
www.allitebooks.com

http://www.allitebooks.org

Apache Kafka

Set up Apache Kafka clusters and develop custom
message producers and consumers using practical,
hands-on examples

Nishant Garg

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Apache Kafka

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book
is sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2013

Production Reference: 1101013

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK..

ISBN 978-1-78216-793-8

www.packtpub.com

Cover Image by Suresh Mogre (suresh.mogre.99@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Nishant Garg

Reviewers
Magnus Edenhill

Iuliia Proskurnia

Acquisition Editors
Usha Iyer

Julian Ursell

Commissioning Editor
Shaon Basu

Technical Editor
Veena Pagare

Copy Editors
Tanvi Gaitonde

Sayanee Mukherjee

Aditya Nair

Kirti Pai

Alfida Paiva

Adithi Shetty

Project Coordinator
Esha Thakker

Proofreader
Christopher Smith

Indexers
Monica Ajmera

Hemangini Bari

Tejal Daruwale

Graphics
Abhinash Sahu

Production Coordinator
Kirtee Shingan

Cover Work
Kirtee Shingan

www.allitebooks.com

http://www.allitebooks.org

About the Author

Nishant Garg is a Technical Architect with more than 13 years' experience in various
technologies such as Java Enterprise Edition, Spring, Hibernate, Hadoop, Hive, Flume,
Sqoop, Oozie, Spark, Kafka, Storm, Mahout, and Solr/Lucene; NoSQL databases
such as MongoDB, CouchDB, HBase and Cassandra, and MPP Databases such
as GreenPlum and Vertica.

He has attained his M.S. in Software Systems from Birla Institute of Technology
and Science, Pilani, India, and is currently a part of Big Data R&D team in innovation
labs at Impetus Infotech Pvt. Ltd.

Nishant has enjoyed working with recognizable names in IT services and financial
industries, employing full software lifecycle methodologies such as Agile and SCRUM.
He has also undertaken many speaking engagements on Big Data technologies.

I would like to thank my parents (Sh. Vishnu Murti Garg and Smt.
Vimla Garg) for their continuous encouragement and motivation
throughout my life. I would also like to thank my wife (Himani) and
my kids (Nitigya and Darsh) for their never-ending support, which
keeps me going.

Finally, I would like to thank Vineet Tyagi—AVP and Head of
Innovation Labs, Impetus—and Dr. Vijay—Director of Technology,
Innovation Labs, Impetus—for having faith in me and giving me
an opportunity to write.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Magnus Edenhill is a freelance systems developer living in Stockholm, Sweden,
with his family. He specializes in high-performance distributed systems but is also
a veteran in embedded systems.

For ten years, Magnus played an instrumental role in the design and implementation
of PacketFront's broadband architecture, serving millions of FTTH end customers
worldwide. Since 2010, he has been running his own consultancy business with
customers ranging from Headweb—northern Europe's largest movie streaming
service—to Wikipedia.

Iuliia Proskurnia is a doctoral student at EDIC school of EPFL, specializing
in Distributed Computing. Iuliia was awarded the EPFL fellowship to conduct
her doctoral research. She is a winner of the Google Anita Borg scholarship and
was the Google Ambassador at KTH (2012-2013). She obtained a Masters Diploma
in Distributed Computing (2013) from KTH, Stockholm, Sweden, and UPC,
Barcelona, Spain. For her Master's thesis, she designed and implemented a unique
real-time, low-latency, reliable, and strongly consistent distributed data store
for the stock exchange environment at NASDAQ OMX. Previously, she has
obtained Master's and Bachelor's Diplomas with honors in Computer Science
from the National Technical University of Ukraine KPI. This Master's thesis was
about fuzzy portfolio management in previously uncertain conditions. This period
was productive for her in terms of publications and conference presentations. During
her studies in Ukraine, she obtained several scholarships. During her stay in Kiev,
Ukraine, she worked as Financial Analyst at Alfa Bank Ukraine.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.allitebooks.com

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/
http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Introducing Kafka 5

Need for Kafka 7
Few Kafka usages 8
Summary 9

Chapter 2: Installing Kafka 11
Installing Kafka 12

Downloading Kafka 12
Installing the prerequisites 13

Installing Java 1.6 or later 13
Building Kafka 14

Summary 16
Chapter 3: Setting up the Kafka Cluster 17

Single node – single broker cluster 17
Starting the ZooKeeper server 18
Starting the Kafka broker 19
Creating a Kafka topic 20
Starting a producer for sending messages 20
Starting a consumer for consuming messages 22

Single node – multiple broker cluster 23
Starting ZooKeeper 23
Starting the Kafka broker 23
Creating a Kafka topic 24
Starting a producer for sending messages 24
Starting a consumer for consuming messages 25

Multiple node – multiple broker cluster 25
Kafka broker property list 26
Summary 26

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Chapter 4: Kafka Design 27
Kafka design fundamentals 28
Message compression in Kafka 29
Cluster mirroring in Kafka 30
Replication in Kafka 31
Summary 32

Chapter 5: Writing Producers 33
The Java producer API 34
Simple Java producer 36

Importing classes 36
Defining properties 36
Building the message and sending it 37

Creating a simple Java producer with message partitioning 38
Importing classes 38
Defining properties 38
Implementing the Partitioner class 39
Building the message and sending it 39

The Kafka producer property list 40
Summary 42

Chapter 6: Writing Consumers 43
Java consumer API 44

High-level consumer API 44
Simple consumer API 46

Simple high-level Java consumer 47
Importing classes 47
Defining properties 47
Reading messages from a topic and printing them 48

Multithreaded consumer for multipartition topics 50
Importing classes 50
Defining properties 50
Reading the message from threads and printing it 51

Kafka consumer property list 54
Summary 55

Chapter 7: Kafka Integrations 57
Kafka integration with Storm 57

Introduction to Storm 58
Integrating Storm 59

Kafka integration with Hadoop 60
Introduction to Hadoop 60
Integrating Hadoop 62

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

Hadoop producer 62
Hadoop consumer 64

Summary 64
Chapter 8: Kafka Tools 65

Kafka administration tools 65
Kafka topic tools 65
Kafka replication tools 66

Integration with other tools 68
Kafka performance testing 69
Summary 69

Index 71

www.allitebooks.com

http://www.allitebooks.org

Preface
This book is here to help you get familiar with Apache Kafka and use it to solve your
challenges related to the consumption of millions of messages in publisher-subscriber
architecture. It is aimed at getting you started with a feel for programming with Kafka
so that you will have a solid foundation to dive deep into its different types
of implementations and integrations.

In addition to an explanation of Apache Kafka, we also offer a chapter exploring
Kafka integration with other technologies such as Apache Hadoop and Storm. Our
goal is to give you an understanding of not just what Apache Kafka is, but also how
to use it as part of your broader technical infrastructure.

What this book covers
Chapter 1, Introducing Kafka, discusses how organizations are realizing the real value
of data and evolving the mechanism of collecting and processing it.

Chapter 2, Installing Kafka, describes how to install and build Kafka 0.7.x and 0.8.

Chapter 3, Setting up the Kafka Cluster, describes the steps required to set up
a single/multibroker Kafka cluster.

Chapter 4, Kafka Design, discusses the design concepts used for building a solid
foundation for Kafka.

Chapter 5, Writing Producers, provides detailed information about how to write basic
producers and some advanced-level Java producers that use message partitioning.

Chapter 6, Writing Consumers, provides detailed information about how to write basic
consumers and some advanced-level Java consumers that consume messages from
the partitions.

Preface

[2]

Chapter 7, Kafka Integrations, discusses how Kafka integration works for both Storm
and Hadoop to address real-time and batch processing needs.

Chapter 8, Kafka Tools, describes information about Kafka tools, such as its
administrator tools, and Kafka integration with Camus, Apache Camel, Amazon
cloud, and so on.

What you need for this book
In the simplest case, a single Linux-based (CentOS 6.x) machine with JDK 1.6
installed will give you a platform to explore almost all the exercises in this book.
We assume you have some familiarity with command-line Linux; any modern
distribution will suffice.

Some of the examples in this book need multiple machines to see things working,
so you will require access to at least three such hosts. Virtual machines are fine
for learning and exploration.

You will generally need the big data technologies, such as Hadoop and Storm,
to run your Hadoop and Storm clusters.

Who this book is for
This book is for readers who want to know about Apache Kafka at a hands-on
level; the key audience is those with software development experience but no
prior exposure to Apache Kafka or similar technologies.

This book is also for enterprise application developers and big data enthusiasts
who have worked with other publisher-subscriber-based systems and now want
to explore Apache Kafka as a futuristic scalable solution.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and
an explanation of their meaning.

Code words in text are shown as follows: "We can include other contexts through
the use of the include directive."

Preface

[3]

A block of code is set as follows:

String messageStr = new String("Hello from Java Producer");
KeyedMessage<Integer, String> data = new KeyedMessage<Integer,
String>(topic, messageStr);
producer.send(data);

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

Properties props = new Properties();
props.put("metadata.broker.list","localhost:9092");
props.put("serializer.class","kafka.serializer.StringEncoder");
props.put("request.required.acks", "1");
ProducerConfig config = new ProducerConfig(props);
Producer<Integer, String> producer = new Producer<Integer,
 String>(config);

Any command-line input or output is written as follows:

[root@localhost kafka-0.8]# java SimpleProducer kafkatopic Hello_There

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important
for us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Preface

[4]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots used
in this book. You can download this file from http://www.packtpub.com/sites/
default/files/downloads/7938OS_Images.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting http://www.packtpub.com/
submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem
with any aspect of the book, and we will do our best to address it.

Introducing Kafka
Welcome to the world of Apache Kafka.

In today's world, real-time information is continuously getting generated by
applications (business, social, or any other type), and this information needs easy
ways to be reliably and quickly routed to multiple types of receivers. Most of
the time, applications that are producing information and applications that are
consuming this information are well apart and inaccessible to each other. This,
at times, leads to redevelopment of information producers or consumers to provide
an integration point between them. Therefore, a mechanism is required for seamless
integration of information of producers and consumers to avoid any kind of
rewriting of an application at either end.

In the present big data era, the very first challenge is to collect the data as it
is a huge amount of data and the second challenge is to analyze it. This analysis
typically includes following type of data and much more:

• User behavior data
• Application performance tracing
• Activity data in the form of logs
• Event messages

Message publishing is a mechanism for connecting various applications with the
help of messages that are routed between them, for example, by a message broker
such as Kafka. Kafka is a solution to the real-time problems of any software solution,
that is, to deal with real-time volumes of information and route it to multiple
consumers quickly. Kafka provides seamless integration between information
of producers and consumers without blocking the producers of the information,
and without letting producers know who the final consumers are.

Introducing Kafka

[6]

Apache Kafka is an open source, distributed publish-subscribe messaging system,
mainly designed with the following characteristics:

• Persistent messaging: To derive the real value from big data, any kind
of information loss cannot be afforded. Apache Kafka is designed with O(1)
disk structures that provide constant-time performance even with very large
volumes of stored messages, which is in order of TB.

• High throughput: Keeping big data in mind, Kafka is designed to work
on commodity hardware and to support millions of messages per second.

• Distributed: Apache Kafka explicitly supports messages partitioning over
Kafka servers and distributing consumption over a cluster of consumer
machines while maintaining per-partition ordering semantics.

• Multiple client support: Apache Kafka system supports easy integration of
clients from different platforms such as Java, .NET, PHP, Ruby, and Python.

• Real time: Messages produced by the producer threads should be immediately
visible to consumer threads; this feature is critical to event-based systems such
as Complex Event Processing (CEP) systems.

Kafka provides a real-time publish-subscribe solution, which overcomes the
challenges of real-time data usage for consumption, for data volumes that may
grow in order of magnitude, larger that the real data. Kafka also supports parallel
data loading in the Hadoop systems.

The following diagram shows a typical big data aggregation-and-analysis scenario
supported by the Apache Kafka messaging system:

Producer
(Front End)

Producer
(Services)

Producer
(Proxies)

Producer
(Adapters)

Other
Producer

Consumers
(Real Time)

Consumers
(NoSQL)

Consumers
(Hadoop)

Consumers
(Warehouses)

Other
Producer

ZooKeeperKafka BrokerKafka BrokerKafka BrokerKafka Broker

Chapter 1

[7]

At the production side, there are different kinds of producers, such as the following:

• Frontend web applications generating application logs
• Producer proxies generating web analytics logs
• Producer adapters generating transformation logs
• Producer services generating invocation trace logs

At the consumption side, there are different kinds of consumers, such as the following:

• Offline consumers that are consuming messages and storing them in Hadoop
or traditional data warehouse for offline analysis

• Near real-time consumers that are consuming messages and storing them in
any NoSQL datastore such as HBase or Cassandra for near real-time analytics

• Real-time consumers that filter messages in the in-memory database
and trigger alert events for related groups

Need for Kafka
A large amount of data is generated by companies having any form of web-based
presence and activity. Data is one of the newer ingredients in these Internet-based
systems and typically includes user-activity events corresponding to logins, page
visits, clicks, social networking activities such as likes, sharing, and comments,
and operational and system metrics. This data is typically handled by logging and
traditional log aggregation solutions due to high throughput (millions of messages
per second). These traditional solutions are the viable solutions for providing logging
data to an offline analysis system such as Hadoop. However, the solutions are very
limiting for building real-time processing systems.

According to the new trends in Internet applications, activity data has become a part
of production data and is used to run analytics at real time. These analytics can be:

• Search based on relevance
• Recommendations based on popularity, co-occurrence, or sentimental analysis
• Delivering advertisements to the masses
• Internet application security from spam or unauthorized data scraping

Introducing Kafka

[8]

Real-time usage of these multiple sets of data collected from production systems
has become a challenge because of the volume of data collected and processed.

Apache Kafka aims to unify offline and online processing by providing a mechanism
for parallel load in Hadoop systems as well as the ability to partition real-time
consumption over a cluster of machines. Kafka can be compared with Scribe or Flume
as it is useful for processing activity stream data; but from the architecture perspective,
it is closer to traditional messaging systems such as ActiveMQ or RabitMQ.

Few Kafka usages
Some of the companies that are using Apache Kafka in their respective use cases
are as follows:

• LinkedIn (www.linkedin.com): Apache Kafka is used at LinkedIn for the
streaming of activity data and operational metrics. This data powers various
products such as LinkedIn news feed and LinkedIn Today in addition
to offline analytics systems such as Hadoop.

• DataSift (www.datasift.com/): At DataSift, Kafka is used as a collector
for monitoring events and as a tracker of users' consumption of data streams
in real time.

• Twitter (www.twitter.com/): Twitter uses Kafka as a part of its
Storm— a stream-processing infrastructure.

• Foursquare (www.foursquare.com/): Kafka powers online-to-online
and online-to-offline messaging at Foursquare. It is used to integrate
Foursquare monitoring and production systems with Foursquare,
Hadoop-based offline infrastructures.

• Square (www.squareup.com/): Square uses Kafka as a bus to move all system
events through Square's various datacenters. This includes metrics, logs,
custom events, and so on. On the consumer side, it outputs into Splunk,
Graphite, or Esper-like real-time alerting.

The source of the above information is https://cwiki.
apache.org/confluence/display/KAFKA/Powered+By.

Chapter 1

[9]

Summary
In this chapter, we have seen how companies are evolving the mechanism
of collecting and processing application-generated data, and that of utilizing
the real power of this data by running analytics over it.

In the next chapter we will look at the steps required to install Kafka.

www.allitebooks.com

http://www.allitebooks.org

Installing Kafka
Kafka is an Apache project and its current Version 0.7.2 is available as a stable
release. Kafka Version 0.8 is available as beta release, which is gaining acceptance
in many large-scale enterprises. Kafka 0.8 offers many advanced features compared
to 0.7.2. A few of its advancements are as follows:

• Prior to 0.8, any unconsumed partition of data within the topic could be lost
if the broker failed. Now the partitions are provided with a replication factor.
This ensures that any committed message would not be lost, as at least one
replica is available.

• The previous feature also ensures that all the producers and consumers are
replication aware. By default, the producer's message send request is blocked
until the message is committed to all active replicas; however, producers can
also be configured to commit messages to a single broker.

• Like Kafka producers, Kafka consumers' polling model changes to a long
pulling model and gets blocked until a committed message is available from
the producer, which avoids frequent pulling.

• Additionally, Kafka 0.8 also comes with a set of administrative tools, such
as controlled shutdown of cluster and Lead replica election tool, for
managing the Kafka cluster.

Installing Kafka

[12]

The major limitation is that Kafka Version 0.7.x can't just be replaced by Version
0.8, as it is not backward compatible. If the existing Kafka cluster is based on 0.7.x,
a migration tool is provided for migrating the data from the Kafka 0.7.x-based
cluster to the 0.8-based cluster. This migration tool actually works as a consumer
for 0.7.x-based Kafka clusters and republishes the messages as a producer to Kafka
0.8-based clusters. The following diagram explains this migration:

Kafka 0.7.x
Cluster

Kafka 0.7.x
Consumer

Kafka Migration

Kafka 0.8
Producer

Kafka 0.8
Cluster

More information about Kafka migration from 0.7.x to 0.8 can be found
at https://cwiki.apache.org/confluence/display/KAFKA/
Migrating+from+0.7+to+0.8.

Coming back to installing Kafka, as a first step, we need to download the available
stable/beta release (all the commands are tested on CentOS 5.5 OS and may differ
on other kernel-based OS).

Installing Kafka
Now let us see what steps need to be followed in order to install Kafka:

Downloading Kafka
Perform the following steps for downloading Kafka release 0.7.x:

1. Download the current stable version of Kafka (0.7.2) into a folder on your
file system (for example, /opt) using the following command:
[root@localhost opt]#wget https://www.apache.org/dyn/closer.cgi/
incubator/kafka/kafka-0.7.2-incubating/kafka-0.7.2-incubating-src.
tgz

2. Extract the downloaded kafka-0.7.2-incubating-src.tgz using
the following command:

[root@localhost opt]# tar xzf kafka-0.7.2-incubating-src.tgz

Chapter 2

[13]

Perform the following steps for downloading Kafka release 0.8:

1. Download the current beta release of Kafka (0.8) into a folder on your
filesystem (for example, /opt) using the following command:
[root@localhost opt]#wget

https://dist.apache.org/repos/dist/release/kafka/kafka-0.8.0-
beta1-src.tgz

2. Extract the downloaded kafka-0.8.0-beta1-src.tgz using the
following command:

[root@localhost opt]# tar xzf kafka-0.8.0-beta1-src.tgz

Going forward, all commands in this chapter are same for both
the versions (0.7.x and 0.8) of Kafka.

Installing the prerequisites
Kafka is implemented in Scala and uses the ./sbt tool for building Kafka binaries.
sbt is a build tool for Scala and Java projects which requires Java 1.6 or later.

Installing Java 1.6 or later
Perform the following steps for installing Java 1.6 or later:

1. Download the jdk-6u45-linux-x64.bin link from Oracle's website:
http://www.oracle.com/technetwork/java/javase/downloads/index.
html.

2. Make sure the file is executable:
[root@localhost opt]#chmod +x jdk-6u45-linux-x64.bin

3. Run the installer:
[root@localhost opt]#./jdk-6u45-linux-x64.bin

4. Finally, add the environment variable JAVA_HOME. The following command
will write the JAVA_HOME environment variable to the file /etc/profile,
which contains system-wide environment configuration:

[root@localhost opt]# echo "export JAVA_HOME=/usr/java/
jdk1.6.0_45" >> /etc/profile

Installing Kafka

[14]

Building Kafka
The following steps need to be followed for building and packaging Kafka:

1. Change the current directory to the downloaded Kafka directory by using
the following command:
[root@localhost opt]# cd kafka-<VERSION>

2. The directory structure for Kafka 0.8 looks as follows:

3. The following command downloads all the dependencies such as Scala
compiler, Scala libraries, Zookeeper, Core-Kafka update, and Hadoop
consumer/producer update, for building Kafka:
[root@localhost opt]#./sbt update

Chapter 2

[15]

On execution of the previous command, you should see the following output
on the command prompt:

4. Finally, compile the complete source code for Core-Kafka, Java examples,
and Hadoop producer/consumer, and package them into JAR files using
the following command:
[root@localhost opt]#./sbt package

On execution of the previous command, you should see the following output
on the command prompt:

5. The following additional command is only needed with Kafka 0.8 for
producing the dependency artifacts:

[root@localhost opt]#./sbt assembly-package-dependency

Installing Kafka

[16]

On execution of the previous command, you should see the following output
on the command prompt:

If you are planning to play with Kafka 0.8, you may experience lot of
warnings with update and package commands, which can be ignored.

Summary
In this chapter we have learned how to install and build Kafka 0.7.x and 0.8. The
following chapter discusses the steps required to set up single/multibroker Kafka
clusters. From here onwards, the book only focuses on Kafka 0.8.

Setting up the Kafka Cluster
Now we are ready to play with the Apache Kafka publisher-based messaging system.

With Kafka, we can create multiple types of clusters, such as the following:

• Single node – single broker cluster
• Single node – multiple broker cluster
• Multiple node – multiple broker cluster

All the commands and cluster setups in this chapter
are based on Kafka 0.8.

With Kafka 0.8, replication of clusters can also be established, which will be
discussed in brief in the last part of this chapter.

So let's start with the basics.

Single node – single broker cluster
This is the starting point of learning Kafka. In the previous chapter, we built and
installed Kafka on a single machine. Now it is time to setup single node – single
broker based Kafka cluster as shown in the following diagram

ZooKeeper

Kafka Broker

Consumers

Consumers

Consumers

Producers

Producers

Producers

Single Node Single Kafka Broker-

Setting up the Kafka Cluster

[18]

Starting the ZooKeeper server
Kafka provides the default and simple ZooKeeper configuration file used for
launching a single local ZooKeeper instance. Here, ZooKeeper serves as the
coordination interface between the Kafka broker and consumers. The Hadoop
overview given on the Hadoop Wiki site is as follows (http://wiki.apache.org/
hadoop/ZooKeeper/ProjectDescription):

"ZooKeeper (http://zookeeper.apache.org) allows distributed processes
coordinating with each other through a shared hierarchical name space of data
registers (znodes), much like a file system.

The main differences between ZooKeeper and standard filesystems are that every
znode can have data associated with it and znodes are limited to the amount of
data that they can have. ZooKeeper was designed to store coordination data: status
information, configuration, location information, and so on."

First start the ZooKeeper using the following command:

[root@localhost kafka-0.8]# bin/zookeeper-server-start.sh config/
zookeeper.properties

You should get an output as shown in the following screenshot:

Kafka comes with the required property files defining minimal
properties required for a single broker – single node cluster.

The important properties defined in zookeeper.properties are shown in the
following code:

Data directory where the zookeeper snapshot is stored.
dataDir=/tmp/zookeeper

The port listening for client request
clientPort=2181

By default, the ZooKeeper server will listen on *:2181/tcp. For detailed information on
how to set up multiple servers of ZooKeeper, visit http://zookeeper.apache.org/.

Chapter 3

[19]

Starting the Kafka broker
Now start the Kafka broker using the following command:

[root@localhost kafka-0.8]# bin/kafka-server-start.sh config/server.
properties

You should now see the output as shown in the following screenshot:

server.properties defines the following important properties required for
the Kafka broker:

The id of the broker. This must be set to a unique integer for each
broker.
Broker.id=0

The directory under which to store log files
log.dir=/tmp/kafka8-logs

Zookeeper connection string
zookeeper.connect=localhost:2181

The last section in this chapter defines few more important properties available for
the Kafka broker. For a complete list of Kafka broker properties, visit http://kafka.
apache.org/documentation.html#brokerconfigs.

www.allitebooks.com

http://www.allitebooks.org

Setting up the Kafka Cluster

[20]

Creating a Kafka topic
Kafka provides a command-line utility for creating topics on the Kafka server. Let's
create a topic named kafkatopic with a single partition and only one replica using
this utility:
[root@localhost kafka-0.8]# bin/kafka-create-topic.sh --zookeeper
localhost:2181 --replica 1 --partition 1 --topic kafkatopic

You should get an output as shown in the following screenshot:

The previously mentioned utility will create a topic and show the successful creation
message as shown in the previous screenshot.

Starting a producer for sending messages
Kafka provides users with a command-line producer client that accepts inputs from
the command line and publishes them as a message to the Kafka cluster. By default,
each new line entered is considered as a new message. The following command is
used to start the console-based producer for sending the messages
[root@localhost kafka-0.8]# bin/kafka-console-producer.sh --broker-list
localhost:9092 --topic kafkatopic

Chapter 3

[21]

You should see an output as shown in the following screenshot:

While starting the producer's command-line client, the following parameters
are required:

• broker-list

• topic

broker-list specifies the brokers to be connected as <node_address:port>, that
is, localhost:9092. The topic Kafkatopic is a topic that was created in the Creating
a Kafka topic section. The topic name is required for sending a message to a specific
group of consumers.

Now type the following message, This is single broker, and press Enter.
You should see an output as shown in the following screenshot:

Try some more messages.

Detailed information about how to write producers for Kafka and producer
properties will be discussed in Chapter 5, Writing Producers.

Setting up the Kafka Cluster

[22]

Starting a consumer for consuming messages
Kafka also provides a command-line consumer client for message consumption.
The following command is used for starting the console-based consumer that shows
output at command line as soon as it subscribes to the topic created in Kafka broker:

 [root@localhost kafka-0.8]# bin/kafka-console-consumer.sh
--zookeeper localhost:2181 --topic kafkatopic --from-beginning

On execution of the previous command, you should get an output as shown in the
following screenshot:

The default properties for the consumer are defined in consumer.properties.
The important properties are:

consumer group id (A string that uniquely identifies a set of
consumers # within the same consumer group)
groupid=test-consumer-group

zookeeper connection string
zookeeper.connect=localhost:2181

Detailed information about how to write consumers for Kafka and consumer
properties is discussed in Chapter 6, Writing Consumers.

By running all four components (zookeeper, broker, producer, and consumer)
in different terminals, you will be able to enter messages from the producer's
terminal and see them appearing in the subscribed consumer's terminal.

Usage information for both producer and consumer command-line tools can
be viewed by running the command with no arguments.

Chapter 3

[23]

Single node – multiple broker cluster
Now we have come to the next level of Kafka cluster. Let us now set up single
node – multiple broker based Kafka cluster as shown in the following diagram:

Producers

ZooKeeper

Consumers

Consumers

Consumers

Producers

Producers

Single Node Single Kafka Broker-

Broker 1

Broker 2

Broker 3

Starting ZooKeeper
The first step of starting ZooKeeper remains the same for this type of cluster.

Starting the Kafka broker
For setting up multiple brokers on a single node, different server property files are
required for each broker. Each property file will define unique, different values for
the following properties:

• brokerid

• port

• log.dir

For example, in server-1.properties used for broker1, we define the following:

• brokerid=1

• port=9092

• log.dir=/tmp/kafka8-logs/broker1

Setting up the Kafka Cluster

[24]

Similarly, for server-2.properties used for broker2, we define the following:

• brokerid=2

• port=9093

• log.dir=/tmp/kafka8-logs/broker2

A similar procedure is followed for all brokers. Now, we start each broker in a separate
console using the following commands:

[root@localhost kafka-0.8]# env JMX_PORT=9999 bin/kafka-server-start.sh
config/server-1.properties

[root@localhost kafka-0.8]# env JMX_PORT=10000 bin/kafka-server-start.sh
config/server-2.properties

Similar commands are used for all brokers You will also notice that we have defined
a separate JMX port for each broker.

The JMX ports are used for optional monitoring and troubleshooting
with tools such as JConsole.

Creating a Kafka topic
Using the command-line utility for creating topics on the Kafka server, let's create a
topic named othertopic with two partitions and two replicas:

[root@localhost kafka-0.8]# bin/kafka-create-topic.sh --zookeeper
localhost:2181 --replica 2 --partition 2 --topic othertopic

Starting a producer for sending messages
If we use a single producer to get connected to all the brokers, we need to pass
the initial list of brokers, and the information of the remaining brokers is identified
by querying the broker passed within broker-list, as shown in the following
command. This metadata information is based on the topic name.

--broker-list localhost:9092,localhost:9093

Use the following command to start the producer:

[root@localhost kafka-0.8]# bin/kafka-console-producer.sh --broker-list
localhost:9092,localhost:9093 --topic othertopic

If we have a requirement to run multiple producers connecting to different
combinations of brokers, we need to specify the broker list for each producer
like we did in the case of multiple brokers.

Chapter 3

[25]

Starting a consumer for consuming messages
The same consumer client, as in the previous example, will be used in this process.
Just as before, it shows the output on the command line as soon as it subscribes
to the topic created in the Kafka broker:

[root@localhost kafka-0.8]# bin/kafka-console-consumer.sh --zookeeper
localhost:2181 --topic othertopic --from-beginning

Multiple node – multiple broker cluster
This cluster scenario is not discussed in detail in this book, but as in the case of
multiple-node Kafka cluster, where we set up multiple brokers on each node,
we should install Kafka on each node of the cluster, and all the brokers from the
different nodes need to connect to the same ZooKeeper.

For testing purposes, all the commands will remain identical to the ones we used
in the single node – multiple brokers cluster.

The following diagram shows the cluster scenario where multiple brokers are
configured on multiple nodes (Node 1 and Node 2 in this case), and the producers
and consumers are getting connected in different combinations:

Producers

ZooKeeper

Consumers

Consumers

Consumers

Producers

Producers

Single Node Single Kafka Broker-

Broker 1

Broker 2

Node 1

Broker 1

Broker 2

Node 2

Setting up the Kafka Cluster

[26]

Kafka broker property list
The following is the list of few important properties that can be configured
for the Kafka broker. For the complete list, visit http://kafka.apache.org/
documentation.html#brokerconfig.

Property name Description Default value
broker.id Each broker is uniquely identified by an ID.

This ID serves as the broker's name, and
allows the broker to be moved to a different
host/port without confusing consumers.

0

log.dirs These are the directories in which the log
data is kept.

/tmp/kafka-
logs

zookeeper.connect This specifies the ZooKeeper's connection
string in the form hostname:port/
chroot. Here, chroot is a base directory
that is prepended to all path operations
(this effectively namespaces all Kafka
znodes to allow sharing with other
applications on the same ZooKeeper
cluster).

localhost:2181

Summary
In this chapter, we have learned how to set up a Kafka cluster with single/multiple
brokers on a single node, run command-line producers and consumers, and
exchange some messages. We have also discussed some details about setting
up a multinode – multibroker cluster.

In the next chapter, we will look at the internal design of Kafka.

Kafka Design
Before we start getting our hands dirty by coding Kafka producers and consumers,
let's quickly discuss the internal design of Kafka.

In this chapter we shall be focusing on the following topics:

• Kafka design fundamentals
• Message compression in Kafka
• Cluster mirroring in Kafka
• Replication in Kafka

Due to the overheads associated with JMS and its various implementations and
limitations with the scaling architecture, LinkedIn (www.linkedin.com) decided
to build Kafka to address their need for monitoring activity stream data and
operational metrics such as CPU, I/O usage, and request timings.

While developing Kafka, the main focus was to provide the following:

• An API for producers and consumers to support custom implementation
• Low overhead for network and storage with message persistence
• High throughput supporting millions of messages
• Distributed and highly scalable architecture

Kafka Design

[28]

Kafka design fundamentals
In a very basic structure, a producer publishes messages to a Kafka topic, which is
created on a Kafka broker acting as a Kafka server. Consumers then subscribe to the
Kafka topic to get the messages. This is described in the following diagram:

Message

Producers

Producers

Single Node Single Kafka Broker-

Topic

Consumer
Group

Consumers

Consumers
Message

Message

In the preceding diagram a single node – single broker architecture is shown.
This architecture considers that all three parties—producers, Kafka broker, and
consumers—are running on different machines.

Here, each consumer is represented as a process and these processes are organized
within groups called consumer groups.

A message is consumed by a single process (consumer) within the consumer group,
and if the requirement is such that a single message is to be consumed by multiple
consumers, all these consumers need to be kept in different consumer groups.

By Kafka design, the message state of any consumed message is maintained within
the message consumer, and the Kafka broker does not maintain a record of what is
consumed by whom, which also means that poor designing of a custom consumer
ends up in reading the same message multiple times.

Important Kafka design facts are as follows:

• The fundamental backbone of Kafka is message caching and storing it on
the filesystem. In Kafka, data is immediately written to the OS kernel page.
Caching and flushing of data to the disk is configurable.

• Kafka provides longer retention of messages ever after consumption,
allowing consumers to reconsume, if required.

• Kafka uses a message set to group messages to allow lesser network overhead.

Chapter 4

[29]

• Unlike most of the messaging systems, where metadata of the consumed
messages are kept at server level, in Kafka, the state of the consumed
messages is maintained at consumer level. This also addresses issues such as:

 ° Loosing messages due to failure
 ° Multiple deliveries of the same message

By default, consumers store the state in ZooKeeper, but Kafka also allows
storing it within other storage systems used for Online Transaction
Processing (OLTP) applications as well.

• In Kafka, producers and consumers work on the traditional push-and-pull
model, where producers push the message to a Kafka broker and consumers
pull the message from the broker.

• Kafka does not have any concept of a master and treats all the brokers as
peers. This approach facilitates addition and removal of a Kafka broker at
any point, as the metadata of brokers are maintained in ZooKeeper and
shared with producers and consumers.

• In Kafka 0.7.x, ZooKeeper-based load balancing allows producers to discover
the broker dynamically. A producer maintains a pool of broker connections,
and constantly updates it using ZooKeeper watcher callbacks. But in
Kafka 0.8.x, load balancing is achieved through Kafka metadata API and
ZooKeeper can only be used to identify the list of available brokers.

• Producers also have an option to choose between asynchronous or
synchronous mode for sending messages to a broker.

Message compression in Kafka
As we have discussed, Kafka uses message set feature for grouping the messages.
It also provides a message group compression feature. Here, data is compressed
by the message producer using either GZIP or Snappy compression protocols and
decompressed by the message consumer. There is lesser network overhead for the
compressed message set where it also puts very little overhead of decompression
at the consumer end.

This compressed set of messages can be presented as a single message to the
consumer who later decompresses it. Hence, the compressed message may have
infinite depth of messages within itself.

To differentiate between compressed and uncompressed messages, a compression-
attributes byte is introduced in the message header. Within this compression byte,
the lowest two bits are used to represent the compression codec used for compression
and the value 0 of these last two bits represents an uncompressed message.

www.allitebooks.com

http://www.allitebooks.org

Kafka Design

[30]

Message compression techniques are very useful for mirroring the data across
datacenters using Kafka, where large amounts of data get transferred from active
to passive datacenters in compressed format.

For more detailed usage on Kafka message compression, visit https://
cwiki.apache.org/confluence/display/KAFKA/Compression.

Cluster mirroring in Kafka
The Kafka mirroring feature is used for creating the replica of an existing cluster,
for example, for the replication of an active datacenter into a passive datacenter.
Kafka provides a mirror maker tool for mirroring the source cluster into target cluster.

The following diagram depicts the mirroring tool placement in architectural form:

Source Single Node
Cluster

Producers

Data

ZooKeeper

Kafka Broker

ZooKeeper

Kafka Broker

Consumer

Producer

Re-Publish

Mirror Maker

Target Single Node
Cluster

Consumer

Data

In this architecture, the job of the mirror tool is to consume the messages from
the source cluster and republish them on the target cluster.

A similar approach is used by the Kafka migration tool to migrate from 0.7.x Kafka
cluster to 0.8.x Kafka cluster.

For detailed explanation on the mirror maker tool setup and
configuration, visit https://cwiki.apache.org/confluence/
display/KAFKA/Kafka+mirroring+%28MirrorMaker%29.

Chapter 4

[31]

Replication in Kafka
Before we talk about replication in Kafka, let's talk about message partitioning.
In Kafka, message partitioning strategy is used at the Kafka broker end. The decision
about how the message is partitioned is taken by the producer, and the broker stores
the messages in the same order as they arrive. The number of partitions can be
configured for each topic within the Kafka broker.

Kafka replication is one of the very important features introduced in Kafka 0.8.
Though Kafka is highly scalable, for better durability of messages and high
availability of Kafka clusters, replication guarantees that the message will be
published and consumed even in case of broker failure, which may be caused by
any reason. Here, both producers and consumers are replication aware in Kafka.
The following diagram explains replication in Kafka:

Multi Broker Kafka Cluster

Producers

Consumers

1

23

4

Kafka Topic with 4 Partition

Message

Broker 1

Topic
1

Lead

Broker 2

Topic

Broker 3

Topic
1

Reap

Broker 4

Topic
1

Reap

Message

4 1

Let's discuss the preceding diagram in detail.

In replication, each partition of a message has n replicas and can afford n-1 failures
to guarantee message delivery. Out of the n replicas, one replica acts as the lead
replica for the rest of the replicas. ZooKeeper keeps the information about the lead
replica and the current in-sync follower replica (lead replica maintains the list
of all in-sync follower replicas).

Kafka Design

[32]

Each replica stores its part of the message in local logs and offsets, and is periodically
synced to the disk. This process also ensures that either a message is written to all
the replicas or to none of them.

If the lead replica fails, either while writing the message partition to its local log
or before sending the acknowledgement to the message producer, a message
partition is resent by the producer to the new lead broker.

The process of choosing the new lead replica is that all followers' In-sync Replicas
(ISRs) register themselves with ZooKeeper. The very first registered replica becomes
the new lead replica, and the rest of the registered replicas become the followers.

Kafka supports the following replication modes:

• Synchronous replication: In synchronous replication, a producer first
identifies the lead replica from ZooKeeper and publishes the message.
As soon as the message is published, it is written to the log of the lead
replica and all the followers of the lead start pulling the message, and
by using a single channel, the order of messages is ensured. Each follower
replica sends an acknowledgement to the lead replica once the message
is written to its respective logs. Once replications are complete and all
expected acknowledgements are received, the lead replica sends
an acknowledgement to the producer.
On the consumer side, all the pulling of messages is done from the lead replica.

• Asynchronous replication: The only difference in this mode is that
as soon as a lead replica writes the message to its local log, it sends
the acknowledgement to the message client and does not wait for the
acknowledgements from follower replicas. But as a down side, this mode
does not ensure the message delivery in case of broker failure.

For detailed explanation on Kafka replication and its usage, visit
https://cwiki.apache.org/confluence/display/KAFKA/
Kafka+Replication.

Summary
In this chapter, we have learned the design concepts used for building a solid
foundation for Kafka.

In the next chapter, we shall be focusing on how to write Kafka producers using
the API provided.

Writing Producers
Producers are applications that create messages and publish them to the Kafka
broker for further consumption. These producers can be different in nature; for
example, frontend applications, backend services, proxy applications, adapters
to legacy systems, and producers for Hadoop. These producers can also be
implemented in different languages such as Java, C, and Python.

In this chapter we shall be focusing on the following topics:

• The Kafka API for message producers
• Simple Java-based Kafka producers
• Java-based Kafka producers using message partitioning

At the end of the chapter, we will explore some of the important properties required
for the Kafka producer.

Let's begin. The following diagram explains the Kafka API for message producers:

Create Message

Message

Publish
Message

Data

Producer

Kafka Cluster

Writing Producers

[34]

In the next few sections, we will discuss the API provided by Kafka for writing
Java-based custom producers.

The Java producer API
The following are the classes that are imported to write the Java-based basic
producers for a Kafka cluster:

• Producer: Kafka provides the Producer class (class Producer<K,V>) for
creating messages for single or multiple topics with message partition as
an optional feature. The following is the class diagram and its explanation:

Here, Producer is a type of Java generic (http://en.wikipedia.org/wiki/
Generics_in_Java) written in Scala where we need to specify the type
of parameters; K and V specify the types for the partition key and message
value, respectively.

Chapter 5

[35]

• KeyedMessage: The KeyedMessage class takes the topic name, partition key,
and the message value that needs to be passed from the producer as follows:
class KeyedMessage[K, V](val topic: String, val key: K, val
message: V)

Here, KeyedMessage is a type of Java generic written in Scala where we need
to specify the type of the parameters; K and V specify the type for the partition
key and message value, respectively, and the topic is always of type String.

• ProducerConfig: The ProducerConfig class encapsulates the values required
for establishing the connection with brokers such as the broker list, message
partition class, serializer class for the message, and partition key.

Simple Java producer
Now we will start writing a simple Java-based producer to transmit the message
to the broker. This SimpleProducer class is used to create a message for a specific
topic and transmit it.

Importing classes
As the first step, we need to import the following classes:

import kafka.javaapi.producer.Producer;
import kafka.producer.KeyedMessage;
import kafka.producer.ProducerConfig;

Defining properties
As the next step in writing the producer, we need to define properties for making
a connection with Kafka broker and pass these properties to the Kafka producer:

Properties props = new Properties();
props.put("metadata.broker.list","localhost:9092");
props.put("serializer.class","kafka.serializer.StringEncoder");
props.put("request.required.acks", "1");
ProducerConfig config = new ProducerConfig(props);
Producer<Integer, String> producer = new Producer<Integer,
 String>(config);

Writing Producers

[36]

Now let us see the major properties mentioned in the code:

• metadata.broker.list: This property specifies the broker <node:port>
that the producer needs to connect to (more information is provided in the
next example).

• serializer.class list: This property specifies the serializer class that
needs to be used while preparing the message for transmission from the
producer to the broker. In this example, we will be using the string encoder
provided by Kafka. By default, the serializer class for the key and message is
the same, but we can change the serializer class for the key by using the key.
serializer.class property.

• request.required.acks: This property instructs the Kafka broker to send
an acknowledgment to the producer when a message is received. By default,
the producer works in the "fire and forget" mode and is not informed in case
of message loss.

Building the message and sending it
As the final step, we need to build the message and send it to the broker as shown
in the following code:

String messageStr = new String("Hello from Java Producer");
KeyedMessage<Integer, String> data = new KeyedMessage<Integer,
String>(topic, messageStr);
producer.send(data);

The complete program will look as follows:

package test.kafka;

import java.util.Properties;
import kafka.javaapi.producer.Producer;
import kafka.producer.KeyedMessage;
import kafka.producer.ProducerConfig;

public class SimpleProducer {
 private static Producer<Integer, String> producer;
 private final Properties props = new Properties();
 public SimpleProducer()
 {
 props.put("broker.list", "localhost:9092");
 props.put("serializer.class", "kafka.serializer.StringEncoder");
 props.put("request.required.acks", "1");
 producer = new Producer<Integer, String>(new
 ProducerConfig(props));
 }

Chapter 5

[37]

public static void main(String[] args) {
 SimpleProducer sp = new SimpleProducer();
 String topic = (String) args[0];
 String messageStr = (String) args[1];
 KeyedMessage<Integer, String> data = new KeyedMessage<Integer,
 String>(topic, messageStr);
 producer.send(data);
 producer.close();
 }
}

Compile the preceding program and use the following command to run it:

 [root@localhost kafka-0.8]# java SimpleProducer kafkatopic Hello_There

Here, kafkatopic is the topic that will be created automatically when the message
Hello_There is sent to the broker.

Creating a simple Java producer with
message partitioning
The previous example is a very basic example of a Producer class and only uses
a single broker with no explicit partitioning of messages. Let's jump to the next
level and write another program that connects to multiple brokers and uses
message partitioning.

Importing classes
This step remains the same for this program.

Defining properties
As the next step, we need to define properties for making a connection with
the Kafka broker, as shown in the following code, and pass these properties
to the Kafka producer:

Properties props = new Properties();
props.put("metadata.broker.list","localhost:9092, localhost:9093");
props.put("serializer.class","kafka.serializer.StringEncoder");
props.put("partitioner.class", "test.kafka.SimplePartitioner");
props.put("request.required.acks", "1");
ProducerConfig config = new ProducerConfig(props);
Producer<Integer, String> producer = new Producer<Integer,
String>(config);

Writing Producers

[38]

The only change in the previous property list is in metadata.broker.list
and partitioner.class.

• metadata.broker.list: This property specifies the list of brokers (in the
[<node:port>, <node:port>] format) that the producer needs to connect
to. Kafka producers automatically find out the lead broker for the topic as
well as partition it by raising a request for the metadata before it sends any
message to the the broker.

• partitioner.class: This property defines the class to be used for
determining the partitioning in the topic where the message needs
to be sent. If the key is null, Kafka uses random partitioning for
message assignment.

Implementing the Partitioner class
Next, we need to implement the Partitioner class as shown in the following code:

package test.kafka;
import kafka.producer.Partitioner;
public class SimplePartitioner implements Partitioner<Integer> {
 public int partition(Integer key, int numPartitions) {
 int partition = 0;
 int iKey = key;
 if (iKey > 0) {
 partition = iKey % numPartitions;
 }
 return partition;
 }

}

Building the message and sending it
As the final step, we need to build the message and send it to the broker. The following
is the complete listing of the program:

package test.kafka;

import java.util.Properties;
import java.util.Random;
import kafka.javaapi.producer.Producer;
import kafka.producer.KeyedMessage;
import kafka.producer.ProducerConfig;

public class MultiBrokerProducer {
 private static Producer<Integer, String> producer;

Chapter 5

[39]

 private final Properties props = new Properties();

 public MultiBrokerProducer()
 {
 props.put("metadata.broker.list","localhost:9092,
 localhost:9093");
 props.put("serializer.class","kafka.serializer.StringEncoder");

 props.put("partitioner.class", "test.kafka.SimplePartitioner");

 props.put("request.required.acks", "1");

 ProducerConfig config = new ProducerConfig(props);
 producer = new Producer<Integer, String>(config);
 }
 public static void main(String[] args) {
 MultiBrokerProducer sp = new MultiBrokerProducer();
 Random rnd = new Random();

 String topic = (String) args[0];
 for (long messCount = 0; messCount < 10; messCount++) {
 Integer key = rnd.nextInt(255);
 String msg = "This message is for key - " + key;
 KeyedMessage<Integer, String> data1 = new
 KeyedMessage<Integer, String>(topic, key, msg);
 producer.send(data1);
 }
 producer.close();
 }
}

Compile the previous program. Before running it, read the following information box.

Before we run this program, we need to make sure our cluster is
running as a multibroker cluster (either single or multiple nodes).
For more information on how to set up a single node – multibroker
cluster, refer to Chapter 3, Setting up the Kafka Cluster.

Once your multibroker cluster is up, create a topic with five partitions and set the
replication factor as 2 before running this program using the following command:

[root@localhost kafka-0.8]# bin/kafka-topics.sh --zookeeper
localhost:2181 --create --topic kafkatopic --partitions 5 --replication-
factor 2

www.allitebooks.com

http://www.allitebooks.org

Writing Producers

[40]

Now run the preceding program using the following command:

[root@localhost kafka-0.8]# java MultiBrokerProducer kafkatopic

For verifying the data that is getting published to the Kafka broker, the Kafka console
consumer can be used as follows:

[root@localhost kafka-0.8]# bin/kafka-console-consumer.sh --zookeeper
localhost:2181 --topic kafkatopic --from-beginning

The Kafka producer property list
The following table shows the list of a few important properties that can be
configured for Kafka producer. For the complete list, visit http://kafka.apache.
org/08/configuration.html.

Property name Description Default value
metadata.broker.list The producer uses this property

for getting metadata (topics,
partitions, and replicas).
The socket connections for
sending the actual data will
be established based on the
broker information returned
in the metadata. The format is
host1:port1,host2:port2.

serializer.class This specifies the serializer
class for messages. The default
encoder accepts a byte and
returns the same byte.

DefaultEncoder

producer.type This property specifies how the
messages will be sent: async
for asynchronous sending and
sync for synchronous sending.

sync

Chapter 5

[41]

Property name Description Default value
request.required.acks This value controls when

the producer receives an
acknowledgment from the
broker. The value 0 means
the producer will not receive
any acknowledgment from
the broker. The value 1 means
the producer receives an
acknowledgment once the
lead broker has received the
data. The value -1 means
the producer will receive the
acknowledgment once all the
in-sync replicas have received
the data.

0

key.serializer.class This specifies the serializer class
for keys (defaults to the same as
for the message serializer class).

${serializer.
class}

partitioner.class This is the partitioner class
for partitioning messages
among subtopics. The default
partitioner is based on the hash
value of the key.

DefaultPartitioner

Summary
In this chapter we have learned how to write basic producers and some advanced
Java producers that use message partitioning.

In the next chapter, we will learn how to write Java-based consumers for
message consumption.

Writing Consumers
Consumers are the applications that consume the messages published by Kafka
producers and process the data extracted from them. Like producers, consumers
can also be different in nature, such as applications doing real-time or near-real-time
analysis, applications with NoSQL or data warehousing solutions, backend services,
consumers for Hadoop, or other subscriber-based solutions. These consumers can
also be implemented in different languages such as Java, C, and Python.
In this chapter, we will focus on the following topics:

• Kafka API for message consumers
• Simple Java-based Kafka consumers
• Java-based Kafka consumers consuming partitioned messages

At the end of the chapter, we will explore some of the important properties required
for a Kafka consumer. So, let's start.

Message

Process
Message Data

Consumer

Kafka Cluster

Subscribe
Message

Writing Consumers

[44]

In the next few sections, we will discuss the API provided by Kafka for writing Java-
based custom consumers.

All the Kafka classes referred to in this book are actually
written in Scala.

Java consumer API
Kafka provides two types of API for Java consumers:

• The high-level consumer API
• The simple consumer API

The high-level consumer API provides an abstraction over the low-
level implementation of the consumer API, whereas the simple
consumer API provides more control to the consumer by allowing
it to override its default low-level implementation.

High-level consumer API
The high-level consumer API is used when only data is needed and the handling of
message offsets is not required. Hence, most of the low-level details are abstracted
during message consumption. The high-level consumer stores the last offset read
from a specific partition in ZooKeeper. This offset is stored based on the consumer
group name provided to Kafka at the beginning of the process.

Message offset is the position within the message partition to
know where the consumer left off consuming the message.

The consumer group name is unique and global across the Kafka cluster and any
new consumers with an in-use consumer group name may cause ambiguous
behavior in the system. When a new process is started with the existing consumer
group name, Kafka triggers rebalance between the new and existing process threads
for the consumer group. Post rebalance, some of the messages that are intended for
a new process may go to an old process, causing unexpected results. To avoid this
ambiguous behavior, any existing consumers should be shut down before starting
new consumers for an existing consumer group name.

Chapter 6

[45]

The following are the classes that are imported to write Java-based basic consumers
using the high-level consumer API for a Kafka cluster:

• KafkaStream: Objects of the kafka.consumer.KafkaStream class are
returned by the ConsumerConnector implementation. This list of the
KafkaStream objects is returned for each topic, which can further create an
iterator shown as follows over messages in the stream:
class KafkaStream[K,V]

Here, the parameters K and V specify the type for the partition key and
message value, respectively.

• ConsumerConfig: The kafka.consumer.ConsumerConfig class encapsulates
the property values required for establishing the connection with ZooKeeper,
such as ZooKeeper URL, group ID, ZooKeeper session timeout, and
ZooKeeper sink time.

• ConsumerConnector: Kafka provides the ConsumerConnector interface
(interface ConsumerConnector) which is further implemented by
ZookeeperConsumerConnector class (kafka.javaapi.consumer.
ZookeeperConsumerConnector). This class is responsible for all the
interaction of a consumer with ZooKeeper.
The following is the class diagram for the ConsumerConnector class:

Writing Consumers

[46]

Simple consumer API
Features such as setting the initial offset when restarting the consumer are not
provided by the high-level consumer API. The simple consumer API provides
low-level control to Kafka consumers for partition consumptions, for example,
multiple reads for the same message or managing transactions, and so on.

Compared to high-level consumer API, developer needs to put in extra efforts to
gain this low-level control within consumers, that is, consumers need to keep track of
offsets and also need to figure out the lead broker for the topic and partition, and so on.

The main class used within the simple consumer API is SimpleConsumer (kafka.
javaapi.consumer.SimpleConsumer). The following is the class diagram for the
SimpleConsumer class:

A simple consumer class provides a connection to the lead broker for fetching the
messages from the topic and methods to get the topic metadata and the list of offsets.

A few more important classes for building different request objects are
FetchRequest (kafka.api.FetchRequest), OffsetRequest (kafka.javaapi.
OffsetRequest), OffsetFetchRequest (kafka.javaapi.OffsetFetchRequest),
OffsetCommitRequest (kafka.javaapi.OffsetCommitRequest), and
TopicMetadataRequest (kafka.javaapi.TopicMetadataRequest).

Chapter 6

[47]

The following examples in this chapter are based on the high-level
consumer API. For examples based on the simple consumer API, refer
to https://cwiki.apache.org/confluence/display/KAFKA/
0.8.0+SimpleConsumer+Example.

Simple high-level Java consumer
Now, we will start writing a single-threaded simple Java consumer developed
using high-level consumer API for consuming the messages from a topic. This
SimpleHLConsumer class is used to fetch a message from a specific topic and
consume it, assuming that there is a single partition within the topic.

Importing classes
As a first step, we need to import the following classes:

import kafka.consumer.ConsumerConfig;
import kafka.consumer.KafkaStream;
import kafka.javaapi.consumer.ConsumerConnector;

Defining properties
As a next step, we need to define properties for making a connection with ZooKeeper
and pass these properties to the Kafka consumer using the following code:

Properties props = new Properties();
props.put("zookeeper.connect", "localhost:2181");
props.put("group.id", "testgroup");
props.put("zookeeper.session.timeout.ms", "500");
props.put("zookeeper.sync.time.ms", "250");
props.put("auto.commit.interval.ms", "1000");
new ConsumerConfig(props);

Now, let us see the major properties mentioned in the code:

• zookeeper.connect: This property specifies the ZooKeeper <node:port>
connection details

• group.id: This property specifies the name for the consumer group shared
by all the consumers within the group

• zookeeper.session.timeout.ms: This property specifies ZooKeeper
session timeout in milliseconds

Writing Consumers

[48]

• zookeeper.sync.time.ms: This property specifies ZooKeeper sync time
in milliseconds with ZooKeeper leader

• auto.commit.interval.ms: This property defines the frequency in
milliseconds for the consumer offsets to get committed to ZooKeeper

Reading messages from a topic and printing
them
As a final step, we need to read the message using the following code:

Map<String, Integer> topicCount = new HashMap<String, Integer>();
topicCount.put(topic, new Integer(1));

Map<String, List<KafkaStream<byte[], byte[]>>> consumerStreams =
consumer.createMessageStreams(topicCount);

List<KafkaStream<byte[], byte[]>> streams = consumerStreams.
get(topic);

for (final KafkaStream stream : streams) {
ConsumerIterator<byte[], byte[]> consumerIte = stream.iterator();
 while (consumerIte.hasNext())
 System.out.println("Message from Single Topic :: "
 + new String(consumerIte.next().message()));
}

So, the complete program will look like the following code:

package test.kafka.consumer;

import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Properties;

import kafka.consumer.Consumer;
import kafka.consumer.ConsumerConfig;
import kafka.consumer.ConsumerIterator;
import kafka.consumer.KafkaStream;
import kafka.javaapi.consumer.ConsumerConnector;

public class SimpleHLConsumer {

 private final ConsumerConnector consumer;

Chapter 6

[49]

 private final String topic;

public SimpleHLConsumer(String zookeeper, String groupId, String
topic) {

 Properties props = new Properties();
 props.put("zookeeper.connect", zookeeper);
 props.put("group.id", groupId);
 props.put("zookeeper.session.timeout.ms", "500");
 props.put("zookeeper.sync.time.ms", "250");
 props.put("auto.commit.interval.ms", "1000");

 consumer = Consumer.createJavaConsumerConnector(
 new ConsumerConfig(props));
 this.topic = topic;
 }

 public void testConsumer() {

 Map<String, Integer> topicCount = new HashMap<String, Integer>();
 // Define single thread for topic
 topicCount.put(topic, new Integer(1));

Map<String, List<KafkaStream<byte[], byte[]>>> consumerStreams =
consumer.createMessageStreams(topicCount);

List<KafkaStream<byte[], byte[]>> streams = consumerStreams.
get(topic);

 for (final KafkaStream stream : streams) {
 ConsumerIterator<byte[], byte[]> consumerIte = stream.
 iterator();
 while (consumerIte.hasNext())
 System.out.println("Message from Single Topic :: " +
 new String(consumerIte.next().message()));
 }
 if (consumer != null)
 consumer.shutdown();
 }

 public static void main(String[] args) {

 String topic = args[0];
SimpleHLConsumer simpleHLConsumer = new SimpleHLConsumer("localho
st:2181", "testgroup", topic);
 simpleHLConsumer.testConsumer();
 }
}

www.allitebooks.com

http://www.allitebooks.org

Writing Consumers

[50]

Compile the previous program and use the following command to run it:

[root@localhost kafka-0.8]# java SimpleHLConsumer kafkatopic

Here, kafkatopic is the topic where the Kafka producer places the messages
for consumption.

Multithreaded consumer for
multipartition topics
The previous example is a very basic example of a consumer who consumes
messages from a single broker with no explicit partitioning of messages within
the topic. Let's jump to the next level and write another program, which consumes
messages from multiple partitions connecting to single/multiple topics.

A multithreaded high-level consumer-API-based design is usually based on the
number of partitions in the topic and follows a one-to-one mapping approach
between the thread and the partitions within the topic. For example, if four partitions
are defined for any topic, as a best practice, only four threads should be initiated
with the consumer application to read the data; otherwise some conflicting behavior,
such as threads never receiving a message or thread receiving messages from
multiple partitions, may occur. Also, receiving multiple messages will not guarantee
that the messages will be placed in order. For example, a thread may receive two
messages from the first partition and three from the second partition, then three
more from the first partition, followed by some more from the first partition, even
if the second partition has data available.

Let's move further.

Importing classes
This step remains the same as the previous program.

Defining properties
This step remains the same for this program as well.

Chapter 6

[51]

Reading the message from threads and
printing it
The only difference in this section from the previous section is that we first create a
thread pool and get the Kafka streams associated with each thread within the thread
pool as shown in the following code:

Map<String, Integer> topicCount = new HashMap<String, Integer>();
 topicCount.put(topic, new Integer(threadCount));

Map<String, List<KafkaStream<byte[], byte[]>>> consumerStreams =
consumer.createMessageStreams(topicCount);

List<KafkaStream<byte[], byte[]>> streams = consumerStreams.
get(topic);

// Launching the thread pool
executor = Executors.newFixedThreadPool(threadCount);

The complete program listing for the multithread Kafka consumer based on the
Kafka high-level consumer API is as follows:

package test.kafka.consumer;

import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Properties;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;

import kafka.consumer.Consumer;
import kafka.consumer.ConsumerConfig;
import kafka.consumer.ConsumerIterator;
import kafka.consumer.KafkaStream;
import kafka.javaapi.consumer.ConsumerConnector;

public class MultiThreadHLConsumer {

 private ExecutorService executor;
 private final ConsumerConnector consumer;
 private final String topic;

 public MultiThreadHLConsumer(String zookeeper, String groupId,
 String topic) {

 Properties props = new Properties();

Writing Consumers

[52]

 props.put("zookeeper.connect", zookeeper);
 props.put("group.id", groupId);
 props.put("zookeeper.session.timeout.ms", "500");
 props.put("zookeeper.sync.time.ms", "250");
 props.put("auto.commit.interval.ms", "1000");

 consumer = Consumer.createJavaConsumerConnector(new
 ConsumerConfig(props));
 this.topic = topic;
 }

 public void testConsumer(int threadCount) {

 Map<String, Integer> topicCount = new HashMap<String, Integer>();

 // Define thread count for each topic
 topicCount.put(topic, new Integer(threadCount));

 // Here we have used a single topic but we can also add
 // multiple topics to topicCount MAP
 Map<String, List<KafkaStream<byte[], byte[]>>> consumerStreams =
 consumer.createMessageStreams(topicCount);

 List<KafkaStream<byte[], byte[]>> streams = consumerStreams.
 get(topic);

 // Launching the thread pool
 executor = Executors.newFixedThreadPool(threadCount);

 //Creating an object messages consumption
 int threadNumber = 0;
 for (final KafkaStream stream : streams) {
 ConsumerIterator<byte[], byte[]> consumerIte = stream.
 iterator();
 threadNumber++;

 while (consumerIte.hasNext())
 System.out.println("Message from thread :: " + threadNumber + " --
 " + new String(consumerIte.next().message()));
 }

Chapter 6

[53]

 if (consumer != null)
 consumer.shutdown();
 if (executor != null)
 executor.shutdown();
 }

 public static void main(String[] args) {

 String topic = args[0];
 int threadCount = Integer.parseInt(args[1]);
 MultiThreadHLConsumer simpleHLConsumer = new MultiThreadHLConsumer
 ("localhost:2181", "testgroup", topic);
 simpleHLConsumer.testConsumer(threadCount);
 }
}

Compile the previous program and, before running it, read the following
information box.

Before we run this program, we need to make sure our cluster is
running as a multibroker cluster (comprising either single or multiple
nodes). For more information on how to set up single node – multiple
broker cluster, refer to Chapter 3, Setting up the Kafka Cluster.

Once your multibroker cluster is up, create a topic with four partitions and set the
replication factor to 2 before running this program using the following command:

[root@localhost kafka-0.8]# bin/kafka-topics.sh --zookeeper
localhost:2181 --create --topic kafkatopic --partitions 4 --replication-
factor 2

Now run the previous program using the following command:

[root@localhost kafka-0.8]# java MultiThreadHLConsumer kafkatopic 4

This program will print all the partitions of messages associated with each thread.

Writing Consumers

[54]

Kafka consumer property list
The following is the list of a few important properties that can be configured for
high-level consumer-API-based Kafka consumers. For the complete list, visit
http://kafka.apache.org/08/configuration.html.

Property name Description Default value
group.id This property defines a

unique identity for the set of
consumers within the same
consumer group.

zookeeper.connect This property specifies
the ZooKeeper connection
string, < hostname:port/
chroot>. Kafka uses
ZooKeeper to store offsets
of messages consumed for a
specific topic and partition
by the consumer group.

client.id The Client.id value
is specified by the Kafka
consumer client and is used
to distinguish between
different clients.

${group.id}

zookeeper.session.timeout.ms This property defines the
time (in milliseconds) for
Kafka to wait for ZooKeeper
to respond to any read/
write request before closing
a session.

6000

zookeeper.connection.timeout.ms This value defines the
maximum waiting time (in
milliseconds) for the client to
establish a connection with
ZooKeeper.

6000

zookeeper.sync.time.ms This property defines
the time it takes to sync
ZooKeeper with ZooKeeper
leader (in milliseconds).

2000

auto.commit.interval.ms This property defines the
frequency (in milliseconds)
for the consumed offsets to
get committed to ZooKeeper.

60 * 1000

Chapter 6

[55]

Summary
In this chapter, we have learned how to write basic consumers and learned about
some advanced levels of Java consumers that consume messages from partitions.

In the next chapter, we will learn how to integrate Kafka with Storm and Hadoop.

Kafka Integrations
Consider a use case for a website where continuous security events, such as user
authentication and authorization to access secure resources need to be tracked, and
decisions need to be taken in real time for any security breach. Using any typical
batch-oriented data processing systems, such as Hadoop, where all the data needs
to be collected first and then processed to find out patterns, will make it too late to
decide whether there is any security threat to the web application or not. Hence, this
is the classical use case for real-time data processing.

Let's consider another use case, where raw clickstreams generated by customers
through website usage are captured and preprocessed. Processing these clickstreams
provides valuable insight into customer preferences and these insights can be
coupled later with marketing campaigns and recommendation engines to offer
an analysis of consumers. Hence, we can simply say that this large amount of
clickstream data stored on Hadoop will get processed by Hadoop MapReduce jobs
in batch mode, not in real time.

In this chapter, we shall be exploring how Kafka can be integrated with the following
technologies to address different use cases, such as real-time processing using Storm
and batch processing using Hadoop:

• Kafka integration with Storm
• Kafka integration with Hadoop

So let's start.

Kafka integration with Storm
Processing small amount of data at real time was never a challenge using
technologies, such as the Java Messaging Service (JMS); however, these processing
systems show performance limitations while dealing with large volumes of
streaming data. Also, these systems are not good scalable solutions.

Kafka Integrations

[58]

Introduction to Storm
Storm is an open source, distributed, reliable, and fault-tolerant system for
processing streams of large volumes of data in real time. It supports many use cases,
such as real-time analytics, online machine learning, continuous computation, and
Extract Transformation Load (ETL) paradigm.

There are various components that work together for streaming data processing,
which are as follows:

• Spout: This is a source of stream, which is a continuous stream of log data.
• Bolt: The spout passes the data to a component called bolt. A bolt consumes

any number of input streams, does some processing, and possibly emits new
streams. For example, emitting a stream of trend analysis by processing
a stream of tweets.

The following diagram shows spout and bolt in the Storm architecture:

Bolt Bolt

Bolt

Bolt

Bolt

Bolt

Bolt

Spout

Spout Data
Stote

Storm

Data
Stote

We can assume a Storm cluster to be a chain of bolt components, where each bolt
performs some kind of transformation on the data streamed by the spout.

Next in the Storm cluster, jobs are typically referred to as topologies; the only
difference is that these topologies run forever. For real-time computation on Storm,
topologies, which are nothing but graphs of computation, are created. Typically,
topologies define how data will flow from spouts through bolts. These topologies
can be transactional or non-transactional in nature.

Complete information about Storm can be found at
http://storm-project.net/.

Chapter 7

[59]

The following section is useful if you have worked with Storm or have working
knowledge of Storm.

Integrating Storm
We have already learned in the previous chapters that Kafka is a high-performance
publisher-subscriber-based messaging system with highly scalable properties. Kafka
Spout is available for integrating Storm with Kafka clusters.

The source code for Kafka Storm Spout is available at https://github.com/
nathanmarz/storm-contrib/tree/master/storm-kafka.

The Kafka Spout is a regular spout implementation that reads the data from a Kafka
cluster. It requires the following parameters to get connected to the Kafka cluster:

• List of Kafka brokers
• Number of partitions per host
• Topic name used to pull the message
• Root path in ZooKeeper, where Spout stores the consumer offset
• ID for the consumer required for storing the consumer offset in ZooKeeper

The following code sample shows the KafkaSpout class instance initialization with
the previous parameters:

SpoutConfig spoutConfig = new SpoutConfig(
 ImmutableList.of("localhost:9092", "localhost:9093"),
 2,
 " othertopic",
 "/kafkastorm",
 "consumID");
KafkaSpout kafkaSpout = new KafkaSpout(spoutConfig);

The Kafka Spout uses ZooKeeper to store the states of the message offset and
segment consumption tracking if it is consumed. These offsets are stored at the root
path specified for the ZooKeeper. By default, Storm uses its own ZooKeeper cluster
for storing the message offset, but other ZooKeeper clusters can also be used by
setting it in Spout configuration. As per the design, Spout works in a single-threaded
model, as all the parallelism is handled by the Storm cluster. It also has a provision
to rewind to a previous offset rather than starting from the last saved offset.

www.allitebooks.com

http://www.allitebooks.org

Kafka Integrations

[60]

Kafka Spout also provides an option to specify how Spout fetches messages from
a Kafka cluster by setting properties, such as buffer sizes and timeouts.

To run Kafka with Storm, clusters for both Storm and Kafka need
to be set up and should be running. A Storm cluster setup is out
of the scope of this book.

The following diagram shows the high-level integration view of what a Kafka Storm
working model will look like:

Bolt Bolt

Bolt

Bolt

Bolt

Bolt

Bolt

Storm Cluster

Kafka
Spout

Logs

Services

Connectors

Others

Producers

K
afka B

roker

Consumer

NoSQL/
Hadoop

Others
Kafka
Spout

Kafka integration with Hadoop
Resource sharing, stability, availability, and scalability are a few of the many
challenges of distributed computing. Nowadays, an additional challenge is
to process extremely large volumes of data in TBs or PBs.

Introduction to Hadoop
Hadoop is a large-scale distributed batch processing framework which parallelizes
data processing across many nodes and addresses the challenges for distributed
computing, including big data.

Hadoop works on the principle of the MapReduce framework (introduced by
Google), which provides a simple interface for the parallelization and distribution
of large-scale computations. Hadoop has its own distributed data filesystem called
HDFS (Hadoop Distributed File System). In any typical Hadoop cluster, HDFS
splits the data into small pieces (called blocks) and distributes it to all the nodes.
HDFS also creates the replication of these small pieces of data and stores it to make
sure that if any node is down, the data is available from another node.

Chapter 7

[61]

The following diagram shows the high-level view of a multinode Hadoop cluster:

Hadoop Multi Node
Cluster Slave

Task
Tracker

Slave

Task
Tracker

Task

HDFS
Data

Task

HDFS
Data

Secondary
Name Node

Name
Node

Job
Tracker

HDFS Layer

M/R Layer

Master

Task Task

Hadoop has the following main components:

• Name Node: This is a single point of interaction for HDFS. A name node
stores the information about the small pieces (blocks) of data that are
distributed across the node.

• Secondary Name Node: This node stores the edit logs, which are helpful
to restore the latest updated state of HDFS in case of a name node failure.

• Data Node: These nodes store the actual data distributed by the name node
in blocks and also store the replicated copy of data from other nodes.

• Job Tracker: This is responsible for splitting the MapReduce jobs into
smaller tasks.

• Task Tracker: The task tracker is responsible for the execution of tasks split
by the job tracker.

The data nodes and the task tracker share the same machines, MapReduce jobs split,
and execution of tasks is done based on the data store location information provided
by the name node.

Complete information about Hadoop can be found at
http://hadoop.apache.org/.

Kafka Integrations

[62]

Integrating Hadoop
This section is useful if you have worked with Hadoop or have working knowledge
of Hadoop.

For real-time publish-subscribe use cases, Kafka is used to build a pipeline that is
available for real-time processing or monitoring and to load the data into Hadoop,
NoSQL, or data warehousing systems for offline processing and reporting.

Kafka provides the source code for both the Hadoop producer and consumer, under
its contrib directory.

This section only discusses the source code provided with Kafka
codebases for Hadoop; no other third-party solution for Kafka
and Hadoop integrations is discussed.

Hadoop producer
A Hadoop producer provides a bridge for publishing the data from a Hadoop cluster
to Kafka, as shown in the following diagram:

Hadoop Multi Node
Cluster Slave

Task
Tracker

Slave

Task
Tracker

Task

HDFS
Data

Task

HDFS
Data

Secondary
Name Node

Name
Node

Job
Tracker

HDFS Layer

M/R Layer

Master

Task TaskK
afka P

roducer

K
afka B

roker

For a Kafka producer, Kafka topics are considered as URIs, and to connect
to a specific Kafka broker, URIs are specified as follows:

kafka://<kafka-broker>/<kafka-topic>

Chapter 7

[63]

The Hadoop producer code suggests two possible approaches for getting the data
from Hadoop:

• Using the Pig script and writing messages in Avro format: In this approach,
Kafka producers use Pig scripts for writing data in a binary Avro format,
where each row signifies a single message. For pushing the data into the
Kafka cluster, the AvroKafkaStorage class (extends Pig's StoreFunc class)
takes the Avro schema as its first argument and connects to the Kafka URI.
Using the AvroKafkaStorage producer, we can also easily write to multiple
topics and brokers in the same Pig script-based job.

• Using the Kafka OutputFormat class for jobs: In this approach, the Kafka
OutputFormat class (extends Hadoop's OutputFormat class) is used for
publishing data to the Kafka cluster. This approach publishes messages
as bytes and provides control over output by using low-level methods of
publishing. The Kafka OutputFormat class uses the KafkaRecordWriter
class (extends Hadoop's RecordWriter class) for writing a record (message)
to a Hadoop cluster.

For Kafka producers, we can also configure Kafka producer parameters and Kafka
broker information under a job's configuration.

For more detailed usage of the Kafka producer, refer to README
under the Kafka-0.8/contrib/hadoop-producer directory.

Kafka Integrations

[64]

Hadoop consumer
A Hadoop consumer is a Hadoop job that pulls data from the Kafka broker and
pushes it into HDFS. The following diagram shows the position of a Kafka consumer
in the architecture pattern:

Hadoop Multi Node
Cluster Slave

Task
Tracker

HDFS
Data

Secondary
Name Node

Name
Node

Job
Tracker

HDFS Layer

M/R Layer

Master

Task TaskK
afka C

onsum
er

K
afka B

roker

Slave

Task
Tracker

Task Task

HDFS
Data

A Hadoop job performs parallel loading from Kafka to HDFS, and the number of
mappers for loading the data depends on the number of files in the input directory.
The output directory contains data coming from Kafka and the updated topic offsets.
Individual mappers write the offset of the last consumed message to HDFS at the
end of the map task. If a job fails and jobs get restarted, each mapper simply restarts
from the offsets stored in HDFS.

The ETL example provided in the Kafka-0.8/contrib/hadoop-consumer directory
demonstrates the extraction of Kafka data and loading it to HDFS.

For more information on the detailed usage of a Kafka consumer, refer to
README under the Kafka-0.8/contrib/hadoop-consumer directory.

Summary
In this chapter, we have learned how Kafka integration works for both Storm and
Hadoop to address real-time and batch processing needs.

In the next chapter, which is also the last chapter of this book, we will look at some
of the other important facts about Kafka.

Kafka Tools
In this last chapter, we will be exploring tools available in Kafka and its integration
with third-party tools. We will also be discussing in brief the work taking place in
the area of performance testing of Kafka.

The main focus areas for this chapter are:

• Kafka administration tools
• Integration with other tools
• Kafka performance testing

Kafka administration tools
There are a number of tools or utilities provided by Kafka 0.8 to administrate
features such as replication and topic creation. Let's have a quick look at these tools.

Kafka topic tools
By default, Kafka creates the topic with a default number of partitions and
replication factor (the default value is 1 for both). But in real-life scenarios, we may
need to define the number of partitions and replication factors more than once.

The following is the command for creating the topic with specific parameters:

[root@localhost kafka-0.8]# bin/kafka-create-topic.sh --zookeeper
localhost:2181 --replica 3 --partition 2 --topic kafkatopic

Kafka also provides the utility for finding out the list of topics within the Kafka
server. The List Topic tool provides the listing of topics and information about their
partitions, replicas, or leaders by querying ZooKeeper.

Kafka Tools

[66]

The following is the command for obtaining the list of topics:

[root@localhost kafka-0.8]#bin/kafka-list-topic.sh --zookeeper
localhost:2181

On execution of the above command, you should get an output as shown in the
following screenshot:

The above console output shows that we can get the information about the topic and
partitions that have replicated data. The output from the previous screenshot can
be explained as follows:

• leader is a randomly selected node for a specific portion of the partitions
and is responsible for all reads and writes for this partition

• replicas represents the list of nodes that holds the log for a specified partition
• isr represents the subset of in-sync replicas' list that is currently alive and

in sync with the leader

Note that kafkatopic has two partitions (partitions 0 and 1) with three replications,
whereas othertopic has just one partition with two replications.

Kafka replication tools
For better management of replication features, Kafka provides tools for selecting
a replica lead and controlling shut down of brokers.

As we have learned from Kafka design, in replication, multiple partitions can have
replicated data, and out of these multiple replicas, one replica acts as a lead,
and the rest of the replicas act as in-sync followers of the lead replica. In case
of non-availability of a lead replica, maybe due to broker shutdown, a new lead
replica needs to be selected.

Chapter 8

[67]

For scenarios such as shutting down of the Kafka broker for maintenance activity,
election of the new leader is done sequentially, and this causes significant read/write
operations at ZooKeeper. In any big cluster with many topics/partitions, sequential
election of lead replicas causes delay in availability.

To ensure high availability, Kafka provides tools for a controlled shutdown
of Kafka brokers. If the broker has the lead partition shut down, this tool transfers
the leadership proactively to other in-sync replicas on another broker. If there is
no in-sync replica available, the tool will fail to shut down the broker in order
to ensure no data is lost.

The following is the format for using this tool:

[root@localhost kafka-0.8]# bin/kafka-run-class.sh kafka.admin.
ShutdownBroker --zookeeper <zookeeper_host:port/namespace> --broker
<brokerID>

The ZooKeeper host and the broker ID that need to be shut down are mandatory
parameters. We can also specify the number of retries (--num.retries, default value
0) and retry interval in milliseconds (--retry.interval.ms, default value 1000)
with a controlled shutdown tool.

Next, in any big Kafka cluster with many brokers and topics, Kafka ensures that
the lead replicas for partitions are equally distributed among the brokers. However,
in case of shutdown (controlled as well) or broker failure, this equal distribution
of lead replicas may get imbalanced within the cluster.

Kafka provides a tool that is used to maintain the balanced distribution of lead
replicas within the Kafka cluster across available brokers.

The following is the format for using this tool:

[root@localhost kafka-0.8]# bin/kafka-preferred-replica-election.sh
--zookeeper <zookeeper_host:port/namespace>

This tool retrieves all the topic partitions for the cluster from ZooKeeper. We can also
provide the list of topic partitions in a JSON file format. It works asynchronously
to update the ZooKeeper path for moving the leader of partitions and to create
a balanced distribution.

For detailed explanation on Kafka tools and their usage, please
refer to https://cwiki.apache.org/confluence/display/
KAFKA/Replication+tools.

Kafka Tools

[68]

Integration with other tools
This section discusses the contributions by many contributors, providing integration
with Apache Kafka for various needs such as logging, packaging, cloud integration,
and Hadoop integration.

Camus (https://github.com/linkedin/camus) is another art of work done
by LinkedIn, which provides a pipeline from Kafka to HDFS. Under this project,
a single MapReduce job performs the following steps for loading data to HDFS
in a distributed manner:

1. As a first step, it discovers the latest topics and partition offsets
from ZooKeeper.

2. Each task in the MapReduce job fetches events from the Kafka broker and
commits the pulled data along with the audit count to the output folders.

3. After the completion of the job, final offsets are written to HDFS, which can
be further consumed by subsequent MapReduce jobs.

4. Information about the consumed messages is also updated in the Kafka cluster.

Some other useful contributions are:

• Automated deployment and configuration of Kafka and ZooKeeper on
Amazon (https://github.com/nathanmarz/kafka-deploy)

• Logging utility (https://github.com/leandrosilva/klogd2)
• REST service for Mozilla Matrics (https://github.com/mozilla-metrics/

bagheera)
• Apache Camel-Kafka integration (https://github.com/BreizhBeans/

camel-kafka/wiki)

For a detailed list of Kafka ecosystem tools, please refer to
https://cwiki.apache.org/confluence/display/
KAFKA/Ecosystem.

Chapter 8

[69]

Kafka performance testing
Kafka contributors are still working on performance testing, and their goal is to
produce a number of script files that help in running the performance tests. Some
of them are provided in the Kafka bin folder:

• Kafka-producer-perf-test.sh: This script will run the kafka.perf.
ProducerPerformance class to produce the incremented statistics into
a CSV file for the producers

• Kafka-consumer-perf-test.sh: This script will run the kafka.perf.
ConsumerPerformance class to produce the incremented statistics into
a CSV file for the consumers

Some more scripts for pulling the Kafka server and ZooKeeper statistics are provided
in the CSV format. Once CSV files are produced, the R script can be created to produce
the graph images.

For detailed information on how to go for Kafka performance testing,
please refer to https://cwiki.apache.org/confluence/
display/KAFKA/Performance+testing.

Summary
In this chapter, we have added some more information about Kafka, such as its
administrator tools, its integration, and Kafka non-Java clients.

During this complete journey through Apache Kafka, we have touched upon many
important facts about Kafka. We have learned the reason why Kafka was developed,
its installation, and its support for different types of clusters. We also explored the
design approach of Kafka, and wrote few basic producers and consumers.

In the end, we discussed its integration with technologies such as Hadoop and Storm.

The journey of evolution never ends.

Index
A
Apache Camel-Kafka integration

URL 68
Apache Kafka. See Kafka
asynchronous replication 32
auto.commit.interval.ms property 54

B
blocks 60
bolt 58
broker properties, Kafka

about 26
broker.id 26
log.dirs 26
URL 19
zookeeper.connect 26

C
C 33
Camus

URL 68
classes, simple Java producer

importing 36
client.id property 54
cluster mirroring, Kafka 30
Complex Event Processing (CEP) 6
components, Hadoop

Data Node 61
Job Tracker 61
NameNode 61
Secondary Name Node 61
Task Tracker 61

components, Storm
bolt 58
spout 58

ConsumerConfig class 45
ConsumerConnector class 45
consumer groups 28
consumer property list

auto.commit.interval.ms 54
client.id 54
group.id 54
URL 54
zookeeper.connect 54
zookeeper.connection.timeout.ms 54
zookeeper.session.timeout.ms 54
zookeeper.sync.time.ms 54

consumers 43

D
Data Node, Hadoop components 61
DataSift

URL 8
design facts, Kafka 28, 29
design fundamentals, Kafka 28

E
Extract Transformation Load (ETL)

paradigm 58

F
Foursquare

URL 8

[72]

G
group.id property 54
GZIP 29

H
Hadoop

about 60
components 61
integrating, with Kafka 62
multinode Hadoop cluster 61

Hadoop consumer
about 64
architecture pattern 64

Hadoop job 64
Hadoop producer

about 62
approaches 63
AvroKafkaStorage producer, using 63
Kafka OutputFormat class, using 63
Pig scripts, using 63

HDFS (Hadoop Distributed File System) 60
high-level consumer API

about 44
ConsumerConfig class 45
ConsumerConnector class 45
KafkaStream class 45

I
In-sync Replicas (ISRs) 32

J
Java 33
Java 1.6

installing 13
Java consumer API, Kafka

high-level consumer API 44
simple consumer API 46

Java Messaging Service (JMS) 57
Java producer API

about 34
KeyedMessage class 35
Producer class 34, 35
ProducerConfig class 35

JConsole 24
Job Tracker, Hadoop components 61

K
Kafka

about 5, 11, 12
broker properties 26
building 14, 15
characteristics 6
cluster mirroring 30
consumer property list 54
consumers 7
data aggregation-and-analysis scenario 6
design facts 28, 29
design fundamentals 28
downloading 12, 13
installing 12
Java consumer API 44
message compression 29
multithreaded high-level consumer 50
need for 7
performance testing 69
prerequisites, installing 13-16
producer properties 40, 41
producers 7
replication 31
replication modes 32
single-threaded simple Java consumer 47
use cases 8

Kafka 0.8
about 17
steps, for downloading 13

Kafka administration tools
about 65
Kafka replication tools 66
Kafka topic tools 65

Kafka API
for message producers 34

Kafka cluster 44
Kafka-Hadoop integration

about 62
performing 62

Kafka Integrations
with Hadoop 60
with Storm 57

[73]

Kafka replication tools
about 66
using 67

Kafka-Storm integration
peforming 59, 60

Kafka Storm Spout
parameters 59
source code 59

KafkaStream class 45
Kafka tools

integrating, with other tools 68
reference link 67

Kafka topic tools
about 65
using 66

KeyedMessage class 35
key.serializer.class property 41

L
LinkedIn

URL 8
List Topic tool 65
log.dirs property 26
logging utility

URL 68

M
message compression, Kafka

about 29
URL 30

message partitioning strategy 31
message publishing 5
metadata.broker.list property 36, 38, 41
mirroring tool placement 30
mirror maker tool setup

URL 30
multiple node, multiple broker cluster 25
multithreaded high-level consumer

about 50
classes, importing 50
message, printing 51
message, reading from threads 51, 53
properties, defining 50

N
Name Node, Hadoop components 61

O
Online Transaction Processing (OLTP) 29

P
Partitioner class

implementing 39
partitioner.class property 38, 41
performance testing, Kafka

working on 69
Producer class 34, 35
ProducerConfig class 35
producer properties, Kafka

key.serializer.class 41
metadata.broker.list 41
partitioner.class 41
producer.type 41
request.required.acks 41
serializer.class 41

producers 33
producer.type property 41
properties, simple Java producer

defining 36
publisher-based messaging system 17
Python 33

R
replication, Kafka

about 31
URL 32

replication modes, Kafka
asynchronous replication 32
synchronous replication 32

request.required.acks property 36, 41
REST service for Mozilla Matrics

URL 68

S
Scala 35
Secondary Name Node, Hadoop

components 61

[74]

serializer.class list property 36
serializer.class property 41
server.properties 19
simple consumer API

about 46
class diagram, for SimpleConsumer

class 46
SimpleConsumer class 46

SimpleConsumer class 46
simple high-level Java consumer

about 47
auto.commit.interval.ms property 48
classes, importing 47
group.id property 47
messages, printing 50
messages, reading from topic 48, 49
properties, defining 47
zookeeper.connect property 47
zookeeper.session.timeout.ms property 47
zookeeper.sync.time.ms property 48

SimpleHLConsumer class 47
simple Java producer

about 36
classes, importing 36
creating, with message partitioning 38
message, building 37
message, sending to broker 37
properties, defining 36

simple Java producer, with message
partitioning

classes, importing 38
message, building 39, 40
message, sending to broker 39, 40
Partitioner classes, implementing 39
properties, defining 38

SimpleProducer class 36
single node, multiple broker cluster

about 23
consumer, starting for message

consumption 25
Kafka brokers, starting 23, 24
Kafka topic, creating 24
producer, startting for sending messages 24
ZooKeeper, starting 23

single node, single broker cluster
about 17
consumer, starting for message

consumption 22
Kafka broker, starting 19
Kafka topic, starting 20
producer, starting for sending messages 20,

21
ZooKeeper server, starting 18

Snappy 29
source code, Kafka Storm Spout

URL 59
spout 58
Square

URL 8
standard filesystems

versus ZooKeeper 18
Storm

about 58
architecture 58
components 58
integrating, with Kafka 59, 60

synchronous replication 32

T
Task Tracker, Hadoop components 61
topologies 58
Twitter

URL 8

Z
znodes 18
ZooKeeper

about 18
versus standard filesystems 18

zookeeper.connection.timeout.ms
property 54

zookeeper.connect property 26, 54
zookeeper.properties 18
ZooKeeper server 67
zookeeper.session.timeout.ms property 54
zookeeper.sync.time.ms property 54

Thank you for buying
Apache Kafka

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Hadoop Real-World Solutions
Cookbook
ISBN: 978-1-84951-912-0 Paperback: 316 pages

Realistic, simple code examples to solve problems at
scale with Hadoop and related technologies

1. Solutions to common problems when working
in the Hadoop environment

2. Recipes for (un)loading data, analytics, and
troubleshooting

3. In depth code examples demonstrating various
analytic models, analytic solutions, and
common best practices

Apache Solr 3 Enterprise Search
Server
ISBN: 978-1-84951-606-8 Paperback: 418 pages

Enhance your search with faceted navigation, result
highlighting, relevancy ranked sorting, and more

1. Comprehensive information on Apache Solr 3
with examples and tips so you can focus on the
important parts

2. Integration examples with databases, web-
crawlers, XSLT, Java & embedded-Solr, PHP &
Drupal, JavaScript, Ruby frameworks

3. Advice on data modeling, deployment
considerations to include security, logging,
and monitoring, and advice on scaling Solr and
measuring performance

Please check www.PacktPub.com for information on our titles

Apache Solr 3.1 Cookbook
ISBN: 978-1-84951-218-3 Paperback: 300 pages

Over 100 recipes to discover new ways to work with
Apache's Enterprise Search Server

1. Improve the way in which you work with
Apache Solr to make your search engine
quicker and more effective

2. Deal with performance, setup, and
configuration problems in no time

3. Discover little-known Solr functionalities and
create your own modules to customize Solr to
your company's needs

Hadoop Operations and Cluster
Management Cookbook
ISBN: 978-1-78216-516-3 Paperback: 368 pages

Over 60 recipes showing you how to design,
configure, manage, monitor, and tune a Hadoop
cluster

1. Hands-on recipes to configure a Hadoop cluster
from bare metal hardware nodes

2. Practical and in depth explanation of cluster
management commands

3. Easy-to-understand recipes for securing and
monitoring a Hadoop cluster, and design
considerations

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introducing Kafka
	Need for Kafka
	Few Kafka usages
	Summary

	Chapter 2: Installing Kafka
	Installing Kafka
	Downloading Kafka
	Installing the prerequisites
	Installing Java 1.6 or later

	Building Kafka

	Summary

	Chapter 3: Setting up the Kafka Cluster
	Single node – single broker cluster
	Starting the ZooKeeper server
	Starting the Kafka broker
	Creating a Kafka topic
	Starting a producer for sending messages
	Starting a consumer for consuming messages

	Single node – multiple broker cluster
	Starting ZooKeeper
	Starting the Kafka brokers
	Creating a Kafka topic
	Starting a producer for sending messages
	Starting a consumer for consuming messages

	Multiple node – multiple broker cluster
	Kafka broker property list
	Summary

	Chapter 4: Kafka Design
	Kafka design fundamentals
	Message compression in Kafka
	Cluster mirroring in Kafka
	Replication in Kafka
	Summary

	Chapter 5: Writing Producers
	The Java producer API
	Simple Java producer
	Importing classes
	Defining properties
	Building the message and sending it

	Creating a simple Java producer with message partitioning
	Importing classes
	Defining properties
	Implementing the Partitioner class
	Building the message and sending it

	The Kafka producer property list
	Summary

	Chapter 6: Writing Consumers
	Java consumer API
	High-level consumer API
	Simple consumer API

	Simple high-level Java consumer
	Importing classes
	Defining properties
	Reading messages from a topic and printing them

	Multithreaded consumer for multipartition topics
	Importing classes
	Defining properties
	Reading the message from threads and printing it

	Kafka consumer property list
	Summary

	Chapter 7: Kafka Integrations
	Kafka integration with Storm
	Introduction to Storm
	Integrating Storm

	Kafka integration with Hadoop
	Introduction to Hadoop
	Integrating Hadoop
	Hadoop producer
	Hadoop consumer

	Summary

	Chapter 8: Kafka Tools
	Kafka administration tools
	Kafka topic tools
	Kafka replication tools

	Integration with other tools
	Kafka performance testing
	Summary

	Index

