
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Apache	Hive	Essentials

www.allitebooks.com

http://www.allitebooks.org

Table	of	Contents

Apache	Hive	Essentials

Credits

About	the	Author

About	the	Reviewers

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more

Why	subscribe?

Free	access	for	Packt	account	holders

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Downloading	the	example	code

Errata

Piracy

Questions

1.	Overview	of	Big	Data	and	Hive

A	short	history

Introducing	big	data

Relational	and	NoSQL	database	versus	Hadoop

Batch,	real-time,	and	stream	processing

Overview	of	the	Hadoop	ecosystem

Hive	overview

Summary

2.	Setting	Up	the	Hive	Environment

Installing	Hive	from	Apache

www.allitebooks.com

http://www.allitebooks.org

Installing	Hive	from	vendor	packages

Starting	Hive	in	the	cloud

Using	the	Hive	command	line	and	Beeline

The	Hive-integrated	development	environment

Summary

3.	Data	Definition	and	Description

Understanding	Hive	data	types

Data	type	conversions

Hive	Data	Definition	Language

Hive	database

Hive	internal	and	external	tables

Hive	partitions

Hive	buckets

Hive	views

Summary

4.	Data	Selection	and	Scope

The	SELECT	statement

The	INNER	JOIN	statement

The	OUTER	JOIN	and	CROSS	JOIN	statements

Special	JOIN	–	MAPJOIN

Set	operation	–	UNION	ALL

Summary

5.	Data	Manipulation

Data	exchange	–	LOAD

Data	exchange	–	INSERT

Data	exchange	–	EXPORT	and	IMPORT

ORDER	and	SORT

Operators	and	functions

Transactions

Summary

6.	Data	Aggregation	and	Sampling

www.allitebooks.com

http://www.allitebooks.org

Basic	aggregation	–	GROUP	BY

Advanced	aggregation	–	GROUPING	SETS

Advanced	aggregation	–	ROLLUP	and	CUBE

Aggregation	condition	–	HAVING

Analytic	functions

Sampling

Summary

7.	Performance	Considerations

Performance	utilities

The	EXPLAIN	statement

The	ANALYZE	statement

Design	optimization

Partition	tables

Bucket	tables

Index

Data	file	optimization

File	format

Compression

Storage	optimization

Job	and	query	optimization

Local	mode

JVM	reuse

Parallel	execution

Join	optimization

Common	join

Map	join

Bucket	map	join

Sort	merge	bucket	(SMB)	join

Sort	merge	bucket	map	(SMBM)	join

Skew	join

Summary

www.allitebooks.com

http://www.allitebooks.org

8.	Extensibility	Considerations

User-defined	functions

The	UDF	code	template

The	UDAF	code	template

The	UDTF	code	template

Development	and	deployment

Streaming

SerDe

Summary

9.	Security	Considerations

Authentication

Metastore	server	authentication

HiveServer2	authentication

Authorization

Legacy	mode

Storage-based	mode

SQL	standard-based	mode

Encryption

Summary

10.	Working	with	Other	Tools

JDBC	/	ODBC	connector

HBase

Hue

HCatalog

ZooKeeper

Oozie

Hive	roadmap

Summary

Index

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Apache	Hive	Essentials

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Apache	Hive	Essentials
Copyright	©	2015	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	author,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	February	2015

Production	reference:	1210215

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78355-857-5

www.packtpub.com

http://www.packtpub.com

Credits
Author

Dayong	Du

Reviewers

Puneetha	B	M

Hamzeh	Khazaei

Nitin	Pradeep	Kumar

Balaswamy	Vaddeman

Commissioning	Editor

Ashwin	Nair

Acquisition	Editor

Shaon	Basu

Content	Development	Editor

Merwyn	D’souza

Technical	Editor

Taabish	Khan

Copy	Editors

Sameen	Siddiqui

Laxmi	Subramanian

Project	Coordinator

Neha	Bhatnagar

Proofreaders

Paul	Hindle

Jonathan	Todd

Indexer

Monica	Ajmera	Mehta

Production	Coordinator

Aparna	Bhagat

Cover	Work

Aparna	Bhagat

About	the	Author
Dayong	Du	is	a	big	data	practitioner,	leader,	and	developer	with	expertise	in	technology
consulting,	designing,	and	implementing	enterprise	big	data	solutions.	With	more	than	10
years	of	experience	in	enterprise	data	warehouse,	business	intelligence,	and	big	data	and
analytics,	he	has	provided	his	data	intelligence	expertise	in	various	industries,	such	as
media,	travel,	telecommunications,	and	so	on.	He	is	currently	working	with	QuickPlay
Media	in	Toronto,	Canada,	to	build	enterprise	big	data	intelligence	reporting	for	online
media	services	and	content	providers.	He	has	a	master’s	degree	in	computer	science	from
Dalhousie	University,	and	he	holds	the	Cloudera	Certified	Developer	for	Apache	Hadoop
certification.

I	would	like	to	sincerely	thank	my	wife,	Joice,	and	daughter,	Elaine,	for	their	sacrifices
and	encouragement	during	this	journey.	Also,	I	would	like	to	thank	my	parents	for	their
support	during	the	time	of	writing	this	book.

I	would	also	like	to	thank	everyone	at	Packt	Publishing	and	the	technical	reviewers	for
their	valuable	help,	guidance,	and	feedback	on	my	book.

About	the	Reviewers
Puneetha	B	M	is	a	software	engineer,	data	enthusiast,	and	technical	blogger.	Her	research
interests	include	big	data,	cloud	computing,	machine	learning,	and	NoSQL	databases.	She
is	also	a	professional	software	engineer	with	more	than	2	years	of	working	experience.
She	holds	a	master’s	degree	in	computer	applications	from	P.E.S.	Institute	of	Technology.
Other	than	programming,	she	enjoys	painting	and	listening	to	music.	You	can	learn	more
from	her	blog	(http://blog.puneethabm.in/)	and	LinkedIn	profile
(https://www.linkedin.com/in/puneethabm).

I	owe	a	great	deal	to	Prof.	Dr.	Ram	Rustagi	for	being	a	role	model	in	my	life	and	for	his
zealous	inspiration.	I	would	like	to	thank	my	brother,	Nischith	B.M.,	for	supporting	me	in
everything	I	do.	I	would	also	like	to	thank	Packt	Publishing	and	its	staff	for	providing	the
opportunity	to	contribute	to	this	book.

Hamzeh	Khazaei	is	a	postdoctoral	research	scientist	at	IBM	Canada	Research	and
Development	Centre.	He	received	his	PhD	degree	in	computer	science	from	University	of
Manitoba,	Winnipeg,	Manitoba,	Canada	(2009–2012).	Earlier,	he	received	both	his	BSc
and	MSc	degrees	in	computer	science	from	Amirkabir	University	of	Technology,	Tehran,
Iran	(2000–2008).	He	is	also	a	sessional	instructor	in	the	Computer	Science	department	at
Ryerson	University	(http://scs.ryerson.ca/~hkhazaei).	He	teaches	software	engineering	to
fourth	year	undergraduate	students.	His	research	area	includes	big	data	analytics,	cloud
computing	infrastructure,	analytics	as	a	service,	and	modeling	of	computing	systems.

I	would	like	to	thank	my	dear	wife	for	her	perpetual	support	in	all	my	endeavors.

Nitin	Pradeep	Kumar	is	a	passionate	developer	with	extensive	experience	and	oodles	of
interest	in	emerging	technologies	such	as	the	cloud	and	mobile.	He	is	currently	a	cloud
quality	engineer	at	Appcelerator,	a	leading	Silicon	Valley-based	start-up	that	provides	an
MBaaS	platform	purpose-built	for	mobile	and	cloud	development.	Before	this	stint,	he
studied	at	the	National	University	of	Singapore	toward	a	master’s	degree	in	knowledge
engineering,	which	involves	building	intelligent	systems	using	cutting-edge	artificial
intelligence	and	data-mining	techniques.	He	enjoys	the	start-up	environment	and	has
worked	with	technologies	such	as	Hadoop,	Hive,	and	data	warehousing.	He	lives	in
Singapore	and	spends	his	spare	cycles	playing	retro	PC	games	on	his	mobile	and	learning
Muay	Thai.

I	would	like	to	thank	my	family,	friends,	and	my	wonderful	brother,	Nivin,	for	supporting
me	in	all	my	endeavors.

Balaswamy	Vaddeman	is	a	Hadoop	hackathon	winner	for	Hyderabad	in	2013.	He	is	one
of	the	top	contributors	on	the	Hive	tag	at	http://www.stackoverflow.com.	He	is	a	big	data
professional	with	3	years	of	experience.	He	is	well	known	for	training	people	on	big
data/Hadoop.	So	far,	he	has	delivered	six	big	data	projects.	He	is	a	Java/J2EE	expert	with
8	years	of	IT	experience	and	5	years	of	RDBMS	experience.	He	is	an	automation	expert
on	Unix-based	systems	using	Shell	scripting.	He	has	experience	in	setting	up	teams	and
bringing	them	up	to	speed	on	big	data	projects.	He	is	an	active	participant	in	Hadoop/big

http://blog.puneethabm.in/
https://www.linkedin.com/in/puneethabm
http://scs.ryerson.ca/~hkhazaei
http://www.stackoverflow.com

data	forums.

I	would	like	to	thank	my	wife,	Radha,	my	son,	Pandu,	and	my	daughter,	Bubly,	for	their
cooperation	in	completing	this	book.

www.PacktPub.com

www.allitebooks.com

http://www.allitebooks.org

Support	files,	eBooks,	discount	offers,	and
more
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	search,	access,	and	read	Packt’s	entire	library	of	books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Free	access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	9	entirely	free	books.	Simply	use	your	login	credentials	for
immediate	access.

I	dedicate	this	book	to	my	daughter

http://www.PacktPub.com

Preface
With	an	increasing	interest	in	big	data	analysis,	Hive	over	Hadoop	becomes	a	cutting-edge
data	solution	for	storing,	computing,	and	analyzing	big	data.	The	SQL-like	syntax	makes
Hive	easier	to	learn	and	popularly	accepted	as	a	standard	for	interactive	SQL	queries	over
big	data.	The	variety	of	features	available	within	Hive	provides	us	with	the	capability	of
doing	complex	big	data	analysis	without	advanced	coding	skills.	The	maturity	of	Hive	lets
it	gradually	merge	and	share	its	valuable	architecture	and	functionalities	across	different
computing	frameworks	beyond	Hadoop.

Apache	Hive	Essentials	prepares	your	journey	to	big	data	by	covering	the	introduction	of
backgrounds	and	concepts	in	the	big	data	domain	along	with	the	process	of	setting	up	and
getting	familiar	with	your	Hive	working	environment	in	the	first	two	chapters.	In	the	next
four	chapters,	the	book	guides	you	through	discovering	and	transforming	the	value	behind
big	data	by	examples	and	skills	of	Hive	query	languages.	In	the	last	four	chapters,	the
book	highlights	well-selected	and	advanced	topics,	such	as	performance,	security,	and
extensions	as	exciting	adventures	for	this	worthwhile	big	data	journey.

What	this	book	covers
Chapter	1,	Overview	of	Big	Data	and	Hive,	introduces	the	evolution	of	big	data,	the
Hadoop	ecosystem,	and	Hive.	You	will	also	learn	the	Hive	architecture	and	the	advantages
of	using	Hive	in	big	data	analysis.

Chapter	2,	Setting	Up	the	Hive	Environment,	describes	the	Hive	environment	setup	and
configuration.	It	also	covers	using	Hive	through	the	command	line	and	development	tools.

Chapter	3,	Data	Definition	and	Description,	introduces	the	basic	data	types	and	data
definition	language	for	tables,	partitions,	buckets,	and	views	in	Hive.

Chapter	4,	Data	Selection	and	Scope,	shows	you	ways	to	discover	the	data	by	querying,
linking,	and	scoping	the	data	in	Hive.

Chapter	5,	Data	Manipulation,	describes	the	process	of	exchanging,	moving,	sorting,	and
transforming	the	data	in	Hive.

Chapter	6,	Data	Aggregation	and	Sampling,	explains	how	to	do	aggregation	and	sample
using	aggregation	functions,	analytic	functions,	windowing,	and	sample	clauses.

Chapter	7,	Performance	Considerations,	introduces	the	best	practices	of	performance
considerations	in	the	aspects	of	design,	file	format,	compression,	storage,	query,	and	job.

Chapter	8,	Extensibility	Considerations,	describes	how	to	extend	Hive	by	creating	user-
defined	functions,	streaming,	serializers,	and	deserializers.

Chapter	9,	Security	Considerations,	introduces	the	area	of	Hive	security	in	terms	of
authentication,	authorization,	and	encryption.

Chapter	10,	Working	with	Other	Tools,	discusses	how	Hive	works	with	other	big	data
tools.	It	also	reviews	the	key	milestones	of	Hive	releases.

What	you	need	for	this	book
You	will	need	to	install	both	Hadoop	and	Hive	to	run	the	examples	in	this	book.	The
scripts	in	this	book	were	written	and	tested	with	Cloudera	Distributed	Hadoop	(CDH)	v5.3
(contains	Hive	v0.13.x	and	Hadoop	v2.5.0),	Hortonworks	Data	Platform	(HDP)	v2.2
(contains	Hive	v0.14.0	and	Hadoop	v2.6.0),	and	Apache	Hive	1.0.0	(with	Hadoop	1.2.1)
in	pseudo-distributed	mode.	However,	the	majority	of	the	scripts	will	also	run	on	the
previous	versions	of	Hadoop	and	Hive.	The	following	are	the	other	software	applications
you	may	need	for	a	better	understanding	of	the	Hive-related	tools	mentioned	in	the	book.
These	tools	are	also	available	in	the	CDH	or	HDP	packages.

Hue	2.2.0	and	above
HBase	0.98.4
Oozie	4.0.0	and	above
Zookeeper	3.4.5
Tez	0.6.0

Who	this	book	is	for
If	you	are	a	data	analyst,	developer,	and	user	who	wants	to	use	Hive	to	explore	and
analyze	data	in	Hadoop,	this	is	the	book	for	you.	Whether	you	are	new	to	big	data	or	an
expert,	you	will	be	able	to	master	both	the	basic	and	the	advanced	features	of	Hive.	Since
Hive	is	an	SQL-like	language,	some	previous	experience	with	the	SQL	language	and
database	is	useful	to	have	a	better	understanding	of	this	book.

www.allitebooks.com

http://www.allitebooks.org

Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between	different	kinds
of	information.	Here	are	some	examples	of	these	styles	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:
“Aggregate	function	can	be	used	with	other	aggregate	functions	in	the	same	select
statement.”

A	block	of	code	is	set	as	follows:

<property>

		<name>javax.jdo.option.ConnectionURL</name>

		<value>jdbc:mysql://myhost:3306/hive?createDatabase	

IfNotExist=true</value>

		<description>JDBC	connect	string	for	a	JDBC	metastore</description>

</property>

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code	block,	the	relevant
lines	or	items	are	set	in	bold:

customAuthenticator.java

package	com.packtpub.hive.essentials.hiveudf;

import	java.util.Hashtable;

import	javax.security.sasl.AuthenticationException;

import	org.apache.hive.service.auth.PasswdAuthenticationProvider;

Any	command-line	input	or	output	is	written	as	follows:

bash-4.1$	hdfs	dfs	–mkdir	/tmp

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,
for	example,	in	menus	or	dialog	boxes,	appear	in	the	text	like	this:	“Click	on	the	OK
button	and	restart	Oracle	SQL	Developer.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us
develop	titles	that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	<feedback@packtpub.com>,	and	mention	the
book’s	title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	from	your	account	at	http://www.packtpub.com
for	all	the	Packt	Publishing	books	you	have	purchased.	If	you	purchased	this	book
elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-
mailed	directly	to	you.

http://www.packtpub.com
http://www.packtpub.com/support

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other
readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If	you	find
any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the
Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the	book	in	the
search	field.	The	required	information	will	appear	under	the	Errata	section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works	in	any	form	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
<questions@packtpub.com>,	and	we	will	do	our	best	to	address	the	problem.

www.allitebooks.com

mailto:questions@packtpub.com
http://www.allitebooks.org

Chapter	1.	Overview	of	Big	Data	and	Hive
This	chapter	is	an	overview	of	big	data	and	Hive,	especially	in	the	Hadoop	ecosystem.	It
briefly	introduces	the	evolution	of	big	data	so	that	readers	know	where	they	are	in	the
journey	of	big	data	and	find	their	preferred	areas	in	future	learning.	This	chapter	also
covers	how	Hive	has	become	one	of	the	leading	tools	in	big	data	warehousing	and	why
Hive	is	still	competitive.

In	this	chapter,	we	will	cover	the	following	topics:

A	short	history	from	database	and	data	warehouse	to	big	data
Introducing	big	data
Relational	and	NoSQL	databases	versus	Hadoop
Batch,	real-time,	and	stream	processing
Hadoop	ecosystem	overview
Hive	overview

A	short	history
In	the	1960s,	when	computers	became	a	more	cost-effective	option	for	businesses,	people
started	to	use	databases	to	manage	data.	Later	on,	in	the	1970s,	relational	databases
became	more	popular	to	business	needs	since	they	connected	physical	data	to	the	logical
business	easily	and	closely.	In	the	next	decade,	around	the	1980s,	Structured	Query
Language	(SQL)	became	the	standard	query	language	for	databases.	The	effectiveness
and	simplicity	of	SQL	motivated	lots	of	people	to	use	databases	and	brought	databases
closer	to	a	wide	range	of	users	and	developers.	Soon,	it	was	observed	that	people	used
databases	for	data	application	and	management	and	this	continued	for	a	long	period	of
time.

Once	plenty	of	data	was	collected,	people	started	to	think	about	how	to	deal	with	the	old
data.	Then,	the	term	data	warehousing	came	up	in	the	1990s.	From	that	time	onwards,
people	started	to	discuss	how	to	evaluate	the	current	performance	by	reviewing	the
historical	data.	Various	data	models	and	tools	were	created	at	that	time	for	helping
enterprises	to	effectively	manage,	transform,	and	analyze	the	historical	data.	Traditional
relational	databases	also	evolved	to	provide	more	advanced	aggregation	and	analyzed
functions	as	well	as	optimizations	for	data	warehousing.	The	leading	query	language	was
still	SQL,	but	it	was	more	intuitive	and	powerful	as	compared	to	the	previous	versions.
The	data	was	still	well	structured	and	the	model	was	normalized.	As	we	entered	the	2000s,
the	Internet	gradually	became	the	topmost	industry	for	the	creation	of	the	majority	of	data
in	terms	of	variety	and	volume.	Newer	technologies,	such	as	social	media	analytics,	web
mining,	and	data	visualizations,	helped	lots	of	businesses	and	companies	deal	with
massive	amounts	of	data	for	a	better	understanding	of	their	customers,	products,
competition,	as	well	as	markets.	The	data	volume	grew	and	the	data	format	changed	faster
than	ever	before,	which	forced	people	to	search	for	new	solutions,	especially	from	the
academic	and	open	source	areas.	As	a	result,	big	data	became	a	hot	topic	and	a
challenging	field	for	many	researchers	and	companies.

However,	in	every	challenge	there	lies	great	opportunity.	Hadoop	was	one	of	the	open
source	projects	earning	wide	attention	due	to	its	open	source	license	and	active
communities.	This	was	one	of	the	few	times	that	an	open	source	project	led	to	the	changes
in	technology	trends	before	any	commercial	software	products.	Soon	after,	the	NoSQL
database	and	real-time	and	stream	computing,	as	followers,	quickly	became	important
components	for	big	data	ecosystems.	Armed	with	these	big	data	technologies,	companies
were	able	to	review	the	past,	evaluate	the	current,	and	also	predict	the	future.	Around	the
2010s,	time	to	market	became	the	key	factor	for	making	business	competitive	and
successful.	When	it	comes	to	big	data	analysis,	people	could	not	wait	to	see	the	reports	or
results.	A	short	delay	could	make	a	great	difference	when	making	important	business
decisions.	Decision	makers	wanted	to	see	the	reports	or	results	immediately	within	a	few
hours,	minutes,	or	even	possibly	seconds	in	a	few	cases.	Real-time	analytical	tools,	such
as	Impala	(http://www.cloudera.com/content/cloudera/en/products-and-
services/cdh/impala.html),	Presto	(http://prestodb.io/),	Storm	(https://storm.apache.org/),
and	so	on,	make	this	possible	in	different	ways.

http://www.cloudera.com/content/cloudera/en/products-and-services/cdh/impala.html
http://prestodb.io/
https://storm.apache.org/

Introducing	big	data
Big	data	is	not	simply	a	big	volume	of	data.	Here,	the	word	“Big”	refers	to	the	big	scope
of	data.	A	well-known	saying	in	this	domain	is	to	describe	big	data	with	the	help	of	three
words	starting	with	the	letter	V.	They	are	volume,	velocity,	and	variety.	But	the	analytical
and	data	science	world	has	seen	data	varying	in	other	dimensions	in	addition	to	the
fundament	3	Vs	of	big	data	such	as	veracity,	variability,	volatility,	visualization,	and	value.
The	different	Vs	mentioned	so	far	are	explained	as	follows:

Volume:	This	refers	to	the	amount	of	data	generated	in	seconds.	90	percent	of	the
world’s	data	today	has	been	created	in	the	last	two	years.	Since	that	time,	the	data	in
the	world	doubles	every	two	years.	Such	big	volumes	of	data	is	mainly	generated	by
machines,	networks,	social	media,	and	sensors,	including	structured,	semi-structured,
and	unstructured	data.
Velocity:	This	refers	to	the	speed	in	which	the	data	is	generated,	stored,	analyzed,
and	moved	around.	With	the	availability	of	Internet-connected	devices,	wireless	or
wired,	machines	and	sensors	can	pass	on	their	data	immediately	as	soon	as	it	is
created.	This	leads	to	real-time	streaming	and	helps	businesses	to	make	valuable	and
fast	decisions.
Variety:	This	refers	to	the	different	data	formats.	Data	used	to	be	stored	as	text,	dat,
and	csv	from	sources	such	as	filesystems,	spreadsheets,	and	databases.	This	type	of
data	that	resides	in	a	fixed	field	within	a	record	or	file	is	called	structured	data.
Nowadays,	data	is	not	always	in	the	traditional	format.	The	newer	semi-structured	or
unstructured	forms	of	data	can	be	generated	using	various	methods	such	as	e-mails,
photos,	audio,	video,	PDFs,	SMSes,	or	even	something	we	have	no	idea	about.	These
varieties	of	data	formats	create	problems	for	storing	and	analyzing	data.	This	is	one
of	the	major	challenges	we	need	to	overcome	in	the	big	data	domain.
Veracity:	This	refers	to	the	quality	of	data,	such	as	trustworthiness,	biases,	noise,	and
abnormality	in	data.	Corrupt	data	is	quite	normal.	It	could	originate	due	to	a	number
of	reasons,	such	as	typos,	missing	or	uncommon	abbreviation,	data	reprocessing,
system	failures,	and	so	on.	However,	ignoring	this	malicious	data	could	lead	to
inaccurate	data	analysis	and	eventually	a	wrong	decision.	Therefore,	making	sure	the
data	is	correct	in	terms	of	data	audition	and	correction	is	very	important	for	big	data
analysis.
Variability:	This	refers	to	the	changing	of	data.	It	means	that	the	same	data	could
have	different	meanings	in	different	contexts.	This	is	particularly	important	when
carrying	out	sentiment	analysis.	The	analysis	algorithms	are	able	to	understand	the
context	and	discover	the	exact	meaning	and	values	of	data	in	that	context.
Volatility:	This	refers	to	how	long	the	data	is	valid	and	stored.	This	is	particularly
important	for	real-time	analysis.	It	requires	a	target	scope	of	data	to	be	determined	so
that	analysts	can	focus	on	particular	questions	and	gain	good	performance	out	of	the
analysis.
Visualization:	This	refers	to	the	way	of	making	data	well	understood.	Visualization
does	not	mean	ordinary	graphs	or	pie	charts.	It	makes	vast	amounts	of	data

comprehensible	in	a	multidimensional	view	that	is	easy	to	understand.	Visualization
is	an	innovative	way	to	show	changes	in	data.	It	requires	lots	of	interaction,
conversations,	and	joint	efforts	between	big	data	analysts	and	business	domain
experts	to	make	the	visualization	meaningful.
Value:	This	refers	to	the	knowledge	gained	from	data	analysis	on	big	data.	The	value
of	big	data	is	how	organizations	turn	themselves	into	big	data-driven	companies	and
use	the	insight	from	big	data	analysis	for	their	decision	making.

In	summary,	big	data	is	not	just	about	lots	of	data,	it	is	a	practice	to	discover	new	insight
from	existing	data	and	guide	the	analysis	for	future	data.	A	big-data-driven	business	will
be	more	agile	and	competitive	to	overcome	challenges	and	win	competitions.

Relational	and	NoSQL	database	versus
Hadoop
Let’s	compare	different	data	solutions	with	the	ways	of	traveling.	You	will	be	surprised	to
find	that	they	have	many	similarities.	When	people	travel,	they	either	take	cars	or
airplanes	depending	on	the	travel	distance	and	cost.	For	example,	when	you	travel	to
Vancouver	from	Toronto,	an	airplane	is	always	the	first	choice	in	terms	of	the	travel	time
versus	cost.	When	you	travel	to	Niagara	Falls	from	Toronto,	a	car	is	always	a	good	choice.
When	you	travel	to	Montreal	from	Toronto,	some	people	may	prefer	taking	a	car	to	an
airplane.	The	distance	and	cost	here	is	like	the	big	data	volume	and	investment.	The
traditional	relational	database	is	like	the	car	in	this	example.	The	Hadoop	big	data	tool	is
like	the	airplane	in	this	example.	When	you	deal	with	a	small	amount	of	data	(short
distance),	a	relational	database	(like	the	car)	is	always	the	best	choice	since	it	is	more	fast
and	agile	to	deal	with	a	small	or	moderate	size	of	data.	When	you	deal	with	a	big	amount
of	data	(long	distance),	Hadoop	(like	the	airplane)	is	the	best	choice	since	it	is	more	linear,
fast,	and	stable	to	deal	with	the	big	size	of	data.	On	the	contrary,	you	can	drive	from
Toronto	to	Vancouver,	but	it	takes	too	much	time.	You	can	also	take	an	airplane	from
Toronto	to	Niagara,	but	it	could	take	more	time	and	cost	way	more	than	if	you	travel	by	a
car.	In	addition,	you	may	have	a	choice	to	either	take	a	ship	or	a	train.	This	is	like	a
NoSQL	database,	which	offers	characters	from	both	a	relational	database	and	Hadoop	in
terms	of	good	performance	and	various	data	format	support	for	big	data.

www.allitebooks.com

http://www.allitebooks.org

Batch,	real-time,	and	stream	processing
Batch	processing	is	used	to	process	data	in	batches	and	it	reads	data	input,	processes	it,
and	writes	it	to	the	output.	Apache	Hadoop	is	the	most	well-known	and	popular	open
source	implementation	of	batch	processing	and	a	distributed	system	using	the	MapReduce
paradigm.	The	data	is	stored	in	a	shared	and	distributed	filesystem	called	Hadoop
Distributed	File	System	(HDFS),	divided	into	splits,	which	are	the	logical	data	divisions
for	MapReduce	processing.	To	process	these	splits	using	the	MapReduce	paradigm,	the
map	task	reads	the	splits	and	passes	all	of	its	key/value	pairs	to	a	map	function	and	writes
the	results	to	intermediate	files.	After	the	map	phase	is	completed,	the	reducer	reads
intermediate	files	and	passes	it	to	the	reduce	function.	Finally,	the	reduce	task	writes
results	to	the	final	output	files.	The	advantages	of	the	MapReduce	model	include	making
distributed	programming	easier,	near-linear	speed	up,	good	scalability,	as	well	as	fault
tolerance.	The	disadvantage	of	this	batch	processing	model	is	being	unable	to	execute
recursive	or	iterative	jobs.	In	addition,	the	obvious	batch	behavior	is	that	all	inputs	must	be
ready	by	map	before	the	reduce	job	starts,	which	makes	MapReduce	unsuitable	for	online
and	stream	processing	use	cases.

Real-time	processing	is	to	process	data	and	get	the	result	almost	immediately.	This
concept	in	the	area	of	real-time	ad	hoc	queries	over	big	data	was	first	implemented	in
Dremel	by	Google.	It	uses	a	novel	columnar	storage	format	for	nested	structures	with	fast
index	and	scalable	aggregation	algorithms	for	computing	query	results	in	parallel	instead
of	batch	sequences.	These	two	techniques	are	the	major	characters	for	real-time	processing
and	are	used	by	similar	implementations,	such	as	Cloudera	Impala,	Facebook	Presto,
Apache	Drill,	and	Hive	on	Tez	powered	by	Stinger	whose	effort	is	to	make	a	100x
performance	improvement	over	Apache	Hive.	On	the	other	hand,	in-memory	computing
no	doubt	offers	other	solutions	for	real-time	processing.	In-memory	computing	offers	very
high	bandwidth,	which	is	more	than	10	gigabytes/second,	compared	to	hard	disks’	200
megabytes/second.	Also,	the	latency	is	comparatively	lower,	nanoseconds	versus
milliseconds,	compared	to	hard	disks.	With	the	price	of	RAM	going	lower	and	lower	each
day,	in-memory	computing	is	more	affordable	as	real-time	solutions,	such	as	Apache
Spark,	which	is	a	popular	open	source	implementation	of	in-memory	computing.	Spark
can	be	easily	integrated	with	Hadoop	and	the	resilient	distributed	dataset	can	be	generated
from	data	sources	such	as	HDFS	and	HBase	for	efficient	caching.

Stream	processing	is	to	continuously	process	and	act	on	the	live	stream	data	to	get	a
result.	In	stream	processing,	there	are	two	popular	frameworks:	Storm
(https://storm.apache.org/)	from	Twitter	and	S4	(http://incubator.apache.org/s4/)	from
Yahoo!.	Both	the	frameworks	run	on	the	Java	Virtual	Machine	(JVM)	and	both	process
keyed	streams.	In	terms	of	the	programming	model,	S4	is	a	program	defined	as	a	graph	of
Processing	Elements	(PE),	small	subprograms,	and	S4	instantiates	a	PE	per	key.	In	short,
Storm	gives	you	the	basic	tools	to	build	a	framework,	while	S4	gives	you	a	well-defined
framework.

https://storm.apache.org/
http://incubator.apache.org/s4/

Overview	of	the	Hadoop	ecosystem
Hadoop	was	first	released	by	Apache	in	2011	as	version	1.0.0.	It	only	contained	HDFS
and	MapReduce.	Hadoop	was	designed	as	both	a	computing	(MapReduce)	and	storage
(HDFS)	platform	from	the	very	beginning.	With	the	increasing	need	for	big	data	analysis,
Hadoop	attracts	lots	of	other	software	to	resolve	big	data	questions	together	and	merges	to
a	Hadoop-centric	big	data	ecosystem.	The	following	diagram	gives	a	brief	introduction	to
the	Hadoop	ecosystem	and	the	core	software	or	components	in	the	ecosystems:

The	Hadoop	ecosystem

In	the	current	Hadoop	ecosystem,	HDFS	is	still	the	major	storage	option.	On	top	of	it,
snappy,	RCFile,	Parquet,	and	ORCFile	could	be	used	for	storage	optimization.	Core
Hadoop	MapReduce	released	a	version	2.0	called	Yarn	for	better	performance	and
scalability.	Spark	and	Tez	as	solutions	for	real-time	processing	are	able	to	run	on	the	Yarn
to	work	with	Hadoop	closely.	HBase	is	a	leading	NoSQL	database,	especially	when	there
is	a	NoSQL	database	request	on	the	deployed	Hadoop	clusters.	Sqoop	is	still	one	of	the
leading	and	matured	tools	for	exchanging	data	between	Hadoop	and	relational	databases.
Flume	is	a	matured	distributed	and	reliable	log-collecting	tool	to	move	or	collect	data	to
HDFS.	Impala	and	Presto	query	directly	against	the	data	on	HDFS	for	better
performance.	However,	Hortonworks	focuses	on	Stringer	initiatives	to	make	Hive	100
times	faster.	In	addition,	Hive	over	Spark	and	Hive	over	Tez	offer	a	choice	for	users	to	run
Hive	on	other	computing	frameworks	rather	than	MapReduce.	As	a	result,	Hive	is	playing
more	important	roles	in	the	ecosystem	than	ever.

Hive	overview
Hive	is	a	standard	for	SQL	queries	over	petabytes	of	data	in	Hadoop.	It	provides	SQL-like
access	for	data	in	HDFS	making	Hadoop	to	be	used	like	a	warehouse	structure.	The	Hive
Query	Language	(HQL)	has	similar	semantics	and	functions	as	standard	SQL	in	the
relational	database	so	that	experienced	database	analysts	can	easily	get	their	hands	on	it.
Hive’s	query	language	can	run	on	different	computing	frameworks,	such	as	MapReduce,
Tez,	and	Spark	for	better	performance.

Hive’s	data	model	provides	a	high-level,	table-like	structure	on	top	of	HDFS.	It	supports
three	data	structures:	tables,	partitions,	and	buckets,	where	tables	correspond	to	HDFS
directories	and	can	be	divided	into	partitions,	which	in	turn	can	be	divided	into	buckets.
Hive	supports	a	majority	of	primitive	data	formats	such	as	TIMESTAMP,	STRING,	FLOAT,
BOOLEAN,	DECIMAL,	DOUBLE,	INT,	SMALLINT,	BIGINT,	and	complex	data	types,	such	as
UNION,	STRUCT,	MAP,	and	ARRAY.

The	following	diagram	is	the	architecture	seen	inside	the	view	of	Hive	in	the	Hadoop
ecosystem.	The	Hive	metadata	store	(or	called	metastore)	can	use	either	embedded,	local,
or	remote	databases.	Hive	servers	are	built	on	Apache	Thrift	Server	technology.	Since
Hive	has	released	0.11,	Hive	Server	2	is	available	to	handle	multiple	concurrent	clients,
which	support	Kerberos,	LDAP,	and	custom	pluggable	authentication,	providing	better
options	for	JDBC	and	ODBC	clients,	especially	for	metadata	access.

Hive	architecture

Here	are	some	highlights	of	Hive	that	we	can	keep	in	mind	moving	forward:

Hive	provides	a	simpler	query	model	with	less	coding	than	MapReduce
HQL	and	SQL	have	similar	syntax
Hive	provides	lots	of	functions	that	lead	to	easier	analytics	usage
The	response	time	is	typically	much	faster	than	other	types	of	queries	on	the	same

type	of	huge	datasets
Hive	supports	running	on	different	computing	frameworks
Hive	supports	ad	hoc	querying	data	on	HDFS
Hive	supports	user-defined	functions,	scripts,	and	a	customized	I/O	format	to	extend
its	functionality
Hive	is	scalable	and	extensible	to	various	types	of	data	and	bigger	datasets
Matured	JDBC	and	ODBC	drivers	allow	many	applications	to	pull	Hive	data	for
seamless	reporting
Hive	allows	users	to	read	data	in	arbitrary	formats,	using	SerDes	and	Input/Output
formats
Hive	has	a	well-defined	architecture	for	metadata	management,	authentication,	and
query	optimizations
There	is	a	big	community	of	practitioners	and	developers	working	on	and	using	Hive

Summary
After	going	through	this	chapter,	we	are	now	able	to	understand	why	and	when	to	use	big
data	instead	of	a	traditional	relational	database.	We	also	understand	the	difference	between
batch	processing,	real-time	processing,	and	stream	processing.	We	got	familiar	with	the
Hadoop	ecosystem,	especially	Hive.	We	have	also	gone	back	in	time	and	brushed	through
the	history	of	database	and	warehouse	to	big	data	along	with	some	big	data	terms,	the
Hadoop	ecosystem,	Hive	architecture,	and	the	advantage	of	using	Hive.	In	the	next
chapter,	we	will	practice	setting	up	Hive	and	all	the	tools	needed	to	get	started	using	Hive
in	the	command	line.

Chapter	2.	Setting	Up	the	Hive
Environment
This	chapter	will	introduce	how	to	install	and	set	up	the	Hive	environment	in	the	cluster
and	cloud.	It	also	covers	the	usage	of	basic	Hive	commands	and	the	Hive-integrated
development	environment.

In	this	chapter,	we	will	cover	the	following	topics:

Installing	Hive	from	Apache
Installing	Hive	from	vendor	packages
Starting	Hive	in	the	cloud
Using	the	Hive	command	line	and	Beeline
The	Hive-integrated	development	environment

www.allitebooks.com

http://www.allitebooks.org

Installing	Hive	from	Apache
To	introduce	the	Hive	installation,	we	use	Hive	version	1.0.0	as	an	example.	The	pre-
installation	requirements	for	this	installation	are	as	follows:

JDK	1.7.0_51
Hadoop	0.20.x,	0.23.x.y,	1.x.y,	or	2.x.y
Ubuntu	14.04/CentOS	6.2

Note
Since	we	focus	on	Hive	in	this	book,	the	installation	steps	for	Java	and	Hadoop	are
not	provided	here.	For	steps	on	installing	them,	please	refer	to
https://www.java.com/en/download/help/download_options.xml	and
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-
common/ClusterSetup.html.

The	following	steps	describe	how	to	install	Hive	from	Apache	through	the	Linux
command	line:

1.	 Download	Hive	from	Apache	Hive	and	unpack	it:

bash-4.1$	wget	http://apache.mirror.rafal.ca/hive/hive-1.0.0/apache-

hive-1.0.0-bin.tar.gz

bash-4.1$	tar	-zxvf	apache-hive-1.0.0-bin.tar.gz

2.	 Add	Hive	to	the	system	path	by	opening	/etc/profile	or	~/.bashrc	and	add	the
following	two	rows:

export	HIVE_HOME=/home/hivebooks/apache-hive-1.0.0-bin

export	PATH=$PATH:$HIVE_HOME/bin:$HIVE_HOME/conf

3.	 Enable	the	settings	immediately:

bash-4.1$	source	/etc/profile

4.	 Create	the	configuration	files:

bash-4.1$	cd	apache-hive-1.0.0-bin/conf

bash-4.1$	cp	hive-default.xml.template	hive-site.xml

bash-4.1$	cp	hive-env.sh.template	hive-env.sh

bash-4.1$	cp	hive-exec-log4j.properties.template	hive-exec-

log4j.properties

bash-4.1$	cp	hive-log4j.properties.template	hive-log4j.properties

5.	 Modify	the	configuration	file	at	$HIVE_HOME/conf/hive-env.sh:

#Set	HADOOP_HOME	to	point	to	a	specific	Hadoop	install	directory

export	HADOOP_HOME=/home/hivebooks/hadoop-2.2.0

#Hive	Configuration	Directory	can	be	accessed	at:

export	HIVE_CONF_DIR=/home/hivebooks/apache-hive-1.0.0-bin/conf

6.	 Modify	the	configuration	file	at	$HIVE_HOME/conf/hive-site.xml.	There	are	some
important	parameters	that	need	special	attention:

https://www.java.com/en/download/help/download_options.xml
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/ClusterSetup.html

hive.metastore.warehourse.dir:	This	is	the	path	for	Hive	warehouse	storage.
By	default	it	is	/user/hive/warehouse.
hive.exec.scratchdir:	This	is	the	temporary	data	file	path.	By	default	it	is
/tmp/hive-${user.name}.

By	default,	Hive	uses	the	Derby	(http://db.apache.org/derby/)	database	as	the	metadata
store.	Hive	can	also	use	other	databases,	such	as	PostgreSQL	(http://www.postgresql.org/)
or	MySQL	(http://www.mysql.com/)	as	the	metadata	store.	To	configure	Hive	to	use	other
databases,	the	following	parameters	should	be	configured:

javax.jdo.option.ConnectionURL												//	the	database	URL

javax.jdo.option.ConnectionDriverName					//	the	JDBC	driver	name

javax.jdo.option.ConnectionUserName							//	database	username

javax.jdo.option.ConnectionPassword							//	database	password

The	following	is	an	example	setting	using	MySQL	as	the	metastore	database:

<property>

		<name>javax.jdo.option.ConnectionURL</name>

		<value>jdbc:mysql://myhost:3306/hive?createDatabase	

IfNotExist=true</value>

		<description>JDBC	connect	string	for	a	JDBC	metastore</description>

</property>

<property>

		<name>javax.jdo.option.ConnectionDriverName</name>

		<value>com.mysql.jdbc.Driver</value>

		<description>Driver	class	name	for	a	JDBC	metastore</description>

</property>

<property>

		<name>javax.jdo.option.ConnectionUserName</name>

		<value>hive</value>

		<description>username	to	use	against	metastore	database</description>

</property>

<property>

		<name>javax.jdo.option.ConnectionPassword</name>

		<value>hive</value>

		<description>password	to	use	against	metastore	database</description>

</property>

Make	sure	the	MySQL	JDBC	driver	is	available	at	$HIVE_HOME/lib.

Note
The	differences	between	an	embed	Derby	database	and	an	external	database	is	that	an
external	database	offers	a	shared	service	so	that	users	can	share	the	metadata	of	Hive.
However,	an	embed	database	is	only	visible	to	the	local	users.

Create	folders	and	grant	proper	write	permissions	to	the	user	group	in	the	HDFS	folder:

bash-4.1$	hdfs	dfs	–mkdir	/tmp

bash-4.1$	hdfs	dfs	–mkdir	/user/hive/warehouse

bash-4.1$	hdfs	dfs	-chmod	g+w	/tmp

bash-4.1$	hdfs	dfs	-chmod	g+w	/user/hive/warehouse

http://db.apache.org/derby/
http://www.postgresql.org/
http://www.mysql.com/

That’s	all	about	Apache	Hive	installation.	In	one	of	the	Hive	nodes	installed,	type	hive	to
enter	the	Hive	command-line	environment	(hive>),	which	verifies	Hive	is	successfully
installed.

Installing	Hive	from	vendor	packages
Right	now,	many	companies,	such	as	Cloudera,	MapR,	IBM,	and	Hortonworks,	have
packaged	Hadoop	into	more	easily	manageable	distributions.	Each	company	takes	a
slightly	different	strategy,	but	the	consensus	for	all	of	these	packages	is	to	make	Hadoop
easier	to	use	for	enterprise.	For	example,	we	can	easily	install	Hive	from	Cloudera
Distributed	Hadoop	(CDH),	which	can	be	downloaded	from
http://www.cloudera.com/content/cloudera/en/downloads/cdh.html.

Once	CDH	is	installed	to	have	the	Hadoop	environment	ready,	we	can	add	Hive	to	the
Hadoop	cluster	by	following	a	few	steps:

1.	 Log	in	to	the	Cloudera	manager	and	click	on	the	dropdown	button	after	the	cluster
name	to	choose	Add	a	Service.

Cloudera	manager	main	page

2.	 In	the	first	Add	Service	Wizard	page,	choose	Hive	to	install.

http://www.cloudera.com/content/cloudera/en/downloads/cdh.html

3.	 In	the	second	Add	Service	Wizard	page,	set	the	dependencies	for	the	service.
Sentry	is	the	authorization	policy	service	for	Hive.

4.	 In	the	third	Add	Service	Wizard	page,	choose	the	proper	hosts	for	HiveServer2,
Hive	Metastore	Server,	WebHCat	Server,	and	Gateway.

5.	 In	the	fourth	Add	Service	Wizard	page,	configure	Hive	Metastore	Server	database
connections.

6.	 In	the	last	page	of	Add	Service	Wizard,	review	the	changes	on	the	Hive	warehouse
directory	and	metastore	server	port	number.	Keep	the	default	values	and	click	on	the
Continue	button	to	start	installing	the	Hive	service.	Once	it	is	complete,	close	the
wizard	to	finish	the	Hive	installation.

Note
Hive	can	also	be	installed	along	with	other	services	when	we	first	install	CDH	in	the
cluster	or	we	can	directly	import	the	vendors’	quick-start	Hadoop	virtual	machine
image.

Starting	Hive	in	the	cloud
Right	now,	Amazon	EMR,	Cloudera	Director,	and	Microsoft	Azure	HDInsight	Service	are
some	of	the	major	vendors	offering	matured	Hadoop	and	Hive	services	in	the	cloud.	Using
the	cloud	version	of	Hive	is	very	convenient.	It	almost	requests	no	installation	and	setup.

Amazon	EMR	(http://aws.amazon.com/elasticmapreduce/)	is	the	earliest	Hadoop	service
in	the	cloud.	However,	it	is	not	a	pure	open	sourced	version	of	Hadoop,	but	is	customized
to	run	only	on	AWS	cloud.	Cloudera	is	one	of	the	first	few	players	that	offered	open
source	Hadoop	solutions	to	the	enterprise.	Since	the	middle	of	October	2014,	Cloudera	has
delivered	Cloudera	Director	(http://www.cloudera.com/content/cloudera/en/products-and-
services/director.html),	which	opens	up	Hadoop	deployments	in	the	cloud	through	a
simple,	self-service	interface,	and	is	fully	supported	on	Amazon	Web	Services.	Windows
Azure	HDInsight	Service	(http://azure.microsoft.com/en-
us/documentation/services/hdinsight/)	is	a	service	that	deploys	and	provisions	Apache
Hadoop	clusters	in	the	Azure	cloud.	Although	Hadoop	was	first	built	on	Linux,
Hortonworks	and	Microsoft	have	partnered	to	bring	the	benefits	of	Apache	Hadoop	to	the
Windows	Azure	cloud.

The	consensus	among	all	the	vendors	here	is	to	allow	the	enterprise	to	provision	highly
available	Hadoop	clusters	powered	with	flexibility,	security,	management,	and	governance
functionalities	with	a	very	simple	user	interface.

http://aws.amazon.com/elasticmapreduce/
http://www.cloudera.com/content/cloudera/en/products-and-services/director.html
http://azure.microsoft.com/en-us/documentation/services/hdinsight/

www.allitebooks.com

http://www.allitebooks.org

Using	the	Hive	command	line	and	Beeline
Hive	first	started	with	HiveServer1.	However,	this	version	of	the	Hive	server	was	not	very
stable.	It	sometimes	suspended	or	blocked	clients’	connection	quietly.	Since	version	11,
Hive	includes	a	new	Hive	server	called	HiveSever2	as	an	addition	to	HiveServer1.
HiveServer2	is	an	enhanced	Hive	server	designed	for	multiclient	concurrency	and
improved	authentication.	HiveServer2	also	supports	Beeline	as	the	alternative	command-
line	interface.	HiveServer1	is	deprecated	and	removed	from	Hive	since	version	1.0.0.

The	primary	difference	between	the	two	Hive	servers	is	how	the	clients	connect	to	Hive.
Hive	CLI	is	an	Apache	Thrift-based	client,	and	Beeline	is	a	JDBC	client	based	on
SQLLine	(http://sqlline.sourceforge.net/)	CLI.	The	Hive	CLI	directly	connects	to	the	Hive
drivers	and	requires	installing	Hive	on	the	same	machine	as	the	client.	However,	Beeline
connects	to	HiveServer2	through	JDBC	connections	and	does	not	require	the	installation
of	Hive	libraries	on	the	same	machine	as	the	client.	That	means	we	can	run	Beeline
remotely	from	outside	of	the	Hadoop	cluster.

The	following	table	is	the	commonly	used	commands	for	both	Beeline	and	Hive	CLI.	For
more	usage	of	HiveServer2	and	Beeline,	refer	to
https://cwiki.apache.org/confluence/display/Hive/HiveServer2+Clients.

Purpose HiveServer2	Beeline HiveServer1	CLI

Server	connection beeline	–u		<jdbcurl>	-n	<username>	-p	<password> hive	-h	<hostname>	-p	<port>

Help beeline	-h	or	beeline	--help hive	-H

Run	query beeline	-e	<query	in	quotes>

beeline	-f	<query	file	name>

hive	-e	<query	in	quotes>

hive	-f	<query	file	name>

Define	variable
beeline	--hivevar	key=value.

This	is	available	after	Hive	0.13.0.
hive	--hivevar	key=value

The	following	is	the	command-line	syntax	in	Beeline	or	Hive	CLI:

Purpose HiveServer2	Beeline HiveServer1	CLI

Enter	mode beeline hive

Connect !connect	<jdbcurl> n/a

List	tables !table show	tables;

List	columns !column	<table_name> desc	<table_name>;

Run	query <HQL	query>; <HQL	query>;

Save	result	set !record	<file_name>

!record
N/A

http://sqlline.sourceforge.net/
https://cwiki.apache.org/confluence/display/Hive/HiveServer2+Clients

Run	shell	CMD
!sh	ls

This	is	available	since	Hive	0.14.0.
!ls;

Run	dfs	CMD dfs	-ls dfs	-ls;

Run	file	of	SQL !run	<file_name> source	<file_name>;

Check	Hive	version !dbinfo !hive	--version;

Quit	mode !quit quit;

Note
For	Beeline,	;	is	not	needed	after	the	command	that	starts	with	!.

When	running	a	query	in	Hive	CLI,	the	MapReduce	statistics	information	is	shown	in	the
console	screen	while	processing,	whereas	Beeline	does	not.

Both	Beeline	and	Hive	CLI	do	not	support	running	a	pasted	query	with	<tab>	inside,
because	<tab>	is	used	for	autocomplete	by	default	in	the	environment.	Alternatively,
running	the	query	from	files	has	no	such	issues.

Hive	CLI	shows	the	exact	line	and	position	of	the	Hive	query	or	syntax	errors	when	the
query	has	multiple	lines.	However,	Beeline	processes	the	multiple-line	query	as	a	single
line,	so	only	the	position	is	shown	for	query	or	syntax	errors	with	the	line	number	as	1	for
all	instances.	For	this	aspect,	Hive	CLI	is	more	convenient	than	Beeline	for	debugging	the
Hive	query.

In	both	Hive	CLI	and	Beeline,	using	the	up	and	down	arrow	keys	can	retrieve	up	to	10,000
previous	commands.	The	!history	command	can	be	used	in	Beeline	to	show	all	history.

Both	Hive	CLI	and	Beeline	supports	variable	substitution;	refer	to
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+VariableSubstitution.

A	list	of	Hive	configuration	settings	and	properties	can	be	accessed	and	overwritten	by	the
set	keyword	from	the	command-line	environment.	For	more	details,	refer	to	the	Apache
Hive	wiki	at	https://cwiki.apache.org/confluence/display/Hive/Configuration+Properties.

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+VariableSubstitution
https://cwiki.apache.org/confluence/display/Hive/Configuration+Properties

The	Hive-integrated	development
environment
Besides	the	command-line	interface,	there	are	a	few	integrated	development
environment	(IDE)	tools	available	for	Hive	development.	One	of	the	best	is	Oracle	SQL
Developer,	which	leverages	the	powerful	functionalities	of	Oracle	IDE	and	is	totally	free
to	use.	If	we	have	to	use	Oracle	along	with	Hive	in	a	project,	it	is	quite	convenient	to
switch	between	them	only	from	the	same	IDE.

Oracle	SQL	developer	has	supported	Hive	since	version	4.0.3.	Configuring	it	to	work	with
Hive	is	quite	straightforward.	The	following	are	a	few	steps	to	configure	the	IDE	to
connect	to	Hive:

1.	 Download	Hive	JDBC	drivers	from	the	vendor	website,	such	as	Cloudera.
2.	 Unzip	the	JDBC	version	4	driver	to	a	local	directory.
3.	 Start	Oracle	SQL	Developer	and	navigate	to	Preferences	|	Database	|	Third	Party

JDBC	Drivers.
4.	 Add	all	of	the	JAR	files	contained	in	the	unzipped	directory	to	the	Third-party

JDBC	Driver	Path	setting	as	follows:

SQL	developer	configuration

5.	 Click	on	the	OK	button	and	restart	Oracle	SQL	Developer.
6.	 Create	new	connections	in	the	Hive	tab	giving	a	proper	Connection	Name,

Username,	Password,	Host	name	(Hive	server	hostname),	Port,	and	Database.
Then,	click	on	the	Add	and	Connect	buttons	to	connect	to	Hive.

SQL	developer	connections

In	Oracle	SQL	Developer,	we	can	run	all	Hive	interactive	commands	as	well	as	Hive
queries.	We	can	also	leverage	the	power	of	Oracle	SQL	Developer	to	browse	and	export
data	into	a	Hive	table	from	the	graphic	user	interface	and	wizard.

Besides	Hive	IDE,	Hive	also	has	its	own	built-in	web	interface,	HiveWebInterface.
However,	it	is	not	powerful	and	is	not	being	used	very	often.	Hue	(http://gethue.com/)	is
another	web	interface	for	the	Hadoop	ecosystem,	including	Hive.	It	is	a	very	powerful	and
user-friendly	web	user	interface.	More	details	about	using	Hue	with	Hive	are	introduced	in
Chapter	10,	Working	with	Other	Tools.

http://gethue.com/

Summary
In	this	chapter,	we	introduced	the	setup	of	Hive	in	different	environments	with	proper
settings.	We	also	looked	into	a	few	of	the	Hive	interactive	commands	and	queries	in	Hive
CLI,	Beeline,	and	IDEs.	After	going	through	this	chapter,	we	should	be	able	to	set	up	our
own	Hive	environment	locally	and	use	Hive	from	CLI	or	IDE	tools.

In	the	next	chapter,	we	will	dive	into	the	details	of	Hive	data	definition	languages.

Chapter	3.	Data	Definition	and
Description
This	chapter	introduces	the	basic	data	types,	data	definition	language,	and	schema	in	Hive
to	describe	data.	It	also	covers	the	best	practices	to	describe	data	correctly	and	effectively
by	using	internal	or	external	tables,	partitions,	buckets,	and	views.

In	this	chapter,	we	will	cover	the	following	topics:

Hive	primitive	and	complex	data	types
Data	type	conversions
Hive	tables
Hive	partitions
Hive	buckets
Hive	views

Understanding	Hive	data	types
Hive	data	types	are	categorized	into	two	types:	primitive	and	complex	data	types.	String
and	integer	are	the	most	useful	primitive	types,	which	are	supported	by	most	Hive
functions.

Tip
Downloading	the	example	code

You	can	download	the	example	code	files	from	your	account	at	http://www.packtpub.com
for	all	the	Packt	Publishing	books	you	have	purchased.	If	you	purchased	this	book
elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-
mailed	directly	to	you

The	details	of	primitive	types	are	as	follows:

Primitive
data	type Description Example

TINYINT
It	has	1	byte	from	-128	to	127.	The	postfix	is	Y.	It	is	used	as	a	small	range	of
numbers. 10Y

SMALLINT
It	has	2	bytes	from	-32,768	to	32,767.	The	postfix	is	S.	It	is	used	as	a	regular
descriptive	number. 10S

INT It	has	4	bytes	from	-2,147,483,648	to	2,147,483,647. 10

BIGINT
It	has	8	bytes	from	-9,223,372,036,854,775,808	to	9,223,372,036,854,775,807.	The
postfix	is	L. 100L

FLOAT

This	is	a	4-byte	single	precision	floating	point	number	from
1.40129846432481707e-45	to	3.40282346638528860e+38	(positive	or	negative).
Scientific	notation	is	not	yet	supported.	It	stores	very	close	approximations	of
numeric	values.

1.2345679

DOUBLE

This	is	an	8-byte	double	precision	floating	point	number	from
4.94065645841246544e-324d	to	1.79769313486231570e+308d	(positive	or	negative).
Scientific	notation	is	not	yet	supported.	It	stores	very	close	approximations	of
numeric	values.

1.2345678901234567

DECIMAL

This	was	introduced	in	Hive	0.11.0	with	a	hardcode	precision	of	38	digits.	Hive
0.13.0	introduced	user	definable	precision	and	scale.	It	is	around	1039	-	1	to	1	-	1038.
Decimal	data	types	store	exact	representations	of	numeric	values.	The	default
definition	of	this	type	is	decimal(10,0).

DECIMAL	(3,2)	for
3.14

BINARY This	was	introduced	in	Hive	0.8.0	and	only	supports	CAST	to	STRING	and	vice	versa. 1011

BOOLEAN This	is	a	TRUE	or	FALSE	value. TRUE

STRING
This	includes	characters	expressed	with	either	single	quotes	(‘)	or	double	quotes	(“).
Hive	uses	C-style	escaping	within	the	strings.	The	max	size	is	around	2G. ‘Books’	or	“Books”

http://www.packtpub.com
http://www.packtpub.com/support

CHAR This	is	available	starting	with	Hive	0.13.0.	Most	UDF	will	work	for	this	type	after
Hive	0.14.0.	The	maximum	length	is	fixed	at	255.

‘US’	or	“US”

VARCHAR

This	is	available	starting	with	Hive	0.12.0.	Most	UDF	will	work	for	this	type	after
Hive	0.14.0.	The	maximum	length	is	fixed	at	65355.	If	a	string	value	being
converted/assigned	to	a	varchar	value	exceeds	the	length	specified,	the	string	is
silently	truncated.

‘Books’	or	“Books”

DATE
This	describes	a	specific	year,	month,	and	day	in	the	format	of	YYYY-MM-DD.	It	is
available	since	Hive	0.12.0.	The	range	of	date	is	from	0000-01-01	to	9999-12-31. ‘2013-01-01’

TIMESTAMP

This	describes	a	specific	year,	month,	day,	hours,	minutes,	seconds,	and
milliseconds	in	the	format	of	YYYY-MM-DD	HH:MM:SS[.fff…].	It	is	available
since	Hive	0.8.0.

‘2013-01-01
12:00:01.345’

Hive	has	three	main	complex	types:	ARRAY,	MAP,	and	STRUCT.	These	data	types	are	built	on
top	of	the	primitive	data	types.	ARRAY	and	MAP	are	similar	to	that	in	Java.	STRUCT	is	a
record	type,	which	may	contain	a	set	of	any	type	of	fields.	Complex	types	allow	the
nesting	of	types.	The	details	of	complex	types	are	as	follows:

Complex
data
type

Description Example

ARRAY
This	is	a	list	of	items	of	the	same	type,	such	as	(val1,	val2,	and	so	on).	You	can
access	the	value	using	array_name[index],	for	example,	fruit[0]='apple'. [‘apple’,‘orange’,‘mango’]

MAP
This	is	a	set	of	key-value	pairs,	such	as	(key1,	val1,	key2,	val2,	and	so	on).	You
can	access	the	value	using	map_name[key],	for	example,	fruit[1]="apple". {1:	“apple”,2:	“orange”}

STRUCT

This	is	a	user-defined	structure	of	any	type	of	fields,	such	as	{val1,	val2,	val3,
and	so	on}.	By	default,	STRUCT	field	names	will	be	col1,	col2,	and	so	on.	You
can	access	the	value	using	structs_name.column_name,	for	example,
fruit.col1=1.

{1,	“apple”}

NAMED

STRUCT

This	is	a	user-defined	structure	of	any	number	of	typed	fields,	such	as	(name1,
val1,	name2,	val2,	and	so	on).	You	can	access	the	value	using
structs_name.column_name,	for	example,	fruit.apple="gala".

{“apple”:“gala”,“weight
kg”:1}

UNION
This	is	a	structure	that	has	exactly	any	one	of	the	specified	data	types.	It	is
available	since	Hive	0.7.0.	It	is	not	commonly	used. {2:[“apple”,“orange”]}

Note
For	MAP,	the	type	of	keys	and	values	are	unified.	However,	STRUCT	is	more	flexible.
STRUCT	is	more	like	a	table	whereas	MAP	is	more	like	an	ARRAY	with	a	customized	index.

The	following	is	a	short	practice	for	all	the	commonly	used	Hive	types.	The	details	of	the
CREATE,	LOAD,	and	SELECT	statements	will	be	described	later.	Let’s	take	a	look	at	the
process:

1.	 Prepare	the	data	as	follows:

-bash-4.1$	vi	employee.txt

Michael|Montreal,Toronto|Male,30|DB:80|Product:Developer^DLead

Will|Montreal|Male,35|Perl:85|Product:Lead,Test:Lead

Shelley|New	York|Female,27|Python:80|Test:Lead,COE:Architect

Lucy|Vancouver|Female,57|Sales:89,HR:94|Sales:Lead

2.	 Log	in	to	Beeline	with	the	proper	HiveServer2	hostname,	port	number,	database
name,	username,	and	password:

-bash-4.1$	beeline

beeline>	!connect	jdbc:hive2://localhost:10000/default	

scan	complete	in	20ms	Connecting	to	

jdbc:hive2://localhost:10000/default	

Enter	username	for	jdbc:hive2://localhost:10000/default:dayongd	Enter	

password	for	jdbc:hive2://localhost:10000/default:

3.	 Create	a	table	using	ARRAY,	MAP,	and	STRUCT	composite	data	types:

jdbc:hive2://>	CREATE	TABLE	employee

.>	(

.>			name	string,

.>			work_place	ARRAY<string>,

.>			sex_age	STRUCT<sex:string,age:int>,

.>			skills_score	MAP<string,int>,

.>			depart_title	MAP<string,ARRAY<string>>

.>)

.>	ROW	FORMAT	DELIMITED

.>	FIELDS	TERMINATED	BY	'|'

.>	COLLECTION	ITEMS	TERMINATED	BY	','

.>	MAP	KEYS	TERMINATED	BY	':';

No	rows	affected	(0.149	seconds)	

4.	 Verify	the	table’s	creation:

jdbc:hive2://>!table	employee

+---------+------------+------------+--------------+---------+

|TABLE_CAT|TABLE_SCHEMA|	TABLE_NAME	|		TABLE_TYPE		|	REMARKS	|

+---------+------------+------------+--------------+---------+

|									|default					|	employee			|	MANAGED_TABLE|									|

+---------+------------+------------+--------------+---------+

jdbc:hive2://>!column	employee

+--------------+-------------+---------------+---------------+

|	TABLE_SCHEM	|	TABLE_NAME		|		COLUMN_NAME		|			TYPE_NAME				|

+--------------+-------------+---------------+---------------+

|	default					|	employee				|	name										|	STRING									|

|	default					|	employee				|	work_place				|	array<string>		|

|	default					|	employee				|	sex_age							|	

struct<sex:string,age:int>|

|	default					|	employee				|	skills_score		|	map<string,int>|

|	default					|	employee				|	depart_title		|	map<string,array<string>>	

|

+--------------+-------------+---------------+---------------+

5.	 Load	data	into	the	table:

jdbc:hive2://>LOAD	DATA	LOCAL	INPATH	'/home/hadoop/employee.txt'	

.>OVERWRITE	INTO	TABLE	employee;

No	rows	affected	(1.023	seconds)

6.	 Query	all	the	rows	in	the	table:

jdbc:hive2://>	SELECT	*	FROM	employee;

+-------+-------------------+------------+-----------------+-----------

-------------------+

|	name		|				work_place					|		sex_age			|		skills_score			|			

depart_title															|

+-------+-------------------+------------+-----------------+-----------

-------------------+

|Michael|[Montreal,	Toronto]|[Male,	30]		|{DB=80}										|{Product=

[Developer,	Lead]}			|

|Will			|[Montreal]									|[Male,	35]		|{Perl=85}								|{Test=

[Lead],	Product=[Lead]}	|

|Shelley|[New	York]									|[Female,	27]|{Python=80}						|{Test=

[Lead],	COE=[Architect]}|

|Lucy			|[Vancouver]								|[Female,	57]|{Sales=89,	HR=94}|{Sales=

[Lead]}																|

+-------+-------------------+------------+-----------------+-----------

-------------------+

4	rows	selected	(0.677	seconds)

7.	 Query	the	whole	array	and	each	array	column	in	the	table:

jdbc:hive2://>	SELECT	work_place	FROM	employee;

+----------------------+

|						work_place						|

+----------------------+

|	[Montreal,	Toronto]		|

|	[Montreal]											|

|	[New	York]											|

|	[Vancouver]										|

+----------------------+

4	rows	selected	(27.231	seconds)

jdbc:hive2://>	SELECT	work_place[0]	AS	col_1,	

.>	work_place[1]	AS	col_2,	work_place[2]	AS	col_3	

.>	FROM	employee;

+------------+----------+--------+

|			col_1				|		col_2			|	col_3		|

+------------+----------+--------+

|	Montreal			|	Toronto		|								|

|	Montreal			|										|								|

|	New	York			|										|								|

|	Vancouver		|										|								|

+------------+----------+--------+

4	rows	selected	(24.689	seconds)

8.	 Query	the	whole	struct	and	each	struct	column	in	the	table:

jdbc:hive2://>	SELECT	sex_age	FROM	employee;

+---------------+

|				sex_age				|

+---------------+

|	[Male,	30]				|

|	[Male,	35]				|

|	[Female,	27]		|

|	[Female,	57]		|

+---------------+

4	rows	selected	(28.91	seconds)

jdbc:hive2://>	SELECT	sex_age.sex,	sex_age.age	FROM	employee;

+---------+------+

|			sex			|	age		|

+---------+------+

|	Male				|	30			|

|	Male				|	35			|

|	Female		|	27			|

|	Female		|	57			|

+---------+------+

4	rows	selected	(26.663	seconds)

9.	 Query	the	whole	map	and	each	map	column	in	the	table:

jdbc:hive2://>	SELECT	skills_score	FROM	employee;

+--------------------+

|				skills_score				|

+--------------------+

|	{DB=80}												|

|	{Perl=85}										|

|	{Python=80}								|

|	{Sales=89,	HR=94}		|

+--------------------+

4	rows	selected	(32.659	seconds)

jdbc:hive2://>	SELECT	name,	skills_score['DB']	AS	DB,	

.>	skills_score['Perl']	AS	Perl,

.>	skills_score['Python']	AS	Python,	

.>	skills_score['Sales']	as	Sales,	

.>	skills_score['HR']	as	HR	

.>	FROM	employee;

+----------+-----+-------+---------+--------+-----+

|			name			|	db		|	perl		|	python		|	sales		|	hr		|

+----------+-----+-------+---------+--------+-----+

|	Michael		|	80		|							|									|								|					|

|	Will					|					|	85				|									|								|					|

|	Shelley		|					|							|	80						|								|					|

|	Lucy					|					|							|									|	89					|	94		|

+----------+-----+-------+---------+--------+-----+

4	rows	selected	(24.669	seconds)

Note
Note	that	the	column	name	shown	in	the	result	set	for	Hive	is	always	in	lowercase
letters.

10.	 Query	the	composite	type	in	the	table:

jdbc:hive2://>	SELECT	depart_title	FROM	employee;

+---------------------------------+

|										depart_title											|

+---------------------------------+

|	{Product=[Developer,	Lead]}					|

|	{Test=[Lead],	Product=[Lead]}			|

|	{Test=[Lead],	COE=[Architect]}		|

|	{Sales=[Lead]}																		|

+---------------------------------+

4	rows	selected	(30.583	seconds)

jdbc:hive2://>	SELECT	name,	

.>	depart_title['Product']	AS	Product,	

.>	depart_title['Test']	AS	Test,

.>	depart_title['COE']	AS	COE,	

.>	depart_title['Sales']	AS	Sales		

.>	FROM	employee;

+--------+--------------------+---------+-------------+------+

|			name	|						product							|		test			|					coe					|sales	|

+--------+--------------------+---------+-------------+------+

|	Michael|	[Developer,	Lead]		|									|													|						|

|	Will			|	[Lead]													|	[Lead]		|													|						|

|	Shelley|																				|	[Lead]		|	[Architect]	|						|

|	Lucy			|																				|									|													|[Lead]|

+--------+--------------------+---------+-------------+------+

4	rows	selected	(26.641	seconds)

jdbc:hive2://>	SELECT	name,	

.>	depart_title['Product'][0]	AS	product_col0,	

.>	depart_title['Test'][0]	AS	test_col0	

.>	FROM	employee;

+----------+---------------+------------+

|			name			|	product_col0		|	test_col0		|

+----------+---------------+------------+

|	Michael		|	Developer					|												|

|	Will					|	Lead										|	Lead							|

|	Shelley		|															|	Lead							|

|	Lucy					|															|												|

+----------+---------------+------------+

4	rows	selected	(26.659	seconds)

Note
The	default	delimiters	in	Hive	are	as	follows:

Row	delimiter:	This	can	be	used	with	Ctrl	+	A	or	^A	(Use	\001	when	creating	the
table)
Collection	item	delimiter:	This	can	be	used	with	Ctrl	+	B	or	^B	(\002)
Map	key	delimiter:	This	can	be	used	with	Ctrl	+	C	or	^C	(\003)

If	the	delimiter	is	overidden	during	the	table	creation,	it	only	works	when	used	in	the	flat
structure.	This	is	still	a	limitation	in	Hive	described	in	Apache	Jira	Hive-365
(https://issues.apache.org/jira/browse/HIVE-365).

For	nested	types,	for	example,	the	depart_title	column	in	the	preceding	tables,	the	level
of	nesting	determines	the	delimiter.	Using	ARRAY	of	ARRAY	as	an	example,	the	delimiters
for	the	outer	ARRAY	are	Ctrl	+	B	(\002)	characters,	as	expected,	but	for	the	inner	ARRAY	they
are	Ctrl	+	C	(\003)	characters,	the	next	delimiter	in	the	list.	For	our	example	of	using	MAP

https://issues.apache.org/jira/browse/HIVE-365

of	ARRAY,	the	MAP	key	delimiter	is	\003,	and	the	ARRAY	delimiter	is	Ctrl	+	D	or	^D	(\004).

Data	type	conversions
Similar	to	Java,	Hive	supports	both	implicit	type	conversion	and	explicit	type	conversion.

Primitive	type	conversion	from	a	narrow	to	a	wider	type	is	known	as	implicit	conversion.
However,	the	reverse	conversion	is	not	allowed.	All	the	integral	numeric	types,	FLOAT,	and
STRING	can	be	implicitly	converted	to	DOUBLE,	and	TINYINT,	SMALLINT,	and	INT	can	all	be
converted	to	FLOAT.	BOOLEAN	types	cannot	be	converted	to	any	other	type.	In	the	Apache
Hive	wiki,	there	is	a	data	type	cross	table	describing	the	allowed	implicit	conversion
between	every	two	types	in	Hive	and	this	can	be	found	at
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Types.

Explicit	type	conversion	is	using	the	CAST	function	with	the	CAST(value	AS	TYPE)	syntax.
For	example,	CAST('100'	AS	INT)	will	convert	the	string	100	to	the	integer	value	100.	If
the	cast	fails,	such	as	CAST('INT'	AS	INT),	the	function	returns	NULL.	In	addition,	the
BINARY	type	can	only	cast	to	STRING,	then	cast	from	STRING	to	other	types,	if	needed.

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Types

Hive	Data	Definition	Language
Hive	Data	Definition	Language	(DDL)	is	a	subset	of	Hive	SQL	statements	that	describe
the	data	structure	in	Hive	by	creating,	deleting,	or	altering	schema	objects	such	as
databases,	tables,	views,	partitions,	and	buckets.	Most	Hive	DDL	statements	start	with	the
keywords	CREATE,	DROP,	or	ALTER.	The	syntax	of	Hive	DDL	is	very	similar	to	the	DDL	in
SQL.	The	comments	in	Hive	start	from	--.

Hive	database
The	database	in	Hive	describes	a	collection	of	tables	that	are	used	for	a	similar	purpose	or
belong	to	the	same	groups.	If	the	database	is	not	specified,	the	default	database	is	used.
Whenever	a	new	database	is	created,	Hive	creates	a	directory	for	each	database	at
/user/hive/warehouse,	defined	in	hive.metastore.warehouse.dir.	For	example,	the
myhivebook	database	is	located	at	/user/hive/datawarehouse/myhivebook.db.
However,	the	default	database	doesn’t	have	its	own	directory.	The	following	is	the	core
DDL	for	Hive	databases:

Create	the	database	without	checking	whether	the	database	already	exists:

jdbc:hive2://>	CREATE	DATABASE	myhivebook;

Create	the	database	and	check	whether	the	database	already	exists:

jdbc:hive2://>	CREATE	DATABASE	IF	NOT	EXISTS	myhivebook;

Create	the	database	with	location,	comments,	and	metadata	information:

jdbc:hive2://>	CREATE	DATABASE	IF	NOT	EXISTS	myhivebook

.>	COMMENT	'hive	database	demo'

.>	LOCATION	'/hdfs/directory'

.>	WITH	DBPROPERTIES	('creator'='dayongd','date'='2015-01-

01');

Show	and	describe	the	database	with	wildcards:

jdbc:hive2://>	SHOW	DATABASES;

+----------------+

|	database_name		|

+----------------+

|	default								|

+----------------+

1	row	selected	(1.7	seconds)

jdbc:hive2://>	SHOW	DATABASES	LIKE	'my.*';

jdbc:hive2://>	DESCRIBE	DATABASE	default;

+-------+----------------------+-----------------------------+

|db_name|						comment									|															location						|

+-------+----------------------+-----------------------------+

|default|Default	Hive	database	

|hdfs://localhost:8020/user/hive/warehouse|

+-------+----------------------+-----------------------------+

1	row	selected	(1.352	seconds)

Use	the	database:

jdbc:hive2://>	USE	myhivebook;

Drop	the	empty	database:

jdbc:hive2://>	DROP	DATABASE	IF	EXISTS	myhivebook;

Note

Note	that	Hive	keeps	the	database	and	the	table	in	directory	mode.	In	order	to	remove
the	parent	directory,	we	need	to	remove	the	subdirectories	first.	By	default,	the
database	cannot	be	dropped	if	it	is	not	empty,	unless	CASCADE	is	specified.	CASCADE
drops	the	tables	in	the	database	automatically	before	dropping	the	database.

Drop	the	database	with	CASCADE:

jdbc:hive2://>	DROP	DATABASE	IF	EXISTS	myhivebook	CASCADE;

Alter	the	database	properties.	The	ALTER	DATABASE	statement	can	only	apply	to	the
table	properties	and	roles	(Hive	0.13.0	and	later)	on	the	table.	The	other	metadata
about	the	database	cannot	be	changed:

jdbc:hive2://>	ALTER	DATABASE	myhivebook	

.>	SET	DBPROPERTIES	('edited-by'	=	'Dayong');

jdbc:hive2://>	ALTER	DATABASE	myhivebook

	SET	OWNER	user	dayongd;

Note
SHOW	and	DESCRIBE

The	SHOW	and	DESCRIBE	keywords	in	Hive	are	used	to	show	the	definition	information	for
most	of	the	Hive	objects,	such	as	tables,	partitions,	and	so	on.

The	SHOW	statement	supports	a	wide	range	of	Hive	objects,	such	as	tables,	tables’
properties,	table	DDL,	index,	partitions,	columns,	functions,	locks,	roles,	configurations,
transactions,	and	compactions.

The	DESCRIBE	statement	supports	a	small	range	of	Hive	objects,	such	as	databases,	tables,
views,	columns,	and	partitions.	However,	the	DESCRIBE	statement	is	able	to	provide	more
detailed	information	combined	with	the	EXTENDED	or	FORMATTED	keywords.

In	this	book,	there	is	no	single	section	to	introduce	SHOW	and	DESCRIBE,	but	we	introduce
their	usage	in	line	with	other	HQL	through	the	remaining	chapters.

Hive	internal	and	external	tables
The	concept	of	a	table	in	Hive	is	very	similar	to	the	table	in	the	relational	database.	Each
table	associates	with	a	directory	configured	in	${HIVE_HOME}/conf/hive-site.xml	in
HDFS.	By	default,	it	is	/user/hive/warehouse	in	HDFS.	For	example,
/user/hive/warehouse/employee	is	created	by	Hive	in	HDFS	for	the	employee	table.	All
the	data	in	the	table	will	be	kept	in	the	directory.	The	Hive	table	is	also	referred	to	as
internal	or	managed	tables.

When	there	is	data	already	in	HDFS,	an	external	Hive	table	can	be	created	to	describe	the
data.	It	is	called	EXTERNAL	because	the	data	in	the	external	table	is	specified	in	the
LOCATION	properties	instead	of	the	default	warehouse	directory.	When	keeping	data	in	the
internal	tables,	Hive	fully	manages	the	life	cycle	of	the	table	and	data.	This	means	the	data
is	removed	once	the	internal	table	is	dropped.	If	the	external	table	is	dropped,	the	table
metadata	is	deleted	but	the	data	is	kept.	Most	of	the	time,	an	external	table	is	preferred	to
avoid	deleting	data	along	with	tables	by	mistake.	The	following	are	DDLs	for	Hive
internal	and	external	table	examples:

Show	the	database	file’s	location	and	content	of	the	employee	internal	table:

bash-4.1$	vi	/home/hadoop/employee.txt

Michael|Montreal,Toronto|Male,30|DB:80|Product:Developer^DLead

Will|Montreal|Male,35|Perl:85|Product:Lead,Test:Lead

Shelley|New	York|Female,27|Python:80|Test:Lead,COE:Architect

Lucy|Vancouver|Female,57|Sales:89,HR:94|Sales:Lead

Create	the	internal	table	and	load	the	data:

jdbc:hive2://>	CREATE	TABLE	IF	NOT	EXISTS	employee_internal

.>	(

.>		name	string,

.>		work_place	ARRAY<string>,

.>		sex_age	STRUCT<sex:string,age:int>,

.>		skills_score	MAP<string,int>,

.>		depart_title	MAP<STRING,ARRAY<STRING>>

.>)

.>	COMMENT	'This	is	an	internal	table'

.>	ROW	FORMAT	DELIMITED

.>	FIELDS	TERMINATED	BY	'|'

.>	COLLECTION	ITEMS	TERMINATED	BY	','

.>	MAP	KEYS	TERMINATED	BY	':'

.>	STORED	AS	TEXTFILE;

No	rows	affected	(0.149	seconds)

jdbc:hive2://>	LOAD	DATA	LOCAL	INPATH	'/home/hadoop/employee.txt'

.>	OVERWRITE	INTO	TABLE	employee_internal;

Create	the	external	table	and	load	the	data:

jdbc:hive2://>	CREATE	EXTERNAL	TABLE	employee_external

.>	(

.>		name	string,

.>		work_place	ARRAY<string>,

.>		sex_age	STRUCT<sex:string,age:int>,

.>		skills_score	MAP<string,int>,

.>		depart_title	MAP<STRING,ARRAY<STRING>>

.>)

.>	COMMENT	'This	is	an	external	table'

.>	ROW	FORMAT	DELIMITED

.>	FIELDS	TERMINATED	BY	'|'

.>	COLLECTION	ITEMS	TERMINATED	BY	','

.>	MAP	KEYS	TERMINATED	BY	':'

.>	STORED	AS	TEXTFILE

.>	LOCATION	'/user/dayongd/employee';

No	rows	affected	(1.332	seconds)

jdbc:hive2://>	LOAD	DATA	LOCAL	INPATH	'/home/hadoop/employee.txt'.	.	.	

.	.	.	.>	OVERWRITE

	INTO	TABLE	employee_external;

Note
CREATE	TABLE

The	Hive	table	does	not	have	constraints	such	as	a	database	yet.

If	the	folder	in	the	path	does	not	exist	in	the	LOCATION	property,	Hive	will	create	that
folder.	If	there	is	another	folder	inside	the	folder	specified	in	the	LOCATION	property,
Hive	will	NOT	report	errors	when	creating	the	table,	but	will	report	an	error	when
querying	the	table.

A	temporary	table,	which	is	automatically	deleted	at	the	end	of	the	Hive	session,	is
supported	in	Hive	0.14.0	by	HIVE-7090	(https://issues.apache.org/jira/browse/HIVE-
7090)	through	the	CREATE	TEMPORARY	TABLE	statement.

For	the	STORE	AS	property,	it	is	set	to	AS	TEXTFILE	by	default.	Other	file	format
values,	such	as	SEQUENCEFILE,	RCFILE,	ORC,	AVRO	(since	Hive	0.14.0),	and	PARQUET
(since	Hive	0.13.0)	can	also	be	specified.

Create	the	table	as	select	(CTAS):

jdbc:hive2://>	CREATE	TABLE	ctas_employee	

.>	AS	SELECT	*	FROM	employee_external;

No	rows	affected	(1.562	seconds)

Note
CTAS

CTAS	copies	the	data	as	well	as	table	definitions.	The	table	created	by	CTAS	is	atomic;
this	means	that	other	users	do	not	see	the	table	until	all	the	query	results	are
populated.	CTAS	has	the	following	restrictions:

The	table	created	cannot	be	a	partitioned	table
The	table	created	cannot	be	an	external	table
The	table	created	cannot	be	a	list	bucketing	table

A	CTAS	statement	will	trigger	a	map	job	for	populating	the	data;	even	SELECT	*	itself

https://issues.apache.org/jira/browse/HIVE-7090

does	not	trigger	any	MapReduce	job.

CTAS	with	Common	Table	Expression	(CTE)	can	be	created	as	follows:

jdbc:hive2://>	CREATE	TABLE	cte_employee	AS

.>	WITH	r1	AS	

.>	(SELECT	name	FROM	r2	

.>	WHERE	name	=	'Michael'),

.>	r2	AS	

.>	(SELECT	name	FROM	employee	

.>	WHERE	sex_age.sex=	'Male'),

.>	r3	AS	

.>	(SELECT	name	FROM	employee	

.>	WHERE	sex_age.sex=	'Female')

.>	SELECT	*	FROM	r1	UNION	ALL	select	*	FROM	r3;

No	rows	affected	(61.852	seconds)

jdbc:hive2://>	SELECT	*	FROM	cte_employee;

+----------------------------+

|	cte_employee.name										|

+----------------------------+

|	Michael																				|

|	Shelley																				|

|	Lucy																							|

+----------------------------+

3	rows	selected	(0.091	seconds)

Note
CTE

CTE	is	available	since	Hive	0.13.0.	It	is	a	temporary	result	set	derived	from	a	simple
SELECT	query	specified	in	a	WITH	clause,	followed	by	SELECT	or	INSERT	keyword	to
operate	this	result	set.	The	CTE	is	defined	only	within	the	execution	scope	of	a	single
statement.	One	or	more	CTEs	can	be	used	in	a	nested	or	chained	way	with	Hive
keywords,	such	as	the	SELECT,	INSERT,	CREATE	TABLE	AS	SELECT,	or	CREATE	VIEW
AS	SELECT	statements.

Empty	tables	can	be	created	in	two	ways	as	follows:

1.	 Use	CTAS	as	shown	here:

jdbc:hive2://>	CREATE	TABLE	empty_ctas_employee	AS	

.>	SELECT	*	FROM	employee_internal	WHERE	1=2;

No	rows	affected	(213.356	seconds)	

2.	 Use	LIKE	as	shown	here:

jdbc:hive2://>	CREATE	TABLE	empty_like_employee

.>	LIKE	employee_internal;

No	rows	affected	(0.115	seconds)

Check	the	row	counts	for	both	tables:

jdbc:hive2://>	SELECT	COUNT(*)	AS	row_cnt	

.>	FROM	empty_ctas_employee;

+----------+

|	row_cnt		|

+----------+

|	0								|

+----------+

1	row	selected	(51.228	seconds)

jdbc:hive2://>	SELECT	COUNT(*)	AS	row_cnt	

.>	FROM	empty_like_employee;

+----------+

|	row_cnt		|

+----------+

|	0								|

+----------+

1	row	selected	(41.628	seconds)

Note
The	LIKE	way,	which	is	faster,	does	not	trigger	a	MapReduce	job	since	it	is	metadata
duplication	only.

The	drop	table’s	command	removes	the	metadata	completely	and	moves	data	to
Trash	or	to	the	current	directory	if	Trash	is	configured:

jdbc:hive2://>	DROP	TABLE	IF	EXISTS	empty_ctas_employee;

No	rows	affected	(0.283	seconds)

jdbc:hive2://>	DROP	TABLE	IF	EXISTS	empty_like_employee;

No	rows	affected	(0.202	seconds)

The	truncate	table’s	command	removes	all	the	rows	from	a	table	that	should	be	an
internal	table:

jdbc:hive2://>	SELECT	*	FROM	cte_employee;

+--------------------+

|	cte_employee.name		|

+--------------------+

|	Michael												|

|	Shelley												|

|	Lucy															|

+--------------------+

3	rows	selected	(0.158	seconds)

jdbc:hive2://>	TRUNCATE	TABLE	cte_employee;

No	rows	affected	(0.093	seconds)

--Table	is	empty	after	truncate

jdbc:hive2://>	SELECT	*	FROM	cte_employee;

+--------------------+

|	cte_employee.name		|

+--------------------+

+--------------------+

No	rows	selected	(0.059	seconds)

Alter	the	table’s	statements	to	rename	the	table:

jdbc:hive2://>	!table

+-----------+------------------+-----------+---------------------------

+

|TABLE_SCHEM|					TABLE_NAME			|	TABLE_TYPE|	REMARKS																			

|

+-----------+------------------+-----------+---------------------------

+

|default				|	employee									|	TABLE					|	NULL																						

|

|default				|	employee_internal|	TABLE					|	This	is	an	internal	table	

|

|default				|	employee_external|	TABLE					|	This	is	an	external	table	

|

|default				|	ctas_employee				|	TABLE					|	NULL																						

|

|default				|	cte_employee					|	TABLE					|	NULL																						

|

+-----------+------------------+-----------+---------------------------

+

jdbc:hive2://>	ALTER	TABLE	cte_employee	RENAME	TO	c_employee;

No	rows	affected	(0.237	seconds)

Alter	the	table’s	properties,	such	as	comments:

jdbc:hive2://>	ALTER	TABLE	c_employee	

.>	SET	TBLPROPERTIES	('comment'='New	name,	comments');

No	rows	affected	(0.239	seconds)

jdbc:hive2://>	!table

+-----------+------------------+-----------+---------------------------

+

|TABLE_SCHEM|					TABLE_NAME			|	TABLE_TYPE|	REMARKS																			

|

+-----------+------------------+-----------+---------------------------

+

|default				|	employee									|	TABLE					|	NULL																						

|

|default				|	employee_internal|	TABLE					|	This	is	an	internal	table	

|

|default				|	employee_external|	TABLE					|	This	is	an	external	table	

|

|default				|	ctas_employee				|	TABLE					|	NULL																						

|

|default				|	c_employee							|	TABLE					|	New	name,	comments								

|

+-----------+------------------+-----------+---------------------------

+

Alter	the	table’s	delimiter	through	SERDEPROPERTIES:

jdbc:hive2://>	ALTER	TABLE	employee_internal	SET	

.>	SERDEPROPERTIES	('field.delim'	=	'$');

No	rows	affected	(0.148	seconds)

Alter	the	table’s	file	format:

jdbc:hive2://>	ALTER	TABLE	c_employee	SET	FILEFORMAT	RCFILE;

No	rows	affected	(0.235	seconds)	

Alter	the	table’s	location,	which	must	be	a	full	URI	of	HDFS:

jdbc:hive2://>	ALTER	TABLE	c_employee	

.>	SET	LOCATION

.>	'hdfs://localhost:8020/user/dayongd/employee';	

No	rows	affected	(0.169	seconds)

Alter	the	table’s	enable/disable	protection	to	NO_DROP,	which	prevents	a	table	from
being	dropped,	or	OFFLINE,	which	prevents	data	(not	metadata)	in	a	table	from	being
queried:

jdbc:hive2://>	ALTER	TABLE	c_employee	ENABLE	NO_DROP;	

jdbc:hive2://>	ALTER	TABLE	c_employee	DISABLE	NO_DROP;	

jdbc:hive2://>	ALTER	TABLE	c_employee	ENABLE	OFFLINE;

jdbc:hive2://>	ALTER	TABLE	c_employee	DISABLE	OFFLINE;

Alter	the	table’s	concatenation	to	merge	small	files	into	larger	files:

--Convert	to	the	file	format	supported

jdbc:hive2://>	ALTER	TABLE	c_employee	SET	FILEFORMAT	ORC;

No	rows	affected	(0.160	seconds)

	

--Concatenate	files

jdbc:hive2://>	ALTER	TABLE	c_employee	CONCATENATE;

No	rows	affected	(0.165	seconds)

--Convert	to	the	regular	file	format

jdbc:hive2://>	ALTER	TABLE	c_employee	SET	FILEFORMAT	TEXTFILE;

No	rows	affected	(0.143	seconds)

Note
CONCATENATE

In	Hive	release	0.8.0,	RCFile	is	added	to	support	fast	block-level	merging	of	small
RCFiles	using	the	CONCATENATE	command.	In	Hive	release	0.14.0	ORC,	the	files	that
are	added	support	fast	stripe-level	merging	of	small	ORC	files	using	the	CONCATENATE
command.	Other	file	formats	are	not	supported	yet.	In	case	of	RCFiles,	the	merge
happens	at	block	level	and	ORC	files	merge	at	stripe	level	thereby	avoiding	the
overhead	of	decompressing	and	decoding	the	data.	MapReduce	is	triggered	when
performing	concatenation.

Alter	the	column’s	data	type:

--Check	column	type	before	changes

jdbc:hive2://>	DESC	employee_internal;

+----------------+-----------------------------+----------+

|				col_name				|										data_type										|	comment		|

+----------------+-----------------------------+----------+

|	employee_name		|	string																						|										|

|	work_place					|	array<string>															|										|

|	sex_age								|	struct<sex:string,age:int>		|										|

|	skills_score			|	map<string,int>													|										|

|	depart_title			|	map<string,array<string>>			|										|

+----------------+-----------------------------+----------+

5	rows	selected	(0.119	seconds)

--Change	column	type	and	order

jdbc:hive2://>	ALTER	TABLE	employee_internal	

.>	CHANGE	name	employee_name	string	AFTER	sex_age;

No	rows	affected	(0.23	seconds)	

--Verify	the	changes

jdbc:hive2://>	DESC	employee_internal;	

+----------------+-----------------------------+----------+

|				col_name				|										data_type										|	comment		|

+----------------+-----------------------------+----------+

|	work_place					|	array<string>															|										|

|	sex_age								|	struct<sex:string,age:int>		|										|

|	employee_name		|	string																						|										|

|	skills_score			|	map<string,int>													|										|

|	depart_title			|	map<string,array<string>>			|										|

+----------------+-----------------------------+----------+

5	rows	selected	(0.214	seconds)

Alter	the	column’s	type	and	order:

jdbc:hive2://>	ALTER	TABLE	employee_internal	

.>	CHANGE	employee_name	name	string	FIRST;

No	rows	affected	(0.238	seconds)

--Verify	the	changes

jdbc:hive2://>	DESC	employee_internal;	

+---------------+-----------------------------+----------+

|			col_name				|										data_type										|	comment		|

+---------------+-----------------------------+----------+

|	name										|	string																						|										|

|	work_place				|	array<string>															|										|

|	sex_age							|	struct<sex:string,age:int>		|										|

|	skills_score		|	map<string,int>													|										|

|	depart_title		|	map<string,array<string>>			|										|

+---------------+-----------------------------+----------+

5	rows	selected	(0.119	seconds)

Add/replace	columns:

--Add	columns	to	the	table

jdbc:hive2://>	ALTER	TABLE	c_employee	ADD	COLUMNS	(work	string);

No	rows	affected	(0.184	seconds)

--Verify	the	added	columns

jdbc:hive2://>	DESC	c_employee;						

+-----------+------------+----------+

|	col_name		|	data_type		|	comment		|

+-----------+------------+----------+

|	name						|	string					|										|

|	work						|	string					|										|

+-----------+------------+----------+

2	rows	selected	(0.115	seconds)

--Replace	all	columns

jdbc:hive2://>	ALTER	TABLE	c_employee	

.>	REPLACE	COLUMNS	(name	string);

No	rows	affected	(0.132	seconds)

--Verify	the	replaced	all	columns

jdbc:hive2://>	DESC	c_employee;						

+-----------+------------+----------+

|	col_name		|	data_type		|	comment		|

+-----------+------------+----------+

|	name						|	string					|										|

+-----------+------------+----------+

1	row	selected	(0.129	seconds)

Note
The	ALTER	command	will	only	modify	Hive’s	metadata,	NOT	the	data.	Users	should
make	sure	the	actual	data	conforms	with	the	metadata	definition	manually.

Hive	partitions
By	default,	a	simple	query	in	Hive	scans	the	whole	Hive	table.	This	slows	down	the
performance	when	querying	a	large-size	table.	The	issue	could	be	resolved	by	creating
Hive	partitions,	which	is	very	similar	to	what’s	in	the	RDBMS.	In	Hive,	each	partition
corresponds	to	a	predefined	partition	column(s)	and	stores	it	as	a	subdirectory	in	the
table’s	directory	in	HDFS.	When	the	table	gets	queried,	only	the	required	partitions
(directory)	of	data	in	the	table	are	queried,	so	the	I/O	and	time	of	query	is	greatly	reduced.
It	is	very	easy	to	implement	Hive	partitions	when	the	table	is	created	and	check	the
partitions	created,	as	follows:

--

Create	partitions	when	creating	tables

jdbc:hive2://>	CREATE	TABLE	employee_partitioned

.>	(

.>			name	string,

.>			work_place	ARRAY<string>,

.>			sex_age	STRUCT<sex:string,age:int>,

.>			skills_score	MAP<string,int>,

.>			depart_title	MAP<STRING,ARRAY<STRING>>

.>)

.>	PARTITIONED	BY	(Year	INT,	Month	INT)

.>	ROW	FORMAT	DELIMITED

.>	FIELDS	TERMINATED	BY	'|'

.>	COLLECTION	ITEMS	TERMINATED	BY	','

.>	MAP	KEYS	TERMINATED	BY	':';

No	rows	affected	(0.293	seconds)

--Show	partitions

jdbc:hive2://>	SHOW	PARTITIONS	employee_partitioned;

+------------+

|	partition		|

+------------+

+------------+

No	rows	selected	(0.177	seconds)

From	the	preceding	result,	we	can	see	that	the	partition	is	not	enabled	automatically.	We
have	to	use	ALTER	TABLE	ADD	PARTITION	to	add	partitions	to	a	table.	The	ADD	PARTITION
command	changes	the	table’s	metadata,	but	does	not	load	data.	If	the	data	does	not	exist	in
the	partition’s	location,	queries	will	not	return	any	results.	To	drop	the	partition	including
both	data	and	metadata,	use	the	ALTER	TABLE	DROP	PARTITION	statement	as	follows:

--Add	multiple	partitions

jdbc:hive2://>	ALTER	TABLE	employee_partitioned	ADD	

.>	PARTITION	(year=2014,	month=11)								

.>	PARTITION	(year=2014,	month=12);

No	rows	affected	(0.248	seconds)

jdbc:hive2://>	SHOW	PARTITIONS	employee_partitioned;

+---------------------+

|						partition						|

+---------------------+

|	year=2014/month=11		|

|	year=2014/month=12		|

+---------------------+

2	rows	selected	(0.108	seconds)

--Drop	the	partition

jdbc:hive2://>	ALTER	TABLE	employee_partitioned

.>	DROP	IF	EXISTS	PARTITION	(year=2014,	month=11);	

jdbc:hive2://>	SHOW	PARTITIONS	employee_partitioned;

+---------------------+

|						partition						|

+---------------------+

|	year=2014/month=12		|

+---------------------+

1	row	selected	(0.107	seconds)

To	avoid	manually	adding	partitions,	dynamic	partition	insert	(or	multipartition	insert)	is
designed	for	dynamically	determining	which	partitions	should	be	created	and	populated
while	scanning	the	input	table.	This	part	is	introduced	with	more	detail	in	Chapter	5,	Data
Manipulation.

To	load	or	overwrite	data	in	partition,	we	can	use	the	LOAD	or	INSERT	OVERWRITE
statements.	The	statement	only	overwrites	the	data	in	the	specified	partitions.	Although
partition	columns	are	subdirectory	names,	we	can	query	or	specify	them	in	the	SELECT	or
WHERE	statements	to	narrow	down	the	result	set.	The	following	steps	show	how	to	load
data	to	the	partition	table:

Load	data	to	the	partition:

jdbc:hive2://>	LOAD	DATA	LOCAL	INPATH

.>	'/home/dayongd/Downloads/employee.txt'	

.>	OVERWRITE	INTO	TABLE	employee_partitioned

.>	PARTITION	(year=2014,	month=12);

No	rows	affected	(0.96	seconds)

Verify	the	data	that	is	loaded:

jdbc:hive2://>	SELECT	name,	year,	month	FROM	employee_partitioned;

+----------+-------+--------+

|			name			|	year		|	month		|

+----------+-------+--------+

|	Michael		|	2014		|	12					|

|	Will					|	2014		|	12					|

|	Shelley		|	2014		|	12					|

|	Lucy					|	2014		|	12					|

+----------+-------+--------+

4	rows	selected	(37.451	seconds)

The	alter	table/partition	statement	for	file	format,	location,	protections,	and
concatenation	has	the	same	syntax	as	the	alter	table	statements	and	is	shown	here:

ALTER	TABLE	table_name	PARTITION	partition_spec	SET	FILEFORMAT	

file_format;

ALTER	TABLE	table_name	PARTITION	partition_spec	SET	LOCATION	'full	

URI';

ALTER	TABLE	table_name	PARTITION	partition_spec	ENABLE	NO_DROP;

ALTER	TABLE	table_name	PARTITION	partition_spec	ENABLE	OFFLINE;

ALTER	TABLE	table_name	PARTITION	partition_spec	DISABLE	NO_DROP;

ALTER	TABLE	table_name	PARTITION	partition_spec	DISABLE	OFFLINE;

ALTER	TABLE	table_name	PARTITION	partition_spec	CONCATENATE;

Hive	buckets
Besides	partition,	bucket	is	another	technique	to	cluster	datasets	into	more	manageable
parts	to	optimize	query	performance.	Different	from	partition,	the	bucket	corresponds	to
segments	of	files	in	HDFS.	For	example,	the	employee_partitioned	table	from	the
previous	section	uses	the	year	and	month	as	the	top-level	partition.	If	there	is	a	further
request	to	use	the	employee_id	as	the	third	level	of	partition,	it	leads	to	many	deep	and
small	partitions	and	directories.	For	instance,	we	can	bucket	the	employee_partitioned
table	using	employee_id	as	the	bucket	column.	The	value	of	this	column	will	be	hashed
by	a	user-defined	number	into	buckets.	The	records	with	the	same	employee_id	will
always	be	stored	in	the	same	bucket	(segment	of	files).	By	using	buckets,	Hive	can	easily
and	efficiently	do	sampling	(see	Chapter	6,	Data	Aggregation	and	Sampling)	and	map	side
joins	(see	Chapter	4,	Data	Selection	and	Scope).	An	example	to	create	a	bucket	table	is	as
follows:

--Prepare	another	dataset	and	table	for	bucket	table

jdbc:hive2://>	CREATE	TABLE	employee_id

.>	(

.>			name	string,

.>			employee_id	int,

.>			work_place	ARRAY<string>,

.>			sex_age	STRUCT<sex:string,age:int>,

.>			skills_score	MAP<string,int>,

.>			depart_title	MAP<string,ARRAY<string>>

.>)

.>	ROW	FORMAT	DELIMITED

.>	FIELDS	TERMINATED	BY	'|'

.>	COLLECTION	ITEMS	TERMINATED	BY	','

.>	MAP	KEYS	TERMINATED	BY	':';

No	rows	affected	(0.101	seconds)

jdbc:hive2://>	LOAD	DATA	LOCAL	INPATH	

.>	'/home/dayongd/Downloads/employee_id.txt'	

.>	OVERWRITE	INTO	TABLE	employee_id

No	rows	affected	(0.112	seconds)

--Create	the	buckets	table

jdbc:hive2://>	CREATE	TABLE	employee_id_buckets

.>	(

.>			name	string,

.>			employee_id	int,

.>			work_place	ARRAY<string>,

.>			sex_age	STRUCT<sex:string,age:int>,

.>			skills_score	MAP<string,int>,

.>			depart_title	MAP<string,ARRAY<string	>>

.>)

.>	CLUSTERED	BY	(employee_id)	INTO	2	BUCKETS

.>	ROW	FORMAT	DELIMITED

.>	FIELDS	TERMINATED	BY	'|'

.>	COLLECTION	ITEMS	TERMINATED	BY	','

.>	MAP	KEYS	TERMINATED	BY	':';

No	rows	affected	(0.104	seconds)

Note
Bucket	numbers

To	define	the	proper	number	of	buckets,	we	should	avoid	having	too	much	or	too	little	of
data	in	each	bucket.	A	better	choice	is	somewhere	near	two	blocks	of	data.	For	example,
we	can	plan	512	MB	of	data	in	each	bucket,	if	the	Hadoop	block	size	is	256	MB.	If
possible,	use	2N	as	the	number	of	buckets.

Bucketing	has	close	dependency	on	the	underlying	data	loaded.	To	properly	load	data	to	a
bucket	table,	we	need	to	either	set	the	maximum	number	of	reducers	to	the	same	number
of	buckets	specified	in	the	table	creation	(for	example,	2)	or	enable	enforce	bucketing	as
follows:

jdbc:hive2://>	set	map.reduce.tasks	=	2;

No	rows	affected	(0.026	seconds)

jdbc:hive2://>	set	hive.enforce.bucketing	=	true;

No	rows	affected	(0.002	seconds)

To	populate	the	data	to	the	bucket	table,	we	cannot	use	LOAD	keywords	such	as	what	was
done	in	the	regular	tables	since	LOAD	does	not	verify	the	data	against	the	metadata.	Instead,
INSERT	should	be	used	to	populate	the	bucket	table	as	follows:

jdbc:hive2://>	INSERT	OVERWRITE	TABLE	employee_id_buckets	

.>	SELECT	*	FROM	employee_id;

No	rows	affected	(75.468	seconds)

--Verify	the	buckets	in	the	HDFS

-bash-4.1$	hdfs	dfs	-ls	/user/hive/warehouse/employee_id_buckets

Found	2	items

-rwxrwxrwx			1	hive	hive								900	2014-11-02	10:54	

/user/hive/warehouse/employee_id_buckets/000000_0

-rwxrwxrwx			1	hive	hive								582	2014-11-02	10:54	

/user/hive/warehouse/employee_id_buckets/000001_0

Hive	views
In	Hive,	views	are	logical	data	structures	that	can	be	used	to	simplify	queries	by	either
hiding	the	complexities	such	as	joins,	subqueries,	and	filters	or	by	flatting	the	data.	Unlike
some	RDBMS,	Hive	views	do	not	store	data	or	get	materialized.	Once	the	Hive	view	is
created,	its	schema	is	frozen	immediately.	Subsequent	changes	to	the	underlying	tables
(for	example,	adding	a	column)	will	not	be	reflected	in	the	view’s	schema.	If	an
underlying	table	is	dropped	or	changed,	subsequent	attempts	to	query	the	invalid	view	will
fail,	as	follows:

jdbc:hive2://>	CREATE	VIEW	employee_skills

.>	AS

.>	SELECT	name,	skills_score['DB']	AS	DB,

.>	skills_score['Perl']	AS	Perl,	

.>	skills_score['Python']	AS	Python,

.>	skills_score['Sales']	as	Sales,	

.>	skills_score['HR']	as	HR	

.>	FROM	employee;

No	rows	affected	(0.253	seconds)

When	creating	views,	there	is	no	MapReduce	job	triggered	at	all	since	this	is	only	a
metadata	change.	However,	a	proper	MapReduce	job	will	be	triggered	when	querying	the
view.	Use	SHOW	CREATE	TABLE	or	DESC	FORMATTED	TABLE	to	display	the	CREATE	VIEW
statement	that	created	a	view.	The	following	are	other	Hive	view	DDLs:

Alter	the	views’	properties:

jdbc:hive2://>	ALTER	VIEW	employee_skills	

.>	SET	TBLPROPERTIES	('comment'	=	'This	is	a	view');

No	rows	affected	(0.19	seconds)

Redefine	views:

jdbc:hive2://>	ALTER	VIEW	employee_skills	AS	

.>	SELECT	*	from	employee	;

No	rows	affected	(0.17	seconds)

Drop	views:

jdbc:hive2://>	DROP	VIEW	employee_skills;	

No	rows	affected	(0.156	seconds)

Summary
After	going	through	this	chapter,	we	are	able	to	define	and	use	various	data	types	in	Hive.
We	should	know	how	to	create,	alter,	and	drop	tables,	partitions,	and	views	in	Hive	and
how	to	use	external	tables,	internal	tables,	partitions,	buckets,	and	views	in	Hive.

In	the	next	chapter,	we	will	dive	into	the	details	of	querying	data	by	Hive.

Chapter	4.	Data	Selection	and	Scope
This	chapter	is	about	how	to	discover	the	data	by	querying	the	data,	linking	the	data,	and
limiting	the	data	ranges	or	scopes.	The	chapter	mainly	covers	the	syntax	and	usage	of
Hive	SELECT,	WHERE,	LIMIT,	JOIN,	and	UNION	ALL	to	operate	datasets.

In	this	chapter	we	will	cover	the	following	topics:

The	SELECT	statement
The	common	JOIN	statement
The	special	JOIN	(MAPJOIN)	statement
The	set	operation	statement	(UNION	ALL)

The	SELECT	statement
The	most	common	use	case	of	using	Hive	is	to	query	the	data	in	Hadoop.	To	achieve	this,
we	need	to	write	and	execute	the	SELECT	statement	in	Hive.	The	typical	work	done	by	the
SELECT	statement	is	to	project	the	rows	meeting	query	conditions	specified	in	the	WHERE
clause	after	the	target	table	and	return	the	result	set.	The	SELECT	statement	is	quite	often
used	with	FROM,	DISTINCT,	WHERE,	and	LIMIT	keywords.	We	will	introduce	them	through
examples	as	follows.

The	SELECT	*	statement	here	means	all	the	columns	in	the	table	are	selected.	By	default,
all	rows	are	returned	including	duplicated	rows.	If	the	DISTINCT	keyword	is	used,	only
unique	rows	from	the	table	are	selected	and	returned.	The	LIMIT	keyword	is	used	to	limit
the	number	of	rows	returned	randomly.	In	addition,	SELECT	*	scans	the	whole	table/file
without	triggering	MapReduce	jobs,	so	it	runs	faster	than	SELECT	<column_name>.	Since
Hive	0.10.0,	the	simple	SELECT	statements,	such	as	SELECT	<column_name>	FROM
<table_name>	LIMIT	n,	can	also	avoid	triggering	the	MapReduce	job	if	the	Hive	fetch
task	conversion	is	enabled	by	setting	hive.fetch.task.conversion	=	more.

The	following	tasks	can	be	done:

Query	all	or	specific	columns	in	the	table:

jdbc:hive2://>	SELECT	*	FROM	employee;

+-------+------------------+-----------+----------------+--------------

---------------+

|	name		|				work_place				|		sex_age		|		skills_score		|								

depart_title									|

+-------+------------------+-----------+----------------+--------------

---------------+

|Michael|[Montreal,Toronto]|[Male,30]		|{DB=80}									|{Product=

[Developer,Lead]}			|

|Will			|[Montreal]								|[Male,35]		|{Perl=85}							|{Test=

[Lead],Product=[Lead]}	|

|Shelley|[New	York]								|[Female,27]|{Python=80}					|{Test=

[Lead],COE=[Architect]}|

|Lucy			|[Vancouver]							|[Female,57]|{Sales=89,HR=94}|{Sales=[Lead]}															

|

+-------+------------------+-----------+----------------+--------------

---------------+

4	rows	selected	(0.677	seconds)

jdbc:hive2://>	SELECT	name	FROM	employee;

+----------+

|			name			|

+----------+

|	Michael		|

|	Will					|	

|	Shelley		|

|	Lucy					|

+----------+

4	rows	selected	(162.452	seconds)

Select	a	unique	value	of	the	specified	column:

jdbc:hive2://>	SELECT	DISTINCT	name	FROM	employee	LIMIT	2;

+----------+

|			name			|

+----------+

|	Lucy					|

|	Michael		|

+----------+

2	rows	selected	(71.125	seconds)

Enable	fetch	and	verify	the	performance	improvement:

jdbc:hive2://>	SET	hive.fetch.task.conversion=more;

No	rows	affected	(0.002	seconds)

jdbc:hive2://>	SELECT	name	FROM	employee;

+----------+

|			name			|

+----------+

|	Michael		|

|	Will					|

|	Shelley		|

|	Lucy					|

+----------+

4	rows	selected	(0.242	seconds)

Besides	LIMIT,	WHERE	is	another	generic	condition	clause	to	limit	the	returned	result	set.
The	WHERE	condition	can	be	any	Boolean	expression	or	user-defined	functions	comparing
to	table	or	partition	columns:

jdbc:hive2://>	SELECT	name,	work_place	FROM	employee	

.>	WHERE	name	=	'Michael';

+----------+-------------------------+

|			name			|							work_place								|

+----------+-------------------------+

|	Michael		|	["Montreal","Toronto"]		|

+----------+-------------------------+

1	row	selected	(38.107	seconds)

Multiple	SELECT	statements	can	work	together	to	build	a	complex	query	using	nest	or
subqueries,	such	as	JOIN	and	UNION.	The	following	are	a	few	examples	to	use
nest/subqueries.	Subqueries	can	be	used	in	the	format	of	WITH	(also	referred	to	as	CTE
since	Hive	0.13.0),	after	the	FROM	or	WHERE	statement.	When	using	subqueries,	an	alias
should	be	given	for	the	subquery	(see	t1	in	the	following	example).	Or	else,	Hive	will
report	exceptions.	The	different	uses	of	SELECT	statements	are	as	follows:

Nested	SELECT	using	CTE	can	be	implemented	as	follows:

jdbc:hive2://>	WITH	t1	AS	(

.>	SELECT	*	FROM	employee

.>	WHERE	sex_age.sex	=	'Male')

.>	SELECT	name,	sex_age.sex	AS	sex	FROM	t1;

+----------+-------+

|			name			|		sex		|

+----------+-------+

|	Michael		|	Male		|

|	Will					|	Male		|

+----------+-------+

2	rows	selected	(38.706	seconds)

Nested	SELECT	after	the	FROM	statement	can	be	implemented	as	follows:

jdbc:hive2://>	SELECT	name,	sex_age.sex	AS	sex

.>	FROM

.>	(

.>			SELECT	*	FROM	employee

.>			WHERE	sex_age.sex	=	'Male'

.>)	t1;

+----------+-------+

|			name			|		sex		|

+----------+-------+

|	Michael		|	Male		|

|	Will					|	Male		|

+----------+-------+

2	rows	selected	(48.198	seconds)

The	Hive	subquery	in	the	WHERE	clause	can	be	used	with	IN,	NOT	IN,	EXIST,	or	NOT	EXIST
as	follows.	If	the	alias	(see	the	following	example	for	the	employee	table)	is	not	specified
before	columns	(name)	in	the	WHERE	condition,	Hive	will	report	the	error	Correlating
expression	cannot	contain	unqualified	column	references.	This	is	a	limitation	of	the	Hive
subquery.	A	subquery	that	uses	EXIST	or	NOT	EXIST	must	refer	to	both	inner	and	outer
expression.	This	is	similar	to	the	JOIN	table,	which	is	introduced	later.	This	is	not
supported	by	the	IN	and	NOT	IN	clause.

jdbc:hive2://>	SELECT	name,	sex_age.sex	AS	sex

.>	FROM	employee	a

.>	WHERE	a.name	IN

.>	(SELECT	name	FROM	employee

.>	WHERE	sex_age.sex	=	'Male'

.>);

+----------+-------+

|			name			|		sex		|

+----------+-------+

|	Michael		|	Male		|

|	Will					|	Male		|

+----------+-------+

2	rows	selected	(54.644	seconds)

jdbc:hive2://>	SELECT	name,	sex_age.sex	AS	sex

.>	FROM	employee	a

.>	WHERE	EXISTS

.>	(SELECT	*	FROM	employee	b

.>	WHERE	a.sex_age.sex	=	b.sex_age.sex	

.>	AND	b.sex_age.sex	=	'Male'

.>);

+----------+-------+

|			name			|		sex		|

+----------+-------+

|	Michael		|	Male		|

|	Will					|	Male		|

+----------+-------+

2	rows	selected	(69.48	seconds)

There	are	additional	restrictions	for	subqueries	used	in	WHERE	clauses:

Subqueries	can	only	appear	on	the	right-hand	side	of	the	WHERE	clauses
Nested	subqueries	are	not	allowed
The	IN	and	NOT	IN	statement	supports	only	one	column

The	INNER	JOIN	statement
Hive	JOIN	is	used	to	combine	rows	from	two	or	more	tables	together.	Hive	supports
common	JOIN	operations	such	as	what’s	in	the	RDBMS,	for	example,	JOIN,	LEFT	OUTER
JOIN,	RIGHT	OUTER	JOIN,	FULL	OUTER	JOIN,	and	CROSS	JOIN.	However,	Hive	only
supports	equal	JOIN	instead	of	unequal	JOIN,	because	unequal	JOIN	is	difficult	to	be
converted	to	MapReduce	jobs.

The	INNER	JOIN	in	Hive	uses	JOIN	keywords,	which	return	rows	meeting	the	JOIN
conditions	from	both	left	and	right	tables.	The	INNER	JOIN	keyword	can	also	be	omitted
by	comma-separated	table	names	since	Hive	0.13.0.	See	the	following	examples	to	show
various	inner	JOIN	statements	in	Hive:

Prepare	another	table	to	join	and	load	data:

jdbc:hive2://>	CREATE	TABLE	IF	NOT	EXISTS	employee_hr

.>	(

.>			name	string,

.>			employee_id	int,

.>			sin_number	string,

.>			start_date	date

.>)

.>	ROW	FORMAT	DELIMITED

.>	FIELDS	TERMINATED	BY	'|'

.>	STORED	AS	TEXTFILE;

No	rows	affected	(1.732	seconds)

jdbc:hive2://>	LOAD	DATA	LOCAL	INPATH	

.>	'/home/Dayongd/employee_hr.txt'	

.>	OVERWRITE	INTO	TABLE	employee_hr;

No	rows	affected	(0.635	seconds)

Perform	inner	JOIN	between	two	tables	with	equal	JOIN	conditions:

jdbc:hive2://>	SELECT	emp.name,	emph.sin_number

.>	FROM	employee	emp

.>	JOIN	employee_hr	emph	ON	emp.name	=	emph.name;

+-----------+------------------+

|	emp.name		|	emph.sin_number		|

+-----------+------------------+

|	Michael			|	547-968-091						|

|	Will						|	527-948-090						|

|	Lucy						|	577-928-094						|

+-----------+------------------+

3	rows	selected	(71.083	seconds)

The	JOIN	operation	can	be	performed	among	more	tables	(three	tables	in	this	case),
as	follows:

jdbc:hive2://>	SELECT	emp.name,	empi.employee_id,	emph.sin_number

.>	FROM	employee	emp

.>	JOIN	employee_hr	emph	ON	emp.name	=	emph.name

.>	JOIN	employee_id	empi	ON	emp.name	=	empi.name;

+-----------+-------------------+------------------+

|	emp.name		|	empi.employee_id		|	emph.sin_number		|

+-----------+-------------------+------------------+

|	Michael			|	100															|	547-968-091						|

|	Will						|	101															|	527-948-090						|

|	Lucy						|	103															|	577-928-094						|

+-----------+-------------------+------------------+

3	rows	selected	(67.933	seconds)

Self-join	is	a	special	JOIN	where	one	table	joins	itself.	When	doing	such	joins,	a
different	alias	should	be	given	to	distinguish	the	same	table:

jdbc:hive2://>	SELECT	emp.name

.>	FROM	employee	emp

.>	JOIN	employee	emp_b

.>	ON	emp.name	=	emp_b.name;

+-----------+

|	emp.name		|

+-----------+

|	Michael			|

|	Will						|

|	Shelley			|

|	Lucy						|

+-----------+

4	rows	selected	(59.891	seconds)

Implicit	join	is	a	JOIN	operation	without	using	the	JOIN	keyword.	It	is	supported
since	Hive	0.13.0:

jdbc:hive2://>	SELECT	emp.name,	emph.sin_number

.>	FROM	employee	emp,	employee_hr	emph

.>	WHERE	emp.name	=	emph.name;

+-----------+------------------+

|	emp.name		|	emph.sin_number		|

+-----------+------------------+

|	Michael			|	547-968-091						|

|	Will						|	527-948-090						|

|	Lucy						|	577-928-094						|

+-----------+------------------+

3	rows	selected	(47.241	seconds)

The	JOIN	operation	uses	different	columns	in	join	conditions	and	will	create	an
additional	MapReduce:

jdbc:hive2://>	SELECT	emp.name,	empi.employee_id,	emph.sin_number

.>	FROM	employee	emp

.>	JOIN	employee_hr	emph	ON	emp.name	=	emph.name

.>	JOIN	employee_id	empi	ON	emph.employee_id	=	

empi.employee_id;

+-----------+-------------------+------------------+

|	emp.name		|	empi.employee_id		|	emph.sin_number		|

+-----------+-------------------+------------------+

|	Michael			|	100															|	547-968-091						|

|	Will						|	101															|	527-948-090						|

|	Lucy						|	103															|	577-928-094						|

+-----------+-------------------+------------------+

3	rows	selected	(49.785	seconds)

Note
If	JOIN	uses	different	columns	in	the	join	conditions,	it	will	request	additional	job
stages	to	complete	the	join.	If	the	JOIN	operation	uses	the	same	column	in	the	join
conditions,	Hive	will	join	on	this	condition	using	one	stage.

When	JOIN	is	performed	between	multiple	tables,	the	MapReduce	jobs	are	created	to
process	the	data	in	the	HDFS.	Each	of	the	jobs	is	called	a	stage.	Usually,	it	is	suggested	for
JOIN	statements	to	put	the	big	table	right	at	the	end	for	better	performance	as	well	as
avoiding	Out	Of	Memory	(OOM)	exceptions,	because	the	last	table	in	the	sequence	is
streamed	through	the	reducers	where	the	others	are	buffered	in	the	reducer	by	default.
Also,	a	hint,	such	as	/*+STREAMTABLE	(table_name)*/,	can	be	specified	to	tell	which
table	is	streamed	as	follows:

jdbc:hive2://>	SELECT	/*+	STREAMTABLE(employee_hr)	*/

.>	emp.name,	empi.employee_id,	emph.sin_number

.>	FROM	employee	emp

.>	JOIN	employee_hr	emph	ON	emp.name	=	emph.name

.>	JOIN	employee_id	empi	ON	emph.employee_id	=	

empi.employee_id;

The	OUTER	JOIN	and	CROSS	JOIN
statements
Besides	INNER	JOIN,	Hive	also	supports	regular	OUTER	JOIN	and	FULL	JOIN.	The	logic	of
such	JOIN	is	the	same	to	what’s	in	the	RDBMS.	The	following	table	summarizes	the
differences	of	a	common	JOIN:

Common
JOIN
type

Logic
Rows	returned	(assume	table_m
has	m	rows	and	table_n	has	n
rows)

table_m

JOIN

table_n

This	returns	all	rows	matched	in	both	tables. m	∩	n

table_m

LEFT

[OUTER]

JOIN

table_n

This	returns	all	rows	in	the	left	table	and	matched	rows	in	the	right
table.	If	there	is	no	match	in	the	right	table,	return	null	in	the	right
table.

m

table_m

RIGHT

[OUTER]

JOIN

table_n

This	returns	all	rows	in	the	right	table	and	matched	rows	in	the	left
table.	If	there	is	no	match	in	the	left	table,	return	null	in	the	left	table. n

table_m

FULL

[OUTER]

JOIN

table_n

This	returns	all	rows	in	both	the	tables	and	matched	rows	in	both	the
tables.	If	there	is	no	match	in	the	left	or	right	table,	return	null	instead. m	+	n	-	m	∩	n

table_m

CROSS

JOIN

table_n

This	returns	all	row	combinations	in	both	the	tables	to	produce	a
Cartesian	product. m	*	n

The	following	examples	demonstrate	OUTER	JOIN:

jdbc:hive2://>	SELECT	emp.name,	emph.sin_number

.>	FROM	employee	emp

.>	LEFT	JOIN	employee_hr	emph	ON	emp.name	=	emph.name;

+-----------+------------------+

|	emp.name		|	emph.sin_number		|

+-----------+------------------+

|	Michael			|	547-968-091						|

|	Will						|	527-948-090						|

|	Shelley			|	NULL													|

|	Lucy						|	577-928-094						|

+-----------+------------------+

4	rows	selected	(39.637	seconds)

jdbc:hive2://>	SELECT	emp.name,	emph.sin_number

.>	FROM	employee	emp

.>	RIGHT	JOIN	employee_hr	emph	ON	emp.name	=	emph.name;

+-----------+------------------+

|	emp.name		|	emph.sin_number		|

+-----------+------------------+

|	Michael			|	547-968-091						|

|	Will						|	527-948-090						|

|	NULL						|	647-968-598						|

|	Lucy						|	577-928-094						|

+-----------+------------------+

4	rows	selected	(34.485	seconds)

jdbc:hive2://>	SELECT	emp.name,	emph.sin_number

.>	FROM	employee	emp

.>	FULL	JOIN	employee_hr	emph	ON	emp.name	=	emph.name;

+-----------+------------------+

|	emp.name		|	emph.sin_number		|

+-----------+------------------+

|	Lucy						|	577-928-094						|

|	Michael			|	547-968-091						|

|	Shelley			|	NULL													|

|	NULL						|	647-968-598						|

|	Will						|	527-948-090						|

+-----------+------------------+

5	rows	selected	(64.251	seconds)

The	CROSS	JOIN	statement,	which	is	available	since	Hive	0.10.0,	does	not	have	the	JOIN
condition.	The	CROSS	JOIN	statement	can	also	be	written	using	JOIN	without	condition	or
with	the	always	true	condition,	such	as	1	=	1.	The	following	three	ways	of	writing	CROSS
JOIN	produce	the	same	result	set:

jdbc:hive2://>	SELECT	emp.name,	emph.sin_number

.>	FROM	employee	emp

.>	CROSS	JOIN	employee_hr	emph;

jdbc:hive2://>	SELECT	emp.name,	emph.sin_number

.>	FROM	employee	emp

.>	JOIN	employee_hr	emph;

jdbc:hive2://>	SELECT	emp.name,	emph.sin_number

.>	FROM	employee	emp

.>	JOIN	employee_hr	emph	on	1=1;

+-----------+------------------+

|	emp.name		|	emph.sin_number		|

+-----------+------------------+

|	Michael			|	547-968-091						|

|	Michael			|	527-948-090						|

|	Michael			|	647-968-598						|

|	Michael			|	577-928-094						|

|	Will						|	547-968-091						|

|	Will						|	527-948-090						|

|	Will						|	647-968-598						|

|	Will						|	577-928-094						|

|	Shelley			|	547-968-091						|

|	Shelley			|	527-948-090						|

|	Shelley			|	647-968-598						|

|	Shelley			|	577-928-094						|

|	Lucy						|	547-968-091						|

|	Lucy						|	527-948-090						|

|	Lucy						|	647-968-598						|

|	Lucy						|	577-928-094						|

+-----------+------------------+

16	rows	selected	(34.924	seconds)

In	addition,	JOIN	always	happens	before	WHERE.	If	possible,	push	conditions	such	as	the
JOIN	conditions	rather	than	WHERE	conditions	to	filter	the	result	set	after	JOIN	immediately.
What’s	more,	JOIN	is	NOT	commutative!	It	is	always	left	associative	no	matter	whether
they	are	LEFT	JOIN	or	RIGHT	JOIN.

Although	Hive	does	not	support	unequal	JOIN	explicitly,	there	are	workarounds	using
CROSS	JOIN	and	WHERE	conditions	mentioned	in	the	following	example:

jdbc:hive2://>	SELECT	emp.name,	emph.sin_number

.>	FROM	employee	emp

.>	JOIN	employee_hr	emph	ON	emp.name	<>	emph.name;

Error:	Error	while	compiling	statement:	FAILED:	SemanticException	[Error	

10017]:	Line	1:77	Both	left	and	right	aliases	encountered	in	JOIN	'name'	

(state=42000,code=10017)

jdbc:hive2://>	SELECT	emp.name,	emph.sin_number

.>	FROM	employee	emp

.>	CROSS	JOIN	employee_hr	emph	WHERE	emp.name	<>	emph.name;

+-----------+------------------+

|	emp.name		|	emph.sin_number		|

+-----------+------------------+

|	Michael			|	527-948-090						|

|	Michael			|	647-968-598						|

|	Michael			|	577-928-094						|

|	Will						|	547-968-091						|

|	Will						|	647-968-598						|

|	Will						|	577-928-094						|

|	Shelley			|	547-968-091						|

|	Shelley			|	527-948-090						|

|	Shelley			|	647-968-598						|

|	Shelley			|	577-928-094						|

|	Lucy						|	547-968-091						|

|	Lucy						|	527-948-090						|

|	Lucy						|	647-968-598						|

+-----------+------------------+

13	rows	selected	(35.016	seconds)

Special	JOIN	–	MAPJOIN
The	MAPJOIN	statement	means	doing	the	JOIN	operation	only	by	map	without	the	reduce
job.	The	MAPJOIN	statement	reads	all	the	data	from	the	small	table	to	memory	and
broadcasts	to	all	maps.	During	the	map	phase,	the	JOIN	operation	is	performed	by
comparing	each	row	of	data	in	the	big	table	with	small	tables	against	the	join	conditions.
Because	there	is	no	reduce	needed,	the	JOIN	performance	is	improved.	When	the
hive.auto.convert.join	setting	is	set	to	true,	Hive	automatically	converts	the	JOIN	to
MAPJOIN	at	runtime	if	possible	instead	of	checking	the	map	join	hint.	In	addition,	MAPJOIN
can	be	used	for	unequal	joins	to	improve	performance	since	both	MAPJOIN	and	WHERE	are
performed	in	the	map	phase.	The	following	is	an	example	of	MAPJOIN	that	is	enabled	by
query	hint:

jdbc:hive2://>	SELECT	/*+	MAPJOIN(employee)	*/	emp.name,	emph.sin_number

.>	FROM	employee	emp

.>	CROSS	JOIN	employee_hr	emph	WHERE	emp.name	<>	emph.name;

The	MAPJOIN	operation	does	not	support	the	following:

The	use	of	MAPJOIN	after	UNION	ALL,	LATERAL	VIEW,	GROUP	BY/JOIN/SORT
BY/CLUSTER	BY/DISTRIBUTE	BY
The	use	of	MAPJOIN	before	UNION,	JOIN,	and	another	MAPJOIN

The	bucket	map	join	is	a	special	type	of	MAPJOIN	that	uses	bucket	columns	(the	column
specified	by	CLUSTERED	BY	in	the	CREATE	table	statement)	as	the	join	condition.	Instead	of
fetching	the	whole	table	as	done	by	the	regular	map	join,	bucket	map	join	only	fetches	the
required	bucket	data.	To	enable	bucket	map	join,	we	need	to	set
hive.optimize.bucketmapjoin	=	true	and	make	sure	the	buckets	number	is	a	multiple
of	each	other.	If	both	tables	joined	are	sorted	and	bucketed	with	the	same	number	of
buckets,	a	sort-merge	join	can	be	performed	instead	of	caching	all	small	tables	in	the
memory.	The	following	additional	settings	are	needed	to	enable	this	behavior:

SET	hive.optimize.bucketmapjoin	=	true;

SET	hive.optimize.bucketmapjoin.sortedmerge	=	true;

SET	

hive.input.format=org.apache.hadoop.hive.ql.io.BucketizedHiveInputFormat;	

The	LEFT	SEMI	JOIN	statement	is	also	a	type	of	MAPJOIN.	Before	Hive	supports	IN/EXIST,
LEFT	SEMI	JOIN	is	used	to	implement	such	a	request	as	shown	in	the	following	example.
The	restriction	of	using	LEFT	SEMI	JOIN	is	that	the	right-hand	side	table	should	only	be
referenced	in	the	join	condition,	but	not	in	WHERE	or	SELECT	clauses.

jdbc:hive2://>	SELECT	a.name

.>	FROM	employee	a

.>	WHERE	EXISTS

.>	(SELECT	*	FROM	employee_id	b

.>	WHERE	a.name	=	b.name);

jdbc:hive2://>	SELECT	a.name

.>	FROM	employee	a

.>	LEFT	SEMI	JOIN	employee_id	b

.>	ON	a.name	=	b.name;

+----------+

|		a.name		|

+----------+

|	Michael		|

|	Will					|

|	Shelley		|

|	Lucy					|

+----------+

4	rows	selected	(35.027	seconds)

Set	operation	–	UNION	ALL
To	operate	the	result	set	vertically,	Hive	only	supports	UNION	ALL	right	now.	And,	the
result	set	of	UNION	ALL	keeps	duplicates	if	any.	Before	Hive	0.13.0,	UNION	ALL	can	only
be	used	in	the	subquery.	Since	Hive	0.13.0,	UNION	ALL	can	also	be	used	in	top-level
queries.	The	following	are	examples	of	the	UNION	ALL	statements:

Check	the	name	column	in	the	employee_hr	and	employee	table:

jdbc:hive2://>	SELECT	name	FROM	employee_hr;

+----------+

|			name			|

+----------+

|	Michael		|

|	Will					|

|	Steven			|

|	Lucy					|

+----------+

4	rows	selected	(0.116	seconds)

jdbc:hive2://>	SELECT	name	FROM	employee;

+----------+

|			name			|

+----------+

|	Michael		|

|	Will					|

|	Shelley		|

|	Lucy					|

+----------+

4	rows	selected	(0.049	seconds)

Use	UNION	on	the	name	column	from	both	tables,	including	duplications:

jdbc:hive2://>	SELECT	a.name	

.>	FROM	employee	a

.>	UNION	ALL

.>	SELECT	b.name	

.>	FROM	employee_hr	b;

+-----------+

|	_u1.name		|

+-----------+

|	Michael			|

|	Will						|

|	Shelley			|

|	Lucy						|

|	Michael			|

|	Will						|

|	Steven				|

|	Lucy						|

+-----------+

8	rows	selected	(39.93	seconds)

For	other	set	operations	supported	by	RDBMS,	such	as	UNION,	INTERCEPT,	and	MINUS,	we
can	use	SELECT	with	the	WHERE	condition	to	implement	them	as	follows:

Implement	UNION	between	two	tables	without	duplications:

jdbc:hive2://>	SELECT	DISTINCT	name

.>	FROM

.>	(

.>				SELECT	a.name	AS	name

.>				FROM	employee	a

.>				UNION	ALL

.>				SELECT	b.name	AS	name

.>				FROM	employee_hr	b

.>)	union_set;

+----------+

|			name			|

+----------+

|	Lucy					|

|	Michael		|

|	Shelley		|

|	Steven			|

|	Will					|

+----------+

5	rows	selected	(100.366	seconds)

Note
The	subquery	alias	(such	as	union_set	in	this	example)	must	be	given	to	avoid	a
Hive	syntax	error.

The	employee	table	implements	INTERCEPT	on	employee_hr	using	JOIN:

jdbc:hive2://>	SELECT	a.name	

.>	FROM	employee	a

.>	JOIN	employee_hr	b

.>	ON	a.name	=	b.name;

+----------+

|		a.name		|

+----------+

|	Michael		|

|	Will					|

|	Lucy					|

+----------+

3	rows	selected	(44.862	seconds)

The	employee	table	implements	MINUS	on	employee_hr	using	OUTER	JOIN:

jdbc:hive2://>	SELECT	a.name	

.>	FROM	employee	a

.>	LEFT	JOIN	employee_hr	b

.>	ON	a.name	=	b.name

.>	WHERE	b.name	IS	NULL;

+----------+

|		a.name		|

+----------+

|	Shelley		|

+----------+

1	row	selected	(36.841	seconds)

Summary
In	this	chapter,	you	learned	to	use	SELECT	statements	to	discover	the	data	you	need.	Then,
we	introduced	Hive	operations	to	link	different	datasets	from	vertical	or	horizontal
directions	using	JOIN	or	UNION	ALL.	After	going	through	this	chapter,	we	should	be	able	to
use	the	SELECT	statement	with	different	WHERE	conditions,	LIMIT,	DISTINCT,	and	complex
subqueries.	We	should	be	able	to	understand	and	use	different	types	of	JOIN	statements	to
link	the	different	datasets	horizontally	and	UNION	ALL	to	combine	the	different	datasets
vertically.

In	the	next	chapter,	we	will	talk	about	the	details	of	exchange,	order,	and	transforming
data	as	well	as	transactions	in	Hive.

Chapter	5.	Data	Manipulation
The	ability	to	manipulate	data	is	a	critical	capability	in	big	data	analysis.	Manipulating
data	is	the	process	of	exchanging,	moving,	sorting,	and	transforming	the	data.	This
technique	is	used	in	many	situations,	such	as	cleaning	data,	searching	patterns,	creating
trends,	and	so	on.	Hive	offers	various	query	statements,	keywords,	operators,	and
functions	to	carry	out	data	manipulation.

In	this	chapter,	we	will	cover	the	following	topics:

Data	exchange	using	LOAD,	INSERT,	IMPORT,	and	EXPORT
Order	and	sort
Operators	and	functions
Transaction

Data	exchange	–	LOAD
To	move	data	in	Hive,	it	uses	the	LOAD	keyword.	Move	here	means	the	original	data	is
moved	to	the	target	table/partition	and	does	not	exist	in	the	original	place	anymore.	The
following	is	an	example	of	how	to	move	data	to	the	Hive	table	or	partition	from	local	or
HDFS	files.	The	LOCAL	keyword	specifies	where	the	files	are	located	in	the	host.	If	the
LOCAL	keyword	is	not	specified,	the	files	are	loaded	from	the	full	Uniform	Resource
Identifier	(URI)	specified	after	INPATH	or	the	value	from	the	fs.default.name	Hive
property	by	default.	The	path	after	INPATH	can	be	a	relative	path	or	an	absolute	path.	The
path	either	points	to	a	file	or	a	folder	(all	files	in	the	folder)	to	be	loaded,	but	the	subfolder
is	not	allowed	in	the	path	specified.	If	the	data	is	loaded	into	a	partition	table,	the	partition
column	must	be	specified.	The	OVERWRITE	keyword	is	used	to	decide	whether	to	append	or
replace	the	existing	data	in	the	target	table/partition.

The	following	are	the	examples	to	load	files	into	Hive	tables:

Load	local	data	to	the	Hive	table:

jdbc:hive2://>	LOAD	DATA	LOCAL	INPATH

.>	'/home/dayongd/Downloads/employee_hr.txt'	

.>	OVERWRITE	INTO	TABLE	employee_hr;

No	rows	affected	(0.436	seconds)

Load	local	data	to	the	Hive	partition	table:

jdbc:hive2://>	LOAD	DATA	LOCAL	INPATH	

.>	'/home/dayongd/Downloads/employee.txt'

.>	OVERWRITE	INTO	TABLE	employee_partitioned

.>	PARTITION	(year=2014,	month=12);

No	rows	affected	(0.772	seconds)

Load	HDFS	data	to	the	Hive	table	using	the	default	system	path:

jdbc:hive2://>	LOAD	DATA	INPATH	

.>	'/user/dayongd/employee/employee.txt'	

.>	OVERWRITE	INTO	TABLE	employee;

No	rows	affected	(0.453	seconds)

Load	HDFS	data	to	the	Hive	table	with	full	URI:

jdbc:hive2://>	LOAD	DATA	INPATH	

.>	

'hdfs://[dfs_host]:8020/user/dayongd/employee/employee.txt'	

.>	OVERWRITE	INTO	TABLE	employee;

No	rows	affected	(0.297	seconds)

Data	exchange	–	INSERT
To	extract	the	data	from	Hive	tables/	partitions,	we	can	use	the	INSERT	keyword.	Like
RDBMS,	Hive	supports	inserting	data	by	selecting	data	from	other	tables.	This	is	a	very
common	way	to	populate	a	table	from	existing	data.	The	basic	INSERT	statement	has	the
same	syntax	as	a	relational	database’s	INSERT.	However,	Hive	has	improved	its	INSERT
statement	by	supporting	OVERWRITE,	multiple	INSERT,	dynamic	partition	INSERT,	as	well	as
using	INSERT	to	files.	The	following	are	a	few	examples:

The	following	is	a	regular	INSERT	from	the	SELECT	statement:

--Check	the	target	table,	which	is	empty.

jdbc:hive2://>	SELECT	name,	work_place,	sex_age	

.>	FROM	employee;

+-------------+-------------------+----------------+

|employee.name|employee.work_place|employee.sex_age|

+-------------+-------------------+----------------+

+-------------+-------------------+----------------+

No	rows	selected	(0.115	seconds)

--Populate	data	from	SELECT

jdbc:hive2://>	INSERT	INTO	TABLE	employee

.>	SELECT	*	FROM	ctas_employee;

No	rows	affected	(31.701	seconds)

--Verify	the	data	loaded

jdbc:hive2://>	SELECT	name,	work_place,	sex_age	FROM	employee;

+-------------+----------------------+-------------------------+

|employee.name|		employee.work_place	|				employee.sex_age					|

+-------------+----------------------+-------------------------+

|	Michael					|["Montreal","Toronto"]|{"sex":"Male","age":30}		|

|	Will								|["Montreal"]										|{"sex":"Male","age":35}		|

|	Shelley					|["New	York"]										|{"sex":"Female","age":27}|

|	Lucy								|["Vancouver"]									|{"sex":"Female","age":57}|

+-------------+----------------------+-------------------------+

4	rows	selected	(0.12	seconds)

Insert	data	from	the	CTE	statement:

jdbc:hive2://>	WITH	a	AS	(SELECT	*	FROM	ctas_employee)

.>	FROM	a

.>	INSERT	OVERWRITE	TABLE	employee

.>	SELECT	*;

No	rows	affected	(30.1	seconds)

Run	multiple	INSERT	by	only	scanning	the	source	table	once:

jdbc:hive2://>	FROM	ctas_employee

.>	INSERT	OVERWRITE	TABLE	employee

.>	SELECT	*

.>	INSERT	OVERWRITE	TABLE	employee_internal

.>	SELECT	*	;

No	rows	affected	(27.919	seconds)

Note
The	INSERT	OVERWRITE	statement	will	replace	the	data	in	the	target	table/partition
while	INSERT	INTO	will	append	data.

When	inserting	data	to	the	partitions,	we	need	to	specify	the	partition	columns.	Instead	of
specifying	static	values	for	static	partitions,	Hive	also	supports	dynamically	giving
partition	values.	Dynamic	partitions	are	useful	when	the	data	volume	is	large	and	we	don’t
know	what	will	be	the	partition	values.	For	example,	the	date	is	dynamically	used	as
partition	columns.

Dynamic	partition	is	not	enabled	by	default.	We	need	to	set	the	following	properties	to
make	it	work:

jdbc:hive2://>	SET	hive.exec.dynamic.partition=true;

No	rows	affected	(0.002	seconds)

By	default,	the	user	must	specify	at	least	one	static	partition	column.	This	is	to	avoid
accidentally	overwriting	partitions.	To	disable	this	restriction,	we	can	set	the	partition
mode	to	nonstrict	from	the	default	strict	mode	before	inserting	into	dynamic	partitions
as	follows:

jdbc:hive2://>	SET	hive.exec.dynamic.partition.mode=nonstrict;

No	rows	affected	(0.002	seconds)

jdbc:hive2://>	INSERT	INTO	TABLE	employee_partitioned	

.>	PARTITION(year,	month)

.>	SELECT	name,	array('Toronto')	as	work_place,	

.>	named_struct("sex","Male","age",30)	as	sex_age,	

.>	map("Python",90)	as	skills_score,

.>	map("R&D",array('Developer'))	as	depart_title,	

.>	year(start_date)	as	year,	month(start_date)	as	month

.>	FROM	employee_hr	eh

.>	WHERE	eh.employee_id	=	102;

No	rows	affected	(29.024	seconds)

Note
Complex	type	constructors	are	used	in	the	preceding	example	to	assign	a	constant	value	to
a	complex	data	type	column.

The	Hive	INSERT	to	files	statement	is	the	opposite	operation	for	LOAD.	It	extracts	the	data
from	SELECT	statements	to	local	or	HDFS	files.	However,	it	only	supports	the	OVERWRITE
keyword,	not	INTO.	This	means	we	cannot	append	data	extracted	to	the	existing	files.	By
default,	the	columns	are	separated	by	^A	and	rows	are	separated	by	newlines.	Since	Hive
0.11.0,	row	separators	can	be	specified.	The	following	are	a	few	examples	to	insert	data	to
files:

We	can	insert	to	local	files	with	default	row	separators.	In	some	recent	version	of
Hadoop,	the	local	directory	path	only	works	for	a	directory	level	less	than	two.	We
may	need	to	set	hive.insert.into.multilevel.dirs=true	to	get	this	fixed:

jdbc:hive2://>	INSERT	OVERWRITE	LOCAL	DIRECTORY	'/tmp/output1'	

.>	SELECT	*	FROM	employee;

No	rows	affected	(30.859	seconds)

Note
By	default,	many	partial	files	could	be	created	by	the	reducer	when	doing	INSERT.	To
merge	them	into	one,	we	can	use	HDFS	commands,	as	shown	in	the	following
example:

hdfs	dfs	–getmerge	hdfs://<host_name>:8020/user/dayongd/output	

/tmp/test

Insert	to	local	files	with	specified	row	separators:

jdbc:hive2://>	INSERT	OVERWRITE	LOCAL	DIRECTORY	'/tmp/output2'	

.>	ROW	FORMAT	DELIMITED	FIELDS	TERMINATED	BY	','	

.>	SELECT	*	FROM	employee;

No	rows	affected	(31.937	seconds)

--Verify	the	separator

vi	/tmp/output2/000000_0

Michael,Montreal^BToronto,Male^B30,DB^C80,Product^CDeveloper^DLead

Will,Montreal,Male^B35,Perl^C85,Product^CLead^BTest^CLead

Shelley,New	York,Female^B27,Python^C80,Test^CLead^BCOE^CArchitect

Lucy,Vancouver,Female^B57,Sales^C89^BHR^C94,Sales^CLead

Fire	multiple	INSERT	statements	from	the	same	table	SELECT	statement:

jdbc:hive2://>	FROM	employee

.>	INSERT	OVERWRITE	DIRECTORY	'/user/dayongd/output'

.>	SELECT	*

.>	INSERT	OVERWRITE	DIRECTORY	'/user/dayongd/output1'

.>	SELECT	*	;

No	rows	affected	(25.4	seconds)

Note
Besides	the	Hive	INSERT	statement,	Hive	and	HDFS	shell	commands	can	also	be	used	to
extract	data	to	local	or	remote	files	with	both	append	and	overwrite	support.	The	hive	-e
'quoted_hql_string'	or	hive	-f	<hql_filename>	commands	can	execute	a	Hive	query
statement	or	query	file.	Linux	redirect	operators	and	piping	can	be	used	with	these
commands	to	redirect	result	sets.	The	following	are	a	few	examples:

Append	to	local	files:

$	hive	-e	'select	*	from	employee'	>>	test

Overwrite	to	local	files:

$	hive	-e	'select	*	from	employee'	>	test

Append	to	HDFS	files:

$	hive	-e	'select	*	from	employee'|hdfs	dfs	-appendToFile	-	

/user/dayongd/output2/test

Overwrite	to	HDFS	files:

$	hive	-e	'select	*	from	employee'|hdfs	dfs	-put	-f	-	

/user/dayongd/output2/test

Data	exchange	–	EXPORT	and	IMPORT
When	working	with	Hive,	sometimes	we	need	to	migrate	data	among	different
environments.	Or	we	may	need	to	back	up	some	data.	Since	Hive	0.8.0,	EXPORT	and
IMPORT	statements	are	available	to	support	the	import	and	export	of	data	in	HDFS	for	data
migration	or	backup/restore	purposes.

The	EXPORT	statement	will	export	both	data	and	metadata	from	a	table	or	partition.
Metadata	is	exported	in	a	file	called	_metadata.	Data	is	exported	in	a	subdirectory	called
data:

jdbc:hive2://>	EXPORT	TABLE	employee	TO	'/user/dayongd/output3';

No	rows	affected	(0.19	seconds)

After	EXPORT,	we	can	manually	copy	the	exported	files	to	other	Hive	instances	or	use
Hadoop	distcp	commands	to	copy	to	other	HDFS	clusters.	Then,	we	can	import	the	data
in	the	following	manner:

Import	data	to	a	table	with	the	same	name.	It	throws	an	error	if	the	table	exists:

jdbc:hive2://>	IMPORT	FROM	'/user/dayongd/output3';

Error:	Error	while	compiling	statement:	FAILED:	SemanticException	

[Error	10119]:	Table	exists	and	contains	data	files	

(state=42000,code=10119)

Import	data	to	a	new	table:

jdbc:hive2://>	IMPORT	TABLE	empolyee_imported	FROM	

.>	'/user/dayongd/output3';

No	rows	affected	(0.788	seconds)

Import	data	to	an	external	table,	where	the	LOCATION	property	is	optional:

jdbc:hive2://>	IMPORT	EXTERNAL	TABLE	empolyee_imported_external	

.>	FROM	'/user/dayongd/output3'

.>	LOCATION	'/user/dayongd/output4'	;

No	rows	affected	(0.256	seconds)

Export	and	import	partitions:

jdbc:hive2://>	EXPORT	TABLE	employee_partitioned	partition	

.>	(year=2014,	month=11)	TO	'/user/dayongd/output5';

No	rows	affected	(0.247	seconds)

jdbc:hive2://>	IMPORT	TABLE	employee_partitioned_imported	

.>	FROM	'/user/dayongd/output5';

No	rows	affected	(0.14	seconds)

ORDER	and	SORT
Another	aspect	to	manipulate	data	in	Hive	is	to	properly	order	or	sort	the	data	or	result	sets
to	clearly	identify	the	important	facts,	such	as	top	N	values,	maximum,	minimum,	and	so
on.

There	are	the	following	keywords	used	in	Hive	to	order	and	sort	data:

ORDER	BY	(ASC|DESC):	This	is	similar	to	the	RDBMS	ORDER	BY	statement.	A	sorted
order	is	maintained	across	all	of	the	output	from	every	reducer.	It	performs	the	global
sort	using	only	one	reducer,	so	it	takes	a	longer	time	to	return	the	result.	Usage	with
LIMIT	is	strongly	recommended	for	ORDER	BY.	When	hive.mapred.mode	=	strict
(by	default,	hive.mapred.mode	=	nonstrict)	is	set	and	we	do	not	specify	LIMIT,
there	are	exceptions.	This	can	be	used	as	follows:

jdbc:hive2://>	SELECT	name	FROM	employee	ORDER	BY	NAME	DESC;

+----------+

|			name			|

+----------+

|	Will					|

|	Shelley		|

|	Michael		|

|	Lucy					|

+----------+

4	rows	selected	(57.057	seconds)

SORT	BY	(ASC|DESC):	This	indicates	which	columns	to	sort	when	ordering	the
reducer	input	records.	This	means	it	completes	sorting	before	sending	data	to	the
reducer.	The	SORT	BY	statement	does	not	perform	a	global	sort	and	only	makes	sure
data	is	locally	sorted	in	each	reducer	unless	we	set	mapred.reduce.tasks=1.	In	this
case,	it	is	equal	to	the	result	of	ORDER	BY.	It	can	be	used	as	follows:

--Use	more	than	1	reducer

jdbc:hive2://>	SET	mapred.reduce.tasks	=	2;

No	rows	affected	(0.001	seconds)

jdbc:hive2://>	SELECT	name	FROM	employee	SORT	BY	NAME	DESC;

+----------+

|			name			|

+----------+

|	Shelley		|

|	Michael		|

|	Lucy					|

|	Will					|

+----------+

4	rows	selected	(54.386	seconds)

--Use	only	1	reducer

jdbc:hive2://>	SET	mapred.reduce.tasks	=	1;

No	rows	affected	(0.002	seconds)

jdbc:hive2://>	SELECT	name	FROM	employee	SORT	BY	NAME	DESC;

+----------+

|			name			|

+----------+

|	Will					|

|	Shelley		|

|	Michael		|

|	Lucy					|

+----------+

4	rows	selected	(46.03	seconds)

DISTRIBUTE	BY:	Rows	with	matching	column	values	will	be	partitioned	to	the	same
reducer.	When	used	alone,	it	does	not	guarantee	sorted	input	to	the	reducer.	The
DISTRIBUTE	BY	statement	is	similar	to	GROUP	BY	in	RDBMS	in	terms	of	deciding
which	reducer	to	distribute	the	mapper	output	to.	When	using	with	SORT	BY,
DISTRIBUTE	BY	must	be	specified	before	the	SORT	BY	statement.	And,	the	column
used	to	distribute	must	appear	in	the	select	column	list.	It	can	be	used	as	follows:

jdbc:hive2://>	SELECT	name	

.>	FROM	employee_hr	DISTRIBUTE	BY	employee_id;	

Error:	Error	while	compiling	statement:	FAILED:	SemanticException	

[Error	10004]:	Line	1:44	Invalid	table	alias	or	column	reference	

'employee_id':	(possible	column	names	are:	name)	

(state=42000,code=10004)

jdbc:hive2://>	SELECT	name,	employee_id	

.>	FROM	employee_hr	DISTRIBUTE	BY	employee_id;	

+----------+--------------+

|			name			|	employee_id		|

+----------+--------------+

|	Lucy					|	103										|

|	Steven			|	102										|

|	Will					|	101										|

|	Michael		|	100										|

+----------+--------------+

4	rows	selected	(38.92	seconds)

--Used	with	SORT	BY

jdbc:hive2://>	SELECT	name,	employee_id		

.>	FROM	employee_hr	

.>	DISTRIBUTE	BY	employee_id	SORT	BY	name;	

+----------+--------------+

|			name			|	employee_id		|

+----------+--------------+

|	Lucy					|	103										|

|	Michael		|	100										|

|	Steven			|	102										|

|	Will					|	101										|

+----------+--------------+

4	rows	selected	(38.01	seconds)

CLUSTER	BY:	This	is	a	shorthand	operator	to	perform	DISTRIBUTE	BY	and	SORT	BY
operations	on	the	same	group	of	columns.	And,	it	is	sorted	locally	in	each	reducer.
The	CLUSTER	BY	statement	does	not	support	ASC	or	DESC	yet.	Compared	to	ORDER	BY,
which	is	globally	sorted,	the	CLUSTER	BY	operation	is	sorted	in	each	distributed
group.	To	fully	utilize	all	the	available	reducers	when	doing	a	global	sort,	we	can	do

CLUSTER	BY	first	and	then	ORDER	BY.	This	can	be	used	as	follows:

jdbc:hive2://>	SELECT	name,	employee_id	

.>	FROM	employee_hr	CLUSTER	BY	name;		

+----------+--------------+

|			name			|	employee_id		|

+----------+--------------+

|	Lucy					|	103										|

|	Michael		|	100										|

|	Steven			|	102										|

|	Will					|	101										|

+----------+--------------+

4	rows	selected	(39.791	seconds)

The	difference	between	ORDER	BY	and	CLUSTER	BY	can	be	seen	in	the	following	diagram:

Operators	and	functions
To	further	manipulate	data,	we	can	also	use	expressions,	operators,	and	functions	in	Hive
to	transform	data.	The	Hive	wiki
(https://cwiki.apache.org/confluence/display/Hive/LanguageManual+UDF)	has	offered
specifications	for	each	expression	and	function,	so	we	do	not	want	to	repeat	all	of	them
here	except	a	few	important	usages	or	tips	in	this	chapter.

Hive	has	defined	relational	operators,	arithmetic	operators,	logical	operators,	complex
type	constructors,	and	complex	type	operators.	For	relational,	arithmetic,	and	logical
operators,	they	are	similar	to	standard	operators	in	SQL/Java.	We	do	not	repeat	them	again
in	this	chapter.	For	operators	on	a	complex	data	type,	we	have	already	introduced	them	in
the	Understanding	Hive	data	types	section	of	Chapter	3,	Data	Definition	and	Description,
as	well	as	the	example	for	a	dynamic	partition	insert	in	this	chapter.

The	functions	in	Hive	are	categorized	as	follows:

Mathematical	functions:	These	functions	are	mainly	used	to	perform	mathematical
calculations,	such	as	RAND()	and	E().
Collection	functions:	These	functions	are	used	to	find	the	size,	keys,	and	values	for
complex	types,	such	as	SIZE(Array<T>).
Type	conversion	functions:	These	are	mainly	CAST	and	BINARY	functions	to	convert
one	type	to	the	other.
Date	functions:	These	functions	are	used	to	perform	date-related	calculations,	such
as	YEAR(string	date)	and	MONTH(string	date).
Conditional	functions:	These	functions	are	used	to	check	specific	conditions	with	a
defined	value	returned,	such	as	COALESCE,	IF,	and	CASE	WHEN.
String	functions:	These	functions	are	used	to	perform	string-related	operations,	such
as	UPPER(string	A)	and	TRIM(string	A).
Aggregate	functions:	These	functions	are	used	to	perform	aggregation	(which	is
introduced	in	the	next	chapter	for	more	details),	such	as	SUM(),	COUNT(*).
Table-generating	functions:	These	functions	transform	a	single	input	row	into
multiple	output	rows,	such	as	EXPLODE(MAP)	and	JSON_TUPLE(jsonString,	k1,	k2,
…).
Customized	functions:	These	functions	are	created	by	Java	code	as	extensions	for
Hive.	They	are	introduced	in	Chapter	8,	Extensibility	Considerations.

To	list	Hive	built-in	functions/UDF,	we	can	use	the	following	commands	in	Hive	CLI:

SHOW	FUNCTIONS;	--List	all	functions

DESCRIBE	FUNCTION	<function_name>;	--Detail	for	specified	function

DESCRIBE	FUNCTION	EXTENDED	<function_name>;	--Even	more	details	

The	following	are	a	few	examples	and	tips	for	using	these	functions:

Complex	data	type	functions	tips:	The	SIZE	type	is	used	to	calculate	the	size	for
MAP,	ARRAY,	or	nested	MAP/ARRAY.	It	returns	-1	if	the	size	is	unknown.	It	can	be
implemented	as	follows:

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+UDF

jdbc:hive2://>	SELECT	work_place,	skills_score,	depart_title	

.>	FROM	employee;

+----------------------+--------------------+--------------------------

-----------+

|						work_place						|				skills_score				|		depart_title																							

|

+----------------------+--------------------+--------------------------

-----------+

|["Montreal","Toronto"]|{"DB":80}											|{"Product":

["Developer","Lead"]}					|

|["Montreal"]										|{"Perl":85}									|{"Product":

["Lead"],"Test":["Lead"]}	|

|["New	York"]										|{"Python":80}							|{"Test":["Lead"],"COE":

["Architect"]}|

|["Vancouver"]									|{"Sales":89,"HR":94}|{"Sales":["Lead"]}																			

|

+----------------------+--------------------+--------------------------

-----------+

4	rows	selected	(0.084	seconds)

jdbc:hive2://>	SELECT	SIZE(work_place)	AS	array_size,	

.>	SIZE(skills_score)	AS	map_size,	

.>	SIZE(depart_title)	AS	complex_size,	

.>	SIZE(depart_title["Product"])	AS	nest_size	

.>	FROM	employee;

+-------------+-----------+---------------+------------+

|	array_size		|	map_size		|	complex_size		|	nest_size		|

+-------------+-----------+---------------+------------+

|	2											|	1									|	1													|	2										|

|	1											|	1									|	2													|	1										|

|	1											|	1									|	2													|	-1									|

|	1											|	2									|	1													|	-1									|

+-------------+-----------+---------------+------------+

4	rows	selected	(0.062	seconds)

The	ARRAY_CONTAINS	statement	checks	whether	the	array	contains	some	values	to
return	TRUE	or	FALSE.	The	SORT_ARRAY	statement	sorts	the	array	in	ascending	order.
These	can	be	used	as	follows:

jdbc:hive2://>	SELECT	ARRAY_CONTAINS(work_place,	'Toronto')	

.>	AS	is_Toronto,

.>	SORT_ARRAY(work_place)	AS	sorted_array	

.>	FROM	employee;

+-------------+-------------------------+

|	is_toronto		|						sorted_array							|

+-------------+-------------------------+

|	true								|	["Montreal","Toronto"]		|

|	false							|	["Montreal"]												|

|	false							|	["New	York"]												|

|	false							|	["Vancouver"]											|

+-------------+-------------------------+

4	rows	selected	(0.059	seconds)

Date	function	tips:	The	FROM_UNIXTIME(UNIX_TIMESTAMP())	statement	performs	the
same	function	as	SYSDATE	in	Oracle.	It	dynamically	returns	the	current	date-time	in

the	Hive	server,	as	follows:

jdbc:hive2://>	SELECT	

.>	FROM_UNIXTIME(UNIX_TIMESTAMP())	AS	current_time	

.>	FROM	employee	LIMIT	1;

+----------------------+

|					current_time					|

+----------------------+

|	2014-11-15	19:28:29		|

+----------------------+

1	row	selected	(0.047	seconds)

The	UNIX_TIMESTAMP()	statement	can	be	used	to	compare	two	dates	or	can	be	used
after	ORDER	BY	to	properly	order	the	different	string	types	of	a	date	value,	such	as
ORDER	BY	UNIX_TIMESTAMP(string_date,	'dd-MM-yyyy').	This	can	be	used	as
follows:

--To	compare	the	difference	between	two	dates.

jdbc:hive2://>	SELECT	(UNIX_TIMESTAMP	('2015-01-21	18:00:00')	

.>	-	UNIX_TIMESTAMP('2015-01-10	11:00:00'))/60/60/24	

.>	AS	daydiff	FROM	employee	LIMIT	1;

+---------------------+

|							daydiff							|

+---------------------+

|	11.291666666666666		|

+---------------------+

1	row	selected	(0.093	seconds)

The	TO_DATE	statement	removes	the	hours,	minutes,	and	seconds	from	a	date.	This	is
useful	when	we	need	to	check	whether	the	value	of	date-time	type	columns	is	within
the	data	range,	such	as	WHERE	TO_DATE(update_datetime)	BETWEEN	'2014-11-01'
AND	'2014-11-31'.	This	can	be	used	as	follows:

jdbc:hive2://>	SELECT	TO_DATE(FROM_UNIXTIME(UNIX_TIMESTAMP()))	

.>	AS	current_date	FROM	employee	LIMIT	1;

+---------------+

|	current_date		|

+---------------+

|	2014-11-15				|

+---------------+

1	row	selected	(0.153	seconds)

CASE	for	different	data	types:	Before	Hive	0.13.0,	the	data	type	after	THEN	or	ELSE
needed	to	be	the	same.	Otherwise,	it	would	give	an	exception,	such	as	The	expression
after	ELSE	should	have	the	same	type	as	those	after	THEN:	“bigint”	is	expected	but
“int”	is	found.	The	workaround	is	to	use	IF.	In	Hive	0.13.0,	this	gets	fixed,	as	shown
here:

jdbc:hive2://>	SELECT	

.>	CASE	WHEN	1	IS	NULL	THEN	'TRUE'	ELSE	0	END	

.>	AS	case_result	FROM	employee	LIMIT	1;

+--------------+

|	case_result		|

+--------------+

|	0												|

+--------------+

1	row	selected	(0.063	seconds)

Parser	and	search	tips:	The	LATERAL	VIEW	statement	is	used	with	user-defined	table
generating	functions	such	as	EXPLODE()	to	flatten	the	map	or	array	type	of	a	column.
The	explode	function	can	be	used	on	both	ARRAY	and	MAP	with	LATERAL	VIEW.	If	even
one	of	the	columns	exploded	is	NULL,	the	whole	row	is	filtered	out,	such	as	the	row	of
Steven	in	the	following	example.	To	avoid	this,	OUTER	LATERAL	VIEW	can	be	used	as
follows	since	Hive	0.12.0:

--Prepare	data

jdbc:hive2://>	INSERT	INTO	TABLE	employee

.>	SELECT	'Steven'	AS	name,	array(null)	as	work_place,

.>	named_struct("sex","Male","age",30)	as	sex_age,	

.>	map("Python",90)	as	skills_score,	

.>	map("R&D",array('Developer'))	as	depart_title

.>	FROM	employee	LIMIT	1;

No	rows	affected	(28.187	seconds)

jdbc:hive2://>	SELECT	name,	work_place,	skills_score	

.>	FROM	employee;

+----------+-------------------------+-----------------------+

|			name			|							work_place								|					skills_score						|

+----------+-------------------------+-----------------------+

|	Michael		|	["Montreal","Toronto"]		|	{"DB":80}													|

|	Will					|	["Montreal"]												|	{"Perl":85}											|

|	Shelley		|	["New	York"]												|	{"Python":80}									|

|	Lucy					|	["Vancouver"]											|	{"Sales":89,"HR":94}		|

|	Steven			|	NULL																				|	{"Python":90}									|

+----------+-------------------------+-----------------------+

5	rows	selected	(0.053	seconds)

--LATERAL	VIEW	ignores	the	rows	when	EXPLORE	returns	NULL

jdbc:hive2://>	SELECT	name,	workplace,	skills,	score

.>	FROM	employee

.>	LATERAL	VIEW	explode(work_place)	wp	AS	workplace

.>	LATERAL	VIEW	explode(skills_score)	ss	

.>	AS	skills,	score;

+----------+------------+---------+--------+

|			name			|	workplace		|	skills		|	score		|

+----------+------------+---------+--------+

|	Michael		|	Montreal			|	DB						|	80					|

|	Michael		|	Toronto				|	DB						|	80					|

|	Will					|	Montreal			|	Perl				|	85					|

|	Shelley		|	New	York			|	Python		|	80					|

|	Lucy					|	Vancouver		|	Sales			|	89					|

|	Lucy					|	Vancouver		|	HR						|	94					|

+----------+------------+---------+--------+

6	rows	selected	(24.733	seconds)

--OUTER	LATERAL	VIEW	keeps	rows	when	EXPLORE	returns	NULL

jdbc:hive2://>	SELECT	name,	workplace,	skills,	score

.>	FROM	employee

.>	LATERAL	VIEW	OUTER	explode(work_place)	wp	

.>	AS	workplace

.>	LATERAL	VIEW	explode(skills_score)	ss	

.>	AS	skills,	score;

+----------+------------+---------+--------+

|			name			|	workplace		|	skills		|	score		|

+----------+------------+---------+--------+

|	Michael		|	Montreal			|	DB						|	80					|

|	Michael		|	Toronto				|	DB						|	80					|

|	Will					|	Montreal			|	Perl				|	85					|

|	Shelley		|	New	York			|	Python		|	80					|

|	Lucy					|	Vancouver		|	Sales			|	89					|

|	Lucy					|	Vancouver		|	HR						|	94					|

|	Steven			|	None							|	Python		|	90					|

+----------+------------+---------+--------+

7	rows	selected	(24.573	seconds)

The	REVERSE	statement	can	be	used	to	reverse	the	order	of	each	letter	in	a	string.	The
SPLIT	statement	can	be	used	to	tokenize	the	string	using	a	specified	tokenizer.	The
following	is	an	example	of	using	them	to	get	the	filename	from	a	Linux	path:

jdbc:hive2://>	SELECT

.>	reverse(split(reverse('/home/user/employee.txt'),'/')

[0])

.>	AS	linux_file_name	FROM	employee	LIMIT	1;

+------------------+

|	linux_file_name		|

+------------------+

|	employee.txt					|

+------------------+

1	row	selected	(0.1	seconds)

Whereas	reverse	outputs	each	element	in	an	array	or	map	as	separate	rows,
collect_set	and	collect_list	does	the	opposite	by	returning	a	set	with	elements
from	each	row.	The	collect_set	statement	will	remove	duplications	from	the	result,
but	collect_list	does	not.	This	is	shown	here:

jdbc:hive2://>	SELECT	collect_set(work_place[0])	

.>	AS	flat_workplace0	FROM	employee;

+--------------------------------------+

|											flat_workplace0												|

+--------------------------------------+

|	["Vancouver","Montreal","New	York"]		|

+--------------------------------------+

1	row	selected	(43.455	seconds)

jdbc:hive2://>	SELECT	collect_list(work_place[0])	

.>	AS	flat_workplace0	FROM	employee;

+---+

|																	flat_workplace0																	|

+---+

|	["Montreal","Montreal","New	York","Vancouver"]		|

+---+

1	row	selected	(45.488	seconds)

Virtual	columns:	Virtual	columns	are	special	function	type	of	columns	in	Hive.

Right	now,	Hive	offers	two	virtual	columns:	INPUT__FILE__NAME	and
BLOCK__OFFSET__INSIDE__FILE.	The	INPUT__FILE__NAME	function	is	the	input	file’s
name	for	a	mapper	task.	The	BLOCK__OFFSET__INSIDE__FILE	function	is	the	current
global	file	position	or	current	block’s	file	offset	if	the	file	is	compressed.	The
following	are	examples	to	use	virtual	columns	to	know	the	place	where	the	data	is
physically	located	in	the	HDFS,	especially	for	bucketed	and	partitioned	tables:

jdbc:hive2://>	SELECT	INPUT__FILE__NAME,	

.>	BLOCK__OFFSET__INSIDE__FILE	AS	OFFSIDE	

.>	FROM	employee_id_buckets;

+---+----------+

|														input__file__name																										|	offside		|

+---+----------+

|	hdfs://hive_warehouse_URI/employee_id_buckets/000000_0		|	0								|

|	hdfs://hive_warehouse_URI/employee_id_buckets/000000_0		|	55							|

|	hdfs://hive_warehouse_URI/employee_id_buckets/000000_0		|	120						|

|	hdfs://hive_warehouse_URI/employee_id_buckets/000000_0		|	175						|

|	hdfs://hive_warehouse_URI/employee_id_buckets/000000_0		|	240						|

|	hdfs://hive_warehouse_URI/employee_id_buckets/000000_0		|	295						|

|	hdfs://hive_warehouse_URI/employee_id_buckets/000000_0		|	360						|

|	hdfs://hive_warehouse_URI/employee_id_buckets/000000_0		|	415						|

|	hdfs://hive_warehouse_URI/employee_id_buckets/000000_0		|	480						|

|	hdfs://hive_warehouse_URI/employee_id_buckets/000000_0		|	535						|

|	hdfs://hive_warehouse_URI/employee_id_buckets/000000_0		|	592						|

|	hdfs://hive_warehouse_URI/employee_id_buckets/000000_0		|	657						|

|	hdfs://hive_warehouse_URI/employee_id_buckets/000000_0		|	712						|

|	hdfs://hive_warehouse_URI/employee_id_buckets/000000_0		|	769						|

|	hdfs://hive_warehouse_URI/employee_id_buckets/000000_0		|	834						|

|	hdfs://hive_warehouse_URI/employee_id_buckets/000001_0		|	0								|

|	hdfs://hive_warehouse_URI/employee_id_buckets/000001_0		|	57							|

|	hdfs://hive_warehouse_URI/employee_id_buckets/000001_0		|	122						|

|	hdfs://hive_warehouse_URI/employee_id_buckets/000001_0		|	177						|

|	hdfs://hive_warehouse_URI/employee_id_buckets/000001_0		|	234						|

|	hdfs://hive_warehouse_URI/employee_id_buckets/000001_0		|	291						|

|	hdfs://hive_warehouse_URI/employee_id_buckets/000001_0		|	348						|

|	hdfs://hive_warehouse_URI/employee_id_buckets/000001_0		|	405						|

|	hdfs://hive_warehouse_URI/employee_id_buckets/000001_0		|	462						|

|	hdfs://hive_warehouse_URI/employee_id_buckets/000001_0		|	517						|

+---+----------+

25	rows	selected	(0.073	seconds)

jdbc:hive2://>	SELECT	INPUT__FILE__NAME	FROM	employee_partitioned;

+--

---+

|																								input__file__name																																

|

+--

---+

|hdfs://warehouse_URI/employee_partitioned/year=2010/month=1/000000_0					

|hdfs://warehouse_URI/employee_partitioned/year=2012/month=11/000000_0				

|hdfs://warehouse_URI/employee_partitioned/year=2014/month=12/employee.

txt

|hdfs://warehouse_URI/employee_partitioned/year=2014/month=12/employee.

txt

|hdfs://warehouse_URI/employee_partitioned/year=2014/month=12/employee.

txt

|hdfs://warehouse_URI/employee_partitioned/year=2014/month=12/employee.

txt

|hdfs://warehouse_URI/employee_partitioned/year=2015/month=01/000000_0				

|hdfs://warehouse_URI/employee_partitioned/year=2015/month=01/000000_0				

|hdfs://warehouse_URI/employee_partitioned/year=2015/month=01/000000_0				

|hdfs://warehouse_URI/employee_partitioned/year=2015/month=01/000000_0				

+--

---+

10	rows	selected	(0.47	seconds)

Functions	not	mentioned	in	the	Hive	wiki:	The	following	are	the	functions	not
mentioned	in	the	Hive	wiki:

--Functions	to	check	for	null	values

jdbc:hive2://>	SELECT	work_place,	isnull(work_place)	is_null,	

.>	isnotnull(work_place)	is_not_null	FROM	employee;

+-------------------------+----------+--------------+

|							work_place								|	is_null		|	is_not_null		|

+-------------------------+----------+--------------+

|	["Montreal","Toronto"]		|	false				|	true									|

|	["Montreal"]												|	false				|	true									|

|	["New	York"]												|	false				|	true									|

|	["Vancouver"]											|	false				|	true									|

|	NULL																				|	true					|	false								|

+-------------------------+----------+--------------+

5	rows	selected	(0.058	seconds)

--assert_true,	throw	an	exception	if	'condition'	is	not	true.

jdbc:hive2://>	SELECT	assert_true(work_place	IS	NULL)	

.>	FROM	employee;

Error:	java.io.IOException:	

org.apache.hadoop.hive.ql.metadata.HiveException:	ASSERT_TRUE():	

assertion	failed.	(state=,code=0)

--elt(n,	str1,	str2,	...),returns	the	n-th	string

jdbc:hive2://>	SELECT	elt(2,'New	York','Montreal','Toronto')

.>	FROM	employee	LIMIT	1;

+-----------+

|				_c0				|

+-----------+

|	Montreal		|

+-----------+

1	row	selected	(0.055	seconds)

--Return	the	name	of	current_database	since	Hive	0.13.0

jdbc:hive2://>	SELECT	current_database();

+----------+

|			_c0				|

+----------+

|	default		|

+----------+

1	row	selected	(0.057	seconds)

Transactions
Before	Hive	version	0.13.0,	Hive	does	not	support	row-level	transactions.	As	a	result,
there	is	no	way	to	update,	insert,	or	delete	rows	of	data.	Hence,	data	overwrite	can	only
happen	on	tables	or	partitions.	This	makes	Hive	very	difficult	when	dealing	with
concurrent	read/write	and	data-cleaning	use	cases.

Since	Hive	version	0.13.0,	Hive	fully	supports	row-level	transactions	by	offering	full
Atomicity,	Consistency,	Isolation,	and	Durability	(ACID)	to	Hive.	For	now,	all	the
transactions	are	autocommuted	and	only	support	data	in	the	Optimized	Row	Columnar
(ORC)	file	(available	since	Hive	0.11.0)	format	and	in	bucketed	tables.

The	following	configuration	parameters	must	be	set	appropriately	to	turn	on	transaction
support	in	Hive:

SET	hive.support.concurrency	=	true;

SET	hive.enforce.bucketing	=	true;

SET	hive.exec.dynamic.partition.mode	=	nonstrict;

SET	hive.txn.manager	=	org.apache.hadoop.hive.ql.lockmgr.DbTxnManager;

SET	hive.compactor.initiator.on	=	true;

SET	hive.compactor.worker.threads	=	1;

The	SHOW	TRANSACTIONS	command	is	added	since	Hive	0.13.0	to	show	currently	open	and
aborted	transactions	in	the	system:

jdbc:hive2://>	SHOW	TRANSACTIONS;

+-----------------+--------------------+-------+-----------+

|						txnid						|							state								|	user		|			host				|

+-----------------+--------------------+-------+-----------+

|	Transaction	ID		|	Transaction	State		|	User		|	Hostname		|

+-----------------+--------------------+-------+-----------+

1	row	selected	(15.209	seconds)

Since	Hive	0.14.0,	the	INSERT	VALUE,	UPDATE,	and	DELETE	commands	are	added	to	operate
rows	with	the	following	syntax:

INSERT	INTO	TABLE	tablename	[PARTITION	(partcol1[=val1],	partcol2[=val2]	

...)]	

VALUES	values_row	[,	values_row	…];

UPDATE	tablename	SET	column	=	value	[,	column	=	value…]	[WHERE	expression]

DELETE	FROM	tablename	[WHERE	expression]

Summary
In	this	chapter,	we	covered	how	to	exchange	data	between	Hive	and	files	using	the	LOAD,
INSERT,	IMPORT,	and	EXPORT	keywords.	Then,	we	introduced	the	different	Hive	ordering
and	sorting	options.	We	also	covered	some	commonly	used	tips	using	Hive	functions.
Finally,	we	provided	an	overview	of	row-level	transactions	that	are	newly	supported	since
Hive	0.13.0.	After	going	through	this	chapter,	we	should	be	able	to	import	or	export	data
to	Hive.	We	should	be	experienced	in	using	different	types	of	ordering	and	sorting
keywords,	Hive	functions,	and	transactions.

In	the	next	chapter,	we’ll	look	at	the	different	ways	of	carrying	out	data	aggregations	and
sampling	in	Hive.

Chapter	6.	Data	Aggregation	and
Sampling
This	chapter	is	about	how	to	aggregate	and	sample	data	in	Hive.	It	firstly	covers	the	usage
of	several	aggregation	functions,	analytic	functions	working	with	GROUP	BY	and
PARTITION	BY,	and	windowing	clauses.	Then,	it	introduces	different	ways	of	sampling
data	in	Hive.

In	this	chapter,	we	will	cover	the	following	topics:

Basic	aggregation
Advanced	aggregation
Aggregation	condition
Analytic	functions
Sampling

Basic	aggregation	–	GROUP	BY
Data	aggregation	is	any	process	to	gather	and	express	data	in	a	summary	form	to	get	more
information	about	particular	groups	based	on	specific	conditions.	Hive	offers	several	built-
in	aggregate	functions,	such	as	MAX,	MIN,	AVG,	and	so	on.	Hive	also	supports	advanced
aggregation	by	using	GROUPING	SETS,	ROLLUP,	CUBE,	analytic	functions,	and	windowing.

The	Hive	basic	built-in	aggregate	functions	are	usually	used	with	the	GROUP	BY	clause.	If
there	is	no	GROUP	BY	clause	specified,	it	aggregates	over	the	whole	table	by	default.
Besides	aggregate	functions,	all	other	columns	that	are	selected	must	also	be	included	in
the	GROUP	BY	clause.	The	following	are	a	few	examples	using	the	built-in	aggregate
functions:

Aggregation	without	GROUP	BY	columns:

jdbc:hive2://>	SELECT	count(*)	AS	row_cnt	FROM	employee;

+----------+

|	row_cnt		|

+----------+

|	5								|

+----------+

1	row	selected	(60.709	seconds)

Aggregation	with	GROUP	BY	columns:

jdbc:hive2://>	SELECT	sex_age.sex,	count(*)	AS	row_cnt	

.>	FROM	employee	

.>	GROUP	BY	sex_age.sex;

+--------------+----------+

|	sex_age.sex		|	row_cnt		|

+--------------+----------+

|	Female							|	2								|

|	Male									|	3								|

+--------------+----------+

2	rows	selected	(100.565	seconds)

--The	column	name	selected	is	not	group	by	columns

jdbc:hive2://>	SELECT	name,	sex_age.sex,	count(*)	AS	row_cnt	

.>	FROM	employee	GROUP	BY	sex_age.sex;

Error:	Error	while	compiling	statement:	FAILED:	SemanticException	

[Error	10025]:	Line	1:7	Expression	not	in	GROUP	BY	key	'name'	

(state=42000,code=10025)	

If	we	have	to	select	the	columns	that	are	not	GROUP	BY	columns,	one	way	is	to	use	analytic
functions,	which	are	introduced	later,	to	completely	avoid	using	the	GROUP	BY	clause.	The
other	way	is	to	use	the	collect_set	function,	which	returns	a	set	of	objects	with	duplicate
elements	eliminated	as	follows:

--Find	row	count	by	sex	and	a	sampled	age	for	each	sex

jdbc:hive2://>	SELECT	sex_age.sex,

.>	collect_set(sex_age.age)[0]	AS	random_age,	

.>	count(*)	AS	row_cnt	

.>	FROM	employee	GROUP	BY	sex_age.sex;

+--------------+-------------+----------+

|	sex_age.sex		|	random_age		|	row_cnt		|

+--------------+-------------+----------+

|	Female							|	27										|	2								|

|	Male									|	35										|	3								|

+--------------+-------------+----------+

2	rows	selected	(48.15	seconds)

The	aggregate	function	can	be	used	with	other	aggregate	functions	in	the	same	select
statement.	It	can	also	be	used	with	other	functions,	such	as	conditional	functions,	in	the
nested	way.	However,	nested	aggregate	functions	are	not	supported.	See	the	following
examples	for	more	details:

Multiple	aggregate	functions	are	called	in	the	same	SELECT	statement,	as	follows:

jdbc:hive2://>	SELECT	sex_age.sex,	AVG(sex_age.age)	AS	avg_age,	

.>	count(*)	AS	row_cnt	

.>	FROM	employee	GROUP	BY	sex_age.sex;	

+--------------+---------------------+----------+

|	sex_age.sex		|							avg_age							|	row_cnt		|

+--------------+---------------------+----------+

|	Female							|	42.0																|	2								|

|	Male									|	31.666666666666668		|	3								|

+--------------+---------------------+----------+

2	rows	selected	(98.857	seconds)

These	aggregate	functions	are	used	with	CASE	WHEN,	as	follows:

jdbc:hive2://>	SELECT	sum(CASE	WHEN	sex_age.sex	=	'Male'	

.>	THEN	sex_age.age	ELSE	0	END)/

.>	count(CASE	WHEN	sex_age.sex	=	'Male'	THEN	1	

.>	ELSE	NULL	END)	AS	male_age_avg	FROM	employee;

+---------------------+

|				male_age_avg					|

+---------------------+

|	31.666666666666668		|

+---------------------+

1	row	selected	(38.415	seconds)

These	aggregate	functions	are	used	with	COALESCE	and	IF,	as	follows:

jdbc:hive2://>	SELECT

.>	sum(coalesce(sex_age.age,0))	AS	age_sum,

.>	sum(if(sex_age.sex	=	'Female',sex_age.age,0))	

.>	AS	female_age_sum	FROM	employee;

+----------+---------------+

|	age_sum		|	female_age_sum|

+----------+---------------+

|	179						|	84												|

+----------+---------------+

1	row	selected	(42.137	seconds)

Nested	aggregate	functions	are	not	allowed,	as	shown	here:

jdbc:hive2://>	SELECT	avg(count(*))	AS	row_cnt

.>	FROM	employee;

Error:	Error	while	compiling	statement:	FAILED:	SemanticException	

[Error	10128]:	Line	1:11	Not	yet	supported	place	for	UDAF	'count'	

(state=42000,code=10128)

Aggregate	functions	can	also	be	used	with	the	DISTINCT	keyword	to	do	aggregation	on
unique	values:

jdbc:hive2://>	SELECT	count(DISTINCT	sex_age.sex)	AS	sex_uni_cnt,

.>	count(DISTINCT	name)	AS	name_uni_cnt	

.>	FROM	employee;					

+--------------+---------------+

|	sex_uni_cnt		|	name_uni_cnt		|

+--------------+---------------+

|	2												|	5													|

+--------------+---------------+

1	row	selected	(35.935	seconds)

Note
When	we	use	COUNT	and	DISTINCT	together,	Hive	always	ignores	the	setting	(such	as
mapred.reduce.tasks	=	20)	for	the	number	of	reducers	used	and	uses	only	one	reducer.
In	this	case,	the	single	reducer	becomes	the	bottleneck	when	processing	big	volumes	of
data.	The	workaround	is	to	use	the	subquery	as	follows:

--Trigger	single	reducer	during	the	whole	processing

SELECT	count(distinct	sex_age.sex)	AS	sex_uni_cnt	FROM	employee;

--Use	subquery	to	select	unique	value	before	aggregations	for	better	

performance

SELECT	count(*)	AS	sex_uni_cnt	FROM	(SELECT	distinct	sex_age.sex	FROM	

employee)	a;

In	this	case,	the	first	stage	of	the	query	implementing	DISTINCT	can	use	more	than	one
reducer.	In	the	second	stage,	the	mapper	will	have	less	output	just	for	the	COUNT	purpose
since	the	data	is	already	unique	after	implementing	DISTINCT.	As	a	result,	the	reducer	will
not	be	overloaded.

We	may	encounter	a	very	special	behavior	when	Hive	deals	with	aggregation	across
columns	with	a	NULL	value.	The	entire	row	(if	one	column	has	NULL	as	a	value	in	the	row)
will	be	ignored	in	the	second	row	of	the	following	example.	To	avoid	this,	we	can	use
COALESCE	to	assign	a	default	value	when	the	column	value	is	NULL.	This	can	be	done	as
follows:

--Create	a	table	t	for	testing

jdbc:hive2://>	CREATE	TABLE	t	AS	SELECT	*	FROM

.>	(SELECT	employee_id-99	AS	val1,	

.>	(employee_id-98)	AS	val2	FROM	employee_hr	

.>	WHERE	employee_id	<=	101

.>	UNION	ALL

.>	SELECT	null	val1,	2	AS	val2	FROM	employee_hr	

.>	WHERE	employee_id	=	100)	a;

No	rows	affected	(0.138	seconds)	

--Check	the	rows	in	the	table	created

jdbc:hive2://>	SELECT	*	FROM	t;

+---------+---------+

|	t.val1		|	t.val2		|

+---------+---------+

|	1							|	2							|

|	NULL				|	2							|

|	2							|	3							|

+---------+---------+

3	rows	selected	(0.069	seconds)

--The	2nd	row	(NULL,	2)	is	ignored	when	doing	sum(val1+val2)

jdbc:hive2://>	SELECT	sum(val1),	sum(val1+val2)	

.>	FROM	t;																			

+------+------+

|	_c0		|	_c1		|

+------+------+

|	3				|	8				|

+------+------+

1	row	selected	(57.775	seconds)

jdbc:hive2://>	SELECT	sum(coalesce(val1,0)),	

.>	sum(coalesce(val1,0)+val2)	FROM	t;

+------+------+

|	_c0		|	_c1		|

+------+------+

|	3				|	10			|

+------+------+

1	row	selected	(69.967	seconds)

The	hive.map.aggr	property	controls	aggregations	in	the	map	task.	The	default	value	for
this	setting	is	false.	If	it	is	set	to	true,	Hive	will	do	the	first-level	aggregation	directly	in
the	map	task	for	better	performance,	but	consume	more	memory:

jdbc:hive2://>	SET	hive.map.aggr=true;

No	rows	affected	(0.002	seconds)

Advanced	aggregation	–	GROUPING
SETS
Hive	has	offered	the	GROUPING	SETS	keywords	to	implement	advanced	multiple	GROUP	BY
operations	against	the	same	set	of	data.	Actually,	GROUPING	SETS	is	a	shorthand	way	of
connecting	several	GROUP	BY	result	sets	with	UNION	ALL.	The	GROUPING	SETS	keyword
completes	all	processes	in	one	stage	of	jobs,	which	is	more	efficient	than	GROUP	BY	and
UNION	ALL	having	multiple	stages.	A	blank	set	()	in	the	GROUPING	SETS	clause	calculates
the	overall	aggregation.	The	following	are	a	few	examples	to	show	the	equivalence	of
GROUPING	SETS.	For	better	understanding,	we	can	say	that	the	outer	level	of	GROUPING
SETS	defines	on	what	data	UNION	ALL	is	to	be	implemented.	The	inner	level	defines	on
what	data	GROUP	BY	is	to	be	implemented	in	each	UNION	ALL.

SELECT	name,	work_place[0]	AS	main_place,	

count(employee_id)	AS	emp_id_cnt	

FROM	employee_id

GROUP	BY	name,	work_place[0]	GROUPING	SETS((name,	work_place[0]));

||

SELECT	name,	work_place[0]	AS	main_place,	

count(employee_id)	AS	emp_id_cnt	

FROM	employee_id

GROUP	BY	name,	work_place[0]

SELECT	name,	work_place[0]	AS	main_place,	

count(employee_id)	AS	emp_id_cnt	

FROM	employee_id

GROUP	BY	name,	work_place[0]	GROUPING	SETS(name,	work_place[0]);

||

SELECT	name,	NULL	AS	main_place,	count(employee_id)	AS	emp_id_cnt	

FROM	employee_id

GROUP	BY	name

UNION	ALL

SELECT	NULL	AS	name,	work_place[0]	AS	main_place,	

count(employee_id)	AS	emp_id_cnt	

FROM	employee_id

GROUP	BY	work_place[0];

SELECT	name,	work_place[0]	AS	main_place,	

count(employee_id)	AS	emp_id_cnt	

FROM	employee_id

GROUP	BY	name,	work_place[0]	

GROUPING	SETS((name,	work_place[0]),	name);

||

SELECT	name,	work_place[0]	AS	main_place,	

count(employee_id)	AS	emp_id_cnt	

FROM	employee_id

GROUP	BY	name,	work_place[0]

UNION	ALL

SELECT	name,	NULL	AS	main_place,	count(employee_id)	AS	emp_id_cnt	

FROM	employee_id

GROUP	BY	name;

SELECT	name,	work_place[0]	AS	main_place,	

count(employee_id)	AS	emp_id_cnt	

FROM	employee_id

GROUP	BY	name,	work_place[0]

GROUPING	SETS((name,	work_place[0]),	name,	work_place[0],	());

||

SELECT	name,	work_place[0]	AS	main_place,	

count(employee_id)	AS	emp_id_cnt	

FROM	employee_id

GROUP	BY	name,	work_place[0]

UNION	ALL

SELECT	name,	NULL	AS	main_place,	count(employee_id)	AS	emp_id_cnt	

FROM	employee_id

GROUP	BY	name

UNION	ALL

SELECT	NULL	AS	name,	work_place[0]	AS	main_place,	

count(employee_id)	AS	emp_id_cnt	

FROM	employee_id

GROUP	BY	work_place[0]

UNION	ALL

SELECT	NULL	AS	name,	NULL	AS	main_place,	

count(employee_id)	AS	emp_id_cnt	

FROM	employee_id;

However,	the	GROUPING	SETS	operation	still	has	unresolved	issues	when	working	with
columns	referred	by	a	table	or	record	type	alias	(see	Apache	Jira	HIVE-6950	at
https://issues.apache.org/jira/browse/HIVE-6950).	This	is	shown	here:

jdbc:hive2://>	SELECT	sex_age.sex,	sex_age.age,	

.>	count(name)	AS	name_cnt	

.>	FROM	employee

.>	GROUP	BY	sex_age.sex,	sex_age.age

.>	GROUPING	SETS((sex_age.sex,	sex_age.age));

Error:	Error	while	compiling	statement:	FAILED:	ParseException	line	1:131	

missing)	at	','	near	'<EOF>'

line	1:145	extraneous	input	')'	expecting	EOF	near	'<EOF>'	

(state=42000,code=40000)

https://issues.apache.org/jira/browse/HIVE-6950

Advanced	aggregation	–	ROLLUP	and
CUBE
The	ROLLUP	statement	enables	a	SELECT	statement	to	calculate	multiple	levels	of
aggregations	across	a	specified	group	of	dimensions.	The	ROLLUP	statement	is	a	simple
extension	to	the	GROUP	BY	clause	with	high	efficiency	and	minimal	overhead	to	a	query.
Compared	to	GROUPING	SETS	that	creates	specified	levels	of	aggregations,	ROLLUP	creates
n+1	levels	of	aggregations,	where	n	is	the	number	of	grouping	columns.	First,	it	calculates
the	standard	aggregate	values	specified	in	the	GROUP	BY	clause.	Then,	it	creates	higher-
level	subtotals,	moving	from	right	to	left	through	the	list	of	combinations	of	grouping
columns,	as	shown	in	the	following	example:

GROUP	BY	a,b,c	WITH	ROLLUP

This	is	equivalent	to	the	following:

GROUP	BY	a,b,c	GROUPING	SETS	((a,b,c),(a,b),(a),())

The	CUBE	statement	takes	a	specified	set	of	grouping	columns	and	creates	aggregations	for
all	of	their	possible	combinations.	If	n	columns	are	specified	for	CUBE,	there	will	be	2n
combinations	of	aggregations	returned,	as	shown	in	the	following	example:

GROUP	BY	a,b,c	WITH	CUBE

This	is	equivalent	to	the	following:

GROUP	BY	a,b,c	GROUPING	SETS	((a,b,c),(a,b),(b,c),(a,c),(a),(b),(c),())

The	GROUPING__ID	function	works	as	an	extension	to	distinguish	entire	rows	from	each
other.	It	accepts	one	or	more	columns	and	returns	the	decimal	equivalent	of	the	BIT	vector
for	each	column	specified	after	GROUP	BY.	The	returned	decimal	number	is	converted	from
a	binary	of	1s	and	0s,	which	represents	whether	the	column	is	aggregated	(value	is	not
NULL)	in	the	row.	The	order	of	columns	starts	from	counting	the	nearest	column	from
GROUP	BY.	In	the	following	example,	the	first	column	is	start_date:

jdbc:hive2://>	SELECT	GROUPING__ID,	

.>	BIN(CAST(GROUPING__ID	AS	BIGINT))	AS	bit_vector,	

.>	name,	start_date,	count(employee_id)	emp_id_cnt	

.>	FROM	employee_hr	

.>	GROUP	BY	start_date,	name	

.>	WITH	CUBE	ORDER	BY	start_date;

+---------------+-------------+----------+-------------+------------+

|	grouping__id		|	bit_vector		|			name			|	start_date		|	emp_id_cnt	|

+---------------+-------------+----------+-------------+------------+

|	2													|	10										|	Steven			|	NULL								|	1										|

|	2													|	10										|	Michael		|	NULL								|	1										|

|	2													|	10										|	Lucy					|	NULL								|	1										|

|	0													|	0											|	NULL					|	NULL								|	4										|

|	2													|	10										|	Will					|	NULL								|	1										|

|	3													|	11										|	Lucy					|	2010-01-03		|	1										|

|	1													|	1											|	NULL					|	2010-01-03		|	1										|

|	1													|	1											|	NULL					|	2012-11-03		|	1										|

|	3													|	11										|	Steven			|	2012-11-03		|	1										|

|	1													|	1											|	NULL					|	2013-10-02		|	1										|

|	3													|	11										|	Will					|	2013-10-02		|	1										|

|	1													|	1											|	NULL					|	2014-01-29		|	1										|

|	3													|	11										|	Michael		|	2014-01-29		|	1										|

+---------------+-------------+----------+-------------+------------+

13	rows	selected	(136.708	seconds)

Aggregation	condition	–	HAVING
Since	Hive	0.7.0,	HAVING	is	added	to	support	the	conditional	filtering	of	GROUP	BY	results.
By	using	HAVING,	we	can	avoid	using	a	subquery	after	GROUP	BY.	The	following	is	an
example:

jdbc:hive2://>	SELECT	sex_age.age	FROM	employee	

.>	GROUP	BY	sex_age.age	HAVING	count(*)<=1;

+--------------+

|	sex_age.age		|

+--------------+

|	57											|

|	27											|

|	35											|

+--------------+

3	rows	selected	(74.376	seconds)

If	we	do	not	use	HAVING,	we	can	use	a	subquery	for	instance	as	follows:

jdbc:hive2://>	SELECT	a.age

.>	FROM

.>	(SELECT	count(*)	as	cnt,	sex_age.age	

.>	FROM	employee	GROUP	BY	sex_age.age

.>)	a	WHERE	a.cnt<=1;

+--------+

|	a.age		|

+--------+

|	57					|

|	27					|

|	35					|

+--------+

3	rows	selected	(87.298	seconds)

Analytic	functions
Analytic	functions,	available	since	Hive	0.11.0,	are	a	special	group	of	functions	that	scan
the	multiple	input	rows	to	compute	each	output	value.	Analytic	functions	are	usually	used
with	OVER,	PARTITION	BY,	ORDER	BY,	and	the	windowing	specification.	Different	from	the
regular	aggregate	functions	used	with	the	GROUP	BY	clause	that	is	limited	to	one	result
value	per	group,	analytic	functions	operate	on	windows	where	the	input	rows	are	ordered
and	grouped	using	flexible	conditions	expressed	through	an	OVER	PARTITION	clause.
Though	analytic	functions	give	aggregate	results,	they	do	not	group	the	result	set.	They
return	the	group	value	multiple	times	with	each	record.	The	analytic	functions	offer	great
flexibility	and	functionalities	than	the	regular	GROUP	BY	clause	and	make	special
aggregations	in	Hive	easier	and	powerful.	The	syntax	for	the	analyze	function	is	as
follows:

Function	(arg1,...,	argn)	OVER	([PARTITION	BY	<...>]	[ORDER	BY	<....>]	

[<window_clause>])

The	Function	(arg1,...,	argn)	can	be	any	function	in	the	following	list	with	examples:

Standard	aggregations:	This	can	be	either	COUNT(),	SUM(),	MIN(),	MAX(),	or	AVG().
RANK:	It	ranks	items	in	a	group,	such	as	finding	the	top	N	rows	for	specific	conditions.
DENSE_RANK:	It	is	similar	to	RANK,	but	leaves	no	gaps	in	the	ranking	sequence	when
there	are	ties.	For	example,	if	we	rank	a	match	using	DENSE_RANK	and	had	two	players
tie	for	second	place,	we	would	see	that	the	two	players	were	in	second	place	and	that
the	next	person	is	ranked	as	third.	However,	the	RANK	function	would	also	rank	two
people	in	second	place,	but	the	next	person	would	be	in	fourth	place.
ROW_NUMBER:	It	assigns	a	unique	sequence	number	starting	from	1	to	each	row
according	to	the	partition	and	order	specification.
CUME_DIST:	It	computes	the	number	of	rows	whose	value	is	smaller	or	equal	to	the
value	of	the	total	number	of	rows	divided	by	the	current	row.
PERCENT_RANK:	It	is	similar	to	CUME_DIST,	but	it	uses	rank	values	rather	than	row
counts	in	its	numerator	as	total	number	of	rows	-	1	divided	by	current	rank	-	1.
Therefore,	it	returns	the	percent	rank	of	a	value	relative	to	a	group	of	values.
NTILE:	It	divides	an	ordered	dataset	into	number	of	buckets	and	assigns	an
appropriate	bucket	number	to	each	row.	It	can	be	used	to	divide	rows	into	equal	sets
and	assign	a	number	to	each	row.
LEAD:	The	LEAD	function,	lead(value_expr[,offset[,default]]),	is	used	to	return
data	from	the	next	row.	The	number	(value_expr)	of	rows	to	lead	can	optionally	be
specified.	If	the	number	of	rows	(offset)	to	lead	is	not	specified,	the	lead	is	one	row
by	default.	It	returns	[,default]	or	null	when	the	default	is	not	specified	and	the
lead	for	the	current	row	extends	beyond	the	end	of	the	window.
LAG:	The	LAG	function,	lag(value_expr[,offset[,default]]),	is	used	to	access
data	from	a	previous	row.	The	number	(value_expr)	of	rows	to	lag	can	optionally	be
specified.	If	the	number	of	rows	(offset)	to	lag	is	not	specified,	the	lag	is	one	row	by
default.	It	returns	[,default]	or	null	when	the	default	is	not	specified	and	the	lag	for
the	current	row	extends	beyond	the	end	of	the	window.

FIRST_VALUE:	It	returns	the	first	result	from	an	ordered	set.
LAST_VALUE:	It	returns	the	last	result	from	an	ordered	set.	For	LAST_VALUE,	using	the
default	windowing	clause,	the	result	can	be	a	little	unexpected.	This	is	because	the
default	windowing	clause	is	RANGE	BETWEEN	UNBOUNDED	PRECEDING	AND	CURRENT
ROW,	which	in	this	example	means	the	current	row	will	always	be	the	last	value.
Changing	the	windowing	clause	to	RANGE	BETWEEN	UNBOUNDED	PRECEDING	AND
UNBOUNDED	FOLLOWING	gives	us	the	result	we	probably	expected	(see	the	last_value
column	in	the	following	examples).

The	[PARTITION	BY	<...>]	statement	is	similar	to	the	GROUP	BY	clause.	It	divides	the
rows	into	groups	containing	identical	values	in	one	or	more	partitions	by	columns.	These
logical	groups	are	known	as	partitions,	which	is	not	the	same	term	used	for	partition
tables.	Omitting	the	PARTITION	BY	statement	applies	the	analytic	operation	to	all	the	rows
in	the	table.

The	[ORDER	BY	<....>]	clause	is	like	the	ORDER	BY	expr	[ASC|DESC]	clause.	The	ORDER
BY	clause	is	the	same	as	the	regular	ORDER	BY	clause.	It	makes	sure	the	rows	produced	by
the	PARTITION	BY	clause	are	ordered	by	specifications,	such	as	ascending	or	descending
order.	Right	now,	Hive	only	supports	one	ORDER	BY	column	in	this	case.	Otherwise,	it	will
throw	a	semantic	exception	(see	Apache	Jira	HIVE-4662	at
https://issues.apache.org/jira/browse/HIVE-4662).	The	workaround	is	to	use	the	rows
unbounded	preceding	windowing	clause	(see	runningTotal2	column	in	the	following
examples):

Prepare	the	table	and	data	for	demonstration:

jdbc:hive2://>	CREATE	TABLE	IF	NOT	EXISTS	employee_contract

.>	(

.>	name	string,

.>	dept_num	int,

.>	employee_id	int,

.>	salary	int,

.>	type	string,

.>	start_date	date

.>)

.>	ROW	FORMAT	DELIMITED

.>	FIELDS	TERMINATED	BY	'|'

.>	STORED	AS	TEXTFILE;

No	rows	affected	(0.282	seconds)

jdbc:hive2://>	LOAD	DATA	LOCAL	INPATH

.>	'/home/dayongd/Downloads/employee_contract.txt'	

.>	OVERWRITE	INTO	TABLE	employee_contract;

No	rows	affected	(0.48	seconds)

The	regular	aggregations	are	used	as	analytic	functions,	as	follows:

jdbc:hive2://>	SELECT	name,	dept_num,	salary,

.>	COUNT(*)	OVER	(PARTITION	BY	dept_num)	AS	row_cnt,

.>	SUM(salary)	OVER(PARTITION	BY	dept_num	

.>	ORDER	BY	dept_num)	AS	deptTotal,

.>	SUM(salary)	OVER(ORDER	BY	dept_num)	

https://issues.apache.org/jira/browse/HIVE-4662

.>	AS	runningTotal1,	SUM(salary)	

.>	OVER(ORDER	BY	dept_num,	name	rows	unbounded	

.>	preceding)	AS	runningTotal2

.>	FROM	employee_contract

.>	ORDER	BY	dept_num,	name;

+-------+--------+------+-------+---------+-------------+-------------+

|	name		|dept_num|salary|row_cnt|deptTotal|runningTotal1|runningTotal2|

+-------+--------+------+-------+---------+-------------+-------------+

|Lucy			|1000				|5500		|5						|24900				|24900								|5500									|

|Michael|1000				|5000		|5						|24900				|24900								|10500								|

|Steven	|1000				|6400		|5						|24900				|24900								|16900								|

|Will			|1000				|4000		|5						|24900				|24900								|24900								|

|Will			|1000				|4000		|5						|24900				|24900								|20900								|

|Jess			|1001				|6000		|3						|17400				|42300								|30900								|

|Lily			|1001				|5000		|3						|17400				|42300								|35900								|

|Mike			|1001				|6400		|3						|17400				|42300								|42300								|

|Richard|1002				|8000		|3						|20500				|62800								|50300								|

|Wei				|1002				|7000		|3						|20500				|62800								|57300								|

|Yun				|1002				|5500		|3						|20500				|62800								|62800								|

+-------+--------+------+-------+---------+-------------+-------------+

11	rows	selected	(359.918	seconds)

Other	analytic	functions	are	used	as	follows:

jdbc:hive2://>	SELECT	name,	dept_num,	salary,

.>	RANK()	OVER	(PARTITION	BY	dept_num	ORDER	BY	salary)	

.>	AS	rank,	

.>	DENSE_RANK()	

.>	OVER	(PARTITION	BY	dept_num	ORDER	BY	salary)	

.>	AS	dense_rank,	ROW_NUMBER()	OVER	()	AS	row_num,

.>	ROUND((CUME_DIST()	OVER	(PARTITION	BY	dept_num	

.>	ORDER	BY	salary)),	1)	AS	cume_dist,

.>	PERCENT_RANK()	OVER(PARTITION	BY	dept_num	

.>	ORDER	BY	salary)	AS	percent_rank,	NTILE(4)	

.>	OVER(PARTITION	BY	dept_num	ORDER	BY	salary)	

.>	AS	ntile

.>	FROM	employee_contract	ORDER	BY	dept_num;

+-------+--------+------+----+----------+-------+---------+------------

+-----+

|	name		

|dept_num|salary|rank|dense_rank|row_num|cume_dist|percent_rank|ntile|

+-------+--------+------+----+----------+-------+---------+------------

+-----+

|Will			|	1000			|	4000	|	1		|	1								|	11				|	0.4					|	0.0								

|	1			|

|Will			|	1000			|	4000	|	1		|	1								|	10				|	0.4					|	0.0								

|	1			|

|Michael|	1000			|	5000	|	3		|	2								|	9					|	0.6					|	0.5								

|	2			|

|Lucy			|	1000			|	5500	|	4		|	3								|	8					|	0.8					|	0.75							

|	3			|

|Steven	|	1000			|	6400	|	5		|	4								|	7					|	1.0					|	1.0								

|	4			|

|Lily			|	1001			|	5000	|	1		|	1								|	6					|	0.3					|	0.0								

|	1			|

|Jess			|	1001			|	6000	|	2		|	2								|	5					|	0.7					|	0.5								

|	2			|

|Mike			|	1001			|	6400	|	3		|	3								|	4					|	1.0					|	1.0								

|	3			|

|Yun				|	1002			|	5500	|	1		|	1								|	3					|	0.3					|	0.0								

|	1			|

|Wei				|	1002			|	7000	|	2		|	2								|	2					|	0.7					|	0.5								

|	2			|

|Richard|	1002			|	8000	|	3		|	3								|	1					|	1.0					|	1.0								

|	3			|

+-------+--------+------+----+----------+-------+---------+------------

+-----+

11	rows	selected	(367.112	seconds)

jdbc:hive2://>	SELECT	name,	dept_num,	salary,

.>	LEAD(salary,	2)	OVER(PARTITION	BY	dept_num	

.>	ORDER	BY	salary)	AS	lead,

.>	LAG(salary,	2,	0)	OVER(PARTITION	BY	dept_num	

.>	ORDER	BY	salary)	AS	lag,

.>	FIRST_VALUE(salary)	OVER	(PARTITION	BY	dept_num	

.>	ORDER	BY	salary)	AS	first_value,

.>	LAST_VALUE(salary)	OVER	(PARTITION	BY	dept_num	

.>	ORDER	BY	salary)	AS	last_value_default,

.>	LAST_VALUE(salary)	OVER	(PARTITION	BY	dept_num	

.>	ORDER	BY	salary	

.>	RANGE	BETWEEN	UNBOUNDED	PRECEDING	

.>	AND	UNBOUNDED	FOLLOWING)	AS	last_value

.>	FROM	employee_contract	ORDER	BY	dept_num;

+-------+--------+------+----+----+-----------+------------------+-----

----+

|	name		|dept_num|salary|lead|lag	|first_value|last_value_default|

last_value

|

+-------+--------+------+----+----+-----------+------------------+-----

----+

|Will			|1000				|4000		|5000|0			|4000							|4000														|6400					

|

|Will			|1000				|4000		|5500|0			|4000							|4000														|6400					

|

|Michael|1000				|5000		|6400|4000|4000							|5000														|6400					

|

|Lucy			|1000				|5500		|NULL|4000|4000							|5500														|6400					

|

|Steven	|1000				|6400		|NULL|5000|4000							|6400														|6400					

|

|Lily			|1001				|5000		|6400|0			|5000							|5000														|6400					

|

|Jess			|1001				|6000		|NULL|0			|5000							|6000														|6400					

|

|Mike			|1001				|6400		|NULL|5000|5000							|6400														|6400					

|

|Yun				|1002				|5500		|8000|0			|5500							|5500														|8000					

|

|Wei				|1002				|7000		|NULL|0			|5500							|7000														|8000					

|

|Richard|1002				|8000		|NULL|5500|5500							|8000														|8000					

|

+-------+--------+------+----+----+-----------+------------------+-----

----+

11	rows	selected	(92.572	seconds)

The	[<window_clause>]	clause	is	used	to	further	subpartition	the	result	and	apply	the
analytic	functions.	There	are	two	types	of	windows:	row	type	window	and	range	type
window.

Note
According	to	the	article	at	https://issues.apache.org/jira/browse/HIVE-4797,	the	RANK,
NTILE,	DENSE_RANK,	CUME_DIST,	PERCENT_RANK,	LEAD,	LAG,	and	ROW_NUMBER	functions	do
not	support	being	used	with	a	window	clause	yet.

For	row	type	windows,	the	definition	is	in	terms	of	row	numbers	before	or	after	the
current	row.	The	general	syntax	of	the	row	window	clause	is	as	follows:

ROWS	BETWEEN	<start_expr>	AND	<end_expr>	

The	<start_expr>	can	be	any	one	of	the	following:

UNBOUNDED	PRECEDING

CURRENT	ROW

N	PRECEDING	or	FOLLOWING

The	<end_expr>	can	be	any	one	of	the	following:

UNBOUNDED	FOLLOWING

CURRENT	ROW

N	PRECEDING	or	FOLLOWING

The	following	are	the	window	expressions:

BETWEEN	…	AND:	Use	the	BETWEEN…AND	clause	to	specify	the	start	point	and	end	point
for	the	window.	The	first	expression	(before	AND)	defines	the	start	point	and	the
second	expression	(after	AND)	defines	the	end	point.	If	we	omit	BETWEEN…AND	(such	as
ROWS	N	PRECEDING	or	ROWS	UNBOUNDED	PRECEDING),	Hive	considers	it	as	the	start
point,	and	the	end	point	defaults	to	the	current	row	(see	win13	column	in	the
upcoming	examples).
N	PRECEDING	or	FOLLOWING:	This	indicates	N	rows	before	or	after	the	current	row.
UNBOUNDED	PRECEDING:	This	indicates	that	the	window	starts	at	the	first	row	of	the
partition.	This	is	the	start	point	specification	and	cannot	be	used	as	an	end	point
specification.
UNBOUNDED	FOLLOWING:	This	indicates	that	the	window	ends	at	the	last	row	of	the
partition.	This	is	the	end	point	specification	and	cannot	be	used	as	a	start	point
specification.
UNBOUNDED	PRECEDING	AND	UNBOUNDED	FOLLOWING:	This	indicates	the	first	and	last
row	for	every	row,	meaning	all	rows	in	the	table	(see	win12	column	in	the	upcoming
examples).
CURRENT	ROW:	As	a	start	point,	CURRENT	ROW	specifies	that	the	window	begins	at	the
current	row	or	value	depending	on	whether	we	have	specified	ROW	or	RANGE	(RANGE

https://issues.apache.org/jira/browse/HIVE-4797

is	introduced	later	in	this	chapter).	In	this	case,	the	end	point	cannot	be	N	PRECEDING.
As	an	end	point,	CURRENT	ROW	specifies	that	the	window	ends	at	the	current	row	or
value	depending	on	whether	we	have	specified	ROW	or	RANGE.	In	this	case,	the	start
point	cannot	be	N	FOLLOWING.

The	following	is	a	diagram	that	can	help	us	understand	the	preceding	definitions	more
clearly:

Window	expression	definition

The	following	examples	implement	the	window	expressions:

jdbc:hive2://>	SELECT	name,	dept_num	AS	dept,	salary	AS	sal,

.>	MAX(salary)	OVER	(PARTITION	BY	dept_num	ORDER	BY

.>	name	ROWS	

.>	BETWEEN	2	PRECEDING	AND	CURRENT	ROW)	win1,

.>	MAX(salary)	OVER	(PARTITION	BY	dept_num	ORDER	BY	

.>	name	ROWS	

.>	BETWEEN	2	PRECEDING	AND	UNBOUNDED	FOLLOWING)	win2,

.>	MAX(salary)	OVER	(PARTITION	BY	dept_num	ORDER	BY	

.>	name	ROWS	

.>	BETWEEN	1	PRECEDING	AND	2	FOLLOWING)	win3,

.>	MAX(salary)	OVER	(PARTITION	BY	dept_num	ORDER	BY	

.>	name	ROWS	

.>	BETWEEN	1	PRECEDING	AND	2	PRECEDING)	win4,

.>	MAX(salary)	OVER	(PARTITION	BY	dept_num	ORDER	BY	

.>	name	ROWS	

.>	BETWEEN	1	FOLLOWING	AND	2	FOLLOWING)	win5,

.>	MAX(salary)	OVER	(PARTITION	BY	dept_num	ORDER	BY	

.>	name	ROWS	

.>	BETWEEN	CURRENT	ROW	AND	CURRENT	ROW)	win7,

.>	MAX(salary)	OVER	(PARTITION	BY	dept_num	ORDER	BY	

.>	name	ROWS	

.>	BETWEEN	CURRENT	ROW	AND	1	FOLLOWING)	win8,

.>	MAX(salary)	OVER	(PARTITION	BY	dept_num	ORDER	BY	

.>	name	ROWS	

.>	BETWEEN	CURRENT	ROW	AND	UNBOUNDED	FOLLOWING)	win9,

.>	MAX(salary)	OVER	(PARTITION	BY	dept_num	ORDER	BY	

.>	name	ROWS	

.>	BETWEEN	UNBOUNDED	PRECEDING	AND	CURRENT	ROW)	win10,

.>	MAX(salary)	OVER	(PARTITION	BY	dept_num	ORDER	BY	

.>	name	ROWS	

.>	BETWEEN	UNBOUNDED	PRECEDING	AND	1	FOLLOWING)	win11,

.>	MAX(salary)	OVER	(PARTITION	BY	dept_num	ORDER	BY	

.>	name	ROWS	BETWEEN	UNBOUNDED	PRECEDING	AND	UNBOUNDED

.>	FOLLOWING)	win12,

.>	MAX(salary)	OVER	(PARTITION	BY	dept_num	ORDER	BY	

.>	name	ROWS	2	PRECEDING)	win13

.>	FROM	employee_contract

.>	ORDER	BY	dept_num,	name;

+-------+----+----+----+----+----+----+----+----+----+----+-----+-----+----

-+-----+

|name			|dept|sal	

|win1|win2|win3|win4|win5|win7|win8|win9|win10|win11|win12|win13|

+-------+----+----+----+----+----+----+----+----+----+----+-----+-----+----

-+-----+

|Lucy			|1000|5500|5500|6400|6400|NULL|6400|5500|5500|6400|5500	|5500	|6400	

|5500	|

|Michael|1000|5000|5500|6400|6400|NULL|6400|5000|6400|6400|5500	|6400	|6400	

|5500	|

|Steven	|1000|6400|6400|6400|6400|NULL|4000|6400|6400|6400|6400	|6400	|6400	

|6400	|

|Will			|1000|4000|6400|6400|4000|NULL|NULL|4000|4000|4000|6400	|6400	|6400	

|6400	|

|Will			|1000|4000|6400|6400|6400|NULL|4000|4000|4000|4000|6400	|6400	|6400	

|6400	|

|Jess			|1001|6000|6000|6400|6400|NULL|6400|6000|6000|6400|6000	|6000	|6400	

|6000	|

|Lily			|1001|5000|6000|6400|6400|NULL|6400|5000|6400|6400|6000	|6400	|6400	

|6000	|

|Mike			|1001|6400|6400|6400|6400|NULL|NULL|6400|6400|6400|6400	|6400	|6400	

|6400	|

|Richard|1002|8000|8000|8000|8000|NULL|7000|8000|8000|8000|8000	|8000	|8000	

|8000	|

|Wei				|1002|7000|8000|8000|8000|NULL|5500|7000|7000|7000|8000	|8000	|8000	

|8000	|

|Yun				|1002|5500|8000|8000|7000|NULL|NULL|5500|5500|5500|8000	|8000	|8000	

|8000	|

+-------+----+----+----+----+----+----+----+----+----+----+-----+-----+----

-+-----+

11	rows	selected	(168.732	seconds)

From	the	preceding	example,	we	can	see	that	the	win4	column	is	NULL.	This	is	because	the
row	specified	by	<start_expr>	must	be	smaller	than	the	row	specified	by	<end_expr>.
However,	if	we	try	to	fix	it	by	reordering	it,	especially	when	using	the	PRECEDING
keyword,	it	reports	the	following	exceptions	and	the	same	thing	applies	to	UNBOUNDED
PRECEDING.	This	is	an	issue	(https://issues.apache.org/jira/browse/HIVE-9412)	for	Hive
windowing	right	now:

jdbc:hive2://>	SELECT	name,	dept_num,	salary,

.>	MAX(salary)	OVER	(PARTITION	BY	dept_num	ORDER	BY	

.>	name	ROWS	

.>	BETWEEN	2	PRECEDING	AND	1	PRECEDING)	win4_alter

.>	FROM	employee_contract

https://issues.apache.org/jira/browse/HIVE-9412

.>	ORDER	BY	dept_num,	name;

Error:	Error	while	compiling	statement:	FAILED:	SemanticException	Failed	to	

breakup	Windowing	invocations	into	Groups.	At	least	1	group	must	only	

depend	on	input	columns.	Also	check	for	circular	dependencies.

Underlying	error:	Window	range	invalid,	start	boundary	is	greater	than	end	

boundary:	window(start=range(2	PRECEDING),	end=range(1	PRECEDING))	

(state=42000,code=40000)

jdbc:hive2://>	SELECT	name,	dept_num,	salary,

.>	MAX(salary)	OVER	(PARTITION	BY	dept_num	ORDER	BY	

.>	name	ROWS	

.>	BETWEEN	UNBOUNDED	PRECEDING	AND	1	PRECEDING)	win1

.>	FROM	employee_contract

.>	ORDER	BY	dept_num,	name;

Error:	Error	while	compiling	statement:	FAILED:	SemanticException	End	of	a	

WindowFrame	cannot	be	UNBOUNDED	PRECEDING	(state=42000,code=40000)

In	addition,	windows	can	be	defined	in	a	separate	WINDOW	clause	or	referred	by	other
windows,	as	follows:

jdbc:hive2://>	SELECT	name,	dept_num,	salary,

.>	MAX(salary)	OVER	w1	AS	win1,

.>	MAX(salary)	OVER	w1	AS	win2,

.>	MAX(salary)	OVER	w1	AS	win3

.>	FROM	employee_contract

.>	ORDER	BY	dept_num,	name

.>	WINDOW

.>	w1	AS	(PARTITION	BY	dept_num	ORDER	BY	name	

.>	ROWS	BETWEEN	2	PRECEDING	AND	CURRENT	ROW),

.>	w2	AS	w3,

.>	w3	AS	(PARTITION	BY	dept_num	ORDER	BY	name	

.>	ROWS	BETWEEN	1	PRECEDING	AND	2	FOLLOWING);

+----------+-----------+---------+-------+-------+-------+

|			name			|	dept_num		|	salary		|	win1		|	win2		|	win3		|

+----------+-----------+---------+-------+-------+-------+

|	Lucy					|	1000						|	5500				|	5500		|	5500		|	5500		|

|	Michael		|	1000						|	5000				|	5500		|	5500		|	5500		|

|	Steven			|	1000						|	6400				|	6400		|	6400		|	6400		|

|	Will					|	1000						|	4000				|	6400		|	6400		|	6400		|

|	Will					|	1000						|	4000				|	6400		|	6400		|	6400		|

|	Jess					|	1001						|	6000				|	6000		|	6000		|	6000		|

|	Lily					|	1001						|	5000				|	6000		|	6000		|	6000		|

|	Mike					|	1001						|	6400				|	6400		|	6400		|	6400		|

|	Richard		|	1002						|	8000				|	8000		|	8000		|	8000		|

|	Wei						|	1002						|	7000				|	8000		|	8000		|	8000		|

|	Yun						|	1002						|	5500				|	8000		|	8000		|	8000		|

+----------+-----------+---------+-------+-------+-------+

11	rows	selected	(156.902	seconds)

Compared	to	row	type	windows	in	terms	of	rows,	the	range	type	windows	are	in	terms	of
values	before	or	after	the	current	ORDER	BY	column,	which	must	be	a	number	or	date	type.
For	now,	only	one	ORDER	BY	column	is	supported	by	range	type	windows.

jdbc:hive2://>	SELECT	name,	salary,	start_year,

.>	MAX(salary)	OVER	(PARTITION	BY	dept_num	ORDER	BY	

.>	start_year	RANGE	

.>	BETWEEN	2	PRECEDING	AND	CURRENT	ROW)	win1

.>	FROM

.>	(

.>			SELECT	name,	salary,	dept_num,	

.>			YEAR(start_date)	AS	start_year

.>			FROM	employee_contract

.>)	a;

+----------+---------+-------------+-------+

|			name			|	salary		|	start_year		|	win1		|

+----------+---------+-------------+-------+

|	Lucy					|	5500				|	2010								|	5500		|

|	Steven			|	6400				|	2012								|	6400		|

|	Will					|	4000				|	2013								|	6400		|

|	Will					|	4000				|	2014								|	6400		|

|	Michael		|	5000				|	2014								|	6400		|

|	Mike					|	6400				|	2013								|	6400		|

|	Jess					|	6000				|	2014								|	6400		|

|	Lily					|	5000				|	2014								|	6400		|

|	Wei						|	7000				|	2010								|	7000		|

|	Richard		|	8000				|	2013								|	8000		|

|	Yun						|	5500				|	2014								|	8000		|

+----------+---------+-------------+-------+

11	rows	selected	(92.035	seconds)

Note
If	we	omit	the	windowing	clause	entirely,	the	default	window	is	RANGE	BETWEEN
UNBOUNDED	PRECEDING	AND	CURRENT	ROW.

Sampling
When	data	volume	is	extra	large,	we	may	need	to	find	a	subset	of	data	to	speed	up	data
analysis.	Here	it	comes	to	a	technique	used	to	select	and	analyze	a	subset	of	data	in	order
to	identify	patterns	and	trends.	In	Hive,	there	are	three	ways	of	sampling	data:	random
sampling,	bucket	table	sampling,	and	block	sampling.

Random	sampling	uses	the	RAND()	function	and	LIMIT	keyword	to	get	the	sampling	of
data	as	shown	in	the	following	example.	The	DISTRIBUTE	and	SORT	keywords	are	used
here	to	make	sure	the	data	is	also	randomly	distributed	among	mappers	and	reducers
efficiently.	The	ORDER	BY	RAND()	statement	can	also	achieve	the	same	purpose,	but	the
performance	is	not	good:

SELECT	*	FROM	<Table_Name>	DISTRIBUTE	BY	RAND()	SORT	BY	RAND()

LIMIT	<N	rows	to	sample>;

Bucket	table	sampling	is	a	special	sampling	optimized	for	bucket	tables	as	shown	in	the
following	syntax	and	example.	The	colname	value	specifies	the	column	where	to	sample
the	data.	The	RAND()	function	can	also	be	used	when	sampling	is	on	the	entire	rows.	If	the
sample	column	is	also	the	CLUSTERED	BY	column,	the	TABLESAMPLE	statement	will	be	more
efficient.

--Syntax

SELECT	*	FROM	<Table_Name>	

TABLESAMPLE(BUCKET	<specified	bucket	number	to	sample>	OUT	OF	<total	number	

of	buckets>	ON	[colname|RAND()])	table_alias;		

--An	example

jdbc:hive2://>	SELECT	name	FROM	employee_id_buckets	

.>	TABLESAMPLE(BUCKET	1	OUT	OF	2	ON	rand())	a;

+----------+

|			name			|

+----------+

|	Lucy					|

|	Shelley		|

|	Lucy					|

|	Lucy					|

|	Shelley		|

|	Lucy					|

|	Will					|

|	Shelley		|

|	Michael		|

|	Will					|

|	Will					|

|	Will					|

|	Will					|

|	Will					|

|	Lucy					|

+----------+

15	rows	selected	(0.07	seconds)

Block	sampling	allows	Hive	to	randomly	pick	up	N	rows	of	data,	percentage	(n

percentage)	of	data	size,	or	N	byte	size	of	data.	The	sampling	granularity	is	the	HDFS
block	size.	Its	syntax	and	examples	are	as	follows:

--Syntax

SELECT	*	

FROM	<Table_Name>	TABLESAMPLE(N	PERCENT|ByteLengthLiteral|N	ROWS)	s;

	

--	ByteLengthLiteral

--	(Digit)+	('b'	|	'B'	|	'k'	|	'K'	|	'm'	|	'M'	|	'g'	|	'G')	

--Sample	by	rows

jdbc:hive2://>	SELECT	name	

.>	FROM	employee_id_buckets	TABLESAMPLE(4	ROWS)	a;

+----------+

|			name			|

+----------+

|	Lucy					|

|	Shelley		|

|	Lucy					|

|	Shelley		|

+----------+

4	rows	selected	(0.055	seconds)

--Sample	by	percentage	of	data	size

jdbc:hive2://>	SELECT	name	

.>	FROM	employee_id_buckets	TABLESAMPLE(10	PERCENT)	a;

+----------+

|			name			|

+----------+

|	Lucy					|

|	Shelley		|

|	Lucy					|

+----------+

3	rows	selected	(0.061	seconds)

--Sample	by	data	size

jdbc:hive2://>	SELECT	name	

.>	FROM	employee_id_buckets	TABLESAMPLE(3M)	a;

+----------+

|			name			|

+----------+

|	Lucy					|

|	Shelley		|

|	Lucy					|

|	Shelley		|

|	Lucy					|

|	Shelley		|

|	Lucy					|

|	Shelley		|

|	Lucy					|

|	Will					|

|	Shelley		|

|	Lucy					|

|	Will					|

|	Shelley		|

|	Michael		|

|	Will					|

|	Shelley		|

|	Lucy					|

|	Will					|

|	Will					|

|	Will					|

|	Will					|

|	Will					|

|	Lucy					|

|	Shelley		|

+----------+

25	rows	selected	(0.07	seconds)

Summary
In	this	chapter,	we	covered	how	to	aggregate	data	using	basic	aggregation	functions.	Then,
we	introduced	the	advanced	aggregations	with	GROUPING	SETS,	ROLLUP,	and	CUBE,	as	well
as	aggregation	conditions	using	HAVING.	We	also	covered	the	various	analytic	functions
and	windowing	clauses.	At	the	end	of	the	chapter,	we	introduced	three	ways	of	sampling
data	in	Hive.	After	going	through	this	chapter,	you	should	be	able	to	do	basic	and
advanced	aggregations	and	data	sampling	in	Hive.

In	the	next	chapter,	we’ll	talk	about	performance	considerations	in	Hive.

Chapter	7.	Performance	Considerations
Although	Hive	is	built	to	deal	with	big	data,	we	still	cannot	ignore	the	importance	of
performance.	Most	of	the	time,	a	better	Hive	query	can	rely	on	the	smart	query	optimizer
to	find	the	best	execution	strategy	as	well	as	the	default	setting	best	practice	from	vendor
packages.	However,	as	experienced	users,	we	should	learn	more	about	the	theory	and
practice	of	performance	tuning	in	Hive,	especially	when	working	in	a	performance-based
project	or	environment.	In	this	chapter,	we	will	start	from	utilities	available	in	Hive	to	find
potential	issues	causing	poor	performance.	Then,	we	introduce	the	best	practices	of
performance	considerations	in	the	areas	of	design,	file	format,	compression,	storage,
query,	and	job.

In	this	chapter,	we	will	cover	the	following	topics:

Performance	utilities
Design	optimization
Data	file	optimization
Job	and	query	optimization

Performance	utilities
Hive	provides	the	EXPLAIN	and	ANALYZE	statements	that	can	be	used	as	utilities	to	check
and	identify	the	performance	of	queries.

The	EXPLAIN	statement
Hive	provides	an	EXPLAIN	command	to	return	a	query	execution	plan	without	running	the
query.	We	can	use	an	EXPLAIN	command	for	queries	if	we	have	a	doubt	or	a	concern	about
performance.	The	EXPLAIN	command	will	help	to	see	the	difference	between	two	or	more
queries	for	the	same	purpose.	The	syntax	for	EXPLAIN	is	as	follows:

EXPLAIN	[EXTENDED|DEPENDENCY|AUTHORIZATION]	hive_query

The	following	keywords	can	be	used:

EXTENDED:	This	provides	additional	information	for	the	operators	in	the	plan,	such	as
file	pathname	and	abstract	syntax	tree.
DEPENDENCY:	This	provides	a	JSON	format	output	that	contains	a	list	of	tables	and
partitions	that	the	query	depends	on.	It	is	available	since	HIVE	0.10.0.
AUTHORIZATION:	This	lists	all	entities	needed	to	be	authorized	including	input	and
output	to	run	the	Hive	query	and	authorization	failures,	if	any.	It	is	available	since
HIVE	0.14.0.

A	typical	query	plan	contains	the	following	three	sections.	We	will	also	have	a	look	at	an
example	later:

Abstract	syntax	tree	(AST):	Hive	uses	a	pacer	generator	called	ANTLR	(see
http://www.antlr.org/)	to	automatically	generate	a	tree	of	syntax	for	HQL.	We	can
usually	ignore	this	most	of	the	time.
Stage	dependencies:	This	lists	all	dependencies	and	number	of	stages	used	to	run	the
query.
Stage	plans:	It	contains	important	information,	such	as	operators	and	sort	orders,	for
running	the	job.

The	following	is	what	a	typical	query	plan	looks	like.	From	the	following	example,	we	can
see	that	the	AST	section	is	not	shown	since	the	EXTENDED	keyword	is	not	used	with
EXPLAIN.	In	the	STAGE	DEPENDENCIES	section,	both	Stage-0	and	Stage-1	are	independent
root	stages.	In	the	STAGE	PLANS	section,	Stage-1	has	one	map	and	reduce	referred	to	by
Map	Operator	Tree	and	Reduce	Operator	Tree.	Inside	each	Map/Reduce	Operator	Tree
section,	all	operators	corresponding	to	Hive	query	keywords	as	well	as	expressions	and
aggregations	are	listed.	The	Stage-0	stage	does	not	have	map	and	reduce.	It	is	just	a	Fetch
operation.

jdbc:hive2://>	EXPLAIN	SELECT	sex_age.sex,	count(*)	

.>	FROM	employee_partitioned	

.>	WHERE	year=2014	GROUP	BY	sex_age.sex	LIMIT	2;

+--

---+

|																											Explain																																											

|

+--

---+

|	STAGE	DEPENDENCIES:																																																									

|

http://www.antlr.org/

|	Stage-1	is	a	root	stage																																																					

|

|	Stage-0	is	a	root	stage																																																					

|

|																																																																													

|

|	STAGE	PLANS:																																																																

|

|			Stage:	Stage-1																																																												

|

|					Map	Reduce																																																														

|

|							Map	Operator	Tree:																																																				

|

|											TableScan																																																									

|

|													alias:	employee_partitioned																																					

|

|													Statistics:	Num	rows:	0	Data	size:	227	Basic	stats:PARTIAL						

|

|																									Column	stats:	NONE																																		

|

|													Select	Operator																																																	

|

|															expressions:	sex_age	(type:	struct<sex:string,age:int>)							

|

|															outputColumnNames:	sex_age																																				

|

|															Statistics:	Num	rows:	0	Data	size:	227	Basic	stats:PARTIAL				

|

|																											Column	stats:	NONE																																

|

|															Group	By	Operator																																													

|

|																	aggregations:	count()																																							

|

|																	keys:	sex_age.sex	(type:	string)																												

|

|																	mode:	hash																																																		

|

|																	outputColumnNames:	_col0,	_col1																													

|

|																	Statistics:	Num	rows:	0	Data	size:	227	Basic	

stats:PARTIAL		|	

|																													Column	stats:	NONE																														

|

|																	Reduce	Output	Operator																																						

|

|																			key	expressions:	_col0	(type:	string)																					

|

|																			sort	order:	+																																													

|

|																			Map-reduce	partition	columns:	_col0	(type:	string)								

|

|																			Statistics:	Num	rows:	0	Data	size:	227	Basic	

stats:PARTIAL|

|																															Column	stats:	NONE																												

|

|																			value	expressions:	_col1	(type:	bigint)																			

|

|							Reduce	Operator	Tree:																																																	

|

|									Group	By	Operator																																																			

|

|											aggregations:	count(VALUE._col0)																																		

|

|											keys:	KEY._col0	(type:	string)																																				

|

|											mode:	mergepartial																																																

|

|											outputColumnNames:	_col0,	_col1																																			

|

|											Statistics:	Num	rows:	0	Data	size:	0	Basic	stats:	NONE												

|

|																							Column	stats:	NONE																																				

|

|											Select	Operator																																																			

|

|													expressions:	_col0	(type:	string),	_col1	(type:	bigint)									

|

|													outputColumnNames:	_col0,	_col1																																	

|

|													Statistics:	Num	rows:	0	Data	size:	0	Basic	stats:	NONE										

|

|																									Column	stats:	NONE																																		

|

|													Limit																																																											

|

|															Number	of	rows:	2																																													

|

|															Statistics:	Num	rows:	0	Data	size:	0	Basic	stats:	NONE								

|

|																											Column	stats:	NONE																																

|

|															File	Output	Operator																																										

|

|																	compressed:	false																																											

|

|																	Statistics:	Num	rows:	0	Data	size:	0	Basic	stats:	NONE						

|

|																													Column	stats:	NONE																														

|

|																	table:																																																						

|

|																					input	format:	

org.apache.hadoop.mapred.TextInputFormat		|

|					output	

format:org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat|

|																					

serde:org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe|	|																																																																													

|

|			Stage:	Stage-0																																																												

|

|					Fetch	Operator																																																										

|

|							limit:	2																																																														

|

+--

---+

53	rows	selected	(0.26	seconds)

The	ANALYZE	statement
Hive	statistics	are	a	collection	of	data	that	describe	more	details,	such	as	the	number	of
rows,	number	of	files,	and	raw	data	size,	on	the	objects	in	the	Hive	database.	Statistics	is	a
metadata	of	Hive	data.	Hive	supports	statistics	at	the	table,	partition,	and	column	level.
These	statistics	serve	as	an	input	to	the	Hive	Cost-Based	Optimizer	(CBO),	which	is	an
optimizer	to	pick	the	query	plan	with	the	lowest	cost	in	terms	of	system	resources	required
to	complete	the	query.

The	statistics	are	gathered	through	the	ANALYZE	statement	since	Hive	0.10.0	on	tables,
partitions,	and	columns	as	given	in	the	following	examples:

jdbc:hive2://>	ANALYZE	TABLE	employee	COMPUTE	STATISTICS;

No	rows	affected	(27.979	seconds)

jdbc:hive2://>	ANALYZE	TABLE	employee_partitioned	

.>	PARTITION(year=2014,	month=12)	COMPUTE	STATISTICS;

No	rows	affected	(45.054	seconds)

jdbc:hive2://>	ANALYZE	TABLE	employee_id	COMPUTE	STATISTICS	

.>	FOR	COLUMNS	employee_id;	

No	rows	affected	(41.074	seconds)

Once	the	statistics	are	built,	we	can	check	the	statistics	by	the	DESCRIBE
EXTENDED/FORMATTED	statement.	From	the	table/partition	output,	we	can	find	the	statistics
information	inside	the	parameters,	such	as	parameters:{numFiles=1,
COLUMN_STATS_ACCURATE=true,	transient_lastDdlTime=1417726247,	numRows=4,

totalSize=227,	rawDataSize=223}).	The	following	is	an	example:

jdbc:hive2://>	DESCRIBE	EXTENDED	employee_partitioned

.>	PARTITION(year=2014,	month=12);

jdbc:hive2://>	DESCRIBE	EXTENDED	employee;

…

parameters:{numFiles=1,	COLUMN_STATS_ACCURATE=true,	

transient_lastDdlTime=1417726247,	numRows=4,	totalSize=227,	

rawDataSize=223}).

jdbc:hive2://>	DESCRIBE	FORMATTED	employee.name;

+--------+---------+---+---+---------+--------------+-----------+----------

-+

|col_name|data_type|min|max|num_nulls|distinct_count|avg_col_len|max_col_le

n|

+--------+---------+---+---+---------+--------------+-----------+----------

-+

|	name			|	string		|			|			|	0							|	5												|	5.6							|	7									

|

+--------+---------+---+---+---------+--------------+-----------+----------

-+

+---------+----------+-----------------+

|num_trues|num_falses|				comment						|

+---------+----------+-----------------+

|									|										|from	deserializer|

+---------+----------+-----------------+

3	rows	selected	(0.116	seconds)

Hive	statistics	are	persisted	in	the	metastore	to	avoid	computing	them	every	time.	For
newly	created	tables	and/or	partitions,	statistics	are	automatically	computed	by	default	if
we	enable	the	following	setting:

jdbc:hive2://>	SET	hive.stats.autogather=ture;

Note
Hive	logs

Logs	provide	useful	information	to	find	out	how	a	Hive	query/job	runs.	By	checking	the
Hive	logs,	we	can	identify	runtime	problems	and	issues	that	may	cause	bad	performance.
There	are	two	types	of	logs	available	in	Hive:	system	log	and	job	log.

The	system	log	contains	the	Hive	running	status	and	issues.	It	is	configured	in
{HIVE_HOME}/conf/hive-log4j.properties.	The	following	three	lines	for	Hive	log	can
be	found:

hive.root.logger=WARN,DRFA

hive.log.dir=/tmp/${user.name}

hive.log.file=hive.log

To	modify	the	status,	we	can	either	modify	the	preceding	lines	in	hive-log4j.properties
(applies	to	all	users)	or	set	from	the	Hive	CLI	(only	applies	to	the	current	user	and	current
session)	as	follows:

hive	--hiveconf	hive.root.logger=DEBUG,console

The	job	log	contains	Hive	query	information	and	is	saved	at	the	same	place,
/tmp/${user.name},	by	default	as	one	file	for	each	Hive	user	session.	We	can	override	it
in	hive-site.xml	with	the	hive.querylog.location	property.	If	a	Hive	query	generates
MapReduce	jobs,	those	logs	can	also	be	viewed	through	the	Hadoop	JobTracker	Web	UI.

Design	optimization
Design	optimization	covers	several	data	layout	and	design	strategies	to	improve
performance.

Partition	tables
Hive	partitioning	is	one	of	the	most	effective	methods	to	improve	the	query	performance
on	larger	tables.	The	query	with	partition	filtering	will	only	load	the	data	in	the	specified
partitions	(subdirectories),	so	it	can	execute	much	faster	than	a	normal	query	that	filters	by
a	non-partitioning	field.	The	selection	of	partition	key	is	always	an	important	factor	for
performance.	It	should	always	be	a	low	cardinal	attribute	to	avoid	many	subdirectories
overhead.

The	following	are	some	commonly	used	dimensions	as	partition	keys:

Partitions	by	date	and	time:	Use	date	and	time,	such	as	year,	month,	and	day	(even
hours),	as	partition	keys	when	data	is	associated	with	the	time	dimension
Partitions	by	locations:	Use	country,	territory,	state,	and	city	as	partition	keys	when
data	is	location	related
Partitions	by	business	logics:	Use	department,	sales	region,	applications,	customers,
and	so	on	as	partitioned	keys	when	data	can	be	separated	evenly	by	some	business
logic

Bucket	tables
Similar	to	partitioning,	a	bucket	table	organizes	data	into	separate	files	in	the	HDFS.
Bucketing	can	speed	up	the	data	sampling	in	Hive	with	sampling	on	buckets.	Bucketing
can	also	improve	the	join	performance	if	the	join	keys	are	also	bucket	keys	because
bucketing	ensures	that	the	key	is	present	in	a	certain	bucket.	More	details	are	given	in	the
Job	and	Query	optimization	section	in	this	chapter.

Index
Index	is	very	common	with	RDBMS	when	we	want	to	speed	access	to	a	column	or	set	of
columns.	Hive	supports	index	creation	on	tables/partitions	since	Hive	0.7.0.	The	index	in
Hive	provides	key-based	data	view	and	better	data	access	for	certain	operations,	such	as
WHERE,	GROUP	BY,	and	JOIN.	We	can	use	index	is	a	cheaper	alternative	than	full	table	scans.
The	command	to	create	an	index	in	Hive	is	straightforward	as	follows:

jdbc:hive2://>	CREATE	INDEX	idx_id_employee_id

.>	ON	TABLE	employee_id	(employee_id)

.>	AS	'COMPACT'

.>	WITH	DEFERRED	REBUILD;

No	rows	affected	(1.149	seconds)

In	addition	to	the	COMPACT	keyword	(refers	to
org.apache.hadoop.hive.ql.index.compact.CompactIndexHandler)	used	in	the
preceding	example,	Hive	also	supports	BITMAP	indexes	since	HIVE	0.8.0	for	columns	with
less	different	values,	as	shown	in	the	following	example:

jdbc:hive2://>	CREATE	INDEX	idx_sex_employee_id

.>	ON	TABLE	employee_id	(sex_age)

.>	AS	'BITMAP'

.>	WITH	DEFERRED	REBUILD;

No	rows	affected	(0.251	seconds)

The	WITH	DEFERRED	REBUILD	keyword	in	the	preceding	example	prevents	the	index	from
immediately	being	built.	To	build	the	index,	we	can	issue	ALTER…REBUILD	commands	as	in
the	following	example.	When	data	in	the	base	table	changes,	the	ALTER…REBUILD
command	must	be	used	to	bring	the	index	up	to	date.	This	is	an	atomic	operation,	so	if	the
index	rebuilt	on	a	table	that	has	been	previously	indexed	failed,	the	state	of	index	remains
the	same,	as	shown	here:

jdbc:hive2://>	ALTER	INDEX	idx_id_employee_id	ON	employee_id	REBUILD;

No	rows	affected	(111.413	seconds)

jdbc:hive2://>	ALTER	INDEX	idx_sex_employee_id	ON	employee_id	

.>	REBUILD;

No	rows	affected	(82.23	seconds)

Once	the	index	is	built,	Hive	will	create	a	new	index	table	for	each	index	as	follows:

jdbc:hive2://>	!table

+-----------+--+-----------+-------

+

|TABLE_SCHEM|																	TABLE_NAME															|	

TABLE_TYPE|REMARKS|

+-----------+--+-----------+-------

+

|default				|default__employee_id_idx_id_employee_id__	|INDEX_TABLE|NULL			

|

|default				|default__employee_id_idx_sex_employee_id__|INDEX_TABLE|NULL			

|

+-----------+--+-----------+-------

+

The	index	table	will	have	name	convention	such	as	default__tablename_indexname__.	It
contains	the	indexed	column,	the	_bucketname	(typical	file	URI	on	HDFS),	and	_offsets
(offsets	for	each	rows).	Then,	this	index	table	can	be	used	where	we	need	to	query	the
indexed	columns	like	a	regular	table,	as	shown	here:

jdbc:hive2://>	DESC	default__employee_id_idx_id_employee_id__;

+--------------+----------------+----------+

|			col_name			|			data_type				|	comment		|

+--------------+----------------+----------+

|	employee_id		|	int												|										|

|	_bucketname		|	string									|										|

|	_offsets					|	array<bigint>		|										|

+--------------+----------------+----------+

3	rows	selected	(0.135	seconds)

To	drop	an	index,	we	can	use	the	DROP	INDEX	index_name	ON	table_name	statement	as
follows.	However,	we	cannot	drop	the	index	table	with	a	DROP	TABLE	statement:

jdbc:hive2://>	DROP	INDEX	idx_sex_employee_id	ON	employee_id;

No	rows	affected	(0.247	seconds)

Note
Since	Hive	0.13.0,	Hive	includes	the	following	new	features	for	performance
optimizations:

Tez:	Tez	(http://tez.apache.org/)	is	an	application	framework	built	on	Yarn	that	can
execute	complex	directed	acyclic	graphs	(DAGs)	for	general	data-processing	tasks.
Tez	further	splits	map	and	reduce	jobs	into	smaller	tasks	and	combines	them	in	a
flexible	and	efficient	way	for	execution.	Tez	is	considered	a	flexible	and	powerful
successor	to	the	MapReduce	framework.	To	configure	Hive	to	use	Tez,	we	need	to
overwrite	the	following	settings	from	the	default	MapReduce:

SET	hive.execution.engine=tez;

Vectorization:	Vectorization	optimization	processes	a	larger	batch	of	data	at	the	same
time	rather	than	one	row	at	a	time,	thus	significantly	reducing	computing	overhead.
Each	batch	consists	of	a	column	vector	that	is	usually	an	array	of	primitive	types.
Operations	are	performed	on	the	entire	column	vector,	which	improves	the
instruction	pipelines	and	cache	usage.	Files	must	be	stored	in	the	Optimized	Row
Columnar	(ORC)	format	in	order	to	use	vectorization.	For	more	on	vectorization,
please	refer	to	the	Apache	Hive	wiki	at
https://cwiki.apache.org/confluence/display/Hive/Vectorized+Query+Execution.	To
enable	vectorization,	we	need	to	do	the	following	setting:

	 SET	hive.vectorized.execution.enabled=true;

http://tez.apache.org/
https://cwiki.apache.org/confluence/display/Hive/Vectorized+Query+Execution

Data	file	optimization
Data	file	optimization	covers	the	performance	improvement	on	the	data	files	in	terms	of
file	format,	compression,	and	storage.

File	format
Hive	supports	TEXTFILE,	SEQUENCEFILE,	RCFILE,	ORC,	and	PARQUET	file	formats.	The	three
ways	to	specify	the	file	format	are	as	follows:

CREATE	TABLE…	STORE	AS	<File_Format>

ALTER	TABLE…	[PARTITION	partition_spec]	SET	FILEFORMAT	<File_Format>

SET	hive.default.fileformat=<File_Format>	--default	fileformat	for

table

Here,	<File_Type>	is	TEXTFILE,	SEQUENCEFILE,	RCFILE,	ORC,	and	PARQUET.

We	can	load	a	text	file	directly	to	a	table	with	the	TEXTFILE	format.	To	load	data	to	the
table	with	other	file	formats,	we	need	to	load	the	data	to	a	TEXTFILE	format	table	first.
Then,	use	INSERT	OVERWRITE	TABLE	<target_file_format_table>	SELECT	*	FROM
<text_format_source_table>	to	convert	and	insert	the	data	to	the	file	format	as
expected.

The	file	formats	supported	by	Hive	and	their	optimizations	are	as	follows:

TEXTFILE:	This	is	the	default	file	format	for	Hive.	Data	is	not	compressed	in	the	text
file.	It	can	be	compressed	with	compression	tools,	such	as	GZip,	Bzip2,	and	Snappy.
However,	these	compressed	files	are	not	splittable	as	input	during	processing.	As	a
result,	it	leads	to	running	a	single,	huge	map	job	to	process	one	big	file.
SEQUENCEFILE:	This	is	a	binary	storage	format	for	key/value	pairs.	The	benefit	of	a
sequence	file	is	that	it	is	more	compact	than	a	text	file	and	fits	well	with	the
MapReduce	output	format.	Sequence	files	can	be	compressed	on	record	or	block
level	where	block	level	has	a	better	compression	ratio.	To	enable	block	level
compression,	we	need	to	do	the	following	settings:

jdbc:hive2://>	SET	hive.exec.compress.output=true;	

jdbc:hive2://>	SET	io.seqfile.compression.type=BLOCK;	

Unfortunately,	both	text	and	sequence	files	as	a	row	level	storage	file	format	are	not
an	optimal	solution	since	Hive	has	to	read	a	full	row	even	if	only	one	column	is	being
requested.	For	instance,	a	hybrid	row-columnar	storage	file	format,	such	as	RCFILE,
ORC,	and	PARQUET	implementation,	is	created	to	resolve	this	problem.

RCFILE:	This	is	short	for	Record	Columnar	File.	It	is	a	flat	file	consisting	of	binary
key/value	pairs	that	shares	much	similarity	with	a	sequence	file.	The	RCFile	splits
data	horizontally	into	row	groups.	One	or	several	groups	are	stored	in	an	HDFS	file.
Then,	RCFile	saves	the	row	group	data	in	a	columnar	format	by	saving	the	first
column	across	all	rows,	then	the	second	column	across	all	rows,	and	so	on.	This
format	is	splittable	and	allows	Hive	to	skip	irrelevant	parts	of	data	and	get	the	results
faster	and	cheaper.
ORC:	This	is	short	for	Optimized	Row	Columnar.	It	is	available	since	Hive	0.11.0.
The	ORC	format	can	be	considered	an	improved	version	of	RCFILE.	It	provides	a	larger
block	size	of	256	MB	by	default	(RCFILE	has	4	MB	and	SEQUENCEFILE	has	1	MB)
optimized	for	large	sequential	reads	on	HDFS	for	more	throughput	and	fewer	files	to

reduce	overload	in	the	namenode.	Different	from	RCFILE	that	relies	on	metastore	to
know	data	types,	the	ORC	file	understands	the	data	types	by	using	specific	encoders	so
that	it	can	optimize	compression	depending	on	different	types.	It	also	stores	basic
statistics,	such	as	MIN,	MAX,	SUM,	and	COUNT,	on	columns	as	well	as	a	lightweight	index
that	can	be	used	to	skip	blocks	of	rows	that	do	not	matter.
PARQUET:	This	is	another	row	columnar	file	format	that	has	a	similar	design	to	that	of
ORC.	What’s	more,	Parquet	has	a	wider	range	of	support	for	the	majority	projects	in
the	Hadoop	ecosystem	compared	to	ORC	that	only	supports	Hive	and	Pig.	Parquet
leverages	the	design	best	practices	of	Google’s	Dremel	(see
http://research.google.com/pubs/pub36632.html)	to	support	the	nested	structure	of
data.	Parquet	is	supported	by	a	plugin	since	Hive	0.10.0	and	has	got	native	support
since	Hive	0.13.0.

Considering	the	maturity	of	Hive,	it	is	suggested	to	use	the	ORC	format	if	Hive	is	the	main
majority	tool	used	in	your	Hadoop	environment.	If	you	use	several	tools	in	the	Hadoop
ecosystem,	PARQUET	is	a	better	choice	in	terms	of	adaptability.

Note
Hadoop	Archive	File	(HAR)	is	another	type	of	file	format	to	pack	HDFS	files	into
archives.	This	is	an	option	(not	a	good	option)	for	storing	a	large	number	of	small-sized
files	in	HDFS,	as	storing	a	large	number	of	small-sized	files	directly	in	HDFS	is	not	very
efficient.	However,	HAR	still	has	some	limitations	that	make	it	unpopular,	such	as
immutable	archive	process,	not	being	splittable,	and	compatibility	issues.	For	more
information	about	HAR	and	archiving,	please	refer	to	the	Apache	Hive	wiki	at
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Archiving.

http://research.google.com/pubs/pub36632.html
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Archiving

Compression
Compression	techniques	in	Hive	can	significantly	reduce	the	amount	of	data	transferring
between	mappers	and	reducers	by	proper	intermediate	output	compression	as	well	as
output	data	size	in	HDFS	by	output	compression.	As	a	result,	the	overall	Hive	query	will
have	better	performance.	To	compress	intermediate	files	produced	by	Hive	between
multiple	MapReduce	jobs,	we	need	to	set	the	following	property	(false	by	default)	in	the
Hive	CLI	or	the	hive-site.xml	file:

jdbc:hive2://>	SET	hive.exec.compress.intermediate=true

Then,	we	need	to	decide	which	compression	codec	to	configure.	A	list	of	common	codecs
supported	in	Hadoop	and	Hive	is	as	follows:

Compression Codec Extension Splittable

Deflate org.apache.hadoop.io.compress.DefaultCodec .deflate N

GZip org.apache.hadoop.io.compress.GzipCodec .gz N

Bzip2 org.apache.hadoop.io.compress.BZip2Codec .gz Y

LZO com.hadoop.compression.lzo.LzopCodec .lzo N

LZ4 org.apache.hadoop.io.compress.Lz4Codec .lz4 N

Snappy org.apache.hadoop.io.compress.SnappyCodec .snappy N

Hadoop	has	a	default	codec	(.deflate).	The	compression	ratio	for	GZip	is	higher	as	well
as	its	CPU	cost.	Bzip2	is	splittable,	but	splitting	isn’t	supported	by	Hadoop	until	1.1	(see
https://issues.apache.org/jira/browse/HADOOP-4012).	In	addition,	Bzip2	is	too	slow	for
compression	considering	its	huge	CPU	cost.	LZO	files	are	not	natively	splittable.	But	we
can	preprocess	them	(using	com.hadoop.compression.lzo.LzoIndexer)	to	create	an
index	that	determines	the	file	splits.	When	it	comes	to	the	balance	of	CPU	cost	and
compression	ratio,	LZ4	or	Snappy	do	a	better	job.	Since	the	majority	of	codec	do	not
support	split	after	compression,	it	is	suggested	to	avoid	compressing	big	files	in	HDFS.

The	compression	codec	can	be	specified	in	either	mapred-site.xml,	hive-site.xml,	or
Hive	CLI,	as	in	the	following	example:

jdbc:hive2://>	SET	hive.intermediate.compression.codec=

.>	org.apache.hadoop.io.compress.SnappyCodec

Intermediate	compression	will	only	save	disk	space	for	specific	jobs	that	require	multiple
map	and	reduce	jobs.	For	further	saving	of	disk	space,	the	actual	Hive	output	files	can	be
compressed.	When	the	hive.exec.compress.output	property	is	set	to	true,	Hive	will	use
the	codec	configured	by	the	mapred.map.output.compression.codec	property	to
compress	the	storage	in	HDFS	as	follows.	These	properties	can	be	set	in	the	hive-
site.xml	or	in	the	Hive	CLI.

https://issues.apache.org/jira/browse/HADOOP-4012

jdbc:hive2://>	SET	hive.exec.compress.output=true

jdbc:hive2://>	SET	mapred.output.compression.codec=

.>	org.apache.hadoop.io.compress.SnappyCodec

Storage	optimization
The	data,	which	is	used	or	scanned	frequently,	can	be	identified	as	hot	data.	Usually,	the
query	performance	on	the	hot	data	is	critical	for	overall	performance.	Increasing	the	data
replication	factor	in	HDFS	(see	the	following	example)	for	hot	data	could	increase	the
chance	of	data	being	hit	locally	by	Hive	jobs	and	improve	the	performance.	However,	this
is	a	trade-off	for	storage.

$	hdfs	dfs	-setrep	-R	-w	4	/user/hive/warehouse/employee

Replication	4	set:	/user/hive/warehouse/employee/000000_0

On	the	other	hand,	too	many	files	or	redundancy	could	make	namenode’s	memory
exhausted,	especially	for	lots	of	small	files	less	than	the	HDFS	block	sizes.	Hadoop	itself
already	has	some	solutions	to	deal	with	too	many	small-file	issues,	such	as	the	following:

Hadoop	Archive	and	HAR:	These	are	toolkits	to	pack	small	files.
SequenceFile	format:	This	is	a	format	to	compress	small	files	to	bigger	files.
CombineFileInputFormat:	A	type	of	InputFormat	to	combine	small	files	before
map	and	reduce	processing.	It	is	the	default	InputFormat	for	Hive	(see
https://issues.apache.org/jira/browse/HIVE-2245).
HDFS	federation:	It	makes	namenodes	extensible	and	powerful	to	manage	more
files.

We	can	also	leverage	other	tools	in	the	Hadoop	ecosystem	if	we	have	them	installed,	such
as	the	following:

HBase	has	a	smaller	block	size	and	better	file	format	to	deal	with	smaller-file	access
issues
Flume	NG	can	be	used	as	pipes	to	merge	small	files	to	big	ones
A	scheduled	offline	file	merge	program	to	merge	small	files	in	HDFS	or	before
loading	them	to	HDFS

For	Hive,	we	can	do	the	following	configurations	for	merging	files	of	query	results	to
avoid	recreating	small	files:

hive.merge.mapfiles:	This	merges	small	files	at	the	end	of	a	map-only	job.	By
default,	it	is	true.
hive.merge.mapredfiles:	This	merges	small	files	at	the	end	of	a	MapReduce	job.
Set	it	to	true	since	its	default	is	false.
hive.merge.size.per.task:	This	defines	the	size	of	merged	files	at	the	end	of	the
job.	The	default	value	is	256,000,000.
hive.merge.smallfiles.avgsize:	This	is	the	threshold	for	triggering	file	merge.
The	default	value	is	16,000,000.

When	the	average	output	file	size	of	a	job	is	less	than	the	value	specified	by
hive.merge.smallfiles.avgsize,	and	both	hive.merge.mapfiles	(for	map-only	jobs)
and	hive.merge.mapredfiles	(for	MapReduce	jobs)	are	set	to	true,	Hive	will	start	an
additional	MapReduce	job	to	merge	the	output	files	into	big	files.

https://issues.apache.org/jira/browse/HIVE-2245

Job	and	query	optimization
Job	and	query	optimization	covers	experience	and	skills	to	improve	performance	in	the
area	of	job-running	mode,	JVM	reuse,	job	parallel	running,	and	query	optimizations	in
JOIN.

Local	mode
Hadoop	can	run	in	standalone,	pseudo-distributed,	and	fully	distributed	mode.	Most	of	the
time,	we	need	to	configure	Hadoop	to	run	in	fully	distributed	mode.	When	the	data	to
process	is	small,	it	is	an	overhead	to	start	distributed	data	processing	since	the	launching
time	of	the	fully	distributed	mode	takes	more	time	than	the	job	processing	time.	Since
Hive	0.7.0,	Hive	supports	automatic	conversion	of	a	job	to	run	in	local	mode	with	the
following	settings:

jdbc:hive2://>	SET	hive.exec.mode.local.auto=true;	--default	false

jdbc:hive2://>	SET	hive.exec.mode.local.auto.inputbytes.max=50000000;

jdbc:hive2://>	SET	hive.exec.mode.local.auto.input.files.max=5;

--default	4

A	job	must	satisfy	the	following	conditions	to	run	in	the	local	mode:

The	total	input	size	of	the	job	is	lower	than
hive.exec.mode.local.auto.inputbytes.max

The	total	number	of	map	tasks	is	less	than
hive.exec.mode.local.auto.input.files.max

The	total	number	of	reduce	tasks	required	is	1	or	0

JVM	reuse
By	default,	Hadoop	launches	a	new	JVM	for	each	map	or	reduce	job	and	runs	the	map	or
reduce	task	in	parallel.	When	the	map	or	reduce	job	is	a	lightweight	job	running	only	for	a
few	seconds,	the	JVM	startup	process	could	be	a	significant	overhead.	The	MapReduce
framework	(version	1	only,	not	Yarn)	has	an	option	to	reuse	JVM	by	sharing	the	JVM	to
run	mapper/reducer	serially	instead	of	parallel.	JVM	reuse	applies	to	map	or	reduce	tasks
in	the	same	job.	Tasks	from	different	jobs	will	always	run	in	a	separate	JVM.	To	enable
the	reuse,	we	can	set	the	maximum	number	of	tasks	for	a	single	job	for	JVM	reuse	using
the	mapred.job.reuse.jvm.num.tasks	property.	Its	default	value	is	1:

jdbc:hive2://>	SET	mapred.job.reuse.jvm.num.tasks=5;

We	can	also	set	the	value	to	–1	to	indicate	that	all	the	tasks	for	a	job	will	run	in	the	same
JVM.

Parallel	execution
Hive	queries	commonly	are	translated	into	a	number	of	stages	that	are	executed	by	the
default	sequence.	These	stages	are	not	always	dependent	on	each	other.	Instead,	they	can
run	in	parallel	to	save	the	overall	job	running	time.	We	can	enable	this	feature	with	the
following	settings:

jdbc:hive2://>	SET	hive.exec.parallel=true;—default	false

jdbc:hive2://>	SET	hive.exec.parallel.thread.number=16;	

--	default	8,	it	defines	the	max	number	for	running	in	parallel

Parallel	execution	will	increase	the	cluster	utilization.	If	the	utilization	of	a	cluster	is
already	very	high,	parallel	execution	will	not	help	much	in	terms	of	overall	performance.

Join	optimization
We	have	already	discussed	optimization	in	different	types	of	Hive	joins	in	Chapter	4,	Data
Selection	and	Scope.	Here,	we’ll	briefly	review	the	key	settings	for	join	improvement.

Common	join
The	common	join	is	also	called	reduce	side	join.	It	is	a	basic	join	in	Hive	and	works	for
most	of	the	time.	For	common	joins,	we	need	to	make	sure	the	big	table	is	on	the	right-
most	side	or	specified	by	hit,	as	follows:

/*+	STREAMTABLE(stream_table_name)	*/.

Map	join
Map	join	is	used	when	one	of	the	join	tables	is	small	enough	to	fit	in	the	memory,	so	it	is
very	fast	but	limited.	Since	Hive	0.7.0,	Hive	can	convert	map	join	automatically	with	the
following	settings:

jdbc:hive2://>	SET	hive.auto.convert.join=true;	--default	false

jdbc:hive2://>	SET	hive.mapjoin.smalltable.filesize=600000000;	

--default	25M

jdbc:hive2://>	SET	hive.auto.convert.join.noconditionaltask=true;	

--default	false.	Set	to	true	so	that	map	join	hint	is	not	needed

jdbc:hive2://>	SET	hive.auto.convert.join.noconditionaltask.size=10000000;	

--The	default	value	controls	the	size	of	table	to	fit	in	memory

Once	autoconvert	is	enabled,	Hive	will	automatically	check	if	the	smaller	table	file	size	is
bigger	than	the	value	specified	by	hive.mapjoin.smalltable.filesize,	and	then	Hive
will	convert	the	join	to	a	common	join.	If	the	file	size	is	smaller	than	this	threshold,	it	will
try	to	convert	the	common	join	into	a	map	join.	Once	autoconvert	join	is	enabled,	there	is
no	need	to	provide	the	map	join	hints	in	the	query.

Bucket	map	join
Bucket	map	join	is	a	special	type	of	map	join	applied	on	the	bucket	tables.	To	enable
bucket	map	join,	we	need	to	enable	the	following	settings:

jdbc:hive2://>	SET	hive.auto.convert.join=true;	--default	false

jdbc:hive2://>	SET	hive.optimize.bucketmapjoin=true;	--default	false

In	bucket	map	join,	all	the	join	tables	must	be	bucket	tables	and	join	on	buckets	columns.
In	addition,	the	buckets	number	in	bigger	tables	must	be	a	multiple	of	the	bucket	number
in	the	small	tables.

Sort	merge	bucket	(SMB)	join
SMB	is	the	join	performed	on	the	bucket	tables	that	have	the	same	sorted,	bucket,	and	join
condition	columns.	It	reads	data	from	both	bucket	tables	and	performs	common	joins	(map
and	reduce	triggered)	on	the	bucket	tables.	We	need	to	enable	the	following	properties	to
use	SMB:

jdbc:hive2://>	SET	hive.input.format=

.>	org.apache.hadoop.hive.ql.io.BucketizedHiveInputFormat;

jdbc:hive2://>	SET	hive.auto.convert.sortmerge.join=true;

jdbc:hive2://>	SET	hive.optimize.bucketmapjoin=true;

jdbc:hive2://>	SET	hive.optimize.bucketmapjoin.sortedmerge=true;

jdbc:hive2://>	SET	hive.auto.convert.sortmerge.join.noconditionaltask=true;

Sort	merge	bucket	map	(SMBM)	join
SMBM	join	is	a	special	bucket	join	but	triggers	map-side	join	only.	It	can	avoid	caching
all	rows	in	the	memory	like	map	join	does.	To	perform	SMBM	joins,	the	join	tables	must
have	the	same	bucket,	sort,	and	join	condition	columns.	To	enable	such	joins,	we	need	to
enable	the	following	settings:

jdbc:hive2://>	SET	hive.auto.convert.join=true;

jdbc:hive2://>	SET	hive.auto.convert.sortmerge.join=true

jdbc:hive2://>	SET	hive.optimize.bucketmapjoin=true;

jdbc:hive2://>	SET	hive.optimize.bucketmapjoin.sortedmerge=true;

jdbc:hive2://>	SET	hive.auto.convert.sortmerge.join.noconditionaltask=true;

jdbc:hive2://>	SET	

hive.auto.convert.sortmerge.join.bigtable.selection.policy=

org.apache.hadoop.hive.ql.optimizer.TableSizeBasedBigTableSelectorForAutoSM

J;

Skew	join
When	working	with	data	that	has	a	highly	uneven	distribution,	the	data	skew	could	happen
in	such	a	way	that	a	small	number	of	compute	nodes	must	handle	the	bulk	of	the
computation.	The	following	setting	informs	Hive	to	optimize	properly	if	data	skew
happens:

jdbc:hive2://>	SET	hive.optimize.skewjoin=true;

--If	there	is	data	skew	in	join,	set	it	to	true.	Default	is	false.

jdbc:hive2://>	SET	hive.skewjoin.key=100000;	

--This	is	the	default	value.	If	the	number	of	key	is	bigger	than	

--this,	the	new	keys	will	send	to	the	other	unused	reducers.

Note
Skew	data	could	happen	on	the	GROUP	BY	data	too.	To	optimize	it,	we	need	to	do	the
following	settings	to	enable	skew	data	optimization	in	the	GROUP	BY	result:

SET	hive.groupby.skewindata=true;

Once	configured,	Hive	will	first	trigger	an	additional	MapReduce	job	whose	map	output
will	randomly	distribute	to	the	reducer	to	avoid	data	skew.

For	more	information	about	Hive	join	optimization,	please	refer	to	the	Apache	Hive	wiki
available	at
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+JoinOptimization	and
https://cwiki.apache.org/confluence/display/Hive/Skewed+Join+Optimization.

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+JoinOptimization
https://cwiki.apache.org/confluence/display/Hive/Skewed+Join+Optimization

Summary
In	this	chapter,	we	first	covered	how	to	identify	performance	bottlenecks	using	the
EXPLAIN	and	ANALYZE	statements.	Then,	we	spoke	about	the	design	optimization	for
performance	when	using	tables,	partition,	and	index.	We	also	covered	the	data	file
optimization	including	file	format,	compression,	and	storage.	At	the	end	of	this	chapter,
we	discussed	job	and	query	optimization	in	Hive.	After	going	through	this	chapter,	we
should	be	able	to	do	performance	troubleshooting	and	tuning	in	Hive.

In	the	next	chapter,	we’ll	talk	about	function	extensions	for	Hive.

Chapter	8.	Extensibility	Considerations
Although	Hive	has	many	built-in	functions,	users	sometimes	will	need	power	beyond	that
provided	by	built-in	functions.	For	these	instances,	Hive	offers	the	following	three	main
areas	where	its	functionalities	can	be	extended:

User-defined	function	(UDF):	This	provides	a	way	to	extend	functionalities	with	an
external	function	(mainly	written	in	Java)	that	can	be	evaluated	in	HQL
Streaming:	This	plugs	in	users’	own	customized	mappers	and	reducers	programs	in
the	data	streaming
SerDe:	This	stands	for	serializers	and	deserializers	and	provides	a	way	to	serialize	or
deserialize	a	custom	file	format	with	files	stored	on	HDFS

In	this	chapter,	we’ll	talk	about	each	of	them	in	more	detail.

User-defined	functions
Hive	defines	the	following	three	types	of	UDF:

UDFs:	These	are	regular	user-defined	functions	that	operate	row-wise	and	output	one
result	for	one	row,	such	as	most	built-in	mathematic	and	string	functions.
UDAFs:	These	are	user-defined	aggregating	functions	that	operate	row-wise	or
group-wise	and	output	one	row	or	one	row	for	each	group	as	a	result,	such	as	the	MAX
and	COUNT	built-in	functions.
UDTFs:	These	are	user-defined	table-generating	functions	that	also	operate	row-
wise,	but	they	produce	multiple	rows/tables	as	a	result,	such	as	the	EXPLODE	function.
UDTF	can	be	used	either	after	SELECT	or	after	the	LATERAL	VIEW	statement.

Note
Since	Hive	is	implemented	in	Java,	UDFs	should	be	written	in	Java	as	well.	Since
Java	supports	running	code	in	other	languages	through	the	javax.script	API	(see
http://docs.oracle.com/javase/6/docs/api/javax/script/package-summary.html),	UDFs
can	be	written	in	languages	other	than	Java.	In	this	book,	we	only	focus	on	Java
UDFs.

We’ll	start	looking	at	the	Java	code	template	for	each	kind	of	function	in	more	detail.

http://docs.oracle.com/javase/6/docs/api/javax/script/package-summary.html

The	UDF	code	template
The	code	template	for	a	regular	UDF	is	as	follows:

package	com.packtpub.hive.essentials.hiveudf;

	

import	org.apache.hadoop.hive.ql.exec.UDF;

import	org.apache.hadoop.hive.ql.exec.Description;

import	org.apache.hadoop.hive.ql.udf.UDFType;	

//Below	are	options	or	add	more	when	needed

import	org.apache.hadoop.io.Text;

import	org.apache.commons.lang.StringUtils;

@Description(

name	=	"udf_name",

value	=	"_FUNC_(arg1,	arg2,	...	argN)	-	A	short	description	for	the	

function",

extended	=	"This	is	more	detail	about	the	function,	such	as	syntax,	

examples."

)

@UDFType(deterministic	=	true,	stateful	=	false)

public	class	udf_name	extends	UDF	{	

					public	String	evaluate(){										

									/*

										*	Do	something	here

										*/

										return	"return	the	udf	result";	

					}	

					//override	is	supported

					public	String	evaluate(<Type_arg1>	arg1,...,	<Type_argN>	argN){

										/*

											*	Do	something	here

											*/

										return	"return	the	udf	result";	

					}	

}

In	the	preceding	template,	the	package	definition	and	imports	should	be	self-explanatory.
We	can	import	whatever	is	needed	besides	the	top	three	mandatory	libraries.	The
@Description	annotation	is	a	useful	Hive	specific	annotation	to	provide	usage
information	for	the	UDF	in	the	Hive	console.	The	information	defined	in	the	value
property	will	be	shown	in	the	HQL	DESCRIBE	FUNCTION	command.	The	information
defined	in	the	extended	property	will	be	shown	in	the	HQL	DESCRIBE	FUNCTION
EXTENDED	command.	The	@UDFType	annotation	tells	Hive	what	behavior	to	expect	from	the
function.	A	deterministic	UDF	(deterministic	=	true)	is	a	function	that	always	gives
the	same	result	when	passed	the	same	arguments,	such	as	LENGTH(string	input),	MAX(),
and	so	on.	On	the	other	hand,	a	non-deterministic	(deterministic	=	false)	UDF	can
return	a	different	result	for	the	same	set	of	arguments,	for	example,	UNIX_TIMESTAMP()
returning	the	current	timestamp	in	the	default	time	zone.	The	stateful	(stateful	=	true)
property	allows	functions	to	keep	some	static	variables	available	across	rows,	such	as

ROW_NUMBER(),	which	assigns	sequential	numbers	for	all	rows	in	a	table.

All	UDFs	extend	the	Hive	UDF	class,	so	the	UDF	subclass	must	implement	the	evaluate
method	called	by	Hive.	The	evaluate	method	can	be	overridden	for	a	different	purpose.
In	this	method,	we	can	implement	whatever	logic	and	exception	handling	the	design	for
the	function	using	the	Java	Hadoop	library	and	the	Hadoop	data	type	for	MapReduce	data
serialization,	such	as	TEXT,	DoubleWritable,	INTWritable,	and	so	on.

The	UDAF	code	template
In	this	section,	we	introduce	the	UDAF	code	template	by	extending	it	from	the	UDAF	class.
The	code	template	is	as	follows:

package	com.packtpub.hive.essentials.hiveudaf;

import	org.apache.hadoop.hive.ql.exec.UDAF;

import	org.apache.hadoop.hive.ql.exec.UDAFEvaluator;

import	org.apache.hadoop.hive.ql.exec.Description;

import	org.apache.hadoop.hive.ql.udf.UDFType;

@Description(

name	=	"udaf_name",

value	=	"_FUNC_(arg1,	arg2,	...	argN)	-	A	short	description	for	the	

function",

extended	=	"This	is	more	detail	about	the	function,	such	as	syntax,	

examples."

)

@UDFType(deterministic	=	false,	stateful	=	true)

public	final	class	udaf_name	extends	UDAF	{

		/**

			*	The	internal	state	of	an	aggregation	function.

			*

			*	Note	that	this	is	only	needed	if	the	internal	state

			*	cannot	be	represented	by	a	primitive.

			*

			*	The	internal	state	can	contain	fields	with	types	like

			*	ArrayList<String>	and	HashMap<String,Double>	if	needed.

			*/

		public	static	class	UDAFState	{

				private	<Type_state1>	state1;

				private	<Type_stateN>	stateN;

		}

		/**

			*	The	actual	class	for	doing	the	aggregation.	Hive	will

			*	automatically	look	for	all	internal	classes	of	the	UDAF

			*	that	implements	UDAFEvaluator.

			*/

		public	static	class	UDAFExampleAvgEvaluator	implements	UDAFEvaluator	{

				UDAFState	state;

				public	UDAFExampleAvgEvaluator()	{

						super();

						state	=	new	UDAFState();

						init();

				}

				/**

					*	Reset	the	state	of	the	aggregation.

					*/

				public	void	init()	{

						/*

							*	Examples	for	initializing	state.

							*/

						state.state1	=	0;

						state.stateN	=	0;

				}

				/**

					*	Iterate	through	one	row	of	original	data.

					*

					*	The	number	and	type	of	arguments	need	to	be	the	same	as	we

					*	call	this	UDAF	from	the	Hive	command	line.

					*

					*	This	function	should	always	return	true.

				*/

				public	boolean	iterate(<Type_arg1>	arg1,...,	<Type_argN>	argN)	

				{		

						/*

							*	Add	logic	here	for	how	to	do	aggregation	if	there	is

							*	a	new	value	to	be	aggregated.

							*/

						return	true;

				}

				/**

					*	Called	on	the	mapper	side	on	different	data	nodes.

					*	Terminate	a	partial	aggregation	and	return	the	state.

					*	If	the	state	is	a	primitive,	just	return	primitive	Java

					*	classes	like	Integer	or	String.

					*/

				public	UDAFState	terminatePartial()	{

						/*

							*	Check	and	return	a	partial	result	in	expectations.

							*/

						return	state;

				}

				/**

					*	Merge	with	a	partial	aggregation.

					*

					*	This	function	should	always	have	a	single	argument,

					*	which	has	the	same	type	as	the	return	value	of

					*	terminatePartial().

					*/

				public	boolean	merge(UDAFState	o)	{

						/*

							*	Define	operations	how	to	merge	the	result	calculated

							*	from	all	data	nodes.

							*/

						return	true;

				}

				/**

					*	Terminates	the	aggregation	and	returns	the	final	result.

					*/

				public	long	terminate()	{

						/*

							*	Check	and	return	final	result	in	expectations.

							*/

						return	state.stateN;

				}

		}

}

A	UDAF	must	be	a	subclass	of	org.apache.hadoop.hive.ql.exec.UDAF	containing	one
or	more	nested	static	classes	implementing
org.apache.hadoop.hive.ql.exec.UDAFEvaluator.	Make	sure	that	the	inner	class	that
implements	UDAFEvaluator	is	defined	as	public.	Otherwise,	Hive	won’t	be	able	to	use
reflection	and	determine	the	UDAFEvaluator	implementation.	We	should	also	implement
the	five	required	functions,	init,	iterate,	terminatePartial,	merge,	and	terminate,
already	described	in	the	code	comments.

Note
Both	UDF	and	UDAF	can	also	be	implemented	by	extending	from	the	GenericUDF	and
GenericUDAFEvaluator	classes	to	avoid	using	Java	reflection	for	better	performance.
And,	these	generic	functions	are	actually	extended	by	Hive’s	built-in	UDFs
implementations	internally.	Generic	functions	support	complex	data	types,	such	as	MAP,
ARRAY,	and	STRUCT,	as	arguments,	but	the	UDF	and	UDAF	class	do	not.	For	more	information
about	GenericUDAF,	please	refer	to	the	Apache	Hive	wiki	at
https://cwiki.apache.org/confluence/display/Hive/GenericUDAFCaseStudy.

https://cwiki.apache.org/confluence/display/Hive/GenericUDAFCaseStudy

The	UDTF	code	template
To	implement	UDTF,	there	is	only	one	way	by	extending	from
org.apache.hadoop.hive.ql.exec.GenericUDTF.	There	is	no	plain	UDTF	class.	We	need
to	implement	three	methods:	initialize,	process,	and	close.	The	UDTF	will	call	the
initialize	method,	which	returns	the	information	of	the	function	output,	such	as	data
type,	number	of	output,	and	so	on.	Then,	the	process	method	is	called	to	do	core	function
logic	with	arguments	and	forward	the	result.	At	the	end,	the	close	method	will	do	a
proper	cleanup,	if	needed.	The	code	template	for	UDTF	is	as	follows:

package	com.packtpub.hive.essentials.hiveudtf;

import	org.apache.hadoop.hive.ql.udf.generic.GenericUDTF;

import	org.apache.hadoop.hive.ql.exec.Description;

import	org.apache.hadoop.hive.ql.exec.UDFArgumentException;

import	org.apache.hadoop.hive.ql.metadata.HiveException;

import	org.apache.hadoop.hive.serde2.objectinspector.ObjectInspector;

import	

org.apache.hadoop.hive.serde2.objectinspector.ObjectInspectorFactory;

import	

org.apache.hadoop.hive.serde2.objectinspector.PrimitiveObjectInspector;

import	org.apache.hadoop.hive.serde2.objectinspector.StructObjectInspector;

import	

org.apache.hadoop.hive.serde2.objectinspector.primitive.PrimitiveObjectInsp

ectorFactory;

	

@Description(

name	=	"udtf_name",

value	=	"_FUNC_(arg1,	arg2,	...	argN)	-	A	short	description	for	the	

function",

extended	=	"This	is	more	detail	about	the	function,	such	as	syntax,	

examples."

)

public	class	udtf_name	extends	GenericUDTF	{

		private	PrimitiveObjectInspector	stringOI	=	null;

		/**

			*	This	method	will	be	called	exactly	once	per	instance.

			*	It	performs	any	custom	initialization	logic	we	need.

			*	It	is	also	responsible	for	verifying	the	input	types	and	

			*	specifying	the	output	types.

			*/

		@Override

		public	StructObjectInspector	initialize(ObjectInspector[]	args)	

		throws	UDFArgumentException	{

			

				//Check	number	of	arguments.

				if	(args.length	!=	1)	{

						throw	new	UDFArgumentException("The	UDTF	should	take	exactly	one	

argument");

				}

				/*

					*	Check	that	the	input	ObjectInspector[]	array	contains	a

					*	single	PrimitiveObjectInspector	of	the	Primitive	type,

					*	such	as	String.

					*/

				if	(args[0].getCategory()	!=	ObjectInspector.Category.PRIMITIVE

								&&	

							((PrimitiveObjectInspector)	args[0]).getPrimitiveCategory()	!=	

								PrimitiveObjectInspector.PrimitiveCategory.STRING)	{

								throw	new	UDFArgumentException("The	UDTF	should	take	a	string	as	a	

parameter");

				}

				stringOI	=	(PrimitiveObjectInspector)	args[0];

				/*

					*	Define	the	expected	output	for	this	function,	including

					*	each	alias	and	types	for	the	aliases.

					*/

				List<String>	fieldNames	=	new	ArrayList<String>(2);

				List<ObjectInspector>	fieldOIs	=	new	ArrayList<ObjectInspector>(2);

				fieldNames.add("alias1");

				fieldNames.add("alias2");

				

fieldOIs.add(PrimitiveObjectInspectorFactory.javaStringObjectInspector);

				fieldOIs.add(PrimitiveObjectInspectorFactory.javaIntObjectInspector);

				//Set	up	the	output	schema.

				return	

ObjectInspectorFactory.getStandardStructObjectInspector(fieldNames,	

fieldOIs);

		}

	

		/**

			*	This	method	is	called	once	per	input	row	and	generates

			*	output.	The	"forward"	method	is	used	(instead	of

			*	"return")	in	order	to	specify	the	output	from	the	function.

			*/

		@Override

		public	void	process(Object[]	record)	throws	HiveException	{

			/*

				*	We	may	need	to	convert	the	object	to	a	primitive	type

				*	before	implementing	customized	logic.

				*/

				final	String	recStr	=	(String)	

stringOI.getPrimitiveJavaObject(record[0]);

				//emit	newly	created	structs	after	applying	customized	logic.

				forward(new	Object[]	{recStr,	Integer.valueOf(1)});

		}

		/**

			*	This	method	is	for	any	cleanup	that	is	necessary	before

			*	returning	from	the	UDTF.	Since	the	output	stream	has

			*	already	been	closed	at	this	point,	this	method	cannot

			*	emit	more	rows.

			*/

		@Override

		public	void	close()	throws	HiveException	{

				//Do	nothing.

		}

}

Development	and	deployment
We’ll	go	through	the	whole	development	and	deployment	steps	using	an	example.	Let’s
create	a	Hive	function	called	toUpper,	which	will	convert	a	string	to	uppercase	using	the
following	steps:

1.	 Download	and	install	a	Java	IDE,	such	as	Eclipse,	from
http://www.eclipse.org/downloads/packages/eclipse-ide-java-developers/lunasr1.

2.	 Start	the	IDE	and	create	a	Java	project.
3.	 Right-click	on	the	project	to	choose	the	Build	Path	|	Configure	Build	Path	|	Add

External	Jars	option.	It	will	open	a	new	window.	Navigate	to	the	directory	having
the	library	of	Hive	and	Hadoop.	Then,	select	and	add	all	JAR	files	needed	to	import.
We	can	also	resolve	library	dependency	automatically	by	using	Maven	(see
http://maven.apache.org/)	and	the	proper	pom.xml	file.	How	to	configure	a	library
repository	in	pom.xml	files	is	usually	well	described	in	the	Hadoop	vendor	package	or
Apache	Hive	and	Hadoop	help	documents.

4.	 In	the	IDE,	create	the	toupper.java	file	as	follows,	according	to	the	UDF	template
mentioned	previously:

package	com.packtpub.hive.essentials.hiveudf;

import	org.apache.hadoop.hive.ql.exec.UDF;

import	org.apache.hadoop.io.Text;

class	ToUpper	extends	UDF	{

	

		public	Text	evaluate(Text	input)	{

				if(input	==	null)	return	null;

				return	new	Text(input.toString().toUpperCase());

		}

}

5.	 Now,	export	this	project	as	a	JAR	file	(or	built	by	Maven)	named	as	toupper.jar.
6.	 Copy	this	JAR	file	in	a	directory,	such	as	/home/dayongd/hive/lib/,	in	a	node	of

the	Hive	cluster.
7.	 Add	the	JAR	to	the	Hive	environment	using	one	of	the	following	options	(option	3	or

4	is	recommended):

Option	1:	Run	ADD	JAR	/home/dayongd/hive/lib/toupper.jar	in	the	Hive
CLI.	This	is	only	valid	for	the	current	session,	but	does	not	work	for	ODBC
connections.
Option	2:	Add	ADD	JAR	/home/dayongd/hive/lib/toupper.jar	in
/home/$USER/.hiverc	(we	can	create	the	file	if	it	is	not	there).	In	this	case,	the
file	needs	to	be	deployed	to	every	node	from	where	we	might	launch	the	Hive
shell.	This	is	only	valid	for	the	current	session,	but	does	not	work	for	ODBC
connections.
Option	3:	Add	the	following	configuration	in	the	hive-site.xml	file:

<property>

http://www.eclipse.org/downloads/packages/eclipse-ide-java-developers/lunasr1
http://maven.apache.org/

<name>hive.aux.jars.path</name>

<value>file:///home/dayongd/hive/lib/toupper.jar</value>

</property>

Option	4:	Copy	and	paste	the	JAR	file	to	the	/${HIVE_HOME}/auxlib/	folder
(create	it	if	it	does	not	exist).

8.	 Create	the	function.	We	can	create	a	temporary	function	that	is	only	valid	in	the
current	Hive	session	as	follows:

CREATE	TEMPORARY	FUNCTION	toUpper	AS	

'com.packtpub.hive.essentials.hiveudf.toupper';

Note
Since	Hive	0.13.0,	we	can	use	one	command	to	add	JAR	and	create	permanent
functions,	which	is	registered	to	the	megastore	and	can	be	referenced	in	a	query
without	creating	a	temporary	function	in	each	session:

CREATE	FUNCTION	toUpper	AS	

'com.packtpub.hive.essentials.hiveudf.ToUpper'	USING	JAR	

'hdfs:///path/to/jar';

9.	 Verify	the	function:

SHOW	FUNCTIONS	ToUpper;

DESCRIBE	FUNCTION	ToUpper;

DESCRIBE	FUNCTION	EXTENDED	ToUpper;

10.	 Use	the	UDF	in	HQL:

SELECT	toUpper(name)	FROM	employee	LIMIT	1000;

11.	 Drop	the	function	when	needed:

DROP	TEMPORARY	FUNCTION	IF	EXISTS	toUpper;

Streaming
Hive	can	also	leverage	the	streaming	feature	in	Hadoop	to	transform	data	in	an	alternative
way.	The	streaming	API	opens	an	I/O	pipe	to	an	external	process	(script).	Then,	the
process	reads	data	from	the	standard	input	and	writes	the	results	out	through	the	standard
output.	In	Hive,	we	can	use	TRANSFORM	clauses	in	HQL	directly,	and	embed	the	mapper
and	the	reducer	scripts	written	in	commands,	shell	scripts,	Java,	or	other	programming
languages.	Although	streaming	brings	overhead	by	using	serialization/deserialization
between	processes,	it	is	a	simpler	coding	mode	for	developers,	especially	non-Java
developers.	The	syntax	of	the	TRANSFORM	clause	is	as	follows:

FROM	(

				FROM	src

				SELECT	TRANSFORM	'('	expression	(','	expression)*	')'

				(inRowFormat)?

				USING	'map_user_script'

				(AS	colName	(','	colName)*)?

				(outRowFormat)?	(outRecordReader)?

				(CLUSTER	BY?|DISTRIBUTE	BY?	SORT	BY?)	src_alias

)

	SELECT	TRANSFORM	'('	expression	(','	expression)*	')'

	(inRowFormat)?

	USING	'reduce_user_script'

	(AS	colName	(','	colName)*)?

	(outRowFormat)?	(outRecordReader)?	

By	default,	the	INPUT	values	for	the	user	script	are	the	following:

Columns	transformed	to	STRING	values
Delimited	by	a	tab
NULL	values	converted	to	the	literal	string	N	(differentiates	NULL	values	from	empty
strings)

By	default,	the	OUTPUT	values	of	the	user	script	are	the	following:

Treated	as	tab-separated	STRING	columns
N	will	be	reinterpreted	as	NULL
The	resulting	STRING	column	will	be	cast	to	the	data	type	specified	in	the	table
declaration

These	defaults	can	be	overridden	with	ROW	FORMAT.	An	example	of	Hive	streaming	using
the	Python	script	upper.py	is	as	follows:

#!/usr/bin/env	python

'''

This	is	a	script	to	upper	all	cases

'''

import	sys

def	main():

				try:

								for	line	in	sys.stdin:

										n	=	line.strip()

										print	n.upper()

				except:

								return	None

if	__name__	==	"__main__":main()

Test	the	script,	as	follows:

$	echo	"Will"	|	python	upper.py

$	WILL

Call	the	script	in	the	Hive	CLI	from	HQL:

jdbc:hive2://>	ADD	FILE	/home/dayongd/Downloads/upper.py;

jdbc:hive2://>	SELECT	TRANSFORM	(name,work_place[0])	

.>	USING	'python	upper.py'	AS	(CAP_NAME,CAP_PLACE)	

.>	FROM	employee;

+-----------+------------+

|	cap_name		|	cap_place		|

+-----------+------------+

|	MICHAEL			|	MONTREAL			|

|	WILL						|	MONTREAL			|

|	SHELLEY			|	NEW	YORK			|

|	LUCY						|	VANCOUVER		|

|	STEVEN				|	NULL							|

+-----------+------------+

5	rows	selected	(30.101	seconds)

Note
The	TRANSFORM	command	is	not	allowed	when	SQL	standard-based	authorization	is
configured,	since	Hive	0.13.0.

SerDe
SerDe	stands	for	Serializer	and	Deserializer.	It	is	the	technology	that	Hive	uses	to	process
records	and	map	them	to	column	data	types	in	Hive	tables.	To	explain	the	scenario	of
using	SerDe,	we	need	to	understand	how	Hive	reads	and	writes	data.

The	process	to	read	data	is	as	follows:

1.	 Data	is	read	from	HDFS.
2.	 Data	is	processed	by	the	INPUTFORMAT	implementation,	which	defines	the	input	data

split	and	key/value	records.	In	Hive,	we	can	use	CREATE	TABLE…	STORED	AS
<FILE_FORMAT>	(see	Chapter	7,	Performance	Considerations,	for	available	file
formats)	to	specify	which	INPUTFORMAT	it	reads	from.

3.	 The	Java	Deserializer	class	defined	in	SerDe	is	called	to	format	the	data	into	a
record	that	maps	to	column	and	data	types	in	a	table.

For	an	example	of	reading	data,	we	can	use	JSON	SerDe	to	read	the	TEXTFILE	format	data
from	HDFS	and	translate	each	row	of	the	JSON	attribute	and	value	to	rows	in	Hive	tables
with	the	correct	schema.

The	process	to	write	data	is	as	follows:

1.	 Data	(such	as	using	an	INSERT	statement)	to	be	written	is	translated	by	the
Serializer	class	defined	in	SerDe	to	the	format	that	the	OUTPUTFORMAT	class	can
read.

2.	 Data	is	processed	by	the	OUTPUTFORMAT	implementation,	which	creates	the
RecordWriter	object.	Similar	to	the	INPUTFORMAT	implementation,	the	OUTPUTFORMAT
implementation	is	specified	in	the	same	way	as	a	table	where	it	writes	the	data.

3.	 The	data	is	written	to	the	table	(data	saved	in	the	HDFS).

For	an	example	of	writing	data,	we	can	write	a	row-column	of	data	to	Hive	tables	using
JSON	SerDe,	which	translates	data	to	a	JSON	text	string	saved	to	the	HDFS.

Recent	Hive	versions	uses	the	org.apache.hadoop.hive.serde2	library,	where
org.apache.hadoop.hive.serde	is	the	deprecated	library.	A	list	of	commonly	used	SerDe
in	Hive	is	as	follows:

LazySimpleSerDe:	The	default	built-in	SerDe
(org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe)	that’s	used	with	the
TEXTFILE	format.	It	can	be	implemented	as	follows:

jdbc:hive2://>	CREATE	TABLE	test_serde_lz

.>	STORED	AS	TEXTFILE	AS

.>	SELECT	name	from	employee;

No	rows	affected	(32.665	seconds)

ColumnarSerDe:	This	is	the	built-in	SerDe	used	with	the	RCFILE	format.	It	can	be
used	as	follows:

jdbc:hive2://>	CREATE	TABLE	test_serde_cs

.>	ROW	FORMAT	SERDE

.>	'org.apache.hadoop.hive.serde2.columnar.ColumnarSerDe'

.>	STORED	AS	RCFile	AS

.>	SELECT	name	from	employee;

No	rows	affected	(27.187	seconds)

RegexSerDe:	This	is	the	built-in	Java	regular	expression	SerDe	to	parse	text	files.	It
can	be	used	as	follows:

--Parse	,	seperate	fields

jdbc:hive2://>	CREATE	TABLE	test_serde_rex(

.>	name	string,

.>	sex	string,

.>	age	string

.>)

.>	ROW	FORMAT	SERDE

.>	'org.apache.hadoop.hive.contrib.serde2.RegexSerDe'

.>	WITH	SERDEPROPERTIES(

.>			'input.regex'	=	'([^,]*),([^,]*),([^,]*)',

.>			'output.format.string'	=	'%1$s	%2$s	%3$s'

.>)

.>	STORED	AS	TEXTFILE;

No	rows	affected	(0.266	seconds)

HBaseSerDe:	This	is	the	built-in	SerDe	to	enable	Hive	to	integrate	with	HBase.	We
can	store	Hive	tables	in	HBase	by	leveraging	this	SerDe.	Make	sure	to	have	HBase
installed	before	running	the	following	query:

jdbc:hive2://>	CREATE	TABLE	test_serde_hb(

.>	id	string,

.>	name	string,

.>	sex	string,

.>	age	string

.>)

.>	ROW	FORMAT	SERDE

.>	'org.apache.hadoop.hive.hbase.HBaseSerDe'

.>	STORED	BY

.>	'org.apache.hadoop.hive.hbase.HBaseStorageHandler'

.>	WITH	SERDEPROPERTIES	(

.>	"hbase.columns.mapping"=

.>	":key,info:name,info:sex,info:age"

.>)

.>	TBLPROPERTIES("hbase.table.name"	=	"test_serde");

No	rows	affected	(0.387	seconds)

AvroSerDe:	This	is	the	built-in	SerDe	that	enables	reading	and	writing	Avro	(see
http://avro.apache.org/)	data	in	Hive	tables.	Avro	is	a	remote	procedure	call	and	data
serialization	framework.	Since	Hive	0.14.0,	Avro-backed	tables	can	simply	be	created
by	using	the	CREATE	TABLE…	STORED	AS	AVRO	statement,	as	follows:

jdbc:hive2://>	CREATE	TABLE	test_serde_avro(

.>	name	string,

.>	sex	string,

.>	age	string

http://avro.apache.org/

.>)

.>	ROW	FORMAT	SERDE

.>	'org.apache.hadoop.hive.serde2.avro.AvroSerDe'

.>	STORED	AS	INPUTFORMAT

.>	

'org.apache.hadoop.hive.ql.io.avro.AvroContainerInputFormat'

.>	OUTPUTFORMAT

.>	

'org.apache.hadoop.hive.ql.io.avro.AvroContainerOutputFormat'

.>;

No	rows	affected	(0.31	seconds)

ParquetHiveSerDe:	This	is	the	built-in	SerDe
(parquet.hive.serde.ParquetHiveSerDe)	that	enables	reading	and	writing	the
Parquet	data	format	since	Hive	0.13.0.	It	can	be	used	as	follows:

jdbc:hive2://>	CREATE	TABLE	test_serde_parquet

.>	STORED	AS	PARQUET	AS

.>	SELECT	name	from	employee;

No	rows	affected	(34.079	seconds)

OpenCSVSerDe:	This	is	the	SerDe	to	read	and	write	CSV	data.	It	comes	as	a	built-in
SerDe	since	Hive	0.14.0.	We	can	also	install	the	implementation	from	other	open
source	libraries,	such	as	https://github.com/ogrodnek/csv-serde.	It	can	be	used	as
follows:

jdbc:hive2://>	CREATE	TABLE	test_serde_csv(

.>	name	string,

.>	sex	string,

.>	age	string

.>)

.>	ROW	FORMAT	SERDE

.>	'org.apache.hadoop.hive.serde2.OpenCSVSerde'

.>	STORED	AS	TEXTFILE;

JSONSerDe:	This	is	a	third-party	SerDe	to	read	and	write	JSON	data	records	with
Hive.	Make	sure	to	install	it	(from	https://github.com/rcongiu/Hive-JSON-Serde)
before	running	the	following	query:

jdbc:hive2://>	CREATE	TABLE	test_serde_js(

.>	name	string,

.>	sex	string,

.>	age	string

.>)

.>	ROW	FORMAT	SERDE	'org.openx.data.jsonserde.JsonSerDe'

.>	STORED	AS	TEXTFILE;

No	rows	affected	(0.245	seconds)

Hive	also	allows	users	to	define	a	customized	SerDe	if	none	of	these	work	for	their	data
format.	For	more	information	about	custom	SerDe,	please	refer	to	the	Apache	wiki	at
https://cwiki.apache.org/confluence/display/Hive/DeveloperGuide#DeveloperGuide-
HowtoWriteYourOwnSerDe.

https://github.com/ogrodnek/csv-serde
https://github.com/rcongiu/Hive-JSON-Serde
https://cwiki.apache.org/confluence/display/Hive/DeveloperGuide#DeveloperGuide-HowtoWriteYourOwnSerDe

Summary
In	this	chapter,	we	introduced	three	main	areas	to	extend	Hive’s	functionalities.	We	also
covered	three	user-defined	functions	in	Hive	as	well	as	the	coding	template	and
deployment	steps	to	guide	your	coding	and	deployment	practice.	Then,	we	talked	about
streaming	in	Hive	to	plug	in	your	own	code,	which	does	not	have	to	be	Java	code.	At	the
end	of	this	chapter,	we	discussed	the	available	SerDe	in	Hive	to	parse	different	formats	of
data	files	when	reading	or	writing	data.	After	going	through	this	chapter,	we	should	be
able	to	write	basic	UDFs,	plug	code	in	streamings,	and	use	available	SerDe	in	Hive.

In	the	next	chapter,	we’ll	talk	about	security	considerations	for	Hive.

Chapter	9.	Security	Considerations
In	most	open	source	software,	security	is	one	of	the	most	important	areas,	but	always
addressed	at	a	later	stage.	As	the	main	SQL-like	interface	of	data	in	Hadoop,	Hive	must
ensure	that	data	is	securely	protected	and	accessed.	For	this	reason,	security	in	Hive	is
now	considered	as	an	integral	and	important	part	of	the	Hadoop	ecosystem.	The	earlier
version	of	Hive	mainly	relied	on	the	HDFS	for	security.	The	security	of	Hive	gradually
became	mature	after	HiveServer2	was	released	as	an	important	milestone	of	the	Hive
server.

This	chapter	will	discuss	Hive	security	in	the	following	areas:

Authentication
Authorization
Encryption

Authentication
Authentication	is	the	process	of	verifying	the	identity	of	a	user	by	obtaining	the	user’s
credentials.	Hive	has	offered	authentication	since	HiveServer2.	In	the	previous
HiveServer,	if	we	could	access	the	host/port	over	the	network,	we	could	access	the	data.	In
this	case,	the	Hive	Metastore	Server	can	be	used	to	authenticate	thrift	clients	using
Kerberos.	As	mentioned	in	Chapter	2,	Setting	Up	the	Hive	Environment,	it	is	strongly
recommended	to	upgrade	the	Hive	server	to	HiveServer2	in	terms	of	security	and
reliability.	In	this	section,	we	will	briefly	talk	about	authentication	configurations	in	both
Metastore	Server	and	HiveServer2.

Note
Kerberos

Kerberos	is	a	network	authentication	protocol	developed	by	MIT	as	part	of	Project
Athena.	It	uses	time-sensitive	tickets	that	are	generated	using	symmetric	key	cryptography
to	securely	authenticate	a	user	in	an	unsecured	network	environment.	Kerberos	is	derived
from	Greek	mythology,	where	Kerberos	was	the	three-headed	dog	that	guarded	the	gates
of	Hades.	The	three-headed	part	refers	to	the	three	parties	involved	in	the	Kerberos
authentication	process:	client,	server,	and	Key	Distribution	Center	(KDC).	All	clients
and	servers	registered	to	KDC	are	known	as	a	realm,	which	is	typically	the	domain’s	DNS
name	in	all	caps.	For	more	information,	please	refer	to	the	MIT	Kerberos	website	at
http://web.mit.edu/kerberos/.

http://web.mit.edu/kerberos/

Metastore	server	authentication
To	force	clients	to	authenticate	with	the	Hive	Metastore	server	using	Kerberos,	we	can	set
the	following	properties	in	the	hive-site.xml	file:

Enable	the	Simple	Authentication	and	Security	Layer	(SASL)	framework	to
enforce	client	Kerberos	authentication,	as	follows:

<property>

		<name>hive.metastore.sasl.enabled</name>

		<value>true</value>

		<description>If	true,	the	metastore	thrift	interface	will	be	secured	

with	SASL	framework.	Clients	must	authenticate	with	Kerberos.

</description>

</property>

Specify	the	Kerberos	keytab	that	is	generated.	Override	the	following	example	if	we
want	to	keep	the	file	in	another	place.	Make	sure	the	file	access	permissions	are	set	to
400	implying	only	read	permission	for	the	owner	to	avoid	their	identity	being	stolen
by	others:

<property>

		<name>hive.metastore.kerberos.keytab.file</name>

		<value>/etc/hive/conf/hive.keytab</value>

		<description>The	sample	path	to	the	Kerberos	Keytab	file	containing	

the	metastore	thrift	server's	service	principal.</description>

</property>

Specify	the	Kerberos	principal	pattern	string.	The	special	string	_HOST	will	be
replaced	automatically	with	the	correct	hostnames.	The	YOUR-REALM.COM	value
should	be	replaced	by	the	actual	realm	name:

<property>

		<name>hive.metastore.kerberos.principal</name>

		<value>hive/_HOST@YOUR-REALM.COM</value>

		<description>The	service	principal	for	the	metastore	thrift	server.

</description>

</property>

HiveServer2	authentication
HiveServer2	supports	the	following	authentications.	To	configure	HiveServer2	to	use	one
of	these	authentication	modes,	we	can	set	the	proper	properties	in	hive_site.xml	as
follows:

None	authentication:	None	authentication	is	what’s	in	the	default	settings.	“None”
here	means	Hive	allows	anonymous	access	as	shown	in	the	following	setting:

<property>

				<name>hive.server2.authentication</name>

				<value>NONE</value>

</property>

Kerberos	authentication:	If	Kerberos	authentication	is	used,	authentication	is
supported	between	the	thrift	client	and	HiveServer2,	and	between	HiveServer2	and
secure	HDFS.	To	enable	Kerberos	authentication	for	HiveServer2,	we	can	set	the
following	properties	by	overriding	the	keytab	path	(if	we	want	to	keep	the	file	in
another	place)	as	well	as	changing	YOUR-REALM.COM	to	the	actual	realm	name:

<property>

		<name>hive.server2.authentication</name>

		<value>KERBEROS</value>

</property>

<property>

		<name>hive.server2.authentication.kerberos.keytab</name>

		<value>/etc/hive/conf/hive.keytab</value>

</property>

<property>

		<name>hive.server2.authentication.kerberos.principal</name>

		<value>hive/_HOST@YOUR-REALM.COM</value>

</property>

Once	Kerberos	is	enabled,	the	JDBC	client	(such	as	Beeline)	must	include	the
principal	parameter	in	the	JDBC	connection	string	such	as	the	following:

jdbc:hive2://HiveServer2HostName:10000/default;principal=hive/HiveServe

r2HostName@YOUR-REALM.COM

LDAP	authentication:	To	configure	HiveServer2	to	use	user	and	password
validation	backed	by	LDAP	(see	http://tools.ietf.org/html/rfc4511),	we	can	set	the
following	properties:

<property>

		<name>hive.server2.authentication</name>

		<value>LDAP</value>

</property>

<property>

		<name>hive.server2.authentication.ldap.url</name>

		<value>LDAP_URL,	such	as	ldap://ldaphost@company.com</value>

</property>

<property>

		<name>hive.server2.authentication.ldap.Domain</name>

		<value>Your	Domain	Name</value>

http://tools.ietf.org/html/rfc4511

</property>

To	configure	with	OpenLDAP,	we	can	add	the	setting	of	baseDN	instead	of	the
Domain	property	as	follows:

<property>

		<name>hive.server2.authentication.ldap.baseDN</name>

		<value>LDAP_BaseDN,	such	as	ou=people,dc=packtpub,dc=com</value>

</property>

Pluggable	custom	authentication:	Pluggable	custom	authentication	provides	a
custom	authentication	provider	for	HiveServer2.	To	enable	it,	configure	the	settings
as	follows:

<property>

		<name>hive.server2.authentication</name>

		<value>CUSTOM</value>

</property>

<property>

		<name>hive.server2.custom.authentication.class</name>

		<value>pluggable-auth-class-name</value>

		<description>	Custom	authentication	class	name,	such	as	

			com.packtpub.hive.essentials.hiveudf.customAuthenticator

		</description>

</property>

Note
The	pluggable	authentication	with	a	customized	class	did	not	work	until	the	bug	(see
https://issues.apache.org/jira/browse/HIVE-4778)	was	fixed	in	Hive	0.13.0.

The	following	is	a	sample	of	a	customized	class	that	implements	the
org.apache.hive.service.auth.PasswdAuthenticationProvider	interface.	The
overridden	Authenticate	method	has	the	core	logic	of	how	to	authenticate	a
username	and	password.	Make	sure	to	copy	the	compiled	JAR	file	to
$HIVE_HOME/lib/	so	that	the	preceding	settings	can	work.

customAuthenticator.java

package	com.packtpub.hive.essentials.hiveudf;

import	java.util.Hashtable;

import	javax.security.sasl.AuthenticationException;

import	org.apache.hive.service.auth.PasswdAuthenticationProvider;

/*

	*	The	customized	class	for	HiveServer2	authentication

	*/

public	class	customAuthenticator	implements	

PasswdAuthenticationProvider	{

		Hashtable<String,	String>	authHashTable	=	null;

		public	customAuthenticator	()	{

							authHashTable	=	new	Hashtable<String,	String>();

https://issues.apache.org/jira/browse/HIVE-4778

							authHashTable.put("user1",	"passwd1");

							authHashTable.put("user2",	"passwd2");

		}

		@Override

		public	void	Authenticate(String	user,	String	password)

												throws	AuthenticationException	{

				String	storedPasswd	=	authHashTable.get(user);

				if	(storedPasswd	!=	null	&&	storedPasswd.equals(password))

									return;

				throw	new	AuthenticationException("customAuthenticator	Exception:	

Invalid	user");

		}

}

Pluggable	Authentication	Modules	(PAM)	authentication:	Since	Hive	0.13.0,	it
supports	PAM	authentication,	which	provides	the	benefit	of	plugging	existing
authentication	mechanisms	to	Hive.	Configure	the	following	settings	to	enable	PAM
authentication.	For	more	information	about	how	to	install	PAM,	please	refer	to	the
Setting	Up	HiveServer2	article	in	the	Apache	Hive	wiki	at
https://cwiki.apache.org/confluence/display/Hive/Setting+Up+HiveServer2#SettingUpHiveServer2-
PluggableAuthenticationModules(PAM).

<property>

		<name>hive.server2.authentication</name>

		<value>PAM</value>

</property>

<property>

		<name>hive.server2.authentication.pam.services</name>

		<value>pluggable-auth-class-name</value>

		<description>	Set	this	to	a	list	of	comma-separated	PAM	services	that	

will	be	used.	Note	that	a	file	with	the	same	name	as	the	PAM	service	

must	exist	in	/etc/pam.d.</description>

</property>

https://cwiki.apache.org/confluence/display/Hive/Setting+Up+HiveServer2#SettingUpHiveServer2-PluggableAuthenticationModules(PAM)

Authorization
Authorization	in	Hive	is	used	to	verify	if	a	user	has	permission	to	perform	a	certain
action,	such	as	creating,	reading,	and	writing	data	or	metadata.	Hive	provides	three
authorization	modes:	legacy	mode,	storage-based	mode,	and	SQL	standard-based	mode.

Legacy	mode
This	is	the	default	authorization	mode	in	Hive,	providing	column	and	row-level
authorization	through	HQL	statements.	However,	it	is	not	a	completely	secure
authorization	mode	and	has	a	couple	of	limitations.	It	can	be	mainly	used	to	prevent	good
users	from	accidentally	doing	bad	things	rather	than	preventing	malicious	users’
operations.	In	order	to	enable	the	legacy	authorization	mode,	we	need	to	set	the	following
properties	in	hive-site.xml:

<property>

		<name>hive.security.authorization.enabled</name>

		<value>true</value>

		<description>enables	or	disable	the	hive	client	authorization

		</description>

</property>

<property>

		<name>hive.security.authorization.createtable.owner.grants</name>

		<value>ALL</value>

		<description>the	privileges	automatically	granted	to	the	owner	whenever	a	

table	gets	created.	An	example	like	"select,	drop"	will	grant	select	and	

drop	privilege	to	the	owner	of	the	table.

		</description>

</property>

Since	this	is	not	a	secure	authorization	mode,	we	will	not	discuss	more	details	here.	For
more	HQL	support	in	the	legacy	authorization	mode,	please	refer	to	the	Apache	Hive	wiki
at	https://cwiki.apache.org/confluence/display/Hive/Hive+Default+Authorization+-
+Legacy+Mode.

https://cwiki.apache.org/confluence/display/Hive/Hive+Default+Authorization+-+Legacy+Mode

Storage-based	mode
The	storage-based	authorization	mode	(since	Hive	0.10.0)	relies	on	the	authorization
provided	by	the	storage	layer	HDFS,	which	provides	both	POSIX	and	ACL	permissions
(available	since	Hive	0.14.0;	refer	to	https://issues.apache.org/jira/browse/HIVE-7583).
The	storage-based	authorization	is	enabled	in	the	Hive	Metastore	server	having	a	single
consistent	view	of	metadata	across	other	applications	in	the	ecosystem.	This	mode	checks
Hive	user	permissions	against	the	POSIX	permissions	on	the	corresponding	file	directories
in	HDFS.	In	addition	to	the	POSIX	permissions	model,	HDFS	also	provides	access	control
lists	described	in	ACLs	on	HDFS	at	http://hadoop.apache.org/docs/r2.4.0/hadoop-project-
dist/hadoop-hdfs/HdfsPermissionsGuide.html#ACLs_Access_Control_Lists.	Considering
its	implementation,	the	storage-based	authorization	mode	only	offers	authorization	at	the
level	of	Hive	databases,	tables,	and	partitions	rather	than	column	and	row	level.	With
dependency	on	the	HDFS	permissions,	it	lacks	the	flexibility	to	manage	the	authorization
through	HQL	statements.

To	enable	storage-based	authorization	mode,	we	can	set	the	following	properties	in	the
hive-site.xml	file:

<property>

				<name>hive.security.authorization.enabled</name>

				<value>true</value>

				<description>enable	or	disable	the	hive	client	authorization

				</description>

</property>

<property>

				<name>hive.security.authorization.manager</name>

				

<value>org.apache.hadoop.hive.ql.security.authorization.StorageBasedAuthori

zationProvider</value>

				<description>The	class	name	of	the	Hive	client	authorization	manager.

</description>

</property>

<property>

				<name>hive.server2.enable.doAs</name>

				<value>true</value>

				<description>Allows	Hive	queries	to	be	run	by	the	user	who	submits	the	

query	rather	than	the	hive	user.</description>

</property>

</property>

				<name>hive.metastore.pre.event.listeners</name>

				

<value>org.apache.hadoop.hive.ql.security.authorization.AuthorizationPreEve

ntListener</value>

				<description>This	turns	on	metastore-side	security.</description>

</property>

<property>

				<name>hive.security.metastore.authorization.manager</name>

				

<value>org.apache.hadoop.hive.ql.security.authorization.StorageBasedAuthori

zationProvider</value>

				<description>authenticator	manager	class	name	to	be	used	in	the	

https://issues.apache.org/jira/browse/HIVE-7583
http://hadoop.apache.org/docs/r2.4.0/hadoop-project-dist/hadoop-hdfs/HdfsPermissionsGuide.html#ACLs_Access_Control_Lists

metastore	for	authentication.</description>

</property>

Note
Since	Hive	0.14.0,	storage-based	authorization	also	authorizes	read	privileges	on
databases	and	tables	by	default	through	the
hive.security.metastore.authorization.auth.reads	property.	For	more	information,
please	refer	to	https://issues.apache.org/jira/browse/HIVE-8221.

https://issues.apache.org/jira/browse/HIVE-8221

SQL	standard-based	mode
For	fine-grained	access	control	on	a	column	and	row	level,	we	can	use	SQL	standard-
based	mode	available	since	Hive	0.13.0.	It	is	similar	to	the	SQL	authorization	by	using	the
GRANT	and	REVOKE	statements	to	control	access	through	the	HiveServer2	configuration.
However,	tools	such	as	Hive	CLI	and	Hadoop/HDFS/MapReduce	commands	do	not
access	data	through	HiveServer2,	so	SQL	standard-based	mode	cannot	authorize	their
access.	Therefore,	it	is	recommended	to	use	storage-based	mode	together	with	SQL
standard-based	mode	authorization	to	authorize	users	who	do	not	access	from
HiveServer2.

To	enable	SQL	standard-based	mode	authorization,	we	can	set	the	following	properties	in
the	hive-site.xml	file:

<property>

				<name>hive.server2.enable.doAs</name>

				<value>false</value>

				<description>Allows	Hive	queries	to	be	run	by	the	user	who	submits	the	

query	rather	than	the	hive	user.	Need	to	turn	if	off	for	this	SQL	standard-

base	mode</description>

</property>

<property>

				<name>hive.users.in.admin.role</name>

				<value>dayongd,administrator</value>

				<description>Comma-separated	list	of	users	assigned	to	the	ADMIN	role.

</description>

</property>

<property>

					<name>hive.security.authorization.enabled</name>

					<value>true</value>

</property>

<property>

					<name>hive.security.authorization.manager</name>

					

<value>org.apache.hadoop.hive.ql.security.authorization.plugin.sql</value>

</property>

<property>

					<name>hive.security.authenticator.manager</name>

					

<value>org.apache.hadoop.hive.ql.security.SessionStateUserAuthenticator</va

lue>

</property>

<property>

					<name>hive.metastore.uris</name>

					<value>"	"</value>

					<description>"	"	(quotation	marks	surrounding	a	single	empty	space).

</description>

</property>

Before	restarting	HiveServer2,	the	users	in	the	configured	admin	role	must	run	the
following	command	to	make	the	admin	role	effective,	and	then	restart	HiveServer2:

jdbc:hive2://>	GRANT	admin	TO	USER	dayongd;

The	basic	syntax	to	grant	or	revoke	an	authorization	role	or	privilege	is	as	follows:

GRANT	<ROLENAME>	TO	<USERS>	[WITH	ADMIN	OPTION];

REVOKE	[ADMIN	OPTION	FOR]	<ROLENAME>	FROM	<USERS>;

Here,	the	following	parameters	are	used:

<ROLENAME>:	This	can	be	a	comma-separated	name	of	roles
<USERS>:	This	can	be	a	user	or	a	role
WITH	ADMIN	OPTION:	This	makes	sure	that	the	user	gets	privileges	to	grant	the	role	to
other	users/roles

Another	example	to	grant	or	revoke	an	authorization	is	as	follows:

GRANT	<PRIVILEGE>	ON	<OBJECT>	TO	<USERS>;

REVOKE	<PRIVILEGE>	ON	<OBJECT>	FROM	<USERS>;

Here,	the	following	parameters	are	used:

<PRIVILEGE>:	This	can	be	INSERT,	SELECT,	UPDATE,	DELETE,	or	ALL
<USERS>:	This	can	be	a	user	or	a	role
<OBJECT>:	This	is	a	table	or	a	view

For	more	examples	of	HQL	statements	to	manage	SQL	standard-based	authorization,
please	refer	to	the	Apache	Hive	wiki	at
https://cwiki.apache.org/confluence/display/Hive/SQL+Standard+Based+Hive+Authorization#SQLStandardBasedHiveAuthorization-
Configuration.

Note
Sentry

Sentry	is	a	highly	modular	system	for	providing	centralized,	fine-grained,	role-based
authorization	to	both	data	and	metadata	stored	on	an	Apache	Hadoop	cluster.	It	can	be
integrated	with	Hive	to	deliver	advanced	authorization	controls.	For	more	information
about	Sentry,	please	refer	to	http://incubator.apache.org/projects/sentry.html.

https://cwiki.apache.org/confluence/display/Hive/SQL+Standard+Based+Hive+Authorization#SQLStandardBasedHiveAuthorization-Configuration
http://incubator.apache.org/projects/sentry.html

Encryption
For	sensitive	and	legally	protected	data	such	as	personal	identity	information	(PII),	it	is
required	to	store	the	data	in	encrypted	format	in	the	filesystem.	However,	Hive	does	not
natively	support	encryption	and	decryption	yet	(see
https://issues.apache.org/jira/browse/HIVE-5207).

Alternatively,	we	can	look	for	third-party	tools	to	encrypt	and	decrypt	data	after	exporting
it	from	Hive,	but	this	requires	additional	postprocessing.	The	new	HDFS	encryption	(see
https://issues.apache.org/jira/browse/HDFS-6134)	offers	great	transparent	encryption	and
decryption	of	data	on	HDFS.	It	will	satisfy	our	request	if	we	want	to	encrypt	the	whole
dataset	in	HDFS.	However,	it	cannot	be	applied	to	the	selected	column	and	row	level	in
the	table	of	Hive,	where	most	PII	that	is	encrypted	is	only	a	part	of	raw	data.	In	this	case,
the	best	solution	for	now	is	to	use	Hive	UDF	to	plug	in	encryption	and	decryption
implementations	on	selected	columns	or	partial	data	in	the	Hive	tables.

Sample	UDF	implementations	for	encryption	and	decryption	using	the	AES	encryption
algorithm	are	as	follows:

AESEncrypt.java:	The	implementation	is	as	follows:

package	com.packtpub.hive.essentials.hiveudf;

import	org.apache.hadoop.hive.ql.exec.UDF;

import	org.apache.hadoop.hive.ql.exec.Description;

import	org.apache.hadoop.hive.ql.udf.UDFType;

@Description(

										name	=	"aesencrypt",

										value	=	"_FUNC_(str)	-	Returns	encrypted	string	based	on	AES	

key.",

										extended	=	"Example:\n"	+

										"		>	SELECT	aesencrypt(pii_info)	FROM	table_name;\n"

)

@UDFType(deterministic	=	true,	stateful	=	false)

/*

	*	A	Hive	encryption	UDF

	*/

public	class	AESEncrypt	extends	UDF	{

				public	String	evaluate(String	unencrypted)	{

				String	encrypted="";

					if(unencrypted	!=	null)	{

									try	{

														encrypted	=	CipherUtils.encrypt(unencrypted);

									}	catch	(Exception	e)	{};

					}

					return	encrypted;

				}

}

AESDecrypt.java:	This	can	be	implemented	as	follows:

package	com.packtpub.hive.essentials.hiveudf;

https://issues.apache.org/jira/browse/HIVE-5207
https://issues.apache.org/jira/browse/HDFS-6134

import	org.apache.hadoop.hive.ql.exec.UDF;

import	org.apache.hadoop.hive.ql.exec.Description;

import	org.apache.hadoop.hive.ql.udf.UDFType;

@Description(

										name	=	"aesdecrypt",

										value	=	"_FUNC_(str)	-	Returns	unencrypted	string	based	on	

AES	key.",

										extended	=	"Example:\n"	+

										"		>	SELECT	aesdecrypt(pii_info)	FROM	table_name;\n"

)

@UDFType(deterministic	=	true,	stateful	=	false)

/*

	*	A	Hive	decryption	UDF

	*/

public	class	AESDecrypt	extends	UDF	{

				public	String	evaluate(String	encrypted)	{

				String	unencrypted	=	new	String(encrypted);

					if(encrypted	!=	null)	{

									try	{

														unencrypted	=	CipherUtils.decrypt(encrypted);

									}	catch	(Exception	e)	{};

					}

					return	unencrypted;

				}

}

CipherUtils.java:	This	can	be	implemented	as	follows:

package	com.packtpub.hive.essentials.hiveudf;

import	javax.crypto.Cipher;

import	javax.crypto.spec.SecretKeySpec;

import	org.apache.commons.codec.binary.Base64;

/*

	*	The	core	encryption	and	decryption	logic	function

	*/

public	class	CipherUtils

{

					//This	is	a	secret	key	in	terms	of	ASCII

				private	static	byte[]	key	=	{

									0x75,	0x69,	0x69,	0x73,	0x40,	0x73,	0x41,	0x53,	0x65,	0x65,	

0x72,	0x69,	0x74,	0x4b,	0x65,	0x75									

				};

				public	static	String	encrypt(String	strToEncrypt)

				{

								try

								{

												//prepare	algorithm

												Cipher	cipher	=	Cipher.getInstance("AES/ECB/PKCS5Padding");

												final	SecretKeySpec	secretKey	=	new	SecretKeySpec(key,	

"AES");

												//initialize	cipher	for	encryption

												cipher.init(Cipher.ENCRYPT_MODE,	secretKey);

												//Base64.encodeBase64String	that	gives	an	ascii	string

												final	String	encryptedString	=	

Base64.encodeBase64String(cipher.doFinal(strToEncrypt.getBytes()));

												return	encryptedString.replaceAll("\r|\n",	"");

								}

								catch	(Exception	e)

								{

											e.printStackTrace();

								}

								return	null;

				}

				public	static	String	decrypt(String	strToDecrypt)

				{

								try

								{

												//prepare	algorithm

												Cipher	cipher	=	Cipher.getInstance("AES/ECB/PKCS5PADDING");

												final	SecretKeySpec	secretKey	=	new	SecretKeySpec(key,	

"AES");

												//initialize	cipher	for	decryption

												cipher.init(Cipher.DECRYPT_MODE,	secretKey);

												final	String	decryptedString	=	new	

String(cipher.doFinal(Base64.decodeBase64(strToDecrypt)));

												return	decryptedString;

								}

								catch	(Exception	e)

								{

														e.printStackTrace();

								}

								return	null;

				}

}

Note
AES

Short	for	Advanced	Encryption	Standard,	AES	is	a	symmetric	128-bit	block	data
encryption	technique	developed	by	Belgian	cryptographers	Joan	Daemen	and	Vincent
Rijmen.	For	more	information,	please	refer	to
http://en.wikipedia.org/wiki/Advanced_Encryption_Standard.

To	deploy	the	UDF	and	verify	them,	do	the	following:

jdbc:hive2://>	ADD	JAR	/home/dayongd/Downloads/

.>	hiveessentials-1.0-SNAPSHOT.jar;

No	rows	affected	(0.002	seconds)

jdbc:hive2://>	CREATE	TEMPORARY	FUNCTION	aesdecrypt	AS

.>	'com.packtpub.hive.essentials.hiveudf.AESDecrypt';

No	rows	affected	(0.02	seconds)

jdbc:hive2://>	CREATE	TEMPORARY	FUNCTION	aesencrypt	AS

http://en.wikipedia.org/wiki/Advanced_Encryption_Standard

.>	'com.packtpub.hive.essentials.hiveudf.AESEncrypt';

No	rows	affected	(0.015	seconds)

jdbc:hive2://>	SELECT	aesencrypt('Will')	AS	encrypt_name	

.>	FROM	employee	LIMIT	1;

+---------------------------+

|							encrypt_name								|

+---------------------------+

|	YGvo54QIahpb+CVOwv9OkQ==		|

+---------------------------+

1	row	selected	(34.494	seconds)

jdbc:hive2://>	SELECT	aesdecrypt('YGvo54QIahpb+CVOwv9OkQ==')	

.>	AS	decrypt_name	

.>	FROM	employee	LIMIT	1;

+---------------+

|	decrypt_name		|

+---------------+

|	Will										|

+---------------+

1	row	selected	(45.43	seconds)

Summary
In	this	chapter,	we	introduced	three	main	areas	for	Hive	security:	authentication,
authorization,	and	encryption.	We	covered	the	authentications	in	Metastore	server	and
HiveServer2.	Then,	we	talked	about	default,	storage-based,	and	SQL	standard-based
authorization	methods	in	HiveServer2.	At	the	end	of	this	chapter,	we	discussed	the	use	of
Hive	UDF	for	encryption	and	decryption.	After	going	through	this	chapter,	we	should
clearly	understand	the	different	areas	that	will	help	us	address	Hive	security.

In	the	next	chapter,	we’ll	talk	about	using	Hive	with	other	tools.

Chapter	10.	Working	with	Other	Tools
As	one	of	the	earliest	and	most	popular	SQL	over	Hadoop	tools,	Hive	has	many	use	cases
of	working	with	other	tools	to	offer	an	end-to-end	data	intelligence	solution.	In	this
chapter,	we	will	discuss	the	way	Hive	works	with	other	big	data	tools	in	the	following
areas:

JDBC	/	ODBC	connector
HBase
Hue
HCatalog
Zookeeper
Oozie
Hive	roadmap

JDBC	/	ODBC	connector
JDBC/ODBC	is	one	of	the	most	common	ways	for	Hive	to	work	with	other	tools.	Hadoop
vendors,	such	as	Cloudera	and	Hortonworks,	offer	free	Hive	JDBC/ODBC	drivers	so	that
Hive	can	be	connected	through	these	drivers;	these	can	be	found	at	the	following	links:

For	Cloudera,	the	link	is
http://www.cloudera.com/content/cloudera/en/downloads/connectors/hive.html
For	Hortonworks,	the	link	is	http://hortonworks.com/hdp/addons/

We	can	use	these	JDBC/ODBC	connectors	to	connect	Hive	to	tools	such	as	the	following:

A	command-line	utility	such	as	Beeline,	mentioned	in	Chapter	2,	Setting	Up	the	Hive
Environment
Integrated	development	environment	such	as	Oracle	SQL	Developer,	mentioned	in
Chapter	2,	Setting	Up	the	Hive	Environment
Data	extraction,	transformation,	loading,	and	integration	tools,	such	as	Talend	Open
Studio
Business	intelligence	reporting	tools,	such	as	JasperReports	and	QlikView
Data	analysis	tools	such	as	Microsoft	Excel	2013
Data	visualization	tools	such	as	Tableau

Since	the	setup	of	connectors	is	very	straightforward,	please	refer	to	the	websites	of	the
preceding	tools	for	more	detailed	instructions	to	connect	to	Hive.

http://www.cloudera.com/content/cloudera/en/downloads/connectors/hive.html
http://hortonworks.com/hdp/addons/

HBase
HBase	(see	http://hbase.apache.org/)	is	a	high-performance	NoSQL	key/value	store	on
Hadoop.	Hive	has	offered	a	storage	handler	mechanism	to	integrate	with	HBase	by	using
the	HBaseStorageHandler	class	that	creates	HBase	tables	managed	by	Hive.	By
integrating	Hive	with	HBase,	Hive	users	can	leverage	real-time	transaction	performance
of	HBase	to	do	real-time	big	data	analysis.	Currently,	the	integration	feature	is	still	in
progress,	especially	in	the	area	of	offering	higher	performance	and	snapshots	support.
There	is	another	project	called	Phoenix	(see	http://phoenix.apache.org/),	which	provides
basic	SQL	with	higher-performance	support	over	HBase.

An	example	of	creating	an	HBase	table	in	HQL	is	as	follows:

CREATE	TABLE	hbase_table_sample(

id	int,

value1	string,

value2	string,

map_value	map<string,	string>

)

STORED	BY	'org.apache.hadoop.hive.hbase.HBaseStorageHandler'

WITH	SERDEPROPERTIES	("hbase.columns.mapping"	=	

":key,cf1:val,cf2:val,cf3:")

TBLPROPERTIES	("hbase.table.name"	=	"table_name_in_hbase");

In	this	special	CREATE	TABLE	statement,	the	HBaseStorageHandler	class	is	delegating
interaction	with	the	HBase	table	with	HiveHBaseTableInputFormat	and
HiveHBaseTableOutputFormat.	The	hbase.columns.mapping	property	is	required	to	map
each	table	column	defined	in	the	statement	to	the	HBase	table	columns	in	order.	For
example,	the	ID,	by	order,	maps	to	the	HBase	table’s	rowkey	as	:key.	Sometimes,	we	may
need	to	generate	the	proper	rowkey	columns	using	Hive	UDFs	if	there	is	no	existing
column	that	can	be	used	as	a	rowkey	for	the	HBase	table.	The	value1	maps	to	the	val
column	in	the	cf1	column	family	in	the	HBase	table.	The	Hive	MAP	data	type	can	be	used
to	access	an	entire	column	family.	Each	row	can	have	a	different	set	of	columns,	where	the
column	names	correspond	to	the	map	keys	and	the	column	values	correspond	to	the	map
values,	such	as	the	map_value	columns.	The	hbase.table.name	property,	which	is
optional,	specifies	the	table	name	known	by	HBase.	If	it	is	not	provided,	the	Hive	and
HBase	table	will	have	the	same	name,	such	as	hbase_table_sample.

Note
For	more	information	about	configurations	and	features	in	progress	about	Hive-HBase
integration,	please	refer	to	the	Apache	Hive	wiki	at
https://cwiki.apache.org/confluence/display/Hive/HBaseIntegration.

http://hbase.apache.org/
http://phoenix.apache.org/
https://cwiki.apache.org/confluence/display/Hive/HBaseIntegration

Hue
Hue	(see	http://gethue.com/)	is	short	for	Hadoop	User	Experience.	It	is	a	web	interface
for	making	the	Hadoop	ecosystem	easier	to	use.	For	Hive	users,	Hue	offers	a	unified	web
interface	for	easily	accessing	both	HDFS	and	Hive	in	an	interactive	environment.	Hue	can
be	installed	alone	or	with	the	Hadoop	vendor	packages.	In	addition,	Hue	adds	more
programming-friendly	features	to	Hive,	such	as	the	following:

Highlights	HQL	keywords
Autocompletes	HQL	query
Offers	live	progress	and	logs	for	Hive	and	MapReduce	jobs
Submits	several	queries	and	checks	progress	later
Browses	data	in	Hive	tables	through	a	web	user	interface
Navigates	through	the	metadata
Registers	UDF	and	adds	files/archives	through	a	web	user	interface
Saves,	exports,	and	shares	the	query	result
Creates	various	charts	from	the	query	result

The	following	is	a	screenshot	of	the	Hive	editor	interface	in	Hue:

Hue	Hive	editor	user	interface

http://gethue.com/

HCatalog
HCatalog	(see	https://cwiki.apache.org/confluence/display/Hive/HCatalog)	is	a	metadata
management	system	for	Hadoop	data.	It	stores	consistent	schema	information	for	Hadoop
ecosystem	tools,	such	as	Pig,	Hive,	and	MapReduce.	By	default,	HCatalog	supports	data
in	the	format	of	RCFile,	CSV,	JSON,	SequenceFile,	ORC	file,	and	a	customized	format	if
InputFormat,	OutputFormat,	and	SerDe	are	implemented.	By	using	HCatalog,	users	are
able	to	directly	create,	edit,	and	expose	(via	its	REST	API)	metadata,	which	becomes
effective	immediately	in	all	tools	sharing	the	same	piece	of	metadata.	At	first,	HCatalog
was	a	separate	Apache	project	from	Hive	and	was	part	of	Apache	Incubator,	where	most
Apache	projects	first	started.	Eventually,	HCatalog	became	a	part	of	the	Hive	project	in
2013	starting	with	Hive	0.11.0.

HCatalog	is	built	on	top	of	the	Hive	metastore	and	incorporates	support	for	Hive	DDL.	It
provides	read	and	write	interfaces	and	HCatLoader	and	HCatStorer,	for	Pig,	by
implementing	Pig’s	load	and	store	interfaces,	respectively.	HCatalog	also	provides	an
interface	for	MapReduce	programs	by	using	HCatInputFormat	and	HCatOutputFormat,
which	are	very	similar	to	other	customized	formats	by	implementing	Hadoop’s
InputFormat	and	OutputFormat.	HCatalog	provides	a	REST	API	from	a	component
called	WebHCat	so	that	HTTP	requests	can	be	made	to	access	the	metadata	of	Hadoop
MapReduce/Yarn,	Pig,	Hive,	and	HCatalog	DDL	from	other	applications.	There	is	no
Hive-specific	interface	since	HCatalog	uses	Hive’s	metastore.	Therefore,	HCatalog	can
define	metadata	for	Hive	directly	through	its	CLI.	The	HCatalog	CLI	supports	the	HQL
SHOW/DESCRIBE	statement	and	the	majority	of	Hive	DDL,	except	the	following	statements,
that	require	running	MapReduce	jobs:

CREATE	TABLE…	AS	SELECT

ALTER	INDEX…	REBUILD

ALTER	TABLE…	CONCATENATE

ALTER	TABLE	ARCHIVE/UNARCHIVE	PARTITION

ANALYZE	TABLE…	COMPUTE	STATISTICS

IMPORT/EXPORT

https://cwiki.apache.org/confluence/display/Hive/HCatalog

ZooKeeper
ZooKeeper	(see	http://zookeeper.apache.org/)	is	a	centralized	service	for	configuration
management	and	the	synchronization	of	various	aspects	of	naming	and	coordination.	It
manages	a	naming	registry	and	effectively	implements	a	system	for	managing	the	various
statically	and	dynamically	named	objects	in	a	hierarchical	system.	It	also	enables
coordination	and	control	to	the	shared	resources,	such	as	files	and	data,	which	are
manipulated	by	multiple	concurrent	processes.

Unlike	RDBMS,	Hive	does	not	natively	support	concurrency	access	and	locking
mechanisms.	Hive	relies	on	ZooKeeper	for	locking	the	shared	resources	since	Hive	0.7.0.
There	are	two	types	of	locks	provided	by	Hive	through	Zookeeper	and	they	are	as	follows:

Shared	lock:	This	is	acquired	when	a	table/partition	is	read.	The	concurrent	shared
locks	are	allowed	in	Hive.
Exclusive	lock:	This	is	acquired	for	all	other	operations	that	modify	the	table.	For
partition	tables,	only	a	shared	lock	is	acquired	if	the	change	is	only	applicable	to	the
newly-created	partitions.	An	exclusive	lock	is	acquired	on	the	table	if	the	change	is
applicable	to	all	partitions.	In	addition,	an	exclusive	lock	on	the	table	globally	affects
all	partitions.

Any	HQL	must	acquire	proper	locks	before	being	allowed	to	perform	corresponding	lock-
permitted	operations.

To	enable	locking	in	Hive,	we	need	to	make	sure	ZooKeeper	is	installed	and	configured.
Then,	configure	the	following	properties	in	Hive’s	hive-site.xml	file:

<property>

		<name>hive.support.concurrency</name>

		<description>Enable	Hive's	Table	Lock	Manager	Service</description>

		<value>true</value>

</property>

<property>

		<name>hive.zookeeper.quorum</name>

		<description>Comma	separated	Zookeeper	quorum	used	by	Hive's	Table	Lock	

Manager.	</description>

		<value>localhost.localdomain</value>

</property>

We	can	also	set	the	following	property	to	use	the	new	lock	manager	for	transactions
support	since	Hive	0.13.0:

<property>

		<name>hive.txn.manager</name>

		<value>org.apache.hadoop.hive.ql.lockmgr.DbTxnManager</value>

</property>

Note
Once	configured,	we	can	further	set	locking	properties,	specified	and	detailed	at
https://cwiki.apache.org/confluence/display/Hive/Configuration+Properties#ConfigurationProperties-

http://zookeeper.apache.org/
https://cwiki.apache.org/confluence/display/Hive/Configuration+Properties#ConfigurationProperties-Locking

Locking.

Locks	are	either	implicitly	acquired/released	from	HQL	or	explicitly	acquired/released
using	the	LOCK	and	UNLOCK	statements	as	follows:

--Lock	table	and	specify	lock	type

jdbc:hive2://>	LOCK	TABLE	employee	shared;

No	rows	affected	(1.328	seconds)

--Show	the	lock	information	on	the	specific	tables

jdbc:hive2://>	SHOW	LOCKS	employee	EXTENDED;

+--+-

----+

|																																tab_name																																|	

mo		|

+--+-

----+

|	default@employee																																																							|	

SHA	|

|	LOCK_QUERYID:hive_20150105170303_792598b1-0ac8-4aad-aa4e-c4cdb0de6697		|					

|

|	LOCK_TIME:1420495466554																																																|					

|

|	LOCK_MODE:EXPLICIT																																																					|					

|

|	LOCK_QUERYSTRING:LOCK	TABLE	employee	shared																												|					

|

+--+-

----+

5	rows	selected	(0.576	seconds)

--Release	the	lock	on	the	table

jdbc:hive2://>	UNLOCK	TABLE	employee;

No	rows	affected	(0.209	seconds)

--Show	all	locks	in	the	database

jdbc:hive2://>	SHOW	LOCKS;

+-----------+-------+

|	tab_name		|	mode		|

+-----------+-------+

+-----------+-------+

No	rows	selected	(0.529	seconds)

jdbc:hive2://>	LOCK	TABLE	employee	exclusive;

No	rows	affected	(0.185	seconds)

jdbc:hive2://>	SHOW	LOCKS	employee	EXTENDED;

+--+-

----+

|																																tab_name																																|	

mo		|

+--+-

----+

|	default@employee																																																							|	

EXC	|

|	LOCK_QUERYID:hive_20150105170808_bbc6db18-e44a-49a1-bdda-3dc30b5c8cee		|					

|

|	LOCK_TIME:1420495807855																																																|					

|

|	LOCK_MODE:EXPLICIT																																																					|					

|

|	LOCK_QUERYSTRING:LOCK	TABLE	employee	exclusive																									|					

|

+--+-

----+

5	rows	selected	(0.578	seconds)

jdbc:hive2://>	SELECT	*	FROM	employee;

When	the	table	acquires	an	exclusive	lock,	the	preceding	SELECT	statement	will	wait	for
the	lock	and	show	nothing	as	a	result	set	unless	we	unlock	the	table	in	the	other	session.
From	the	Hive	log,	we	can	find	the	following	information	that	specifies	that	the	SELECT
statement	is	waiting	to	get	the	read	lock:

15/01/05	17:13:39	INFO	ql.Driver:	<PERFLOG	method=acquireReadWriteLocks>

15/01/05	17:13:39	ERROR	ZooKeeperHiveLockManager:	conflicting	lock	present	

for	default@employee	mode	SHARED

Note
For	more	information	about	using	ZooKeeper	for	Hive	locks,	please	refer	to	the	Apache
Hive	wiki	at	https://cwiki.apache.org/confluence/display/Hive/Locking.

https://cwiki.apache.org/confluence/display/Hive/Locking

Oozie
Oozie	(see	http://oozie.apache.org/)	is	an	open	source	workflow	coordination	and	schedule
service	to	manage	data	processing	jobs.	Oozie	workflow	jobs	are	defined	in	a	series	of
nodes	in	a	Directed	Acyclical	Graph	(DAG).	Acyclical	here	means	that	there	are	no
loops	in	the	graph	and	all	nodes	in	the	graph	flow	in	one	direction	without	going	back.
Oozie	workflows	contain	either	the	control	flow	node	or	action	node:

Control	flow	node:	This	either	defines	the	start,	end,	and	failed	node	in	a	workflow
or	controls	the	workflow	execution	path	such	as	decision,	fork,	and	join	nodes.
Action	node:	This	defines	the	core	data	processing	action	job	such	as	MapReduce,
Hadoop	filesystem,	Hive,	Pig,	Java,	Shell,	e-mail,	and	Oozie	subworkflows.
Additional	types	of	actions	are	also	supported	by	developing	extensions.

Oozie	is	a	scalable,	reliable,	and	extensible	system.	It	can	be	parameterized	for	workflow
submission	and	scheduled	to	run	automatically.	Therefore,	Oozie	is	very	suitable	for
lightweight	data	integration	or	maintenance	jobs.

Hue	offers	very	friendly	and	powerful	support	for	Oozie	through	the	Oozie	editor.
Creating	and	submitting	an	Oozie	workflow	of	Hive	actions	from	Hue	is	as
straightforward	as	the	following	steps:

1.	 Log	in	to	Hue	and	select	from	the	top	menu	bar	Workflows	|	Editors	|	Workflows	to
open	Workflow	Manager.

2.	 Click	on	the	Create	button	to	create	a	workflow.
3.	 Give	a	proper	workflow	name	and	save	the	workflow.
4.	 Once	the	workflow	is	saved,	the	Oozie	editor	window	appears	for	further	settings.
5.	 Drag	a	Hive	action	to	the	middle	of	the	start	and	end	nodes.
6.	 In	the	Edit	Node:	menu	shown,	the	following	settings	are	present.	Provide	proper

settings	as	follows:

Name:	Give	a	proper	action	name.
Description:	This	is	where	to	describe	the	job.	This	is	optional.
Advanced:	This	is	for	SLA	monitoring.	This	is	optional.
Script	name:	Choose	the	HQL	scripts	from	HDFS	for	Hive	action.
Prepare:	Define	actions,	such	as	delete	files	or	create	folders,	before	running
the	script.	This	is	optional.
Parameters:	This	defines	the	parameters	to	be	taken	when	submitting	the	job
(such	as	${date}).	This	is	optional.
Job	properties:	This	is	where	to	set	Hadoop/Hive	properties.	This	is	optional.
Files:	This	is	where	to	select	the	files	needed	for	the	scripts.	This	is	optional.
Archives:	This	is	where	to	select	the	archive	files	such	as	UDF	JARs.	This	is
optional.
Job	XML:	Choose	a	copy	of	the	hive-site.xml	file	of	the	Hive	cluster	from
HDFS	so	that	Oozie	can	connect	to	the	Hive	metastore.

7.	 Click	on	Done	in	the	Edit	Node:	menu	and	then	click	on	Save	in	Workflow	Editor.

http://oozie.apache.org/

8.	 Click	on	Submit	to	submit	the	workflow.	Then,	the	Hive	action	is	triggered	by	the
Oozie	workflow	successfully.

Hive	roadmap
As	it	is	the	end	of	this	chapter	as	well	as	of	this	book,	the	highlight	of	each	Hive	release
milestone	and	future	features	expected	are	summarized	as	follows	along	with	best	wishes
to	the	Hive	communities	for	growing	bigger	and	better	in	the	near	future:

December	2011	–	Hive	0.8.0

Added	Bitmap	indexes
Added	the	TIMESTAMP	data	type
Added	the	Hive	Plugin	Developer	Kit	to	make	plugin	building	and	testing	easier
Improved	JDBC	Driver	and	bug	fixes

April	2012	–	Hive	0.9.0

Added	the	CREATE	OR	REPLACE	VIEW	statement
Added	NOT	IN	and	NOT	LIKE	support
Added	the	BETWEEN	and	NULL	safe	equality	operator
Added	printf(),	sort_array(),	and	concat_ws()	functions
Added	a	filter	push-down	from	Hive	into	HBase	for	the	key	column
Combined	multiple	UNION	ALL	statements	in	one	MapReduce	job
Combined	multiple	GROUP	BY	statements	on	the	same	data	with	the	same	keys	in
one	MapReduce	job

January	2013	–	Hive	0.10.0

Added	the	CUBE	and	ROLLUP	statements
Added	better	support	for	YARN
Added	more	information	in	the	EXPLAIN	statement
Added	the	SHOW	CREATE	TABLE	statement
Added	built-in	support	for	reading/writing	Avro	data
Added	improvements	for	skewed	joins
Improved	simple	queries	without	running	MapReduce	jobs	faster

May	2013	–	Hive	0.11.0	as	Stinger	Phase	1

Added	ORC	for	better	performance
Added	analytic	and	windows	functions
Added	HCatalog	as	part	of	Hive
Added	GROUP	BY	column	positions
Improved	data	types	and	added	the	DECIMAL	data	type
Improved	joins	for	broadcast	and	SMB	joins
Implemented	HiveServer2

October	2013	–	Hive	0.12.0	as	Stinger	Phase	2

Added	VARCHAR	and	DATE	support
Added	parallel	ORDER	BY	to	Hive
Added	more	improvements	for	ORC,	such	as	predicate	push-down
Added	a	correlation	optimizer

Added	support	for	GROUP	BY	on	the	STRUCT	type
Added	support	for	the	outer	lateral	view
Pushed	LIMIT	down	to	mappers

April	2014	–	Hive	0.13.0	as	Stinger	Phase	3	Final

Added	DECIMAL	and	CHAR	data	types
Added	support	for	running	jobs	on	Tez
Added	a	vectorized	query	engine
Added	support	for	subqueries	for	IN,	NOT	IN,	EXISTS,	and	NOT	EXISTS
Added	support	for	permanent	functions
Added	support	for	common	table	expressions
Added	SQL	standard-based	authentication

November	2014	–	Hive	0.14.0	as	Stinger.next	Phase	1

Added	transactions	with	ACID	semantics
Added	a	Cost	Base	Optimizer	(CBO)
Added	the	CREATE	TEMPORARY	TABLE	statement
Added	support	for	the	STORED	AS	AVRO	in	the	CREATE	TABLE	statement
Added	skipTrash	configuration	for	the	DROP	TABLE	statement
Added	AccumuloStorageHandle
Used	Tez	autoparallelism	in	Hive

February	2015	–	Hive	1.0.0

Moved	to	a	1.x.y	release	naming	structure
Made	HiveMetaStoreClient	a	public	API
Removal	of	HiveServer1
Switched	to	Tez	0.5.2

Future

Offer	subsecond	queries	with	Live	Long	And	Process	(LLAP)
Offer	Hive	over	Spark
Support	SQL	2011	analytics
Support	cross-geo	queries
Offer	materialized	views
Offer	workload	management	via	YARN	and	LLAP	integration
Hive	as	a	unified	data	query	tool

Summary
In	this	final	chapter,	we	introduced	some	big	data	tools,	which	can	work	with	Hive
through	JDBC	or	ODBC	integration,	such	as	HBase,	Hue,	HCatalog,	ZooKeeper,	and
Oozie.	Then,	we	reviewed	the	key	releases	of	Hive	from	0.8.0	to	1.0.0,	as	well	as	the
exciting	features	expected	in	the	future.	After	going	through	this	chapter,	we	should
understand	how	to	use	other	big	data	tools	with	Hive	to	provide	end-to-end	data
intelligence	solutions.

Index
A

Abstract	syntax	tree	(AST)
about	/	The	EXPLAIN	statement

ACLs
on	HDFS,	URL	/	Storage-based	mode

Advanced	Encryption	Standard	(AES)
URL	/	Encryption

aggregate	functions	/	Operators	and	functions
aggregation

data	aggregation	/	Basic	aggregation	–	GROUP	BY
without	GROUP	BY	columns	/	Basic	aggregation	–	GROUP	BY
with	GROUP	BY	columns	/	Basic	aggregation	–	GROUP	BY
advanced	/	Advanced	aggregation	–	GROUPING	SETS,	Advanced	aggregation
–	ROLLUP	and	CUBE
ROLLUP	statement	/	Advanced	aggregation	–	ROLLUP	and	CUBE
CUBE	statement	/	Advanced	aggregation	–	ROLLUP	and	CUBE
condition,	HAVING	statement	/	Aggregation	condition	–	HAVING

Amazon	EMR
URL	/	Starting	Hive	in	the	cloud

analytic	functions
about	/	Analytic	functions
Function	(arg1,…,	argn)	/	Analytic	functions
Standard	aggregations	/	Analytic	functions
RANK	/	Analytic	functions
DENSE_RANK	/	Analytic	functions
ROW_NUMBER	/	Analytic	functions
CUME_DIST	/	Analytic	functions
PERCENT_RANK	/	Analytic	functions
NTILE	/	Analytic	functions
LEAD	function	/	Analytic	functions
LAG	function	/	Analytic	functions
FIRST_VALUE	/	Analytic	functions
LAST_VALUE	/	Analytic	functions
window	expressions	/	Analytic	functions

ANALYZE	statement
about	/	The	ANALYZE	statement

ANTLR
URL	/	The	EXPLAIN	statement

Apache
used,	for	installing	Hive	/	Installing	Hive	from	Apache

Apache	Hive

Wiki,	URL	/	Using	the	Hive	command	line	and	Beeline
Apache	Hive	Wiki

URL	/	HBase
Apache	JIRA	Hive-365

URL	/	Understanding	Hive	data	types
Atomicity,	Consistency,	Isolation,	and	Durability	(ACID)

about	/	Transactions
authentication

about	/	Authentication
Metastore	server	authentication	/	Metastore	server	authentication
HiveServer2	authentication	/	HiveServer2	authentication

authorization
about	/	Authorization
legacy	mode	/	Legacy	mode
storage-based	mode	/	Storage-based	mode
SQL	standard-based	mode	/	SQL	standard-based	mode

Avro
URL	/	SerDe

AvroSerDe	/	SerDe
Azure	HDInsight	Service

URL	/	Starting	Hive	in	the	cloud

B
batch	processing

about	/	Batch,	real-time,	and	stream	processing
Beeline

using	/	Using	the	Hive	command	line	and	Beeline
URL	/	Using	the	Hive	command	line	and	Beeline
command-line	syntax	/	Using	the	Hive	command	line	and	Beeline

big	data
about	/	Introducing	big	data
Volume	/	Introducing	big	data
volume	/	Introducing	big	data
velocity	/	Introducing	big	data
variety	/	Introducing	big	data
veracity	/	Introducing	big	data
variability	/	Introducing	big	data
volatility	/	Introducing	big	data
visualization	/	Introducing	big	data
value	/	Introducing	big	data

block	sampling	/	Sampling
bucket	map	join	/	Bucket	map	join
buckets

about	/	Hive	buckets
number	/	Hive	buckets

bucket	tables
about	/	Bucket	tables

bucket	table	sampling	/	Sampling

C
cloud

Hive,	starting	/	Starting	Hive	in	the	cloud
Cloudera

URL	/	Starting	Hive	in	the	cloud
about	/	JDBC	/	ODBC	connector

Cloudera	Distributed	Hadoop	(CDH)
URL	/	Installing	Hive	from	vendor	packages

CLUSTER	BY	/	ORDER	and	SORT
collection	functions	/	Operators	and	functions
collection	item	delimiter	/	Understanding	Hive	data	types
ColumnarSerDe	/	SerDe
CombineFileInputFormat	/	Storage	optimization
common	join,	join	optimization	/	Common	join
Common	Table	Expression	(CTE)	/	Hive	internal	and	external	tables
Common	Table	Expression	(CTE)	/	Hive	internal	and	external	tables
compression	/	Compression
conditional	functions	/	Operators	and	functions
Cost-Based	Optimizer	(CBO)

about	/	The	ANALYZE	statement
Cost	Base	Optimizer	(CBO)	/	Hive	roadmap
CREATE	TABLE	/	Hive	internal	and	external	tables
Create	the	table	as	select	(CTAS)	/	Hive	internal	and	external	tables
CROSS	JOIN	statement	/	The	OUTER	JOIN	and	CROSS	JOIN	statements
CUBE	statement

about	/	Advanced	aggregation	–	ROLLUP	and	CUBE

D
data	aggregation

about	/	Basic	aggregation	–	GROUP	BY
database,	Hive

about	/	Hive	database
data	exchange

LOAD	keyword	/	Data	exchange	–	LOAD
INSERT	keyword	/	Data	exchange	–	INSERT

data	exchange
EXPORT	statement	/	Data	exchange	–	EXPORT	and	IMPORT
IMPORT	statement	/	Data	exchange	–	EXPORT	and	IMPORT

data	file	optimization
about	/	Data	file	optimization
file	format	/	File	format
compression	/	Compression
storage	optimization	/	Storage	optimization

data	type	conversions
about	/	Data	type	conversions
primitive	type	conversion	/	Data	type	conversions
explicit	type	conversion	/	Data	type	conversions

data	type	functions	tips,	complex	/	Operators	and	functions
data	types,	Hive

about	/	Understanding	Hive	data	types
TINYINT	/	Understanding	Hive	data	types
SMALLINT	/	Understanding	Hive	data	types
INT	/	Understanding	Hive	data	types
BIGINT	/	Understanding	Hive	data	types
FLOAT	/	Understanding	Hive	data	types
DOUBLE	/	Understanding	Hive	data	types
DECIMAL	/	Understanding	Hive	data	types
BINARY	/	Understanding	Hive	data	types
BOOLEAN	/	Understanding	Hive	data	types
STRING	/	Understanding	Hive	data	types
CHAR	/	Understanding	Hive	data	types
VARCHAR	/	Understanding	Hive	data	types
DATE	/	Understanding	Hive	data	types
TIMESTAMP	/	Understanding	Hive	data	types

date	functions	/	Operators	and	functions
date	function	tips	/	Operators	and	functions
delimiters

row	delimiter	/	Understanding	Hive	data	types
collection	item	delimiter	/	Understanding	Hive	data	types
map	key	delimiter	/	Understanding	Hive	data	types

deployment	/	Development	and	deployment
Derby

URL	/	Installing	Hive	from	Apache
design	optimization

about	/	Design	optimization
partition	tables	/	Partition	tables
bucket	tables	/	Bucket	tables
index	/	Index

development	/	Development	and	deployment
Directed	Acyclical	Graph	(DAG)	/	Oozie
directed	acyclic	graphs	(DAGs)	/	Index
DISTRIBUTE	BY	/	ORDER	and	SORT

E
encryption

about	/	Encryption
EXPLAIN	statement

about	/	The	EXPLAIN	statement
EXTENDED	keyword	/	The	EXPLAIN	statement
DEPENDENCY	keyword	/	The	EXPLAIN	statement
AUTHORIZATION	keyword	/	The	EXPLAIN	statement

explicit	type	conversion	/	Data	type	conversions
EXPORT	statement	/	Data	exchange	–	EXPORT	and	IMPORT
external	tables

about	/	Hive	internal	and	external	tables
/	Hive	internal	and	external	tables

F
file	format,	data	file	optimization

about	/	File	format
TEXTFILE	/	File	format
SEQUENCEFILE	/	File	format
RCFILE	/	File	format
Optimized	Row	Columnar	(ORC)	/	File	format
PARQUET	/	File	format

Flume	/	Overview	of	the	Hadoop	ecosystem
functions

about	/	Operators	and	functions
mathematical	functions	/	Operators	and	functions
collection	functions	/	Operators	and	functions
type	conversion	functions	/	Operators	and	functions
date	functions	/	Operators	and	functions
conditional	functions	/	Operators	and	functions
string	functions	/	Operators	and	functions
aggregate	functions	/	Operators	and	functions
table-generating	functions	/	Operators	and	functions
customized	/	Operators	and	functions
complex	data	type	functions	tips	/	Operators	and	functions
date	function	tips	/	Operators	and	functions
CASE,	for	datatypes	/	Operators	and	functions
parser	and	search	tips	/	Operators	and	functions
virtual	columns	/	Operators	and	functions

G
GenericUDAF

URL	/	The	UDAF	code	template
GROUPING	SETS	keyword

about	/	Advanced	aggregation	–	GROUPING	SETS

H
Hadoop

versus	relational	database	/	Relational	and	NoSQL	database	versus	Hadoop
versus	NoSQL	database	/	Relational	and	NoSQL	database	versus	Hadoop

Hadoop	Archive
and	HAR	/	Storage	optimization

Hadoop	Archive	File	(HAR)	/	File	format
Hadoop	ecosystem

about	/	Overview	of	the	Hadoop	ecosystem
HAVING	statement

about	/	Aggregation	condition	–	HAVING
HBase

about	/	HBase
URL	/	HBase
table,	creating	in	HQL	/	HBase

HBaseSerDe	/	SerDe
HCatalog

about	/	HCatalog
URL	/	HCatalog

HDFS
about	/	Batch,	real-time,	and	stream	processing,	Overview	of	the	Hadoop
ecosystem

HDFS	federation	/	Storage	optimization
Hive

about	/	Hive	overview
installing,	from	Apache	/	Installing	Hive	from	Apache
URL	/	Installing	Hive	from	Apache
installing,	from	vendor	packages	/	Installing	Hive	from	vendor	packages
starting,	in	cloud	/	Starting	Hive	in	the	cloud
data	types	/	Understanding	Hive	data	types
complex	types	/	Understanding	Hive	data	types
types	/	Understanding	Hive	data	types
database	/	Hive	database
internal	tables	/	Hive	internal	and	external	tables
external	tables	/	Hive	internal	and	external	tables
partitions	/	Hive	partitions
buckets	/	Hive	buckets
views	/	Hive	views
performance	utilities	/	Performance	utilities

Hive,	complex	types
ARRAY	/	Understanding	Hive	data	types
MAP	/	Understanding	Hive	data	types
STRUCT	/	Understanding	Hive	data	types

NAMED	STRUCT	/	Understanding	Hive	data	types
UNION	/	Understanding	Hive	data	types

Hive-integrated	development	environment	(IDE)
about	/	The	Hive-integrated	development	environment

hive.map.aggr	property	/	Basic	aggregation	–	GROUP	BY
Hive	CLI

command-line	syntax	/	Using	the	Hive	command	line	and	Beeline
URL	/	Using	the	Hive	command	line	and	Beeline

Hive	command	line
using	/	Using	the	Hive	command	line	and	Beeline

Hive	Data	Definition	Language	(DDL)
about	/	Hive	Data	Definition	Language

Hive	join	optimization
URL	/	Skew	join

Hive	roadmap
about	/	Hive	roadmap

HiveServer2
URL	/	Using	the	Hive	command	line	and	Beeline

HiveServer2	authentication
none	authentication	/	HiveServer2	authentication
Kerberos	authentication	/	HiveServer2	authentication
LDAP	authentication	/	HiveServer2	authentication
pluggable	custom	authentication	/	HiveServer2	authentication
Pluggable	Authentication	Modules	(PAM)	authentication	/	HiveServer2
authentication

Hive	Wiki
URL	/	Operators	and	functions

Hortonworks
URL	/	JDBC	/	ODBC	connector

HQL
about	/	Hive	overview

Hue
URL	/	The	Hive-integrated	development	environment,	Hue
about	/	Hue

I
Impala

URL	/	A	short	history
IMPORT	statement	/	Data	exchange	–	EXPORT	and	IMPORT
index

about	/	Index
INNER	JOIN	statement	/	The	INNER	JOIN	statement
INSERT	keyword	/	Data	exchange	–	INSERT
internal	tables

about	/	Hive	internal	and	external	tables
/	Hive	internal	and	external	tables

J
Java	IDE

URL	/	Development	and	deployment
Java	Virtual	Machine	(JVM)	/	Batch,	real-time,	and	stream	processing
javax.script	API

URL	/	User-defined	functions
JDBC/ODBC	connector

about	/	JDBC	/	ODBC	connector
job	and	query	optimization

about	/	Job	and	query	optimization
local	mode	/	Local	mode
JVM	reuse	/	JVM	reuse
parallel	execution	/	Parallel	execution

join	optimization
about	/	Join	optimization
common	join	/	Common	join
map	join	/	Map	join
bucket	map	join	/	Bucket	map	join
Sort	merge	bucket	(SMB)	join	/	Sort	merge	bucket	(SMB)	join
Sort	merge	bucket	map	(SMBM)	join	/	Sort	merge	bucket	map	(SMBM)	join
skew	join	/	Skew	join

JSONSerDe
URL	/	SerDe
about	/	SerDe

JVM	reuse,	job	and	query	optimization	/	JVM	reuse

K
Kerberos

about	/	Authentication
Kerberos	authentication	/	HiveServer2	authentication
Key	Distribution	Center	(KDC)	/	Authentication

L
LazySimpleSerDe	/	SerDe
LDAP	authentication	/	HiveServer2	authentication
legacy	mode,	authorization

about	/	Legacy	mode
Live	Long	And	Process	(LLAP)	/	Hive	roadmap
LOAD	keyword	/	Data	exchange	–	LOAD
local	mode,	job	and	query	optimization	/	Local	mode

M
map	join,	join	optimization	/	Map	join
MAPJOIN	statement	/	Special	JOIN	–	MAPJOIN
map	key	delimiter	/	Understanding	Hive	data	types
mathematical	functions	/	Operators	and	functions
Maven

URL	/	Development	and	deployment
metastore	/	Hive	overview
Metastore	server	authentication

about	/	Metastore	server	authentication
MIT	Kerberos

URL	/	Authentication
MySQL

URL	/	Installing	Hive	from	Apache

N
none	authentication	/	HiveServer2	authentication
NoSQL	database

versus	Hadoop	/	Relational	and	NoSQL	database	versus	Hadoop

O
Oozie

about	/	Oozie
URL	/	Oozie
control	flow	node	/	Oozie
action	node	/	Oozie

OpenCSVSerDe	/	SerDe
operators

about	/	Operators	and	functions
Optimized	Row	Columnar	(ORC)	/	Index,	File	format
Optimized	Row	Columnar	(ORC)	file

about	/	Transactions
ORDER	BY	(ASC|DESC)	keyword	/	ORDER	and	SORT
ORDER	keyword	/	ORDER	and	SORT
OUTER	JOIN	statement	/	The	OUTER	JOIN	and	CROSS	JOIN	statements
Out	Of	Memory	(OOM)	exceptions	/	The	INNER	JOIN	statement

P
parallel	execution,	job	and	query	optimization	/	Parallel	execution
ParquetHiveSerDe	/	SerDe
parser	and	search	tips	/	Operators	and	functions
PARTITION	BY	statement	/	Analytic	functions
partitions

about	/	Hive	partitions
partition	tables

by	date	and	time	/	Partition	tables
by	locations	/	Partition	tables
by	business	logics	/	Partition	tables

personal	identity	information	(PII)
about	/	Encryption

Phoenix
URL	/	HBase

Pluggable	Authentication	Modules	(PAM)	authentication	/	HiveServer2
authentication
pluggable	custom	authentication	/	HiveServer2	authentication
PostgreSQL

URL	/	Installing	Hive	from	Apache
Presto

URL	/	A	short	history
primitive	type	conversion	/	Data	type	conversions
Processing	Elements	(PE)	/	Batch,	real-time,	and	stream	processing

R
random	sampling

URL	/	Sampling
real-time	processing

about	/	Batch,	real-time,	and	stream	processing
Record	Columnar	File	(RCFILE)	/	File	format
RegexSerDe	/	SerDe
relational	database

versus	Hadoop	/	Relational	and	NoSQL	database	versus	Hadoop
ROLLUP	statement

about	/	Advanced	aggregation	–	ROLLUP	and	CUBE
row	delimiter	/	Understanding	Hive	data	types

S
sampling

about	/	Sampling
random	sampling	/	Sampling
bucket	table	sampling	/	Sampling
block	sampling	/	Sampling

SELECT	*	statement	/	The	SELECT	statement
SELECT	statement	/	The	SELECT	statement
Sentry

URL	/	SQL	standard-based	mode
SequenceFile	format	/	Storage	optimization
SerDe

about	/	SerDe
data,	reading	/	SerDe
data,	writing	/	SerDe
LazySimpleSerDe	/	SerDe
ColumnarSerDe	/	SerDe
RegexSerDe	/	SerDe
HBaseSerDe	/	SerDe
AvroSerDe	/	SerDe
ParquetHiveSerDe	/	SerDe
OpenCSVSerDe	/	SerDe
JSONSerDe	/	SerDe

SHOW	TRANSACTIONS	command	/	Transactions
Simple	Authentication	and	Security	Layer	(SASL)	framework	/	Metastore	server
authentication
skew	join	/	Skew	join
SORT	BY	(ASC|DESC)	keyword	/	ORDER	and	SORT
SORT	keyword	/	ORDER	and	SORT
sort	merge	bucket	(SMB)	join	/	Sort	merge	bucket	(SMB)	join
sort	merge	bucket	map	(SMBM)	join	/	Sort	merge	bucket	map	(SMBM)	join
Spark	/	Overview	of	the	Hadoop	ecosystem
SQLLine

URL	/	Using	the	Hive	command	line	and	Beeline
SQL	standard-based	mode,	authorization

about	/	SQL	standard-based	mode
Sqoop	/	Overview	of	the	Hadoop	ecosystem
stage	dependencies

about	/	The	EXPLAIN	statement
stage	plans

about	/	The	EXPLAIN	statement
storage-based	mode,	authorization

about	/	Storage-based	mode

storage	optimization	/	Storage	optimization
Storm

URL	/	A	short	history,	Batch,	real-time,	and	stream	processing
streaming

about	/	Streaming
stream	processing

about	/	Batch,	real-time,	and	stream	processing
string	functions	/	Operators	and	functions
Structured	Query	Language	(SQL)

about	/	A	short	history

T
table-generating	functions	/	Operators	and	functions
Tez	/	Overview	of	the	Hadoop	ecosystem

about	/	Index
URL	/	Index

transactions
about	/	Transactions

type	conversion	functions	/	Operators	and	functions

U
UDAF

code,	template	/	The	UDAF	code	template
UDAFs

about	/	User-defined	functions
UDF

code,	template	/	The	UDF	code	template
UDFs

about	/	User-defined	functions
UDTF

code,	template	/	The	UDTF	code	template
UDTFs

about	/	User-defined	functions
Uniform	Resource	Identifier	(URI)	/	Data	exchange	–	LOAD
UNION	ALL	statement	/	Set	operation	–	UNION	ALL

V
value	/	Introducing	big	data
variability	/	Introducing	big	data
variety	/	Introducing	big	data
Vectorization	optimization

about	/	Index
URL	/	Index

velocity	/	Introducing	big	data
vendor	packages

used,	for	installing	Hive	/	Installing	Hive	from	vendor	packages
veracity	/	Introducing	big	data
views

about	/	Hive	views
altering	/	Hive	views
redefining	/	Hive	views
dropping	/	Hive	views

virtual	columns	/	Operators	and	functions
visualization	/	Introducing	big	data
volatility	/	Introducing	big	data
volume	/	Introducing	big	data

W
WHERE	clauses

subqueries,	restrictions	/	The	SELECT	statement
window	expressions

BETWEEN	…	AND	clause	/	Analytic	functions
N	PRECEDING	or	FOLLOWING	/	Analytic	functions
UNBOUNDED	PRECEDING	/	Analytic	functions
UNBOUNDED	FOLLOWING	/	Analytic	functions
UNBOUNDED	PRECEDING	AND	UNBOUNED	FOLLOWING	/	Analytic
functions
CURRENT	ROW	/	Analytic	functions
URL	/	Analytic	functions

Y
Yarn	/	Overview	of	the	Hadoop	ecosystem

Z
ZooKeeper

about	/	ZooKeeper
URL	/	ZooKeeper
shared	lock	/	ZooKeeper
exclusive	lock	/	ZooKeeper
for	Hive	locks,	URL	/	ZooKeeper

	Apache Hive Essentials
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions
	1. Overview of Big Data and Hive
	A short history
	Introducing big data
	Relational and NoSQL database versus Hadoop
	Batch, real-time, and stream processing
	Overview of the Hadoop ecosystem
	Hive overview
	Summary
	2. Setting Up the Hive Environment
	Installing Hive from Apache
	Installing Hive from vendor packages
	Starting Hive in the cloud
	Using the Hive command line and Beeline
	The Hive-integrated development environment
	Summary
	3. Data Definition and Description
	Understanding Hive data types
	Data type conversions
	Hive Data Definition Language
	Hive database
	Hive internal and external tables
	Hive partitions
	Hive buckets
	Hive views
	Summary
	4. Data Selection and Scope
	The SELECT statement
	The INNER JOIN statement
	The OUTER JOIN and CROSS JOIN statements
	Special JOIN – MAPJOIN
	Set operation – UNION ALL
	Summary
	5. Data Manipulation
	Data exchange – LOAD
	Data exchange – INSERT
	Data exchange – EXPORT and IMPORT
	ORDER and SORT
	Operators and functions
	Transactions
	Summary
	6. Data Aggregation and Sampling
	Basic aggregation – GROUP BY
	Advanced aggregation – GROUPING SETS
	Advanced aggregation – ROLLUP and CUBE
	Aggregation condition – HAVING
	Analytic functions
	Sampling
	Summary
	7. Performance Considerations
	Performance utilities
	The EXPLAIN statement
	The ANALYZE statement
	Design optimization
	Partition tables
	Bucket tables
	Index
	Data file optimization
	File format
	Compression
	Storage optimization
	Job and query optimization
	Local mode
	JVM reuse
	Parallel execution
	Join optimization
	Common join
	Map join
	Bucket map join
	Sort merge bucket (SMB) join
	Sort merge bucket map (SMBM) join
	Skew join
	Summary
	8. Extensibility Considerations
	User-defined functions
	The UDF code template
	The UDAF code template
	The UDTF code template
	Development and deployment
	Streaming
	SerDe
	Summary
	9. Security Considerations
	Authentication
	Metastore server authentication
	HiveServer2 authentication
	Authorization
	Legacy mode
	Storage-based mode
	SQL standard-based mode
	Encryption
	Summary
	10. Working with Other Tools
	JDBC / ODBC connector
	HBase
	Hue
	HCatalog
	ZooKeeper
	Oozie
	Hive roadmap
	Summary
	Index

