
www.allitebooks.com

http://www.allitebooks.org

Apache Accumulo for
Developers

Build and integrate Accumulo clusters with
various cloud platforms

Guðmundur Jón Halldórsson

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Apache Accumulo for Developers

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2013

Production Reference: 1101013

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-599-0

www.packtpub.com

Cover Image by Gant Man (gantman@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Guðmundur Jón Halldórsson

Reviewers
Einar Th. Einarsson

Andrea Mostosi

Pálmi Skowronski

Acquisition Editor
Joanne Fitzpatrick

Commissioning Editor
Sharvari Tawde

Technical Editors
Aparna Kumari

Krutika Parab

Pramod Kumavat

Hardik B. Soni

Project Coordinator
Akash Poojary

Copy Editors
Brandt D'Mello

Gladson Monterio

Alfida Paiva

Proofreader
Simran Bhogal

Indexer
Rekha Nair

Graphics
Abhinash Sahu

Ronak Dhruv

Production Coordinator
Manu Joseph

Cover Work
Manu Joseph

www.allitebooks.com

http://www.allitebooks.org

About the Author

Guðmundur Jón Halldórsson is a Software Engineer who enjoys the challenges
of complex problems and pays close attention to detail. He is an annual speaker at
the Icelandic Computer Society (SKY, http://www.utmessan.is/).

Guðmundur is a Software Engineer with extensive experience and management
skills, and works for Five Degrees (www.fivedegrees.nl), a banking software
company. The company develops and sells high-quality banking software. As
a Senior Software Engineer, he is responsible for the development of a backend
banking system produced by the company. Guðmundur has a B.Sc. in Computer
Sciences from the Reykjavik University.

Guðmundur has a long period of work experience as a Software Engineer since
1996. He has worked for a large bank in Iceland, an insurance company, and a large
gaming company where he was in the core EVE Online team.

Guðmundur is passionate about whatever he does. He loves to play online chess and
Sudoku. And when he has time, he likes to read science fiction and history books.

He maintains a Facebook page to network with his friends and readers,
and blogs about the wonders of programming and cloud computing at
http://www.gudmundurjon.net/.

I would like to thank my two girls, Kolbrún and Bryndís, for their
patience while I was writing this book, and researching in the area
of cluster computing.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Einar Th. Einarsson has been hacking computers since childhood, and has
worked both as a Programmer and a System Administrator for more than 15 years in
diverse fields such as online gaming, anti-malware, biotech, and telecommunications,
at companies such as CCP Games, FRISK Software, and deCODE Genetics. He is
currently the CTO of a startup company focused on providing tools for the online
poker world.

Andrea Mostosi is a passionate Software Developer. In 2003, while he was at
high school, he started with a single-node LAMP stack and grew up by adding
more languages, components, and nodes. He graduated in Milan and worked on
several web-related projects. He is currently working with data, trying to discover
information hidden behind huge datasets.

I would like to thank my girlfriend Khadija, who lovingly supports
me in everything I do, and the people I collaborated with, for fun or
for work, for everything they taught me. I would also like to thank
Packt Publishing and its staff for this opportunity to contribute to
this production.

www.allitebooks.com

http://www.allitebooks.org

Pálmi Skowronski holds a bachelor's and a master's degree in Computer
Science from Reykjavík University, with a focus on machine-learning and
heuristic searches.

Most recently, he has been working in the financial sector developing distributed
enterprise solutions with Five Degrees as a Senior Developer, and is currently working
on smart analysis of financial transactions with Meniga as a Software Specialist.

I would like to thank the author Mr. Halldórsson, a friend and
colleague, for the many laughs and stimulating conversations
we had during the writing of this book. May there be many more
in the near future.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: Building an Accumulo Cluster from Scratch	 5

Necessary requirements	 6
Setting up Cygwin	 7
Setting up Hadoop	 8

SSH configuration	 8
Creating a Hadoop user	 9
Generating an SSH key for the Hadoop user	 9

Installing Hadoop	 10
Configuring Hadoop	 11

core-site.xml	 13
mapred-site.xml	 14
hdfs-site.xml	 14
hadoop-env.sh	 15

Preparing the Hadoop filesystem	 15
Starting the Hadoop cluster	 16
Multi-node configurations	 16

The NameNode website	 18
The JobTracker website	 19
The TaskTracker website	 19

Setting up ZooKeeper	 20
Installing ZooKeeper	 20
Configuring ZooKeeper	 21
Starting ZooKeeper	 22

Setting up and configuring Accumulo	 23
Installing Accumulo	 23
Configuring Accumulo	 24

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Starting the Accumulo cluster	 24
The Accumulo website	 25

Connecting to the Accumulo cluster using Java	 26
Summary	 27

Chapter 2: Monitoring and Managing Accumulo	 29
Monitoring	 30

Setting up Ganglia	 31
Configuring Ganglia	 32

Setting up the Graylog2 server	 33
Logging using Graylog2	 33

Setting up Nagios	 33
Hadoop	 34

NameNode web interface	 34
Finding the logfiles	 35
How does Accumulo store files in Hadoop?	 37
Live, dead, and decommissioning nodes	 38

Accumulo	 39
Monitoring a system's overview	 41

Elasticity	 41
Failover	 42
Resource management	 42
Summary	 42

Chapter 3: Integrating Accumulo into Various Cloud Platforms	 43
Amazon EC2	 44

Prerequisites for Amazon EC2	 44
Creating Amazon EC2 Hadoop and ZooKeeper cluster	 44
Setting up Accumulo	 48

Google Cloud Platform	 49
Prerequisites for Google Cloud Platform	 49
Creating the project	 50
Installing the Google gcutil tool	 50

Configuring credentials	 50
Configuring the project	 51

Creating the firewall rules	 51
Creating the cluster	 52

Hadoop	 52
ZooKeeper	 54
Accumulo	 54

Deleting the cluster	 55
Rackspace	 57

Configuration	 57

Table of Contents

[iii]

Network	 57
Windows Azure	 58

Prerequisites	 58
Creating the cluster	 58

Hadoop	 59
ZooKeeper	 60
Accumulo	 61

Deleting the cluster	 61
Summary	 62

Chapter 4: Optimizing Accumulo Performance	 63
Prerequisites	 64
Hadoop performance	 65

Baseline	 65
Tuning	 66

Tuning parameters for mapred-default.xml	 66
HDFS	 67

Tuning parameters for mapred-site.xml	 68
Tuning parameters for hdfs-site.xml	 69

ZooKeeper performance	 69
ZooKeeper overview	 70

Accumulo performance	 70
Tuning parameters for accumulo-site.xml	 71
Accumulo overview	 71
Accumulo's performance summary	 72

Tables	 72
Comparing bulk ingest versus batch write	 74
Accumulo examples	 75

Summary	 76
Chapter 5: Security	 77

Visibility	 79
Creating an Accumulo user	 80
Creating tables in Accumulo	 80
How does visibility work?	 81

Security expression	 85
Writing a Java client	 85

Authorization	 87
User authorizations	 87
Handling secure authorization	 88
Query Services Layer	 88
Summary	 88

Table of Contents

[iv]

Appendix A: Accumulo Command References	 89
Appendix B: Hadoop Command References	 93
Appendix C: ZooKeeper Command References	 95
Index	 97

Preface
Apache Accumulo is a sorted, distributed Key-Value store. Since Accumulo
depends on other systems, setting it up for the first time is slightly difficult,
hence the aim of Apache Accumulo for Developers is to make this process easy for
you by following a step-by-step approach. Monitoring, performance tuning, and
optimizing an Accumulo cluster is difficult unless you have the right tools. This
book shall take a deep dive into these tools and also address the security issues
that come along with the Accumulo cluster.

What this book covers
Chapter 1, Building an Accumulo Cluster from Scratch, explores how to set up a
single-node, pseudo-distributed mode and then expand it to a multi-node.

Chapter 2, Monitoring and Managing Accumulo, focuses on four major things to keep
the cluster in a healthy state and to keep in check all the problems that occur while
dealing with a cluster.

Chapter 3, Integrating Accumulo into Various Cloud Platforms, explores how to integrate
Accumulo into various cloud platforms both as a single-node, pseudo-distributed
mode and when it's expanded to a multi-node.

Chapter 4, Optimizing Accumulo Performance, focuses on how to optimize the
performance of Accumulo. Since Accumulo uses Hadoop and ZooKeeper, we need
to start off with performance optimization techniques for Hadoop and ZooKeeper
before we go ahead with performance optimization for Accumolo.

Chapter 5, Security, reveals that Accumulo is designed for fine-grained security,
which normal database systems do not support. Accumulo is designed to extend
BigTable and supports full cell-level security.

Preface

[2]

Appendix A, Accumulo Command References, contains a list of all available commands
in the Accumulo shell.

Appendix B, Hadoop Command References, contains a list of user commands and
administrator commands in Hadoop.

Appendix C, ZooKeeper Command References, contains a list of ZooKeeper commands
called "the four-letter words".

What you need for this book
Apache Accumulo for Developers will explain how to download and configure all
the tools needed. This doesn't apply to the following tools, which you'll need to
install beforehand:

•	 Ganglia: Ganglia is a scalable and distributed monitoring system
for high-performance computing systems such as clusters and grids.
See http://ganglia.info for more information.

•	 Graylog2: Graylog2 enables you to monitor application logs.
See http://graylog2.org for more information.

•	 Nagios: Nagios is a powerful monitoring system.
See http://www.nagios.org for more information.

Who this book is for
This book is designed for both developers and administrators, who will configure,
administer, monitor, and even troubleshoot Accumulo. Both developers and
administrators will gain an understanding of how to use Accumulo, the design
of Accumulo, and learn about Accumulo's strength.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows:

The file mapred-site.xml can be used to configure the host and the port for the
Map/Reduce JobTracker.

Preface

[3]

A block of code is set as follows:

String inName = "accumulo-demo";
String zooKeeperServers = "zkServer1,zkServer2,zkServer3";
Instance zkIn = new ZooKeeperInstance(inName, zooKeeperServers);
Connector conn = zkInstance.getConnector("myuser", "password");

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

String inName = "accumulo-demo";
String zooKeeperServers = "zkServer1,zkServer2,zkServer3";
Instance zkIn = new ZooKeeperInstance(inName, zooKeeperServers);
Connector conn = zkInstance.getConnector("myuser", "password");

Any command-line input or output is written as follows:

root@accumulo-demo mydemotable3> scan -s SecTokenB

2013-08-19 23:45:24,709 [shell.Shell] ERROR:
 java.lang.RuntimeException:
 org.apache.accumulo.core.client.AccumuloSecurityException:
 Error BAD_AUTHORIZATIONS - The user does not have the specified
 authorizations assigned

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Preface

[4]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com

Building an Accumulo
Cluster from Scratch

Apache Accumulo was created in 2008 by National Security Agency (NSA), and
contributed to the Apache Foundation in 2011. Accumulo is a sorted, distributed
Key-Value store based on Google's BigTable design and high performance data store
and retrieval system. Accumulo uses Apache Hadoop HDFS for storage, ZooKeeper
for coordination, and Thrift. Apache Thrift software framework is used to define and
create services for many languages such as C++, Java, Python, PHP, Ruby, Erlang,
Perl, Haskell, C#, and many others. Thrift will not be discussed in this book, but is
worth looking at.

There are few prerequisites for deploying Accumulo; the ZooKeeper cluster needs to
be up and running and HDFS needs to be configured and running before Accumulo
can be initialized.

In this chapter, we will explore how to set up a single-node, pseudo-distributed mode
and then expand it to a multi-node. In a multi-node scenario, placing the machines in
odd numbers is the best setup because ZooKeeper requires a majority. For example,
with five machines, ZooKeeper can handle the failure of two machines; with three
machines, ZooKeeper can handle the failure of one machine. As Accumulo depends
on other systems, it can be hard to set it up for the first time.

This chapter will give you an answer to the question of how to set up Accumulo.

Building an Accumulo Cluster from Scratch

[6]

These are the topics we'll cover in this chapter:

•	 Necessary requirements
•	 Setting up Cygwin
•	 Setting up Hadoop (Version 1.2.1)
•	 Setting up ZooKeeper (Version 3.3.6)
•	 Setting up and configuring Accumulo (Version 1.4.4)
•	 Starting the Accumulo cluster
•	 Connecting to the Accumulo cluster using Java

Necessary requirements
When setting up Accumulo for development purposes, hardware requirements
are usually not the issue; you just make do with what you have, but having more
memory and a good CPU is always helpful. In most cases, a Map/Reduce job will
encounter a bottleneck in two scenarios:

•	 I/O-bound job when reading data from a disk
•	 CPU-bound job when processing data

More information about Map/Reduce can be found at the following link:

http://en.wikipedia.org/wiki/Map_Reduce

There is big difference when setting up Apache Hadoop, ZooKeeper, or Accumulo on
Windows or Linux. To make the difference less visible, all examples on Windows will
use Cygwin, and in some cases Windows PowerShell. All examples using Windows
PowerShell need administrator privileges. IPv6 should be disabled on both Linux
and Windows machines to minimize the risk of Hadoop binding to the IPv6 address
(I have seen this on Ubuntu machines).

Chapter 1

[7]

To disable IPv6 for Linux, add or change the following lines in the sysctl.conf file
in the etc directory:

Disable IPv6
net.ipv6.conf.all.disable_ipv6 = 1
net.ipv6.conf.default.disable_ipv6 = 1
net.ipv6.conf.lo.disable_ipv6 = 1

To disable IPv6 for Windows:

1.	 Open RegEdit.exe.
2.	 Navigate to HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\

Services\TCPIP6\Parameters.
3.	 Right click on the white background and add a new DWORD (32-bit) Value,

and then edit it with the value 0.

Setting up Cygwin
Many examples in this book use Cygwin. Cygwin is a set of tools that provide a
Linux flavor for Windows. It is very important to know that Cygwin isn't a way
to run native Linux applications on Windows. Download Cygwin (32-bit) from
http://cygwin.com/setup-x86.exe and run. Pick the following packages:

•	 openssh: The OpenSSH server and its client programs
•	 openssl: The OpenSSL base environment
•	 wget: Utility to retrieve files from WWW via HTTP and FTP
•	 python: Python language interpreter
•	 nano: Enhanced clone of the Pico editor
•	 vim: Vi IMproved—enhanced vi editor

www.allitebooks.com

http://www.allitebooks.org

Building an Accumulo Cluster from Scratch

[8]

After installing Cygwin, open up the Cygwin Terminal and try to run the command
python, and then the command ssh to verify whether the setup has been executed
correctly. The Cygwin window should look as follows:

Setting up Hadoop
Hadoop is a Java application framework and is designed to run on a large cluster
of inexpensive hardware. As Hadoop is written in Java, it requires a working Java
1.6.x installation. Both SSH and SSHD must be running to use the Hadoop scripts
remotely. For Windows installation, Cygwin is required. If Hadoop is already
installed and running, you can skip this section.

SSH configuration
Hadoop uses SSH access to manage its nodes, both remote and local machines.
Even if we only want to set up a local development box, we need to configure
SSH access. To simplify, we should create a dedicated Hadoop user (we are
going to do this for ZooKeeper and Accumulo in later sections of this chapter).

Chapter 1

[9]

Creating a Hadoop user
A Hadoop user can be created in different ways in Linux and Windows.

To create a Hadoop user for Linux, enter the following command-line code:

sudo addgroup hadoopgroup

sudo adduser –ingroup hadoopgroup hadoopuser

We want to isolate Hadoop by creating a dedicated Hadoop user account for running
Hadoop. We are doing this because everything is running on the same machine in
the beginning, and in most cases, this is going to be your developer machine.

To create a Hadoop user for Windows (PowerShell), use the Windows net command
to perform the same steps as in Linux:

net localgroup "hadoopgroup" /add

net user "hadoopuser" "!Qwert1#" /add

net localgroup hadoopgroup "hadoopuser" /add

Generating an SSH key for the Hadoop user
An SSH key for the Hadoop user can be generated in different ways in Linux
and Windows.

To generate an SSH key for Linux (remember SSH has to be installed), enter the
following command-line code:

su - hadoopuser

ssh-keygen –t rsa -P ""

cat $HOME/.ssh/id_rsa.pub >> $HOME/.ssh/authorized_keys

ssh hadoopuser@localhost

Run the shell with the substitute user, hadoopuser, to create a new rsa key, and
change the passphrase of the private key to an empty string; otherwise, Hadoop will
request the passphrase every time it interacts with its nodes. When this has been
done, we need to enable SSH access to your local machine by copying the id_rsa.
pub file to the authorized_keys directory.

To generate an SSH key for Windows, enter the following command-line code in
the Cygwin Terminal (with administrator privileges, else you will have to enter
administrator/system password whenever asked):

ssh-host-config -y

cygrunsrv –S sshd

Building an Accumulo Cluster from Scratch

[10]

For every (yes/no) question in the ssh-host-config script, the default answer is
yes. Then, start the sshd service by using the Cygwin cygrunsrv command.

Installing Hadoop
Hadoop has NameNode, JobTracker, DataNode, and TaskTracker:

•	 NameNode: It keeps the directory tree of all files in the filesystem, and
tracks where across the cluster, the datafile is kept. It does not store the
data of these files itself.

•	 JobTracker: It is the service within Hadoop that farms out Map/Reduce
tasks to specific nodes in the cluster—ideally the nodes that have data,
or nodes that are at least in the same rack.

•	 DataNode: It stores data in the Hadoop filesystem (discussed later in this
chapter).

•	 TaskTracker: It is a node in the cluster that accepts tasks.

Installation of the Hadoop cluster typically involves unpacking the software on all
the machines in the cluster. In a multi-node setup:

•	 The first machine is designated as the NameNode
•	 The second machine is designated as the JobTracker
•	 The third machine acts as both DataNode and TaskTracker

and are the slaves

Multi-node clusters will be discussed later in this chapter. The rule of thumb is
to create single-node setups, and then change the configuration files in order to
change a single-node setup into a multi-node setup.

For installing Hadoop on Linux, enter the following command-line code:

cd /usr/local

sudo wget http://apache.mirrors.tds.net/hadoop/common/hadoop-1.2.1/
hadoop-1.2.1.tar.gz

sudo tar xzf hadoop-1.2.1.tar.gz

sudo mv hadoop-1.2.1 hadoop

sudo chown -R hadoopuser:hadoopgroup hadoop

Chapter 1

[11]

Use wget to download the Hadoop version we want to set up. Currently, 1.2.1 is the
stable version, but please check this before continuing and update if needed. After
getting the file, we need to extract it. Instead of using the default name, we have two
options: one is to rename it as we are doing here, and the other is to use symlink
(this is easier when we update the Hadoop node). Finally, recursively change the
ownership of the given directory to the Hadoop user.

For installing Hadoop on Windows, there are two options. The first one is to use
WebClient in the .NET framework to download the file to the same location used
in the example in the preceding Linux section. This can be done using Windows
PowerShell (with administrator privileges). Enter the following command-line code
in Windows PowerShell:

$url = "http://apache.mirrors.tds.net/hadoop/common/hadoop-1.2.1/hadoop-
1.2.1.tar.gz"

$dir = "c:\cygwin\usr\local"

$webclient = New-Object System.Net.WebClient

$webclient.DownloadFile($url, "$dir\hadoop-1.2.1.tar.gz")

The second option is to use Cygwin Terminal (with administrator privileges).
Enter the following command-line code in the Cygwin Terminal:

cd /usr/local

wget http://apache.mirrors.tds.net/hadoop/common/hadoop-1.2.1/hadoop-
1.2.1.tar.gz

tar xzf hadoop-1.2.1.tar.gz

mv hadoop-1.2.1 hadoop

For consistency, use Cygwin's mv command as in the Linux example.

Configuring Hadoop
The Hadoop configuration is driven by two types of important configuration files,
which need to be configured for Hadoop to run as expected.

•	 Read-only default configuration: Files for this configuration are
core-default.xml, hdfs-default.xml, and mapred-default.xml

•	 Site-specific configuration: Files for this configuration are core-site.xml,
hdfs-site.xml, and mapred-site.xml

Building an Accumulo Cluster from Scratch

[12]

All Hadoop configuration files are located at /usr/local/hadoop/conf on Linux, or
at C:\cygwin\usr\local\hadoop\conf on Windows The default files present at the
given location are listed as follows:.

•	 capacity-scheduler.xml: This is the configuration file for the resource
manager in Hadoop. It is used for configuring various scheduling parameters
related to queues.

•	 configuration.xsl: This is an extensible stylesheet language file used for
the hadoop-site.xml file.

•	 core-site.xml: This is a site-specific file used to override default values of
core Hadoop properties.

•	 fair-scheduler.xml: This file contains the pool and user allocations for
the Fair Scheduler. For more information, please go to http://hadoop.
apache.org.

•	 hadoop-env.sh: Using this file, we can set Hadoop-specific environment
variables. The only required environment variable is JAVA_HOME.

•	 hadoop-metrics2.properties: Using this file, we can set up how Hadoop
is monitored.

•	 hadoop-policy.xml: This is a site-specific file used to override default
policies, such as access control properties of Hadoop. It is used to
configure ACL for ClientProtocol, ClientDatanodeProtocol,
JobSubmissionProtocol, TaskUmbilicalProtocol, and
AdminOperationsProtocol.

•	 hdfs-site.xml: This is a site-specific file used to override default
properties of Hadoop filesystem.

•	 log4j.properties: Using this file, we can configure appenders for:
°° Job Summary
°° Daily Rolling File
°° 30-day backup
°° TaskLog
°° Security audit
°° Event Counter

•	 mapred-queue-acls.xml: This file contains the access control list for user
and group names that are allowed to submit jobs. Alternatively, it contains
user and group names that are allowed to view job details, kill jobs, or
modify job's priority for all the jobs.

Chapter 1

[13]

•	 mapred-site.xml: This is a site-specific file used to override default values
for Hadoop Map/Reduce properties.

•	 masters: This is the master hostname file.
•	 slaves: This is the slaves hostname file.
•	 ssl-client-xml.example: This is an example file that ships with Hadoop.

There is no need to change this file.
•	 ssl.server.xml.example: Also, an example file that ships with Hadoop.

There is no need to change this file.
•	 taskcontroller.cfg: There is no need to change this file.

To get your single node up and running, we only need to change three files: core-
site.xml, hdfs-site.xml, and mapred-site.xml.

core-site.xml
Replace the code in core-site.xml with the following code:

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>

<configuration>
 <property>
 <name>hadoop.tmp.dir</name>
 <value>/app/hadoop/tmp</value>
 <description>Hadoop temp dir</description>
 </property>

 <property>
 <name>fs.default.name</name>
 <value>hdfs://localhost:54310</value>
 <description>Name and location of default filesystem
 </description>
 </property>
</configuration>

Hadoop needs a directory for temporary files. Make sure you are in the root
directory. Enter cd in command line (either Linux or Windows Cygwin Terminal)
and press Enter to be on the safer side.

For Linux, create the directory for the Hadoop filesystem and configure access for it.
Enter the following command-line code:

sudo mkdir -p /app/hadoop/tmp

sudo chown hadoopuser:hadoopgroup /app/hadoop/tmp

Building an Accumulo Cluster from Scratch

[14]

For Windows, create the directory for the Hadoop filesystem. Enter the following
command-line code in the Cygwin Terminal:

mkdir -p /app/hadoop/tmp

There is no need to worry that much about security at this point, but it's a good
practice to secure the directory as much as possible.

mapred-site.xml
The file mapred-site.xml can be used to configure the host and the port for the
Map/Reduce JobTracker. Replace the code in mapred-site.xml with the following
code:

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>

<configuration>
 <property>
 <name>mapred.job.tracker</name>
 <value>localhost:54311</value>
 <description>The Map/Reduce job tracker
 </description>
 </property>
</configuration>

hdfs-site.xml
The file hdfs-site.xml can be used to specify the actual number of replications
when the file dfs.replication is created. Replace the code in hdfs-site.xml
with the following code:

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>

<configuration>
 <property>
 <name>dfs.replication</name>
 <value>1</value>
 <description>Default replication
 </description>
 </property>
</configuration>

Chapter 1

[15]

hadoop-env.sh
To be able to start Hadoop, it is important to change the hadoop-env.sh file and
uncomment the JAVA_HOME line; also, point to the correct instance of JVM to let
Hadoop know where Java is located. Please note that this procedure applies to
Linux and not Windows.

For Windows, click on the Start button, then right-click on My Computer (XP) or
Computer (Win Vista/7), go to Properties, then go to Advanced tab (XP) or Advanced
system settings (Win Vista/7), and then click on the Environment Variables... button.
There, add a new user variable with Variable name as JAVA_HOME and with Variable
value as your Java path, for example, C:\Program Files\Java\jdk1.7.0_09. Also,
below the User variables, in System variables, edit the Path variable and append the
following line in it: C:\cygwin\bin;C:\cygwin\usr\sbin.

Preparing the Hadoop filesystem
Before starting Hadoop for the first time, it is required to format the Hadoop
filesystem (often called Hadoop Distributed File System (HDFS) or just Hadoop
DFS, which is designed to store very large files across machines in a large cluster).
And remember, if you format a running Hadoop filesystem, all your data will
be deleted. Keeping files under /app/<application name>/tmp instead of /
tmp/<application name> is good practice.

For Linux, format the Hadoop nodes as hadoopuser; this is required because of
access restrictions. Enter the following command-line code:

su – hadoopuser

/usr/local/hadoop/bin/hadoop namenode -format

For Windows, enter the following command-line code in the Cygwin Terminal:

/usr/local/hadoop/bin/hadoop namenode –format

If you get some errors in Cygwin, something like
/usr/local/hadoop/bin/hadoop: line 2: $'\r': command not found.
Then, enter the following command-line code and try formatting again:

dos2unix /usr/local/hadoop/bin/hadoop

Building an Accumulo Cluster from Scratch

[16]

Starting the Hadoop cluster
The bin directory located at /usr/local/hadoop contains few useful scripts to start
or stop Hadoop DFS and the Hadoop Map/Reduce daemons:

•	 start-dfs.sh: This script starts the Hadoop DFS daemons (NameNode
and DataNode)

•	 stop-dfs.sh: This script stops the Hadoop DFS daemons
•	 start-mapred.sh: This script starts the Hadoop Map/Reduce daemons

(JobTracker and TaskTracker)
•	 stop-mapred.sh: This script stops the Hadoop Map/Reduce daemons
•	 start-all.sh: This script starts all of the Hadoop daemons (NameNode,

DataNode, JobTracker, and TaskTracker)
•	 stop-all.sh: This script stops all of the Hadoop daemons

Use start-all.sh to start all of the Hadoop daemons (either Linux or Windows
Cygwin Terminal) as follows (make sure you have administrator rights, or you will
have to enter the administrator/system password whenever asked for):

/usr/local/hadoop/bin/start-all.sh

To confirm that the processes are launched, view the web interface for NameNode at
http://localhost:50070, the JobTracker at http://localhost:50030, and finally
the TaskTracker at http://localhost:50060.

Multi-node configurations
For setting up multiple nodes, it is good practice to use names instead of IP addresses.
In this example, let's name the nodes masternode (10.0.0.1), slavenode1 (10.0.0.2), and
slavenode2 (10.0.0.3). It is required to set up all the nodes in the same way.

Chapter 1

[17]

Update the hosts file located at /etc on all the nodes, as follows:

10.0.0.1 masternode
10.0.0.2 slavenode1
10.0.0.3 slavenode2

Next, distribute the SSH public key of hadoopuser@masternode to slavenode1
and slavenode2. This step can be done manually or by using the ssh-copy-id
script from the masternode machine, as follows:

ssh-copy-id -i $HOME/.ssh/id_rsa.pub hadoopuser@slavenode1

ssh-copy-id -i $HOME/.ssh/id_rsa.pub hadoopuser@slavenode2

ssh masternode

ssh slavenode1

ssh slavenode2

You need to connect to both of the nodes to permanently add RSA (masternode,
slavenode1, and slavenode2), to the list of known hosts.

On the masternode machine, you need to edit the file masters located in /usr/
local/hadoop/conf by typing in masternode, and edit the file slaves located
in /usr/local/hadoop/conf by typing in the names of the nodes as follows:

masternode
slavenode1
slavenode2

On all of the machines, you need to change the following files:

•	 core-site.xml located at /usr/local/hadoop/conf should be changed
from <value>localhost:54310</value>, to <value>masternode:
54310</value>

•	 mapred-site.xml located at /usr/local/hadoop/conf should be changed
from <value>localhost:54311</value>, to <value>masternode:
54311</value>

www.allitebooks.com

http://www.allitebooks.org

Building an Accumulo Cluster from Scratch

[18]

To start the nodes, run the following command (either Linux or Windows Cygwin
Terminal) on the masternode machine:

/usr/local/hadoop/bin/start-dfs.sh

The NameNode website
To verify that the NameNode is up and running as intended, browse to
http://localhost:54310. The information displayed on this page is very
important to see the status of a single- or multi-cluster setup, as shown in
the following screenshot:

Chapter 1

[19]

The JobTracker website
The JobTracker website displays an overview of the general job statistics running
on the Hadoop cluster. It also displays completed or failed jobs, as shown in the
following screenshot:

The TaskTracker website
The TaskTracker website displays an overview of the running and nonrunning tasks,
and the log directory, as shown in the following screenshot:

Building an Accumulo Cluster from Scratch

[20]

Setting up ZooKeeper
ZooKeeper is designed to be a high performance coordination service for the cluster
environment running distributed applications. By allowing distributed processes
to coordinate using a simple namespace (similar to a filesystem) stored in memory,
a high throughput and low latency is achieved. The best performance is reached
when read versus write ratios are around 10:1.

ZooKeeper is written in Java and therefore requires a working Java 1.6.x installation.
For Windows installation, Cygwin is required.

Installing ZooKeeper
When ZooKeeper is set up, every node has to know about each other. ZooKeeper
follows the concept of "follow the leader", which means there is always a leader
machine, and the leader is chosen when the ZooKeeper cluster starts up. Clients
only connect to the nodes that follow the leader, not the leader node.

ZooKeeper guarantees the following:

•	 Sequential Consistency: Updates from a client will be applied in the order
that they were sent

•	 Atomicity: Updates either succeed or fail; there are no partial results.
•	 Single System Image: A client will see the same view of the service

regardless of the server that it connects to
•	 Reliability: Once an update has been applied, it will persist from that time

onward until a client overwrites the update
•	 Timeliness: The client's view of the system is guaranteed to be up-to-date

within a certain time bound
For Linux, use wget to download the ZooKeeper version that we want to set up.
Stable versions are 3.3.6 and 3.4.5. Please check this for the stable version before
continuing and update if needed. After getting the file, we need to extract it. Instead
of using the default name, we have two options: one is to rename it as we are doing
here, and the other is to use symlink (this is easier when we update the ZooKeeper
node). Finally, recursively change the ownership of the given directory to the
Hadoop user (you can create a separate user for ZooKeeper).

Chapter 1

[21]

Enter the following command-line code in Linux:

cd /usr/local

sudo wget http://apache.mirrors.tds.net/zookeeper/zookeeper-3.3.6/
zookeeper-3.3.6.tar.gz

sudo tar xzf zookeeper-3.3.6.tar.gz

sudo mv zookeeper-3.3.6 zookeeper

sudo chown -R hadoopuser:hadoopgroup zookeeper

For Windows, there are two options. The first option is to use WebClient in the
.NET framework to download the file to the same location used in the example
in the preceding Linux section. This can be done using Windows PowerShell
(with administrator privileges). Enter the following command-line code in
Windows PowerShell:

$url = "http://www.globalish.com/am/zookeeper/zookeeper-3.3.5/zookeeper-
3.3.5.tar.gz"

$dir = "c:\cygwin\usr\local"

$webclient = New-Object System.Net.WebClient

$webclient.DownloadFile($url, "$dir\zookeeper-3.3.5.tar.gz")

The second option is to use Cygwin Terminal (with administrator privileges).
Enter the following command-line code in the Cygwin Terminal:

cd /usr/local

wget http://apache.mirrors.tds.net/zookeeper/zookeeper-3.3.6/zookeeper-
3.3.6.tar.gz

tar xzf zookeeper-3.3.6.tar.gz

mv zookeeper-3.3.6 zookeeper

Configuring ZooKeeper
ZooKeeper needs one configuration file zoo.cfg in the conf directory, which is
created with the following script:

cat /usr/local/zookeeper/conf/zoo_sample.cfg >>
 /usr/local/zookeeper/conf/zoo.cfg

Add the following properties into the newly created zoo.cfg file:

The number of milliseconds of each tick
tickTime=2000
The number of ticks that the initial
synchronization phase can take

Building an Accumulo Cluster from Scratch

[22]

initLimit=10
The number of ticks that can pass between
sending a request and getting an acknowledgement
syncLimit=5
The directory where the snapshot is stored
dataDir=/app/zookeeper
the port which the client will connect
clientPort=2181

For a multi-node setup, you need to add a few lines to the zoo.cfg file. In the
following example, three nodes have been created with the names zookeeper1
(10.0.0.10), zookeeper2 (10.0.0.11), and zookeeper3 (10.0.0.12). Adding these
names to the host file is required for every node, as we saw in the multi-node
configuration for Hadoop:

Cluster
server.1=zookeeper1:2888:3888
server.2=zookeeper2:2888:3888
server.3=zookeeper3:2888:3888

For more information about the ZooKeeper cluster setup, visit http://zookeeper.
apache.org/doc/r3.3.6/zookeeperAdmin.html#sc_zkMulitServerSetup

ZooKeeper needs a directory for temporary files. Make sure you are in the root
directory. Enter cd in command line (either Linux or Windows Cygwin Terminal)
and press Enter to be on the safer side. We will now create and give access to a
Hadoop user on Linux.

For Linux, create the directory for the ZooKeeper filesystem. To do this, enter the
following command-line code:

sudo mkdir -p /app/zookeeper

sudo chown hadoopuser:hadoopgroup /app/zookeeper

For Windows, enter the following command-line code in the Cygwin Terminal:

mkdir -p /app/zookeeper

Starting ZooKeeper
Start ZooKeeper with the following command-line code (either Linux or Windows
Cygwin Terminal):

/usr/local/zookeeper/bin/zkServer.sh start

Chapter 1

[23]

To verify that ZooKeeper is running as it should be, enter the following
command-line code (either Linux or Windows Cygwin Terminal):

/usr/local/zookeeper/bin/zkCli.sh

For more information about ZooKeeper commands, see Appendix C.

Setting up and configuring Accumulo
The last step in the setup process of Accumulo is to hook Accumulo to Hadoop and
ZooKeeper, that we configured in the previous sections.

Installing Accumulo
Use wget to download the Accumulo version we want to set up. Currently, 1.4.2
is the latest version, but please check this before continuing and update if needed.
After getting the file, we need to extract it. Instead of using the default name we
have two options: one is to rename it as we are doing here, and the other is to use
symlink (that is easier when we update the Accumulo node). Finally, recursively
change the ownership of the given directory to our Hadoop user; hadoopuser
(you can create a separate user for Accumulo).

For Linux, enter the following command-line code:

cd /usr/local

sudo wget http://apache.mirrors.tds.net/accumulo/1.4.4/accumulo-1.4.4-
dist.tar.gz

sudo tar xzf accumulo-1.4.4-dist.tar.gz

sudo mv accumulo-1.4.4 accumulo

sudo chown -R hadoopuser:hadoopgroup accumulo

For Windows, there are two options. The first option is to use WebClient in
the .NET framework to download the file to the same location as in the example
in the preceding Linux section. This can be done using Windows PowerShell
(with administrator privileges). Enter the following command-line code in
Windows PowerShell:

$url = "http://apache.mirrors.tds.net/accumulo/1.4.4/accumulo-1.4.4-dist.
tar.gz"

$dir = "c:\cygwin\usr\local"

$webclient = New-Object System.Net.WebClient

$webclient.DownloadFile($url, "$dir\accumulo-1.4.4-dist.tar.gz")

Building an Accumulo Cluster from Scratch

[24]

The second option is to use Cygwin Terminal (with administrator privileges). Enter
the following command-line code in Cygwin Terminal:

cd /usr/local

wget http://apache.mirrors.tds.net/accumulo/1.4.4/accumulo-1.4.4-dist.
tar.gz

tar xzf accumulo-1.4.4-dist.tar.gz

mv accumulo-1.4.4 accumulo

Configuring Accumulo
For configuring Accumulo in a development environment like ours, we are going to
use a small instance of Accumulo (512 MB).

Accumulo comes with example configuration files that are present in the examples
directory located in /usr/local/accumulo/conf. There are examples for 512 MB,
1 GB, 2 GB, and 3 GB. In a local development scenario, there is no need to use an
instance larger than 512 MB. To do this, change to the hadoopuser mode and copy
all of the example configuration files for 512 MB standalone machine to the conf
directory.

For Linux, enter the following command-line code:

su - hadoopuser

cp /usr/local/accumulo/conf/examples/512MB/standalone/*
 /usr/local/accumulo/conf

For Windows, enter the following command-line code in Cygwin Terminal:

cp /usr/local/accumulo/conf/examples/512MB/standalone/*
 /usr/local/accumulo/conf

The final step is to edit the accumulo-env.sh file located in /usr/local/accumulo/
conf, and set your JAVA_HOME, HADOOP_HOME, and ZOOKEEPER_HOME as we did earlier
for the hadoop-env.sh file while configuring Hadoop.

Starting the Accumulo cluster
Before starting Accumulo for the first time, initializing is required by using
the accumulo init command to create the HDFS directory structure and
ZooKeeper settings.

Chapter 1

[25]

Initialize Accumulo with the following command (either Linux or Windows Cygwin
Terminal), and name the resulting instance accumulo-demo, and choose a password
for the root:

/usr/local/accumulo/bin/accumulo init

Start Accumulo with the following command (either Linux or Windows Cygwin
Terminal):

/usr/local/accumulo/bin/start-all.sh

To confirm that the processes have been launched, view the web interface for
Accumulo at http://localhost:50095.

The Accumulo website
The Accumulo website gives an overview of the Ingest and Scan entries among
other metrics. Notice the highlighted menu item on the left, informing there are items
in the log worth looking at. Often it is good rule to have the Accumulo website open
with auto-refresh enabled when working with Accumulo. Learning how Accumulo
handles different workloads helps when the performance tuning starts.

Building an Accumulo Cluster from Scratch

[26]

Connecting to the Accumulo cluster
using Java
After setting up Accumulo, the first task that we need to do is create a simple
application that connects to the development environment and writes to a table.
There are two .jar files needed for this demo to work. The first file, accumulo-
core.1.4.4.jar, is located at /usr/local/accumulo/lib on Linux, or
C:\cygwin\usr\local\accumulo\lib on Windows. The second file, hadoop-
core.1.2.1.jar, is located at /usr/local/hadoop on Linux, or C:\cygwin\
usr\local\hadoop on Windows.

For our application, create a new Java project and add the two jar files in it. Then
create a new Java class named Accumulo1 and copy the following code in it. Do not
forget to enter values of userName and password variables. Execute the Java code.
It is preferable to use a dedicated IDE like Eclipse.

import org.apache.accumulo.core.client.AccumuloException;
import org.apache.accumulo.core.client.AccumuloSecurityException;
import org.apache.accumulo.core.client.BatchWriter;
import org.apache.accumulo.core.client.Connector;
import org.apache.accumulo.core.client.Instance;
import org.apache.accumulo.core.client.TableExistsException;
import org.apache.accumulo.core.client.TableNotFoundException;
import org.apache.accumulo.core.client.ZooKeeperInstance;
import org.apache.accumulo.core.data.Mutation;
import org.apache.accumulo.core.data.Value;
import org.apache.accumulo.core.security.ColumnVisibility;
import org.apache.hadoop.io.Text;

public class AccumuloDemo1 {
 public static void main(String[] args)throws
 AccumuloException, AccumuloSecurityException,
 TableNotFoundException, TableExistsException {

 // Constants
 String instanceName = "accumulo-demo";
 String zooServers = "zooList";
 String userName = "<change>";
 String password = "<change>";

 // Connect
 Instance inst = new ZooKeeperInstance(instanceName,
 zooServers);
 Connector conn = inst.getConnector(userName, password);

 // Use batch writer to write demo data
 BatchWriter bw = conn.createBatchWriter("demotable",

Chapter 1

[27]

 1000000, 60000, 2);

 // set values
 Text rowID = new Text("row1");
 Text colFam = new Text("colFam");
 Text colQual = new Text("colQual");

 // set visibility
 ColumnVisibility colVis = new ColumnVisibility("public");
 long timestamp = System.currentTimeMillis();

 // set value
 Value value = new Value("some-value".getBytes());

 // create new mutation and add rowID, colFam, colQual, and
value
 Mutation mutation = new Mutation(rowID);
 mutation.put(colFam, colQual, colVis, timestamp, value);

 // add the mutation to the batch writer
 bw.addMutation(mutation);

 // close the batch writer
 bw.close();
 }
}

Summary
The setup phase for Accumulo is not simple in itself because it requires two
other applications to be up and running prior to Accumulo. But this chapter
showed you the easy-to-follow steps that set up and scale Hadoop, ZooKeeper,
and Accumulo. And finally, this chapter showed you how to write a simple client
program that connects to Accumulo and writes data to it. Accumulo also supports
server-side coding using Map/Reduce.

The next step is to start solving problems using Accumulo. In the next chapter, the
focus will shift to management of the Accumulo cluster, and how to spot problems
when they happen in our cluster. We will focus on how to keep the cluster in a
healthy state, and how to find problems that can occur, as quickly as possible.

www.allitebooks.com

http://www.allitebooks.org

Monitoring and
Managing Accumulo

In the previous chapter, we went through how to set up a single- and multi-node
cluster for three different applications: Hadoop, ZooKeeper, and Accumulo. In this
chapter, we will focus on how to keep the cluster in a healthy state and how to find
problems that can occur as quickly as possible.

There are a few things that we need to monitor:

•	 Performance: By monitoring the performance of our machine(s), we can
immediately detect performance issues and analyze performance trends
over time.

•	 Process: Monitor the processes of the machine(s) to make sure that one of
the specified jobs or processes are running as intended, and also monitor the
memory consumption of processes to detect memory leaks (more advanced).

•	 Application: Hadoop, ZooKeeper, and Accumulo produce logs that we want
to monitor.

•	 Uptime: Monitor the uptime for the nodes in our cluster and maintain
the history.

•	 Dashboard: It is very important to view the status of your entire cluster.
Thus, creating dashboards or using the existing dashboards to get a spot
problem will give you an even better value. Dashboards should focus on
problems and notify you in a clear way.

Monitoring and Managing Accumulo

[30]

To accomplish the process of monitoring and displaying results on dashboards,
we are going to use three applications:

•	 Ganglia: This is a scalable, distributed monitoring system for
high-performance computing systems such as clusters and grids.

•	 Graylog2: This enables you to monitor application logs. It is an open
source log management solution that stores your logs in ElasticSearch.
The messages are accepted via TCP, UDP, or even AMQP, and are stored
in MongoDB.

•	 Nagios: This is a powerful monitoring system that enables organizations
to identify and resolve IT infrastructure problems before they affect critical
business processes.
Nagios is not required, but is a standard monitoring system for
many companies.

For more information about these applications, refer to the
following links:

•	 Ganglia: http://ganglia.info
•	 Graylog2 server: http://graylog2.org
•	 Nagios: http://www.nagios.org

Specifically, we'll be covering the following topics in this chapter:

•	 Monitoring
•	 Elasticity
•	 Failover
•	 Resource management

Monitoring
The main reason for monitoring clusters in general is to find problems and fix them.
For a simple setup, there is no need to set up Ganglia, but if it is already set up, there
is no reason not to use it. The same rule applies to Nagios. The Graylog2 server is a
tool that I would always use no matter how small or large the cluster setup is.

In the case of setting up Accumulo on the developer's machine, the Graylog2 server
will save a lot of time in correlating all of the logs from Accumulo, ZooKeeper, and
Hadoop, and present them through an easy-to-use web interface.

Chapter 2

[31]

Before continuing, let's establish a baseline for the rest of this chapter and imagine
we have the setup, as depicted in the following figure:

Client
Application

Client
Application

Client
Application

Client
Application

Ganglia
Web

Graylog2
Server

Nagios

Monitoring
Node

(single node)

Data odeN Name odeNData odeN

MASTER

ZK 1 ZK 2 ZK 3
Leader

ZooKeeper NodesHadoop Nodes (HDFS)

Accumulo
Tablet Nodes

Tablet
Server

Tablet
Server

Tablet
Server

Tablet
Server

Tablet
Server

But what is Ganglia and how can it help to find problems in the cluster? Ganglia
is a very powerful application, and it runs on Windows, Linux, Mac OS, and many
others. Ganglia also provides almost real-time monitoring for very large networks
that are usually too large to monitor with traditional monitoring systems. Ganglia
scales from a small cluster to an extremely large cluster, such as tens of thousands
of machines. If you haven't used Ganglia before and are running a large cluster,
you should at least consider using it.

Setting up Ganglia
Ganglia is composed of three packages:

•	 Ganglia monitor core (Version 3.6) contains the gmond, gmetad,
PHP web frontend, gmetric, gstat, and libganglia components

•	 Ganglia web 2.0 (Version 3.5.1) contains the Ganglia web component
•	 gexec execution environment (Version 0.2.1/0.3.4) contains the gexec,

gexecd, authd, and libe components

For the latest version of Ganglia packages, visit the
following page:
http://ganglia.info/?page_id=66

Monitoring and Managing Accumulo

[32]

For all of the Accumulo, Hadoop, and ZooKeeper nodes, install the Ganglia monitor
deamon (gmond), by using the following command:

sudo apt-get install ganglia-monitor

Next, you need to set up the Ganglia meta deamon (gmetad) for all of the
Accumulo, Hadoop, and ZooKeeper nodes. Ganglia meta deamon collects metric
data from another Ganglia meta deamon and Ganglia monitor deamon, and then
stores them to a disk:

sudo apt-get install gmetad

Next, you need to set up Ganglia web; but before that, Ganglia web requires the
following to be installed:

•	 Apache Web Server
•	 PHP 5.2 and later
•	 PHP JSON

Run the following command to install the required software (you need to enable
the PHP JSON module):

sudo apt-get install apache2 php5 php5-json

To set up Ganglia web, follow the guidelines in the following link:

http://sourceforge.net/apps/trac/ganglia/wiki/ganglia-web-2

Configuring Ganglia
For every Accumulo, Hadoop, and ZooKeeper node, you might need to change the
following two files:

•	 /etc/ganglia/gmetad.conf – Add the following line to this file and list the
data source:
data_source "Accumulo Cluster" host1 host2 … hostx

•	 /etc/ganglia/gmond.conf – For every host you want to send UDP
packages to, you need to add the following section:

udp_send_channel {
 host = <the hostname>
 port = 8659
 ttl = 1
}

Chapter 2

[33]

Setting up the Graylog2 server
When setting up an instance of the Graylog2 server, the easiest way is to use scripts.
There are many good scripts, but I usually use scripts located in this Git repository
at https://github.com/mrlesmithjr/graylog2. Please follow the instructions in
the README file.

Logging using Graylog2
You can send a standard syslog via TCP/UDP, and GELF via UDP, TCP, and
HTTP to the Graylog2 server. There are shortcomings of a classic syslog, so the
recommended way is to use Graylog Extended Log Format (GELF), because
Accumulo, Hadoop, and ZooKeeper are written in Java and they use log4j.
The only thing we need to do is perform the following steps:

1.	 Download gelf4j from https://github.com/pstehlik/gelf4j.
2.	 Build gelf4j.
3.	 Place the gelf4j.jar file in your classpath.
4.	 Change the following files:

°° /usr/local/accumulo/conf/log4j.properties

°° /usr/local/hadoop/conf/log4j.properties

°° /usr/local/zookeeper/conf/log4j.properties

And change the following lines:

GELF appender
log4j.appender.GELF=com.pstehlik.groovy.gelf4j.appender.
Gelf4JAppender
log4j.appender.GELF.graylogServerHost=<your graylog server>
log4j.appender.GELF.host=<this host machine name>
log4j.appender.GELF.facility=GELF

Setting up Nagios
Nagios comes as an easy-to-install package; executing the following command
will get Nagios up and running:

sudo apt-get install -y nagios3

Monitoring and Managing Accumulo

[34]

Hadoop
In our demo cluster, we have one Hadoop NameNode and two Hadoop DataNodes.
While examining the status of Hadoop, we use the web interface on the NameNode.

NameNode web interface
For the NameNode, the Web shows crucial information about cluster summary.
In the cluster summary, you will find information about live nodes, dead nodes,
decommissioning nodes, and total/remaining capacity. There is also a link to browse
the filesystem and look at logfiles.

It is very common to see the number of dead nodes greater than zero. When that
happens, you need to react. In the next version of Hadoop (2.1.0, currently in beta),
there is the Resource Management REST API that gives all of the information that
would allow us to monitor clusters with Nagios. That means, instead of monitoring
the resources through Graylog2 with triggers, we can use Nagios. It can monitor a
response from the URL. In the next version of Hadoop (2.1.0), the Resource Manager
API exposes the following:

API Description URI
Cluster
information
API

This resource provides
overall information
about the cluster.

http://<rm http address:port>/ws/
v1/cluster/info

Cluster
metrics API

This resource provides
overall metrics about
the cluster.

http://<rm http address:port>/ws/
v1/cluster/metrics

Cluster
scheduler
API

This resource provides
information about the
current scheduler in a
cluster.

http://<rm http address:port>/ws/
v1/cluster/scheduler

Cluster
applications
API

This resource provides
information about
the collection of
applications.

http://<rm http address:port>/ws/
v1/cluster/apps

Cluster
application
API

This resource provides
information about an
application.

http://<rm http address:port>/ws/
v1/cluster/apps/{appid}

Cluster
application
attempts API

This resource
provides a collection
of applications
that represent an
application attempt.

http://<rm http address:port>/ws/
v1/cluster/apps/{appid}/appattempts

Chapter 2

[35]

API Description URI
Cluster nodes
API

This resource provides
a collection of nodes.

http://<rm http address:port>/ws/
v1/cluster/nodes

Cluster node
API

This resource provides
information about
nodes.

http://<rm http address:port>/ws/
v1/cluster/nodes/{nodeid}

As shown in the following screenshot the NameNode web is very simple and only
shows important information like the cluster summary:

Finding the logfiles
Logfiles in Hadoop can be found through the NameNode web interface. Browsing
through the NameNode logs, you will find the following files and folders:

•	 hadoop-hadoopuser-datanode-<machinename>.log

•	 hadoop-hadoopuser-jobtracker-<machinename>.log

Monitoring and Managing Accumulo

[36]

•	 hadoop-hadoopuser-namenode-<machinename>.log

•	 hadoop-hadoopuser-secondarynamenode-.<machinename>.log

•	 hadoop-hadoopuser-tasktracker-<machinename>.log

•	 history/

•	 userlogs/

To enable Graylog2 as the logfile monitoring tool, you need to change the
following files:

•	 /usr/local/hadoop/conf/log4j.properties

•	 /usr/local/accumulo/conf/log4j.properties

•	 /usr/local/zookeeper/conf/log4j.properties

Add the Graylog2 appender and point to the Graylog2 machine, as explained in the
Logging using Graylog2 section in this chapter.

As shown in the following screenshot the logs directory gets cluttered very quickly,
even when only running single node. The naming rule helps finding the correct logfile.

Chapter 2

[37]

How does Accumulo store files in Hadoop?
Browsing through the filesystem will give you a good overview on how Accumulo
stores files in Hadoop HDFS:

•	 /accumulo

°° instance_id

°° recovery

°° tables

°° versions

°° walogArchive

•	 /app

•	 hadoop – This is the default folder we created in Chapter 1, Building an
Accumulo Cluster from Scratch

We will go more in depth on the Accumulo file structure in later chapters.

Hadoop allows browsing the data directories through a simple web interface as
shown in the following screenshot. It is good practice to get familiar with Hadoop
directory structure through this web interface.

www.allitebooks.com

http://www.allitebooks.org

Monitoring and Managing Accumulo

[38]

Live, dead, and decommissioning nodes
In Hadoop, you have NameNodes and DataNodes. Hadoop has a single point of
failure if the NameNode goes down. For redundancy, set up a secondary NameNode.
At the same time, Hadoop is designed to be fault-tolerant when DataNode goes
down. Hadoop supports the decommissioning of nodes, that is, to retire an existing
DataNode or even a set of existing DataNodes.

As shown in the following figure the relationship between HDFS and Map/Reduce
in Hadoop isn't complex:

Client

NameNode

Task Tracker

JobTracker

DataNode

Data Node

Task Tracker

Data Node

Task Tracker

HDFS Map / Reduce

One of the greatest views in the NameNode web interface is the visibility of live,
dead, and decommissioning nodes. As Hadoop is designed to run on top of cheap
hardware, and hardware failure is a norm rather than an exception, you need to
watch the nodes carefully and know what is happening by using Graylog2.

Chapter 2

[39]

Accumulo
Before we do anything more, let's examine what kind of information we can get from
the standard interface for Accumulo http://localhost:50095. Refer to Chapter 1,
Building an Accumulo Cluster from Scratch, for more information on Accumulo. Also,
it gives you information about the following:

•	 Accumulo Master: When a failure occurs on TabletServer, Accumulo Master
is responsible for a response. Failure is handled by balancing the load with
another TabletServer.

•	 TabletServer: This manages many tablets (partitions of tables). A tablet is
a unit of work for the TabletServer and has a row range within a table.

•	 NameNode: This is the key information about the Hadoop NameNode.
•	 JobTracker: This shows running jobs, map tasks, reduce tasks, trackers,

and blacklisted if any for Accumulo.
•	 ZooKeeper: This shows how many ZooKeeper nodes are available for

Accumulo and how many clients are currently connected.
•	 Graphs/Performance numbers

°° Ingest (Entries/s)
°° Scan (Entries/s)
°° Ingest (MB/s)
°° Scan (MB/s)
°° Load average
°° Scan sessions
°° Minor compactions

Monitoring and Managing Accumulo

[40]

°° Major compactions
°° Index cache hit rate
°° Data cache hit rate

Accumulo performance numbers will be covered in more detail in Chapter 4,
Optimizing Accumulo Performance.

Chapter 2

[41]

Monitoring a system's overview
The following figure shows an example where a cluster is monitored with Nagios,
Ganglia, and Graylog2 to monitor the entire cluster:

Nagios
Server

Ganglia
Plugin

Ganglia Monitoring
Server

gmetad

Graylog2 Log
Monitoring

gmond / data
collector

Accumulo

gmond

Cluster

Hadoop and
ZooKeeper node

gmond

Hadoop and
ZooKeeper node

gmond

Hadoop and
ZooKeeper node

gmond

Hadoop and
ZooKeeper node

gmond

Hadoop and
ZooKeeper node

gmond / data
collector

We have one or two gathering machine(s) to create a notion of two clusters, one for
Hadoop (HDFS) and ZooKeeper, and another for Accumulo. To hook Nagios and
Ganglia together, we need to install a plugin into Nagios.

Elasticity
Hadoop allows you to execute every task in parallel, and the only concern you
should have is how many machines are available, and what is the optimal number of
machines to use when performing a Map/Reduce job. Instead, the problem is more a
question of how you can import and export data from the Hadoop cluster. Accumulo
solves this problem by giving applications BigTable access to the Hadoop filesystem.

Monitoring and Managing Accumulo

[42]

Accumulo operates over the Hadoop Distributed File System (HDFS). Accumulo
supports efficient storage and retrieval of structured data, including queries for
ranges, and provides support for using Accumulo tables as the input and output
for Map/Reduce jobs.

Failover
By design, Hadoop's single point of failure is when the NameNode goes down, and
there isn't a secondary NameNode running. This limitation requires Hadoop to be
configured for NameNode failover. For more information about NameNode failover,
visit http://wiki.apache.org/hadoop/NameNodeFailover.

When nodes in the ZooKeeper cluster are started, the first task the nodes do is to
find the leader. After the leader has been chosen, the rest of the ZooKeeper nodes
will follow that leader. The concept of "follow the leader" means that there is always
a leader machine and (in a multi-node environment), some followers. The follower
can be behind the leaders, but that will not affect the clients because they will always
connect to the same ZooKeeper machine. A ZooKeeper cluster is self-healing, and
after the ZooKeeper server restarts, it will rejoin the cluster. For self-healing to work,
you need to have a supervisory process to monitor each server's processes.

Resource management
In the upcoming version of Hadoop (2.1.0), the resource manager REST APIs have
been added and will give us information about the cluster, status of the cluster,
metrics of the cluster, scheduler information, information about nodes in the cluster,
and information about applications in the cluster. In the current version of Hadoop,
this luxury doesn't exist.

Summary
Monitoring is the key when it comes to elasticity, failover, and resource
management. To be able to see what the system is doing in real time is what is often
needed to find problems, and to avoid problems if possible. Tools such as Ganglia,
Nagios, and the Graylog2 server are helping many companies running large clusters
with a minimum downtime.

Integrating Accumulo into
Various Cloud Platforms

In this chapter, we will learn how to integrate Accumulo into various cloud
platforms, both as a single-node and as a pseudo-distributed mode, and then expand
it to a multi-node. This is similar to Chapter 1, Building an Accumulo Cluster from
Scratch (refer to Setting up Hadoop, Setting up ZooKeeper, and Setting up and configuring
Accumulo), where the aim was to build an Accumulo cluster from scratch, but with a
focus on integration with various cloud platforms.

The following example will show you how to create an Accumulo cluster on various
cloud platforms. The steps needed to complete the task of setting up the cluster are
similar for those cloud platforms. The difference is in the tools and scripts used to
accomplish the task of creating the cluster.

These are the topics that will be covered in this chapter:

•	 Amazon EC2
•	 Google Cloud Platform
•	 Rackspace
•	 Windows Azure

Hadoop is supported by many cloud vendors as the popularity of Map/Reduce has
grown over the past few years. Accumulo is another story; even though popularity
is growing, the support of cloud vendors hasn't caught up.

Integrating Accumulo into Various Cloud Platforms

[44]

Amazon EC2
Amazon has great support for Accumulo, Hadoop, and ZooKeeper. For Hadoop
and ZooKeeper, there is a set of libraries called Apache Whirr. Apache Whirr
supports Amazon EC2, Rackspace, and many more cloud providers. Apache
Whirr uses low-level API libraries. For Accumulo, you have two options: one
is to use the Amazon EMR command-line interface, and the other is to create
a new virtual machine and setup as explained in Chapter 1, Building an Accumulo
Cluster from Scratch.

Prerequisites for Amazon EC2
Prerequisites needed to complete the setup phase for Amazon EC2 are as follows:

•	 Cygwin is required
•	 Windows users need to download and install PuTTY from

http://www.putty.org/or use Cygwin SSH

•	 A valid user is needed to access Amazon AWS Console
•	 Install the Amazon EMR command-line interface by following the steps at

this location, http://docs.aws.amazon.com/ElasticMapReduce/latest/
DeveloperGuide/emr-cli-install.html

Creating Amazon EC2 Hadoop and
ZooKeeper cluster
The following steps are required to create Amazon EC2 Hadoop and the
ZooKeeper cluster:

1.	 Log in to https://console.aws.amazon.com.
2.	 The management console for Amazon Services has a nice graphical overview

of all the actions that you can do. In our case, we use the Amazon AWS
Console to verify what we have done while setting up the cluster.

3.	 From the drop-down menu under your name at the top-right corner, select
Security Credentials.

4.	 Under Access Keys, you need to create a new root key and download the
file containing AWSAccessKeyId and AWSSecretKey.

5.	 Normally, you would create an AWS Identity and Access Management
(IAM) user with limited permissions, and give only that user the access
to the cluster. But in this case, we are creating a demo cluster and will be
destroying it after use.

Chapter 3

[45]

6.	 Create a new key by running the following command:
°° For Linux and Windows Cygwin:

ssh-keygen -t rsa -P '' -f ~/.ssh/id_rsa_whirr

The rsa key is used later when configuring Whirr. It is not required to copy
the key to the ~/.ssh/authorized_keys folder because the rsa key is going
to be used from the current location.

7.	 Download Whirr and set it up using the following commands:
cd /usr/local

sudo wget http://apache.claz.org/whirr/stable/whirr-0.8.2.tar.gz

sudo tar xzf whirr-0.8.2.tar.gz

sudo mv whirr-0.8.2 whirr

sudo chown –R hadoopuser:hadoopgroup whirr

Download Whirr in the /usr/local folder, unpack it, and rename it to
whirr. For Cygwin, don't run the last command in the script.

8.	 Set up the credentials for Amazon EC2:
°° For Linux and Cygwin:

sudo cp /usr/local/whirr/conf/credentials.sample
 /usr/local/whirr/credentials

sudo nano /usr/local/whirr/conf/credentials

°° Skip the sudo command in Cygwin. Elevated privileges in Windows
are usually acquired by right-clicking on the icon and choosing Run
as administrator.

°° Edit the /usr/local/whirr/const/credentials file and change
the following lines:
PROVIDER=aws-ec2
IDENTITY=<The value from the variable AWSAccessKeyId>
CREDENTIAL= <The value from the variable AWSSecretKey>

°° By default, Whirr will look for the credentials file in the home
directory; if it's not found there, it will look in /usr/local/whirr/
conf. I prefer to use the /usr/local/whirr/conf directory to keep
everything at the same place.

Integrating Accumulo into Various Cloud Platforms

[46]

9.	 The first step in simplifying the creation of the cluster is to create a
configuration file, which will be named cluster.properties for
this example.

°° For Linux:
sudo nano /usr/local/whirr/conf/cluster.properties

°° For Cygwin:

nano /usr/local/whirr/conf/cluster.properties

Add the following lines:
whirr.cluster-name=demo-cluster
whirr.instance-templates=1 zookeeper,1 hadoop-
 jobtracker+hadoop-namenode,1 hadoop-datanode+Hadoop
 -tasktracker
whirr.provider=aws-ec2
whirr.private-key-file=${sys:user.home}/.ssh/id_rsa_whirr
whirr.public-key-file=
 ${sys:user.home}/.ssh/id_rsa_whirr.pub

This file describes a single cluster with one ZooKeeper node, one Hadoop
node running JobTracker and NameNode, and one Hadoop node running
DataNode and JobTracker.

10.	 Create our cluster as described in the cluster.properties file:
°° For Linux:

su - hadoopuser

°° For Windows Cygwin:

cd /usr/local/whirr

bin/whirr launch-cluster --config conf/cluster.properties

If you get the error message java.io.FileNotFoundException: whirr.log
(Permission denied), then the current user has not got permission to access
the whirr.log file.

Chapter 3

[47]

After a few seconds, you will see that the script will start to print out the
status message and information about what is going to be done, as shown
in the following screenshot:

The result from creating a cluster using Whirr is very detailed and
important for troubleshooting and monitoring purposes, as shown
in the following screenshot:

The output from running the script gives very valuable information about
the cluster created. Every instance has a role and an external and internal
IP address. The ID of every node is in the form <region>/<unique id>.

www.allitebooks.com

http://www.allitebooks.org

Integrating Accumulo into Various Cloud Platforms

[48]

11.	 After creating the cluster, please visit https://console.aws.amazon.com/
ec2/home?region=us-east-1#s=Instancesto to see your new cluster.
If the cluster was created in another region, change it to the correct region
at the top.

12.	 Destroy our cluster as described in the cluster.properties file, by running
the following command for Linux and Windows Cygwin:
cd /usr/local/whirr

bin/whirr destroy-cluster --config conf/cluster.properties

13.	 The directory ~/.whirr/demo-cluster has been created as a direct result of
the previous step, and contains information about the cluster just created and
three files:

°° hadoop-proxy.sh: Run this script to create a proxy tunnel to be able
to connect to the cluster using the SSH tunnel. Use this example to
create a proxy auto-config (PAC) file: https://svn.apache.org/
repos/asf/whirr/trunk/resources/hadoop-ec2-proxy.pac.

°° hadoop-site.xml: It contains information about the Hadoop cluster.
°° instances: It contains information about each node instance (location,

instance, role(s), external IP address, and internal IP address).

14.	 All nodes in the preceding example were created in the same security group
that allows them to talk to each other.

Setting up Accumulo
The easiest way to set up Accumulo on Amazon is to use the Amazon CLI
(command-line interface). There is a single ZooKeeper node up and running,
that should be used while setting up Accumulo.

1.	 Browse to the Amazon EC2 console https://console.aws.amazon.com/
s3/home?region=us-east-1#, and create a new bucket with a unique
name. For this example, the name demo-accumulo will be used.

2.	 To create an instance of Accumulo, we use the following commands in
Amazon CLI:

Chapter 3

[49]

For Linux and Windows:
elastic-mapreduce --create --alive --name "Accumulo"
 --bootstrap-action \

s3://elasticmapreduce/samples/accumulo/accumulo-install.sh \

--args "<zookeeper ip address>, Demo-Database, DBPassword"
 --bootstrap-name "install Accumulo" \

--enable-debugging –log-url s3://demo-accumulo/Accumulo-logs/\

--instance-type m1.large --instance-count 4 --key- pair
 <Key Pair Name>

Locate the key pair name at https://console.aws.amazon.com/ec2/
home?region=us-east-1#s=KeyPairs.

Google Cloud Platform
Accumulo design is based on Google's BigTable design published in 2006, therefore,
you will see lot of similarities between Google and Accumulo with respect to
performing a search. Google doesn't have the same support for Hadoop as Amazon
but you can easily perform the same tasks. One of the trademarks Google has is the
simple user interface for the Google Cloud Console.

Prerequisites for Google Cloud Platform
The prerequisites for Google Cloud Platform are:

•	 A valid user to access the Google Cloud Console. Remember billing is
required to continue, as shown in the following screenshot:

•	 Downloading and installing Python 1.7.x

Integrating Accumulo into Various Cloud Platforms

[50]

Creating the project
Everything in Google Cloud Platform revolves around the project. The first task
that we need to do is to create a new project. We are going to name the project
as AccumuloProject with the Project ID accumulo-project, as shown in the
following screenshot. Of course, a more descriptive name would be used in practice:

Installing the Google gcutil tool
Now, you need to install the Google gcutil tool from https://developers.google.
com/compute/docs/gcutil/, in order to continue. The gcutil tool has a lot of useful
commands, but we are only going to focus on the commands that we need to complete
our tasks. In the following examples, gcutil is installed in the /usr/local/gsutil
directory.

Configuring credentials
After setting up the gcutil tool, you need to run the following commands:

For Linux:
/usr/local/gcutil/gcutil auth --project=accumulo-project

For Windows (Cygwin):
python /usr/local/gcutil/gcutil.py auth --project=accumulo-project

On running this command, you will be prompted to open the website to get the
verification code that you need to enter (or copy from the webpage).

Chapter 3

[51]

Configuring the project
To simplify the usage of gcutil, we are using the flag --cache_flag_values.
This will cause the file ~/.gcutil.flags to be created, and the default project
ID will be stored in that file.

For Linux, use the following command:

/usr/local/gcutil/gcutil getproject --project=accumulo-project
 --cache_flag_values

For Windows Cygwin, use the following command:

python /usr/local/gcutil/gcutil.py getproject
 --project=accumulo-project --cache_flag_values

After running this command, you should get a report like the following:

Creating the firewall rules
We need to create firewall rules that permit incoming HTTP traffic on ports
50030, 50060, and 50070. The easiest way to accomplish that is through the
Google Cloud Console.

Integrating Accumulo into Various Cloud Platforms

[52]

Creating the cluster
Google Cloud only supports Debian and CentOS Linux. In this example, CentOS-6-
v20130813 is going to be used, but this changes on a regular basis, and you need to
see what images are available before starting.

The boot disk is unspecified. I can create a new persistent boot disk and use it
(preferred), or use a scratch disk (not recommended). Answer the following
question with a Y (yes) when asked during the setup process:

Do you want to use a persistent boot disk? [y/n]

Creating the cluster involves four actions:

•	 Create and set up a Hadoop NameNode. A new instance is created, and then
Hadoop is set up and started as a master.

•	 Create and set up a Hadoop DataNode. A new instance is created, and then
Hadoop is set up and started as a slave.

•	 Create and set up a ZooKeeper node. A new instance is created, and then
ZooKeeper is set up and started.

•	 Create and set up an Accumulo node. A new instance is created, and then
Accumulo is set up and started.

Hadoop
Create two nodes: NameNode and DataNode.

•	 Create the Hadoop NameNode:
°° For Linux:

/usr/local/gcutil/gcutil addinstance hadoop-namenode
 --machine_type=n1-standard-1 --image=centos-6-v20130731
 --zone=europe-west1-b

°° For Windows (Cygwin):

python /usr/local/gcutil/gcutil.py addinstance hadoop-
namenode
 --machine_type=n1-standard-1 --image=centos-6-v20130731
 --zone=europe-west1-b

Chapter 3

[53]

•	 Connect to the newly created Hadoop NameNode:
°° For Linux:

/usr/local/gcutil/gcutil --service_version="v1beta15"
 --project="accumulo-project" ssh --zone="europe-west1-b"
 "hadoop-namenode"

°° For Windows:

python /usr/local/gcutil/gcutil --service_version="v1beta15"
 --project="accumulo-project" ssh --zone="europe-west1-b"
 "hadoop-namenode"

•	 Follow the guidelines given in the Setting up Hadoop section in Chapter 1,
Building an Accumulo Cluster from Scratch, to set up Hadoop (master).

•	 Create the Hadoop DataNode:
°° For Linux:

/usr/local/gcutil/gcutil addinstance hadoop-datanode
 --machine_type=n1-standard-1 --image=centos-6-v20130731
 --zone=europe-west1-b

°° For Windows (Cygwin):

python /usr/local/gcutil/gcutil.py addinstance hadoop-
datanode --machine_type=n1-standard-1
--image=centos-6-v20130731--zone=europe-west1-b

•	 Connect to the newly created Hadoop DataNode:
°° For Linux:

/usr/local/gcutil/gcutil --service_version="v1beta15"
 --project="accumulo-project" ssh --zone="europe-west1-b"
 "hadoop-datanode"

°° For Windows:

python /usr/local/gcutil/gcutil.py
 --service_version="v1beta15" --project="accumulo-project"
 ssh --zone="europe-west1-b" "hadoop-datanode"

•	 Follow the guidelines given in Chapter 1, Building an Accumulo Cluster from
Scratch, to set up Hadoop (slave).

Integrating Accumulo into Various Cloud Platforms

[54]

ZooKeeper
Create a single node for ZooKeeper.

•	 Create the ZooKeeper node:
°° For Linux:

/usr/local/gcutil/gcutil addinstance hadoop-zookeeper
 --machine_type=n1-standard-1 --image=centos-6-v20130731
 --zone=europe-west1-b

°° For Windows (Cygwin):

python /usr/local/gcutil/gcutil.py addinstance
 hadoop-zookeeper --machine_type=n1-standard-1
 --image=centos-6-v20130731 --zone=europe-west1-b

•	 Connect to the newly created ZooKeeper node:
°° For Linux:

/usr/local/gcutil/gcutil --service_version="v1beta15"
 --project="accumulo-project" ssh --zone="europe-west1-b"
 "hadoop-zookeeper"

°° For Windows:

python /usr/local/gcutil/gcutil.py
 --service_version="v1beta15" --project="accumulo-project"
 ssh --zone="europe-west1-b" "hadoop-zookeeper"

•	 Follow the guidelines given in Chapter 1, Building an Accumulo Cluster from
Scratch, to set up ZooKeeper.

Accumulo
Create a single node for Accumulo both master and tablet server.

•	 Create the Accumulo node:
°° For Linux:

/usr/local/gcutil/gcutil addinstance accumulo-node1
 --machine_type=n1-standard-1 --image=centos-6-v20130731
 --zone=europe-west1-b

°° For Windows (Cygwin)

python /usr/local/gcutil/gcutil.py addinstance accumulo-
node1 --machine_type=n1-standard-1
--image=centos-6-v20130731 --zone=europe-west1-b

Chapter 3

[55]

•	 Connect to the newly created Accumulo node:
°° For Linux:

/usr/local/gcutil/gcutil --service_version="v1beta15"
 --project="accumulo-project" ssh --zone="europe-west1-b"
 "accumulo-node1"

°° For Windows:

python /usr/local/gcutil/gcutil --service_version="v1beta15"
 --project="accumulo-project" ssh --zone="europe-west1-b"
 "accumulo-node1"

•	 Follow the guidelines given in Chapter 1, Building an Accumulo Cluster from
Scratch, to set up Accumulo.

After the setup, you should see the following page in the Google Cloud Console,
under All Instances:

Deleting the cluster
After we're done using the cluster, there is no reason to keep it around. By deleting
the cluster, we are going to stop all the machines, remove all the data on scratch
disks, and finally remove all the machines from the project. Scratch disk space is
space tied to the life of an instance. That means when terminated, all scratch disk
data is lost. In real scenarios store all data on persistent disks.

Integrating Accumulo into Various Cloud Platforms

[56]

While deleting an instance, you will be asked if you want to delete the instance, and if
you want to delete the persistent boot disk, answer both of those questions with a Y:

•	 Accumulo:
°° For Linux:

/usr/local/gcutil/gcutil deleteinstance "accumulo-node1"
 --zone=europe-west1-b

°° For Windows Cygwin:

python /usr/local/gcutil/gcutil.py deleteinstance "
 accumulo-node1" --zone=europe-west1-b

•	 ZooKeeper:
°° For Linux:

/usr/local/gcutil/gcutil deleteinstance "hadoop-zookeeper"
 --zone=europe-west1-b

°° For Windows Cygwin:

python /usr/local/gcutil/gcutil.py deleteinstance "
 hadoop-zookeeper" --zone=europe-west1-b

•	 Hadoop DataNode:
°° For Linux:

/usr/local/gcutil/gcutil deleteinstance "hadoop-datanode"
 --zone=europe-west1-b

°° For Windows Cygwin:

python /usr/local/gcutil/gcutil.py deleteinstance "
 hadoop-datanode" --zone=europe-west1-b

•	 Hadoop NameNode:

°° For Linux:
/usr/local/gcutil/gcutil deleteinstance "hadoop-namenode"
 --zone=europe-west1-b

°° For Windows Cygwin:

python /usr/local/gcutil/gcutil deleteinstance "
 hadoop-namenode" --zone=europe-west1-b

Chapter 3

[57]

Rackspace
Rackspace has great support for Accumulo, Hadoop, and ZooKeeper. For Hadoop and
ZooKeeper, there is a set of libraries called Apache Whirr that provides the ability to
communicate with a large number of clouds by using low-level API libraries. This is
exactly the same as for Amazon EC2. This section will focus on the difference between
Amazon EC2 and Rackspace Cloud Services. Follow the Amazon EC2 steps with some
minor changes as described in the Configuration section.

Configuration
Edit the /usr/local/whirr/const/credentials file and change these lines:

PROVIDER=clusterservers-us
IDENTITY=<your login from rackspace>
CREDENTIAL= <You API key>

For the /usr/local/whirr/conf/cluster.properties file, you need to change
whirr.provider and provide ZooKeeper node, Hadoop NameNode, and Hadoop
DataNode:

whirr.cluster-name=demo-cluster
whirr.instance-templates=1 zookeeper,1 hadoop-jobtracker+hadoop-
namenode,1 hadoop-datanode+hadoop-tasktracker
whirr.provider=cloudservers-us
whirr.private-key-file=${sys:user.home}/.ssh/id_rsa_whirr
whirr.public-key-file=${sys:user.home}/.ssh/id_rsa_whirr.pub

Setting up Accumulo on Rackspace cluster requires manual steps.

Log in to the Rackspace cloud console and create a new Linux machine using CentOS
image, connect to it, and set up Accumulo manually as described in Chapter 1, Building
an Accumulo Cluster from Scratch.

Network
A Rackspace cluster created with Whirr doesn't run behind a firewall. A firewall can
be created manually by creating a new network, which is highly recommended to
protect the cluster. More information on the topic of isolating a cloud network can
be found at http://www.rackspace.com/knowledge_center/article/create-
an-isolated-cloud-network.

www.allitebooks.com

http://www.allitebooks.org

Integrating Accumulo into Various Cloud Platforms

[58]

Windows Azure
On February 1, 2010, Microsoft announced general availability of the Windows
Azure cloud platform and infrastructure. Windows Azure supports both Microsoft
Windows and Linux server operating systems. Windows Azure is a platform-closed
source, but client SDK is open source.

In the previous demonstrations, scripts have been used to create the cluster. But it
can be as easy to use the interface provided by Windows Azure to get the same
result if needed to create a small cluster.

Prerequisites
The prerequisites for Windows Azure are:

•	 Having a valid user to access Windows Management Console. Remember,
billing is required to continue. Windows Azure Console is located at
https://manage.windowsazure.com.

•	 If you want to use the command-line tool, install the command-line tools
for Windows Azure from this location: http://www.windowsazure.com/
en-us/downloads/#cmd-line-tools.

There are command-line tools for both Linux and Windows. Install both Windows
Azure PowerShell and Cross-platform command-line interface. For Linux, you only
need a command-line interface.

Creating the cluster
Windows Azure supports Windows Server 2012, OpenSUSE, SUSE Linux Enterprise
Server, Ubuntu Server, and CentOS. In our example, we are going to use Ubuntu
Server 12.04 LTS, but this changes on a regular basis, and you need to see what
images are available before starting.

Chapter 3

[59]

In this section, we are going to focus on the user interface of creating a cluster
in Windows Azure. Using the command-line interface that is available for both
Linux and Windows, it is very easy to accomplish the same task. Windows Azure
PowerShell cmdlets need to be configured before use by following the guidelines in
the article Get Started with Window Azure Cmdlets at http://msdn.microsoft.com/
en-us/library/windowsazure/jj554332.aspx.

Creating a cluster involves four steps:

•	 Create and set up Hadoop NameNode. A new instance is created, and then
Hadoop is set up and started as a master.

•	 Create and set up Hadoop DataNode. A new instance is created, and then
Hadoop is set up and started as a slave.

•	 Create and set up a ZooKeeper node. A new instance is created, and then
ZooKeeper is set up and started.

•	 Create and set up an Accumulo node. A new instance is created, and then
Accumulo is set up and started.

Hadoop
For Hadoop we are going to create two nodes: NameNode and DataNode.

•	 Create the Hadoop NameNode by using the Windows Azure Management
console. Create a new Linux virtual machine and give a meaningful name
to the Hadoop NameNode. Nodes are available online (no firewall), so you
need to pick a unique name for the Hadoop NameNode.

Integrating Accumulo into Various Cloud Platforms

[60]

•	 Connect to the newly created Hadoop NameNode:
°° For Linux, use SSH
°° For Windows, use PuTTY to connect to the newly created computer

•	 Follow the guidelines given in the Setting up Hadoop section in Chapter 1,
Building an Accumulo Cluster from Scratch, to set up Hadoop (master).

•	 Create the Hadoop DataNode:
°° By using the Window Azure Management Console, create a new

Linux virtual machine and give a meaningful name to the Hadoop
DataNode. Because nodes are available online (no firewall), you need
to pick a unique name for the Hadoop DataNode.

•	 Connect to the newly created Hadoop DataNode:
°° For Linux, use SSH
°° For Windows, use PuTTY to connect to the newly created computer

•	 Follow the guidelines given in the Setting up Hadoop section in Chapter 1,
Building an Accumulo Cluster from Scratch, to set up Hadoop (slave).

ZooKeeper
For ZooKeeper, we are going to create a single node.

•	 Create the ZooKeeper node:
°° By using the Window Azure Management console, create a new

Linux virtual machine and give a meaningful name to the ZooKeeper
node. Because nodes are available online (no firewall), you need to
pick a unique name for the ZooKeeper node.

•	 Connect to the newly created ZooKeeper node:
°° For Linux, use SSH
°° For Windows, use PuTTY to connect to the newly created computer

•	 Follow the guidelines given in the Setting up ZooKeeper section in Chapter 1,
Building an Accumulo Cluster from Scratch, to set up ZooKeeper.

Chapter 3

[61]

Accumulo
For Accumulo, we are going to create a single node.

•	 Create the Accumulo node:
°° By using the Window Azure Management console, create a new

Linux virtual machine and give a meaningful name to the Accumulo
node. Because nodes are available online (no firewall), you need to
pick a unique name for the Accumulo node.

•	 Connect to the newly created Accumulo node:
°° For Linux, use SSH
°° For Windows, use PuTTY to connect to the newly created computer

•	 Follow the guidelines given in the Setting up and configuring Accumulo section
in Chapter 1, Building an Accumulo Cluster from Scratch, to set up Accumulo.

After the setup, you should see the following page inside the Windows Azure
console under virtual machines:

Deleting the cluster
After we have used our cluster, there is no reason to keep it around. By deleting the
cluster, we are going to stop all machines, remove all scratch disk data, and finally
remove all machines from the project.

While deleting an instance, you will be asked if you want to delete the instance, and
if you want to delete the persistent boot disk. Answer both the questions with Y.

•	 Accumulo: In the Windows Azure Management console, select the Accumulo
VM and then delete the VM

•	 ZooKeeper: In the Windows Azure Management console, select the
ZooKeeper VM and then delete the VM

Integrating Accumulo into Various Cloud Platforms

[62]

•	 Hadoop DataNode: In the Windows Azure Management console, select the
Hadoop DataNode VM and then delete the VM

•	 Hadoop NameNode: In the Windows Azure Management console, select the
Hadoop DataNode VM and then delete the VM

For more information about Ganglia, Graylog2 server, and
Nagios, visit the following websites:

•	 Ganglia: http://ganglia.info
•	 Graylog2 server: http://graylog2.org
•	 Nagios: http://www.nagios.org

Summary
This chapter was about setting up Hadoop, ZooKeeper, and Accumulo on four
different cloud platforms. There is a difference between those cloud platforms, but
the steps required to set up an Accumulo cluster are very similar, meaning the only
difference is the scripts used to automate the process. Even for Windows Azure,
writing scripts for Windows or Linux is an easy task and is well documented.

In the next chapter, the focus is going to be on performance and how the optimal
Hadoop cluster is configured, how much memory we really need, and CPU. Finally,
we will look at configuring Accumulo systems to get the best performance.

Optimizing Accumulo
Performance

This chapter will focus on how to optimize Accumulo's performance. As Accumulo
uses Hadoop and ZooKeeper, we need to start with optimizing their basic performance.

A common setup of Accumulo consists of multiple nodes and usually a rack-mounted
server system. Setting up a network for a multi-node Accumulo is very important, and
will cause problem if it's not done correctly.

In this chapter, the focus is going to be on the configuration part to optimize Accumulo
(and subsystems) for performance. It might sound strange to focus on the configuration
in this chapter, but the best way to optimize Accumulo for performance is to know
what kind of tasks it is used for and use that knowledge to tweak Accumulo.

The following topics will be covered in this chapter:

•	 Prerequisites
•	 Hadoop performance
•	 ZooKeeper performance
•	 Accumulo performance

Optimizing Accumulo Performance

[64]

Prerequisites
Before running any performance tuning on the Hadoop cluster, we need the
following systems to be running and configured, as described in Chapter 1,
Building an Accumulo Cluster from Scratch:

•	 Ganglia (http://ganglia.info): This is a scalable distributed monitoring
system for high-performance computing systems that capture performance
statistics.

•	 Graylog2 (http://graylog2.org): This enables you to monitor an
application's logs. This is an open source log management solution that
stores your logs in ElasticSearch. The messages are accepted via TCP,
UDP, or even AMQP, and are stored in MongoDB.

•	 Nagios (http://www.nagios.org): This is a powerful distributed
monitoring system that reports system performance statistics.

•	 Java profilers
°° JIP: To know more about the Java Interactive Profiler, refer to

http://jiprof.sourceforge.net

°° Hprof: This tool is shipped with the IBM SDK

There is no reason to use both of these profilers; if you have the IBM SDK,
then use Hprof, otherwise use JIP.

•	 Linux performance tools:
°° netperf: To know more about Netperf, refer to

http://www.netperf.org

°° htop: This tool is an interactive process viewer
°° iostat: This tool is used for calculating CPU and I/O statistics

for a network and filesystem

•	 Windows performance tools: The following tools are located in the
Windows SDK:

°° PsTools: This tool is a part of Sysinternals tools. To know more
about PsTools, refer to http://live.sysinternals.com/

°° Resource Monitor: This tool is accessed from the task manager

•	 Hadoop tools:
°° Starfish Hadoop Log Analyzer (http://www.cu.duke.edu/

starfish): This is a good tool to indicate if Hadoop has been
configured correctly for the current Map/Reduce job

Chapter 4

[65]

°° TestDFSIO: This tool is located in the /usr/local/hadoop/hadoop-
test.jar file. To learn how to use commands in Hadoop, refer to
http://hadoop.apache.org/docs/r1.2.1/commands_manual.html

°° TeraSort: This is located in the /usr/local/hadoop/hadoop-
example.jar file

In most cases, we are focusing on network utilization, CPU utilization, and memory
usage. Ganglia and Nagios have excellent support. Remember that this is all about
getting data to spot performance bottlenecks, and not about the tools to use. This is
just a limited list, and better tools might be available.

Hadoop performance
There are a few important items that you need to be aware of while configuring
Hadoop for performance. Hadoop is based on and written in Java, as a distributed
computing framework. Since Hadoop is highly scalable, you need to consider many
options depending on the requirements you have, regarding the performance and
stability of your setup.

The following image gives the baseline for a better understanding of how
Hadoop relies on the JVM and operating system. Knowing how to tweak JVM for
performance is as important as knowing how to tweak the operating system
for performance.

Network

Hadoop Node

Data Store - HDFS Data Processing - Map/Reduce

JVM

Operating System - Linux / Windows

Baseline
To establish a baseline, we need to perform a stress test to verify that the setup
is according to the requirement. There are many ways in which a baseline can be
established, but in our case, to ensure that we have enough disk storage, we need to
configure the Java heap size to be around 70 percent (or up to, but not more) of the
available memory, so that there will still be enough memory left for the operating
system (Linux or Windows), to perform operations without swapping. We need to
configure Map/Reduce slots to utilize the CPU.

Optimizing Accumulo Performance

[66]

What is usually configured is a Java heap size, and we are aiming for using around
70 percent of the available memory. If too much memory is used, the operating
system starts swapping.

Tuning
The default values in Hadoop are usually too low for any real workload; increase
them to increase performance.

Using the Java profiler, we can see GC patterns, heap usage, and heap lock to find
the correct value. For JVM, the following are a few points to consider :

•	 Biased locking: This improves performance in most cases
•	 Compressed pointers: By default, this is on and will reduce memory
•	 AggressiveOpts: This option is used for point performance compiler

optimizations
•	 Code Cache: Try to increase JVM Code Cache if you are running out of

code cache

Tuning parameters for mapred-default.xml
This section shows examples of configuration parameters that are useful when
configuring Accumulo, Hadoop, and ZooKeeper clusters. There is no way of going
around optimizing performance using the tools stated in the Prerequisites section of
this chapter to get the best result.

Remember to keep the Reducer to Mapper ratio as 3:4. The basic rule is to have 1 core
to handle one slot, but it has been shown to work for up to 1.2 cores to handle one slot.

The changes recommended in mapred-site.xml are shown in the following table:

Configuration parameter Default
value

Comment

mapreduce.task.timeout 600000 Its default value is 600 seconds. This
depends on the job; it might be needed to
increase this value.

mapred.map.tasks 2 This parameter refers to the number of
map tasks per job. Its value is ignored if
mapred.job.tracker is local.

mapred.tasktracker.map.
tasks.maximum

2 This parameter refers to the maximum
number of tasks that a task tracker can run
simultaneously.

Chapter 4

[67]

Configuration parameter Default
value

Comment

mapred.reduce.tasks 1 The number of reduce tasks per job.
The default value is ignored when
mapred.job.tracker is local.

mapred.tasktracker.
reduce.tasks.maximum

2 This parameter is configured between half
the number of cores per node and two times
the number of cores.

mapred.map.child.java.
opts

This parameter starts with the –Xmx512M
value.

mapred.reduce.child.
java.opts

This parameter starts with the –Xmx1024M
value.

io.sort.mb 100 This parameter is configured to consume
up to 200 MB or 70 percent of the Java heap
size. If it is done right, it's possible to reduce
the number of spills.

fs.inmemory.size.mb 100 This parameter is configured to consume
up to 200 MB or 70 percent of the Java heap
size.

io.sort.factor 100 This parameter finds the number of seeks
being done when merging the files. If too
high, then the seek cost on the disk will
exceed the savings. You can use Starfish to
find the correct value.

mapred.reduce.parallel.
copies

5 To configure this parameter for bigger
clusters, set this to a higher number.

HDFS
Hadoop supports compression that is very useful when there is a need for processing
large data but there is only small cluster running and available. Using compression is
always good way to extend small cluster capabilities.

Using Hadoop support for compression is an option worth exploring. Often, better
compression could mean more CPU cycles, and if the cluster is already doing a lot
of CPU bound work, it is a good idea to use codec that uses fewer CPU cycles and
even skip using compression. The Lempel–Ziv–Oberhumer (LZO) is a lossless
data compression algorithm, and it has been proven in research to be best suited
for performance.

Optimizing Accumulo Performance

[68]

Hadoop had, by default, few compression formats, as shown in the following table:

Compression formats Hadoop compression codec
DEFLATE org.apache.hadoop.io.compress.DefaultCodec

gzip org.apache.hadoop.io.compress.GzipCodec

LZO com.hadoop.compression.lzo.LzopCodec

For more information about the LZO lossless data compression algorithm, refer to
the following link:

http://en.wikipedia.org/wiki/Lempel%E2%80%93Ziv%E2%80%93Oberhumer

In order to set up LZO to compress intermediate map output, add the following code
in mapred-site.xml:

<property>
 <name>mapreduce.map.output.compress</name>
 <value>true</value>
</property>
<property>
 <name>mapreduce.map.output.compress.codec</name>
 <value>com.hadoop.compression.lzo.LzoCodec</value>
</property>

Tuning parameters for mapred-site.xml
This section includes examples of configuration parameters that can be useful when
configuring compression and block size.

The changes recommended in mapred-site.xml are shown in the following table:

Configuration parameter Default
value

Comment

mapred.compress.map.output This parameter performs data
compression between the Mapper and
the Reducer.

mapred.map.output.
compression.codec

This parameter is a compression codec
between the Mapper and the Reducer.
For performance, use LZO.

mapred.output.compression.
type

RECORD For this parameter, instead of
compressing a single RECORD, use
BLOCK, which compresses a group of
records.

Chapter 4

[69]

Configuration parameter Default
value

Comment

mapred.output.compression.
codec

This parameter is a compression codec
between the Mapper and the Reducer.
For performance, use LZO.

mapred.min.split.size This parameter is the smallest number
that has a valid size in bytes for a file
split.
The best way of setting the input split is
by using the HDFS block size; this also
applies to mapred.max.split.size.

mapred.max.split.size This parameter is the largest number that
has a valid size in bytes for a file split.

Tuning parameters for hdfs-site.xml
The change recommended in hdfs-site.xml is shown in the following table:

Configuration parameter Default
value

Comment

dfs.block.size 64 M Here you can use larger block sizes such as 128
MB, or even 256 MB, if using larger files.

For more information about real-world Hadoop cluster configuration, please visit
http://hadoop.apache.org/docs/stable/cluster_setup.html.

ZooKeeper performance
To be able to understand and spot problems in ZooKeeper cluster, we need to
establish a baseline. On the ZooKeeper website is the Service Latency Overview
page which is a good starting ground to establish the baseline:

http://wiki.apache.org/hadoop/ZooKeeper/ServiceLatencyOverview

Because every node in ZooKeeper has to vote, it will cause an increased cost in
writing operations when the cluster size increases. The flipside is, if too many clients
connect to the same node, then it's possible for that node to go down. Then you will
only have three ZooKeeper servers running (1 leader and 2 followers), and after one
is down, only one follower will still be alive, and if all the clients connect to it, they
might take it down. When you come across this problem, you need to change the
setup of the ZooKeeper cluster.

Optimizing Accumulo Performance

[70]

To verify if the setup of ZooKeeper is correct, it is recommended to run a smoke test
and a latencies test. ZooKeeper uses heart-beating between clients and servers, which
causes ZooKeeper to handle network and system latencies poorly. It is a good choice
to run smoke and latency tests using the zk-smoketest project on Github which can
be found at https://github.com/phunt/zk-smoketest.

For JVM configurations, use the same configuration for the Java max heap size as for
Hadoop. Never use more that 70 percent of the available memory.

Use Graylog2 to monitor the logfiles and Ganglia to monitor each ZooKeeper server.

ZooKeeper overview
The number of nodes in the ZooKeeper setup is always an odd number. Adding too
many ZooKeeper nodes to the cluster doesn't improve performance. ZooKeeper has
a few guarantees:

•	 Sequential consistency: The consistency order is preserved
•	 Atomicity: There are no partial results; only succeed or fail
•	 Single system image: All nodes will provide the same answer to the client
•	 Reliability: All updates will persist

The following image shows typical setup of five ZooKeeper nodes where one is
leader and the rest are followers. The leader is chosen at startup.

ClientClient

Client

Server

ClientClientClient ClientClientClient

ClientClientClient

ServerServerServerServer
Leader

ZooKeeper Services

Accumulo performance
Accumulo uses Hadoop HDFS as a filesystem and ZooKeeper as a coordinator. If the
problem isn't in Hadoop or ZooKeeper, we need to look at Accumulo. By now, you
should be monitoring the logs with Graylog2 or similar, and monitoring the Accumulo
TabletServer(s) and the Accumulo Master with Ganglia.

Chapter 4

[71]

Accumulo has fewer configuration values than Hadoop, but the same rule applies to
the configuration of JVM.

Tuning parameters for accumulo-site.xml
The changes recommended in accumulo-site.xml are shown in the following table:

Configuration parameter Default value Comment
instance.zookeeper.
host

localhost:2181 Here, ZooKeeper servers are
separated by a comma.

instance.dfs.dir /user/accumulo/
accumulo

This refers to the location where
Accumulo stores files in Hadoop.

logger.dir.walog walogs This indicates the write-ahead logs
to the local system.

instance.secret This has to be the same value for all
servers.

tserver.memory.maps.
max

80 M This refers to the maximum
TabletServer memory to be used
(bigger is better), considering a
node with minimal 16 GB

tserver.cache.data.
size

7M This refers to the cache data size
on the TabletServer. For a node
with 16 GB, consider 2 GB, but this
depends on the amount of data you
are storing.

tserver.cache.index.
size

20 M This refers to the cache index size
on the TabletServer. For a node
with 16 GB, consider 1 GB, but this
depends on the amount of data you
are storing.

tserver.walog.max.
size

100 M This depends on the size of the disk
on the node (I have been using 8 GB
when running two TabletServers).

While experiencing a slow response from Accumulo, the best place to start is the
status page (http://localhost:50095/status) to find performance bottlenecks.

Accumulo overview
The following figure tries to give an example of a simple Accumulo cluster. In the
cluster, we have five Accumulo TabletServer nodes to handle requests from multiple
clients that are connected to them, and one Accumulo MASTER node.

Optimizing Accumulo Performance

[72]

The Tablet Nodes connect to Hadoop and use the HDFS, but use ZooKeeper to
coordinate. This setup is very good to practice using Accumulo, and optimizing its
performance. This setup is easy to do using a cloud provider or a local virtualize
environment.

DataNode DataNode NameNode

Hadoop Nodes (HDFS)

Tablet ZK 2 Zk3

ZooKeeper Nodes

Leader

Tablet
Server

Tablet
Server

Tablet
Server

Tablet
Server

Tablet
Server

MASTER

Tablet Nodes

Accumulo

Client
Application

Client
Application

Client
Application

Client
Application

Accumulo's performance summary
To activate the highest ingest performance, a focus on both the ingestion and query
components is required. By using the Accumulo status page, you can get a rough
indication if there are any performance bottlenecks, and compare CPU, network, and
memory numbers from Ganglia. But usually, you can know upfront. It is possible to
scale Accumulo up to the point where either the aggregate I/O of TabletServer(s) or
the total network bandwidth capacity is reached.

By monitoring the Accumulo graphs on the status page, and also by using the
Starfish Hadoop Log Analyzer tool, configuring Accumulo can be an easy task.

Tables
While creating a new table, it will be on a single tablet; this is the default behavior.
For performance, this would not be good practice, but when more data is added
to the table, the table is automatically split to many tablets. While running 10
TabletServer(s), it will take some time until the table has been split into tablets
on every TabletServer. If you know that the table will grow, and you want to take
advantage of the cluster setup and get the most out of parallelism in the cluster,
you need to think about pre-splitting the table.

Chapter 4

[73]

Manually, pre-splitting is an easy task and can be done through the Accumulo shell
using the following steps:

1.	 Log into the Accumulo shell using the following command:
cd /usr/local/accumulo

./bin/accumulo shell -u root

2.	 Create a new table using the Accumulo shell command:
root@accumulo-demo> createtable mydemotable1

3.	 Pre-splitting tables is done with the following Accumulo shell command:
root@accumulo-demo> addsplits –s /local_splitfile – t
mydemotable1

4.	 The table configuration values can be obtained using the Accumulo
shell command:
root@accumulo-demo> config -t mydemotable1

Optimizing Accumulo Performance

[74]

5.	 Calling config for any given table gives detailed information. Notice that the
default value for table.split.threshold is 1G, which is very useful when
knowing the size of the data.

Accumulo has many useful commands, and for more information on Accumulo Shell
Command, go to Appendix A, Accumulo Command Reference.

Comparing bulk ingest versus batch write
Accumulo provides support for importing files by using the Accumulo shell
command importdirectory, and multiple files can be written to the existing tables.
Clients can use BatchWriter via ingestion. Using BatchWriter, a large amount of
data can be formatted as Accumulo expects. In many cases, it is faster to use bulk
ingest, import files directly into Accumulo instead of using BatchWriter, and client
writing data to Accumulo using the API.

To get splits on any given table, use the following Accumulo shell command:

root@accumulo-demo> getsplits -t mydemotable1

Chapter 4

[75]

Accumulo examples
Accumulo has an excellent documentation that will give you an idea on how you
should set up each node in the cluster. Please read more about it by visiting the
following link:

http://localhost:50095/docs

Accumulo ships with many useful examples in order to understand the different
aspects of operations and performance. The following list has examples that will
be useful to get to know Accumulo and understand the best way to solve different
use cases:

•	 batch: You can refer to http://accumulo.apache.org/1.5/examples/
batch.html to know how batch writer and batch scanner are used

•	 bloom: You can refer to http://accumulo.apache.org/1.5/examples/
bloom.html, which explains how the Bloom filter is used to increase
query performance

•	 bulk ingest: You can refer to http://accumulo.apache.org/1.5/
examples/bulkIngest.html to understand how to use Map/Reduce
jobs to perform ingest bulk data

•	 classpath: You can refer to http://accumulo.apache.org/1.5/examples/
classpath.html to know how a classpath is used for each table

•	 client: You can refer to http://accumulo.apache.org/1.5/examples/
client.html to know how to use table operations

•	 combiner: You can refer to http://accumulo.apache.org/1.5/examples/
combiner.html to know how to use StatsCombiner for min, max, sum,
and count

•	 constraints: You can refer to http://accumulo.apache.org/1.5/
examples/constraints.html to know how to use constraints with tables

•	 dirlist: You can refer to http://accumulo.apache.org/1.5/examples/
dirlist.html to know how a filesystem's information is stored

•	 export: You can refer to http://accumulo.apache.org/1.5/examples/
export.html to know how tables can be imported or exported

•	 file data: You can refer to http://accumulo.apache.org/1.5/examples/
filedata.html to know how file data is stored

•	 filter: You can refer to http://accumulo.apache.org/1.5/examples/
filter.html to know how 30 second old records are removed

•	 hello world: You can refer to http://accumulo.apache.org/1.5/
examples/helloworld.html to know how Map/Reduce jobs can store
data from inside and outside

Optimizing Accumulo Performance

[76]

•	 isolation: You can refer to http://accumulo.apache.org/1.5/examples/
isolation.html to know how the isolation scanner is used

•	 mapreduce: You can refer to http://accumulo.apache.org/1.5/
examples/mapred.html to know how Map/Reduce can read and write

•	 maxmutation: You can refer to http://accumulo.apache.org/1.5/
examples/maxmutation.html to know how to avoid running out of memory

•	 regex: You can refer to http://accumulo.apache.org/1.5/examples/
regex.html to know how to use regular expressions

•	 rowhash: You can refer to http://accumulo.apache.org/1.5/examples/
rowhash.html to know how to read a table and write a row in a table

•	 shar: You can refer to http://accumulo.apache.org/1.5/examples/
shard.html to know how to use the intersection iterator

•	 table-to-file: You can refer to http://accumulo.apache.org/1.5/examples/
tabletofile.html to know how to read a table and write to HDFS

•	 terasort: You can refer to http://accumulo.apache.org/1.5/examples/
terasort.html to know how to use random data and sorting

•	 visibility: You can refer to http://accumulo.apache.org/1.5/examples/
visibility.html to know how to use visibility

Summary
The most important aspect when optimizing a cluster is disk and memory usage,
which is divided between nodes over the cluster. Understanding the configuration
parameters for Hadoop, ZooKeeper, and Accumulo is vital to be able to get the best
performance out of the cluster.

In the next chapter, we will go through the security aspect of Accumulo. We will
learn how Accumulo uses cell-level security to gain full control over the visibility
of every cell for every table, and the following chapter will give us the answer
to questions such as how Accumulo is able to secure information sharing and
information multitenancy.

Security
Accumulo is designed for fine-grained security that normal database systems don't
support. In the relational database world, the normal rule is that if you are allowed
to query a table, you are going to be able to see all the rows in that table. Accumulo
is designed to extend BigTable and fully supports cell-level security. Accumulo is
a Key-Value database where one data row or Key-Value pair is composed of the
following elements:

Key

Row
ID

Family

Column

Qualifier Visibilty

Timestamp

Value

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Security

[78]

The data is distributed by partitioning the table into tablet servers, as follows:

Row2 | col1 | 40

Row3 | col1 | 10

Row3 | col2 | 20

Row3 | col3 | 60

Row4 | col2 | 40

Row5 | col2 | 50

Row5 | col3 | 80

Row1 | col2 | 10

Tablet Server

Tablet Server

Tablet Server

Tablet Server

Row2 | col1 | 40

Row1 | col2 | 10

Row3 | col1 | 10

Row3 | col2 | 20

Row3 | col3 | 60

Row4 | col2 | 40

Row5 | col2 | 50

Row5 | col3 | 80

You can group table security into four groups:

•	 Table-level security: Using this feature, it is possible to control the insert,
update, delete, and select operations for the entire table.

•	 Column-level security: The idea is to control columns in the table. It is useful
when it's needed to freeze columns in the table.

•	 Row-level security: This feature is useful if you want to control what rows
are accessible by some business logic.

•	 Cell-level security: Accumulo has a powerful security feature called
cell-level security. Using this feature gives you full control over the
visibility of every cell for every table.

Chapter 5

[79]

In this chapter, the focus is going to be on cell-level security.

These are the topics we'll cover in this chapter:

•	 Visibility
•	 Security expression
•	 Authorization
•	 User authorizations
•	 Handling secure authorization
•	 Query Services Layer

Visibility
Visibility is an element for Accumulo, for every Key-Value row. Cell-level security
is accomplished by controlling the visibility for every Key-Value pair. The flexible
security Accumulo provides is better than what relational databases provide for
multi-tenant scenarios, meaning when fine-grained security restrictions are required
for single table.

In the following example, there are three persons with different authorization tokens.
Person A has SecTokenA, Person B has SecTokenB, and finally Person C has both
SecTokenA and SecTokenB. When Person A queries the table in the middle, that
person will only see rows where the visibility is set to the authorization token it has,
that is, SecTokenA. The same applies to Person B, who only sees rows where the
visibility is SecTokenB. Finally, Person C with both authorization tokens, SecTokenA
and SecTokenB, will see all of the rows.

Security

[80]

The authorization token is a string, and it is important to use descriptive names.
Compared to Active Directory, the authorization tokens are similar to AD groups.

Creating an Accumulo user
Before we start, let's examine the process of creating a user in Accumulo and what
rights the new user has when created. While doing this, it is possible to use the
-s switch or -scan-authorizations, followed by authorizations separated by
comma(s) to set the security token.

Use the following command to start a new Accumulo shell:

/usr/local/accumulo/bin/accumulo shell -u root

Use the following command to create a user in Accumulo:

root@accumulo-demo> createuser accumulouserA

Creating tables in Accumulo
Creating tables in Accumulo that are Key-Value tables, is done by simply using the
createtable command with the table name. In normal relational databases, tables
are created by listing out columns; however, in Key-Value databases, columns are
created when data is written. This difference makes Accumulo more flexible. The
only security concern is to add an access control label to each Key-Value pair.

Chapter 5

[81]

To create a new table as root, use the following command:

root@accumulo-demo> createtable mydemotable2

How does visibility work?
Visibility is all about who has access to the data. It works by using fine-grained
tagging of every row (Key-Value pair), with an access control label.

Root has the right to create a table. Let's log out and log in as the new user that
we created using the following:

root@accumulo-demo>quit

/usr/local/accumulo/bin/accumulo shell -u accumulouserA

accumulouserA@accumulo-demo>create mydemotable3

Now, you get the User does not have permission to perform this
action error, as shown in the following screenshot:

To be able to create a table in Accumulo as accumulouserA, you need to be granted
with System.CREATE_TABLE permission.

Security

[82]

So, start a new Accumulo shell using the following command:

/usr/local/accumulo/bin/accumulo shell -u root

Grant the CREATE_TABLE permission to accumulouserA using the following command:

root@accumulo-demo> grant -s System.CREATE_TABLE –u accumulouserA

Before you grant permission to a user, it's a good rule to get a list of access
permissions for that user.

Ask for permissions for the current logged-in user by using the following command:

root@accumulo-demo> userpermissions

Or ask for permissions for a specified user by using the following command:

root@accumulo-demo> userpermissions -u accumulouserA

Visibility of a row is controlled via Boolean & and | operators, where you can
combine both of them in a sentence.

Let's look at the following example of inserting rows with different visibility tokens.
The steps taken are:

1.	 Create a table.
2.	 Insert <row> <colfamily> <colqualifier> <value> with the authorization label

SecTokenA.

Chapter 5

[83]

3.	 Insert <row> <colfamily> <colqualifier> <value> with the authorization
label SecTokenB.

4.	 Insert <row> <colfamily> <colqualifier> <value> with the authorization
label SecTokenA&SecTokenB. There's support for the use of boolean algebra
for an authorization label.

5.	 Switch from root to accumulouserA.
6.	 Scan the table and the following will be shown:

root@accumulo-demo> createtable mydemotable3

root@accumulo-demo mydemotable3> insert row1 f1 q1 v1 -l SecTokenA

root@accumulo-demo mydemotable3> insert row1 f2 q2 v2 -l SecTokenB

root@accumulo-demo mydemotable3> insert row1 f3 q3 v3 -l
 SecTokenA&SecTokenB

root@accumulo-demo mydemotable3> user accumulouserA

Enter password for user accumulouserA: *******

accumulouserA@accumulo-demo mydemotable3> scan

2013-08-19 23:23:22,904 [shell.Shell] ERROR:
 java.lang.RuntimeException: org.apache.accumulo.core.client.
AccumuloSecurityException: Error
 PERMISSION_DENIED - User does not have permission to perform
this
 action

As user authorizations are a set of authorization tokens—and by default the user
authorizations set is empty—you need to change the authorizations set with the
user that has rights. Also, the user has to have access to the table.

The following screenshot shows what happens when a user tries to scan a table
and doesn't have access to it. This isn't related to the security tokens; it's related
to the fact that the user doesn't have an access to the table.

Let's examine what happens if we create few cells and then try to scan as follows:

root@accumulo-demo mydemotable3> insert row1 f1 q1 v1 -l SecTokenA

root@accumulo-demo mydemotable3> insert row1 f2 q2 v2 -l SecTokenB

Security

[84]

root@accumulo-demo mydemotable3> insert row1 f3 q3 v3 -l
SecTokenA&SecTokenB

root@accumulo-demo mydemotable3> scan

You are going to get an empty list because by default, the user authorizations set
is empty even for the root user.

If we change the user's authorizations set to the token string SecTokenA, we will
only get one row in the result set as follows:

root@accumulo-demo mydemotable3> setauths -s SecTokenA

root@accumulo-demo mydemotable3> scan

row1 f1:q1 [SecTokenA] v1

If we try to scan the table using an authorizations set that the user doesn't have,
we will get an error as follows:

root@accumulo-demo mydemotable3> scan -s SecTokenB

2013-08-19 23:45:24,709 [shell.Shell] ERROR:
 java.lang.RuntimeException:
 org.apache.accumulo.core.client.AccumuloSecurityException:
 Error BAD_AUTHORIZATIONS - The user does not have the specified
 authorizations assigned

Finally, set the authorizations set to both SecTokenA and SecTokenB; now we are
getting to the result we expected, as shown in the following screenshot:

Chapter 5

[85]

Security expression
As we saw in the previous example, security labels are a set of tokens the user chooses
to use. The tokens are a set of ASCII characters (arbitrary strings). In the previous
example, we used the logical AND operator to join two authorization tokens.

Examples of usage are:

•	 AND: An example of this is SecTokenA&SecTokenB, where the user needs
both SecTokenA and SecTokenB to be able to see the cell

•	 OR: An example of this is SecTokenA|SecTokenB, where the user only needs
one token, SecTokenA or SecTokenB, to be able to see the cell

•	 AND, OR: An example of this is (SecTokenA&SecTokenB)|SecTokenC,
where the user only needs either SecTokenA and SecTokenB or SecTokenC

More complex rules can be created using Boolean AND (&) and OR (|) combinations.

It is always a good idea to create company definitions for the naming of security labels
and user. Often the terms of user roles are used, such as power-user and admin.

Writing a Java client
Writing a Java client and setting different visibility for two different values for the
same row ID is a fairly simple task. The code to create it is as follows:

import org.apache.accumulo.core.client.AccumuloException;
import org.apache.accumulo.core.client.AccumuloSecurityException;
import org.apache.accumulo.core.client.BatchWriter;
import org.apache.accumulo.core.client.Connector;
import org.apache.accumulo.core.client.Instance;
import org.apache.accumulo.core.client.TableExistsException;
import org.apache.accumulo.core.client.TableNotFoundException;
import org.apache.accumulo.core.client.ZooKeeperInstance;
import org.apache.accumulo.core.data.Mutation;
import org.apache.accumulo.core.data.Value;
import org.apache.accumulo.core.security.ColumnVisibility;
import org.apache.hadoop.io.Text;

public class AccumuloDemo2 {

 public static void main(String[] args)
 throws AccumuloException,
 AccumuloSecurityException,
 TableNotFoundException,
 TableExistsException{

Security

[86]

 // Constants
 String instanceName = "accumulo-demo";
 String zooServers = "zooList";
 String userName = "<change>";
 String password = "<change>";

 // Connect
 Instance inst = new ZooKeeperInstance(instanceName,
 zooServers);
 Connector conn = inst.getConnector(userName, password);

 // Use batch writer to write demo data
 BatchWriter bw = conn.createBatchWriter("demotable",
 1000000, 60000,
 2);
 // Create two columns for the same row
 Text rowID = new Text("row2");
 long timestamp = System.currentTimeMillis();
 // Visibility "SecTokenA"
 ColumnVisibility colVisA =
 new ColumnVisibility("SecTokenA");
 // Visibility "SecTokenB"
 ColumnVisibility colVisB =
 new ColumnVisibility("SecTokenB");
 // Create column(family, qualifier) and value
 Text colFam1 = new Text("colFam");
 Text colQual1 = new Text("colQual");
 Value value1 = new Value("some-value".getBytes());
 // create first new mutation and add rowID, colFam,
 // colQual, value
 Mutation mutation1 = new Mutation(rowID);
 mutation1.put(colFam1, colQual1, colVisA, timestamp,
 value1);
 bw.addMutation(mutation1);
 // Create column(family, qualifier) and value
 Text colFam2 = new Text("colFam");
 Text colQual2 = new Text("colQual");
 Value value2 = new Value("some-value".getBytes());
 // create second new mutation and add rowID, colFam,
 // colQual, value
 Mutation mutation2 = new Mutation(rowID);
 mutation2.put(colFam2, colQual2, colVisB, timestamp,
 value2);
 // add the mutation to the batch writer
 bw.addMutation(mutation2);
 // close the batch writer
 bw.close();
 }
}

Chapter 5

[87]

Authorization
Most clients are written in Java, but you can use the proxy API to interact with
Accumulo in other languages. As we saw in the preceding example, when using
security tokens we need to pass them to the Accumulo instance. Then, write the
Java client and create the connection (a Java code), as follows:

String inName = "accumulo-demo";
String zooKeeperServers = "zkServer1,zkServer2,zkServer3";
Instance zkIn = new ZooKeeperInstance(inName, zooKeeperServers);
Connector conn = zkInstance.getConnector("myuser", "password");

Create authorization (a Java code), as follows:

Authorization auths = new Authorization("SecTokenA", "SecTokenB");
Scanner s = conn.createScanner("mydemotable4", auths);

There are many interesting projects supporting Accumulo, and there is even a
Python client library from Apache Accumulo, available at https://github.com/
accumulo/pyaccumulo.

User authorizations
Use the Accumulo shell to change the security label for users. There are two
commands that you need to use:

•	 setauths: It sets authorization tokens for the current user or a specific
user when using the -u flag

•	 getauths: It gets authorization tokens for the current user or a specific
user when using the -u flag

Security

[88]

Handling secure authorization
Security needs to addressed when moving the Accumulo solution from the
development stage to the production stage. Using secure authorization is good
practice. For example, public-key infrastructure PKI (read more about it at
http://en.wikipedia.org/wiki/Public-key_infrastructure), can be
used for authentication.

Query Services Layer
Java API is the primary method of interaction with Accumulo. When moving your
code from the development to the production environment, there might be a good
reason to use Query Services Layer. Query Services Layer provides a platform where
the Presentation Layer (web applications), is hosted on Apache Tomcat or Internet
Information Service (IIS). At this level, security is often implemented. The normal
setup is to have Query Services Layer between Accumulo and the user machine.

Summary
In this chapter, we examined how Accumulo uses cell-level security to have an
active and complete control over the visibility of every cell for every table.

Currently, Accumulo is the only NoSQL database that is designed with cell-level
security. Cell-level security is very important and has lots of benefits for large
organizations. To be able to secure information sharing, and secure information
multi-tenancy, you can create a bigger data store without users to see what they
don't have access to.

In the appendices, there are the following lists of commands:

•	 Commands for the Accumulo shell interface
•	 Commands for Hadoop
•	 The ZooKeeper commands

Using commands for Accumulo is a great time saver; very similar to
having an interface on top of relational databases. Testing everything in the
command-line interface before writing the Java code is good practice. For
ZooKeeper, the command-line interfaces are more about monitoring than
actually doing any work. And finally, the Hadoop command line is for both
the user and the administrator with a focus on both managing and monitoring.

Accumulo Command
References

The commands for the Accumulo shell interface are as follows:

Command Description
? Lists all available commands.
about Provides information about the Accumulo shell

command interface.
addsplits Adds split points to an existing table.
authenticate Verifies a user's credentials.
bye Exits the shell.
classpath Lists the files currently on the classpath.
clear Clears the screen.
clonetable Clones a table.
cls Clears the screen.
compact Sets all tablets for a table to major compact as soon as possible

(based on current time).
config Prints system properties and table-specific properties.
createtable Creates a new table.
createuser Creates a new user.
debug Turns debug logging on or off.
delete Deletes a record from a table.
deleteiter Deletes a table-specific iterator.
deletemany Scans a table and deletes the resulting records.
deleterows Deletes a range of rows in a table. Note that rows matching the

start row are not deleted, but rows matching the end row are.

Accumulo Command References

[90]

Command Description
deletescaniter Deletes a table-specific scan iterator so that it is no longer used

during this shell session.
deletetable Deletes a table.
deleteuser Deletes a user.
droptable Deletes a table.
dropuser Deletes a user.
du Prints how much space is used by files referenced by a table.

When multiple tables are specified, it prints how much space
is used by files shared between tables, if any.

egrep Searches each row, column family, column qualifier, and
value, in parallel, on the server side (using a Java Matcher, so
put .* before and after your term if you're not matching the
whole element).

execfile Specifies a file containing Accumulo commands to execute.
exit Exits the shell.
flush Flushes to disk the table data that is currently in memory.
formatter Specifies a formatter to use for displaying table entries.
getauths Displays the maximum scan authorizations for a user.
getgroups Gets the locality groups for a given table.
getsplits Retrieves the current split points for tablets in the current table.
grant Grants system or table permissions to a user.
grep Searches each row, column family, column qualifier, and value

in a table for a substring (not a regular expression), in parallel,
on the server side.

help Provides information about the available commands.
history Generates a list of all commands previously executed.
importdirectory Imports in bulk an entire directory of data files into the current

table. The Boolean argument determines whether Accumulo
sets the time.

info Displays information about this program.
insert Inserts a record.
listiter Lists table-specific iterators.
listscans Lists what scans are currently running in Accumulo. See the

accumulo.core.client.admin.ActiveScan Javadoc
for more information about columns.

masterstate This has been deprecated. Use the command-line utility instead.

Appendix A

[91]

Command Description
maxrow Finds the row with the maximum value in a table within

a given range.
merge Merges tablets in a table.
notable Returns to a table-less shell state.
offline Starts the process of taking the table offline.
online Starts the process of putting the table online.
passwd Changes a user's password.
quit Exits the shell.
renametable Renames a table.
revoke Revokes system or table permissions from a user.
scan Scans the table and displays the resulting records.
select Scans for and displays a single entry.
selectrow Scans a single row and displays all resulting records.
setauths Sets the maximum scan authorizations for a user.
setgroups Sets the locality groups for a given table (for binary

or commas, use Java API).
setiter Sets a table-specific iterator.
setscaniter Sets a table-specific scan iterator for this shell session.
sleep Sleeps for the given number of seconds.
systempermissions Displays a list of valid system permissions.
table Switches to the specified table.
tablepermissions Displays a list of valid table permissions.
tables Displays a list of all existing tables.
trace Turns trace logging on or off.
user Switches to the specified user.
userpermissions Displays a user's system and table permissions.
users Displays a list of existing users.
whoami Reports the current username.

Hadoop Command
References

The commands for Hadoop are as follows:

Command Description
User commands
archive Creates a Hadoop archive
distcp Copies files or directories recursively
fs Runs a generic filesystem user client
fsck Runs an HDFS filesystem checking utility
fetchdt Gets the delegation token from a NameNode
jar Runs a JAR file
job Lets you interact with Map/Reduce jobs
pipes Runs a pipes job
queue Lets you interact with and view job queue

information
version Prints the version
classpath Prints the class path needed to get the Hadoop

JAR files and the required libraries
Administration commands
balancer Runs a cluster balancing utility
daemonlog Lets you get/set the log level for each daemon
datanode Runs an HDFS datanode
dfsadmin Runs an HDFS dfsadmin client
mradmin Runs an MR admin client

Hadoop Command References

[94]

Command Description
jobtracker Runs the Map/Reduce JobTracker node
namenode Runs the NameNode
secondarynamenode Runs the HDFS secondary NameNode
tasktracker Runs a Map/Reduce TaskTracker node

ZooKeeper Command
References

ZooKeeper commands; the four-letter words. You can use the commands via telnet
or NC at the client port; for example, like this:

echo conf | nc 127.0.0.1 511

The following table explains the ZooKeeper commands:

Command Description
conf Prints details about serving configuration
cons Lists full connection/session details for all clients connected

to this server
crst Resets connection/session statistics for all connections
dump Lists the outstanding sessions and ephemeral nodes
envi Prints details about serving environment
ruok Tests if server is running in a non-error state
srst Resets server statistics
srvr Lists full details for the server
stat Lists brief details for the server and connected clients
wchs Lists brief information on watches for the server
wchc Lists detailed information on watches for the server by

session
wchp Lists detailed information on watches for the server by path
mntr Outputs a list of variables that could be used for monitoring

the health of the cluster

Index
Symbols
? command 89

A
about command 89
Accumulo

about 39
Accumulo Master 39
application, monitoring 29
batch write 74
bulk ingest, comparing 74
configuring 24
Dashboard, monitoring 29
examples 75, 76
Graphs / Performance numbers 40
installing 23, 24
JobTracker 39
NameNode 39
new table, creating 72-74
optimizing, for performance 63
overview 5, 72
performance, monitoring 29
performance optimization 63
process, monitoring 29
requirements 6
security 77
setting up 48
system s overview, monitoring 41
tables, creating 80, 81
TabletServer 39
uptime, monitoring 29
ZooKeeper 39

Accumulo cluster
Accumulo website 25

connecting to, Java used 26
starting 24

Accumulo user
creating 80

Accumulo, examples
batch 75
bloom 75
bulk ingest 75
classpath 75
client 75
combiner 75
constraints 75
dirlist 75
export 75
file data 75
filter 75
hello world 75
isolation 76
mapreduce 76
maxmutation 76
regex 76
rowhash 76
shar 76
table-to-file 76
terasort 76
visibility 76

accumulo init command 24
Accumulo performance

tuning parameters,
for accumulo-site.xml 71

Accumulo shell interface
commands 89-91

Accumulo shell interface, commands
? 89
about 89

[98]

addsplits 89
authenticate 89
bye 89
classpath 89
clear 89
clonetable 89
cls 89
compact 89
config 89
createtable 89
createuser 89
debug 89
delete 89
deleteiter 89
deletemany 89
deleterows 89
deletescaniter 90
deletetable 90
deleteuser 90
droptable 90
dropuser 90
du 90
egrep 90
execfile 90
exit 90
flush 90
formatter 90
getauths 90
getgroups 90
grant 90
grep 90
help 90
history 90
importdirectory 90
info 90
insert 90
listiter 90
listscans 90
masterstate 90
maxrow 91
merge 91
notable 91
offline 91
online 91
passwd 91

quit 91
renametable 91
revoke 91
scan 91
select 91
selectrow 91
setauths 91
setgroups 91
setiter 91
setscaniter 91
sleep 91
systempermissions 91
table 91
tablepermissions 91
tables 91
trace 91
user 91
userpermissions 91
users 91
whoami 91

Accumulo user
creating 80

addsplits command 89
administration commands, Hadoop

balancer 93
datanode 93
deamonlog 93
dfsadmin 93
jobtracker 94
mradmin 93
namenode 94
secondarynamenode 94
tasktracker 94

Amazon AWS Console 44
Amazon EC2

about 44
prerequisites 44

Amazon EC2 Hadoop
creating 44-47

Amazon EMR command-line interface 44
AND 85
Apache Accumulo 87
Apache Whirr 44
archive command 93
authenticate command 89
authorization 87

[99]

B
balancer command 93
Big Table 49
bin directory 16
bye command 89

C
cell-level security 78
classpath command 89, 93
clear command 89
clonetable command 89
cls command 89
cluster

deleting 55
Cluster Applications API 34
cluster, Google Cloud Platform

creating 52
creating, for Accumulo 54
creating, for Hadoop 52, 53
creating, for ZooKeeper 54

Cluster information API 34
Cluster metrics API 34
cluster monitoring

about 30, 31
Accumulo 39
Ganglia, setting up 31
Graylog2 server, setting up 33
Hadoop 34
Nagios, setting up 33

Cluster Nodes API 35
Cluster scheduler API 34
cluster, Windows Azure

creating 59
deleting 61, 62
For Accumulo 61
for Hadoop 59, 60
For ZooKeeper 60

column-level security 78
compact command 89
conf command 95
config command 89
cons command 95
core-site.xml file 13
createtable command 89
createuser command 89

crst command 95
cygrunsrv command 10
Cygwin

packages 7
setting up 7

D
datanode command 93
deamonlog command 93
debug command 89
delete command 89
deleteiter command 89
deletemany command 89
deleterows command 89
deletescaniter command 90
deletetable command 90
deleteuser command 90
dfsadmin command 93
dfs.block.size parameter 69
distcp command 93
droptable command 90
dropuser command 90
du command 90
dump command 95

E
egrep command 90
elasticity 41
ElasticSearch 30
envi command 95
execfile command 90
exit command 90

F
failover 42
flush command 90
formatter command 90
fsck command 93
fs command 93
fs.inmemory.size.mb parameter 67

G
Ganglia

about 30

[100]

configuring 32
URL 30, 62-64

Ganglia meta deamon (gmetad) 32
Ganglia monitor deamon (gmond) 32
Ganglia, setting up

packages, Ganglia monitor core 31
packages, Ganglia web 2.0 31
packages, gexec execution environment 31
requirements 32

gcutil tool. See Google gcutil tool
getauths command 87, 90
getgroups command 90
getsplits command 90
Google Cloud Console 49
Google Cloud Platform

cluster, creating 52
cluster, deleting 55, 56
firewall rules, creating 51
Google gcutil tool, installing 50
prerequisites 49
project, creating 50

Google gcutil tool
credentials, configuring 50
installing 50
project, configuring 51

grant command 90
Graylog2

about 30
URL 64

Graylog2 server
Nagios 62
URL 30, 62

Graylog2 server, setting up
logging, Graylog2 used 33

Graylog Extended Log Format (GELF) 33
grep command 90
group table security groups

cell-level security 78
column-level security 78
row-level security 78
table-level security 78

H
Hadoop

about 34

administration commands 94
cluster, starting 16
commands 93
configuring 11
DataNodes 38
files, storing in Accumulo 37
filesystem, preparing 15
logfiles, finding 35, 36
NameNodes 38
NameNode web interface 34
nodes, decommisioning 38
setting up 8

Hadoop, commands
administration commands 93
user commands 93

Hadoop configuration
capacity-scheduler.xml file 12
configuration.xsl file 12
core-site.xml 13
core-site.xml file 12
fair-scheduler.xml file 12
hadoop-env.sh file 12, 15
hadoop-metrics2.properties file 12
hadoop-policy.xml file 12
hdfs-site.xml 14
hdfs-site.xml file 12
log4j.properties file 12
mapred-queue-acls.xml file 12
mapred-site.xml 14
mapred-site.xml file 13
masters file 13
read-only default configuration 11
site-specific configuration 11
slaves file 13
ssl-client-xml.example file 13
ssl.server.xml.example file 13
taskcontroller.cfg file 13

Hadoop DFS 15
Hadoop Distributed File System. See HDFS
Hadoop performance

about 65
baseline, establishing 65
HDFS 67
tuning 66
tuning parameters,

for mapred-default.xml 66, 67

[101]

Hadoop setup
cluster, installing 10, 11
DataNode 10
JobTracker 10
NameNode 10
SSH configuration 8
SSH key, generating for user 9
TaskTracker 10
user, creating 9

Hadoop tools
Starfish Hadoop Log Analyzer 64
TeraSort 65
TestDFSIO 65

HDFS
about 15
tuning parameters, for hdfs-site.xml 69
tuning parameters, for mapred-site.xml 68,

69
help command 90
history command 90
Hprof 64
htop 64

I
Identity and Access Management (IAM) 44
importdirectory command 90
info command 90
insert command 90
installations

Accumulo 23, 24
io.sort.factor parameter 67
io.sort.mb parameter 67
iostat 64

J
jar command 93
Java

used, for Accumulo cluster connections 26
Java client

writing 85
Java profilers

Hprof 64
JIP 64

JIP 64
job command 93

jobtracker command 94
JobTracker website 19

L
Lempel-Ziv-Oberhumer (LZO) 67
Linux performance tools

htop 64
iostat 64
netperf 64

listiter command 90
log4j 33

M
mapred.compress.map.output parameter 68
mapred.map.child.java.opts parameter 67
mapred.map.output.compression.codec

parameter 68
mapred.map.tasks parameter 66
mapred.max.split.size parameter 69
mapred.min.split.size parameter 69
mapred.output.compression.codec

parameter 69
mapred.output.compression.type

parameter 68
mapred.reduce.child.java.opts parameter 67
mapred.reduce.parallel.copies parameter 67
mapred.reduce.tasks parameter 67
mapred-site.xml file 14
mapred.tasktracker.map.tasks.maximum

parameter 66
mapred.tasktracker.reduce.tasks.maximum

parameter 67
mapreduce.task.timeout parameter 66
Master node 71
masterstate command 90
merge command 91
mntr command 95
mradmin command 93
multi-node configurations

about 16, 17
JobTracker website 19
NameNode website 18
TaskTracker website 19

mv command 11

[102]

N
Nagios

about 30
setting up 33
URL 30, 64

namenode command 94
NameNode website 18
netperf 64
notable command 91

O
offline command 91
online command 91
OR 85

P
passwd command 91
performance optimization, Accumulo

Hadoop performance 65
prerequisites 64
ZooKeeper performance 69

pipes command 93
PsTools 64
PuTTY 60

Q
Query Services Layer 88
queue command 93
quit command 91

R
Rackspace

about 57
configuration 57
network 57

renametable command 91
resource management 42
Resource Monitor tool 64
revoke command 91
row-level security 78
ruok command 95

S
scan command 91
secondarynamenode command 94
SecTokenA 79
SecTokenB 79
secure authorization

handling 88
security labels 85
select command 91
selectrow command 91
setauths command 87, 91
setgroups command 91
setscaniter command 91
sleep command 91
srst command 95
SSH key

generating, for Hadoop user 9
Starfish Hadoop Log Analyzer tool 64
stat command 95
systempermissions command 91

T
table command 91
table-level security 78
tablepermissions command 91
tables

creating, in Accumulo 80
tables command 91
Tablet Nodes 72
TabletServer nodes 71
tasktracker command 94
TaskTracker website 19
TeraSort tool 65
TestDFSIO tool 65
trace command 91
tuning parameters, for accumulo-site.xml

instance.dfs.dir 71
instance.secret 71
instance.zookeeper.host 71
logger.dir.walog 71
tserver.cache.data.size 71
tserver.cache.index.size 71
tserver.memory.maps.max 71
tserver.walog.max.size 71

[103]

tuning parameters, for hdfs-site.xml
dfs.block.size 69

tuning parameters, for mapred-default.xml
fs.inmemory.size.mb 67
io.sort.factor 67
io.sort.mb 67
mapred.map.child.java.opts 67
mapred.map.tasks 66
mapred.reduce.child.java.opts 67
mapred.reduce.parallel.copies 67
mapred.reduce.tasks 67
mapred.tasktracker.map.tasks.maximum

66
mapred.tasktracker.reduce.tasks.maximum

67
mapreduce.task.timeout 66

tuning parameters, for mapred-site.xml
mapred.compress.map.output 68
mapred.map.output.compression.codec 68
mapred.max.split.size 69
mapred.min.split.size 69
mapred.output.compression.codec 69
mapred.output.compression.type 68

U
Ubuntu Server 12.04 LTS 58
user authorizations 87
user command 91
user commands, Hadoop

archive 93
classpath 93
distcp 93
fetchdt 93
fs 93
fsck 93
jar 93
job 93
pipes 93
queue 93
version 93

userpermissions command 91
users command 91

V
version command 93
visibility

about 79
working 81-83

W
wchc command 95
wchp command 95
wchs command 95
whoami command 91
Windows Azure

cluster, creating 58
prerequisites 58

Windows Management Console 58
Windows performance tools

PsTools 64
Resource Monitor 64

Z
ZooKeeper

about 20
configuring 21
features 20
installing 20
starting 22

ZooKeeper cluster
creating 44-47

ZooKeeper commands
conf 95
cons 95
crst 95
dump 95
envi 95
mntr 95
ruok 95
srst 95
srvr 95
stat 95
wchc 95
wchp 95
wchs 95

ZooKeeper performance
about 69, 70
features 70
overview 70

Thank you for buying
Apache Accumulo for Developers

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licenses, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Apache Solr 4 Cookbook
ISBN: 978-1-782161-32-5 Paperback: 328 pages

Over 100 recipes to make Apache Solr faster, more
reliable, and return better results

1.	 Learn how to make Apache Solr search faster,
more complete, and comprehensively scalable

2.	 Solve performance, setup, configuration,
analysis, and query problems in no time

3.	 Get to grips with, and master, the new exciting
features of Apache Solr 4

Hadoop Real-World Solutions
Cookbook
ISBN: 978-1-849519-12-0 Paperback: 316 pages

Realistic, simple code examples to solve problems at
scale with Hadoop and related technologies

1.	 Solutions to common problems when working
in the Hadoop environment

2.	 Recipes for (un)loading data, analytics, and
troubleshooting

3.	 In depth code examples demonstrating
various analytic models, analytic solutions,
and common best practices

Please check www.PacktPub.com for information on our titles

Apache CloudStack Cloud
Computing
ISBN: 978-1-782160-10-6 Paperback: 294 pages

Leverage the power of CloudStack and learn to
extend the CloudStack environment

1.	 Install, deploy, and manage a cloud service
using CloudStack

2.	 Step-by-step instructions on setting up and
running the leading open source cloud platform
CloudStack

3.	 Set up an IaaS cloud environment using
CloudStack

Apache Flume: Distributed Log
Collection for Hadoop
ISBN: 978-1-782167-91-4 Paperback: 108 pages

Stream data to Hadoop using Apache Flume

1.	 Integrate Flume with your data sources

2.	 Transcode your data en-route in Flume

3.	 Route and separate your data using regular
expression matching

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Building an Accumulo Cluster from Scratch
	Necessary requirements
	Setting up Cygwin
	Setting up Hadoop
	SSH configuration
	Creating a Hadoop user
	Generating an SSH key for the Hadoop user

	Installing Hadoop
	Configuring Hadoop
	core-site.xml
	mapred-site.xml
	hdfs-site.xml
	hadoop-env.sh

	Preparing the Hadoop filesystem
	Starting the Hadoop cluster
	Multi-node configurations
	The NameNode website
	The JobTracker website
	The TaskTracker website

	Setting up ZooKeeper
	Installing ZooKeeper
	Configuring ZooKeeper
	Starting ZooKeeper

	Setting up and configuring Accumulo
	Installing Accumulo
	Configuring Accumulo

	Starting the Accumulo cluster
	The Accumulo website

	Connecting to the Accumulo cluster using Java
	Summary

	Chapter 2: Monitoring and
Managing Accumulo
	Monitoring
	Setting up Ganglia
	Configuring Ganglia

	Setting up the Graylog2 server
	Logging using Graylog2

	Setting up Nagios
	Hadoop
	NameNode web interface
	Finding the logfiles
	How does Accumulo store files in Hadoop?
	Live, dead, and decommissioning nodes

	Accumulo
	Monitoring a system's overview

	Elasticity
	Failover
	Resource management
	Summary

	Chapter 3: Integrating Accumulo into Various Cloud Platforms
	Amazon EC2
	Prerequisites for Amazon EC2
	Creating Amazon EC2 Hadoop and
ZooKeeper cluster
	Setting up Accumulo

	Google Cloud Platform
	Prerequisites for Google Cloud Platform
	Creating the project
	Installing the Google gcutil tool
	Configuring credentials
	Configuring the project

	Creating the firewall rules
	Creating the cluster
	Hadoop
	ZooKeeper
	Accumulo

	Deleting the cluster

	Rackspace
	Configuration
	Network

	Windows Azure
	Prerequisites
	Creating the cluster
	Hadoop
	ZooKeeper
	Accumulo

	Deleting the cluster

	Summary

	Chapter 4: Optimizing Accumulo Performance
	Prerequisites
	Hadoop performance
	Baseline
	Tuning
	Tuning parameters for mapred-default.xml

	HDFS
	Tuning parameters for mapred-site.xml
	Tuning parameters for hdfs-site.xml

	ZooKeeper performance
	ZooKeeper overview

	Accumulo performance
	Tuning parameters for accumulo-site.xml
	Accumulo overview
	Accumulo's performance summary
	Tables
	Comparing bulk ingest versus batch write
	Accumulo examples

	Summary

	Chapter 5: Security
	Visibility
	Creating an Accumulo user
	Creating tables in Accumulo
	How does visibility work?

	Security expression
	Writing a Java client

	Authorization
	User authorizations
	Handling secure authorization
	Query Services Layer
	Summary

	Appendix A: Accumulo Command References
	Appendix B: Hadoop Command References
	Appendix C: ZooKeeper Command References
	Index

