 0 0 0 0 1
Ice creams 0 0 0 0 1 0 0 0 0 1 0 0
Frozen foods 0 0 0 0 0 0 0 0 0 0 0 0
Cooked foods 0 1 1 1 0 1 0 0 0 0 0 1
Bread 0 0 1 0 0 1 0 0 0 0 0 0
Sweets 1 1 1 0 1 1 1 1 0 1 1 1
Snacks 0 1 0 0 1 0 1 1 0 0 0 0
Dessert 0 0 0 0 0 1 0 0 0 0 0 0
Processed foods 0 1 0 1 0 1 0 0 0 0 0 1
Instant foods 0 1 1 0 0 0 0 0 0 0 1 0
Dairy products 0 0 1 0 1 1 0 0 0 0 0 1
Daily necessities 0 0 0 0 1 0 0 0 1 0 1 1
Weights 340 183 171 .145 .122 109 .691 .367 .332 .251 211 .097
Additive constant .031 .304

Table 2 Results of original one-mode three-way data analysis of POS

data

Category

One-mode three-way analysis
cluster

Liquors

Soft drinks
Tabaco

Ice creams
Frozen foods
Cooked foods

Bread

Sweets
Snacks
Dessert
Processed foods

Instant foods
Dairy products
Daily necessities

Weights

Additive constant
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Table 3 Results of one-mode two-way and subtracted data analyses of access log data

One-mode two-way analysis Subtracted data analysis

cluster cluster
Page 1 2 3 4 5 1 2 3 4 5
TOP 1 1 0 0 1 0 0 0 0 1
Info. 1 0 1 0 0 0 0 0 0 1
Feature 0 0 1 0 0 0 0 0 0 1
BF1 0 0 0 1 1 1 0 0 0 1
BF2 0 0 0 1 1 1 1 0 0 0
BF3 0 0 0 0 1 1 1 0 1 0
BF4 0 0 0 0 0 0 1 1 1 0
SF1 0 0 0 0 0 0 0 1 1 0
SF2 0 0 0 0 0 0 0 1 0 0
Fee 0 1 0 0 0 0 0 0 0 0
Weight 840 815 .726 .558 319 702 552 454 433 276
Additive constant  .132 .298

3.2 The Analysis of Access Log Data

The data were access logs of a web site of a company which supplies access
log analysis services. The data were used and analyzed in Yokoyama and Okada
(2011b). As shown in Yokoyama and Okada (2011b), the web site mainly consists
of pages which introduce several functions and the list of the fee of the services. We
focus our attention on 10 pages which are linked to the global navigation, Top page
(TOP), Information page (Info.), the page to introduce the feature (Feature), the page
to introduce of the first basic function (BF1), the second basic function (BF2), the
third basic function (BF3), the fourth basic function (BF4), the first special function
(SF1), the second special function (SF2), and information of the fee (Fee). The link
buttons of these 10 pages were represented sequentially from the top to the bottom.
One-mode two-way and one-mode three-way data are generated from the transition
among the 10 pages.

In the present analysis, one-mode two-way and one-mode three-way data
were symmetrized and analyzed by overlapping cluster analysis models. The
symmetrized data were transformed so that transformed data are in the range of
[0, 1], we set the maximum number of clusters to six and the minimum number
of clusters to three. The largest VAF for each number of clusters determined the
maximum VAF at that number of clusters.

The resulting maximum VAFs in six through three clusters were 0.783, 0.722,
0.653, and 0.583 in the one-mode two-way analysis, and 0.815, 0.784, 0.719, and
0.626 in the one-mode three-way analysis. Because of the VAF values and the
interpretation of the results, the five cluster result was adopted as the solution in
the present analysis. The results are shown in the left side of Table 3, and in Table 4.
Adjacent pages belong to mainly the same clusters in both results, it is interpreted
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Table 4 Results of original
one-mode three-way data
analysis of access log data

One-mode three-way analysis
cluster

Page
TOP
Info.
Feature
BF1
BF2
BF3
BF4
SF1
SF2
Fee

Weight 953 516 423 403 254
Additive constant .047
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that these pages were viewed sequentially. However,most of clusters in one-mode
two-way results consist of two pages, and most of clusters in one-mode three-way
analysis consist of three pages. It shows that one-mode three-way analysis is needed.

Along the present procedure, one-mode three-way reconstructed data were
calculated by this results and subtracted data were calculated. The subtracted data
were analyzed by one-mode three-way overlapping cluster analysis. The resulting
maximum VAFs in six through three clusters were 0.777, 0.701, 0.624, and 0.508,
the five cluster result is shown in the right side of Table 3.

The three analyses resulted in similar VAFs for each number of clusters. The
cluster structures of the subtracted and original data analyses are the same. This
shows that the result of one-mode three-way data is not affected from one-mode two-
way results. Thus, the present procedure shows that one-mode three-way analysis is
also needed.

4 Conclusion and Future Study

In the present study,we introduced the procedure to evaluate the necessity of
one-mode three-way analysis and to investigate the effect of the one-mode two-
way analysis. The present procedure was applied to the POS data and the access
log data.The characteristic and interesting results were obtained from the present
analyses to evaluate VAF values and cluster structures. Based on the present study,
we think the simulation study of the procedure is needed to examine the procedure.
In addition, one-mode two-way data, subtracted data, and one-mode three-way data
were transformed as described earlier in Sect. 3.2, in the analyses of the present
procedure, we think that a detailed study for the standardization is necessary.
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Moreover, in Yokoyama and Okada (2010c, 2011a), the cluster structure of
one-mode two-way result p;.2) were adapted to one-mode three-way data s, the
weights w3z = [w,(32)] were calculated as

+
Wi2) = (sz>Q<2)) 0250, (5)

where s3) is the M -dimensional column vector with s; as element (here M =
»C3 and n is the number of objects), Qn) = [pir) Pjir2)] is the M X r matrix,

+
w(32) is the (R + 1)-dimensional column vector, and (QZZ)Q(Z)) is the Moore-

Penrose generalized inverse of (QZZ) Q(z))~ Then, the weights which are obtained

by two analyses w(2), and w3y can be compared. We can apply this approach to the
present procedure, the reconstructed one-mode three-way data are calculated by the
following equations instead of Eq. (3),

R+1
§;k = Z Wr3) Pir(2) Djr(2) Pkr(2) - (6)

r=1

We think that this procedure is worth to investigate.

Finally, it is obvious that the present procedure is applicable not only to one-
mode three-way data analysis but also to one-mode more higher way data analysis.
Moreover, the present procedure is applicable to another analysis models suche as
MDS models. Further improvements should be possible.
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Latent Class Models of Time Series Data:
An Entropic-Based Uncertainty Measure

José G. Dias

Abstract Latent class modeling has proven to be a powerful tool for identifying
regimes in time series. Here, we focus on the classification uncertainty in latent
class modeling of time series data with emphasis on entropy-based measures of
uncertainty. Results are illustrated with an example.

1 Introduction

Latent class models are a powerful tool for capturing unobserved heterogeneity in a
wide range of social and behavioral science data (see, for example, McLachlan and
Peel 2000 or Ramos et al. 2011).

Let y; denote a T-dimensional observation and D = {yj,...,y,} a sample of
size n. Each data point is assumed to be a realization of the random variable Y
coming from an S-component mixture probability density function (p.d.f.)

S
@) =Y mufulyii0). ()

w=1

where 7, are positive mixing proportions that sum to one, #,, are the parameters
defining the conditional distribution f,,(y;;#,) for latent class w, and ¢ =
{m1.....m5-1.0,.....05}. Note that 75 = 1 — Y 3! x,,. The log-likelihood
function for an LC model — assuming i.i.d. observations — has the form £(¢;y) =
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Yo' log f(yi; @), which is straightforward to maximize (yielding the MLE -
maximum likelihood estimator) by the EM algorithm (Dempster et al. 1977).

From parameter estimates of the LC model one can derive the posterior proba-
bility that an observation belongs to a certain latent class conditional on its response
pattern. From the ML parameter estimates, Bayes’ theorem gives the posterior
probability that observation i was generated by latent class w:

~ _ ﬁwﬁv(yi; éw)
Uiy = 5 N N
Zv=1 ”va(Yi; 0,)

2

where 7,, and 9W are the ML estimates of =, and ,,, respectively.

The &;,, values define a soft partitioning/clustering of the data set, since
Zi:l &, = 1 and &;,, € [0, 1]. Let ¢; represent the true cluster membership (the
missing data) of observation i. Then, the optimal Bayes rule assigning observation
i to the class with maximum posterior probability can be defined as follows:

¢ = argmax &;y,i = 1,...,n, 3)
w

where ¢; is the estimate of ¢;.

In this paper, we address the following question: How can we measure the level
of uncertainty in the mapping from the [0, 1] soft partition to the {0,1} hard partition
obtained by applying the optimal Bayes rule in time series analysis?

The paper is organized as follows: Sect.2 presents the full mixture hidden
Markov model used to obtain the posterior probabilities of the regimes; Sect.3
introduces a measure of classification uncertainty; Sect. 4 studies its behavior using
a synthetic example; and Sect. 5 illustrates the application of the procedure to a panel
data set of twenty European stock markets. Section 6 gives concluding remarks.

2 Latent Class Modeling of Time Series Data

The mixture of hidden Markov models (MHMM-S) (Dias et al. 2008; Ramos et al.
2011) is defined by the density:

S K K T T
foie) =Y my Yy - Y fGalw) [ | fGalziw) [ ] fala). @)
t=2 =1

wi=1 zi1=1 zir=l1

where the conditional distribution within each latent class is given by a hidden
Markov model with K regimes. ¢ is the vector containing all parameters in the
model. Thus, we assume that within latent class w the sequence {z;1,..., 2z} is in
agreement with a first-order Markov chain. Moreover, we assume that the observed
value y; at a particular time point depends only on the regime at this time point;
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i.e, conditionally on the regime z;;, the response y; is independent of other time
points, which is often referred to as the local independence assumption. As far as
the first-order Markov assumption for the latent regime switching conditional on
latent class membership w is concerned, it is important to note that this assumption
is not as restrictive as one may initially think. It does clearly not imply a first-order
Markov structure for the responses y;,. The standard hidden Markov model (HMM)
(Baum et al. 1970) is a special case of the MHMM-S that is obtained by eliminating
the time-constant latent variable w from the model, that is, by assuming that there is
no unobserved heterogeneity across time series.
The characterization of the MHMM is provided by:

* m, is the prior probability of belonging to the latent class w;

e f(zi|w;) is the initial-regime probability; that is, the probability of having
a particular initial regime conditional on belonging to latent class w with
multinomial parameter Ay, = P(Z;; = k|W; = w);

*  f(zit|zis—1,wi) is a latent transition probability; that is, the probability of being
in a particular regime at time point ¢ conditional on the regime at time point
t — 1 and latent class membership; assuming a time-homogeneous transition
process, we have py, = P(Zy; = k|Z;;—1 = j,W; = w) as the relevant
multinomial parameter. Note that the MHMM-S allows that each latent class has
its specific transition or regime-switching dynamics, whereas in a standard HMM
it is assumed that all cases have the same transition probabilities;

e f(¥i|zit), the probability density of having a particular value y;;, conditional on
the regime occupied at time point ¢, is assumed to have the form of a univariate
normal (or Gaussian) density function. This distribution is characterized by the
parameter vector ((i, o,f) containing the mean (14, ) and variance (0,3) for regime
k. Note that these parameters are assumed invariant across latent classes, an
assumption that may, however, be relaxed.

Since f(y;; @), defined by Eq. (4), is a mixture of densities across S latent classes
and K regimes, it defines a flexible Gaussian mixture model that can accommodate
deviations from normality in terms of skewness and kurtosis. For example, for two
regimes (K = 2), the MHMM-S has 4§ + 3 free parameters to be estimated,
including S —1 class sizes, S initial-regime probabilities, 2. transition probabilities,
2 conditional means, and 2 conditional variances.

Maximum likelihood (ML) estimation of the parameters of the MHMM-S
involves maximizing the log-likelihood function: £(¢;y) = > i_,log f(yi; @),
a problem that can be tackled by the Expectation-Maximization (EM) algorithm
(Dempster et al. 1977). The E step computes the joint conditional distribution of
the 7 4+ 1 latent variables given the data and the current provisional estimates
of the model parameters. In the M step, standard complete data ML methods are
used to update the unknown model parameters using an expanded data matrix with
the estimated densities of the latent variables as weights. Since the EM algorithm
requires the computation of S -27 entries in the E step, which makes this algorithm
impractical or even impossible to apply with more than a few time points. However,
for hidden Markov models, a special variant of the EM algorithm was proposed that
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is usually referred to as the forward-backward or Baum-Welch algorithm (Baum
et al. 1970). The Baum-Welch algorithm circumvents the computation of this joint
posterior distribution making use of the conditional independencies implied by the
model.

An important modeling issue is the setting of S and K, the number of latent
classes and regimes needed to capture the unobserved heterogeneity across time
series. The selection of S and K is typically based on information statistics such as
the Bayesian Information Criterion (BIC) (Schwarz 1978) defined as:

BICs x = —2Ls k(@:y) + Ns x logn, )

where N g is the number of free parameters of the model and » is the sample size.

3 An Entropic-Based Uncertainty Measure

Classification uncertainty can be measured by the posterior probabilities &;;.
An aggregate measure of classification uncertainty is the entropy. For LC models,
the entropy is

n S
EN(@) ==Y ) aislogas. (6)
i=1s=1
Its normalized version has been used as a model selection criterion, indicating the
level of separation of latent classes (Dias and Vermunt 2006, 2008). The relative
entropy that scales the entropy to the interval [0,1] is given by

E =1—-EN(a)/(nlogs). @)

For well-separated latent classes, £ ~ 1; for ill-separated latent classes, £ ~ 0.
This provides a method for assessing the “fuzzyness” of the partition of the data
under the hypothesized model. The ML estimate of E — E — can be obtained using
the MLE (&;;) of ;s in Eq. (7).

We propose an extension of the relative entropy to panel data, that we call
Entropy Regime Classification Measure (ERCM). For the time series y;, the ERCM
is given by

T

K
1
ERCM; =1 E E ik 1 i), 8
i + Tlog K - k=lark og (i) (8)

where a;x = P(Z; = kl|y;) is the probability that time series i is in regime k at
time ¢ conditional on the observed data.
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Fig. 1 ERCM as function of K and §

4 A Synthetic Example

To understand the behavior of ERCM, let us assume that the posterior probabilities
for each time series i and time ¢ — &;; = (@1, . . . , irg ) — are:

1-96 1-96
ait_((S?K_la"'aK_l)a (9)

i.e., it represents a regime with probability § and the remaining K — 1 regimes with
identical probability: (1 — §)/(K — 1). Replacing vector &;, in Eq. (8), we obtain
the expression below for ERCM:

1 1-6§
ERCMks =1+ @ [8log8 + (1 —5)10g (ﬁ)} .

Figure 1 depicts the ERCM as function of K and § with values {2, 3,4, 5}, and
[0.5, 1.0], respectively. For example, for K = 2 and § = 0.5, the classification
uncertainty is maximum and then ERCM = 0.

As expected, the relation between § and ERCM is nonlinear. For the same value
of §, increasing K leads to an increase of ERCM as the value of (1 —§)/(K — 1)
decreases with an increase in K, and it becomes clearer the ‘right’ regime. In the
opposite case, with § = 1, then ERCM = 1, with 0 - log 0 = 0.

5 Application

Modeling the dynamics of stock market returns has been an important challenge in
modern financial econometrics. The statistics and dynamics of correctly specified
distributions provide more accurate and detailed input for financial asset pricing
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Table 1 Summary statistics

Std. Jarque-Bera test
Stock market Mean Median Deviation Skewness Kurtosis statistics p-value
Austria (OE) —0.05 0.02 212 —0.21 6.62 564.41 0.000
Belgium (BG) —0.05 0.04 1.89 —0.18 6.40 495.51 0.000
Czech Rep. (CZ) —0.01 0.05 232 0.01 15.23 6,367.55 0.000
Denmark (DK) —0.02 0.02 1.98 —0.23 8.46 1,275.01  0.000
Finland (FN) —0.06 —0.04 2.14 0.08 6.12 413.55 0.000
France (FR) —0.04 0.01 1.97 0.11 7.96 1,046.75 0.000
Germany (BD) —0.02 0.08 1.84 0.52 11.77 3,323.29 0.000
Greece (GR) —0.13 —0.02 2.26 0.00 5.42 247.02  0.000
Hungary (HN) —0.05 0.00 2381 0.04 9.21 1,640.73  0.000
Ireland (IR) —0.11 —0.02 2.27 —0.46 6.65 599.30 0.000
Ttaly (IT) —0.07 0.04 2.05 0.07 7.51 865.40 0.000
Netherlands (NL) —0.05 0.02 2.02 —0.16 8.17 1,140.84  0.000
Norway (NW) —0.03 0.12 272 —0.32 6.52 542.43 0.000
Poland (PO) —0.04 0.04 239 —0.17 6.71 588.35 0.000
Portugal (PT) —0.06 0.02 1.85 —0.05 9.03 1,545.13  0.000
Russia (RS) —0.01 0.09 2.88 —0.17 15.06 6,197.63  0.000
Spain (ES) —0.05 0.04 2.03 0.13 7.80 980.94 0.000
Sweden (SD) —0.02 0.03 247 0.20 6.04 398.23  0.000
Switzerland (SW) 0.00 0.05 1.47 0.11 7.62 907.38 0.000
United Kingdom (UK) —0.03 0.07 1.98 —0.04 8.61 1,338.27 0.000

and risk management. For example, investors buy or sell securities according to
their expectation of the market regime. In addition, portfolio risk reduction might
be achieved by procedures that take into account the synchronization of market
regimes. Therefore, regime switching uncertainty is key in financial modeling.

The data set used in this article are daily closing prices from 4 July 2007 (the start
of the subprime crisis) to 11 July 2011 for twenty European stock market indexes
drawn from Datastream database and listed in Table 1. The series are expressed in
US dollars. In total, we have 1,038 end-of-the-day observations per country. Let
P;; be the observed daily closing price of market i on day 7,7 = 1,...,20 and
t =0,...,1,037. The daily rates of return are defined as the log-returns multiplied
by 100: y; = 100 x log(Pi;/ Pis—1),t = 1,..., T, with T =1,037.

This period was a very harsh one for the European stock markets. Table 1
provides descriptive statistics of the time series, while Fig. 2 depicts the log-returns
time series. It can be seen that the mean is not positive for all markets in this period,
however only for three markets — Finland, Greece, and Ireland — the median is
negative. Stock markets show, instead, very different patterns of dispersion (Fig. 2);
the largest standard deviation is found in Russia, Hungary, and Norway, while the
smallest is in Switzerland (1.47). Return rate distributions are diverse in terms
of skewness and the kurtosis (which equals O for normal distributions) shows
high positive values, indicating heavier tails and more peakness than the normal
distribution. The Jarque-Bera test rejects the null hypothesis of normality for all
twenty stock markets.
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Austria Belgium Czech Rep.
23.29 23.29 23.29
-21.06 -21.06 -21.06
Denmark Finland France
23.29 23.29 23.29
-21.06 -21.06 -21.06
Germany Greece Hungary
23.29 23.29 23.29
-21.06 -21.06 -21.06
Ireland Italy Netherlands
23.29 23.29 23.29
-21.06 -21.06 -21.06
Norway Poland Portugal
23.29 23.29 23.29
-21.06 -21.06 -21.06
Russia Spain Sweden
23.29 23.29 23.29
-21.06 -21.06 -21.06
Jul07 Julog8 Julo9 Jul10 Jult1
Switzerland United Kingdom ! ! ! . !
23.29 23.29
T MM\WNM
-21

.06 -21.06
Jul07 Julog Julo9 Jul10 Julid Julo7 Julo8 Jul09 Jul10 Jul11

Fig. 2 Log-return time series for 20 European stock markets

Overall, these stock market features seem well suited to be modeled using
MHMMs as we want to model simultaneously the 20 time series with typical
cluster volatility. Given the traditional dichotomization of financial markets into
“bull” and “bear” markets, we assume K = 2. We estimated models characterized
by different number of latent classes (S = 1,...,5). To minimize the impact of
local maxima, 300 different starting values for the parameters are used for each
model. The model with two latent classes (S = 2) yielded the lowest BIC value
Ua(@;y) = —42,479.61, N, = 11 and BIC, = 84,992.17).

Table 2 provides information on the two regimes that were identified (K = 2);
that is, the average proportion of markets in regime k over time and the mean
and variance of the returns in regime k. The result is in line with the common
dichotomization of financial markets into “bull” and “bear” markets. Consistently,
the reported means show that one of the regimes is associated with positive returns
(bull market) and the other with negative returns (bear market). The probability of
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Table 2 Estimated marginal probabilities of the regimes and within Gaussian parameters

P(Z) Return (mean) Risk (variance)

Regime 1  Regime 2 Regime 1  Regime 2 Regime 1  Regime 2
Estimate  0.265 0.735 —0.306 0.045 12.813 2.044
Std. error  0.026 0.026 0.050 0.012 0.305 0.031

Table 3 Characterization of the switching regimes

Latent class 1 Latent class 2
Regime 1 Regime 2 Regime 1 Regime 2
P(Z|W) 0.243 0.757 0.409 0.591
0.026 0.026 0.055 0.055
Transitions
Regime 1 0.978 0.022 0.947 0.053
0.003 0.003 0.015 0.015
Regime 2 0.007 0.993 0.037 0.963
0.001 0.001 0.011 0.011
Sojourn time 44.84 133.33 18.76 26.74

Standard values are given in italics

being in the bear and bull regimes is 0.27 and 0.73, respectively. We would also
like to emphasize that these results are coherent with the common acknowledgment
of volatility asymmetry of financial markets. Volatility is likely to be higher when
markets fall than when markets rise.

Table 3 reports the estimated probabilities of being in one of the regimes within
each latent class. There is a clear distinction between these latent classes. Latent
class 2 has the largest probability of being in bear regime (0.41). For latent class
1, this probability is 0.24. Moreover, Table 3 provides another key insight from
our analysis. It gives the transition probabilities between the two regimes for both
latent classes. First, notice that both latent classes show regime persistence. Once a
stock market jumps into a regime, it is likely to remain within the same regime for a
while, which is coherent with stylized facts in financial markets. Second, latent class
1 shows lower propensity to move from a bull regime to a bear regime (0.007) than
latent class 2. Third, latent class 1 shows higher probability to jump from a bear to
a bull regime than latent class 2.

The sojourn time is the expected number of days that a stock market stays in a
given regime. For regime k and latent class w it can be obtained by 1/(1 — piy). As
reported in Table 3, stock markets in latent class 2 stay the shortest number of days
in both bear and bull markets, and consequently being the less stable group.

Table 4 summarizes the results related to the distribution of stock market across
latent classes. From the posterior class membership probabilities, the probability
of belonging to each of the latent classes conditional on the observed data, we
found only two stock markets are more likely to belong to latent class two: Greece
(1.00) and Hungary (0.99). For most of the stock markets the posterior probability is
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Table 4 Estimated posterior probabilities and ERCM

Posterior probability

Markets Latent class 1 Latent class 2 Modal ERCM
Austria (OE) 1.00 0.00 1 0.876
Belgium (BG) 1.00 0.00 1 0.922
Czech Rep. (CZ) 1.00 0.00 1 0.910
Denmark (DK) 1.00 0.00 1 0.911
Finland (FN) 1.00 0.00 1 0.854
France (FR) 1.00 0.00 1 0.905
Germany (BD) 1.00 0.00 1 0.923
Greece (GR) 0.00 1.00 2 0.605
Hungary (HN) 0.01 0.99 2 0.672
Ireland (IR) 0.84 0.16 1 0.777
Ttaly (IT) 1.00 0.00 1 0.862
Netherlands (NL) 1.00 0.00 1 0914
Norway (NW) 0.99 0.01 1 0.801
Poland (PO) 1.00 0.00 1 0.846
Portugal (PT) 1.00 0.00 1 0.888
Russia (RS) 1.00 0.00 1 0.893
Spain (ES) 1.00 0.00 1 0.852
Sweden (SD) 0.98 0.02 1 0.809
Switzerland (SW) 1.00 0.00 1 0.936
United Kingdom (UK) 1.00 0.00 1 0.892

precise (the probability of the most likely latent class is always one or very close to
one), the exception being Ireland with probability 0.16 of belonging to latent class 2.
By combining the classification information with the descriptive statistics in Table 1,
latent class 1 tends to contain countries with lower volatility than latent class 2.

Based on the posterior probabilities from the estimated model, Table 4 also
reports the estimate of the ERCM for each stock market. Above 0.9 we have
Switzerland (0.936), Germany (0.923), Belgium (0.922), Netherlands (0.914),
Denmark (0.9111), Czech Republic (0.910), and France (0.905) as the least
uncertain stock markets. On the other hand, Greece (0.605) and Hungary (0.672) are
the most uncertain stock markets with ERCM below 0.7. The third most uncertain
market is Ireland (0.777). Thus, the ERCM complements the values of posterior
probabilities providing a more detailed indicator of stock market uncertainty. These
results are consistent with financial market stylized facts.

6 Conclusions

This paper provides an extension to the MHMM model (Dias et al. 2008; Ramos
et al. 2011) as a tool for measuring classification uncertainty in financial time series
analysis. The proposed measure of uncertainty — Entropy Regime Classification
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Measure (ERCM) — reveals the amount of uncertainty in a given time series. In the
analysis of a sample of twenty stock markets for a period of 1,038 days, the best
model was the one with two latent classes, with distinct types of regime switching.
We conclude that the European market uncertainty in this period of analysis ranged
from a minimum for Switzerland (ERCM = 0.936) and a maximum for Greece
(ERCM = 0.605).

This approach should be further explored namely in applications where more
than two regimes are needed. For instance, in modeling electricity prices it is
standard to use at least three regimes as a result of abnormality in the markets and
spike prices.
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Regularization and Model Selection
with Categorical Covariates

Jan Gertheiss, Veronika Stelz, and Gerhard Tutz

Abstract The challenge in regression problems with categorical covariates is the
high number of parameters involved. Common regularization methods like the
Lasso, which allow for selection of predictors, are typically designed for metric
predictors. If independent variables are categorical, selection strategies should
be based on modified penalties. For categorical predictor variables with many
categories a useful strategy is to search for clusters of categories with similar effects.
We focus on generalized linear models and present L;-penalty approaches for factor
selection and clustering of categories. The methods proposed are investigated in
simulation studies and applied to a real world classification problem.

1 Introduction

When selecting a regression model with categorical predictors two questions should
be answered: (1) Which categorical predictors should be included in the model? and
(2) Which categories within one categorical predictor should be distinguished? The
latter question poses the question of which categories differ from one another with
respect to the dependent variable.

In this paper, we assume a generalized linear model (GLM; McCullagh and
Nelder 1989). That means, given (potentially vector-valued) explanatory variables
xi,i = 1,...,n,response values y; are (conditionally) independent, and the (condi-
tional) distribution of y; belongs to a simple exponential family with (conditional)
expectation E(y;|x;) = u;. This expectation yu; is related to the so-called linear
predictor 7, = 2B by i = h(m) = h(GIB). resp.. 1, = g(u;). where ()
is a known one-to-one, sufficiently smooth response function, and g(-) is the link
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function, that is, the inverse of A (-). The parameter vector 8 denotes the vector of
(unknown) regression coefficients (including a constant «), and z; is a design vector
in a general form (and therefore denoted as z; instead of x;), which is determined as
an appropriate function z; = z(x;) of the covariates, cf. Fahrmeir and Tutz (2001).
A typical example of z; is (one observation of) a dummy-coded categorical predic-
tor. More precisely, if a categorical predictor x; has potential levels 0, ..., K;, we
have dummy variables zj, with zx = 1if x; = k and O otherwise, k =0, ..., K;.
For identifiability of B-coefficients from above, we specify reference category
k = 0, such that 8;o = O forall j = 1,..., p, where p denotes the number of
categorical predictors considered.

2 L;-Regularization for Categorical Predictors

One problem with dummy coding is the high number of parameters involved, which
makes pure maximum likelihood estimation unstable when the sample size is only
modest, and interpretation of results may be difficult. Therefore we prefer penalized
likelihood estimation, where instead of the usual unpenalized (log-)likelihood
[(B) = >, log(f(¥il6;.¢)), the penalized likelihood

lp(B) = 1(B) = AJ(B) (1)

is maximized. The strength of penalty J () is controlled by A. The decisive point is
a suitable choice of J(f).

Under the assumption of a classical linear model (with approx. normally
distributed response values), Bondell and Reich (2009) and Gertheiss and Tutz
(2010) presented penalties for nominal and ordinal covariates that make factor
selection and level clustering possible. For unordered categories, the penalty has

the form
P

TB) =" wiulBii — Bul. 2

j=1l1>k

with Bj denoting the coefficient of dummy zj. If predictor levels are ordered, we
only consider differences of adjacent coefficients B and B x—; in penalty (2). The
L -norm/Lasso-type penalty (see Tibshirani 1996) effects that coefficients may be
set equal, which results in fusion/clustering of categories. If all coefficients of a
factor are set equal to the dummy coefficient of the reference category (which is 0),
the respective factor is excluded from the model. Weights wj; are incorporated to
account for unbalanced designs. In addition, if weights are chosen as proportional to
| A;Zml) - ,3](:‘ D=1 where B ](lm Y denotes the usual maximum likelihood (ml) estimate,
an adaptive version (following Zou 2006) with nice asymptotic properties (as
selection and fusion consistency) is obtained; see Bondell and Reich (2009) and
Gertheiss and Tutz (2010) for details. In this paper, we use the proposed penalties
for generalized linear models and corresponding penalized likelihood estimation (1).
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Table 1 Dummy coefficients 8; (excluding the reference category) and marginal class probabili-
ties ©¥; (including the reference category) used for data generation in simulation study (3)

Nominal predictors Ordinal predictors

B =(0,0,0)" Bs = (0,0,0)

% = (0.5,0.1,0.25,0.15)T ¥s = (0.3,0.2,0.35,0.15)T

B> = (0,0,0,0,0,0,0)T Bs = (0,0,0,0,0,0,0)T

% = (0.05,0.15,0.15,0.1,0.1,0.05,0.2,0.2)T ¥ = (0.05,0.15,0.15,0.2,0.2,0.05,0.1,0.1)T
Bz = (0,1, 1T B7 = (—0.5,—0.5,—1)T

¥ = (0.15,0.1,0.25,0.5)T ¥ = (0.4,0.3,0.2,0.1)T
Bs=(0,0,—1,—1,—1,1.5,1.5)T Bs = (0,1,1,2)T

¥4 = (0.05,0.1,0.1,0.2,0.25,0.05,0.1,0.15)T &5 = (0.2,0.25,0.1,0.25,0.2)T

3 Numerical Experiments

Given categorical covariates xi, ..., Xxg, we generate (conditionally) independent
response values y;, i = 1,...,n, each following a Poisson distribution with
conditional expectation

E(yilxit, ..., xis) = E(yilzi) = wi = exp(z; B), (3)

with parameter vector 8 = (a, B],...,B3)T containing dummy coefficients, and
design vectors z; consisting of dummy-coded predictors. We assume four nominal
(X1, ...,x4) and four ordinal (xs, ..., xg) predictors. True dummy coefficients used
in the simulation are given in Table 1 (excluding coefficients 8;0 =0, j = 1,....8,
of the respective reference category). As the constant, we use ¢« = —1. We
consider different sample sizes n = 100, 200, 400, 600, and generate 100 training
data sets for each case. Categorical predictors x; are assumed as being mutually
independent, and class labels are randomly drawn with marginal class probabilities
¥ = (¥0,%1,...)7, j =1,...,8,as given in Table 1.

On each simulated data set dummy coefficients are fitted employing the categor-
ical L;-penalty (2), which is able to select variables and to cluster categories. We
consider the standard (non-adaptive) approach as well as the adaptive version (with
weights depending on ml estimates). For computation, we use the R package 1ga
(Ulbricht 2010) where local quadratic approximation as proposed by Fan and Li
(2001) is generalized. Penalty parameters are determined by cross-validation.

We investigate errors of parameter estimates and prediction accuracies. Figure 1
shows boxplots of the MSE of parameter estimates observed in the simulation study.
Itis seen that for small sample sizes the standard approach is superior to the adaptive
version. This is apparently caused by the fact that pure ml estimates, where the
adaptive version is based on, are quite unstable when sample sizes n are small
(with respect to the number (38) of unknown parameters). If n increases, maximum
likelihood estimates become more accurate and the adaptive version outperforms
the standard approach.
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Fig. 1 Empirical mean squared errors of parameter estimates observed after 100 runs of simula-
tion scenario (3) with different sample sizes n; considered are the standard and adaptive version of
categorical L;-penalty (2) as well as pure maximum likelihood estimation of dummy coefficients.
For n = 100, the boxplot for pure ml is not completely shown because the range of ml MSEs is
too large

For evaluating prediction accuracies, a test set of size 10,000 is generated for each
simulation scenario (i.e., for each training sample size), and regression parameters
estimated in each simulation run are used to predict the respective test response
values. Resulting errors are measured in terms of test set deviances and illustrated
in Fig. 2. Results are similar to those found in Fig. 1 (MSEs). If n is low compared to
the number of parameters which are to be estimated, the standard approach should
be preferred over the adaptive version, whereas the latter is a good choice when
many observations are available. In any case, pure ml estimates are outperformed.

A problem found in the simulation is the high number of cases where truly zero
coefficients (or differences thereof) are fitted as nonzero. Even when the adaptive
penalty is used corresponding false positive rates are sometimes around 60 %. By
contrast, false negatives (i.e., truly nonzero coefficients or differences thereof which
are fitted as zero) are hardly observed. A possible explanation of this finding is
that the algorithm implemented in the 1ga package stops before an acceptable
approximation of the ‘exact’ solution is reached. If only ordinal predictors are given,
R package glmpath (Park and Hastie 2007) can be used instead of 1ga (see also
Sect.4). With glmpath, selection and fusion performance is much better.



Regularization and Model Selection with Categorical Covariates 219

n =100 n = 200
40000 4
o
@ b o «» 18000 - o
Q o] (0]
2 30000 | 2 -
8 S g . ‘
> | S o '
] B ° : [} ° !
s ° 2 14000 ° ‘
1%} —_— ' 7] _— '
10000 ... T —= 100004~ ——
T T T T T T
standard adaptive pure ml standard adaptive pure ml
n = 400 n = 600
12000 g 12000
[} - : (%] -
@ ! @
5] | o
C C
8 I ] 8 8
S 11000 - 1 — E S 11000 —
© i . ° o !
3 ‘ : : 3 o ° :
12} - ' ' 12} - I —
—— — - |3 I S =
10000 - — ; 10000 - ‘ —

T T T T T T
standard adaptive pure ml standard adaptive pure ml

Fig. 2 Empirical test set deviances observed after 100 runs of simulation scenario (3) with
different sample sizes n; considered are the standard and adaptive version of categorical L;-
penalty (2) as well as pure maximum likelihood estimation of dummy coefficients; the dotted
line indicates the test set error if the true underlying model is used for prediction. For n = 100, the
boxplot for pure ml is not completely shown because the range of ml deviances is too large

4 Wisconsin Breast Cancer Database

We apply the proposed penalized likelihood approach to data from the Wisconsin
breast cancer database. The considered data were originally obtained from the
University of Wisconsin Hospitals, Madison from Dr. William H. Wolberg, who
periodically reported his clinical cases (see also Wolberg and Mangasarian 1990).
The data are also available from the UCI Repository of machine learning databases
(Newman et al 1998), and are part of the R package mlbench (Leisch and
Dimitriadou 2010). The dataset consists of 699 samplesl; 16 samples, however, have
been removed because of missing values. Available covariates are nine cytological
characteristics graded on a 1 to 10 scale at the time of sample collection, with 1 being
the closest to normal tissue and 10 the most anaplastic (cf. Wolberg and Mangasarian
1990). In detail, we have clump thickness, uniformity of cell size, uniformity of cell
shape, marginal adhesion, single epithelial cell size, bare nuclei, bland chromatin,

IThe original dataset (Wolberg and Mangasarian 1990) was of size 369 (reported January 1989).
Two instances were removed later and additional groups of all in all 332 samples were collected
(between October 1989 and November 1991).



220 J. Gertheiss et al.

normal nucleoli, mitoses. The aim of the data analysis is to classify each instance as
benign or malignant using these covariates.

To distinguish malignant from benign cells, we fit a logistic regression model and
apply the standard and the adaptive version of our Lasso-type penalized likelihood
estimator. Malignant samples are coded as 1, benign ones as 0. Since all predictors
are ordinal, only differences of adjacent coefficients are considered in penalty (2).
Pure maximum likelihood estimates are not reliable/extremely unstable with fitted
probabilities of zero/one (due to complete data separation in the 90-dimensional
predictor space). So pure ml estimation is useless, and a generalized Ridge with
smoothed dummy coefficients (Gertheiss and Tutz 2009) is used for the determi-
nation of weights for the adaptive Lasso-type estimator. For practical estimation of
L -regularized coefficients, R package glmpath is employed, since the estimator
can be written as a (generalized) Lasso solution on split-coded variables (see
Gertheiss and Tutz 2010). To compute smooth dummy coefficients, we use R
package ordPens (Gertheiss 2011). Resulting coefficients for the standard and
the adaptive Lasso-type estimator as well as smooth dummies are found in Fig. 3.
Since pure maximum likelihood estimation is not interpretable (see above), only
regularized estimates are shown. Penalty parameters have been determined using
5-fold cross-validation with the negative log-likelihood serving as loss function.
Constant « is fitted as —4.75, —5.00 and —5.35 for the standard L -type approach,
the adaptive version and the quadratic Ridge penalization (the ‘smooth dummies’),
respectively. Since for all covariates grade 1 is taken as reference category, the fitted
probability that a sample is malignant, given all nine cytological characteristics are
graded as 1, is exp(&)/(1 4 exp(&)), and hence below 1 % for each method. If the
grade increases, the probability of malignancy increases, too, because coefficient
functions in Fig.3 are increasing. In the case of the generalized Ridge estimator
(dotted lines), however, a few inconsistencies are observed. If the Lasso-type
estimator is applied, coefficient curves are (monotone increasing) step functions.
That means, categories are clustered and some relevant jumps between categories
are selected. In the case of marginal adhesion, for example, such a jump is located
between grade 5 and 6. By clustering, the degrees of freedom of the model are
distinctly reduced to 20 (standard approach), resp. 15 (adaptive weights). If adaptive
weights are used, the predictor mitoses is even completely removed from the model,
since all corresponding dummy coefficients are fitted as zero.

For evaluating the performance of the considered methods, we randomly draw
a test set of size 100 from the data at hand. On the remaining data the methods
are trained and used to predict the test samples, and test set deviances as well
as misclassification rates are computed. This procedure is independently repeated
100 times. The performance of the adaptive L;- and the quadratic regularization
is very similar (with small advantages for the generalized Ridge), and superior
to the standard Lasso-type estimator (not shown, see Stelz 2010). On average
(median), the observed misclassification rates are 4 % for the adaptive L;- and
the Ridge-type regularization (see also Stelz 2010), and thus similar to the values
obtained by Wolberg and Mangasarian (1990), who treated grades as real numbers
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Fig. 3 Fitted dummy coefficients for the Wisconsin breast cancer database, using Lasso-type
(standard/adaptive) regularization of categorical predictors, or quadratic first-order difference
penalization of dummy coefficients (Gertheiss and Tutz 2009)

and used sets of separating hyper-planes to classify the data. The advantage of
our logit model is that results, i.e., fitted coefficient curves, can be interpreted
easily. Moreover, for each instance (and future samples as well), the (estimated)
probability of malignancy is obtained directly. The advantage of L-regularization
over a quadratic penalty is that predictor levels can be fused.

5 Summary

We showed that regularization techniques proposed for fusion of levels of cate-
gorical predictors in the classical linear model can also be applied in the GLM
framework. In simulation studies and real world data evaluation, pure maximum
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likelihood estimates were distinctly outperformed by the regularized estimates — in
particular, when the number of observations was low compared to the number of
regression parameters.
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Factor Preselection and Multiple Measures
of Dependence

Nina Biichel, Kay F. Hildebrand, and Ulrich Miiller-Funk

Abstract Factor selection or factor reduction is carried out to reduce the complex-
ity of a data analysis problems (classification, regression) or to improve the fit of
a model (via parameter estimation). In data mining there are special needs for a
process by which relevant factors of influence are identified in order to achieve a
balance between bias and noise. Insurance companies, for example, face data sets
that contain hundreds of attributes or factors per object. With a large number of
factors, the selection procedure requires a suitable process model. A process like
that becomes compelling once data analysis is to be (semi) automated.

We suggest an approach that proceeds in two phases: In the first one, we
cluster attributes that are highly correlated in order to identify factor combinations
that—statistically speaking—are near duplicates. In the second phase, we choose
factors from each cluster that are highly associated with a target variable. The
implementation requires some form of non-linear canonical correlation analysis.
We define a correlation measure for two blocks of factors that will be employed
as a measure of similarity within the clustering process. Such measures, in turn,
are based on multiple indices of dependence. Few indices have been introduced cf.
Wolff (Stochastica 4(3):175-188, 1980), ‘Few indices have been introduced in the
literature’. All of them, however, are hard to interpret if the number of dimensions
considerably exceeds two. For that reason we come up with signed measures that
can be interpreted in the usual way.
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1 Approaches to Factor Selection

Factor selection, typically, is but factor reduction because in most cases we are
restricted to a given pool of factors available. The problem, obviously, only occurs in
anon-trivial way if that pool is large—as it is the case in data mining. Data mining—
in contrast to ordinary data analysis—is characterized by 1. a large number of data
sets coming from a heterogeneous universe and 2. a comparatively large number
of factors measured on different scales. Both features together imply that the data
has to be modeled by a general unidentifiable finite mixture model. Accordingly,
procedures which are linear or likelihood-based become obsolete. In that context,
factor selection has been tackled by regularizing relevant black box techniques, e.g.
EBPN or SVM. Corresponding procedures first take all factors into account and
only subsequently discard part of them by means of thresholds. Note, however, that
the thresholding device is applied to quantities that are typically biased and loaded
with noise. Moreover, that method leads to rather complex optimization problems.
A more formal post-analysis approach—popular in classical data analysis—is to
employ formal tests for that purpose. However, it seems impossible to complement
black box procedures with fixed sample size testing procedures replacing the F-test
even if we add heroic distributional assumptions such as normality. In principle
it is possible to rely on asymptotic tests like the LR-test which in the presence
of many factors is not trustworthy. Trees, on the other hand, sequentially select
relevant factors from the pool at hand, but can only successfully deal with a limited
number of features. Therefore, it is conclusive to incorporate factor selection into
data preprocessing.

From a statistical point of view, factor selection can be done in different ways.
Each alternative has a set of methods associated with it. The approaches and the
corresponding tools are:

» Thinning approach: “group and select”

— Correlation indices
— Simultaneous testing

The problem with simultaneous testing is that—apart from distributional
assumptions—it requires some sort of Bonferroni adjustment depending on the
number of tests to be applied. Here, that number is not known and its upper bound
(worst case) is exceedingly large. Furthermore, there is the

» Formative approach: “a few new factors from many old ones”

— (Kernelized) linear projection methods, e.g. principal component analysis,
canonical correlation analysis, projection pursuit and exploratory partial least
squares (PLS)

— Matching: multidimensional scaling, homogeneity analysis, classical factor
analysis, correspondence analysis
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All these tools share one unpleasant feature: Their results are not interpretable in the
original problem domain as the new factors are typically rather artificial constructs.
This problem is circumvented by the

* Reflective approach: “limited number of prescribed latent variables expressed by
a much larger set of manifest variables”

— Linear structural equations
— PLS path modeling

In the present context we are not interested in that sort of “inverse” factor selection
problem or, more precisely, factor analysis.

For classification problems, there are further approaches in the machine learning
literature: filters and wrappers. Both techniques are boolean in character and work
in a brute force manner. Cf. Hall (1999) for an overview.

In what follows, we shall concentrate on thinning within the preselection context.

2 A Process Model for Factor Selection

In order to structure the process of handling data that requires factor selection, we
propose a process model. The main process can be seen in Fig. 1.! It starts with
a sequence of functions, correlating the all factors with the target variable and
discarding the tailing factors. A threshold has to be defined in advance and reflect the
amount of factors. The sub process Generate factor clusters will be explained later.
For now, let us assume that it produces a set of clusters containing factors that are in
some way similar. Eventually, the goal is to create mixed-scale clusters. Once these
clusters of factors have been generated, it is reasonable to determine a representative
for each cluster. You can think of this representative as an actual factor that came to
lie in the center of that cluster but it may also be an artificially created factor that did
not exist in the data to begin with. The representatives can then be correlated with the
target variable again in order to further reduce their number. The step of removing
non-promising representatives is optional, in case there are none. At last, the model
fit is determined. Should it not be satisfactory, previously discarded factors can be
included to the factor set. Once the desired model fit is reached, the process ends.

The crucial part happens in the sub process Generate Factor Clusters (see
Fig.2). Of course, there should be an optional way of handling factors according
to their scale. This represented by the left path in the diagram. Here, well-known
clustering methods apply. However, we will also introduce measures that operate
scale-independently. Thus, the function Apply scale-independent measures (see
Fig.2) is explained in Sect. 3 in more detail.

'We use Event-driven Process Chains (EPC) as a modeling language. Details can be found in
Becker and Schiitte (1996).
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More precisely, we make use of agglomerative factor clustering. Proceeding in
a traditional way, we would first have to compare factors pairwise by correlating
them. The next step, however—to apply some of the usual linkages— is statistically
meaningless. Instead, we have to introduce a dissimilarity measure 1 — « by means
of which disjoint blocks of factors can be compared.

3 Multiple Measures of Dependence

There are various sets of axioms making precise what is meant by a (symmetric)
measure of dependence y (F) in the bivariate case (Renyi 1958; Witting and Miiller-
Funk 1995). The generalization to the multivariate case is due to Schmid et al.
(2010). For the time being, let us assume that all factors are either ordinal or
metric. In what follows, we only consider indices that are invariant with respect to
continuous and strictly isotonic transformations of each component, i.e. are copula-
based. If all variates happen to be discrete or discretized, one could possibly develop
different measures, as in the case of PRE-measures, cf. Kiesl (2003).

A copula C, by definition, is an M -variate distribution function where all
marginals are standard rectangular. It completely describes the dependence structure
among all factors.

We recall two basic facts:

* The HOEFFDING—SKLAR-Factorization of any distribution function F:
F(xi,....xm) = Cr(Fi(x1), ..., Fy(xpm))

where F; are the univariate marginal df and CF is an essentially unique copula.

* Frechet Bounds:
C_=<Cr=Ct
— Complete negative dependence: C—(sy,...,Sy) = (s;+...+sy—M +1)*
— Complete positive dependence: C1(sy,...,Sy) = 1 min S,
<

m<M

C is always a copula, C_ only in case M = 2. Complete factor indepen-
dence is described by

C()(Sl,...,SM):Sl*Sz*...*SM.

A unique copula can be specified by combining a smoothing device due to Ferguson
with the Rosenblatt transform, cf. Riischendorf (2009).
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In order to design multiple measures of dependence, a reference copula Cg is
chosen, typically, Cgx = Cy. The difference between the true and the reference
copula is assessed by means of some “loss function” L. The resulting quantity is
condensed into a real-valued measure by means of averaging. Subsequently, it is
normed by a constant. That way we arrive at measures

y(F) = y(CFg) = const * / L(Cg — Cgr)du.

[0.1]™

Sometimes, a copula different from Cj is used for averaging. Examples include
the following indices, cf. Schmid et al. (2010)

¢ Signed measures with Cr = Cj: Spearman, Fechner-Kendall,
¢ Unsigned measures with Cx = Cy: Hoeffding, Schweizer-Wolff,
e Measures with Cr = %(C+ + C_): Gini-Cograduation, Spearman’s Footrule.

The first two groups of indices suffer from the fact that Co—on the average—is
“no longer the midpoint” of C4 and C_ for M > 2 but is “wandering” towards the
lower bound, cf. Wolff (1980). This makes it hard to give a meaningful interpretation
to indices of the first and second categories. The reference “copula” chosen for the
third category has no intuitive appeal and is but a numerical quantity.

In the context of factor selection, we are primarily interested in detecting high
correlation not just the deviation from the independence case. Taking additionally
into account the midpoint problem, it becomes natural to choose C as a reference.
This leads to a new class of indices: First, we define a preliminary index

8(F) = car / (Co(w) — Cr(u)du € [0. 1],

[0.1]M

=cu* /(C+(F1(X1), ces Fyr(xar)) — F(xr, oo xm)) Fi(dxa) ... Fu(dxu),

RM

where ¢y is norming constant ensuring §(C-) = 1,

1
cum=M+1)/(1- m).

Note, that
§(Cr) =1 cu / (Cr(u) — C_)du,
[0.1]M

i.e., we could have defined § equivalently with the “pseudo”—copula C_.
In order to create a measure y which can be interpreted in the usual way, i.e.

y(Cy) =1,y(C-) = —1,y(Co) =0,
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we employ suitable transformations. For that purpose, we locate the value of
independence: For Cr = Cy we get

1

vy = 8(Co) = CM(M—_'_1 ~ 5

).
Now, we choose any ¢g» : [0,1] — [—1, 1] that is strictly antitonic, concave and
continuous and moreover satisfies the norming conditions

gu(0) = 1,gu(vm) = 0,gm (1) = —1.

Define
Y(F) = qu(§(F)).

Based on the quantity y(F) we now derive similarity measures for blocks of
factors (allowing for different block sizes). Let .# and _# be disjoint sets of
factors. The pertaining copulas are denoted by Cr(-|.#), Cr(-|_#), respectively.
The argument underlying the FRECHET bounds and the monotonicity of y provides
us with the inequality:

Y(CrCIA)+Cr(] 2)=1)T) = y(Cr(|FU_2)) < ymin(Cr (7). Cr(] 7))

The bounds, again, correspond to cases where .# completely determines _# or vice
versa. The inequality expresses the fact that enlarging a set of factors corresponds
to a weakening of the inner dependence among its elements.

Motivated by that inequality, we put

Y(Cr(|2) + Cr(] ) —DT) y(Cr(|l7 U 7))
Y(Cr([7U 7)) "y (min(Cr (7). Cr (] 2)))

(S, #) = max( )

Of course, 1 —a(.#, #) is a measure of dissimilarity—which are typically used in
agglomerative clustering. Such a procedure based on « is meant to detect factor sets,
comprising statistical quasi doubles. To complete our thinning procedure we have
to select from each cluster one or a few representatives that are highly predictive
with suspect to a target variable. This can be achieved by means of «, where now
# corresponds to the target variable and ¢ to a set of predictors. Alternatively,
one can make use of a generalized version of the FECHNER-KENDALL correlation
coefficient (to be dealt with in a forthcoming paper).

Up to now all factors were assumed to be at least ordinal. In order to include
nominal factors into the analysis, there are essentially two alternatives:

* All factors are discretized and a normed version of the y? statistic is employed.
The obvious drawback of that device is the enormous number of cells and the
sparsity of the corresponding frequency tables. Moreover, ordinal variables are
not dealt with in a proper way.
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* Enumerate the levels of each nominal factor in an arbitrary way and treat them as
ordinal variates. Proceed as before, i.e. compute y, depending on the class labels.
Repeat that device with any permutation of the class labels, separately for each
nominal factor. Let y be the maximum of all those values.

The empirical analysis is based on an M -dimensional i.i.d. sample with parent
df F, emp. df Fy and empirical copula Cy. The empirical measure of dependence
is labeled py = y(ﬁ ~). The question of consistency of Py and the distributional
convergence of the error terms are settled by the following two assertions:

* Strong Consistency: .
v = y(Fy)Fa.s.,

¢ Central Limit Theorem:

VN@Gy — y(F)) — N(0, %))
> = 0*(F) - ¢*(8(CF)),

where, in principle, 02(F) can be worked out by integration. As it is unknown in
practice, it has to be estimated as well.

The first statement follows from the Glivenko-Cantelli theorem and the SLLN. The
second one is based on a functional limit theorem, cf. Riischendorf (1976).

M
VN(Cy(w) = Cr() —> Be@) =Y DuCr(u)BE" ().

m=1

B¢ is a tied down Brownian sheet with intensity C—i.e. the multivariate version
of a tied down Brownian motion. The partial derivatives D,,Cr are assumed to
be continuous. Assuming furthermore that g, is differentiable at §(Cr), the result
follows from CRAMERS theorem (A-method).

In order to work out the limiting distribution of &y, we shall have to determine
the limiting normal distribution of the vectors of empirical quantities involved in its
definition.

4 Conclusion

We have given an introduction to the approaches for factor selection in data mining.
In Sect. 2, we have introduced a process model for factor selection that facilitates
(semi-) automation and structures the task at hand. In Sect.3 we introduced a
measure of dependence y that can handle both metric and ordinal factors. This
measure only partially fills the void of scale-independent measures since nominal
factors remain a problem.
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Concerning the empirical analysis, the next thing to do is to apply the process
model—including the similarity measure «—to real life data provided by an insur-
ance company. We refrained from testing the approach on the basis of synthetic data
as so many arbitrary specifications would have been required that a representative
evaluation as well as an assessment of the simulation result would have been
rendered impossible.

With regards to the tools, future work will include

* Studying variants of y by evaluating different choices of transformations ¢»; and

* The effect of squared loss,

* The search for PRE measures applicable to metric variables beyond the classical
R?%-measure based on linear models,

* A treatment of multiple dependencies that allows for nominal variables as well.

As for the foundation of the empirical analysis, it would be desirable to have a
basic limit theorem that does without the technical assumption of continuous partial
derivatives. Such a variant requires a different topological setting and a more direct
method of proof.
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Intrablocks Correspondence Analysis

Campo Elias Pardo and Jorge Eduardo Ortiz

Abstract We propose a new method to describe contingency tables with double
partition structures in columns and rows. Furthermore, we propose new superim-
posed representations, based on the introduction of variable dilations for the partial
clouds associated with the partitions of the columns and the rows. We illustrate our
contributions with the analysis of some mortality data in Spanish regions.

1 Introduction

Many applications lead to build up contingency tables (CT) with double partition
structures in columns and rows as showed in Fig.1. To deal with this kind
of tables, Cazes et al. (1988) developed the Internal Correspondence Analysis
(ICA). We propose an alternative analysis, named Intrablocks Correspondence
Analysis (IBCA), as the Correspondence Analysis (CA) of a CT with respect to
its Intrablocks Independence Model, using the methodology proposed by Escofier
(1984). Furthermore, we introduce variable dilations to the partial points in the
superimposed representations. Some advantages of the new method with respect
to ICA, and of the use of the variable dilations instead of a constant one, are shown
at the end of the paper.
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Global Table F Column Band j : F;
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Fig. 1 The global table F of proportions, partitioned into rows and columns groups

2 Notation

We adopt the notation used by Bécue et al. (2005). Let F be an / x K table of
proportions, i.e., the sum of its elements is equal to 1. The I rows are grouped
in L row bands with, respectively, 11, I»,..., I} rows (Z[LZI I; = 1), and the
K columns are structured in J column bands with, respectively, K, K5, ..., K,
columns (ijl K; = K). This induces a partition of F into L x J subtables,
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named blocks (Fig. 1). The block (/, j) has /; rows and K; columns. A symbol
used to denote the cardinality of a set is also used to denote the set itself.
Let us consider the block F;;. Its margins and totals are shown in Fig. 1. Let
B,; be the block obtained from the independence model associated to F;;. Thus, the
. Aj Al
general term of By; is bg{ = % The L x J blocks B;; conform the matrix model
B, which inherits the same double partition structure of F. Moreover, the two tables
have the same margins and totals.
Let X be the matrix with the same dimensions of F and B and general term x{{{ =
Al
% PCA(X,M, D) is used to denote the Principal Components Analysis of X
i Sk
with metric and weight matrices given by M and D. This is performed by calculating
the eigenvalues and eigenvectors of the matrix X'DXM (See Pages 2004).

3 Intrablocks Correspondence Analysis (IBCA)

CA is a graphical method used to describe the associations between row and column
categories of a CT and can be seen as the description of de differences between the
observed counts and the expected values using the independence model H. The
CA(F), with skeleton showed in the Fig. 1, is the PCA(D;'(F — H)D;!, Dk, D)),

where D; = diag(f!""), Dx = diag(f;') and the general term of H: hi’ = frrl.
In the generalisation of the CA proposed by Escofier (1984), any model is used
instead of H.

IBCA is defined as the CA of F with respect to the Intrablock Independence
Model B. IBCA uses the same metrics and weights of the CA of F and it is
denoted here by CA(F,B). IBCA is equivalent to PCA(X,Dg,Dy), where X =

D;!(F — B)D! with general term as defined in Sect. 2.

3.1 IBCA and Log-Linear Models

In some situations, the contingency table with double partition structure can be
obtained by “flattening” a four way contingency table. Let us consider the four
factors A, B, C, D. The flattening of the table is performed by considering a new
categorical variable in the rows whose levels are defined by crossing the categories
of A and B and doing the same for C and D in the columns.

The intrablocks independence model B is also the estimation of the log-linear
model [ABC] [AC D], which adds the four main effects, the first order interactions
AB, AC, AD, BC, CD and the second order interactions ABC and ACD. Thus,
the CA(F, B) is the analysis of the intrablock interactions BD and the higher order
interactions containing BD (Van der Heijden 1987).



236 C.E. Pardo and J.E. Ortiz
3.2 Comparison of the Partial and Global Structures

IBCA offers a representation of the global structure of the rows and columns on
principal planes in a CA-like way and the rows (the columns) as described separately
by every column band (row band) are projected as illustrative partial points. In that
representation the partial points are amplified by the number of column bands J
(row bands L) (Bécue et al. 2005). We introduce another amplification as shown
below.

Let us associate to each column band matrix j of X as defined in IBCA applied
to F, the cloud N of the rows as described by only the columns of Xs;. The

coordinates of the N IJ points in RX with variable dilation are:

Xej=| 0 0] 5% | 0

The centroid of the cloud N, ({,i ) with J partial points, each one with weight £/ is
the global point x; ;). The projections have the same property. The constant dilation
by J, used in previous work, is a particular case of our proposal if we take f/ = %
for all j. With the variable dilations, partial points belonging to low weight bands
are highlighted and the more weighted partial points are closer to their mean points.

The superimposed representations of the partial and global column clouds are

obtained in a symmetric way.

4 Comparison Between IBCA and ICA

ICA is the CA(F, C). The model C takes into account the principal effects: total,
row bands and column bands, in the context of linear models. The model B of
IBCA takes into account the principal effects and the interactions BD, as a log-
linear model.

In both methods, the cloud of the rows N; are divided in L subclouds Ny, each
one with centroid in the origin (weights: £,/ f!",i € I)); and the cloud of the
columns Nk are divided in J subclouds Ng T each one with centroid in the origin
(weights: £/ / [k € K}).

The IBCA superimposed representations have an important advantage with
respect to those of the ICA: in the IBCA, if all the values of a row i corresponding to
ablock Fy; are zero, the associated partial point j is located at the origin. In the ICA
representations this is not always true. The same situation may occur when there is
a column of zeros within a block Fy;.
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5 Example: Mortality in Spain

Eurostat (2008) reports the crude mortality rates, by 100,000 inhabitants, classified
in 65 causes of death, sex and 5-years age ranges and aggregated in three consecutive
years. The comparison between regional mortalities is made using standardised
mortality rates, i.e. the weighted average with the reference population as defined
in European-Communities (2009). In this work, the standardised rates for two age
ranges: 35-64 (premature mortality) and 65 and over (non premature mortality)
were computed using the crude mortality rates averaged for three consecutive years,
i.e. 1994, 1995 and 1996 for 1995, and 2004, 2005 and 2006 for 2005.

From the standardised rates we build up the table shown in Fig.2, consisting
of eight blocks, each one crossing the 17 autonomous regions of Spain with the
causes of death responsible for at least 2 % of the sex x age groups in one of
the 2 years. To help the interpretation of the factorial planes we include three
development indicators of the autonomous regions: GDP per capita, illiteracy rate
and unemployment rate, obtained from online datasets of INE of Spain (INE-Espafia
2010).

5.1 Global Representation Using the IBCA

The IBCA provides a common framework for comparing, in the row space the
mortalities of the communities in the 2 years, and in the column space the causes of
death in the four sex x age groups.

The plot of eigenvalues suggests keeping the first three axes representing 62.7 %
of the total inertia. The weights of the column bands associated to non premature
male (61.4 %) and female (30.1 %) mortalities are higher than the weights of the
column bands associated to premature mortalities (male 6.4 %, female 2.2 %). The
contributions of subclouds to the inertia have similar behaviour (non premature:
males 54.3 %, females: 32.5 %; premature: males 9.0 %, females 4.2 %). The
weights and the inertias of the two subclouds of the row profiles are balanced.

The first factorial axis highlights the separation of Canary Islands from the rest of
the communities (the contributions to the inertia are 30.8 % for 1995 and 35.6 % for
2005). This occurs mainly because the two profiles of the Canary Islands mortality
rates are higher than the average mortality due to diabetes and cardiac ischemia
in elderly men and women (the contributions to inertia are: f2Diabetes 17.0 %,
m2Diabetes 16.0 %, m2IscHeart 13.9 % and f2IscHeart 11.7 %). In contrast, male
and female mortalities for malignant neoplasm of stomach in adults are lower than
the mean mortalities for these causes. The same occurs in the mortality due to
transportation accidents, especially in adult women.

The factorial plane 2-3 (Fig.3) is a good summary of mortality profiles in
the other regions. On the second (horizontal) axis, the communities are sorted
by their degree of development, where more developed regions lie on the left
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male mortality(m) female mortality (f)
premature non premature premature no premature
(16 causes) (16 causes) (14 causes) (9 causes)

1995
(17 regions)

2005
(17 regions)

Fig. 2 CT scheme (year X region) X cause (sex X age): juxtaposition of 8 tables. In this table:
L=21=34,J =4and K =55;1) = 17and I, = 17; K; = 16, K, = 16, K3 = 14 and
K4 = 9 (See Fig. 1)

(correlations: GDP per capita —0.289, illiteracy rate 0.327 and unemployment
0.502). Thus, mortality profiles are partially explained by the degree of development
of the regions. Death causes such as mental and behavioural disorders are associated
with more developed communities, and transportation accidents and cerebrovascu-
lar diseases with less developed regions.

5.2 Superimposed Representations

Autonomous communities have two points in the global representations (1995
and 2005) showing the stability or the instability of their mortality profiles. The
differences due to sex x age groups can be appreciated in the superimposed
representations. Figure 4, is an extract of the superimposed representation of some
communities. In this figure, it can be seen, for example that, from a global point
of view, the profiles of Navarre are almost identical. However, from the point of
view of each of the sex x age groups, they are a bit different. Madrid shows
differences in both global and partial profiles between the 2 years. The superimposed
representations allow the comparison between profiles of different regions from the
point of view of each sex x age group. For example, male premature mortalities
under Murcia and Asturias are very similar in 1995. Non premature mortalities have
more weights than premature ones; and consequently, these partial points are closer
to their global ones.

The superimposed representations of columns allow to see the stability or
instability of the mortality cause profiles and the comparison between them, from
partial (each year) and global (both years) points of view. The reader can use the
package pamctdp to obtain some superimposed representations of the causes of
death and other outputs.
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Fig. 3 Factorial Plane 2-3 of the IBCA for Spain mortality. (a) Autonomous Communities. The
arrows go from 1995 (1) to 2005 (2) (b) Causes: m1: premature male, m2: non premature male, f1:

premature female, f2: non prematura female
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Fig. 4 Extract of the superimposed representation of the Regions in Factorial Plane 2-3 of the
IBCA. Each region has two global points: 1=1995, 2=2005. The global point is the weighted
mean of its four partial ones: mp, mnp, fp, fnp

6 Conclusions

The model B is related with log-linear models (Sect. 3.1), while the model associ-
ated to ICA is related to linear models, less used in the analysis of CT.

In the superimposed representations, the ICBA proposed in this paper has an
important advantage over the ICA: the partial points corresponding to columns or
rows of zeros within a block are located at the origin (Sect. 3.2).

The variable dilations are preferable than the constant one because the partial
points belonging to low weight bands are highlighted and the partial points with
higher weights tend to lie closer to their global ones (Sect. 3.2).
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Determining the Similarity Between US Cities
Using a Gravity Model for Search Engine
Query Data

Paul Hofmarcher, Bettina Griin, Kurt Hornik, and Patrick Mair

Abstract In this paper we use the gravity model to estimate the similarity of US
cities based on data provided by Google Trends (GT). GT allows to look up search
terms and to obtain ranked lists of US cities according to the relative frequencies
of requests for each term. The occurences of the US cities on these ranked lists are
used to determine the similarities with the gravity model. As search terms for GT
serve dictionaries derived from the General Inquirer (GI), containing the categories
Economy and Politics/Legal. The estimated similarity scores are visualized with
multidimensional scaling (MDS).

1 Introduction

Undoubtedly, the internet has ushered a new era and changed our lives. According to
http://www.internetworldstats.com/ 245,000,000 people are using the World Wide
Web in the United States (US) of America. These are approximately 78.2 % of
the population. Within the internet usage search engines play a fundamental role
when it comes to managing and searching information in the web. One of the most
prominent web search engines is Google with a global market share of 82.8 % in
May 2011 (see http://en.wikipedia.org/wiki/Web_search_engine).

In this work we aim at eliciting the similarity of US cities based on millions of
queries performed with Google. Data are available through Google Trends (GT; see
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http://www.google.com/trends; Google 2010). GT allows to look up how often a
certain search term was queried and to determine a relative ranking of the regions
and cities where internet users have requested this term using Google. Getting
insight into the interests of cities and their differences based on the search engine
entries is not only per se an interesting question, but may be useful for e.g., tourism
analysis, political analysis, or discussing economic questions.

Previous uses of GT data include the analysis of economic questions, like
forecasting unemployment or economic activity (see Askitas and Zimmermann
2009; Choi and Yi 2009). Ginsberg et al. (2009) use search engine query data
to detect influenza epidemics. We illustrate the value of such data, by using GT
data to investigate the similarities between US cities with respect to interest in
economical and political/legal issues. Similarities between US cities are estimated
based on the frequency of occurrence on the ranked lists provided by GT for
search terms for two categories: Economic and Political/Legal. The dictionaries for
these two categories are taken from the General Inquirer (GI) (see http://www.wjh.
harvard.edu/~inquirer/; Stone et al. 1966; Wilson et al. 2005). To get a measure of
similarity which allows for easy and intuitive interpretation we perform a gravity
model (Haynes and Fotheringham 1988). Multidimensional scaling (MDS) is used
to visualize the estimated similarities.

This article is organized as follows: In the next section we will give an
overview of the data used. Section 3 describes the methods used in our application.
Section 4 presents the results. Finally, Sect.5 concludes and discusses further
possible research on this topic.

2 Data

Google Trends (GT)

GT allows the user to investigate how often the search term of interest was queried
during a given time period. It also has the ability to split up the data, with special
attention given to the breakdown of information by countries and cities.

All results from GT are normalized, which means that Google divides the
data sets by a common variable to cancel out the variable’s effect on the data.
Normalization of the data also allows to compare ranking of cities, because
otherwise densely populated areas would be at the top for many search queries just
because there are a lot more searches in absolute terms in densely populated areas
(Google 2010).

To rank cities, GT calculates the ratio of searches of the considered term coming
from a city (based on IP address information) divided by total searches from the
same city. Afterwards, these ratios are scaled in a way that the top city has score 1.
Usually GT shows the “Top 10” ranked cities. The terms’ ranks used in this work
are based on their search traffic between January 2004 and November 2010.
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General Inquirer Lexica

Economic and political/legal search terms of interest are taken from the General
Inquirer (GI; see Stone et al. 1966; Wilson et al. 2005) using the tag categories
“Economy”, “Politics” and “Legal”. GI is a collection of the following sources: the
Harvard I'V-4 dictionary, the Lasswell value dictionary, several categories recently
constructed, and “marker” categories primarily developed as a resource for disam-
biguation. The GI tag categories reflect the language of a particular “institution”.
In more detail, we make use of the Econ, Polit and Legal subcategories. Econ
contains 455 words of an economic, commercial, industrial, or business orientation,
including roles, collectivities, acts, abstract ideas, and symbols, including references
to money. It includes names of common commodities in business. Polit includes 241
words having a clear political character, including political roles, collectivities, acts,
ideas, ideologies, and symbols. Legal contains 173 words relating to legal, judicial,
or police matters.

Further Information

Due to the smaller sample sizes of the politics and the legal categories, we merge
the latter two to one category “Politics & Legal”. Not all words contained in our
categories “Economy” and “Politics & Legal” were available on GT. Some words
were not available, e.g, due to a too small number of search entries containing them.
In total we collected results for 438 words for the economic category and 407 for the
political/legal category. The intersection of these two categories contains 30 words.
These are words like capital, welfare, exchange, equity, but also unexpected terms
like auditor, run, blue (chip).

The set of cities considered is restricted to the 20 largest US cities plus
Washington DC for the economic terms and to the US state capitals plus Washington
DC for the political/legal terms.

3 Methodology

A Gravity Model to Measure Similarity

There is a wide spectrum of research areas using the gravity model, like economics,
social sciences, transportation sciences, and consumer behavior. As a comprehen-
sive, general reference for gravity models we refer to Haynes and Fotheringham
(1988).

In the traditional gravity model, the interaction I between two entities (cities) is
assumed to be proportional to the masses (i.e., the occurrences of a city in the ranks
of the search terms) and the distance between these two entities. Formally, for cities
i, j we get,
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PP
=,
dii

Iy = ey
where P; is the appearance frequency of city i in the search queries and d;; denotes
a distance measure between i and j. I;; stands for the interaction between i and ;.
The interaction [; is measured by the number of co-occurrences of cities i and j
in the search queries. In this work we want to get a “gravity—distance” between the
cities, i.e., we resolve Eq. 1 to

2

A “gravity—distance”! is used for measuring the similarity of cities instead of an

Euclidean or Manhattan norm because of its easy and intuitive interpretation.’
Firstly, this distance is decreasing in interaction, i.e., the number of common
occurrences of cities i and j. Thus if both cities i and j appear in the ranks of
a given search term, [;; increases by 1. Secondly, Eq. 2 is weighted by the frequency
of the appearance of city i in all considered search terms. Intuitively, a high
probability of appearing in a search term increases the distance between two objects
if the interaction I does not equally increase. The main advantage of the gravity
model compared to any other distance measure is that it captures a balance between
the general search interest P; and the “common interests” between the cities [;;.
The gravity model is widely used in economics and the social sciences to model
the “trade” between countries (see http://en.wikipedia.org/wiki/Gravity model_of_
trade).

Multidimensional Scaling

In order to visualize our distance matrix d; i,j = 1,...,n, we make use
of multidimensional scaling (MDS; Borg and Groenen 2005), a technique for
projecting our high dimensional distance matrix dj; to a lower dimensional space
(here 2-dim), in which the results can be visualized in an appropriate way. Formally
one aims at minimizing

Sp(ts....2v) = \/Z wij(di — llzi — z;1)? 3)
i#]

'Note that the gravity distance is not a distance measure in the strict mathematical sense, since it
neither fulfills d(x, x) = 0 nor the triangle inequality.

2We also performed our estimation for the Euclidean norm which gave roughly the same results.


http://en.wikipedia.org/wiki/Gravity_model_of_trade
http://en.wikipedia.org/wiki/Gravity_model_of_trade

Determining the Similarity Between US Cities Using Search Engine Query Data 247

with lower dimensional coordinates (2-dim) z; for city i. The weights w;; are set to
1 if dj; is known and zero otherwise. A detailed description of MDS can be found in
Borg and Groenen (2005). The advantage of this approach is that we can look at the
MBDS plot and immediately see how closely related the cities are. MDS is performed
using the R extension package smacof (de Leeuw and Mair 2009).

4 Results

Table 1 summarizes the appearance frequencies of the cities for the different dictio-
naries. Washington DC ranks in both categories on the first position, which might
not be unexpected for the political terms category. Seventy percent appearance
frequency for political/legal terms and 52.1 % for economic terms paint a clear
picture. A possible interpretation may be found in the unique economic constitution
of Washington DC. The federal government accounted for about 27 % of the jobs in
Washington DC (see http://en.wikipedia.org/wiki/Washington, D.C). Washington
DC has an economy with a high percentage of professional and business service
jobs. Such regions therefore seem to be hot spots for search queries containing the
terms in the considered dictionaries.

For political terms Atlanta, the capital of Georgia, appears for every third term,
followed by Boston, Massachusetts, with 26 %. For the economic key terms, next
to Washington DC we find New York (the largest US city) and Chicago (3rd largest
city) on the subsequent ranks. Both have an appearance frequency above 40 %. Then
there is a gap of about 10 % and we find the west coast cities Los Angeles (2nd
largest US city) and San Francisco (rank 13 for total population). Out of the 20
largest cities plus Washington DC three do not appear at all in our GT ranks for
economic terms: Memphis, El Paso, and San Jose. These are mainly cities in the
south of the US. In total we find for both dictionaries a vague pattern of dominance
by cities from the geographic north-east.

Political/Legal Terms

Figure 1 illustrates the similarity of the US state capitals plus Washington DC based
on political/legal keywords. In total 23 state capitals and Washington DC appear
within the data. Thus under half of the US state capitals appear within the GT
ranks when entering political/legal key terms. Cities with a very small appearance
frequency can be found on the left of Fig. 1. These are state capitals like Olympia
(state: Washington) and Salem (Oregon). Tallahassee (Florida) and Little Rock
(Arkansas) appear only in the ranks of the term democrat and are thus projected
to the same coordinates.> The similarity of the most frequently occurring cities

3In order to get the figures readable, identical projections are slightly shifted.
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Table 1 Appearance frequency of the cities for economic and political/
legal dictionaries

Political/legal terms Economic terms

City Frequency in % City Frequency in %
Washington ~ 70.5 Washington 52.1

Atlanta 35.9 New York 42.0

Boston 26.0 Chicago 40.9

Phoenix 21.1 Los Angeles 29.5

Denver 12.0 San Francisco ~ 25.8

BOiseOkIahoma City
Salem Salt Lake City
0.05 a ,ﬁ%gny Columbus
Sacramegto_ .
Plienis,
Tallahassee Austin
0.00 Tl asse
Washingj%lﬁm?%aleigh
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-0.05 + Richmond
Baton Rouge
: : Honolulu : HEFM e : :
-0.10 -0.05 0.00 0.05 0.10

Fig. 1 MDS for the political/legal keywords. Font sizes and gray shades are intended to indicate
the “grouping” of cities

Boston (Massachusetts), Atlanta (Georgia) and Washington DC can be found in a
cluster at the bottom right. Based on the appearance in the GT ranks the gravity
model and MDS estimate a small distance of Richmond (Virginia) and Raleigh
(North Carolina) to those cities. Again we observe a geographic proximity and an
average appearance rate of 109 terms (out of 438) is observed within this group. At
least three of those cities appear in the ranks of congress, conference, presidential,
voter, governor, administration. Next we observe within a “group” the state capitals
of California (Sacramento), New York (Albany), Utah (Salt Lake City), Texas
(Austin), Arizona (Phoenix), Colorado (Denver), Wisconsin (Madison). Common
terms within this group are legislative, legislator, capitol.

Economic Terms

For the economic search terms, Fig.2 displays the similarity of 18 out of the 20
largest US cities plus Washington DC. On the right hand side of Fig. 2 we find those
cities which appear very rarely within the GT ranks of economic terms. Within these
cities we find, e.g., MotorCity Detroit — which ranks at the 11th most populous city
in the US. Detroit appears only within the GT ranks for the term wealthy. Next to
those cities we find a “cluster” containing the cities Phoenix, San Diego, Austin and
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Fig. 2 MDS for the economic keywords

Houston. Due to the geographic location of these cities we call it the south-cluster.
All 4 cities appear within the ranks of the terms like discount and ranch. Three out
of four cities additionally appear within the ranks of debt, enrollment, hanger, seller
and technician. Finally, we find again the group of the most prominent US cities,
Washington, Chicago, New York, Los Angeles, San Francisco, but also Dallas and
Philadelphia. This is the most powerful cluster for the economic terms. Those 7
cities have in common that all appear within the ranks of endow and inherit. 6 out
of 7 cities appear in the ranks of coverage, default, gross and rich.

5 Conclusions and Discussion

The possibility to get data from the web which account for the “world’s” interest
in the entered search terms offers a wide range of applications. To the best of our
knowledge this work is the first which aims at determining the similarity of cities
based on the internet search terms entered by people living there. In total we find a
pattern which nourishes the hypothesis that GT ranks are dominated by cities in the
east and north. For both categories (economic, political/legal) cities from the north
and east dominate in terms of appearance frequency. Additionally we find for the
economic terms that high similarity for cities in the south (Houston, Austin, San
Diego, Phoenix) is estimated.

The possibility to get the data from GT allows to model for arbitrary keywords
of interest the interaction between cities and regions. Following the lines of Michel
et al. (2011), introducing the concept of Culturomics, it would be of interest to
extend our approach to larger data sets and estimate a regional similarity of used
words or estimate how certain words spread over regions. Our results set the scene
for further research, explaining the patterns in greater detail and, e.g., performing
regressions methods which allow for a deeper understanding of the interaction
between web search and socio-economic factors.
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An Efficient Algorithm for the Detection
and Classification of Horizontal Gene Transfer
Events and Identification of Mosaic Genes

Alix Boc, Pierre Legendre, and Vladimir Makarenkov

Abstract In this article we present a new algorithm for detecting partial and com-
plete horizontal gene transfer (HGT) events which may give rise to the formation
of mosaic genes. The algorithm uses a sliding window procedure that analyses
sequence fragments along a given multiple sequence alignment (MSA). The size
of the sliding window changes during the scanning process to better identify the
blocks of transferred sequences. A bootstrap validation procedure incorporated in
the algorithm is used to assess the bootstrap support of each predicted partial
or complete HGT. The proposed technique can be also used to refine the results
obtained by any traditional algorithm for inferring complete HGTs, and thus to
classify the detected gene transfers as partial or complete. The new algorithm will
be applied to study the evolution of the gene rpli2e as well as the evolution of a
complete set of 53 archaeal MSA (i.e., 53 different ribosomal proteins) originally
considered in Matte-Tailliez et al. (Mol Biol Evol 19:631-639, 2002).

1 Introduction

Bacteria and viruses adapt to changing environmental conditions via horizontal
gene transfer (HGT) and intragenic recombination leading to the formation of
mosaic genes, which are composed of alternating sequence parts belonging either to
the original host gene or stemming from the integrated donor sequence (Doolittle
1999; Zhaxybayeva et al. 2004). An accurate identification and classification of
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mosaic genes as well as the detection of the related gene transfers are among the
most important challenges posed by modern computational biology (Koonin 2003;
Zheng et al. 2004). Partial HGT model assumes that any part of a gene can be
transferred among the organisms under study, whereas traditional (complete) HGT
model assumes that only an entire gene, or a group of complete genes, can be
transferred (Makarenkov et al. 2006a,b). Mosaic genes can pose several risks to
humans including cancer onset or formation of antibiotic-resistant genes spreading
among pathogenic bacteria (Nakhleh et al. 2005). The term “mosaic” stems from the
pattern of interspersed blocks of sequences having different evolutionary histories,
but being combined in the resulting allele subsequent to recombination events. The
recombined segments can derive from other strains in the same species or from
other more distant bacterial or viral relatives (Gogarten et al. 2002; Hollingshead
et al. 2000). Mosaic genes are constantly generated in populations of transformable
organisms, and probably in all genes (Maiden 1998).

Many methods have been proposed to address the problem of the identification
and validation of complete HGT events (e.g., Boc et al. 2010, Hallett and Lagergren
2001, and Nakhleh et al. 2005), but only a few methods treat the much more
challenging problem of inferring partial HGTs and predicting the origins of mosaic
genes (Denamur et al. 2000; Makarenkov et al. 2006b). We have recently proposed
(Boc and Makarenkov 2011) a new method allowing for detection and statistical
validation of partial HGT events using a sliding window approach.

In this article we describe an extension of the algorithm presented in Boc and
Makarenkov (2011), considering sliding windows of variable size. We will show
how the new algorithm can be used: (1) to estimate the robustness of the obtained
HGT events; (2) to classify the obtained transfers as partial or complete; (3) to
classify the species under study as potential donors or receivers of genetic material.

2 Algorithm

Here we present the new algorithm for inferring partial horizontal gene transfers
using a sliding window of adjustable size. The idea of the method is to provide the
most probable partial HGT scenario characterizing the evolution of the given gene. It
takes as input a species phylogenetic tree representing the traditional evolution of the
group of species under study and a multiple sequence alignment (MSA) representing
the evolution of the gene of interest for the same group of species. A sliding window
procedure, with a variable window size, is carried out to scan the fragments of the
given MSA (see Fig. 1). In the algorithm Boc and Makarenkov (2011), the sliding
window size was constant, thus preventing the method from detecting accurately
the exact lengths of the transferred sequences (i.e. only an approximate length of
the transferred sequence blocks was provided). In this study, the most appropriate
size of the sliding window is selected with respect to the significance of the gene
transfers inferred for different overlapping MSA intervals. The HGT significance is
computed as the average HGT bootstrap support (Boc et al. 2010) obtained for the
corresponding fixed MSA interval.
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Fig. 1 New algorithm uses a sliding window of variable size. If the transfers obtained for the
original window position [i; i + w — 1] are significant, we refine the obtained results by searching
in all the intervals of types [i;i +w—1—¢ 4+ k]and [i;i +w—141—k], wherek =0, ...,¢
and ¢ is a fixed window contraction/extension parameter

The algorithm includes the three following main steps:

Step 1. Let X be a set of species and / is the length of the given MSA. We
first define the initial sliding window size w (w = j —i + 1, see Fig. 1) and
the window progress step s. The species tree, denoted 7', characterizing the
evolution of the species in X can be either inferred from the available taxonomic
or morphological data, or can be given. T must be rooted to take into account the
evolutionary time-constraints that should be satisfied when inferring HGTs (Boc
et al. 2010; Hallett and Lagergren 2001).

Step 2. For i varying from 1 to |l — w + 1|, we first infer (e.g., using PhyML,
Guindon and Gascuel (2003)) a partial gene tree 7’ from the subsequences
located within the interval [7; i +w—1] of the given MSA. If the average bootstrap
support of the edges of T constructed for this interval is significant (i.e. >60 %
in this study), then we apply a standard HGT detection algorithm (e.g., Boc et al.
2010) using as input species phylogenetic tree 7' and partial gene tree 7. If the
transfers obtained for this interval are significant, then we perform the algorithm
for all the intervals of types [i;i +w—1—t+k]and [i;i + w— 1+t — k], where
k =0,...,¢ (seeFig. 1) and ¢ is a fixed window contraction/extension parameter
(in our study the value of ¢ equal to w/2 was used). If for some of these intervals
the average HGT significance is greater than or equal to the HGT significance of
the original interval [i ; i +w— 1], then we adjust the sliding window size w to the
length of the interval providing the greatest significance, which may be typical
for the dataset being analyzed. If the transfers corresponding to the latter interval
have an average bootstrap score greater than a pre-defined threshold (e.g. when
the average HGT bootstrap score of the interval is >50 %), we add them to the
list of predicted partial HGT events and advance along the given MSA with the
progress step s. The bootstrapping procedure for HGT is presented in Boc et al.
(2010).
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Step 3. Using the established list of all predicted significant partial HGT events,
we identify all overlapping intervals giving rise to the identical partial transfers
(i.e., the same donor and recipient and the same direction) and re-execute the
algorithm separately for all overlapping intervals (considering their total length
in each case). If the same partial significant transfers are found again when
concatenating these overlapped intervals, we assess their bootstrap support and,
depending on the obtained support, include them in the final solution or discard
them. If some significant transfers are found for the intervals whose length is
greater than 90 % the total MSA length, those transfers are declared complete.

The time complexity of the described algorithm is as follows:

O(r x ( x (C(Phylo_Inf) + C(HGT- Inf)))). )

tx (I —w)
s
where C (Phylo_ Inf) is the time complexity of the tree inferring method used to infer
partial gene phylogenetic trees, C(HGT_Inf) is the time complexity of the HGT
detection method used to infer complete transfers and r is the number of replicates
in the HGT bootstrapping. The simulations carried out with the new algorithm
(due the lack of space, the simulation results are not presented here) showed that
it outperformed the algorithm described in Boc and Makarenkov (2011) in terms of
HGT prediction accuracy, but was slower than the latter algorithm, especially in the

situations when large values of the ¢ parameter were considered.

3 Application Example

We first applied the new algorithm to analyze the evolution of the gene rpli2e for
the group of 14 organisms of Archaea originally considered in Matte-Tailliez et al.
(2002). The latter authors discussed the problems encountered when reconstructing
some parts of the species phylogeny for these organisms and indicated the evidence
of HGT events influencing the evolution of the gene rpll2e (MSA size for this gene
was 89 sites). In Boc et al. (2010), we examined this dataset using an algorithm for
predicting complete HGTs and found five complete transfers that were necessary
to reconcile the reconstructed species and gene rpll2e phylogenetic trees (see
Fig.2a). These results confirm the hypothesis formulated in Matte-Tailliez et al.
(2002). For instance, HGT 1 between the cluster (Halobacterium sp., Haloarcula
mar.) and Methanobacterium therm. as well as HGTs 4 and 5 between the clade
of Crenarchaeota and the organisms Thermoplasma ac. and Ferroplasma ac. have
been characterized in Matte-Tailliez et al. (2002) as the most likely HGT events
occurred during the evolution of this group of species. In this study, we first
applied the new algorithm allowing for prediction of partial and complete HGT
event to confirm or discard complete horizontal gene transfers presented in Fig. 2a,
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Fig. 2 Species tree (Matte-Tailliez et al. 2002, Fig. 1a) encompassing: (a) five complete horizontal
gene transfers, found by the algorithm described in Boc et al. (2010), indicated by arrows; numbers
on HGTs indicate their order of inference; HGT bootstrap scores are indicated near each HGT
arrow; and (b) seven partial HGTs detected by the new algorithm; the identical transfers have
the same numbers in the positions A and B of the figure; the interval for which the transfer was
detected and the corresponding bootstrap score are indicated near each HGT arrow
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and thus to classify the detected HGT as partial or complete. We used an original
window size w of 30 sites (i.e. 30 amino acids), a step size s of 5 sites, the value of
t = w/2 and a minimum acceptable HGT bootstrap value of 50 %; 100 replicates
were used in the HGT bootstrapping. The new algorithm found seven partial HGTs
represented in Fig. 2b. The identical transfers in Fig. 2a, b have the same numbers.

The original lengths of the transfers 1, 3 and 7 (see Fig. 2b) have been adjusted
(with the values 44, 45 and +2 sites, respectively) to find the interval length
providing the best average significance rate, the transfers 4 and 9 have been detected
on two overlapping original intervals, and the transfers 6 and 8 have been detected
using the initial window size. In this study, we applied the partial HGT detection
algorithm with the new dynamic windows size feature to bring to light the possibility
of creation of mosaic gene during the HGT events described above. The proposed
technique for inferring partial HGTs allowed us to refine the results of the algorithm
predicting complete transfers (Boc et al. 2010). Thus, the transfers found by both
algorithms (i.e. HGTs 1, 3 and 4) can be reclassified as partial. They are located
approximately on the same interval of the original MSA. The complete HGTs
2 and 5 (Fig. 2a) were discarded by the new algorithm. In addition, four new partial
transfers were found (i.e. HGTs 6, 7, 8 and 9). Thus, we can conclude that no
complete HGT events affected the evolution of the gene rpli2e for the considered
group of 14 species, and that the genes of 6 of them (i.e. Pyrobaculum aer:,
Aeropyrum pern., Methanococcus jan., Methanobacterium therm., Archaeoglobus
fulg. and Thermoplasma acid.) are mosaic.

Second, we applied the presented HGT detection algorithm to examine a
complete dataset of 53 ribosomal archaeal proteins (i.e. 53 different MSAs for
the same group of species were considered; see Matte-Tailliez et al. (2002) for
more details). Our main objective here was to compute complete and partial HGT
statistics and to classify the observed organisms as potential donors or receivers of
genetic material. The same parameter settings as in the previous example were used.
Figure 3 illustrates the 10 most frequent partial (and complete) transfer directions
found for the 53 considered MSAs. The numbers near the HGT arrows indicate the
rate of the most frequent partial HGTs, which is followed by the rate of complete
HGTs. Matte-Taillez and colleagues (Matte-Tailliez et al. 2002) pointed out that
only about 15 % (8 out of 53 genes; the gene rp/12e was a part of these 8 genes) of
the ribosomal genes under study have undergone HGT events during the evolution
of archaeal organisms. The latter authors also suggested that the HGT events were
rather rare for these eight proteins. Our results (see Fig.3) shows, however, that
about 36 % of the genes analyzed in this study can be considered as mosaic genes.
Also, we found that about 7 % of genes were affected by complete gene transfers.
The most frequent partial HGTs were found within the groups of Pyrococcus (HGTs
1, 2 and 5) and Crenarchaeota (HGTs 3 and 4). We can also conclude that partial
gene transfers were about five times more frequent than partial HGT events.
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Fig. 3 Species tree (Matte-Tailliez et al. 2002, Fig. la) with the 10 most frequent HGT events
obtained by the new algorithm when analyzing separately the MSAs of 53 archaeal proteins. The
first value near each HGT arrow indicates the rate of partial HGT detection (p) and the second
value indicates the rate of complete HGT detection (c)

4 Conclusion

In this article we described a new algorithm for inferring partial and complete
horizontal gene transfer events using a sliding window approach in which the size of
the sliding window is adjusted dynamically to fit the nature of the sequences under
study. Such an approach aids to identify and validate mosaic genes with a better
precision. The main advantage of the presented algorithm over the methods used to
detect recombination in sequence data is that it allows one to determine the source
(i.e. putative donor) of the subsequence being incorporated in the host gene. The
discussed algorithm was applied to study the evolution of the gene rpl/2e and that
of a group of 53 ribosomal proteins in order to estimate the pro-portion of mosaic
genes as well as the rates of partial and complete gene transfers characterizing
the considered group of 14 archaeal species. In the future, this algorithm could be
adapted to compute several relevant statistics regarding the functionality of genetic
fragments affected by horizontal gene transfer as well as to estimate the rates of
intraspecies (i.e. transfers between strains of the same species) and interspecies (i.e.
transfers between distinct species) HGT.
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Complexity Selection with Cross-validation
for Lasso and Sparse Partial Least Squares
Using High-Dimensional Data

Anne-Laure Boulesteix, Adrian Richter, and Christoph Bernau

Abstract Sparse regression and classification methods are commonly applied to
high-dimensional data to simultaneously build a prediction rule and select relevant
predictors. The well-known lasso regression and the more recent sparse partial least
squares (SPLS) approach are important examples. In such procedures, the number
of identified relevant predictors typically depends on a complexity parameter that
has to be adequately tuned. Most often, parameter tuning is performed via cross
validation (CV). In the context of lasso penalized logistic regression and SPLS
classification, this paper addresses three important questions related to complexity
selection: (1) Does the number of folds in CV affect the results of the tuning
procedure? (2) Should CV be repeated several times to yield less variable tuning
results?, and (3) Is complexity selection robust against resampling?

1 Background

The most straightforward approach to build a prediction rule based on a large
number of predictors is to first select a subset of “relevant predictors” and then use a
standard classifier such as discriminant analysis or logistic regression. However,
in this two-step approach the subset of predictors selected in the first step may
not be optimal for the second step. Sparse regression methods can be seen as a
solution to this problem because they select predictors and build a prediction rule
simultaneously. Lasso regression (Tibshirani 1996) or its more recent variants
elastic nets (Zou 2005) or SCAD (Fan and Li 2001) select predictors by setting
some of the regression coefficients to zero through the application of an L -penalty.
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The so-called sparse partial least squares (SPLS) approach recently suggested by
Chun and Keles (2010) and generalized to class prediction by Chung and Keles
(2010) embeds an L -penalty into PLS dimension. This results in a sparse prediction
rule in the sense that the PLS components are built as linear combinations of a subset
of predictors instead of using all predictors as in standard PLS.

Sparse regression methods in general and the two examples considered here
in particular involve one or several tuning parameter(s) determining the number
of predictors used to construct the prediction rule. In practice, this parameter is
almost always chosen by internal cross-validation: the prediction error is estimated
for different candidate values of the parameter(s) via cross-validation and the value
yielding the smallest error is selected. However, there are no widely established rules
with respect to the type of cross-validation to be used. Does the number of folds
in CV affect the results of the tuning procedure? Should CV be repeated several
times to yield less variable tuning results? Are variable selection and complexity
selection robust against resampling? In this paper, we address these questions in an
extensive empirical study using five real high-dimensional gene expression data sets
with binary response class. The outcome we consider in this study is the number of
predictors selected for building the prediction rule, not the prediction accuracy. We
perform only one CV-loop — for tuning purposes.

2 Methods

2.1 Lasso Regression

Lasso regression is similar to standard logistic regression except that a penalty of
the form A Zf — 1B/ is added to the optimality criterion to be minimized, where
A is the penalty parameter and B, ..., B, denote the regression coefficients of the
p predictors. This penalty is termed L -penalty in contrast to the more widely used
L, penalty of the form A 37 _, f7.

2.2 Sparse Partial Least Squares (SPLS)

Similarly to standard PLS regression, SPLS constructs a small number ¢ of
orthogonal latent components such that they have maximal covariance with the
response. In standard PLS each latent component # (i = 1,...,¢) is a linear
combination #; = Xw; of all predictors, where w; is usually denoted as weight
vector. Each weight vectorw; (i =1, ..., c) is constructed to maximize the squared
sample covariance of #; with the response: w; = argmax, w XTYYT Xw s.t.:
w!l'w, = 1 and tith =0( =1,...,i —1). Similarly to the L,-penalty in lasso,
Chun and Keles (2010) add a L -penalty term to the objective function. The strength
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of the penalty is determined by a sparsity parameter denoted as 1 € [0, 1) and affects
the number of predictors selected to construct the PLS components. For n = 0
all predictors contribute to the PLS components while the number of predictors
decreases considerably for n — 1. We refer to the original publications and to our
codes for more details.

2.3 Cross-validation for Parameter Tuning

The parameters A (for lasso) and ¢ and 7 (for sparse PLS) are almost always chosen
by cross-validation (CV) in practical data analysis. The basic idea is to split the
available data set D into K approximately equally sized and non—overlapping folds:
D=DyU...UDg where D; N D; = @fori # j.In the first CV iteration the
first learning set £; = Dy U...U Dg_ is used for learning a prediction rule, which
is subsequently applied to the first test set 7} = Dg and evaluated by computing its
error rate. This process is repeated for all K folds. The error rate is then averaged
over K folds. The results can be made more stable by performing CV repeatedly
with different random partitions of the data D and averaging the resulting CV errors.
When used for tuning purposes, CV is applied with different values of the parameter
successively. The parameter value yielding the smallest CV error is then selected.
The number K of folds as well as the number of random partitions (if repeated CV
is performed) are important parameters of the tuning procedure.

3 Empirical Study

3.1 Study Design

The empirical study is based on five microarray gene expression data sets with
different samples sizes n, different (large) numbers of predictors p and a binary class
outcome (e.g. diseased versus healthy). The characteristics of the five data sets are
summarized in Table 1. R codes (http://www.r-project.org) and preprocessed data
sets for reproducing our analyses are available from: www.ibe.med.uni-muenchen.
de/organisation/mitarbeiter/020_professuren/boulesteix/cvcomplexity

Study 1 is designed to assess the variability of the number of selected predictors
across different random CV partitions, the effect of the number of CV folds K
(here K = 3,5, 10, 20) and the effect of repetitions of CV (here 1, 5, 10) on the
number of selected predictors. For each of the five data sets, we perform 2,000
runs of cross-validation successively, i.e. we consider 2,000 different random
partitions. For each of the 2,000 runs, we store the number of selected predictors
corresponding to the selected parameter value. This study is performed for lasso
as implemented in the function cv.glmnet from the R package glmnet and
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Table 1 Data sets used in the empirical study

Disease Size (size of classes 0/1) Number of predictors Reference

Colon cancer n = 47 (22/25) p = 22,283 Ancona et al. (2006)
Sepsis n =70 (16/54) p = 22,283 Tang et al. (2009)
Parkinson n = 105 (55/50) p = 22,283 Scherzer et al. (2007)
Prostate cancer n = 102 (50/52) p = 12,625 Singh et al. (2002)
Breast cancer n = 250 (179/107) p = 22,283 Wang et al. (2005)

for sparse PLS as implemented in the function cv.spls from the R package
spls. The considered candidate values of the parameters are those that are
automatically determined by these functions.

Study 2 is designed to assess the effect of small changes of the data sets on the
number of predictors determined by leave-one-out CV. The number of folds is
thus fixed to K = n, leading to a unique possible partition. In study 2, the
source of variability is now the elimination of a randomly selected subset of
observations. In other words, leave-one-out CV is run on subsamples. The size
of the subsamples is fixed to 0.95n, 0.9n and 0.8n successively.

Study 3 is designed exactly as study 1, except that a preliminary univariate
variable selection is now performed before the analysis. We thus consider
reduced data sets instead of the whole data sets whose dimensions are displayed
in Table 1. Variable selection is performed based on the p-value of the two-
sample t-test, i.e. the p* predictors with smallest p-values are selected, where
p* successively takes the values p* = 100 and p* = 500.

3.2 Results

The results of study 1 suggest that the number of selected predictors highly depends
on the partition chosen to perform CV, as illustrated in Fig.1 (top row). For all
investigated data sets, the interquartile range (i.e. the difference between the upper
and lower quartiles) approximately equals the median for lasso regression. Figure 2
displays the boxplots of the number of selected predictors for different CV partitions
with sparse PLS: obviously, the number of selected predictors is much more variable
than for lasso regression. While some CV partitions lead to the selection of a few
tens of predictors, the number of predictors reaches several thousands for many of
them. On the whole, these results suggest that the number of selected predictors
selected by sparse methods with CV-tuned complexity parameter should not be
extensively interpreted, because it is highly variable.

An other conclusion of study 1 is that it is useful to run CV several times, i.e.
with different random partitions successively, and to select the parameter value
that minimizes the average error. By average error, we mean here the average over
several random partitions. As can be seen from the middle row (average over 5 CV
partitions) and from the bottom row (average over 10 CV partitions), the number of
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Fig. 1 Lasso. Number of selected predictors in the data sets by Ancona, Tang, Wang, Singh,
Scherzer with a single CV run (top row), 5 averaged CV runs (middle row), and 10 averaged CV
runs (bottom row)
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Fig. 2 Sparse PLS. Number of selected predictors in the data sets by Ancona, Tang, Singh,
Scherzer with a single CV run. Analyses with the Wang data set were computationally unfeasible

selected predictors is noticeably less variable than the number of selected predictors
chosen based on a single CV partition. However, the variability remains high for
most data sets even after averaging.

Further, it can be clearly seen from the bottom row of Fig. 1 that the number
of CV folds K also affects the number of selected predictors. Higher numbers of
folds lead to the selection of more predictors in average, especially for the Wang
data set. Moreover, the variability of the number of selected predictors seems to
decrease with increasing number of folds. This would be an argument in favor of
large numbers of folds (e.g. K = 20). Another argument is that we are interested in
the performance of the different parameter values for a data set of size n rather than
for a data set of size 2n/3 (2n/3 is the size of learnings sets when K = 3). In the
extreme case of leave-one-out (LOO) CV, there would not be any variability at all,
since there is only one possible partition: the partition where each single observation
forms its own fold.

However, LOOCYV is generally known to have a high unconditional variance
(Braga-Neto and Dougherty 2004), i.e. to yield very different results if the data
set is changed. Study 2 is performed to address this problem: LOOCV is performed
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Fig. 3 Lasso. Number of selected predictors in 80 %-subsamples, 90 %-subsamples and 95 %-
subsamples of the data sets by Ancona, Tang, Wang, Singh, Scherzer

for different subsamples drawn randomly from the original data set. The results
displayed in Fig.3 show that the number of selected predictors highly depends on
the considered subsample, even if we consider large subsamples containing 95 %
of the original data set. All in all, the results of studies 1 and 2 suggest that higher
number of folds reduce the variability of the number of predictors as long as the data
are not changed. If the data are changed, e.g. by subsampling as considered here,
variability is also large with LOOCYV (i.e. for the extreme number of folds K = n).

Finally, we find in study 3 that a preliminary variable selection does not seem to
strongly impact the number of selected predictors. If preliminary variable selection
is peformed before applying CV, results similar to those of Fig. | are obtained (data
not shown). This is partly in contradiction with the results presented by Bernau and
Boulesteix (2010). However, we also observe big differences between data sets: the
number of selected predictors after variable selection is higher than without variable
selection for some data sets, but lower for other data sets. It is thus difficult to draw
general conclusions based on the five considered data sets.

4 Conclusions

The number of selected predictors is sometimes considered as a meaningful output
of the lasso method in the literature. The problem is that it directly depends on the
penalty parameter A that is usually chosen by CV — a procedure known to be highly
unreliable in the “n < p” setting (Dougherty et al. 2011; Hanczar et al. 2007).
The aim of our study was to investigate the behaviour of the number of selected
predictors in different CV settings. Our results suggest that the number of selected
predictors highly depends on the particular random partition of the data used to
perform CV. Two different partitions may yield two completely different numbers
of selected predictors. Note that two models with completely different numbers
of predictors may lead to similar prediction accuracies. Furthermore, we do not
claim that CV is useless for parameter tuning. Choosing parameters by CV is better
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than trying only one value or trying several values to finally report the best results
only. The number of selected predictors itself, however, should not be given much
attention, since it may be different with another random partition.

This variability if even more pronounced in the case of sparse PLS, where a
partition may lead to the selection of a handful of predictors, while the next one
selects several thousands of predictors. Let us try to give an intuitive explanation
for the difference between the behaviours of lasso and sparse PLS with respect to
the variability of the number of selected predictors. PLS regression is essentially a
method that can handle a high number of predictors: it is designed such that all
predictors have a modest but non-zero contribution to the PLS components and
thus to the prediction rule. Selecting a sparse PLS rule is difficult because most
contributions are very small anyway: there is thus no big difference between a sparse
PLS prediction involving 20 predictors and a “sparse” PLS prediction rule involving
1,000 predictors. In contrast, lasso regression is essentially similar to ML regression,
that can only handle a very small number of predictors. Such a method is expected
to yield a clearer difference between complex and sparse prediction rules, and thus
a less ambiguous decision in favor of one of the candidate parameters values.

Another interesting result is that CV with many folds (i.e. with large training
sets) leads to the selection of more predictors than CV with few folds. A potential
intuitive explanation is that in a small training data set a complex model is more
likely to overfit the data and perform badly. CV with large training sets (i.e. large
numbers of folds) is more representative of what would happen with the whole data
set. In this perspective, large numbers of folds should be preferred to small numbers
of folds. However, one should not think that making the training sets larger solves all
problems. By choosing a large K, one also makes the results highly specific of the
particular data set at hand. A corrolar is that changes of the data set (for instance
exclusion of a certain proportion of the observations) usually lead to important
changes in the results, as illustrated by study 2 in our paper in the case of leave-one-
out CV. Quite generally, leave-one-out CV is known to have a large unconditional
variance over data sets generated from a particular data generating process (Braga-
Neto and Dougherty 2004).

To conclude, let us point out that the high variability of the number of selected
predictors does not necessarily lead to bad prediction accuracy. Prediction accuracy
may be excellent both with 10 and 120 selected predictors. Moreover, the high
variability does not mean that the selected predictors are the wrong ones or that
one should not perform variable selection at all. It simply means that the number
of selected predictors should not be considered as an interpretable output of lasso
or sparse PLS. While it makes sense to fit a sparse model with a penalty parameter
chosen by CV, it certainly does not make sense to, say, compare the numbers of
selected predictors for two different response variables or consider that the non-
selected predictors are completely irrelevant. With a different CV partition the
results may have looked completely different. This variability partly remains but
is noticeably reduced when a repeated CV is performed instead of a single CV
run. It is also expected to decrease noticeably when the total number of predictors
decreases. In future research one could investigate the variability of the tuning
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procedure in connection to the dimensionality and relate the empirical results of
our study to theoretical results on the properties of CV-based complexity selection
in easier settings.

References

Ancona, N., Maglietta, R., & Piepoli, A., et al. (2006). On the statistical assessment of classifiers
using DNA microarray data. BMC Bioinformatics, 7, 387.

Bernau, C., & Boulesteix, A. L. (2010). Variable selection and parameter tuning in high-
dimensional prediction. In electronic COMPSTAT Proceedings, Paris.

Braga-Neto, U., & Dougherty, E. R. (2004). Is cross-validation valid for small-sample microarray
classification? Bioinformatics, 20, 374-380.

Chun, D., & Keles, S. (2010). Sparse partial least squares regression for simultaneous dimension
reduction and variable selection. Journal of the Royal Statistical Society, 72, 3-25.

Chung, D., & Keles, S. (2010). Sparse Partial Least Squares Classification for High Dimensional
Data. Statistical Applications in Genetics and Molecular Biology, 9, 17.

Dougherty, E. R., Zollanvari, A., & Braga-Neto, U. M. (2011). The illusion of distribution-free
small-sample classification in genomics. Current Genomics, 12, 333-341.

Fan, J., & Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle
properties. Journal of the American Statistical Association, 96, 1348—1360.

Hanczar, B., Hua, J., & Dougherty, E. R. (2007). Decorrelation of the true and estimated classifier
errors in high-dimensional settings. EURASIP Journal on Bioinformatics and Systems Biology,
2007, 38473.

Scherzer, C. R., Eklund, A. C., & Morse, L. J. et al. (2007). Molecular markers of early Parkinson’s
disease based on gene expression in blood. Proceedings of the National Academy of Science,
104, 955-960.

Singh, D., Febbo, P. G., & Ross, K. (2002). Gene expression correlates of clinical prostate cancer
behavior. Cancer Cell, 1,203-209.

Tang, B. M., McLean, A. S., & Dawes, I. W. et al. (2009). Gene-expression profiling of peripheral
blood mononuclear cells in sepsis. Critical Care Medicine, 37, 882-888.

Tibshirani, R. (1996). Regression shrinkage and selection via the Lasso. Journal of the Royal
Statistical Society, Series B, 58, 267-288.

Wang, Y., Klijn, J. G., & Zhang, Y. et al. (2005). Gene-expression profiles to predict distant
metastasis of lymph-node-negative primary breast cancer. Lancet, 365, 671-679.

Zou, H. (2005). Regularization and variable selection via the elastic net. Journal of the Royal
Statistical Society B, 67, 301-320.



A New Effective Method for Elimination
of Systematic Error in Experimental
High-Throughput Screening

Vladimir Makarenkov, Plamen Dragiev, and Robert Nadon

Abstract High-throughput screening (HTS) is a critical step of the drug discovery
process. It involves measuring the activity levels of thousands of chemical com-
pounds. Several technical and environmental factors can affect an experimental HTS
campaign and thus cause systematic deviations from correct results. A number of
error correction methods have been designed to address this issue in the context of
experimental HTS (Brideau et al., J] Biomol Screen 8:634-647, 2003; Kevorkov and
Makarenkov, J Biomol Screen 10:557-567, 2005; Makarenkov et al., Bioinformat-
ics 23:1648-1657, 2007; Malo et al., Nat Biotechnol 24:167-175, 2006). Despite
their power to reduce the impact of systematic noise, all these methods introduce
a bias when applied to data not containing any systematic error. We will present a
new method, proceeding by finding an approximate solution of an overdetermined
system of linear equations, for eliminating systematic error from HTS screens by
using a prior knowledge on its exact location. This is an important improvement
over the popular B-score method designed by Merck Frosst researchers (Brideau
et al., J Biomol Screen 8:634-647, 2003) and widely used in the modern HTS.
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1 Introduction

Contemporary drug development practice comprises an initial step of testing a large
number of chemical compounds in order to identify those that show promising
activity against a given biological target (Brideau et al. 2003; Makarenkov et al.
2006, 2007; Malo et al. 2006). This step, known as high-throughput screening
(HTS), is fulfilled by employing robotic equipment which takes precise mea-
surements of compounds activity levels. The obtained measurements are then
compared and the entities with ‘the best’ activity levels are selected as hits for
further clinical trials (Malo et al. 2006). The hit selection process assumes that the
measurements provided by HTS equipment correctly represent the activity levels
of tested compounds as well as that all compounds are assessed at absolutely the
same experimental conditions (Dragiev et al. 2011; Malo et al. 2006). In practice,
inconsistency in the environment conditions, such as temperature, humidity and
lighting, can disturb highly sensitive HTS readers (Heyse 2002). Procedural factors
may as well have a significant systematic impact. For instance, differences in
the incubation time for certain groups of compounds may cause variance in the
solution concentrations (because of solvent evaporation). Hit selection carried out
with measurements that differ from real activity levels results in the cases when
some compounds are incorrectly selected as hits — false positives (FP), and other
mistakenly overlooked — false negatives (FN).

Quality control and preprocessing normalization techniques have been employed
to eliminate or reduce the effect of systematic error in experimental HTS
(Makarenkov et al. 2007; Malo et al. 2006). Positive and negative controls are
often used throughout the assay in order to assess the plates background levels.
Percent of control normalization can be applied to the plates to compensate for the
plate-to-plate background differences:

r X
X = x 100%, (1)
Mpos

where (4,5 is the mean of the positive controls and x;j is the normalized value of
the raw measurement x;; of the compound in well (i, j) located in the intersection
of line i and columnj of the given plate. Normalized percent inhibition is another

control based method:
;o Mpos — Xij

Y ,vaos - ﬂneg ’
where x;; is the raw measurement of the compound in well (i, j), ftpos is the mean of
the positive controls of the plate, ji,,, is the mean of the negative controls of the plate
and x{j is the normalized value. Z-score is a simple and well-known normalization
procedure carried out using the following formula:

2

oo )
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where x;; is the raw measurement of the compound in well (i, j), i and SD are the
mean and the standard deviation of the measurements within the given plate and x{j
is the normalized value. B-score (Brideau et al. 2003), is a more robust analogue of
z-score widely used to correct experimental HTS data. B-score replaces the raw data
with the corresponding residuals adjusted by the plate’s median absolute deviation
(MAD):

X = M’Z‘/D, MAD = median{|r; — median(ry)|}, 4)
where xgi is the normalized output value, MAD is the median absolute deviation of
all residuals, r;; is the residual for well (i, j) calculated as the difference between
the raw measurement and its corresponding fitted value after running the two-
way median polish procedure (Tukey 1977) to account for the plate’s row and
column effects. Well correction (Makarenkov et al. 2006, 2007) is another advanced
correction method that can remove systematic error appearing along all assay plates
and affecting rows, columns or separate wells. It is performed in two steps — least-
squares approximation of the measurements carried out for each well location
separately across all plates of the assay is followed by the z-score normalization
within each well location.

The final step of HTS, hit selection, is usually carried out by identifying the
compounds whose activity levels exceed a predefined threshold. Hit selection
threshold is typically defined using the mean p and the standard deviation SD of
the measurements with the most used threshold of © — 3SD (i.e. the measurements
whose values are lower than ; — 3SD are selected as hits in inhibition assays). In
our previous works, we showed that systematic error correction methods should be
applied very delicately because the use of any systematic error correction method
on error-free HTS data introduces a bias, sometimes very significant, that affects
very negatively the accuracy of the hit selection process (Makarenkov et al. 2006,
2007). In our recent work, we described a method for detecting the presence of
systematic error in HTS data and thus allowing one to decide whether systematic
error correction is needed or not (Dragiev et al. 2011).

2 Matrix Error Amendment Method

In this article, we present a new method, called Matrix Error Amendment (MEA), for
systematic error correction of experimental HTS data. It relies on a prior information
that systematic error is present in HTS data and that it is row or/and column-located
(i.e. the measurements in certain rows and columns are systematically under- or
over-estimated). We also assume that the location of the rows and columns affected
by systematic noise is known. Such information can either be available in advance
or be obtained using the t-test or y*> goodness-of-fit test (see Dragiev et al. 2011 for
more details).
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Let X be a plate of experimental HTS measurements with m rows and n columns.
Let x;; be the measurement of the compound located in well (i, j) and u be the mean
value of all measurements on the plate that are not affected by systematic error. For
a plate of an assay that is not affected by systematic error, we can expect that the
mean of the measurements in a given row 7 is close to p, which is, in this case, the
mean of all measurements on the plate: Z;;l xij ~ nu. And similarly, for a given
column j, we can expect that: ) /-, x; &~ md.

Assume that the plate X is affected by systematic error and denote by
r1,¥2,...,7, (p < m)therowsof X andby cy,c2, ..., ¢ (s < n) the columns of X
where the presence of systematic error was confirmed. Let e,, be the unknown value
of systematic error affecting row r; and e.; be the unknown value of the systematic
error affecting column c;. The following four sets of equations can be composed:

n N
E Xp; — nep — E e, = np, (%)
j=1 j=1

m p
inc‘/- —neéc; — Z e, = MU, (6)

i=1 i=1

S v—Y e, = )
j=1 j=1

m p

D oxi— Y e =mpu, ®)

i=1 i=1
where Eq. (5) correspond to rows r,r2,...,r, affected by row systematic error,
(6) to columns cy,cy,...,cs affected by column systematic error, (7) to rows
not affected by row systematic error, and (8) to columns not affected by column
systematic error.

Typically, systematic error in HTS affects only a few rows or columns of a plate
(usually those located on the plate edges Brideau et al. (2003) and Kevorkov and
Makarenkov (2005)). Having compounds not affected by systematic error, allows
us to estimate p and leaves e,, and e, the only unknowns in the equation system
(5)—(8) above. Thus, in practice, we have a system with m + n linear equations and
less than m + n unknowns.

We tested three different approaches to find the most appropriate approximate
solution of this system. First, we combined the expressions (5) and (6) in a linear
system (9) having m + n equations and m 4+ n unknowns. For plates with at least 3
rows and 3 columns the system (9) always has a unique solution. This was the first
way of computing the approximate solution of the system (5) to (8).

Second, by combining all the Egs. (5)—(8), we composed an overdetermined
system of linear equations Ax = b with m + n equations and less than m + n
unknowns. We found that in all cases the matrix A7 A was singular what rendered
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the standard least-square approximation approach inapplicable. Still, we were able
to find an approximate solution of the latter system by using the singular value
decomposition method. However, the performances of this approach were worse
than those attained using the first one.

Third, we attempted to improve our first approach by using the additional
information provided by the Egs.(7) and (8). The set of equations (7) offers
estimations for the sum of column errors Zj’=1 ec; affecting the plate. We used the
mean, and in a separate test the median, of those estimations in order to calculate
the sum of column errors of the plate. Then, we replaced the corresponding terms
in the Eq. (5) by their estimates. In the same way, we used the Eq. (8) in order to
estimate the sum of all row errors Y /_, e,, and then substituted the corresponding
terms in the Eq.(6). This approach produced results that were usually equivalent
to those provided by our first approach, but it appeared to be more sensitive to the
location of hits within plates. If most of the hits were among the compounds not
affected by systematic error, then the hit selection accuracy was decreasing. In the
next section, we will present the results obtained using the first approach as it proved
to be the fastest and the steadiest one among the three competing strategies.

n0...00[11...11 e by,

On...00[1 1...11 e by,

00...n0[1 1...11 e, br,_,

00...0n[1 1...11 e, | _ . ©
11...11m0...00 e, | | b |
11...11[0m...00 ee, be,
11...11[00...m0 e, be,
11...11{00...0m e, b,

n m
where b,, = Zj?lx,‘j —nu anFl b, = Zj=1xicj —mip.
The final step in our method is the removal of systematic error from the plate
once the values of e,, and e , are determined. These values are subtracted from the
measurements in the corresponding rows 7;:

/

Xy j = Xrj — e, foralli,1 <i < p andforall j,1 < <mn, (10)

and columns c;:

!’

Xie; = Xie; = €c;» forall j,1 < j <s andforalli,1 <i <m. (1)
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3 Simulation Study

To evaluate the performances of the MEA method, we carried out simulations with
artificially generated data typical for HTS. Assays with 1,250 plates and three
different plate sizes were considered: 96-well plates — 8 rows x 12 columns, 384-
well plates — 16 rows x 24 columns, and 1,536-well plates — 32 rows x 48 columns.
The generated measurement data followed standard normal distribution. The hits
were added randomly in such a way that the probability of a given well to contain a
hit was the same, fixed a priori, for all wells in the assay regardless their location. All
the hit values followed a normal distribution with parameters ~ N(u — 55D, SD),
where p and SD were the mean and standard deviation of the original dataset before
the addition of hits. Systematic row and column errors were added to the data. The
rows and columns affected by systematic error were chosen randomly and separately
for each plate. Thus, the positions of rows and columns affected by systematic noise
varied from plate to plate. A small random error was also added to all generated
measurements. Formula (12) specifies how the error-affected measurement of the
compound in well (7, j) on plate p was calculated:

Xijp = Xijp + erip + ecjp + randp. (12)
where x{jp is the resulting measurement value, x;;, is the original error-free value,
erj, is the row error affecting row i of plate p, ecj, is the column error affecting
column j of plate p and rand;, is the random error in well (i, j) of plate p.
Systematic error er;, and ecj, followed a normal distribution with parameters
~ N(0,C). Different values of C were tested: 0, 0.6SD, 1.2SD, 1.85D, and
2.45D. The random error rand;, in all datasets followed normal distribution with
parameters ~ N (0, 0.65SD). Four systematic error correction methods were tested.
Each method comprised the identical hit selection step using the same threshold
of u — 35D, but the raw data were preprocessed in four different ways prior to
hit selection. The B-score correction method (Brideau et al. 2003), the introduced
herein MEA method carried out under the assumption that the exact locations of
rows and columns affected by systemic error were known (i.e. ideal situation), and
second when those locations were experimentally determined by the t-test (Dragiev
et al. 2011) as well as the traditional hit selection procedure without any data
correction were considered. In each experiment, we measured the total number of
false positives and false negatives, and the hit detection rate (i. e. true positive rate).

Two groups of experiments were conducted. The first group used datasets
with fixed hit percentage (of 1%) and different amplitudes of systematic error,
ranging from O to 2.4SD. The second group of experiments considered datasets
with the fixed level of systematic error (of 1.25D) and the hit percentage rate
varying from 0.5 to 5% (x-axis). Figures 1 and 2 show the average results
for the two groups of experiments. The results, obtained from 500 datasets for
each parameters combination, suggest that both variants of MEA outperformed
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Fig. 1 Hit detection rate and total number of of false positives and false negatives for datasets with
fixed hit percentage of 1 %, systematic error was added to 2 rows and 2 columns (96-well plates);
4 rows and 4 columns (384-well plates); 8 rows and 8 columns (1,536-well plates). Compared
methods: hit selection without error correction (o), B-score (A), MEA (), t-test and MEA (<)

B-score and the traditional hit selection procedure. MEA demonstrated a robust
and almost independent of the error amplitude behavior when the exact location
of the systematic error was provided. When paired with the t-test, the performance
of MEA, decreased for plates affected by large systematic error as well as for plates
with high hit percentages, mainly because of the deteriorating accuracy of the t-test
in those situations (Dragiev et al. 2011).
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Fig. 2 Hit detection rate and total number of false positives and false negatives for datasets with
fixed systematic error amplitude of 1.2SD added to 2 rows and 2 columns (96-well plates); 4 rows
and 4 columns (384-well plates); 8 rows and 8 columns (1,536-well plates). Compared methods:
hit selection without error correction (), B-score (A), MEA (), t-test and MEA (<)

4 Conclusion

We described a novel method, called Matrix Error Amendment (MEA), for elimi-
nating systematic error from experimental HTS data. MEA assumes that the exact
location of the rows and columns of the plates affected by systematic error is
known. The presence and location of systematic error can be detected using the
methodology described in Dragiev et al. (2011). Unlike the popular B-score method
which transforms the original dataset into a set of residuals, MEA eliminates
systematic error from the plate by adjusting only the measurements affected by the
error and leaving all error-free measurements unchanged. Simulations were carried
out to evaluate the performance of the new method using datasets with different
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plate sizes, different amplitudes of systematic error and hit percentages. MEA
outperformed both B-score and the traditional uncorrected hits selection procedure
in all our experiments. The results provided by the new method were especially
encouraging for small plates, low systematic error levels and low hit percentages
(see Figs. 1 and 2).
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Local Clique Merging: An Extension
of the Maximum Common Subgraph Measure
with Applications in Structural Bioinformatics

Thomas Fober, Gerhard Klebe, and Eyke Hiillermeier

Abstract We develop a novel similarity measure for node-labeled and edge-
weighted graphs, which is an extension of the well-known maximum common
subgraph (MCS) measure. Despite its common usage and appealing properties,
the MCS also exhibits some disadvantages, notably a lack of flexibility and
tolerance toward structural variation. In order to address these issues, we propose
a generalization which is based on so-called quasi-cliques. A quasi-clique is a
relaxation of a clique in the sense of being an “almost” complete subgraph. Thus, it
increases flexibility and robustness toward structural variation. To construct a quasi-
clique, we make use of a heuristic approach, in which so-called local cliques are
determined first and combined into larger (quasi-)cliques afterward. We also present
applications of our novel similarity measure to the retrieval and classification of
protein binding sites.

1 Introduction

Many methods for data analysis are based on a measure of similarity between data
objects. In this paper, we are specifically interested in objects represented in the
form of a graph, since representations of that kind are commonly used in many
application domains, including web mining, image processing, and bioinformatics,
just to name a few.
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We will focus on the maximum common subgraph (MCS) or, more specifically,
the size of this subgraph, as an important and widely used similarity measure
on graphs (Bunke and Shearer 1998). The MCS exhibits a number of appealing
properties, notably in terms of interpretability. In fact, it does not only produce a
numerical degree of similarity, but also an “explanation” of this similarity, namely
the MCS itself. Roughly speaking, the MCS of two graphs corresponds to the
largest substructure that both of them have in common. In application domains like
bioinformatics, where one is typically not only interested in ~ow similar two objects
are, but also why they are similar, an explanation of that kind is arguably important.

A drawback of the MCS is its sensitivity toward errors and small deviations. This
becomes especially obvious in application domains like structural bioinformatics,
where measurements are noisy and imprecise, and data objects exhibit a high level
of variability. As an example, consider edge-weighted graphs representing protein
structures. Due to molecular flexibility and noise in the measurement of atomic
positions, one cannot expect to find exact matches between two such structures.
Instead, one will normally end up with very small common subgraphs that fail
to capture the main structural similarities in a proper way. Besides, the MCS is
also critical from a complexity point of view, since its computation is an NP-hard
problem.

To overcome these problems, we follow up on our idea (Boukhris et al. 2009)
of relaxing the condition of exact matches and using a method for detecting
maximum “approximate” common subgraphs (MACS). To this end, we employ the
concept of a so-called quasi-clique of a graph that has recently been studied in the
literature (Liu and Wong 2008). The resulting similarity measure is tolerant toward
noise and structural deformation.

While the computation of the MCS of two graphs can be done by searching for a
maximum clique in the corresponding product graph, the computation of the MACS
requires the search for quasi-cliques. To circumvent the problem of NP-hardness,
we make use of a heuristic approach, in which so-called local cliques are iteratively
merged into larger graphs, preserving a constraint on the degree of connectedness.
Eventually, an approximation of the largest quasi-clique in the product graph is
obtained, which corresponds to an approximate match between the two original
graphs.

The remainder of the paper is organized as follows. Subsequent to recalling
the original MCS measure in Sect. 2, its extension is introduced in Sect. 3. In that
section, we also present an algorithm for constructing a MACS. Section 4 is devoted
to an experimental study. Finally, Sect. 5 concludes the paper.

2 Similarity Based on the Maximum Common Subgraph

A node-labeled and edge-weighted graph G is a 4-tuple (V, E, £y, £g), where V is
the set of nodes and E the set of edges; moreover, node-labels and edge weights are
defined by the functions £y : V — L and g : E — R, respectively. A widely
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accepted measure of similarity between two graphs G and G’ is the (normalized)
size of their MCS:

mcs(G, G')
max{|G|,|G'[} ’

where mcs(+, ) is a function computing the maximum common subgraph and | - |
returns the size of a graph in terms of the number of nodes. Obviously, (1) assumes
values in the unit interval, with values closer to 1 indicating higher similarity
between G and G'.

The algorithmic challenge is to realize the function mcs efficiently. This function
can be implemented in an indirect way by using the so-called product graph. Here,
the categorical product graph will be used, which has the important property that
each clique in this graph corresponds to a common subgraph in the two input graphs.
Consequently, the MCS is given by the maximum clique in the product graph
(Levi 1973). In other words, the problem of finding a maximum common subgraph
can be reduced to the problem of clique detection.

Formally, the product graph is Gg = (Vg, Eg) of two node-labeled and edge-
weighted graphs G = (V, E, Ly, {g) and G’ = (V', E', {},, {;) is defined by

sim(G, G) = (1)

Vo = {(nv)) €V x V't by(v) = 6,0},
Eg = {((Vi,v/j)v (vk,v§)) € Vé Clgi, Vi) —K’E(V’j’v;)” < 6}’

where € is a threshold for comparing the length of edges.

Cliques are the densest form of subgraphs, since each pair of nodes must be
connected by an edge. Considering the retrieval of the MCS by searching for cliques
in the product graph Gg, this means that all node and edge labels must be equal.
As mentioned previously, this requirement is overly restrictive in the context of
biological data analysis, especially in the case of structure analysis where edges are
labeled with real-valued distances. In the above definition of the product graph,
the condition of equal edge weights is already relaxed, since edges are allowed
to differ by at most a constant €. Yet, looking for cliques in Gg still means that
this condition must hold for all pairs of edges in the MCS. Roughly speaking, this
approach is tolerant toward possibly numerous though small (measurement) errors
but not toward single though exceptionally large deviations. To become flexible in
this regard, too, our idea is to replace the detection of cliques in Gg by the detection
of quasi-cliques.

3 Maximum Approximate Common Subgraphs

A similarity measure on graphs using the MACS instead of the MCS can be defined
analogously to (1). Likewise, the computation of the MACS can be reduced to
the search for a quasi-clique in the product graph, since each such quasi-clique
corresponds to an approximate common subgraph.
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Roughly speaking, quasi-cliques are “almost complete” graphs G = (V, E).
In the literature, different definitions of quasi-cliques have been proposed. Most
of them are based on the degree of the nodes (Liu and Wong 2008), calling G a
quasi-clique if every node in V' is adjacent to at least y - (|| — 1) other nodes, where
deg(v) is the number of nodes adjacent to v and y €]0, 1] a relaxation parameter.
This is the definition that we shall adopt in this paper. Note that the concept of a
y-quasi-clique is a proper generalization of the concept of a clique, since each clique
is a 1-quasi-clique.

Since clique detection is an NP-complete problem (Karp 1972), exact algorithms
are feasible only for very small graphs. Therefore, practically relevant problems
are usually solved in an approximate way by means of heuristic algorithms, which
typically exploit a downward-closure property, namely that a supergraph of a non-
clique cannot be a clique either.

Since quasi-cliques are a generalization of cliques, it immediately follows that
finding a maximum y-quasi-clique is an NP-complete problem, too. Unfortunately,
the downward-closure property does not hold for quasi-cliques, as one can easily
show by counter-examples. Instead, any subset of the set of nodes V' in a graph
G = (V, E) may form a y-quasi-clique. Nevertheless, alternative heuristic methods
for quasi-clique detection have been developed (e.g. Liu and Wong 2008). However,
for large graphs, such algorithms become very inefficient in both time and space.
Another approach was proposed in Li et al. (2005), where an efficient algorithm
based on local clique detection for interaction graph mining in protein complexes
was developed. This approach is modified technically and it is applied to find
approximate common subgraphs, hence, it is operating on the product graph Gg =

(Ve, E)-

3.1 Detection of Quasi-Cliques by Local Clique Merging

The approach to quasi-clique detection outlined in this section is a heuristic one
and, therefore, does not guarantee the optimality of a solution. Practically, however,
it turned out to be a viable alternative to exact methods like (Liu and Wong 2008),
since the solution quality is at least close to optimal and the runtime acceptable.

Our algorithm requires the specification of three parameters: First of all, y
defines the density of the maximum quasi-clique we are looking for. Since the
downward-closure property does not hold for quasi-cliques, intermediate solutions
having density below y cannot be discarded. However, an extension to a y-quasi-
clique becomes unlikely for intermediate solutions whose density is significantly
smaller than y; we test this condition using a second (“cautious”) threshold y’ < y.
Finally, a parameter w is used to control the number of merge operations, since the
intermediate solutions that are merged must overlap to a degree of at least .

Our heuristic essentially consists of two steps, namely the detection of local
cliques and a merging procedure. A local clique in a graph G is a complete
subgraph that contains a certain node of G. To detect a local clique in the product
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graph Gg = (Vg,Eg), anode v € Vg is selected and a neighborhood graph
GY = (V,, E,) is derived, which is defined by V, = {v} U{v; € Vg : (v, ;) € Eg}
and E, = Eg NV, x V,. Unless the clique property is satisfied for Gg) , the node

with the smallest degree in V, is iteratively removed from Gg) , together with all
adjacent edges; if the smallest degree is shared by more than one node, one of them
is chosen at random. Once the clique property is fulfilled, a local clique containing
the node v is formed.

Obviously, the set of cliques found in this step will not contain the maximum
clique, and in general, these cliques will not even be the maximal clique containing
v. Instead, this approach is merely used to efficiently generate a set of cliques to be
used in the second step of our procedure, in which “small” cliques are merged into
larger quasi-cliques. For this purpose, each node v € Gg is considered once and
used to create a local clique. These local cliques are stored in a set LC (provided
they have at least 3 nodes).

In the second step, the cliques in LC are merged iteratively, using a modified
version of beam search (Norvig 1991) on the search space of local cliques. To this
end, a beam C is defined containing the best solutions. The beam is initialized with
the set LC containing all local cliques detected in the first step. While the beam is
not empty, all pairs (Gg, Gr) with Gg € C and G, € LC are considered. If their
overlap |Vp N Vi |/min{|Vp|, |V.|} is above the threshold w, the pair is merged and
inserted into a temporal set. Having considered all pairs, the beam C is replaced
by the temporal set and the loop is continued. To avoid the risk of loosing the best
solution' found so far, it is stored in a variable which is returned upon termination
of the algorithm.

More concretely, two graphs G and G’ are merged by defining the union of their
respective node sets, and connecting a pair in the aggregation V- = V U V' by an
edge if this edge also exists in the graph Gg; the set E is hence given by V2N Eg.
However, in the case of merging two product graphs, the nodes must be considered
more carefully: Since product nodes correspond to unique pairs (v,v') € V x V’,
different product nodes can still correspond to the same nodes in G or G'. This
many-to-one relationship must be taken into consideration to ensure that valid
approximate common subgraphs are produced. Here, a very simple though efficient
procedure is applied, which adds a product node into the quasi-clique only if the
nodes it represents are not yet contained.

3.1.1 Complexity
Finding all local cliques in the product graph of the graphs G = (V, E) and

G’ = (V', E"), where n = max{|V|, |V’|}, takes time O(n*). For each of the O(n?)
nodes of the product graph, the neighborhood graph is constructed in time O(1) by

I'The best solution is the largest quasi-clique whose density is at least y.
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making use of adjacency lists. The size of the neighborhood graph is O(n?), hence
for the removal of nodes violating the clique property, time O(n*) is required: O (n?)
times the node with smallest degree is searched, a procedure which requires time
O (n?) per node.

Merging of local cliques has unfortunately exponential complexity, since the
number of graphs in the set C can become very large, theoretically upto Y 7 _, (j’) =

20 —Z?ZO (’f) = (O(2"). However, thanks to the thresholds w and y’, the true number
is typically much smaller than this theoretical bound, and most of the time, the set

C is already empty after a few iterations of the merging step.

4 Experimental Study

We applied our method to the comparison of protein structures or, more specifically,
protein binding sites. This is an important problem in structural bioinformatics,
where graphs are often used for representing the structure and specific properties
of biomolecules. Here, we make use of the representation proposed in Schmitt
et al. (2002): A protein binding site is modeled as a graph whose nodes and
edges represent, respectively, physico-chemical properties (7 such properties are
distinguished) associated with representative points on the surface of the binding
site and the Euclidean distances between these points.

In a first experiment, we consider the complete CavBase (Kuhn et al. 2006), a
database currently storing almost 200,000 protein binding sites. Using 4 different
query structures 1EAG.1 (asparyl protease), 2EU2 .1 (carbonic anhydrase),
2005 .1 (serine protease) and 3HEC . 3 (kinase), the goal is to retrieve structures
from CavBase belonging to the same type of protein. The second study is a
classification experiment. We use a dataset consisting of 355 protein binding sites,
214 that bind ATP ligands and 141 that bind NADH ligands. Thus, a dataset defining
a binary classification problem is obtained (Fober et al. 2011). Since ATP is a
substructure of NADH, and hence the former can possibly bind the same ligands as
the latter, this dataset is especially challenging. The binary classification problem
is tackled using a simple nearest neighbor classifier in a leave-one-out cross-
validation setting. As a baseline to compare with, we use the MCS measure which
is implemented in CavBase. Due to computational reasons, however, CavBase
only computes an approximation of the MCS: Instead of enumerating all maximal
cliques, it only generates the first 100 candidates and selects the largest among these.

The results on the retrieval experiment are summarized in Fig. 1, in which the 25
most similar structures are ordered on the x-axis according to the obtained score.
In the case of a positive hit, which means that a protein was found belonging to the
same class as the query, a counter giving the position on the y-axis in incremented,
which means that the identity (as obtained for the query 2EU2.1) is the optimal
solution.
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Fig. 1 Results on the retrieval experiment on the four queries
Table 1 Results on the classification experiment (percent correct classification)
y=0.9 y=0.8 y=0.7 y=0.6
Method MCS MACS},/=0_7 MACS},/=0_6 MACS},/=0_5 MACSy/=0_4
Accuracy 0.769 0.851 0.839 0.862 0.682

As can be seen, the performance depends on the query. For 2EU2 . 1, all methods
perform perfectly. However, this class of proteins is known to be very rigid, hence
the use of error-tolerant measures is not necessary. This is also the case for 2005 . 1,
where the error-tolerance even seems to have a detrimental effect. In the case
of protein-classes which are known to be more flexible (1EAG. 1 and 3HEC. 3),
on the other hand, error-tolerance clearly improves the results. However, the poor
performance of MCS in the case of 3HEC . 3 cannot be explained by a lack of error-
tolerance alone. Here, a drawback of the CavBase heuristic becomes obvious: Very
large structures produce very large product graphs with many maximal (i.e., not
further extensible) cliques, so that the maximum clique is probably missed by the
first 100 candidates.

The results on the classification experiment given in Table 1 show a similar
picture. It clearly sticks out that a higher degree of error-tolerance can increase the
classification rate, an indirect proof for an improved similarity measure. Beyond
a certain degree of error-tolerance, however, the classification rate drops strongly.
Here, the error-tolerance of the similarity measure becomes too high, so that even
dissimilar graphs are considered as similar.

5 Conclusions

Maximum common subgraphs have been used successfully as similarity measures
for graphs. In this paper, however, we have argued that this measure is overly
stringent in the context of protein structure comparison, mainly since graph
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descriptors of such structures are only approximate models afflicted with noise and
imprecision.

Therefore, we have proposed an alternative measure relaxing the MCS. More
specifically, our measure is based on maximum approximately common subgraphs
(MACS), arelaxation of MCS which is tolerant toward edge mismatches. In order to
find a MACS, we have proposed a heuristic approach to quasi-clique detection (in a
product graph) based on the idea of local clique merging. First empirical studies, in
which similarity measures are used for the purpose of protein structure retrieval and
classification, suggest that our relaxation is useful and leads to improved measures
of similarity between protein binding sites.

In future work, we plan to analyze our heuristic algorithm from a theoretical
point of view. Hopefully, it will be possible to corroborate its strong empirical
performance by theoretical guarantees on the solution quality.
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Identification of Risk Factors in Coronary
Bypass Surgery

Julia Schiffner, Erhard Godehardt, Stefanie Hillebrand, Alexander Albert,
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Abstract In quality improvement in medical care one important aim is to prevent
complications after a surgery and, particularly, keep the mortality rate as small
as possible. Therefore it is of great importance to identify which factors increase
the risk to die in the aftermath of a surgery. Based on data of 1,163 patients who
underwent an isolated coronary bypass surgery in 2007 or 2008 at the Clinic of
Cardiovascular Surgery in Diisseldorf, Germany, we select predictors that affect the
in-hospital-mortality. A forward search using the wrapper approach in conjunction
with simple linear and also more complex classification methods such as gradient
boosting and support vector machines is performed. Since the classification problem
is highly imbalanced with certainly unequal but unknown misclassification costs the
area under ROC curve (AUC) is used as performance criterion for hyperparameter
tuning as well as for variable selection. In order to get stable results and to obtain
estimates of the AUC the variable selection is repeated 25 times on different
subsamples of the data set. It turns out that simple linear classification methods
(linear discriminant analysis and logistic regression) are suitable for this problem
since the AUC cannot be considerably increased by more complex methods. We
identify the three most important predictors as the severity of cardiac insufficiency,
the patient’s age as well as pulmonary hypertension. A comparison with full models
trained on the same 25 subsamples shows that the classification performance in
terms of AUC is not affected or only slightly decreased by variable selection.
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1 Introduction

In medical care one important indicator to asses the quality of e.g. a certain type
of surgery is the occurrence of complications. In order to help hospitals to develop
strategies for quality improvement one important aim is to identify the factors that
increase the risk of complications. Hospitals can then particularly take measures
to improve care of patients with increased risk. In this paper we are concerned
with coronary bypass surgery at the Clinic of Cardiovascular Surgery in Diisseldorf,
Germany. We aim to identify factors that affect the in-hospital-mortality, i.e. the risk
to die in the aftermath of the surgery. Our analysis is based on data from 2007 and
2008 that were collected at the clinic in Diisseldorf in the course of a nationwide
initiative for quality improvement in inpatient care. This paper is organized as
follows. In Sect. 2 basic information about quality improvement in inpatient care
and particularly in coronary bypass surgery is provided. In Sect. 3 we describe the
data in more detail. In Sect. 4 we give a short introduction to variable selection and
explain the wrapper approach that is applied in our analysis in detail. Finally, in
Sect. 5 the results and our conclusions are presented and an outlook to future work
is given.

2 Quality Improvement in Coronary Bypass Surgery

In Germany there exists a nationwide system for external quality improvement
of medical care in hospitals. In several service areas, particularly various types
of surgeries, several quality indicators concerning the compliance with certain
standards as well as postoperative complications are considered. The hospitals
document the treatment of patients in the selected service areas and the collected
data are submitted to an external agency (currently the AQUA Institute for Applied
Quality Improvement and Research in Health Care, http://www.aqua-institut.de).
Here, the data are checked and evaluated. Based on the results the hospitals
can take measures for quality improvement. In case of abnormal results like an
unusually large number of complications further discussions with the respective
hospitals are initiated in order to identify the causes and take countermeasures.
The results are annually published in form of so called structured quality reports
(available at http://www.bgs-qualitaetsreport.de for 2001-2008 and http://www.sqg.
de/themen/qualitaetsreport for 2009-2010). One service area under consideration
is isolated coronary bypass surgery. Isolated means that no other surgery is done
simultaneously. Among the corresponding quality indicators are various postopera-
tive complications (http://www.sqg.de/themen/leistungsbereiche/koronarchirurgie-
isoliert.html). Moreover, two types of mortality are distinguished. The so called
in-hospital-mortality that is in the focus of this paper refers to patients who die
during the same inpatient stay regardless of the time of death. Since this indicator
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does not comprise patients that are transferred to other hospitals at an early stage the
30-days-mortality is usually considered, too.The observed mortality rates for several
hospitals are hardly comparable. A clinic with many high-risk patients will have an
increased mortality rate but need not be inferior regarding the quality of medical
care. For this reason a risk adjustment is done. For each clinic an expected mortality
rate for the patient mix at hand is calculated and the ratio of observed and expected
mortality is used to assess the quality. The expected mortality rate is computed by
means of a logistic regression model that is built on data of all participating hospitals
in Germany. The predictor variables contain information regarding the preoperative
state of the patients. Since the logistic model is used for risk adjustment information
related to the surgery like surgeon, anesthesia and to the postoperative treatment like
the intensive care unit is not taken into account. The binary target variable describes
the post-operative recovery state of the patient, i.e. if the patient died in hospital
in the aftermath of the surgery. Predictors without significant influence on the target
variable are removed from the model. The selected logistic model is referred to as
the logistic KCH Score where KCH is a German abbreviation for coronary surgery.
Until now there are three versions of the KCH Score due to updates of the logistic
model: KCH Score 1.0: built on data from 2004, KCH Score 2.0: built on data from
2007 and KCH Score 3.0: built on data from 2008. The KCH Score 3.0 is still in
use. The reason for the two updates is that the hospitals were obligated to collect
additional preoperative variables that had to be integrated into the logistic model.
Moreover, in 2007 the definitions of some variables were changed.

3 Data

In this paper we deal with data collected by the Clinic of Cardiovascular Surgery in
Diisseldorf for the quality reports in 2007 and 2008. The data sets at hand contain
information regarding the preoperative state of 1,163 (604 in 2007 and 559 in
2008) patients who underwent an isolated coronary bypass surgery. The following
preprocessing steps are performed. First, the raw data sets from 2007 and 2008 are
merged. Certainly it is also possible to build individual models for the 2 years. But
changes over time should not be too severe (note that the KCH Score 3.0 is still in
use). Moreover, building two models would mean halving the number of training
observations and therefore lead to less reliable results of the variable selection.
Based on the raw data from 2007 and 2008 all variables that are used in at least
one of the KCH Scores 1.0, 2.0 or 3.0 are calculated. Thus 19 candidate predictor
variables are obtained. Besides basic information like sex and age they describe pre-
existing conditions and results of medical examinations done before the surgery. If
the meaning of a variable has changed over time we take the recent definition. For
categorical predictor variables we use the maximum number of categories, even
though some categories were not deemed significant in the KCH Scores. The two
continuous variables age and body mass index are scaled to zero mean and unit
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Table 1 Predictor variables. For categorical predictors the number of values and the KCH Score
where this variable is defined are given

KCH KCH
(Preoperative) variable # values score  (Preoperative) variable # values  score
Age nyha (severity of cardiac 3 2.0

insufficiency)

Angiography findings 2 3.0 Preoperative creatinine 2 1.0
bmi (body mass index) level
Critical preoperative state 2 3.0
Diabetes 2 3.0 Preoperative renal 2 3.0
Emergency 2 3.0 Replacement therapy
Extracardiac arteriopathy 2 3.0 Pulmonary disease 3 3.0
Heart rhythm 3 2.0 Pulmonary hypertension 2 3.0
Left-ventricular dysfunction 3 3.0 Reoperation 2 3.0
Myocardial infarction 2 3.0 Sex 2 3.0
Neurological dysfunction 2 3.0 Troponin 2 2.0

variance. Table 1 shows all predictors. Due to lack of space we cannot give the exact
definitions of all variables. Instead, we point to the KCH Score where the variable
is used (the exact definitions can be found at http://www.bgs-qualitaetsreport.de).

4 Identification of Risk Factors: Variable Selection
and Ranking

Our aim is the identification of risk factors in coronary bypass surgery based on
data of the Clinic of Cardiovascular Surgery in Diisseldorf since this may be helpful
in quality improvement. Two issues are worth discussing. First, predictors related
to the surgical procedure and postoperative medical treatment would be also helpful
for quality improvement but unfortunately are not available. Second, there is already
a global model based on data of all participating hospitals and the importance of
predictors can be seen from the results of the Wald tests that are given in the
quality reports. Nevertheless, it makes sense to build an individual model for a
single hospital since for a single clinic other factors than those most important in
the global logistic model may be relevant. Also predictors like troponin which are
not included in the currently used KCH Score 3.0 may be important for a single
hospital. Generally, the aim of variable selection is at least three-fold: understanding
the data, improving prediction performance and reducing data in order to provide
faster and more cost-effective predictors (cp. Guyon et al. 2006, for an overview
of variable selection approaches). Our aim clearly lies in data understanding. But
prediction accuracy is also an important aspect since an interpretable model with no
predictive power is only of little use. Usually three different approaches to variable
selection are distinguished, namely filter, embedded and wrapper methods. Filter
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methods such as RELIEF are applied as part of the data preprocessing and do not
require building a predictor. Filter methods often (but not necessarily) provide a
variable ranking, i.e. assign an importance value to each variable. The user has to
choose a threshold in order to obtain a variable subset. In our case a variable ranking
is sufficient since we particularly aim to identify the most important variables. In
order to apply embedded or wrapper methods a predictor has to be built. In case of
embedded methods like decision trees, forests or LASSO-based methods variable
selection is part of the training process. Wrapper approaches use the classifier as
a “black box” to assess the goodness of a variable set. We tried simple things
first, i.e. we used several filter and embedded methods. But this did not lead to
clear results as completely different variable rankings or subsets were obtained
by means of distinct methods. We finally tried the wrapper approach which led
to satisfactory results and is described in detail in the following. In order to use
this approach three important choices have to be made: the selection criterion, the
classification method(s) and the search strategy. The standard performance criterion
in classification is the error rate. Fortunately the mortality rate is very low and thus
the classification problem under consideration is highly imbalanced. Moreover, the
misclassification costs in this problem are certainly unequal, but unknown. For these
reasons the area under the ROC curve, in short AUC (cp. e.g. Fawcett 20006), is
used as selection criterion. Since we do not know in advance which classification
method to apply we try seven methods of different complexity. As linear methods we
use logistic regression (logreg) and linear discriminant analysis (lda). Moreover, we
employ kernel k nearest neighbors (kknn), support vector machines with polynomial
and radial kernels (svm.poly and svm.radial), random forests (rF) and gradient
boosting machines (gbm). For our analysis we use the software R (R Development
Core Team 2011). The classification methods are implemented by the R-packages
stats, MASS (Venables and Ripley 2002), kknn (Schliep and Hechenbichler
2010), kernlab (Karatzoglou et al. 2004), randomForest (Liaw and Wiener
2002) and gbm (Ridgeway 2010). All classification methods, except logreg and
Ida, possess hyperparameters that have to be tuned. Moreover, we would like
to assess the effect of variable selection on the prediction performance. Hence
an appropriate resampling approach and search strategies for tuning and variable
selection are required. In the literature there are only few approaches that account
for the mutual dependence of hyperparameters and selected variables and the
corresponding software is not readily available. For this reason we apply a two-
step procedure: In the first step parameter tuning is done by means of grid search
on the whole data set. As performance measure we use the five-fold stratified cross-
validated AUC. In Table 2 an overview of the tuned parameters and their values is
given. The selected values are printed in bold. In the second step variable selection
is done and the performance of all classifiers on the selected and the full variable
sets is assessed. For variable selection we apply a nested resampling strategy, again
on the whole data set. In the outer loop the variable selection is repeated 25 times
for each classification method on different subsamples of size 4/5-1,163 & 929. In
the inner loop the goodness of a variable set is assessed by means of the three-fold
stratified cross-validated AUC.
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Table 2 Classification methods and corresponding tuning parameters. The values that are tried
during the grid search are given in the fourth column. The selected hyperparameter values are

printed in bold

Method Parameter Definition Range
kknn k Number of nearest neighbors 5, 10, 20, 50, 100, 200, 500,
600
distance Parameter of Minkowski 1,2,3
distance
kernel Window function rectangular, gaussian
svm.poly degree Degree of polynomial 1,2,3
C Regularization constant in 275274 . 2405
Lagrange formulation
svm.radial  sigma Parameter of RBF-function 273274 . 27 04
(exp(—0 + |u—v[*)) 2
C Regularization constant in 273 274273 2400
Lagrange formulation
rF ntree Number of trees 500, 1,000, 2,000, 3,000
mtry Number of candidate variables 3,5,10, 15
randomly sampled per split
sampsize Size of sample randomly drawn  [0.25n], [0.517, [0.751]
per tree with
n =929~ 4/51,163
gbm n.trees Number of iterations 500, 1,000, 2,000, 3,000

interaction.depth

distribution
shrinkage
bag.fraction

Maximum degree of
interactions between
variables

Loss functions

Learning rate

Proportion of training
observations randomly
drawn per tree

1,2,3

Bernoulli, adaboost
0.001, 0.01, 0.05
0.25,0.5,0.75

We apply a forward search and stop if the AUC cannot be improved by at least
0.001. The prediction accuracy of all classification methods on the full variable set
is assessed on the same 25 subsamples. Besides obtaining performance estimates
repeating the variable selection on 25 subsamples has several advantages (cp. Bi
et al. 2003). The results are stabilized and the selection frequency across the 25
iterations can be regarded as variable importance measure. Moreover, analyzing the
behavior of variables across the different subsamples may provide further insight.
However, the fact that hyperparameter tuning was done in advance on the whole
data set may lead to optimistically biased AUC values. This is not too severe as the
AUC values are only computed to assess if variable selection causes a degradation
in performance. Another possible disadvantage is that the hyperparameter values
found in advance may not be suitable anymore if a smaller number of features is
used. The resampling strategies and variable selection methods are implemented by
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the R-package m1r (Bischl 2010). For calculation of the AUC the R-package ROCR
(Sing et al. 2005) is used. The source code of the analysis is available at http://www.
statistik.tu-dortmund.de/publications_schiffner.html.

5 Results

Table 3 shows the AUC values obtained with all predictor variables and with the
selected variables. First of all we can observe that linear classification methods work
well on this problem. Using more complex methods like svm, kknn, random forest
and gbm results in no or only small improvements. Moreover, variable selection
does not lead to much smaller AUC values than using all predictors except for
support vector machines. The reason is that the hyperparameter settings found
by means of the grid search are not suitable anymore if only few predictors are
used. As a result in many of the 25 resampling iterations (7 for svm.poly and 6
for svm.radial) the forward search stopped after the first step since none of the
variables led to any improvements in AUC over 0.5. It is possible to adapt the
hyperparameters during the variable selection. But this is time-consuming, hence
we decided to exclude the support vector machines from the further analysis.
The mean number of selected variables per iteration ranges from 3 (for the two
svms), 4.5 (for kknn) to 7.7 (for rF). For the reason explained above the support
vector machines exhibit the lowest numbers of selected variables with a rather
large standard deviation. Fig. 1 shows the selection frequency for all variables
and all classification methods except for the support vector machines. For every
classification method we counted how often a variable was selected in the 25
subsampling iterations. As the bars are stacked the maximum attainable value is
125. The most important variables for the clinic in Diisseldorf are the severity of
cardiac insufficiency (nyha), age, pulmonary hypertension and preoperative renal
replacement therapy. The abbreviation nyha stands for New York Heart Association
that has developed a functional classification system to assess the stage of heart
failure. The nyha variable indicates if a patient is classified as category III or
IV where III means symptoms of cardiac insufficiency during less-than-ordinary
activity and IV means symptoms already at rest. Rather unimportant variables are
angiography findings and reoperation. Concerning the four most important variables
the results of all classification methods are similar except for kknn. According to
kknn nyha and age are the most important predictors, but pulmonary hypertension is
rather unimportant and preoperative renal replacement therapy is not even selected
once. Compared to the logistic KCH Score 3.0 we get a rather different variable
ranking. According to the p-values of the Wald test statistics the most important
variables in the KCH Score 3.0 are critical preoperative state, age, emergency and
renal replacement therapy. The other two variables that turned out to be important
for the clinic in Diisseldorf, nyha and pulmonary hypertension, are on places 6 and
15 (where the total number of predictors is 17). Future work is mainly gaining
deeper understanding of the results. This on the one hand regards differences
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Table 3 AUC values and standard deviations obtained with all predictors and with the selected
variables. Moreover, the average numbers of selected variables across the 25 resampling iterations
and the corresponding standard deviations are shown

All predictors Selected variables
Method AUC stand. dev. AUC stand. dev. # selected variables stand. dev.
logreg 0.81 0.07 0.82 0.07 6.8 1.3
lda 0.80 0.08 0.81 0.07 6.7 1.3
kknn 0.81 0.06 0.78 0.06 4.5 1.6
svm.poly 0.72 0.08 0.55 0.12 33 2.7
svm.radial  0.78 0.06 0.55 0.13 3.0 3.6
rF 0.82 0.05 0.77 0.07 7.7 1.8
gbm 0.82 0.06 0.79 0.07 6.0 2.0

variables

logre
e B3

nyha
age

pulmonary hypertension
preoperative renal replacement therapy

emergency

left—ventricular dysfunction
critical preoperative state
extra cardiac arteriopathy

neurological dysfunction
omi

troponin

mi
myocardial infarction
sex

preoperative creatinine level

diabetes

heart rhythm
pulmonary disease
angiography findings
reoperation

D
1
D
(]

25

selection frequency

75 100 125

Fig. 1 Selection frequency of predictor variables for all classification methods except svm.poly

and svm.radial

between results obtained with different classification methods and the differences
between the variable ranking found for the clinic in Diisseldorf and in the KCH
Score 3.0. On the other hand this means to further analyze the behavior of variable
selection across the subsampling iterations and further investigate the relationships
between the (selected) variables.
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Parallel Coordinate Plots in Archaeology

Irmela Herzog and Frank Siegmund

Abstract Parallel coordinate plots (PCPs) can be applied to explore multivariate
data with more than three dimensions. This visualisation method is straightforward
and easily intelligible for people without statistical background. However, to our
knowledge, PCPs have not yet been applied to archaeological data. This paper
presents some examples of archaeological classifications which are clearly visible
in PCPs. For this purpose a program has been written offering some additional
options which are not supported in standard software for PCP generation. Some
of the functionality of Geographic Information Systems (GIS) was introduced for
PCPs: this program is able to create a thematic display based on a user-selected
variable, optionally multiple plots highlight each thematic colour. Another variable
may control the width of the PCP lines. Moreover, an info-tool, zoom, and a find-
function are supported. The resulting diagram can be saved in SVG format and in a
GIS format.

1 Introduction

Most archaeologists have a limited knowledge of classification methods and statis-
tics, and for this reason, only few of these methods are applied to archaeological
data. A popular method is correspondence analysis, mainly used for identifying
the relative chronological sequence of assemblages of objects like graves and
the types of these objects (e.g. Nieveler and Siegmund 1999). Recently, German
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archaeologists repeatedly applied canonical correspondence analysis for spatial
analysis where the canonical variables are geographical coordinates or a linear
combination of them (Kubach and Zimmermann 1997; Brather and Wotzka 2006;
Miiller-Scheeflel and Burmeister 2006; Hinz 2009). We felt that this approach is
not appropriate, and discussion with a correspondence analysis expert at a previous
GfKIl conference confirmed our uneasiness. So we came to the conclusion that
archaeologists need appropriate and easily intelligible methods for the explorative
analysis of multivariate data and the visualisation of their classification results. In
our view, parallel coordinate plots (PCPs) could serve this purpose. PCPs with
brushing techniques are not new (e.g. Wegman 1990), but to our knowledge, this
approach has not been applied to archaeological data before.

2 The Archaeological Data

Our test data consists of the grave goods of early Medieval cemeteries in Germany,
the Netherlands, Belgium, France, and Switzerland (Siegmund 2000). The ceme-
teries are subdivided into three data sets according to the chronological time frame
of the graves, i.e. data sets for the fifth, sixth and seventh century AD. For each of
these data sets, Siegmund (2000) developed a classification assigning the cemeteries
to different ethnic groups, mainly Frankish and Alemannic people. Our aim was to
visualise these classifications by PCPs. In the present paper, we focus on the sixth
century cemeteries. This data set consists of 82 cemeteries.

A frequency table lists for each cemetery five variables in the vessel category
(total number of vessels, number of glass vessels, the amount of wheel-thrown,
hand made, and Thuringian pottery) and six variables referring to weapons (swords,
saxes, axes, shields, spearheads with slit and unslit sockets). Only cemeteries with at
least four weapons are included in the data set. In this frequency table, the smallest
grave group consists of three graves, while 169 graves from the sixth century were
recorded for the largest cemetery.

It is quite obvious that proportions rather than frequency counts are required
for the analysis. However, looting in ancient and in modern times severely affected
nearly all the early Medieval cemeteries. Looters focus more on metal objects like
fibulae or weapons than on pottery. For this reason, the proportion of a weapon
category in relation to the total number of weapons is considered, whereas for
vessels, the proportions are calculated with respect to the total number of graves.
PCPs were used to visualise the ethnic classification (see below).

The sixth century data set is fairly complex, therefore we additionally selected a
simpler tutorial data set. This data set is a frequency table listing 22 archaeological
contexts with four amphorae types (Siegmund in press). These amphorae were
used to trade liquids (e.g. wine, fish sauce) and fruits (e.g. olives) in Roman
times. The time frame for the four amphorae types is in the range from 120 to
30 BC. Correspondence analysis was applied to the frequency table, the first axis
provided a chronological sequence for the archaeological contexts. This sequence
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was subdivided into four phases: early, mid-a, mid-b, and late. A PCP based on the
amphorae type percentages shows that the phases are well separated (see below).

3 Parallel Coordinate Plots

According to Friendly (2009), the first alignment diagrams using sets of parallel
axes, rather than axes at right angles were already presented in 1884 by d’Ocagne.
Independent of these early works, Inselberg (1985) proposed PCPs. The statistical
theory and methods for PCPs were provided by Wegman (1990). The PCP allows
to represent all dimensions of a multivariate data set in a 2D diagram by drawing
parallel and equally spaced axes and connecting the coordinates on these axes, so
that each point is represented by a sequence of continuous line segments. For a given
case, the set of line segments could be thought of as a ‘profile’ (Brunsdon et al.
1997). Ladder plots or dot and line diagrams are variants of PCPs. They are mainly
used to compare measurements or ranks before and after medical treatment, i.e.
most applications show only two axes (e.g. Leuschner et al. 2008). If the treatment
has no effect on the variables considered, the diagram looks like a ladder.

PCPs also bear some similarity to radar charts, also known as polar diagrams,
spider charts, or star plots, for which the axes are drawn as spokes of a wheel.
Such plots have been applied in archaeological research (e.g. Posluschny 2003).
According to Friendly (2009), such diagrams were already used by Georg von Mayr
in 1877. However, radar charts are mostly applied to present a low number of cases
or group averages, and the scaling of the axes is generally different.

Another complete 2D representation of high-dimensional points is by Andrews
curves (Andrews 1972). The impact of the variables placed on the low frequency
terms is highest in this Fourier series representation (Scott 1992, p. 13). However,
PCPs are more intelligible for archaeologists because they treat the variables in a
symmetric fashion.

PCPs have been criticized for their limited applicability to large data sets, i.e.
they create much ink (Scott 1992, p. 16). Scott discusses plotting random subsets
as a method to address this issue but notes that this approach does not generate
precisely reproducible results. Most archaeological data sets comprise of less than
1,000 cases which alleviates the ‘much ink issue’ somewhat.

4 First Experiments with Archaeological Data

At first, we investigated if PCPs can be applied successfully to visualise our
test data. Therefore, we carried out some experiments with a short rudimentary
program which generated simple PCPs and used the geographic information sys-
tem Maplnfo (http://www.pbinsight.eu/uk/products/location-intelligence/mapinfo-
professional/mapinfo-professional/) for labelling, thematic displays, and data base
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queries. The visualisation results for the archaeological data created by this
procedure and the exploration possibilities were promising.

However, we were aware that a geographic information system (GIS) like
Maplnfo is not quite the appropriate tool for this purpose. So we tried to find
software which is (i) readily available for archaeologists, (ii) allows to reproduce the
results created by our initial approach and (iii) supports some interactive querying
and manipulation of the graphic results. Only very few archaeologists have access
to expensive statistics packages, and the command line interface of R deters most
colleagues.

At the time of our investigation, we tested only the open source software GGobi
(www.ggobi.org), which is also available in R. Later on we found that the free
software XDAT (http://www.xdat.org) as well as XmdvTool (http://davis.wpi.edu/
xmdv) are alternatives. GGobi provides a large range of options and supports scatter
plots linked to the PCPs. However, we found that it was quite complicated to
reproduce the results we had created with our rudimentary program and subsequent
manipulations in MapInfo. The GIS approach and the GGobi user interface are quite
different, details are discussed below. Many archaeologists are used to working with
a GIS, and therefore we thought of providing a software which creates PCPs and
reproduces some of the functionality of a GIS.

S The MultiPCP Program

We extended the initial rudimentary program so that it displays the PCPs and
supports typical GIS features like zooming, an info tool, and thematic displays. The
data input format is CSV, which can be generated easily with spreadsheet programs.
The CSV format is configurable, i.e. field separators, field delimiters etc. can be
entered by the user.

A configuration dialogue allows to assign roles like coordinate or thematic to
each variable, to modify the axis sequence interactively, to select the colours for
thematic display and to configure the legend, to select multiple plots and some
other options. These parameters as well as the CSV configuration can be saved to a
configuration file.

Similar to the functionality provided by a GIS, two options are supported for
thematic display of a variable: (i) the option ‘individual’ lists all field entries and
allows the user to assign a colour to each entry, (ii) the ‘range’ option is available
for interval or ratio scale variables: the user can specify the number of ranges, the
minimum and maximum value of each range as well as the corresponding colour.

In general, the drawing sequence of the profile lines in the thematic plot is
not fixed so that a red profile line can overprint a green one or vice versa. With
MultiPCP, if only one thematic colour except black was selected, the coloured
profile lines are plotted in the foreground. When several thematic colours were
chosen the multiple plot option generates a set of PCPs; each of these PCPs
highlights one of the non-black colours in the foreground, and all other profile lines
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time
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— mid-b
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® Titelberg

Lamb. 4 4/1A Dressel 1A Dressel 1B

Fig. 1 Thematic PCP of the amphorae data set. The profile line corresponding to the Titelberg
(Luxembourg) context is highlighted by black dots

are plotted in black (e.g. Fig. 2). This feature addresses the “much ink” issue. As far
as we know, the multiple plot feature is unique and not available in other software
creating PCPs.

The line width is set to a constant value for all profile lines, or alternatively,
a numeric variable can be selected from the data table that controls this property.
Either the variable stores the desired line width, or the first quantile of these field
values is assigned the smallest line width, the second quantile is displayed with
somewhat increased line width, and so on.

An alternative method to highlight a profile line or a group of these is by
searching the table and marking the hits by dots. The colour of the dots can be
selected by the user.

6 Application to Archaeological Data

Figure 1 presents the PCP created by MultiPCP for a frequency table listing 22
archaeological contexts with four amphorae types. In the plot, the axes for the
amphorae types Lamboglia 4, Stockli 4/1A, Dressel 1A, and Dressel 1B are shown
sorted according to their chronological sequence from early to late. A thematic
display including a legend was generated based on the time attribute. The Titelberg
context, which is highlighted by black dots, is assigned to the late phase, but it is
evident that all other late contexts are probably later because the Titelberg profile
line is closer to the mid-b phase contexts.

In general, the late contexts are quite different from the earlier contexts due to
a high proportion of Dressel 1B amphorae. The Dressel 1B axis also shows non-
overlapping intervals for the two middle period context groups. The early contexts
exhibit a higher percentage of both Lamboglia 4 and Stockli 4/1A amphorae than all
later contexts. So the PCP shows that the four phases form well separated groups,
and the contexts belonging to the two mid phases are closer to each other than to the
earlier or later contexts.
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Fig. 2 Two linked PCPs for the weapons of the sixth century data set. In the first PCP, the
Thuringian cemeteries are highlighted by grey dots

Figure 2 presents two thematic PCPs created with the multiple plot option. The
plots show the ethnic group classification of sixth century cemeteries, focusing on
the weapons. In the upper PCP, all records are depicted in black except for the
Frankish cemeteries, which are represented by light grey lines in the foreground.
Similarly, the profile lines corresponding to the Alemannic cemeteries are in
the foreground of the lower plot. Moreover, the three Thuringian cemeteries are
highlighted by dark grey dots in the upper PCP. We assume that the reliability of
the data is higher for large cemeteries than for those including only a few graves.
Therefore, a higher weight is assigned to the large cemeteries, i.e. the line width is
controlled by the number of graves recorded for each sixth century cemetery. The
four line width groups are calculated by MultiPCP on the basis of the quartiles.

The combination of both plots shows that Frankish cemeteries typically include
high percentages of the axe weapon type, and the proportion of spearheads with a
slit socket is in general higher than that of Alemannic cemeteries. A high proportion
of spearheads with an unslit socket is typical for an Alemannic cemetery, along with
a fairly large amount of swords. The proportion of saxes and shields varies within
both ethnic groups. Two other ethnic groups are part of this data set: Thuringians
and Saxon people. The grey dots marking the three Thuringian cemeteries indicate
that these form a fairly homogeneous group with respect to weapon proportions.
However, this does not apply to the eight Saxon cemeteries (not shown).

After zooming into the first plot, the info tool allows to identify the cut point on
the “spears, slit” axis above which all cemeteries are Frankish. Figure 3 shows a
thematic display based on this cut point value.
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Fig. 3 Brushing the PCP by a thematic display based on a user-selected cut point

The result of brushing identifies a set of typical Frankish cemeteries with a
low proportion of spearheads with unslit socket and also a low proportion of
swords. Only one of these Frankish cemeteries has a fairly high proportion of
swords, and the line width indicates that this cemetery is in the lowest quartile
with respect to the number of graves. Using the info tool, this cemetery can be
easily identified: Eberfingen in the German state Baden-Wiirttemberg, with only
seven graves containing a total of ten weapons. This example shows how MultiPCP
supports the interactive exploration of multivariate data.

7 Comparison with Existing Programs

A detailed and comprehensive comparison is beyond the scope of this paper. The
focus of this section is mainly on features where existing programs do not meet the
requirements of archaeologists.

The input data to GGobi, XDAT, and MultiPCP is to be provided in CSV format.
However, only XDAT and MultiPCP support some CSV configuration options.
Therefore users working with a German spreadsheet program are faced with quite
a few difficulties when trying to enter this data into GGobi. Moreover, the program
crashes on reading a German Umlaut or a French accent. The program Excel2Xmdv
converts Excel and CSV format files into the native format of XmdvTool. Neither the
Readme-file nor the error messages of Excel2Xmdv provide details with respect to
the required input format which must be “correct and valid”. In our tests, conversion
was successful only after deleting all columns with non-numeric data, though the
test data provided with the program includes non-numeric data.

In general the multitude of options of the XmdvTool is impressive, yet difficult to
comprehend. After spending hours on reading the help files and trying to understand
the user interface, we gave up. It is well possible that XmdvTool is able to perform
all the functionality we require. But the user interface is not quite suitable for
archaeologists. For this reason, only the output possibilities of the tool are discussed
in the paragraphs to come.
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An important topic with all PCP software is brushing, i.e. interactively selecting
an interval on one axis and highlighting all profile lines within this interval. The
MultiPCP brushing option (see Fig. 3) might appear tedious compared to that of
XDAT and GGobi; however, this approach allows to identify the exact cut-points in
a straightforward way so that these are available for subsequent analysis.

Similar to a GIS program, MultiPCP and XmdvTool allow to zoom in and out
of the diagram. In GGobi, zooming is limited to the screen size, alternatively a
transformation or a selection can be carried out. Selections are also supported by
XDAT, moreover the length of the axes is user-specified, whereas the distance
between the axes is fix.

The info tool corresponds to the identification mode in GGobi that allows
labelling individual records with one variable value (Cook and Swayne 2007, p.
41). However, only one attribute is shown. The info tool also shows information on
the axis when its label is selected, the alternative programs provide this information
by menu options. Identification options are poor in XDAT.

Axes for nominal variables are displayed in both GGobi and XDAT but not in
MultiPCP. Suggesting an ordered sequence by depicting a nominal scale variable
on an axis did not seem appropriate.

According to our tests, both GGobi and XDAT do not allow to save the resulting
diagrams for publication. As mentioned above, using R for creating high resolution
graphic output is beyond the scope of most archaeologists. So it seems that screen
shots are the only possibility to save the image created, yet with a low resolution.
In our view this is a serious drawback of both programs. XmdvTool is able to store
the resulting raster image in the portable pixel map (ppm) format. In our tests, only
the image visible on screen was exported, and the colours of the image created by
XmdvTool did not agree with the display produced by our image viewer. So it seems,
that screen shots provide better results. MultiPCP supports the BMP, the SVG and
the MIF-format (MapInfo interchange format) for saving PCPs for publication or
for processing in another program.

8 Future Work

Some of the options provided by GGobi or XDAT are also useful for archaeological
data sets and can be implemented fairly easily: these include user configuration of
axis parameters like colour and line width, axis tics and labelling of the tics, lower
and upper limit of each axis, inverting an axis, and a vertical display.

Axes derived from standardizing the variables as described by Brunsdon et al.
(1997) may provide a more accurate picture for variables on an interval or ratio
scale than axes scaled on the basis of the minimum and maximum value for each
variable.

As mentioned above, the radar chart bears some similarity to the PCP. A PCP can
be converted to a radar chart by drawing the axes as spokes of a wheel. To emphasize
differences in small values, axes could be inverted so that the maximum of each axis
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is at the centre of the chart. Moreover, radar charts are often used to depict average
profile lines for groups rather than each individual profile line. Multiple PCPs could
also show the average profile line for a group allowing the visual assessment of each
variable’s deviation within the group.

The impact of the ordering of the axes on detecting patterns in the PCP is
crucial (Cook and Swayne 2007, p. 24). According to Brunsdon et al. (1997), high
correlation between neighbouring axes is required to enhance outlier detection. In
our view, the absolute value of rank correlation provides an appropriate dissimilarity
measure for an optimal ordering of the axes. However, optimising the ordering
in terms of some similarity measure between neighbouring axes is NP-complete
(Ankerst et al. 1998). Due to the similarity with the travelling salesman problem,
variants of the heuristics developed for this problem can be applied to find a near-
optimal ordering of the axes. An alternative method of sorting the axes is proposed
by Yang et al. (2003) based on a hierarchical ordering of the dimensions.

The MultiPCP program will be made available on the first author’s web site
www.stratify.org.
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Classification of Roman Tiles with Stamp
PARDALIVS

Hans-Joachim Mucha, Jens Dolata, and Hans-Georg Bartel

Abstract Latterly, 14 Roman tiles were excavated in Nehren in the farthest eastern
part of the former Roman province Gallia Belgica. Ten of them have the stamp
PARDALIVS that was never seen before. First, this new set of tiles is compared
with all currently determined provenances of Roman tile making in the northern
part of Germania Superior based on their chemical composition. The discriminant
analysis indicates that the set of tiles of Nehren is different. However, this class
looks not homogeneous. Therefore, second, exploratory data analysis including data
visualizations is performed. Additionally we investigated the tiles of a provenance
with not yet identified location (NYI3) in detail because their statistical difference
to the tiles of Nehren is the lowest among the considered provenances. A serious
problem is the small sample size. In order to increase the latter one, we propose some
combinations of bootstrapping and jittering to generate additional observations.

1 Introduction

Roofing with tiles and underfloor heating with brick-constructed hypocausis were
most common in the north-western provinces of the Roman empire. Newswor-
thy with respect to Roman tiles research, the archaeometrical investigation of
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Fig. 1 A Roman tile with s e
the stamp PARDALIVS .

brickstamps of PARDALIVS (late Roman empire) can be reported. Figure 1 shows
a fragment of a tile with this stamp. The location of the findings is Nehren on the
River Mosel, nearby the former imperial residence Trier. The roof tiles belong to a
Roman mausoleum equipped with a grave-chamber (Eiden 1982). Their chemical
composition was measured by X-ray fluorescence analysis at the laboratory of Freie
Universitét Berlin (Gerwulf Schneider). Altogether nine main elements and ten trace
elements were measured (for details, see Table 2 in the Appendix that contains all
measurements).

First, a classification task was carried out: The new set of 14 tiles is compared
with all currently known provenances of Roman tile making in Roman Southern
Germany. Tiles of eight established provenances are the basis of the upcoming
comparisons: see Mucha et al. (2002) and Mucha et al. (2008). For comparison
purposes the linear discriminant analysis (LDA) is the first choice here. This method
was described by Fisher (1936) for two classes and extended to more than two
classes by Bryan (1951). Without any doubt, the class of tiles of Nehren looks very
different. However, this class is not homogeneous. Therefore, second, exploratory
data analysis including data visualizations is performed. Finally we investigated
the tiles of the provenance “Not yet identified 3” (NYI3) (see, for instance, Mucha
et al. 2002 and Bartel 2009) in more detail because their statistical difference to
the tiles of Nehren is the lowest among all considered classes of tiles. Here, a
serious problem is the small sample size, 14 and seven observations, respectively.
The series of the analyzed tiles can nowadays not be increased by archaeologists,
because already all known tiles have been made available. In order to increase
the sample size, we propose some combinations of bootstrapping and jittering to
generate additional observations.

2 Classification Results: The New Tiles as a Class

Here the new set of 14 tiles of Nehren is considered as a class that is defined
from the archaeological point of view. It is compared with all currently known
provenances of Roman tile making in the former province Germania Superior.
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From the archaeological point of view, tiles with the same stamp could define
a provenance (except the brickstamps of legions in the case that they operated
globally). The stamp PARDALIVS suggests a private person in the background.
Therefore, the main question arises: Is the class of tiles of Nehren significantly
different from the known classes also from the statistical point of view? Or can
they be assigned to a known provenance to a high degree?

For statistical data analysis, our starting point is the / x J data matrix X = (x;;)
with I observations and J variables. Because here we have quantitative data of
different scales, the following simple standardization of all variables to mean value
equals 1 was figured out:

xy=—L i=12,....1, j=12...J, (1)

where u; is the average of the original measurements ;; of the variable j. By the
way, a transformation such as (1) is recommended for several multivariate methods
(cluster analysis, principal components analysis based on the covariance matrix, K
nearest neighbors method) but it does not affect the results of LDA.

First a LDA was carried out with the tiles of Nehren as a new class that has
to be compared with the eight established provenances (concerning some basics
on discriminant analysis, see Mucha 1992). The learned classifier yields no errors
on the training set with respect to the class Nehren. However, cross-validation
(concretely, the leave-one-out estimator) gives an error rate of about 2 % concerning
the 14 tiles of Nehren. The result of pairwise statistical comparison of classes
is that the provenance NYI3 is most similar to class Nehren among all known
provenances. Usually, that was it: The new findings of Nehren seems to be a
new, but inhomogeneous provenance also from the statistical point of view. But,
what about the inhomogeneity? To answer this question, second, classification
and clustering methods are performed that consider the tiles of Nehren as unseen
observations.

3 Classification Results: Tiles of Nehren as Unseen
Observations

We repeated the LDA with all eight provenances as given classes, but the 14
tiles of Nehren are considered as unseen observations. The latter do not affect the
statistical analysis. Figure 2 shows the LDA plot of the eight classes C1,..., C8.
Here additionally C9 represents the tiles of Nehren. These supplementary (i.e., non-
active) observations were projected on the plane spanned by the first two canonical
variables. The plot looks very similar to the principal components analysis plot
(Bartel 2009). The LDA plot of the supplementary observations presents clear
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Fig. 2 LDA plot of all Roman tiles (eight provenances (classes C1-C8) and 14 tiles (C9) as
supplementary observations)

Fig. 3 The four fragments of tiles from Nehren without stamp under consideration

assignments of ten observations (N71-N78, N81, and N82) to class C4 (i.e., NYI3)

and four observations (N79, N80, N83, and N84) to class C3 “Rheinzabern B”.
The K nearest neighbors method presents the same result as LDA for different

number of neighbors K = 1, 2, and 3: Four tiles belong to the provenance
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Fig. 4 LDA plot of all considered Roman tiles. Here the third canonical variable discriminates
quite clearly between the two classes C9 (“Nehren”) and C4 (NYI3) and all remaining classes

“Rheinzabern B” and ten to NYI3. (Concerning some basics on K nearest neighbors
methods, see Mucha 1992.)

Also the same result is obtained by Ward’s hierarchical clustering (Spéth 1980):
Four tiles belong to the provenance “Rheinzabern B” and ten to NYI3 if one cuts the
dendrogram at K = 8,9, 10, 11 clusters. When cutting the dendrogram at K = 12
clusters then ten tiles build an own cluster. This cluster is very stable because it does
not disappear by cutting the dendrogram until K = 45 clusters. The question arises:
Is there an archaeological reason for both the stability of the cluster of ten tiles and
the inhomogeneity of the 14 tiles of Nehren? It comes out that exactly the four tiles
that are grouped into “Rheinzabern B” are without any stamp. Figure 3 shows these
four Roman tile fragments. Because of this knowledge and the outstanding stability
another LDA was carried out with the ten stamped tiles PARDALIVS as a new class
that has to be compared with the eight established provenances. The remaining four
unstamped tiles are taken as unseen observations here. Figure 4 shows the LDA
plane spanned by the first and third canonical variable. At the top, the subset of the
class C9 consisting of the ten tiles PARDALIVS seems to be very homogeneous.
Without any doubt, the four unstamped tiles N79, N80, N83, and N84 are assigned
to the provenance ‘“Rheinzabern B”.
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Fig. 5 Mapping of several
cuts of the bivariate density
of the first two principal
components (63.2 and 18.1 %
of variance, respectively)

Table 1 Univariate statistics of the ten tiles with stamp PARDALIVS (N71-N78, N81, and N&2).
Oxides are in %, and trace elements are in ppm, see Table 2

Variable (oxid)
Result SiO, TiO, AlL,O; Fe,O;  MnO MgO CaO Na,O K,0
Min 67.08 0.856 16.27 6.010 0.0426 2941 0.281 0.1914 4.119
Max 68.64 0910 17.45 6.212 0.0527 3.866 0477 0.2636  4.502
Median 6744 0.876  17.05 6.146 0.0466  3.133  0.382 0.2369  4.406
Average 67.68 0.877 17.00 6.134 0.0466 3.218 0.382 0.2321 4.371

St.dev. 0.50 0.015 0.33 0.078 0.0032  0.258 0.070  0.0254  0.121
Variable (trace element)

Result v Cr Ni Zn Rb Sr Y Zr Nb Ba

Min 923 1074 485 2198 1650 556 23.6 237.8 141 3933

Max 1132 119.7 595 261.8 1892 61.2 300 2594 193 441.0

Median 9.1 1131 509 2327 1786 593 2777 2459 168 420.6
Average 99.8 113.0 519 2344 1790 592 274 246.7 16.7 4194
St.dev. 5.6 4.2 3.4 12.2 7.2 1.9 1.8 7.6 1.6 12.6

4 Comparison Between the Classes PARDALIVS
and “Not Yet Identified 3” (NYI3)

Finally we investigated the tiles of the provenance NYI3, because their statistical
difference to the PARDALIVS-tiles is the lowest among all considered classes of
tiles, see Fig. 4. A serious problem is the small sample size: ten (PARDALIVS) and
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seven (NYI3) observations, respectively. These two series of the analyzed tiles can
nowadays not be increased by archaeologists because already all known tiles have
been made available. In order to increase the sample size, we propose data jittering
to generate additional observations by applying

X,‘jk=xl‘jk+(r,'jk—0.5)é‘jkz, i=1,2,...,], j=1,2,...,.], k=1,2,
(2)

where r;;; are random generated numbers from the interval [0, 1) (uniform
distribution), s« is the estimate of the standard deviation of variable j in class k,
and the parameter z defines the degree of disturbance. Figure 5 shows several cuts
of the bivariate density of the first two principal components. On the left hand side
NYI3 and on the right PARDALIVS are located. They look well separated of each
other. Here a tenfold increase by jittering is performed, and the degree of disturbance
is chosen z = 3. Altogether the number of observations is 170 (= 7 % 10 4 10 * 10,
17 = 74 10 of which are original observations). The class PARDALIVS looks very
homogeneous, see also Table 1. Obviously, the roof tiles with stamp PARDALIVS
define a new provenance. The tiles without a stamp of the mausoleum are quite
different to PARDALIVS. They look similar to the provenance ‘“Rheinzabern B”,
see Fig. 4.

S Archaeological Valuation of Results

All known brickstamps of the brickmaker PARDALIVS belong to the same
brickyard. The architectonic context of the tombs at Nehren hands down some other
bricks and tiles without any stamps. These unstamped ones belong mainly to the
roofing of the monuments. Some of them are used for plastering the walls and
ceilings. These fit to the products of late bricksite of Rheinzabern in Palatinate.
Perhaps they belong to a repairing set, and they are not part of the primary
building of Nehren tombs-architecture. In any case these bricks and tiles give
evidence to well functioning and prospering economic system in the environs of
Emperors residence of Augusta Treverorum (Trier), protected by late river Rhine-
limes. The statistical investigation has given decisive arguments for archaeological
interpretation of the Roman tiles, excavated at Nehren.

Appendix

Table 2 contains the measurements of the tiles of Nehren. It completes the
description of Roman tiles that was already published by Mucha et al. (2009).
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Table 2 Measurements of 14 tiles of the Roman mausoleum. The oxides are in percent and the
trace elements are in ppm

Variable (oxid)

Name SIOZ T102 A1203 F6203 MnO MgO CaO Na20 K20

N71 67.08  0.867 17.45 6.212 0.0435 3.086 0455 0.2529 4502
N72 67.34  0.863 16.93 6.078 0.0426 3866 0477 0.2232 4.119
N73 67.90  0.885 17.11 6.088 0.0442  3.044 0281 0.2310 4.370
N74 68.02  0.881 16.88 6.104 0.0494 2941 0463  0.1914 4412
N75 67.43 0910 17.14 6.188 0.0465 3264 0320 0.2583  4.401
N76 67.46  0.873 17.19 6.199 0.0485 3.084 0415 0.2427 4439
N77 67.33  0.877 17.29 6.208 0.0434  3.140 0374 0.1918  4.492
N78 68.26  0.856  16.76 6.038 0.0467  3.126 0315 0.2436  4.303
N79 61.03 0969  21.55 7.493 0.0926 2158 2.708  0.7330  3.075
N80 63.25 0.898  20.52 6.860 0.0849 2516 1.899  0.7577  3.051
N8l 67.39 0.883  17.00 6.211 0.0527 3321 0390 0.2636  4.439
N8&2 68.64 0.874 16.27 6.010 0.0487 3312 0328 0.2222 4233
N83 63.87  0.802 17.73 7.525 0.1115 3.677 0.864 0.2612  5.053
Ng4 61.88 0.995 22.16 6.999 0.0847  1.805 2.118 0.6354  3.157

Variable (trace element)
Name V Cr Ni Zn Rb Sr Y Zr Nb Ba

N71 1132 119.7 537 261.8 189.2 61.1 300 2447 146 4267
N72 96.8 1169 495 2411 1708 574 236 2378 156 4193
N73 99.3 1085 49.6 2272 181.0 60.7 292 2470 17.3  410.0
N74 989 112.0 492 2306 1789 612 270 2594 182 4207
N75 103.3  115.1 485 2347 1783 594 263 2551 193 4205
N76 99.8 1141 595 2435 1873 61.0 27.6 2415 162 4285
N77 979 1166 542 2361 1839 591  27.8 2386 179 441.0
N78 954 111.1 532 2244 1780 582 283 2397 170 413.0
N79 1244 1202 725 1417 1268 163.1 31.6 1785 140 4822
N80 108.4 109.1 700 127.6 1256 1479 246 161.6 151 4318
N8l 100.8  107.4 521 2252 1779 584 281 2485 165 4212
N8&2 923 1082 495 2198 1650 556 259 2545 141 3933
N&3 87.8 107.1 68.6 72.8 183.4 845 37.6 1937 158 464.1
Ng4 116.7 1309 739 1322 1320 1414 276 1683 173 430.6
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Applying Location Planning Algorithms
to Schools: The Case of Special Education
in Hesse (Germany)

Alexandra Schwarz

Abstract In Germany children with special educational needs are still predomi-
nantly taught in special schools. Although segregative schooling stands in conflict
with the legal situation, only little development towards inclusive concepts has
been made. One substantial argument are the costs involved by the required,
extensive reorganization of the educational system. By using location planning
procedures, this paper describes how organizational effects and the financial impact
of implementing inclusive settings can be analyzed systematically. Schooling of
children with learning disabilities in the German federal state of Hesse is used to
exemplify and discuss the approach. The results indicate that especially in rural
regions, where school enrollment is decreasing, preference should be given to
inclusive concepts in order to provide a demand-oriented school system where
schools are close to home for all students.

1 Introduction

In contrast to many other European countries like Denmark, Norway, Portugal
and Spain, German children with special educational needs are still predominantly
taught in special schools (European Agency for Development in Special Needs
Education 2011; Sekretariat der Staendigen Konferenz der Kultusminister der
Laender in der Bundesrepublik Deutschland 2011). In school year 2008/2009, 6.0 %
of all German students are identified to have special educational needs. About 81 %
of them attend special schools. The segregation of students with special needs
stands in conflict with the legal situation in Germany as education acts give clear
precedence to inclusive schooling. The United Nations convention on the rights of
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persons with disabilities — which Germany ratified in 2009 — has reinforced the
political and educational debate on implementing inclusive concepts.

Different special needs, like learning disabilities or sensory impairments, induce
different instructional strategies and organizational requirements (e.g. handicapped
accessible classrooms). Therefore, the costs incurred by the required reorganization
of the school system are of great importance for policy makers. But until recently,
the organizational effects and the financial impact of bringing inclusive education
in practice have not been studied systematically on the micro level of students
and schools. Is it really feasible — from an organizational perspective — to pass on
special schools and send all students to regular schools? What would be the financial
consequences, €.g. in terms of personnel costs, investment in equipment and devices
and ways to school?

Hence, this paper does not focus on pedagogical motives, but on quantitative
aspects of inclusive concepts. The empirical analysis described here accounts
for varying preferences by comparing potential supply models for students with
special needs. It directly incorporates a recipient-oriented model as it allows for
a co-existence of special and regular schools. Schooling of children with learning
disabilities in the German federal state of Hesse is investigated as an example.'
Based on location planning concepts and a simulated allocation of students with
special needs to regular schools the organizational consequences and financial
effects of inclusive schooling are estimated.

2 Special Needs Education in Hesse

The analysis is based on administrative data of the Hessian school statistics for
school year 2008/2009, which has been provided by the Hessian Ministry of Culture.
In total 629,828 students attending any of the 1,802 public schools in Hesse are
analyzed.” Using administrative data turns out to be a particular challenge: Firstly,
schools are not labeled with respect to special needs education in a standardized
manner. There is especially lack of information on which schools provide preventive
or integrative measures (e.g. special classes for speech impaired students or joint
classes). So in case of doubt, schools are classified by means of their students, i.e.
regular schools are attended exclusively by students without special needs, whereas
schools with integrative settings are attended by students with and without special
needs (referred to as ‘integrative schools’). The supported types of special needs are
determined according to special lessons given in school (cf. Table 1).

'In Germany, education is controlled by the federal states (the “Laender”), i.e. each federal
government is responsible for its educational policy and school system.

2Public schools are fully publicly funded and do not charge tuition. Privately funded schools are
excluded as they do not report relevant information, e.g. on students per grade.
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Table 1 Special educational needs and support by type of school

Estimated no. of students

Special educational Special need Primary  Secondary Schools

need rate* (in %)  level level Special  Integrative Regular
Learning disability 46.18 4,179 7,113 105° 18 -
Visual impairment, 1.27 60 135 6 0 -
blindness
Auditory 3.33 244 459 6 0 -
impairment,
deafness
Speech impairment 9.38 805 1,379 14 7 -
Physical impairment 5.76 465 858 8 2 -
Mental disability 17.20 1,483 2,575 41 1 -
Emotional/social 9.19 779 1,366 23 8 -
development
(Long-term) illness 7.69 660 1,157 18 0 -
Schools total 185 655°¢ 962
Students total 100.00 8,675 15,060 21,154 285,756 322918

# Students with a specific need related to all students with special educational needs

® Including 97 ‘special schools for the learning-disabled’

¢ Joint lessons and preventive measures are most frequently not reported differentiated with respect
to concrete special needs

Secondly, we do not have access to individual data on student level due to data
protection. The total number of students with special needs is available for every
school, the concrete need they have is not specified though. In addition, residential
information is only reported per school on the municipality level; students’ postal
addresses are not provided. Therefore, the number of students with a concrete
special need is estimated for each municipality by multiplying the number of
students with special needs by the special need rate which is given for Hesse in
total (Sekretariat der Staendigen Konferenz der Kultusminister der Laender in der
Bundesrepublik Deutschland 2011). The results for students at primary level (grades
one to four) and secondary level (grades five to nine) are given in Table 1.

3 Evaluation of Alternative Supply Models

The analysis aims at comparing alternative supply models for students with special
educational needs, especially at evaluating quantitative effects of an ubiquitous
implementation of inclusive schooling concepts. In this short paper, the evaluation
is restricted to two scenarios which are defined for allocating students with special
needs to schools:

» Segregation (SEG): Attendance of a special school supporting the special need at
hand (reference model, currently prevailing concept).
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School for the learning-disabled
A A A A A
Learning-disabled student

o o o

Regular school
O

Il urbanized area

[ Hessian districts

|:| Hessian municipalities

Fig. 1 Location of students with learning disabilities, regular schools and schools for the learning-
disabled in the rural district of Hersfeld-Rotenburg. Students are shaded according to the special
school they are assigned to

* Inclusion (INC): Attendance of any regular school (even if it is not yet supporting
special needs) with joint lessons of students with and without special needs
(reorganization).

By simulating the allocation of students with special needs to schools according to
the defined scenarios it is possible to determine the effects of the two competing
concepts. In a first approach, a finite set of schools is assumed, i.e. no schools
are closed or established, and all schools accommodate students. Each school
s,s = 1,...,S is of a defined type (special, integrative, regular). This set of school
locations is restricted to a specific subset with regard to each scenario (SEG: Special
schools supporting the observed need, INC: Regular and integrative schools). The
demand for special needs education is measured on the municipality level. For each
of j = 1,...,426 Hessian municipalities the number of students with (n; ) and
without special needs (7) is observed. The number of students with special need
k in municipality j (n;x) is estimated as explained above. As places of residence
within municipalities are not available, we spread n; ; students randomly over the
urbanized area of municipality j, using methods described in Beyer (2004). Figure 1
gives an example of the resulting random spatial distribution of students at the
primary level.

By each school location s, fixed and variable costs are incurred. Fixed location
costs f; consist of all expenses for maintaining school s (e.g. rentals, insurances,
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personnel) which occur independently of the number of students. Hence, when
optimizing allocation with respect to a finite set of schools, these costs are not part
of the target function. In contrast to this, variable location costs v;(n) depend on
the number and the composition of students assigned to a school. This especially
applies to expenses for teachers and educators. In addition, we have to account
for costs for transporting students to schools. Again, the fixed parts of these costs
(personnel, maintenance of cars or busses) are not taken into consideration. Variable
transport costs depend on the distance between a student’s place of residence and
the school location. If student i is located in an area by coordinates (x;, y;) and
school s is located at (as, bs), this distance is given by d,; usually the Euclidean
distance measure is used.

In finding the optimal allocation of students to schools in terms of the costs
described we would be facing a typical transportation-allocation problem (Nahmias
2009; Domschke et al. 2008) which requires a simultaneous minimization of
distances of students to schools and variable location costs. These costs are
unknown so far, instead we are interested in estimating them. Hence, the costs of
the different supply models are evaluated in a second step, based on a solution to
the simplified allocation problem:

n S
Minimize F(a,b) =c¢ Z Z (dis|ng < M) (H

i=1 s=1

with n, = Y"7_, I;(s) where I;(s) is the indicator function for allocating students
to schools:

Ii(s) = 1 if student i is allocated to school s Vs=1...58 2)
0 else

In Eq. (1), ¢ denotes (equal) transport costs per kilometer, and M, denotes the
maximum capacity of school s. It is important to note that students assigned to a
regular or integrative school in scenario INC are composed of n, o students without
special needs who already attend the school and 7, students with special need k
who are assigned there (n; = 1,0 + nsx).

4 Results for Students with Learning Disabilities
at the Primary Level

Rather than analyzing all types of special needs at different levels of education, the
focus of the analysis is on the most frequent special need — learning disabilities — of
students at the primary level (grades one to four) in Hesse and on the more detailed
description of the results for students and schools. To compare the two defined
scenarios, 4,179 students (cf. Table 1) have to be allocated to a special school and
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to a regular school. The subset of special schools consists of 97 ‘special schools
for the learning-disabled’ (scenario SEG); in scenario INC, 1,213 regular schools
supplying lessons at the primary level form the relevant subset of schools.

Concerning the maximum capacity M, in Eq. 1 we assume that there is room
enough to establish four additional classes at each regular school (one per grade).
In joint lessons, the number of students per class should not exceed 20, where up to
three students may have special educational needs (Hessisches Kultusministerium
2006). This leads to three possible models for joint lessons: 17/18/19 students
without special needs plus 3/2/1 student(s) with special needs. As the number of
actual classes at the primary level is not reported in our data, we estimate it by
assuming that each class is currently attended by 25 students, which is the reference
value given in Hessisches Kultusministerium (1992). The costs of the different
models are evaluated in a second step after the specific allocation problem has been
solved. These solutions are determined by an algorithm in which each student is
assigned to the nearest regular school if this assignment still goes in line with the
specific model for joint lessons (17 4 3, 18 4- 2, 19 4 1) and the maximum capacity
of this school. Otherwise, her/his allocation to the second-nearest school is tested
in the same manner, and so on. The capacity of special schools is assumed to be
unrestricted.

Table 2 summarizes the results of the simulated allocations. In the inclusive
settings, the share of students with learning disabilities which is allocated to their
nearest regular school depends more on the area where students live than on the
model assumed for joint lessons. Using the 17 4 3-model, about 96 % of these
students living in rural regions are assigned to the nearest school. Although schools
in metropolitan areas are more likely to be fully booked, there are still about 85 % of
the students with learning disabilities, who can be allocated to their nearest school.
The higher share of students which is assigned to another than the nearest school
influences the distribution of ways to school. The maximum distance between
assigned school and place of residence is 7.7km in the large Hessian cities and
nearly 9km in the urbanized areas surrounding these cities. In rural regions the
maximum distance is 5.6 km only. But the mean distances to the assigned schools
do not differ significantly, either between the regional types or between the different
models of joint lessons.

The allocations to the nearest school for the learning-disabled indicate that
distances to these schools are shorter in large cities, but — with respect to the total
population of students — they are much larger than to regular schools. With respect
to the way to school, special schools for the learning disabled may be an alternative
for students in the city of Frankfurt am Main, for example, but for most students in
rural districts they would not be. Figure 1 illustrates this by means of the Hessian
district of Hersfeld-Rotenburg.

The results also suggest that not all schools would be affected by the implemen-
tation of inclusive settings. For example, for the 19 4+ 1-model of joint lessons we
find that 206 out of 1,213 schools (about 17 %) are not assigned any students with
learning disabilities. Another 65 schools do not need to establish additional classes,
although they would have students with special needs (cf. Table 3, amounts to 271
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Table 2 Allocations and distances to assigned regular and special school by type of region®

Students % Students Distance to
with assigned to . .. assigned school
learning Joint  Mearest school (in km)
Municipalities disabilities Scenario lessons 1st 2nd  3rd Min. Mean Max. Sum

Metropolitan areas

186 2,548 INC 1743 8422 12.05 2.32 0.01 1.19 7.70 3,021
INC 18+2 83.52 12.21 275 0.01 1.20 7.70 3,047
INC 1941 8269 12.32 322 0.01 1.21 7.70 3,073
SEG 100.00 0.01 3.92 23.86 29,987

Urbanized areas

195 1,404 INC 1743 9402 491 078 0.03 1.73 7.36 2,434
INC 18+2 9330 541 085 0.03 1.75 8.46 2,457
INC 1941 9259 598 1.00 0.03 1.76  8.77 2,473

SEG 100.00 0.05 6.06 21.60 25,535
Rural areas
43 227 INC 1743 96.04 3.96 0.08 1.87 5.61 424
INC 1842 9559 441 0.08 1.87 5.61 425
INC 1941 95.15 4385 0.08 1.88 5.61 427
SEG 100.00 0.34 526 14.54 3,584

2 Type of region where student’s place of residence has been located

Table 3 Additional classes and additional personnel requirements by model for joint lessons

Additional pedagogical hours

Per student  All students,
Additional classes and week per month

Sum of saved

Joint distances (km)
lessons 0 1 2 3 4 Total Min. Max. Min. Max. per month
17+3 274 307 322 204 106 1,987 4 8 71,879 143,758 594,346
18+2 272 308 322 206 105 1,990 4 8 71,879 143,758 592,196

19+1 271 307 322 209 104 1,994 5 10 89,849 179,697 590,347

Note: All students: 4,179 students with learning disabilities; a month equals 4.3 weeks; a week
equals 5 days at school

schools), because they have small classes at the primary level, which may be due to
pedagogical concepts or (even more likely) to the demographic progress.

With respect to organizational and financial effects we further find for the
18 4 2-model of joint lessons, for example, that 1,990 additional classes have
to be established. In case every class at the primary level needs a full-time
teacher, this equals the number of additionally required teachers. If we assume
salary costs of 61,000 Euros per teacher and year, this would lead to additional
expenses of 10.149 Million Euros per month. Joint lessons require additional
pedagogical personnel, regulated between a minimum and maximum of hours per
week (Hessisches Kultusministerium 2006). For all students in the 18 + 2-model
between about 72,000 and 144,000 additional hours a month could be assumed.
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If these lessons would be given teachers or psychologists, the expenses for these
additional hours would be between 2.947 and 5.894 Million Euros a month.

Due to the differing number of students with learning disabilities between urban
and rural areas, about 60 % of the overall additional costs would incur in the
metropolitan areas and only about 7 % in the rural areas of Hesse. If we divide
the estimated salary costs by the total number of students with and without learning
disabilities — and obviously we should do so if we are concerned with inclusion —
the additional expenses are about 60—80 Euros per student and month. Added to the
average expenses per student at primary level in Hesse (about 370 Euros, Baumann
and Eichstaedt 2011), this would be an increase of between 16 and 21 %. And the
expenses still have to be discounted, especially by saved transport costs. Based on
the Hessian school law we can assume a reimbursement of 0.35 Euros per kilometer
and these savings would amount to about 207,000 Euros per month (cf. Table 3).
Hence, transport costs would play a minor role in discounting additional salary
costs, though this result will differ markedly if supply models for children with
physical or sensory impairment are considered. In addition, the simulations assume
suspension of all special schools. Hence, teachers may be relocated as well (which
significantly lowers extra salary costs) and unused school buildings may be for rent
and may generate additional (public) revenues then. Such a more comprehensive
estimation of variable and fixed costs should then serve as the input to solve the
transportation-allocation problem in a next step of the analysis.

5 Discussion

Using students with learning disabilities at the primary level in Hesse (Germany)
as an example, the paper describes a simulation-based approach to a systematic
evaluation of the organizational consequences and financial impact of inclusive
schooling. The results indicate that inclusive concepts should be preferred to provide
a demand-oriented school system where schools are close to home for all students.
This applies to rural regions in particular, where schools are being closed due
to the demographic progress and where school enrollment will further decrease.
Special schools may still be an option in large cities where schools get fully booked
much faster than in thinly populated areas. Therefore, it is important to abandon
the assumption of finite sets of schools in the next step of the analysis, i.e. to
allow schools to be opened or closed. By now, we have to simulate the spatial
distribution of students and we can only give a rough estimation of the costs incurred
by inclusive concepts, especially because access to individual administrative data,
e.g. on students’ residence and teachers’ qualification, is restricted. Hence, an ex-
ante evaluation of alternative schooling concepts is rather a question of data quality
than of statistical techniques for solving allocation problems.
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Detecting Person Heterogeneity in a Large-Scale
Orthographic Test Using Item Response Models

Christine Hohensinn, Klaus D. Kubinger, and Manuel Reif

Abstract Achievement tests for students are constructed with the aim of measuring
a specific competency uniformly for all examinees. This requires students to work
on the items in a homogenous way. The dichotomous logistic Rasch model is the
model of choice for assessing these assumptions during test construction. However,
it is also possible that various subgroups of the population either apply different
strategies for solving the items or make specific types of mistakes, or that different
items measure different latent traits. These assumptions can be evaluated with
extensions of the Rasch model or other Item Response models. In this paper, the
test construction of a new large-scale German orthographic test for eighth grade
students is presented. In the process of test construction and calibration, a pilot
version was administered to 3,227 students in Austria. In the first step of analysis,
items yielded a poor model fit to the dichotomous logistic Rasch model. Further
analyses found homogenous subgroups in the sample which are characterized by
different orthographic error patterns.

1 Introduction

Achievement tests in psychology and education are typically constructed with the
aim of measuring a specific competency uniformly for all examinees. This requires

The test was constructed for the Austrian National Educational Standards which is a governmental
project of the Austrian Federal Ministry for Education, Arts and Culture. By order of the Ministry
the construction for the pilot version of the orthographic test was conducted by the Center of
Testing and Consulting at the Faculty of Psychology, University of Vienna.
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students to work on the test items in a homogenous way. In psychology these
requirements are often modeled by the dichotomous logistic Rasch model (Rasch
1980) (also referred to as 1-PL model) which assumes a particular function between
the observed response of an examinee and the latent trait:

exp(6; — Bi)
1+ eXp(Qj — ,3,)

With the Rasch model it is assumed that for examinee j the probability of solving
item i only depends on the person parameter 8 (which is interpreted as the ability
of the examinee in this context) and the item parameter 8 (which is interpreted
as the difficulty of the item). Thus applying the model postulates person and item
homogeneity. The Rasch model has the advantageous characteristic that the test
score is a sufficient statistic for the person parameter (as well as the item score
is a sufficient statistic for the item parameter). Therefore conditional maximum
likelihood (CML) estimation can be applied (Fischer 1973).

Various model tests and fit indices are available to test the model fit of the Rasch
model on a data set. In the present study, Andersen’s Likelihood Ratio test was
applied for testing the global model fit (Andersen 1973):

P(X;; = 1]B;,0;) = (D

cL
s

[T cLs

s=1

Z = —2log 2)

The conditional Likelihood (cL) of the sample is compared to the product of the
conditional Likelihoods of S subsamples. Because of the sample homogeneity in
the case of model fit of the Rasch model the product of the likelihoods of different
subsamples must be (approximately) the same as for the whole sample.

The process of test construction begins with the development of an item pool to
measure a specific latent trait. Subsequently these items are empiricially evaluated
by administering them to a sample of typical test takers. Based on the results of
pilot testing individual items with a poor fit can be excluded from the item pool
and the resulting item pool can be tested again in a new sample as sort of cross
validation (Kubinger and Draxler 2007). Of course, it is possible that not only a few
individual items but the whole data set does not conform to the Rasch model. In
this case conditions for the misfit of individual items can be identified by applying
extended Rasch models or other Item Response models. The characteristic property
of all models of Item Response Theory (IRT) is the assumption of a specific
relationship between the observed item response and the latent trait(s) which the
item measures (for an overview see for instance Embretson and Reise 2000).

The present article deals with the development of a new orthographic test for
Austrian students. The goal of the pilot testing was to evaluate whether the items
conform to the Rasch model. If items do not conform to the Rasch model, it is an
important aspect for further test development to find reasons for the misfit.
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1.1 Large-Scale Test for Orthography

The National Educational Standards in Austria are a governmental project for
assessing students competencies in Math, German and English. In the process of
developing these Educational Standards tests, a test was constructed to evaluate
Austrian students’ general knowledge of German orthography. This test was devel-
oped as a large-scale test, not as test for individual assessment. The orthographic
test was developed by a team of teachers of German, experts of German teaching, a
linguist and psychologists. The final pilot version of the test consisted of 35 items
with each item representing a German word. The examinee’s task was to find the
spelling error in the word or to identify the word as correct if there was no error.
The orthographic test included five categories of orthographic errors: “uppercase
for nouns”, “sharpening”, “stretching”, “words descending from foreign language”
and “root word” as well as five correctly written words.

2 Data Analysis

The pilot version of the new orthographic test was administered in schools of all
districts in Austria in 2008. The sample consisted of 3,227 8th grade students.

2.1 Rasch Model Analysis

Firstly, the model validness of the dichotomous logistic Rasch model was assessed
by applying Andersen’s Likelihood Ratio test (see Eq. 2) with the partition criteria:
test score (score > median versus score < median), gender, native language
(German versus other) and regional district (West Austria versus East Austria). To
ensure some sort of cross validation after deleting non-fitting items, the sample was
randomly split into a calibration sample (n, = 1,614) and a testing sample(n, =
1,613). Rasch model analysis were conducted with the R-package eRm (Mair et al.
2011).

With the exception of the split by regional district, all Likelihood Ratio tests
turned out to be significant. Thus, the ten poorest-fitting items were excluded
stepwise from the data set, though this still left three of the four Likelihood Ratio
tests significant (results are shown in Table 1).

Due to these significant results after excluding almost % of the 35 items, it must
be concluded that the Rasch model does not fit the data set. Therefore, further Item
Response models were applied to explore reasons for the misfit.



332 C. Hohensinn et al.

Table 1 Andersen’s Likelihood Ratio test for all items and after
excluding the ten poorest-fitting items

Calibration sample all items After excluding ten items

Partition criterion 2 pr 730099 xier 134(0.99)

Score 535.58  56.06 111.12 4298
Gender 13578  56.06 58.85 4298
Native language 133.13  56.06 7479  42.98
Regional district 47.81 56.06 29.64  42.98

Table 2 Model fit for the mixed Rasch model with different number of
latent classes

Number of classes logL N parameters BIC

1 —58703.89 69 117965.25
2 —56537.92 137 114182.70
3 —56099.04 205 113854.33
4 —55799.81 273 113805.27
5 —55709.71 341 114174.46

2.2 Mixed Rasch Model Analysis

As pointed out in Sect. 1, the Rasch model assumes person and item homogeneity.
Thus a misfit could occur because of different underlying subgroups in the popula-
tion. This happens, if there are groups of students who have difficulties with specific
types of orthographic errors. This would imply different relative item difficulties
between spelling error types for different students.

In general, different underlying subpopulations are modeled by finite mixture
models:

K K
P(Xi) = Zﬂgp(Xijlng) wichng =1 (3)
- =

with 7, denoting the proportional size of class g. Plugging in Eq.1 for the
probability function leads to the mixed Rasch model proposed by Rost (1990).
As for the dichotomous logistic Rasch model CML estimation is also possible
for the mixed Rasch model. The mixed Rasch model was calculated with the
software Winmira (von Davier 2001) using CML parameter estimation. The BIC
was used to compare models since it is more reliable than the AIC for this kind of
model (Preinerstorfer and Formann 2011). The results displayed in Table 2 show,
that a mixed Rasch model with four classes has the lowest BIC.

It already was hypothesized that there are groups (latent classes) of students
who have difficulties with specific error types. If this is true, it is important to
determine whether the model offers a reasonable and consistent interpretation, i.e.
to evaluate whether specific “error profiles” can be found. These would occur if
particular orthographic error types are consistently more (proportionally) difficult
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uppercase stretching sharpening word root  d of foreign ori none
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=

Fig. 1 Item difficulties sorted according to error type for each latent class of the four class mixed
Rasch model

for a specific latent class. Figure 1 shows the item parameters for each latent
group f;,. Because the item parameters in each latent group are constrained
to Z;‘I=1 Bijg =0, the comparison of item difficulty between the latent groups
is only of relative size. The diagram reveals error-specific profiles: Class 4 has
(proportionally to the other items) the most difficulties solving the uppercase errors;
compared to the other classes, Class 1 has problems identifying the correct words
as correct and has some difficulties with the sharpening words. For Class 2, items
with the error type “word root” are proportionally more difficult (in comparison
to the other groups) whereas Class 3 has also some problems with the uppercase
words (though not as distinct as Class 4). The mixed Rasch model with four classes
has the lowest BIC; moreover, it allows for a reasonable interpretation. Each latent
class seems to have different (relative) difficulties with various error-types. Thus,
the four-class solution seems an appropriate model.

To find out whether there are differences in the overall skill level of the four latent
classes, the latent score probabilites for each class were plotted (Fig. 2). This shows
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Fig. 2 Latent score probabilities for the mixed Rasch model with four classes

that Class 1 has the highest latent score probabilites on scores over 25, whereas
Class 4 has the highest latent score probabilites for a score of 14. Classes 2 and 3
have very similar latent score probabilities, with score probability distributions lying
between Classes 1 and 4.

2.3 Multidimensional Item Response Model

The four-classes mixed Rasch model offers a very reasonable interpretation of
the test results. Nevertheless model fit was evaluated comparing only models that
assumed person heterogeneity. Instead, it is also possible that items with different
error types measure different orthographic skills uniformly for all examinees. This
hypothesis can be tested using a multidimensional Item Response model (Adams
et al. 1997). For dichotomous data this model estimates a person parameter 6, for
each assumed skill s. The assignment of items to the different skill dimensions s
must be fixed a priori by matrix A. d; denotes the difficulty of item i:

exp (ai6; + d;)
1+ exp (ai; + d;)

P(Xij = 1|aj, d;,05) = “4)
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Table 3 Multidimensional IRT models compared to the four-class mixed Rasch model

Model specification logL Nparameters ~ BIC

Four class mixed Rasch model —55856.00 156 112,972
Two skills: uppercase, other —58028.54 41 116,388
Three skills: uppercase, none, other —56308.80 46 112,989
Four skills: uppercase, none, sharpen, other —56315.09 51 113,042
Five skills: uppercase, none, sharpen, foreign, other ~ —56409.42 57 113,279

In order to reduce the number of estimated models, first those items that
showed the largest differences between latent groups in the mixed Rasch model
were modeled as measuring separate dimensions (uppercase error words, then
correct words, etc.). The multidimensional models were estimated by using the
software mdltm (von Davier, 2005) with a marginal maximum likelihood (MML)
estimation. For the purpose of comparing the multidimensional IRT models to the
mixture models, the four-class mixed Rasch model was re-estimated by means
of MML parameter estimation (this is why the number of parameters and the
logLikelihood of the four-class mixed Rasch model are now different to the results
of the CML estimation in Table 2). Results in Table 3 reveal that the four-class
mixed Rasch model has a lower BIC than the multidimensional IRT models. The
multidimensional model with three skill dimensions (uppercase error, correct words,
remaining words) has a BIC close to that of the mixed Rasch model; nevertheless,
modeling person heterogeneity with four latent classes turns out to fit the data better.

3 Summary and Discussion

A newly developed large-scale test for measuring the orthographic competency
of Austrian students was evaluated using Item Response models in a first pilot
testing. Because the Rasch model was not valid for the given data, the ability
of person or item heterogeneity to explain this lack of model fit was examined.
Results show that a four-class mixed Rasch model had the best model fit. Among
the multidimensional Item Response models, the three-skill-dimension model has
a BIC relatively close to that of the mixed Rasch model. The difference in BIC of
these two models is small and therefore raises the question of whether the mixed
Rasch model is really the more appropriate one. Because information criteria do not
offer a “critical” level of difference, the question of whether the difference in BIC
is significant cannot be conclusively answered. However, for the present data the
four-class mixed model has the highest goodness-of-fit value and therefore seems
the most appropiate choice. Of course, if the goal of the study were to establish a
generally valid model of the structure of orthographic skills, the result would have
to be replicated in a different sample. For the present purpose of improving the
test during its development, the mixed Rasch model seems helpful and provides a
reasonable result with various groups of students having difficulties with different
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orthographic error types. Inspecting the different item parameters in each latent
group of the four-class mixed Rasch model reveals that the most distinct differences
between groups concern the uppercase words and the correct words. Furthermore,
the three-dimensional model in which solving uppercase error and correct word
items constituted separate skill dimensions, was the best fitting model among the
multidimensional models. However, it seems that these two kinds of items induced
item responses that contradict the assumptions of the Rasch model. According to
the results of the mixed Rasch model the group of students with higher latent
score probabilities and therefore higher overall orthographic competencies seems
to have more difficulties identifying the correct words. A possible reason for this
somewhat unexpected result could be that these students did not thoroughly read
the test instruction which mentioned the possibility that words might be correct.
Alternatively, these students might not have “trusted” the instructions and instead
been confident that every test item would have an error. In contrast, another latent
class of students had more problems than other examinees finding uppercase errors.
As a whole, the IRT analyses reveal issues which must be considered in order to
construct a test that is fair for all students: the inclusion of correct words and words
with an uppercase error must be discussed and/or the test instruction needs to be
improved.
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Linear Logistic Models with Relaxed
Assumptions in R

Thomas Rusch, Marco J. Maier, and Reinhold Hatzinger

Abstract Linear logistic models with relaxed assumptions (LLRA) are a flexible
tool for item-based measurement of change or multidimensional Rasch models.
Their key features are to allow for multidimensional items and mutual dependencies
of items as well as imposing no assumptions on the distribution of the latent trait in
the population. Inference for such models becomes possible within a framework
of conditional maximum likelihood estimation. In this paper we introduce and
illustrate new functionality from the R package eRm for fitting, comparing and
plotting of LLRA models for dichotomous and polytomous responses with any
number of time points, treatment groups and categorical covariates.

1 Introduction

Linear logistic models with relaxed assumptions (LLRA; see Fischer 1993; Fischer
and Ponocny 1993) can be thought of as generalised Rasch models with multidimen-
sional latent trait parameters where change is modelled as a function of treatment
(main) effects, treatment interactions and trend effects. Relaxed assumptions mean
that neither unidimensionality of the items needs to be assumed nor are there
any distributional assumptions made about the population of subjects. Conditional
maximum likelihood estimation (CML) allows for the separation of treatment effect
parameters and nuisance trait parameters. Consequently, given the prerequisites for
LLRA hold, results about the effect parameters are completely independent of the
trait parameters in the sample of subjects.

The LLRA has some very useful properties for the measurement of change, such
as the ratio scale properties of the estimated parameters, 7 (Fischer 1993). It is
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therefore possible to assess the relative effectiveness of treatments (e.g., a treatment
might be twice as effective). Furthermore, independence of effect parameters
from trait parameters allows for generalisability beyond the current experimental
situation, which is desirable if treatments are to be compared in a competitive way.

2 Linear Logistic Models with Relaxed Assumptions

Whereas the LLRA originally referred to measurement of change with dichotomous
items, our definition also includes models for measuring change with polytomous
items with possibly different numbers of categories per item.

More specifically, let 6,; denote the location of subject v for item i at time
point Ty, let & refer to the A-th response category (h = 0, ..., m;) and let w;;, stand
for the parameter for category £ for item i. The logistic model at the baseline 77 is

exp(hb,i1 + win)

P Xvi =1|T)) = IIT 1
(Ko I > i—o exp(l0yi1 + wir) )
At any subsequent measurement point 7; (¢ € {2, 3,...}) the logistic model is
ho,; i h(B,i1 + 8y !
P(Xyiw = 1|T)) = ,:f(p( cton) :icp( (it + 8vir) + win) @
o exp(l0yir + wir) 7 exp(l (Bt + 8vir) + wir)

with §,;; = 60,;; — 0,;; denoting the amount of change of person v for trait i between
time 77 and 7;. This model is the most general one in terms of dimensions as each
item is seen as measuring a single latent trait. In the following, we will assume all
items to measure mutually exclusive traits, which can be simplified by specifying
groups of items to measure the same trait if desired.
The flexiblity of LLRA models arises from a (linear) reparameterisation of §,;, to
include different effects:
Svir = Wi n) A3)

Here, wiTr denotes a row of design matrix W for item/trait i up to 7;. The
parameterisation of 1 can be written as

S = Z QjitAjir + Tip + Z QvjirqvlitPjtit 4

J i<l

where ¢,;;, stands for a dosage or indicator of a covariate or a factor level j for trait i
between 7 and T;, Aj;; denoting a main effect of the covariate/factor level j on trait
i at T;, 7;; is the parameter for the trend effect on trait i between 77 and T;, and py;;
are the parameters for interaction effects of treatments j and / on trait i at 7;. This
multidimensional formulation allows for any restriction concerning effects such as
generalisations of effects over different traits or groups.
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3 Implementation

The LLRA functionality as described here is available in version 0.14—4 or higher'
of the eRm package (Mair and Hatzinger 2007) for R (R Core Development Team
2011) version 2.12.0 and higher. The functions described in this paper automatise
the approach laid out in Hatzinger and Rusch (2009) as well as allow plotting of
effects with lattice (Sarkar 2008). The user interface for LLRA is modelled after
other eRm functions. The following functions have been devised for LLRA models:

LLRA This is the main function. It automatically fits a quasi-saturated LLRA
model. Data structure, design matrix and group assignment are set up by the
function and model fitting with LPCM is then carried out. It returns an object of
class 11ra.

print Standard S3 print method for objects of class 11ra.

collapse W A convenience function for collapsing columns of a design matrix
to simplify a LLRA model or to generalise effects over time or items or groups
or any combination of them.

summary Standard S3 summary method for objects of class 11ra. It displays
more details of the results of the model fit. This function can also be used to
extract confidence intervals.

anova S3 anova function for class 11ra. Conducts a likelihood ratio test for
nested LLRA models.

plotGR lattice plots of group or covariate effects over time for all items.

plotTR lattice plot of trend effects over time for all items.

Some of these functions call other functions (e.g. for building the design matrix)
internally, but for most users these should not be of interest. Please note that
currently only categorical covariates can be passed to LLRA via the groups
argument.? Continuous covariates currently either need to be discretised first or have
to be set up manually with a specific design matrix.

4 Illustration

We use an artifical data set from (Hatzinger and Rusch 2009) to illustrate the usage
of LLRA functionality in eRm. After the package is installed and made available
with 1ibrary ("eRm"), the data can be accessed in R via data (11raDat2).
The data consist of responses of 70 subjects to 5 items. Item 1 is dichotomous,
all others are polytomous with 3, 4, 5, and 6 categories respectively. The subjects
belong to 3 groups, a control group (CG) of size 40, and 2 treatment groups (TG1 of
size 20 and TG2 of size 10). Each item was presented to each subject at 4 different

'"The most recent version can be obtained from http://r-forge.r-project.org/projects/erm/.
2We plan to support continuous covariates in a future version.
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times. To fit LLRA, the data need to be in “wide” format for repeated measurements
as displayed in Table 1.

In our example, the first 20 columns are the responses and the last column
encodes which group a subject belongs to. We saved them in new objects dats
and groups for simplicity.

Fitting the LLRA model is straightforward. The function LLRA takes as its first
argument the data frame of responses, followed by the number of measurement
points and the group membership as well as the reference group (if no baseline
group is supplied, by default the group with the lowest alpha-numerical score for
the group name will be used):

R> 1lral <- LLRA(dats, mpoints = 4, groups = groups,
+ baseline = "CG")

By default, the LLRA function always fits a quasi-saturated LLRA unless a design
matrix is passed as an argument. With polytomous items the function will print a
warning message that the first two category parameters are equated for each item.
Doing this is motivated pragmatically to save parameters and is standard in the usage
of LLRA. However, this decision can also be justified with a theoretical argument
(Hatzinger and Rusch 2009). The function LLRA returns an object of class 11ra for
which some standard S3 functions have been implemented. The summary function
displays estimated parameters and fit information (only output for the first two items
at time point 2 is displayed below):

R> summary (llral)

Results of LLRA via LPCM estimation:

Call: LLRA(X=dats, mpoints=4, groups=groups, baseline="CG")
Conditional log-likelihood: -1143.422

Number of iterations: 69

Number of parameters: 55

Estimated parameters with 0.95 CI:
Estimate Std.Error lower.CI upper.CI

TG2.I1.t2 0.467 0.832 -1.163 2.097
TGl.I1l.t2 -0.658 0.613 -1.859 0.544
TG2.I2.t2 -0.024 0.450 -0.905 0.857
TG1l.I2.t2 -0.321 0.358 -1.022 0.380
trend.Il.t2 1.262 0.355 0.565 1.959
trend.I2.t2 0.621 0.234 0.162 1.079
cz2.I2 0.669 0.244 0.191 1.148

Reference Group: CG
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Table 1 Wide data format for repeated measurements

Real persons T, T,

S X1 X2t .- Xkl X112 X122 ... Xlk2
A\ X211 X221 ... X2k X212 X222 ... Xlk2
Sn Xnll  Xp21 ce. Xnkl Xn12  Xp22 cee Xnk2

For our example, we see that compared to the reference group CG, item 1 gets easier
for TG2 at time point 2 whereas it becomes more difficult for TG1. However both
changes are not significantly different from zero at a 5 % significance level, as the
95 %-confidence interval (CI) indicates. For item 2 both groups display a negative
non-significant change. The trend effects for both items between time points 1 and 2,
however, are significant (¢ = 0.05). This means we reject the hypothesis that there
is no general change for all groups, i.e., in this case the items get easier over time.
We see that the trend effect for item 1 is twice the effect for item 2. Hence, both items
get easier over time but item 1 changes twice as much. Additionally the estimated
category parameter for the third category of item 2 is listed.

The summary function can be used to extract point estimates, standard errors or
CI for the parameters. For example, the 99 %-CI can be extracted like this

R> cis <- summary(llral, gamma = 0.99)Sci
R> cis[1:3, ]

0.5 % 99.5 %
TG2.I1.t2 -1.675638 2.6092456
TGl1.I1.t2 -2.236630 0.9212073
TG2.I2.t2 -1.181980 1.1342965

The relative trend and group or covariate effects for each item from the quasi-
saturated model can be displayed with the lattice plot functions plotGR for
covariate or group effects and p1lotTR for trend effects. This is convenient since
often for LLRA models, a large number of parameters is estimated which produces
long output when using the summary or print functions. The plot functions help
to identify positive or negative changes over time and may provide hints for possible
model simplifications. For our example, the group effect plots can be found in Fig. 1
and the trend effects plot in Fig. 2.

For the quasi-saturated LLRA, we need to estimate 55 parameters, which is a
lot. However, we can try to simplify the model and test hypotheses by generalising
effects. To do this, the function collapse_W allows to collapse specific columns
of the design matrix. For example, the results as displayed in Fig. 2 indicate a linear
trend effect for item 2. We might therefore substitute separate estimates for each
time point by a single linear trend which will save us three parameters. To that end,
the according columns of the design matrix of the quasi-saturated LLRA that need
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Treatment effect plot for LLRA
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Fig. 1 Lattice plot of the group effects for all items. At the reference measurement at 7 all effects
are zero. For subsequent time points the effects are displayed relative to 7 and the baseline group
(constant change of zero)

to be collapsed are columns 32, 37, and 42. The function collapse_W allows to do
that conveniently. It requires the design matrix and a list of columns to be collapsed.
The quasi-saturated LLRA design matrix can be extracted via SW from the object
returned by LLRA, here 11ral. The list of columns to be collapsed, e.g. for time
points 2, 3, and 4 for item 2, can be specified such

R> collItemsl <- list(c(32, 37, 42))
Then the collapsed design matrix Wstarl can be obtained by
R> Wstarl <- collapse W(llralSW, collItemsl)

and can be passed as an argument to LLRA to fit the LLRA with a linear trend for
item 2:

R> llra2 <- LLRA(dats, W = Wstarl, mpoints = 4,
+ groups = groups)

Since collapsed models are all nested within the quasi-saturated model, we can use
a likelihood ratio test with anova to find out if the simplification is admissable.
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Trend effect plot for LLRA
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Fig. 2 Lattice plot of the trend effects for all items. Trend effects are assumed to be the same for
all groups. At the reference measurement at 7 all effects are zero. For subsequent time points the
effects are displayed relative to T

R> anova (llral, 1llraZz)

Analysis of Deviance Table

Npar logLik df -2LR Asymp.p-Value
1 53 -1143.7
2 55 -1143.4 2 0.62478 0.7317

It turns out that item 2 can be seen as displaying a linear trend without a significant
loss of information.

5 Conclusion

We presented and illustrated functionality to fit linear logistic models with relaxed
assumptions with the eRm package for R. To the best of our knowledge, it is the only
ready-made implementation to fit LLRA. In principle, all software packages that can
fit Linear Partial Credit Models with CML can be used to fit LLRA models as well,
but that usually comes along with tedious restructuring of the data and setting up
of complicated design matrices. The presented functionality tries to alleviate that.



344 T. Rusch et al.

We aimed at user-friendliness to provide a low threshold for practitioners with basic
R knowledge to fit LLRA. We hope that such a readily available software will spark
new interest in this flexible and useful class of models for longitudinal categorical
data.
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An Approach for Topic Trend Detection

Wolfgang Gaul and Dominique Vincent

Abstract The detection of topic trends is an important issue in textual data mining.
For this task textual documents collected over a certain time period are analysed by
grouping them into homogeneous time window dependent clusters. We use a vector
space model and a straight-forward vector cosine measure to evaluate document-
document similarities in a time window and discuss how cluster-cluster similarities
between subsequent windows can help to detect alterations of topic trends over
time. Our method is demonstrated by using an empirical data set of about 250 pre-
classified time-stamped documents. Results allow to assess which method specific
parameters are valuable for further research.

1 Introduction

In order to detect emerging topics (see, e.g., Allan et al. 1998, Kontostathis et al.
2004, and Kumaran et al. 2004) or to monitor existing topics it is of interest to
analyse document streams (see, e.g., Wang et al. 2007 and Wang et al. 2009)
which are emitted, e.g., by news sites like spiegel.de, zeit.de, or nytimes.com. For
topic detection in text mining it is common to use document clustering (see, e.g.,
Allan et al. 1998, Larsen and Aone 1999, and Manning et al. 2009). Let us remind
SMART, the System for the Mechanical Analysis and Retrieval of Text (see, e.g.,
Salton 1989) as an early example for the analysis and retrieval of information by
computers.

In the next Sect. 2 notation and some background information will be provided.
Section 3 describes the suggested approach while in Sect. 4 an example is presented
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to demonstrate what can be expected from our topic trend detection technique.
Section 5 contains concluding remarks.

2 Notation and Background Information

We need a dictionary which is created using a corpus (see, e.g., Allan et al. 2002)
composed of a set of documents d € D. For every term w in the dictionary this
corpus is used to compute the term frequencies ¢ f,, as well as inverse document
frequencies id f,, given by

, D
id fu = log e a]
where | M | denotes the cardinality of a set M.

The well-known vector space model (see, e.g., Salton et al. 1975) is applied for
representing the text documents that we want to analyse. Vector components in the
vector space are used to reflect the importance of corresponding terms from the
dictionary. The dimension z of the vector space is crucial (the smaller the dimension
of z can be chosen the faster the computation).

One of the best known weighting schemes is ¢ f -id f weighting (see, e.g., Salton
and Buckley 1988 and Allan et al. 2000) which we also examined — among others —
for the underlying situation.

Finally, we applied the cosine measure as (dis)similarity between documents
(document — document similarities) as well as between clusters of documents
(cluster-cluster similarities). If C/ respectively C ,’+1 denote clusters of documents at
subsequent time windows ¢ and 7 + 1, ¢ the centroid of C; with ¢; as vector
component for term w of centroid ¢} (where a centroid is just the average vector of
the documents associated with the corresponding cluster) we have

z t+1
l‘-‘rl) _ Z =1 Ck *CI

NOS RN RS

cos(cy. ¢

for the cluster-cluster measure.

With M, as set of documents in time window ¢ we use the cosine similarity
of documents to compute a |M,| x |M,| matrix of dissimilarities dis’ (i, j), i, j €
M,, between all documents of time window ¢ from which we get a clustering
H' = {C{,....C],... | xt\} by application of a hierarchical cluster analysis
procedure together with the number of classes |%;| (which is one of the reasons to
use hierachical clustering).

With the clusterings .#" and .#'*! from two subsequent time windows we
are able to compute the dissimilarities between the corresponding sets of clusters.
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Table 1 Dissimilarity matrix w.r.t. " and ¢ 1!

t+1 t+1 t+1
C C o CEL
o
cl dis" Th(ct, ¢/t
t
CKr.r-H

Table 2 Dissimilarity matrix with missing values, a vanishing cluster C/, and a newly arising
cluster C;'H

t+1 t+1 t+1 t+1 t+1
citt ... Cl C, ot
Ci E
=
Cl E
. A
=
: *
' : 1 <
C; min {dis"' T (CL.C)} &) > threshold
cexitl =
t
%
\‘ﬂu
' EX
Clovt] =S
Missing values
t
Ktt-‘rl

The matrix of dissimilarities dis"'*'(C},C/*") (determined with the help of
cos(ct, c; ")) has size K, 41 which just is the maximum of || and |.#" | (cf.
Table 1).
Assume that || is less than |.#"*!|. In this case the rows of the dissimilarity
. ; p U R .
matrix from C| i) O C Kert have missing values (Likewise, if || is greater

than |7 T!| the columns from CI”;} fyy o€ 1t<j—,1+1 have missing values.) which
indicates that the number of clusters from different time windows don‘t need to
coincide.

In case a value dis"'*'(C},C/*") of a pair of clusters C/ and C/*" in the
dissimilarity matrix is “small” cluster C/ corresponds to cluster CIH'I, ie., we
assume that cluster C;/ at time window ¢ can be assigned to cluster C, l’ +

Additionally, it can happen that the minimum of the dissimilarities of cluster
C/ to all clusters of 7’ *1 s greater than a predefined threshold from which one
can conclude that cluster C/ is not similar to any of the clusters of time window
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Fig. 1 Lowe.r and upper R & '
bounds for dissimilarity Fa & &
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t + 1, i.e., topic C/ has vanished (death in ) and is no longer in clustering AL
Another case appears if all dissimilarities in the column of C/ *1 are greater than the
threshold, i.e., C/ *1is a newly arising topic which was not in clustering .#” (birth
or reappearance in ¢ 4 1). These possibilities are depicted in Table 2.

Figure 1 tries to describe the underlying situation. When cluster-cluster dissimi-
larities between two clustes C/ and C/ *1 of subsequent time windows are smaller
than a problem-specific lower bound disy, it is assumed that the documents of C/
and C [H'l belong to the “same” cluster. However, if a problem-specific threshold
dis,, as an upper bound is exceeded by all cluster-cluster dissimilarities in a row
(or column) of the matrix a trend has vanished (a new trend is born). In the area
between dis;, and dis,, an additional inspection is necessary.

3 Approach

Given the explanations of the last section the following approach to support topic
trend detection is suggested:

¢ Collect the set M, of documents in time window ¢.

» Compute the | M, | x | M,| matrix of document-document dissimilarities dis’ (i, j),
i,j €M,.

* Perform hierarchical clustering to get #' = {C{,...,C/,..., C\{%”I}'

o With K;,+1 = max{|#¢"|,|#""!|} compute the K, 4+ x K;;+| matrix of
cluster-cluster dissimilarities dis"' ™' (C}, C/*1).

* Choose problem-specific dissimilarity-bounds and check for the birth (or reap-
pearance) of topics, the death of no longer interesting topics, or the continuation
of trends. In case that different lower and upper dissimilarity-bounds have to be
considered additional inspection is needed to classify critical cases for which
dissimilarities are situated within the bounds.

4 Example

Our test data set is a sample drawn from a set of time-stamped documents (see,
e.g., Kupietz and Keibel 2009 and Kupietz et al. 2010) of the Institut fiir Deutsche
Sprache IDS, located in Mannheim. The test documents are from newspapers
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Table 3 Test configuration |M,| 52 65 50 35 52
time
window ¢ =1 t=2 t=3 t=4 t=5
Cluster 1 c/ Ct c; c Ci
Cluster 2 c) C? c; c C;
Cluster 3 c) C? c; - c;
Cluster 4 — C 42 _ _

categorized by IDS into the four topics politics (P), sport (S), technique, industry,
and transportation (TIT), and economy and finance (EF) which could be assigned to
five time windows.

We used a dictionary with about 2 million terms and restricted our test runs to the
200, 2000, respectively 20,000 most frequent terms of that dictionary as dimension
z of the vector space.

The test configuration of 254 documents is shown in Table 3. At time window
t = 1 we had a subsample of 52 documents which could be assigned to three of
the IDS topics. At time windows ¢t = 2 and ¢ = 3 the subsamples of 65 and 50
documents were from four respectively three topics. At time windows ¢ = 4 and
t = 5 two topics respectively three topics could be assigned. The next section will
reveal which topics are hidden behind the general C;-notation of Table 3.

5 Results

As writing restrictions do not allow to describe all results of the example we just
explain the activities in the time windows # = 1 and 7 = 2 as well as the transitions
between the time windows 1 — 2 and 3 — 4. We conclude with an overall view on
topic trend detection situations.

5.1 Transition Between Time Windows 1 — 2

The Fig. 2(a), (b) show the dendrograms at time windows t = 1 and t = 2.

Three clusters at + = 1 and four clusters at # = 2 are marked by circles as
interesting topics. In Table 4 the dissimilarity matrix between the clusterings .#"!
and .#? is shown. The marked cells with lowest dissimilarity values in the matrix
indicate which document clusters are most similar to each other (C; < C2, Ci <
CZ, C| < C3 although C} and C|' have also a low dissimilarity). All values in the
column of C32 are “large”, i.e., C32 is a newly arising cluster, and row 4 has missing
values.
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N ]

time window t = 1 time window t = 2

Fig. 2 Dendrograms. (a) Time window ¢ = 1. (b) Time window ¢ = 2

Table 4 Dissimilarity matrix 2 2 2
w.rt. 2" and o2 1 2 4

Cl 04713 02807 0.3961 0.2866
C) 05696 04144 04275 022107

¢} [025877 04170 0.5375  0.4909

C) Missing values

time window t time window t = 4

Fig. 3 Dendrograms. (a) Time window ¢ = 3. (b) Time window ¢ = 4

5.2 Transition Between Time Windows 3 — 4

Again, Fig. 3(a), (b) depict the dendrograms at time windows f = 3 and ¢t = 4
together with the circles which show that a three-cluster-solution % and a two-



An Approach for Topic Trend Detection 353

"f]ﬁ:lrl‘)tl‘e ; , Iz:;f;ianty matrix c s C 34
CP | 03597 05690 £
c; 026340 05062
C3 | 03994 05574 =
Table 6 General result Time
window ¢ t=1 t=2 t=3 t=4 t=5
Cluster 1 P S EF P EF
Cluster 2 EF P P S P
Cluster 3 S TIT TIT S
Cluster 4 EF

cluster-solution .#* were chosen. This time we have C23 <~ C 14 , all values in the
column of C24 are “large”, i.e., C24 is a newly arising cluster, and column 3 has
missing values (because of |.##| = 2). Additionally, one can see that C; and C3
will vanish (cf. Table 5).

5.3 Overall View

All in all we get the results depicted in Table 6 (see also Table 3).

Topic P (politics) exists in all time window dependent clusterings 7.

Topic S (sport) has vanished in time window ¢ = 3, but reappeared in ¢ = 4. To
check whether a topic is newly arising in time window ¢ we have to compare the
centroid of that topic to the centroids of all clusters in the preceeding time windows
T <t —2.If we find a cluster in an earlier time window the dissimilarity of which
to the actual cluster is smaller than the lower bound dis;, we assume that the actual
cluster is not new, if all dissimilarities are greater than the upper bound dis,;, we
assume that a newly arising topic has been found.

The topic TIT (technique, industry, and transportation) is newly arising at time
window ¢ = 2 in our sample of documents but vanishes again in the time windows
t=4andt =5.

The chosen example was small on purpose to be able to demonstrate how the
topic trend detection approach works where reappearance checks in earlier time
windows are of importance in case that a topic is newly arising in a certain time
window.

6 Conclusion

We described an approach for Topic Trend Detection and mentioned the problem to
find an accurate threshold respectively lower and upper bounds between which an
additional inspection should be performed.
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The size of the vector space has an impact on the parameters mentioned. The
greater the dimension of the vector space the more less frequent terms from the
dictionary might have to be considered and the larger the threshold must be chosen.
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Modified Randomized Modularity Clustering:
Adapting the Resolution Limit

Andreas Geyer-Schulz, Michael Ovelgonne, and Martin Stein

Abstract Fortunato and Barthélemy (Proc Nat Acad Sci USA 104(1):36-41,2007)
investigated the resolution limit of modularity clustering algorithms. They showed
that the goal function of the standard modularity clustering algorithm of Newman
and Girvan (Phys Rev E 69(2):026113, 2004) implies that the number of clusters
chosen by the algorithm is approximately the square root of the number of edges.
The existence of the resolution limit shows that the discovery of the number of
clusters is not automatic. In this paper we report on two contributions to solve
the problem of automatic cluster detection in graph clustering: We parametrize the
goal function of modularity clustering by considering the number of edges as free
parameter and we introduce permutation invariance as a general formal diagnostic to
recognize good partitions of a graph. The second contribution results from the study
of scaling bounds combined with the stability of graph partitions on various types of
regular graphs. In this study the connection of the stability of graph partitions with
the automorphism group of the graph was discovered.

1 Introduction

Detecting cohesive subgroups of vertices in graphs at different scales is an important
problem in graph clustering. Many natural networks have a hierarchical community
structure (Ravasz et al. 2002). As inherent to their functional principle, detecting
communities by optimizing a (fixed) objective function can only reveal a single
hierarchical level.
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There are two fundamental problems of multi-resolution community detection:
How to parametrize an objective function? Partitions at all scale levels should
be identifiable when using appropriate parameters. And how to validate that a
clustering result for a specific parameter is a ‘good’ partition? I.e. how to decide
whether a partition corresponds to a natural level of hierarchy or whether a partition
describes some arbitrary grouping between two natural levels.

Previous work on parametrized objective functions for graph clustering addresses
these problems insufficiently. In Sect.2, we present a parametrized variant of
modularity that is able to cover the full scale range. Furthermore, we discuss a new
diagnostic approach to decide whether an identified graph partition is (partially)
arbitrary or not in Sect. 3. In Sect.4 we review existing work on multi-resolution
community detection.

2 The Link Parametrized Modularity Function

In the following we consider the undirected, loop-free graph G = (V, E) and a
partition C = {Cy,...,C,} of V. The adjacency matrix M of G is defined by
My = my, = 1if {vy,v,} € E and 0 otherwise. Newman and Girvan (2004)
defined the modularity Q (G, C) originally as

P
0(G.C) =) (ei—aj) (M
i=1
e; is the observed fraction of edge endpoints that connect vertices in the
cluster C;. a? is the expected fraction of edge endpoints belonging to edges that
connect vertices in C; of a randomly generated graph with the same vertex degree
distribution as G. Modularity measures the non-randomness of a graph partition.
The number of edges in the adjacency matrixis L = 1/23, o >, ey My and
the number of edgesin cluster Gy is l; = 1/23, <, X_, ec, M- Let!* denote the
number of edges connnecting vertices in C; with vertices in the rest of the graph.
We rewrite e;; in terms of the number of edges L in G and the number of edges
l; in C; (intra-cluster edges) as e; = [;/L. And we rewrite a; as the fraction of
d; = 2I; + 17" (the total degree of vertices in C;) and twice the number of edges L
in G as a; = (d;/2L)>. Substitution in Q(G, C) (Eq. 1) gives

0G0 =y (L (&Y @
o=\l 2L
Cluster C; makes a positive contribution to Q(G, C) (Eq.2)if I; /L—(d; /2L)* > 0.
According to Fortunato and Barthélemy (2007), expressing /7" as a proportion b of

l; we get I? = bl; and d; = (b + 2)I;. After substitution of d; into the above
inequality and rearranging of terms we get



Modified Randomized Modularity Clustering: Adapting the Resolution Limit 357

Fig. 1 A cubic graph with
k = 2 at high resolution
(A = 48in Eq. (4))

- 4L
(b +2)2

i 3)

The resolution limit (inequality (3)) shows that Q (G, C) depends on the whole
network and that there is an upper limit on /; for » > 0 (Fortunato and Barthélemy
2007). When we analyze inequality (3), we see that it crucially depends on L, the
total number of edges. To eliminate the resolution limit from modularity clustering
for graphs with a homogeneous scale we parametrize Q (G, C) with a parameter A
which substitutes the number of edges L in the graph:

(L (diV) 1 d?
Q(G,cm:z(r(ﬁ))—x;(li—ﬁ) @)

i=1

We see immediately that by maximizing Q(G, C, 1) for an appropriate A € N
we can find partitions maximizing Q(G, C, A) at the resolution level of A. Since
I < % and 0 < b < 2 are sufficient conditions that C; can be considered as a
cluster (Fortunato and Barthélemy 2007), we see that by setting A < 4 we force
the size of C; to 1 (the trivial partition of the graph in its singletons) and by setting
A >> 4L we get a single cluster which contains the whole graph.

An example for a graph with an almost (except for the connecting tree)
homogeneous scale parameter is the cubic graph with k& = 2 shown in Fig. 1.
Equation (4) works well for families of graphs with a single scale parameter (e.g.
the parameter k of the family of cubic graphs with 4(3k + 1) vertices, where k
controls the number of small clusters in each of the three rings). However, by
introducing local scale parameters (e.g. in a cubic graph: k, k», k3 controlling each
ring separately) we can immediately construct counter-examples.

An interpretation for setting A which can be justified e.g. for very large networks
like the Internet is that the total number of edges of the graph is unobservable.
However, when we allow A € RT, we may study modularity maximization over
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all resolution levels as a continuous one parameter scale transformation with A
playing the role of a non-linear scale parameter. The number of clusters decreases
monotonously from | V' | to 1 with an increase in A.

For A = L, the goal function is identical to Q (G, C) and the number of clusters
is of order /L. For A = L, the original interpretation of modularity holds. However,
forA > L, ;l;/A < 1holds, for A < L — [b™een 5" [, /A > 1 holds. [Pe™ee is
the number of links between clusters. Choosing A almost corresponds to selecting
the number of clusters e.g. for the k-means algorithm.

One of the trivial solutions, the partition of single vertices, has the property that
the order (the number of elements (permutations)) of the automorphism group on
the singletons is 1, because on a one element set only the identity mapping of the
permutation group exists (see Wielandt 1964). We will extend this property in the
next section for arbitrary partitions and exploit it to define an information measure
to identify good partitions.

We have implemented parametrized modularity clustering by parameterizing the
randomized greedy algorithm of Ovelgonne and Geyer-Schulz (2010) and applied
this algorithm to the family of cubic graphs with 4(3k + 1) vertices (see e.g.
Cvetkovic et al. 1997, p. 165). By choosing k we can change the scaling properties
of the graph and thus demonstrate scaling effects in a controlled way.

The family of cubic graphs consists of vertices with degree 3 and two levels of
structure. E.g. for k = 2, the graph has 28 vertices and 42 edges. The top level
of the graph is a tree joining three ring-shaped clusters. Each ring is made up of 2
groups of vertices and the tree leaf linking the ring to the center vertex. On the low
resolution level, we should find two variants of 4 clusters, namely first three chains
of two groups of four vertices linked by a tree, and second, three rings with two
groups of four vertices and a single vertex linked by a single center vertex. On the
high resolution level, 7 clusters exist (Fig. 1). All three solutions are permutation
invariant with respect to the permutation group generated by the permutation g of
the vertices of the the cubic graph shown in Fig. 1:

01 2 3 45 6 7 8 9 10111213 141516 17 18 19 20 21 22 23 24 25 26 27
010 11 12 13 141516 17 18 192021 2223242526271 2 3 4 5 6 7 8 9

g is the generator of an automorphism group of order 3 of the cubic graph.
Its elements are the identity map, g, and g> — all of which are isomorphisms of
the graph. Permutation invariance of a graph-partition under the operations of the
automorphism group of a graph means that the image of the graph-partition is
isomorphic to the graph-partition under the automorphism group of the graph.

Figure 1 shows the result of the best of 100 runs of the parametrized modularity
maximization algorithm with A = L = 48 which is the optimal partition at the high
resolution level. However, for this example the parametrized modularity algorithm
reduces to modularity maximization, because /48 = 6.928 is slightly below 7 the
expected number of clusters in the graph. Figure 2a shows a near optimal partition
of the same cubic graph with A = 500. The center vertex should form the 4th
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Fig. 2 A cubic graph with k = 2. (a) At low resolution (A = 500 in Eq. (4)). (b) At intermediate
resolution (A = 91 in Eq. (4)).

cluster or the tree found as center cluster at the high resolution level. Finally, Fig. 2b
shows a partition at an intermediate resolution level. We see that this solution is not
permutation invariant, because of possible rotations around the center vertex. Note,
that the lower cycle of the graph is split in two clusters and also the center tree is
not identified.

3 Recognizing Good Partitions

Let us attack the question “What is a good partition of a graph?” by considering
the opposite question, namely “What are the properties of a graph which should
not be partitioned?”. Examples of this last type of structure are cycles of arbitrary
length (rings), complete graphs (cliques), and Petersen graphs. The reason is that
these graphs are completely regular in the sense that there is no information in the
structure that can be revealed by a partition. For a proof of this we consider the case
of aring with 9 vertices and 9 edges. Applying modularity clustering by maximizing
0(G, C) leads to a partition with three clusters, each consisting of a chain with
3 vertices with O = 0.33. However, as Fig.3b shows, there exist nine labelled
partitions with the same Q generated by shifting the partition on the circle. Py, Py,
P; refer to the unlabelled partition (801;234; 567) shown in Fig. 3a.

The table in Fig.3b shows that we can generate all possible partitions (the
three partitions shown in Fig.3a) by shifting P; over the 9-element ring. The
permutation (912345678) is the generator of the automorphism group of the graph
of the 9-element ring. We define for each vertex of G the frequency distribution
over the clusters of the set of partitions in the automorphism group of the graph
and we measure the information content of each vertex v by Shannon’s entropy
H®v) = —=Y."_, P(i,v)log, P(i,v) with p denoting the number of clusters and
P(i,v) the probability that vertex v is in cluster C; for all Aut(P). Aut(P) is the
set of all partitions generated from the partition P by applying all permutations
in the automorphism group of G to P. We have shown this for our example
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Fig. 3 Three partitions with the same modularity

in Fig.3b. The total entropy over the set of vertices for Aut(P) is then simply
H(Aut(P)) = Y oy H(v). For the table in Fig.3 we get H(v) = 1.585 for all
v, and H(Aut(P)) = 14.265 which is the maximal entropy possible. It reveals
that the partitions found reveal no information at all. As the reader may convince
himself, only the partition with single vertices and the partition with a single cluster
containing all vertices have the minimal entropy of H(Aut(P)) = H(v) = 0, but
also a lower Q.

For the identification of a good partition of a graph, we propose the following
approach which is not yet implemented:

1. For all A, compute a partition of the graph maximizing Q(G, C, 1).

2. Define an automorphism group of the graph Auz(G). Compute Aut(P). If
|Aut (P)| = 1, we have found a unique partition at Q (G, C, A) with an entropy
of 0 (with maximal information).

3. Compute H(Aut(P)) and H(v) Vv. The information on H(v) can be used to
detect instable regions in the graph. E.g. for the cubic tree depicted in Fig.2a
Aut(G) is defined by the automorphism group generated by g. Clearly, the
center vertex has an entropy of H (center) = 1.585 (will be assigned to all three
partitions) and the entropy of all other vertices is 0.

4. Identify the partitions with minimal H(Aut(P)) with a locally maximal
0(G,C,1).

4 Related Work

Several objective functions have been proposed to address the resolution limit
problem of the standard modularity definition. Muff et al. (2005) proposed the
localized modularity measure



Modified Randomized Modularity Clustering: Adapting the Resolution Limit 361

P Z d 2
LO(G.C)=>)" (L— - (T) ) ,

i=1 N

where L;, denotes the number of edges in the subgraph that is induced by vertex
i and its direct neighbors. They argued, that modularity assumes that connections
between all vertices are equally probable, but in many complex real-world networks
this is not true. This approach is equivalent to Eq. (4), except for the fact that Muff
et al. (2005) do not consider L;, as a free parameter, but as a fixed local parameter.
As a consequence, not all scale levels can be resolved, e.g. coarser partitions than
those identified by standard modularity cannot be discovered: E.g. the partition
depicted in Fig. 2a cannot be discovered by the approach of Muff et al. (2005).

Reichardt and Bornholdt (2006) introduced a resolution parameter to the modu-
larity function by weighting the term that represents the expected value

P I d: 2
0.6.Cy) =Y (Z’—y (i) )

i=1

For y = 1, Q, reduced to standard modularity. Setting y to values < 1 results in
a coarser resolution and setting y to values > 1 to a finer resolution. A different
approach to dealing with the resolution limit of the modularity function has been
chosen by Li et al. (2008). Their modularity density function is local:

7oAl —2(1 = M),
Qd<G,c,x)=Z%

i=1

where /; denotes as before the number of edges inside of cluster C; and 7,- denotes
the number of edges that connect a vertex in cluster C; with an vertex outside the
cluster. The difference between the number of intra- and inter-cluster edges adjacent
to a vertex of a cluster is set in relation to the clusters size. For A = 1/2 Q, reduces
to the unweighted difference of intra- and inter-cluster edges. The unweighted
difference as the standard modularity density definition is the arithmetic mean of
the ratio cut (A = 0) and the ratio association (A = 1) (see Shi and Malik 2000).

The problem of identifying resolution parameters with ‘good’ partitions has
been discussed by Ronhovde and Nussinov (2009). They proposed to quantitatively
estimate the best resolution(s) for multiscale community detection algorithms
by creating several (typically 8 to 12) partitions for every candidate resolution
parameter. If the partitions identified for a candidate resolution parameter are
especially stable (measured by information based metrics), the resolution parameter
is regarded as identified. From the set of partitions for an identified resolution
parameter, the partition with the best objective function value is selected as the
solution.
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5 Conclusion and Outlook

The main innovations of this article are the link-parametrization of the modularity
measure and the definition of two information measures on the application of the
automorphism group of a graph to the partition at a locally maximal modularity.
Both of these measures are invariant with respect to the group action of the
automorphism group.

For the definition and computation of the automorphism group of the graph at
a locally maximal modularity measure (which is the most difficult task suggested
in this paper) recent advances in the theory of finite (permutation) groups (e.g.
Cameron 1999) and algorithms of computational group theory will be used (e.g.
Seress 2003). However, a (problematic) shortcut consists in sampling randomly
generated locally maximal partitions and to compute the information measures
on the sample. The problems with this are twofold: First, sampling combinatorial
configurations usually is highly nonlinear and severely biased. Second, information
measures which are not taking the complete automorphism group of the graph
into account may be biased to a considerable degree and they cannot be properly
interpreted. E.g. the mutual information of two partitions on a cycle will vary
depending on the number of shifts and the length of the cycle. This effect is at
work with all measures for comparing clusterings, e.g. the measures investigated by
Meila (2007).
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Cluster It! Semiautomatic Splitting and Naming
of Classification Concepts

Dominik Stork, Kai Eckert, and Heiner Stuckenschmidt

Abstract In this paper, we present a semiautomatic approach to split overpopulated
classification concepts (i.e. classes) into subconcepts and propose suitable names for
the new concepts. Our approach consists of three steps: In a first step, meaningful
term clusters are created and presented to the user for further curation and selection
of possible new subconcepts. A graph representation and simple #f-idf weighting
is used to create the cluster suggestions. The term clusters are used as seeds for
the subsequent content-based clustering of the documents using k-Means. At last,
the resulting clusters are evaluated based on their correlation with the preselected
term clusters and proper terms for the naming of the clusters are proposed. We
show that this approach efficiently supports the maintainer while avoiding the usual
quality problems of fully automatic clustering approaches, especially with respect
to the handling of outliers and determination of the number of target clusters.
The documents of the parent concept are directly assigned to the new subconcepts
favoring high precision.

1 Introduction

The maintenance of classification hierarchies is still an expensive and time-
consuming process. There has been a lot of research towards (semi-) automatic
classification construction and enhancement, but maintenance by and large is still a
manual task as many decisions and changes still require human interaction. The
problem of splitting a concept — i.e. a class — into useful subconcepts is akin
to the problem of clustering a set of documents into useful clusters and finding
a suitable name for each cluster to define the new subconcept. We rely on the
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human maintainer of the classification and include two interaction steps in the
process that allow the maintainer to influence the result and subsequently get better
recommendations for new subconcepts.

In short, we use a straight-forward clustering algorithm to cluster the documents
based on their content. The following naming step employs simple #f-idf weighting.
The contribution of our approach is the combination of these steps with a first
preparatory step that extracts meaningful terms from the documents to be clustered
which are used to “push” the clustering in the desired direction. This can be seen
as a variant of the so-called description-comes-first (DCF) paradigm (Osinski et al.
2004) that states that it might be preferable to find descriptive cluster labels before
the documents are clustered, i.e. assigned to these labels. We believe that this
approach in its pure form misses the opportunity to use the strength of clustering
approaches to find similarities between documents even if synonymous terms are
used for the same concepts. Thus, we try to use the best of both worlds. This paper
is organized as follows: we first explain in detail our proposed approach in Sect. 2,
followed by an illustrating example (Sect.3). Afterwards, we briefly summarize
related publications in Sect. 4.

2 Concept Splitting and Naming

Our approach comprises three steps (Fig. 1): First, we let the maintainer determine
the desired number of new subconcepts by means of term based suggestions
(Step I). Next, the documents are clustered based on their contents, but biased by
the predetermined subconcepts (Step II). At last, the clusters together with name
suggestions based on the predetermined term clusters are presented to the maintainer
as suggestions for new subconcepts (Step III).

2.1 Term-Based Cluster Preselection (Step 1)

The motivation for Step I is twofold: On the one hand, prior experiments showed that
generally cluster algorithms that use an a-priori defined number of target clusters
perform better for our purpose (Stork 2011). So we need this step to determine
the desired number of clusters. On the other hand, we that way incorporate the
DCF paradigm which has an additional advantage: For the maintainer, it is easier
to evaluate and select possible clusters based on a limited set of terms than on the
actual content of the documents in the clusters.

To identify meaningful terms within the documents to be split, we use a
weighting scheme based on #f-idf. The modification solely lies in the definition of
the document sets employed. First of all, we concatenate all documents assigned
to concept ¢ into an artificial document, denoted as C. We further define S
as the set of all documents that belong to sibling concepts, plus our artificial
document C (Fig.2). The weight for each occurring term ¢ in C is then calculated
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Fig. 2 Weight calculation: |S| = 6,df, s = 4,1f,c =5

straight-forward:
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t.C ft,C ( + gdfts) (1)
with term frequency f, - denoting the number of occurrences of term 7 in C and
document frequency df, ¢ denoting the number of documents inside .S that contain
term ¢. '

With this approach, we identify meaningful terms describing the broad, overall
topic of the concept, as well as terms that are meaningful, but not representative
for the whole concept. The latter are the interesting terms that allow to discriminate
between clusters and possibly account for new subconcepts.

To support the maintainer in a proper term cluster selection, the top n highest
weighted terms have to be pre-clustered. n is configurable and depends on the
setting; we used n = 50, considering the fact that we expect approximately 5 new
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subconcepts and estimate 10 terms per cluster as a meaningful number of terms. The
clusters are created simply based on co-occurrence of the terms in the documents.
Therefore, we create a term-relationship matrix 7" where each element contains the
document overlap between two terms, D; being the set of documents containing
term 7:
T, = M )
Y min(| Dy, D, )

T is transformed into a binary matrix using a configurable threshold where a 1
indicates that both terms belong to the same cluster. We used 0.5 as a starting point,
the adjustment of the threshold directly affects the number of the resulting term
clusters and is an intuitive means for the maintainer to influence the clustering result.

The resulting term clusters are finally presented to the maintainer, who may
merge obviously related clusters, remove terms which are out of place in a cluster
or disregard entire clusters as desired.

2.2 Content-Based Clustering (Step I1)

The result of Step I that forms the basis for Step II are k term clusters containing
a total of m terms. From the term clusters, k initial document clusters are built,
where each cluster is comprised solely of documents containing at least one term
of a term cluster and no term of any other cluster. The remaining documents form
an additional cluster. The following content-based clustering is performed on these
k + 1 initial clusters.

The documents are generally represented by term vectors with standard #f-idf
weighting. However, as we consider the preselected terms to be more important,
we increase their value by setting df = 2 — this is the lowest occurring document
frequency, as terms that occur only in a single document do not affect the clustering
and are therefore removed.

The actual clustering is performed with k-Means, despite two requirements of
this algorithms that often cast its application into doubt: the number of target clusters
has to be defined beforehand and the result depends on the choice of initial seed
points. Both requirements are met in our case using the results from Step I: we use
the number of selected term clusters — plus one outlier cluster — as the specified
number of output clusters; instead of single seed points we use pre-initialized
clusters, based on documents solely containing terms from one term cluster. After
the maintainer’s curation of term clusters, these initial clusters can reasonably be
expected to be thematically homogeneous.

With these provisions together with the increased weight of the m preselected
terms, we ensure that the clustering result is in line with the input of the maintainer,
while we still harness the benefits of a content-based clustering approach.



Cluster It! Semiautomatic Splitting and Naming of Classification Concepts 369
2.3 Cluster Naming (Step III)

In the last step, the term-based clusters and the content-based clusters have to be
combined to generate the final suggestions for the maintainer. First, we calculate
the most meaningful terms in each cluster, using the same approach as described in
Step I (Eq. 1). The tf-idf values calculated in this manner are sorted in descending
order and a new term list is built for each cluster. The number of considered terms
depends on the number of terms in the corresponding term cluster which was used to
initialize the cluster in question. This list of new terms is presented to the maintainer
in combination with the list of original terms in form of a diff visualisation, i.e. both
new and dropped terms are highlighted and displacements are marked.

With this visualization, it is very easy to evaluate the final clusters and the
maintainer is able to judge, whether or not the content-based clusters are created
as expected. From these clusters, the resulting subconcepts can directly be created,
using one or more labels from the proposed term list, or provided with a better-
suited, possibly superordinate term selected by the maintainer. The documents of
the cluster are assigned to the new subconcept directly.

3 Hands On: A Bench Test

Due to the lack of publicly available classifications with full texts, we used the 20
newsgroups collection which is a popular dataset for the evaluation and testing of
clustering algorithms. Our experiments are based on the version by Jason Rennie!
with duplicates and most headers removed. The newsgroups are organized in a
hierarchy, creating a classification where each newsgroup forms a concept in.
For this test, we create an artificially broad concept by merging the newsgroup
messages (i.e., our documents) of all groups below science (sci.*): space, medical,
cryptography and electronics, amounting to 2,373 documents. The remaining 16
groups (8,941 documents) in the collection found above are viewed as sibling
concepts. The task is to use our method to cluster the documents belonging to our
artificial science concept. The original classification based on the four subgroups is
used as gold standard to evaluate the results.

The first result that is presented to the maintainer are the term clusters of the
50 highest weighted terms from the artificial science concept, together with the
number of associated documents (Table 1). The remaining 12 terms (db, don, health,
medical, orbit, patients, program, research, sci, science, technology and time) are
not related to any other term, they are presented to the maintainer as additional
terms. In this test, we expect the maintainer to conduct the following refinements to

Thttp://people.csail.mit.edu/jrennie/20Newsgroups/
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Table 1 Term clusters and number of associated documents, as presented to the maintainer

Cluster 1 Cluster 2 Cluster 3 Cluster 4
clipper, encryption, key, chip, crypto, tapped, code space, nasa, launch, moon, lunar
privacy, data, security, information, shuttle,
keys, des, algorithm, system, spacecraft

cryptography, escrow, public, ripem,
government, available, secret, pgp,
nsa, rsa, people, announcement,
wiretap, secure, encrypted
858 34 187 43

Table 2 Term clusters and number of associated documents, as presented to the maintainer after
the naming step

Cluster 1 Cluster 3

clipper(%0), encryption(30), key(30), chip(£0), space(30), launch(+3),
security(+2), keys(+42), privacy(—1), des(+1), moon(+1), lunar(4-2),
crypto(—4), cryptography(4-1), algorithm(—1), nasa(—3), orbit(—3),
nsa(-+5), rsa, wiretap, secret(+2), escrow(—2), shuttle(+0), spacecraft(10)

government(-3), ripem(—3), tapped, secure(+2),
code, pgp(—4), announcement, ererypted

define the result of Step I:

— Remove announcement, public, people, system, available, information and data
from Cluster 1, which is concerned with cryptography;

— Merge Cluster 4 into Cluster 3, as both are dealing with space;

— Discard Cluster 2; and

— Add term orbit (amongst the remaining 12 terms) to Cluster 3.

The remaining term clusters 1 and 3 are used to create the initial clusters as
input for the content-based clustering (Step II). Based on the k-Means clustering,
the next result is presented to the maintainer: the document clusters, together with
meaningful terms that can be used for the final naming of the desired clusters
(Table 2). As the term clusters already contained terms selected by the maintainer,
this final terms are presented for an efficient review: terms that already belonged
to the first term cluster are marked in bold, the number in brackets indicates the
difference in position in the sorted terms; new terms are in plain text; and terms that
appear in the first term cluster but not in the new list are striked-through.

Both term lists exhibit a great degree of overlap to the original term clusters,
indicating that the content-based clustering was performed according to the curated
term clusters. In Table 3, we list a general evaluation for these clusters according
to the gold-standard, without further curation by the maintainer. While we failed to
identify the two other topics contained in the science concept, namely electronics
and medical, the two subconcepts cryptography and space were correctly identified
by the term clusters created in Step I. For the latter topics, the created subconcepts
exhibit a very high precision, which is in line with our goal.
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Table 3 The produced clusters with some central measurements

Cluster # of documents Precision Recall Fl-measure
1 563 0.961 0.909 0.934
3 452 0.969 0.739 0.838

It is worth noting that executing our approach after new subconcepts have been
introduced will generate new term clusters and possibly aid in detecting topics
that were hidden by dominating topics during earlier executions. Based on the
cluster presentation, the maintainer can easily select an appropriate name for the
new subconcepts. With these two simple steps, the maintainer created two new
subconcepts containing about 1,000 documents, at an average precision of 96.5 %.

4 Related Work

Our work was mainly motivated by Brank et al. (2008) who use machine learning to
predict the additions of new concepts in a classification. They list the assignments
of documents by means of clustering and especially the naming of the new concepts
based on these clusters as possible extensions.

Clustering of documents is a common task and many other approaches have
been developed, e.g. Suffix Tree Clustering (Zamir and Etzioni 1998) (STC), an
incremental algorithm which creates clusters on the basis of common phrases
between documents. That way, descriptions for each cluster can directly be taken
from these common phrases. However, with STC, only documents containing
common phrases are grouped together, neglecting thematical overlap using varying
terms. STC focuses on isolated document sets (or text snippets) and is suitable to
extract key phrases to be used for further exploration of the documents. As STC
allows overlapping clusters, it can not be used in a classification context. Moreover,
as it favors longer cluster labels, STC tends to produce a high number of rather small
clusters.

Some of these drawbacks are addressed by SHOC (Semantic, Hierarchical
Online Clustering) (Zhang and Dong 2004), an extension to STC designed to cluster
a set of web search results with meaningful cluster labels. It is based on Latent
Semantic Indexing (Deerwester et al. 1990), an indexing and retrieval method that
employs Singular Value Decomposition to discover hidden concepts contained in
a body of text. By identifying these semantic concepts in a document corpus, the
shortcomings of a clustering algorithm solely depending on lexical matches can
be mitigated. SHOC introduces the notion of complete phrases to identify possible
cluster label candidates with the help of suffix arrays. In our scenario, SHOC has the
disadvantage that it behaves like a black-box. As the discovery of cluster labels is
performed after the clusters have been created, it is not possible to let the maintainer
support the process in an intuitive way.
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The Description-comes-first paradigm is employed by Lingo (Osinski et al.
2004), an algorithm inspired by SHOC. In contrast to SHOC, the clustering step is
executed after the discovery of the cluster labels which are used to assign documents
to clusters. Similar to STC, Lingo’s preference for longer cluster labels leads to a
large number of clusters representing topics at a higher granularity than desired for
our purpose.

Another supposedly DCF-based approach is Descriptive k-Means (Stefanowski
and Weiss 2007) (DKM) that at first sight looks similar to our approach. The authors
extract cluster labels with two different approaches, frequent phrase extraction
(implemented with suffix trees), and simple linguistic processing (noun phrase
extraction with a trained statistical chunker). However, the k-Means clustering is
performed independently, subsequently the cluster labels are assigned to clusters
based on their similarity to the cluster centroids and the contents of the documents
in the cluster. Clusters without an assigned label are discarded. The number of target
clusters has to be selected beforehand, the initial seeding points are created from
randomly selected documents in a way that the most diverse documents of this
subset are used. It can be questioned, if DKM follows the DCF paradigm, as the
descriptions are not used to influence the clustering, rather they are used to filter
the clusters. Nevertheless, the approach follows the same motivation as ours: the
identification of labeled clusters favoring a high precision.

5 Conclusion

In this paper, we presented a workflow in three steps to create recommendations
for new subconcepts (i.e. subclasses) in a hierarchical classification system. The
creation is mainly performed by clustering documents associated to the concepts to
be split (Step II). We improved the result by incorporating the human maintainer
of the classification: once before the clustering takes place, when the maintainer
selects term clusters in order to influence the clustering; once afterwards, when
the actual subconcepts are created based on the recommendations. We have shown
that our approach works with promising results under laboratory conditions and are
confident that it can be used in a productive setting. The strength of our approach
lies in the transparency for the user who can influence the result easily based on
comprehensible term clusters, while the actual recommendations are still created on
the document contents and not just on a term basis.
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A Theoretical and Empirical Analysis
of the Black-Litterman Model

Wolfgang Bessler and Dominik Wolff

Abstract The Black-Litterman (BL) model aims to enhance asset allocation
decisions by overcoming the weaknesses of standard mean-variance (MV) portfolio
optimization. In this study we propose a method that enables the implementation
of the BL model on a multi-asset portfolio allocation decision. Further, we empir-
ically test the out-of-sample portfolio performance of BL optimized portfolios in
comparison to mean-variance (MV), minimum-variance, and adequate benchmark
portfolios. Using an investment universe of global stock markets, bonds, and
commodities, we find that for the period from January 2000 to August 2011
out-of-sample BL optimized portfolios provide superior Sharpe ratios, even after
controlling for different levels of risk aversion, realistic investment constraints,
and transaction costs. Further the BL approach is suitable to alleviate most of
the shortcomings of MV optimization, in that the resulting portfolios are more
diversified, less extreme, and hence, economically more intuitive.

1 Introduction and Literature Review

The traditional mean-variance (MV) optimization based on Markowitz (1952)
is critically viewed by most portfolio managers (Drobetz 2003), mainly due to
three severe shortcomings. First, the estimation of the required input data such as
expected returns and the variance-covariance-matrix is problematic. Inevitably, all
estimates are subject to estimation errors that distort optimal portfolio allocations.
Estimation errors of returns, however, are much more critical than those of the
variance-covariance-matrix (Chopra and Ziemba 1993). In the MV optimization
framework, assets with the largest estimation errors tend to obtain the highest
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portfolio weights, resulting in ‘estimation error maximization’ (Michaud 1989).
Second, the MV approach tends to generate extreme portfolio allocations and,
hence, a low level of diversification across asset classes (Broadie 1993), i.e.
the optimized portfolios involve corner solutions. Third, the optimized portfolio
weights are very sensitive to changes in the input parameters which results in
radical portfolio reallocations even for small variations in expected return estimates
(Best and Grauer 1991). High transaction costs resulting from substantial portfolio
reallocations might contribute to the low acceptance of MV optimization among
practitioners. Black and Litterman (1992) extend the MV approach to alleviate these
problems. By combining subjective and neutral return estimates, the high sensitivity
of portfolio weights is reduced. In contrast to MV, however, the investors may
provide return estimates for each asset and also incorporate the reliability of these
estimates. Hence, the investor is able to distinguish between qualified estimates
and pure guesses. So far there is hardly any empirical evidence for the superiority
of the BL model. Although several studies analyze the economic rationale of the
BL model and use it to derive efficient frontiers, there is no evidence that the
BL model generates superior portfolio allocations relative to the MV, minimum-
variance or other benchmark portfolios in out-of-sample optimizations. In addition,
the literature on the BL model does not provide a satisfying answer on how to derive
‘subjective’ return estimates and how to quantify the quality of these estimates.
Most studies assume exogenously given estimates (Drobetz 2003) and suggest
confidence intervals of the return estimates as a measure of uncertainty (Black and
Litterman 1992). The challenging task for investors is to provide return estimates
and confidence intervals which hinder a successful implementation.

We contribute to the literature by testing the BL model empirically. We conduct
an out-of-sample multi-asset portfolio optimization for the period from 2000 to 2011
by using the BL approach, MV, and minimum variance optimization and evaluate
the portfolio allocations by using several performance measures and calculating
adequate benchmark portfolios. We analyze whether the BL model is able to
alleviate the problems of MV optimization and whether it leads to a superior
portfolio performance. Further, the literature is extended by implementing the BL
model on multi-asset instead of stock-only portfolios.

2 Methodology

The BL model combines two sources of information to obtain return estimates:
neutral return estimates implied in market weights also referred to as ‘implied
returns’ and subjective return estimates also referred to as ‘views’. The simple
assumption behind implied returns is that the observed market weights of the assets
are the result of a risk-return optimization. In fact it is assumed that all market
participants maximize the utility function U:

8
max U(w) = o’ IT, — Ea)TEa), (1)
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Fig. 1 The procedure of the Black-Litterman approach

where (w) is the vector of portfolio weights, (/1,) the vector of implied asset
excess returns, (X) the variance-covariance-matrix, and (§) is the investor’s risk
aversion coefficient. Maximizing the unrestricted utility function results in the
optimal portfolio weights:

w* = (X)71,. (2)

Assuming that the observable market weights (w) are the average optimized
portfolio weights of investors, the average excess return estimates of the market
can be calculated as:

I, = ¥w. 3)

In the BL framework the vector of implied returns (/1) is combined with the vector
of views (Q), incorporating the reliability of each view. To derive the combined
return estimates, Black and Litterman (1992) apply the Theil’s mixed estimation
model, while several authors also suggest a Bayesian estimation model (e.g. Drobetz
2003). Figure 1 illustrates the procedure of the BL approach.

We briefly describe the intuition of combining the return estimates following
Theil’s mixed estimation approach. It is assumed that implied returns (/1) and views
(Q) are estimators for the mathematically correct return estimates (1). Hence the
correct excess return estimates () can be written as implied excess return estimates
(I1,) plus an error term (1), where (I) is the identity matrix:

I, =1-pu.+n with n~ N(@,1X). (@)
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The error term (1) is assumed to be normally distributed with a variance proportional
to the historic variance-covariance-matrix (X'). The proportional factor () reflects
the uncertainty of implied returns. Views (Q) can be written as a linear combination
with error term (€), where (P) is a binary matrix which contains the information for
which asset a view is included:

O.=P-pe+e with €~ N(O,R). (5)

The matrix (§2) is the covariance matrix of the error terms and represents the
reliability of each view. Applying a generalized least square procedure leads to the
estimator of combined excess return estimates that can be written as:

e =[x D) + P27 Pl (e2)™' T + PT271QL. (6)

The resulting return estimates can be interpreted as a weighted average of implied
returns and subjective return estimates with respect to the correlation structure.
The weights are the uncertainty factors of implied returns () and subjective return
estimates (£2). The posterior variance-covariance-matrix is:

Ypr =X +[X) '+ Pl P (7)

After computing combined return estimates and the posterior variance-covariance-
matrix a traditional risk-return optimization is conducted, maximizing the investor’s
utility function as defined in Eq.(1). As constraints we implement a budget
restriction, an exclusion of short-selling, and an upper bound on the portfolio
volatility. The latter allows us to differentiate between different investor types in
terms of their desired portfolio risk rather than risk aversion coefficients, which are
intuitively difficult to quantify. We keep the risk aversion coefficient constant at a
level of 2. For MV optimization, we implement the same optimization procedure.
The only difference is that for the MV approach the vector of mean historic
excess returns and the historic variance-covariance-matrix are used while in the BL
framework combined excess return estimates and the posterior variance-covariance-
matrix are employed. For the time period January 2000 to August 2011 we calculate
monthly out-of-sample optimized portfolios at every first trading day of the month,
using the BL, MV and minimum-variance approaches.

Performance measures. We calculate several performance measures to evaluate
the optimized portfolios. We estimate the portfolio’s net Sharpe ratio (after transac-
tion costs) as the fraction of the out-of-sample mean net excess-return divided by
the standard deviation of out-of-sample returns. We use the two-sample statistic for
comparing Sharpe ratios as proposed by Opdyke (2007) to test if the difference
in Sharpe ratios of two portfolios is significant. This test allows for correlation
between the portfolio returns and non-normal distributions. As a risk measure we
calculate the maximum drawdown, which does not require any assumption on the
return distribution and reflects the maximum accumulated loss that an investor may
suffer in the worst case during the whole investment period. Further, we calculate
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the portfolio turnover, which quantifies the amount of trading required to implement
a particular strategy. In line with DeMiguel et al. (2009), we account for trading
costs by assuming proportional transaction costs of 50 basis points of the transaction
volume.

3 Data

To construct multi-asset portfolios we use six geographical Datastream stock indices
covering both developed and emerging markets: North America, Europe, Pacific,
Latin America, Asia and Emerging Europe. Further, we include the Datastream US-
Government Bond Index (all maturities) as a low risk investment and the S&P GSCI
index representing investments in commodities. We obtain monthly total return
index data for the time period from January 1995 to August 2011 and calculate
monthly index returns. To implement an out-of-sample portfolio optimization with
the BL and MV approaches, we estimate the variance-covariance matrix by using
historic monthly return data and a moving estimation window of 36 months in
the base case. Different window sizes are used as a robustness check. In the
MYV approach, historic mean returns are used as return estimates. We use a 12-
month moving estimation window in the base case and analyze different estimation
windows in the robustness check. Since the focus is on comparing the portfolio
performance of MV and BL optimized portfolios, we use the same historic mean
returns as in the MV for the BL approach as views (Q). However, the BL approach
requires additional input parameters: The reliability of views (§2), implied returns
(IT) and the reliability of implied returns (7). We measure the reliability (£2) of each
view (i) by computing the historic variance of the error terms (€), where (¢; ;) is the
difference of the subjective return estimate (g; ;) for an asset (i) in month (t) and the
realized return (r; ;) of asset (i) in month (t), using a 12-months moving estimation
window.

The idea is that in stable market conditions when the last month’s views are
close to the realized returns, the view for the next month is more reliable. For the
parameter (t) we employ a value of 0.1 which is in the range of 0.025-0.3 that
we found to be commonly used in the literature. To calculate implied returns the
market weights of stocks at the rebalancing date are employed. However, we cannot
use market weights for bonds and commodities. For commodities, these weights
would be difficult to measure, while for bonds market weights would be problematic
due to their relatively heavy weight in comparison to stocks. This would imply that
investors allocate a high proportion of their assets to bonds, if they do not have
‘subjective’ return estimates or if the reliability of these estimates is rather small.
Since this might not be an adequate assumption for all investors, we use strategic
weights for bonds and commodities. We account for various investor types—
‘conservative’, ‘moderate’ and offensive’ — and set different strategic weights for
bonds, commodities, and stocks as presented in Table 1. These strategic weights
are used to construct benchmark portfolios for each investor type as well. Next,
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Table 1 Strategic weights and benchmark portfolios

Benchmark portfolio weights

Investment Historic volatility of ~ Optimization constraint: max.
type Bonds Commodities Stocks benchmark portfolios portfolio volatility
Conservative 80 % 5% 15% 3.98% p.a. 5.00 % p.a.

Moderate 40 % 15 % 45 % 7.45 % p.a. 10.00 % p.a.

Offensive 0% 25% 75 % 12.15% p.a. 15.00 % p.a.

we calculate implicit return estimates for all assets according to Eq. (3) for each
investor type. To derive the maximum allowed portfolio volatility as an optimization
constraint for each investor type we rely on historic benchmark volatilities (1995—
2000) and add roughly 25 % to allow for a reasonable deviation from the benchmark.
Thus, we assume maximum desired portfolio volatilities for the ‘conservative’,
‘moderate’, and ‘offensive’ investor clienteles of 5, 10, and 15 % p.a., respectively
(see Table 1).

4 Empirical Results

Table 2 summarizes the empirical results for the evaluation period from January
2000 to August 2011 for BL, MV, and minimum-variance optimized portfolios as
well as for two benchmark portfolios. Benchmarks I and II are computed according
to the asset weights in Table 1. For benchmark I, regional stock indices are equally
weighted within the asset class stocks, while for benchmark II regional stock indices
are market weighted. All portfolios are rebalanced at the first trading day of every
month. Panel I of Table 2 shows the net Sharpe ratio (after transaction costs)
for each portfolio. The results reveal that BL optimized portfolios exhibit higher
net Sharpe ratios and hence better performance than MV, minimum-variance and
both benchmark portfolios for all investor types. For the moderate and offensive
investors these results are significant. The insignificant result for the conservative
investor is not surprising since both BL and MV optimization converge to the
minimum-variance portfolio for high risk aversions. The risk measure ‘maximum
drawdown’ in panel II of Table 2 indicates a consistently lower risk of the BL
optimized portfolio in comparison to all other approaches and independently of
the investor type. The average portfolio turnover in section III is an indicator for
the amount of trading and, hence, transaction costs generated by implementing a
certain optimization strategy. However, transaction costs are already priced in the
net Sharpe ratio measure. The results show that for less risk-averse investors the BL
approach tends to exhibit a lower portfolio turnover and, hence, lower transaction
costs and less extreme reallocations of the optimized portfolios in comparison to the
MYV approach. The fourth part of Table 2 reveals that BL portfolios, on average,
include a higher number of assets than MV and minimum variance portfolios.
Consequently, BL portfolios tend to be better diversified across asset classes.
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Next, we perform a sensitivity analysis to check if our results are robust to
changes in the input data. To test if the outperformance of the BL approach is driven
by the strategic weights of asset classes (see Table 1), we vary the maximum allowed
portfolio volatility while keeping the strategic weights of bonds, commodities, and
stocks for the calculation of implied returns constant at the level of 40, 15 and 45 %,
respectively. Panel I of Table 3 shows that the BL approach generates consistently
higher net Sharpe ratios than MV optimization and benchmark portfolios for
all considered volatility constraints. The insignificant results for small portfolio
volatilities (5 and 7.5 % p.a.) are due to the convergence of BL and MV to the
minimum-variance portfolio for high risk aversion. In panels II and III of Table 3,
we present the results for different estimation windows. Again, for all scenarios
we find consistently higher net Sharpe ratios for the BL approach than for MV
optimization and both benchmark portfolios.

5 Conclusion

Using strategic weights, the BL. model can successfully be applied to asset allocation
decisions for multi-asset portfolios. For the period between January 2000 and
August 2011, we find consistently higher out-of-sample Sharpe ratios for the
BL approach than for MV optimized portfolios. For risk-averse investors, the
difference between Sharpe ratios is insignificant as both approaches converge to
the minimum-variance portfolio for high risk aversion. Compared to adequate
benchmark portfolios, the BL optimized portfolios reveal significantly higher
Sharpe ratios in all cases. Further, out-of-sample BL portfolios exhibit lower risk
in terms of smaller maximum drawdowns than MV and benchmark portfolios.
In addition, BL optimized portfolios include, on average, more assets than MV
optimized portfolios and, hence, tend to be better diversified across asset classes.
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Vulnerability of Copula-VaR to Misspecification
of Margins and Dependence Structure

Katarzyna Kuziak

Abstract Copula functions as tools for modeling multivariate distributions are well
known in theory of statistics and over the last decade have been gathering more and
more popularity also in the field of finance. A Copula-based model of multivariate
distribution includes both dependence structure and marginal distributions in such
a way that the first may be analyzed separately from the later. Its main advantage
is an elasticity allowing to merge margins of one type with a copula function of
another one, or even bound margins of various types by a common copula into a
single multivariate distribution. In this article copula functions are used to estimate
Value at Risk (VaR). The goal is to investigate how misspecification of marginal
distributions and dependence structure affects VaR. As dependence structure normal
and student-t copula are considered. The analysis is based on simulation studies.

1 Risk Measurement: VaR

There are many different concepts of measuring risk, like Value at Risk (VaR),
Expected Shortfall (ES) or coherent measures of risk, to name just a few (e.g.
Artzner et al. 1999; Crouhy 2001; Gregoriou 2010; McNeil et al. 2005). We will use
the VaR as basic risk measure in simulations. The definiton of VaR is as follows:

P(R < Fg, (@) =q (1)

VaRg,(q) = —Fx () 2
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where: R; is a rate of return (periodic or logarithmic) and F~!() is a quantile of
return distribution related to the probability of 1 — g (where q has to be assumed).

VaR is quantile of return distribution related to the probability 1 — ¢ (where ¢
is prior defined tolerance level). VaR measures the maximum loss associated with
a certain statistical level of confidence (e.g. 95 % or 99 %) assuming 1 day horizon
and normal market conditions.

The main problem in portfolio VaR estimation is measurement of dependence.
One may consider two approaches (Crouhy 2001; Embrechts et al. 2002; Franke
et al. 2011; Gregoriou 2010):

1. Correlation — in finance and in risk management (e.g. traditional portfolio theory,
the Capital Asset Pricing Model, a set of VaR methods);
2. Copula function — modern approach in risk management (in some VaR methods).

Unfortunately, in some applications correlation is an unsatisfactory measure of
dependence, because it takes into account only linear dependence. Correlation also
does not measure tail-dependence, which is what risk management should focus on.
From risk management point of view, failure to model correctly tail-dependence
may cause serious problems (under- or over-estimation of risk). One of modern
approaches to measuring dependence is to use copula functions. The essential idea
of the copula approach is that a joint distribution can be factored into the marginals
and a dependence function called a copula (Gregoriou 2010).

2 Dependence Measurement: Copula Function

The use of copula function allows to overcome the issue of estimating the
multivariate distribution function, thanks to the operation of splitting it into two
parts:

* Determine the margins Fi, ..., F, which represent the distribution of each risk
factor, and estimate their parameters;
* Determine the dependence structure of the random variables X, ..., X,, speci-

fying a copula function.

The dependence relationship is entirely determined by the copula, while scaling
and shape (mean, standard deviation, skewness, and kurtosis) are entirely deter-
mined by the marginals (Nelsen 2006).

Copulas can be useful for combining risks when the marginal distributions are
estimated individually. This is sometimes referred to as obtaining a joint density
with “fixed marginals.” Using a copula, marginals that are initially estimated
separately can then be combined in a joint density that preserves the characteristics
of the marginals.
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An n-dimensional copula is a multivariate d.f. C with uniform distributed
margins in [0, 1] (U(0, 1)) and the following properties (Cherubini et al. 2004;
Nelsen 2006):

1. C :[0,1]" — [0, 1].

2. C is grounded and n-increasing.

3. C has margins C; which satisfy:
Cw=C(,...,u,1,...,1) =uforall 0 < u < 1 the copula is equal to u if
one argument is u and all others 1.

4. C (uy,up, ... ug—1,0,up41,...,u,) = 0, the copula is zero if one of the
arguments is zero.

Theorem 1 (Sklar Theorem). The dependence between the real-valued random
variables is completely described by their joint cumulative probability distribution
function:

F(x,....50) =P(X1 <x1,.... Xy < xp) 3)

F (x1,...,x,) = C(Fi(x1),...,Fu(xp)) (@)

The function C(.) is called a Copula: it connects marginal distributions in a way
giving as a results a joint probability distribution. Sklar’s theorem says, that under
quite general assumptions there always exists a copula function.

There are two main groups of methods of copula function estimation:

1. Parametric:
Maximum likelihood ML (e.g. Cherubini et al. 2004)
Inference functions for margins IFM (e.g. Joe and Xu 1996)
Based on dependence measure (e.g. Lehmann and Casella 1998)
2. Non parametric:
Empirical copula (e.g. Deheuvels 1978, 1981; Nelsen 2006)

The problem with the ML method is that it could be computational intensive in
the case of high dimension, because it requires to estimate jointly the parameters
of the margins and the parameters of dependence structure. IFM method could
be viewed as a CML (canonical maximum likelihood) method with some assump-
tions/conditions.

2.1 Multivariate Copulas Family

The two popular parametric families of n-dimensional copulas are elliptical (e.g. the
multivariate Gaussian, the multivariate Student-¢) and Archimedean. The Gaussian
copula is the traditional candidate for modeling dependence, but the Student-z
copula can capture dependence in the tails. The Archimedean copulas find appli-
cation because they are easy to construct. Secondly there is a very wide range of
copulas which belong to this class and therefore a great variety of properties which
can be modeled using th