
www.allitebooks.com

http://www.allitebooks.org

Apache OFBiz Cookbook

Over 60 simple but incredibly effective recipes for taking
control of OFBiz

Ruth Hoffman

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Apache OFBiz Cookbook

Copyright © 2010 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be
caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2010

Production Reference: 1020910

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847199-18-8

www.packtpub.com

Cover Image by Harmeet Singh (singharmeet@yahoo.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Ruth Hoffman

Reviewers
Adrian Crum

Shi Jinghai

Acquisition Editor
Chaitanya Apte

Development Editor
Rakesh Shejwal

Technical Editor
Vanjeet D'souza

Indexer
Hemangini Bari

Editorial Team Leader
Mithun Sehgal

Project Team Leader
Ashwin Shetty

Project Coordinator
Joel Goveya

Proofreader
Jonathan Todd

Graphics
Geetanjali Sawant

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

www.allitebooks.com

http://www.allitebooks.org

About the Author

Ruth Hoffman is an OFBiz evangelist with over 25 years of information technology
experience, including stints in software design and development, training, project
management, product marketing, and software sales, She has dedicated the last few
years of her eventful career to furthering the OFBiz vision. Whether it be writing about
OFBiz, providing implementation and OFBiz consulting services, or just "kicking the OFBiz
tires" for each new release, she enjoys working with and telling the world about all that
this amazing ERP software suite has to offer.

Ruth's current passion is her quest to provide high quality, cost effective OFBiz training
and documentation. She has pursued this quest through multiple channels, including the
OFBiz website. She invites everyone to stop by, take a gander, and give some feedback at
http://www.myofbiz.com

As a long-standing supporter of OFBiz, she has authored several other OFBiz titles,
including OFBiz E-Commerce Out-Of-The-Box and The OFBiz Catalog Manager. For more
information, please see: http://www.myofbiz.com.

I would like to thank my partner, JC, for being so patient and understanding,
my daughter for not getting too upset when I cancelled our planned Lilac
Festival adventure, and my dog Sadie for sitting by me all those long hours
when no one else would.

Also, my sincerest thanks go to Adrian Crum and Shi Jinghai for their
dedicated efforts in providing technical reviews of this book. Thanks for
keeping me honest and setting me straight on a number of occasions. Your
contributions are greatly appreciated!

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Adrian Crum is an IT Manager/Computer programmer for a company that builds
homes. Prior to that, he owned and operated a computer retail/service/consulting
business. He was Technical Editor of Coast Compute Magazine, and a contributing writer
for Programmer's Journal. Adrian has been involved with the Apache OFBiz project as a
contributing programmer since 2004, and he is a member of the Project Management
Committee. His extensive experience in many programming languages and cross-platform
development has been a key part of his contributions to the Apache OFBiz project.

Shi Jinghai graduated from Tsinghua University in 1991. In 2001, he took part in the
China 2G Citizen Card Project and became an important system designer of the National
Citizen Identity Information System of China. In 2004, he started his own company
(Beijing Langhua Ltd.) focusing on IT services based on some excellent open source
projects such as OFBiz, OpenCms, JBoss Portal, and Jasig CAS among others.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: Getting Started	 7

Introduction	 7
Getting the project code	 9
Getting code from the Subversion repository	 12
Fixing IP port collision errors	 14
The JAVA_HOME setting	 17
"Class Not Found" errors	 18
Installation verification	 20
SSL verification	 22
Running JUnit tests	 25
Locating an OFBiz Component	 26
Locating an OFBiz Application	 28

Chapter 2: Java Development	 31
Introduction	 32
Java runtime CLASSPATH	 32
Java compile time CLASSPATH	 33
Naming conventions	 34
Writing OFBiz Java Events	 35
Writing OFBiz Java Services	 39
Debugging using the logfile	 42
Calling OFBiz Services from a Java program	 43
Getting and validating request parameters (Events)	 45
Getting and validating request parameters (Services)	 47
Managing error messages	 48
Using Java properties files	 50
Sending e-mail from an OFBiz Event or Service	 51
Handling XML files	 53

www.allitebooks.com

http://www.allitebooks.org

ii

Table of Contents

Chapter 3: The User Interface	 57
Introduction	 57
Creating HTML web pages	 58
Adding actions to Screen widgets	 63
HTML markup in Screen widgets	 65
CSS styling in Screen widgets	 66
Platform-specific widgets	 68
OFBiz Tree widgets	 69
OFBiz Menu widgets	 71
OFBiz Form widgets	 72
Creating web pages using FreeMarker	 74
Passing Screen widget parameters to FreeMarker	 77
Calling Java methods from FreeMarker	 78
Forcing FreeMarker to render HTML markup	 79
Uploading files in FreeMarker forms	 79

Chapter 4: OFBiz Services	 83
Introduction	 83
Managing existing OFBiz Services	 85
Calling a Service from an HTML form	 86
Calling asynchronous Services from HTML forms	 89
Calling a Service many times from an HTML form	 91
Creating a new Service definition file	 92
Creating a new Service definition	 93
Implementing Services	 94
Defining Service attributes (INPUT/OUTPUT)	 95
Service Event Condition Actions	 96
Service groups	 98
Handling Service errors	 100
Writing Groovy Services	 102
Mail Event Condition Actions	 104
Entity Event Condition Actions	 106

Chapter 5: The OFBiz Entity Engine	 111
Introduction	 111
Changing the default database	 113
Connecting to a remote database	 119
Connecting to multiple databases	 120
Creating entity groups	 121
Disabling automatic database checks	 123
Mapping database data types	 123

www.allitebooks.com

http://www.allitebooks.org

iii

Table of Contents

Creating a new entity model	 126
Modifying an existing entity model	 130
Building a view-entity	 132

Chapter 6: OFBiz Security	 137
Introduction	 137
Securing communications ports	 138
Disabling demonstration user accounts	 141
Protecting OFBiz web pages	 142
Creating user accounts	 144
Protecting applications using security groups	 147
Protecting views ("Tarpitting")	 152
Retrieving forgotten passwords	 154
Changing your password	 156
Adding or changing SSL certificates	 157
OFBiz single sign-on and the external login key	 160

Chapter 7: WebTools	 163
Introduction	 163
Cache maintenance	 164
Changing debug settings	 167
Exporting database data to XML documents	 170
Loading database(s) from XML documents	 172
Managing internationalization labels	 174
Using the SQL processor	 176
Exploring the entity reference tool	 177
Viewing OFBiz usage statistics	 181
Uncovering artifact information	 183
Working with temporal expressions	 186

Chapter 8: Web Services	 189
Introduction	 189
Requesting web services using URL parameters	 190
Requesting web services using an HttpClient 	 193
Creating HttpClients and passing XML documents	 196
Creating XML-RPC web service clients	 199
Becoming an XML-RPC web service provider	 202
OFBiz SOAP messaging clients	 204
Generating a WSDL document	 212
Creating SOAP-compliant web services	 215

www.allitebooks.com

http://www.allitebooks.org

iv

Table of Contents

Chapter 9: OFBiz Tips and Tricks	 221
Introduction	 221
Fixing Java memory allocation errors	 222
Reloading OFBiz seed and demo data	 223
Creating new seed data files	 225
Changing the administrative user's password	 227
Creating a new administrative user	 228
Getting the OFBiz version number	 229
Building an OFBiz instance	 232
Building a single OFBiz Component	 233
Creating a new OFBiz Component or Application	 234
Creating a FreeMarker transform	 236
Preparing data using Groovy	 237
Pop-up new browser windows	 239
Installing an OFBiz Visual Theme	 240
Creating an OFBiz Visual Theme	 242

Appendix: Entity Engine by Example	 247
Introduction	 247
Putting it all together with a data model example	 248
Reading data from an OFBiz data source	 257
Working with large result sets (EntityListIterator)	 261
Removing data from the database (Java)	 264
Writing data to the database (Java)	 265
Using the automatic sequence generator	 266
EntityUtil	 267
EntityOperator reference	 275

Index	 277

Preface
This book is designed to be read in any order, and is a collection of recipes found, by
experience, to be most useful for developers working with the OFBiz project. Let it be your
guide to enhancing your OFBiz productivity by saving you valuable time. Written specifically
to give clear and straightforward answers to the most commonly asked OFBiz questions, this
compendium of OFBiz recipes will show you everything you need to know to get things done
in OFBiz.

Whether you are new to OFBiz or an old pro, you are sure to find many useful hints and handy
tips here. Topics range from getting started, to configuration and system setup, security
and database management, through the final stages of developing and testing new OFBiz
applications. We are now Open For Business.

What this book covers
Chapter 1, Getting Started: If you already know how to get started with OFBiz then you can
confidently skip this chapter. If, however, you are new to OFBiz, then you may find helpful hints
in here to get you started, including getting a copy of the code from the download page or
from the Subversion source code repository; fixing installation-related IP port collision errors;
setting JAVA_HOME; fixing Java "Class Not Found" errors; installation verification; running
JUnit tests; and some basic project artifact navigation hints, including where certain special
directories (folders for Windows users) and files may be found.

Chapter 2, Java Development: OFBiz Java development starts with a clear understanding
of the role of the Java CLASSPATH. In this chapter, learn how the CLASSPATH enables
compilation and runtime loading of OFBiz artifacts. In addition, this chapter reveals how the
OFBiz Java file-naming convention is helpful in organizing and finding Java source code. Also
learn how to create OFBiz Events and Services, effectively use the provided Java debugging
methods, call another OFBiz Service from within a Java program, access HTTP/HTTPS request
parameters, use existing tools to handle error messages, use Java properties files, send e-mail
using existing OFBiz Service(s), and manipulate XML documents using provided tools.

Preface

2

Chapter 3, The User Interface: Users interact with OFBiz—that is, the "User Interface"—through
web pages often referred to within the project as "screens" or "screen views". In this chapter,
see how web pages are built from the OFBiz Screen widget, including how to add actions,
HTML markup, CSS, and other widgets (Tree, Menu, and Form widgets) to a single screen view
widget definition. If your tastes run more towards creating your own screen views, see how to
use FreeMarker templates inside Screen widget definitions to build (HTML) web pages. Also
discussed in this chapter: passing parameters from the Screen widget's runtime context to
the FreeMarker rendering engine, writing JavaScript and including it in a FreeMarker template,
calling OFBiz Java methods directly from the FreeMarker context, forcing FreeMarker to render
content with HTML markup at runtime, and how to upload a file—that is, support multipart
HTML forms—in FreeMarker.

Chapter 4, OFBiz Services: OFBiz "Services" are reusable snippets of code that represent
business processing or other logic. You write an OFBiz Service one time and invoke it anytime,
anywhere and as often as needed. In this chapter, discover how to manage existing Services,
invoke Services from an HTML form, and implement your own Service. Learn how Services
communicate and interact during runtime operations using input and output attributes and
triggers called Service Event Condition Actions, or SECAs. See best practices for handling
errors within a Service and/or SECA. Also discussed are tips on implementing Services in
languages other than Java, and a quick introduction to special SECA for incoming e-mail and
operations on specific entities.

Chapter 5, The OFBiz Entity Engine: The OFBiz Entity Engine is the magic behind the database
agnostic, data-driven tour-de-force that is OFBiz. In this chapter, see how to configure and use
the Entity Engine to your advantage. Specifically, see how to change from the default Derby
database to another database (note: throughout the OFBiz documentation, the term "data
source" is used interchangeably with "database"); how to connect to remote and multiple
databases; how entity groups work to help OFBiz organize access to multiple databases;
and disable some system database startup checks, map new database field types, create
your own entity definition file and entity definition, modify an existing entity definition—often
referred to as the entity's model—and build view-entities that represent SQL join statements.

Chapter 6, OFBiz Security: What book about enterprise software would be complete without
a word concerning security? In this chapter, get a quick introduction to securing your OFBiz
instance, including recipes to lock down communication ports, disable demonstration
accounts, protect web pages and web applications using OFBiz Security Groups, enable
support for "tarpitting", retrieve forgotten passwords, change existing passwords, handle SSL
certificates, and use OFBiz single sign-on support by way of the "external login key" feature.

Preface

3

Chapter 7, WebTools: Often lost in the OFBiz shuffle is a discussion covering basic usage
of the many and varied tools that come with the project to manage your OFBiz instance.
Collectively called "WebTools", this chapter looks at several important tasks easily
accomplished using WebTools, including managing the cache, configuring system and
application log tool settings for debug and troubleshooting support; exporting and importing
database data; managing localization labels, and accessing databases using the SQL
processor tool. Also discussed are introductions to the immensely useful Entity Reference
Tool, finding and viewing OFBiz usage statistics, tracing OFBiz artifact dependencies, and
working with temporal expressions.

Chapter 8, Web Services: With service orientation at the core of the OFBiz architecture, OFBiz
is uniquely qualified to act as both a web services client and service provider for any number
of web service interactions. In this chapter, learn how to act as a web services client and
request service using URL parameter passing, HttpClient and XML document exchanges,
and XML-RPC service requests. If you wish to provide web services, see how to set up OFBiz to
serve XML-RPC services, generate and serve WSDL documents, and build both SOAP-based
clients and services.

Chapter 9, OFBiz Tips and Tricks: This chapter is a collection of recipes that don't fit under
other topic areas. Included here are hints on what to do if you run out of memory during OFBiz
execution, reloading/reinitializing the OFBiz database, creating a new administrative user
login and password, and getting the OFBiz version number (from Subversion checkouts or
trunk builds only). Also included here are hints on using the provided ANT build tool to build an
entire OFBiz instance, build a single OFBiz Component, and create a new OFBiz Component or
Application. If you are looking for tips on creating a FreeMarker transformation, preparing data
using Groovy, how to pop-up a new browser window, and OFBiz visual themes, you will find
useful information here.

Appendix, Entity Engine by Example: In this Appendix, see how to effectively use the OFBiz
Entity Engine to bring your OFBiz data drive applications to life. From the provided example
data model, learn how to create entities and view-entities (SQL join statements) to implement
a data model. Also, see how to read, remove, and write data to/from the database using the
Entity Engine API; and use the provided EntityUtil API to manipulate database result-sets,
access the automatic sequence generator to create new and unique sequence values, and
see at a glance valid values for use with the Entity "Operator".

What you need for this book
To run the recipes mentioned in this book, you will need the following software:

ff Java Software Development Kit version 1.5 or greater

ff Apache OFBiz release 9.04

Preface

4

Who this book is for
If you are an OFBiz user who has some familiarity with enterprise software systems and,
perhaps more importantly, Internet and web exposure, you will be able to glean useful
information from this book. For following some recipes, you will need only basic knowledge
of modern browser behavior (for example, how to click a mouse button) while others assume
only a passing familiarity with a text-editor and XML documents. If you are a software
developer looking for Java and/or Groovy examples, this book also includes a chapter on Java
software development.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "Add one or more delegator elements to the
datasource object".

A block of code is set as follows:

<field-type-def type="currency-amount" sql-type="NUMERIC(18,2)"
 java type="java.math.BigDecimal">
 <validate method="isSignedDouble"/>
</field-type-def>

 When we wish to draw your attention to a particular part of a code
block, the relevant lines or items are set in bold:
<field-type-def type="currency-amount" sql-type="NUMERIC(18,2)"
 java type="java.math.BigDecimal">
 <validate method="isSignedDouble"/>
</field-type-def>

Any command-line input or output is written as follows:

ant clean-install

Preface

5

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "Use the WebTools Entity
Reference - Interactive Version to see if the new view-entity was successfully created".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this book—
what you liked or may have disliked. Reader feedback is important for us to develop titles that
you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in the
SUGGEST A TITLE form on www.packtpub.com, or e-mail suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the code—
we would be grateful if you would report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any errata,
please report them by visiting http://www.packtpub.com/support, selecting your book,
clicking on the let us know link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded on our website, or
added to any list of existing errata, under the Errata section of that title. Any existing errata
can be viewed by selecting your title from http://www.packtpub.com/support.

Preface

6

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com

1
Getting Started

The OFBiz project is a collection of hundreds of directories and files, organized to allow for
easy download, start-up, customization, and enterprise deployment.

In this chapter, we shall look at a number of commonly performed tasks related to setting up
and running with OFBiz, including:

ff Getting the project code

ff Getting code from the Apache Subversion source code repository

ff Fixing IP port collision error

ff Setting the JAVA_HOME environment variable

ff Fixing "Class Not Found" errors

ff Installation verification

ff SSL operational verification

ff Running JUnit tests

ff Finding an OFBiz Component's top-level directory

ff Locating an OFBiz Application

Introduction
OFBiz appeals to a remarkably diverse audience because of the breadth of solutions it
enables. Whether you are a software developer or a business owner, you will find much to
surprise, delight, and, most importantly use for your next enterprise software endeavor under
the OFBiz umbrella.

Getting Started

8

In fact, there is so much to OFBiz that it is often difficult to know where to start. Unlike
learning HTML or Java, OFBiz has no specification or authoritative source acting as the final
arbiter of what works or is "correct". Rather, OFBiz is a well organized collection of "artifacts"
that may, at the user's discretion, be mixed, matched, reorganized, and augmented with new
artifacts to arrive at just about any business solution imaginable.

Just imagine an open source software project that includes:

ff Its own database schema and seed data already loaded and ready to run.

ff An event-driven Service engine that enables code reusability across the entire
instance. Services may be written in Java or any supported language, including
Groovy, Bean Shell, JPython, and more.

ff Hundreds of business logic workflow implementations ranging from a complete
e-commerce Application to manufacturing and MRP, content management, user
authentication, and authorization support all out-of-the-box and ready to use.

ff Everything you need to serve up complete browser compliant User Interfaces (UI).

ff And much more!

With all the possibilities that OFBiz brings to the table, where does one begin? From
experience, the best way to get up and running quickly is to download the project code and
start kicking the "tires". Use some of the suggestions in this book to help quickly experience
some of the state-of-the-art tools, utilities, and complete Applications that are part of OFBiz
out-of-the-box.

Always remember: there is no "right" or "wrong" way to doing anything with OFBiz.

Everything you need to get up and running quickly and with minimum fuss is packaged with
the OFBiz distribution. That includes an integrated database, a ready to use web server,
and all the network and communications infrastructure necessary to be up and running in
minutes. All you need to do before you download OFBiz is:

ff Ensure that the prerequisite Java Software Development Kit (SDK) is installed.
Please see the following table.

ff Access to a reliable Internet connection.

ff A modern browser handy to do some installation verification.

Chapter 1

9

How do you know which version of Java to install? The following table summarizes available
download options and necessary Java prerequisites:

Download title Recommended usage Minimum
Java version

OFBiz
version

apache-ofbiz-09.04.zip Recommended for new users
and those looking for the most
stable project package.

Java 1.5 *

apache-ofbiz-4.0.zip Legacy release. Not
recommended for new users.

Java 1.4 or
Java 1.5

"Nightly Trunk Builds"

ofbiz-trunk-current.
zip

Project committers or users
needing latest code. May not be
stable or thoroughly tested!

These files are available on the
"snapshots" download page.

Java 1.6

* *

Nightly
trunk
builds do
not have
release
numbers.

* Nightly builds and version numbers represent bug fixes only.

* * "trunk" versions before January 2010, Java 1.5

Once OFBiz is downloaded and available locally on your hard drive, install it by "unpacking" it
with your operating system's "unzip" tool.

Once unzipped, OFBiz is ready to run.

Looking for the Java SDK?
Most Java SDKs are available from Sun Microsystems at:
http://www.java.com/

MAC users will need to contact Apple directly or use the Software Update
feature available on the Apple menu.

Getting the project code
Because OFBiz is more than just a few randomly organized files and directories, the collective
and organized resources that go into making OFBiz, including the Apache infrastructure and
software developers, are often called the "Project". The OFBiz project generates OFBiz code
that is stored in a Subversion source code repository. It is a release and version of this code,
extracted from the source code repository, built, and packaged using a "zip" archive tool, that
we download as an OFBiz user.

www.allitebooks.com

http://www.allitebooks.org

Getting Started

10

Getting ready
Decide which version to download. It is recommended that new users download OFBiz
Release 9.04. Experienced users and those wishing to contribute back to the project should
consider starting with the latest version of the OFBiz source code "trunk". This code may be
found on the Apache OFBiz "snapshot" web page.

Ensure you have the following necessary prerequisites in place:

ff A computer with a Java Virtual Machine (JVM) installed. If you are unsure of the
version, please refer to the table provided in the introduction to this chapter.

ff A modern browser (Internet Explorer, Firefox, Safari, Opera or the like).

ff Internet connection with HTTP access to the OFBiz download website.

How to do it...
Apache OFBiz can be downloaded as shown in the following steps:

1.	 Using your browser, navigate to the Apache OFBiz download site (http://ofbiz.
apache.org/download.html) to reveal the Download Apache OFBiz web
page as shown:

Chapter 1

11

2.	 Use your browser to select the desired OFBiz release. New users are urged to
download the release represented by the apache-ofbiz-09.04.zip file. At any
point in time, this download represents the most stable release of OFBiz.

3.	 Commence the download by clicking on the file link provided.

Note: The official OFBiz download website is often in a state of flux. At
times, you may be directed to a mirror site before you are allowed to
download any code. On other occasions, clicking the OFBiz download file
will directly initiate the download. If you find this all very confusing, you
are not alone. Feel free to comment on the official OFBiz mailing list and
voice your opinion. More information about the OFBiz user mailing lists
may be found here: https://cwiki.apache.org/confluence/
display/OFBADMIN/Mailing+Lists

4.	 Once the download has completed, unpack OFBiz by running your operating system's
unzip or equivalent command against the download file.

5.	 Change directories to the OFBiz install directory and run the following ANT command
to build the distribution and load the database: ant run-install

6.	 After the ANT build script has completed, from the install directory run the
appropriate OFBiz startup script provided for your operating system.

7.	 Optionally, run tests to verify that everything is working

How it works...
OFBiz is packaged to include everything you need to run right out-of-the-box. Once your
download is on your desktop, all you need do is unbundle it, build the distribution using the
provided ANT tool, and start it up. No other configuration steps are necessary.

There's more...
There are a number of ways to start up OFBiz. Depending on your operating system
environment and your proclivities towards working on the command line, you may:

ff Use one of the provided start up scripts

ff Invoke OFBiz from the command line directly or use the ANT build tool as shown here:

Windows Unix Command line
startofbiz.bat startofbiz.sh java -Xmx256M -jar ofbiz.jar

ant run

Getting Started

12

OFBiz runs inside and depends on a JVM. Before OFBiz can even start up, the JVM must be
operational. The distribution provides all the tools necessary in the form of startup scripts to
get the JVM up and running without any further work on your part.

For the curious, the following summarizes the OFBiz start-up sequence. This information is
useful if you ever want to integrate third-party code or add your own Java programs to the
OFBiz mix:

1.	 The Java Virtual Machine (JVM) is started from one of the available startup scripts or
the command line.

2.	 The OFBiz startup program (ofbiz.jar) is invoked as part of the JVM initialization.

3.	 OFBiz loads all Components, builds the Java classpath, initializes
communications, and verifies connections to one or more configured databases.
While the OFBiz distribution includes the embedded Derby database, any number
and combination of other databases may be configured.

4.	 The embedded Tomcat http/https listener is started.

5.	 OFBiz is up and running!

See also
For more information on prerequisites, getting the OFBiz code, and downloading and starting
OFBiz up, please visit the What Do I Get? section on the following OFBiz web page: http://
ci.apache.org/projects/ofbiz/snapshots/

Note: Be careful not to use the DOWNLOAD OFBIZ button on the
snapshots download web page. Unless you want to download the latest
OFBiz trunk nightly build, this button should not be confused with the
DOWNLOAD OFBIZ button found on the official OFBiz loading web page:
http://ofbiz.apache.org

Getting code from the Subversion repository
If you are planning to contribute back to the project or are just curious about downloading
from the OFBiz source code control system, you may download a complete OFBiz package
from the Subversion source code repository using the following procedure.

You will need a Subversion client, or an IDE with a Subversion client installed in order to
access and download from Subversion.

Chapter 1

13

Getting ready
Before you can download directly from the OFBiz Subversion repository, you must first have a
Subversion client installed locally. Subversion clients come in several forms. The Subversion
software comes with a command-line client and a command-line tool that facilitates checkout
and download from a Subversion repository. This command is the co command.

Some users prefer to use built-in IDE (Integrated Development Environment) Subversion
clients. One such client, Subclipse (http://subclpse.tigris.org), allows the user to
checkout and install OFBiz from within the IDE using IDE-specific commands.

It goes without saying: you must also have an Internet connection with access to the OFBiz
Subversion repository.

How to do it...
OFBiz source code can be downloaded from the Subversion repository by the following steps:

1.	 From a command-line window, type the following Subversion command:
svn co http://svn.apache.org/repos/asf/ofbiz/trunk ofbiz

2.	 Navigate to the install directory. If you used the above command, navigate to the
ofbiz directory. For UNIX users, a command similar to the following is suggested:
cd ofbiz

3.	 Run the build script provided:
ant run-install

How it works...
OFBiz project source code is saved in a repository managed by the Subversion source code
control system. Subversion uses a tree-like structure to organize and group together project
artifacts, including source code. Each time a project developer commits an artifact to the
repository, a new OFBiz version number is created, similar to a leaf on a tree. The project has
had thousands of commits over its lifetime, hence the current version number is well on its
way towards one million.

To request a version of OFBiz from the repository, a user issues a Subversion checkout
command, co. A Subversion checkout fetches by default the latest leaf or version of the
project from the Subversion code tree.

The OFBiz source code repository contains all previous versions of OFBiz. You may checkout any
version at any time. Additionally, you may checkout "releases" of OFBiz where a "release" is a
"branch" of the source code tree, by indicating your desire using the co command options.

Getting Started

14

Once the fetch from the repository is complete, you must run the OFBiz build script to build
the project before running the OFBiz startup scripts. The build script rebuilds all included Java
programs, rebuilds the runtime CLASSPATH, and checks and loads the database with seed
and demonstration data.

See also
For more information on using Eclipse with the OFBiz Subversion repository, please refer to
the following OFBiz Wiki page:

http://cwiki.apache.org/confluence/display/OFBIZ/Running+and+Debuggin
g+OFBiz+in+Eclipse

For more information on Subversion, please refer to the Subversion website located at:

http://subversion.tigris.org

Fixing IP port collision errors
One of the most common OFBiz startup errors involves IP port collisions. OFBiz requires
several Internet Protocol (IP) ports to run. All OFBiz downloads have these ports set to default
values so that you may start up OFBiz without further configuration.

Occasionally, these default values are in conflict with IP ports used by other software already
running on your system. If OFBiz cannot acquire the ports it needs to run, it will immediately
shutdown and you will receive an error similar to the following on the command line (from
which you started OFBiz):

(main) [Http11Protocol.java:178:ERROR]

Error initializing endpoint java.net.BindException: Address already in
use: 8080

Getting ready
To remedy IP port conflicts, you may either turn off the software using the ports OFBiz needs
or you can change the OFBiz configuration so that it uses ports not used by other software.

How to do it...
To change the OFBiz IP port configuration, perform the following:

1.	 Determine the port(s) that is/are in conflict by observing the console or command
line window. Alternatively, you may view the primary OFBiz log file located in
~/runtime/logs/ofbiz.log

Chapter 1

15

2.	 Locate the OFBiz configuration file where the port is set.

3.	 Edit the OFBiz configuration by changing the port number to a non-conflicting value.

4.	 Restart OFBiz.

How it works...
For example, to fix collisions on port 8080, the IP port that OFBiz listens on for HTTP requests,
navigate to the ofbiz-containers.xml file as shown in the following figure and change the
value for port 8080 to another port not in use.

Getting Started

16

Note: Setting the HTTP port to a value between 1-1024 may require
operating system administrative privileges in order to start up OFBiz.
This is a constraint placed on these ports outside the control of OFBiz.

There's more...
The following is a list of IP port configuration file locators for reference:

Port # Configuration file location relative to install
directory

Port usage note

8080 ~framework/base/config/ofbiz-
containers.xml

Tomcat HTTP listener

~framework/webapp/config/url.
properties

Internal HTTP port *

8443 ~framework/base/config/ofbiz-
containers.xml

Tomcat HTTPS listener

~framework/webapp/config/url.
properties

Internal HTTPS port *

8009 ~framework/base/config/ofbiz-
containers.xml

AJP connector

9990 ~framework/base/config/ofbiz-
containers.xml

BeanShell remote telnet port

9991 ~framework/base/config/ofbiz-
containers.xml

Second, required telnet port

1099 ~framework/base/config/rmi-
containers.xml

JNDI/RMI dispatcher

10523 ~startofbiz.sh
~startofbiz.bat
~startofbizNoLog.bat
~stopofbiz.sh

Admin port to start/stop OFBiz

389 ~framework/base/config/jndiLdap.
properties

LDAP port**

* Internal ports are used by OFBiz to translate HTTP port references internal to the
framework. For example, OFBiz automatically translates between HTTP and HTTPS if a user
requests an Application running on a secure port, but the user enters the wrong protocol
and/or port number; OFBiz knows based on these settings how to correct the URL request.

** This port is not checked at OFBiz start-up.

Chapter 1

17

The JAVA_HOME setting
OFBiz startup scripts must invoke the Java executable as part of its initiation process. If you
are using one of the provided startup scripts and you can't start up OFBiz because the Java
executable cannot be found (you will get an immediate error to this effect), you can easily add
the necessary statement to the script to indicate the location of the Java executable.

Note: The scripts as they are distributed today assume that you have
previously set the JAVA_HOME environment variable using your
computer's environment variable setting tools to the location of the Java
runtime executable. This setting should be in the environment prior to
invoking the OFBiz startup script. If this location has not been set or has
been set incorrectly, you will not be able to start up OFBiz.

Getting ready
To set up JAVA_HOME, you need to first perform the following steps:

1.	 Determine the location of the appropriate version of Java given the release of
OFBiz installed.

2.	 Navigate to the install directory where the startup scripts are located.

3.	 Open up the appropriate startup script (startofbiz.bat for Windows
or startofbiz.sh for Unix).

How to do it...
JAVA_HOME can be set up in the following way:

1.	 Add a line similar to the following prior to the comment line "location of java
executables" as shown in the following snippet from the Unix startofbiz.sh
startup script shown here:
This is an example of setting the JAVA_HOME variable in the
UNIX startofbiz.sh script:

JAVA_HOME=/bin/java
export JAVA_HOME

location of java executables
if [-f "$JAVA_HOME/bin/java"]; then
 JAVA="$JAVA_HOME/bin/java"
else
 JAVA=java
fi

Getting Started

18

2.	 Save your changes.

3.	 Restart OFBiz using the modified startup script.

How it works...
The JAVA_HOME environment variable sets the location of the Java executable relative to the
hard drive and the file system of the host operating system so that the startup scripts know
where to find it. In this way, you could have many Java versions installed on your computer and
still tell OFBiz which installed version to use at any point in time.

Out-of-the-box OFBiz assumes that the JAVA_HOME variable has been set prior to the invocation
of the startup script. As an alternative to modifying startup scripts, you may also set JAVA_HOME
from the command line prior to invoking the startup script.

There's more...
If you are starting up OFBiz from the command line and not using the startup scripts, you
should set your JAVA_HOME prior to invoking OFBiz. For example, if your Java executable is
located in the /opt/java directory (folder for Windows readers), and you are running a Unix
system, then set the JAVA_HOME environment variable as follows:

JAVA_HOME=/opt/java

export $JAVA_HOME

java –jar ofbiz.jar

"Class Not Found" errors
Another startup error that you may encounter is a "Class Not Found" error. This is usually
indicative of incompatibilities between the Java runtime in use and the version of OFBiz.
These errors will show up in the console window and in the OFBiz log file (~runtime/logs/
ofbiz.log), and occasionally as a web page error during normal OFBiz operations.

Getting ready
Tracking down the source of "Class Not Found" errors may involve some detective work.
In some cases, these errors are not immediately fatal. If the error is causing OFBiz to
immediately shutdown, then you most probably have an incompatibility between the OFBiz
runtime and the version of the JVM in use.

Chapter 1

19

To fix OFBiz startup "Class Not Found" errors, you must first determine the version of Java
being invoked from the startup script or the command line. The following section shows how
this can be determined.

How to do it...
To find out which version of the Java JVM OFBiz is running in and where your JAVA_HOME
environment variable is pointing, perform the following:

1.	 Navigate to the OFBiz install directory.

2.	 As the user invoking the startup script or command line Java execute statement, type
in the following Java command:
java –version

If the information returned does not say 1.5 or 1.6, then you will need to install the Java 1.5 or
1.6 SDK. You may also need to modify the JAVA_HOME variable as shown previously.

How it works...
The Java runtime executable may be invoked with the -version parameter to return the
version of the JVM being called. When executed this way, the JVM is started, the version
number is checked, and then the JVM is shutdown.

Running this command as the same user who invokes the OFBiz startup scripts ensures that
you pass to the JVM the same environment settings, including the JAVA_HOME setting that will
be available when the startup script is invoked. In this way, you may quickly determine which
version of Java you are running when you start up OFBiz.

If the version number returned is not compatible with the OFBiz release you are running, then
you will need to either set your JAVA_HOME variable as shown previously to the appropriate
version of Java or install the necessary Java SDK. The following table summarizes OFBiz
Java dependencies:

Release Java version
OFBiz 9.04 1.5
OFBiz 4.0 1.5
OFBiz trunk 1.6

www.allitebooks.com

http://www.allitebooks.org

Getting Started

20

There's more...
There is no recommended Java reference platform for OFBiz. Known implementations of the
Java SDK that have successfully built OFBiz include the Sun and Mac Java SDKs.

Installation verification
To quickly ascertain if OFBiz has installed correctly and is ready for use, you may use your
browser to view various OFBiz Application features, including the built-in e-commerce
demonstration store.

Getting ready
Once OFBiz is unpacked and, if downloaded from the Subversion repository, built using the
ant run-install command, you are ready to start the installation verification by observing the
OFBiz e-commerce demonstration store.

How to do it...
To view the e-commerce demonstration store, follow these steps:

1.	 Change to the OFBiz install directory.

2.	 Start OFBiz using one of the startup scripts provided or directly from the
command line.

3.	 Open a web browser and enter the URL of the OFBiz e-commerce Application
demonstration website: http://localhost:8080/ecommerce

4.	 Observe the OFBiz e-commerce demonstration store's main web page. It should look
something like the following:

Chapter 1

21

5.	 If the web page displays correctly, then you may be confident that at least the OFBiz
database and web server software are operating correctly.

Getting Started

22

How it works...
A quick and easy way to verify that your OFBiz download is working correctly is to start an
instance and observe that one of the non-password protected Applications is operational. The
OFBiz e-commerce Application, a fully-featured e-commerce website store, is a robust and
demanding OFBiz Application. Running the e-commerce Application demonstrates and exercises
many core OFBiz features including, but not limited to, successful operations of the following:

ff OFBiz Entity engine

ff OFBiz Service engine

ff Integrated web server (Apache Tomcat)

ff Integrated Java servlet container (Apache Catalina/Tomcat)

ff Network connectivity

ff Web browser UI compliance

There's more...
If the main e-commerce web page is displayed and looks similar to that shown above then
you may be confident that at least part of OFBiz is working correctly. This, however, should be
considered simply the starting point.

SSL verification
It is entirely possible that the HTTP listener may be working, but secure URLs using the HTTPS
protocol may not be. To verify that the Secure Sockets Layer (SSL) encryption works and that
OFBiz is listening for web requests on the secure HTTPS configured port, navigate to the OFBiz
WebTools main landing page and attempt to access any of the menu selections provided.

Getting ready
Aside from starting up an instance of OFBiz, there are no special prerequisites necessary to
test OFBiz SSL support.

How to do it...
OFBiz SSL support can be tested by following these steps:

1.	 From any compliant web browser, enter the URL of an OFBiz password-protected
Application. For example, enter the URL of the WebTools Application: http://
localhost:8080/webtools

Chapter 1

23

2.	 The WebTools Application has a main landing web page as shown below. This
web page is not password-protected. In order to access the protected WebTools
applications, you must select the Login link on this main landing page as shown in
the following:

3.	 When presented with the WebTools login screen, login using the default username of
admin and default password of ofbiz. This HTML login form should look something
like the following:

Getting Started

24

4.	 Successful login will bring up the protected portion of the WebTools Application UI.
Observe that you are able to see the main web page as shown here:

How it works...
The SSL protocol implementation is an integral part of the OFBiz project. Out-of-the-box,
OFBiz is configured to use the HTTPS protocol running on port 8443 to support SSL. All
password-protected portions of the project use SSL keys and encryption to secure the
transfer and storage of sensitive information.

OFBiz comes with the necessary SSL certificate installed to support a generic web browser
to web server SSL environment. By accessing password-protected web pages such as
the WebTools main menu, you effectively are exercising the built-in support for the
SSL implementation.

Note: HTTPS, SSL and SSL encryption are no
substitutes for a firewall and a well thought-out
security policy.

Chapter 1

25

There's more...
WebTools, like all OFBiz backend Applications, has been configured to require authentication
prior to access. The default OFBiz authentication process forces the user to access any
SSL-secured URL through the HTTPS port. The astute observer may have noticed that
WebTools was initially accessed using the HTTP protocol on port 8080. If OFBiz is working
correctly, it will automatically make the translation from HTTP port 8080 to HTTPS port 8443.

See also
For more on security, refer to Chapter 7, OFBiz Security.

Running JUnit tests
Beyond simple "is it running ok?" types of tests, OFBiz comes with many JUnit tests that you
can run. JUnit exercises very specific processing logic within OFBiz, and success or failure of
any particular JUnit test is not an indication of OFBiz overall health.

Getting ready
The following must be performed first of all:

1.	 If OFBiz is running, shut it down by running the shutdown script provided or by killing
the Java process from the command line.

2.	 Navigate to the OFBiz install directory.

How to do it...
JUnit tests can be run in the following way:

1.	 Open a command line in the OFBiz install directory.

2.	 Run the following ANT command to start all available JUnit tests, ant run-tests

3.	 Observe the results by reviewing the OFBiz ofbiz.log logfile located in
the ~runtime/logs directory or the output on the command line from which
the JUnit test command was invoked.

Getting Started

26

How it works...
Out-of-the-box OFBiz comes complete with many JUnit test scenarios embedded within the
code base. The provided ANT target directives, when invoked, run through all available tests,
redirecting results to the primary OFBiz logfile located in the ~runtime/logs/ofbiz.log file.

There's more...
JUnit test results are intermixed with standard logfile text. A sample of what you may expect
to see after running all tests from the command line is extracted from the OFBiz logfile
(~runtime/logs/ofbiz.log) and shown here:

Locating an OFBiz Component
The OFBiz project is organized into groups of directories and files where some directories
have a special meaning and are called "Components". To find an OFBiz Component is to
find the top-level directory where the Component begins and to locate the configuration file
ofbiz-component.xml used to configure that Component.

Note: OFBiz is flexible enough to support an unlimited number of
Components. To enable this feature, OFBiz has its own Component
configuration files starting with the file located in ~framework/base/
config/component-load.xml. This recipe assumes you are looking for
and wish to navigate to the top-level location of an existing Component as
configured in this and other OFBiz Component configuration settings files.

Getting ready
Before the Component can be located, the following prerequisites should be met:

1.	 Determine the name of the Component you are searching for.

2.	 Make sure you have the Component name and not the Application name.

Chapter 1

27

3.	 If you know which parent grouping the Component falls into, make note of this
directory name. The basic OFBiz directory layout is shown here:

How to do it...
To locate the Component, perform the following:

1.	 Navigate to the OFBiz install directory.

2.	 If you know the parent directory name for this Component, navigate to that directory.

3.	 If you do not know the name of the parent Component directory, search each of the
OFBiz Component parent directories for the directory with the same name as the
Component name you are looking for.

4.	 When you find a match, you will have located your Component.

Note: This technique only works if you have not altered any of the Component
configuration files discussed later. Because OFBiz may be configured to
support any number of Components located anywhere within the code base,
a Component's name and a Component's location are only guaranteed to be
the same out-of-the-box. This guarantee is predicated on nothing more than
best practices. Take note that under normal circumstances, the Component's
name and top-level directory name most probably will be the same.

Getting Started

28

How it works...
The OFBiz distribution is organized into directories and files. At the highest level is the
installation or install directory. This directory contains all the files needed by OFBiz to
start up and run. It also contains the five parent Component directories:

ff The framework directory contains all the Components necessary to run OFBiz. Many
of the other Components have dependencies on Components in this directory. This
directory is loaded first during system initialization.

ff The applications directory contains Components that represent many of the
business related Applications packaged with OFBiz. For example, you will find the
manufacturing, content management, and order management Components and
associated Applications in this directory.

ff The specialpurpose directory contains yet more OFBiz packaged Applications
and Components.

ff The themes directory contains the resources necessary to implement one or more
OFBiz themes.

ff The hot-deploy directory is intended for the placement of new Components and
Applications. Out-of-the-box it is empty, containing no OFBiz artifacts.

These parent directories are not Components in and of themselves, but rather are directories
that group similar Components. Organizing Components this way makes it easier for humans
to find specific Components. It also allows OFBiz to load Components in a pre-set order.

A master list of all Components within an OFBiz installation is found in the ~framework/
base/config/component-load.xml file. This file informs OFBiz which parent Component
directories should be searched for the parent Component directory configuration file:
component-load.xml. Within each component-load.xml file are found directives
instructing OFBiz on which Components to load per parent Component directory.

There's more...
You may exclude an entire parent Component directory and all its contained Components
from being loaded by commenting out directives in the ~framework/base/config/
component-load.xml. You may also exclude individual Components from loading by
commenting the appropriate component-load.xml for each individual parent Component.

Locating an OFBiz Application
An OFBiz "Application" is a set of directories and files that are located within a Component.
Referred to as "webapps", an OFBiz Application may contain all the artifacts necessary to
deliver a web browser-compliant UI. As a testament to its flexibility, an OFBiz instance and any
OFBiz Component may include an unlimited number of webapps.

Chapter 1

29

An OFBiz Application is defined by the presence of the webapp directory located just beneath
a containing Component's top-level directory, and may include one or more of the following
files and directories:

ff A single WEB-INF directory

ff Beneath the WEB-INF directory, find a web.xml deployment descriptor file

ff Also beneath the WEB-INF directory, a controller.xml controller servlet
configuration file may be present

ff Many other resources may be present depending on the needs of the Application

Getting ready
To locate an Application, firstly the following should be taken care of:

1.	 Determine the name of the Application you are searching for.

2.	 Try to ascertain the Component in which this Application is located An OFBiz
Component may have one or more OFBiz Applications within it.

How to do it...
To locate the Application, perform the following:

1.	 Navigate to the OFBiz install directory.

2.	 If you know the name of the Component in which this Application is located, navigate
to that Component's top-level directory.

3.	 Open the ofbiz-component.xml file in the top-level Component directory. In this
file, locate any XML elements starting with a webapp tag. There may be many of
these declarations within a single ofbiz-component.xml file. Each declaration
represents the configuration of a single OFBiz web Application. For example, the
following is taken from the OFBiz e-commerce Component. Two OFBiz Applications,
the "eccomerce" and the "ecomclone", are configured. The top-level directory
location of each Component is given by the location attribute value for the
webapp element:
<webapp name="ecommerce"
 title="eCommerce"
 server="default-server"
 location="webapp/ecommerce"
 mount-point="/"
 app-bar-display="false"/>
<webapp name="ecomclone"

www.allitebooks.com

http://www.allitebooks.org

Getting Started

30

 title="eCommerce Clone"
 server="default-server"
 location="webapp/ecomclone"
 mount-point="/ecomclone"
 app-bar-display="false"/>

How it works...
OFBiz Applications are configured for each Component using the ofbiz-component.xml
file. If one or more webapp elements are present in an ofbiz-component.xml file, this is a
trigger to OFBiz that there are Applications for this Component. OFBiz will attempt to load all
Component applications in the order defined in the ofbiz-component.xml file at
system startup.

There's more...
To mount an Application as the "root" Application, set the mount-point attribute value
to "/" as shown earlier. This will change the default URL for this webapp from http://
localhost:8080/name to http://localhost:8080/. Only one webapp may be set to
the root mount-point per OFBiz instance.

2
Java Development

In this chapter, we will cover

ff CLASSPATH basics

ff Java file naming conventions

ff Creating OFBiz Java Events

ff Creating OFBiz Java Services

ff Debugging

ff Calling an OFBiz Service from a Java program

ff Java programs and request parameters

ff Error messages: best practices

ff Using properties files

ff Sending e-mail

ff Manipulating XML files

Note: This chapter is not intended to instruct Java developers planning
to commit code back to the OFBiz project. Such code is subject to the
OFBiz Contributors Best Practices document found at:
http://cwiki.apache.org/confluence/x/JIB2

Java Development

32

Introduction
Before you can write effective OFBiz Java code, you need to understand some basics about
the environment in which OFBiz operates. In the previous chapter, we learned that OFBiz
executes within a JVM. That JVM, in turn, hosts a Java servlet container. The servlet container
provides all the basic programming infrastructure necessary to build and run OFBiz web
applications (sometimes referred to as "webapps").

Out-of-the-box, bundled with the distribution, OFBiz embeds the Tomcat
servlet container, http://apache.tomcat.org. It is possible to
implement other servlet containers as well as run OFBiz within a Java
application server such as JBoss, WebSphere®, or WebLogic®.

In this book, we first describe what it takes to develop OFBiz webapps. Traditionally, writing
Java web applications has meant writing entire servlets. When writing OFBiz webapps, you
typically do not write an entire servlet. Instead, you create one or more Java methods that are
invoked by the OFBiz controller servlet either directly as an "Event" or "Service", or indirectly by
another Java program.

Running inside a servlet container means that your OFBiz Java code will have access to all the
resources necessary to communicate with client browsers; any other OFBiz Service, tool, or
artifact on the runtime CLASSPATH; and effectively and efficiently interact with the database.

Beyond writing OFBiz Java-based Events and Services, it is also possible to write entirely new
Java classes that may be placed on the CLASSPATH as desired. If placed on the CLASSPATH
before OFBiz is restarted, these classes will automatically be loaded and available for use.

Java runtime CLASSPATH
The Java CLASSPATH is an environment variable containing a list of resources (for example:
Java class files, JAR and ZIP archive files) used during program execution. Within the OFBiz
environment, the CLASSPATH may become quite complex with hundreds of entries. Therefore,
it is comforting to know that OFBiz makes it easy for us to manipulate the CLASSPATH and add
new resources.

Chapter 2

33

How to do it...
Resources can be added to the runtime CLASSPATH by following these steps:

1.	 Put that resource in any directory that is already listed in the CLASSPATH. Examples
of default CLASSPATH directory locations include:
~framework/base/lib

or
~framework/webapp/lib

(Where "~" represents the fully qualified directory path of the OFBiz installation
root location.)

2.	 Restart OFBiz.

How it works...
OFBiz bootstraps itself by loading Java class files for execution based on initial CLASSPATH
entries. As it starts up, it traverses each Component, building out the CLASSPATH and
dynamically loading necessary class files based on the established Component directory
layout and on each Component's ofbiz-component.xml file. By placing a new class or JAR
file in an existing CLASSPATH directory, OFBiz will find and load the resource automatically as
part of the normal startup process.

Java compile time CLASSPATH
The Java compiler uses information on the CLASSPATH to resolve references to Java classes
that are present within your OFBiz program. Since there may be many class references
within your Java code, OFBiz makes it easy to add classes and JAR files to the compile time
CLASSPATH by providing the ANT tool.

Getting ready
Open the build.xml file in the Component that contains your Java source.

How to do it...
To add classes and JAR files to the compile time CLASSPATH, do as follows:

1.	 Locate the section within the build.xml file named local.class.path

Java Development

34

2.	 Add your new JAR file or Java class file location within the path directive as shown in
the following:

3.	 Save and close the file.

4.	 Invoke ANT to build your program with the new CLASSPATH entries.

How it works...
OFBiz provides a convenient tool in a pre-configured ANT build.xml file to manage the
OFBiz compile time CLASSPATH. To add new compile time entries, simply modify the
ANT build.xml file.

Naming conventions
Just as there are OFBiz conventions that cover Component and Application, directory and
file layout, Java file-naming best practices have been established to help organize and
locate resources.

How to do it...
The following are the OFBiz naming conventions:

ff Use Java CamelCase when picking a name for your Java class file or your method.
CamelCase names are names in which compound words, such as "My Application",
are joined together without spaces to form "MyApplication".

ff Class files that contain OFBiz Services have a suffix of "Services.java". For
example, a Java class file containing Services could be called "MyServices.java".
Only place OFBiz Services inside a file with the "Services.java" suffix.

Chapter 2

35

ff Class files that contain OFBiz Events have a suffix of "Events.java". Only place
OFBiz Events inside a file with the "Events.java" suffix.

ff Other Java class files that you may see have suffixes such as "Worker.java" or
"Helper.Java". These files should not contain OFBiz Events or Services.

ff All OFBiz class files have packaging notation that maps to the directory hierarchy
relative to the src directory in the containing Component.

Writing OFBiz Java Events
Writing an OFBiz Java Event is as simple as writing a Java method and then configuring OFBiz
to be able to find the Event on the Java CLASSPATH. When would you want to write a Java
Event? Any time you want to process input from a web application, such as the submission
of an HTML form entry or as a result of a URL request, an Event may be coded to accept the
HTTP/HTTPS request and return a response object to the browser.

When writing your first Event, it is often easier to add your Event's method to an existing Java
class file. Any existing class file will work. Remember that the OFBiz convention is to add an
"Events.java" suffix to class files containing Events.

Getting ready
To start writing Events, the following have to be taken care of:

1.	 Decide which Component you want your OFBiz Event to run in.

2.	 Check for Java build/compile dependencies in the build.xml file for every
Component you selected in step 1.

3.	 Create your controller.xml file request-mapping entry.

4.	 Create your href or HTML form to call your Event.

5.	 Navigate to the OFBiz Component's source directory src where you wish to run your
new Event.

How to do it...
Now, you can write new Events by following these steps:

1.	 Open the Java class file using a text editor of your choosing.

2.	 Create the OFBiz Java Event method as shown
public static String myEvent(HttpServletRequest request,
HttpServletResponse response)
{
	 // method body goes here
	 return "request-map response name value";
}

Java Development

36

3.	 Add code to the body of the method.

4.	 Save the class file.

5.	 Navigate to the root directory in which your Event source code is located.

6.	 Run the Component's ANT build script from the command line.

7.	 Observe that there are no build or compile errors. If there are, return to step 1.

8.	 Restart OFBiz.

9.	 Test by invoking the URL or form from a web page.

How it works...
The following figure depicts an OFBiz Java Event:

Referring to the figure, an OFBiz Event gets invoked as follows:

1.	 A Browser or other requestor initiates an HTTP or HTTPS request message.

2.	 The Controller Servlet intercepts that request.

3.	 The Controller Servlet determines processing control based on the request-map
entry in the controller.xml file.

4.	 Program control is passed to the Event where it executes its program logic.

5.	 The Event returns program control to OFBiz and either directly passes the response
object to the browser or allows OFBiz to build the response, including any HTML web
page rendering as configured in the controller.xml file.

Chapter 2

37

There's more...
An OFBiz Event must have the following Java method modifiers:

Java method modifiers "public", "static"
Return type String

Method name Identical to the Event name as called in the
controller.xml file *

Parameter list HttpServletRequest request, HttpServletResponse
response **

* For example, if the method name is "myEvent" (as shown previously) and this method is in the
org.ofbiz.MyEvents package, then the controller.xml request-map entry would look
something like the following:

<request-map uri="myEventURI">
 <event type="java" path="org.ofbiz.MyEvents"
 invoke="myEvent" />
 <!--Other attributes removed for readability -->
</request-map>

** The HttpServletRequest and HttpServletResponse variable may be named anything.
Convention has them labeled as "request" and "response" respectively.

An OFBiz Event may have many return values, where each value represents a directive
instructing the Controller Servlet on what to do upon method return. For example, if we had a
method with the following code:

return "success";
return "error";
return "nice_try";

Then we might have a controller.xml file with the following response names configured:

<response-name="success" type="view" value="some_view" />
<response-name="error" type="view" value="some_view_error_page" />
<response-name="nice_try" type="request-redirect"
 value="myEventURI" />
<response-name="redo" type="view-last" value="myEventURI" />

Java Development

38

There may be many OFBiz Events with the same method name and package declaration
on the CLASSPATH. In that case, OFBiz will use the last one found and pass control to that
method. You may also have many request-maps defined with the same URI and different
Event mappings. In that case, OFBiz will use the last URI found (as it sequentially parses the
controller.xml file from top to bottom) as the target mapping.

Changes to the controller.xml file are immediate and do not require the OFBiz instance
to be restarted.

When an OFBiz Event returns from processing, it passes execution control back to OFBiz,
which then uses the response-map name/value pairs in controller.xml to determine
what to do next. Usually a "view" or web page is the next step in processing. Views are built
dynamically by OFBiz based on view-mapping settings in the controller.xml file.

Sometimes, the next processing step is not to create a view, but rather to perform some other
OFBiz Event processing. The following table shows response type values and how they may be
used to control processing flow:

Response type Usage
none Allow the Event to process the return view. This is really useful when you

want to stream content directly to the browser.
request Forward control to another request-map defined in the controller.

xml file.
request-
redirect

A servlet redirect to pass control to another request-map defined in the
controller.xml file.

view Create the view (web page) as defined by this view-mapping and return
control to the browser.

view-last Create the view-last web page and return control to the browser.
If the last viewed web page has been set in the session attributes
(_LAST_VIEW_NAME_) then this view will return to the browser.

view-home Create the view_home view and return control to the browser.

You may override the response mapping at any time by placing the URL of the desired target
override on the calling URL. For example, if you wish to override the configured behavior for
the following URL to always invoke the newRequest request-map, write the following:

<a href="<@ofbizUrl>callEvent/newRequest</@ofbizUrl>">
 Click Here to Call Me!

Chapter 2

39

Writing OFBiz Java Services
OFBiz "Services" are reusable code snippets implemented as Java methods. What makes
using OFBiz Services so compelling? Unlike OFBiz Events or servlets, the Service context is
controlled by OFBiz, thus relieving the programmer from having to do such mundane tasks as
managing transactions, handling retries, and validating input and output values. Once written,
a Service may be invoked as many times and by as many Service consumers as required.

Getting ready
To start writing Services, we must first perform the following:

1.	 Navigate to the Component's source directory containing the Java class file to be
used for the new Service method.

2.	 Check for any Java class or JAR file dependencies in the build.xml file.

3.	 To test your Service, create a web page with a form to call the new Service.

4.	 Create an entry in the controller.xml file to allow access to your Service.

5.	 Navigate to the OFBiz Component where the Java class file containing the source for
your Event exists.

6.	 Open the Java class file using a text editor of your choosing.

How to do it...
Creating a Service can be done by performing the following simple steps:

1.	 Create the OFBiz Java Service method declaration.

2.	 Add the required code and save the file.

3.	 Run the Component's ANT build script.

4.	 Create the Service definition.

5.	 Start up OFBiz. (Restart if already running).

6.	 Test by invoking the URL from a web page or calling from another Service or Event.

www.allitebooks.com

http://www.allitebooks.org

Java Development

40

How it works...
Services are Java methods that are invoked by the OFBiz Service Engine as shown.
Consumers of OFBiz Services may be web browsers, other OFBiz Events or Services,
and even remote systems (for example SOAP-based messaging requests).

There's more...
For a Java method to be an OFBiz Service, it must have a method declaration as follows:

public static Map myService(DispatchContext dctx, Map context){
 // The method's body contains the logic that
 // makes up a Service's processing. This is the most
 // simple method you could devise. While a valid OFBiz Service
 // this method does nothing.
 Map result = ServiceUtil.returnSuccess();
 return result;
}

Where the method declaration has the following required modifiers:

Java method modifiers "public", "static"
Return type Map

Method name Identical to the Service name as configured in the Service's
configuration file

Parameter list DispatchContext dctx, Map context *
* The DispatchContext and context objects may be named anything. Convention has them
named as dctx and context respectively.

Chapter 2

41

For a Service to be consumed, it must be "registered" with OFBiz and have a "Service
definition". An example Service definition might look like the following:

<service name="myService" engine="java"
 location="org.ofbiz.myServices" invoke="myService">
 <description>
 A Service that does nothing. It takes no inputs and returns
 nothing
 </description>
</service>

To "register" a Service, OFBiz must be made aware of the Service definition. Service definitions
are entries in an OFBiz XML file designated as containing one or more Service definitions.
OFBiz is alerted to the existence of all Service definition files by one or more entries in an
ofbiz-component.xml file as shown:

<service-resource type="model" loader="main"
 location="servicedef/myServices.xml"/>

While there is only one ofbiz-component.xml file per Component, any single OFBiz
Component may have any number of files containing Service definitions. There is no limit to
the number of Service or Service definitions any single instance of OFBiz can support.

For a quick test of an OFBiz Service, call the Service directly from a web page. To make a test
invocation of an OFBiz Service from a web page:

1.	 Create a controller.xml request-map entry for the Service.

For example, to call a Service called myService, the controller.xml file may
have an entry such as:
<request-map uri="myService">
 <security https="false" auth="false"/>
 <!-- invoke points to the Service name as defined in the
 Service Definition -->
 <event type="service" invoke="myService"/>
 <response name="success" type="view" value="main"/>
 <response name="error" type="view" value="error"/>
</request-map>

2.	 Create an HTML form or href request for the Service's URI as configured in the
controller.xml, as follows:
<form action ="<@ofbizUrl>myService</@ofbizUrl>" method="post">
 <input type="hidden" name="param1" value="I_am_hidden">
</form>
<a href="<@ofbizUrl>myService¶m1=I_am_hidden</@ofbizUrl>

Java Development

42

3.	 Invoke the HTML form or href link from the web page and observe the results. By
putting debug statements in your Service, you should see them log to the console
window if your Service logic is being executed.

See also
For more information on the syntax of a Service definition and individual Service definition
elements, please see the official OFBiz Service Engine Guide on the OFBiz Wiki:

https://cwiki.apache.org/confluence/display/OFBTECH/
Service+Engine+Guide

Debugging using the logfile
A handy debugging technique available to any OFBiz Java programmer at any time is to write
messages to the OFBiz console log from within your program.

Getting ready
Firstly, ensure the following:

1.	 Make sure to import the OFBiz org.ofbiz.base.util.Debug utility into your
Java program.

2.	 To ensure that your logfile entry is properly marked with the class name and line
number from where it was called, check that the Java constant named module is
defined within your class file as shown below:
public static final String module = MyClass.class.getName();

3.	 If you have turned off console window logging (the default out-of-the-box setting),
make sure to return the startup file to its original setting to allow logging to the
console window.

How to do it...
To always write to the console window, call the OFBiz Debug utility as shown:

import org.ofbiz.base.util.Debug;
// Code intentionally left out
Debug.log("This is an error message", module);
//Or, if you don't want to write to using the Logger
System.out.println("This is an error message");

Chapter 2

43

How it works...
A call to the org.ofbiz.base.util.Debug method as shown earlier will always write a
message to both the error logfile, ofbiz.log and the console window, if it is open.

To write log messages under other conditions, consult the log4J settings and pick the
appropriate Debug utility method. For example, to write to the logfile and/or console window
only when "Fatal" messages are turned on, you might have a statement such as the following
in your code:

Debug.logFatal("Some message", module);

The OFBiz logging facility is an integration of the Apache log4J Java program logging toolkit:
http://logging.apache.org/log4j/.

Toggling log settings, that is turning them on or off, is easily accomplished using the WebTools
Logging tab, Log Configuration utility.

Calling OFBiz Services from a Java program
Calling an existing OFBiz Service from another OFBiz method is very simple.

Getting ready
Prepare any necessary context parameters. To call an OFBiz Service, you may need to pass
one or more parameters (called “IN” or “INOUT” parameters) using a Java Map structure.
Consult the WebTools Service List for more information on any particular Service’s required
and optional input and/or output parameters.

How to do it...
The following code snippet highlights the necessary Java code to call Services synchronously,
asynchronously, and as scheduled processes:

Note: Only enough code necessary to illustrate Service invocation is shown.

import org.ofbiz.service.DispatchContext;
import org.ofbiz.service.GenericServiceException;
import org.ofbiz.service.LocalDispatcher;
import org.ofbiz.service.ServiceUtil;
// For an OFBiz Service, get the service dispatcher as follows
LocalDispatcher dispatcher = dctx.getDispatcher();
// For an OFBiz Event, get the service dispatcher as follows
LocalDispatcher dispatcher =
 (LocalDispatcher) request.getAttribute("dispatcher");

int param1 = 0;

Java Development

44

String param2 = "Param 2";
Map input = UtilMisc.toMap("param1", new Integer(param1),
 "param2", param2);
try {
 // Example of a synchronous Service call. Returns immediately,
 // and the Service is invoked and runs in parallel
 // with the calling program
 Map syncResults = dispatcher.runSync("someService", input);	
 // Example of an asynchronous Service call. Returns immediately,
 // but the Service may not be run until some time in the future
 Map asyncResults = dispatcher.runAsync("someService", input);
 // Example of calling a Service to run synchronously and ignore
 // the result.
 Map syncResultsIgnore = dispatcher.runSyncIgnore("someService",
 input);
 // You may use the dispatcher to schedule a Service
 long startTime = (new Date()). getTime();
 dispatcher.schedule("someService", input, startTime);
}
catch (GenericServiceException e) {
 Debug.logError(e, module);
 return ServiceUtil.returnError(e.getMessage());
}

How it works...
To set your program up to call an OFBiz Service, you must first instantiate a
LocalDispatcher object. This Java object will provide all the necessary environmental
information required to invoke a Service.

When you invoke one of the LocalDispatcher object's Service invocation methods, you
are telling the LocalDispatcher to pass program control to the OFBiz "Service dispatcher",
which in turn passes control to the OFBiz "Service engine" configured in the Service definition
for the target Service. The Service engine invokes the target Service and passes context
information, including all configured IN parameters, to the Service. When the target Service
finishes processing, or has been scheduled to run, in the case of scheduled and asynchronous
requests, control is passed back to the calling program.

If an error occurs during the Service's processing or during the passing of context information
(for example, on parameter validation), a GenericServiceException is thrown by the
Service engine and control returns to the catch block of the calling program.

Chapter 2

45

There's more...
You can use the ModelService object to make your job easier when calling Services. For
example, if you have many parameters to pass to a Service and they are already in a Java
Map (perhaps they were passed in from another Service), instead of moving them one-by-one
to the required Service input Map structure, you can use knowledge of the Service's model to
do this all in one statement.

// You first need to get the Service's model
ModelService modelService = null;
try {
 modelService =
 dispatcher.getDispatchContext().getModelService("myService");
}
catch (GenericServiceException e) {
 // Error process left out
}
Map persistMap = modelService.makeValid(paramMap,
 ModelService.IN_PARAM);
persistMap.put("userLogin", userLogin);
// Add another parameter to the Map
try {
 // Now call the new Service with the persistMap created above
 Map persistResult = dispatcher.runSync("myService1", persistMap);

As OFBiz manages Service transaction needs, the calling program may pass transaction
timeout indicators. Similarly, the calling program may instruct the Service engine to wrap the
target Service in a separate transaction.

// Transaction timeout is in milliseconds
// true = wrap this Service invocation in a separate transaction
Map result = dispatcher.runSync("myService", contextMap, 1000, true);

Getting and validating request parameters
(Events)

Very often, you write OFBiz Events so as to have complete control over HTTP/HTTPS request
parameters. Getting those parameters out of the HttpServletRequest object and into your
program is simplified when using OFBiz tools.

Java Development

46

How to do it...
The following code snippet demonstrates taking HttpServletRequest object request
parameters from the request and placing them in local variables for processing:

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import org.ofbiz.base.util.UtilHttp;
import org.ofbiz.base.util.UtilValidate

public static String myEvent(HttpServletRequest request,
 HttpServletResponse response) {
 // Some code up here
 Map httpParams = UtilHttp.getParameterMap(request);
 // use the OFBiz utility to make this easy
 String param1 = (String) httpParams.get("param1");
 // Some Validation Examples follow
 if(UtilValidate.isEmpty((String) httpParams.get("param2")) {
 return "error";
 }
 if(UtilValidate.isNotEmpty((String) httpParams.get("param3")) {
 return "error";
 }
 if(UtilValidate.isEmail((String) httpParams.get("param4")) {
 String emailAddr = (String) httpParams.get("param4"));
 // do some processing here
 }
 return "success";
}

How it works...
The HttpServletRequest object is passed to the OFBiz Event (Java method) as an input
parameter where it may be retrieved directly using HttpServletRequest object API calls.
To make the programmer's job even easier, OFBiz provides a utility that allows for moving all
the request parameters into a local Java Map structure as shown earlier.

There's more...
For a full accounting of the HttpServletRequest object, please see the Java servlet API:

http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/http/
HttpServletRequest.html

Chapter 2

47

For more information on available org.ofbiz.util.UtilValidate methods, please see
the OFBiz Javadocs available online at:

http://ci.apache.org/projects/ofbiz/site/javadocs/

Getting and validating request parameters
(Services)

The following Java code snippet demonstrates first retrieving two request parameters (param1
and param2) from the context Map passed to every OFBiz Service. Note that all request
parameters start out life as strings of characters. The OFBiz Service engine will automatically
convert request values to the appropriate type based on Service definition configuration.

How to do it...
The following code shows you how to retrieve parameters:

import java.util.*;
import org.ofbiz.service.ServiceUtil;
import org.ofbiz.base.util.UtilHttp;
import org.ofbiz.base.util.UtilValidate

public static Map myService(DispatchContext dctx, Map context){

 // Some code here
 // First, just get a request parameter from the context
 // Note: this must already be configured as part of the
 // Service definitions INPUT parameters
 String param1 = (String) context.get("param1");
 Integer param2 = (Integer) context.get("param2);

 // You may use the UtilValidate methods to validate these.
 if(UtilValidate.isNotEmpty(param1)) {
 return ServiceUtil.returnError("ERROR Message here!");
 // Use OFBiz
 }
 Map result = ServiceUtil.returnSuccess();
 result.put("value1", "this is a value");
 return result;
}

Java Development

48

How it works...
For OFBiz Services, the context in which the Service operates is controlled by OFBiz. The only
HTTP/HTTPS request parameters available to the Service are those that have been defined as
IN parameters within the Service definition. To access any values that have been defined in
Service definition, including request parameters, retrieve the value from the context Map as
shown earlier.

Note: Request parameters are ignored and not passed to a Service if the
Service definition does not include an attribute entry with the request
parameter's name and request parameter's mode="IN" or mode="INOUT".
Regardless of the contents of the map passed when a Service returns
from execution, Service parameters not defined as mode="OUT" or
mode="INOUT" are not made available to subsequent Service context
consumers. In other words, if you have values that you would want returned
to the context as a result of your Service's processing, declare them as
mode="OUT" or mode="INOUT" in the Service definition.

Managing error messages
HttpServletRequest object's attributes are used to pass error messages from Java
programs to other OFBiz resources, including web pages. By convention, error messages
are passed as either a single HttpServletRequest attribute name/value pair (where
the name is _ERROR_MESSAGE_) or as a list of messages (where the name of the list is
_ERROR_MESSAGE_LIST_). All HttpServletRequest object attributes are assumed
to be Java Strings.

How to do it...
While you may pass error messages in any fashion you like, the consolidation of error
messages and message lists for consumption by other OFBiz resources is made easier
if you follow some simple rules:

1.	 From within an Event, set the appropriate HttpServletRequest attribute
as shown:
request.setAttribute("_ERROR_MESSAGE_",
 "Error: This is an error message");
// Or pass a list of error messages
List myErrors = UtilMisc.toList("This is an error message",
 "This is another error message");
request.setAttribute("_ERROR_MESSAGE_LIST_", myErrors);

Chapter 2

49

2.	 From within a Service, you have several options. Best practices suggest never to
place the error messages within the HttpServletRequest object directly. Rather,
call the appropriate org.ofbiz.Service.ServiceUtil method as shown below:
// Don't forget to import org.ofbiz.service.ServiceUtil
// For a successful return from a Service
// with no error messages to report
return ServiceUtil.returnSuccess();
// For error messages that have not be localized
// or that you want passed as is:
ServiceUtil.returnError("This is an error");
// For a list of error messages that you want passed as is
// back to the context
List myErrorList = UtilMisc.toList("This is an error message",
 "This is another error message");
ServiceUtil.returnError(myErrorList);
// For error messages that have been localized:
ServiceUtil.returnError(UtilProperties.getMessage(resource_error,
 "SomeErrorMessage",locale));
// For error messages from an OFBiz exception objects,
// in this case "e"
return ServiceUtil.returnError(e.getMessage());

3.	 To access error messages as a result of a call to an OFBiz Service:
import org.ofbiz.service.ModelService;
import org.ofbiz.service.ServiceUtil;
Map result = dispatcher.runSync("someService", inputParameterMap);
// Service recalls return response messages.
// A response message in turn may contain an error message.
// To get the error message from the results of a Service call:
if (ModelService.RESPOND_ERROR.equals(
 (String) result.get(ModelService.RESPONSE_MESSAGE))) {
 Map<String, Object> messageMap =
 UtilMisc.toMap("errorMessage",
 result.get(ModelService.ERROR_MESSAGE));
}

There's more...
If you are wondering how errors reported by Java programs and set in the
HttpServletRequest object make their way to web pages where they are consumed by
browsers and others, then a review of the following FreeMarker template might be in order:

<#if requestAttributes.errorMessageList?has_content>
 <#assign errorMessageList=requestAttributes.errorMessageList>

www.allitebooks.com

http://www.allitebooks.org

Java Development

50

</#if>
<#if requestAttributes.eventMessageList?has_content>
 <#assign eventMessageList=requestAttributes.eventMessageList>
</#if>
<#if requestAttributes.serviceValidationException?exists>
 <#assign serviceValidationException =
 requestAttributes.serviceValidationException>
</#if>
<#if requestAttributes.uiLabelMap?has_content>
 <#assign uiLabelMap = requestAttributes.uiLabelMap>
</#if>

Using Java properties files
Java properties files are a native Java mechanism for maintaining a set of persistent values,
called "properties", across invocations of the JVM. They are typically files that are persistent to
the local file system.

Properties files consist of one or more key/value pairs, very much like a Java Map structure.

How to do it...
The following code snippet demonstrates finding the value for the CommonDatabaseProblem
key from the CommonUiLabels Java property file:

import org.ofbiz.base.util.UtilProperties;
errMsg = UtilProperties.getMessage("CommonUiLabels",
 "CommonDatabaseProblem", messageMap, locale);

How it works...
OFBiz makes using Java properties files convenient and easy by loading them as resources on
the Java CLASSPATH and providing several utility methods to access file contents.

See also
Please see the OFBiz UtilProperties API:

http://ci.apache.org/projects/ofbiz/site/javadocs/

Chapter 2

51

Sending e-mail from an OFBiz Event or
Service

If you ever need to send an e-mail programmatically, OFBiz provides a number of Services
that simplify the process. In this section, we look at an example of using the basic OFBiz
sendMail Service.

Getting ready
Using the OFBiz WebTools Service Manager utility, we can see at a glance that there are
many input and output parameters that the sendMail Service may take. The only required
input parameters, however, are:

Parameter name Notes
body This is the content of the e-mail (not an attachment).
sendTo Valid e-mail address. This is the recipient of this e-mail.
subject E-mail header subject.

How to do it...
The follow example demonstrates calling the sendMail Service from an OFBiz Event. Calling
the sendMail Service from another Java program such as a servlet or Service works the
same way.

Note: The following program is for demonstration purposes only.
It will compile and run within an OFBiz instance. However, much
of the logic is hardcoded. This is intentional. Only enough code is
shown to highlight the topic. You will need to add the proper import
statements as they have been removed to conserve space.

public static String exampleSendEmail(HttpServletRequest request,
 HttpServletResponse response) {
 // Get the local Service dispatcher from the context
 // Note: Dont forget to import the org.ofbiz.service.* classes
 LocalDispatcher dispatcher =
 (LocalDispatcher) request.getAttribute("dispatcher");
 String errMsg = null;
 // The following are hardcoded as an example only
 // Your program would set these up from the context or from
 // database lookups
 String mailBody = "This is the body of my email";
 Map sendMailContext = new HashMap();

Java Development

52

 sendMailContext.put("sendTo", "me@ofbiz.org");
 sendMailContext.put("sendCC", "cc@ofbiz.org");
 sendMailContext.put("sendBcc","you@ofbiz.org");
 sendMailContext.put("sendFrom", "info@ofbiz.org");
 sendMailContext.put("subject",
 "Testing emails sent from an OFBiz Event");
 sendMailContext.put("body", mailBody);
 try {
 // Call the sendMail Service and pass the sendMailContext
 // Map object.
 // Set timeout to 360 and wrap with a new transaction
 Map<String, Object> result =
 dispatcher.runSync("sendMail", sendMailContext,360, true);
 // Note easy way to get errors when they are returned
 // from another Service
 if (ModelService.RESPOND_ERROR.equals((String)
 result.get(ModelService.RESPONSE_MESSAGE))) {
 Map<String, Object> messageMap =
 UtilMisc.toMap("errorMessage",
 result.get(ModelService.ERROR_MESSAGE));
 errMsg = "Problem sending this email";
 request.setAttribute("_ERROR_MESSAGE_", errMsg);
 return "error";
 }
 }
 catch (GenericServiceException e) {
 // For Events error messages are passed back
 Debug.logWarning(e, "", module);
 // as Request Attributes
 errMsg = "Problem with the sendMail Service call";
 request.setAttribute("_ERROR_MESSAGE_", errMsg);
 return "error";
 }
 return "success";
}

How it works...
The OFBiz framework includes an integration of the JavaMail framework. Building on top of
these facilities, OFBiz provides a number of Services, of which the sendMail Service is the
most basic, to send (and receive) e-mail messages.

sendMail, as shown earlier, is an OFBiz Service. It is always available (on the CLASSPATH) to
use at runtime. To access this Service at runtime, get the LocalDispatcher from the context
and use that object to call the OFBiz Service dispatcher service.

Chapter 2

53

There's more...
Out-of-the-box OFBiz provides a number of Services that ultimately result in a call to the
sendMail Service and e-mail being sent. The following is a list of several available Services:

Service Usage
sendCommEventAsEmail Send the e-mail and record a record in the database with the

resultant status.
sendEmailToContactList Send this e-mail to all recipients on a contact list. The contact

list is a list of e-mail recipients taken from the database.
sendMailFromScreen Creates the body content from a Screen widget. Needs the

web store/website ID in order to work.
sendMailFromUrl Takes the URL of the calling HTTP request and stuffs that into

the body of the e-mail. Useful if you want to track which web
page the e-mail request (if you have many) came from.

sendMailMultiPart Send an e-mail that has multiple MIME parts.
sendEmailDated Checks for e-mails that may have failed and resends.

See also
For the complete list, please see the WebTools Service List tool.

Handling XML files
If you ever have a requirement to manipulate XML files, whether it be as a result of an
incoming XML-RPC or a need to process a local file system XML document, OFBiz has a
number of tools that you may find useful. The following program demonstrates just some of
the many options available.

Getting ready
To use the OFBiz XML utilities, import the org.ofbiz.base.util* package.

How to do it...
The following program demonstrates creating, writing to, and reading from an XML document
using OFBiz utilities.

Java Development

54

Note: The following program is for demonstration purposes only.
It will compile and run within an OFBiz instance. However, much
of the logic is hardcoded. This is intentional. Only enough code is
shown to illustrate the handling of XML files.

 /* Don't forget to
 import org.w3c.dom.Document;
 import org.w3c.dom.Element;
 import org.xml.sax.SAXException;
 import org.ofbiz.base.util.*;
 */
public static String basicXmlExamples(HttpServletRequest
 request, HttpServletResponse response) {
 Document testDocument = null;
 // First, demonstrate making an XML document
 try {
 testDocument =
 UtilXml.makeEmptyXmlDocument("testDocumentName");
 Element testElem = testDocument.getDocumentElement();
 UtilXml.addChildElement(testElem, "FirstElement",
 testDocument);
 UtilXml.addChildElementValue(testElem,
 "FirstElement","someValue", testDocument);
 }
 catch (Exception e) {
 return "error";
 }
 String stringWithXml = null;
 // Now use OFBiz utils to make a String out of this XML Document
 try {
 stringWithXml = UtilXml.writeXmlDocument(testDocument);
 }
 catch (IOException e) {
 // Error processing removed.
 return "error";
 }
 try {
 testDocument = UtilXml.readXmlDocument(stringWithXml, false);
 // Read an XML document from String
 }
 catch (SAXException e2) {
 // Error processing removed.
 return "error";

Chapter 2

55

 }
 catch (ParserConfigurationException e2) {
 // Error processing removed in the interest of space
 return "error";
 }
 catch (IOException e2) {
 // Error processing removed in the interest of space
 return "error";
 }
 // Use some other OFBiz XML File Utilities
 // Transverses the XML document and extract values
 List<Object> errorList = FastList.newInstance();
 Element firstElement = testDocument.getDocumentElement();
 String firstElementValue =
 UtilXml.childElementValue(firstElement,"FirstElement");
 // Get child element values
 return "success";
}

How it works...
OFBiz includes a number of tools and utilities to help in managing XML documents. As long as
the tool package is on the compile time CLASSPATH, it will be available to use in processing
XML documents.

3
The User Interface

In this chapter, we shall examine the following User Interface topics:

ff Building HTML web pages using the OFBiz Screen widget tool

ff Adding actions to Screen widget definitions

ff Adding HTML (and CSS) markup within Screen widget definitions

ff Platform-specific, Tree, Menu, and Form widgets

ff Creating HTML using FreeMarker

ff Passing parameters from the Screen widget to FreeMarker

ff Writing JavaScript to pop-up a new browser window in FreeMarker

ff Calling Java methods using FreeMarker directives

ff Forcing FreeMarker to render HTML markup

ff Uploading files from FreeMarker

Introduction
Users communicate with OFBiz webapps using an off-the-shelf web browser. To build a User
Interface (UI) for an OFBiz webapp is to build one or more HTML web pages destined for
consumption by a web browser. While OFBiz provides several mechanisms for building HTML
web pages, the suggested best practice is to use the OFBiz Screen widget tool to create OFBiz
"screens". This tool takes an OFBiz Screen widget configuration as input and creates HTML
web pages referred to as "screens" as output.

The User Interface

58

How does OFBiz know which screen's Screen widget definition to use when building an HTML
web page? By using the controller's controller.xml view-mapping(s), OFBiz translates a
browser URL request to a specific screen's definition as shown:

Creating HTML web pages
Creating a new web page begins with defining an OFBiz "screen". Web page screens are
built by creating one or more Screen widget definitions used by the OFBiz screen handler to
generate HTML.

Chapter 3

59

Getting ready
Ensure you have the "screen handler" defined in the controller.xml file for your webapp
as shown here:

<handler name="screen" type="view"
 class="org.ofbiz.widget.screen.ScreenWidgetViewHandler"/>

To create a new OFBiz screen, it is often easiest to add a Screen widget definition to an
existing Screen widget definition file. These files are XML documents, usually located under
the widgets directory within a containing Component.

If you want to create a new Screen widget definition file, copy an existing file and remove all
the Screen widget definitions. Make sure you retain the XML document XSD as shown:

<screens xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation=
 "http://ofbiz.apache.org/dtds/widget-screen.xsd">

How to do it...
HTML web page screens can be created by the following steps:

1.	 Open a Screen widget definition file.

2.	 Create the Screen widget definition by adding a screen element.

3.	 Add any Screen widget actions elements. Close the actions element with an end
tag (</actions>).

4.	 Add any Screen widget widgets elements. Close the widgets element with an end
tag (</widgets>).

5.	 Save the new screen definition.

6.	 Add one or more controller.xml view-map entries that point to the Screen
widget definition.

Note: Screen definitions are effective immediately.
You do not need to restart OFBiz.

How it works...
The OFBiz screen handler takes Screen widget definitions (as pointed to using controller.
xml view-map entries) and creates HTML documents or OFBiz "screens". Screen widget
definitions are instructions to the screen handler on how to build screens by merging the
specified actions with HTML.

www.allitebooks.com

http://www.allitebooks.org

The User Interface

60

Note: Screen actions are run from the "inside" out. As you may have
any number of actions defined, so you may have any number of action
declarations embedded within other action declarations. Embedded
declarations are resolved from the deepest nested level outwards.

Screen widget definitions are contained in XML documents that, by convention, have their own
directory called the widget directory within a containing Component.

Note: Screen widget definition files may be located anywhere within the
OFBiz installation. controller.xml view-mappings uniquely identify
these files for the screen handler. Once defined, a screen's definition is
available for all OFBiz webapps regardless of the definition file's location.

Each Screen widget "definition" document has one or more Screen widget "definitions". A
definition is nothing more than an XML element with child elements and attributes that
describe how a screen is to be constructed. Each definition starts with a screen element
that has a name attribute. Following the screen element are one or more section
elements. Within section elements, there may be one or more widgets and/or actions
elements as shown:

Note: As with any well-formed XML document, comments are
indicated using the following XML comment notation: <!-- -->.
Comments are not interpreted by the screen handler.

<screen name="my_screen">
<section>
		 <actions>
			 <!--Pointer to any data preparation scripts
 go here -->
			 <!--Set any context variables here -->
		 </actions>
		 <widgets>
			 <!--Add any pointers to widgets here -->
			 <!--Add any pointers to FreeMarker template files
 here -->
		 </widgets>
</section>
</screen>

Chapter 3

61

Any widget element may contain any number of nested elements within it, including file
location pointers to other Screen, Form, Menu, and Tree widget definitions as shown:

There's more...
Sometimes, when you have a webapp that has more than one web page, it makes sense to
use multiple screens like building blocks by embedding one inside the other. This is the idea
behind the "decorator-screen" widget. The decorator-screen is a special widgets element
type that allows for the embedding of one or more Screen widget definitions within it.

The User Interface

62

For example, many times there will be multiple web pages that have the same or very similar
HTML head elements. Using a decorator-screen, you may define a single screen to act as
the "decorator" or wrapper for screens where the content may change from screen to screen.
For example, the following OFBiz screen definition uses the myDecorator decorator-screen
to wrap the main screen with a header and footer as shown:

<screen name="main">
 <section>
 <widgets>
 <!--Use this Decorator-Screen to wrap the screen named "main"
 screen -->
 <!--Since "myDecorator" is in the same file, we don't need to
 give it the full Component location -->
 <decorator-screen name="myDecorator">
 <decorator-section name="body">
 <platform-specific>
 <html>
 <html-template location=
 "component://myComponent/webapp/myWebapp/main.ftl"/>
 </html>
 </platform-specific>
 </decorator-section>
 </decorator-screen>
 </widgets>
 </section>
</screen>

<!--Heres the Screen-Decorator for the screen named "main" -->
<screen name="myDecorator">
 <section>
 <widgets>
 <platform-specific>
 <html>
 <html-template location=
 "component://myComponent/webapp/myWebapp/header.ftl"/>
 </html>
 </platform-specific>
 <!--========== Insert The Screen Named "main" Here ======== -->
 <decorator-section-include name="body" />
 <!--================ End of Body Insertion ================ -->
 <platform-specific>
 <html>
 <html-template location=
 "component://myComponent/webapp/myWebapp/footer.ftl"/>
 </html>
 </platform-specific>
 </widgets>
 </section>
</screen>

Chapter 3

63

Out-of-the-box, many OFBiz decorator-screen locations are pre-set and passed to Screen
widgets as web application context parameters similar to the following:

<decorator-screen
 name="main-decorator"
 location="${parameters.mainDecoratorLocation}">

Note: mainDecoratorLocation is defined in the servlet's deployment
descriptor file, web.xml, for this webapp as shown:
<context-param>

 <param-name>mainDecoratorLocation</param-name>

 <param-value>

 component://product/widget/catalog/CommonScreens.xml

 </param-value>

 <description>

 �The location of the main-decorator screen to use
for this webapp; referred to as a context
variable in screen def XML files

 </description>
</context-param>

"Decorator-screens" give the web screen builder a flexible way to reuse screen building blocks.
They are not required, and you may build a fully functional OFBiz webapp with nothing more
than a single Screen widget.

Adding actions to Screen widgets
Using data from a database or other source to build portions of your web page dynamically
enables efficient and effective web page creation by freeing the screen's author from
hardcoding values. To give widgets access to data sources and allow data preparation tools
to fetch required input data, widget definitions include an actions element. Within the
actions element, you may include directives to:

ff Read and set context variables

ff Make database calls directly

ff Call scripting languages such as BeanShell or Groovy

ff Call other OFBiz Services

The User Interface

64

Getting ready
Some initial preparation has to be done to add new actions, as follows:

1.	 Open a Screen widget definition file and select a screen to add an action to.

2.	 If your Screen widget definition does not have an actions element defined, add one.

How to do it...
Actions can be added by the following steps:

1.	 Add one more actions element. Each action is either a directive instructing OFBiz
to gather data directly and place that data in the screen's context, or a file location
pointer to a script file.

2.	 Close the actions element with an end tag (</actions>).

3.	 Save the file.

Note: The addition of actions to a screen definition is
immediate. You do not need to restart OFBiz.

How it works...
The OFBiz screen handler invokes the actions declarations (in the order presented) to
prepare data for merger with widgets declarations.

There's more...
To get Java properties file resources, add a directive similar to the following within the
actions element of your widget definition:

<property-map resource="CommonUiLabels" map-name="uiLabelMap"
 global="true"/>

To call a Groovy script, add an actions directive similar to the following:

<script location=
"component://myComponent/webapp/WEB-INF/actions/aGroovyScript.groovy"
/>

Chapter 3

65

To make database calls directly from within a Screen widget's actions element, use the
following actions element example—taken from the content Component's Screen widget
definition for the Showforum screen—as your guide:

<actions>
 <entity-condition list="forumMessages"
 entity-name="ContentAssocViewTo">
 <condition-list combine="and">
 <condition-expr field-name="contentIdStart"
 from-field="parameters.forumId"/>
 <condition-list combine="or">
 <condition-expr field-name="caContentAssocTypeId"
 value="PUBLISH_LINK"/>
 <condition-expr field-name="caContentAssocTypeId"
 value="RESPONSE"/>
 </condition-list>
 </condition-list>
 <order-by field-name="createdDate"/>
 </entity-condition>
</actions>

You may even call an OFBiz Service from within an OFBiz widget. For example, the following
XML snippet taken from a Screen widget definition (available out-of-the-box) calls a Service to
assemble resources for a web page:

<actions>
 <service service-name="getVisualThemeResources">
 <field-map field-name="visualThemeId"/>
 <field-map field-name="themeResources"
 from-field="layoutSettings"/>
 </service>
</actions>

HTML markup in Screen widgets
The widgets element within a Screen widget definition may contain one or more XML
statements defining an HTML markup tag. In the cases where it isn't practical to call another
widget or a FreeMarker template, you may want to insert one or more HTML directives within
the Screen widget definition.

The User Interface

66

How to do it...
Adding HTML markup is as simple as the following:

1.	 Within any widgets element, add one or more XML statements with HTML markup.
Example XML HTML markup elements include: label, container, and link.

2.	 Close all HTML markup elements with respective end tags.

3.	 Save and close the file.

Note: The addition of HTML markup to a widget is
immediate. You do not need to restart OFBiz.

How it works..
HTML markup statements are interpreted inline (and in the order in which they are written) as
the screen handler parses the screen's definition. There is a one-to-one translation between
the XML-wrapped HTML markup and the target HTML output.

There's more...
The following table lists some commonly used HTML and the equivalent XML statements:

Types HTML XML
Plain text Here IS Some Text <label text="Here IS Some

Text"/>

Markup tags <h1></h1>

<p></p>

<label style="h1"></label>

<label style="p"> </label>

DIVs <div> </div> <container></container>

HTML
hyperlink

Click Me!

<link target="a URL"
text="Click Me!"/>

CSS styling in Screen widgets
You may add CSS styling markup (div and class directives) directly to widget XML
statements by using the HTML markup tags as described.

Chapter 3

67

How to do it...
CSS styling markup can be added simply by following these steps:

1.	 Within any widgets element, add one or more XML statements with HTML
and CSS markup.

2.	 Close all HTML markup elements with appropriate end tags.

3.	 Save and close the file.

How it works...
HTML CSS directives placed within the widgets element of a screen definition are translated
into HTML based on conversions built-in to the OFBiz screen handler and Screen widget
screen generation tool. Several common HTML elements may be specified directly within the
Screen widget definition or on a screenlet's element in this way.

There's more...
To instruct the Screen widget to create a web page with the following HTML and CSS markup:

<div id="idA" class="classA">
 <h1>This is an image </h1>

</div>

Add the following within the widgets element of a screen definition:

<widgets>
 <container style="classA" id="idA">
 <label style="h1">This is an image</label>
 <image src="/images/img.png"
 height="40" width="40" url-mode="content"/>
 </container>
</widgets>

Note: The XML container element creates a div. The XML
style attribute is equivalent to the HTML CSS class attribute.
The XML id attribute is equivalent to the CSS id attribute. Attribute
values are names of CSS styles as found defined either locally within
a FreeMarker template or in an external CSS stylesheet file.

The User Interface

68

OFBiz also allows for portions of a Screen widget, called a "screenlet", to be defined.
Screenlets may have HTML and CSS attributes added directly to the element as shown:

<screenlet style="classA" id="idA" >
 <platform-specific>
 <html>
 <html-template location="mywebpage.ftl"/>
 </html>
 </platform-specific>
</screenlet>

Platform-specific widgets
Platform-specific widgets are used to specify HTML templates. Currently, the only HTML
template type supported are FreeMarker templates. There are two types of FreeMarker
templates supported: HTML and XSL Formatting Objects (or XSL-FO) templates with markup
to generate PDFs.

How to do it...
HTML platform-specific templates can be specified by following these steps:

1.	 Open a Screen widget definition file.

2.	 Locate a screen definition within the Screen widget definition file.

3.	 Create a platform-specific element within the widgets element. If a widgets
element does not exist, create one.

4.	 To add an HTML FreeMarker file, create an html element.

5.	 To specify a FreeMarker template with XSL-FO markup, add an xsl-fo element
beneath the platform-specific element.

6.	 Close all elements with end tags.

7.	 Save and close the file.

8.	 Test as appropriate.

Chapter 3

69

How it works...
Platform-specific widgets point to FreeMarker template files. Since any widget may be located
anywhere within an OFBiz instance, the location attribute specifies a path location relative
to an OFBiz Component. For example, the following platform-specific widget points to a
FreeMarker file located in the common Component:

<platform-specific>
 <html>
 <html-templatelocation="component://common/webcommon/login.ftl"/>
 </html>
</platform-specific>

There's more...
To instruct OFBiz to invoke the Apache Formatting Objects Processor (FOP) tool, and take
one or more FreeMarker files with XSL-FO content and transform some data, you might write a
widget specification as follows:

<xsl-fo>
 <html-template location=
 "component://common/webcommon/includes/fo/start.fo.ftl"/>
 <html-template location=
 "component://common/webcommon/includes/fo/basic-header.fo.ftl"/>
 <html-template location=
 "component://common/webcommon/includes/fo/basic-footer.fo.ftl"/>
</xsl-fo>

OFBiz Tree widgets
OFBiz Tree widgets are widgets that automatically generate HTML unordered lists (HTML ul
and li markup tags) from the specified database content and/or other XML declarations.

Tree widgets are defined in Tree widget definition files that have an XML XSD declaration as
follows. Tree widget definition files may be located anywhere within an OFBiz install:

<trees xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation=
 "http://ofbiz.apache.org/dtds/widget-tree.xsd">
</trees>

The User Interface

70

How to do it...
Tree widgets can be added by the following steps:

1.	 Create a Tree widget definition within an existing Tree widget definition file. Start with
a tree name and a root-node-name attribute. The root-node-name is a trigger
to OFBiz to create an HTML ul markup tag.

2.	 Create one or more "nodes". A tree node is created when you specify
a node element.

3.	 Create one or more "sub-nodes".

4.	 Close all node and sub-node elements.

5.	 Save the file.

6.	 Add the Tree widget to an existing Screen widget definition. For example,
<include-tree name="MyTree" />

How it works...
Tree widgets create HTML by taking the XML widget declarations and merging those
declarations with any specified database values to create the corresponding HTML. Tree
widgets build one or more HTML unordered lists (ul) with associated list tags, HTML styling,
and hyperlinks. For example:

Basic tree
XML <tree name="mytree" root-node-name="first-node" >

 <node name="first-node">
 </node>
</tree>

HTML <ul class="basic-tree">

There's more...
For example, the following screenshot shows a browser web page built from a single OFBiz
Screen widget, decorator-screen, a single embedded Tree widget, and a single embedded
FreeMarker template:

Chapter 3

71

OFBiz Menu widgets
OFBiz Menu widgets are widgets that automatically generate HTML unordered list elements
(HTML ul and li markup tags) from lists of database content or other sources. For example,
Menu widgets figure prominently in the Accounting Manager Application by generating menu
options for the main web page.

OFBiz Menu widgets are defined in XML document files containing the following XSD:

<menus xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation=
 "http://ofbiz.apache.org/dtds/widget-menu.xsd">

How to do it...
Menu widgets can be added by following these steps:

1.	 Create a Menu widget definition within an existing Menu widget definition file.

2.	 Give the Menu widget a name.

3.	 Add one or more menu-item elements as shown:
<menu name="MyMenu" title="Menu">
 <menu-item name="myMenuItem1"
 title="Menu Items 'R Us"><link="someLink2" />
 </menu-item>
 <menu-item name="myMenuItem2"
 title="Menu Items 'R Us"><link="someLink2" />
 </menu-item>
</menu>

The User Interface

72

4.	 Make sure to close all elements with end tags.

5.	 Save and close the definition file.

6.	 Add the Menu widget to an existing Screen widget definition.
For example: <include-menu name="MyMenu" />

How it works...
Similar to the Tree widget, the Menu widget creates a list of HTML unordered list elements
and associated HTML hyperlink markup based on configured XML declarations.

OFBiz Form widgets
OFBiz Form widgets are widgets that create HTML forms based on XML declarations found in
a Form widget definition file. A Form widget definition file is any XML document that has the
following XSD:

<forms xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation=
 "http://ofbiz.apache.org/dtds/widget-form.xsd">

How to do it...
Form widgets can be added by following these simple steps:

1.	 Create a Form widget definition within an existing Form widget definition file.

2.	 Give the Form widget a name.

3.	 Add one or more field elements. Be sure to close all elements with end tags.

4.	 A simple Form widget definition that creates a single HTML form with a single HTML
form <INPUT type="text"> element may be defined as follows:
<form name="MyForm" target="someTargetURL" title="MyForm" >
 <field name="Field 1"><text /> </field>
</form>

5.	 Add the Form widget to an existing Screen widget definition. For example:
<include-form name="MyForm" />

How it works...
Similar to other OFBiz widgets, the OFBiz screen handler takes Form widget XML directives
and creates HTML forms.

Chapter 3

73

There's more..
HTML forms have many variations. The following lists some FORM widget field elements with
equivalent HTML renderings. The same Screen widget (the main screen), decorator-screen,
and FreeMarker files were used. This demonstrates the flexibility of using widgets within an
OFBiz webapp UI:

ff Form widget field attribute to display an INPUT TEXT box:
<field name="PlainOldTextInput">
 <text/>
</field>

ff Form widget field attribute to display an HTML SELECT box (drop-down menu) w/
static SELECT OPTION(s):
<field name="DropDownExample">
 <drop-down allow-empty="false">
 <option key="_NA_" description="No Description"/>
 <option key="key1" description="First Option"/>
 <option key="key2" description="Second Option"/>
 <option key="key3" description="3rd Option" />
 </drop-down>
</field>

The User Interface

74

ff Form widget field element to upload a file:
<field name="UploadImageData">
 <file />
</field>

ff Form widget field attribute to display an HTML TEXTAREA and a SUBMIT button:
<field name="Field3" title="A Text Area">
 <textarea rows="5" cols="30" />
</field>

Creating web pages using FreeMarker
Some people find writing XML code to create HTML counterintuitive. For those who choose
not to use OFBiz widgets but would rather write HTML directly using FreeMarker, this section
is for you.

Chapter 3

75

Getting ready
The following prerequisites are needed to be taken care of:

1.	 At a minimum, you will need to define a Screen widget with a widgets element
declaration pointing to your FreeMarker template file.

2.	 For any required data preparation, add declarations to the actions portion of the
Screen widget definition.

3.	 If needed, create any Groovy or BeanShell scripts in preparation for screen rendering.

4.	 Open an existing FreeMarker file or create a new one.

How to do it...
Add HTML and/or FreeMarker directives to your file. For example, a simple web page that
displays "Hello World" might have the following content:

<html xmls="http://www.w3.org/1999/xhtml">
 <head>
 <link rel="stylesheet"
 href="<@ofbizContentUrl>/images/default.css</@ofbizContentUrl>"
 type="text/css"/>
 </head>
 <body>
 <h1>Hello World </h1>
 </body>
</html>

Where ~/images/default.css is an external style sheet that contains styles for this
HTML document.

How it works...
While OFBiz widgets are designed to prepare data and create HTML within the context of a
single widget definition, FreeMarker provides a much cleaner separation of data preparation
from HTML authoring. The OFBiz screen handler merges data from Screen widget actions
into HTML using FreeMarker template directives.

The User Interface

76

FreeMarker templates consist of a procedural-oriented declaratives (if/then/else) mixed
with HTML that allow for considerable control over how HTML web pages will be rendered.
Many times when building OFBiz webapps using FreeMarker, you will need access to
information about the execution context or current user session. The following tips show how
to access context information while working within a FreeMarker file:

To access HTTP/HTTPS request attributes set from the Screen widget, OFBiz
Services, OFBiz Events, or any other process:
<#assign x = requestAttributes._SOME_REQUEST_
ATTRIBUTE_?has_content/>

To access HTTP/HTTPS request parameters from a URL, HTML form:
<#assign y = requestParameters.SOME_REQUEST_
PARAMETER?has_content/>

Servlet context session attributes as set from another web page, OFBiz
Screen widget, OFBiz Service, OFBiz Event, or other:
<#assign z = sessionAttributes.SOME_SESSION_
ATTRIBUTE?has_content/>

Note: Context information passed from the Screen widget and from backend
applications, for example error messages, are usually passed as HTTP/HTTPS
request attributes.

There's more
FreeMarker transformations are similar to macros in that they are shortcuts that convert
wrapped values in some predetermined fashion. The OFBiz folks have pre-built and supply
with the distribution a number of useful FreeMarker transformations.

For example, to easily build the HTML hyperlink for an image, external CSS file, or JavaScript
file, wrap the hyperlink URL within the following transformation tags:

<@ofbizContentUrl></@ofbizContentUrl>

This transform creates a link based on URLs relative to the entire OFBiz instance.

To create a navigation hyperlink to a URL relative to a runtime instance of an OFBiz webapp,
enclose the URL in the following transformation directives:

<@ofbizUrl></@ofbizUrl>

Using this transform not only relieves the author from knowing where URLs are relative to the
framework and/or currently executing web application, but they also perform any necessary
SSL translations automatically.

Chapter 3

77

See also
For more information about FreeMarker, please see the FreeMarker manual located at:

http://FreeMarker.sourceforge.net/docs/index.html

Passing Screen widget parameters to
FreeMarker

It is possible to pass context information, such as the name of a screen, to a FreeMarker
template and/or a Groovy script directly from the Screen widget definition.

How to do it...
Context information can be passed to FreeMarker in the following way:

1.	 Under the actions element within a Screen widget definition, add one/more set
elements with the field attribute set to the name of the variable and the value
attribute set to the value of the variable.

2.	 Retrieve this variable using the name specified in step 1.

How it works
Setting field values using the earlier method places the named variable with its value within
the execution context. Once in the context, the FreeMarker rendering engine and any other
screen rendering artifact, including any OFBiz widget, has access to it.

There's more
For example, to add an action to set a context variable named myScreenVariable, you
might code something like the following:

<actions>
 <set field="myScreenVariable" value="aValue">
</actions>

Within FreeMarker, you may access this value as follows:

<#assign localVariable = myScreenVariable>

To retrieve this value using Groovy:

localScreenName = context.myScreenVariable;

The User Interface

78

Calling Java methods from FreeMarker
Many times, it is convenient to call an OFBiz Java utility or tool directly from within FreeMarker.
The OFBiz FreeMarker implementation allows for calling Java methods (utilities and tools)
directly from within FreeMarker directives.

How to do it...
Java methods may be called from FreeMarker in the following way:

1.	 Open the FreeMarker template file.

2.	 To call an OFBiz Java method, use the FreeMarker assign directive and be sure to
use the full Java packaging notation for the method as shown here:
<#assign value =
 Static["org.ofbiz.base.util.UtilProperties"].
 getPropertyValue("general.properties", defaultUrl)>

3.	 Close the file.

Note: Changes to FreeMarker files are
immediate. You do not need to restart OFBiz.

How it works...
The FreeMarker program is a Java Application (not to be confused with an OFBiz web
application) that takes FreeMarker directives, HTML markup, and prepared data and creates
HTML destined for a browser. FreeMarker runs within the same JVM as OFBiz and therefore
has access to all the runtime tools and utilities on the CLASSPATH.

There's more...
To call an OFBiz Service (and use the UtilMisc.toMap utility) from within a FreeMarker file,
use the following:

<#assign result =
 dispatcher.runSync("aService",
 Static["org.ofbiz.base.util.UtilMisc"].toMap("contextValue1",
 someValue, "userLogin", userLogin))/>

Chapter 3

79

Forcing FreeMarker to render HTML markup
Prepared data input to FreeMarker templates is assumed to be free of any HTML tags. Any
HTML markup tags embedded within prepared data will be ignored, and the data will be
rendered as is.

There are cases where prepared data contains HTML markup that you want FreeMarker to
render as markup. For example, you may have content stored within the database that has
HTML markup tags included. In this scenario, you will need to force FreeMarker to read HTML
as markup and render accordingly.

How to do it...
Within the FreeMarker template file, wrap the prepared data in the following OFBiz
provided utility:

${StringUtil.wrapString(textData)}

How it works
FreeMarker is a templating engine that merges prepared data with FreeMarker templating
instructions to output HTML (and other) document type(s). The data that is fed into a
FreeMarker template is assumed to be free of any HTML tags as the template itself typically
contains all the HTML markup necessary to render the final document.

When data containing HTML markup is passed as prepared data to a FreeMarker template,
any embedded HTML tags are rendered as character equivalents and not HTML markup.
For example, if prepared data contains the character sequence <p> then the final HTML
document will display the character sequence <p>. That's fine if you want <p> displayed.
But what if you really want <p> to be HTML markup for the beginning of a paragraph?

To force the FreeMarker engine to view prepared data with an eye towards using embedded
HTML markup as HTML markup, you will need to wrap the prepared data as shown earlier.

Uploading files in FreeMarker forms
To upload files from within FreeMarker templates, use the standard HTML form "file"
type attribute.

The User Interface

80

Getting ready
Firstly ensure the following:

1.	 Make sure you have a backend OFBiz Event or Service configured to accept the
uploaded file.

2.	 Configure the controller.xml request-map to designate the backend Event or
Service to call when the form is submitted.

How to do it...
Files can be uploaded in forms by following these steps:

1.	 Within a new or existing FreeMarker file, create or modify an HTML form. Be sure to
include the form attribute enctype as "multipart/form-data".

2.	 Add an input type of "file" as shown here:
<form action="<@ofbizUrl>myFileUpload</@ofbizUrl>"
 name="addContentForm" method="post"
 enctype="multipart/form-data">
 <#-- Add the rest of the Form's elements -->
 <input type="file" name="uploadedFile" size="25"
 id="uploadedFile" />
</form>

How it works...
FreeMarker supports all the standard HTML form input types, including the file type.
Remember, to upload a file you will need an OFBiz Event or Service to accept that file,
on the backend.

There 's more...
In support of the OFBiz Content Management Application, there are a number of file upload
Services available to use within your webapp. While a detailed discussion of how the Content
Manager works is beyond the scope of this book, you can use any of these existing OFBiz
Services to help you learn not only how file uploading may be accomplished on the backend,
but also how the OFBiz Content Manager Application works.

For example, using the createContentFromUploadedFile Service within your own
webapp allows for a file upload from a browser to the local server hard drive without regards
to the file type. This Service will copy any type of file (plain-text, PDF, MSWord, any image
format, and others) using binary data transfers to the local OFBiz install sub-directory
location ~/runtime/uploads/.

Chapter 3

81

Without any further work by you, beyond:

ff Creating a controller.xml request-map entry to direct requests to the
createContentFromUploadedFile Service.

ff Creating an HTML form that includes, at a minimum, a contentId and a
dataResourceId as shown here:
<form action="<@ofbizUrl>createContentFromUploadedFile</@
ofbizUrl>"
 name="aForm" method="post" enctype="multipart/form-data">
 <input type="hidden" name="dataResourceId" value="DR_01" />
 <input type="hidden" name="contentId" value="CT_01" />
 <label>Upload File</label>
 <input type="file" name="uploadedFile" size="30">
 <input type="submit" class="button" value="submit" />
</form>

You may easily handle a file upload within your OFBiz web application.

It is left as an exercise to the reader to learn what the dataResourceId and contentId
values are and what they are used for.

4
OFBiz Services

In this chapter, we explore the following OFBiz Service topics:

ff Managing OFBiz Services

ff Calling asynchronous, synchronous, and recurring Services from an HTML form

ff Creating a Service definition file

ff Creating a Service definition

ff Service implementation

ff Defining Service input and output attributes

ff Service Event Condition Actions (SECAs)

ff Service groups

ff Handling Service errors

ff Implementing Groovy Services

ff Mail Event Condition Actions (MECAs)

ff Entity Event Condition Actions (EECAs)

Introduction
OFBiz has been characterized as having an "event-driven, service-oriented architecture". Long
before it was fashionable to build complex enterprise computer systems using service-oriented
techniques, OFBiz implemented a number of architectural features enabling a service-oriented
design. These features include:

ff A context-aware Service Engine available for use across the entire framework
or, if configured, externally through supported network interfaces. OFBiz Service
consumers need not concern themselves with the location of the called Service nor
with a Service's implementation details. OFBiz handles all that transparently to both
the service provider and consumer.

OFBiz Services

84

ff Multiple invocation methods including: inline or synchronous with the calling
program; out-of-band or asynchronous from the caller's processing logic and/or as
a scheduled job for recurring execution. OFBiz handles all input, output, and context
parameter transfers seamlessly to both Service provider and Service caller.

ff Chaining of Services for a true, event-driven Service platform and implementation
of complex workflows. Services may be configured to be invoked based on external
events or triggers. Once triggered, an OFBiz Service may call other Service(s) based
on additional triggering Events and/or conditions. Any combination of Services may
be chained together to form Service Event Condition Action(s) or SECAs.

ff A fully integrated job scheduler for recurring and single use asynchronous job
scheduling. The OFBiz job scheduler handles all the mundane coordination
tasks associated with job scheduling, including calendar lookups, frequency, and
interval timing.

ff Service creation and implementation tools, including selectable input and output
validations based on configured parameter types; authentication and authorization
checks integrated with OFBiz user login processing, and even localization
preservation across Service calls.

The heart of the OFBiz service-oriented implementation is the Service Engine factory. Using
a factory pattern, OFBiz provides an easily extendable Service management and invocation
tool supporting any number of concurrent Services and any number of third-party execution
engines including, but not limited to: Java, Groovy, Javascript, JPython, and the OFBiz "simple"
Service (based on the OFBiz Mini-Language.) By offloading Service implementation to
programming language-specific engines, OFBiz Services may be written and implemented in
any language that suits the developer's fancy.

The Service Engine factory may be called from anywhere in the framework to handle the
details of Service invocation, as shown in the following diagram:

Chapter 4

85

Managing existing OFBiz Services
Out-of-the-box OFBiz comes with many hundreds of Services. To find and otherwise manage
OFBiz Services, a fully featured Service management dashboard is provided. Privileged
users may conveniently handle all Service related tasks using the OFBiz WebTools toolkit
as described.

How to do it...
To access the OFBiz Service management main web page, navigate to the following
WebTools URL:

https://localhost:8443/webtools/control/ServiceList

When prompted for a username and password, login as the administrative user (username
"admin", password "ofbiz").

How it works...
WebTools provides a dashboard-like UI to view, manage, run, and support OFBiz Services. The
main web page for OFBiz Service support is found at:

 https://localhost:8443/webtools/ServiceList

(Note the use of case-sensitive addressing). This web page is shown in the following figure:

OFBiz Services

86

There's more...
Asynchronous and scheduled Service requests are managed by the OFBiz job scheduler.
The job scheduler consists of multiple execution threads as configured in the ~framework/
service/config/serviceengine.xml file. Threads run from one or more thread "pools".
From the OFBiz Thread List web page, you may see at a glance the configuration of the OFBiz
job scheduler as well as thread and thread pool usage as shown here:

Calling a Service from an HTML form
Services may be called directly from HTML forms by setting the HTML form's action element
to point to the URL of a controller.xml request-map that resolves to either an OFBiz Event
that calls a Service or directly to a Service. To demonstrate this, the following section uses the
WebTool's Run Service HTML form to invoke a Service.

Getting ready
For the purposes of this recipe, we shall use an existing Service called testScv and invoke
it from the WebTools UI. In this example, we will not be creating an HTML form nor creating a
Service, but rather using an existing form and Service:

ff To view the results of the testScv Service's execution, open an OFBiz console
window from the command line

ff Alternatively, to view the results of the execution, run the Unix tail command tail
-f ofbiz.log on the ofbiz.log file ~runtime/ofbiz.log while performing
this recipe

Chapter 4

87

How to do it...
Services may be called directly from HTML forms by following these steps:

1.	 Navigate directly to the Run Service WebTools web page by selecting the Run Service
URL: ~webtools/control/runService.

2.	 From the Run Service form, enter in testScv in the field labeled Service.

3.	 Leave the field labeled Pool as is.

4.	 Hit the Submit button to bring up the Schedule Job web page.

5.	 On the Schedule Job web page, enter in any values for the requested form fields.
These fields correspond to any Service INPUT parameters as configured in the Service
definition for testScv.

6.	 Hit the Submit button. The testScv has been called by using an HTML form.

7.	 To verify that the input parameters entered in step 6 earlier are processed by the
testScv, inspect the ofbiz.log file as shown:

How it works...
Any OFBiz Service may be called from an OFBiz webapp HTML form simply by:

1.	 Creating an HTML form with an action attribute URL for the target Service.

OFBiz Services

88

2.	 Creating a controller.xml entry with a request-map for the target Service that
matches the HTML form's action URL. For example, the HTML form for the Run
Service tool has an action value as shown in the following code snippet:
<form name= "scheduleForm" method= "POST"
 action= "/webtools/control/scheduleService" />
 <input type="text" name="testScv" />
 <!-- Stuff Intentionally Removed >

</form>

When the form is submitted, the URL set within the form's action (webtools/control/
scheduledService) is intercepted by the WebTools controller servlet, which consults its
controller.xml file to determine how to handle this request. The controller.xml entry
for this URL is shown here:

<request-map uri="scheduleService">
 <security https="true" auth="true"/>
 event type="java" path="org.ofbiz.webapp.event.CoreEvents"
 invoke="scheduleService"/>
 <response name="success" type="view" value="FindJob"/>
 <response name="sync_success" type="view" value="serviceResult"/>
 <response name="error" type="view" value="scheduleJob"/>
</request-map>

The URL request is mapped to an OFBiz Event called scheduleService. Inside the
scheduleService Event, a call is made to the Service Engine to invoke testScv using the
Java Service implementation engine as shown in the testScv Service definition file:

<service name="testScv" engine="java" export="true"
 validate="false" require-new-transaction="true"
 location="org.ofbiz.common.CommonServices" invoke="testScv">
 <description>Test service</description>
 <attribute name="defaultValue" type="Double"
 mode="IN" default-value="999.9999"/>
 <attribute name="message" type="String" mode="IN" optional="true"/>
 <attribute name="resp" type="String" mode="OUT"/>
</service>

After testScv has been executed, processing control returns to the OFBiz request handler
(part of the controller servlet) and then back to the calling webapp as configured in the
controller.xml file.

Chapter 4

89

Calling asynchronous Services from
HTML forms

You can use WebTools and HTML forms to run a Service asynchronously either one time or on
a recurring basis. The following demonstrates the steps necessary to schedule testScv to be
executed one time, asynchronously, as a scheduled job.

Getting ready
Navigate directly to the Schedule Job web page.

~https://localhost:8443/webtools/control/scheduleJob

How to do it...
To execute testScv asynchronously follow, these steps:

1.	 In the Service form field, enter in testScv as shown in the screenshot.

2.	 Leave the Job field empty. OFBiz will pick a unique name automatically.

3.	 Use the calendar pop-up icon directly next to the Start Date/Time field to select any
date and time after the current wall clock time.

OFBiz Services

90

Field Usage

Pool By default, only one thread pool, called pool, is configured. To add more thread
pools, see the serviceengine.xml file.

Frequency A frequency of None tells OFBiz to run this Service once.

Interval Interval is used with frequency to indicate how many times to invoke
the Service.

Count -1 indicates forever.

Any valid integer is acceptable here.

4.	 Submit this form by clicking the Submit button to bring up the Service Parameters
form, which allows the caller to provide alternative input parameters to the Service.

5.	 Add INPUT parameters as shown:

6.	 Submit the Service Parameters form. testScv will be scheduled to run at the
specified time.

How it works...
Scheduled Services are run asynchronously from the calling program. As such, requests for
scheduling are handled by the OFBiz job scheduler. Each scheduled Service is assigned a
unique job identifier (jobId) and execution pool by the job scheduler. After the Service is
scheduled for execution, control returns to the calling program.

There's more...
Using the OFBiz job scheduler Job List web page, you may find all scheduled jobs. In the
following screenshot, testScv is shown as scheduled for execution on the Job List Search
Results web page as specified in the recipe:

Chapter 4

91

Because the testScv only writes output to the logfile, we may verify successful execution and
scheduling by observing the ofbiz.log runtime logfile as shown:

Calling a Service many times from an
HTML form

It is possible to call a Service multiple times from a single HTML form (for example, one time
for each row in the form) by placing a line similar to the following with a service-multi
event type defined for the controller.xml request-map entry of the target Service.

How to do it...
Follow these steps to call a Service multiple times:

1.	 Use the event type service-multi within the controller.xml request-map
entry as shown here:
<request-map uri="someService" />
 <event type="service-multi" invoke="someService"/>
 <!-- Other request-map statements intentionally left out -->
</request-map>

2.	 If using an OFBiz Form Widget, add a line similar to the following to the Form Widget
definition. Note, the list-name is the name of the list that is generating multiple
rows for the HTML form:
<form name="someFormName" type="multi" use-row-submit="true"
 list-name="someList" target="someServiceName" /
 <!-- Form fields removed for reading clarity -->
</form>

3.	 If using a FreeMarker template, add lines similar to the following:
<form name="mostrecent" mode="POST"
 action="<@ofbizUrl>someService</@ofbizUrl>"/>
 <#assign row=0/>
 <#list someList as listItem>

OFBiz Services

92

 <#-- HTML removed for reading clarity.
 Each row has a unique input name associated with it
 allowing this single Form to be submitted to the
 "someServiceName" Service from each row -->
 <input type="radio" name="someFormField_o_${row}"
 value="someValue" checked/>
 <input type="radio" name="someFormField_o_${row}"
 value="someValue"/>
 </#list>
</form>

How it works...
The Event type service-multi provides a convenient shortcut for coding HTML forms that
are embedded within lists. Each list item is automatically converted to a unique form field so
that a single Service may be called from any row within the list.

Creating a new Service definition file
Services are defined in Service definition XML document files. By convention, Service
definition files are located in a containing Component's servicedef directory. This may be
changed by editing the Component's ofbiz-component.xml file.

How to do it...
To define a new Service definition file, follow these few steps:

1.	 Check the ofbiz-component.xml file to make sure there is a location pointer to
the Service definition file. For example:
<!-- For Service Definition files, use the following -->
<service-resource type="model" loader="main"
 location="servicedef/Services.xml"/>

<!-- For Service Event Control Action files, use the following -->
<service-resource type="eca" loader="main"
 location="servicedef/secas.xml"/>

<!-- For Service Group Definition files, use the following -->
<service-resource type="group" loader="main"
 location="servicedef/groups.xml"/>

Chapter 4

93

2.	 Using your favorite operating system editor or IDE tool, add Service definition files in
the directory locations specified in the ofbiz-component.xml file shown earlier.
Make sure each file has the appropriate XML version and XSD declarations in the
beginning of the file, as follows:
<?xml version="1.0" encoding="UTF-8"?>
<services xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation=
 "http://ofbiz.apache.org/dtds/services.xsd">

3.	 Make sure the new Service definition file has a closing </services> tag.

4.	 Insert as many Service definitions within this file as needed.

5.	 Save and close the file.

6.	 Restart OFBiz to make any changes to the ofbiz-component.xml file effective.

How it works...
OFBiz is made aware of Service definition files by placing one or more declarations about
the definition files within a Component's ofbiz-component.xml file. There is one such
declaration for each Service definition file located within the containing Component. Each
declaration instructs OFBiz as to what types of definitions are found in the file and the location
of the file relative to the Component's root. There is no limit to the number of Service definition
file declarations that may be included in a single ofbiz-component.xml file.

Creating a new Service definition
OFBiz is made aware of a Service by the presence of a Service definition within a Service
definition file. Each OFBiz Service has a Service definition that configures the Service with a
name, location information, Service implementation engine type, and other optional parameters.

How to do it...
To create a new Service definition, follow these steps:

1.	 Find an existing Service definition file or create a new one.

2.	 Add one or more service element XML declarations. For example:
<service name="someName" engine="one_of_the_available_engines"
 location="component_or_CLASSPATH_location"
<!-- Add any INPUT/OUTPUT attribute elements here -->
<!-- Add a PERMISSION-SERVICE element -->
<!-- For Simple Services, add any AUTO-ATTRIBUTE elements -->
</service>

OFBiz Services

94

3.	 Make sure the new Service definition element has a closing </services> tag.

4.	 Save and close the file.

5.	 Restart OFBiz.

How it works...
Using Service definitions, OFBiz removes Service location and implementation details from
the Service and "injects" these values at runtime. This enables the Service developer to
concentrate on implementing business logic and the Service consumer to call the Service
without regard for location or implementation details.

When a Service is called, OFBiz automatically locates the Service on the CLASSPATH by
consulting the Service's Service definition, manages all defined context parameters and
passes control to the appropriate Service implementation engine.

See also
All supported Service definition configurations are documented in the Service definition file
XML schema located at:

~framework/service/dtd/services.xsd

Implementing Services
Services may be implemented—that is, developed in any language—for which there is a
corresponding Service implementation engine. As of this writing, Service Engines supported
include, but are not limited to: Java, Groovy, BeanShell, Mini-Language, Jacl, Javascript, JPython.

Getting ready
Before starting work on any new Service, you must first decide which tool to use to develop
your Service. For simple database read, write, and update processing, you may want to use
the OFBiz Mini-Language tool to develop "simple Services". Simple Services consist of one or
more XML declarations instructing OFBiz on how to handle business processing tasks.

For those who prefer to use procedural languages such as Java or Groovy, these options are
available as well.

Chapter 4

95

How to do it...
To implement a Service definition, follow these steps:

1.	 Create a new Service definition.

2.	 Create the Service implementation using a tool of choice (Java, Mini-Language, Groovy).

3.	 For Java Services, you must rebuild the component containing the Java code. For
Mini-Language and other scripting tools such as Groovy, there is no need to rebuild
the Component.

4.	 Restart OFBiz.

5.	 Test the Service definition.

How it works...
A Service's Service definition describes to OFBiz how a Service is implemented and where it is
located on the runtime CLASSPATH. To create a new Service requires only an implementation
of the Service (using a supported programming tool) and a proper Service definition entry in a
valid Service definition file.

There's more...
Service Engines are configured in the following file:

~framework/config/service/serviceengine.xml

Defining Service attributes (INPUT/OUTPUT)
Service input and output parameters are defined within the Service's definition using XML
declaration statements with an element tag of attribute. Each XML attribute element
declaration represents either an input parameter (INPUT), an output parameter (OUTPUT),
or a parameter that is passed as both input and output (INOUT). The participation of each
parameter as an input or output value may be made optional by adding an optional
attribute to the declaration. By default, the optional value is false, and all parameters
that are defined are required to be passed. This means that the Service will fail if one or more
of the configured (non-optional) parameters are not passed.

Note: If an INPUT parameter is not defined for a Service, then
that value will not be passed into the Service's execution context
regardless of the values that are sent by the calling program.
Similarly, if an OUT or INOUT parameter is not defined for a value,
then that value will not be passed back to the calling program.

OFBiz Services

96

How to do it...
Add one or more attribute elements within the Service definition. For example:

<service name="myService" engine="SupportedEngine"
 location="somewhere.on.the.classpath" invoke="myService">
 <attribute name="attribute1" type="String" mode="IN"
 optional="true"/>
 <attribute name="attribute2" type="String" mode="IN"
 optional="false"/>
 <attribute name="attribute3" type="String" mode="INOUT"/>
</service>

How it works...
The OFBiz Service Engine handles the passing of input, output, and context parameters
automatically based on the Service's Service definition. Only parameters configured for
the Service (and several OFBiz managed context parameters such as the userLogin
GenericValue, locale, timeZone, errorMessage, and errorMessageList) will be
passed as input or as output.

By default, OFBiz automatically validates, at runtime, all incoming and outgoing parameters
against the defined type attribute as configured. Validation failures will cause the Service to
fail and control will be passed back to the calling program.

Service Event Condition Actions
Service Event Condition Actions (SECAs) are a powerful tool used to build complex business
processing solutions out of one or more OFBiz Service(s). With SECAs, you may associate
one or more Services together to form a chain of processing logic based on defined triggering
events and conditions.

There are no limits on the number of SECAs supported by OFBiz, or in the number of Services
that may participate within a single SECA.

Getting ready
Writing SECAs is simple. To write a SECA, you will need one or more Services to participate as
either the action Service and/or the target Service. Once you have your Services defined:

1.	 Find or create a new SECA definition XML document. The SECA definition document
must have the following XML line at the top of the file:
<?xml version="1.0" encoding="UTF-8" ?>

Chapter 4

97

2.	 Followed by the SECA XML schema declaration:
<service-eca xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation=
 "http://ofbiz.apache.org/dtds/service-eca.xsd">

How to do it...
Once the groundwork is laid, you can write SECAs by following these steps:

1.	 Create an ECA definition within a SECA definition file by adding an eca element with
a service attribute similar to the following (Note: the following XML declarations are
for illustration purposes only. Please substitute real values where appropriate):
<eca service="eca_service_name" event="required_some_event_name"
 run-on-failure="optional_true_or_false"
 run-on-error="optional_true_or_false"
 type="optional_some_type" format="optional_some_format" >

2.	 Optionally, add one ore more condition elements:
<condition field-name="some_name" operator="operator_values"
 value="some_value" type="supported_types" />

3.	 Optionally, add on or more set elements as input parameters or to format an
existing parameter:
<set field-name="some_field" value="some_value"
 format="some_format" />

4.	 Add one or more action declarations. Each action declaration calls a Service to
perform some action as shown below. The Service called may have the same name
as the ECA:
<action service="some_service_to_call" mode="some_mode"
 run-as-user="optionally_set_to_a_user" />

5.	 Don't forget to close the eca service element with an end tag.

6.	 Close and save the file.

7.	 Restart OFBiz to make the SECA(s) configuration effective.

How it works...
When a Service is called, the first thing the OFBiz Service Engine does, even before assigning
a Service implementation engine, is to check for any defined ECAs. If one or more ECAs exists
for a Service, each ECA is processed before the initial target Service is invoked.

OFBiz Services

98

Note: Some ECAs perform actions on the output of a Service. In such cases,
while the ECA itself is processed before the call to the Service, actions
defined within the ECA may be invoked after the target Service is run.

In this way, it is possible to combine together any number of Services using any combination
of conditions and Events, and thus solve complex business problems using one or more
discrete OFBiz Services.

There's more...
There is no limit to the possible combinations when building SECAs. This makes the tool
extremely powerful and potentially dangerous. It is possible, for example, to call Services
within Services in a never-ending chain.

Service groups
Service "groups" are a technique for grouping together Services where there is a need to run
all the Services together.

Getting ready
Create or find an existing Service group definition XML document. This XML document will
have an XML version declaration as follows:

<?xml version="1.0" encoding="UTF-8" ?>

And a Service group XML schema declaration as shown:

<service-group xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation=
 "http://ofbiz.apache.org/dtds/service-group.xsd">

Chapter 4

99

If creating a new Service group definition XML document, ensure that this document is
configured in the containing Component's ofbiz-component.xml file. For example, if
creating a Service group definition XML document in the servicedef directory, add a line
similar to the following to the ofbiz-component.xml file:

<service-resource type="group" loader="main"
 location="servicedef/groups.xml"/>

How to do it...
To group Services together, follow these steps:

1.	 Add one or more group elements as shown here. Each group element defines a
Service group:
<group name="updateCreditCardAndAddress" send-mode="all"> </group>

2.	 Within each group element, add one or more invoke declaration(s). Each invoke
declaration points to a Service:
<invoke name="createPostalAddress" mode="sync"
 result-to-context="true"/>
<invoke name="createCreditCard" mode="sync"/>
<invoke name="createPartyContactMech" mode="sync"/>

3.	 Close each element with an end tag.

4.	 Save the file.

5.	 Restart OFBiz to make Service group definitions effective.

How it works...
Service groups are a set of Services that should all run as a result of the initial Service call.
Unlike SECAs, where conditions and triggers determine which Services will be run during any
particular invocation, Service groups are used to indicate that all Services within the group
should be run. Note, it is possible to have Service groups with participating Services that have
SECAs defined.

OFBiz Services

100

The following table provides some of the more often used Service group configuration
elements. Attribute values include:

group tag
Attribute name Required? Description
name Yes The name of the Service this action will invoke.
send-mode No The mode in which the Service(s) should be invoked.

Valid values: "none", "all", "first-available", "random",
"round-robin".

The default is "all".

To configure one or more Services within a group element declaration, add invoke elements
configured as follows:

invoke tag
Attribute name Required? Description
name No The name of the Service this action will invoke.
mode Yes The mode in which this Service should be invoked. Can be

sync or async. Note that async actions will not update
the context even when set to true.

result-to-
context

No Should the results of the action Service update the main
Service's context. Valid values: "true", "false".

Default is "false".

See also
Please refer to the Service group XML XSD schema file located at:

~framework/service/dtd/service-group.xsd

Handling Service errors
OFBiz Services may complete successfully or return to the caller with one or more errors. Upon
successful completion of a Service, OFBiz automatically commits any database transactions
and maps the return parameters to the context before returning control to the caller.

If a Service encounters an error and returns to the caller through an error processing path,
OFBiz will automatically rollback all transactions initiated for the Service and/or SECAs
regardless of the Service definition settings. To manage error processing from within a Service
implementation, use the OFBiz-provided Service utility API as shown in this recipe.

Chapter 4

101

Getting ready
The following examples assume a Service implemented in Java. Other Service Engine
supported languages will behave in a similar fashion, although utility usage (API) details
may vary.

For Java and Groovy programs, be sure to include the OFBiz Service utility program with a Java
package import statement:

import org.ofbiz.service.ServiceUtil;

How to do it...
From within the Service's implementation, use the provided OFBiz utilities to control error
message handling, including transaction rollback:

ff To return an error message and have OFBiz manage transaction rollback from within
a Java Service, add one or more lines similar to the following where appropriate:
org.ofbiz.service.ServiceUtil.returnError(
 "An Error Message Here");

ff To return a list of error messages and have OFBiz manage transaction rollback from
within a Java Service, add one or more lines similar to the following:
// Don't forget to include imports for FastList
List<Object> errMsgList = FastList.newInstance();

// Add error messages to the errMsgList () for example
errMsgList.add("A new error message");
return ServiceUtil.returnError(errMsgList);

ff To return an error message and have the error message localized based on the value
of the locale context variable, add code similar to the following:
// Note, don't forget to import Map, UtilMisc, and
// UtilProperties to use this snippet
Map messageMap = UtilMisc.toMap("errMessage", e.getMessage());
errMsg = UtilProperties.getMessage("CommonUiLabels",
 "CommonDatabaseProblem", messageMap, locale);
return ServiceUtil.returnError(errMsg)

ff To return an error and instruct OFBiz to NOT rollback transactions, add one or more
lines similar to the following:
org.ofbiz.service.ServiceUtil.returnFailure(
 "Some error message, but don't roll back transactions");

OFBiz Services

102

ff To pass Service errors from one Service call to another, simply use the
ServiceUtil.returnError methods and include the error message or list of
messages as method parameters.

ff To easily retrieve an error message from the results of a Service call:
Map results = dispatcher.runSync("SomeService", inputMap);
String errMsg = ServiceUtil.getErrorMessage(results);

ff To check if the results from a Service call contain any errors:
if(ServiceUtil.isError(someResult) ||
 ServiceUtil.isFailure(someResult))
{
 return someValue;}

How it works...
The OFBiz best practice and convention for passing error messages from Services (and OFBiz
Events) to calling programs is to use the following request attributes:

ff _ERROR_MESSAGE_ for a single error message

ff _ERROR_MESSAGE_LIST_ for a list of error messages where the list consists of one
or more Java strings and each string contains an error message

When using the ServiceUtil error processing utilities to return from Service when an error
is encountered, OFBiz will automatically map error messages and lists of error messages to
the proper HTTP/HTTPS request object attribute(s).

See also
Please see the ServiceUtil API Javadocs:

http://ci.apache.org/projects/ofbiz/site/javadocs/

Writing Groovy Services
While Groovy is normally used for data preparation, this and other integrated scripting
languages may be used to implement OFBiz Services. Using a scripting language to implement
a Service has the advantage that the Service does not need to be compiled nor the containing
Component rebuilt prior to use.

Chapter 4

103

Getting ready
Make sure you have a "local dispatcher" and "local delegator" (if you want to use database
Services) defined in the web.xml file, then follow these steps:

1.	 Check the web.xml file and make sure there is a local dispatcher and local delegator
defined for the Component from which you will be calling the Service. For example:
<context-param>
 <param-name>localDispatcherName</param-name>
 <param-value>example</param-value>
 <description>
 A unique name used to identify the local dispatcher for the
 Service Engine
 </description>
</context-param>

<context-param>
 <param-name>entityDelegatorName</param-name>
 <param-value>default</param-value>
 <description>
 The Name of the Entity Delegator to use,
 defined in entityengine.xml
 </description>
</context-param>

2.	 Create the Service definition within an existing Service definition file. Note, any
changes to the Service definition such as adding or removing input and/or output
parameters require an OFBiz restart to become effective:
<service name="myGroovyService" engine="groovy"
 location="component://myComponent/script/myGroovyService.groovy"
 invoke="">
</service>

3.	 Restart OFBiz to ensure the Service's configuration (definition) is read and reloaded.

4.	 To test this Service from a web page, create a controller.xml request-map to
call and test this Service from a webapp web page. For example, to call the Service
in step 2:
<!-- ======= Testing a groovy Service ===== -->
<request-map uri="testGroovyService">
 <security https="false" auth="false"/>
 <event type="service" invoke="myGroovyService"/>
 <response name="success" type="view" value="main"/>
 <response name="error" type="view" value="main"/>
</request-map>

OFBiz Services

104

5.	 To test this Service from a web page, create a HTML form or link. For example, to call
the Service with a request-map set to testGroovyService as shown in step 3, you
might write something like the following:
<a href="<@ofbizUrl>testGroovyService</@ofbizUrl>">
 test groovy Service

How to do it...
Implement your Service by writing the Groovy script and saving it in the location and file
specified in the Service's definition location attribute value. Note, to tell OFBiz to execute the
Groovy script from top to bottom, leave the invoke parameter empty.

Unlike Java-based Services, there is no need to compile or restart OFBiz to make a Groovy
Service immediately effective. Remember, however, that Service definition changes do require
an OFBiz restart.

How it works...
Use of OFBiz Service implementation engines such as the Groovy engine make OFBiz Services
implementation agnostic. Callers do not need to know that the Service is written in Groovy, and
Groovy programmers do not need to concern themselves with the details of calling programs.

To make OFBiz aware that a Service is available and written in Groovy, simply indicate that
the Service is to use the Groovy Service Engine by setting the service element's engine
attribute value to groovy. OFBiz takes care of the rest.

Mail Event Condition Actions
To handle incoming e-mail automatically through the Service Engine interface, use Mail Event
Condition Actions (MECAs).

Note: The OFBiz processes for handling incoming e-mail are not the same
as those for sending e-mail. To configure OFBiz to send e-mail, please see
the ~framework/common/config/general. properties file.

Chapter 4

105

Getting ready
A few steps to ensure before we can use Services to handle e-mail:

1.	 To trigger one or more Services based on the receipt of incoming e-mail, you will need
to enable the OFBiz inbound e-mail listener by removing the appropriate comments
from the JavaMail Listener Container entry in ~framework/base/config/
ofbiz-containers.xml.

2.	 Implement one or more Services using a Service implementation language of your
choice to handle processing based on the occurrence of a mail Event.

How to do it...
Configure the MECA as shown in the following steps:

1.	 If one does not already exist, add a declaration to an ofbiz-component.xml file
with a location pointer to the MECA definition file, as shown:
<service-resource type="mca" loader="main"
 location="servicedef/mca.xml"/>

2.	 Create a new MECA definition file or use an existing one. A valid MECA definition file
will have the XML version declaration and a service-mca XML schema declaration
element, as shown:
<?xml version="1.0" encoding="UTF-8"?>
<service-mca xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation=
 "http://ofbiz.apache.org/dtds/service-mca.xsd">

3.	 Add one or more mca elements as needed. Each MCA action element locates one
or more Services:
<mca mail-rule-name="processIncomingEmail">
 <action service="storeIncomingEmail" mode="sync"/>
</mca>

4.	 Close all elements with closing tags.

5.	 Save and close the file.

6.	 Restart OFBiz to make the MCAs effective.

OFBiz Services

106

How it works...
The OFBiz e-mail listener process has been implemented to trigger any defined MECAs when
an incoming e-mail is detected.

mca tag (required)
Attribute name Required? Description
mail-rule-name Yes Name of the Service this action will invoke.

To set the conditions under which the MECA should fire, add one or more condition-field
elements with configuration settings, as shown here:

condition-field tag (optional)

Set conditions on e-mail header fields to invoke actions for specific events. For example, to
always run a Service when the "to" e-mail header value is not equal to "me@me.com" set, write a
condition rule similar to the following:

<condition-field field-name="to" operator="not-equals"
value="me@me.com" />

Attribute name Required? Description
field-name No E-mail header field name.
operator Yes Valid values: equals, not-equals, empty, not-

empty, matches, not-matches.
value Yes Value to compare the field-name value to.

See also
See the MECA schema definition file in ~framework/service/dtd/service-mca.xsd.

Entity Event Condition Actions
It is possible to write ECAs for specific entities using an Entity Event Condition Action (EECA).
For example, to trigger an Event, say a notification Service, when a field in an entity changes,
you could write an EECA as we shall see in this recipe.

Chapter 4

107

How to do it...
Triggering a notification Service using EECA can be done by following these steps:

1.	 If one does not already exist, add an entry in the ofbiz-component.xml file to
identify the EECA definition file location as shown:
<entity-resource type="eca" reader-name="main" loader="main"
 location="entitydef/eecas.xml"/>

2.	 Create or add an EECA definition file with an XML version declaration and an XML
XSD schema declaration, as shown here:
<?xml version="1.0" encoding="UTF-8"?>
<entity-eca xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation=
 "http://ofbiz.apache.org/dtds/entity-eca.xsd">

3.	 Add one or more EECA definitions to the EECA definition file. Don't forget to close
each eca element declaration with a closing tag (</eca>).
<!-- To maintain FinAccount.actualBalance and
 FinAccount.availableBalance -->
<eca entity="FinAccountTrans" operation="create-store"
 event="return">
 <action service="updateFinAccountBalancesFromTrans"
 mode="sync"/>
</eca>

4.	 Be sure to close all XML element tags.

5.	 Save and close the EECA definition file.

6.	 Restart OFBiz to make the changes effective.

How it works...
EECA rules are checked before and/or after a call to access the database. Services defined
by the action element are invoked when the configured entity is accessed by way of the
operation attribute setting.

OFBiz Services

108

There's more...
Commonly used EECA attribute values are shown in the following table:

eca tag (Required)
Attribute name Required? Description
entity Yes The name of the entity on which this operation and Event are to

be applied to.
operation Yes Valid values: create, store, remove, find, create-

store, create-remove, store-remove, create-
store-remove, any.

event Yes Valid Values: validate, return, run, cache-check,
cache-put, cache-clear.

To configure action elements for an EECA, the following configuration attribute values
are supported:

action tag (Required)
Attribute name Required? Description
service Yes The name of the Service to call if this operation is encountered.
mode Yes Valid values: sync, async.
value-attr No Values to pass to the Service being called as a result of this ECA.

To add one or more triggering conditions, add condition element declarations with the
appropriate settings:

condition Tag (optional)

Used to trigger actions based on one or more Entity fields meeting the specified conditions.
Attribute name Required? Description
field-name Yes The name entity field.
operator Yes Valid values: less, greater, less-equals, greater-

equals, equals, not-equals, is-empty, is-not-
empty, contains.

type No Valid values: PlainString, BigDecimal, Double,
Float, Long, Integer, Date, Time, Timestamp,
Boolean, Object.

Default: String.

Chapter 4

109

set elements are used to equate entity field(s) or context variables to values. set
declarations may be configured as shown:

set Tag (optional)

Use the set declaration to establish or set the ECA on a specific field within an entity.
Attribute name Required? Description
field-name Yes Indicates the value is an entity field.
value No The name of the field.

See also
Please see the EECA XSD located at ~framework/entity/dtd/entity-eca.xsd.

5
The OFBiz Entity

Engine

In this chapter, we shall examine the following Entity Engine data management topics:

ff Changing the default database from Derby to another data source

ff Connecting to a remote database

ff Connecting to multiple databases

ff Creating entity groups

ff Disabling automatic database checks on OFBiz startup

ff Mapping database data types

ff Creating a new entity definition file

ff Creating a new entity model

ff Modifying an existing entity model

ff Building a view-entity

Introduction
Secure and reliable data storage is the key business driver behind any data management
strategy. That OFBiz takes data management seriously and does not leave all the tedious and
error-prone data management tasks to the application developer or the integrator is evident
from the visionary design and implementation of the Entity Engine.

The OFBiz Entity Engine

112

The Entity Engine is a database agnostic application development and deployment framework
seamlessly integrated into the OFBiz project code. It handles all the day-to-day data
management tasks necessary to securely and reliably operate an enterprise. These tasks
include, but are not limited to support for:

ff Simultaneously connecting to an unlimited number of databases

ff Managing an unlimited number of database connection pools

ff Overseeing database transactions

ff Handling database error conditions

The true power of the Entity Engine is that it provides OFBiz Applications with all the tools,
utilities, and an Application Programming Interface (API) necessary to easily read and write
data to all configured data sources in a consistent and predictable manner without concern
for database connections, the physical location of the data, or the underlying data type.

To best understand how to effectively use the Entity Engine to meet all your data storage
needs, a quick review of Relational Database Management Systems (RDBMS) is in order:

ff RDBMS tables are the basic organizational structure of a relational database. An
OFBiz entity is a model of a database table. As a model, entities describe a table's
structure, content format, and any applicable associations a table may have with
other tables.

ff Database tables are further broken down into one or more columns. Table columns
have data type and format characteristics constrained by the underlying RDBMS
and assigned to them as part of a table's definition. The entity model describes a
mapping of table columns to entity fields.

ff Physically, data is stored in tables as one or more rows. A record is a unique instance
of the content within a table's row. Users access table records by reading and writing
one or more rows as mapped by an entity's model. In OFBiz, records are called
entity values.

ff Keys are a special type of field. Although there are several types of keys, OFBiz is
primarily concerned with primary keys and foreign keys. A table's primary key is a
column or group of columns that uniquely identifies a row within a table. The value of
the primary key uniquely identifies a table's row throughout the entire database.

ff A foreign key is a key used in one table to represent the value of a primary key in
a related table. Foreign keys are used to establish unique and referentially correct
relationships between one or more tables.

ff Relationships are any associations that tables may have with one another.

ff Views are "virtual" tables composed of columns from one or more tables in the
database. OFBiz has a similar construct (although it differs from the traditional
RDBMS definition of a "view") in the view-entity.

Chapter 5

113

Note: while this discussion has focused on RDMS, there
is nothing to preclude you from using the Entity Engine in
conjunction with any other types of data source(s).

The Entity Engine provides all the tools and utilities necessary to effectively and securely
access an unlimited number of databases regardless of the physical location of the data
source, as shown in the following figure:

Changing the default database
Out-of-the-box, OFBiz is integrated with the Apache Derby database system (http://
db.apache.org/derby). While Derby is sufficient to handle OFBiz during software
development, evaluation, and functional testing, it is not recommended for environments
that experience high transaction volumes. In particular, it is not recommended for use in
production environments.

Getting ready
Before configuring an external database, the following few steps have to be ensured:

1.	 Before changing the OFBiz Entity Engine configuration to use a remote data source,
you must first create the remote database; the remote database must exist.

The OFBiz Entity Engine

114

Note: if you are not going to install the OFBiz schema and/or seed
data on the remote database, but rather intend to use it as is,
you will not need to create a database. You will need, however, to
define entities for each remote database table you wish to access,
and assign those entities to one or more entity groups.

1.	 Add a user/owner for the remote database. OFBiz will access the database as
this user. Make sure the user has all necessary privileges to create and remove
database tables.

2.	 Add a user/owner password (if desired or necessary) to the remote database.

3.	 Ensure that the IP port the database is listening on for remote connections is open
and clear of any firewall obstructions (for example, by default, PostgreSQL listens for
connections on port 5432).

4.	 Add the appropriate database driver to the ~framework/entity/lib/jdbc
directory.

For example, if you are using PostgreSQL version 8.3, download the
postgresql-8.3-605.jdbc2.jar driver from the PostgreSQL
website (http://jdbc.postgresql.org/download.html).

How to do it...
To configure another external database, follow these few steps:

1.	 Open the Entity Engine's configuration file located at:
~framework/entity/config/entityengine.xml

2.	 Within the entityengine.xml file, configure the remote database's usage settings.
A suggested method for doing this is to take an existing datasource element entry
and modify that to reflect the necessary settings for a remote database. There are
examples provided for most of the commonly used databases.

For example, to configure a remote PostgreSQL database with the name of
myofbiz_db, with a username ofbiz and password of ofbiz, edit the
localpostnew configuration entry as shown here:
<datasource name="localpostnew"
 helper-class=
 "org.ofbiz.entity.datasource.GenericHelperDAO"
 schema-name="public"
 field-type-name="postnew"
 check-on-start="true"
 add-missing-on-start="true"

Chapter 5

115

 use-fk-initially-deferred="false"
 alias-view-columns="false"
 join-style="ansi"
 result-fetch-size="50"
 use-binary-type-for-blob="true">
 <read-data reader-name="seed"/>
 <read-data reader-name="seed-initial"/>
 <read-data reader-name="demo"/>
 <read-data reader-name="ext"/>
 <inline-jdbc jdbc-driver="org.postgresql.Driver"
 jdbc-uri="jdbc:postgresql://127.0.0.1/myofbiz_db"
 jdbc-username="ofbiz"
 jdbc-password="ofbiz"
 isolation-level="ReadCommitted"
 pool-minsize="2"
 pool-maxsize="250"/>
</datasource>

3.	 Configure the default delegator for this data source:
<delegator name="default" entity-model-reader="main"
 entity-group-reader="main" entity-eca-reader="main"
 distributed-cache-clear-enabled="false">
 <group-map group-name="org.ofbiz"
 datasource-name="localpostnew"/>
 <group-map group-name="org.ofbiz.olap"
 datasource-name="localderbyolap"/>
</delegator>

4.	 Save and close the entityengine.xml file.

5.	 From the OFBiz install directory, rebuild OFBiz by running the ant run-install
command.

6.	 Start OFBiz.

7.	 Test by observing that the database was created and populated. You may use
the WebTools entity reference page (https://localhost:8443/webtools/
control/entityref) to search for your newly created entities, or a third-party tool
designed to work with your specific database.

The OFBiz Entity Engine

116

How it works...
The Entity Engine is configured using the entityengine.xml file. Whenever OFBiz is
restarted, the Entity Engine initializes itself by first referencing this file, and then building and
testing all the designated database connections. In this way, an unlimited number of data
source connections, database types, and even low-level driver combinations may be applied
at runtime without affecting the higher-level database access logic.

By abstracting the connection using one or more delegators, OFBiz further offloads low-
level database connection management from the developer, and handles all connection
maintenance, data mappings, and the default transaction configuration for an unlimited
number of target databases.

To configure one or more database connections, add datasource element declarations with
settings as shown here:

datasource element

This element defines one or more database connections.

(Note: some settings are database-specific. Shown here are the default settings for
localpostnew, the recommended definition to use for new installations of PostgreSQL).
Configuration setting Usage
helper-class=
org.ofbiz.entity.datasource.
GenericHelperDAO

The OFBiz utility program (Java class) that performs
conversions and other helper functions on behalf of
the Entity Engine for this particular database.

field-type-name="postnew" Pointer to the field type definition XML document that
describes the field type mappings for this database.
Field type files are found in the ~framework/
entity/fieldtype directory. Each file's name is
derived by adding the value in this field to a prefix of
fieldtype. For example, field type definitions for
localpostnew, where the field-type-name
="postnew" are found in:
~framework/entity/fieldtype/
fieldtypepostnew.xml

schema-name="public" Default schema name for PostgreSQL database
schemas. Other databases may not require a default
schema name. Configure accordingly.

check-on-start="true" Instructs OFBiz to check the database against the
configured data model (that is, against the configured
entities for a data source) for missing entities and/
or tables.

Chapter 5

117

Configuration setting Usage
add-missing-on-start="true" Instructs OFBiz to add any missing tables and keys to

the database based on the defined data model. Set
this to false if you do NOT want OFBiz to modify the
target database.

use-fk-initially-deferred=
"false"

Used to specify whether or not to set the "INITIALLY
DEFERRED" option available in many databases
when creating foreign keys. (Note: not all databases
support this option). When enabled and supported,
the foreign keys will not be checked until a
transaction is committed.

Defaults to "true".
alias-view-columns="false" This value is used to compensate for a variation seen

in some JDBC drivers where column names returned
for aliased fields may be either the alias name or
the full text of what makes up that alias name. See
your database vendor's documentation for more
information on settings per your target database.

Defaults to "true".
join-style="ansi" Used to specify the syntax to use when doing table

joins in view-entity operations. Many databases are
adopting the ANSI JOIN standard, but before that was
introduced, theta joins were much more common.
Two theta join styles are supported: Oracle and MS
SQL. Valid values: ansi, ansi-no-parenthesis,
theta-oracle or theta-mssql.

Defaults to ansi.
result-fetch-size="50" Used by OFBiz with the list iterator to determine

default result set size.
use-binary-type-for-blob=
"true"

Instructs OFBiz on how to map database fields typed
as Binary Large Objects (BLOBs).

The OFBiz Entity Engine

118

To specify that the Entity Engine should be connected to a database using a JDBC driver and
to configure the specific connection parameters to pass, set the inline-jdbc element
attributes as detailed here:

Connection Configuration (inline-jdbc element)

This element configures the database connection.
jdbc-driver Java class file name of the driver to use when accessing the database.

This class file must be on the OFBiz CLASSPATH.
jdbc-uri Network-based location of the database. The syntax for database

connection URI(s) vary from database to database. Please refer to your
vendor's documentation for the appropriate syntax. For PostgreSQL, the
following syntax is used:

jdbc:postgresql://{IP Address}/{Database Name}
jdbc-username The plain text username as established on the remote database for

OFBiz to use to access the database.
jdbc-password The plain text password as established on the remote database for

OFBiz to use when connecting to the database.
isolation-level Transaction isolation levels determine how insulated concurrently

active transactions are from one another. This attribute establishes the
default row-level locking behavior for this database connection.

While details of database transaction theory are beyond the scope of
this book, it is recommended that most applications should use

ReadCommitted or ReadUncommitted isolation levels.

Note: transactions discussed within the context of the Entity Engine's
configuration are not the same transactions as configured for the
Service Engine.

pool-size Used to configure database connection pooling. The provided values
are those found by experience to be most useful for the configured
data source. The Entity Engine handles all connection acquisition and
closure automatically (unless you otherwise instruct it).

pool-maxsize Used to configure database connection pooling (Minerva). The provided
values are those found by experience to be most useful for the
configured data source.

See also
Visit http://ofbiz.apache.org/docs/entityconfig.html for more information.

See also your vendor's database documentation.

http://ofbiz.apache.org/docs/entityconfig.html

Chapter 5

119

Connecting to a remote database
A "remote" database is any data source that is not the default Derby database. A remote
database may be network connected and/or installed on the local server. The Entity Engine
supports simultaneous connections to an unlimited number of remote databases in addition
to, or as a replacement for, the default instance of Derby.

Each remote database connection requires a datasource element entry in the
entityengine.xml file. Adding and removing database connections may be performed at
any time; however, entityengine.xml file changes are only effective upon OFBiz restart.

Getting ready
Collect all the necessary information required to connect to the remote database. In
particular, you will need, at a minimum, the following information:

ff Database name.

ff Username and password for OFBiz to pass when negotiating connections to the
remote database. In some cases, passwords are not required. Check your remote
database setup for more information.

ff Database schema name, if appropriate. See the entityengine.xml file
for examples.

ff Connection location information, including the IP address and port number to
connect on (for IP-based network connections).

How to do it...
Once the initial information (as stated earlier) is collected, a remote database can be
connected to by following these steps:

1.	 Edit the entityengine.xml file. Add one or more datasource elements, one
for each target database. Add one or more delegator elements with entity group
configuration information telling the Entity Engine which entities are to be found on
which target databases.

2.	 Add or modify any field type definitions in the appropriate field type definition file for
the target remote database.

3.	 Add all necessary entity definitions to one or more entity definition file(s). Each table
on the remote database requires an entity definition before it may be accessed
through the Entity Engine.

The OFBiz Entity Engine

120

4.	 If necessary, add any entity group definitions to an entity group definition file.

5.	 Make sure that any new entity group definition file is defined in the
ofbiz-component.xml file.

6.	 To make any Entity Engine configuration changes effective, restart OFBiz.

How it works...
Entity engine database connections and entity models are built whenever OFBiz is restarted
as part of its initialization process. To manage database connections, connection pooling
across all defined databases, data transfer, and data source transaction specifics, OFBiz
consults the entityengine.xml file and automatically builds the internal control settings
each time it is restarted.

Connecting to multiple databases
The OFBiz Entity Engine may service an unlimited number of database connections in addition
to, or as a replacement for, the default embedded Derby database.

Getting ready
The following steps should be ensured:

1.	 If the databases do not already exist, be sure to create them prior to editing the
entityengine.xml file. Collect necessary connection information per database,
including database location information (IP address and port), database name,
username, and password if necessary.

2.	 Create one or more entity group definition(s) that assign a connection label using
the delegator declaration to an Entity Engine reader. If you wish to create a new
entity group definition file for the new entity model's group definitions, do so now.
(Note: you can use an existing entity group definition file such as the one found in
~framework/entity/entitydef/entitygroup.xml).

3.	 If the entity model definitions do not exist for the target database tables, create
one entity definition for each target database table and assign that entity(s) to the
appropriate entity group.

Chapter 5

121

How to do it...
To add one or more databases to the Entity Engine configuration, edit the ~framework/
entity/config/entityengine.xml file as shown here:

1.	 Open the entityengine.xml file using a text editor of your choice.

2.	 Within the entityengine.xml file, configure each database as a separate
datasource element.

3.	 If desired, define a unique delegator element and group-map.

4.	 Save and close the entityengine.xml file.

5.	 Restart OFBiz.

How it works...
The Entity Engine rebuilds its runtime configuration of configured data sources each time
it restarts. To tell OFBiz which data sources to connect with, add a datasource element
declaration to the entityengine.xml configuration file for each database needing an Entity
Engine-managed connection. There is no limit to the number of datasource elements you
may configure within the entityengine.xml file.

To associate one or more entities with an Entity Engine-managed connection, use the
delegator element. This element allows you specify precisely which entities are to be
managed per defined connection. There is no limit to the number of delegator elements
you may add to the entityengine.xml file.

Entities defined within a delegator element are grouped according to "entity groups", where
an "entity group" is a collection of entities defined in an entity group definition file. There is no
limit to the number of entities or entity groups supported by the OFBiz Entity Engine.

Creating entity groups
To effectively manage an unlimited number of entities, databases, and database connections,
the Entity Engine groups together entities that map to tables on the same physical database.
For example, out-of-the-box, all the OFBiz ERP entities that are physically implemented as
tables on the Derby database are grouped together in the org.ofbiz entity group.

Getting ready
There is no need to create new entity groups if your entities will be part of the OFBiz schema.
You can use the default OFBiz instance group-name of org.ofbiz.

The OFBiz Entity Engine

122

How to do it...
To add more entities that are not part of the Derby entity group, or if you wish to separate out
your entities into different entity groups, create new entity groups as shown here:

1.	 Within the entityengine.xml file (~framework/entity/config/
entityengine.xml), define a delegator for the group with a pointer to the
datasource database configuration element. Each delegator is defined with a
delegator element as shown here:
<delegator name="default" entity-model-reader="main"
 entity-group-reader="main" entity-eca-reader="main"
 distributed-cache-clear-enabled="false">
 <group-map group-name="org.ofbiz"
 datasource-name="localpostnew"/>
 <group-map group-name="org.ofbiz.olap"
 datasource-name="localderbyolap"/>
</delegator>

2.	 Within the ofbiz-component.xml file, create one or more entity-resource
declarations, each pointing to the location of an entity group definition file as
shown here:
 <entity-resource type="group" reader-name="main" loader="main"
 location="entitydef/entitygroup_olap.xml"/>

3.	 The entity group definition file must have a valid version number and XSD schema
declaration, as follows:
<?xml version="1.0" encoding="UTF-8"?>
<entitygroup xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation=
 "http://ofbiz.apache.org/dtds/entitygroup.xsd">

4.	 Add one or more entity-group XML declaration statements. Each entity-group
declaration adds a single entity to the specified group as shown here:
<entity-group group="org.ofbiz.olap" entity="CurrencyDimension"/>

5.	 Restart OFBiz.

How it works...
OFBiz uses entity groups to collect together all the entities to be accessed using the same
Entity Engine-managed connection. The Entity Engine labels and otherwise identifies unique
database connections using delegators. Entity groups are primarily a convenience for easily
mapping database connections, delegators, and specific entities.

Chapter 5

123

Disabling automatic database checks
There are times when you don't want OFBiz to check the database and/or make entity
changes on system startup. For example, you may be using the Entity Engine and OFBiz to
retrieve data from a read-only database.

Getting ready
Using an editor or IDE of your choosing, open the Entity Engine configuration file:

~framework/entity/config/entityengine.xml

How to do it...
To change the default Entity Engine startup behavior, follow these simple steps:

1.	 For each database (datasource) that you wish to turn checking off, find the
following configuration attributes and set them to false:
check-on-start="false"
add-missing-on-start="false"

2.	 Save and close the file.

3.	 Restart OFBiz.

How it works...
Each time OFBiz starts up, it checks the entityengine.xml configuration file to determine
which databases to connect to and how to handle missing tables, columns, and/or primary
and foreign keys. Setting these values to false tells OFBiz to not perform startup checks or
initialization-time repairs on the databases so configured.

Mapping database data types
One of the primary benefits of using the Entity Engine over direct SQL calls to access data is
that OFBiz abstracts the details of how data is physically stored, away from the user. When
making a request for data through the Entity Engine, the user does not need to know where
the data is physically located or how it is formatted. The Entity Engine handles all the details
of data mapping for the user in real time.

Since physical data storage formatting varies widely from database vendor to vendor, the
Entity Engine must map these variations to consistent data type values for use within the
OFBiz framework.

The OFBiz Entity Engine

124

Getting ready
The following steps have to be performed before adding or modifying data type mapping:

1.	 Entity engine field types are configured in separate field type definition files, one for
each database in use. To determine which field type definition file to use, consult the
entityengine.xml file. Each field type file is defined with a field-type-name
element XML declaration.

2.	 Find the database configuration declaration for the field(s) you wish to change by
locating the datasource element with the appropriate name attribute value. For
example, if you wish to change the database field type definitions for the database
called localderby, find the name attribute that has the value of localderby.

3.	 Once the desired data source is identified and the datasource element is located,
observe the field-type-name attribute's value. For example, in the default out-of-
the-box entityengine.xml file, the field-type-name value for localderby is
derby as shown here:
<datasource name="localderby"
 <!—Note: file contents removed for clarity -->
 field-type-name="derby"

4.	 Locate the appropriate field-type element declaration given the field-type-
name value from step 3. For example, in the following field-type element, we see
that the field type definition file for the derby data source is fieldtypederby.xml
(Note: the location of fieldtypederby.xml defaults to ~framework/entity/
fieldtype):

<field-type name="derby" loader="fieldfile"
 location="fieldtypederby.xml"/>

How to do it...
Adding or modifying a data type mapping may be performed by following these steps:

1.	 Open the existing field type definition file for the database as configured in the
entityengine.xml file. Use the process described earlier to find the appropriate
file corresponding to the database data type needing modification.

2.	 To change an existing field type definition, edit the appropriate entry in the field
type definition file. For example, to change the definition of the OFBiz data type
currency-amount, edit the field-type-def element as shown here:
<field-type-def type="currency-amount" sql-type="NUMERIC(18,2)"
 java type="java.math.BigDecimal">
 <validate method="isSignedDouble"/>
</field-type-def>

Chapter 5

125

3.	 To add a new field type definition, add an element of type field-type-def to the
document. Don't forget to close the element with a </field-type-def> tag.

4.	 Save and close the file.

5.	 If necessary, run ant clean-install to remove any existing data.

6.	 If necessary, run ant run-install to reinstall any seed data.

7.	 Restart OFBiz.

How it works...
The Entity Engine automatically maps low-level database data types to data types that are
consistent across all Entity Engine-managed databases using the mapping definitions found in
field type definition files. In this way, OFBiz offloads the tedious and often error-prone task of
converting physical database data storage formats for application use from the developer.

In the following example, an OFBiz data type is shown and then the equivalent storage data
types per database are given. Using the Entity Engine as the layer between database access
and application logic, the OFBiz developer need only reference the data as an OFBiz data type.
There is no need to worry about the vagaries of the individual storage mediums in use. If the
underlying database changes, applications will continue to work transparently as applications
read and write OFBiz data type(s) to the Entity Engine and not the target database.

OFBiz data type: date-time
sql-type sql-type-alias java-type

Oracle TIMESTAMP TIMESTAMP(6) java.sql.Timestamp

PostgreSQL TIMESTAMPTZ java.sql.Timestamp

Creating a new entity definition file
Entities are defined in entity definition XML document files. By convention, entity definition
files are located in a containing Component's entitydef directory. This may be changed by
editing the Component's ofbiz-component.xml file.

How to do it...
To define a new entity definition file, follow these few steps:

1.	 Check the ofbiz-component.xml file to make sure there is an entity-resource
element that locates an entity definition file. For example:
<entity-resource type="model" reader-name="main" loader="main"
 location="entitydef/entitymodel.xml"/>

The OFBiz Entity Engine

126

2.	 Using your favorite operating system or IDE tool, add entity definition files in the
directory locations specified in the ofbiz-component.xml file shown earlier. Make
sure each file has the appropriate XML version and XSD declarations in the beginning
of the file:
<?xml version="1.0" encoding="UTF-8"?>
<entitymodel xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation=
 "http://ofbiz.apache.org/dtds/entitymodel.xsd">

3.	 Make sure the new entity definition file has a closing XML element tag
(</entitymodel>).

4.	 Insert as many entity definitions within this file as needed.

5.	 Save and close the file.

6.	 Restart OFBiz to make any changes to the ofbiz-component.xml file effective.

How it works...
OFBiz is made aware of entity definition files by placing one or more declarations about the
files within a Component's ofbiz-component.xml file. There is one such declaration for
each entity definition file located within the containing Component.

Creating a new entity model
The Entity Engine supports an unlimited number of entity definitions spread across an
unlimited number of data sources. To create a new entity, sometimes called the entity model,
is simply to add the entity's definition to an entity definition file.

Getting ready
Make sure you have an entity definition file defined in an existing ofbiz-component.xml file.

How to do it...
To create a new entity, follow these steps:

1.	 Open an existing entity definition file or create a new one.

2.	 Add one or more entity elements as shown here. Please note: XML declarations
shown below are for demonstration purposes only. Statements have been removed
to make reading easier:
<entity entity-name="EntityName"
 package-name="org.ofbiz.somePackageName"

Chapter 5

127

 title="My New Entity">
 <!-- Entity definition XML declaration(s) go here.
 Removed for demonstration purposes -->
</entity>

3.	 Each entity element will have one or more of the following declarations added:

�� field element declarations within the entity element:
 <field name="someFieldName" type="any defined type">
 </field>

�� prim-key elements to define the primary key for this entity:
 <prim-key field="primaryKeyField"/>

�� relation elements.

4.	 Close the entity element with a closing tag (</entity>).

5.	 Save and close the file.

6.	 Restart OFBiz to make the entity definitions effective.

How it works...
When OFBiz first starts up, it checks the data model as defined by configured entities in valid
entity definition files. Any new entries in entity definition files are checked for configuration
integrity and added to the OFBiz data model automatically.

There's more...
The following table summarizes many common entity configuration settings:

entity element tag (Required)
Attribute name Required? Usage
entity-name Yes The name used to uniquely identify this entity.

table-name No The equivalent database table name. If this value
is the same as that of the value specified by the
entity-name, then this attribute may be left out of
the definition.

package-name Yes Used to organize entities. The suggested best practice
is to use the org.ofbiz.somepackage syntax,
although there are no checks on these values.

The OFBiz Entity Engine

128

To configure one or more primary keys for an entity, add an XML declaration similar to
the following:

prim-key element tag (Not required)

It is not required to have a primary key declaration. However, it is highly recommend for both
referential integrity and performance improvements. An entity may have an unlimited number of
primary key fields defined. Some databases have restrictions on the length of the primary key.
Attribute name Required? Usage
field Yes This is the name of the field.

If performance is an issue, you may optionally configure one or more index elements for an
entity. Indexes are configured as shown here:

index element tag (Not required)
Attribute name Required? Usage
name Yes Name to use when using this index.

Note: there is a limit of 18 characters or less for
this value.

unique No Valid values: true, false

Default: false
index-field element tag

name Yes The name of the entity field to use as the index.

To configure the following entity behavior for an individual entity, use the settings as
shown here:

Configure an XML declaration
similar to the following:

Behavior

no-auto-stamp="true" By default, OFBiz will create the following entity fields:
lastUpdatedStamp, lastUpdatedTxStamp,
createdStamp, createdTxStamp for all entities.
Additionally, these fields are automatically updated
as appropriate.

In cases where you are reading and writing to a non-OFBiz
database entity, you may want to turn off this behavior.

never-cache="true" Set this entity to never be cached.
sequence-bank-size=
"Integer Value"

Set the range of sequence identifiers used when getting a
new sequence identifier using Entity Engine interfaces. The
default is "10".

Chapter 5

129

Field elements map the target database columns to the equivalent OFBiz field definition. To
add one or more column definitions as field entries, use the field element with the following
attribute settings:

field element tag (Required)

Field elements configure one or more columns for the entity.
Attribute name Required? Usage
name Yes This is the name of the field.

col-name No If the database table column name is different from
the equivalent entity field name, set the value here.

type Yes This value may be any supported field type value as
defined in the appropriate fieldtype definition file
for this database.

encrypt No To instruct OFBiz to use its own encryption algorithm
to encrypt and decrypt this field's value before
storage and upon retrieval, set as true.

Note: setting field encryption in this manner is not
the same as using the target database encryption
support.

Default: false
enable-audit-log No If set to true, the Entity Engine will record any

changes to this field in an EntityAuditLog entity.

Default: false
non-null No Sets not-null constraints on the database (instead of

the field type).

Default: false

The OFBiz Entity Engine

130

Just as physical database tables may be associated with one another through defined
"relationships", OFBiz entities may be related. Use the relation element attribute settings
to define one or more relational associations between the defined entity and any other OFBiz
entities as described here:

relation element tag (Not required)

This element configures one or more relationships for the associated entity. An entity may be
related to an unlimited number of other entities using these XML relationship declarations:
Attribute name Required? Usage
type Yes Valid values: one, many, one-nofk

Note: OFBiz automatically creates a foreign key for one-
to-one entity relationships. If you don't want a foreign key
created, use the one-nofk value.

fk-name Yes An "alias" or name to use for this field, when used as a
foreign key.

Note: this must be 18 characters or less.
rel-entity-
name

Yes The name of the entity that is the target in this relationship.
All relationships are defined from the defined entity to a
target entity as specified using the rel-entity-name
attribute.

key-map element tag

This element is required if the related entity primary key fields do not have the same name as
the entity being defined.

There may be an unlimited number of key-map elements per entity.
field-name Yes The field name from the defined entity that represents the

primary key used in this relationship.
rel-field-
name

Yes The name of the primary key in the related entity used to
configure this relationship.

Modifying an existing entity model
To change the entity model where the physical characteristics of the underlying database
changes, you must rebuild the target database table as well as modify the corresponding
entity model to coincide with these changes.

Note: simply changing an entity's configuration will not reconfigure the
physical database tables and column definitions on the target database.

Chapter 5

131

To change an entity model where the existing column structure is not affected, for example,
to add a new relationship definition for an entity, may not require first changing the
target database

Getting ready
First of all, ensure the following:

1.	 If necessary, back up any data in the target database table(s) as modeled by the
entity. You may use a third-party database specific backup tool or the OFBiz WebTool's
Entity XML Export tool located at:
https://localhost:8443/webtools/control/xmldsdump

2.	 If required, drop the table from the database. You may use the database vendor's
tool, third-party database specific tool, or the OFBiz WebTool's Entity SQL Processor.
To use the Entity SQL Processor, log in to WebTools and navigate to:
https://localhost:8443/webtools/control/EntitySQLProcessor

In the SQL Command text box, enter in a command similar to the following SQL DROP
statement and click the submit button. Note: do not add a trailing semi-colon. This
will drop the indicated table:
DROP TABLE "tablename"

How to do it...
To modify an existing entity, follow these steps:

1.	 For changes that reflect modifications to the physical characteristics of the data on
the target database, remove the target table from the database as indicated earlier.

2.	 Using any text editor, open the entity definition file containing the entity model to
change.

3.	 Modify the entity model definition by editing the existing entity definition.

4.	 Save and close the entity definition file.

5.	 Restart OFBiz to make the modified entity model effective. For tables that have been
removed from the target database, OFBiz will attempt to recreate the table using the
entity's new definition.

6.	 If necessary, reload any data that may have been saved.

The OFBiz Entity Engine

132

How it works...
OFBiz entities are models of physical storage repositories such as databases. When the
underlying medium changes, for example, columns within an RDBMS table are reconfigured,
OFBiz must be told how to adjust its view of the data. OFBiz cannot rearrange existing data. It
can only modify its model of that data.

By default, OFBiz can, however, if configured to do so, instruct a data source to create new
tables, fix certain key assignments, and create or remove table relationships based on
configured entity models when it starts up.

Building a view-entity
OFBiz view-entities are a convenient way of constructing SQL JOIN statements. They do not
force the creation of database tables or map to database tables as do entity definitions, but
rather they allow OFBiz to create runtime views of related tables so that users may easily
access joined tables without creating complicated SQL JOIN statements.

Getting ready
View-entities are defined in entity definition files along with entity definitions. Make sure
you have an entity definition file (to use for any view-entities) configured in an existing
ofbiz-component.xml.

How to do it...
The process for creating one or more view-entities is similar to that of creating an entity
definition, and can be done by following these steps:

1.	 Open an existing entity definition file or create a new one.

2.	 Add one or more view-entity elements as shown here. Please note: XML
declarations shown below are for demonstration purposes only. Statements have
been removed to make reading easier:
<view-entity entity-name="EntityName"
 package-name="org.ofbiz.somePackageName"
 never-cache="true" title="My New View Entity">
 <!-- Entity definition XML declaration(s) go here.
 Removed for demonstration purposes -->
</view-entity>

3.	 Close the view-entity element with a closing tag (</view-entity>).

4.	 Save and close the file.

Chapter 5

133

5.	 Restart OFBiz to make the view-entity definition effective.

6.	 Use the WebTools Entity Reference - Interactive Version to see if the new
view-entity was successfully created (https://localhost:8443/webtools/
control/entityref).

7.	 Programmatically, view-entities are accessed in the same manner as entities.

How it works...
OFBiz view-entities are a convenient way to create SQL JOIN statements (joining together
table column data from two or more tables) using XML declarations instead of SQL statements.
The Entity Engine automatically creates the SQL JOIN statement any time the view-entity
is accessed.

View-entities may be created or removed from the OFBiz Entity Engine data model at any time
using the mentioned recipe. View-entities are read-only, and attempts to store data using a
view-entity will fail.

There's more...
An OFBiz view-entity has one or more participating "member" entities. As a convenient way
to refer to a member entity, you must create an entity level alias for that member using the
member-entity element as shown here:

member-entity element tag

Create a shortcut alias for each view-entity participating member.
Attribute name Required? Usage
entity-alias Yes Two-letter to four-letter alias or abbreviation used for the

remainder of this definition to represent the full entity
name as given in the entity-name attribute.

entity-name Yes The name of an existing entity.

Note: this attribute is case-sensitive. The value in this
field must match an existing entity name.

The OFBiz Entity Engine

134

Each member entity may have one or more field aliases defined for any existing entity field. All
fields are referenced using field aliases within the context of the view-entity. To create field-
level aliases, use the alias element tag as shown here:

alias element tag

For example, an alias element definition of:
<alias entity-alias="OH" name="orderId" >

Refers to the field orderId in the entity aliased within the member-entity as OH.
If OH is aliased as OrderHeader, then this alias refers to the orderId field in the
OrderHeader table.
Attribute name Required? Usage
entity-alias Yes Use the entity's alias as configured in the member-

entity element instead of the real entity name.
name Yes The field from the aliased entity to use as part of

this definition.
complex-alias element tag

Within the alias element, you may have one or more complex-alias elements defined.
complex-alias elements are a mechanism for configuring filters on one or more return
fields.
operator Yes Any supported mathematical operator for the field's

data type.
One or more fields to be joined using the operator-supplied operator. Fields are defined using
the complex-alias-field element tag.

If all fields for an entity should be returned when calling this view-entity, you may use the
shortcut alias-all element as defined here:

alias-all element tag

Return all the fields for the specified entity alias.
Attribute name Usage
entity-alias Use the entity's alias as configured in the member-entity element

instead of the real entity name.

Chapter 5

135

To create a SQL OUTER JOIN (that is, a JOIN on two tables where records from the joined
tables may not have matching pairs), use the view-link element to define the relationship
between one entity and another target entity, and set the rel-optional value to true:

view-link element tag (Optional)
Attribute name Required? Usage
entity-alias Yes The alias for the entity participating in this relation.
rel-entity-
alias

Yes The alias of the related entity.

rel-optional No Valid values: true, false

Default: false
key-map element tag

The key-map entity defines the table relationship.
field-name The name of the field as defined by the entity pointed to by

the entity-alias attribute value.

See also
View-entities may be quite complex. For an in depth treatment of this subject, please see The
Open For Business Project: Entity Engine Guide at:

http://ofbiz.apache.org/docs/entity.html

6
OFBiz Security

In this chapter, you will find useful information on:

ff Securing communications ports

ff Disabling demonstration user accounts

ff Protecting OFBiz web pages

ff Creating user accounts

ff Protecting applications using security groups

ff Protecting views ("Tarpitting")

ff Retrieving forgotten passwords

ff Changing a password

ff Adding or changing SSL certificates

ff OFBiz web application single sign-on (the external login key)

Note: if you are wondering why the screenshots in this chapter do
not exactly match the out-of-the-box OFBiz web page views, then be
advised that the visual theme has been changed from the default to
one that makes it easier to view navigation links on backend OFBiz web
applications. Managing OFBiz visual themes is discussed in Chapter 10.

Introduction
In this chapter, we discuss strategies for securing your OFBiz installation and web applications
("webapps"). Such strategies take many forms allowing you, the OFBiz owner, maximum
flexibility in designing and deploying the security policies that make the most sense for your
business needs.

OFBiz Security

138

To begin with, OFBiz is distributed with a minimum of security features turned on. This is
intentional to facilitate ease of initial software evaluation, customization, and testing. When
your deployment requirements are known, security controls may be applied as required. While
there are not many out-of-the-box security configuration settings that should be attended
to before going into production, it is highly recommended that, at a minimum, you consider
changing the default HyperText Transfer Protocol (HTTP) and HyperText Transfer Protocol
Secure (HTTPS) communications ports and disabling demonstration login accounts.

Beyond these basic administrative security tasks, we shall also introduce in this chapter
topics ranging from web page authentication settings to the use of an "external login key" to
enable OFBiz web Application single sign-on.

Caution: the suggestions in this chapter do not obviate the need for a
comprehensive enterprise security policy nor the implementation of a
network and/or server-based firewall.

Securing communications ports
OFBiz relies heavily on the underlying TCP/IP networking stack, as well as the embedded
Catalina/Tomcat servlet container in which it runs for Internet communication support. For
example, the Catalina servlet container provides all the basic HTTP and HTTPS connection
handling on the default IP ports of 8080 and 8443 respectively. Ports 8080 and 8443 by
convention do not require any special usage privileges on the hosting system. This means that
any non-privileged user may startup an OFBiz instance from the install directory.

A downside of running web servers on ports 8080 and 8443 is that client browsers expect to
find URLs on ports 80 and 443. Port 80 is used for non-secure connections while port 443 is
used for secure, HTTPS-based communications. To run a web server on IP ports 80 and 443
often requires special privileges, sometimes called "root" or "superuser", on the host server.
When OFBiz is configured to run on these ports, it is considered by some to be more secure.

A second set of ports, 9990 and 9991, that should be secured before deploying OFBiz in
a production environment, are ports used to access the BeanShell interpreter through the
TELNET protocol. You may either disable these ports or protect them using an external firewall.

How to do it...
Communication ports 80 and 443 may be set up by the following steps:

1.	 To change the HTTP/HTTPS ports, open the following file:
~framework/base/config/ofbiz-containers.xml

Chapter 6

139

2.	 To change the default HTTP port from 8080 to 80, first locate the http-connector
property. Within the http-connector specification, find the port property. Edit this
property value as shown:
<property name="http-connector" value="connector">
 <!--Note property declarations removed. See file for details.-->
 <property name="port" value="80"/>
 <!--Note property declarations removed. See file for details.-->
</property>

3.	 To change the default HTTPS port from 8443 to 443, first locate the https-
connector property. Within the https-connector specification, find the port
property. Edit this property value as shown:
<property name="https-connector" value="connector">
 <!--Note property declarations removed. See file for details.-->
 <property name="port" value="443"/>
 <!--Note property declarations removed. See file for details.-->
</property>

4.	 To change or disable the default BeanShell ports, locate the beanshell-
container property. To disable these ports, wrap the entire container definition in
XML comments (<!-- -->). To change the ports, edit the property values as shown:
<container name="beanshell-container"
 class="org.ofbiz.base.container.BeanShellContainer">
 <property name="telnet-port" value="9911"/>
 <property name="app-name" value="OFBiz"/>
</container>

5.	 Save and close the file.

6.	 Restart OFBiz to make IP port configuration changes effective.

How it works...
The OFBiz distribution comes integrated with the Catalina servlet container. This container
provides the basic communication support necessary for OFBiz to act as a web server on
the Internet. As with most of OFBiz, the Catalina servlet container is completely configurable.
What you get out-of-the-box are generic settings based on the experience of the project team.

All available Tomcat/Catalina servlet container configuration parameters are exposed in the
~framework/base/config/ofbiz-containers.xml file within the named container
element. When OFBiz starts up, it passes the configuration settings in this file to the Tomcat/
Catalina container(s) for processing. This means that you may tune your servlet container
instance by changing settings in this file.

OFBiz Security

140

Note: when HTTP and HTTPS ports are changed to values under 1000, most
operating systems will require superuser or root privileges before OFBiz may
be restarted. Therefore, if you change these ports as described here you may
first need to be the root or system user before starting OFBiz.

There's more...
If you change servlet container HTTP/HTTPS settings, you probably will want to change the
following settings within the ~framework/webapp/config/url.properties file. These
settings are used internally by OFBiz to support automatic URL conversions. These settings
are not passed to the servlet container:

port.https.enabled=Y
port.https=443
port.http=80

There are several other TCP/IP ports that OFBiz uses and that you should be aware of when
configuring firewalls or other software running on the same server as an OFBiz instance.

Note: it is possible to run many instances of OFBiz on the same
server if care is taken to set TCP/IP so there are no conflicts.

These ports include, but are not limited to:

ff Database Ports: Any port(s) used by the entity engine as configured in ~framework/
entity/config/entityengine.xml will need safe passage through any firewall
if the target database system(s) are remotely located.

ff RMI/JNDI ports: Details of using OFBiz as either a provider of Remote Method
Invocation (RMI)/Java Naming and Directory Interface (JNDI)-based services are
beyond the scope of this book. However, RMI may be used in a number of places
throughout the code base, and RMI IP port settings are a consideration when
readying OFBiz for production environments. The primary RMI configuration file used
when setting up an OFBiz RMI server is the ~framework/base/config/ofbiz-
containers.xml file.

RMI may also be configured for use with the Service engine as either a service client
or by settings in this file: ~framework/service/config/serviceengine.xml
(defaults to 1099).

For more information concerning RMI configuration, please see the Apache
OFBiz FAQ-Tips-Tricks-Cookbook-HowTo located on the OFBiz Wiki:
http://cwiki.apache.org/confluence/x/9ABk

Chapter 6

141

See also
There are many other Catalina/Tomcat settings in the ofbiz-containers.xml file that
may affect OFBiz security and performance. To see a complete list of Tomcat/Catalina-specific
settings, please refer to the appropriate Tomcat documentation available at:

http://tomcat.apache.org

For more information on TCP/IP port usage, please see Apache OFBiz Technical Production
Setup Guide:

https://cwiki.apache.org/confluence/display/OFBTECH/
Apache+OFBiz+Technical+Production+Setup+Guide

Disabling demonstration user accounts
Out-of-the-box, OFBiz comes with demonstrations for many of the ERP applications that make
up the project. These demos are purposely distributed with privileged user login accounts
enabled to showcase role base permission checking. Before moving an OFBiz instance into
production, at a minimum these demonstration privileged accounts should be disabled:
"flexadmin", "bizadmin", "demoadmin", "ltadmin", and "supplier".

How to do it...
To disable demonstration user accounts, follow these steps:

1.	 Log in into the Party Manager application using the default username "admin" and
password "ofbiz".

2.	 Bring up the profile of the account you wish to disable by first locating the account
using the Find Parties on Party Manager web page as shown here:

OFBiz Security

142

3.	 Under the User Name(s) section of the account on the Profile web page, click
the Edit button to bring up the profile's HTML form to Update UserLogin Security
Settings as shown here:

4.	 Change the Enabled drop-down select box to N.

5.	 Add the Disabled Date Time using the calendar icon. If no disable time is selected,
the current time will automatically be inserted in this field. Entering a value in this
field allows you to select future dates for disabling.

6.	 Hit the Save button to make the change immediately effective.

7.	 Perform this set of tasks for every account that requires disabling.

How it works...
The Party Manager application provides a convenient UI to manage user accounts such as
those provided with the demonstration software. Disabling an account is an effective way of
turning off OFBiz access for any user.

Disabling an account has the added advantage of allowing you to re-enable that user login
at any future date without needing to recreate it. Further, by disabling an account instead of
removing it, you maintain a record of that user's login and system activities.

Protecting OFBiz web pages
Any web page may be set to require user authentication by way of the OFBiz login process by
setting the corresponding request-map entry in the controller.xml file. A user need only
log in one time per session as OFBiz will check each request for a protected web page against
a requesting visitor's login status. If the requestor is already logged in, they will not be asked
to login again. If the visitor is not logged in, they will be presented with an HTML login form.

Chapter 6

143

Getting ready
Identify the web application and the web page, OFBiz Service, or OFBiz Event that requires
user authentication.

How to do it...
You can protect your web pages by following these steps:

1.	 Open the appropriate controller.xml file containing the request-map entry for the
web page to protect.

2.	 Edit the request-map entry for the URI to be protected by setting the security
element's auth attribute to true. For example, the following request-map has both
the authorization and encryption (https) attributes for the authview request-map
set to true:
<request-map uri="authview">
 <security https="true" auth="true" />
 <response name="success" type="view" value="main" />
</request-map>

3.	 That is all you need to do to force a user to log in before accessing your web page.
Note: there is no need to restart OFBiz. All controller.xml file changes
are immediate.

How it works...
Each web application has its own controller.xml file used to map incoming HTTP/HTTPS
requests with the appropriate OFBiz web application Event, Service, or web page view. When
a request for a URL that has been configured to require authentication is made, OFBiz first
checks the user's session, and if the user is already logged in, will let the user proceed to
the URL. If the user is not yet logged in, OFBiz will present the configured login web page
and form.

When presented with the login form, the user must enter a valid user login name and
password. Values entered on this form are compared against known user account values as
stored within the database.

Once the user has successfully logged in, the user's identification credentials are made part
of the user's session by including them within a userLogin session attribute, available
programmatically by accessing the HttpServletRequest object.

OFBiz Security

144

There's more...
To override controller.xml authentication settings for an entire OFBiz instance, use your
favorite text editor to modify the ~framework/webapp/config/url.properties file and
change the following global URL conversion setting as shown here:

port.https.enabled=N

Restart OFBiz to make this change effective.

Setting this property as shown overrides all controller.xml settings for the entire
instance. All URL requests will be serviced using the HTTP port. Any explicit requests for
secure port access, for example, https://www.myserver.com will automatically be routed
by OFBiz to the non-secure URL equivalent.

While not necessarily a security setting, session timeouts are configured within the web
application deployment descriptor file per OFBiz webapp. The ~webapp/webappName/WEB-
INF/web.xml file is used directly by Tomcat to configure parameters specific to an individual
web application. To set Tomcat session timeouts, add an entry similar to the following:

<session-config>
 <session-timeout>60</session-timeout> <!-- in minutes -->
</session-config>

Creating user accounts
OFBiz user accounts are a handy mechanism to manage information about users. OFBiz
supports a rich set of user account management tools allowing for the collection and
maintenance of account information in the form of user "profiles".

OFBiz "users" are one of several different types of objects collectively
known as "Parties". Users' characteristics are defined within the data
model using the "Party" and various other associated entities. For the
remainder of this chapter, we shall consider OFBiz "users" as those
willing participants in OFBiz business processing that have OFBiz
accounts, and that have a row/record in the OFBiz "Party" entity/table.

Only a user with administrative privileges may create accounts on behalf of another user.
Similarly, only privileged user(s) may view or change another user's profile information.

Note: out-of-the-box, users may create accounts for themselves without
any special privilege. For example, the OFBiz e-commerce demonstration
web store allows site visitors to create accounts as desired.

Chapter 6

145

How to do it...
To create user accounts, follow these steps:

1.	 Navigate to the Party Manager application and log in as the administrative user.
(Out-of-the-box, log in as "admin" with a password of "ofbiz").

2.	 Select the Parties tab.

3.	 Select the Create New tab. This will bring up the Create New Party Detail HTML
menu selection form as shown in the following figure. Select from one of the provided
Create links as shown here:

4.	 Selecting the appropriate Create New Party Detail link from step 3 will bring up a
tailored Edit Personal Information HTML form as shown in the following figure. Initial
user profiles may be built automatically depending on the type of user being created.
The Edit Personal Information form will enforce valid form field data entry based on
user type.

OFBiz Security

146

5.	 Submit the Edit Personal Information HTML form to create the new user account by
clicking the Save button. This will bring up the Profile page for the newly created
user account.

6.	 To assign the new user a unique login username and password, select the Create
New button located to the right of the User Name(s) section of this page. For
example, we have created a new user named "Party Testing" and set up a default
user login username of "testLoginId" as shown:

How it works...
OFBiz tracks users by giving each user an account and a profile. The user's profile includes
one or more unique user login identifiers called login "usernames". Access to secured parts of
OFBiz are protected by requiring a user to log in using the assigned username and password.
At login time, OFBiz associates the logged in user with any access permissions and
application-based task roles they may have as part of their profile.

Using the OFBiz Party Manager allows privileged administrative users all the tools necessary
to create new user accounts and assign account profile information.

Chapter 6

147

There's more...
Global user profile security defaults are set in the following properties file:

~framework/security/config/security.properties

Global options include:

ff The minimum password length. Out-of-the-box, this value is five consecutive
characters. Blank (" ") characters are not permitted in passwords.

ff The number of failed attempts after which the user's account will be disabled. This
number defaults to three.

ff The length of time to disable a user's account should they fail to log in after the
consecutive login attempt value. After this elapsed time, the user's account will
automatically be re-enabled and they may attempt to log in again.

ff The encryption algorithm to use to encrypt passwords. The default is the one-way,
internal SHA encryption algorithm.

Protecting applications using security
groups

"Security groups" allow for fine-grain permission checking, on a user-by-user basis, across an
entire OFBiz web application ("webapp"). If you have webapps needing protection based on
a user's permissions—that is, a user's authorization to perform various business processing
tasks—and not just login authentication, then using security groups may be the answer.

How to do it...
To protect an OFBiz webapp using security groups, proceed as described here:

1.	 In the ofbiz-component.xml file for the component containing the webapp to be
secured, add one or more security groups using the base-permission attribute.
To add multiple security groups, separate each group name with a comma (","). In
the following example, we configure the OFBTOOLS security group association for the
myapp webapp:
<webapp name="myapp" server="default-server"
 location="webapp/myapp" mount-point="/"
 base-permission="OFBTOOLS" app-bar-display="false"/>

OFBiz Security

148

2.	 In the controller.xml file within the myapp webapp (or whichever webapp you
are securing using security groups), set the corresponding request-map entry
security element's auth attribute to true as shown here. This will force user login
when requests for the web page are made.
<request-map uri= "mywebpage">
 <security https="false" auth="true" />
 <response name="success" type="view" value="somewebpage" />
</request-map>

3.	 Restart OFBiz and test coverage by trying to access a protected web page. Observe
that you may be able to log in, but that you will be denied access to the webapp if the
user login used is not a member of the appropriate security group(s).

4.	 Associate one or more users with the configured security group. A security group must
also be associated with each user that you wish to authorize access to your protected
web application. To associate one or more security groups with a user, you may use
the security group's Add UserLogin to Security Group form by selecting the User
Logins tab as shown here:

Chapter 6

149

How it works...
Security groups may be used to apply fine-grain authorization or permission enforcement checks
to individual web pages and portions of a web page within a protected web application.

Using the following diagram, security group processing may be described as follows:

When a visitor makes a request for an OFBiz web page, the Controller Servlet (1) checks to
see if the request-map security element's auth attribute is set to true for the web page.
If it is, the visitor is presented a Login form(2). After successful login, OFBiz checks to see if
the webapp is configured to require further access mediation based on Security Groups (3).
If there are no security groups configured for a webapp, the visitor—now an OFBiz user—is
allowed access to the web page.

If the webapp has one or more security group(s) configured, OFBiz checks to see if the user is
a member of all configured groups. If not, the user is allowed to log in but is denied access to
the web page and any protected web page(s) within the protected webapp.

OFBiz Security

150

Note: if the user successfully logs in, but is not a member of all the
configured security group(s), they are still logged in to the OFBiz
instance. This means they may access any other OFBiz webapp(s)/web
page(s) requiring authentication as long as they are a member of all
configured security group(s) for that web page(s)/webapp(s). They may
always access any web page(s)/webapp(s) that require authentication
but are not protected by security groups.

If the user is a member of all the configured security group(s), the user is assigned the
appropriate Security Permissions (4) and allowed to continue (5) to the protected web page
as shown in the previous diagram:

Once a user gains access to a webapp protected by security groups, they are permitted
or denied use of OFBiz resources accessed through the web page, based on Security
Permissions. Out-of-the-box, there are five security permissions that may be applied to
mediate access to OFBiz resources. They are shown here:

Security permission Usage (rights are cumulative. For example, a user must have both
DELETE and UPDATE permissions to perform update and delete
operations using provided forms).

_VIEW View only access rights. Minimum permission necessary to access a
protected webapp.

_CREATE Allows the user to create new entities.
_DELETE Allows the user to delete entities.
_UPDATE Allows the user to update entities.
_ADMIN Includes all other permissions.

Note: you may also create your own security permission(s) and use these
within your web application to control access to any or all processing logic.

There's more...
Security groups and security permissions are an extremely flexible tool that may be used as
needed to protect any OFBiz web application. In the following example, we apply two new
security groups to the myapp web application:

<webapp name="myapp" server="default-server" location="webapp/myapp"
 mount-point="/" base-permission="MYTOOLS,MYPLACE"
 app-bar-display="false"/>

Chapter 6

151

The MYTOOLS and MYPLACE security groups are not part of the OFBiz distribution, and
must be created. To create a new security group, use the Party Manager application
as shown here:

1.	 Log in to the Party Manager application.

2.	 Select the Security tab.

3.	 Select the New Security Group tab.

4.	 Enter the name of the new security group and any description, and submit the HTML
form. That is all you need do to create a new security group.

Security groups are like containers that hold one or more security permission(s). To associate
one or more security permissions to a security group, for example, the MYTOOLS security
group created earlier, use the Party Manager application as shown here:

1.	 Edit the MYTOOLS security group by selecting it from the list of security groups
displayed on the Party Manager application's SecurityGroups List as shown here:

2.	 Selection of the security group on the SecurityGroups List web page will bring up the
Edit Security Group form for this security group. Select the Permissions tab to bring
up the Edit Security Group Permissions form.

OFBiz Security

152

3.	 From the Add Permissions (from list) to SecurityGroup form select an existing
security permission from the drop-down select box provided and hit the Add button.
Continue adding as many security permissions as desired.

Protecting views ("Tarpitting")
"Tarpitting" gets its name from e-mail anti-spamming techniques used to slow down the rate
at which repetitive access requests for e-mail services are honored by mail servers. The
tarpitting concept may be applied to OFBiz web pages when you need to limit the number
of times a request for a web page is honored, and thus slow down the rate at which OFBiz
responds to certain HTTP/HTTPS requests.

Getting ready
Make sure the controller.xml file containing your protected view has the following Java
class configured in the preprocessor section:

<preprocessor>
 <event name="checkProtectedView" type="java"
 path="org.ofbiz.webapp.control.ProtectViewWorker"
 invoke="checkProtectedView"/>
</preprocessor>

Chapter 6

153

How to do it...
To control the rate at which certain OFBiz web pages are honored, use the security group's
protected view option as shown here:

1.	 Log in to the Party Manager application.

2.	 Select the Security tab to bring up the SecurityGroups List.

3.	 Select the desired security group for the protected web page from the list provided to
bring up the Edit Security Group with ID web page.

4.	 Select the Protected Views tab.

5.	 For the requested View Name, enter in the view name as configured within the
controller.xml view-map entry. For example, if you have a view-map similar
to the following:
<view-map name="MyProtectedScreen" type="screen"
 page="some page location" />

6.	 The name to enter is MyProtectedScreen.

7.	 Enter in other field values as desired. (Note: the "tarpitting" value is the value entered
for the field labeled Duration. This is the length of time during which the web page
view will not be available).

8.	 Submit the Form by hitting the Add button. Web page view monitoring and protection
is immediate and does not require an OFBiz restart.

How it works...
The OFBiz controller servlet is the initial point of contact for all HTTP/HTTPS requests. This
servlet, modeled after the Model-View-Control (MVC) design pattern, is responsible for
handling all aspects of HTTP/HTTPS request processing, including selecting web page views
for the requestor and delegating business processing to other OFBiz servlets, Services,
and Events.

Adding the ProtectViewWorker.java program to a controller's configuration (via the
controller.xml file) tells the controller to pay special attention to certain view requests
and, based on the configuration parameters set within the Party Manager application, handle
those requests appropriately.

OFBiz Security

154

There's more...
By default, a blank web page is presented when a protected view is blocked. You may change
this behavior by editing the ~framework/security/config/security.properties file
and modify the following line: default.error.response.view=view:viewBlocked to
match a request-map entry as shown here:

<request-map uri="viewBlocked">
 <response name="success" type="view" value="viewBlocked" />
</request-map>
<view-map name="viewBlocked" type="screen"
 page="component://common/widget/CommonScreens.xml#viewBlocked"/>

Retrieving forgotten passwords
If you do not know the plaintext password for a user, the password may not be retrieved.
However, the existing password may be removed and a new one issued for the user either by
implementing an HTML form similar to those found on the e-commerce demonstration and
shown here:

Or by using the Party Manager application as the administrative user ("admin") and creating
a new password for a user. To implement a form-based automatic password creation service
similar to that shown above, follow the given recipe.

Note: for security reasons, OFBiz password encryption is a one-way
process. There is no way to programmatically recover the plaintext
value of a password once it has been encrypted by OFBiz.

Chapter 6

155

Getting ready
In the controller.xml file for the webapp from which your user's web page view will be
providing the forgotten password e-mail service, make sure you have a request-map entry
that maps the user's request for a new password to the OFBiz forgotPassword event as
shown here:

<request-map uri="forgotpassword">
 <security https="true" auth="false"/>
 <event type="java" path="org.ofbiz.securityext.login.LoginEvents"
 invoke="forgotPassword"/>
 <response name="success" type="view" value="login"/>
 <response name="error" type="view" value="login"/>
</request-map>

How to do it...
To add a feature to allow the user to request that a new password be e-mailed, follow the
process outlined here:

1.	 Open the FreeMarker file (or OFBiz widget) containing the HTML form that will allow
the user to e-mail a new password.

2.	 If using a FreeMarker template file to create the HTML form and web page view, add
lines similar to the following:
<#-- Note: the user must supply a valid userLoginId in the
 "Username" field for this to work -->
<#-- If they don't, an error message will be returned -->
<form method="post" action="<@ofbizUrl>forgotpassword</@ofbizUrl>"
 name="forgotpassword" style="margin: 0;">
 ${uiLabelMap.CommonUsername}:
 <input type="text" size="20" class="inputBox" name="USERNAME"
 value="<#if requestParameters.USERNAME?has_content>
 ${requestParameters.USERNAME}
 <#elseif autoUserLogin?has_content>
 ${autoUserLogin.userLoginId}
 </#if>"/>
 <input type="submit" name="EMAIL_PASSWORD" class="smallSubmit"
 value="${uiLabelMap.CommonEmailPassword}"/>
</form>

3.	 Save and close the file. Changes are immediate and do not necessitate OFBiz restart.

OFBiz Security

156

How it works...
A request to the forgotpassword URI as mapped in the controller.xml file calls an
OFBiz Event that:

1.	 Takes the provided form request parameter of USERNAME.

2.	 Looks up the associated userLoginId and primary e-mail address for the
provided USERNAME.

3.	 Creates a new password for that userLoginId.

4.	 E-mails that password to the primary e-mail address on file within the user's profile.

If the user does not have a primary e-mail address on file or an unknown USERNAME is
passed, control is passed back to the user and an error message is displayed.

Changing your password
Any user may change their own password at any time. For e-commerce application users,
passwords may be changed using the Profile tab located along the top navigation bar:

https://localhost:8443/ecommerce/control/viewprofile

Users of OFBiz backend applications, for example, the Order Entry or Accounting
applications, may use the MyPortal application to change passwords.

How to do it...
The following demonstrates use of the MyPortal application to change a password:

1.	 Log in to the MyPortal application:

https://localhost:8443/myportal/control/main

2.	 Select the My Profile tab to bring up the My Profile web page.

3.	 Under the Create New section of the My Profile web page, click the Edit button next
to the User Login label to bring up the Change User Login Password form.

4.	 Enter the current password.

5.	 Enter a new password. Passwords must be at least five characters in length and not
contain any blanks.

6.	 Verify the typing of the new password by entering it again.

7.	 Save the form by clicking the Save button.

Chapter 6

157

How it works...
The MyPortal application provides a handy UI for non-e-commerce OFBiz users to manage
profile information such as password changes. MyPortal is password-protected and therefore,
when a user requests access to it, they must first log in and be authenticated before initiating
any profile changes. In this way, OFBiz is able to verify the user's identity, including the existing
password for the account in which the user logged in, prior to the user submitting a
change request.

Adding or changing SSL certificates
Secure Sockets Layer (SSL) is the protocol used by OFBiz to provide secure communications
between browser clients and OFBiz webapps. Through SSL, secure communication sessions
are enabled by using public and private keys to encrypt and decrypt messages on a user-by-
user basis.

Internet web servers implementing SSL keep public keys in "certificates". When a browser
or other web-based client lands on a secure web page, it will first query the server's SSL
certificate to determine the server's identity, and then, based on that information, decide
to request the server's public key so that it may continue to communicate using
encrypted transmissions.

Note: technically, the out-of-the-box servlet container (the "Catalina"
servlet container and the "Tomcat" engine) provides the certificate
exchange and encryption/decryption support. The OFBiz code
seamlessly integrates this support so that applications need not worry
about the details of secure Internet communications.

Because the certificate containing the public key is used to identify the OFBiz server as a
trusted source, most deployed OFBiz instances replace the out-of-the-box default public key
certificate (provided primarily as a convenience) with one that has been signed and therefore
authenticated by a third-party called a Certificate Authority (CA).

While it is not necessary to have a certificate signed to operate a secure OFBiz instance, nor
is it necessary to change the out-of-the-box certificate, it is highly recommended to do so. The
process for exchanging the default out-of-the-box SSL certificate for another certificate, either
signed by a CA or a self-signed one, is described in this recipe:

OFBiz Security

158

Getting ready
All roads to certificate replacement start with creating new keys and certificates. A suggested
tool to use for key and certificate creation is the KeyTool. This collection of utilities is usually
provided as part of the operating system and/or Java SDK you may be using. If not, you may
find out more information here:

http://java.sun.com/j2se/1.5.0/docs/tooldocs/solaris/keytool.html

How to do it...
To create signed certificates, proceed as follows:

1.	 Since the SSL public key is derived from the private one, you must create the private
key first and then use that key to create the public key. If you are using KeyTool, you
can create the public key, private key, and the special file needed to store your keys
and certificates, called the keystore, with the following command:
keytool -genkey -keyalg RSA -alias server -keystore mykeystore.jks

You will be presented with a number of questions. Answer as appropriate for your
server installation. The answers will be used to generate the certificate and key(s).

2.	 Create a Certificate Signing Request (CSR). A CSR is a document created by KeyTool
that asks that the enclosed certificate be signed by a third-party. CSR can be created
by giving this command:
keytool -certreq -alias server -keyalg RSA -file certreq.csr
 -keystore mykeystore.jks

3.	 Send your CSR to a CA to be signed. CAs known to work with OFBiz include Verisign,
Thawte, Comodo, GeoTrust, CACert.org, and FreeSSL. (See the OFBiz Wiki for details).

4.	 If instead you wish to self-sign your own certificate, run a command similar to the
following. Answer the questions as appropriate for your server. This will create a
self-signed certificate and automatically store it in the designated keystore.
keytool -selfcert -alias server -keyalg RSA -keystore
mykeystore.jks

5.	 If you sent your certificate off to be signed, download your signed certificate from
the CA.

6.	 Import your signed certificate containing your public key into the keystore using a
KeyTool command similar to the following. If you self-signed your certificate, you will
not need to perform this step as this was already done in step 4.
keytool -import -alias server -trustcacerts -file mysignedcert.cer
 -keystore mykeystore.jks

Chapter 6

159

That is all you need to do to get a self-signed certificate into the keystore for OFBiz
to use.

If you have created a new keystore file as in the examples above, you need to tell OFBiz how
to access this new repository.

Note: creating a new keystore as shown here is recommended for
new installations to establish a server trust chain.

To inform OFBiz where a keystore is located and the password to use when accessing
this file, edit the ofbiz-containers.xml file as shown here. (Note: the keystorePass
property value is the password you created for the keystore in step 1):

~framework/base/config/ofbiz-containers.xml

<property name="keystoreFile"
 value="framework/base/config/mykeystore.jks"/>
<property name="keystorePass" value="newpassword"/>
<!-- Note the keystore type needs to match the type used when
 creating the keystore -->
<property name="keystoreType" value="PKCS12" />

How it works...
Using the ofbiz-containers.xml file as a reference, OFBiz automatically initializes the
Catalina/Tomcat servlet container when it starts up, with the essential elements necessary
to handle secure, encrypted SSL browser communications. Beyond initial servlet container
setup, OFBiz leaves the details of web server and browser key exchange and SSL encryption
to the servlet container.

There's more...
You may also use the OpenSSL toolkit to create SSL keys and certificates. To do so, follow
these steps:

1.	 Create the private key:
openssl req -new -key privkey.pem 4096

2.	 Using the private key, create a CSR to be sent to a CA to be signed:
openssl req -new -key privkey.pem -out cert.csr

3.	 Send the CSR to a trusted CA. Signed certificates from the following CAs are known to
work with OFBiz.

OFBiz Security

160

4.	 Create the keystore and import your private key:
keytool -genkey - keyalg RSA -alias server
 -keystore mykeystore.jks
keytool -import -alias server -keystore mykeystore.jks
 -privkey.pem

5.	 CSRs are returned as valid certificates. Import your signed certificate into the
keystore using a command similar to the following. (Note: different CA have slightly
different installation instructions. Follow those provided as appropriate):

keytool -import -alias server -keystore mykeystore.jks
 -privkey.pem

See also
Please refer to the OFBiz FAQ-Tips-Tricks-Cookbook-HowTo on the OFBiz Wiki:

http://cwiki.apache.org/confluence/x/9ABk

OFBiz single sign-on and the external login
key

If an OFBiz user (whose session has not expired) stays within the processing domain of a
single OFBiz webapp, they will not need to log in more than once. But, because of the nature
of TCP/IP sessions and servlet container behavior, users moving between OFBiz webapps may
be prompted to log in once for each OFBiz webapp they wish to access. Since any single OFBiz
instance may support an unlimited number of webapps, certain users such as administrators
may need to log in many times in the course of performing a single administrative task.

To help mitigate this situation, OFBiz provides a handy mechanism called the "External Login
Key". This feature enables logged in users to move between OFBiz web applications requiring
authentication without having to log in more than one time.

Note: because the external login key implementation depends on
the user's session, there may be times when the external login key
appears not to work. This may happen when a user has multiple
browser windows open (each representing a unique TCP/IP
session) at the same time, and is moving among browser window
sessions and webapps running within the same OFBiz instance.

Chapter 6

161

Getting ready
Implementing the external login key mechanism requires two distinct activities. Both activities
must be implemented for this to work:

1.	 Turn on external login key checking for each participating webapp within the
appropriate controller.xml file.

2.	 Create a dynamic "external login key" request parameter and append it to the
navigation link for each link that forwards a user to a participating OFBiz webapp
web page.

How to do it...
To enable single sign-on, perform the following steps:

1.	 To turn on external login key checking for an OFBiz webapp, make sure the following
Java class is configured within the preprocessor portion of the controller.
xml file for that webapp. Conversely, to remove external login key checks, remove or
comment out this line from the controller.xml file:
<preprocessor>
 <!-- Events to run on every request before security
 (chains exempt) -->
 <event name="checkExternalLoginKey" type="java"
 path="org.ofbiz.webapp.control.LoginWorker"
 invoke="checkExternalLoginKey"/>
</preprocessor>

2.	 Adding an external login key to an HTML location reference (HREF) within a
FreeMarker template is easy. Use the externalLoginKey session attribute as
shown here:

<a href=
”<@ofbizUrl>
/myofbizwebapp/control?externalLoginKey=${externalLoginKey!””}
</@ofbizUrl>”>
 Click Here

How it works...
Regardless of which OFBiz webapp a user logs in to, an external login key is generated for
that user for each successful login. This key is placed in the user's session and available
programmatically for OFBiz applications to use when dynamically creating navigation location
links to other OFBiz applications. Dynamic OFBiz webapp navigation links are created by
adding the key as a request parameter to the link.

OFBiz Security

162

In this way, web page requests for OFBiz webapps with the user's unique external login key
may be created each time a user lands on an OFBiz web page. The user may then select one
of these links to another OFBiz webapp and automatically have their current external login key
passed to the target OFBiz webapp and web page.

There's more...
If you are using OFBiz Menu widgets to build lists of HTML location references and you want to
provide external login keys for these references, OFBiz provides a convenient syntax for adding
external login keys as shown here:

<menu-item name="findQuote" title="${uiLabelMap.OrderOrderQuotes}" >
 <link target="/ordermgr/control/FindQuote" url-mode="inter-app">
 <parameter param-name="partyId"/>
 <parameter param-name="externalLoginKey"/>
 </link>
</menu-item>

7
WebTools

In this chapter, we shall discuss several WebTools, including tools and utilities for:

ff Cache maintenance

ff Changing debug settings

ff Exporting database data to XML documents

ff Loading databases from XML documents

ff Managing internationalization labels

ff Using the SQL processor

ff Exploring the entity reference tool

ff Viewing OFBiz usage statistics

ff Uncovering artifact information

ff Working with temporal expressions

Introduction
Out-of-the-box, OFBiz comes with many tools designed to help manage your OFBiz instance.
One set of tools specifically for use with the "framework" portion of the code base, that is,
those parts of OFBiz that make up the underlying core or support platform and which are
found starting in the framework directory, are called the "WebTools".

The WebTools toolkit is front-ended with a separate OFBiz Component, webapp (located as
a sub-directory under the framework directory), and UI, called the "WebTools" Application.
This webapp consolidates the many day-to-day OFBiz administrative system health checks,
system and application tuning utility access points, and configuration interfaces under a
single UI umbrella.

WebTools

164

All WebTools are password-protected and require administrative privileges and user
membership in the "OFBTOOLS" security group to access and use. Out-of-the-box, the default
administrative user login is "admin" and the password is "ofbiz". If these user credentials have
not been changed, they may be used to access all WebTools features and facilities discussed
in this chapter.

The main WebTools UI web page is located at:

 https://localhost:8443/webtools/control/main

From the menu selections on this web page, you may navigate directly to the desired tool. Or,
if you prefer, navigate directly to the target tool using its URL.

Cache maintenance
OFBiz, like most enterprise class software, uses caching techniques to improve system
performance by placing often used data in memory (and sometimes on disk) "caches". Since
the OFBiz framework is an all-inclusive deployment platform, there are many opportunities to
employ caching methodologies. From database access to web page screen construction and
teardown, OFBiz implements many independently configurable caching stores. Each cache
may be tuned independently of all others using the WebTools "cache maintenance" tool.

From the Cache Maintenance web page, you may view all currently active caches and
statistics on a per cache basis. In addition, you may, with one mouse click, clear and reload all
active caches as well as expire all stale cache data, and run the Java garbage collector.

For individual caches, you may set limits on the number of cache entries, called "elements",
or allow an unlimited number. For caches with a set limit on the number of entries, OFBiz
automatically handles element expiration and removal using a least recently used algorithm.
OFBiz tracks cache hits (the number of times a request for a cached element was satisfied by
finding the element in cache) and misses and reports these statistics on the WebTools Cache
Maintenance web page.

Getting ready
To get started with the WebTools Cache Maintenance tool, either navigate to the WebTools
main web page and select Cache Maintenance, or go directly to the tool's URL located at
https://localhost:8443/webtools/control/FindUtilCache. If you have not
already logged in, you will be prompted to log in. Enter the administrator's username and
password. If these have not changed since initial system download, the administrative user's
name is "admin" and the password is "ofbiz".

Chapter 7

165

How to do it...
Once logged in, follow these steps:

1.	 From the Cache Maintenance page shown, observe the following OFBiz cache
statistics: total memory allocated to all caches, free memory, used memory, and
maximum available memory. The maximum and minimum values displayed should be
within the ranges set for the Java JVM when the system was started.

2.	 To clear all caches and reload the cache list, click the Clear All Caches button
followed by the Reload Cache List button as shown in the figure.

3.	 To view individual cache entries, called "elements", in real-time as the system is
running, select the Elements tab adjacent to the target cache. Elements include the
cache "key" (either a piece of data such as a GenericValue, a file, or pointer to a
file) and the size of the element in bytes.

4.	 To edit individual cache settings, click the Edit button adjacent to the cache of
interest. Per cache configuration settings include the maximum size (0 indicates
none), Expire time (0 indicates do not expire).

How it works...
OFBiz implements caching to help maximize system performance through minimizing I/O
operations. For example, to reduce the number of database and/or disk accesses required
to support business applications, certain operations such as Entity Engine database request
and/or web page views benefit greatly from caching.

Each OFBiz Component and Application may implement one or more caches by calling the
generic OFBiz caching utility (the UtilCache Java class). You may even implement your own
cache for a custom Application using the UtilCache utility, and then manage that cache
using the WebTools Cache Maintenance web page.

WebTools

166

Out-of-the-box, many of the framework Components such as the Entity Engine, Service Engine,
and widget tools implement caching that you may easily monitor and tune using the WebTools
UI described here.

There's more...
Out-of-the-box, OFBiz has been set with all the default cache settings needed to run the
demonstration Applications provided. These setting are tuned for the development installation
and may not be adequate for a production environment where transaction volumes are
significantly higher than testing scenarios.

Note: initial startup cache settings are configured in the ~framework/
base/config/cache.properties file. If you change any cache
property using WebTools and then restart your instance of OFBiz,
settings in cache.properties will overwrite any WebTools settings.
Please see the cache.properties file concerning the latest
information regarding initial system setup suggestions, especially as
they apply to production-ready deployments.

The OFBiz caching utility places no limits on the number and/or size of caches that may be
active at any time. The complexity of the OFBiz caching scheme derives from the number
of caches and how the settings of any one cache may impact other caches and memory
availability, and not the actual caching implementation.

At some point, given a finite amount of physical computer memory, there may be memory
utilization contention based on element caching. Each OFBiz instance will behave differently
under different runtime transaction loads, and it is incumbent upon the OFBiz administrator
to use the provided WebTools cache maintenance utilities to find the optimum settings for any
single OFBiz deployment.

See also
Note: please see the OFBiz Javadocs UtilCache for more technical information concerning
implementation and usage of the OFBiz caching scheme:

http://ci.apache.org/projects/ofbiz/site/javadocs

Chapter 7

167

Changing debug settings
OFBiz system event logging and debug tools are an integral part of the OFBiz experience.
Whether you are monitoring a deployed system or developing a new OFBiz Component
or webapp, OFBiz wide runtime event logging and debugging support is your best
troubleshooting tool. Out-of-the-box, event logging is based on the Apache log4J logging
tool (http://logging.apache.org/log4j) and may be enabled or disabled using the
WebTools interface without restarting OFBiz. If enabled, log4j logging levels (the triggers that
tell log4j when to write an Event message to the log file) may also be adjusted during normal
system operations.

Getting ready
To get started and manage OFBiz logging features, either navigate to the WebTools main
web page and select the Logging navigation tab, or go directly to the tool's URL located at:
https://localhost:8443/webtools/control/LogConfiguration. If you have not
already logged in, you will be prompted to log in. Enter the administrator's username and
password. If these have not changed since initial system download, the administrative user's
name is "admin" and the password is "ofbiz".

How to do it...
Debug settings can be changed by following these steps:

1.	 To adjust logging levels, select the Log Configuration navigation tab from the main
Logging web page.

2.	 Add or remove check box selections as desired. Each check box represents a logging
level. Note: logging levels are independent of one another. For example, if you want
"warning" and "error" messages posted to the logfile, select Warning and Error. No
other messages, including "fatal" messages, will be posted.

WebTools

168

3.	 Click Update as shown in the following figure. That's all you need to do. No need to
restart OFBiz or change any code.

4.	 To completely disable all event logging, scroll down the Log Configuration web page
to the section labeled: This form shows all enabled loggers. Next to each defined
logger, select the OFF drop-down menu option. Click the Update button and all
logging will be turned off. You do not need to restart OFBiz to make this effective.

How it works...
Out-of-the-box, OFBiz system-level logging is based in an implementation of Apache log4j.
(http://logging.apache.org/log4j/index.html). Log4j provides a facility to
implement one or more "loggers". These loggers write consistently formatted text entries to
one or more logfiles based on settings configured here and in a Log4j initial configuration
setting file found at ~framework/base/config/debug.properties.

Note: Apache log4j may be replaced or supplemented when running in other
servlet containers and/or web application servers. Alternative logging tools
are configured in ~/framework/base/config/debug.properties.
Configuring such environments is beyond the scope of this book.

Chapter 7

169

One of the basic tenants of Apache log4j is that event logging statements may be placed
within the code and selectively triggered by the type of Event that occurs. Logging Event
types trigger logging "levels". For example, when an Event type of "Fatal" occurs, the logger, if
configured to do so, will post messages to one or more logfiles as "Fatal" level messages.

This means that in your code, you may place logging statements to only write messages when
a "Fatal" Event occurs. Of course, the developer will need to determine what constitutes a
"Fatal" Event and write statements accordingly. But log4j doesn't really care except to log a
message to the designated logfile when the "Fatal" Event code path is executed.

There are seven independently configured levels of logging defined in OFBiz: "Fatal", "Error",
"Warning", "Important", "Info", "Timing", and "Verbose". The OFBiz project has integrated
Apache log4j in such a way as to make using logging levels easy. All the software developer
need do is import the org.ofbiz.base.util.Debug Java class and call the appropriate
Debug object method. Formatting of the message, including adding the source code line
number and a timestamp when the method was invoked, are automatically handled by the
Debug Java class, as is message routing to the correct logfile.

For example, if you would like to post a message to the logfile from within a Java program only
when the Warning level is turned on, write a statement similar to the following:

Debug.logWarning(
"This message should only be written when logging Warning messages",
 module);

From the WebTools Logging Configuration web page, you may selectively turn on posting
of individual message levels as necessary. There is no need to recode your program or
restart OFBiz.

There's more...
All OFBiz logfiles are found in the ~/runtime/logs directory. At any time, you may remove
any of the files in ~/runtime/logs directory without damaging system operations. Once
a logfile is removed, OFBiz will cease posting messages to it. The next time OFBiz is started,
it will recreate the file automatically. If you would like to clean any of the files while OFBiz is
running and then have logging commence to a clean file without restarting OFBiz, try first
removing the file and then recreating an empty file. On a Unix system, you may use the Unix
touch command to create an empty file. For example:

cd ~runtime/logs

rm ofbiz.log

touch ofbiz.log

WebTools

170

Over the years, as the complexity of OFBiz has grown, the project, in an effort to make
troubleshooting and error reporting easier, has created separate logfiles for certain framework
processing such as a special logfile for the Catalina servlet container and Formatted Objects
Processing (Apache FOP).

The WebTools Log Configuration settings allow for controls that not only enable and disable
the primary OFBiz logfile but also for managing other configured loggers.

From the main Logging web page, you may select the View Log navigation tab. This will
bring up an HTML formatted version of the main OFBiz log (ofbiz.log) as shown. This tool
may prove extremely useful if you are working on a remote OFBiz system and do not have
command line or filesystem access to the OFBiz logfile directory. Note: you will need to refresh
the web page to see real-time updates to this file:

Exporting database data to XML documents
The OFBiz WebTools interface provides utilities to easily export data from any OFBiz data
source or part of an OFBiz data source, including all configured databases. All data source
exports copy from the target source and save data as one or more plain text XML document
file(s). These files may be then directly imported to other OFBiz managed data sources using
the OFBiz XML data import tools.

Chapter 7

171

Note: at any time, you may export data from your database(s) using any
third-party tools available. This section provides information on how to use
OFBiz to manage the exporting of data from any configured data source.

Getting ready
When using the XML Data Export tools to copy data from an OFBiz managed data source,
OFBiz must have write access to the destination directory where you plan on saving the
exported data. Alternatively, you may elect to export data to the browser's web page view. In
this case, you will not need file system write permissions to perform this task.

To get started and use the XML Data Export tool, either navigate to the WebTools main web
page and select XML Data Export from the main web page menu, or go directly to the tool's
URL located at https://localhost:8443/webtools/control/xmldsdump. If you have
not already logged in, you will be prompted to log in. Enter the administrator's username and
password. If these have not changed since initial system download, the administrative user's
name is "admin" and the password is "ofbiz".

How to do it...
To export a database to an XML document, perform the following steps:

1.	 If you are exporting to the local file system, enter this directory location for the field
labeled Output Directory. This is an absolute directory location and not relative to the
OFBiz install directory.

2.	 To have all data exported to a single file, enter the name of that file in the Single
Filename field provided. If you do not enter a value here, each entity will be exported
to its own file.

3.	 To limit the number of records/rows to be exported, enter the desired values in the
Max Records Per File field.

4.	 To specify date filters, enter dates or use the calendar icons provided.

5.	 Select one or more entity(s) to export from by checking the HTML checkbox next to
each entity name provided. Or, alternately, to export all the entities defined, click the
Check All button.

6.	 Click the Export button. Success and/or error messages are reported directly to this
web page.

WebTools

172

How it works...
Wherever it can, OFBiz uses well-formed XML documents as a basis for the task at hand.
Exporting data from an OFBiz Entity Engine-managed data source is no exception. The
XML Data Export tool reads data from one or more target data source-managed entities,
formats that data as a plain text string, and then writes out the data according to the entity's
defined model using XML syntax. The end result is a text file that contains one or more XML
declarations, each representing a row (or record) from the data source.

By using the entity's own model to describe exported data (the entity's entity definition as
found in an entity definition file), OFBiz preserves enough information about the data so that it
may, in turn, be reloaded into another Entity Engine-managed data source.

Loading database(s) from XML documents
The OFBiz WebTools interface provides a number of utilities to help load data, from one or
more files and/or directories, into any Entity Engine data source (including databases).
In this section, we shall examine loading data from XML document files using the
WebTools Entity XML Tools.

Getting ready
Make sure the data to be loaded is formatted correctly as the OFBiz XML Data Import
tool requires files to be in XML document format beginning with an entity-engine-xml
element tag and ending with the appropriate closing tag as shown:

<entity-engine-xml>
 <!-- This is a comment and is valid within a data file -->
 <EntityName fieldName="someValue"
 anotherFieldName="someOtherValue" />
 <!-- You may have as many entity/field declarations as desired
 within a single file -->
</entity-engine-xml>

Each XML element within the XML data file represents a record (or row) to be inserted into the
indicated entity. Within an element's declaration, each attribute represents a column (or field)
within the entity. Attribute names must be valid entity field names. There are many examples
of this formatting throughout the code base as this is the format used to construct seed and
other data loaded automatically by the ANT data loading directives.

Chapter 7

173

To get started and use the XML Data Import tool, either navigate to the WebTools main web
page and select XML Data Import from the main web page menu, or go directly to the tool's
URL located at https://localhost:8443/webtools/control/EntityImport. If you
have not already logged in, you will be prompted to log in. Enter the administrator's username
and password. If these have not changed since initial system download, the administrative
user's name is "admin" and the password is "ofbiz".

How to do it...
A database can be loaded from an XML document by following these steps:

1.	 To import an XML document file directly to the target data source, enter either the
absolute location on the local hard drive (and not a directory location relative from
the OFBiz installation directory) of the file or the URL of this file. URLs may be for files
local to the OFBiz instance in use or remotely located. Click the Import File button to
submit this form. Success and error messages are posted on this web page.

2.	 Alternatively, you may insert one or more XML declarations, or cut and paste one or
more XML declarations into the provided HTML form's TEXTAREA. Click the Import
Text button as shown:

WebTools

174

3.	 File imports, if successful, are added to the data source immediately. No need to
restart OFBiz.

How it works...
The XML Data Import tool takes one or more well-formed XML document file(s) and copies
data from each file as instructed by the XML declarations within the file. Each XML file must
contain one or more element(s) that declares the entity to be loaded, as well as element
attributes that define the entity fields and the data values to load.

There's more...
When loading files using the XML Data Import tool, care must be taken to load files in the
proper order so that foreign-key integrity is preserved. When loading multiple files, loading
is sequential and a failure in any file will terminate the loading process and roll back all
previously loaded data.

Managing internationalization labels
OFBiz "labels" are the mechanism used to handle the locale-sensitive translation of many
HTML form elements. While the underlying internationalization and localization support within
OFBiz is implemented using Java ResourceBundles, and is for the most part transparent
to the application developer, the manual management of the translated objects that make up
these resources is the subject of this section.

At last count, there are over 10,000 unique labels defined. Each of these labels has the
potential of being translated into any supported language. To see at a glance all labels, and
quickly edit a translation for a label, you may use the OFBiz Label Manager tool.

Note: for optimum performance when using the OFBiz Label Manager,
make sure you set your JVM memory settings to the highest possible
values supported by your hosting machine.

Getting ready
To get started with the WebTools Label Manager tool, either navigate to the WebTools main
web page or go directly to the tool's URL located at:

https://localhost:8443/webtools/control/SearchLabels

If you have not already logged in, you will be prompted to log in. Enter the administrator's
username and password. If these have not changed since initial system download, the
administrative user's name is "admin" and the password is "ofbiz".

https://localhost:8443/webtools/control/SearchLabels
https://localhost:8443/webtools/control/SearchLabels

Chapter 7

175

How to do it...
To edit labels, follow these steps:

1.	 Once on the Label Manager page, bring up the Filter Labels Info By HTML form.

2.	 Use the search filtering tool to specify a unique label file and/or key, or, to display all
labels, click the Find button.

3.	 To edit a label, select the label from the results screen and edit as appropriate.

4.	 Save the edit.

How it works
OFBiz "labels" are part of the internationalization and localization support built-in to the OFBiz
code base. "Labels" are the "key" portion of the key/value pair that make up the information
needed to identify the translation of a particular text string. This key is used to look up
translation maps in "label files". Any FreeMarker document and/or OFBiz widget may employ
one or more "labels" to provide user session-based translations (called "localization").

Note: although the underlying support exists to translate
OFBiz "labels" to any known language, only a few
languages have complete translation maps in place.

Under the covers, OFBiz implements internationalization and localization using the Java
ResourceBundle class. "Labels" are stored in files, usually located in a Component's
config directory where the label's use originated. For example, within the Order
Component's config directory, there are several "label" files: OrderEntryLabels.xml,
OrderErrorUiLabels.xml, and others. These files include one or more property "keys"
that represent the "label" as it would appear in an HTML document.

As part of the construction of a web page using the Screen widget, any files containing locale
labels are configured within the actions portion of the screen's definition. You may see how
this works by examining the contents of the actions element within a screen's definition. If a
declaration for a "property-map resource" is present, then one or more label files are available
within the context for this web page.

For example, if, within a FreeMarker template, you have an HTML text string with FreeMarker
markup as shown here:

${uiLabelMap.OrderWhereShallWeShipIt}

The uiLabelMap is the name of the map that has been placed in the context, containing
the translation of the OrderWhereShallWeShipIt "label". To make all this work in real
time, each user's session has an attribute indicating the locale to use for that session. OFBiz
automatically takes the locale attribute, looks up the "label" in the specified map, in this case
the uiLabelMap, and returns the translated value.

WebTools

176

There's more...
You may edit "label" files by hand at any time if you know the location of the file in which the
label is stored. Using the OFBiz Label Manager makes locating and editing OFBiz translation
files (resource bundles) easy and painless.

If you wish to make available only certain language/locale translations for a particular
instance of OFBiz, you may edit the following property file and control precisely which locales
are available for user selection at runtime:

~framework/common/config/general.properties

Modify the locales.available property as shown here:

To only display the following locale specific labels:
locales.available=fr,nl,zh,en,it,es,ja,de

Using the SQL processor
There are instances, especially when testing, where accessing an Entity Engine data source
directly without using the Entity Engine delegator methods prove useful. For example, if you
need to test a query before embedding it within the logic of your Application, or if you need
to drop a table from a database, you can use the SQL Processor tool to communicate SQL
statements directly to the target database.

Getting ready
To get started with the WebTools SQL Processor tool, either navigate to the WebTools main
web page and select the Entity SQL Processor, or go directly to the tool's URL located at:

https://localhost:8443/webtools/control/EntitySQLProcessor

If you have not already logged in, you will be prompted to log in. Enter the administrator's
username and password. If these have not changed since initial system download, the
administrative user's name is "admin" and the password is "ofbiz".

How to do it...
The SQL Processor tool can be used to communicate SQL statements directly to the target
database by following these steps:

1.	 Navigate to the SQL Processor web page as shown earlier. This will bring up an HTML
form that allows you to select the desired data source from the Group drop-down box
and enter in a single SQL statement, as shown in the figure:

https://localhost:8443/webtools/control/EntitySQLProcessor
https://localhost:8443/webtools/control/EntitySQLProcessor

Chapter 7

177

2.	 To limit the number of records/rows returned, enter a value in the Limit Rows To field.

3.	 Click the Submit button.

How it works...
The OFBiz SQL Processor form takes the selected Group and finds the configured data source
for that group. It then takes the SQL statement as entered in the HTML TEXTAREA named
SQL Command as shown in the screenshot and calls the Java org.ofbiz.entity.jdbc.
SQLProcessor to process the statement. Result sets and error messages are returned to the
web page.

Exploring the entity reference tool
With over 1,000 unique entities that come with OFBiz out-of-the-box, the Entity Reference
- Interactive Version is an indispensable tool for understanding and managing the runtime
aspects of all the different OFBiz data sources that may be connected through the Entity
Engine. Using this tool, you may:

ff List all connected database tables, columns, and record content

ff Observe all entity relationships and move between related entity views, with easy,
one-click navigation links

ff Add and remove data from database tables (if no foreign key relationships are
violated) using the HTML forms provided

WebTools

178

Getting ready
To get started with the WebTools Entity Reference - Interactive Version tool, either navigate
to the WebTools main web page and select the Entity Reference - Interactive link, or go
directly to the tool's URL:

https://localhost:8443/webtools/control/entityref

Note: there are several other related Entity Engine tools available on the
main WebTools menu. And while all these navigation links eventually lead
to the same end, make sure you select the Entity Reference - Interactive
Version for best results and to follow along with the rest of this section.

If you have not already logged in, you will be prompted to log in. Enter the administrator's
username and password. If these have not changed since initial system download, the
administrative user's name is "admin" and the password is "ofbiz".

Chapter 7

179

How to do it...
You can easily explore around the entity reference tool by following these steps:

1.	 Once you have found your way to the Entity Reference Chart web page, which is the
main web page for the Entity Reference - Interactive Version tool, you may observe
at a glance the total number of entities defined.

2.	 Scrolling down the page, you will see a table-like view of each entity, grouped by
package name (if the entity has been defined as being part of a package name),
followed by a list of any relationships the entity is a participant in.

3.	 To find the record (or row values) for an individual entity, select the [View data] link
to bring up the corresponding Find Value web page. For example, to find all Budget
entity records, select the [View data] link under the org.ofbiz.accounting.budget
entity view. This will bring up the Find Values web page for the selected Budget entity
as shown below. (Note: in this case, we are informed that no records were found).

WebTools

180

4.	 We can add a Budget record by clicking the Create New Budget button to bring up
the Edit Value web page shown:

Note that for the Budget entity, the field budgetTypeId is a foreign key and,
therefore, if entered as part of this new record, it must already exist.

5.	 Finally, we may view all the relations that any entity is a participant in by clicking the
View Relations button on the Find Values web page.

Chapter 7

181

How it works...
The Entity Engine - Interactive Version tool provides a handy organized view into all the data
sources the current instance of the OFBiz Entity Engine are configured to manage. For anyone
needing to work with any OFBiz Entity Engine data source, this tool provides a convenient
jumping-off point to navigate among entities, data sources, database tables, and rows that
make up an OFBiz installation.

Viewing OFBiz usage statistics
The OFBiz Stats Since Server Start is the place to go to see web page statistics at a glance
and in detail. The statistics are broken down by HTTP/HTTPS requests, and direct requests via
controller.xml request-maps for OFBiz Events, Services, and view-map entries.

Getting ready
To get started with the WebTools tool, either navigate to the WebTools main web page and
select the Stats Since Server Start top navigation link, or go directly to the tool's URL
located at:

https://localhost:8443/webtool/control/StatsSinceStart

If you have not already logged in, you will be prompted to log in. Enter the administrator's
username and password. If these have not changed since initial system download, the
administrative user's name is "admin" and the password is "ofbiz".

https://localhost:8443/webtool/control/StatsSinceStart
https://localhost:8443/webtool/control/StatsSinceStart
https://localhost:8443/webtool/control/StatsSinceStart

WebTools

182

How to do it...
Once logged in, you can view usage stats by the following steps:

1.	 The Stats Since Server Start tool is a display of the web traffic experienced over
a set period of time. By default, and if you have not cleared any of the server web
page hit counters, this display covers the time since OFBiz was restarted. To clear all
counters without restarting OFBiz, select the Clear Since Start Stats link as shown in
the figure:

2.	 Web page hit statistics are grouped into "bins" where a bin contains statistics for one
or more 15-minute interval. To see a breakdown by web page and bin, click the View
Bins button adjacent to Request ID desired.

3.	 The statistics as displayed on this web page may be refreshed by clicking the Reload
Page button.

Chapter 7

183

How it works...
Every HTTP/HTTPS request for every web page served by OFBiz (a "hit") is automatically
recorded by the control servlet for the webapp servicing the request in the ServerHit
database table. OFBiz tracks information about where a visitor came from and how long it
takes OFBiz to service each request.

Uncovering artifact information
A little used but highly valuable tool that could save you hours of time researching how the
various pieces of OFBiz fit together, the Artifact Info utility is a necessity for easily assembling
OFBiz piece-part information (where OFBiz pieces are called "artifacts") into a coherent story.
Artifacts may include anything and everything that goes into making up your OFBiz instance.
This WebTool utility works with the following OFBiz artifacts: entities, widgets (screen, form,
menu, tree), Events, Services, and controller.xml files.

Note: to use this tool, set your min and max memory within your
OFBiz startup file (or on the command line) generously as assembling
artifact information consumes large amounts of memory!

Getting ready
To get started with the WebTools Artifact Info tool, either navigate to the WebTools main web
page and select the Artifact Info navigation link, or go directly to the tool's URL located at:

https://localhost:8443/webtools/control/ArtifactInfo

If you have not already logged in, you will be prompted to log in. Enter the administrator's
username and password. If these have not changed since initial system download, the
administrative user's name is "admin" and the password is "ofbiz".

WebTools

184

How to do it...
There are a number of ways to use the Artifact Info tool, and the reader is encouraged to
experiment and find methods best suited to their needs. Some of these are listed:

1.	 To find artifacts associated with a particular Component or webapp, enter information
as shown here:

2.	 To follow a link, for example, to delve deeper into the artifacts found for the
e-commerce screen to see details about the AddBlogResponse Screen widget, click
on the link provided. This will bring up a web page similar to the following:

3.	 To view artifact information for a specific entity, for example, the ElectronicText
entity as shown here, return to the main Artifact Info web page and select entity
from the pull-down menu provided. Enter ElectronicText in the Search Names/
Locations field.

Chapter 7

185

4.	 Click the Find button to bring up a web page similar to the following:

How it works...
Since OFBiz knows the configuration of every artifact in advance of any usage, it can
programmatically assemble all the relationships involved in any single artifact, including
information about how other artifacts are used to build one by parsing all its configuration
tables and building a dynamic, runtime view of the relationships that exist among all
the artifacts.

WebTools

186

Working with temporal expressions
OFBiz "temporal expressions" are a formal system or grammar used to describe the timing
associated with the occurrence of recurring system events. Each expression represents
a declaration about when and how often an Event may occur. Expressions may be used
as single declarations, for example, run a Service every day at 9:00 pm or as a union,
intersection, or difference of one or more ranges of time.

Using the OFBiz temporal expressions tool, you may edit an existing expression—OFBiz comes
with several predefined—and/or create your own expressions and use them in conjunction
with other OFBiz business processing logic.

Getting ready
To get started with the Temporal Expressions WebTools tool, either navigate to the WebTools
main web page and select the Temporal Expressions link, or go directly to the tool's URL
located at:

https://localhost:8443/webtools/control/findTemporalExpression

If you have not already logged in, you will be prompted to log in. Enter the administrator's
username and password. If these have not changed since initial system download, the
administrative user's name is "admin" and the password is "ofbiz".

How to do it...
You can edit or create temporal expressions by following these steps:

1.	 To list all currently defined temporal expressions, leave the Find Temporal Expression
HTML form empty and click the Find button. This will bring up a list of the
available expressions.

2.	 To modify any existing expression, select the navigation link provided adjacent to the
expression. This will bring up the Temporal Expression Maintenance HTML form.
Make changes to this expression as desired. Click the Save button to make the
changes effective.

3.	 To add a new temporal expression, click the Create button from the Find Temporal
Expression page. This will bring up the Temporal Expression Maintenance page
where you may add a new expression of the types supported. Once a new expression
has been defined, click the Save button.

4.	 There is no need to restart OFBiz to make the changes effective.

Chapter 7

187

How it works...
Temporal expressions are used throughout the OFBiz code base as a consistent method of
describing schedules and Event timing. Expressions are persistent in the OFBiz database (the
TemporalExpresson, TemporalExpressionAssoc, and TemporalExpressionChild
entities) and managed as resources available for use by any OFBiz Application, Component, or
end user. The WebTools Temporal Expressions tool provides an HTML form-based interface
for managing these OFBiz resources.

There's more...
For the curious, there is a really nice write-up on OFBiz temporal expressions on the
OFBiz Wiki:

https://cwiki.apache.org/confluence/display/OFBENDUSER/
Temporal+Expressions

8
Web Services

In this chapter, we shall look at various techniques to build OFBiz web service providers and
consumers. In particular, you will find information on:

ff Requesting web services using URL parameters

ff Requesting web services using an HttpClient

ff Creating HttpClient and passing XML documents

ff Creating XML-RPC web service clients

ff Becoming an XML-RPC web service provider

ff Generating a WSDL document

ff Building SOAP messaging clients

ff Creating SOAP compliant web services

Introduction
Ask five people what "web services" are and you will likely get at least six different opinions.
Because the term evokes such ambiguity, we need to set ground rules for this chapter and
define what we mean by "web services". Therefore, for the purposes of this book, "web
services" are the interactive exchange of messages from one system to another using the
Internet as the network transport and HTTP/HTTPS as the messaging protocol. Message
exchange transpires without human intervention and may be one-way—that is, called without
an immediate response expected—or two-way.

Web Services

190

Web services operate as producer/consumer systems where the producer—called the "service
provider"—offers one or more "services" to the "consumer"—sometimes referred to as the
"client". In the web services world, Internet-based service providers advertise and deliver
service from locations throughout the Web. The Internet, and the Web in particular, serve as
the highway over which potential web service clients travel to find service providers, make
contact, and deliver products.

Service-oriented by design, OFBiz is a natural for building and deploying both web service
clients and web service providers. Any OFBiz web application (webapp) may both consume
web services and act as a web service provider within the same application or in an unlimited
number of OFBiz webapps.

Within the web service producer/consumer model, service providers are responsible for
accepting and validating requests for service and delivering the product. Consumers must find
service providers, request service, and accept delivery of the product. There are a number
of ad-hoc and formal standards that have evolved over the last few years to help facilitate
the business of enabling web services, including, but not limited to, URL parameter passing,
XML-RPC, and Simple Object Access Protocol (SOAP) based messaging. OFBiz provides built-
in support with tools and integration points to make implementing both service provider and
consumer web services a snap.

Requesting web services using URL
parameters

There are many web service providers that require nothing more than URL parameter passing
to request a service. These service providers take HTTP/HTTPS request parameters as
appended to a prospective consumer's URL, and process requests according to the passed
parameter values. Services are delivered back to the requestor through the client's HTTP/
HTTPS response message or as a separate HTTP/HTTPS request message exchange.

An example of such a real world web service is the PayPal Payments Standard payment
processing service. This web service expects requests to come in on an advertised URL with
request particulars appended to the URL as request parameters. Prospective consuming
systems send HTTP/HTTPS request messages to the PayPal URL asking for service. Once
a request for service has been accepted by PayPal, the Payments Standard web service
responds and delivers service using the HTTP/HTTPS response message.

A separate web service, also involving PayPal, called the Instant Payment Notification (IPN)
web service is an example of a web service in which parameters are passed on the URL from
the service provider to a consumer such as OFBiz. In this case, OFBiz listens on a configured
URL for an HTTP/HTTPS request message from PayPal. When one is received, OFBiz responds
appropriately, taking delivery of PayPal service.

Chapter 8

191

Note: to implement a PayPal IPN client within an OFBiz web
application, you must provide PayPal a destination URL that maps
to a valid OFBiz request-map, and then process any incoming URL
parameters according to the PayPal IPN directions.

Getting ready
To act as a web service client and pass parameters on the URL within an OFBiz Java Event or
Service, make sure you include the following Java packages in your program:

import java.io.IOException;
import java.net.URL;
import java.net.URLConnection;
import javax.Servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

How to do it...
To request a service using URL parameters, follow these steps:

1.	 Within an existing OFBiz Java program (either an Event, Service, or any other) method,
create a Java HashMap containing the name/value pairs that you wish to pass on the
URL. For example:
Map parameters = UtilMisc.toMap("param1", "A", "param2", "B");

2.	 Use the OFBiz-provided UtilHttp.urlEncodeArgs method to properly encode the
parameters directly from the HashMap into a Java String. For example:
String encodedParameters = UtilHttp.urlEncodeArgs(parameters,
 false);

3.	 Build a URL and add the encoded parameter string to the URL:
String redirectUrl = "http://www.somehost.com";
String redirectString = redirectUrl + "?" + encodedParameters;

4.	 Send the request by way of the HttpServletResponse object's redirect method.

try {
 response.sendRedirect(redirectString);
}
catch (IOException e) {
 // process errors here
 return "error";
}

Web Services

192

How it works...
In a very simple web service client scenario, OFBiz acts on behalf of a user or another OFBiz
process and makes a web service consumer request of a remote service provider. The request
is sent using a HTTP/HTTPS request message with one or more service parameters appended
to the URL. The URL is the location on the web of the service provider.

Because the scenario described above is a one-way message exchange—that is, the request
message is delivered to the destination URL, but OFBiz does not wait around for a response
message—there must be assumptions made about how the web service provider will deliver
service. Many times, service is delivered through a totally separate message exchange,
initiated by first making the one-way request as described earlier.

To illustrate how this may play out, we consider the PayPal Payments Standard web service.
This web service may be invoked from OFBiz in at least two different ways. For example, one
approach is to include an HTML form on an OFBiz web page with a Submit button. The Submit
button when clicked redirects the browser (with the request message) to the PayPal web
service site passing the form contents as is.

An alternative implementation is to have an HTML form on an OFBiz web page with a Submit
button that, when clicked, forwards the browser's request of an OFBiz Service (or Event). In
this case, the OFBiz Event or Service will take the form attribute values (from the request
message) and create a URL for the PayPal web service location. The original form attribute
values and any other information as provided by the context or through database reads is
appended to the URL. OFBiz then redirects the user's original request message using the
sendRedirect method on the HttpServletResponse object to effectively send the user,
by way of a browser and an appropriately crafted URL, to the PayPal web service.

Building URL request parameters out of plain Java strings can be tricky given the nature of
the characters used to construct request parameters and delimit multiple parameter strings.
For example, how do you pass a space character as part of a parameter when spaces are
used as delimiters?

Enter URL encoding. URL encoding takes certain characters, deemed "special" characters,
and "escapes" them so that they may be used as part of a request parameter string. OFBiz
provides an easy-to-use encoder (and decoder) method(s): the UrlEncodeArgs method on
the UtilHttp utility that takes as an argument a Java Map and returns an encoded string
that may then be appended to a URL as shown earlier.

Note: an exhaustive treatment of URL encoding is beyond the scope of this
book. For more information on HTML and ASCII character codes and encoding
symbols, please see http://www.ascii.cl/htmlcodes.htm

Chapter 8

193

There's more...
The UrlEncodeArgs method has two modes of operation: selecting the false method-
parameter value will encode using only an ampersand (&) symbol while the true parameter
value tells OFBiz to use & as the encoding string. Based on the web service provider's
instructions, you will need to determine which mode is appropriate for your application.

Many web services do not require encoded values. You will need to verify for each service
whether or not it is necessary to encode and decode URL parameters. For example, the
PayPal IPN web service sends request parameters without any encoding. When returning IPN
messages, the client web service is, however, instructed to encode parameters.

PayPal IPN is strictly a server-to-server (there is no human intervention) messaging system
where message traffic is transported across the web from one server URL to another. PayPal
is the web service provider while, in this scenario, OFBiz acts as the web service client. It
works something like shown in the following diagram:

Requesting web services using an
HttpClient

Many web services are implemented using HTTP/HTTPS request methods and parameters
passed as part of the request's message body. These requests for service mimic a user sitting
at a browser submitting HTML forms and waiting for server response. Service providers read
HTTP/HTTPS request header information and name/value request message parameter pairs,
and deliver service through the HTTP/HTTPS response message.

Web Services

194

Writing clients for these types of web services usually require a synchronous call to the service
provider. From within your OFBiz client code, you initiate a call to a service provider and then
wait until a response (or timeout) is received. Unlike the PayPal Payments Standard service
described earlier, the OFBiz client program does not redirect HTTP/HTTPS request messages
to another URL.

There are a number of examples within the out-of-the-box OFBiz project of service providers
that use the HTTP/HTTPS request message body to exchange information with OFBiz clients.
They include, but are not limited to:

ff Authorize.net Payment Services
ff ClearCommerce Payment Services
ff Go Software RiTA
ff ValueLink Prepaid/Gift Card Payment Services
ff DHL, FedEx, United Parcel Services (UPS), and United States Post Office

Shipping Services
ff CDYNE Web Based Services
ff PayPal Payments Pro

Getting ready
The first step in writing any web service client is to gather the following information about how
the target web service operates:

ff The URL on the web for the service provider
ff Any connection parameters and/or HTTP/HTTPS request message header settings

that must be passed as required by the service provider
ff The HTTP/HTTPS connection verb (get, post, or other)

Within a Java program, to send and receive web service messages as a client and use the
built-in HTTP client utility provided by OFBiz, make sure you have the following Java packages
imported in your program:

import org.ofbiz.base.util.HttpClient;
import org.ofbiz.base.util.HttpClientException;

How to do it...
You can request a web service by following these steps:

1.	 Create a connection string that includes the URL of the target web service and the
type of request:
String connectString =
 "http://www.some_web_service_url.com/serviceName";

Chapter 8

195

2.	 Within your Java program, create an instance of the HttpClient object with the
URL/connection string passed to the constructor as shown here:
HttpClient http = new HttpClient(connectString);

3.	 Create the content of your request as dictated by the target web service provider.
For example, some web services expect XML documents; others, simple string
parameters. A web service that expects a string of name/value pairs could be coded
as follows:
http.setParameter("Param1", "X");
http.setParameter("Param2", "Y");

4.	 Send your request using the appropriate method on the HttpClient object. For
"get" requests, use the get method. For "post" requests, use the post method as
shown here:
try {
 response = http.post();
}
catch (HttpClientException e) {
 // Process error conditions here
}

5.	 Handle any service response inline. Unlike the asynchronous nature of the PayPal
IPN web service described earlier, HttpClient based web services process return
calls inline with the initial web service call. Under the covers, the HttpClient utility
handles all the network connection set up and lower-level message transmissions.

6.	 There is no need to release or close the connection as OFBiz manages the handoff
of connections.

How it works...
When using the HttpClient to access web services remote to OFBiz, you send the
consumer-side call synchronously; that is, you wait for the return from the remote web service
call within your program. The OFBiz integration of the HttpClient utility manages the details
necessary to open the network connection, maintain direct request and response message
exchanges, and close the connection upon completion of processing.

Web Services

196

There's more...
The OFBiz implementation of the HttpClient object provides several convenience
constructors, which may be useful depending on your processing needs. These include:

// To create a new client object and connect using a URL object
// instead of a String
URL url = "https://www.some_host.com/";
HttpClient http = new HttpClient(url);

// To create a new client object using a Java Map containing
// request parameters
HttpClient http = new HttpClient(url, UtilMisc.toMap("param1", "X",
 "param2", "Y");

//To create a new client object with a parameter map and
// header settings
HttpClient http = new HttpClient(connectString,
 UtilMisc.toMap("param1", "X"),
 UtilMisc.toMap("User-Agent, "Mozilla/4.0"));

See also
OFBiz provides an integration of the Apache HttpClient software package: the Jakarta
Commons HTTP Client that is accessed by creating a new HttpClient object. Any
method you can call on, the original Apache HttpClient object is available in the OFBiz
implementation. This includes full support for HTTPS (SSL) clients. For more information,
please see the Jakarta Commons HTTP Client web page:

http://hc.apache.org/httpclient-3.x/

Creating HttpClients and passing XML
documents

There are many examples within the OFBiz out-of-the-box code base of web service clients
that call real world web services and pass XML documents as part of the payload. These web
services clients use the HttpClient as described in the previous recipe in addition to XML
document preparation utilities to build the necessary message content used to communicate
with external web services.

In this section, we discuss how to write your own web service client(s) and exchange XML
documents with one or more external-to-OFBiz web services providers.

Chapter 8

197

Getting ready
The first step in writing any web services client is to gather the following facts about how the
target web service operates:

ff The URL on the web for the service provider

ff Any connection parameters and/or HTTP/HTTPS request message header settings
that must be passed as required by the service provider

ff The HTTP/HTTPS connection verb (get, post, or other)

To write a web service client that passes one or more XML documents, import at least the
following into your Java program:

// Use these to build an XML document
import org.ofbiz.base.util.UtilXml;
import org.w3c.dom.Document;
import org.w3c.dom.Element;
import org.xml.sax.SAXException;

// Use these to send/receive web services client services:
import org.ofbiz.base.util.HttpClient;
import org.ofbiz.base.util.HttpClientException;

How to do it...
To create an HttpClient and pass XML documents, follow these steps:

1.	 Create a connection string that includes the URL of the target web service and the
type of request:
String connectString =
 "http://www.some_web_service_url.com/serviceName";

2.	 Within your Java program, create an instance of the HttpClient object with the
URL/connection string passed to the constructor as shown here:
HttpClient http = new HttpClient(connectString);

3.	 Create the XML document as prescribed by the target web service. For example, the
following code snippet was taken from the UpsServices.java program where an
XML document is sent to the target web service:
Document rateRequestDoc =
 UtilXml.makeEmptyXmlDocument("RatingServiceSelectionRequest");
Element rateRequestElement = rateRequestDoc.getDocumentElement();
rateRequestElement.setAttribute("xml:lang", "en-US");

Web Services

198

// XML request header
Element requestElement =
 UtilXml.addChildElement(rateRequestElement, "Request",
 rateRequestDoc);
// Code removed…

// Example, setting up required and optional XML document
// elements: the pickup type
Element pickupElement =
 UtilXml.addChildElement(rateRequestElement, "PickupType",
 rateRequestDoc);
// Code removed…

// Example setting more elements, this time: package info
String maxWeightStr =
 UtilProperties.getPropertyValue(serviceConfigProps,
 "shipment.ups.max.estimate.weight", "99");
BigDecimal maxWeight = new BigDecimal("99");
// Code removed…

// Use OFBiz UtilXml utility to create the XML document
try {
 rateRequestString = UtilXml.writeXmlDocument(rateRequestDoc);
}
catch (IOException e) {
 String ioeErrMsg =
 "Error writing RatingServiceSelectionRequest XML Document"
 + " to a String: " + e.toString();
 Debug.logError(e, ioeErrMsg, module);
 return ServiceUtil.returnFailure(ioeErrMsg);
}
// More code removed…

// Call to the method that eventually calls the UPS web service
try {
 rateResponseString =
 sendUpsRequest("Rate", xmlString.toString());
}
catch (UpsConnectException e) {
 // Process errors here
}

Chapter 8

199

4.	 Invoke the HttpClient object to call the target web service and pass the XML
document within the request message. For example, using the UpsServices.java
program from step 3, the call to the HttpClient object looks something like the
following:
public static String sendUpsRequest(String upsService,
 String xmlString) throws UpsConnectException {
 // Code removed…
 HttpClient http = new HttpClient(conStr);
 // You may set a timeout in milliseconds
 http.setTimeout(timeout * 1000);
 http.setAllowUntrusted(true);
 String response = null;
 try {
 response = http.post(xmlString);
 }
 catch (HttpClientException e) {
 // Process errors here
 }
 // Handle the return response as necessary here
}

5.	 Process the response from the web service call inline.

6.	 There is no need to release or close the connection as OFBiz manages the handoff of
network connections transparent to the developer.

How it works...
The HttpClient utility may be used to send and receive XML documents as directed by web
service providers. When using the HttpClient, web service client requests are made inline
with code logic. Once established, communications between the HttpClient and the target
web service are streamed directly across the HTTP/HTTPS connection, bypassing OFBiz.

Creating XML-RPC web service clients
XML-RPC-based web services expect service requests in the "XML-RPC" specification format. If
you need to access a web service as a client using XML-RPC, then this section is for you. OFBiz
provides a utility based in the Apache XML-RPC project that exposes everything necessary to
easily write Java-based XML-RPC clients.

Web Services

200

Getting ready
Gather the following information about how the target web service operates:

ff Determine the URL of the web service provider

ff Determine the procedure, function, and/or method to be called

ff Determine any connection parameters

Don't forget to import the following:

import org.apache.xmlrpc.client.XmlRpcClient;
import org.apache.xmlrpc.client.XmlRpcClientConfigImpl;
import org.apache.xmlrpc.XmlRpcException;
import java.net.URL

How to do it...
To create XML-RPC web service clients, follow these steps:

1.	 Create an instance of the XmlRpcClient object as shown here:
XmlRpcClient client = new XmlRpcClient();

2.	 Create an instance of the XmlRpcClient configuration object:
XmlRpcClientConfigImpl config = new XmlRpcClientConfigImpl();

3.	 Set the XmlRpcClient configuration with the target URL and other parameters as
dictated by the web service provider. Wrap the call to the URL in a try/catch block
as shown:
try {
 config.setServerURL(new URL(
 "http://localhost:8080/webtools/control/xmlrpc"));
}
catch (MalformedURLException me) {
 // Add error processing here
}

4.	 Set configuration parameters as shown here. For example, if the target web service
requires basic HTML form authentication, set the config object as shown:
config.setBasicUserName("admin");
config.setBasicPassword("ofbiz");

5.	 Associate the config object with the XmlRpcClient object:
client.setConfig(config);

Chapter 8

201

6.	 Marshal any parameters that are to be sent to the web service:
Object[] params = new Object[]{10, "message from xml-rpc client"};

7.	 Call the web service by invoking the execute method on the client object. Don't
forget to specify the remote procedure, function, or Java method to call. Wrap the call
in a try/catch block:
try {
 Integer result = (Integer) client.execute("testSvc", params);
}
catch(XmlRpcException xe) {
 // Add error processing here
}

8.	 Process results.

How it works...
The XML-RPC standard is a remote procedure calling mechanism that may use HTTP/HTTPS
as the network transport. (Note: XML-RPC may also run over RMI). XML-RPC web service
consumers specify a procedure (or Java method) name and requesting parameters in an XML
request document, and the web service provider returns, as payload within the HTTP/HTTPS
response message, an XML document with either a service response or error message.

XML-RPC procedure parameters may be (in the vocabulary of the XML-RPC specification)
scalars, numbers, strings, dates as well as complex records (or "struct(s)"), and arrays
structures. Practically speaking, the Apache XML-RPC implementation supports all primitive
Java types including long, byte, short, double as well as calendar objects, timezone setting,
and milliseconds.

The response format has a content-type of text/xml. The body of the response contains a
single XML structure containing a methodResponse element, a single params element that
contains a param element.

See also
For more details, visit the XML-RPC Specification page at:

http://www.xmlrpc.com/spec

Web Services

202

Becoming an XML-RPC web service provider
XML-RPC provides a straightforward XML-based mechanism for providing web-based services
such as publishing information. Any OFBiz Service may act as an XML-RPC web service
provider simply by setting the Service's export configuration setting to true and using
the OFBiz XML-RPC event handler (org.ofbiz.webapp.event.XmlRpcEventHandler)
wrapper to receive XML-RPC requests and route them to the proper OFBiz Service for handling.

Getting ready
OFBiz provides an XML-RPC event handler, extending the basic XmlRpcHttpServer that
comes with the integrated Apache XML-RPC libraries. To use it, you must include an entry in
a controller.xml file of the web application where the XML-RPC call will be published.
This entry should look something like the following. (If the following line does not already
exist either within the common-controller.xml file or your local web application's
controller.xml file, add it to either file):

<handler name="xmlrpc" type="request"
 class="org.ofbiz.webapp.event.XmlRpcEventHandler"/>

You must also include a request-map similar to the following that instructs the OFBiz
controller for the web application handling the XML-RPC request to use the generic OFBiz XML-
RPC handler:

<!-- No need to track server hits or visits for an XML-RPC URI -->
<!-- Also note: the XML-RPC request will contain the name of the
 OFBiz Service to call -->
<request-map uri="xmlrpc" track-serverhit="false"
 track-visit="false">
 <event type="xmlrpc"/>
 <response name="error" type="none"/>
 <response name="success" type="none"/>
</request-map>

Finally, the target Service called through the XML-RPC execute method must exist and must
have, in its Service definition, the export flag set to true. For example, if the following client
call (in Java) is invoked by a remote consumer:

<service name="myTestService" engine="java" export="true"
 validate="false" require-new-transaction="true"
 location="org.ofbiz.common.CommonServices"
 invoke="testService">
 <description>Test service</description>
 <attribute name="defaultValue" type="Double" mode="IN"
 default-value="999.9999"/>
 <attribute name="message" type="String" mode="IN" optional="true"/>
 <attribute name="resp" type="String" mode="OUT"/>
</service>

Chapter 8

203

How to do it...
To enable XML-RPC service provider, follow these steps:

1.	 Create a Service as a method in any existing OFBiz Service's class (or create a
new class) that takes the standard OFBiz Service's context map parameters and
processes them. For example, the following OFBiz Service is called myTestService.
This Service could be deployed using the Service definition shown:
public static Map<String, Object> myTestService(
 DispatchContext dctx, Map<String, ?> context) {
 Map<String, Object> response = ServiceUtil.returnSuccess();
 if (context.size() > 0) {
 for (Map.Entry<String, ?> entry: context.entrySet()) {
 Object cKey = entry.getKey();
 Object value = entry.getValue();
 // Process Service parameters
 }
 }
return response;
}

2.	 Rebuild the Component containing the new Service.

3.	 Restart OFBiz.

4.	 Test with an XML-RPC client.

How it works...
The OFBiz XML-RPC event handler acts as a wrapper for any OFBiz Service that may want
to provide web services based on the XML-RPC specification. It is called from the controller
servlet when HTTP/HTTPS request messages are received for the configured URL.

The XML-RPC event handler, based on the Java Apache XML-RPC libraries, manages all the
web service interface details such as extracting the XML elements from the request message
and passing those to the target Service as name/value pairs (in the standard OFBiz Service
context map.) It also handles authentication and the formatting of the HTTP/HTTPS response
message, based on the results returned from the Service call, to the web service consumer.

As a result, the developer of any XML-RPC web service need only concentrate on the business
logic of the Service and not on the details of implementing the XML-RPC specification.

Web Services

204

See also
Please see the Apache XML-RPC Server website:

http://ws.apache.org/xmlrpc/server.html

OFBiz SOAP messaging clients
Simple Object Access Protocol (SOAP) is a protocol for exchanging structured information in
a decentralized, distributed environment. It is XML-based and consists of three parts:

ff An envelope that defines a framework for describing what is in a message and how to
process the message

ff A set of encoding rules for expressing instances of application-defined data types

ff A convention for representing remote procedure calls and responses

To illustrate just how easy it is to use OFBiz to create an unlimited number of SOAP-based web
service clients, we shall discuss writing an SOAP-based client to request service from a real
world web service: the U.S. National Weather Service's National Digital Forecast Database
(NDFD). This web service provides a number of useful weather-related products. To keep our
example simple, we shall request service from the NWS operation that provides the latitude
and longitude for a given (valid) ZIP code. (Note: this web service only supports ZIP codes for
the Continental United States, Alaska, Hawaii, and Puerto Rico).

For more information about the NWS web service, please see:
http://www.nws.noaa.gov/forecasts/xml/

To view the WSDL for all the operations supported by this web service, point your web
browser to:

http://www.weather.gov/forecasts/xml/SOAP_server/ndfdXMLserver.php#

To see the WSDL for just the zip code operation, select the LatLonListZipCode link.

Getting ready
Verify that the web service is up and running by viewing the WSDL in your browser:

http://www.weather.gov/forecasts/xml/DWMLgen/wsdl/ndfdXML.wsdl

Chapter 8

205

While technically not part of the creation of an SOAP web service client, to illustrate many of
the points of this chapter we shall describe a simple HTML form that allows us to enter in ZIP
codes from a browser instead of hardcoding values in our SOAP client-code. This form shall be
part of the myWebapp main web page built elsewhere in this book. In this way, we may also
return results in real time to the same web page as contains the form.

In addition to the HTML form, we shall build an OFBiz Service that takes the web page form,
creates the appropriate SOAP message envelope, and calls the NWS web service.

For all this to work, we will also need to create a request-map in the myComponent
Component's myWebapp webapp controller.xml file that maps the form's URI request
location to our OFBiz Service. To get started, the steps are as follows:

1.	 Create an HTML form to allow for dynamic and repeated entry of a ZIP code value.
Shown here is a simple form created on the myWebapp (within myComponent). When
the run test button is clicked, this form will call an OFBiz Service. This can be seen in
the following figure:

Web Services

206

2.	 The (abbreviated) HTML form looks something like this:
<form name="soapClient"
 action="<@ofbizUrl>soapClientService</@ofbizUrl>"
 method=post>
 <#-- HTML removed to improve readability --> 	
 <label for="01">Zip Code:</label>
 <input type="text" id="01" name="param1" value="" size="7"/>
 <input id="smt" style="display: inline" type="submit"
 class="smallSubmit" value="run test"/>
</form>

3.	 Add a request mapping in the controller.xml file for the myWebapp webapp:
<!-- ======= Testing Soap Client ===== -->
<request-map uri="soapClientService">
 <security https="false" auth="false"/>
 <event type="service" invoke="soapClientService"/>
 <response name="success" type="view" value="main"/>
 <response name="error" type="view" value="main"/>
</request-map>

4.	 Add a Service model definition in an existing Service definition file for the OFBiz
Service that will accept web page form parameters and send them to the
NWS service:

<service name="soapClientService" engine="java"
 location="org.ofbiz.myComponent.myNewclasses.MyWebServices"
 invoke="soapClientService">
 <description>Example SOAP client web service</description>
 <attribute name="endPoint" type="String" mode="IN"
 optional="true"/>
 <attribute name="namespace" type="String" mode="IN"
 optional="true"/>
 <attribute name="serviceName" type="String" mode="IN"
 optional="true"/>
 <attribute name="param1" type="String" mode="IN"
 optional="true"/>
 <attribute name="result" type="String" mode="OUT"
 optional="true"/>
</service>

Chapter 8

207

How to do it...
In this section, we look at the specifics of creating an SOAP client to call the U.S. National
Weather Service web service and get the latitude and longitude given a ZIP code as passed
from an HTML form:

1.	 Import the following jar files:
// All the magic is in the following Axis client classes
// They do all the hard work of creating SOAP wrappers
// and dealing with the XML
import org.apache.axis.client.Call;
import org.apache.axis.client.Service;

// We also need these JAR files
import javax.xml.namespace.QName;
import java.net.MalformedURLException;
import java.net.URL;
import java.util.ArrayList;
import java.util.List;
import java.util.Map;

2.	 Code the client request based on the WSDL. Note that we have already studied the
WSDL and know what the remote service is looking for. The following method, called
the soapClientService OFBiz Service, is all that is needed to call the NWS web
service and return an XML document containing our Service response:
public static Map<String, Object> soapClientService(
 DispatchContext dctx, Map context) {
 Map results = FastMap.newInstance();
 results.put("result", "success");
 // Get everything we need out of the context (the HTML Form)
 String endPoint = (String) context.get("endPoint");
 URL endpoint = null;
 // Define the web services end point as a URL
 try {
 endpoint = new URL(endPoint);
 }
 catch (MalformedURLException e) {
 Debug.log("Location not a valid URL" +e);
 }
 Service service = null;
 Call call = null;
 try {
 // Instantiate a new Axis Service object
 service = new Service();

Web Services

208

 // And create a call object from the Service
 call = (Call) service.createCall();
 call.setTargetEndpointAddress(endpoint);
 String nameSpace = null;
 // Just in case, validate the FORM variables
 if(UtilValidate.isNotEmpty(
 (String) context.get("namespace"))) {
 nameSpace = (String) context.get("namespace");
 }
 String serviceName = null;
 if(UtilValidate.isNotEmpty(
 (String) context.get("serviceName"))) {
 serviceName = (String) context.get("serviceName");
 }
 // This is how we tell NWS which procedure to invoke
 call.setOperationName(new QName(nameSpace,serviceName));
 // Since this is an artificial program and we know
 // that there is only a single input parameter for this
 // service that is the zip code, we are just going
 // to force it. Making this Service more generic is left
 // as an exercise for the reader.
 String zipcode = (String) context.get("param1");
 // This is where we make the call and let OFBiz and Axis
 // do all the heavy lifting
 Object ret = (String) call.invoke(new Object[] {zipcode});
 // And, hopefully, we return in line with a useful result
 results.put("result", ret.toString());
 }
 catch (Exception e) {
 Debug.log("Exception when running our SOAP client test: "
 +e);
 results.put("result", "error: ");
 }
 // Note: we are returning the results as is and not extracting
 // each parameter as sent by the NWS web service.
 return results;
}

3.	 Build the myComponent Component.

4.	 Restart OFBiz and navigate to myComponent webapp using:
http://localhost:8080/mywebapp/control/main

Chapter 8

209

How it works...
Like other web service clients, OFBiz SOAP-based clients first request access to a remote
web service and then, when access is granted, consume the Service directly from the service
provider inline with the programming logic in which they are embedded. Using the OFBiz SOAP
integration greatly simplifies the business of writing SOAP web service client code.

In this example, results are returned directly to the calling web page as shown here:

There's more...
You may use the WebTools Run Service service utility to invoke the NWS service by making a
few simple changes to the Service definition for the testRemoteSoap Service that is part of
OFBiz out-of-the-box. The testRemoteSoap Service definition is found in:

~framework/common/servicedef/services_test.xml

Web Services

210

The following is the code:

<!-- the location = endpoint -->
<!-- invoke parameter is the name of the service to invoke
 for example LatLonListZipCode -->
<service name="testRemoteSoap" engine="soap" export="true"
 location=
 "http://www.weather.gov/forecasts/xml/SOAP_server/ndfdXMLserver.php"
 invoke="LatLonListZipCode">
 <description>A service to invoke the NWS web service</description>
 <namespace>
 http://www.weather.gov/forecasts/xml/DWMLgen/wsdl/
 ndfdXML.wsdl#LatLonListZipCode
 </namespace>
 <attribute name="ZipCode" type="String" mode="IN"/>
 <attribute name="invoke" type="String" mode="IN" />
 <attribute name="result" type="String" mode="OUT"/>
</service>

Note: the out-of-the-box OFBiz Service definition for the testRemoteSoap
calls a web service that is no longer operational. It will not work as is.

After changing the testRemoteSoap Service definition, you may invoke the Service without
creating a web page or HTML form using the WebTools Run Service utility as shown here:

Chapter 8

211

Submitting the Run Service form will bring up a form that will allow entry of the required ZIP
code input for the NWS web service as shown here:

Hitting the Submit button will run the testRemoteSoap OFBiz Service that, in turn, calls the
NWS web service LatLonListZipCode procedure with the ZIP code as entered on the Run
Service form as part of the service request. Web service return values or an error code are
displayed on the Schedule Job web page as shown here:

Web Services

212

Generating a WSDL document
Web Service Descriptor Language (WSDL) is an XML-based grammar used to define the
interface provided by a web service. Web service providers publish—on the Web—one or more
WSDL(s) describing how an interested service consumer may connect and consume a Service.

The work of creating SOAP web service's WSDLs by hand can be tedious and error-prone.
Fortunately, OFBiz makes the job of publishing WSDLs easy by automatically creating them
from a Service's definition.

Getting ready
For this section, we shall assume that an OFBiz Service already exists. In fact, we shall use as
an illustration the testSvc Service that comes with OFBiz out-of-the-box.

How to do it...
To publish a SOAP WSDL for this Service, or any other OFBiz Service, follow these simple steps:

1.	 To indicate that a URL should be handled as a SOAP web service request and be
forwarded to the SOAP event handler, add the following line to the controller.xml
file for the OFBiz webapp where the web service will be exposed:
<handler name="soap" type="request"
 class="org.ofbiz.webapp.event.SOAPEventHandler"/>

2.	 Add one or more controller.xml request-map definitions for the location of the
SOAP-based web service(s). For example, the following is taken from the WebTools
Component controller.xml file. Note response types are set to none. This
indicates that the Service will handle the caller's response message by streaming
directly to the HTTP/HTTPS response variable:
<request-map uri="SOAPService">
 <event type="soap"/>
 <response name="error" type="none"/>
 <response name="success" type="none"/>
</request-map>

3.	 Make sure the Service's definition has the export attribute set to true.

4.	 Ensure that the Service's definition has all the settings necessary to create a
valid WSDL. For example, at a minimum, define the engine as soap and provide
location and invoke attribute values as shown here:
<service name="testSoap" engine= "soap" export = "true"
 location=

Chapter 8

213

 "http://localhost:8080/webtools/control/SOAPService?WSDL"
 invoke="testSvc">
 <description>A SOAP Service with WSDL found here </description>
 <attribute name="message" type="String" mode="IN"
 optional="true" />
 <attribute name="response" type="String" mode="OUT" />
</service>

5.	 Create a WSDL as follows: (You can see this in your browser by going to the
location attribute value specified in the Service definition):
<wsdl:definitions targetNamespace=
 "http://ofbiz.apache.org/service/">
 <wsdl:message name="testSoapResponse">
 <wsdl:part name="resp" type="xsd:string"/>
 </wsdl:message>
 <wsdl:message name="testSoapRequest">
 <wsdl:part name="message" type="xsd:string"/>
 </wsdl:message>
 <wsdl:portType name="testSoapPortType">
 <wsdl:operation name="testSoap">
 <wsdl:input message="tns:testSoapRequest"/>
 <wsdl:output message="tns:testSoapResponse"/>
 </wsdl:operation>
 </wsdl:portType>
 <wsdl:binding name="testSoapSoapBinding"
 type="tns:testSoapPortType">
 <soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="testSoap">
 <soap:operation soapAction=
 "http://localhost:8080/webtools/control/SOAPService"
 style="rpc"/>
 <wsdl:input>
 <soap:body encodingStyle=
 "http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://ofbiz.apache.org/service/"
 use="literal"/>
 </wsdl:input>
 <wsdl:output>
 <soap:body encodingStyle=
 "http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://ofbiz.apache.org/service/"
 use="literal"/>
 </wsdl:output>

Web Services

214

 </wsdl:operation>
 </wsdl:binding>
 <wsdl:service name="testSoap">
 <wsdl:port binding="tns:testSoapSoapBinding"
 name="testSoapPort">
 <soap:address location=
 "http://localhost:8080/webtools/control/SOAPService"/>
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

6.	 If this is a new Service or if you have changed some Service definition settings,
restart OFBiz to make the changes effective. That is all you need to do.

How it works...
The OFBiz ModelService object provides a handy set of methods that can take an instance
of a Service's definition and dynamically construct a WSDL based on configured attributes.
For example, the following table maps WSDL XML specification requirements to OFBiz Service
definition elements and attributes:

Element Usage OFBiz service definition attribute
definitions The root element. Declares the name of

the web service.
name attribute.

types Declares the data types supported and
transmitted by the web service.

Taken from the INPUT/OUTPUT
attributes defined for the Service.

message Describes one or more "messages".
Messages have a name and may have
"parts" that may refer to parameters
and/or return values. Each message
declares a one-way request or one-way
response operation.

message attribute if provided.

portType portType is used to combine
messages into a complete one-way or
round-trip service delivery operation.

invoke attribute. Where the
invoke represents the web
service operations. Note: for
a web service that supports
many operations, you will need
to provide one or more service
definitions.

binding The network transport is declared
through the binding. SOAP-specific
details are declared here.

Default to SOAP because the
engine setting is SOAP.

service The URL (Web address) for this web
service.

location attribute.

Chapter 8

215

To create a WSDL from a Service's definition, OFBiz simply gets the service's model from
the service dispatch context and passes configuration settings to a WSDL generation tool
(provided by the Apache Axis library).

When a request for an OFBiz resource comes across the wire and the destination is a URL of an
OFBiz Service that has been mapped to the OFBiz SOAP event handler, OFBiz first checks to see
if the request has a WSDL request parameter affixed to it. If it does, then OFBiz will automatically
call the service DispatchContext object's getWSDL method to get the WSDL, based on the
Service's definition, and return the WSDL as part of the HTTP/HTTPS response message.

Note: this only works if you first define an OFBiz
service and then force requests for that Service to
be processed by the SOAP Event handler.

Creating SOAP-compliant web services
If publishing SOAP web service WSDLs seemed rather easy, then publishing SOAP-based
web services is not much harder. OFBiz makes the task of taking any service and making it
SOAP compatible a snap. This leaves the Service designer and developer to figure out how to
process the business logic that makes up your service's product.

In this section, we shall create a new OFBiz SOAP-based web service. We shall proceed by first
creating an OFBiz Service, and then configuring this service to use the existing OFBiz SOAP
event handler, so that we may transparently handle SOAP messages. That is all we need to do
to become an SOAP-based web service provider.

Our OFBiz Service is very simple: when a consumer asks for service at our published web
service URL, we respond by:

1.	 Querying the configured data source (database) for a list of product names.

2.	 Returning to the client, an XML document with the product list, in the properly
wrapped SOAP envelope.

To keep this simple, we shall rely on previously discussed work and will create our web service
within the myWebapp OFBiz web application ("webapp") and myComponent OFBiz Component
built as part of a previous chapter. Therefore, our controller.xml file will be located in:

~/hot-deploy/myComponent/webapp/myWebapp/WEB-INF/controller.xml

Web Services

216

Getting ready
For this recipe, we first need to ensure the following:

1.	 To indicate that a URL should be handled as an SOAP web service request and be
forwarded to the SOAP event handler, add the following line to the controller.xml
file for the OFBiz webapp where the web service will be exposed:
<handler name="soap" type="request"
 class="org.ofbiz.webapp.event.SOAPEventHandler"/>

2.	 Add one or more controller.xml request-map definitions for the location of the
web service(s). For example, the following is taken from the WebTools Component
controller.xml file. (Note response types are set to none. This indicates that
the service will handle response back to the caller by streaming directly to the HTTP
response variable):
<request-map uri="getProductName">
 <event type="soap"/>
 <response name="error" type="none"/>
 <response name="success" type="none"/>
</request-map>

3.	 Add a Service definition for the SOAP Service in a Services definition file of choice.
Remember to set the export attribute to true as well as the location, engine,
and invoke attributes accordingly:
<service name="soapWebService" engine="soap" export="true"
 location=
 "http://localhost:8080/myWebapp/control/soapGetProductNames"
 invoke="soapWebService">
 <attribute name="message" type="String" mode="IN"
 optional="true"/>
 <attribute name="resp" type="String" mode="OUT"/>
</service>

How to do it...
To create a SOAP-compliant service, follow these steps:

1.	 Create the target OFBiz Service. If using Java, create a method in an existing Services
class file (preferably a services file) or create a new Java class file. For example:
// Very Simple SOAP Web Service
// Takes on INPUT parameters and returns a List of product names.
// What makes this a web service? The Service Definition

Chapter 8

217

// and a controller.xml request-map setting using the
// "soap" engine type
public static Map<String, Object> soapWebService(
 DispatchContext dctx, Map context) {
 Map result = ServiceUtil.returnSuccess();
 GenericDelegator delegator = dctx.getDelegator();
 List<String> names= FastList.newInstance();
 try {
 List gvList =delegator.findList("Product",
 null,null,null,null,false);
 names = EntityUtil.getFieldListFromEntityList(gvList,

 "productNames", false);

 result.put("productNames", names);
 }
 catch(GenericEntityException ge) {
 return ServiceUtil.returnError("error message");
 }
 return result;
}

2.	 Build the Java class file containing the OFBiz Service method.

3.	 Restart OFBiz.

4.	 Observe the WSDL by directing your browser to:
http://localhost:8080/myWebapp/control/getProductNames/
soapWebService?wsdl

or to see all the services available from this OFBiz instance:
http://localhost:8080/myWebapp/control/getProductNames?WSDL

5.	 Test with a remote SOAP-based consumer.

http://localhost:8080/myWebapp/control/getProductNames?WSDL
http://localhost:8080/myWebapp/control/getProductNames?WSDL

Web Services

218

How it works...
The following diagram shows at a high level the interaction between the OFBiz SOAP Event
handler and an OFBiz Service that implements the processing logic for an SOAP-based
web service:

The OFBiz SOAP Event handler does all the hard work of taking the incoming HTTP/HTTPS
request and peeling off the SOAP envelope to reveal all the included SOAP messages. Once
extracted, the SOAP messages are further processed and used to find the appropriate OFBiz
Service to invoke and to pass service INPUT parameters as a service would normally expect
to see them: as a name/value pair map structure.

Chapter 8

219

The SOAP Event handler invokes the target service and then takes any results from the
service invocation and creates the proper XML document response message as well as the
HTTP/HTTPS response message SOAP wrapper.

Finally, the Event handler sends the HTTP/HTTPS response message back to the web
services client.

In many cases, the OFBiz SOAP Event handler provides all the SOAP and XML document
preparation necessary to publish an OFBiz Service as a web service as is.

9
OFBiz Tips and Tricks

In this chapter, find helpful hints regarding the following:

ff Fixing Java memory allocation errors

ff Reloading OFBiz seed and demo data

ff Creating new seed data files

ff Changing the administrative user's password

ff Creating a new administrative user login

ff Getting the OFBiz version number

ff Building an OFBiz instance

ff Building a single OFBiz Component

ff Creating a new OFBiz Component or Application

ff Creating a FreeMarker transformation

ff Preparing data using Groovy

ff Pop-up a new browser window (FreeMarker)

ff Installing an OFBiz Visual Theme

ff Creating an OFBiz Visual Theme

Introduction
While the recipes in this book are presented in no particular order, an attempt has been made
to group related topics together under the same chapter heading. This chapter is organized a
bit differently. It is a collection of mostly unrelated recipes that are important and should be
discussed, but that don't fall within the purvey of any of the existing chapters.

OFBiz Tips and Tricks

222

Fixing Java memory allocation errors
If you get a Java memory error similar to that shown in the following figure on either an OFBiz
error page or in the OFBiz logfile, you may or may not be able to continue running OFBiz. JVM
memory allocation is configured in the startup file(s) or, if you are starting OFBiz from the
command line, as a parameter passed to the Java executable.

Getting ready
First of all, ensure the following:

1.	 If OFBiz is already running, shut it down by either running the shutdown script
provided or killing the associated Java process.

2.	 Navigate to the OFBiz install directory.

How to do it...
Java memory allocations like the one shown in the earlier figure can be fixed by following
these steps:

1.	 If you are using startup files such as startofbiz.sh for Unix systems or
startofbiz.bat on a Windows computer, open the appropriate startup file. If you
are starting OFBiz from the command line, you simply enter in the new parameters as
part of the initial Java command.

2.	 For example, to change the JVM heap setting within the startofbiz.bat file, locate
the line that reads:
"%JAVA_HOME%\bin\java" -Xms128M -Xmx512M -jar ofbiz.jar >
 runtime\logs\console.log

Chapter 9

223

3.	 Change the -Xms128M and -Xmx512M values to something more appropriate to
your system's capabilities. For example, to set these values to 512 MB and 1024 MB
respectively, make the following changes:
"%JAVA_HOME%\bin\java" -Xms512M -Xmx1024M -jar ofbiz.jar >
 runtime\logs\console.log

4.	 Save your changes.

5.	 Restart OFBiz.

How it works...
As with all Java programs, OFBiz runs entirely within a Java Virtual Machine (JVM). The JVM is
responsible for providing OFBiz with a number of runtime environmental Services, including
memory management. The JVM makes initial memory allocations from the parameters
passed at invocation.

There's more...
Details concerning Java's memory management support is beyond the scope of this book. All
you need to know to configure OFBiz, however, is that the parameters used to tell the JVM how
much memory to allocate for the entire OFBiz runtime instance are:

–msXXm –mxXXm

Where ms is the initial "heap-size" in megabytes (or millions of bytes). In this situation, the
"heap-size" refers to the memory allocated and available for OFBiz to use as it sees fit.

mx is the maximum heap-size. The mx value should not be larger than your computer's
physical memory size.

For example, -ms512m –mx2000m sets an initial heap size of 512 MB and a maximum size
of 2 GB.

Reloading OFBiz seed and demo data
You may rebuild OFBiz and reload all configured databases with distribution data from the
original seed and demo data files included in the download at any time. If you have not
changed the original data loading configuration, the procedure discussed here will return your
OFBiz database to its initial state.

OFBiz Tips and Tricks

224

The state of the official OFBiz download site is in a constant state of flux. As
of this writing, Release 9.04 downloads acquired from the stable release
download link require a build as described here before they will work correctly.
This could change at anytime. Be aware of this requirement and act accordingly
Note: "seed" data is considered essential to successful OFBiz operations.
"Demo" data is provided by the various applications to demonstrate the
workings of application features and functions.

Getting ready
Before following this recipe, ensure these steps are performed:

1.	 Navigate to the OFBiz install directory.

2.	 If OFBiz is running, shut it down.

3.	 Open a command line or console window.

How to do it...
To return the OFBiz database to its initial state by reloading all "seed" and "demo" data, run
the provided ANT tool as follows:

1.	 From the command line, execute the following command:
ant run-install

2.	 Restart OFBiz.

How it works...
Running the provided ANT script with a target of run-install starts up OFBiz and instructs
it to reload the database with all available data. OFBiz will search the current instance's
installation environment looking for configured data files to load, and then load those files'
data into the database. Upon completion of this process, OFBiz shuts down and returns
control to the command-line prompt.

There's more...
Running ANT run-install without first removing existing data will write data as record
updates to the database. Many times you will want to first purge the database of existing data,
and then run the ANT script with the run-install target to return the database to its initial,
out-of-the-box state. To first remove all the data from the configured database(s), run the
following from the OFBiz install directory:

ant clean-data

Chapter 9

225

If you want to remove all log files, compiled class files, as well as data from the database, you
can run the following ANT command from the install directory:

ant clean-all

Creating new seed data files
Seed data files are used to load the OFBiz database—sometimes referred to as "seeding" the
database—with data whenever the ANT database data loading targets are called. You may
create new seed data files as needed. Each Component may have one or more seed data
files, and OFBiz supports an unlimited number of seed data files across the installation.

Getting ready
Navigate to the top-level directory for the component that will contain the new seed data file.

How to do it...
Follow this recipe to create new seed data files:

1.	 Open the ofbiz-component.xml file in an editor of your choice.

2.	 Add an entity-resource XML declaration with the seed data file's location as
shown here. The location attribute contains the location of the file relative to the
containing Component. The reader-name attribute tells OFBiz when to load the file
based on ANT targets.
<entity-resource type="data" reader-name="seed"
 loader="main" location="data/mainSeedData.xml"/>
<!-- For data to be loaded on the "demo" pass, use the
 reader-name of demo -->
<entity-resource type="data" reader-name="demo"
 loader="main" location="data/mainDemoData.xml"/>

3.	 Create a new seed data file by copying any existing seed data file and removing
everything from the file except the initial version declaration and the start and end
entity-engine-xml declarations. For example, when opened in a plain text editor,
your file should look something like the following:
<?xml version="1.0" encoding="UTF-8"?>
<entity-engine-xml>
</entity-engine-xml>

4.	 Add one or more entries to this file representing the data to be loaded. The basic
format for an entry is:
<EntityName1 fieldName1 = "value"…fieldNameN="value" />

OFBiz Tips and Tricks

226

5.	 Save the file.

6.	 Navigate to the OFBiz Install directory.

7.	 Run the ANT database load script.
ant run-install

8.	 Restart OFBiz.

How it works...
OFBiz provides a flexible database data loading environment by allowing the user to configure
which data files should be loaded when the ANT tool is used. Within the ofbiz-component.
xml file, the presence of the entity-resource element tells OFBiz that there is a data
file to load, where that file is located, and under what circumstances to load data from that
file into the database. This last piece of information is configured using the reader-name
attribute. The reader-name attribute is set to a "reader" (for example, a reader-name
of seed) based on which ANT target should be used to load the file. The following table
translates reader-name values to ANT targets.

Note: some reader-name values and equivalent ANT targets are
cumulative in that they not only load files for the specified reader,
but may also load other files. For example, the run-install
target loads all data files, including seed and demo.

If you want to load only specific types of data into the database using ANT commands,
the following table maps the reader-name (type of data to load) with the equivalent ANT
command to use:

reader-name value ANT command (target) Usage
NA ant clean-data To clean all data from the database

in preparation for clean build.
demo ant run-install Loads all types of data files.

seed ant run-install-seed Load seed data. For example,
geographic information.

seed-initial ant run-install-
initial

Loads seed-initial type only.

ext ant run-install-
extseed

Loads seed data types: seed, seed-
initial, and ext.

ext-test ant run-install-
exttest

Loads seed data types: seed, seed-
initial, ext, ext-test in that order.

Chapter 9

227

There's more…
By choosing to run various ANT data loading scripts depending on your needs, you may
selectively load data from files into the database while leaving other database entities
untouched. This is a helpful facility should you need to repeatedly load seed or demo data
while testing.

Within data files to be loaded using the ANT tool, all entity field values are represented as
strings. OFBiz manages the translation of the string value to the target database data type.
If you want a verbatim or literal value to be loaded in the database or value that contains
characters XML parsers view as "special" or "trigger" values, then wrap your value with CDATA
sections as shown here:

<fieldName><![CDATA[verbatim string goes here!]]></fieldName>

Changing the administrative user's
password

If you are the OFBiz administrator and you forget this user's password, you could be out of luck
since the administrator (the "admin" user login) has all the privileges necessary to perform
any OFBiz task, including logging in and assigning the admin user a new password.

If you find yourself in this situation, there is no easy way to retrieve this password such that
you may use it to log in. The only solution to this problem is to reset the password by directly
manipulating the correct entity in the database, or let OFBiz do that for you using the
following recipe.

Getting ready
Before following this recipe, ensure these steps are performed:

1.	 Navigate to the OFBiz install directory.

2.	 Open a command line or console window.

3.	 If you are running OFBiz, it is best to stop it at this time.

How to do it...
To reset the admin password, follow these steps:

1.	 From the OFBiz install directory, run the following command:
ant load-admin-user-login -DuserLoginId=admin

2.	 Restart OFBiz.

OFBiz Tips and Tricks

228

3.	 Log in to OFBiz as the admin user where the login user name is "admin" and the
password is "ofbiz".

4.	 When prompted to change the admin user's password, enter the new password or
"ofbiz" to maintain the existing value.

How it works...
This ant command rebuilds OFBiz and reloads the database with a single entity containing
the admin user's login password of "ofbiz". It also sets a flag indicating that the next time this
user logs in, they must change this password. Based on this flag setting, when next the admin
user logs in, they will be prompted to change the password. At that time, the password may be
reset to a new value or the "ofbiz" value can be re-entered.

There's more…
You can always change the admin password using the OFBiz Party Manager application,
assuming you can log in as "admin". In fact, that is the preferred method. This recipe is
intended to be used in those situations where the admin user cannot log in to access the
Party Manager. As such, ensure that access to this ANT script is well protected from
malicious use.

Creating a new administrative user
To change the default administrative user's login from "admin" to another value, follow
this recipe.

Getting ready
Ensure these steps are performed:

1.	 Navigate to the OFBiz install directory.

2.	 If OFBiz is already running, shut it down.

3.	 Open a command line window.

How to do it...
To create a new administrative user, perform these steps:

1.	 Type in the following ant command where NewUserLoginName is the value for the
user login identifier:
ant load-admin-user-login -DuserLoginId=NewUserLoginName

Chapter 9

229

The NewUserLoginName as shown must be less
than or equal to 255 ASCII characters in length, and
not contain any back or space characters.

2.	 Restart OFBiz.

3.	 Log in to OFBiz as the administrative user using the new login name as entered in
step 1 and using a password of "ofbiz".

4.	 When prompted to change the administrative user's password, enter the new
password or "ofbiz" to maintain the existing value.

How it works...
Similar to the process for changing the admin user's password as described in the previous
recipe, this ant command rebuilds OFBiz and loads the database with a single entity
containing the admin user's new login name as passed from the ant invocation and a
password of "ofbiz". It also sets a flag indicating that the next time this user logs in using this
new login name, they must change the password. When next the administrative user logs in,
they will be prompted to change the password. At that time, the password may be reset to a
new value or the "ofbiz" value can be re-entered.

There's more...
The administrative user's login and password may be changed in this way any number
of times.

Getting the OFBiz version number
You may use the ANT build script found in the install directory to easily find the OFBiz
version number.

Note: this recipe only works if you are running a copy of OFBiz
downloaded from the Subversion repository and you have a
Subversion client on your CLASSPATH. Pre-built packages of 9.04
versions downloaded from the official Apache OFBiz website
download page do not support this feature at the time of this writing.

Getting ready
There are no special prerequisite requirements to perform this task.

OFBiz Tips and Tricks

230

How to do it...
You can find the OFBiz version by following these steps.

1.	 From the install directory, open a command line or console window (note: you do not
need to stop OFBiz to perform this task).

2.	 Type in the following command:
ant svninfo

3.	 You will observe results as shown:
Buildfile: build.xml
svninfo:
 [echo] Creating svninfo
 [echo] Rev:903429
 [delete] Deleting: /opt/release9.04/runtime/svninfo_tmp.xml
 [echo] Done!
BUILD SUCCESSFUL
Total time: 3 seconds

4.	 The [echo] Rev:903429 line gives us the version number as 903429.

How it works...
OFBiz uses the ANT Java build tool to both build OFBiz code creating Java executables and
manage the OFBiz build process. The version number returned from the ANT command line
invocation is the "last changed revision", meaning this is the last version that saw an actual
commit to the code base.

Note: the "last changed revision" may not be the same as the version
number associated with your download. To find the version number of
your download, you will need to either run the Subversion command to
get the version number or, if you don't have Subversion installed locally,
retrieve the version number from your download directly from the text
file that contains this information.

Chapter 9

231

There's more...
If you are running Subversion locally, you may use Subversion to determine the OFBiz version
number as shown here:

1.	 From the install directory, open a command line.

2.	 Type in the following command:
svn info

3.	 Observe the results as posted to the command line:

In addition to using ANT or Subversion to determine the installed version, you may also go
directly to the location on disk where the version information is kept. You may need to resort
to this if you do not have Subversion installed or if your ANT file is corrupt. The process is
shown here:

1.	 Navigate to the OFBiz install directory.

2.	 Find the .svn sub-directory as shown in the figure.

3.	 From inside the .svn directory, locate the entries file.

4.	 Open this file in any text editor and observe the version number information as
shown here:

OFBiz Tips and Tricks

232

Building an OFBiz instance
OFBiz may be rebuilt from source code at any time. Included with the download are all the
scripts necessary to recreate OFBiz from source by the following recipe.

Getting ready
The following prerequisites have to be ensured:

1.	 Navigate to the OFBiz install directory.

2.	 Open a command-line window.

3.	 Stop OFBiz if it is running (either use the provided script per the operating system in
use or, for Unix systems, kill the OFBiz process).

How to do it...
To build an OFBiz instance, follow these steps:

1.	 From the OFBiz install directory, run the following command:
ant

2.	 When the command-line prompt is returned, restart OFBiz. Rebuilds are effective
after restart.

How it works...
OFBiz consists of many artifacts, including plenty of Java code. To recompile and reassemble
the OFBiz Java code into an executable package, the Apache ANT Java build tool is used.
Without making further changes from the initial download, invoking ant from the OFBiz install
directory without any targets (parameters) instructs ant to run the build target as configured
in the provided build.xml file.

If run from the OFBiz install directory, ANT will transverse each sub-directory and invoke
any build.xml files present. In this way, OFBiz may be rebuilt from a single location
and invocation.

There's more...
If you have downloaded a checkout from Subversion, you will need to build OFBiz before you
can successfully start the OFBiz instance. Use the following command to both build OFBiz and
create/load the database:

ant run-install

Chapter 9

233

The entire OFBiz project code base may be "built" at any time. Alternatively, each Component
may be built independently from the rest of the project if necessary.

Reasons for rebuilding the entire project may include, but are not limited to:

ff Download from Subversion source code repository requires build before startup

ff Run JUnit tests

ff Reload/rebuild the database

ff Changes to a Java program

ff Addition of new Java programs (called a Java "class" file)

Reasons to rebuild a single Component may include:

ff Patching a Java source file

ff Adding/modifying a Java file

See also
For more information on the Apache ANT Java build tool, please see the official Apache
ANT website:

http://ant.apache.org

Building a single OFBiz Component
Each OFBiz Component may be built independently from any other Component. If you only
want to add, modify, or delete Java code within a single Component, there is no need to build
the entire distribution. You may simply rebuild the Component in which the code is located.
You don't even need to stop the currently running instance until after the build is complete
and you are ready to test your new build.

Getting ready
Ensure the following prerequisites:

1.	 Navigate to the Component you wish to rebuild.

2.	 Open a command-line window.

OFBiz Tips and Tricks

234

How to do it...
Build an OFBiz Component by following these steps:

1.	 From the command line, invoke the following ANT command (on a Unix system):
ant

2.	 Return to the OFBiz install directory and restart OFBiz.

How it works...
Each OFBiz Component has a build.xml customized to rebuild that Component in its root
directory location. By navigating to the top-level directory for any Component and invoking the
ant command at that location, you automatically tell ant to use the build.xml file located
there as its configuration setting.

If you want to do this in Windows, you will need to
specify the path to the ant batch file.

Creating a new OFBiz Component or
Application

Recent developments within the OFBiz community have resulted in the download distribution
containing an ANT script to quickly and easily build new OFBiz Components and Applications.

Getting ready
Ensure the following prerequisites:

1.	 Decide on a name for the new Component. For example, if you want to call your new
Component "myComponent" then the name will be myComponent.

2.	 Determine if the Component will have an OFBiz Application (sometimes referred to as
a "webapp") associated with it. Do you want to be able to log in to this Component?
If so, then you will need to have at least one OFBiz Application associated with
this Component.

3.	 If the Component is to have an OFBiz Application (a "webapp"), determine a name for
this Application. For example, if you wish to call the webapp "myWebApp" then the
Application's name is myWebApp.

4.	 Navigate to the OFBiz install directory.

5.	 If OFBiz is already running, shut it down.

Chapter 9

235

How to do it...
To create a new OFBiz Component, follow these steps:

1.	 From the command line, type in the following ant command:
ant create-component

2.	 Answer the command-line prompts as described here:

Command line prompt What to enter
Component name: The name of the Component. This becomes the directory name

and will be used to reference the Component for future access.
Do not use spaces between Component name parts. For example,
"My New Component" is not a valid Component name. Try
"MyNewComponent" instead.

Component resource
name:

Resource names are used internally to OFBiz. You can enter in any
value here; however, the value main is the typical response.

Webapp name: The name of your OFBiz application. This is used as the directory
name for the component sub-directory that is the new OFBiz
Application. Do not use spaces for this value. For example, "My New
Webapp" is not a valid name. Try "MyNewWebapp" instead.

3.	 Restart OFBiz.

4.	 Navigate your browser to:

http://localhost:8080/${component_name}/control/main

where ${component_name} is the name of your new Component. For example, if
your Component name is myComponent, navigate to:
http://localhost:8080/myComponent

How it works...
ANT takes the values as entered on the command line and creates a Component directory
structure in the hot-deploy parent directory. This skeletal directory is given an ofbiz-
component.xml file and all the necessary sub-directories needed for an OFBiz web
application ("webapp"). If a "webapp" name and base permissions are provided, the script will
install a default HTML login form inside the webapp directory along with a basic controller.xml
file configured to enforce user login.

http://localhost:8080/${component_name}�/control/main

OFBiz Tips and Tricks

236

There's more...
Components may be created in any of four locations within OFBiz. Best practices and practical
considerations suggest creating new Components in the hot-deploy directory because:

ff Adding a Component in this location does not require any further OFBiz
configuration changes

ff These Components are the last to be loaded, so if there are any Component
dependencies, for example, you need data loaded from a framework Component, that
has already been loaded

Components may be created without web application interfaces. For example, if you have a
new Component that only provides services for other Components or that adds entities to the
database, you may not need to build a web interface. If this is the case, there is no need to
create the web application portion of the Component.

Creating a FreeMarker transform
If none of the existing FreeMarker transforms meet your requirements, you may always create
your own. FreeMarker transforms are Java classes configured to perform an inline conversion
when used within a FreeMarker template.

How to do it...
To create your own FreeMarker transform, follow these steps:

1.	 Create the Java class that implements the TemplateTransformModel Java class.

2.	 Rebuild the Component containing the transform.

3.	 Add the transform's Java class package name to the following Java property file so
that it will be loaded on the CLASSPATH and available for use:
~framework/webapp/config/freemarkerTransforms.properties

4.	 Restart OFBiz.

5.	 Use the transform in a FreeMarker template by wrapping content in the
transform tags.

How it works...
Writing a Java FreeMarker transformation is a simple way of extending FreeMarker data
formatting capabilities for use across the entire OFBiz instance.

Chapter 9

237

There's more...
There are many examples of custom FreeMarker transformations within the OFBiz distribution.
For example, the content Component has implemented a number of these to assist in the
sometimes tricky transformation of raw data into human readable formats:

~content/src/org/ofbiz/content/webapp/ftl

Preparing data using Groovy
You can use Groovy scripting language to prepare data for any presentation layer screen
rendering tool, including the FreeMarker templating engine and OFBiz widgets.

Getting ready
Groovy has been integrated into the OFBiz framework, so using it is as simple as creating a
text file with Groovy code and then pointing one or more Screen widget actions declarations
to the location of the Groovy file.

Note: a side effect of integration is that execution context information,
including the HTTP/HTTPS request message and request parameters,
are always available in the Groovy runtime context.

By convention, Groovy files are located in the webapp/WEB-INF/actions directory of a
containing Component. For example, we could have a Groovy file named myGroovyFile.
groovy located in the ~myComponent/webapp/WEB-INF/actions directory.

How to do it...
To prepare "Groovy" data, follow these steps:

1.	 Create a new text file or open an existing file.

2.	 Import any required Java classes.

3.	 Add any Groovy statements, including calls to the entity engine to extract data.

4.	 Add Groovy statements to move any prepared data to the context.

5.	 Close the file and save. Groovy files have the .groovy suffix.

Note: changes to Groovy script files do not require
OFBiz restarts to be effective.

OFBiz Tips and Tricks

238

How it works...
Separating web page layout and style from data is the stuff Model-View-Controller (MVC)
web application design patterns are made of. The OFBiz framework enables MVC separation
through a number of architectural features, including the separation of web page screen (or
"view") definitions from the data that is presented by the views. Web page views and screen
layouts may be built using a variety of tools, including the OFBiz Screen widget, FreeMarker
templates, and/or other OFBiz widgets.

All these tools support context aware, runtime merging of screen view definitions with data
gathered and manipulated using the Groovy scripting language.

There's more...
Groovy is a dynamic scripting language with syntax similar to Java and with many additional
features "inspired" by languages such as Python, Ruby, and Smalltalk (http://groovy.
codehouse.org). Some commonly used Groovy patterns found within the OFBiz code base
are listed in the following table:

Usage Groovy code
Import statements import.java.util*;

import org.ofbiz.base.util.UtilMisc;

To load request parameters from a
Form or URL HTTP/HTTPS request

myRequestParam=parameters.someParam;

Set request parameters into the
context directly from a URL request

// Note: all request parameters are
// assumed to be Strings
// Unless otherwise converted
context.paramA+ "_X" = parameters.AparamA
context.paramB+ "_Y" = parameters.AparamB

Create a new Java List structure
Check for an empty list

newList = [];
if(newList) { // do something }

Create an empty Java Map structure
(key, value pairs)

someMap = [:];
someMap.keyName=value;

"Safe Navigation Operator"
(Used to avoid
NullPointerException)

Z = ObjectY.find("Q");
R = Z?.AA?.BB
// R is null if Z or ZZ.AA are null

"Elvis Operator" context.someStringValue = someStringValue
?: "Default Value";

context.someNumber =
someNumber + x ?: 0;

"For" loops ListOfGenericValues.each {
 x ->
 // do Something here
}

Chapter 9

239

See also
The OFBiz installation is replete with hundreds of examples of Groovy code. The best
reference is to consult the code.

Pop-up new browser windows
You may embed JavaScript directly in FreeMarker templates to perform interactive actions
such as to pop-up new browser windows based on user mouse clicks.

How to do it...
To pop-up a new window on mouse events, follow these steps:

1.	 Open the FreeMarker template file.

2.	 Add the following Java script at the beginning of the file:
<SCRIPT language="javascript">
 function call_fieldlookup(rootForumId, parentForumId) {
 var obj_lookupwindow = window.open(
 "addSubSite?rootForumId=" + rootForumId +
 "&parentForumId=" + parentForumId,
 'FieldLookup',
 'width=500,height=250,scrollbars=yes,
 status=no,top='+my+',left='+mx+',
 dependent=yes,alwaysRaised=yes');
 obj_lookupwindow.opener = window;
 obj_lookupwindow.focus();
 }
</script>

3.	 Add the following HTML to call the JavaScript:
<a href = "javascript:call_fieldlookup(
 '<@ofbizUrl>LookupFeature</@ofbizUrl>')">
 <img src =
 "<@ofbizContentUrl>/images/fieldlookup.gif</@ofbizContentUrl>"
 width="16" height="16" border="0"
 alt="${uiLabelMap.CommonClickHereForFieldLookup}">

4.	 Save and close the file.

Note: all changes to FreeMarker files are immediate. You do not
need to restart OFBiz to observe results.

OFBiz Tips and Tricks

240

How it works...
FreeMarker supports embedded JavaScripts as shown. Scripts are passed as is within the
final HTML document to the browser where they are executed by users as needed.

There's more...
There are a number of JavaScripts packaged with the distribution. Most are found in the
~images/webapp/images directory.

Also included within OFBiz is the Prototype JavaScript Framework:

http://www.prototypejs.org/

And the Dojo JavaScript toolkit:

http://www.dojotoolkit.org/

Examples of both are found throughout OFBiz.

Installing an OFBiz Visual Theme
OFBiz "Visual Themes" are like "skins" that allow for a consistent look and feel across all
participating OFBiz Applications. A Visual Theme is a collection of files, usually packaged as
an OFBiz Component that may include, among other things, FreeMarker templates for:

ff A top navigation bar

ff A secondary navigation bar

ff A HTML web page HEAD element called the "header"

ff An HTML web page footer section

ff Error messages web page insert

As well as all the CSS, images, and JavaScript necessary to customize the look and feel of one
or more OFBiz web applications. Visual Themes provide a way to collect and organize most of
the elements necessary to standardize website fonts, typefaces, menu behaviors, and web
page presentation layout.

Themes are applied to theme-enabled web pages based on user preferences. A user may
switch among available and installed themes at will by selecting the Visual Themes link on any
out-of-the-box back-office application web page. Users must be logged in to change a theme.

Chapter 9

241

Getting ready
You may either create your own Visual Theme as an OFBiz component in the themes
directory, or download a theme from the OFBiz theme gallery located at:

http://cwiki.apache.org/confluence/x/5ABk

How to do it...
To change a theme, follow these steps:

1.	 If you have downloaded a theme, unzip it into the themes Component directory. This
creates a new Component with the same name as the theme.

2.	 Stop OFBiz if it is running.

3.	 From the OFBiz install directory, open a command line.

4.	 Run the following command:
ant run-install-seed

5.	 Restart OFBiz.

Note: the above instructions are taken from the official OFBiz Wiki
page. Please be aware the ant run-install-seed command will
rebuild your instance of OFBiz and reload all data marked as seed
data, including the new Visual Theme data. If you have any seed data
that has changed since the last time the ant run-install-seed
—for example the default admin user's password—this data will be
overwritten with data from unaltered seed data files.

How it works...
Packaging Visual Themes as Components is a convenience that allows for easy installation
of new themes and retrieval of theme resources with a minimum amount of work. When you
download a Visual Theme to your local OFBiz instance, you are preparing to install an OFBiz
Component that includes the OFBiz artifacts necessary to apply a theme to one or more
OFBiz web pages. These artifacts have been customized to deliver a unique visual web page
presentation or "theme".

Running the ANT script from the OFBiz install directory installs a theme by loading the
database with all the necessary information concerning the location of a theme's resources.
Once in the database, theme resources are ready to be applied to web pages.

You may also install a theme's seed data directly into the database using the WebTools entity
engine XML Import to DataSource form. If you load the seed data in this way, there is no
need to stop and restart OFBiz.

OFBiz Tips and Tricks

242

There's more...
The default installed theme that comes with the download is configured in ~/framework/
common/config/general.properties. In the absence of any other settings such as
seed data loaded by an application, this is the theme that is applied until a user changes
theme preferences.

Note: it is possible to have a Visual Theme that is not installed as an OFBiz
Component. For example, the OFBiz e-commerce application implements
a default theme, EC_DEFAULT, using only database values containing
pointers to necessary theme resources. If you are curious about how this
works, take a look at the following seed data file:
~/specialpurpose/ecommerce/data/EcommerceTypeData.xml

Creating an OFBiz Visual Theme
In OFBiz release 9.04, support for Visual Themes has been extended to allow users to define
and install themes of their own creation. Creating a new Visual Theme is as straightforward as
creating an OFBiz Component.

Getting ready
As with most OFBiz endeavors, it is often easiest to copy an existing theme and then make
changes to the copied resources. To get started, use the following theme checklist to
determine values for your new Visual Theme:

New theme checklist
Value Example Usage
Theme To Copy
From

BlueLight Select an existing OFBiz 9.04 theme. Themes distributed
with the download are found in the themes directory
located directly beneath the OFBiz installation top-level
directory. Any Visual Theme is sufficient to use as a source
to copy from.

New Theme Name myTheme Choose a name for the new theme. Any name—as a
combination of 20 ASCII characters or less and no
spaces—will work.

New Component
Name

myTheme Usually, the new Component name and the new theme
name are the same. However, the new Component
name may be any value not already taken by another
Component. Names must be 20 ASCII characters or less
and not contain spaces or blank characters.

Chapter 9

243

New theme checklist
Value Example Usage
New Webapp
Name

myTheme The rules for the webapp name are the same for any
OFBiz webapp: 20 characters or less, no spaces or blanks
characters allowed. Webapp names must be unique
names across the install.

The webapp name is set within ofbiz-component.
xml as shown here:

<webapp name="myTheme"
 title="myTheme"
 menu-name="secondary"
 server="default-server"
 location="webapp/myTheme"
 mount-point="/myTheme"
 app-bar-display="false"/>

** Example values will be used in the following process to create a new OFBiz Visual Theme. These
are only an example. Your mileage may vary.

How to do it...
To create your own Visual Theme, follow these steps:

1.	 Create a new Visual Theme as a new OFBiz Component within the themes directory.
For example, for a new theme called myTheme, create a new directory (folder for
Windows users) under the themes directory called myTheme.

2.	 Copy an existing theme's directory contents to the newly created Component.
For example, copy all the directories and files in the BlueLight directory to the
myTheme directory, making sure to preserve the directory structure.

3.	 Make your planned theme changes (web page layout and styling) to the new theme's
artifacts by manipulating the appropriate files or replacing an existing file:

�� Edit FreeMarker and/or JavaScript files.

�� Edit Cascading Style Sheet (CSS) files.

�� Add and/or removing theme images.

�� Replace the theme logo with another image.

�� Create a new screenshot and replace the existing screenshot.jpg file.
(Note: this is optional. This file is used to graphically depict the Visual
Theme's appearance).

OFBiz Tips and Tricks

244

4.	 Edit the ofbiz-component.xml file for the new theme Component. Refer an
existing theme ofbiz-component.xml file if necessary. Pay special attention to the
many name and location attributes as they need to be changed to reflect the newly
created theme's name and directory location.

5.	 Modify the theme's seed data file found in the ~/data directory to reflect any changes
you may have made to theme artifacts. You may also need to change the name of this
file to reflect any name changes made in the ofbiz-component.xml file.

6.	 Edit the ~/WEB-INF/web.xml deployment descriptor file using an existing web.xml
file as an example.

7.	 Stop OFBiz if it is running.

8.	 From the OFBiz install directory, run the following ANT script to load the database
with new theme information. This theme configuration information is in the seed file
modified in step 5:
ant run-install-seed

9.	 Restart OFBiz.

10.	 Test the new theme by navigating to any WebTools page and selecting the Visual
Themes link. From the list of themes provided, select the newly installed theme and
click the Done button. If the theme was successfully installed, web page styling and
layout for the target application(s) should change to reflect the new theme's settings.

How it works...
The process of creating a new Visual Theme is pretty straightforward. If you use the examples
provided in the distribution as your guide, you can't go wrong. Getting a Visual Theme to
render your application's web pages as you would like them to be displayed is a different story.
To make a Visual Theme behave as you would like requires intimate knowledge of HTML, CSS,
possibly JavaScript, and/or other web page building tools. Such guidance is beyond the scope
of this book.

However, understanding how OFBiz screen rendering tools use Visual Theme artifacts to
dynamically generate web pages based on the user's context may help in mastering this topic.
For example, the OFBiz Screen widget rendering engine has a really handy feature that allows
screen developers building web pages from widgets to include elements that are applied
at runtime. These elements are resolved based on the execution context and the user's
preferences. To avail themselves of this capability, the widget developer includes one or
more of the appropriate declarations within the actions section of a widget's definition.

Chapter 9

245

Note: most of the out-of-the-box OFBiz Application's screen definitions
have been set up to support this feature. That means that when you
install a new Visual Theme, web pages within these Applications may
be able to implement the new theme automatically without further
modification to screen definitions.

To take advantage of this dynamic context-driven screen generation capability, Visual Themes
as collections of web page artifacts are used. Themes may include any or all of the following:

ff Graphical images of any type

ff Cascading Style Sheet (CSS) files

ff FreeMarker templates

ff JavaScript files

ff Other, yet to be specified artifacts that go into building dynamic web pages

In practice, Visual Themes are used to dynamically change the look and feel of one or more
OFBiz web pages. For OFBiz web applications supporting Visual Themes, there is a default
theme defined that is used to create the application's web pages in the absence of any user
preferences to the contrary. The user may change this setting at any time and replace the
default theme with another available theme. By installing a new theme as described above,
you widen the user's choice of theme selections.

Some OFBiz Applications do not support user selectable themes. For
example, the e-commerce application allows for a single application-wide
theme setting. The application of a new theme to the e-commerce application
may only be performed using the Catalog Manager or as a direct result of
modifying the appropriate database entities.

To support more than one collection of theme elements in such a way that OFBiz web
applications and users may selectively apply themes in real time, OFBiz persists information
about available themes and user preferences in the database. When you create a new Visual
Theme and run the ANT data loading script, you are installing the necessary configuration
information that allows OFBiz screen rendering tools to resolve web page elements at runtime.

OFBiz Tips and Tricks

246

There's more...
You may also install a theme's configuration settings (as found in the seed data file) directly
into the database using the WebTools entity engine XML Import to DataSource form. If you
load the seed data in this way, there is no need to stop and restart OFBiz.

See also
For a more complete treatment of the process behind creating new OFBiz Visual Themes,
please see:

http://cwiki.apache.org/confluence/display/OFBiz/Home

Entity Engine by
Example

In this chapter, find the following topics discussed:

ff Putting it all together with a data model example

ff Reading data from an OFBiz data source

ff Working with large result sets

ff Removing data from an OFBiz data source

ff Writing data to an OFBiz data source

ff Using the EntityUtil utility programmatically

ff The OFBiz automatic sequence generator

ff An entity operator reference

Introduction
In this chapter, we depart from the usual book format to offer useful Entity Engine hints and
tips by way of examples. Each example is designed to help you master some aspect of the
OFBiz Entity Engine. Intended for Java developers (and Groovy/BeanShell enthusiasts), you
will find many details here offered to optimize your use of the OFBiz Entity Engine and add
data-driven features to your own OFBiz Applications.

Entity Engine by Example

248

Before we get started, a few ground rules:
The Entity Engine deals with "data sources" and "entities". In many cases,
we shall be referring to the concrete instantiation of a "data source" as a
database and "entities" as database tables respectively. This is intentional
as in the real world you are not likely to encounter a "data source", but
rather a database.
Similarly, OFBiz entities only have meaning within the context of OFBiz.
For all practical purposes, an OFBiz entity is the model of a relational
database table. In a relational database, tables have column names that
are referred to here as "fields". Data is stored in database table records.
Records and the term "rows" are used interchangeably here.

Putting it all together with a data model
example

Since OFBiz comes with over 900 entities and a ready-made database schema defining the
relationships of those entities to one another, we would be hard pressed to find a business
situation where the existing data model doesn't meet most of our needs. The OFBiz data
model includes entities and entity relationship definitions for everything from managing
users, whether they be customers, suppliers, vendors, or the system administrator, to selling
products and controlling inventory, handling accounting, creating invoices, and even modeling
complex workflow scenarios.

Since the goal of this section is to take you from the conception of a new business idea
through an implementation using Entity Engine tools and techniques, we shall not use existing
entities, but rather devise a new data model. With a little bit of research, we have come up
with a use case that is not directly supported by the existing data model. To illustrate how to
create new entities and view-entities, read, write, and remove data from an OFBiz data source,
we are going to model the business of a bakery.

Sample use case
As a bakery, we manufacture edible products based on recipes mom brought over from the
old country. There are many different types of recipes in our collection, including, but not
limited to cakes, cookies, pies, bread, and for those dog lovers, dog treats. We should note
here that the number of different types of recipes, and thus the goods we plan to bake using
these recipes, should remain open ended and not be limited to the initial five identified.

Appendix

249

Within each recipe is a sequential list of ingredients. Each ingredient has a value that
represents the amount of the ingredient to use in the recipe and a unit of measure indicator.
For example, a recipe may have an ingredient of flour, with an amount of "5" and a unit of
measure of "cup". To keep things simple, we shall not consider the list of ingredients as steps
in the mixing and/or baking process.

Note: the existing data model does support a process-oriented business
operation such as a bakery. We have chosen to ignore certain existing
data model entities in favor of going at it alone and doing it ourselves,
primarily as a vehicle to demonstrate the versatility of the OFBiz
Entity Engine. You are free to use existing entities such as "Product",
"ProductConfig", and "ProductConfigItem" to model recipes.

Entity diagram
The data model for our additions to OFBiz are graphically depicted in the following figure. We
will be adding four new entities: Recipe, Ingredient, RecipeType, and RecipeIngredient, each
with primary and foreign keys shown here:

In addition to the four new entities shown in the figure, we shall use the existing Uom entity to
give our ingredients access to several hundred standardized units of measure (UOM) values
already preloaded in the database.

Entity Engine by Example

250

New entity definitions
Based on our business case and data model, we need to create five new entities. Definitions
for each of these entities are shown below. We may either create a new entity definition file
and update the component.xml file with the new entity definition file location, or add these
entities to an existing entity definition file. In the interest of time, we shall add these to an
existing entity definition file.

In the following entity definitions, notice that we use a package name of org.ofbiz.bakery.
We are using this name specifically so that we may easily find our entities when using the
WebTools Interactive Entity Reference utility. As this tool groups together like-named packages,
finding a particular entity is made much easier when using a meaningful package name.

The following defines the Ingredient entity:

<entity entity-name="Ingredient"
 package-name="org.ofbiz.bakery"
 title=
 "One record for each ingredient that makes up a recipe">
 <field name="ingredientId" type="id-ne"></field>
 <field name="ingredientName" type="id"></field>
 <!-- Note: some day make an IngredientType entity -->
 <field name="ingredientType" type="id"></field>
 <field name="packagingUomId" type="id"></field>
 <prim-key field="ingredientId"/>
 <relation type="one" fk-name="REC_ING_UOM" rel-entity-name="Uom">
 <key-map field-name="packagingUomId" rel-field-name="uomId"/>
 </relation>
</entity>

The RecipeType entity that holds information about the type of recipe (cookies, cakes and
so on) may be defined as follows:

<entity entity-name="RecipeType"
 package-name="org.ofbiz.bakery"
 title=
 "Recipes come in all shapes and sizes. Keep that info here.">
 <field name="recipeTypeId" type="id-ne"></field>
 <field name="description" type="description"></field>
 <prim-key field="recipeTypeId"/>
</entity>

Appendix

251

A Recipe entity with the unique recipe identifier, a recipe name, and pointers to other related
entities (foreign keys) is given here:

<entity entity-name="Recipe"
 package-name="org.ofbiz.bakery"
 title="Recipe holds information about our recipes">
 <field name="recipeId" type="id-ne"></field>
 <field name="recipeName" type="id-long"></field>
 <field name="recipeTypeId" type="id"></field>
 <field name="notes" type="very-long"></field>
 <prim-key field="recipeId"/>
 <relation type="one" fk-name="REC_TO_TYPE"
 rel-entity-name="RecipeType">
 <key-map field-name="recipeTypeId"/>
 </relation>
</entity>

And finally, the entity that ties the recipe with its ingredients is defined here:

<entity entity-name="RecipeIngredient"
 package-name="org.ofbiz.bakery"
 title=
 "A recipe is nothing more than a collection of ingredients.
 Here's where the rubber meets the road.">
 <field name="recipeId" type="id-ne"></field>
 <field name="recipeSeqNo" type="numeric"></field>
 <field name="ingredientId" type="id-ne"></field>
 <field name="amountUomId" type="id"></field>
 <field name="amount" type="numeric"></field>
 <field name="fromDate" type="date-time"></field>
 <field name="thruDate" type="date-time"></field>
 <prim-key field="recipeId"/>
 <prim-key field="recipeSeqNumber"/>
 <prim-key field="fromDate"/>

 <relation type="one" fk-name="REC_ING_ING"
 rel-entity-name="Ingredient">
 <key-map field-name="ingredientId"/>
 </relation>
 <relation type="one" fk-name="REC_AMT_UOM" rel-entity-name="Uom">
 <key-map field-name="amountUomId" rel-field-name="uomId"/>
 </relation>
</entity>

Entity Engine by Example

252

Once all our new entity definitions are created, the next task is to test these entities to ensure
accuracy. An easy and reliable way to begin testing is to first see if the entities are present and
viewable using the OFBiz WebTools Entity Reference - Interactive Version. To run this test,
restart OFBiz, making sure that no obvious entity-related errors are posted to the command-
line window and/or primary OFBiz log file (ofbiz/runtime/ofbiz.log). If errors are
encountered during startup, we need to go back and fix our entity definitions.

If OFBiz startup is successful, we may navigate to the WebTools Entity Reference - Interactive
Version main web page, and since our new entities were created using the package name
org.ofbiz.bakery, we may easily scroll down the left side of the web page to locate our
package name and link as shown in the following figure:

If you find that your entities are not showing up here, then go back and
check each entity definition and or the logfiles. Most definition syntax errors
are reported to ~runtime/logs/ofbiz.log during OFBiz startup.

From the WebTools Entity Reference - Interactive Version, we may test adding data to our
new entities. And so we would, but to speed things up a bit, we shall use the WebTools XML
Data Import tool to load data a little at a time—so we can view results—from XML documents
that we created offline. For example, here we add data to the RecipeType entity by copying
from a text file and then pasting in the XML Import to DataSource tool's HTML form:

Appendix

253

To verify that our data is indeed added to the database, use WebTools and list the RecipeType
entity as shown here:

Entity Engine by Example

254

So, it looks like we are on the right track with our entity definitions. In the real world, we would
be writing an OFBiz webapp to allow for HTML form-based data entry in addition to loading
data directly into the database. For the rest of this chapter, we shall assume that the following
data has been preloaded:

Entity name: Ingredient
ingredientId ingredientName packagingUomId
10009 eggs OTH_ea
10001 milk OTH_ea
10002 pure water OTH_ea
10003 city water OTH_ea
10004 wheat flour OTH_ea
10005 organic wheat flour OTH_ea
10006 salt OTH_ea

Entity name: Recipe
recipeId recipeName recipeTypeId* notes
r001 Moms Doggie Delights dogbiscuits This one goes way back.
r002 Dont try this one at home! bread Same ole stuff but you gotta have it.
r003 Going Nuts, Nut Bread

For…
bread This one goes way back (too).

r004 Moms Goes Green bread Green, Healthy Bread. Has spinach
to boot!

Entity name: RecipeIngredient
recipeId recipeSeqNo ingredientId* amountUomId* amount fromDate
r001 001 10001 1 **
r001 002 10010 VLIQ_qt **
r001 003 10005 VLIQ_pt **
r001 004 10002 VLIQ_tsp **
* Because this field is designated as a foreign key, any values added must already exist in the
related table.

** fromDate set to "2010-01-01 00:00:00.000" for all records.

Appendix

255

2-way SQL join view-entity
A report we want to produce quickly after going live with our new OFBiz bakery and recipe
system is a list of all the recipes by type. For example, a list of all the cookie recipes. To create
such a list using our existing data model requires that we access more than one entity. To do
that, that is, join together data from multiple entities, we create an OFBiz view-entity.

Our first view-entity will merge together data from the RecipeType and Recipe entity as
shown here:

<view-entity entity-name="RecipeTypeView"
 package-name="org.ofbiz.bakery"
 title="Show all recipes by type">
 <member-entity entity-alias="REC" entity-name="Recipe"/>
 <member-entity entity-alias="TYP" entity-name="RecipeType"/>
 <alias-all entity-alias="REC"/>
 <alias-all entity-alias="TYP"/>
 <view-link entity-alias="REC" rel-entity-alias="TYP">
 <key-map field-name="recipeTypeId"
 rel-field-name="recipeTypeId"/>
 </view-link>
</view-entity>

3-way SQL join view-entity
Not one to gloat over our success so far using the Entity Engine, the next report will draw from
three different tables to list all the recipes with ingredients, by type:

<view-entity entity-name="RecipeTypeAndIngredientsView"
 package-name="org.ofbiz.bakery"
 title="Show all recipes by type">
 <member-entity entity-alias="REC" entity-name="Recipe"/>
 <member-entity entity-alias="TYP" entity-name="RecipeType"/>
 <member-entity entity-alias="REIN" entity-name="RecipeIngredient"/>
 <alias-all entity-alias="REC"/>
 <alias-all entity-alias="TYP"/>
 <alias-all entity-alias="REIN"/>
 <view-link entity-alias="REC" rel-entity-alias="TYP">
 <key-map field-name="recipeTypeId"
 rel-field-name="recipeTypeId"/>
 </view-link>
 <!-- Note the order of entity-alias here is important.
 Each Recipe record points to one or more
 RecipeIngredient records -->
 <view-link entity-alias="REC" rel-entity-alias="REIN">

Entity Engine by Example

256

 <key-map field-name="recipeId" />
 </view-link>
 <relation type="many" rel-entity-name="RecipeIngredient">
 <key-map field-name="recipeId"/>
 </relation>
</view-entity>

Writing view-entities is even easier than writing regular entities. Unlike
regular entities, where changes to field type definitions or the addition/
removal of fields usually requires that you first drop the database table, if
you make a mistake with a view-entity, you only need to edit the view-entity
definition and restart OFBiz. View-entities are not created or stored as part
of the database. Rather, they are used, on demand, to create entity SQL
based joins.

View-entity reports
With the view-entities in place, we can easily query the database without constructing complex
SQL statements. To test that our new view-entities are doing the job, we can use the OFBiz
WebTools Entity Reference - Interactive Version to run a quick report as shown here:

Next steps
That's it. That is how easy it is to augment OFBiz to support additional application data
storage needs. Your experiences will be informed by how complex your data model becomes.
With OFBiz, you can have your cake and eat it too. You can start by developing a simple
prototype as shown in this section, and grow your data management capabilities as your
business grows. You can even move your entire database from vendor-to-vendor (tired of
Oracle? Ccheckout PostgreSQL, SQL Server, mySQL or just about any database imaginable)
without changing a single line of code.

Appendix

257

In the next few sections, we shall take a closer look at using some Java application-level tools
provided by OFBiz to implement data-driven applications programmatically.

Reading data from an OFBiz data source
Business is booming at the bakery, and we need to move beyond the WebTools Entity Engine
interface and start implementing some user-level applications to read from and write to
the database. For the remainder of this chapter, we shall assume that we have in place
one or more OFBiz Events and/or Services written in Java that will handle the logic of our
application's interface to the OFBiz Entity Engine. What remains to be described are specific
instances using Entity Engine tools and utilities.

Note: while using the OFBiz Mini-Language and widget tool kit often make
reading and writing to an OFBiz data source easier, they are but one
option when choosing to use the Entity Engine programmatically. Widgets
are discussed elsewhere in this book while the OFBiz Mini-Language is
documented on the OFBiz Wiki:
http://cwiki.apache.org/confluence/x/CwFk

To retrieve a single database table row given a table's primary key, follow this example.
See the comments within the code for more information. (Note: code is provided for
demonstration purposes only. You will need to fill in the gaps in many places to make
these code snippets function):

import org.ofbiz.entity.GenericDelegator;
import org.ofbiz.entity.GenericEntity;
import org.ofbiz.entity.GenericEntityException;
import org.ofbiz.entity.GenericValue;

// From within a Service, get the GenericDelegator object directly
// from the context
// The object named ctx is passed from the Service Engine as an
// instantiation of the current context
GenericDelegator delegator = ctx.getDelegator();
GenericValue recipe = null;
// All GenericDelegator calls throw GenericEntityException on failure
// So place inside a try/catch block
String recipeId = "r001"; // For demonstration purposes only.
try {
 recipe = delegator.findOne("Recipe",
 UtilMisc.toMap("recipeId", recipeId), false);
}

Entity Engine by Example

258

catch (GenericEntityException e) {
 Debug.logWarning(e.getMessage(), module);
}
// recipe is a GenericValue object, so we can access field
// values directly as shown
if(recipe != null) { // Note: a null GenericValue object is valid
 String recipeName = (String) recipe.get("recipeName");
}

To iterate through a list of GenericValue objects as returned by a call to the entity engine,
use code similar to the following:

// Within an event, get the GenericDelegator from the request
// attribute. As shown here
GenericDelegator delegator =
 (GenericDelegator) request.getAttribute("delegator");
List<GenericValue> recipes = null;
try {
 // The delegator.findList() method returns a Java List or null
 // if no values are found
 recipes = delegator.findList("recipes",
 EntityCondition.makeCondition("recipeId",
 EntityOperator.EQUALS, "r001"), null, null, null, false);
}
catch (GenericEntityException e) {
 return ServiceUtil.returnError(e.getMessage());
}
// recipes contains a list of GenericValue objects. Each object
// represents a single returned record from the data source.
// Loop through this list and extract values as appropriate
if(UtilValidate.isNotEmpty(recipes)) {
 Iterator itr = invoiceItems.iterator();
 while(itr.hasNext()) {
 // Pick off each GenericValue on the list
 GenericValue thisRecipe = (GenericValue) itr.next();
 // Access the thisRecipe GenericValue object just like
 // you would any other
 String recipeId = thisRecipe.getString("recipeId");
 // Do more stuff…
 }
}

Appendix

259

The following Java code snippets are examples of commonly used OFBiz query constructs.

To return a single database record, that is, a GenericValue object, given a primary key
value, from the specified table, use the following:

SQL equivalent SELECT FROM 'SomeTable' WHERE
primaryKeyId='SomeValue';

OFBiz code snippet try {
 GenericValue aValue =
 delegator.findOne("SomeTable",
 UtilMisc.toMap("primaryKeyId","SomeVal
ue"),
 false);
}
catch (GenericEntityException e) {
 // Process any errors here
}

Return all records from the given table. Take all Entity Engine defaults or set required values
to null as shown here:

SQL equivalent SELECT * FROM 'SomeTable';
OFBiz solution Use the Entity Engine GenericDelegator object's findList method

to return a list of values. Set all findList parameters to null.
OFBiz code snippet try {

 List allRecords =
 delegator.findList("SomeTable",null,null,
 null,null,false);
}
catch(GenericEntityException ge) {
 // Process Errors Here
}

Entity Engine by Example

260

To select only unique records from a table where a table's column value is equal to some
given value, use the following as an example:

SQL equivalent SELECT DISTINCT FROM SomeTable WHERE
column1='value';

OFBiz solution Use the EntityfindOptions object to tell OFBiz to find and
return only distinct values.

OFBiz code snippet // Create an EntityFindOptions object
EntityFindOptions findOptions =
 new EntityFindOptions();
// Set the findOptions to distinct is true
findOptions.setDistinct(true);
EntityCondition findCondition =
 UtilMisc.toList(EntityCondition.
makeCondition(
 'column1',EntityOperator.EQUALS,
 'value'));
try {
 List allRecords =
 delegator.findList('SomeTable',
 findCondition, EntityOperator.
AND),
 null,null,findOptions,false);
}
catch(GenericValueException ge) {
 // Process Errors Here
}

To read data, the following GenericDelegator methods are typically used:

GenericDelegator method Returned result set data
type

Usage

find EntityListIterator Used for large data sets.
findList List<GenericValue> Returns a list of one or more

GenericValue objects, one
representing each row returned
from the database query.

findOne GenericValue Returns a single GenericValue
object matching the query
conditions.

Appendix

261

Note: while there are a fair number of legacy GenericDelegator
methods to choose from when building queries to read data
(available and in use within the OFBiz code), the earlier mentioned
methods are the current best practice advice for new code.

To summarize, read requests to the Entity Engine return a result set containing either:

•	 A single row from the database

•	 A list of one or more rows

•	 A null value

•	 An error

Rows are automatically mapped into GenericValue objects based on an entity's model,
by the Entity Engine. Because OFBiz does all the low-level data mapping and data type
conversions, applications have a much cleaner, consistent view of the data. A single request
for data may be run on many different underlying databases without the application developer
changing any code.

The OFBiz delegator API contains a rich set of methods to use when accessing the Entity
Engine through the Java interface. For more information, please see the JavaDocs online at:

http://ci.apache.org/projects/ofbiz/site/javadocs/

Working with large result sets
(EntityListIterator)

Under normal conditions, the Entity Engine handles all the low-level database access tasks
necessary to return a result set to memory for application use. Sometimes, a result set is too
large to fit into memory. Under these conditions, a Java Out of Memory error will be thrown.
To retrieve large result sets that exceed available memory limits, use the Entity Engine
EntityListIterator object and retrieve partial result sets and process returned values
in smaller chunks.

The following code snippet demonstrates the basic use of the EntityListIterator. Note:
code has been left out to make the snippet readable. To use this code, you will need to add
Java statements as appropriate:

// Don't forget to import EntityListIterator, EntityExpr,
// EntityCondition and other necessary Java packages
// Create any conditional query expressions
// We know we now have thousands of recipes, so to improve
// performance and conserve memory, we use the EntityListIterator
List<EntityExpr> exprs =

Entity Engine by Example

262

 UtilMisc.toList(EntityCondition.makeCondition("notes",
 EntityOperator.NOT_EQUAL, null),
 EntityCondition.makeCondition("amount",
 EntityOperator.GREATER_THAN, Long.valueOf(0)));
// Create a default EntityListIterator object
EntityListIterator eli = null;
try {
 // Use the GenericDelegator method call to return a pointer
 // to data set results. Note we are getting data from a
 // view-entity
 eli = delegator.find("RecipeTypeAndIngredientsView",
 EntityCondition.makeCondition(exprs,EntityOperator.AND),
 null, null, UtilMisc.toList("recipeId"), null);
 List<String> processList = FastList.newInstance();
 if (eli != null) {
 GenericValue value = null;
 // Use EntityListIterator to loop through the result set
 // Each next method call retrieves a GenericValue
 // OFBiz will get more values from the data source
 // automatically
 while (((recipeTypeAndIngredient =
 (GenericValue) eli.next()) != null)) {
 // Do some processing with this list
 }
 }
}
catch (GenericEntityException e) {
 Debug.logError(e, module);
 // When done, don't forget to close the EntityListIterator
}
finally {
 if (eli != null) {
 try {
 eli.close();
 }
 catch (GenericEntityException e) {
 Debug.logError(e, module);
 }
 }
}

Appendix

263

To set scrolling and concurrent read options for a specific query, use the EntityFindOptions
as shown in the code. Note: these options are valid for any Entity Engine data source query.
However, changing scrolling behavior when processing a result set is only valid when using the
EntityListIterator object as a pointer:

// Create a new EntityFindOptions object
EntityFindOptions efo = new EntityFindOptions();
// Set scrolling to INSENSITIVE. This allows forward and backward
// movement, but the result set is NOT sensitive to changes made by
// others. Data may be changed by other users while you are scrolling
// through the set.
// Scroll SENSITIVE instructs the Entity Engine to be aware and
// update the result set if any changes have occurred. Use with care
// as this setting introduces additional processing overhead.
efo.setResultSetType(EntityFindOptions.TYPE_SCROLL_INSENSITIVE);

// set concurrency to CONCUR_READ_ONLY so that a row may only be
// updated by the transaction that selected it.
efo.setResultSetConcurrency(EntityFindOptions.CONCUR_READ_ONLY);

efo.setSpecifyTypeAndConcur(true);
efo.setDistinct(false);

Pass the EntityFindOptions object as a parameter to the find method call.

The following Java code snippet shows direct manipulation of the result set cursor as provided
by using EntityListIterator object methods:

GenericValue genericValue;
if ((genericValue = eli.next()) != null) {
 // Get the last cursor location (end of the result set)
 eli.last();
 // Set the current cursor location as
 int rowIndex = eli.currentIndex();
 // See if we have processed at least 100 rows
 if (rowIndex== 100) {
 // If we have processed as least 100 rows
 // Then get the value pointed to by the previous cursor
 // position
 genericValue = eli.previous();
 // Do some processing here
 }
}
// close
eli.close();
// Don't forget to add finally block here

Entity Engine by Example

264

To move within a result set, use the EnitityListIterator object's cursor movement
methods as shown here:

EntityListIterator method Usage
afterLast() Sets the cursor position to just after the last result. This

makes the previous() method call return the last result
in the set.

beforeFirst() Sets the cursor position to just before the first result. This
makes a call to next() return the first result in the set.

currentIndex() Returns the current cursor position.

first() Sets the cursor position to the first result. If the result set is
empty, this returns a boolean false.

getPartialList
(int start, int number)

Returns a partial list of results starting at the indicated
cursor position, containing at most number rows.

last() Sets the cursor to the last result in the set.

first() Sets the cursor to the first result in the set.

Removing data from the database (Java)
To remove one or more rows from an Entity Engine-managed database table, use the
GenericDelegator object and call the appropriate methods as shown in the following
code snippet:

Note: the Entity Engine negotiates record removal with the target data
source using standard SQL commands constructed from method
parameters passed by the calling program. If the target table rows cannot
be removed because deletion violates referential integrity, neither OFBiz
nor the underlying database will remove the indicated rows. Instead, an
error will be thrown and control passed to the calling program.

// Don't forget to add import statements
// First, get a GenericDelegator object from the context
GenericDelegator delegator = ctx.getDelegator();
// Before you can do anything, you must create a model of the
// Recipe table using the makeValue method
GenericValue recipe = delegator.makeValue("Recipe");
// Add the unique, primary key to the model
recipe.set("recipeId", "r001");
try {
 // Use the GenericValue remove method
 recipe.remove();

Appendix

265

 // Or you could use the GenericDelegator remove, but not both at
 // the same time!
 // delegator.removeValue(recipe);
}
catch (GenericEntityException ge) {
 // process errors
}

To remove records from a database table using the Entity Engine, use the appropriate
GenericDelegator method as described below:

GenericDelegator method Usage
GenericDelegator.
removeValue(GenericValue X)

Remove a single GenericValue. If removing
the value causes referencing errors, the operation
will fail with a GenericEntityException and
control returns to the caller.

GenericDelegator.
removeAll(List<GenericValue>)

Remove a list of GenericValues. If
any one of the remove operations fail, a
GenericEntityException will be thrown and
all remove requests will be rolled back. No remove
requests will be committed unless all requests can
proceed successfully.

Please see the GenericDelegator Javadocs API for more information:

http://ci.apache.org/projects/ofbiz/site/javadocs/

Writing data to the database (Java)
Writing data to the database using the Entity Engine to handle database connections,
transactions, data transfers, and data type conversions is preferred over direct SQL calls in
almost all situations. To write data to an Entity Engine-managed data source, use the following
code snippet as a guide:

// To add a row to a database table
// or update an existing table, you must first create a
// GenericValue object
// representing the table as an entity as shown here
GenericValue recipe = delegator.makeValue('Recipe");
// Add any updated fields to the
recipe.set("recipeName", "A new recipe w/raisins an apples");
recipe.set("recipeTypeId", "cake");
// cake better be a valid recipeTypeId or an error is thrown
// This will be an update to the existing row where the
// primary key is r001

Entity Engine by Example

266

recipe.set("partyId", "r001");
try {
 delegator.store(recipe);
}
catch {
 // Process errors
}

Other GenericDelegator write methods are shown here:

GenericDelegator.method() Usage
create(GenericValue X) Creates and stores the GenericValue. Will fail if

X already exists.
store(GenericValue X) Stores the GenericValue. Will fail if X does NOT

already exist.
createOrStore(GenericValue X) Will create the GenericValue if it does not

already exist. Values are persistent as either a new
table row or an update to an existing table row.

storeAll(List<GenericValue>) Stores all the GenericValues passed in the list.

Please see the GenericDelegator Javadocs API for more information:

http://ci.apache.org/projects/ofbiz/site/javadocs/

Using the automatic sequence generator
Many modern data-driven applications use automatic sequence generators to create primary
keys for new database records. OFBiz provides a handy tool to acquire the next unique
sequence identifier for any entity using the GenericDelegator object's sequence
generator methods.

For example, to add a record with a unique primary key to the Recipe table, we could
use the OFBiz sequence generator as shown in the following code snippet to find the next
sequenceId for the Recipe entity, and then add a GenericValue with that sequenceId
set as the primary key:

String sequenceId = delegator.getNextSeqId("Recipe");
GenericValue genericValue = delegator.makeValue("Recipe",
 UtilMisc.toMap("recipeId",sequenceId));
// Or we could do it like this:
GenericValue genericValue = delegator.makeValue("Recipe",
 UtilMisc.toMap("recipeId",delegator.getNextSeqId("Recipe")));
// Finish adding field values to genericValue and then store
// it in the database

Appendix

267

OFBiz keeps track of sequence identifiers, and each time one is requested, it calculates a
unique sequence value based on the name of the sequence passed. An easy way to keep
sequences unique for entities is to pass the name of the entity as the sequence name. In that
way, all calls to the same entity will use the same sequence.

Note: for performance reasons, all primary keys for OFBiz data model entities
default to twenty text characters or less. Using the GenericDelegator
object's getNextSeqId method with a target entity ensures that you get
a properly formatted Java data types (String or otherwise) for use as a
primary key for that entity.

You may use the OFBiz sequence generator to return guaranteed unique values, including
numeric values, for any purpose. For example, to create a Java Long unique sequence value,
use a GenericDelegator method call similar to the following:

Long someSequenceNumber = getNextSeqIdLong('SequenceName');

Where SequenceName is any sequence name. If the named sequence does not exist, it will
be created automatically.

EntityUtil
The org.ofbiz.entity.util.EntityUtil has several methods useful for manipulating
data returned from an Entity Engine call. This data, referred to as the "result set", is either a
single GenericValue object, a Java list containing one or more GenericValue objects,
or a null.

Using the EntityUtil works with result sets already in memory.
This means that you should use caution when manipulating data in
this way as you may run out of memory and/or degrade performance
in short order. If you have a choice, it is almost always better to let
the Entity Engine and database perform data filtering, ordering,
and sorting (by way of conditional GenericDelegator find
parameters) before bringing a result set into memory.

In this section, we take a look at some handy utilities provided by OFBiz to manipulate
result sets.

Entity Engine by Example

268

EntityUtil.getFirst()
There is a data modeling pattern often used within OFBiz where an entity will have three (or
more) primary keys. One of the primary keys will uniquely represent a dated value. Using a
unique date field as a primary key allows for many identical entries, with the only exception
being the presence of a unique date value. This is great for auditing and tracking updates
to a table. (Remember, you can't update a primary key field's value. If you want to change a
primary key field's value, you must first remove the row from the database and then rewrite it).

From our bakery example, the RecipeIngredient entity uses this technique. By defining
the fromDate field as a Timestamp value and as a primary key, it is possible to have the
same ingredient included in the same recipe multiple times during the life of the recipe.

Why would you want to do that? Suppose we want to track the addition or modification of
a specific ingredient within a recipe. Only by keeping the old ingredients around can we
establish any history with our recipes.

Having multiple primary keys sometimes causes grief when searching for specific data,
especially when you know all the primary keys but one. If you know all the primary keys, you
may simply query by primary keys and be guaranteed that a single GenericValue object
(or null) be returned. If you don't know all the primary keys for an entity, you are forced to get a
list of values, many of which you may not be interested in.

OFBiz provides a handy utility that lets you easily get the first GenericValue off a result
set list. In the following example, we first retrieve a list of GenericValue objects from the
RecipeIngredient table (which, if you recall, has three primary keys). From that list, we
select the first GenericValue.

GenericDelegator delegator =
 (GenericDelegator) request.getAttribute("delegator");
List conditions =
 UtilMisc.toList(EntityCondition.makeCondition("recipeId",
 EntityOperator.NOT_EQUAL, null),
 EntityCondition.makeCondition("recipeSeqNumber",
 EntityOperator.NOT_EQUAL,
 new Long(0)));
try {
 List listOfEntities = delegator.findList("RecipeIngredient",
 EntityCondition.makeCondition(conditions,EntityOperator.AND),
 null,null,null,false);
 // Get the first GenericValue on the list
 GenericValue someEntity = EntityUtil.getFirst(listOfEntities);
 }
catch(GenericEntityException ge) {
 // Process errors
}

Appendix

269

This method is often used together with an ordering operator as shown in the following code
snippet to first order the return list by date, and then, knowing that the list is in dated order,
return the most recent or the oldest dated value:

List conditions = UtilMisc.toList(EntityCondition.makeCondition(
 "recipeId", EntityOperator.NOT_EQUAL, null),
 EntityCondition.makeCondition(
 "recipeSeqNumber",
 EntityOperator.NOT_EQUAL,
 new Long(0)));
try {
 // Return the list where the most recent date in the "fromDate"
 // field is first on the list
 List listOfEntities = delegator.findList("RecipeIngredient",
 EntityCondition.makeCondition(conditions,
 EntityOperator.AND),
 null, UtilMisc.toList("-fromDate"),null,
 false);
 GenericValue someEntity = EntityUtil.getFirst(listOfEntities);
 // In this example, return a list where the oldest value in the
 // "fromDate" field is first on the list
 listOfEntities = delegator.findList("RecipeIngredient",
 EntityCondition.makeCondition(conditions,
 EntityOperator.AND),
 null, UtilMisc.toList("+fromDate"),null,
 false);
 someEntity = EntityUtil.getFirst(listOfEntities);
}
catch(GenericEntityException ge) {
 // Process Errors
}

EntityUtil.filterByDate()
In its simplest form, this method takes a list of GenericValue objects and compares each
one against the given moment value, looking for objects where the default fromDate field
value is either null, before, or equal to the moment value and the default thruDate field
value is either null or after the moment thruDate value. In other words, the moment
value falls between the values found in the fromDate and thruDate fields. This form of
the method assumes that the entity has both a fromDate and a thruDate field defined.
It just so happens that the RecipeIngredient table has just such fields defined. If our
RecipeIngredient table has the following records in it:

Entity Engine by Example

270

RecipeIngredient
recipeId ingredientId fromDate thruDate
r001 10001 2009-01-01 00:00:00.000 2009-01-01 00:00:00.000
r001 10001 2009-03-05 00:00:00.000 2009-09-01 00:00:00.000
r001 10001 2009-09-09 00:00:00.000 2009-09-14 00:00:00.000
r001 10001 2009-09-15 00:00:00.000
r001 10002 2008-01-01 00:00:00.000
r001 10010 2010-01-01 00:00:00.000
r002 10001 2008-01-01 00:00:00.000 2020-01-01 00:00:00.000

try {
 // For this example, just get them all
 List recipeIngredients =
 delegator.findList("RecipeIngredient",null,null,null,null,false);
 // First, find all the recipes and ingredients where the "active"
 // ingredient was added to the recipe before January 1, 2009.
 // These ingredients are still active if the thruDate is null
 // (never made inactive) or if the thruDate is after the current
 // date:
 Timestamp moment = Timestamp.valueOf("2009-01-01 00:00:00.0");
 List<GenericValue> alist =
 EntityUtil.filterByDate(recipeIngredients, moment);
 // Do something with the list
}
catch(GenericEntityException ge) {
 // Process Errors
}

The code returns a list with the following GenericValue objects (where moment equals
"2009-01-01 00:00:00.0"):

recipeId ingredientId fromDate thruDate
r001 10002 2008-01-01 00:00:00.0 null
r002 10001 2008-01-01 00:00:00.0 2020-01-01 00:00:00.0

This utility provides a convenient mechanism to collect a list of entities filtered by a moment
in time. You will see this used frequently in the code where the moment is the current date in
Timestamp format as shown here:

List<GenericValue> newList =
 EntityUtil.filterByDate(allParties, UtilDateTime.nowTimestamp());

Appendix

271

You may also use this utility and pass the names of the fields that you'd like to use to compare
the moment value against. For example, if we'd like to retrieve a list of all the rows from the
RecipeIngredients result set where the value in the createdStamp is before a moment
value of "2009-01-03 00:00:00.0" and the moment value is before the lastUpdatedStamp
value, the following code snippet may be used as an example.

List recipeIngredients =
 delegator.findList("RecipeIngredient",null,null,null,null,false);
Timestamp moment = Timestamp.valueOf("2009-01-03 00:00:00.0");
// False in this method indicates that all dated values are not the
// same.
try {
 List<GenericValue> alist =
 EntityUtil.filterByDate(recipeIngredients, moment,
 "createdStamp","lastUpdatedStamp", false);
}
catch(GenericEntityException ge) {
 // Process Errors
}

If we have the following three records in the recipeIngredients result set and a moment
value equal to "2009-01-03 00:00:00.0":

recipeId ingredientId createdStamp lastUpdatedStamp
r001 10001 2010-05-27 19:41:40.784 2010-05-28 13:02:14.55

r001 10001 2002-05-27 16:59:22.529 2010-05-28 13:02:15.561
r001 10001 2004-05-27 16:59:22.534 2010-05-28 13:02:33.21

The following two records/rows will be returned:

recipeId ingredientId createdStamp lastUpdatedStamp
r001 10001 2002-05-27 16:59:22.529 2010-05-28 13:02:15.561
r001 10001 2004-05-27 16:59:22.534 2010-05-28 13:02:33.21

EntityUtil.orderBy()
To quickly sort through a list of result sets and return a new list ordered by entity fields that
are dated or numeric types, use the EntityUtil.orderBy() method. The following Java
snippet example orders an existing list as described:

// To order the list in descending order where the oldest value is
// first on the list (null values are placed at the beginning of
// the list):
alist = EntityUtil.orderBy(recipeIngredients,

Entity Engine by Example

272

 UtilMisc.toList("thruDate DESC"));

// Or, if you prefer:
alist = EntityUtil.orderBy(recipeIngredients,
 UtilMisc.toList("-thruDate"));

alist.clear();
// To order a list in ascending order where the most recent
// time value is first, followed in ascending order by other values
// (and null values are all placed at the end of the list):
alist = EntityUtil.orderBy(recipeIngredients,
 UtilMisc.toList("thruDate ASC"));

// Or, if you prefer:
alist = EntityUtil.orderBy(recipeIngredients,
 UtilMisc.toList("+thruDate"));
alist.clear();
alist = EntityUtil.orderBy(recipeIngredients,
 UtilMisc.toList("amount","fromDate DESC"));
// The orderBy method may also be used to order a list by non-dated
// fields. For example, the following will return a list of
// GenericValue objects ordered by value in the "amount" field.
// Amount is a numeric. By default, the final order is by
// ascending (lowest number first)
alist = EntityUtil.orderBy(recipeIngredients,
 UtilMisc.toList("amount"));
// This call to orderBy will order the return list by the
// GenericValue with the largest value first on the list
alist = EntityUtil.orderBy(recipeIngredients,
 UtilMisc.toList("amount DESC"));
// You may also order the list by a non-numeric and/or
// non-dated field:
alist = EntityUtil.orderBy(recipeIngredients,
 UtilMisc.toList("ingredientId"));
// The ordering defaults to ascending (smallest value first).
// Results may vary if the value in the target orderBy field does
// not have a collation sequence that makes sorting sense.

The following are valid ordering directives supported by the orderBy method:

OrderBy specifier Sort order
DESC descending
ASC ascending
- descending
+ ascending

Appendix

273

EntityUtil.getFieldListFromEntityList()
For a very handy utility to quickly assemble a list of field values from an existing result set,
try the EntityUtil.getFieldListFromEntityList(). For example, if we have a
list of RecipeIngredient GenericValues and we quickly want a new list of just the
ingredientIds, we could do something like the following:

GenericDelegator delegator =
 (GenericDelegator) request.getAttribute("delegator");
try {
 // We are just getting started with the Entity Engine Java API
 // So, make the most basic of calls to get all the records/rows
 // from the RecipeIngredient table
 List<GenericValue> recipeIngredients =
 delegator.findList("RecipeIngredient",null,null,null,null,false);
 // Get a list of all the ingredientIds from recipeIngredients
 // Note: true means do not put duplicates in the return list
 // false means put all values in return list
 List<String> alist =
 EntityUtil.getFieldListFromEntityList(recipeIngredients,
 "ingredientId", true);
}
catch(GenericEntityException ge) {
 // Process Error
}

EntityUtil.getRelated()
Any time you have a list of entities where the entities are part of a one-to-one or one-to-many
relationship, you can easily get related entities using the EntityUtil.getRelated()
method. The following code snippet is an example:

GenericDelegator delegator =
 (GenericDelegator) request.getAttribute("delegator");
try {
 List<GenericValue> recipeIngredients =
 delegator.findList("RecipeIngredient",null,null,null,null,false);
 // Since the Ingredient entity is related to the
 // RecipeIngredient entity We can easily get all the entities
 // that are related to this entity using the getRelated()
 // method. We don't need to make another GenericDelegator call.
 // The following returns a list of Ingredient table rows where
 // the ingredientId field is related to the field value in
 // recipeIngredients.

Entity Engine by Example

274

 List<GenericValue> ingredients =
 EntityUtil.getRelated("Ingredient", recipeIngredients);
}
catch(GenericEntityException ge) {
 // Process Error
}

EntityUtil.filterByCondition()
As our data extraction needs get more sophisticated, we can avail ourselves of ever more
precise filtering by using the EntityCondition object to create "condition" statements that
further filter the values we are looking for. For example, if we wish to find recipes that have a
specific set of ingredients, we could use:

try {
 // We are just getting started with the Entity Engine Java API
 // So, make the most basic of calls to get all the records/rows
 // from the RecipeIngredient table
 List<GenericValue> recipeIngredients =
 delegator.findList("RecipeIngredient",null,null,null,null,false);
 // Make up a list of arbitrary ingredients just to show how
 // this works
 List<String> arbitraryIngredients =
 UtilMisc.toList("10001", "11121", "10020", "1005");
 // This condition method returns all the GenericValue objects
 // from the recipeIngredient list where the value in
 // RecipeIngredient.ingredientId = any of the values in the
 // arbitraryIngredients list
 List<GenericValue> aList =
 EntityUtil.filterByCondition(recipeIngredients,
 EntityCondition.makeCondition("ingredientId",
 EntityOperator.IN, arbitraryIngredients));
 // This call will only return values NOT in the
 // arbitraryIngredients list
 List<GenericValue> bList =
 EntityUtil.filterOutByCondition(recipeIngredients,
 EntityCondition.makeCondition("ingredientId",
 EntityOperator.IN, arbitraryIngredients));
}
catch(GenericEntityException ge) {
 // Process Errors
}

Appendix

275

There are all sorts of variations on the filterByCondition() method, limited only by your
imagination in making up condition statements. We leave it as an exercise to the reader to
experiment and come up with more ways.

EntityOperator reference
OFBiz "entity operators" are equivalent to SQL comparison operators. They allow for
optimum flexibility in building entity condition statements. Entity operators are listed
in the following table:

operator/operation EntityOperator
and EntityOperator.AND

between EntityOperator.BETWEEN

equals EntityOperator.EQUALS

greater than EntityOperator.GREATER_THAN

greater than equal to EntityOperator.GREATER_THAN_EQUAL_TO

in EntityOperator.IN

not in EntityOperator.NOT_IN

less than EntityOperator.LESS_THAN

less than equal to EntityOperator.GREATER_THAN_EQUAL_TO

like EntityOperator.LIKE

not like EntityOperator.NOT_LIKE

not EntityOperator.NOT

not equal EntityOperator.NOT_EQUAL

or EntityOperator.OR

Index
A
actions element

adding, to screen widget 63, 64
administrative user

creating 228, 229
administrative users password

changing 227, 228
alias-all element tag

about 134
attributes 134

alias element tag
about 134
attributes 134

ANT build.xml file 34
Apache Formatting Objects Processor (FOP)

tool 69
artifact information

uncovering 183, 185
Artifact Info tool

about 183
working 185

asynchronous services
calling, from HTML form 89, 90

automatic database checks
disabling 123

automatic sequence generator
using 266, 267

B
binding element 214

C
cache maintenance 164

cache maintenance tool
logging in 164-166

caching
implementing 164-166

Certificate Authority (CA) 157
Certificate Signing Request (CSR) 158
Class Not Found error

about 18
fixing 19, 20

common entity configuration
settings 127, 128

communication ports
database ports 140
RMI/JNDI ports 140
securing 138, 140

complex-alias element tag
about 134
attributes 134

configured levels of logging
error 169
fatal 169
important 169
info 169
timing 169
verbose 169
warning 169

controller.xml file 38
CSS styling

adding, to screen widget 66, 68

D
data

preparing, Groovy used 237, 238
reading, from OFBiz data

source 257-261

278

removing, from database 264, 265
writing to database 265

database data
exporting, to XML documents 170, 171

database data types
mapping 123-125

database ports 140
databases

loading, from XML documents 172-174
data model example

2-way SQL join view-entity 255
3-way SQL join view-entity 255
entity diagram 249
new entities, creating 250-254
sample use case 248
view-entity reports 256

datasource element
about 116
configuration setting 116, 117

debugging technique 42
Debug object method 169
debug settings

changing 167-169
working 168

default database
changing 113, 115

definitions element 214
demonstration user accounts

disabling 141, 142
Derby 113

E
EECA

about 106
service, triggering 107

EECA attribute values 108
e-mail

sending, from OFBiz event or service 51, 52
entity engine

about 112
tasks 112

entityengine.xml file 116
Entity Event Condition Action. See EECA
entity groups

creating 121, 122

EntityListIterator methods
afterLast() 264
beforeFirst() 264
currentIndex() 264
first() 264
getPartialList() 264
last() 264

entity operators reference 275
entity reference tool

exploring 177-180
using 178
working 181

EntityUtil
about 267
EntityUtil.filterByCondition() method 274, 275
EntityUtil.filterByDate() method 269, 270
EntityUtil.getFieldListFromEntityList()

method 273
EntityUtil.getFirst() method 268, 269
EntityUtil.getRelated() method 273
EntityUtil.orderBy() method 271, 272
methods 267

EntityUtil.filterByCondition() method 274, 275
EntityUtil.filterByDate() method 269, 270
EntityUtil.getFieldListFromEntityList()

method 273
EntityUtil.getFirst() method 268, 269
EntityUtil.getRelated() method 273
EntityUtil.orderBy() method 271, 272
Entity XML Export tool 131
error messages

managing 48, 49
existing entity model

modifying 130
working 132

external login key
about 160
implementing 161
working 161

F
field element tag

about 129
attributes 129

files
uploading, in forms 79, 80

279

forgotten passwords
retrieving 154-156

form widget field elements
about 73
HTML SELECT box 73
HTML TEXTAREA and a SUBMIT button 74
input text box 73
upload a file 74

FreeMaker
forcing, to render markup 79
using, for creating web pages 74

FreeMarker
about 79
Java methods, calling from 78
screen widget parameters, paasing to 77

FreeMarker program 78
FreeMarker templates

files, uploading from 79, 80
HTML and XSL Formatting Objects 68
XSL-FO templates 68

FreeMarker transform
creating 236

FreeMarker transformations 76

G
GenericDelegator methods

create() 266
createOrStore() 266
removeAll() 265
removeValue() 265
store() 266
storeAll() 266

Groovy 238
Groovy services

working 104
writing 102-104

H
HTML and the equivalent XML statements

DIVs 66
HTML hyperlink 66
markup tags 66
plain text 66

HTML markup
adding, to screen widget 65
working 66

HTML web pages
creating 58

HttpClient 195
HttpClients

creating 196
working 199
XML documents, passing 197-199

HttpServletRequest object 46
HttpServletResponse object 192

I
index element tag

about 128
attributes 128

index-field element tag
about 128
attributes 128

inline-jdbc element
about 118
configuration setting 118

Instant Payment Notification (IPN) web
service 190

internationalization labels
managing 174-176

IP port collision errors
fixing 14
working 15

IP port configuration file locators
389 16
1099 16
8009 16
8080 16
8443 16
9990 16
9991 16
10523 16

J
Jakarta Commons HTTP Client 196
JAVA_HOME

setting 17
working 18

Java memory allocation errors
fixing 222, 223

Java method modifiers
method name 37

280

parameter list 37
return type 37

Java methods
calling, from FreeMaker 78

Java prerequisites 9
Java properties files

about 50
using 50
working 50

Java runtime CLASSPATH
about 32, 33
classes, adding 33
JAR files, adding 33
resources, adding 33
working 33, 34

Java Virtual Machine (JVM) 10
JUnit tests

running 25
working 26

K
key-map element tag

about 130, 135
attributes 130, 135

KeyTool 158

L
Label Manager tool

about 174
working 175

large result sets
working with 261, 263

LocalDispatcher object 44
log4j 168
logging features, OFBiz

managing 167

M
Mail Event Condition Actions. See MECAs
MECAs

about 104
configuring 105
e-mail, handling 105

member-entity element tag
about 133

attributes 133
message element 214
methodResponse element 201
ModelService object 45
multiple databases

connecting to 120, 121
MYPLACE security group 151
MYTOOLS security group 151

N
naming conventions, OFBiz 34
new browser windows

popping up 239, 240
new entity model

creating 126-129
new OFBiz component

creating 234, 235
new service definition

creating 93, 94
implementing 95
working 94

new service definition file
creating 92, 93
working 93

O
OFBiz

about 8
architectural features, implementing 83, 84
automatic database checks, disabling 123
Class Not Found error 18
database data types, mapping 123
debugging, log file used 42
debug settings, changing 167-170
default database, changing 113, 115
download link 10
entity groups, creating 121
entity operators 275
existing entity model, modifying 130, 131
logging features, managing 167
multiple databases, connecting to 120
naming conventions 34
new entity model, creating 126
remote database, connecting to 119
security 137
temporal expressions 186

281

User Interface, building 57, 58
view-entity, building 132, 133

OFBiz application
locating 28, 29

OFBiz code
acquiring 9-11
acquiring, from Subversion repository 12-14
working 11, 12

OFBiz Component
building 233
locating 26, 27
working 28

ofbiz-component.xml file 41
OFBiz console log

working 43
writing 42

OFBiz Content Management application
about 80
working 80

OFBiz events
acquiring 45, 46
Java method modifiers 37
validating 45, 46
working 36
writing 35

OFBiz form widgets
about 72
adding 72
working 72

OFBiz installation
verifying 20-22

OFBiz instance
building 232

OFBiz job scheduler 86
OFBiz menu widgets

about 71
adding 71, 72
working 72

OFBiz ModelService object 214
OFBiz project 7
OFBiz screen handler

working 59
OFBiz security. See security, OFBiz
OFBiz seed and demo data

reloading 223, 224
OFBiz service management main web page

accessing 85

OFBiz services
asynchronous services, calling from HTML

forms 89, 90
calling, from Java program 43-45
Groovy services, writing 102-104
implementing 94
managing 85
managing, by job scheduler 86
new service definition, creating 93, 94
new service definition file, creating 92, 93
sendCommEventAsEmail 53
sendEmailDated 53
sendEmailToContactList 53
sendMailFromScreen 53
sendMailFromUrl 53
sendMailMultiPart 53
service attributes, defining 95, 96
service, calling from HTML form 86-88
service, calling multiple times from

HTML form 91, 92
service errors, handling 100-102
service groups 98, 99
working 40, 41
writing 39

OFBiz single-sign on
about 160
enabling 161

OFBiz SOAP event handler 218
OFBiz SOAP messaging clients

creating 204, 206, 207, 208
working 209

OFBiz tree widgets
about 69
adding 70
working 70

OFBiz usage statistics
viewing 181, 182

OFBiz version number
getting 229

OFBiz visual theme
creating 242, 243
creating process 244
installing 240, 241

OFBiz web application
protecting, security groups used 147-150

OFBiz web pages
protecting 142, 143

282

OFBiz WeTool 131
OFBiz XML-RPC handler 202
OpenSSL toolkit

using 159

P
password

changing 156, 157
PayPal IPN 190, 193
PayPal Payments Standard payment

processing service 190
platform-specific widgets

about 68
specifying 68
working 69

portType element 214
prim-key element tag

about 128
attributes 128

R
RDBMS

about 112
fields 112
keys 112
RDBMS tables 112
record 112
relationships 112
rows 112
views 112

RDBMS tables
columns 112

relation element tag
about 130
attributes 130

remote database
connecting to 119, 120

request parameters
about 48
retrieving 47, 48
validating 47, 48

ResourceBundle class 175
response type, OFBiz event processing

none 38
request 38
request-redirect 38

view 38
view-home 38
view-last 38

RMI/JNDI ports 140

S
scheduleService event 88
screen widget parameters

passing, to FreeMaker 77
screen widgets

about 60
actions, adding 63, 64
CSS styling 66
defining 60
example 62, 63
HTML markup, adding 65

SECAs
about 84, 96
working 97
writing 96

Secure Sockets Layer. See SSL
security groups

about 147
diagrammatic representation 149
MYPLACE 151
MYTOOLS 151
working 149

security, OFBiz
about 137
communication ports, securing 138
demonstration user accounts, disabling 141
external login key 160
forgotten passwords, retrieving 154, 155
OFBiz web pages, protecting 142
password, changing 156
single-sign on 160
SSL certificates, adding/changing 157
user accounts, creating 144, 145
views, protecting 152
webapp, protecting using security

groups 147-150
security permissions 150
seed data files

creating 225
working 226

sendMail service 51

283

sendRedirect method 192
service attributes

defining 95, 96
working 96

service element 214
service engine factory 84
service errors

handling 100, 102
Service Event Condition Actions. See SECAs
service group configuration element attribute

values 100
service groups

about 98
working 99

services
calling, from HTML form 86-88
calling multiple times, from HTML

form 91, 92
Simple Object Access Protocol (SOAP) 204
soapClientService 207
SOAP compliant web services

creating 215-217
working 218

SOAP event handler 219
SOAP WSDL

publishing 212
SQL Processor tool

about 176
using 176
working 177

SSL
about 157
verifying 22, 23
working 24

SSL certificates
adding/changing 157-159

Stats Since Server Start tool
about 181
working 183

T
Tarpitting 152
temporal expressions

about 186
creating 186
editing 186

working with 186
testRemoteSoap service 209
testScv

executing 89
Tomcat/Catalina servlet 139
types element 214

U
uiLabelMap 175
UrlEncodeArgs method 192, 193
user accounts

creating 144-146
User Interface

building, for OFBiz 57, 58

V
view-entity

building 132, 133
view-link element tag

about 135
attributes 135

views
protecting 152, 153

W
web pages

creating, FreeMaker used 74, 75
web pages, OFBiz. See OFBiz web pages
Web Service Descriptor Language

(WSDL) 212
web services

about 189, 190
requesting, HttpClient used 193-196
requesting, URL parameters used 190-193

WebTools
about 163
Artifact Info tool 183
cache maintenance tool 164
debug settings, changing 167
entity reference tool 178
Entity XML Tool 172
Label Manager tool 174
SQL Processor tool 176
Stats Since Server Start tool 181
Temporal Expressions tool 186

284

XML Data Export tool 171
XML Data Import tool 172

WebTools UI web page
URL 164

widgets, OFBiz
form widgets 72
menu widgets 71
platform-specific widgets 68
screen widget 59
tree widgets 69

WSDL document
about 212
generating 212-214

X
XML Data Export tool

about 171

working 172
XML Data Import tool

about 172
working 174

XML files
handling 53
working 55

XmlRpcClient object 200
XML-RPC event handler 202
XML-RPC web service clients

creating 199, 200
working 201

XML-RPC web service provider
about 202
enabling 202, 203
working 203

XML XSD schema file 100

Thank you for buying

Apache OfBiz Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cutting-
edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Apache Maven 2 Effective
Implementation
ISBN: 978-1-847194-54-1 Paperback: 456 pages

Build and Manage Applications with Maven, Continuum,
and Archiva

1.	 Follow a sample application which will help you to
get started quickly with Apache Maven

2.	 Learn how to use Apache Archiva - an extensible
repository manager - with Maven to take care of
your build artifact repository

3.	 Leverage the power of Continuum - Apache's
continuous integration and build server - to
improve the quality and maintain the consistency
of your build

4.	 Guidance on how to use Maven in a team
environment to maximise its potential

Apache OFBiz Development:
The Beginner's Tutorial
ISBN: 978-1-847194-00-8 Paperback: 472 pages

Using Services, Entities, and Widgets to build custom
ERP and CRM systems

1.	 Understand how OFBiz is put together

2.	 Learn to create and customize business
applications with OFBiz

3.	 Gain valuable development and performance
hints

4.	 A fully illustrated tutorial with functional step-by-
step examples

Please check www.PacktPub.com for information on our titles

Apache MyFaces 1.2 Web
Application Development
ISBN: 978-1-847193-25-4 Paperback: 408 pages

Building next-generation web applications with JSF and
Facelets

1.	 Build powerful and robust web applications with
Apache MyFaces

2.	 Reduce coding by using sub-projects of MyFaces
like Trinidad, Tobago, and Tomahawk

3.	 Update the content of your site daily with ease by
using Facelets

4.	 Step-by-step and practical tutorial with lots of
examples

Apache JMeter
ISBN: 978-1-847192-95-0 Paperback: 140 pages

A practical beginner's guide to automated testing and
performance measurement for your websites

1.	 Test your website and measure its performance

2.	 Master the JMeter environment and learn all its
features

3.	 Build test plan for measuring the performance

4.	 Step-by-step instructions and careful explanations

Please check www.PacktPub.com for information on our titles

Drupal 6 Panels Cookbook
ISBN: 978-1-849511-18-6 Paperback: 220 pages

Over 40 recipes to harness the power of Panels for
building attractive Drupal websites

1.	 Build complex site layouts quickly with panels

2.	 Combine Panels with other Drupal modules to
create dynamic social media websites

3.	 Get solutions to the most common 'Panels'
problems

4.	 A practical approach packed with real-world
examples to enrich understanding

5.	 Part of Packt's Cookbook series—each recipe is
a carefully organized sequence of instructions
to complete the task as efficiently as possible

Magento 1.3 Sales Tactics
Cookbook
ISBN: 978-1-849510-12-7 Paperback: 292 pages

Solve real-world Magento sales problems with a
collection of simple but effective recipes

1.	 Build a professional Magento sales web site,
with the help of easy-to-follow steps and ample
screenshots, to solve real-world business needs
and requirements

2.	 Develop your web site by using your creativity
and exploiting the sales techniques that suit
your needs

3.	 Provide visitors with attractive and innovative
features to make your site sell

Please check www.PacktPub.com for information on our titles

JSF 2.0 Cookbook
ISBN: 978-1-847199-52-2 Paperback: 396 pages

Over 100 simple but incredibly effective recipes for
taking control of your JSF applications

1.	 Discover JSF 2.0 features through complete
examples

2.	 Put in action important JSF frameworks, such
as Apache MyFaces Core, Trinidad, Tomahawk,
RichFaces Core, Sandbox and so on

3.	 Develop JSF projects under NetBeans/Glassfish
v3 Prelude and Eclipse/JBoss AS

4.	 Part of Packt's Cookbook series: Each recipe is
a carefully organized sequence of instructions to
complete the task as efficiently as possible

Ext JS 3.0 Cookbook
ISBN: 978-1-847198-70-9 Paperback: 376 pages

Clear step-by-step recipes for building impressive rich
internet applications using the Ext JS JavaScript library

1.	 Master the Ext JS widgets and learn to create
custom components to suit your needs

2.	 Build striking native and custom layouts, forms,
grids, listviews, treeviews, charts, tab panels,
menus, toolbars and much more for your real-
world user interfaces

3.	 Packed with easy-to-follow examples to exercise
all of the features of the Ext JS library

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright
	Credits
	About the Author
	About the Reviewers
	Table of Contents
	Preface
	Chapter 1:
Getting Started
	Introduction
	Getting the project code
	Getting code from the Subversion repository
	Fixing IP port collision errors
	The JAVA_HOME setting
	"Class Not Found" errors
	Installation verification
	SSL verification
	Running JUnit tests
	Locating a OFBiz Component
	Locating an OFBiz Application

	Chapter 2:
Java Development
	Introduction
	Java runtime CLASSPATH
	Java compile time CLASSPATH
	Naming conventions
	Writing OFBiz Java Events
	Writing OFBiz Java Services
	Debugging using the logfile
	Calling OFBiz Services from a Java program
	Getting and validating request parameters (Events)
	Getting and validating request parameters (Services)
	Managing error messages
	Using Java properties files
	Sending e-mail from an OFBiz Event or Service
	Handling XML files

	Chapter 3:
The User Interface
	Introduction
	Creating HTML web pages
	Adding actions to Screen widgets
	HTML markup in Screen widgets
	CSS styling in Screen widgets
	Platform-specific widgets
	OFBiz Tree widgets
	OFBiz Menu widgets
	OFBiz Form widgets
	Creating web pages using FreeMarker
	Passing Screen widget parameters to FreeMarker
	Calling Java methods from FreeMarker
	Forcing FreeMarker to render HTML markup
	Uploading files in FreeMarker forms

	Chapter 4:
OFBiz Services
	Introduction
	Managing existing OFBiz Services
	Calling a Service from an HTML form
	Calling asynchronous Services from
HTML forms
	Calling a Service many times from an HTML form
	Creating a new Service definition file
	Creating a new Service definition
	Implementing Services
	Defining Service attributes (INPUT/OUTPUT)
	Service Event Condition Actions
	Service groups
	Handling Service errors
	Writing Groovy Services
	Mail Event Condition Actions
	Entity Event Condition Actions

	Chapter 5:
The OFBiz Entity Engine
	Introduction
	Changing the default database
	Connecting to a remote database
	Connecting to multiple databases
	Creating entity groups
	Disabling automatic database checks
	Mapping database data types
	Creating a new entity model
	Modifying an existing entity model
	Building a view-entity

	Chapter 6:
OFBiz Security
	Introduction
	Securing communications ports
	Disabling demonstration user accounts
	Protecting OFBiz web pages
	Creating user accounts
	Protecting applications using security groups
	Protecting views ("Tarpitting")
	Retrieving forgotten passwords
	Changing your password
	Adding or changing SSL certificates
	OFBiz single sign-on and the external login key

	Chapter 7:
WebTools
	Introduction
	Cache maintenance
	Changing debug settings
	Exporting database data to XML documents
	Loading database(s) from XML documents
	Managing internationalization labels
	Using the SQL processor
	Exploring the entity reference tool
	Viewing OFBiz usage statistics
	Uncovering artifact information
	Working with temporal expressions

	Chapter 8:
Web Services
	Introduction
	Requesting web services using URL parameters
	Requesting web services using an HttpClient
	Creating HttpClients and passing XML documents
	Creating XML-RPC web service clients
	Becoming an XML-RPC web service provider
	OFBiz SOAP messaging clients
	Generating a WSDL document
	Creating SOAP-compliant web services

	Chapter 9:
OFBiz Tips and Tricks
	Introduction
	Fixing Java memory allocation errors
	Reloading OFBiz seed and demo data
	Creating new seed data files
	Changing the administrative user's password
	Creating a new administrative user
	Getting the OFBiz version number
	Building an OFBiz instance
	Building a single OFBiz Component
	Creating a new OFBiz Component or Application
	Creating a FreeMarker transform
	Preparing data using Groovy
	Pop-up new browser windows
	Installing an OFBiz Visual Theme
	Creating an OFBiz Visual Theme

	Appendix:
Entity Engine by Example
	Introduction
	Putting it all together with a data model example
	Reading data from an OFBiz data source
	Working with large result sets (EntityListIterator)
	Removing data from the database (Java)
	Writing data to the database (Java)
	Using the automatic sequence generator
	EntityUtil
	EntityOperator reference

	Index

