
www.dbebooks.com - Free Books & magazines

www.allitebooks.com

http://www.allitebooks.org


Aptana RadRails:  
An IDE for Rails Development
Develop Ruby on Rails applications fast using 
RadRails 1.0 Community Edition

A comprehensive guide to using RadRails to develop 
your Ruby on Rails projects in a professional and 
productive manner

Javier Ramírez
 

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org


Aptana RadRails: An IDE for Rails Development
Develop Ruby on Rails applications fast using RadRails 1.0 
Community Edition

Copyright © 2008 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval 
system, or transmitted in any form or by any means, without the prior written 
permission of the publisher, except in the case of brief quotations embedded in 
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of 
the information presented. However, the information contained in this book is sold 
without warranty, either express or implied. Neither the author, Packt Publishing, 
nor its dealers or distributors will be held liable for any damages caused or alleged to 
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the 
companies and products mentioned in this book by the appropriate use of capitals. 
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: May 2008

Production Reference: 1190508  

Published by Packt Publishing Ltd. 
32 Lincoln Road 
Olton 
Birmingham, B27 6PA, UK.

ISBN 978-1-847193-98-8

www.packtpub.com

Cover Image by Nilesh R. Mohite (nilpreet2000@yahoo.co.in)

www.allitebooks.com

http://www.allitebooks.org


Credits

Author

Javier Ramírez

Reviewer

Chris Williams

Acquisition Editor

Shayantani Chaudhuri

Adil Rizwan

Technical Editor

Bhupali Khule

Editorial Team Leader

Akshara Aware

Project Manager

Abhijeet Deobhakta

Indexer

Hemangini Bari

Proofreader

Chris Smith

Production Coordinator

Shantanu Zagade

Cover Work

Shantanu Zagade

www.allitebooks.com

http://www.allitebooks.org


About the Author

Javier Ramírez has been developing Web Applications since before the term Web 
Application was coined. Born in Zaragoza, Spain, in 1974, he started programming 
as a hobby around the age of 11 assisted by his older sister. A few years later, he  
got his first modem and became a regular of BBSes and Newsgroups. His interest  
in developing server applications that can be accessed remotely comes from  
those times.

He has learned—and forgotten—many programming languages, including Basic, 
dBase III, Cobol, Pascal, SQL, C, C++, ASP, TCL, JavaScript, PHP, and Java, the 
language on which he has focused for most of his career so far. He has held the 
positions of programmer, analyst, consultant, team leader, post-sales engineer, 
project manager, and software architect, totaling over 12 years in the IT business.

Having developed projects mainly for banks and other big corporations in Spain, 
Italy, and the US, he co-founded some years ago a small software development 
shop, which provided him with valuable experience about the difficulties and the 
joys of entrepreneurship. After two years, he left the company in pursuit of new 
professional challenges.

For the last two years, he has been proudly working for ASPgems, where he 
discovered Ruby on Rails, which soon became his framework of choice for 
developing Web Applications. He is one of the organizers of the Spanish Rails 
Conference, also participating as a Speaker in the two events held so far.

He has also been an instructor on Robotics, Java, FatWire Content Server, and Ruby 
on Rails, and a University Lecturer in the subjects of 'Software Engineering' and 'The 
Java Programming Language', which he currently teaches at Universidad Francisco 
de Vitoria, in Madrid.

Javier Ramírez holds a B.Sc. in Business Information Systems with First Class Honors 
and a degree in Ingeniería en Sistemas de Computación

www.allitebooks.com

http://www.allitebooks.org


This book would have not been possible in its present form if not 
for the work of the people at Packt Publishing. I'd like to thank 
specially to Acquisition Editor Shayantani Chaudhuri for giving me 
the opportunity to write this book and to Technical Editor Bhupali 
Khule for polishing the rough edges, which were many. Abhijeet, 
Adil, Shantanu, and Patricia also deserve to be in this list. 
 
I would also like to acknowledge the fantastic work of the original 
team of RadRails, and also of the developers behind Eclipse. A big 
special thank you goes to Chris Williams, the current lead developer 
of Aptana RadRails and the technical reviewer for this book. He 
provided me with precious insight about a large number of issues. 
Of course, any errors that might remain in the book are my own. 
 
Thanks to the people at ASPgems, for trusting me to join one of the 
most gifted team I know and for introducing me to Ruby on Rails. 
 
I also have to thank Madzia, who gently allowed me to disappear for  
uncountable evenings and weekends during the last nine months 
without complaining—or without complaining much anyhow. 
 
Finally, but not least important, I would like to thank my parents for 
supporting my education. 
 
A part of this book—the good one—wouldn't have been possible 
without all of them.

www.allitebooks.com

http://www.allitebooks.org


 About the Reviewer

Chris Williams has spent the last four years working on the Ruby Development 
Tools project to bring Ruby tooling to the Eclipse IDE, and has been the lead 
developer of RadRails since joining Aptana in the first half of 2007. Prior to joining 
Aptana, Chris has worked in R&D for both Paychex Inc. and the Xerox Corporation. 
Chris lives with his wife and dog in Rochester, New York.

Thanks to Kyle Shank, Matt Kent, and Marc Baumbach for creating 
RadRails; Markus Barchfeld for his work on RDT's debugger and 
builds; Jason Morrison for his work on type inferrencing; Mirko 
Stocker, Thomas Corbat, and Lukas Felber for their addition of 
refactoring support; Adam Williams for starting the RDT  
project; Paul Colton and Aptana for allowing me to work on 
RadRails full-time. 
 
Lastly, I'd like to thank my wonderful wife, Lidza, for being patient 
and sharing a passion for our careers; and my dog Beaker for 
knowing when I need to take a walk.

www.allitebooks.com

http://www.allitebooks.org


Table of Contents
Preface	 1
Chapter 1: Getting Started	 7

Do I Need an IDE for Rails Development?	 7
About Aptana RadRails	 9
How Can Aptana RadRails Help Me?	 10
Prerequisites	 11

Java Virtual Machine	 11
Ruby and Rails	 12

Components to Install	 13
Installing Rails if you already have Ruby and RubyGems	 13
Installing Ruby and Rails on Linux	 15
Installing Ruby and Rails on OS X	 16
Installing Ruby and Rails on Windows	 17
Supported Databases	 17

Installing Eclipse	 18
Installing Plugins in Eclipse	 20

RadRails Installation	 21
Summary	 25

Chapter 2: First Steps	 27
Basic Configuration	 27

Eclipse Preferences Dialog	 27
File Encoding	 30
Connecting through a Proxy	 30
Ruby Environment	 32
Rails Environment	 33

Creating a Rails Project	 34
Importing an Existing Project into RadRails	 37
Working with Perspectives and Views	 38

Eclipse Perspectives	 38

www.allitebooks.com

http://www.allitebooks.org


Table of Contents

[ ii ]

Eclipse Views	 39
Summary	 43

Chapter 3: Your First Application	 45
Basic Views	 45

The Ruby Explorer View	 46
Ruby Explorer Top Icons	 50

The Console View	 51
The Generators View	 53

Generating Models and Migrations	 55
Running Your Migrations	 56
Generating Scaffolds	 58

Starting Your Server	 60
Monitoring Your Server	 63
Summary	 65

Chapter 4: Writing Ruby Code	 67
A Quick Note about Keyboard Shortcuts	 67
The Ruby Editor	 68
Syntax Highlighting	 69
Outlining the Structure of Your Ruby Code	 70

Quick Outline	 71
Type Hierarchy	 75
General Outline View	 77

Code Folding	 78
Code Formatting 	 80

Indenting Code Blocks	 82
Commenting Code Blocks	 82

Code Completion	 82
Code Templates	 85

Defining Your Own Code Templates	 87
Navigating Your Code	 89

General Source Navigation Tools	 89
Matching Brackets	 89
Declarations of Classes, Modules, Methods, and Variables	 90
Navigating Your MVC Code	 91
Opening Types and Resources 	 92

Refactoring	 94
Generate Accessors	 95
Generate Constructors	 96
Convert Local Variable to Field	 96
Encapsulate Field	 96

www.allitebooks.com

http://www.allitebooks.org


Table of Contents

[ iii ]

Extract Method	 96
Extract Constant	 98
Inline Method	 98
Rename	 98
Split Local Variable	 99

Searching in Ruby Projects	 100
Searching within the Current File	 100
Searching across Multiple Files	 101
Ruby Search	 104

Call Hierarchy	 105
Summary	 106

Chapter 5: Coding Rails Views	 107
ERB/RHTML Templates	 107

Views Navigation	 108
View Templates	 110
HTML Code Assist	 112
Refactoring into Partials	 113
Outline	 114

Editing HTML Files	 115
Editing JavaScript Files	 115
Editing CSS Files	 118
Summary	 121

Chapter 6: Debugging Your Application	 123
Getting Started with Debugging	 124

Debugger Configuration	 124
Starting Your Server	 126
Debugging a Ruby Script	 126

Using Breakpoints	 127
The Breakpoints View	 130

Setting Generic Breakpoints for Exceptions	 131
Exporting and Importing Breakpoints	 133

The Debug View	 134
The Debug View and the Stack Frame	 134
Stepping through Your Application	 136

Variables and Expressions	 139
The Variables View	 139
The Expressions View	 142

The Display View	 144
Useful Tools for Debugging	 146

Linking Errors and Source Code from the Browser	 146

www.allitebooks.com

http://www.allitebooks.org


Table of Contents

[ iv ]

Tailing the Log Files	 146
Summary	 147

Chapter 7: RadRails Views	 149
Opening the RadRails Views	 149
Documentation Views	 150

Ruby Interactive (RI) View	 151
Ruby Core, Ruby Standard Library, and Rails API	 151

Servers View	 154
Starting a Server with Additional Arguments	 156
Managing Non-Rails Servers from the Servers View	 156

Launching External Tools from Eclipse	 158
Rails Console	 160
Rails Plugins View	 161
RubyGems View	 163
Rake Tasks	 166
Generators View	 167
Rails Shell View	 169
RegExp View	 171
Problems View	 172
Tasks View	 174
Test::Unit View	 175
Summary	 180

Chapter 8: Configuration Reference	 181
General	 182

Appearance	 182
Editors	 183

Annotations	 185
Linked Mode	 185
Quick Diff	 186
Spelling	 187

Keys	 188
Workspace	 190

Aptana	 190
Browsers/User Agents	 191
Editors	 191

Code Assist	 191
Colors	 192
Folding	 192
Formatting	 193
Typing	 194
RHTML Templates	 195

Start Page	 195



Table of Contents

[ � ]

Rails	 196
Ruby	 196

Appearance	 196
Editor	 197

Syntax Coloring	 198
Errors/Warnings	 199
Task Tags	 200

Summary	 201
Chapter 9: Other Useful Plugins	 203

Database Management	 204
Installing DBViewer	 205
Creating New Connections	 206
DB Tree View	 210
SQL Execute View	 212
SQL History View	 213
DBViewer Configuration	 214

Version Control with Eclipse	 215
Installing Subclipse	 216
SVN Repository Exploration	 218
Projects and Repositories	 219

Checking out an Existing Project	 220
Importing a New Project into a Repository	 221

Update, Edit, Compare, and Commit	 222
The Synchronize View	 225
History View	 226

Summary	 227
Index	 229





Preface
Coming from a background of developing in languages such as Java, one of the 
things that surprised me the most about the Ruby and Rails community, was the 
common practice of not using an Integrated Development Environment. Most of the 
members of the community, including the most relevant, were comfortable with just 
a programmer's editor. 

At first I thought it was because, Ruby being a dynamic language, using a full IDE 
might be an overkill. But then I thought of the PHP community, in which several 
IDEs are popular, with PHP also being a dynamic language. So I still had to guess 
why using an IDE was not a common practice within the Ruby on Rails world.

Nowadays, there is a growing list of IDEs with support for Ruby on Rails, but two 
years ago the options were really scarce. Back then, I chose to use RadRails because 
it worked on top of the Eclipse IDE—which was the tool I was already using for 
other programming languages—and because it was the only free, open source, and 
portable option.

Truth is, the first version of RadRails I used was very promising, but still a bit too 
basic. It featured just  a few specialized tools, Ruby syntax colorization, and a slow 
and faulty code-assistance. As a result, the difference between RadRails and a good 
programmer's editor was not really significant. However, as Ruby on Rails gained 
popularity, RadRails was vastly improved, and a lot of new features were added. 

At the same time, several other IDEs started to provide support for Ruby too. Today, 
even if many Ruby on Rails developers still don't use an IDE, a growing number of 
them already.

During these two years, I've been developing projects almost exclusively with Ruby 
on Rails; and I developed all of them using RadRails. Of course I have been keeping 
an eye on every new IDE with Ruby support, just to see if there were any reasons for 
changing, but I still didn't find any.



Preface

[ � ]

To me, writing this book is a way of contributing back to the RadRails project. I 
hope this book will help the existing community of users of Aptana RadRails, and 
will also help new users to start working with this tool. Besides, thanks to the Packt 
Open Source Project Royalty Scheme, a part of the benefits will be directly paid as a 
royalty to the RadRails project, so by purchasing this book you are funding a bit of 
the Community Edition of Aptana RadRails.

What This Book Covers
This book will show you how to get the most of the Community Edition of Aptana 
RadRails for developing Ruby on Rails projects. Apart from the features provided by 
RadRails, the book will give you an overview of working with the Eclipse IDE, and 
will show you how to use the Eclipse functionalities that are relevant for Ruby and 
Rails development.

This book is not about the Ruby programming language or the Ruby on Rails 
framework. Even if you don't need to be an expert, you should already be familiar 
with the language and the framework to get the most from this book.

Chapters 1 and 2 will show you how to install and configure Aptana RadRails, and 
will help you find your way around the Eclipse IDE. If you have previous experience 
with Eclipse , and you have already installed Aptana RadRails, then you can proceed 
directly to Chapter 3.

Chapters 3 to 8 are a complete reference to each of the components of RadRails, 
including all the configuration options.

Finally, in Chapter 9 you will find documentation about some complementary 
plugins you can use for connecting to a database and for managing your  
source repositories.

You can find below a brief introduction to each of the chapters.

Chapter 1: This chapter will introduce you the concept of IDE and will give you 
a general overview of what you can expect from Aptana RadRails. You will also 
find instructions about how to install Aptana RadRails and the Eclipse IDE in your 
system. Even if you should already be familiar with the installation of Ruby and 
Rails, the chapter also provides a quick reference for installing Ruby and Ruby on 
Rails on Windows, Linux, and OSX.

Chapter 2: In most cases, Aptana RadRails will work directly out of the box. However, 
in some cases you will need to make a minimal configuration of the IDE. The first 
part of this chapter will show you the basic configuration of RadRails.



Preface

[ � ]

Chapter 3: Two of the basic tools RadRails provides are the Ruby Explorer and the 
Console View. With the Ruby explorer you will be able to browse the structure of 
your projects and perform any kind of file-related operations, including working 
with the local history of your files. The console view will display the output of most 
of the processes we will launch from RadRails. Apart from learning how to use these 
views, we will show how to use Generators and Rake Tasks from Aptana RadRails 
to create a simple demo application. You will also learn how to start and stop your 
servers and how to use the built-in browser to watch your application in action. 

Chapter 4 explains in detail all the built-in capabilities of RadRails for developing 
Ruby code. You will learn to use the Ruby Editor to write your source code,  to 
navigate between the different classes and files, and to get the most out of code 
completion and the code templates.

Chapter 5: One of the strong points of Aptana RadRails is the great support for the 
client-side of your application: JavaScript, HTML, and CSS. In this chapter you will 
learn how to write Rails views mixing together Ruby code with HTML or JavaScript 
and getting assistance for all of the languages.

Chapter 6: When an application grows large, it's always a good idea to have a way 
of debugging the potential errors. This chapter will show you how to use RadRails' 
built-in debugger for interacting with your code at run time. You will learn to start 
a server or a stand-alone script in debug mode, how to set breakpoints , and how to 
intercept any Ruby exceptions. The debugger will also allow you to walk through 
your code, to examine the values of any variables and expressions, and even to 
execute arbitrary code at run time by using the Display view.

Chapter 7: Apart from the coding and debugging, Aptana RadRails provides a 
number of specialized tools to make the development and management of your 
application easier. In the context of Eclipse, each of these tools is called a View. In 
this chapter, you will learn how to use the different views to browse the Ruby and 
Rails documentation, manage and monitor your servers, install gems and plugins, 
launch generators and rake tasks, use code annotations, keep track of warnings and 
to-do lists, evaluate regular expressions, and run your tests. If you prefer to use the 
command line, then you will learn how to take advantage of the built-in Rails Shell, 
in which you can get auto-completion for the most used Ruby and Rails commands 
directly at the command line. This chapter will also show you how to use your IDE 
to control external servers such as Apache or MySQL.

Chapter 8: Out of the box, Aptana RadRails provides a fully working environment. 
However, many of its components allow for some configuration. This chapter is a 
complete reference to all the preferences you can set to change the user experience 
when using RadRails.



Preface

[ � ]

Chapter 9: Aptana RadRails bundles together plenty of interesting features for the 
developer. However, since the focus is on Ruby on Rails, there are some general 
aspects of the development of a project that are not covered by RadRails. Fortunately, 
since the underlying platform is the Eclipse IDE, we have a virtually unlimited 
number of complementary plugins to choose from. This chapter will give you a 
general overview of the Eclipse plugins ecosystem, and will also explain in detail 
how to use two of the plugins you might want to use when developing. DBViewer 
is a plugin you can use to connect to your database from the IDE. This chapter will 
show you how to set up the plugin, and how to use it for examining and modifying 
your database structure and contents. Subclipse is a plugin to connect to Subversion 
repositories. By using Subclipse you will have repository access directly from your 
IDE. Besides, the built-in features of Subclipse will help you examine and merge 
changes in a much more comfortable way than using the Subversion command line.

What You Need for This Book 
In order to install Aptana RadRails, you will need the following:

Java Virtual Machine (version 1.5 or higher), preferably the Sun JVM  
is preferred.
Ruby
Ruby on Rails (version 2.0 or higher)
The database of your choice, with the proper Ruby gems to establish a 
connection from Ruby on Rails
Connection to the Internet to download/install the different components

As a part of  the installation process, Aptana RadRails will automatically guide you 
through the installation of Ruby and Ruby on Rails if they are not available in your 
system. You will have to manually install at least a JVM and the database manager of 
your choice.

Even though the installation of all the required components is out of the scope of this 
book, you will find in chapter number one a quick guide to installing the JVM, Ruby 
and Ruby on Rails. This reference has been included for completeness and it's not 
intended to be exhaustive.

Who This Book Is For 
This book is for Ruby on Rails developers who want to make the most of the 
framework by using an Integrated Development Environment. 

•

•

•

•

•



Preface

[ � ]

Even though the book explains everything you need to follow the contents, the 
focus is on how to use the tool and not on the Rails framework itself, so previous 
working knowledge of Rails is highly advisable. Previous knowledge of Eclipse is 
not necessary.

Conventions
In this book, you will find a number of styles of text that distinguish between 
different kinds of information. Here are some examples of these styles, and an 
explanation of their meaning.

Code words in text are shown as follows: "RadRails would allow me to introduce the 
ModelName, the first_field, and the second_field".

A block of code will be set as follows: 

begin
  ${cursor}
  ${line_selection}
end

Any command-line input and output is written as follows:

\dev\ruby186\bin\mongrel_rails start --port 3100 -o 1

New terms and important words are introduced in a bold-type font. Words that you 
see on the screen, in menus or dialog boxes for example, appear in our text like this: 
"Take your time and when you are ready for the installation select the option  
Go to Workbench".

Important notes appear in a box like this.

Tips and tricks appear like this.

Reader Feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book, what you liked or may have disliked. Reader feedback is important for us 
to develop titles that you really get the most out of. 



Preface

[ � ]

To send us general feedback, simply drop an email to feedback@packtpub.com, 
making sure to mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please send  
us a note in the SUGGEST A TITLE form on www.packtpub.com or email  
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer Support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

Downloading the Example Code for the Book
Visit http://www.packtpub.com/files/code/3988_Code.zip to directly 
download the example code.

The downloadable files contain instructions on how to use them.

Errata
Although we have taken every care to ensure the accuracy of our contents, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in text or 
code—we would be grateful if you would report this to us. By doing this you can 
save other readers from frustration, and help to improve subsequent versions of 
this book. If you find any errata, report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the let us know link, and entering 
the details of your errata. Once your errata are verified, your submission will be 
accepted and the errata added to the list of existing errata. The existing errata can be 
viewed by selecting your title from http://www.packtpub.com/support.

Questions
You can contact us at questions@packtpub.com if you are having a problem with 
some aspect of the book, and we will do our best to address it. 



Getting Started
You already know how productive, addictive, and fun Ruby on Rails development 
can be. Yet you often find yourself using the command line, navigating through 
your source files to find method definitions or references, debugging by printing 
to the logs, going to the shell for launching or stopping your servers, and basically 
changing context many times as you are working.

Not to be picky, but when I work with Java or C++ I can navigate my source files 
just by clicking on the variables or the method names, I can debug step by step 
in a graphical environment, and I get refactoring and code completion too. I can 
also control my servers, databases, log files, and everything from a single tool. No 
command line, no context change.

Now wait a second, am I telling you that working with Java or C++ can be more fun, 
more productive, or more comfortable than doing it with Rails? No way! You have 
come to the right place for taking your love for Rails a step further. You are going to 
learn how to use a solid, enterprise-proven tool for your Ruby on Rails development.

Do I Need an IDE for Rails Development?
First of all, let's see what an IDE is. The name stands for Integrated Development 
Environment, meaning that you can access most of the ordinary development tasks 
from a single interface. This is very convenient because you don't need to start 
several applications, or learn different interfaces when you are working in your 
projects. Once you know your way around your IDE, even new functionalities look 
familiar since they all are a part of the same tool.

If you've been programming in static languages like C, C++, or Java you already 
know there are several mandatory steps in order to get something working. You 
don't only need to write the code, but also to compile it, link and make it executable, 
or maybe package it, and if you are using some framework with lots of configuration 
then you have, in addition, to deal with all those files. And don't get me started 

www.allitebooks.com

http://www.allitebooks.org


Getting Started

[ � ]

about deploying to your own development server. In these cases, the advantage 
is so obvious that it's a no-brainer to go for a tool in which the whole process from 
coding to executing is (almost) transparent. That's why even such primitive tools as 
TurboPascal or TurboC were so appreciated as they saved you a lot of repetitive  
key punching.

Now when it comes to dynamic languages, and more specifically to Rails, the 
development cycle is much shorter. You write the code and unless you are changing 
some non-reloadable file you can directly test your results in your browser. No 
compiling, linking, packaging, or deploying. Apparently it would seem that an IDE 
is not such a good idea here.

Now-a-days IDEs provide much more than a simple task automation. They are really 
helpers that can auto-complete your code, format it, hint about possible errors even 
as you are typing the source code, assist in refactoring, and integrate with several 
other tools. Even if Rails is such a comfortable framework by itself, certainly it could 
use some of these capabilities.

It has also been said that code assist is not so good with dynamic languages. 
Since you cannot infer the types statically before execution, it would seem almost 
impossible to get auto-completion or source navigation by linking on the variables 
and methods. Well, there is some truth in that. Certainly statically typed languages 
are much easier to deal with for those matters, and the support for these operations 
is still not as good in Ruby as it is in, for example, Java or C. However, since the first 
IDE for Ruby made it to the public, the techniques for dealing with code assist have 
improved greatly and are now very close to those of other languages.

Working with an IDE is pretty different than doing it with a power editor. Of course 
a good programmers' editor can make development much more comfortable than 
using a plaintext editor with no macros or highlighting, but when it comes to more 
sophisticated tasks, they are limited by the amount of logic that you can embed  
in them.

Nevertheless, it's not a secret that the whole core team of Rails doesn't use an 
IDE, but a pretty good power editor, so you really don't need an IDE for Rails 
development; but if you use one, you are going to find yourself dedicating less time 
to routine tasks and concentrating on the creative and productive part, which is what 
Agile Development is about.



Chapter 1

[ � ]

About Aptana RadRails
Currently, there are several options to choose from if you are looking for a Rails 
IDE. One of the reasons I like Aptana RadRails the best is because it's built on top 
of Eclipse. Eclipse (http://www.eclipse.org) is a multi-platform, multi-language, 
well-tested, enterprise-ready IDE with a lot of plugins for extending its capabilities. 
It was initially developed by IBM and then released as an Open Source project, being 
since then a total success.

RadRails was initially started by the middle of 2005 by Matt Kent, Kyle Shank, and 
Marc Baumbach, who were at the time working for IBM Rational. The RadRails 
project was built upon the Ruby Development Tools—RDT—plugin, which already 
supported pure Ruby, but not Rails, development on Eclipse.

After more than a year, part of the core team started their own company, not being 
able to dedicate enough time to working in the plugin. This was made public in some 
mailing lists and blogs, causing the community of RadRails users to worry about 
the future of the IDE. Fortunately the project finally found the support of another 
company, Aptana, to take over the development of the tool.

Aptana already had a very good Eclipse plugin for JavaScript development, so it 
had the knowledge and resources to give continuity to the project. Not only that, but 
Aptana also contacted Chris Williams, the lead developer for over three years of the 
Ruby Development Tools project, and offered him the opportunity to join Aptana 
and work full-time on both plugins.

Since Aptana took charge, the plugin has been integrated with the Aptana editors 
and a number of improvements have been made. Now the plugin is available both in 
Professional and Community Editions, and it's still an Open Source project, with the 
lead developer being Christopher Williams. Since the integration, the official name of 
the project is Aptana RadRails.

To me, this story illustrates an important point. When working with Open Source 
tools, even when the original team cannot continue the development, it's possible 
for the community to enjoy the benefits of the tool and to have new releases coming. 
This is another reason why I prefer RadRails over some other Rails IDE.

If by now you have been browsing Aptana's website (http://www.aptana.com), you 
will have realized Aptana RadRails comes in two different flavors: as a stand-alone 
IDE or as an Eclipse plugin. The stand-alone edition also installs Eclipse behind the 
scenes, but some of the Eclipse functionalities like some start-up arguments will not 
be available if you choose this option. Also, if you are planning to install external 
plugins, it's probably better to use the standard Eclipse installation and then install 
Aptana RadRails on top of that.



Getting Started

[ 10 ]

How Can Aptana RadRails Help Me?
One thing you have to remember is when we are installing RadRails we will not 
only be able to use the capabilities of Aptana RadRails, which are indeed impressive 
enough, but also those of Eclipse and the whole ecosystem of plugins available. I 
have been using Eclipse for working with Java, PHP, C, and for the last two years, 
almost exclusively for Ruby on Rails. Here is a list of some of the things that I do on a 
regular basis from my Eclipse plus Aptana RadRails workbench:

Edit different types of files with syntax highlighting, code assist, code 
completion, formatting, and error checks. You can edit your Ruby or Rails 
source code, but also HTML, JavaScript, CSS, YAML, or XML.
When working on Rails views, the tool is smart enough to know the context 
in which I am and give me Ruby, HTML, or JavaScript support accordingly. 
As an example, CSS support not only provides code assist, but also tells me if 
a given style element is supported only by some browsers.
Navigate from the code of the view to that of the controller or the model with 
a keystroke, mark occurrences of any variable with a single click, or go to a 
class or method definition just by clicking over the source code.
Use Ruby or Rails command-line tools from a graphic environment. I can run 
rake tasks, code generators, or tests. I can also install, remove, or update Rails 
plugins and Ruby gems.
Manage my database. There are many different plugins to help you work 
against your database, and many of them are vendor independent, so you 
can work with different DBMS.
Start or stop servers and monitor their output. At the moment of writing this 
book there is support for Webrick and Mongrel servers. JRuby can also be 
used, but it is not yet integrated and requires some hacking.
Tail several log files directly from a tabbed window in the workbench.
Use the Rails console in an integrated window. One of my favorite features 
of Rails is going to the console to test pieces of code before putting them into 
my source files. It's very convenient that I can just copy and paste or drag the 
selection between windows in the workbench for this purpose.
Browse the different API documentation. Not only Ruby core, Ruby Standard 
Library, or Rails docs, but also a JavaScript reference, for example.
Version control: I can work with my repository, create or download projects, 
modify them, compare my local copy against the version in the repository, 
and any other functionality your version control software supports in 
a graphic and consistent manner. I have used it with CVS, Subversion, 
Perforce, and Visual Source Safe, but the list of available plugins is larger.

•

•

•

•

•

•

•

•

•

•



Chapter 1

[ 11 ]

Bug Tracking: You can use different bug trackers and have them integrated 
with Eclipse, so you can directly get the bug report, modify the code, update 
it in the repository, and close the bug report from the same workbench. I 
have been using it exclusively with Trac, but support for Bugzilla and custom 
trackers is also built-in.
Write and test regular expressions.
Keep track of problems and To-Do tasks in my projects.
Debug my applications graphically. I can set breakpoints just by clicking on 
a line, then go step by step, or step into or over the code and watching the 
different values at run time.

Even if the list above is cool enough, there are more things you can do with  
Aptana RadRails, so let's see what you need in order to install the IDE and start 
enjoying it at once.

Prerequisites
This is not a book about learning the Ruby language or the Rails framework, 
but about how to take advantage of Aptana RadRails to help you develop Rails 
applications. You should already have working knowledge of Rails and you should 
have your system set up for Rails development, or at least feel comfortable with the 
steps involved in doing so. Also, in order to install the Eclipse IDE, a Java Virtual 
Machine (JVM) will be mandatory.

Even if it is not the purpose of this book to provide exhaustive instructions on the 
Ruby or Rails and JVM installation processes, you can find below some guidelines on 
how to set up your system in case you are starting from scratch. Be sure you have all 
the necessary items properly installed in your system before proceeding to Eclipse 
and RadRails installation.

Java Virtual Machine
As you already know by now, RadRails is built on top of the Eclipse IDE. One of 
the features of Eclipse is its portability, which is possible by using Java behind the 
scenes. This means you will need a Java Virtual Machine (JVM) installed in order for 
Eclipse to work.

Chances are you already have at least a JVM installed in your system, but you have 
to make sure you are using version 1.5 or higher, since Aptana RadRails will not 
work with previous releases. Also, some users have reported intermittent crashes, 
slower performance, and a higher memory footprint when using a JVM other than 
that of Sun, so in order to avoid potential problems, it's highly recommended to use 
the official Sun Java Virtual Machine.

•

•
•
•



Getting Started

[ 12 ]

However, Eclipse can run on older versions of the JVM, and if for any reason 
you cannot install a JVM later than 1.4, then you could still use an old version of 
RadRails. RadRails 0.7.2 also known as RadRails Classic was the last release before 
Aptana took control of the development, and it's still available for download. You 
should be aware there is no official support for it and there are a lot of new features 
and bug fixes in the next releases. If you install RadRails Classic, you will not find 
many of the options that we will be discussing in this book.

A typical Java installation will include the executable 'java' in the path of your 
system/user, so if you are not sure if it is installed in your system or what version 
you have you can check it by executing the following line at a command prompt:

java –version

This should produce an output similar to:

$ java -version
java version "1.5.0_05"
Java(TM) 2 Runtime Environment, Standard Edition (build 1.5.0_05-b05)
Java HotSpot(TM) Client VM (build 1.5.0_05-b05, mixed mode)

If you don't have any JVM or your version is prior to 1.5, you should install one 
before trying to install Eclipse. Since we are not talking about developing Java 
applications, a minimal set up will do and installing the Java Runtime Environment 
will suffice our purposes.

Linux and Windows users can get the package directly from Sun at  
http://java.sun.com/javase/downloads. Mac users can get the appropriate 
software from http://developer.apple.com/java.

Ruby and Rails
RadRails uses Ruby and Rails in the background for many of its functionalities.  
For this reason, when you install RadRails, the plugin will try to find Ruby and Rails 
in your system. If they are already installed and the plugin finds them, it will  
self-configure properly.

In case Ruby or Rails are installed, but they are not at the default locations,  
RadRails will offer you the possibility of entering the location of the executables  
in your system.

If you have Ruby installed in your system but you don't have Rails, RadRails will 
assist you in downloading and installing Rails automatically.



Chapter 1

[ 13 ]

If you don't have Ruby or Rails installed, then RadRails will take you to the download 
location but you will have to finish the process of installing Ruby manually.

You can find below a quick reference in case you need to manually install Ruby  
or Rails.

Components to Install
The basic components of a typical Rails installation are Ruby (together with RDoc 
and ri for browsing the API documentation), RubyGems, Rails, and the database 
adaptor of your choice (Rails includes a non-optimized version of a MySQL adaptor 
out of the box).

Ruby and RubyGems can be obtained as source code or as a binary package for  
your system, the second option being much handier since you don't need to mess 
with the internals of the compilation; but of course it gives you less control over  
the installation.

For the typical user, a binary package should be good enough, and if you are as lazy 
as I am, you will find it much more convenient than dealing with a full setup from 
the source. A bit further in this section you can find some options for installing a 
binary package depending on your OS.

Whether you decide to use the fast track and go for a binary distribution or walk 
the path of the glory reserved for the brave by compiling from the source, you will 
find an excellent starting point at the official download site of the Ruby language 
(http://www.ruby-lang.org/en/downloads/). There you will find the source 
code and some pointers as how to compile it and where to find up-to-date binary 
distributions for your environment.

Now let's make a quick tour of the options available for getting up and running with 
Rails in each of the Operating Systems.

Installing Rails if you already have Ruby and 
RubyGems
If Ruby is already installed in your system, then there is no need for you to install  
the whole binary package, unless you prefer so, and you could directly install Rails 
on top of your current Ruby setup. If Ruby is not installed in your system, you can 
skip this entry and find the detailed instructions for your particular OS later in  
this chapter.



Getting Started

[ 14 ]

If you are running Linux or OS-X, chances are you already have Ruby as a part 
of your distribution. No version of Windows, at least not yet, comes with Ruby 
bundled, but of course you will have it already if you have installed it in the past 
for developing pure Ruby (not Rails) scripts. You can check if Ruby is installed by 
opening a command prompt and running:

ruby –v

If Ruby is installed (and in the path), you should be seeing something like

$ ruby -v
ruby 1.8.6 (2007-09-24 patchlevel 111) [i386-linux]

Just take into account that some distributions could be using a fairly old release and 
you will need at least Ruby 1.8.4 for running Rails.

Apart from Ruby, you will need RubyGems in your system before you can install 
Rails. RubyGems is a very popular package manager for the Ruby language, making 
the installation of new packages very easy. In most Ruby installations RubyGems 
will be already present without any further steps. To check if it's installed in your 
system, you can open a command prompt and type:
gem –v

If you get a positive response, then you can directly go and install Rails. In case you 
don't have it, you can get it from http://rubyforge.org/projects/rubygems. The 
installation package is just a ZIP file. You will find detailed instructions on how to 
install it inside, but it should be as easy as unzipping the contents of the package and 
executing from the command prompt:
ruby setup.rb

Once we have made sure the package manager RubyGems is installed in our system, 
we just have to use it for installing Rails. To do so, all you have to do is go back again 
to the command prompt and execute:
gem install rails --include-dependencies

This will cause RubyGems to connect to a download site, get all the necessary 
packages, and install them in your system. Please be aware that you will need 
Internet connectivity in order for this command to work. Besides, if you are behind 
a proxy, you could experience installation problems. If that's the case, you can try to 
get detailed information at http://rubygems.org or you can just install one of the 
binary packages for your OS. The binary packages already include RubyGems as a 
part of the distribution.

If you have completed the Rails installation successfully, then you can skip the next 
three entries under this section and go directly to Supported Databases.



Chapter 1

[ 15 ]

Installing Ruby and Rails on Linux
As we stated before, we will not cover the steps of building from the sources, but 
those of obtaining a binary distribution.

For the other platforms, there are some binary packages that will install Ruby, Rails, 
and some useful libraries with a single action. Unfortunately at the moment of 
writing this book, there is nothing of the like for Linux systems. However, the whole 
process is pretty easy and will require just a few steps.

For our installation we are going to use a package manager. Package managers 
come mainly in two flavors in the Linux world. For those distros based on RedHat, 
the yum package manager is used, and for the Debian-based distros, we will use 
apt. Both package managers will connect to the Internet in order to download the 
necessary files, so make sure you have connectivity before trying to install.

Whatever your package manager is, take into account you will need to install the 
packages with superuser privileges, so log in as root or use the 'sudo' command 
when installing.

Installing Ruby and Rails Using yum
For installing Ruby using yum you should open a command prompt and type:

yum install ruby ruby-irb ruby-libs ruby-rdoc ruby-mode ruby-ri ruby-docs 

Please notice the line above should be written in a single command line, with no 
line breaks. Also notice over time some of the packages can change their names, so 
maybe when you are trying to install there will be some differences. You can always 
use 'yum list' or 'yum search' to browse the complete package list.

Now we will use yum to install RubyGems. Execute:

yum install rubygems

Finally we'll use RubyGems, the Ruby package manager, for installing Rails. Execute:

gem install rails --include-dependencies

After RubyGems finishes, you are all set and ready to proceed to section  
Supported Databases.

Installing Ruby and Rails Using apt
To install ruby using apt you should open a command prompt and type:

apt-get install ruby rubygems irb ri rdoc ruby1.8-dev build-essential



Getting Started

[ 16 ]

Please notice the preceding line should be written in a single command line, with no 
line breaks. Also notice over time some of the packages can change their names, so 
maybe when you are trying to install there will be some differences. You can always 
use 'apt-cache search' to browse the complete package list.

Finally we'll use RubyGems, the Ruby package manager, for installing Rails. Execute:

gem install rails --include-dependencies

After RubyGems finishes, you are all set and ready to proceed to section  
Supported Databases.

Installing Ruby and Rails on OS X
Since OS X is a Linux-based system, compiling Ruby from the source is one of  
the options available. However, in this section we are going to focus on the  
binary distributions.

One of the most popular options when installing Rails over OS X is using 
Locomotive (http://locomotive.raaum.org/). Installation is as easy as can be. 
You only need to download the package and execute the file Locomotive.app 
inside. Locomotive will install Ruby, RubyGems, Rails, and many useful libraries for 
working with Ruby. The installation is completely separate from the default Ruby 
bundled with OS X, so it should not have any impact on your system.

If you prefer to install Ruby and Rails separately or you prefer not to include so 
many libraries, there are another two popular options. For installing Ruby you can 
use the One-click Installer for OS X (http://rubyosx.rubyforge.org/) or use 
MacPorts (http://www.macports.org/).

If using the One-click installer, you only have to download it from the web page and 
install it in your system. For MacPorts you must open a command prompt and type:

port install ruby rb-rubygems

In any case, after the installation you will already have Ruby and RubyGems in your 
system and, in the case of the One-click installer, some useful additional utilities. 
Now we only have to install Rails on top of that. To do so, just execute:

gem install rails --include-dependencies

After RubyGems finishes, you are all set and ready to proceed to section  
Supported Databases.



Chapter 1

[ 17 ]

Installing Ruby and Rails on Windows
Compiling Ruby from the source is certainly possible but terribly hackish on a 
Windows system, so it's done only by a few users that need to modify the standard 
distribution in some way.

Fortunately, for the rest of us there are two popular binary distributions that we can 
use: InstantRails and the One-click Installer for Windows.

The One-click Installer includes Ruby, RubyGems, and some useful libraries. 
InstantRails bundles the One-click Installer together with Rails, Apache, MySQL, 
Mongrel, and phpMyAdmin.

If you want to go for the full package, then you can download InstantRails from 
http://instantrails.rubyforge.org/wiki/wiki.pl, unzip the package, and 
launch the InstantRails executable that will guide you throughout the installation. 
When you finish, everything will be set up and ready.

If you prefer to install just Ruby, RubyGems, and Rails, you can download the 
One-click installer from http://rubyinstaller.rubyforge.org/wiki/wiki.
pl?RubyInstaller and execute it. This will install Ruby and RubyGems in your 
system. After finishing, we will still have to install Rails on top of that. For installing 
Rails, go to a command prompt (Start Menu, Run, and then type 'cmd') and execute:

gem install rails --include-dependencies

Please notice you will need to have internet connectivity in order for RubyGems to 
download and install the Rails packages for you. After RubyGems finishes, you are 
all set and ready to proceed to the next section, Supported Databases.

Supported Databases
If you are going to develop Rails applications, you will need both a database and a 
suitable driver. Depending on which binary package you have installed, MySQL or 
SQLite3 could have been set up as a part of the process (check the documentation of 
your packages for details about the included software and libraries).

Out of the box, Rails supports MySQL connectivity through a pure Ruby adaptor. 
If you are going to work with a database other than MySQL, in most cases you can 
install the adaptor through RubyGems. Even if you are going to use MySQL, it's 
advisable that you install the native MySQL one, since it's much faster than the Ruby 
adaptor bundled with the default Rails package. To do so, you only have to go to the 
command prompt and execute:

gem install mysql

www.allitebooks.com

http://www.allitebooks.org


Getting Started

[ 18 ]

The supported databases at the time of writing this book are:

MySQL
SQLite
PostgeSQL
SQLServer
Informix
Oracle
IBM DB2
SybaseASA
Firebird/Interbase

For an up-to-date list of supported adapters and for links and instructions as to how 
to install them, please refer to http://wiki.rubyonrails.org/rails/pages/
DatabaseDrivers.

Notice that you need not only the adaptor, but also the database manager itself. It's 
out of the scope of this book to provide instructions about installing every possible 
database on every OS, so please check the installation instructions directly at the site 
of the manufacturer of the database of your choice.

Installing Eclipse
One of the nicer features of the Eclipse IDE is that it's language independent. You 
can use the same installation of Eclipse for developing in Java, C++, PHP, or Ruby 
on Rails, for example. The only thing you need is the suitable plugin for your 
development language.

This means if you already have Eclipse installed for working with a different 
programming language—Java, most probably–you don't need to install it again for 
working with Ruby on Rails. The only thing you should be aware of is that RadRails 
needs version 3.2 or higher of Eclipse, so if you have an older version, you should 
upgrade. Keep in mind that Eclipse installations are self-contained, so if you want to 
keep your older version and also install a new one in a separate directory, you can 
do so without any side effects.

Eclipse installation is pretty straightforward because there isn't really an installer. 
You only have to download the package for your OS, uncompress it in any directory, 
and you are ready to go.

•

•

•

•

•

•

•

•

•



Chapter 1

[ 19 ]

You can get the Eclipse package for your platform at http://www.eclipse.
org/downloads. You can install RadRails on top of any of the listed versions, but 
if you are going to use Eclipse only for Rails development, then I'd recommend 
downloading 'Eclipse Classic'. Make sure you choose the right package for your 
platform (Windows, Linux, or Mac OS X).

You can then uncompress the package in the directory of your choice. This will  
cause a directory 'eclipse' to be created. Inside it, there'll be a file called eclipse  
(or eclipse.exe if you are running Windows). This is the executable to launch. If  
on Windows, you'll probably want to create a link on your desktop for future use.

As we previously stated, you will need to run Java 1.5 at least if you want to install 
Aptana RadRails. In some cases, even after you install a newer JVM, eclipse will still 
use the previous version because the path or the environment is pointing to the old 
location. If this happens, you can still start Eclipse with the desired JVM by passing 
an extra argument:

eclipse –vm complete_path_to_your_java_executable

With that, you are telling eclipse to use the JVM found in the specified directory 
instead of the system-wide default installation.

One of the concepts you should know about when working with Eclipse is 
workspaces. Eclipse workspaces are a way of grouping together related projects and 
their configurations. Every time you work with Eclipse, you will be doing  
so in the context of a workspace. The first time you run Eclipse, it will ask you  
for a workspace directory. Just choose a new directory to hold the metadata for  
your projects.



Getting Started

[ 20 ]

Multiple workspaces can be handy when you are working on many projects at the 
same time. A typical user will use a single workspace, so you can mark the check 
box in the Workspace Launcher pop-up for Eclipse not to ask about the workspace 
directory at every startup.

Installing Plugins in Eclipse
Eclipse architecture is designed to be modular and extensible. If you want to 
add capabilities to your installation of Eclipse, you simply install a plugin. This 
extensibility is one of the keys for the success of Eclipse and its adoption by a large 
number of developers and companies.

By making Eclipse pluggable, there is no need for working with different 
applications for each of your needs, but just for plugging all of them on top of the 
Eclipse platform. This allows for a more convenient development environment 
since everything is just a few clicks away, and for easier maintenance. Upgrading is 
also easier through the Software Update feature of Eclipse, where you can install, 
uninstall, enable, disable, or upgrade any of the extensions.

For big teams working across different OS, Eclipse simplifies the installation of  
team-wide tools, since it is multi-platform and so are the Eclipse plugins. This means 
you can work with the same set of features independently of the target system.

As a result, there are many developers and companies delivering plugins for Eclipse 
so you can use it for almost any development-related task at any moment of the  
life-cycle of your project.

When it comes to install plugins on top of Eclipse, you can either use a manual  
install or the integrated Software Update functionality. The second method is  
much more convenient, since it's transparent for the user and also provides for 
automatic upgrades. However, some old or very simple plugins support only 
manual installation.

Manual installation of a plugin is as easy as the Eclipse installation itself. Basically 
you only have to download the ZIP file with the code of the plugin and extract 
it into the 'plugins' directory that you will find listed in your local Eclipse setup. 
Depending on the plugin, the contents of the ZIP file will be a single JAR or a folder 
with the name of the plugin and then some files and folders inside. In any case, after 
restarting your Eclipse the plugin will already be ready for use.



Chapter 1

[ 21 ]

Software Update is even easier to use. You only have to provide the URL for the 
plugin update manager and Eclipse will guide you through the rest of the process, 
giving you the option, if available, of choosing optional components, checking plugin 
dependencies, and allowing for several versions of the same plugin to be installed 
on your system. We will explain in detail how to use Software Update in the next 
sections, since Aptana RadRails installation is done through this tool.

In order to work with RadRails, we will need to install two different plugins.  
First we will install the Aptana for Eclipse plugin, which is a JavaScript/ 
AJAX-oriented development plugin. It provides support for HTML, CSS, and 
JavaScript and RadRails uses it for assisting in the editors for the Rails views. Once 
Aptana is installed, we will finally install Aptana RadRails plugin.

Before we continue, just a quick note for users who already had Eclipse installed. If 
you have been around RadRails for a while, maybe you have heard about a plugin 
called RDT (Ruby Development Tools). In older versions of RadRails, that plugin 
was required in a separate install, so if you installed an old version of RadRails, 
chances are you have it already.

Since Aptana took charge of RadRails, RDT is bundled together with the RadRails 
plugin, so you don't need to install it by hand. Moreover, the RDT version bundled 
with RadRails is not necessarily the most recent version and installing separately 
could break your RadRails installation, so if you have worked in the past with RDT 
in your eclipse environment, make sure you uninstall it before getting a new  
Aptana RadRails.

RadRails Installation
If you still didn't, it's high time to start your Eclipse. The first time you start it you 
will probably get a welcome screen. If you want to check the general information and 
help that's OK. Take your time and when you are ready for the installation select the 
option Go to Workbench. If you didn't see any welcome screen but just your typical 
interface with a menu bar on top, we are fine too. That's what the workbench is.



Getting Started

[ 22 ]

For some reason, the software update functionality is listed under the Help menu in 
Eclipse. We'll select Software Updates and then Find and Install.

We are installing a new plugin, so we will select Search for new features to install in 
the pop-up that will appear. Next we need to tell Eclipse where to find the plugin we 
want to install. For that, we will select New Remote Site and then in the pop-up we 
will  provide the name and the URL for the plugin. The name is not used internally 
and it will be just for us to know which plugin we are talking about. My advice is 
that you use the official name of the plugin, so it will be easier to maintain in  
the future.

Since we are installing the Aptana plugin, we will type Aptana in the name box. 
Now we need the URL. As a good practice, it's always good to check the official 
website of the plugin to see if there are any more recent versions. At the moment of 
writing this book, the stable release can be found at http://update.aptana.com/
install/3.2/. The pop-up for the remote site should look like this:



Chapter 1

[ 23 ]

After clicking on Finish we will see a new pop-up with all the components included 
in the plugin. We could select only a subset of them, but we want them all, so we will 
mark the check box by Aptana and hit Next.

After accepting the terms in the license agreements, we are presented with yet 
another dialog. In this case, we are asked about the installation directory for each  
of the selected components. The default location should be good enough, but  
if you prefer to install it in a different directory, you can do so by selecting  
Change Location.

At this point, Eclipse has all the information necessary to install our plugin, so it will 
connect to the defined remote site and start downloading the requested packages. 
Depending on your Internet connection, this step could take a little while.

After finishing downloading, Eclipse will ask us about installing each of the 
components. We can just select Install All and wait until the completion of the 
process. When everything is in place, Eclipse will ask about restarting the workbench 
for the changes to take effect.



Getting Started

[ 24 ]

Next time Eclipse starts you will see the Aptana Start Page. In that screen you have 
basically some quick links to Aptana-related functionalities. For installing Aptana 
RadRails, we would have to repeat the steps for the previous plugin, but providing 
a new name and URL. Aptana Start Page will make this process even easier. The 
central pane of this page has the title Plugins and from here you can install or 
upgrade Aptana plugins. Scrolling down the page you will find the name Aptana 
RadRails and a button to Install

This will take you to the already familiar pop-up for selecting remote sites, but the 
site information will be already filled in. (Neat, uh?) After accepting the license, 
telling Eclipse where to install, and waiting for the download and installation of  
the plugin (exactly as in the previous step) your Eclipse will be ready for Ruby on 
Rails development.

In the next chapter we will learn how to make the minimum configuration so we can 
start experiencing the power of Aptana RadRails.



Chapter 1

[ 25 ]

Summary
By now you should already be familiar with the concept of what an IDE is and you 
will hopefully be expecting to start using it for your Rails development. Using an 
IDE will help you focus on the important tasks, assisting you on those areas where 
some automation is possible. Also, you will be able to access several development 
tools like databases or source control systems from a single interface.

If you already had Ruby and Rails installed in your system, you only had to install a 
JVM, Eclipse, and Aptana and Aptana RadRails plugins. For those with an existing 
Eclipse installation, it was just a matter of installing the plugins. In any case, your 
system should be now up and ready for some configuration and a tour of the 
Eclipse/RadRails workbench.





First Steps
Let's face it! We cannot help ourselves when a new gadget falls into our hands. We 
want to try every option and take a look at all the features and all at the same time, 
if possible. Well, I'm sorry, but I'm afraid I will have to abuse of your patience for a 
little bit longer.

Before we can start programming in Rails with Aptana RadRails, we will have 
to configure our installation and learn the general concepts of the IDE. However, 
during this chapter we will also see how to create Rails projects and, after we finish, 
we'll know everything we need to start coding.

Basic Configuration
In most cases, Aptana RadRails is smart enough so you don't need to change any 
of the default values unless you want to customize any aspects of the interface. 
Unfortunately, there are some cases in which RadRails cannot figure out the internals 
of your installation and some manual configuration will be needed in order for 
everything to work properly. If that's the case, we will need to tweak a bit of our 
configuration before developing with RadRails for the first time.

But even if your installation was in the first group and everything was  
self-configured properly, it's always interesting to know what is the basic 
configuration RadRails depends on. We'll dedicate this section to explain which are 
these basic preferences. Later in this book you will find a complete reference for all 
the Rails-related configuration options.

Eclipse Preferences Dialog
As we already know, Eclipse is the underlying platform on top of which Aptana 
RadRails is built. As a nice side-effect we get a consistent way for modifying the 
preferences of each of the plugins running over the platform.

www.allitebooks.com

http://www.allitebooks.org


First Steps

[ 28 ]

The downside is that the Eclipse configuration or preferences dialog can look 
intimidating at first sight, specially if you have a large number of plugins installed, 
because you will find a lot of different sections and options that can be a bit 
difficult to navigate at first. Fortunately for us, since some versions ago, the Eclipse 
preferences screen has a built-in search feature that will help us a bit in the process.

As we said before, a typical RadRails installation will work directly after setup, 
without any further configuration. We are detailing the different configuration steps 
only for those users who need to change the defaults and as a general reference for 
everyone else.

Enough talking, let's go and see what the preferences dialog looks like and a general 
guideline for using it before starting our RadRails configuration. To open this dialog 
we have to navigate to the Window menu or the Eclipse menu in some versions 
running on Mac OS X and then select Preferences.



Chapter 2

[ 29 ]

As you can see, the dialog has two parts; to the left you have the navigation tree, and 
to the right you have the configuration values. The number of entries on the left-side 
tree will depend on which plugins you have installed. With a minimum installation 
you should be able to see at least these entries: General, Aptana, Data, Help,  
Install/Update, Internet Proxy Settings, Rails, Ruby, and Run/Debug.

If you click on the plus sign to the left of General you will see how the section 
unfolds presenting yet another sections and subsections tree. Most of these 
adjustments are just for fine-tuning and you will never need to modify them. 
Anyway, you can already start to see there can be a lot of different options and 
unless you are very familiar with the interface it is not always clear in which 
particular section to find them. Here is where the integrated search comes handy.

Suppose you want to change the encoding in which your files are saved because you 
need everything to be encoded in, for example, UTF-8. Now you would have two 
options; either you know where exactly to find this preference or you can just type 
encoding in the search box.



First Steps

[ 30 ]

Now the tree to the left will display only the sections in which there are some 
preferences matching that string, so we can find the one we want easily. If you want 
to display back the whole set of options, you only have to clear the search box. You 
can do that with a single click on the icon to the right of the box.

Now that you know how to find your way through the preferences dialog, it's time 
for taking a look at our RadRails settings.

File Encoding
This is not exactly a RadRails preference, but a general Eclipse one. However it can 
have a great impact on your development, specially if you are using non-ASCII 
characters. If you are going to share your code with other developers or deploy to 
different machines, you have to make sure that all of the instances are using the same 
encoding for your files.

In Eclipse, you can define the encoding on a per-workspace, per-project, per-folder, 
or per-file basis. By default, the encoding of the parent object will be used unless you 
explicitly change it.

Since the most common scenario is to use the same encoding for all your files in all 
the folders of all your projects, you probably want to set the encoding of your whole 
workspace and then you don't need to worry about defining the encoding for each of 
the files, since all of them will inherit from there.

You can find the encoding option by unfolding the General section and then 
selecting Workspace. By default, the system encoding will be used, and you can 
change it by selecting the Other radio button and then choosing the option from the 
drop-down box.

Connecting through a Proxy
As you know, when working with Rails there are many times when you need to 
connect to external servers, for example for installing or updating gems and plugins, 
or to synchronize your repository.



Chapter 2

[ 31 ]

If you have direct connectivity then you don't need to change anything, but if you 
are behind a proxy you will have to tell Eclipse about that.

I'm sure as a good Rubyist you are used to not repeating yourself, but unfortunately 
in this case we will have to set that configuration in two different places. Eclipse 
has a general preferences section for network connections, but Aptana doesn't use 
those options and provides a new section instead. It's a good practice to change both 
preferences sets at the same time, so all your plugins will be consistently configured.

Eclipse's connectivity options can be found under General | Network Connections 
on the left pane of the preferences dialog. Aptana's proxy can be found directly at 
the root level of the preferences tree under the name Internet Proxy Settings. The 
reason for this dual configuration is that older versions of Eclipse didn't provide 
connectivity options, so the plugin had to provide its own. Plans are that in the 
future Aptana will use the connectivity options configured at a global level.

Both sections, the one of Eclipse and the one of Aptana, are alike and they have the 
same set of options to configure.

First you will have to check the option to tell Eclipse that you will be using a 
proxy, then just specify the IP and port of the proxy machine. If your proxy needs 
authentication, you will have to provide the user and password for it.



First Steps

[ 32 ]

By default, all the network connections will be proxied except for the ones to your 
local machine. If you want to connect to other servers on your side of the proxy, 
there is no need to proxy these connections too. In that case, you will have to add the 
names or IPs of these servers to the Non-proxy Hostnames list.

Ruby Environment
For the basic configuration of your Ruby environment, you only need to tell Eclipse 
which is the Ruby interpreter it should be using. In older versions of RadRails, you 
had to make sure the interpreter was found, but in newer versions the plugin will 
directly try to find it in your system so you don't have to configure anything. If when 
installing RadRails you don't get any warnings, then it means it was able to find the 
Ruby interpreter and self-configure properly.

If RadRails cannot find your Ruby interpreter, it will prompt you to enter its location, 
or it will take you to the download page if you don't have any.

Only if your interpreter is not found in the system path, or if you have several 
interpreters installed, or if you want to launch your Ruby interpreter with any 
special command line options, will you have to configure these preferences.

Open the Preferences dialog and navigate to Ruby | Installled Interpreters.

If RadRails was able to find your Ruby interpreter it should display at least one 
entry like the one in the above screenshot. If there are no entries in this list, or if you 
have several versions on the same box and the Ruby interpreter of your choice is not 
listed, you will need to add a new one by clicking on Add.



Chapter 2

[ 33 ]

The display name is just for informational purposes. I would recommend to include 
the version of your Ruby VM as a part of the display name so it's easy to see at a 
glance which interpreter you are using.

The most important parameter in this dialog is the Ruby VM directory. This is the 
top-level directory of your Ruby installation. By top-level directory, I mean the one 
that holds bin, doc, and lib directories inside. Once you select your VM directory, 
RadRails will automatically display the VM System libraries to include.

Rails Environment
The basic configuration of your Rails environment is just the paths to your Rails and 
Mongrel scripts. As with the Rails options earlier, RadRails will try to find the proper 
scripts in your system, giving you the option to enter their paths, or install them 
automatically, if they cannot be found. The typical user will not need to change this 
configuration after the initial setup.



First Steps

[ 34 ]

If the Rails scripts were not properly configured, it would be impossible to create 
new Rails projects, execute Rake tasks, or start/stop your Mongrel servers.

These preferences can be manually changed at any time from the  
Rails | Configuration section of the preferences dialog.

The RadRails team recommends not to change these values manually if the plugin 
was able to automatically find the Rails installation, because you could end up 
with your Eclipse pointing to the Rails installation in one directory and the Ruby 
interpreter in another one, which would lead to unpredictable behavior. Unless  
you are really sure you want to modify these settings, its advisable to leave  
them untouched.

After setting your VM and the paths to the different scripts properly, your RadRails 
will already be operative and you will be able to start creating Rails projects.

Creating a Rails Project
After RadRails installation and configuration, we are ready to start working on a 
Rails project. There is just one more and obvious step: we need to create our project. 
To start the project creation process you should open the File menu and select New. 
Depending on your particular setup, the first option of your menu may be Rails 
Project. If that's the case, then you can select that option directly and the Rails project 
wizard will be displayed. If not, you can select the option Project... as can be seen in 
the following screenshot:



Chapter 2

[ 35 ]

If you had to select Project... then you will see a new dialog window with an option 
Rails and then Rails Project. This will open the Rails project wizard for you.

Creating your project is as easy as it should be. The first thing you have to provide 
is the name for your project. By default, your project will be created inside the 
directory of your workspace. My personal preference is to create my projects out of 
the workspace folder. I like to leave the workspace directory exclusively for Eclipse's 
internal use, and keep my source code elsewhere. Anyway, that's not for any good 
technical reason, but just because in older versions of Eclipse that was the standard 
way to proceed.



First Steps

[ 36 ]

If you want to use a different directory for your project, you can do so by unchecking 
the Use default location box and then browsing to your chosen location or just 
typing it into the location box. You must be careful when choosing the location since 
it's a bit tricky. The location directory you are choosing is the actual directory for 
your project, and not its parent. Notice that your directory and your project name 
don't need to match. You could have for example a directory like/my_projects/
first_project/trunk and use first_project as your project name.

By default, RadRails will create a Rails project structure (application skeleton) for 
you. When creating a new project you should always keep this option on. If you 
choose to create the skeleton, you have to select which database server type you are 
going to use and which version of Rails, which defaults to 'latest'. You will be able to 
select any of the versions installed in your system.

RadRails will also by default add a Rails server, so you can start/stop/debug 
directly from the Eclipse IDE. If the Mongrel gem is available in your system, 
RadRails will mark the Mongrel server as a default. If you prefer to use a WEBrick 
server you can select the corresponding checkbox. If you select the Mongrel option, 
but you don't have it installed, RadRails will offer the option of automatically 
installing it.

You can have both types of servers or neither of them, as you prefer. In any case, you 
can always add/remove servers at any time after your project is created.

Note there is also an option to start the server automatically after creating the project. 
Since you will usually have to configure the user/password for your database server 
—unless you are using sqlite, or mysql with a root user and no password— and you 
will need to restart the server for these changes to take effect, I prefer to uncheck this 
option and start the server manually when I finish with the configuration.

The last option in this dialog, Disable table pluralization, will modify the 
environment.rb file so pluralization is not used in Rails. The most common scenario 
is to use table pluralization and you should only disable it when working with 
legacy database schemas.

By not using pluralization you are ignoring Rails conventions and you 
shouldn't do it without a good reason.

After clicking on Finish, RadRails will call the Rails script we configured before to 
create your project. Depending on your computer, it could take some seconds until 
you start seeing RadRails is actually doing something. You will be able to see in the 
lower part of the screen the console output of this command. Most of the generated 
files will appear as links at the console, so if you click on them they will open in  
an Editor.



Chapter 2

[ 37 ]

The result of the creation of the project will be exactly the same as if you were 
running the Rails script from the command line, with one small difference. In the 
root of your rails project you will find two files named .project and .loadpath, 
which are used internally by the IDE. Those files are not really a part of your Rails 
project but just for Eclipse to know about its location and configuration.

If you are sharing your project with other developers or deploying to a different 
machine, you don't need to copy these two files. However, sharing these files could 
be handy if the whole development team uses RadRails, and you want a quick way 
for sharing the configuration throughout the different machines. Since I usually work 
in heterogeneous teams, I tend to ignore these files, but that's something for you to 
evaluate in your personal case.

Importing an Existing Project into 
RadRails
If you've been learning Rails, most probably you will already have some projects 
created, and it would be nice to have them available in RadRails. All we have to do is 
import the projects into our workspace. Even if at first sight the natural option would 
be Import under the File menu, that's not the procedure to follow. The Import option 
is used for importing projects created in different workspaces or for importing 
a directory tree into an existing project, but not for importing an existing project 
directly into a new one.

To import any Rails project into your RadRails workspace, all you have to do 
is follow the same steps as for a new project, but in this case, you don't want to 
generate the Rails skeleton since this would overwrite your project contents. Just 
make sure you uncheck the Generate Rails Skeleton option. You will also have to 
tell RadRails not to use the default location and navigate to your project's directory 
instead. The first time you are importing projects I'd strongly advise to have a 
backup copy in order to prevent any loss.

If you want to import your project from a repository using a Software Configuration 
Management tool, such as Subversion or CVS, then this is not the right way to do it. 
In that case we will be using the 'Checkout' feature. We'll talk about how to integrate 
with a Software Configuration Management tool in Chapter 9.

www.allitebooks.com

http://www.allitebooks.org


First Steps

[ 38 ]

Working with Perspectives and Views
Now we have already configured our environment and created a project, it's time to 
get familiar with the Eclipse workbench. When you are working with Eclipse you 
typically have several different areas on your workbench. The most common layout 
in Eclipse consists of the top Menu or Toolbars Area, the central Editor Area, and 
several Views distributed in side and bottom panes.

Eclipse Perspectives
During the development of a project, you are not always carrying out the same type 
of tasks. Sometimes you are programming, sometimes you are interacting with the 
database, sometimes you are synchronizing your repository, sometimes you are 
debugging, and so on.

Since all of these different tasks require different sets of tools, it really doesn't make 
much sense to try to display all the available toolbars or views all the time, but only 
the ones you need at each moment. Eclipse uses the term Perspective to refer to a 
group of toolbars, views, and features. By having different perspectives and being 
able to switch between them easily, the IDE can offer a lot of different tools while 
reducing the complexity.



Chapter 2

[ 39 ]

When you install Eclipse there are some perspectives installed by default, like 
the Java perspective for example. It is very common for complex Eclipse plugins 
to install perspectives of their own. When you install RadRails, the following 
perspectives are available: RadRails, Ruby, Ruby Browsing, Debug, Aptana, 
and Data. Each of these perspectives is specialized in a different subset of your 
development needs. You can also customize these perspectives or create your own 
ones if necessary.

You can see the list of perspectives available and change between them in two 
different ways. You can find the Open Perspective icon on the top-right part of  
your screen.

By clicking on that icon you will get a drop-down list of the recently used 
perspectives. If you want to see all, just select Other.... You can also see different 
icons for the related perspectives in the same tab. If you prefer to see the title of the 
perspectives, you can right-click on top of them and mark Show Text. You can find 
the same Open perspective functionality directly under the Window menu.

There are also ways for moving with keyboard shortcuts (Eclipse calls them Key 
Bindings) between the different open perspectives, but for now it will be easier if we 
don't try to be exhaustive about all the possibilities.

Eclipse IDE is very rich in options. Many of the features can be accessed in 
different ways (context menus, toolbar icons, shortcuts, and so on). Don't 
worry if you don't know them all at first. I've been working with Eclipse 
for over four years and I still get surprised once in a while by discovering 
some things I didn't know (not to mention that the IDE is very alive and 
they keep adding new features on a regular basis).

Eclipse Views
As we said earlier, the Eclipse IDE is composed of a main Editor Area, which we'll 
explain further in the book, and several views distributed among different panes. So, 
what's a view?



First Steps

[ 40 ]

Views are a very important part of the Eclipse IDE and of the RadRails plugin 
and they are one of the things that make the difference between Eclipse and a 
programmers' editor. Views can be classified roughly in any of these three groups: 
Resource Navigation, Information Display, and Support Tools. Views can interact 
with the Editor Area when appropriate.

Just to make it easier to understand the concept, this is a non-exhaustive list of some 
of the available views:

Ruby Explorer: This displays a tree of your Rails projects and files, providing 
information about the structure of your code (classes, variables).
Outline: This displays the structure/hierarchy of the objects in the current 
editor (modules, classes, methods).
Output console: This displays general output of the activities going on.
Search Results: This shows matches of your ongoing searches.
Rake Tasks: This displays all the available tasks, allowing you to  
launch them.
Rails Plugins: This lets you install, remove, or update plugins.
Ruby Gems: This lets you install, remove, or update gems.
Rails Generators: This lets you run the Rails code generators.
RI: This displays Ruby documentation.
Debug: This lets you control the execution of an executing Rails application.
Variables: This shows all the variables with values in scope  
when debugging.

There are more views, but as you can, see each of the above  provides interesting 
capabilities for software development. We will see later in this book the details 
about all the views important for developing with Rails, but now let's see the general 
concepts you should know when working with views in Aptana RadRails.

The first thing you should know is how to open a view. This option is found in 
the Window menu, by choosing Show View. There are several views to choose 
from directly. These views are related to the perspective you are using. However, 
sometimes you want to display a different view, and you can do so by selecting 
Other.... A dialog displaying all the available views, sorted by category, will  
be shown.

•

•

•

•

•

•

•

•

•

•

•



Chapter 2

[ 41 ]

If you select any of the views, it will display. Notice the views already displayed 
appear faded and you cannot select them. When a view opens, it will dock itself 
by the pane in which it was opened last time. If it was not used before, it will stack 
on top or by the side of some of the opened panes. Fortunately, we can arrange the 
views as we want and group them to have a more comfortable interface.

To move a view to a different position, just click on the title and without releasing 
the mouse button drag it to the desired location. When moving the view around, you 
will see a rectangle indicating where it would be docked if you release the button. 
You will notice some icons appear as you move the view around the screen. When 
you see an arrow, it means the view will position itself in a new pane occupying the 
place indicated by the tip of the arrow. If a folder icon is shown, it means the view 
will be positioned as a new tab in the pane below the cursor. If you want to rearrange 
the tabs for the different views in a pane, you can just drag-and-drop to move them.

To get comfortable with the environment, just move around some of the views. At 
first it takes a bit of practice with the mouse, specially when you want to create panes 
on the corners of the screen, but after a while it feels natural arranging the views  
like that.



First Steps

[ 42 ]

If you mess up the interface, you can always reset the perspective to  
the default presentation by choosing Reset Perspective under the 
Window menu.

You can maximize or restore any view by double-clicking on the view's title tab. At 
the top-right corner of every view, there are always a pair of icons representing a 
minimized and maximized window respectively.

When you maximize a view, the top-right icon will change to represent overlapping 
windows. Clicking on it will restore the view to the original size and location.

Minimizing is as easy as clicking on the small icon, but there is a catch to this. Eclipse 
will try to leave as much free screen space available as possible when minimizing 
views, and at the same time it will give you a way to quickly access your minimized 
views. In order to do so, when you minimize a view, all the views sharing the same 
pane get minimized and they will display as icons on a new toolbar by the border of  
the workbench.

As you can see in the figure above, I have minimized two different view panes and 
now they display as two sets of icons by the side of the window. You can restore the 
view group to the original location by clicking on the overlapping windows icon of 
the corresponding toolbar.



Chapter 2

[ 43 ]

You can also click directly on the icon representing the view you want to display, 
but in that case it will be opened as a Fast View. A fast view is a view like any other, 
except that it gets automatically minimized when you click on any other window. 
If you want to minimize a view as a fast view, but you don't want to minimize the 
whole pane, you can right-click on top of the view title and select Fast View.

The minimized view icons will position themselves at the left, right, or bottom of the 
workbench, depending on where they were originally located. When you minimize 
a view, there is a small animation in Eclipse to help you see in which border of the 
window the toolbar will be docked.

The last thing we need to know for now is yet another trick about positioning. 
Sometimes it's handy to have a non-docked window that can float over any of 
the workbench areas. You only have to right-click over the view title and select 
Detached. When you want to go back to the usual docking, just repeat the operation 
over the title of the detached view.

Summary
Before starting working with Aptana RadRails, we had to make sure the default 
configuration was appropriate and change it where necessary. We reviewed the 
configuration for our Rails scripts, our Ruby interpreter, the file encoding, and the 
connectivity from behind a proxy. During the process, we also took a look at what 
the preferences dialog looks like and how we can search options quickly.

After configuring Eclipse, we created a new Rails project, and we also learned how 
to import existing projects into our workspace. But before starting to work on those 
projects, we needed to understand the general concepts behind this IDE.

In Eclipse and RadRails, all the work is basically done in the Editor Area or in 
different support views and they are grouped together in Perspectives. Now that 
we know how to switch perspectives, and how to open and arrange views, there is 
nothing to stop us from developing our first application.





Your First Application
Here we are! programming in a powerful language specially designed for the 
Web and using an IDE that promises to help us with many of the mechanical tasks 
involved in the coding.

If you have been already programming with Rails, you probably know that if 
we take advantage of scaffolding we can have a simple web application for table 
maintenance in a matter of minutes (yes/no typo here, it really takes just a few 
minutes). And we are even talking about the database table creation process.

If we wanted to add validations, a nice design, and some more complexity we 
would be talking about a few hours. Still pretty impressive, depending from which 
programming language (or framework) you are coming.

The truth is, creating the wireframe of your application in Rails is quick and easy 
enough even from the command line, but we'll be learning in this chapter how to do 
it a bit more comfortably by using RadRails for creating your models, controllers, 
database migrations, and for starting your server and test your application.

Basic Views
Most of the time when working with our IDE we will be using the Editor Area, of 
which we'll be talking in the next chapters of this book. Apart from that, two of 
the views we will be working with more frequently are the Ruby Explorer—the 
enhanced equivalent of the Rails Navigator, if you were using RadRails Classic—and 
the Console.

Both of these views are fairly easy to use, but since they will be present at almost 
every point of the development process, it's interesting to get familiar with them 
from the beginning.



Your First Application

[ 46 ]

The Ruby Explorer View
If you have already opened the Rails perspective, then you should be seeing the 
Ruby Explorer at the left of your workbench. If you still haven't opened the Rails 
perspective, you should do it now by using any of the techniques we discussed  
in Chapter 2.

This view looks like a file-tree pane. At the root level, you will find a folder for each 
of the projects in your workspace. By clicking on the icon to the left of the project 
name, you will unfold its files and folders. The Ruby files can be expanded too, 
displaying the modules, classes, variables, and methods defined in the selected file. 
By clicking on any of these elements you will be taken directly to the line in which it 
is defined.



Chapter 3

[ 47 ]

Before navigating through the contents of a project, we have to open it. Just  
right-click on its name and choose Open Project.

When opening a project, Eclipse will ask you if you want to open the referenced 
projects. By default, your projects don't have any references and that's the most 
common scenario when working with a Rails application.

If you want, you can include references to other projects on the workspace so you 
can open and close them together. To view and change the project references, you 
can right-click on the project name, then select Properties. Notice you can also get 
here from the Project menu by selecting Properties. In the properties dialog, you 
have to select Project References. Here you will see a list of all the available projects 
in the workspace. Just check or uncheck all the projects you want to reference.

Once your project is open, the mechanism for navigating the contents is pretty 
straightforward. You can open or close any sub-folders and you can right-click 
on any item to get a context menu. From this menu you can perform common file 
operations like creating, renaming, or deleting a file.

www.allitebooks.com

http://www.allitebooks.org


Your First Application

[ 48 ]

We will see more details about creating new files when talking about the Editor 
Area. There is also a Properties option from where you can change the encoding for 
a particular file, or the file attributes (read only, for example). The Properties option 
is also available at the project level.

Also in the context menu, you can see there is a Tail option. This will work like the 
tail command in UNIX, displaying the contents of a file as it's changing. This option 
is especially useful for a quick monitoring of the log files of your application.

You can also find in the context menu two options with the names Compare With 
and Replace With. If you select either of them, you will see a new menu in which 
there is an option named Local history. This functionality is really interesting. You 
can compare your current version against an older version of the same file, or you 
could replace the contents with a previous one. This can be a life-saver because when 
using it on a folder the local history will contain copies even of deleted files.



Chapter 3

[ 49 ]

Comparing a file against another copy is a powerful tool, which can also be used 
when working with repositories or to compare different files between them. Let's try 
it and see how it works.

Open any of the files in your project tree by double-clicking on the file name.  
Now go to the Editor Area and add some lines with Mumbo-Jumbo text. After you 
are done, click on the save icon of the toolbar or select Save in the File menu. Now 
let's go back to the Ruby Explorer, double-click on the file name and select Compare 
With | Local History.

You will see there are some entries here, one for each time we saved the file. If this 
was the first time you worked with the file, then there will be only two versions, the 
original and the one you just saved. Double-click on the oldest local version you have.

Now a new editor will be opened. The editor is divided into three panes, the top one 
displaying structural differences, the bottom-left one with the code of the current 
version, and the bottom-right one with the old version of the code.

At the top pane, you will see the structural differences between the versions being 
compared. For every added or deleted method or variable—at instance or class level, 
you will see the name of the element with an icon displaying a plus or a minus sign. 
If a method exists in both versions, but its content was changed, the name will be 
displayed without any additional icons.



Your First Application

[ 50 ]

When reviewing the differences/changes you will see the editors at both sides are 
linked with a line representing the parts that are not equal between the files. When 
you are on a given change/difference you can select the icon for 'copying current 
change from right to left' (or the other way round, depending in which of the files the 
change is), which will override the contents of the left editor with those of the right. 
You can also just manually edit or copy/paste in your editor as usual.

There is an interesting icon labeled 'Copy all non-conflicting changes from right 
to left' that will do exactly as it promises. Any changes that can be automatically 
merged, will be incorporated to your editor. Depending on the differences between 
the files, the icon could be the contrary 'Copy all non-conflicting changes from  
left to right'.

When you finish comparing or modifying your current editor, remember to save the 
contents of the editor in order to keep your changes.

If you just wanted to review the changes without any modifications, you can directly 
scroll down the editors, use the 'Previous' or 'Next' icons, or use the quick marks by 
the right margin.

You can also compare two files instead of comparing a file against an older version. 
Go to the Ruby Explorer and select one of the files, then hold down the control key 
and select another one. With both files selected, you right-click and select Compare 
With and then Each Other. Once opened, the compare editor works exactly the same 
as when comparing with an old version of the same file.

Ruby Explorer Top Icons
Before we finish with the Ruby Explorer, there are still a few functionalities we want 
to take a look at.



Chapter 3

[ 51 ]

By default, the Ruby Explorer and the Editor Area are not linked, meaning that 
when I open a file from the Explorer the editor displays that file but not the other 
way around. If you select an open editor, it will not be selected for you in the Ruby 
Explorer. Sometimes, it's handy that both views are not linked, but most times I 
find it more convenient to have the current file automatically selected in the Ruby 
Explorer. Just select the icon with the two arrows on the top right of the Explorer 
view. By clicking on this icon you will toggle the linked views function.

You can also access this option from the menu you get by clicking the small triangle 
to the right of the icon.

The next icon to the left, with a minus sign, is used to fold all the items. If you have 
a lot of sub-folders and you have opened lots of them, it comes handy to put some 
order in your view.

When you have lots of projects in the workspace, even if most of the projects are 
closed, still they occupy a place in your Explorer view. Often you don't want to 
see the whole list of projects but just to focus on your current project and hide the 
others. If you right-click on the name of your project in the Ruby Explorer and select 
Go Into, you will get exactly this functionality. You can also activate it through the 
Navigate menu on the top of the workbench. Notice you can do this on any given 
folder, and not just at the root project level.

If you go into any project or folder, then the first three icons of the Explorer view 
toolbar can be used to navigate your tree in a browser-like way. You can go back or 
forward to the last location, or up a level by using these controls. Unless you have 
gone into a project or folder, the icons will be deactivated.

The Console View
The console is the standard way for displaying any text output, especially when 
launching processes or applications such as Rake tasks, servers, or Subversion 
commands. Some other actions, like selecting Tail from the Ruby Explorer, will use 
an output console too.



Your First Application

[ 52 ]

When any of these actions is launched, a new console will be displayed in the 
console view. If the console view is open but it's in a tabbed view and it doesn't have 
the focus, the title of the tab will be displayed in bold so you can see that there is new 
output requesting your attention.

When you launch a command that opens a console, it will not open a new view, 
but will reuse the existing view tab, hiding the contents of the former console. 
Nevertheless, the old console remains active in the background. You can select which 
of the active consoles to display by selecting the icon with a screen (labeled 'Display 
selected console'). Selecting the icon itself will rotate through the opened consoles, 
and selecting the small arrow will present a list so you can select which one  
to display.

By default, when an action is launched or a console receives some output, that 
console will move to the top hiding the others. You can change this behavior by 
'pinning' the current displayed console. Selecting the icon with the pin (see above 
screenshot) will make your console always be on top unless you explicitly select a 
new one from the opened consoles list.

The icon clear (see above screenshot) represented by a paper sheet and a cross on the 
corner just cleans the console output. The console stays open and it will display all 
the new output.

The scroll lock icon (see above screenshot) will prevent the console from scrolling 
when new output is received. For fast changing output is very useful since 
otherwise, it gets impossible to keep track of what's going on. This icon has a  
toggle-like functionality. You can switch it on or off with a single click.

If you want, you can have several console tabs opened at the same time, each of them 
displaying a different console output. To do so, unfold the open console menu (see 
above screenshot), which is the small down-arrow by the top-right of your console 
view, and then select New Console view. That way you can have different outputs 
displaying side by side instead of having to keep selecting from the drop-down.



Chapter 3

[ 53 ]

Depending on which type of console you are displaying, there will be some additional 
icons. The captions on top of the icons are self-explanatory, and what you can do with 
these icons is usually any of these actions: stop the current process or server, close all 
the terminated consoles, close the current console, and make the console view display 
automatically whenever it receives new output. This last option will cause the console 
view to show directly instead of just marking the tab title in bold.

Notice that in some cases the console can prompt you for some input and it will 
keep waiting until you answer. In that case, you have to type directly in the console, 
which will be the Standard Input for the process. For example, if you are trying to 
launch a process that would overwrite some files, the process could ask what to do 
(yes/no/always).

During the next sections in this chapter, we will be using the console to monitor our 
generators and to check everything is working properly.

The Generators View
You know that, when you work with Ruby on Rails, there are several generators 
available, which you can invoke from the command line. By using these generators, 
you can create controllers, models, migrations, scaffolds, unit tests, or plugins, for 
example. A generator will create one or several files in the appropriate places of your 
Rails project, so you can customize them to meet your needs, saving you from all the 
mechanical and boring process of creating the files with the proper syntax inside.

Doing this from the command line is easy enough, but you do have to remember 
which flags you can use, change context from your code editor to the command line 
and back, and so on. By using the Generators view integrated in RadRails, you can 
comfortably create any of the available generators in a more convenient way.

In the default Rails perspective, you can find the Generators view as a tab in the 
lower pane of your workbench. If you cannot see the Generators view, you can go to 
the Window menu, select Show View, and select Generators.



Your First Application

[ 54 ]

The first thing you have to do when opening the Generators view is make sure there 
is a Rails project selected in the Ruby Explorer. If you don't have a Rails project 
selected, then select one now. You can also select the project you want to work with 
from the 'Select Rails Project' icon in the toolbar of this view.

In the drop-down list by the left of the view, you will see a list of all the existing 
generators for the current project. As you probably know, in Rails you can install 
new generators for your projects. To be sure you are displaying the right list of 
generators for the selected project, you can click on the 'Refresh' icon located at  
the top-right corner of the view (it's the icon with two arrows). After refreshing,  
we are sure the generators in the drop-down list are the ones available for the  
current project.

Once you select any of the generators, there are several things you can do with them. 
If you are not sure about what a generator does, you can select the Help button. This 
will display a pop-up window with the explanation for this generator. Let's select 
controller in the drop-down list, and then click on Help to see how it works.

Now let's go back to the Generators view by clicking on the tab name. Apart from 
the drop-down list and the Help button there are some other options in this view. 
Let's start by explaining the long drop-down list close to the generators list. Here you 
can type any parameters you want to supply to the generator. Depending on which 
type of generator you are launching, the number and meaning of the parameters 
may vary. Check with the help of the generator if you don't know which are the 
available parameters. This input element is a drop-down list instead of a simple text 
box because you can open the list and see the history of the parameters you used in 
previous executions. (Note that the list will display the recent entries only for this 
Eclipse execution. When you close the IDE the list will be cleaned.)

When working with the generate script in Rails, you can do one of two things: either 
creating or removing the files for the selected generator. There is a radio button 
below the generators list in which you can select which of the two actions to perform.

Finally, when launching a generator, there are some flags you can use to control  
the behavior of the script. You can find all the flags as checkboxes. The available 
options are:

Pretend: It just executes the generator displaying the output but without 
making any real changes in the file system.
Force: If there are any existing files, the generator will overwrite them 
without asking for your confirmation.
Skip: If there are any existing files, they will be automatically skipped.
Quiet: This will execute the script without displaying any output.

•

•

•

•



Chapter 3

[ 55 ]

Backtrace: In the case of any errors, this will display debugging information.
Use SVN: Changes in the file system will be reflected on your repository. In 
order to do so, the 'svn' command must be available in the path.

Now we know our way around the Generators view, we are going to create a  
very small application by using different generators. Even if it's possible to get 
everything with a single generator, for the sake of learning the mechanics, we will 
create the models, migrations, and scaffolded controllers needed for a simple  
two-table maintenance.

Generating Models and Migrations
Our small application is going to be for the maintenance of two tables: Books and 
Comics. The first thing we'll need for this application is to create the tables and the 
models that will represent them from the Ruby layer.

We are going to use these tables as examples, so we are going to keep them 
unrealistically simple. The Books table will have only a title, author name, and date 
of publication. The Comics table will have the same fields and an extra field for the 
illustrator name.

To create the models and the corresponding migrations we will go to the Generators 
view and select Model from the drop-down list. As you probably know, the 
parameters for generating a model are the name of the model itself and then an 
optional list of pairs of field names and types separated by a colon (notice there is 
no space between the name, the colon, and the type), so we will write the following 
parameters on the parameters field:

Book title:string author_name:string publication_date:date

After we type in the parameters, we have to make sure the radio button below the 
generators list is set to Create and then we can click on Go.

After some seconds we will be presented with the console output. Even when doing 
routine tasks, be sure you take a look at the displayed output. Sometimes there are 
small errors, or the application may need some kind of confirmation if there are 
existing files, and you would get that information as part of the output. Besides, 
recent versions of RadRails will present the output as hyperlinks to the generated 
files, so you can click at any file name directly on the console and it will open in the 
appropriate editor.

•

•



Your First Application

[ 56 ]

After the generation is done, we can go to the Ruby Explorer and look for the  
app | models folder of our project. A file with the name book.rb should be there. 
Also, take a look at the directory db | migrate. A new file named 001_create_books.
rb should exist. If you open this file, you will see the commands for creating and 
deleting the Books table in our database.

Now let's repeat the operation for the Comics table. First we go to the Generators 
view and select Model in the drop-down list, then we type the following arguments 
(notice it's a single line):

Comic title:string author_name:string illustrator_name:string  
  publication_date:date

After getting the console output, if you go to the Ruby Explorer you will see the 
newly created files.

Notice it's also possible to generate a migration file without any model code  
(for example, when you are adding or removing a column) just by using Migration 
instead of Model from the generators list. Also, it's possible to generate a model 
without a migration by passing the extra parameter --skip-migration.

Running Your Migrations
We already have our migrations describing the tables to create, but we still haven't 
made any changes to the database. In order to actually create the tables, we will have 
to run our migrations.



Chapter 3

[ 57 ]

The first thing we have to do is configure our database connection. Look in the Ruby 
Explorer for the file named database.yml in the folder config. You will have  
to modify this file and specify your adapter type, host, database name, user,  
and password.

If you are going to use SQLite as your adapter, then you don't need to create the 
database beforehand since it will be done automatically for you. However, if you 
are using a different adapter you have to create the database before trying to run 
the migrations. If you are using Rails 2 and the user configured in your database.
yml has enough privileges, we can take advantage of the built-in Rake task db:create 
to automatically create your database. If you are using an older version of Rails, or 
your user doesn't have privileges for creating databases, you will have to create it 
manually in your DBMS.

To create your database using a Rake task, go to the Ruby Explorer and right-click on 
the name of your project. In the context-menu, open the Rake option and then select 
db and create. This will launch the selected Rake task. Look at the console so you can 
see if there were any errors.

With the database created we can already run our migrations. We can execute the 
Rake task from the context-menu as we just learned, but there is a specialized Rake 
Tasks view, which provides some more functionality. Even if we don't need all that 
functionality at the moment, we can use it for running our migrations. Open this 
view by selecting the Rake Tasks tab. If you cannot see it, then open it from the 
Window menu, by using the Show View option.

www.allitebooks.com

http://www.allitebooks.org


Your First Application

[ 58 ]

You will see this view looks pretty similar to the Generators view. Make sure your 
project is currently selected on the Ruby Explorer then hit the Refresh symbol of 
this view. Once the drop-down list is refreshed, you have to select the task with the 
name db:migrate and click on the Go button. After some seconds, you should see the 
results of running our migrations on the Console. If everything went well, now we 
have our tables created on the database.

Generating Scaffolds
Now the Models and Migrations are created, we will have to create the Controllers 
and Views so we can start playing around with our application. Generating a 
controller is as easy as generating a model or a migration. If you go to the Generators 
view, you can see there is an option named controller in the drop-down list. If we 
were to use that option, we would get an empty controller, and some related files 
and folders for testing purposes.

However, Rails provides a more convenient way of creating a controller if you  
are going to use it for table maintenance. Of course we are talking about  
generating Scaffolds.

Obviously, you never want to use exactly what the scaffold provides, but you know 
how it is with programming. If you have to start from scratch, you feel lazy and it 
takes a while to get up and running; but if you already have some code and you only 
have to modify it then the things get done much more quickly.



Chapter 3

[ 59 ]

Instead of using the Generators view to generate a stand-alone controller, we can 
generate a controller containing the source code for all the methods provided by the 
scaffold. Besides, we will get the views, so we can customize them as we please.

This functionality is provided by the Scaffold generator. This generator will create 
your controller, your views, and if the model doesn't already exist, it will create both 
the model and the migration file too.

Even if this generator can create the whole set of files, if you prefer to, you still can 
generate your model first together with the corresponding migration, then run  
your migration, and then run the Scaffold generator. As long as the name of the 
Model and that of the Scaffold match, everything will be fine and you will not get 
any errors.

We will create now the scaffolded controller for the model Comic. Go to the 
Generators view and select Scaffold from the drop-down menu. We will write 
Comic --skip-migration as the argument, and click on Go to launch the generator. 

The '--skip-migration' argument is necessary because we previously 
created the migration, and the current scaffold for Rails 2 will stop if the 
migration file exists, without giving the option to ignore or overwrite.
If you are generating a Scaffold without first creating a migration, don't 
use that argument.

As usual, after some seconds you will see the output in the console telling you about 
the generated files. Since the Comics model already existed because we created  it in 
a previous step, you will see in the console this file was skipped by the Generator. 
To see the scaffolded controller, you can go to the Ruby Explorer, and open the file 
comics_controller.rb under the folder app | controllers, or you can directly click on 
the comics_controller.rb link in the console. When the file opens, you will see the 
methods are coded here. If you need to change any of them, you only need to modify 
the existing source.



Your First Application

[ 60 ]

Also, if you take a look at the app | views folder, you will see a new folder comics 
has been created for you. Inside this folder there are all the necessary views for our 
small application. Notice a layout named comics.html.erb has been generated in the 
folder all | views | layouts.

Now let's generate the scaffold for the model Book. Go to the Generators view, select 
Scaffold from the drop-down menu, write Book --skip-migration as the argument, 
and Click on Go. The console will display all the files automatically generated for us.

This is starting to look like a good starting point from which we can customize our 
application without having to take care of the mechanical details of creating classes, 
views, and basic methods.

I know what you are thinking; this looks OK, but you want to see it running at once 
and see how it looks. You know, your wish is my command, so let's start our Rails 
server and play with our small application.

Starting Your Server
Starting your Rails server from RadRails is really easy, but it may require just a little 
bit of setup. If you remember, when in Chapter 2 we were creating a new project, 
there was a checkbox to create a Mongrel server.



Chapter 3

[ 61 ]

Creating a server in RadRails will allow us to start, stop, or restart our servers 
directly from the IDE and get the output in the integrated console, rather than having 
to work from a command line.

If you didn't create a server when creating your project, you can do so now.  
Right-click on the name of your project in the Ruby Explorer, select New and then 
Rails Server. We'll go about the server options later in the book, so for now it's OK to 
accept all the default options.

Just a quick note, if you want to work with a Mongrel server, you must have it 
installed in your system. If you select to create a Mongrel server, but you haven't 
installed Mongrel, RadRails will ask you if you want to have it automatically installed.

If you had any problems with the automatic installation, you could try to install 
Mongrel manually as a gem by opening a command prompt and executing:

gem install mongrel_rails

Note that in some OS you will need either a privileged user or to execute this 
command via sudo (sudo gem install mongrel_rails). Further in this book you will 
learn how you can install gems directly from the IDE without having to go to the 
command prompt, but since we are still in our first steps we will have to wait for a 
while yet.



Your First Application

[ 62 ]

Now that we already have a Rails Server configured, we only have to start it. We are 
going to use a new view for that. The name of the view is Server and it's one of the 
default views in the Rails perspective. If you cannot see it, just open it as usual from 
the Show View option of the Window menu.

In this view, you will see an entry for each configured server (only one if this is your 
first project with RadRails). We are going to start our server, so make sure your 
database is running or start it if it's not. Now, right-click on the entry corresponding 
to the project we are working with and select Start.

After a little bit,you will see the console view displaying the usual server output. 
Once you see the server is started, we are going to try our application. Directly at 
the console view toolbar, there is a Launch Browser icon. Alternatively, you could 
go back to the Server view, right-click on the name of your server and select Launch 
Browser. In any case, the integrated browser will open and you should be seeing the 
Rails index page.

First we are going to take a look at our Books table maintenance functionalities.  
After the host and port of the URL, write books, so it will look something like  
http://localhost:3002/books (don't change the port number in the URL, or you 
will not be able to connect to your server).

In the browser, you will see an almost empty screen with the title Books Listing 
and a link to add a new book. Click on the link and a form for entering the book 
information will be presented.



Chapter 3

[ 63 ]

After entering some example data and accepting the form, you'll be redirected back 
to the listing screen, in which you can already see your brand new book. You can 
add more books, edit, show, or delete books.

If you change the world 'books' to 'comics' in the URL of the integrated browser, you 
will see exactly the same but for the Comics table.

Now with this skeleton created, we can start customizing our application, changing 
the appearance, adding validations, whatever needs to be done, but without all the 
hassle of the creation of the basic structure.

Monitoring Your Server
You know how convenient is to take a look once in a while at the Rails log file to see 
which actions are being called, which parameters are being passed, or what SQL 
is being sent to the database. By using RadRails, we can have one integrated view 
continuously monitoring the log of our server.

Go to the Ruby Explorer, open the log folder and right-click on development.log. 
Now select Tail from the context menu. By doing so, you will be display in the 
Console view the contents of the development log file as they are being written.



Your First Application

[ 64 ]

If the Console view is not in the foreground, click on the tab named Console to 
bring it to the front. Now go to the integrated browser and just navigate around a 
bit, creating or editing some records. You will see in real time the information being 
written to the log of your project.

Here the Pin Console icon comes in most handy. Otherwise, the console output  
from the server and that of the log viewer will keep fighting to become the  
focus/foremost, since by default every time there is new output in any of the 
consoles, it will be brought out to the front If you’d rather just stick to seeing one or 
the other, you ought to 'pin' it down.

This tail feature is ok for a quick inspection of your logs. However, since version 
1.0 of RadRails there is a new view, the Tail view, which has some more advanced 
features at the extra cost of a minimal setup. We will see how to use that view later in 
this book.



Chapter 3

[ 65 ]

Summary
In this chapter, we have learned how to use two of the views we will be using most 
of the time when developing with RadRails. By using the Ruby Explorer, we can 
browse the structure of our projects and make file-related tasks, which include 
working with the local history or file-comparison. From the Console view, we will 
have access to the output of every process we launch from our workbench, so we 
don't need to go to the command line or use a third-party application for monitoring 
the results.

We have also seen how to use the Generators view in order to create models, 
migrations, controllers, and scaffolds, and how we can start our Rails server and use 
an internal browser for quick testing of our applications, making the development 
process much more comfortable, and letting us focus on what we need to do and not 
on which tool we are using.





Writing Ruby Code
So far, we have been using RadRails only as a convenient tool to make our work a bit 
more comfortable and forget about using the command line. It's nice not having to 
remember every single command and option, but RadRails is much more than that.

In this chapter, we will learn how to use tools that will boost our productivity and 
will help us write our code in a much easier way, letting us concentrate on what we 
need to do and freeing us from routine tasks.

Even if you can write Ruby code in any plain-text editor, things get considerably 
easier when your editor lets you navigate between your different classes with 
a single click, assists you by giving you all the possible methods for any object, 
outlines the structure of your classes, or provides code templates so you don't have 
to remember the exact syntax and parameters of every method.

By using RadRails, we will have access to all of these features, and even some 
more. Once you start taking advantage of the possibilities of this IDE, you will start 
wondering how could you possibly live before without using it.

A Quick Note about Keyboard Shortcuts
For many of the not-so-frequently-used actions, we will just look them up in the 
corresponding menu bar or right-click and select from the context menu. However, 
when you are writing code, often you will find yourself not using the mouse but 
directly using the keyboard shortcuts (Eclipse calls this feature Key Bindings).

For example, usually when you are typing and you want to find a word in a 
document, you don't want to take your hands out of the keyboard and open the 
Search menu with the mouse. You just want to click a couple of keys (Ctrl+F) and 
have the dialog in front of you, ready for entering the text to find.



Writing Ruby Code

[ 68 ]

Take into account that in Eclipse many of the shortcuts are context-sensitive, so 
when you press the key combination it will launch a different option depending on 
where you have the focus at that moment. For example, if you press Ctrl+O when 
you have the focus on the Editor Area, then a Ruby tool called Quick Outline will be 
presented, but  when you do the same action having the focus on the Ruby Explorer, 
the dialog for Open File will appear instead.

When you have been working with the IDE for a while it just feels natural, but at the 
beginning it might seem a bit annoying that the same shortcuts can render different 
results. Of course the rationale for this behavior is that having non-context-sensitive 
shortcuts would reduce the number of operations we can do without using the 
mouse when editing our code. Still, at the beginning it might feel just a bit odd, so 
just give yourself some time until you get used to it.

In this chapter some keyboard shortcuts will be mentioned. Note that the key 
combinations are valid for Windows and Linux users. For Mac users, the key 
bindings should be the same, but using the Command key instead of Ctrl. Later in this 
book, in the chapter about Preferences, you will learn where to see and modify all the 
key bindings for the IDE.

The Ruby Editor
Most of the time we spend developing a Ruby on Rails application, we are writing 
source code. Thus, it's just logical to expect that a good IDE will provide the 
necessary tools to make the coding as comfortable as possible.

As you probably remember from the first chapter of this book, when you install 
Aptana RadRails, one of the key components that comes bundled is the plugin Ruby 
Development Tools (RDT). RDT provides some really useful views related not to 
Rails itself but to pure Ruby.

One of these excellent tools is the Ruby Editor, in which we will write all the code for 
our Models, Controllers, Tests, and Libraries. We will not use this editor for writing 
our RHTML, ERB, YAML, JS, or CSS files, since Aptana provides more specialized 
editors for these tasks, as will be seen in the next chapter.

After installing RadRails, the Ruby Editor will open by default when you open any 
file with a .rb extension from the Eclipse IDE. Files with the extensions .rbw, .cgi, 
and .rake will also use this editor, which will be used too for some special file 
names like Rakefile. If for any reason your source file has a different extension, you 
can still open it with the Ruby Editor by right-clicking on the file name in the Ruby 
Explorer and selecting Open With and then Ruby Editor.



Chapter 4

[ 69 ]

In Chapter 8 you will see how you can create associations between any extensions 
and the different specialized editors available in Eclipse.

In the previous chapter, we generated a file named comics_controller.rb. We can 
now open this file to start getting familiar with the Ruby Editor.

Syntax Highlighting
The first thing you will notice is the syntax highlighting. The editor will colorize the 
coding elements using different colors and font styles, so you can follow the source 
code in a more comfortable manner.

In our controller you can see how the comments are presented in green, the 
keywords in purple, the instance variables in dark blue, the symbols in red, and 
the string literals in light blue. Other language elements such as global variables or 
regular expressions get their own highlighting too, even if we cannot see it in our 
controller since we don't have any right now.

If you don't like the default color schema, or if you are having difficulties in reading 
it because of your screen or for any other reason, it is possible to change it and adapt 
it to your needs.

You only have to go to the Window menu, then select Preferences. In the preferences 
dialog, open the Ruby option, then Editor, and finally Syntax Coloring.



Writing Ruby Code

[ 70 ]

At the bottom of the Syntax Coloring pane, you can see a sample of the current color 
schema. Above that, there is a box titled Element. If you click on the plus sign by the 
left of the word Ruby, all the possible language elements will appear.

Now you can select any of the elements, so you can see and change the current 
configuration. Just for the sake of trying, you can select the label keywords. You will 
see the current configuration is bold with a foreground color of purple. Just play a bit 
and change it to Italic or Underline to see the effect. You will get an idea.

If you change the current syntax highlighting too much and want to get back to the 
starting point, you can always select Restore Defaults.

Outlining the Structure of Your Ruby 
Code
When you are writing a program in any language, it always helps to have an 
easy way to outline your project, browse the structure of your classes, and see the 
hierarchy and the contents without all the implementation details.



Chapter 4

[ 71 ]

This is specially useful in a language like Ruby and a framework like Rails, which 
encourage highly structured code and small methods whenever possible to achieve 
the DRY (Don't Repeat Yourself) principle. Since, typically, your methods will be 
composed of just a few lines, you will probably end up with a lot of small methods 
and maybe also with a bunch of instance or class variables to control the status of 
your objects or share information between the different methods.

Apart from the inner structure of your objects, another important point about the 
structure of your application is its class hierarchy. Being able to easily browse and 
navigate the hierarchy of your objects makes it easier to follow the track of the 
different inherited methods and properties. Moreover, by easing the representation 
of your hierarchy, you will feel encouraged to design your application in a 
structured way.

In addition to the features we already went over when talking about the Ruby 
Explorer in Chapter 3, Eclipse and RadRails offer different views and tools for 
outlining your project's contents and make your coding faster and more comfortable.

Quick Outline
First of all, let's open the code of our comics_controller.rb file under the folder  
app | controllers in our project.

If you right-click over any part of the editor view, you will see an option called 
Quick Outline. As usual, close to the name of the option you have the keyboard 
shortcut for invoking this option (Ctrl+O).



Writing Ruby Code

[ 72 ]

When the Quick Outline opens, you will see an outline of all the modules and 
classes in your current source file presented as a tree. By clicking on any of the 
elements of the tree you will go directly to that part of your source code in your 
editor. This comes in handy for quickly moving between different methods or for 
going directly to any variable declaration.

In our case, when we outline the code of our comics controller, we will see a first 
level representing the class itself and then different entries for the methods and 
the instance variables used in this class. Below the methods, we will see the local 
variables they use. When you click on any of these elements, the outline will close 
and your cursor will be positioned at the declaration of the element you selected.

The order in which elements appear is the same in which they are defined in the 
source code. If you prefer to have alphabetical sorting, then you can select the down 
arrow at the top-right corner of the Quick Outline dialog and select the Sort option.

In our short example, we can see a sample of what a quick outline can look like, but 
depending on which source code we are working with we can see more element 
types represented in this tree.

When we are working with a source code in which explicit require or load 
statements are present,, there will be an entry name require/load declarations on top 
of your tree. Under this option you will find the names of all the requested files. Even 
if the require or load statements appear scattered through your source code, they will 
be presented grouped together in the outline.

You will also find a tree branch for each of the Classes or Modules defined at the top 
level of your source file. Under each class or module you will find another branch 
for each class or module nested inside. At every branch you will find the outline for 
the defined constants, the class/module, and instance variables, and the different 
methods. Besides, should any methods define local variables inside, a new branch 
will be presented with the outline of the variables.

Each of the different elements appears with a different icon in the tree, so you can 
differentiate them in an easy way. Also, when outlining the methods, different icons 
will be used depending on their visibility (public, protected, or private). The list of 
possible elements and the meaning of their icons is as follows:



Chapter 4

[ 73 ]

Require and Load statements: These always appear at the top with a small 
blue triangle by the name of the target file.
Global Variables: These appear by the top of the outline, below the require/
load branch. They are represented by a miniature icon resembling the Earth.
Modules: These are represented as a blue circle with a white M inside.  
A module can be folded or unfolded to show or hide the details inside it  
when outlining.
Classes: These are represented as a green circle with a white C inside. As 
with modules, they can be folded or unfolded.
Constants: These appear in the branch corresponding to the module or  
class defining the constant. They are represented by a large solid  
lime-green square.
Instance Variables: These are represented by a red hollow square. They 
appear below the branch corresponding to their class or module.
Class Variables: These are represented by a red hollow square with a small c. 
They appear below the branch corresponding to their class or module.
Local Variables: These are represented by a gray solid circle with a white L 
inside. They appear when you unfold the details of the method in which they 
are defined.
Public Methods: These are represented by a small solid green circle. If it is a 
class (singleton) method it will also have a small s.
Protected Methods: These are represented by a small solid yellow diamond. 
If it is a class (singleton) method it will also have a small s.
Private Methods: These are represented by a small solid red square. If it is a 
class (singleton) method it will also have a small s.
Constructors (initialize methods): They are represented by a small solid 
green circle with a small c.

•

•

•

•

•

•

•

•

•

•

•

•



Writing Ruby Code

[ 74 ]

So far, everything we have seen about the quick outline is just a convenient way of 
navigating your code in a very similar way to with the Ruby Explorer, with only the 
advantage that we can invoke the outline with a keystroke without having to move 
from editing our code.

Besides that functionality, there is a very interesting feature of the Quick Outline, 
which is not present in the Ruby Explorer. By the bottom-right corner of the Quick 
Outline window, you can see a label displaying Press 'Ctrl+O' to show inherited 
members. If you do so, you will see now we are presented with many more methods 
and variables than before.

Now the list will include the entries available from our class, not only the ones 
explicitly declared in this source code, but also the entries for each parent class in the 
class hierarchy and for every included module.

In order to know where each of the elements comes from, a literal will display by the 
right of each definition indicating the class or module in which the definition resides. 
By clicking on any of these entries, you can go directly to the defining source.

Since the amount of information can be a bit overwhelming when using this feature, 
when you know the name of what you are looking for you can just start typing on 
the upper bar of the Quick Outline view. As you type, the entries will filter to display 
only those matching your search string.



Chapter 4

[ 75 ]

There is still one more filtering feature when quick outlining. Sometimes you want 
to filter out a whole set of entries by name and display only the entries not in that 
group. You can do so by clicking the top-right arrow in the Quick Outline window 
and then selecting Filters. In the text box you can write any text pattern you want  
to filter out. You can use the wildcards * and ? to represent any string or any  
single character. You can introduce several patterns using a comma as the  
pattern separator.

Just be aware the filter will persist between different calls to Quick Outline, so if you 
don't delete it or deactivate it by unchecking the box in the filter dialog, next time 
you outline any class, your filters will be applied.

Type Hierarchy
Often, you are interested not so much in the structure of the code itself but in the 
relationships between your different classes: which are ancestors or descendants of 
the current one, and which members it is inheriting from where.

RadRails provides a convenient view for outlining your Type Hierarchy. You  
only have to select the name of a class in the Ruby Explorer, or position yourself 
inside the code of any class in the editor area, and then right-click and select  
Open Type Hierarchy.



Writing Ruby Code

[ 76 ]

A new view will open with an outline of the parent and child classes for the  
selected one. By the side of this tree, you will see the list of member methods for the 
current class. The symbols to represent them are the same as you can find when  
quick outlining.

Of course, if you click on any of the classes or methods, the editor area will display 
the selected element accordingly.

By default, the Hierarchy will be rendered in both ways, for ancestor and descendant 
classes. You can easily change the scope of the outline. At the top-left corner of this 
view you will see three icons representing a tree. In the first one there is just a tree 
without an arrow, in the second there is an up-arrow and in the third one there is a 
down-arrow.

If you hover the mouse cursor over the icons the literals will read Show the Type 
Hierarchy, Show the SuperType Hierarchy, and Show the SubType Hierarchy. By 
selecting them, you will see the default tree with all the classes in the Hierarchy, a 
bottom-up, or a top-down view of the classes as from the current class.

It's interesting to note that when using the SuperType Hierarchy you will be able 
to see the included modules as multiple inheritance. When selecting this kind of 
display, the focused class will be shown as the root of the tree and the leaves of the 
tree represent the parent class and all the included modules.

You can also change the scope of the outline by selecting the context menu of this 
view in the top-right arrow and selecting the corresponding option.

In this same context menu, there are a couple of interesting options. If you open it 
and go to Layout you will be presented with different options for displaying the tree 
and the detail of the methods.



Chapter 4

[ 77 ]

You can choose a horizontal layout, in which you will have two panes side by side, 
a vertical layout in which you will have two panes displaying one on top of the 
other, or an automatic layout, in which depending how deep is your tree, Eclipse 
will decide whether to display it horizontally (the default) or vertically. If you are 
only interested in the Hierarchy and you don't care about the methods, then you can 
select the last layout, named Hierarchy View Only, and only the pane with the tree 
will be shown.

Another interesting option in this view's context-menu is Show Qualified Type 
Names. By selecting it, you will get the path of the file in which the different classes 
are defined right by the name of each class. This can come handy when you have a 
lot of classes with the same name in different branches of your application.

Notice that there is a group of icons by the top-right corner of this view. You can use 
them in a similar way to when outlining for hiding or displaying details about the 
class contents. For example, you can hide the methods defined at the class level or 
those that are not public.

There is just one detail left before we finish with this view. If you want to change the 
current class regarding which the hierarchy is presented, you can right-click on the 
name of the class in the hierarchy tree and select Focus on (YourClassName).

If you want to focus on a totally different class, which is not represented in the 
current hierarchy, you can right-click on any class name and select Focus on.... This 
will display a dialog in which you can type the name of the class you are looking for. 
As you are typing, the classes with matching names will be filtered. When you  
see the class you are looking for, you can just select it and it will display in the 
hierarchy view.

General Outline View
With the Ruby Explorer, the Quick Outline, and the Hierarchy View, we have all our 
outlining necessities well covered. However, when working in a Rails application, 
I sometimes prefer to use the Ruby Explorer as a file browser, without opening the 
structure of the types. When I start opening the details, specially when I have a lot of 
methods, I find myself scrolling a lot to change from one file to another.

Of course I could still use the Quick Outline, but sometimes I want to type in a file or 
scroll it down as I see the outline, and with Quick Outline I cannot do that.

There is yet another view for Outlining in RadRails. It doesn't do anything you 
cannot do with the Ruby Explorer or the Quick Outline, but it has one interesting 
feature. You can keep it always open and dock it in a corner of your workbench, and 
it will display the outline of the class currently open in the Editor Area.



Writing Ruby Code

[ 78 ]

Since some versions ago, this view is opened by default at the Rails perspective, but 
if for any reason it's not shown in your workbench, you can go to the Window menu, 
then select Show View and then Other.... In the opening pop-up you have to open 
the General category and then select Outline.

The Outline view represents the already familiar icons for the different variables 
and methods inside our class. You have a simple icon group for sorting the contents 
or filtering out some elements, and you can also filter by a name pattern from the 
context menu of this view (open it by clicking on the down arrow by the top-right 
corner of this view).

My favorite configuration when developing is the Ruby Explorer on top, and then 
the Outline view right below on a small square. That way I always have the list of 
files on top, and the structure for my current editor below. Make sure you go to 
the context menu of the view and select the option Link With Editor. This way, 
whenever you open a new file on the editor area, you will automatically get the 
outline and you can quickly change from one method to another.

Code Folding
Often when we are writing code for one class, we need to compare the source in two 
different methods, cut and paste between them, or just look at them at the same time 
because they need to interact. This, of course, is a fairly easy task. But sometimes, 
especially if the code blocks we need to work with are not close to one another in our 
code, we can find that there are other methods or even comments in the middle and 
we need to scroll very frequently.

In this kind of situation, we can take advantage of the Ruby code folding features. 
The Ruby Editor automatically detects collapsible blocks of code and allows us to 
'fold the code' so only the first line of the block will remain visible. By using this 
feature, we can hide the parts of the code that are getting in the way and we can 
focus on the rest of our source.



Chapter 4

[ 79 ]

The Ruby Editor allows us to collapse modules, classes, methods, and RDoc 
comments. Whenever you open a Ruby source, the Editor will parse it and identify 
the possible folding points in your code. At each of these points, you will see a small 
circle with an enclosed minus sign by the left ruler of the editor.

If you open the Comics Controller in the Editor Area, you will see we have these 
folding handlers by the left of the class definition and by the name of each of the 
methods. When you click on the folding symbol, only the first line remains visible. 
Now the circle by the ruler will display a plus sign instead of a minus one. Besides, 
by the end of this remaining line, you will see a small square with two periods. These 
are the indicators that this line is the first of a collapsed block.

If you want to see the whole code again, you only have to click back on the folding 
handler for this block. However, if you only want to take a look at the code but you 
don't want to expand it, you can just place the cursor over the folding symbol and 
wait for an instant. After a brief moment, you will see the hidden code, but without 
having to open it.



Writing Ruby Code

[ 80 ]

Code collapsing or expanding can be done individually block by block or you can do 
it to a group of blocks with a single click. If you right-click with your mouse over the 
rule area at the left of the editor, you can see an option named Folding. As you can 
see, you can expand or collapse all the blocks with a single click.

You can also choose to collapse all the RDoc comments or all the members. In this 
context, a member would be any method that is defined within the scope or a class 
or module. Folding all the members comes in very handy when you are browsing 
well documented Ruby code and you only want to know what the code does and 
what's the signature of each method. It would be an equivalent of reading the RDoc 
documentation for that source file directly in your editor.

On the other hand, collapsing all the comments comes handy when you are working 
with well documented code that you already know. In this case, the large comments 
at the beginning of your methods will collapse to a single line, so you have more 
useful space for the code itself.

In this folding menu, there is still another option named Reset Initial Structure. 
Apparently this option is equivalent to Expand All, which is true by default. 
However, one of the configuration options for the Ruby Editor is how the collapsible 
code is presented when you open a new editor. You can choose to automatically 
fold all the comment blocks, for example. In this case, Expand All and Reset Initial 
Structure will render different results.

We'll go over all the configuration options related to RadRails in a later chapter of 
this book.

Code Formatting 
One of the keys for the success of Ruby as a language is the readability and 
expressivity of the source code. These features get strengthened when your source 
code is clean and well organized.

Unlike some other languages, Ruby doesn't take into account how the source code is 
written as long as the syntax is correct. This means you can write your code without 
proper indentation, mixing arbitrary numbers of spaces, and so on. Even if the Ruby 
Interpreter will be able to process your code, the Human Interpreter working with 
your code will have a hard time trying to make sense of badly formatted code.

Unfortunately, even when we try to keep the code tidy, there are many occasions 
when we don't manage to produce code as good as we would like. This can be 
specially true when we are pasting code from different places, or when we are 
patching code with temporary solutions that end up being permanent.



Chapter 4

[ 81 ]

Whenever our code format gets out of control, or if we are inheriting poorly written 
code from an external source, we can use the RadRails built-in code formatter.

Code formatting will take any source code and will apply the correct indentation 
rules to make it pretty. By default, the Ruby formatting rules will be: using 
spaces instead of tabs and using two spaces for every indentation level. These are 
the common conventions when submitting source code to places like the Rails 
Development Repository or Rubyforge.org.

If for any reason you don't like these rules, you can use your own. We'll see how to 
do that later in this book when talking about the RadRails configuration options.

In order to see how formatting works, let's open the source code for the Comics 
Controller and mess around with it by removing or adding spaces to make it  
look confusing.

Now we have two options. Either we can select the lines we don't like and apply the 
formatting, or we can just not select anything and apply the formatting so the whole 
source code will be formatted.

The code formatting option can be accessed from two different places. You can go 
to the Source menu and then select Format or you can directly right-click on the 
editor area and select Source | Format. In both cases, RadRails will directly format 
either your selection or your whole source. As usual, you can also use the keyboard 
shortcut displayed by the Format menu option (Ctrl+Shift+F).



Writing Ruby Code

[ 82 ]

Code formatting is undo-able, so if for any reason you don't like the format of the 
code, you can always get the original formatting back by selecting Undo in the Edit 
menu. Usually there is no reason for undoing the formatting, but in strange cases 
where your source code is using the heredoc format for strings (that is, <<-EOF) or if 
you are using multi-line regular expressions, the formatter could fail and not be able 
to indent properly.

Indenting Code Blocks
Apart from the automatic formatting you can always change the indentation of a 
block manually. Suppose you have a piece of code and you are going to surround it 
with a new if or a begin/end statement. You only have to select the whole block, 
and click the Tab key. If you want to unindent it, then you have to use the key 
combination Shift+Tab. You can also perform these operations by selecting the target 
block and right-clicking on it. The options Shift Right and Shift Left will allow you 
to change the indentation level.

Commenting Code Blocks
A very common operation specially when testing or debugging our code is 
commenting a whole block of statements. As you know, Ruby as a language doesn't 
provide any syntax for commenting out a block. You could always use the =begin/
=end syntax for commenting, but those comments have a special meaning and are 
only intended for documentation purposes, so it wouldn't be right to use them.

The lack of a block comment syntax in Ruby makes commenting a block an 
unnecessarily uncomfortable task. Fortunately, once again RadRails comes to  
the rescue.

Whenever you need to comment out a whole block of code, you only have to select 
it and right-click on it. Now from the Source menu choose the Toggle Comment 
option. This will comment out your code with a single click. When you want to 
get the code back to normal, you only have to select it and repeat the operation. 
This functionality can be accessed also from the Source menu at the top of your 
workbench.

Code Completion
Code completion is another of the RadRails built-in capabilities that you cannot get 
in a plain editor or from the command line. By using code completion, RadRails will 
try to help you code as you type.



Chapter 4

[ 83 ]

Let's try a basic example. Let's open our already famous Comics Controller and 
manually add a method named completion_test. Just write in your editor area:

def completion_test

After you hit Enter, you will see how RadRails automatically inserts a correctly 
indented end statement for closing the block. This will happen for every if, for, 
while, case, or begin statement, for example, as well as in any general case where a 
block of code needs an end (classes, modules).

Also, whenever you type a special character like a bracket, square bracket, quote, 
double-quote, RadRails will automatically insert the corresponding closing character.

This is starting to get interesting, but what would you say if I tell you that when you 
just start typing the name of a class, module, or variable, RadRails will present you 
with all the possible classes in scope that match the given name? Or type the name 
of any class, model, or object for RadRails to display a list of that object's methods, 
constants, and variables? Well, that's exactly what code completion can do for us.

Notice that given the dynamic nature of the Ruby language, sometimes it's just 
impossible for RadRails to infer the type of a given variable. In those cases, it will 
present a generic list including all the globally accessible variables, constants, and 
methods. Take into account that, for this same reason, dynamically created methods 
will not be shown either.

To invoke code completion you only have to press the key combination Ctrl+Space 
—Command+Space for Mac users—any time when working in the editor area. If 
you invoke code completion while in the middle of a class or module name, it will 
present a list of the matching classes available. Let's try it out! We can go to the 
completion_test method we just created and type the characters Bo (notice the 
capital B) and then press Ctrl+Space.



Writing Ruby Code

[ 84 ]

As you can see, a list of matching classes is displayed. One of these classes is the 
Book class we created in a previous chapter. Just select it and press Enter. Now let's 
type a period and the word find, so by now your line should read Book.find, and 
press Ctrl+Space again.

Now, RadRails presents the list of possible methods starting with the word find for 
the current object type. You can keep typing when the list is open and the candidates 
will filter themselves according to the text you type. The arguments for every 
method will be displayed too, as well as the documentation extracted from the RDoc 
for that method.

When there is a single candidate starting with the characters you typed, RadRails 
will not present a list for choosing but will directly insert the corresponding match in 
the editor area.

After selecting the method you are looking for, it will be inserted in the editor. If it 
has any parameters, they will be inserted too. You can use the Tab key for moving 
across the different arguments in a convenient way.

Code completion will work in exactly the same way for variables and constants' 
names too.

When completing code with the Ctrl+Space combination, sometimes you will see 
in the pop-up a list of options with a small icon representing a code sheet. These 
options are not really for code completion but for code templates, which we'll learn 
how to use right away.



Chapter 4

[ 85 ]

Code Templates
Code templates are another great feature RadRails provides. They are fragments of 
generic code that will be automatically inserted in the editor area in the same fashion 
as for code completion.

Each code template has a name, and by typing that name and then pressing 
Ctrl+Space the code snippet will be inserted. Moreover, the templates can define 
special 'replacement regions' that will be navigated by hitting the Tab key for the user 
to directly insert the dynamic part of the snippet. These regions work in the same 
way as we saw for method arguments, but they are not restricted to parameters, but 
can apply to any part of the code.

It will be easier to see with a simple example. Go to the completion_test method 
we defined in the previous section and type the word case. Now hit Ctrl+Space. A 
window with different options will be displayed.

If you move the cursor over the different options, you will see in a new window 
the code template that would get inserted. If you were getting many candidates in 
this pop-up, and you wanted to display only the code templates and not variables 
or method suggestions, you could click at the bottom of the pop-up, on the Click 
to show Template Proposals link. That way, you would be presented only with 
templates to choose from. For this example, just select the first candidate in the list.

A block of code with the structure for a case statement will be inserted. Moreover, 
the cursor will be placed in the first replacement region, which in this case is the 
one corresponding to the condition. By using the Tab key you can move to the other 
replacement regions defined. To move back, you can use Shift+Tab.



Writing Ruby Code

[ 86 ]

There are code templates for a large number of common statements: working with 
migrations, defining relationships in your models, validating fields, controlling the 
application flow, defining classes, iterating over collections, and rendering from your 
controllers. You can take a look at the complete list of defined templates by going to 
the Window menu, then selecting Preferences, and then Ruby | Editor | Templates.

If you move through the list by selecting the different lines, you will see the template 
that will get inserted when using the given name. Don't get overwhelmed by the 
number of available templates, since you will probably use only a subset of them. 
The trick is to browse the template list and figure out which are most useful for you, 
and then increase the number of templates you use part by part.

If you have been working with the TextMate editor in the Mac OS, then you are 
lucky because all the supported templates in TextMate are also available in RadRails 
under the same key combinations.



Chapter 4

[ 87 ]

Defining Your Own Code Templates
Even if the number of available templates in RadRails is impressive, there are always 
some operations that we repeat again and again in our code and it would be nice to 
be able to incorporate them as templates in our code.

Fortunately, the Eclipse platform provides an easy way to define your own templates 
so you can speed up your development.

A template in Eclipse is only a piece of code that will be directly inserted underneath 
the position of the cursor in the editor area. The only 'magic' going on when using a 
template is the cycling over the replacement sections.

When you are creating a new template, if you want to create a replacement section 
you only have to enclose the name of the section like this:

${name_of_the_replacement_section}

You can define as many sections as you need for your template. Imagine we want to 
construct a template for searching any ActiveRecord model by two different fields. 
We could define a template like this:

${ModelName}.find_all_by_${first_field}_and_${second_field}

When using this template, RadRails would allow us to introduce the ModelName, the 
first_field, and the second_field.

The section names are really variables for RadRails, so you cannot use spaces or 
any other special characters you wouldn't use when defining a variable. If you 
use the same variable name in different places, when you type a value in the first 
replacement section with that name it will be copied in the rest of the occurrences.

There are some reserved variable names with a special meaning for Eclipse:

${cursor}: This variable is not used as a replacement value, but for 
positioning the cursor. When the code template gets inserted, the cursor will 
be automatically positioned in the place defined by this variable.
${time}, ${date}, and ${year}: System time, date, and year respectively. 
Useful for comments.
${user}: Name of the logged in user.
${dollar}: Inserts a dollar sign.
${word_selection}: Will be replaced by the selected word in the editor.
${line_selection}: Will be replaced by the selected lines in the editor.
${class}: Will insert the name of the surrounding class or module.

•

•

•

•

•

•

•



Writing Ruby Code

[ 88 ]

${classfqn}: Will be replaced by the fully qualified name of the  
surrounding type.
${method}: Will be replaced by the name of the surrounding method.
${methodfqn}: Will be replaced by the fully qualified name of the method.
${file}: Will be replaced by the current file base name.
${path}: Will be replaced by the relative path to current file from the project.

Suppose we want to create a template to surround a code block with begin and end 
statements. We also want the cursor to be positioned at the beginning of the block. 
We could write a template like:

begin
  ${cursor}
  ${line_selection}
end

To create the template, we need to open the Preferences dialog and go to  
Ruby | Editor | Templates. By selecting New we will be able to create a code 
template. We only have to write a name, an optional description, and the code of our 
template. Checking the box that says Automatically insert means that when hitting 
Ctrl+Space if there is only one template corresponding to the typed name, it will be 
directly inserted into the editor area. If you uncheck this option, even when there is 
only one candidate, a selection pop-up will appear.

To insert the special variables, you can just type them in or you can select them from 
a list that will appear when you click the Insert Variable... button.

•

•

•

•

•



Chapter 4

[ 89 ]

That's everything you need to know for creating your own templates or editing 
existing ones. For inspiration I would recommend you to take a look at some of the 
defined templates and see how they work.

Navigating Your Code
Apart from the outlining of the code and the code completion we have seen so far, 
RadRails provides more helpful tools when we are developing Ruby code. One  
of the most interesting features is the ability to navigate the source code in a 
comfortable way.

General Source Navigation Tools
Eclipse provides a couple of interesting options when we are working with a  
large number of source files, as is the case with many Rails projects because of  
their structure.

If you open the Navigate menu you will see the last three options are three arrows. 
The first one, named Last Edit Location will take you to the last position in which 
you entered any change to a source file.

The other two options Back and Forward work in a similar way to the back and 
forward buttons on an Internet browser, allowing you to move back and forth 
among the files you have been browsing.

You can also find these three options as icons placed in the toolbar at the top of  
your workbench.

Matching Brackets
Another basic tool when working with our source code is the ability to find the 
different matching brackets.

When working with RadRails, you can match the following elements in your Ruby 
source code: Class Definitions, Module Definitions, Method Definitions, Round 
Brackets, Square Brackets, Curly Brackets, and Block Statements.

As you are moving the text cursor along the code, whenever you pass over one of 
these matchable elements, you will see a small grayed square displaying over the 
matching element. RadRails will try its best to mark the matching element, but your 
code must be correct or otherwise it might be unable to find the corresponding 
bracket. In cases of incorrect nesting or missing opening or closing brackets, it will 
most likely fail to match the pairs.



Writing Ruby Code

[ 90 ]

If you not only want to see the match, but to move directly between the opening and 
closing element, you can go to the Navigate menu, then select Go To and finally 
Matching Bracket. Notice that you can also use a keyboard shortcut to launch  
this option.

Declarations of Classes, Modules, Methods, 
and Variables
In almost any piece of code, there are a lot of references to classes, variables, or 
methods that are defined elsewhere. The first and most basic help that RadRails 
provides is identifying where these definitions come from.

Open again the source code for our Comics Controller and go to the show method. 
Now hover your mouse cursor over the Comic class name. After a brief moment, a 
tool-tip with the name of the file in which this variable is defined will be displayed. 
You can hover over the find method name too. You will see now the tool-tip shows 
the name of the parent class defining the method as well as the method's signature.

This is already interesting enough since you can directly know where the different 
methods are defined and you could go and open those files to browse them. 
Fortunately, RadRails can also ease that task. If you hold down the Ctrl key and 
then click on top of a class or module name, a method, or a variable, RadRails will 
automatically open the file in which the declaration resides and will place the cursor 
exactly at the point of the declaration.

You can try it by holding the Ctrl key and clicking on the find method name. Now 
RadRails will open the source code for ActiveRecord::Base.

Notice that you can also use the shortcut F3 for moving to the declaration and even if 
usually there is no difference between shortcuts and mouse actions, in this case using 
the keyboard instead of the mouse will save a bit of CPU time.

If you do the same for a variable, it will take you to the first line in which the variable 
is used in your code. You can also access this functionality by right-clicking on top of 
the element you want to navigate to and then selecting Open Declaration.

If RadRails cannot determine exactly which is the declaring class because of the 
dynamic nature of the language, a dialog will be shown with all the possible 
candidates so you can choose the one to which you want to navigate.



Chapter 4

[ 91 ]

Navigating Your MVC Code
Rails follows the Model-View-Controller Pattern. Moreover, testing is a strongly 
encouraged practice when developing a Rails application. This separation of 
responsibilities in Rails means that the source code for a logical entity will be 
scattered through multiple files: a file for the model, a file for the controller, a file for 
the helper methods, several files for the views, and one more for the functional test.

Since the structure of a Rails project is always the same, it's fairly easy to know 
where each of these files is, but it's still a bit tedious having to navigate the Ruby 
Explorer in order to open them.

RadRails provides shortcuts for moving between all these related files in a simple 
way. If you open the Navigate menu you will see the options for quickly accessing 
these files. The options are Switch to Helper, Switch to Test, Switch to Model, 
Switch to View, and Switch to Controller. You can also find icons for navigating 
these files on the toolbar at the top of your workbench.



Writing Ruby Code

[ 92 ]

Navigating to Helpers, Tests, Models, or Controllers requires just a single click. 
When it comes to Views, things are just a bit different. Since for a single Entity you 
can potentially have several views, whenever you try to switch to a view, you will 
get a dialog asking you to which action view you want to navigate. A combo with 
the available options is displayed so you can select it directly.

If you are navigating to a view from within an action in your controller, RadRails 
will try to find a view with the same name as the current action. If one is found, it 
will directly open that source file without asking.

Opening Types and Resources 
Often you want to open a class or a file, but you don't remember exactly where it is 
located in the Ruby Explorer. Or maybe you know it but you want a quick way to 
open it directly.

In these cases, you can go to the Navigate menu and select Open Type or Open 
Resource depending on what you want to look for and how. If you want to look for 
a class or module and you know its name, then you would choose Open Type. If you 
want to look for a file, then you would choose Open Resource.

Even if the 'Type' and 'Resource' dialogs are slightly different, the way for searching 
in both of them is almost identical.

At the top of the pop-up you will see a text box. In this box you can enter the name 
of the Type or File you are looking for. As you are typing, the matching Types or 
Resources will be displayed for you to choose.

If you are not sure about the exact name, you can use the wildcards * and ?, 
representing any string and any single character respectively.

The first difference between the two windows, apart from the object of search, is 
that in the Type dialog the path of the containing class is displayed by the side of the 
name, and in the Resource dialog the path for the file is displayed in the lower pane 
of the window.



Chapter 4

[ 93 ]

The second difference is that in the Open Type dialog you can do CamelCase 
searches for types. Thus, if you write AC::F you will get matches for 
ActionController::Filters or ActionController::Flash.



Writing Ruby Code

[ 94 ]

Refactoring
Refactoring is the term for making reference to changes made to our existing code 
in order to make it more generic or simply to making changes with a wide scope 
(renaming a method and all the references to the method, for example).

RadRails offers a very complete set of refactoring tools. Even if each of them covers 
a different functionality, the general way of using them is the same for all the 
refactoring operations. First we will have to select one of the available refactoring 
operations, then we will be presented with a preview to see which changes are going 
to be made to the code, and only if we accept the preview will the code be modified.

Since the dialog for previewing the changes is always the same, let's see an example 
to know what everything means before going through the details of the different 
refactoring options.

The preview dialog displays a file list on top with all the affected files, a left pane 
displaying the current contents before refactoring, and a right pane with the preview 
of the contents after refactoring.



Chapter 4

[ 95 ]

When you select any of the files in the top pane of the window, the contents of that 
file are presented below in the 'before' and 'after' panes.

The differences between the two versions are displayed in the same way as when 
comparing two different files. You can use the up and down arrows to navigate to 
the next or previous change, or you can directly click on the rectangles by the side of 
the right pane representing the fragments of the code in which modifications will  
be introduced.

If you accept the changes, all the selected files will be changed accordingly. If you 
want to apply the changes only to some of the files, you can uncheck the boxes by the 
left of the names of the files to preserve.

Let's see the most interesting refactoring operations available in RadRails.

Generate Accessors
You can access this option from the Source menu or by right-clicking on the editor 
area and then selecting Source.

Generating accessors will create methods for getting and/or setting the values of 
your instance variables.



Writing Ruby Code

[ 96 ]

When you select this option, you will see a dialog with all the available instance 
variables for your current class. You can choose whether to create read or write 
methods and also which style to use: the simple one introduced by Rails in which 
you only declare the accessors in a single line, or the traditional Ruby-style one 
explicitly defining a method for each operation.

Generate Constructors
This option is available both from the Source menu and from the editor area's 
context menu under the option Source.

Generating a constructor will create an initialize method for your class using any of 
the fields (instance variables) you select. The only option available for this operation 
is deciding which fields will be used as a part of the method's signature.

Convert Local Variable to Field
This option is available both from the Refactor menu and from the editor area's 
context menu under the option Refactor. Since the refactoring applies to one 
variable, the text cursor must be over the target variable when choosing this option.

Converting a local variable to a field will take an existing local variable and promote 
it to an instance or class variable. In the options dialog we can select, if we want, 
the variable defined at the class level and if we want to explicitly initialize it in the 
constructor of the class.

Encapsulate Field
This option is available both from the Refactor menu and from the editor area's 
context menu under the option Refactor. Since the refactoring applies to one field 
(instance variable), the text cursor must be over the target field when choosing  
this option.

Encapsulating a field is just another name for creating the accessors for the field.  
In this case, we will have the option for making the accessors public, protected,  
or private.

Extract Method
This option is available both from the Refactor menu and from the editor area's 
context menu under the option Refactor. Since the refactoring applies to a fragment 
of code, we will have to select the target of the refactoring when choosing this option.



Chapter 4

[ 97 ]

Extracting a method will take a piece of code inside a method, create a new method 
from it, and replace the original fragment in the parent method with a call to the new 
one. If the extracted fragment was using any local variables, they will be passed as 
parameters to the new method. Also, if RadRails detects the fragment is setting a 
local variable, it will be used as the return value.

When extracting a method, we will have to provide at least a name for the new 
method. If the method was using variables and will need parameters, then we can 
arrange the name and order of them. We can also specify the visibility of the new 
method. You can choose between public, private, protected, or just leave the 
same visibility as the parent method.



Writing Ruby Code

[ 98 ]

This refactoring tool comes in handy when you realize your methods are starting to 
be larger than they should and you want to make your classes a bit thinner.

Extract Constant
This option is available both from the Refactor menu and from the editor area's 
context menu under the option Refactor. Since the refactoring applies to a String or 
Numeric literal, the text cursor in the Editor Area must be positioned on the literal 
before invoking this option.

Extracting a literal as a Constant will only ask for a name for the new constant. Then 
it will define the new constant assigning it the literal value, and it will replace the 
occurrences of the literal in the old code with the name of the constant.

Inline Method
This option is available both from the Refactor menu and from the editor area's 
context menu under the option Refactor. Since the refactoring applies to a method 
definition, you will have to place the text cursor on the method name before 
invoking this option.

Inlining a method will replace the call to a method with the actual contents of 
the method itself. When we inline a method we are given the option to delete the 
original method. If we remove it, then this operation is exactly the opposite of 
extracting a method from another.

Usually inlining is done when we have very small methods with a single line  
of code.

Rename
This option is available both from the Refactor menu and from the editor area's 
context menu under the option Refactor. Since the refactoring applies to a Class, 
Module, Field, Variable, or Method definition, you will have to place the text cursor 
on the corresponding name before invoking this option.

Renaming will only ask you for a new name and will preview the changes to 
the defining file and all the found references. Note that since Ruby is a dynamic 
language it can be difficult to track down all the references and you can end up with 
only a partial rename.



Chapter 4

[ 99 ]

Split Local Variable
This option is available both from the Refactor menu and from the editor area's 
context menu under the option Refactor. Since the refactoring applies to a local 
variable, you will have to place the text cursor on the variable name before invoking 
this option.

Due to Ruby's dynamic nature, sometimes we abuse the local variables and we use 
them as temporary storage for keeping different types of values. This can potentially 
lead to highly coupled code and to a source difficult to read and maintain.

We can use RadRails for splitting a local variable. By splitting a variable, RadRails 
will create as many variables as assignments we are doing to the same variable. Let's 
imagine we have a source code like:

tmp_var='text_string'
puts tmp_var
tmp_var=10
puts tmp_var

In this case, after refactoring and splitting the variable we would obtain two separate 
variables: one for the first assignment and the first put, and a different one for  
the second.

When defining how to split a variable, RadRails will present each of the occurrences 
of the variable with a different background color, and it will also display a text box of 
each color for us to provide the names for the new variables.



Writing Ruby Code

[ 100 ]

After previewing and accepting the changes, we will have a much more readable and 
maintainable code.

Searching in Ruby Projects
Searching for occurrences of a word in our projects is a very common task when 
programming and it is one feature of every single text editor, no matter how small. 
Apart from the general-purpose search features of Eclipse, RadRails provides 
interesting features related to searching our Ruby projects.

We will learn how to search text within the current file, how to search text across 
different files, and how to search for text within the Ruby context.

Searching within the Current File
The simplest search feature of Eclipse is the typical Find dialog. You can bring it  
up either from the Edit menu, in the option Find or with the familiar keyboard 
shortcut Ctrl+F.

As you see, there is nothing too special about the Find dialog. You can search 
forward and backward, wrap your search so it will start from the beginning after 
reaching the end of the file, make the search case-sensitive or search only inside the 
current selection. Of course, you can also replace the found string with a new one.



Chapter 4

[ 101 ]

There are only two features that require a brief explanation: Regular Expressions and 
Incremental Find.

Regular Expressions work by using a pattern to look for. As you probably know, 
you can compose fairly complex patterns by using regular expressions and the valid 
patterns can be slightly different from one programming language to another.

If you want to know which is the valid set of patterns for searching Eclipse, you 
can just select the checkbox for Regular Expression and then when you start typing 
on the Find box you will notice a small lightbulb close to it. If you hover over this 
symbol it will invite you to click Ctrl+Space for auto-completion of your pattern. 
When you press that key combination, a drop-down with all the valid patterns 
will be displayed. If you hover over the different patterns, you will see a little help 
explaining their meaning.

The incremental checkbox works by selecting the occurrences in your file as you 
type. If you mark the incremental check and then start typing, you will see how the 
matching words are marked in your file. As you enter more characters, the search 
will be more restrictive.

If you prefer, you can use incremental find at any time without having to open the 
Find dialog. The keyboard shortcut Ctrl+J will activate incremental find. If you 
prefer to search backwards incrementally, you can use Ctrl+Shift+J. Once you enter 
incremental search, you can exit and go back to normal edition mode by pressing 
Esc. Because of the special nature of Regular Expressions, incremental search can 
only be used with ordinary strings, without using Regular Expressions.

There is another built-in feature in RadRails that is not really a search but is closely 
related. Whenever you select a variable in your code, RadRails will automatically 
mark with a dark background all the occurrences of the same variable in your  
code. RadRails will also mark occurrences in the file when selecting a class or 
method name.

If you feel uncomfortable with this behavior, it can be turned off from the 
Preferences dialog, but it can be really handy when programming. It is specially 
useful in dynamic languages like Ruby, because you can visually detect misspelled 
variables or methods, which otherwise would fail on execution.

Searching across Multiple Files
Often you will need to find in which file a given string appears, or the occurrences of 
your search string throughout your whole project or even your workspace. In these 
cases, you cannot use the Find dialog, but once again Eclipse will help us by offering 
a specialized dialog.



Writing Ruby Code

[ 102 ]

You can access the Search functionality either from the Search menu and then 
selecting the Search option or by using the shortcut Ctrl+H. This will bring up the 
Search dialog.

This dialog is also pretty easy to use. First you have the text box for the string to 
search for and as in the Find dialog you can make a case-sensitive search and use  
regular expressions.

If you want to restrict the type of files to include in the search, you can enter any 
file name patterns in the second text box. By limiting the files to search you will get 
faster results, specially in large projects. If you want to use several patterns you can 
separate them by a comma. For example, for searching only in files with .rhtml or 
.rjs extensions you would use the following pattern:

*.rhtml, *.rjs

You can also select the extensions of the files to search by using the Choose button. 
This is specially useful when you want to search all the extensions except a few ones. 
You can check all the known extensions with a single click and then just uncheck the 
ones you want to exclude.



Chapter 4

[ 103 ]

The checkbox labeled Consider derived resources will not have any effects when 
working with Rails projects. Derived resources are files that are created as a result 
of actions such as compiling in languages like Java. Since in Ruby we don't generate 
derived resources, using this check will be pointless.

Finally, you can indicate a scope for your search. If you choose Workspace, it will 
search files across all the open projects in the whole workspace. If you choose 
Enclosing Projects, it will search across files within the current project in the Ruby 
Explorer, or if you select different projects, in all the selected. If you choose Selected 
resources it will search within the selected files and directories.

Depending on the current selection in your Ruby Explorer, some of the scopes  
will display grayed-out and will only be available when they make sense for the 
current selection.

There is another scope called Working Set. You can define your own working sets by 
using the Choose button. A working set is just a group of folders. You use working 
sets when you frequently want to search only in some folders.

By creating a working set you define a scope of folders to search and you can reuse  
it easily for future searches. When creating a working set search for working in 
Ruby/Rails projects you must choose the type Resources from the available options.

After entering the search string, the file pattern, and the search scope, when you 
press the Search button, Eclipse will start looking for the entered text in the  
target files.

As it finds any matches, it will display the file path and the number of matches in a 
new view at the bottom of your workbench. Just double-click on any of the found 
files to open it. The cursor will be placed by the first occurrence of the searched for 
string in that file.

If you prefer to navigate occurrence by occurrence instead of file by file, you can use 
the Up and Down Arrows (Find Next/Previous Match) in the toolbar of the Search 
Results view.



Writing Ruby Code

[ 104 ]

Ruby Search
RadRails offers a special search dialog for running searches related to Ruby elements. 
You can access this functionality either from the Search menu by selecting Ruby, or 
from the ordinary search dialog by selecting the Ruby Search tab.

The text box and the scope for Ruby Search are identical to those we just saw in the 
previous section. The difference from the ordinary search is that when using the 
Ruby Search you must restrict your search to one of the following elements: Classes 
and Modules, Methods, Constructors, or Variables.

For any of these elements, you can instruct RadRails to search only in the definitions, 
in the references (anywhere but the definitions), or in both of them (by selecting  
All Occurrences).

When searching for variables, you can further restrict the search and look only for 
Read access or Write access. When searching for methods, you can use complex 
expressions like ActiveRecord::Base.connection.

Should you need it, you could also tell RadRails to search the Ruby system libraries 
by selecting the checkbox in this dialog.



Chapter 4

[ 105 ]

A nice feature of the Ruby Search is that the results will be presented in a class 
tree way, rather than displaying only the file name, which would be the case when 
using the general search. Thus, you can get a better understanding of where the 
occurrences of the search string were found.

Call Hierarchy
The Call Hierarchy view is another feature closely related to searching for  
references to a given method. To display this view, we must select a method in  
the Ruby Explorer, the Outline view, or the source code itself, right-click, and select 
Call Hierarchy. You can also find this option in the Navigate menu under  
Open Call Hierarchy.

When you open this view, you will see two panes side by side. In the left pane, there 
is a tree in which the root is the name of the selected method. In this tree, you will 
find an entry for every method referencing the one we selected. If you click on the 
name of the calling method, you will see all the lines in which the method is called in 
the right pane of the view.

You will notice some of the referencing methods have a plus sign close to them. If 
you open any of these entries, you will find the methods referencing it. This way 
you can examine the whole call hierarchy, starting from your selected method and 
tracing it back to the very first method at the top of the invocation.

If you prefer, you can see the call hierarchy from the other side. You can see a tree in 
which the selected method is the origin and the different entries will represent the 
methods called by it. When opening the branches corresponding to these methods, 
you will recursively see the methods they call.



Writing Ruby Code

[ 106 ]

You can change the type of hierarchy to display by using the two tree-like icons at 
the top-right corner of this view. The first one is the Caller Hierarchy in which you 
can see the methods calling the selected one. The second one is the Callee Hierarchy 
in which you will see the list of methods that get called within the body of  
this method.

By using the context menu of this view, you can change the layout of the panes, the 
search scope, and apply filters. From these filters you can restrict how many levels 
(call depth) to display as a maximum in the hierarchy.

Please notice that even if this view is perfect for tracing the execution path of a given 
method, it can render inaccurate information in some cases, due to the dynamic 
features of the Ruby language.

Summary
In this chapter we learned how to use Eclipse and RadRails to assist us when writing 
code. Now we know how we can edit our code, browse its structure, format it, and 
navigate between the different classes and files.

Moreover, we saw how we can take advantage of code completion and templating, 
so we can program much faster and reduce the possibility of committing errors.

We can also use the refactoring tools of RadRails to modify our code in a comfortable 
way without having to track all the places where we must update the references to 
the changed code.

Finally we learned how to search for any text within our project and how to make 
the search more intelligent by restricting it to the Ruby elements we are interested in.

By now, you can already see how working with an IDE can really improve the speed 
and quality of your development. Once you master all the techniques we went over 
in this chapter, you will be able to focus on the creative process of coding, as you can 
delegate a big part of the mechanical process to RadRails.



Coding Rails Views
You already know that there are different kinds of views in Rails. When you are 
working with XML, you can use Builder templates (previously known as RXML) 
when working with AJAX, you can use RJS templates, and when you want to  
display any other content (most likely, but not only, HTML) you can use RHTML  
or ERB files.

Builder and RJS templates are composed of pure Ruby code, so when you open them 
in RadRails they will directly open with the Ruby Editor and you will be able to use 
all the features we discussed in Chapter 4.

When working with ERB or RHTML templates, you write mixed code. You typically 
write HTML and then introduce the dynamic part of your template between <% and 
%> or <%= and %>. Not only do you mix HTML and Ruby code, but you can also 
include JavaScript and less frequently, inline CSS code too.

RadRails provides a smart built-in editor for working with ERB/RHTML templates. 
This editor will try to assist you by giving you context-sensitive help depending if 
you are in the Ruby, HTML, CSS, or JavaScript part of a template.

By using RadRails, you will get help not only when working with your Rails files, 
but also when dealing with the static part of your application. Since RadRails runs on 
top of the Aptana Studio, you will get all the power of the built-in HTML, CSS, and 
JavaScript editors.

ERB/RHTML Templates
In a typical Rails application most of your views will fall under this category. You 
simply write a file with a .rthml extension (or .erb if working with Rails 2) and 
then you can create dynamic content by mixing in Rails code throughout the static 
parts of the view.



Coding Rails Views

[ 108 ]

As you already know, it's good practice to keep your views as clean as possible, 
so you should take as much of your Rails code as you can out of your views to 
make them simple. Actually, Rails is a framework built around the Model-View-
Controller pattern, so one of the premises for a well architected application is to 
separate presentation from logic. There are a number of good reasons for this, like for 
example sharing your views with the design team, or being able to reuse the same 
business logic to produce output in different formats.

In Rails, there are basically two ways of making your views cleaner: moving logic to 
the helpers and separating your views into partials. By moving logic to helpers, you 
get to reuse those functionalities you extract, and you replace all the code you write 
in your helper with a simple call from your view. And by separating your views into 
partials, you get simpler views without all the details and you can also reuse your 
partials in different parts of your application.

Views Navigation
In RadRails, navigating from the code of your view to the associated helper is a 
very easy task. You can directly click on the yellow H icon on your toolbar (it reads 
Switch to helper when you hover on it) or you can go to the Navigate menu and 
select the Switch to helper option.

You can try that out by opening the view list.html.erb under the directory  
app | views | comics. If you use any of the methods above to navigate to the helper, 
you will be taken to the ComicsHelper, which is just an empty module.



Chapter 5

[ 109 ]

What if you want to go back to your view? Well, you could always use the 'Back' 
and 'Forward' arrow icons of the default Eclipse toolbar (also available as options 
under the Navigate menu), but those work like the back and forward buttons of a 
web browser, allowing you to move between the last seen files. If you didn't open the 
view recently, this will not be available from the back/forward buttons.

As you noticed when using the H icon for switching to the helper, there are other 
similar icons too. With them you can navigate between the Helper, Unit Test, Model, 
View, and Controller.

When you want to navigate to the helper, unit test, model, or controller, there is no 
ambiguity because there is only one of those files associated to a given controller/
model. But due to the structure of Rails, there are many views associated. This means 
if you try to switch to your view from a Helper, for example, RadRails will not know 
what view you want to switch to.

Anyway, RadRails knows to which controller your helper is related, so it will present 
you with a list of all the actions in that controller. By selecting your action, you will 
be taken to the corresponding view. If the selected action doesn't have an associated 
view, RadRails will prompt you to create a new one.

For example, you can switch to a view from the V icon or from the Navigate menu 
and, when the dialog opens, select the list action from the drop-down list.

As we saw, from your view you can switch to a test, model, or controller too. For 
switching back to the view, the behavior will be the same as with the helper. For the 
controllers it will be just a tad different. If your cursor is situated within the code 
of an action, you will be taken directly to the corresponding view. Only when the 
cursor is not within an action method you will be prompted with the action  
selection dialog.



Coding Rails Views

[ 110 ]

View Templates
In Chapter 4, we saw how you can take advantage of code templates when writing 
Ruby code. RadRails offers the same kind of functionality when working with our 
views, but since the type of code you use in views has not much  
in common with that you use in your models or controllers, it provides a separate  
set of templates.

Besides, since when working in views we are mixing HTML with Ruby code 
snippets, the templates come in two flavors: those adding the special characters <% 
%> and those writing HTML code directly to your view.

To see the templates in action, we can go to the list.html.erb file and then in any 
blank part of the code you can write <% to start a Ruby code snippet. At this point, 
you will be presented with all the available templates. You can also directly hit the 
key combination Ctrl+Space (remember, if on a MAC, you have to use the Command 
key instead of Ctrl) to get a list of available templates without starting a code snippet, 
but in that case you will be presented also with pure HTML suggestions apart from 
the available templates list.

As you can see, many of these templates just represent HTML snippets or even 
HTML escaped entities, and then there are others providing actual Ruby code.



Chapter 5

[ 111 ]

If you want to check the complete list of available templates and take a look at what 
they do, you can go to the Window menu and open the Preferences dialog. From 
here, navigate to Aptana | Editors | ERB/RHTML | RHTML Templates. This will 
display all the templates together with the associated code for each of them.

If you want to modify any of the provided templates or if you want to create your 
own, you only have to follow the instructions we gave in Chapter 4 for creating Ruby 
templates. The only difference is the templates you create under this option will be 
available only when working in the code of your views, and the templates created 
from the Ruby Editor option will be available at any other time.



Coding Rails Views

[ 112 ]

HTML Code Assist
In a Rails view, we don't only write Ruby code but, more frequently, we write 
HTML. Thus, it would seem just logical that RadRails provided some kind of code 
assist for such an important part of our views too.

Since RadRails RHTML editor works on top of the Aptana built-in editors, we can 
use all the features they provide, which by the way are pretty impressive.

In the same file we were editing, try typing a < symbol and then hitting Ctrl+Space 
(in the default configuration, the help will display directly, even if you don't use 
Ctrl+Space). You should see a list of all the available HTML elements.

When you choose one of these elements, RadRails will automatically insert the 
matching pair to make sure you don't forget to close it. However, if you delete the 
closing tag, the next time you write </ in your code, the editor will automatically 
suggest the appropriate closing tag.

Once you are inside a tag, you can hit Ctrl+Space again to get a list of the available 
attributes for that tag.

Another nice feature we get when working with views is the discovering of matching 
tags. If you move the cursor to one opening or closing tag, RadRails will mark with a 
rectangle both the opening and closing tags so you can quickly see the contents of  
your element.

Just take into account HTML code assist can only work properly when your HTML 
code is well formed. If you are nesting tags in a wrong order or if you are closing 
more tags than you opened, then the editor might be unable to provide suggestions 
for you, or the suggestions might be inaccurate.



Chapter 5

[ 113 ]

Refactoring into Partials
As we saw in Chapter 4, refactoring can be a big help when working with the  
code we have already written. We usually refactor when we want to reuse our  
code in different places or just to clean the code and make it more readable  
and maintainable.

Since we shouldn't be creating any methods in our views, it doesn't make sense to 
have available all the options we can use when refactoring pure Ruby code, but it 
doesn't mean there is nothing to refactor in our views.

One of the most typical refactoring task for a view is separate a big file into different 
partials. We can do this by using the Extract Partial feature of RadRails. First you 
have to select the lines you want to extract to a new partial and with the selection 
on, you can right-click and select the option Extract Partial in the context menu. This 
option is also available under the Edit menu (notice it will be available at the Edit 
menu only when editing a view).

A dialog asking for the name of the partial will be presented. You can write the name 
with or without the preceding '_' character. Please note that if you write the name of 
an existing partial, RadRails will not refactor the code, but will inform you that there 
is already a partial using that name.

Once the extraction is done, you will notice two things. First, the selection in your 
original view will have been replaced with a 'render :partial' statement. Second, there 
should be a new partial file in the same folder as your original view with the name 
you provided and the contents of your selection.

There is one point to be aware of. Unlike what happened when refactoring methods 
in Ruby code, at the moment of writing this book, RadRails will extract your 
selection to a new partial without taking into consideration any variables you  
are using.



Coding Rails Views

[ 114 ]

What this means for you is that if you are using any local variables in your partial 
that were defined in the calling view, you will need to add them manually to the 
"locals" Hash in the render statement.

Outline
If I tell you about the outline of a view, maybe you will think it doesn't make sense. 
Since we are not going to have methods, there would be nothing to outline. That 
would be true if we think of outlining the Ruby code, but since we already stated our 
views should be as clean as possible regarding the Ruby code inside, the outlining 
we have has to do with the structure of the HTML.

If you are using the default layout for the Rails perspective, whenever you open a 
Rails view you will see the layout of the HTML structure in the Outline view. If you 
cannot see the Outline view, you can make it visible from the Window menu, under 
Show View and then in the General category.

With the list.html.erb file open, you will see the outline representing the header of 
the document, the table and then a <br/> element. If you click on the table element, 
you will see the detail of each row inside.

Notice the editor will provide code folding/unfolding icons matching those elements 
in your code that are also expandable in the outline view. In our case, we can fold the 
table and the <tr> elements.



Chapter 5

[ 115 ]

This kind of outlining is specially useful when we are integrating our views with 
the HTML a designer provided or if we are working with big files. Even if the 
indentation is not right (which very often is the case when in a RHTML view) the 
outline will allow us to navigate our code easily.

For those cases when the code is not properly formatted, we can make Eclipse format 
our source code automatically. You can right-click on the editor and select Format. 
This option is also available under the Edit menu.

Editing HTML Files
It's not so usual to edit plain HTML files when working in a Rails application,  
but sometimes you just want to provide a static page for displaying server errors  
or maybe for displaying during a controlled downtime of your server for 
maintenance purposes.

When editing HTML files, you will have available the same functionality regarding 
code assisting, formatting, and outlining as we just saw for your RHTML views. 
There are only some small differences.

The first difference is that since we are talking about plain HTML files, there will 
not be templates available. You can still type < to get the list of the available HTML 
elements and then use Ctrl+Space for the valid attributes, but there are no templates 
with snippets of code inside.

The other difference we find when editing a plain HTML file, is that since we are 
talking about pure HTML, Eclipse will be able to validate our code. To do so, we 
only have to right-click on the editor or on the file name and select Validate.

Once validation is done, the possible errors and warnings will be marked with red or 
yellow icons by the left margin of the editor. If we hover over these icons, we will get 
the explanation of the validation problems found.

Editing JavaScript Files
Even if the Rails helpers and RJS views make dealing with JavaScript an easy task, 
there are many times when we have to write our own JavaScript files, most typically 
in the application.js file under the Public | JavaScripts directory.

Aptana provides a very convenient help when working with our JavaScript files. To 
try out this editor, we can, for example open the dragdrop.js file, which is always 
available under Public | Javascripts.



Coding Rails Views

[ 116 ]

When you open it, the first thing you notice is the Outline view. Variables will be 
represented with a small green circle, objects will be represented with a bracket, and 
functions will be represented with a green circle with the letter F inside. If there are 
variables defined inside the functions, they will be represented in the outline too.

As usual, we can navigate the code directly by selecting the different elements in the 
outline and the cursor will be positioned directly at the point in which the selected 
element is defined in the editor. You can also use code folding from the left margin of 
the editor view. Also from the editor you can click on any variable or function name 
and you will go directly to the declaration.

You have to note that JavaScript is a dynamic language, so it's not always clear 
where the declaration of a function or variable is. In those cases, the editor will not 
be able to navigate to the definition. This happens specially if we are writing very 
complex JavaScript, like for example the source of the Prototype library itself. For the 
kind of JavaScript you'd usually write in your application.js file, RadRails should 
be able to find your declarations without any problems.

Apart from navigating to your declarations, there is some code assist available 
for JavaScript too. If you hit Ctrl+Space you will be presented with a list of all the 
JavaScript keywords and functions, as well as with the variables you defined in  
your JavaScript.



Chapter 5

[ 117 ]

By default, the editor will be able to analyze the current file and all the JavaScript 
base files that are created initially in a Rails project, so if you are using objects or 
functions defined in a separate JavaScript file, the editor will not be able to open  
the declaration.

Aptana provides the means to include more files to search for our definitions when 
using code assist. To use this functionality we have to open one of the Aptana views 
that are not displayed by default in the RadRails perspective. Go to Window | Show 
View, and then select Other. From the Aptana Standard Views category, select the 
References view.

Once the References view is open, you will see that the default set of JavaScript files 
used by Rails are already included. That's the reason why you can get code assist for 
functions defined in the prototype.js library, such as $ or $$ when working in any 
of your JavaScript files. 

You can see in the figure above, when including more than one JavaScript file, code 
assist will indicate which file contains the definitions of the displayed elements. 
If you want to add a JavaScript file to the ones being examined for code assist 
suggestions, all you have to do is drag your JavaScript file from the Ruby Explorer to 
the Code Assist Profile view.

Finally, when working with JavaScript, Aptana will provide code assist and  
auto-completion for your variables if the type of the variable is clear for the editor.



Coding Rails Views

[ 118 ]

For example, if we define a JavaScript variable and we assign a string literal to it, 
then we can type the name of the variable later in the code and, after we write a dot, 
the editor will display the functions available for the Objects of type String in the 
JavaScript API.

There is one point we didn't mention before. If you are working in an RHTML view, 
you know you can write JavaScript code inside by using a <script> block. When 
you are inside of those blocks, RadRails will provide the same content-assist features 
as in stand-alone JavaScript files. However, I recommend you that try to keep your 
JavaScript separated from your views whenever possible, since it will make them 
cleaner and more maintainable and easier to reuse.

Editing CSS Files
There is no modern web application without at least one CSS file, and more often 
than not we have several of them. Aptana provides a specialized editor that will help 
us write CSS in an easy way.

In order to try this, we can go to the Public | Scaffold directory of our application 
and open the scaffold.css file we generated in Chapter 3, when using the  
Scaffold Generator.

Again, you will notice there is an Outline view displaying the structure of our 
stylesheet. The different elements are represented with an open bracket, and the 
properties defined inside are represented with a green circle labeled with the 
property name and the assigned values.



Chapter 5

[ 119 ]

As with the other outlines, you can navigate your code directly from the tree in this 
view. You can see code folding is also available from the left margin of your editor.

To get code assist in this editor, you have to type a letter and then Ctrl+Space. Try 
typing d and then Ctrl+Space.

At this point, you will see a list of all the available elements accepting CSS styles. The 
cursor will be set in the first element starting with the letter you typed.

Once inside an element definition block, you can repeat the operation of writing 
a letter (or the beginning of a word) and then hitting Ctrl+Space and you will be 
presented with all the available properties.

When you are filling the values for a given property, Aptana will check if the values 
make sense. For example, you cannot write font-family: 15px or font-size: 
verdana. The editor will raise an error if you try to do so.



Coding Rails Views

[ 120 ]

There is still another interesting feature when using code assist in your CSS. Actually 
the same feature is also present for the HTML and JavaScript code assist, but I find  
it the most useful when coding CSS. When you start typing and get a code assist 
pop-up, you can see some icons representing the IE or Firefox browser by the right  
of the suggestions.

This icons indicate that this property is compatible with such browsers. If you 
scroll up and down the list of suggestions with your cursors, you will see a tool-tip 
explaining in detail in which versions of the browsers the property is available.

If you want to display the quick reference icons for browsers other than IE or  
Firefox you can do so by going to the Window menu, opening the Preferences 
dialog, and Navigating to Aptana | Browsers | User Agents. Code assist can 
provide browser-sensitive help for IE, Firefox, Opera, Netscape, and Safari.

As it happened with JavaScript, if you write your styles directly in your RHTML 
views using the <style> tag, you will get all the code assist features directly in 
your views, but I would strongly recommend you not to define inline styles in your 
application if you can help it.

Recent versions of Aptana incorporate a pretty handy feature. At the bottom of the 
editor, you will notice a tab displaying Firefox Preview. Depending on your OS, 
more tabs might be shown (such as for IE Preview). If you click on the tab, you will 
see a preview of a predefined template applying the selected CSS. To get back to the 
source file of your CSS, just click on the Source tab.



Chapter 5

[ 121 ]

The preview template uses pretty simple HTML with generic elements like h1, h2, 
and div. If you want to customize the template being used for the preview to make it 
look more similar to one of the pages in your project, you can do so by opening  
the menu by the right-bottom corner of this editor and selecting Edit default 
preview template....

Notice when you preview a CSS, the preview is done directly over the file, not using 
your Rails server. This means if you are using any images in your CSS, they should 
use relative paths. Otherwise, they will not be displayed in the preview because there 
is no way of setting the document root for absolute paths. In a typical Rails layout, the 
images in the CSS should use a path like url(../images/image_file_name).

Summary
In this chapter, we saw how to use Aptana RadRails for writing all the necessary 
code for the views of our application. RadRails not only offers help for writing 
the RHTML templates, but also provides assistance for coding HTML, CSS, and 
JavaScript files thanks to the underlying Aptana plugin.

By using the code assist features, we will be able to write code more quickly  
and more easily than if we were using a plain editor. Besides, the built-in  
browser-sensitive code assist will help us deal with the most popular browsers  
in the market, which is always a big help when working on the client-side of  
our application.





Debugging Your Application
Some people say that in Rails you don't need a debugger since you already have 
tests. Nevertheless, there has always been a built-in debugger in Rails, and the core 
team has dedicated some effort to get a better debugging experience in version 
2.0 of the framework by using the fantastic Ruby-debug gem developed by Kent 
Sibilev. Moreover, one of the points made by David Heinemeier Hansson in the 
announcement of Rails 2.0 was the possibility of using the debugger even in your 
tests. So it would seem it makes sense to have both a good testing framework and a 
good debugger in Rails.

The state of the art in debugging Ruby code a while ago was pretty primitive, so 
I can understand Rails supporters tried to play down the importance of a good 
debugger, since there was not a good tool that could stand comparison with those of 
other languages.

Even today, working directly with the built-in Rails debugger feels a bit odd, since 
you have to instrument your code by adding breakpoint statements before you can 
use it or set breakpoints from the command line referencing source line numbers 
directly and then you have to walk through your code with one-word commands 
with cryptic one or two-letter abbreviations.

Ruby-debug is a really fast and powerful tool, but it feels too much like the good old 
times of dbx, or even debug and edlin under DOS, much fun, but a slow process. 
And we shouldn't forget one of the main reasons we are using Rails is productivity. 
Of course I recommend you to learn how to use ruby-debug, the same as with the 
rest of the command-line tools, but most of the time I prefer to use the graphical front 
end and save myself a lot of time.

I personally cannot think of developing a real-life modern application in Rails or 
any other environment, without a good debugger. During my first Rails projects, in 
which such a tool was unavailable, I spent countless hours and countless log entries 
tracing the execution of my applications. Sometimes it really felt like going back to 
development in BASIC.



Debugging Your Application

[ 124 ]

Fortunately, those times are past. The command-line debug tools are already a  
huge step forward, but the real power comes when those debuggers get integrated 
into an IDE so you can walk through your code, inspect, and modify variables in 
execution time, and set or remove breakpoints with a single click, basically making 
possible a debugging experience as smooth as you would expect in any other 
programming language.

I'm pretty sure you have guessed by now that RadRails provides a good Ruby 
debugger. In former versions of the IDE, the debugger was focused on pure Ruby, 
which made it difficult, but possible, after some hackish configuration, to debug 
a Rails application. Since a few versions ago, RadRails has provided an excellent 
debugger, which allows you to debug your Rails applications out of the box.

After I started using this debugger in my everyday development, I had almost 
forgotten about the logger object and the log file, and I found myself solving 
problems more quickly and comfortably than before, especially, when I was working 
with a piece of code with which I was not familiar, such as a plug-in, Rails internal 
code, or code written by my co-workers.

Here is my two cents' worth: keep writing your tests, but don't underestimate the 
value of debugging. It will make you more productive and it will help you grasp the 
internals of the modules you are using.

Getting Started with Debugging
Debugging in RadRails has evolved much since previous versions, so if you had 
some prior experience with RadRails and found it kind of buggy, give it a second 
chance because now it's really worthwhile.

The process of debugging is so easy now that you actually don't need to do anything 
special. You only have to launch your server or your stand-alone script in debug 
mode and use it right away.

Debugger Configuration
Every Ruby installation will have the debug.rb library available, allowing you 
to debug a Ruby script, set breakpoints, and examine the value of your variables. 
Unfortunately, this library has some issues with performance basically due to the 
fact of creating a lot of binding objects that are almost immediately collected by the 
garbage collector, resulting in really slow execution for complex scripts (such as the 
Rails framework itself).



Chapter 6

[ 125 ]

If you want to get the most out of the RadRails debugger, it's recommended to install 
the ruby-debug-ide gem, which depends on the much faster ruby-debug-base gem. 
Without this gem, the debugger will still work, but much more slowly since it will be 
using the standard debug.rb library.

You could install the ruby-debug-ide gem directly from RadRails, but we will not be 
learning how to do so until next chapter, so for now we can install directly from the 
command line. Open a command prompt and type:

gem install ruby-debug-ide

Please note that if you are under a linux-based system, you will need to execute as a 
privileged user or use the sudo command.

After checking your installation, connecting to the gem server, and installing it, 
it should display a message similar to Successfully installed ruby-debug-ide-
#VERSION. If you don't have the ruby-debug-base gem installed, you will be 
prompted to install it as a part of the installation process.

RadRails will try to auto-configure itself for using ruby-debug if it is present in the 
system, but sometimes it will not be able to detect the installation, so it doesn't hurt 
to check the preferences and make ourselves sure we will be using ruby-debug. Go 
to the Window menu, then open Preferences and look for the Debugger option 
under the Ruby category.



Debugging Your Application

[ 126 ]

Chances are it will be checked already, but if not we have to check Use ruby-debug 
library so RadRails will use it when debugging. That's it; now you are all set and 
ready for debugging your application.

Starting Your Server
Debugging is just one step away. We only need to start our server in debug mode 
before we can start using the debugger.

As usual, we have to navigate to the Server view to start our server. If you didn't 
remove it, you should have a server already configured for your project. If you still 
don't have it, just create one by right-clicking on the content area of this view and 
selecting Add.

Make sure your server is stopped before trying to launch it in debug mode. The 
column Status of the server view should read Stopped. If it doesn't, right-click on 
the server name and select Stop Server. Now we can start it for debugging. You can 
right-click directly on the server name and select Start server in debug mode. If you 
prefer, you can use the debug icon on the toolbar of this view.

Once the server starts, the Status column should read Running and your application 
is ready for a debugging session. As you can see, starting your server for debugging 
is as easy as starting it for a normal session. Don't misunderstand this, though. A 
server that started with the debugger on will be slower than an ordinary start, so use 
it only when you are going to have a debugging session and start as usual otherwise.

Debugging a Ruby Script
This book focuses on using RadRails for working with Rails applications, but of 
course you can use RadRails for debugging a stand-alone Ruby script too.



Chapter 6

[ 127 ]

The first thing we have to do is locate the script in the Ruby Explorer view. Now 
just right-click on the file name and from the context menu select Debug As. A new 
menu will open with several options (they may vary depending on your Eclipse 
installation). From this menu select Ruby Application. Your script will be launched 
with the debugger on.

The Debug As option is also available from the Run menu of your workbench. In 
this case you have to select the script in the Ruby Explorer by left clicking on it before 
launching the debugger.

In this menu, there is another useful option labeled Debug History. From this option 
you can relaunch the scripts you were debugging recently.

Notice that from the History menu you can also relaunch a server for debugging by 
selecting the name of the server. After selecting the target server in the menu, you 
should see the server output in the console view and the status changed to Running 
in the Servers view.

Using Breakpoints
So far we have learned how to start a debugging session, but unless we do 
something more we will not see any differences from a normal execution (apart from 
the performance being slightly slower).

The first thing we need to do when we want to debug an application is set the 
points at which we want to examine the status of our program. We will use the 
term Breakpoint to refer to each of these points. Whenever the debugger hits a 
breakpoint, execution will suspend so we can examine the variables or just step 
through the code and see the execution flow.



Debugging Your Application

[ 128 ]

Defining a breakpoint in RadRails is a very simple task. All we have to do is  
double-click on the left margin of the editor. You can double-click either over the line 
number or in the left gray area. The breakpoint will be set either way. You will see a 
blue circle indicating there is a breakpoint set at the current line.

If you want to remove a breakpoint, you only have to double-click on top of it. If  
you don't feel comfortable with the double-click, you can also right-click on the  
left margin and then select Add breakpoint or Remove breakpoint to get the  
same results.

In previous versions of RadRails the editor wouldn't allow you to set breakpoints in 
RHTML/ERB views, but now you can do it in the same way as with Ruby files, so 
you shouldn't see any differences.

To see the debugger in action, let's define a breakpoint in our comics_controller.
rb file under app | controllers. We want the debugger to stop when we try to list 
the existing comics, so let's set the breakpoint at the first line we have in the method 
index by double- clicking on the left margin by that line.

Now we need to access the index action from a browser to see how the  
debugger hits the breakpoint. Before opening the browser make sure you have 
started the server in debug mode as we explained in the previous section. Now  
we can test the debugger. We could open our action in any browser, but for this 
sample we will use the integrated browser in RadRails. Go to the Servers view,  
right-click on the name of your server and select Launch Browser. In the URL box of  
your browser just add the 'comics' controller's name. It should look something like 
http://localhost:3000/comics.

Note that the port number could be different for you depending on your  
server's configuration.

As you know, when we call a controller without an action name, rails will 
automatically call the index action for that controller, so if our server was started in 
debug mode and the breakpoint was properly set at the index action, RadRails will 
prompt you to open the Debug perspective.



Chapter 6

[ 129 ]

Select Yes to enter the debug perspective, which will provide specialized views 
for our debugging session. If you want RadRails to switch automatically to this 
perspective whenever the debugger hits a breakpoint, check the Remember my 
decision box.

The first thing you will notice in this perspective is that there are some new views 
available. Don't worry if you don't know what they are for, since that's exactly what 
we are going to learn in this chapter.

Before starting the explanation for different views, let's focus on our editor. You will 
see the line where we set the breakpoint is highlighted with a blue background. This 
means the execution is paused at this line. The debugger will always stop before 
executing the highlighted line.

At this point there are several things we could do. We could examine the values of 
any variables, we could evaluate a Ruby expression in the current context, or we 
could execute the rest of the request step by step. This time let's just let the execution 
continue as usual. To do so, go to the Run menu and select Resume (or use the 
keyboard shortcut F8).



Debugging Your Application

[ 130 ]

The execution will resume and since we don't have any other breakpoints the action 
will finish and the result of the list will be displayed at the browser tab.

The Breakpoints View
Once we have set the breakpoints for our application, it can be difficult to keep track 
of which breakpoints we have and in which files and lines of the code we placed 
them. It would be convenient to have some way of displaying and managing the list 
of breakpoints. Well, it's our lucky day because that's exactly what Eclipse/RadRails 
provide under the Breakpoints view.

This view should be visible in the default debug perspective, but if for any reason 
this view is not displaying in your workbench, you can go to the Window menu  
and select Show View. The Breakpoints view will be available under the  
Debug category.

At this moment your Breakpoints view will display a single line representing our 
breakpoint at the list action of the comics controller. The information you see in this 
view is the name of the file and the line number where the breakpoint is set. If you 
double-click on the breakpoint information, the editor will display the exact line it 
references. You can get the same result by right-clicking and selecting Go to File  
in the context menu or by using the 'Go to file for breakpoint' icon on this  
view's toolbar.

There are some other interesting things you can do with your breakpoints from this 
view. You can see there is a checkbox by every breakpoint. The check means the 
breakpoint is enabled. If you want to temporarily disable a breakpoint you can just 
uncheck its box. When the debugger hits the breakpoint, it will skip it if it is disabled, 
but you can always enable it again later. You can also toggle the enabled/disabled 
status by right-clicking and selecting enable or disable from the context menu.



Chapter 6

[ 131 ]

If you want to permanently remove a breakpoint, you can select it and use the Delete 
key or you can use the Remove option from the context menu. There is also an icon 
on this view's toolbar for removing the selected breakpoint and another one for 
removing all the breakpoints at once.

When you want to define just a couple of breakpoints, the default view is just perfect, 
but if you are debugging a complex application and you have a lot of breakpoints, it 
might be advisable to group them in some way. In the menu for this view (the one 
you get by clicking on the small triangle by the right of the view's toolbar) there is 
a Group By option so you can choose how to display your breakpoints. By default 
they are ungrouped, but you can group them by file, type, or project, for example.

When you use a grouping criterion, you will notice the breakpoints appear in a 
tree-like fashion, with a first level for the group and then the list of breakpoints it 
contains. You can use the Expand all or Collapse all icons on the view's toolbar to 
show or hide the details of the groups.

Setting Generic Breakpoints for Exceptions
A very useful feature of RadRails debugger is the ability to set a breakpoint that is 
not associated to a given line but to a Ruby exception. In this way you can get the 
debugger to pause the execution whenever that exception is launched at any time.



Debugging Your Application

[ 132 ]

To define a Ruby exception breakpoint, you have to use the 'R!' icon in the 
breakpoints view toolbar. You will be presented with a dialog to select the exception 
for which you want to set the breakpoint.

You can just scroll down to the exception you want to intercept or you can type a 
pattern in the text box to filter out the exceptions with matching names. If you want 
to add a breakpoint for several exceptions at once, you can select them as you hold 
the Ctrl key or the equivalent in your OS, so you can make a multiple selection. In 
this case, you will see that a different breakpoint is set at the Breakpoints view for 
each of the exceptions.

In this list, you can actually select any class and not only exceptions, but if you select 
a class that is not an exception, RadRails will inform you about that with a message 
at the bottom of the dialog.

Apart from the process for defining them, Ruby exception breakpoints behave 
exactly the same as any ordinary breakpoint. If you want to separate the source 
code breakpoints from the Ruby exception ones, you can do so by grouping the 
breakpoints by type. In this case you will get two groups, one for the source code 
breakpoints, and one for the exceptions.



Chapter 6

[ 133 ]

Exporting and Importing Breakpoints
In some cases you might want to export the current definition of your breakpoints 
for future use or maybe for working on different computers. From the content area of 
the Breakpoints view you can right-click to open the context menu and select Export 
Breakpoints....

In this dialog you can select which of the breakpoints you want to export (use the 
Select All button for a full export) and where to store the export file. Even though 
the extension of the file is bkpt, this file is a plain XML file with the definition of  
your breakpoints.

To import a bkpt file, use the context menu and select Import Breakpoints.... Just 
locate the bkpt file and Eclipse will import the information to your Breakpoints view.



Debugging Your Application

[ 134 ]

The Debug View
So far we have been learning how to use breakpoints so we can pause execution at 
any point we want, but debugging is much more than just stopping the application 
flow. In this section we will see how to use the Debug view both for inspecting the 
history of method calls and to execute our application step by step.

The Debug View and the Stack Frame
In Computer Science, the Call Stack often shortened as 'the stack' is a dynamic 
structure containing information about the active subroutines of a running program. 
This stack is divided into Stack Frames, which is the name we use for referring to a 
call or to a subroutine that has not terminated yet with a return.

In Ruby, a Stack Frame represents each call to a method that is made during the 
execution of our scripts, together with the status of the variables at that point. By 
examining the history of the Stack Frames, we can see how we got to the point 
we are at, and we can inspect the statements that were recently executed to better 
understand the execution flow.

To see the stack frames in action make sure you have started your server  
in debug mode and then let's open again the URL for our comic list at  
http://localhost:3000/comics. You can use the built-in browser or just  
any browser in your system.

When the debugger reaches the breakpoint at the list method of our controller, the 
execution will pause as we saw before. So far, this is the same process we did in the 
previous section, but we will focus now on a different view.

The Debug view should be available at the default Debug perspective. If your 
workbench is not displaying this view for any reason, you can open it from the Show 
View option of the Window menu.



Chapter 6

[ 135 ]

In this view you will notice a line highlighted with a gray background. That's 
the indicator of the current line where the execution is paused. This line appears 
grouped with others under a section with the title Ruby Thread and then the name 
of the file in which this thread is stopped right now. In our case it will be the comics_
controller.rb file.

You might be wondering what this thing is about having different threads if Rails 
is a non-threaded framework. Well, even though in Rails you cannot use threads, 
it doesn't mean the server in which your application runs is not using threads 
internally. Fortunately we don't have to worry about that. The server will execute 
every request you send in a thread of its own. You can just ignore the rest of the 
threads and concentrate on the one in which your request are being processed.

Under this thread, you can see the already famous Stack Frames. The line on top 
is where our breakpoint is, and each of the lines below represents a method call. If 
you click on any of the Stack Frames, the Ruby Editor will open the referenced file 
at that method call line. In this way you can traverse back through the flow of your 
execution and you can even examine the internal Rails code that originated the call.

Sometimes when debugging you may want to go to a given point of the stack but 
since the stack frame can be long you don't want to scroll it down to find where it is. 
You can use the built-in Find feature of the Debug view. If you right-click and select 
Find or use the Find option of the Edit menu, or if you use the shortcut Ctrl+F, a find 
dialog will appear.



Debugging Your Application

[ 136 ]

By now you should already be familiar with this kind of dialog in RadRails. Just type 
the pattern of the line you want to find and the lower pane of the window will filter 
only those elements matching your pattern.

Stepping through Your Application
So far we know how to set breakpoints to pause our program's execution and how 
to move back in the method call history. Now we are going to learn how to move 
forward in your applications execution in a controlled manner.

When you want to go over the details of a piece of code to detect a possible bug, it's 
not very efficient to define a breakpoint at every line of the code. For these cases we 
can use the stepping capabilities of the debugger.

You can use the step through controls from the Debug view toolbar, from the Run 
menu, or when you are more comfortable with debugging with their keyboard 
shortcuts. As usual, you can see the shortcut by the right of each option in the  
Run menu.

As you can see, this toolbar is divided in two areas. At the left you can see three 
icons, which look like any ordinary multimedia player and which are pretty intuitive 
to use. The one with the green triangle, called Resume, will continue a paused 
execution and will not stop until the next breakpoint is reached or until the  
program finishes.

The next control is called Suspend and it's represented by two parallel bars. As you 
probably guessed, this will suspend program execution as if it had hit a breakpoint. 
It's not a very frequently used control when debugging a Rails application because 
request cycles are typically pretty short and you don't even have the time for 
manually pausing them, but if you are debugging a long-running process you could 
find it useful.

Finally we find the Terminate control represented by a stop icon. By clicking this 
icon you will stop the running process. This would be equivalent to stopping your 
Rails server from the Servers view.

The controls Resume, Suspend, and Terminate are available from the Run menu, 
but only Resume has a keyboard shortcut (F8).



Chapter 6

[ 137 ]

These three functions are the very basics of controlling the execution flow, but 
usually when debugging you will want more flexibility for moving through your 
code. You can get this by using the three controls on the right side of the Debug view 
toolbar. These controls are represented with yellow arrows indicating the execution 
flow and their names are Step Into, Step Over, and Step Return.

To illustrate the usage of these controls we are going to define a very simple method 
and set new breakpoints. First remove the breakpoint we already have. If you 
set more than one for your tests, remove them all. You can easily remove all the 
breakpoints at once with the Remove All Breakpoints icon on the Breakpoints view 
or from the Run menu.

Now we will create a method named get_comics with a single line for getting all the 
comics from the database and we will change the first line of the index method to use 
our new method. You can see the final result in the figure below.

Now, let's set a breakpoint at the first line of the index method. Hence, the  
debugger will stop whenever we call the index action of the 'comics' controller and 
before executing the get_comics method. Go to your browser and reload the page 
http://localhost:3000/comics.

When the debugger stops, there are several options for us to choose from: Resume, 
Step Into, Step Over, or Step Return. Depending on which part of our application 
we are interested in debugging, we will be choosing one or another.

As we already know, choosing Resume would continue execution until the next 
breakpoint was hit, but let's see what each of the other options would do.



Debugging Your Application

[ 138 ]

If we tell the debugger to Step Into, it will continue execution, enter the get_comics 
method and then stop at the first line of this method. Step Into basically executes the 
call to the referenced method in the current line and then stops after the call before 
executing any of the lines inside that method.

We can try it either by using the Step Into icon on the Debug view toolbar, by using 
the corresponding option at the Run menu, or directly with the shortcut F5. You will 
see the debugger entering the get_comics method and pausing at the first line. At 
this point we can click on Resume to let execution continue as usual.

If you choose to Step Into on a line where several method calls are referenced, the 
method in which the debugger will stop will be the one with higher precedence 
either by being the leftmost method or by parenthesis use. In any case, the method 
into which you are stepping will always be the method that would be called first in a 
normal execution.

Consider a line such as:

Comic.find(:first).title.upcase

In this line we are using three method calls, find, title, and upcase. If you choose 
to Step Into in a line like this, you would be taken to the first line of the find method.

Now let's see what the Step Over functionality does. Go to your browser again and 
reload the page so we will get the debugger suspended at the first line of our index 
action. Stepping over this line means to execute all the code associated with that 
line and to continue execution until the next line in the current method, where the 
debugger will pause again. This means if in the current line there are any calls to 
other methods they will be all executed but we will be stepping over them without 
pausing to see what they are doing.

If you use the Step Over control (the shortcut being F6) you will see the debugger 
stops at the next line, the one with the respond_to method call. Of course the call  
to the get_comics method will be made, but we just don't go through the details  
of it. Just resume execution so we have the debugger ready to try the last  
stepping method.

Finally, we can choose to Step Return when the program's execution is suspended. 
This will cause all the code of the current method to be executed and the debugger 
will stop exactly at the next line after this method's return, which will be the line 
after this method was referenced at the calling method.



Chapter 6

[ 139 ]

To see how it works, reload the same page again in your browser for the debugger  
to stop at our breakpoint. Now if you click the Step Return control (the shortcut 
being F7) you will see the execution resumes and suspends again at a line inside  
the perform_action method of ActionController::Base, which is the method  
Rails uses to invoke our actions. Don't forget to use Resume to let the request cycle 
finish normally.

Maybe by now you are wondering if you can modify a line of code in real time when 
the execution is suspended by the debugger. Well, you can modify the code, but it 
will not have an effect until you resume execution and enter the request cycle again. 
The way Rails works in development environment is that the code for the classes is 
loaded the first time the class is used in the request cycle, so you will have to force a 
new request in order for your changes to be effective.

With these stepping capabilities, you can inspect the execution flow of your 
application, so you can understand where and how the different methods are called. 
This is already pretty interesting, although often you don't want only to see how the 
code is executing, but also the values of the variables currently in scope.

In the next section, we will learn how you can inspect the status of your application 
once you have reached the point you want by using the stepping-through controls.

Variables and Expressions
A very useful feature is being able to inspect and even modify the variables and 
constants in your code as it's executing. There are two views that will help us  
inspect the status of our variables when debugging: the Variables view and the 
Expressions view.

The Variables View
As you have surely guessed, this view will allow us to display and modify the values 
of the variables in the current scope.



Debugging Your Application

[ 140 ]

To see how it works, open the comics page in your browser and wait for the 
debugger to stop at the defined breakpoint. Now open the Variables view. It should 
be available as a tab in the default Debug perspective, but if you cannot see it,  
you can open it from the Show View option of the Window menu under the  
Debug category.

This view displays all the variables currently in scope. You will see a single entry 
named self which is the reference to the object containing the current controller. If 
we had any local variables defined in our code and they were available in the current 
scope, they would appear directly at the same level as self.

You can see we have two columns at this view. The first one will display the name of 
the variable and the second will display its value. If the variable is a simple one, the 
value will display directly, but in the case of more complex objects, a summary will 
appear (usually the name of the class and the object ID or the number of elements in 
the case of object containers such as Hashes or Arrays).

You can unfold the different elements for example, the self variable and then the 
@_params one to see the details inside.

As you can see, the default layout uses two columns and a lower pane. If you click 
on any variable, the lower pane will display the contents of the variable. This can be 
especially useful when inspecting the values of large strings or of object containers 
with other elements inside.



Chapter 6

[ 141 ]

You can change the layout of this view from the layout option of the menu available 
at the right of this view's toolbar. You can choose to have a vertical or horizontal 
layout, to hide the lower pane (by selecting Variables View Only) or even not to use 
columns for displaying the values. In this case the value for each variable will appear 
right after its name.

If you are not using columns, you can toggle on and off the functionality of 
displaying the type name of the variables. To toggle the type names you can use the 
first of the icons in this view's toolbar, labeled Show Type Names. This icon will 
appear faded out if you are using a multicolumn display.

On the menu of this view, you can also toggle the display of class variables. By 
default it is disabled, but you can turn it on by checking Show Class Variables.

You have probably noticed that there can be a lot of variables in scope at a  
given moment. If you want to see the value of a single variable, you can use the 
built-in search functionality of this view. By right-clicking on the variable list or by 
choosing Find in the Edit menu (or directly with Ctrl+F) you will get a Find dialog, 
which works as usual. If you type the desired pattern, the dialog will filter only the 
matching variables. If you double-click on one of these variables, the dialog will close 
but this variable will be selected for you in the Variables view.

We can not only display the values of the variables, but we can also modify them. 
If you right-click on top of any variable in the Variables view and select Change 
Value, a new window will appear for you to enter the desired value.

If you prefer it, you can also change a variable's value directly from the lower pane 
in which the value is displayed. Just type the new value, then right-click and select 
Assign Value. Unless you are working with the lower pane hidden, you might find 
this method a bit more convenient since there is no pop-up window for modifying 
the value. In any case, the results will be the same.



Debugging Your Application

[ 142 ]

In latest versions of RadRails everything is working fine, but in older versions there 
was a minor annoyance when changing the value of a variable from the Variables 
view. You changed the value, but the old one would still appear. The changes 
actually took effect immediately, but they would not display at the Variables 
view until you let the debugger move at least one step in your code. If you are 
experiencing this behavior, it means it's high time to get an updated version  
of RadRails.

The Expressions View
The Expressions view is similar in many ways to the Variables view. You can 
change the layout, choose to display the types or only the names, and use a lower 
pane or not.

The difference between the Variables and the Expressions view is that we don't 
display the value of a variable in the code, but the result of evaluating an expression 
in the current context.

If you have used Eclipse with other languages than Ruby, you might have used the 
Expressions view for setting watch expressions that get evaluated automatically 
every time a breakpoint is hit. As of today, the Ruby expressions you set in this view 
will not get re-evaluated automatically, but you have to do it manually (as we will 
learn just below). There are plans for including the watch expression functionality 
in future versions of RadRails, so maybe by the time you are reading this book this 
feature is already implemented, and in that case there could be some differences with 
the contents of this section.

You can select any expression in your code, like the condition in an if statement, 
and see the result of the evaluation. If you select a variable name, you will see the 
value as in the Variables view but you will not be able to modify it.

To inspect an expression in your code, make the debugger hit a breakpoint, select 
the expression to evaluate, and then right-click and select Inspect. Note that this is 
the Inspect option directly, and not the one with three trailing dots. The selected 
expression and the result of the evaluation will appear at the Expressions view.

Apart from the expressions in your code, there are certain frequently used 
expressions that are available as Quick Inspect expressions. To see the expressions 
we can evaluate this way, make the debugger stop at any breakpoint and then at any 
line of the editor right-click and select Inspect.... Note that this is the Inspect... option 
with three trailing dots, not the one with just the word Inspect. A context menu will 
appear with several options.



Chapter 6

[ 143 ]

By selecting any of the available expressions you will see the results in the 
Expressions view.

If you want to add more expressions to inspect, you can do so by going  
to the Preferences option of the Window menu and then to Ruby and  
Evaluation Expressions.



Debugging Your Application

[ 144 ]

If you select one of the expressions and click on Edit you can see the source code of 
the expression. For example, the code for the All Constants expression is:

Module.constants.sort  

and the code for the Instance methods including inherited expression is:

%s.class.instance_methods(true).sort  

If you compare these two expressions, you will find a difference between them: in 
the second expression we are using the wildcard %s. There is a good reason for this. 
In the first expression, the one for the constants, the result will be always the same 
independently of the selection. Since the expression doesn't need a context, it doesn't 
use any special mechanism.

The second expression, on the other hand, will display instance variables. Instance 
variables are associated with an object, so the expression needs to know the context 
of the object in which to execute the expression. The wildcard %s represents the 
current selection in the editor. If there is no selection, then self will be used instead.

You can add any expressions for Quick Inspect by using the New button of this 
dialog. If you want to share your expressions with other users or between multiple 
installations, you can export them to XML and then import them back with the 
Export and Import buttons.

The Display View
So far we have seen how to inspect the values of variables and expressions and how 
to modify the values of variables at run time. This, in combination with the stepping 
capabilities of the debugger, gives us much control over what's going on in our code. 
And yet, there are occasions when you want to execute arbitrary code or just change 
the value of a constant in the context of the execution. This can be done by using the 
Display view.

The Display view is not available in the default Debug Perspective, so we will have 
to open it manually. Go to the Window menu, then select Show View and choose 
the view called Display. If there is more than one view with this name, select the one 
in which the icon contains an R for Ruby. The one with a J stands for Java and will be 
useless in a Ruby debug session.



Chapter 6

[ 145 ]

What this view does is basically execute any code as if we were in the Rails console 
or in IRB, but within the current context of the line in which the debugger is paused. 
The values of any variables will be available when executing and any changes you 
make will have immediate effect in your debugging session. As it happens with 
the Rails Console, this view is one of my favorites when debugging. And it has the 
added value of being pretty straightforward to use.

The first thing we need to do is suspend the execution at any breakpoint. Since the 
Display view will execute any code within the current debugging context, we need 
first to have the debugger stopped at some point or else the Display view will  
be disabled.

Now we can execute any code in the same way as in the Rails console. Write the code 
you want to run, and press Enter. Alternatively, you can select it, and click on the 
icon in this view's toolbar labeled Evaluate the selected text. The selected code will 
be executed and the return value will be displayed.

If after a while you want to clean the Display view, you can use the Clear Console 
icon of the toolbar.

This view was created very recently in RadRails and is still undergoing some 
changes to make it even easier to use and more similar to working directly with 
the Rails console (except that execution will be made in the context of the current 
breakpoint). By the time you are reading this book, some changes in this direction 
might already have been made.



Debugging Your Application

[ 146 ]

Useful Tools for Debugging
Apart from the debugger itself, Eclipse and RadRails provide some complementary 
tools which can be useful when examining our application for errors. We will explain 
in this section how you can link errors to source code directly, and how to tail your 
log files.

Linking Errors and Source Code from the 
Browser
There is a nice feature you can use that is not strictly for debugging but can help you 
when finding an error. If you are using the built-in browser in RadRails, every time 
you get an error in the browser with a stack trace, the lines of the stack will be linked 
with your source code, so if you click directly on any of them, RadRails will display 
the exact line of that source file in the Editor.

Tailing the Log Files
Even though debugging is great for finding errors and you will not need to use the 
log as much as before, there are still many times when you want to use log files 
for debugging purposes. For example, you might want to read the log to see the 
parameters your actions are getting, to know which actions are being executed, or to 
examine the SQL statements that are being produced by Active Record.

There is a basic Tail view available in Eclipse. From the Ruby Explorer you can  
right-click on any log file and then select Tail. Now every time there is a new line 
written in that log file, you will get the output in the Console view.



Chapter 6

[ 147 ]

In RadRails there is a more convenient view, called Tail view, which provides some 
interesting features. We will learn all the details in next chapter, but for now you 
can already use it by going to the Servers view, right-clicking on the name of your 
server, and selecting Open Log. You can also select the Open Log icon located in the 
toolbar of the Servers view.

Summary
In this chapter we have learned how to use RadRails' built-in debugger to interact 
with our code at run time. We know how to start a server or a stand-alone script in 
debug mode, how to set breakpoints so the execution will suspend at the selected 
points, and how to intercept any Ruby exceptions.

Once the execution is suspended, we know how to interact with variables, 
expressions, and even execute arbitrary code in the Display view. The stepping 
capabilities of the debugger make it easy to walk through your code step by step and 
understand the execution flow.

After finishing this chapter you will find yourself spending less time in fixing your 
errors and having more time available for focusing on the business logic of your 
application and on the creative process of the development.

Sure you could fix your errors without the debugger too, but it would be much 
slower and it wouldn't be half as much fun.





RadRails Views
By now you should be comfortable with the general interface of Eclipse and 
RadRails. You know already how to create Rails projects, write and debug Ruby code 
and views, and work with HTML, JavaScript, and CSS files. We could say most of 
our programming needs are fulfilled with that.

When developing a Rails project, there are more things to do than the source code 
itself. We have to start, stop, and monitor our servers, generate code templates, run 
our test suites, install plugins and gems, generate documentation, keep control  
of to-do items, or run Rake tasks for different purposes—database migrations,  
for example.

RadRails provides different views for supporting these tasks that are a part of  
the development but not of the coding itself. And, of course, it does it so we can 
control everything from within the IDE without having to go back to the  
command-line interface.

We already had a glimpse of some of these features when using the Generators, 
Rake, or Servers views briefly when we needed them in previous chapters. Now you 
will learn how to take full advantage of all the RadRails views, to help you take care 
of routine processes and just focus on getting things done.

Opening the RadRails Views
Some of the views that we will go through in this chapter are available as part of 
the Rails default perspective, which means you don't need to do anything special 
to open them; they will appear as tabbed views in a pane at the bottom of your 
workbench. Just look for the tab name of the view you want to see and click on it to 
make it visible.



RadRails Views

[ 150 ]

However, there are some views that are not opened by default, or maybe you closed 
them at some point accidentally, or maybe you changed to the Debug perspective 
and you want to display some of the RadRails views there. When you need to open 
a view whose tab is not displaying, you can go to the Window menu, and select the 
Show View option.

If you are in the Rails perspective, all the available views will be displayed in that 
menu, as you can see in the screenshot above. When opening this menu from a 
different perspective, you will not see the RadRails views here, but you can select 
Other... as we did in previous chapters. If this is the case, in the Show View dialog, 
most of the views will appear under the Ruby category, except for the Generators, 
Rails API, and Rake Tasks views, which are located under Rails.

Documentation Views
As happens with any modern programming language, Ruby has an extensive 
API. There are lots of libraries and classes and even with Ruby being an intuitive 
language with a neat consistent API, often we need to read the documentation.

As you probably know, Ruby provides a standard documentation format called 
RDoc, which uses the comments in the source code to generate documentation. We 
can access this RDoc documentation in different ways, mainly in HTML format 
through a browser or by using the command-line tool RI. This produces a plain-text 
output directly at the command shell, in a similar way to the man command in a  
UNIX system.



Chapter 7

[ 151 ]

RadRails doesn't add any new functionalities to the built-in documentation, but 
provides some convenient views so we can explore it without losing the context of 
our project's source.

Ruby Interactive (RI) View
This view provides a fast and comfortable way of browsing the local documentation 
in the same way as you would use RI from the command line.

You can look either for a class or a method name. Just start typing at the input box 
at the top left corner of the view and the list below will display the matching entries. 
That's a nice improvement over the command line interface, since you can see the 
results as you type instead of having to run a complete search every time.

If you know the name of both the class and the method you are looking for, then 
you can write them using the hash (pound) sign as a separator. For example, to get 
the documentation for the sum method of the class Enumerable you would write 
Enumerable#sum.

The documentation will display in the right pane, with a convenient highlighting of 
the referenced methods and classes. Even if the search results of RI don't look very 
attractive compared to the output of the HTML-based documentation views, RI has 
the advantage of searching locally on your computer, so you can use it even when 
working off-line.

Ruby Core, Ruby Standard Library, and Rails 
API
There are three more views related to documentation in RadRails: Ruby Core API, 
Ruby Standard Library API, and Rails API. Unlike the RI view, these ones look for 
the information over the Internet, so you will not be able to use them unless you are 
on-line.



RadRails Views

[ 152 ]

On the other hand, the information is displayed in a more attractive way than  
with RI, and it provides links to the source code of the consulted methods, so if  
the documentation is not enough, you can always take a look at the inner details of 
the implementation.

The Ruby Core API view displays the documentation of the classes included in Ruby's 
core. These are the classes you can directly use without a previous require statement. 
The documentation rendered is that at http://www.ruby-doc.org/core/.

You are probably familiar with this type of layout, since it's the default RDoc output. 
The upper pane displays the navigation links, and the lower pane shows the detail 
of the documentation. The navigation is divided into three frames. The one to the left 
shows the files in which the source code is, the one in the middle shows the Classes 
and Modules, and in the third one you can find all the methods in the API.

The Ruby Standard Library API is composed of all the classes and modules that 
are not a part of Ruby's core, but are typically distributed as a part of the Ruby 
installation. You can directly use these classes after a require statement in your 
code. The Ruby Standard Library API View displays the information from  
http://www.ruby-doc.org/stdlib.



Chapter 7

[ 153 ]

In this case, the navigation is the same as in Ruby Core, but with an additional area 
to the left, in which you can see all the available packages (the ones you would 
require for using the classes within your code). When you select a package link, you 
will see the files, classes, and methods for that single package.

The last of the documentation views displays information about the Rails API.  
It includes the documentation of ActiveRecord, the ActionPack, ActiveSupport,  
and the rest of the Rails components. The information is obtained from  
http://api.rubyonrails.org.

In this case the layout is slightly different because the information about the files, 
classes, and methods is displayed to the left instead at the top of the view. Apart 
from that, the behavior is identical to that of the Ruby Core API view.

Since some of the API descriptions are fairly long, it can be convenient to maximize 
the documentation views when you are using them. Remember you can maximize 
any of the views by double-clicking its tab or by using the maximize icon on the 
view's toolbar. Double-clicking again will restore the view to the original size  
and position.



RadRails Views

[ 154 ]

Servers View
We went briefly over the Servers view when creating our first application and also 
when talking about debugging. This is a fairly simple view, but it's also a very useful 
one. Basically, you can start and stop your Rails servers (WEBrick, Mongrel, or 
LightTPD), launch the built-in browser, or start a debugging session.

The Servers view displays all the available servers for the current workspace, and 
not only for the current project. This view provides a 'project' column, so you can 
know to which project your server is associated at a glance.

The very first time that you open RadRails after a fresh installation this view will 
be empty. By default, when you create a new Rails project, RadRails will select the 
option to create a Mongrel server for it. Unless you manually uncheck this option at 
the New Rails Project dialog, whenever you create a RadRails project you will see a 
new server in this view.

If you chose not to create any server from the New Rails Project dialog, nothing 
would appear in this view, and you wouldn't have a way for starting your server 
from the IDE, having to switch to the command line for that operation. 

In that case, you can add a new server for your project from this view. The first icon 
in this view's toolbar is the one for adding a new server. You can click directly on the 
icon, or open the drop-down with the small arrow by its side, and then select Rails 
Server. There are also options for adding a new server both in the context menu of 
the project in the Ruby Explorer and from the New option under the File menu. No 
matter how you choose to add your server, a pop-up will appear prompting you to 
fill in the server properties.



Chapter 7

[ 155 ]

For the Project name you have to select a project from the drop-down box. Note that, 
only open projects will display in the list, so make sure your project is open before 
trying to add a new server for it. The name of your server will be the one showing in 
the Servers view, so it's in your interest to provide a meaningful name, especially if 
you have many projects in the same workspace.

The type of project must be one of the three available options: WEBrick, Mongrel, 
or LightTPD. The only arguments you can provide to the server are the IP address 
or Host name, the the server port number, and the Rails environment. RadRails will 
default the port number to the first port starting from 3000 on which you don't have 
any other server configured. If you want, you can change this value and configure 
two different servers to use the same port.

The new server will be listed in the Servers view. After adding a server, you can at 
once start it, start it in debugging mode, or stop it. You can perform these operations 
directly from the view's toolbar or from the context menu by right-clicking on the 
project name. When you start a server, its output will be displayed at the Console 
view, providing the same information you would get when starting from the 
command line.

If you prefer to have access directly to your server logs, you can open the context 
menu and select the Open Log option. This will display your server's log in the Tail 
view. Later in this chapter you can find a section dedicated to this view.



RadRails Views

[ 156 ]

If you need to restart the server, you could just stop and start it or you can use the 
convenient restart option. If you want to change the properties of your server (port, 
environment) you can use the Edit option or just double-click on the project's name 
and enter the new settings. Observe that you cannot edit the server's properties while 
it's running, so you would need to stop it first.

As we have seen already in previous chapters, when your server is started you can 
easily open the built-in browser pointing to the home page of your project from the 
Launch Browser option of the context menu.

If you are a user of the Professional version, the Server view will also display 
an option for launching under profile mode to identify the bottlenecks in your 
application. Profiling is not available under the RadRails Community version, 
so we will not cover it in this book. You can find more information in the online 
documentation of Aptana.

Starting a Server with Additional Arguments
Usually, the only options you need to use for starting your Rails server are the port 
and environment. However, there are some cases in which you want to provide 
extra arguments like the mime-types definition file or the timeout for Mongrel, for 
example. In these cases, you cannot use the built-in Servers view, but it doesn't mean 
you cannot use Eclipse for managing your server anyway.

If you need to pass extra parameters to the 'script/server' command, you can use the 
Rails Shell View that we will be explaining later in this chapter.

If you want to launch your server with extra parameters and without using  
'script/server', for example when using mongrel cluster, you can still do it from 
Eclipse by configuring it as an external tool. We will be learning more about this 
option later in this chapter.

Managing Non-Rails Servers from the Servers 
View
Since version 1.0, the Servers view has support for Apache, MySQL, and generic web 
servers. This means you can start or stop your servers and have access to the logs 
directly from the Servers view.

Please note that your MySQL or Apache will need to be installed and properly 
configured before trying to start your servers from this view. Installation of MySQL 
and Apache are out of the scope of this book, so refer to the documentation of those 
tools if you have any questions about how to set them up.



Chapter 7

[ 157 ]

To add a MySQL or Apache web server to your servers list, use the Add Server icon 
from the Servers view toolbar, and select MySQL or Apache instead of the Rails 
Server option. A dialog will display asking for information about your server.

You need to provide information about where the executable is located, and where 
the log file is. Depending on your server, there will be some extra options you can 
configure. These options are pre-filled with default values that should work fine for 
the typical user.



RadRails Views

[ 158 ]

After you click OK, a new entry will be listed in your Servers view, and you will be 
able to start, stop, and browse the logs in the same way as with any Rails server.

Launching External Tools from Eclipse
Eclipse has an option for starting any external process you want, displaying the 
output of the process in the Console view. By configuring our processes as external 
tools, we can launch them, stop them, and monitor their output from the IDE 
without having to go to the command line, and without having to retype the same 
arguments every time.

External tools can be a good way of controlling servers such as memcached, nginx, 
sphinx, or mongrel cluster, but they can be used for any process you would start 
from a command line.

As an example, we will explain how you could use External Tools for launching 
a Mongrel server with some extra parameters. It is not really necessary to use an 
external process for this, since the Rails Shell view will let us pass any extra options 
that we want to a Mongrel server. This example is just provided for educational 
purposes, having the advantage that you don't need to install any extra servers to try 
how to use the External Tools option.

To create a new External Tool, you have to open the Run menu and then select the 
'External Tools' submenu and then again the External Tools option. This will bring 
up a dialog for managing your external tools. From here you can add any new 
processes or change the settings for the existing ones.

In a fresh Eclipse configuration you shouldn't have any external tools, so the first 
step will be creating one. We want to launch a process (program), so select the icon 
Program in the left pane of the dialog, and either right-click on it to bring up the 
context menu, or select directly the New Launch Configuration icon at this dialog's 
toolbar.

Now we have to enter the information about the process we want to launch. First 
you have to provide a meaningful name for this External Tool. In our example we 
can use mongrel with timeout. Next, we have to enter the location of the program 
to launch. When we start a Mongrel server, what we are really doing is launching a 
Ruby script, so we will have to select the location of our Ruby interpreter here.



Chapter 7

[ 159 ]

For the working directory, you  can select the path of any of your projects or, even 
better, you can use the Variables... button. Eclipse provides some useful variables 
you can use. In our case, we will select the project_loc variable, which is the absolute 
path to the currently selected project. By using a variable instead of the path of a 
given project, you will be able to launch the same External Tool for different projects 
without having to write a different configuration for each of them.

Finally, we have to provide the necessary arguments for the process we are going 
to launch. In the case of Mongrel we will first need to specify the full path to the 
mongrel_rails Ruby script (which will typically be in your Ruby bin directory), 
and then the selected command line for starting the server. In my example I will be 
using the following arguments:

\dev\ruby186\bin\mongrel_rails start --port 3100 -o 1



RadRails Views

[ 160 ]

We are telling mongrel to start a server at port 3100 with a timeout of 1 second. By 
using the Servers View you would not be able to set the timeout (which anyway is 
OK for practically every development scenario). 

After setting these properties, you can select the Apply button and then Run, at the 
bottom of the dialog box. Mongrel will start, presenting the output in the Console 
view as if you had started it from the Servers view. If there are any errors, you can 
check them in that view and correct the configuration accordingly. If you want to 
stop your process, use the stop button in the Console view.

Once you have configured the process, you can directly launch it from the Run  
menu under the External Tools option. The name of your process will appear as  
one more option of this menu. You can also use the External Tools icon at the 
workbench toolbar.

For configuring Mongrel, we only need to set the options at the main tab of the 
External Tools dialog, but if you are going to use the External Tools dialog for 
configuring other processes, you might find interesting the options tabs we didn't 
use in our example.

These tabs have options for logging the output to a file, hiding the console output, 
setting the character encoding for your process, setting environment variables, or 
even refreshing your workspace after the process finishes (in case it might create files 
or modify the existing files).

Rails Console
Coming from a background of languages like C++ or Java, one of the things I first 
loved about Ruby/Rails was the IRB-based console in which I could execute code 
and have immediate results. After two years working with Rails, that's still one of 
my favorite features of this development environment, allowing me to develop much 
faster by being able to try things on the fly in a trial-and-error manner.

Fortunately RadRails provides an integrated Rails console so we can launch it 
without going to the command line. To open the Rails console, there is an icon 
representing a system shell on the workbench toolbar. That icon will open by  
default the console in the development environment. Should you want to start in 
production or test environments, you can click on the arrow by that icon and select 
the appropriate environment.



Chapter 7

[ 161 ]

The Rails console works exactly as from the command line with one single limitation. 
RadRails internally uses the Console view of Eclipse for displaying the Rails console, 
and the Eclipse console uses the arrow keys for moving the cursor up and down the 
output area, so you cannot move through the console's command history with the up 
and down arrow keys.

At the time of writing this chapter, there are plans to make the cursors work as 
expected in this view, so it's likely they will behave like that by the time you are 
reading it. If not, you can get similar results; you can select the previous commands 
and just copy and paste.

Rails Plugins View
You know how it is with software development these days. For almost anything you 
want to do, there is someone who has programmed it already (well, at least to some 
extent). One of the tasks when starting a new project is choosing which components 
to incorporate. In Rails, one of the most common ways of adding software 
components to a project is by using plugins.

Plugins are a perfect way both for adding functionality from external sources to 
our projects and for encapsulating our own libraries either for internal reuse or for 
making them freely available.



RadRails Views

[ 162 ]

RadRails provides a convenient way of installing/removing plugins to your project. 
The Rails Plugins view is displayed by default in the Rails perspective, so you don't 
need to explicitly open it from the Window menu.

When you are installing or removing a plugin, you will be doing it over an existing 
Rails project, so there must be a way of telling RadRails to which project you will 
be applying the changes. By default, the currently selected project in the Ruby 
Explorer will be the target of the changes. To be sure, you can see a label above the 
list displaying Current Rails Project: with the name of your project. If you want to 
change the project, you can either select a new one in the Ruby Explorer, or you can 
use the Select Rails Project icon in this view's toolbar, as displayed in the above 
screenshot. This icon is a nice addition incorporated in Rails 1.0 and will be present 
in all the RadRails views in which the changes are applied locally to a single project.

If after selecting your project you cannot see a list of plugin names in this view, 
you can use the refresh icon in the toolbar. When you refresh the list, RadRails will 
connect to a public plugin repository to compose the list, so allow some seconds until 
the list is ready.

At the time of writing this book, there was no way of telling RadRails to add new 
plugin sources or to manually install a plugin from an unlisted location. For any of 
these operations you will have to go to a command line and perform them manually, 
or use the convenient Rails Shell view, explained later in the chapter.

After the plugin list is loaded, you will see the name of the plugin and when 
available the rating, license, and home URL. You can use the column headings to 
change the sort order of the list. If there is a home URL, you can click on it and the 
web page for the plugin will be loaded in the internal browser.



Chapter 7

[ 163 ]

If after examining this information you want to install the plugin, you can use  
the Install icon in this view's toolbar, or you can directly select Install from the 
context menu.

When you install a plugin from the command line, you can choose two options 
related to the subversion repository management: use externals or perform a  
check-out via subversion. If you want to apply any of these options, they can be 
toggled from the pull-down menu (the big down arrow in the upper right of  
the view).

Using externals will tell subversion to download the code locally, but every time you 
check for updates the original plugin repository will be checked. By using checkout, 
you will force the plugin install script to install via subversion even if the repository 
is accessible directly via HTTP. Take into account that you will need to have 
subversion installed in your system if you want to use any of these options.

So far we have been working in the list displayed when opening this view, but if  
you look again you will see there are two tabs available in the view: install and 
manage. Under manage you will see the list of plugins installed in your project. If 
you want to remove any of these plugins, just select it and use the remove icon in the 
view's toolbar.

RubyGems View
Ruby gems are another way of encapsulating software components to reuse  
them in different projects. Actually, Rails itself is packaged as a set of several  
gems (ActiveRecord, ActionPack, ActionMailer, ActiveResource, ActiveSupport,  
and Rails).

Unlike plugins, gems can be used in a Rails project or in a stand-alone Ruby script. 
Besides, the gem package manager allows easy installation and management of the 
installed gems.

The main disadvantages of gems over plugins are that installing gems typically 
requires access as an administrator of the machine, and that they are shared by all 
the rails projects in that machine. On the other hand, since Rails plugins are installed 
individually in each project, deploying to a different server is easier since everything 
is auto-contained. Also, if you want to modify the code of the plugin, you can do so 
without interfering with any other projects.



RadRails Views

[ 164 ]

In a real-life Rails application, part of the functionality will be provided by Rails 
plugins and part of the functionality will be provided by Ruby gems. This is specially 
the case for components that require binary libraries, such as database drivers,  
for example.

The f﻿irst thing you will see when opening the RubyGems view is the list of gems 
installed in your system, their versions, and a short description. Don't worry if you 
see in this list several versions of the same gem; that's perfectly normal. In the same 
machine you can have different versions of a gem, like for example Rails 1.2.3 and 
Rails 2.0.1. If you cannot see the list of installed gems, you can hit the refresh icon in 
this view, also available from the context menu, to force RadRails to update the view.

We will now explain the different icons in this view's toolbar from left to right. The 
first icon, represented with a brush, is the Cleanup Gems option. If you select it, you 
will remove the older versions of the gems in your local installation. Only the most 
recent version of every gem will be kept. Generally speaking, it's not a bad idea to 
clean up your gems once in a while, but before doing it make sure you don't have 
any application depending on an old version of any gems.

The next icon is the Update All Gems one. As you can imagine, when you select 
this option, the gem package manager will check if there are any new versions of 
any of your gems, installing them if appropriate. This method is safe since it will not 
remove any older versions. It will also try to update rubygems itself, unless you  
are running on JRuby, since at this moment doing so tends to break JRuby's  
rubygems installation.

The next icon, labeled Update Gem, will also check for new versions but only for  
the currently selected gem. If you don't select any gem in the view, this icon will 
appear disabled.



Chapter 7

[ 165 ]

The next option is refresh, and we already know it's used for reloading the gem 
list information from the local installation. The next option is Remove and it's no 
surprise that using it will remove the currently selected gem for the selected version. 
As with the Update Gem option, if no gem is selected this icon will be disabled.

The last of the options is Install. When you select this icon, a new dialog will pop up. 
The first field is the Source URL for the gem you want to install. Gems are usually 
hosted  at http://rubyforge.org, so you won't probably need to change the 
default location. If for any reason your gem source URL is a different one, you can 
enter it in the box and hit the Refresh button.

Refreshing the list of gems can take some seconds, so be patient until RadRails gets 
all the information needed. After a while, you will see the list of gems available for 
installing. You can filter the results by typing in the Gem Name text box. If you type, 
for example, acts_as you will see the list of available gems starting with those letters.

Even if you type the exact name of the gem, you still have to select it from the gem 
list so RadRails can refresh the drop-down list with the version numbers. Only after 
selecting the name and version number of the gem, can you proceed to install the 
gem. If you try to install without selecting a version number, you will receive an 
error message and nothing will be installed.



RadRails Views

[ 166 ]

Apart from the output at the Console view, you can that check the gem was properly 
installed by checking the RubyGems view, where the installed gem should now  
be listed.

Rake Tasks
As happens with many other development environments, in a Rails application  
it is usual to launch different processes for manipulating files (cleaning log files,  
for example), initializing data, and so on. Usually these processes have dependencies 
between them and it's useful to have a tool to deal with these issues in a  
comfortable way.

In languages like C or JAVA this is done with popular tools such as make, ant or 
maven. In Ruby, we have the rake utility, which from Ruby 1.9 and in some older 
distributions too is packaged together with the standard Ruby installation. If Rake is 
not installed in your system, you can install it directly like any other gem.

Rake can launch different processes while keeping track of the dependencies 
between them. In Rake, every process you want to launch is called a 'task'. One 
advantage of Rake is that, unlike other platforms in which you need to learn a new 
language, the code you use for writing your tasks is pure Ruby code.

It's no surprise then that Rails provides a smooth integration with Rake tasks and 
that in a common Rails application, many management operations are achieved via 
such tasks. Out of the box, Rails provides tasks for cleaning up files—logs, cache 
or temp files—, for interacting with the database—creating the schema, moving 
between migrations, rolling back, etc.—for launching our test suite, or for generating 
documentation and managing Rails versions.

Apart from the built-in tasks, it's common to create different tasks in our projects 
for initializing data, running scheduled jobs, getting data from external systems, 
interacting with processes such as indexers or cache systems, or any other operations 
we need to launch automatically in the background of our application.

If you just want to run a Rake task without any parameters, you can directly  
right-click on the name of your project in the Ruby Explorer and select Rake from  
the context menu. A menu displaying the available tasks will open for you to select 
the one you want to launch.

If you want to pass any parameters to your tasks, or if you want to see their 
descriptions, RadRails provides a specialized view. The Rake Tasks view is available 
by default in the Rails perspective, so you don't need to do anything special to open 
it, just select its tab to display it.



Chapter 7

[ 167 ]

The drop-down list of this view will show the available tasks for the currently 
selected project in the Ruby Explorer view. If you change the selection to a different 
project, the task list should reload. If it doesn't, you can use the refresh icon in the 
toolbar. Also, as in the Plugins view, you can use the Select Ruby Project icon 
instead of selecting your project from the Ruby Explorer.

When you select any of the tasks in the list, a short description will appear in the 
big text box at the right of this view. If you want to launch that task without any 
parameters, just click on the Go button. If you want to pass any parameters, you can 
use the long text box at the top of the view. For example, in the screenshot above, I'm 
passing the parameter VERSION=12.

The most common use scenario is launching a task with or without parameters, 
but sometimes you want to launch a task and pass extra parameters to the rake 
command itself. For example, suppose you want to pass the argument describe 
to rake, so it will output in the console the full description of the tasks instead of 
executing them, or maybe the trace option for debugging purposes. In those cases, 
you must use not this view but the Rails Shell view, explained later in this chapter.

Generators View
There is no question about Rails being a framework oriented to programmer's 
productivity. You can get results much faster than with other tools of the trade. The 
reasons for this productivity boost are many.

In the first place we have the underlying language Ruby, which allows us to get 
the same things done by writing less code. Not only is the language important, but 
the Rails framework itself has been designed with a strong understanding of which 
things are important for most web applications, making these tasks very easy to 
develop and leaving the least frequently used features out of the framework.

Finally, another interesting productivity mechanism in Rails comes from the code 
generators. By using generators you can create code templates for many common 
operations. Out of the box, Rails provides generators for controllers, models, 
migrations, plugin skeletons, scaffolds, and resources.



RadRails Views

[ 168 ]

You can generate the basic code with these generators and then adapt it to meet your 
needs. Even if the generated code is fairly basic and it requires modifications, it's a 
very fast way of setting up your application. As we saw when creating our example 
application, by using generators you can get a full maintenance application in a few 
minutes. And that already includes the (empty) methods for testing your models  
and controllers.

If you don't like the default generators, you can create your own totally customized 
generator for your coding requirements. The good thing about generators is that you 
only need to write them once and then, by packaging them as plugins, you can use 
them in any other project.

RadRails supports the use of code generators through the Generators view, which is 
available directly in the default Rails perspective.

By now this kind of layout should be familiar already. First make sure you have 
selected the project in which you want to run the generator, and hit the refresh icon 
if the generators list doesn't get updated.

Now you can select the generator you want to execute from the drop-down list or 
you can just type the name in. If you want to pass any parameters to the generator, 
you can do so in the long text bar at the top of the view. Notice that this is a  
drop-down list, and if you unfold it you will see the history of recently used 
parameters, which can be handy sometimes.

The script for running generators accepts some arguments from the command line. 
In this view there are some checkboxes so when you select them those arguments 
will be passed to the generator. In this way you can just pretend to run the generator 
so you can see the output without actually changing anything, skip existing files 
without prompting you, or use subversion to persist the changes, for example.



Chapter 7

[ 169 ]

Rails Shell View
The Rails Shell view is a good example of why I prefer RadRails over other existing 
IDEs. Someone asked in the Aptana forums if RadRails could incorporate a nice 
feature he saw in a different IDE. Chris Williams, the lead developer of RadRails, 
asked him to enter the desired features into the Aptana Issues Tracker, where you 
can report any bugs or ask for any functionalities you would like to see in RadRails. 
Some months later, in RadRails 1.0, the Rails Shell view was already available.

From the Rails Shell view, you can have the best of two worlds: the power of the 
command line and the ease of use of a development IDE. You can basically run rails-
related commands from a command shell with content-assist.

The commands you can execute from this view are: rails, gem, rake, script/about, 
script/console, script/destroy, script/generate, script/plugin, script/
runner, and script/server.

If you are not familiar with using these tools from the command line, maybe you will 
not use the Rails Shell view very often. But if you are familiar with these commands, 
you might find yourself more comfortable with the Rails Shell than with the GUI 
views. As an additional advantage, from the Rails Shell view you can pass any extra 
parameters to these commands. You could, for example, manually install a plugin or 
a gem not listed in the Plugins or RubyGems views.

This view doesn't have a tab of its own, but it's accessed as a part of the Console 
view. Go to the Console view and open the drop-down list by the Open Console 
icon. From the list, select the Open a Rails Shell option.

By default, the Shell will be active for the currently selected project in the Ruby 
Explorer. As usual you will see the current project in a label at the top of the 
view, and you can use the Change Active Project icon to select a new project. 
Alternatively, you can directly type switch or cd in the Rails Shell view and a list of 
the available projects will appear for you to select one. Note that only the open Rails 
projects will be available.



RadRails Views

[ 170 ]

If you click Ctrl + Space (or Command + Space in Mac), the list of available commands 
will appear.

Now you can either select the command directly from the list or start typing so the 
list will filter the matching commands. Every time you type a command, a new 
content-assist window will display with the suggested options for that command. 
For example, if you type rake and then Space, you will see a list of the available tasks 
for your project. Be careful not to hit Enter after typing rake without any arguments. 
By default, the rake command without any arguments will try to run the tests for 
your project.

It's worth noting that some commands accept more options or flags than the ones 
appearing as suggestions. Even if they don't display in the list, if you pass those extra 
flags they will have the expected effect. You could for example execute a Rake task 
with trace (debug) information by typing:

rake –trace stats

You can use this view also for starting a rails server via the script/server 
command. If you want to start the server in debug mode, you can use the command:

debug script/server



Chapter 7

[ 171 ]

In the professional version of RadRails, there is also a profile option for starting your 
server under profile mode. If you try to run the profile mode in the Community 
edition you will get an error message.

Finally, in the Rails Shell view it's possible to use the keyboard arrows to move 
through the command history.

RegExp View
It's not in every project that you need to write complex Regular Expressions, but 
when you have to do it, it's always nice to have a way for testing and refining them. 
In Ruby you can always open a console and evaluate your expression against a given 
string, but with complex expressions it can take a while to see why the string is not 
matching properly.

RadRails incorporates the RegExp view, which will help us test regular expressions 
and execute them step by step to see where the pattern is not matching your data.

The Regular Expression box is for entering the regular expression, and the Text to 
match against box below is for entering the data to match it against. Once you write 
your expression, you can use the icons on this view's toolbar to evaluate it.

The icon most to the right is labeled Validate RegExp. When you select this icon, the 
circle at the top of the view will change colour to Green or Red. Red means either 
your expression was wrong, or it was right but no matches were found. Green means 
the expression was matched correctly against the text and there were some results. 

To actually see the matches of the expression, you can use the forward, backward, 
and reset icons. When you click on forward, RadRails will break down your regular 
expression into its subpatterns and will display how every part is matching with 
your text. Every time you click on forward you will see the matches for the next 
part of your expression. This is a very interesting way of testing your patterns, since 
often a part of the expression is right but it doesn't match your text because of a 
subpattern. With this tool you can see how the different parts are being evaluated.



RadRails Views

[ 172 ]

For example, in the preceding screenshot I wrote a simplistic expression for finding 
email addresses in a text. The expression is not complete, but for this example's 
purposes it will do. Basically I'm telling RadRails to find strings composed of several 
characters that are not spaces or '@', then the '@' symbol, then again some characters 
except blanks, dots or the at symbol, and finally a dot and again some characters. The 
pattern for this could be:

[^\s@]*?@[^\s\.@]*?\.[^\s@]*

And as the Match Text I'm using a combination of both valid email address and  
non-matching text:

javier.ramirez.gomara@gmail.com   wwww.radrails.com test@testmail.com  
wrong@test wrong@wrong test@testmail.com

If you execute the expression by using the forward icon, you will see how the first 
part of the expression will match the first part of the three legal email addresses in 
that text, then the next part will match the three at symbols, and so on.

If you prefer to see the whole matches instead of the partial results, you can use a 
trick. Surround the whole expression with parentheses and then you can use either 
the Validate RegExp or the forward icon. In any case you will get the full matches 
for your expression. In our example, it would look like this:

([^\s@]*?@[^\s\.@]*?\.[^\s@]*)

When I'm writing regular expressions, I like to go step by step until I have it  
right and then use the parentheses to make sure the whole strings are being  
matched properly.

Finally, the two checkboxes you can see in this view are used for telling your 
expression to be case-insensitive or to match expressions even if the strings are 
divided by a line break.

Problems View
When writing your code, if you have a syntax error you quickly fix it because Eclipse 
will warn you, and because if you don't, then your script will not run. If we are not 
talking about errors but warnings, even if Eclipse warns us, we usually are much 
more tolerant and we tend not to pay enough attention, thinking we can always fix 
that later. By the time, and if, we want to clean up our code, we will most probably 
have lost track of where the warnings were happening.



Chapter 7

[ 173 ]

By using Eclipse Problems view, we can see a list of all the places in our code where 
we have unresolved warnings. The list of warnings is configurable, as we will see 
in the next chapter, and can include warnings about deprecations, empty blocks, 
variable names, common possible errors, unused variables, and so on.

If you open the Problems view, you will see a list of the current warnings for your 
project. If you cannot see any warnings, open one of your controllers and just define 
an empty method that receives some variable you will never use. A definition like 
this would do the trick:

def empty_method(a)
end

After you save the file, you will see two warnings in your Problems view, one about 
having an empty method definition, and another one about an unused variable. If 
you double-click on a line of this view, the corresponding file will be opened in the 
editor and the cursor will be placed at the line containing the warning.

As you can see, the list gives you information about in which file the problem is 
happening, the name of the container file, the relative path in the workspace, and the 
line number. You can sort the list on any of these columns by clicking on the column 
name. Thus, you can group together errors with the same description, in the same 
project, or starting with the same path.

There are some extra options in this view. If you click on the view's menu icon (as 
shown in the above screenshot) you will see these additional options. If you want to 
sort the lines by more than one column, by description and then by path, for example 
you can use the sorting option. The Group By option of this menu will not have any 
effect here as it makes sense only for developing Java projects with Eclipse. Use the 
Preferences option if you want to limit the total number of warnings rendered.

Finally, the Configure Filters option, also available as an icon on this view's toolbar, 
will allow you to filter warnings only for the current project, the current selection, or 
the whole workspace (the Window Working Set). By default you will be presented 
with warnings for all the opened projects in your workspace.



RadRails Views

[ 174 ]

Tasks View
When you are working on a project, you sometimes leave incomplete methods or 
things to fix later. As you know, it's a very good practice to write a comment in 
the code so you will not forget you have to finish or fix that code in the future. A 
common coding convention is writing a comment with the word TODO (or XXX) 
for incomplete functionality and with the word FIXME to mark a piece of code that 
must be fixed.

RadRails supports the use of these coding conventions, and offers the Tasks view in 
which you can see the list of annotations in your code and in which you can also set 
to-do items manually.

The menu of this view is very similar to that of the Problems view, the main 
difference being that in this case you can filter out results by using the priority 
column too.

First of all, we are going to set some annotations in our code, so we will see some 
entries in this view. Open the file books_controller.rb and at any place in the code 
write the following comments:

#XXX needs to iterate over the results. finish later
#TODO automatically generated method
#FIXME breaks on nil

After saving the controller, you should see three entries in the Problems view. Each 
line displays the type of annotation as well as the associated comment. You will 
notice that at the left of the FIXME annotation there is a red exclamation mark. This 
is because the priority is automatically set to High on FIXME and normal on TODO 
and XXX annotations.



Chapter 7

[ 175 ]

Just a quick note here. Since Rails 2.0, there are some Rake tasks available for 
searching for annotations in your code. The recognized annotations in these tasks 
are FIXME, TODO, and OPTIMIZE (also supported by RadRails). Annotations with 
XXX syntax are a common convention amongst software developers, but since they 
are not supported by the Rails tasks it could be advisable not to use them. Of course 
nothing will break if you do, but by using only the annotations Rails understands, 
you can be sure people using a different IDE (or even no IDE at all) can take 
advantage of your code annotations.

You can add your own annotations or change the priority of the existing ones from 
the Window | Preferences dialog. We will see how to do this in the next chapter.

Apart from using this view for code annotations, you can manually add to-do items. 
You can right-click on the content area of this view and select Add Task or you 
can use the Add Task icon of the toolbar. A dialog will appear for you to enter the 
description of the task, the priority you want to assign, and a checkbox indicating 
whether it is completed or not. If you create a task with High priority, it will display 
the red exclamation icon, and if you assign low priority, it will display a blue  
down-arrow.

Once a task is set manually, you can click on the task description or in its priority in 
the Tasks view and edit the information directly on the list. You can also check the 
task as completed at any time you want.

When you add a task manually it is not associated to any resource. If for any  
reason you want to add a task and you want to assign it to a source code file, you can 
open the file you want in the editor and then select the Edit menu and then the Add 
Task option. You will see the same dialog as before, but the Resource, Folder, and 
Line fields will be filled. You can also add an associated task to a resource by  
right-clicking on the left margin of the editor and selecting Add Task from the 
context menu.

Test::Unit View
There is always an excuse not to write your tests: the deadline is close and you  
don't have the time, the requirements are not clear so it's difficult to write the test 
code, generating data for testing is not always easy. When working with Rails,  
some of those excuses lose strength, since the framework facilitates the preparation 
of the test database, the generation of the testing suites, and the execution of the  
tests themselves.



RadRails Views

[ 176 ]

Because of that, the proportion of developers writing applications in Rails who 
systematically write tests is larger than in other development environments. Actually 
there are many developers who write the tests even before than the code itself. Of 
course this practice is not particular to Rails, but the framework makes easy to  
adopt it.

Since testing is such a relevant part of the Rails philosophy, it's only natural that 
RadRails provides a specialized view to help us test our application. This view is 
called Test::Unit view and it appears as a tab by the Ruby Navigator in the default 
Rails perspective. Whenever a test suite is run from within RadRails, the Test::Unit 
view will display the results of the execution, allowing you to examine the details.

There are several ways of running your tests from RadRails. The easiest way is to 
navigate to a unit test file (under the test/unit directory of your project), right-click 
on the name of the unit test file you want to execute, select Run As, and then  
Test::Unit Test. Before running your test, make sure your test environment is 
configured properly (database configuration, fixtures, and unit test code).

After the test is run, the Test::Unit view will present the results. Near the top of the 
view you will see a bar either in green or red color. Green means all the tests passed 
correctly, and red means there were failures or errors. A failure is reported when one 
of the tests didn't pass, and an error is reported if an exception was launched when 
trying to run a test.



Chapter 7

[ 177 ]

Above the bar, you can see how many tests were run, how many errors you got, and 
how many failures. Below the bar there are two tabs. In the first one you will find 
only the list of tests with errors or failures, and the second tab labeled Hierarchy 
will display the list of all the executed tests, both successful and not. If you double-
click on any of the items, the corresponding file with the definition of the test will be 
opened in the editor area.

When you select an item with errors or failures, the Failure Trace pane of the  
Test::Unit view will display the details of the failure, or the Stack Trace in the case of 
an exception.

In the toolbar of this view there is an icon for relaunching the last performed test, 
another one for locking the scroll (in case launching big test suites producing a large 
output), and the menu for this view, in which you can change the layout.

So far we have launched a single unit test suite, but as you know in Rails you can 
also use functional and integration tests. For running all the unit tests in your project, 
or for running the integration or functional tests, you have to use an icon located on 
the toolbar of the Workbench.

If you hit the icon labeled Run All Tests all the Unit, Functional, and Integration 
tests for your project will be run. If you want to launch only one test type, click on 
the small arrow by that icon so you will get a submenu allowing you to run the 
different test suites. No matter in which way you launch your tests, the output will 
be displayed at the Test::Unit view in the same way as we saw before.



RadRails Views

[ 178 ]

You can also choose to execute your tests automatically. In this case, the tests will  
be run either every time you save a file or at a given interval of time defined by  
you. If you want to run your tests automatically you have to configure RadRails  
for that. Go to the Window menu, select Preferences... and then navigate to the  
Rails | Autotest dialog.



Chapter 7

[ 179 ]

The first thing you have to tell Autotest is how it will be launched: after saving a file 
in the editor or at a regular interval. The two options are mutually compatible, so 
you could mark both of them if you want.

After choosing when the Autotest will be run, you have to instruct RadRails about 
which tests to launch. By default it will try to launch only the associated unit tests for 
the model, controller, or plugin file you are saving. Modifying any other files will not 
launch Autotest, which is one of the reasons why you could possibly want to launch 
the test suite at regular intervals.

You can tell Autotest to run not only the associated unit tests, but also all the unit 
tests for your project, all your integration tests, or all your functional ones. Once you 
set the options as you think is better for you, just click on Apply and then on OK to 
close the preferences dialog.

If you chose to Autotest after saving the editor's contents, you can try opening a 
model or controller, making a small change (maybe a blank character or a comment) 
and saving. At the bottom of your eclipse workbench you should see the status line 
informing you about the Autotest progress. When the test finishes, you can see the 
results as usual in the Test::Unit view.

There is an additional feature of Autotest. The icon on the toolbar workbench close 
to the Run All Tests one labeled Manually Run Autotest Suite will remain in green 
if all the tests were passed, or will change to a white cross over a gray background in 
the case of errors or failures.

In order to get your attention, for some seconds this icon will display an animation 
of a small yellow blinking cross. In the figure below you can see the four possible 
images for this icon.

When editing the contents of a model, controller, or plugin you can use this icon no 
matter whether it's displaying in green or gray and force running of the associated 
tests (as configured at the Autotest preferences) even without saving the file or 
waiting for the established interval.



RadRails Views

[ 180 ]

Summary
This chapter explained how you can use RadRails for dealing with many of the 
development tasks you would otherwise have to run from the command line in a 
much more convenient way.

Except for exceptional occasions when you need to pass uncommon arguments to 
the command-line tools, you can manage all your Rails development processes from 
within the IDE by using the built-in views. If you find yourself going frequently 
to the command line to launch some processes, we also learned how you can call 
external tools from Eclipse, so you can have everything just a click away.

By using RadRails views, you can manage documentation, servers, the Rails console, 
plugins and gems, Rake tasks, code generators, code annotations, warnings, to-do 
tasks, regular expressions, and test suites.



Configuration Reference
We already know everything there is to know about using Eclipse with Aptana 
RadRails for developing Ruby on Rails applications. You know how to use the 
workbench, the different code Editors, and the specialized views.

As with any development tool, there are plenty of configurable details you can 
customize to make your experience more comfortable. Being a general-purpose IDE, 
Eclipse has a large number of preferences not generally used when developing Rails 
projects. So we will focus only on the most interesting options for our Ruby on  
Rails projects.

As we saw in Chapter 2, the configuration is managed from the Preferences dialog, 
which is the last option in the Window menu. This dialog is divided into two parts: 
a tree with the different categories or sections you can configure, and the preferences 
contained in each of these sections.

Since Eclipse is a very extensive IDE and you can add new plugins for your specific 
needs, the preferences tree can be different in different installations. Also, in different 
versions of Eclipse some preferences can be located under different sections. The 
preferences described in this chapter are valid for Eclipse 3.3. If you are using  
Eclipse 3.2, most of the options will not vary but in some cases you might find  
small differences.

To help you navigate the preferences and quickly find what you are looking for, you 
can use the search box at the top of the tree pane. This becomes especially handy 
when you know—more or less—the name of the preference you want to set, but you 
are not sure under which section it is located.



Configuration Reference

[ 182 ]

A few of the preferences will require you to restart Eclipse, or at least the workbench, 
in order to apply the changes. The preferences that need a restart are usually the 
ones about global changes to the appearance of the workbench, like changing the 
position of the tabs in the editors or using a different theme for Eclipse. In that case, 
a window will pop up informing you of this situation. You can either restart Eclipse 
directly from this pop-up, or just ignore it, keep working as usual, and restart it at a 
later time. However, unless you don't want to restart immediately because you want 
to keep adjusting more preferences, it's advisable to restart at this moment to avoid 
potential interface problems.

General
Under this section, we will find options that don't apply directly to RadRails, but to 
the configuration of the Eclipse workbench, such as the fonts and colors to use, the 
file extensions to recognize, or the keyboard shortcuts.

Appearance
When you click on Appearance you will see a pane with some general presentation 
details, like the position or the shape of the editor and view tabs.

The most important configuration under Appearance is the Colors and Fonts option. 
You can change the font style, size, color, and decoration, as well as the color for the 
background in the different areas of the workbench.



Chapter 8

[ 183 ]

This configuration panel has a main area in which you can select the element you 
want to modify. As you can see, there are different groups of elements, represented 
as folders. As the name suggest, there are two kinds of elements to change: colors 
and fonts. Colors are represented with a solid square of the currently selected color, 
and fonts are represented with two letters and a title using the selected font.

One of the typical changes you might want to make is setting a different size or font 
family for the text in the editor view. You can do so by selecting Text Font under 
the Basic group and either double-clicking on the label, or use the Change... button. 
The classic font dialog will appear. In the case of changing a color, a color-selection 
dialog will pop up.

If you want to reset a single element to the default configuration, you can select it 
and use the Reset button by the right. If you went too far in your changes and you 
want to revert all the colors and fonts to the default configuration, you can use the 
Restore Defaults button at the bottom of the preferences dialog.

There is a description box in this panel, where you will see information about 
where the currently selected element is used in the workbench. For some of the 
elements—mainly for the ones under the View and Editor Folders group—there is 
also a preview available for you to see where the changes will apply. You can see the 
description and preview areas in the above screenshot.

Editors
Under the Editors section we can configure several options for working with the 
editor view. The main panel is pretty simple, and allows you to disable the tabbed 
interface for this view or set a maximum number of files to open.



Configuration Reference

[ 184 ]

As we have seen in the course of this book, Eclipse and RadRails provide different 
specialized editors, depending on which type of file we are going to modify. It's not 
the same editing a YAML file as it is editing an HTML or a pure Ruby script. The File 
Associations panel displays which extensions can be opened with which editors, and 
which is the default editor for every type.

You can add new extensions and associate them to the editor of your choice, or you 
can modify the currently configured associations, although this is rarely necessary, 
since RadRails will by default configure all the needed associations for Ruby, Rails, 
and Web development.

When setting an editor to handle a given extension, you can choose from the list of 
currently available editors in Eclipse, or you could select an external tool. In that case, 
when you open the file from Eclipse, the external editor will be invoked instead.

The Structured Text Editors preferences won't apply when developing with 
RadRails since they take effect only for the default non-specialized editors. Aptana 
provides custom editors that, as we'll see later, have their own preferences in a 
section of their own.

Next in the Editors section we can find the Text Editors preferences. From this panel 
we can tweak a bit more the general behavior of the editor view.



Chapter 8

[ 185 ]

The first option will change the size of the history for the Undo command, although 
this is typically not necessary. Next, you can set the number of spaces to use in the 
editor for representing a TAB character. There is an option here for using spaces 
instead of TABs, but it has effect only on non-specialized editors, so changes here 
will do nothing when editing Ruby source files. We will see later (under Ruby | 
Editor and Ruby | Formatter) how to choose between using TABs or spaces for 
indenting your code.

By default, Eclipse highlights the current line you are editing. Should you want 
to disable this option, just uncheck the appropriate box. You can do the same for 
toggling on/off line numbers.

The Range Indicator is a little visual help Eclipse provides when we select a class, 
module or method name from the Ruby Explorer or any other outline view. When 
you select any of these elements, a Range Indicator will be displayed in the left 
margin of the editor view. This indicator is represented by a shadow to the left of the 
lines enclosed by the selected element.

Finally, from this panel we can set some specific colorization for text editors that is 
not available under the Colors and Fonts section.

Annotations
From Annotations you can change the colors and the way in which the different 
annotations will be displayed. If you select an annotation to be displayed in the 
Vertical ruler the corresponding icon will be displayed by the left margin (as 
happens in the lines where you have errors or warnings).

The Overview ruler means the right margin of the editor. By selecting 'highlighted' 
in the 'Text as' selection list, the text for the annotation will be rendered with a 
different background color. If you select 'squiggles' in that list, the text will be 
underlined with a wavy line.

Linked Mode
In Chapters 4 and 5 we learned how to use code and view templates in our editors. 
You only had to type the name of the template and use Ctrl+Space to insert the 
template in the editor area.

Most of those templates presented replacement sections, in which we could enter the 
values we wanted and that we could navigate with the Tab key. Eclipse uses the term 
Linked Mode to refer to this state in which you are working in the editing area but 
moving across the available links provided by the template.



Configuration Reference

[ 186 ]

When working with other languages than Ruby, Eclipse will enter Linked Mode also 
for some refactoring or Quick Fix, but in Ruby you will find this behavior only 
with the code templates.

In the Linked Mode preferences you can choose the colors to use for the different 
sections (called Ranges in this dialog). In the picture above you can see the effect of 
changing these colors when using a template.

Quick Diff
The next preferences we will go over are the Quick Diff options. By using this 
feature, we can see at a glance the changes we made to the current file with respect 
to the latest saved version, or to the latest version in the source repository (if we are 
using one).



Chapter 8

[ 187 ]

When Quick Diff is enabled, if you edit any file on the editor you will see a change 
in the colorization of the left margin as you are typing. By default a modification is 
marked by shadowing the margin in a magenta tone, an addition in pale blue, and 
a deleted line in black. If you want these changes to be displayed also by the right 
margin, select the Show differences in overview ruler option.

By selecting it from the combo in this panel, you can make Quick Diff mark the 
changes relative to the latest saved version or to the remote copy on your source 
repository. The list of available repository types will depend on which plugins for 
source control you have installed.

You can also toggle the Quick Diff feature directly from the editor view, by  
right-clicking on the left margin and selecting the Show Quick Diff option.

Spelling
Before finishing with the Editors settings, there is another one in which you could 
be interested. You have probably realized when you are writing your code (most 
noticeably within your comments) sometimes you get warnings about the spelling of 
the words.

Under the Spelling preferences in the Text Editors section you can configure how 
you want Eclipse to spell-check the contents of your Ruby editor. By default Eclipse 
will try to check your documents using a built-in dictionary with the syntax of Ruby. 
In some rare cases, Eclipse will not show this default behavior, and then it will warn 
you about spelling errors within the keywords of the language. In that case, you 
have to select the Ruby Spelling Engine at the Spelling preferences dialog.

The Ruby Spelling Engine will detect only Ruby keywords, so you will be getting 
a lot of warnings about the spelling of your comments. You can add a generic 
dictionary for the language of your choice, so you can get meaningful spell checking 
in your comments too. In future, Eclipse will bundle some dictionaries, but as of 
version 3.3, there are none available when you install it.

Fortunately, there are a lot of dictionary files available for other spell checkers that 
you can use here. Eclipse will understand any plain file with a list of allowed words. 
If you google a bit, you will find many files you can use. For the English language, 
there is a popular web page with different compilations of such dictionary files: the 
'wordlist' sourceforge project at http://wordlist.sourceforge.net.

Should you want to turn spell checking  off, you can do so by marking off the 'Enable 
spell checking' box. That will disable both the spell checker and the warnings.



Configuration Reference

[ 188 ]

Keys
Software developers are a special kind of users. They spend long hours working 
mainly with their development IDE, and in many cases they like to be able to use  
as many shortcuts as possible, not being as easily scared of a few keystrokes as a 
typical computer user. So a tool designed for software developers should be very 
keyboard friendly.

As we have seen in this book, many of the commands Eclipse and RadRails offer 
are available directly as a shortcut. Using the keyboard or the mouse depends on 
how often you use those commands and on your personal taste, but even the most 
compulsive mouse-users can benefit from the keyboard shortcuts or, as Eclipse calls 
them, key bindings. You can see and modify the currently defined bindings through 
the Keys option under General preferences.

Eclipse is a pretty extensive IDE, with a lot of commands, and the keyboard has a 
limited number of keys, so it would seem impossible to define key bindings for many 
commands. And if we think about extending Eclipse through plugins for adding new 
functionality, as Aptana does with RadRails, then it seems even more difficult.

Eclipse uses two different mechanisms in order to allow as many bindings as 
possible: contexts and key sequences. When developing with Eclipse, the context is 
defined by the area that has the focus. By using contexts, Eclipse allows us to assign 
the same key binding to different commands. For example, when editing a Ruby file, 
the shortcut Ctrl+Shift+M will open the associated model, but when editing a Java 
file, the same combination would add an 'import' statement.

The contexts in Eclipse are hierarchical, with the In Dialog and Windows context 
the most generic. Below that we can find In Windows, and then Editing Text, and 
then Ruby Editor, for example. If you install new plugins, they can define their own 
contexts too. If a key binding is not defined for the current context, Eclipse will go up 
the context hierarchy to see if it's defined on an upper level. Thus, different plugins 
can use the same key bindings without interfering with each other.

The second way in which Eclipse allows us to define a large number of shortcuts 
is by using Key Sequences. Typically, the keyboard shortcuts we use in any 
application are defined as a keystroke. A keystroke is the pressing of any 'non-
special' key in combination, optionally, with one or more modifier keys. The modifier 
keys are Ctrl, Alt/Option, Shift and, only for the Mac, the Command key.

A key sequence is composed of one or more keystrokes. In Eclipse, a key binding is 
the association of a command to a key sequence. Most used commands are mapped 
to single keystrokes but, in some special cases, key sequences make sense, most 
usually when you have a number of related commands.



Chapter 8

[ 189 ]

Every time you press a keystroke that marks the beginning of a key sequence, you 
will be presented with the possible keystrokes for completing the sequence. For 
example, you can hit the keystroke Alt+Shift+X and you will see a small pop-up at 
the bottom-right corner of the workbench. In our case, hitting U would run the Unit 
Test for the current class.

The number of keystrokes in a sequence is not limited in Eclipse, but common 
sense—combined with a limited number of fingers—says that if you define your own 
shortcuts, you should try to make them as short as possible.

Now you know everything that you need for understanding the Keys preferences 
dialog. This dialog can be used as a reference for finding which is the shortcut for a 
given command, for adding a shortcut to an unmapped command, for changing the 
current bindings (if you prefer a different combination), or to completely remove  
a binding.



Configuration Reference

[ 190 ]

The text box at the top of the list acts as a filter. If you want to search for a command, 
just type in some text to filter the results. If you prefer, you can use the column 
headers for sorting the list.

The first column is the name of the command associated to the key binding, which is 
displayed in the next column. Then you can see the context under the When column, 
and a category, which is not configurable and refers to how the commands are 
internally grouped in Eclipse. The last column, named User, will display an icon if 
the binding was created or modified by a user.

If you see a star in the Binding column, it means there is a conflict between two 
sequences assigned to different commands in the same context.

For modifying or removing a binding, the first thing you have to do is select it on the 
list. Then you can use the Binding and When text fields to select the key sequence 
and context for launching the command. If you want to restore the original binding 
for a command you can use the Restore Command button, and if you want to restore 
all the default bindings for all the commands, you can use the Restore Defaults one.

Even if the binding list seems pretty large, there are many commands without a key 
binding by default. In previous versions of Eclipse you couldn't do anything about 
those commands, but if you are using Eclipse 3.3 or higher you can assign bindings 
to any available commands.

If you check the box Include unbound commands right below the list, you will see 
the whole list of commands, even those without an associated key sequence. You can 
select any of these commands for creating your own bindings.

Workspace
The last of the general preferences that can be interesting when developing with 
RadRails is located in the Workspace section. In this panel you can select some 
general options, such as the default encoding for your files. You can set the encoding 
for any project or file by right-clicking on its name on the Ruby Explorer, but if you 
assign the default encoding here, it will not be necessary to set it individually.

Aptana
As you know, Aptana RadRails uses the underlying Aptana Studio for the addition 
of ERB/RHTML, CSS, JavaScript, HTML, YML, and XML files. Aptana Studio 
provides more features apart from those editors, but they are not relevant for 
developing with RadRails. As with the General preferences, we will focus now 
on the preferences under the Aptana category that can affect our development 
experience when using RadRails.



Chapter 8

[ 191 ]

Browsers/User Agents
In Chapter 5, we saw how we could take advantage of Aptana for editing style 
sheets, HTML, and JavaScript files. One interesting feature was the possibility of 
displaying small icons representing the compatible browsers when using code assist.

The list of browsers to represent with these icons is available at the Browsers/User 
Agents preferences. Just mark on the list the editors for which you want to have 
these icons displayed.

Editors
In this section we can configure the appearance and behavior of CSS, ERB/RHTML, 
HTML, JavaScript, XML, and YML editors. The preferences for the different editor 
types are very similar between them, with only small differences because of the 
different syntax between the languages.

Please notice, the preferences in this section will not apply for editing pure Ruby 
code (such as models, controllers, helpers, tasks, tests, and general Ruby classes  
and modules). We will see how to control those preferences later, under the  
Ruby section.

Code Assist
Depending on the type of editor you are configuring, you will find here preferences 
for Auto-Activation and Auto-Insertion.

Auto-Activation means that code assist will evaluate your code as you type and will 
try to propose assistance on the fly. If you are experiencing performance problems 
because of this (most probably on the ERB/RHTML editors), or if you prefer not to 
have assistance until you manually invoke it by using Ctrl+Space, you can disable it.



Configuration Reference

[ 192 ]

Auto-Insertion means the editor will automatically insert the closing of the elements 
you open. For example, in the CSS editor you can configure auto-insertion of 
semicolons in your statements, and in the HTML editor you can have it insert your 
closing tags.

Colors
Previously we set the colors for the general editors, and from these preferences we 
can set them individually for each of the specialized ones. The color preferences 
dialog is divided in two parts: Editor Options and Tokens.

The Editor Options are disabled by default, meaning that the general preferences will 
be applied. If you want to override them, just check the box and select the colors  
you prefer.

Tokens are the different unique types of text in a programming language. For 
example, you have tokens for string literals, URLs, identifiers, keywords, or start 
and end tags. If you want to change the color settings for any of the tokens, just 
select it and click on the color box to the right of the token name. You cannot change 
the font family or size for the token, but you can set the font type to Bold, Italic, or 
Underlined if you want.

Folding
You already know we can fold parts of the code such as block comments, JavaScript 
function definitions, HTML tags, and so on. Should you want to, the folding 
preferences allow you to disable the folding functionality.



Chapter 8

[ 193 ]

In some of the editors, you can also instruct Eclipse to automatically fold some of the 
sections initially, like block comments or function definitions. In the HTML folding 
options you can also configure which tags are foldable. By default, only <html>, 
<head>, <body>, <script>, <style>, and <div> will be available.

Formatting
Sometimes, when writing code, we don't follow the conventions about indentation, 
spacing, placement of closing braces, or new lines. In these cases, we can use the 
Format option for Eclipse to re-format the code by using these conventions. This 
option is available from the Edit or Source menus—depending on which editor we 
are working with—and the rules for the formatting can be defined in the Formatting 
sections of the different editors.

Depending on the particular editor, there can be some extra options, but the way of 
setting them is always the same. When you click on the Formatting preferences you 
will see a text box displaying an example of well-formatted code according to the 
current rules.

If you want to change this configuration, you have to use the Edit button. You will 
see a dialog similar to the one in the figure below (the JavaScript Formatting dialog)



Configuration Reference

[ 194 ]

You will see different tabs with the options and the preview pane for displaying the 
changes. Under Indentation you can set the TAB policy. If you want to use spaces 
instead of TABs (this is the convention for Ruby code), you can select it from the 
drop-down box. You can also set the number of spaces to use.

If the editor you are configuring provides more indentation options, they will 
be displayed here. For example, in the JavaScript editor you can set different 
indentation policies depending on the parent statement of the indenting block.

The Blank Lines tab allows you to define where to place extra blank lines in the code 
and if the formatter should preserve any extra lines without content. You could use 
this, for example, to set a separation of a couple of lines between method definitions.

In the Braces tab you can set your preferences for the placement of braces in the 
source code. You can choose to have the braces in the same line, at the beginning of 
the next line, or indented at the next line.

In some of the editors' preferences you can find an extra Control Statements tab 
in which you can further refine the behavior of the formatter. For example, in the 
JavaScript formatter you can decide whether to present simple if statements in a 
single line instead of using two.

A convenient way for testing the effects of the changes on the formatter is by 
selecting the appropriate option and watching the changes in the preview pane. If 
you want to revert to the original settings, you can use the Restore Defaults button.

Typing
These preferences control how the editor behaves when typing. Unlike the 
Formatting preferences, that take place only after using the Format command, the 
Typing options will have direct effect, as you write the code. For example, if you 
enter an opening bracket in the Ruby editor, Eclipse will automatically insert the 
matching closing bracket. In this panel we can configure these operations.

As happened with the formatting, each editor will have a slightly different set of 
preferences to configure, but they all are very similar.

The first option in this dialog is for auto-inserting matching elements, such as braces, 
quotes, brackets, or end tags. Then you can choose, where available, if new lines 
should be auto-indented according to the previous line.



Chapter 8

[ 195 ]

In the JavaScript, HTML, and XML editors, you can also choose if single or double 
quotes will be used when defining attributes.

RHTML Templates
This option is only available for the ERB/RHTML Editor. From here, you can add 
or modify the code templates available when editing Rails views. Please refer to 
Chapter 5, Coding Rails Views, under the section View Templates, where we have 
already explained how to use this feature.

Start Page
Every time you start Eclipse, you will see the Aptana Start Page, on which you can 
find the latest news about Aptana as well as information about new updates. You 
can control in these preferences when to display this Start Page.



Configuration Reference

[ 196 ]

Rails
There are only three sections under Rails preferences, and we have seen them 
already in other parts of this book. Autotest allows us to configure if and how 
RadRails will automatically launch the test suites after saving your files. Please refer 
to Chapter 7 for the explanation of these preferences.

As we saw in Chapter 2, in the Configuration section you can set the paths to your 
Rails, Rake, and Mongrel scripts. However, in most cases these paths will be left 
blank, since RadRails can find the necessary scripts automatically. You should set 
them manually only if you are experiencing problems with your installation.

In previous versions of RadRails, before the project was taken over by Aptana, the 
RHTML editor was configurable from the Rails preferences. After the integration 
of RadRails and Aptana, many features were added to the RHTML editor and its 
configuration was moved to the Aptana section. The Editors option here is just a link 
to the configuration preferences under Aptana and it's been announced that it will be 
completely removed in future versions of RadRails.

Ruby
Most of the options under this section affect to the way we work with the Ruby 
editor and the Outline and Ruby Explorer views.

We will not go over all the preferences here, since we have seen already some 
of the functionalities in previous chapters of this book, like the Debugger and 
Quick Inspect preferences in Chapter 6, the templates in Chapter 4, the Installed 
Interpreters in Chapter 2, or the Editor Folding, Typing, and Formatting options 
previously in this chapter.

Appearance
Here you can configure how the information about the members and methods of 
your classes will be displayed in the Ruby Explorer and the Outline view. From the 
main dialog you can choose to display or hide the parameter names of the methods 
in these views.



Chapter 8

[ 197 ]

If you open the Members Sort Order option, you will be able to modify the order in 
which the different elements will appear.

If you want to move a type of member up or down in the display order, just select 
it and use the 'up' and 'down' controls to the right. You can do this configuration 
as you have an expanded class on the Ruby Explorer. That way, if you click on 
Apply you can check the changes immediately. If you want to revert to the default 
configuration, just use the Restore Defaults button.

Editor
The main dialog of the editor allows you to change some general settings, like the 
highlighting of matching brackets—which will work also with do...end blocks—or 
disabling the reporting of problems as you type. You probably will not want to 
change this unless you are experiencing performance problems.

You have probably noticed, when you are editing a Ruby source file, that if you 
select the name of a method or a variable RadRails will highlight with a different 
background all the occurrences of that word in the file. By default, RadRails will 
do this with all the Types, Local Variables, Constants, and methods. If you want to 
disable the highlighting for some of these elements, you will find the corresponding 
checkboxes in the Mark Occurrences section.



Configuration Reference

[ 198 ]

Syntax Coloring
Apart from the generic coloring defined at the general Color and Fonts preferences, 
here you can modify the coloring applied to Ruby code and expressions.

To modify the presentation of any Ruby element just select its name in the scrollable 
list and set the desired foreground and background colors by using the buttons to 
the right. You can also modify the font properties, but not the font family or size.

As usual in this kind of dialog, you will see the changes in the Preview pane 
below and you will be able to restore the default coloring settings with the Restore 
Defaults button.

There is a nice additional feature here. You will see one of the elements listed as 
configurable is Keywords. If you select this element and modify the colors, you will 
be changing the presentation of Ruby keywords such as class, def, if, and so on.

Sometimes, you would like to treat some terms as if they were keywords; for 
example because you have created some kind of extension and you want to be able 
to differentiate your additional commands at a glance.



Chapter 8

[ 199 ]

If you select the Keywords option located under Syntax Coloring you will be 
presented with a list (initially empty) of user-defined keywords. Here you can add 
any terms you want to be colorized as if they were proper Ruby keywords.

Errors/Warnings
As we saw in Chapter 7, RadRails will automatically display information about 
warnings in our code. This information appears by default both in the left margin of 
the editor and in the Problems view. What we still don't know is what is a warning 
for RadRails.

In the Errors/Warnings preferences we will be able to tell RadRails if something is a 
warning, an error, or if it should just be directly ignored.

RadRails will automatically check for many different problems in our code. Since 
there is a large number of potential problems, the presentation of this dialog is 
divided in different sections to make it easier to navigate.

You can just click on the name of any section for it to open or close. Note that if you 
open more than one section at the same time you will have to use the scroll bar to the 
right for displaying the whole set of available parameters.



Configuration Reference

[ 200 ]

For each of the individual properties we can choose if we want to receive a  
warning, an error message, or just ignore it so RadRails will be silent about it. Some 
of the potential problems under the Code Complexity section take an additional 
number to specify things like the maximum number of parameters to use in a 
method definition.

As with the rest of the preferences, if you want to revert to the original set of 
preferences you can use the Restore Defaults button.

Task Tags
In the previous chapter we saw how to use special annotations in our comments 
so we could later see this information in the Tasks view. RadRails recognizes the 
FIXME, TODO, OPTIMIZE, and XXX annotations, each of them with a given priority.

If you want to add your own annotations for displaying on the Tasks view, or if you 
want to change the priority for the defined annotations, you have to use the Task 
Tags preferences.

This dialog is really simple to use. You can select any of the defined tags and click 
on Edit... to change the current tag or the priority, or you can use the New...  and 
Remove controls to create or delete an annotation type.

The checkbox at the bottom of the list controls whether the tags are case sensitive or 
not. The convention is they are case sensitive and uppercase.



Chapter 8

[ 201 ]

Summary
This chapter explained how to modify the Eclipse and RadRails preferences to 
customize our development environment and make ourselves more comfortable 
with it.

However, most users will not need to change any of the preferences, since the 
defaults follow the coding conventions and are appropriate for a vast majority 
of developers. You will probably not modify your preferences until you are an 
experienced user and want to make minor adjustments to your installation.

And remember you can always use the Restore Defaults button to revert any 
changes you made and get back to the original configuration.





Other Useful Plugins
You already know how to use Aptana RadRails for developing your projects in a 
more productive way. But so far we have focused on Rails-related tasks only.  
When developing a project, there is more to it than the coding part and the pure 
Ruby/Rails operations we have learned to manage with RadRails.

In almost any project, you will need to work with a database. Actually, if you are not 
using a database, then working with Rails is probably an overkill. Even if migrations 
are great, and from the Rails console you can access your database contents, on many 
occasions you will want to connect directly to your database. This will be the case if 
you need to check the structure of your schema, or launch complex queries.

Also in many projects you will want to work with a code repository so you can check 
out a project, make changes, and then commit them back.

Of course you know you can use the command-line interface or a graphic front end 
for dealing with your database or your version control system, but it would be  
much more convenient if you could just use everything in an integrated manner 
from Eclipse.

Using such a powerful and popular IDE as Eclipse has many advantages, one of 
them being that for almost any development need you might have, there is a plugin 
supporting that feature. Actually, in most cases you will have several plugins to 
choose from. You only have to install them, set the preferences accordingly, and start 
managing all your development tasks from a single program.

Eclipse plugins are typically located at free hosting websites such as  
http://sourceforge.net or http://code.google.com, but in many cases the 
plugins are placed in other locations. Fortunately there are some pages with updated 
listings of plugins, categorized and rated by their users. Two of the most popular 
sites are http://www.eclipseplugincentral.com and http://www.eclipse-
plugins.info, with more than 1500 different plugins referenced.



Other Useful Plugins

[ 204 ]

Apart from managing databases or version control systems in the Eclipse plugins 
ecosystem ,you can find plenty of other useful plugins like those for working with 
bug-trackers such as Trac and Bugzilla, for dealing with XML and other file formats, 
or for working with almost any programming language/framework of your choice, 
so you can develop all your projects, in different languages, from a single IDE.

In this chapter, we will discuss two plugins that will come in handy for virtually any 
Ruby on Rails developer: one for managing your database connections and one for 
working with code repositories. We will not be exhaustive about all the options and 
details of these plugins, but after finishing this chapter you will know enough to use 
them in your Rails projects.

Database Management
As of today, RadRails has two built-in views for interacting with your database: 
the Data Navigator and the Query view. These views use the configuration of your 
database.yml file to connect to the database and run the queries. If all you need 
is displaying the name of your tables, or the name and type of your columns, or 
running simple queries, these two views come in handy. But if you want to take a 
look at the details of your database, to run more complex queries, or to modify the 
stored information, you will need to use a more specialized plugin.

Eclipse doesn't provide any tools for database connectivity out-of-the-box—or not 
yet at least—but this being such a central part of almost any development, there exist 
many plugins to help you manage your databases. Some of the most popular are 
SQL Explorer (http://www.sqlexplorer.org), QuantumDB (http://quantum.
sourceforge.net), the Eclipse Datatools Project (http://www.eclipse.org/
datatools), and DBViewer (http://www.ne.jp/asahi/zigen/home/plugin/
dbviewer/about_en.html).

All of these plugins are developed in Java and they connect to the target database 
through a JDBC driver. If you don't know what that is, don't worry, JDBC stands for 
Java Database Connector and it's a standard for making portable database drivers. 
All you will need to do is to download the appropriate driver for your database and 
you are ready to go.

Each of the named plugins has its sweet spot and its defects. During the years, I've 
been using all of them in the development of several projects and, as of today, the 
plugin with the best balance of capabilities, ease of installation, and usability is 
DBViewer. It features hassle-free connectivity to any database with a JDBC driver, 
navigation and manipulation of your schema's structure, SQL editor with code 
formatting, code templates and code assist, export of search results, and quick 
editing of the database contents.



Chapter 9

[ 205 ]

While writing this book, I was delighted to learn that the Aptana team also likes 
this database plugin the best. They plan to bundle a slightly modified version of this 
plugin as a part of the release of Aptana Studio 1.2, so you will not need to install  
it separately. After that release, the Data Navigator and the Query view will  
be removed.

Not everything can be perfect though. Of all the plugins mentioned above, 
DBViewer is arguably the one with the poorest documentation (at least in English, 
since there is a user's manual available only in Japanese) but it's nevertheless very 
intuitive to use, so that's not a serious problem. Chris Williams, the lead developer 
of Aptana RadRails, kindly let me know they will provide at least some minimal 
English docs once the plugin gets integrated. 

Please note that we are talking about a tool for developers and not database 
administrators, so there is no built-in support for creating databases, managing 
privileges or performing maintenance, or tuning tasks. You can however, get some of 
these functionalities—to some degree—by using the integrated SQL editor.

In this section, we assume you have working knowledge of SQL and you know 
how to write SQL statements. We will focus only on explaining the integration of 
DBViewer with Eclipse so you can manage your database connections, without 
explaining the different concepts or the SQL syntax, which would fall out of the 
scope of the book.

Installing DBViewer
In the first chapter of this book, we have already explained how to install a plugin 
in Eclipse. In the case of DBViewer, you can either download the latest version from 
the plugin website and manually copy it to your plugins directory, or you can use 
Eclipse's Update Manager to automatically get it installed. This is my recommended 
option, since the process is transparent, and it allows updating easily to newer 
versions. Of course, after the release of Aptana Studio 1.2, you will not need to install 
it separately.

If you are reading this book before that release, just go to the Help menu, and select 
Software Updates | Find and Install. In that select Search for new features for 
install and then choose the New Remote Site, as we did for installing the Aptana 
Studio and RadRails plugins in Chapter 1.



Other Useful Plugins

[ 206 ]

The update site for DBViewer is http://www.ne.jp/asahi/zigen/home/plugin/
dbviewer. Just fill in the dialog as in the next picture and then proceed with the 
installation. After accepting all the steps of the set-up process (terms of acceptance, 
plugin download, and installation), Eclipse will ask you to restart your workbench. 
When Eclipse starts again, the DBViewer plugin will be available.

In order to check that the plugin was properly installed, go to the Window menu and 
select Open Perspective | Other. Depending on the number of plugins installed you 
will have different perspectives available. One of them should be named DBViewer. 
Please note that this perspective will be renamed to DBExplorer after the integration 
of this plugin into Aptana Studio. 

When you open it, the default DBViewer perspective will display three new views: 
DB Tree, SQL Execute, and SQL History.

Creating New Connections
The first thing we need to do is create a connection to our database. You will need a 
suitable JDBC driver for the database of your choice. Since MySQL and SQLite are 
the two most popular options when working with Rails projects, we will explain the 
details of how to configure these connections, but extrapolating them to any other 
driver is a trivial issue, since there are only minor differences. Once again, after the 



Chapter 9

[ 207 ]

integration of DBView with Aptana, MySQL and SQLite will be available by default. 
Still, the following steps illustrate how you can configure a connection against any 
database server, provided a suitable JDBC driver exists.

If you want to use MySQL for your connection, download the official JDBC 
connector from http://www.mysql.com/products/connector/j/. The driver 
doesn't need any installation; just unpack the downloaded file in the directory of 
your choice. The driver itself is a file with a .jar extension and it will be named 
something like mysql-connector-java-5.0.7-bin.jar

If you prefer to use SQLite, there is not an official JDBC driver, but there is a pretty 
good one at http://www.zentus.com/sqlitejdbc/. There are different versions 
of this plugin: a portable pure-Java solution and some pre-compiled binary versions 
depending on your OS. Since we will be using the driver only, working interactively 
from Eclipse, and database performance is not an issue here, the pure-Java version 
of the driver will be perfect. Just download it, and unpack it to any directory. 
The driver is a file with a .jar extension and it will be named something like 
sqlitejdbc-v037-nested.jar

As we just saw, you can always download your JDBC driver from the Internet, but 
in the case of SQLite3, MySQL, PostgreSQL, Oracle, and IBM DB2, those drivers will 
already be available in your system. As a part of the installation process, RadRails 
copies those files into the plugins directory of your Eclipse installation.

The plugins directory is typically located right below your Eclipse directory, but 
since you can configure where you want to install your plugins, it could be elsewhere 
too. If you want to use the JDBC drivers already installed, just locate the plugins 
directory and then look for a filename like *mysql*.jar or *sqlite*.jar.

Now you have the appropriate drivers in your system, we can already create a 
connection. Please note that we cannot use DBViewer to create the database and 
assign the necessary privileges, so the database must exist before trying to create the 
connection. Go to the DB Tree view and right-click on the DBViewerPlugin label. 
From the context menu select the Add option. A dialog will open for entering your 
connection details.

In the DataBase Define name text box enter the name you want to assign to this 
connection. This will be the name displayed in the DB Tree view, so it's advisable to 
enter something meaningful.



Other Useful Plugins

[ 208 ]

Now we have to select the JDBC driver for our connection. Click on the Add File 
button and navigate to the file of the driver you want to use. Remember the file we 
want is the one with a .jar extension.

When using a JDBC driver, the connection is always defined by a connection string. 
This string is very similar to a URL and it's composed either of a host, port, and 
database name, or a filename pointing to the database contents. The format of this 
connection string is different for every JDBC driver, but DBViewer will assist us, so 
we don't have to worry about that.

When you click on Next, DBViewer will ask you if you want to replace the 
connection string with one registered in a template. Select Yes so a sample 
connection string for your driver will be provided.

In the next dialog, we have to fill in the information about our connection. The first 
field is the JDBC Driver Name. The combo will be loaded with different options 
depending on your driver. Leave this combo unchanged and do the same with the 
'Driver Type' radio button.

If you are using a JDBC driver for a database other than SQLite or MySQL, check the 
documentation to see if it's type-4 compliant. Most modern drivers will be type 4, 
but if you are experiencing problems change it to type 2, since all the type 4 drivers 
should be type-2 compatible.



Chapter 9

[ 209 ]

You will see the Connection String is pre-entered for you. You only have to provide 
the information between angular brackets. 

In the case of MySQL we have to enter the host name or IP—localhost, most 
probably—and the database name. You will also have to provide the information for 
the User and Password fields. You can leave the Default Schema box blank, since 
this is not used by MySQL.

If you are using SQLite, you only have to provide the path to your .db file. A sample 
connection string would look like:

jdbc:sqlite:\temp\test.db

In SQLite, no User, Password, or Default Schema are needed, so you can safely 
leave all these fields blank.

Use the Test Connection button to see if there are any problems and correct the 
entered information if necessary. If the 'Test Connection' button appears disabled, 
it means you didn't provide a valid connection string. In that case, correct the 
connection string to activate the test button.

If you click on Next you will be able to further configure your connection. You can 
enter the charset you want to use in this connection, and choose if you want to use 
Auto Commit.



Other Useful Plugins

[ 210 ]

For SQLite I would recommend to always use Auto Commit in order to avoid 
potential locking problems. For MySQL, you can safely choose whether you prefer to 
work in Manual or Auto Commit mode.

After finishing with the creation of the connection, it will appear as a new icon on 
your DB Tree view. Now we will learn how to use this connection.

DB Tree View
The first thing we need is to establish the connection to the database. You can 
directly double-click on the name of your connection or you can right-click on it and 
select the Connect option. After waiting a few moments, the connection will open 
and two folders will appear on the tree for this connection, one for the database 
views (which you will probably not use) and one for your tables. If you open the 
TABLE folder, the names of all the tables in your database should be listed.

We can perform two operations with the tables in the DB Tree view. If you click on 
the plus sign preceding the name of the table, the list of the columns will appear, 
displaying the name and type for each of them. The primary key will be marked by a 
small key icon and the NOT NULL columns will be marked with a label reading XN.



Chapter 9

[ 211 ]

If you double-click on the name of the table, the Table Editor view will open, 
displaying the rows for that table. You can move up and down the data and you 
can enter edit mode just by clicking on the cell you want to change. Type the new 
contents for that cell and press enter. Please note that the changes you make this way 
will have direct effect on your database, even if you configured your connection not 
to Auto Commit.

When you double-clicked on the name of the table, all the rows were retrieved 
without any conditions. If you want to limit the results, you can type the conditions 
of the WHERE clause in the where text box at the top of the row list. That box provides 
content assist, so if you press Ctrl+Space (or Command+Space on the Mac) you will be 
presented with a list of possible options, including the names of the columns in  
your table.

If your table has a large number of columns, maybe you want to limit which ones 
will be displayed. You can do so by using the Filter button at the top-right corner of 
this view and checking only the columns you want to show.

Apart from selecting and updating the existing rows, you can remove, copy, or add 
new rows to your table. Just right-click with your mouse over the row to delete or 
copy and select the appropriate option from the context menu.

But from this Table Editor view you can do more than selecting and updating the 
table contents. You can consult and edit the structure of the tables too. In a typical 
Rails project all the operations related do the structure of the database (the so-called 
DDL or Data Definition Language) will be done via migrations, so we will use this 
view for informational purposes only.

At the foot of the Editor view, you will see there are four tabs: Log, Define, DDL, 
and the Rows Result pane we just explained. The Log tab is only available for 
privileged users and is not available for all databases. If your database supports it, 
you will see here the log entries for this table.

In the Define tab—displayed in the screenshot opposite—we can see the definition of 
your table. The upper pane shows the column information and the lower one shows 
the indexes and constraints, such as Primary or Foreign Keys.

If you want to modify the definition of any column, you can double-click on it. 
For adding, copying, or removing a column you have to right-click and select the 
appropriate option.

You can also add or drop new indexes and constrains by right-clicking on the lower 
pane and selecting the operation you want to perform.



Other Useful Plugins

[ 212 ]

Finally, in the tab of the Table Editor view labeled DDL, you will see the SQL 
statement for creating your table. Depending on your technical background and your 
personal preferences, you may find this more convenient than the Define tab for 
consulting your table structure.

SQL Execute View
In the SQL Execute View you can run any SQL statement against your database, and 
it features a built-in formatter, code assist, and code templates, in the same way as 
we saw for the Ruby editor.

If you have added more than one connection, you will have to select the target 
connection in the drop-down list in this view. If you try to execute an SQL statement 
against a closed connection, the plugin will display a message for you to confirm you 
want to establish the connection.

Once you have selected the target database, you can start writing in the editor. You 
can try to write just sel and press Ctrl+Space to get suggestions of code completion or 
to use one of the available templates. Depending on which part of the statement you 
are in, you will be presented with SQL keywords, table names, column names, SQL 
functions, or pre-defined templates. As happened with the Ruby code, you can create 
your own SQL templates in the preferences dialog.

This editor also features syntax highlighting for the SQL reserved keywords as you 
type, so the statement will be more readable.



Chapter 9

[ 213 ]

Once you have finished typing the statement, you can run it from this view's toolbar 
by using the green 'execute all' button. You can also right-click on the editor and 
select Execute All or you can use the shortcut Shift+Enter. If you want to execute 
just a part of the code in the editor, you can select it, right-click, and choose Execute 
Selected SQL.

The rest of the icons in this view are pretty straightforward. With the Open and Save 
controls you can load an SQL script in the editor or to save its contents. Then you 
will find the Execute and Execute as Script icons and the Clear control, to remove 
the current contents of the editor. The back and next arrows are used to navigate the 
history of the executed statements.

The next three icons are related to transactions. The first icon will represent an A or 
an M, standing for 'Auto' or 'Manual' commit. If using auto-commit, the next two 
icons will be disabled, since they are the Commit and Rollback controls, used to 
persist or undo the changes to your database.

Finally you will find the format icon. You can choose between manual formatting 
(the default) in which you have to click this icon or right-click on the editor to  
format, and auto-formatting, in which the code will be automatically formatted on 
every execution.

In general, this view is pretty simple to use, but it provides all the power for 
executing SQL in the same comfortable way you usually find in full database clients.

SQL History View
The SQL History View is a convenient way to keep track of the history of statements 
executed. There is a folder for each day, and then the statements appear sorted by 
date. When you click on any statement, you will see the whole SQL code in the lower 
pane. If you want to bring the code to the SQL Execute View, just double-click on 
the statement in the history list.



Other Useful Plugins

[ 214 ]

If your history list is growing a lot and you find it difficult to find the statements you 
are looking for, you have two options. You can click on any statement and select the 
Delete icon of this view's toolbar—so the list will not be so long—or you can use the 
Filter box to type some letters (like the name of a table or column) and let DBViewer 
search for them in the history.

DBViewer Configuration
As with any other plugin, you can set some preferences for DBViewer in the 
Windows | Preferences menu. It's no surprise that the section in which the 
preferences appear is named DBViewer Plugin.

Most of the preferences should look familiar, since they are related to syntax 
coloring, code assist, and formatting. These settings work in the same way as we saw 
in the configuration reference chapter of this book.

There are only two sections in the DBViewer preferences that might not be clear at 
first glance: Generate Value Object and Connection String. We will not be using the 
first one since it is intended for auto-generating Java code.



Chapter 9

[ 215 ]

The Connection String preferences are used to provide connection strings template 
for each JDBC driver. You will probably not need to add a new connection string 
template since out of the box the plugin supports connections for MySQL, SQLite, 
Oracle, Apache Derby, PostgreSQL, Interbase, DB2, and SQLServer,  
amongst others.

Should you need to use a different JDBC driver, you could create your own 
connection string template by using the New button and entering the connection 
string sample in the text box.

Version Control with Eclipse
Version Control—also referred as Revision Control or Software Configuration 
Management—is a central part of software development. If several developers 
are working on a project, it's inconceivable not to use a version control system to 
avoid conflicts and share the code. But even if there is a single developer, version 
control should be used for keeping track of changes, sharing code between different 
environments, or tagging releases, for example.

Eclipse understands the importance of a version control system, and provides 
support for CVS by default. Besides, it allows for any other version control software 
to be integrated with Eclipse in a convenient way, keeping the same interface. In the 
Eclipse jargon, the operations related to version control are usually found under the 
Team preferences, the Team context-menu, and the Synchronize perspective.

There are plugins available for almost any version control system in the market. 
During the years, I have successfully managed CVS, Subversion, Visual Source Safe, 
and Perforce repositories with Eclipse. Some minor details apart, the user experience 
is almost identical.

In the Ruby on Rails community, the most widely used version control system is 
Subversion—abbreviated as SVN. For over three years, the source code of Rails itself 
has been hosted in a Subversion repository, most of the projects in RubyForge use 
SVN, and  SVN is the only version control system available for Ruby projects hosted 
at Google Code.

Very recently—not even a month ago at the moment of writing this book—Rails was 
moved to a Git repository. As you probably know, Git is a version control system 
developed originally for managing the Linux code base. Git is a very good option 
when you have a distributed project with many developers. Thus, due to the large 
number of contributors, moving Rails to Git makes a lot of sense. However, as of 
today, Git lacks of a good integration with any IDE, and it must be used from the 
command line or with a built-in GUI.



Other Useful Plugins

[ 216 ]

Shawn Pearce is currently developing an Eclipse plugin for Git. Unfortunately, 
the project is at a very early stage and it will probably take a while until the user 
experience is similar to that of the other version control systems. If you want 
more information about this plugin, you can visit http://git.or.cz/gitwiki/
EclipsePlugin.

Since Subversion is still the version control system of choice for Ruby on Rails 
development, we will explain in this section how to use Subversion when working 
with Eclipse. 

Should you decide to use a plugin other than Subversion, many of the 
things we will explain here will still be useful for you. All the version 
control plugins for Eclipse are modeled after the CVS one, so all of them 
are used almost identically.

There are two popular plugins for using Subversion from Eclipse: Subclipse 
(http://subclipse.tigris.org) and Subversive (http://www.eclipse.org/
subversive). Both can work perfectly with your subversion repositories and in the 
end it's mainly a matter of taste using one or the other.

I prefer Subclipse for a number of reasons: It has been around longer than 
Subversive, it was created by Tigris.org, the same Open Source community that 
created and maintains Subversion, and Mark Phippard—the Lead Developer of 
Subclipse—is a full committer for Subversion. Thus, you can always be sure that 
the plugin follows the philosophy of Subversion itself, and the new features are 
implemented early. This being said, I know of many people that are successfully 
working with Subversive, and I tested it during one of my projects to see how it 
performed and found it flawless.

This section assumes you have working knowledge of Subversion, and will focus 
only on how to use subversion from Eclipse, not explaining the different concepts or 
the internals of working with Subversion. Also, we will not explain all the details of 
the version control features you can get with Eclipse, since some topics like branch 
management can get very complex and fall out of the scope of this book. Please refer 
to the documentation of Subversion and Subclipse if you want more information.

Installing Subclipse
We will use Eclipse's Update Manager for installing Subclipse. If you are behind a 
firewall, you can also download the package from the Subclipse website and install it 
manually, but I strongly recommend to use Update Manager whenever possible.



Chapter 9

[ 217 ]

As we did when installing DBViewer, go to the Help menu and select Software 
Updates | Find and Install. In that select Search for new features for install 
and then choose the New Remote Site. The Update Manager site for Subclipse is 
http://subclipse.tigris.org/update_1.2.x.

In Aptana Studio 1.2 you will be able to start the installation of this 
plugin directly from the plugins section of the Aptana Studio Start Page 
(available in the Help menu). The automatic installation will save you 
from entering the URL for the plugin, but you will still need to finish the 
next steps in order to install the plugin.

When asked about the components to install, don't check the optional components, 
since they have dependencies on other plugins that we are not going to be using. 
Complete the installation process and restart your Eclipse workbench when you are 
prompted to do so.

You don't need to have Subversion installed in your system in order to use Subclipse, 
but if you don't have it installed, you would probably need to take an additional step 
before starting using Subclipse.

In order to connect to your repositories, Subclipse can use either a native library 
called JavaHL, or a pure-Java library called SVNKit. If you are using Windows, the 
JavaHL library comes bundled with the Subclipse installation, but in other OS, if 
you don't have a local copy of subversion in your system, then you cannot use the 
JavaHL native library and you should change the preferences of Subclipse.

To change this setting open the Preferences dialog, go to the Team | SVN section 
and check the radio button for the SVNKit in the SVN Interface box. Using SVNKit 
is the recommended option—even for Windows users—because it performs better 
than the native API.



Other Useful Plugins

[ 218 ]

Now you are ready to connect to your repositories from Eclipse. Note that this  
plugin is intended for developers, and does not provide administrative features.  
If you want to create a brand-new repository, you will have to use the command-line 
tool svnadmin and manually configure the repository privileges. Administration  
of repositories is out of the scope of this book, so for the examples we will  
connect to the Rails repository itself and we will download the code of the  
acts_as_tree plugin.

SVN Repository Exploration
The first thing to do in Eclipse when you want to work with a repository is create a 
repository location pointing to the URL where the repository lives. For that, we have 
to open the perspective SVN Repository Location, which is available as usual in the 
Window menu under the Open Perspective | Other option.

In this perspective, we will create a new location pointing to http://svn.
rubyonrails.org/rails, which was the former root of the Rails repository. 
Subversion access is still available for reference, even though the development was  
moved to Git.

To create the new location you can use the Add SVN location icon, represented  
with a plus sign on the SVN Repository toolbar, or you can directly right-click and 
choose New | Repository location. A dialog will open asking you for the URL of 
your repository.

After accepting this, a new folder will appear in your SVN Repository view. If you 
open the folder by double-clicking on it you will see the contents of the remote 
repository. Notice that several projects can be found under a single repository, for 
example in this case the Rails repository contains the Rails code itself, as well as a 
number of plugins, database adapters, spin-offs, and tools.



Chapter 9

[ 219 ]

Notice that we didn't have to authenticate to use the repository, but if the repository 
you are connecting to didn't allow anonymous access, Eclipse would prompt you for 
a user and password, giving you the option of saving the credentials so you don't 
have to enter them every time you try to connect.

If you navigate to the plugins folder and open it, you will see several plugin projects 
inside. When opening the contents of acts_as_tree, you can see the names of the files 
inside that project, together with the revision number with which they were  
last updated.

If you want to see the contents of any file at the remote repository, you can  
double-click on it and it will be opened in the Editor view as usual. Since these are 
the contents of the remote location, the editor will open in read-only mode. Before 
we can change the contents of the source code, we will have to get a local copy—a  
so-called Working Copy—of the repository contents.

Projects and Repositories
To manage a repository with Eclipse, we will have to establish a relationship 
between an Eclipse project and a repository location. There are basically two 
scenarios for this. In the first scenario, you want to connect to an existing repository 
and download an existing project, creating an Eclipse project to work with. This 
would be the equivalent to the checkout command of Subversion. In the second 
case, you have created a new project in Eclipse and you want to upload it to a 
repository, so you can put it under control of Subversion. This would be the 
equivalent to the import command.



Other Useful Plugins

[ 220 ]

Since the number of developers is bigger than the number of projects, it's more usual 
to check out an existing project than to import a new one into a new repository. 
However, depending on your profile, importing can be a very frequent task too.

Checking out an Existing Project
Before checking out a project you must create a repository location as we saw in the 
previous step. In the SVN Repository view, navigate to the project you want  
to check out (in our case the plugins | acts_as_tree project), right-click on it and 
select checkout.

You can choose to check out by using the New Project wizard, which will take you 
to a dialog like the one we saw when creating a new project, or to directly create a 
new project in the workspace. In either case, when you click on Finish the code of 
the repository will be copied into your local working copy.



Chapter 9

[ 221 ]

If you don't want to fetch the latest revision of the project, you can specify which 
revision number you want to check out. If you know you want a revision other than 
the head version, but you are not sure about which one, you can use the Show Log 
button to see the log of the project so you can see the comments associated with the 
revisions and decide which one you want.

You can also check out a project by using the New Project option in the File menu or 
the Ruby Explorer. At the opening dialog select that you want to check out a project 
from SVN, as shown in the following screenshot:

In this case, the wizard will present you with a list of your configured repository 
locations, for you to choose from where to perform the checkout. After this step, the 
process is identical to the one of checking out from the SVN Repository view.

Importing a New Project into a Repository
If you have created a new project in Eclipse and you want to import it into a 
repository, you have to right-click on its name in the Ruby Explorer and select  
Share Project.



Other Useful Plugins

[ 222 ]

In the opening dialog, you will have to select the 'SVN' type and then the repository 
location in which you are going to import the project. Of course your user must have 
privileges to write into that repository. The Share Project dialog will then prompt 
you to enter a name for the project in the repository. By default, the same name as 
your Eclipse project will be used.

If you click on Next, Eclipse will ask you for a comment for the initial import, and 
will display all the files that are going to be imported into the repository. If there are 
some files or directories you don't want to import, just uncheck the box by their side. 
After all the changes are committed, your project will be under version control.

Update, Edit, Compare, and Commit
The work flow when working with any—or almost any—version control system 
is updating your local copy with the latest repository contents, editing the files, 
comparing your changes with the repository in case there are any conflicts, and 
committing back the modified files

All of these Subversion-related operations are available under the Team option of 
the context-menu in the Ruby Explorer. You can see this menu if you switch to the 
Rails Perspective and right-click on top of the name of the acts_as_tree project we 
previously checked out.



Chapter 9

[ 223 ]

If you wanted to update—meaning to fetch the latest version of the repository 
contents—the whole project, you could select the Update option in the Team menu. 
At this moment, nothing will be updated, since we already have the latest version. 
However, you will see in the Console view that a connection was made and the 
output of the svn update command will be displayed, saying something like At 
revision XXX.

You should be aware that the operations you perform from the Team menu are 
recursive, so if you select Update at the project level, the contents of the whole 
project will be updated.

Subclipse will decorate the items in the Ruby Explorer with different icons 
depending on their status. A file or directory under version control will be marked 
with a small yellow icon. An item under version control with local changes will be 
marked with an asterisk. The new items will display a question mark icon, and the 
deleted directories will be marked with a red cross. By default, after each item's 
name, the revision number, timestamp, and author of the last commit will be shown.

At any time, you can compare the contents of a file with the base revision—the  
last version you downloaded from the repository—or with the latest version in  
the repository. To see how this works, you can navigate to the tree.rb file under  
lib | active_record | acts and delete some of the lines in the file. After saving, you 
will see that now this file is marked with an asterisk in the Ruby Explorer.

To compare the file with the original, right-click on its name and go to the Compare 
with option. Here you can choose Base Revision, so you will see which changes you 
have made since we last updated it. A compare editor will be displayed so you can 
see the changes side by side.

If you wanted to undo the changes, you could do so in two different ways. You 
can use the Revert option from the Team menu to get back the contents of the 
last updated revision, or you can right-click and open the Replace with option, in 
which you can choose the Base Revision, the latest from the repository, or any other 
Revision in the history of this resource.



Other Useful Plugins

[ 224 ]

After you have edited your source files, you will want to send the changes back  
to the repository. Right-click on the file or directory to commit, open the Team  
menu, and select Commit. A dialog will display showing all the resources you will 
be committing.

By default, the new files that are not yet under version control will not be included 
in the commit, but you can mark the checkboxes by their names to include them, 
or simply use the Select All button to mark them all at once. In the top part of this 
dialog you can write a message to describe the changeset you are committing, which 
is always a good practice. In the drop-down list you will find the history of the last 
messages in case you want to reuse them.

When you are ready to commit the changes, click on the OK button. In our case,  
we will not be able to commit since we don't have privileges for writing to the  
acts_as_tree project, and an error message will be displayed.

Even when you are a privileged user, if you are trying to commit any resources that 
are out-of-sync with the repository, you will also get an error message. Out-of-sync 
means you are trying to commit a file that was modified by a different person since 
the last time you updated it. In this case, you will have to make an update to your 
local file, and resolve any potential conflicts, before being able to commit  
your changes.



Chapter 9

[ 225 ]

The Synchronize View
We saw in the previous section that you can update a single file or a whole directory, 
but with this approach it is difficult to see which changes you are going to be 
updating until you actually download them. Also, in the case of conflicts or  
out-of-sync resources, you can get merges in your files that you will have to 
manually correct.

Subclipse provides the Synchronize view as a convenient way for comparing the 
status of our local copy against the latest version of the repository, so we can see 
which changes will be made before doing anything. We can even compare and 
modify the contents of our conflicting files in a comfortable way.

The easiest way for starting the synchronize view is right-clicking on the name of 
your project in the Ruby Explorer and choosing Synchronize with repository in the 
Team menu. Eclipse will then prompt you to change to the Synchronize perspective.

The contents of this view are similar to the svn status -u command but with a more 
convenient presentation. Incoming changes will be displayed with a left-arrow, 
outgoing changes will be displayed with a right-arrow, and added or deleted files 
will be represented with a plus or minus sign. In the case of conflicts, a red double-
arrow will be shown.

The toolbar of this view has some interesting controls. For example, you can use the 
up and down arrows to navigate one by one through the differences between the 
files in your working copy and the repository version.

By default, all the changes will be shown in this view. If you are interested only in 
inbound, outbound, or conflicting changes, you can use the toolbar icons to limit  
the results.



Other Useful Plugins

[ 226 ]

You can accept all the incoming or outgoing changes with the two icons in 
the toolbar, or you can right-click item by item and select Update or Commit 
accordingly. If there is an outgoing change you want to revert, you can right-click 
on that file and select Override and Update. The result will be the same as when 
selecting the Replace with latest from repository option from the Team menu.

In the case of conflicting files, you can double-click on the name of the file to open a 
compare editor. You can then incorporate the changes of the remote version—either 
by hand, or using the built-in controls of the comparing editor, as we learned when 
comparing Ruby source files—and save the file.

Since the conflicts are already resolved, you can right-click on the name of the file 
and select the Mark as merged option. This way, Eclipse will remove the conflict 
mark and will let you commit the changes.

History View
The last of the features of Subclipse we will look at is the History view. To see  
the history of any file or directory under version control, switch to the Ruby 
Explorer—or to the SVN Repository View—right-click on the item you want to 
consult, and select the Show History option of the Team menu.

This view is divided into three panes. The upper one displays the list of revisions  
for the selected file. The lower left area displays the list of files that were committed 
in the same revision, and the lower right area shows the comment entered  
when submitting the selected revision.

You can select any of the revisions in the list and right-click to get a context menu 
from which you can get the contents of that revision into the current one, or revert 
your working copy to that revision.

If you select two different revisions—by holding the Ctrl key—you can choose to 
compare those versions from the context menu.



Chapter 9

[ 227 ]

Summary
RadRails provides several tools and specialized editors for working with Ruby  
and Rails from Eclipse. But in the development of any software project, there are 
some aspects not directly related to the programming language or the framework 
being used, and these aspects are not covered by a framework-oriented plugin  
like RadRails.

Fortunately, one of the advantages of the Eclipse IDE is its extensibility and 
popularity within the developers community. This means there are plugins for 
almost any task you need to carry out as a part of the software development cycle.

Out of all the useful plugins available, we have learned how to use DBViewer and 
Subclipse to help us deal with our databases and repositories without having to 
leave the workbench. Thus, we can work in a more comfortable way and we will see 
how our productivity increases.

We also provided some URLs where you can find up-to-date lists of Eclipse plugins 
that you might want to incorporate to your installation.





Index
A
Aptana RadRails

about  9
basic configuration  27
basic views  45
breakpoint  127
CSS files, editing  118-121
database management  204
database navigator view  204
debugging  124
debugging tools  146
debug view  134
display view  144
Eclipse perspectives  38
Eclipse plugin  9
Eclipse views  39
ERB/RHTML templates  107
existing projects, importing  37
expressions  139
expressions view  142
external tools, launching form Eclipse  158
general preferences  190
generators view  53
HTML files, editing  115
installing  21
JavaScript files, editing  115-118
keyboard shortcuts  67, 68
overview  9
perspectives  39
plugins  204
plugins, for database management  204
prerequisites  11
query view  204
Rails application, stepping  136-138
Rails project, creating  34-36

Rails server, creating  61
Rails server, monitoring  63, 64
Rails server, setup  60-63
refactoring operations  95
refactoring tools  94
Ruby code, navigating  89
Ruby code completion  82
Ruby code folding  78
Ruby code formatting  80
Ruby code structure, outlining  70
Ruby code templates  85
Ruby editor  68
Ruby projects, searching in  100
Ruby search  104
stand alone IDE  9
types  9
variables  139
variables view  139
views  40, 149
views, working with  41-43
workbench  10

Aptana RadRails, configuration
Eclipse preferences dialog  27-29
file, encoding  30
internet proxy settings  30
Mongrel path  33
Rails environment  33
Rails path  33
Rake path  33
Ruby environment  32
Ruby interpreter  32

B
basic views, Aptana RadRails

console view  51, 52



[ 230 ]

Ruby explorer view  46-50
Ruby explorer view, top icons  50, 51

breakpoint, Aptana RadRails
about  127
breakpoint view  130
exporting  133
importing  133
Ruby exception breakpoint  132
Ruby exception breakpoint, defining  132
setting, for exceptions  131
using  128, 129

C
console view  51

D
database management, Aptana RadRails

DB tree view  210, 211
DBViewer, configuration  214, 215
DBViewer, installing  205
MySQL, using for connection  207
new connections, creating  206-209
SQL executive view  212, 213
SQL history view  213
SQLite, using for connection  207

DBViewer
configuration  214
installing  205, 206
preferences  214
update site  206

debugging, Aptana RadRails
about  124
debugger configuration  124
ruby-debug, configuring  125
ruby-debug-ide gem, installing  125
ruby script, debugging  126, 127
server, starting  126

debugging tools
errors, from browser  146
source code, from browser  146
tail view  146

debug view
about  134, 135

display view
about  144
functions  145

documentation views
about  150
Rails API  151, 153
Ruby core  151
Ruby core API view  152
Ruby interactive view  151
Ruby standard library  151
Ruby standard library API  152

E
Eclipse

features  18
general preferences  182
installing  18, 20
perspectives  38
plugins, installing  20
plugins, manual installation  20
preferences  182
RadRails installation  21, 23
subeclipse plugin XE   216
version control  215
views  39
workbench  10, 38

editors preferences, Aptana RadRails
code assist  191
color  192
folding  192
formatting  193, 194
RHTML templates  195
typing  194

editors preferences, Eclipse
annotations  185
file associations  184
linked mode  185
quick diff  186, 187
spelling  187
stuctured text editors  184
text editors  184

ERB/RHTML templates
HTML code assist  112
outline  114, 115
refactoring into partials  113
templates, checking  111
views navigation  108, 109
view templates  110



[ 231 ]

expressions view
about  142
viewing  142

G
general preferences, Aptana RadRails

about  190
browser/user agents  191
editors  191
start page  195

general preferences, Eclipse
appearance  182, 183
editors section  183
keys  188, 190
workspace  190

general preferences, Rails
autotest  196
configuration  196
editors  196

general preferences, Ruby
appearance  196
editor  197
errors/warnings  199
member sort order option  197
syntax coloring, editor preferences  198
tasks tag  200

generators view  167, 168
generators view, Aptana RadRails

about  53, 54
flags  54
migrations, generating  55
migrations, running  56, 58
model, generating  55
scaffolds, generating  60

Git  215, 216

I
IDE

about  7
need for, Rails development  8

Integrated Development Environment.  
See  IDE

J
JAVA Virtual Machine  11

P
plugins

DBViewer  204
Eclipse Datatools Project  204
QuantumDB  204
SqlExplorer  204

preferences, Eclipse  182
prerequisites

JAVA Virtual Machine  11
Ruby and Rails  12

problems view  172, 173

R
RadRails. See  Aptana RadRails
RadRails Classic  12
Rails

general preferences  196
views, making cleaner  108

Rails application
ERB/RHTML templates  107
stepping through  136

Rails console  160, 161
Rails plugins view  161-163
Rails server

monitoring  63
setup  60

Rails Shell view  169-170
Rake tasks  166, 167
RDT  68
refactoring  94
refactoring operations

accessors, generating  95
constant, extracting  98
constructors, generating  96
field, encapsulating  96
local variable, converting to field  96
local variable, spliting  99
method, extracting  96
method, inlining  98
renaming  98

RegExp view  171
Ruby

general preferences  196
Ruby and Rails

components, to install  13



[ 232 ]

database adaptor  13
Rails  13
Rails, installing  13, 14
Ruby  13
Ruby and Rails, installing on Linux  15
Ruby and Rails, installing on OS X  16
Ruby and Rails, installing on Windows  17
Ruby and Rails, installing using apt  15
Ruby and Rails, installing using yum  15
RubyGems  13
supported databases  17

Ruby code, navigating
classes, declaring  90
general source navigation tools  89
matching brackets, finding  89
methods, declaring  90
modules, declaring  90
MVC code, navigating  91, 92
resources, opening  92
types, opening  92
variables, declaring  90

Ruby code completion  82, 84
about  82-84

Ruby code folding  78-80
Ruby code formatting

about  80, 81
code blocks, commenting  82
code blocks, indenting  82

Ruby code structure
elements and icons  73
general outline view  77, 78
outlining  70, 71
quick outline  71-75
Type Hierarchy  75-77

Ruby code templates
about  85, 86
own code templates, defining  87
reserved variables  87
template, creating  88

Ruby editor
about  68
code folding  78
syntax highlighting  69, 70

Ruby explorer view  46
RubyGems view

about  163, 164

advantages  163
cleanup gems option  164
disadvantages  163
install option  165
update all gems option  164
update gem option  164

Ruby on Rails
Subversion  215

Ruby projects
incremental find  101
Regular Expressions  101
text, searching across multiple files  101, 

102, 103
text, searching within current file  100

Ruby search
call hierarchy  105
elements, searching  104
variables, searching  104

S
servers views

about  154, 155
LightTPD, project types  155
Mongrel, project types  155
non-Rails servers, managing  156
server, starting with additional arguments  

156
WEBrick, project types  155

stack frame  134
subeclipse

about  216
features  216
history view  226
installing  216, 217
preferences  217
synchronize view  225

Subversion  215
SVN. See  Subversion

T
tasks view

about  174, 175
test unit view

about  175-179
autotest  179



[ 233 ]

V
variables view

about  140
working  140, 141

version control, Eclipse
about  215
changes, committing  224
file, updating  222
file contents, comparing  223
file contents, editing  223
history view  226
projects  219
repositories, managing  219
subeclipse, installing  216
SVN repository, exploring  218, 219
synchronize view  225, 226

views
about  40, 149
debug  40
documentation views  150
generators view  167
Information Display  40

outline  40
output console  40
problems view  172
Rails console  160
Rails generator  40
Rails plugins  40
Rails plugins view  161
Rails Shell view  169
Rake tasks  40, 166
RegExp view  171
Resource Navigation  40
RI  40
Ruby explorer  40
Ruby explorer view  167
Ruby gems  40
RubyGems view  163
search results  40
servers views  154
Support Tools  40
tasks view  174
test unit view  175
variables  40


	Aptana RadRails
	Table of Contents
	Preface
	Chapter 1: Getting Started
	Do I Need an IDE for Rails Development?
	About Aptana RadRails
	How Can Aptana RadRails Help Me?
	Prerequisites
	Java Virtual Machine
	Ruby and Rails
	Components to Install
	Installing Rails if You already Have Ruby and RubyGems
	Installing Ruby and Rails on Linux
	Installing Ruby and Rails on OS X
	Installing Ruby and Rails on Windows
	Supported Databases


	Installing Eclipse
	Installing Plugins in Eclipse
	RadRails Installation

	Summary

	Chapter 2: First Steps
	Basic Configuration
	Eclipse Preferences Dialog
	File Encoding
	Connecting through a Proxy
	Ruby Environment
	Rails Environment

	Creating a Rails Project
	Importing an Existing Project into RadRails
	Working with Perspectives and Views
	Eclipse Perspectives
	Eclipse Views

	Summary

	Chapter 3: Your First Application
	Basic Views
	The Ruby Explorer View
	Ruby Explorer Top Icons

	The Console View

	The Generators View
	Generating Models and Migrations
	Running Your Migrations
	Generating Scaffolds

	Starting Your Server
	Monitoring Your Server
	Summary

	Chapter 4: Writing Ruby Code
	A Quick Note about Keyboard Shortcuts
	The Ruby Editor
	Syntax Highlighting
	Outlining the Structure of Your Ruby Code
	Quick Outline
	Type Hierarchy
	General Outline View

	Code Folding
	Code Formatting 
	Indenting Code Blocks
	Commenting Code Blocks

	Code Completion
	Code Templates
	Defining Your Own Code Templates

	Navigating Your Code
	General Source Navigation Tools
	Matching Brackets
	Declarations of Classes, Modules, Methods, and Variables
	Navigating Your MVC Code
	Opening Types and Resources 

	Refactoring
	Generate Accessors
	Generate Constructors
	Convert Local Variable to Field
	Encapsulate Field
	Extract Method
	Extract Constant
	Inline Method
	Rename
	Split Local Variable

	Searching in Ruby Projects
	Searching within the Current File
	Searching across Multiple Files
	Ruby Search
	Call Hierarchy


	Summary

	Chapter 5: Coding Rails Views
	ERB/RHTML Templates
	Views Navigation
	View Templates
	HTML Code Assist
	Refactoring into Partials
	Outline

	Editing HTML Files
	Editing JavaScript Files
	Editing CSS Files
	Summary

	Chapter 6: Debugging Your Application
	Getting Started with Debugging
	Debugger Configuration
	Starting Your Server
	Debugging a Ruby Script

	Using Breakpoints
	The Breakpoints View
	Setting Generic Breakpoints for Exceptions
	Exporting and Importing Breakpoints


	The Debug View
	The Debug View and the Stack Frame
	Stepping through Your Application

	Variables and Expressions
	The Variables View
	The Expressions View

	The Display View
	Useful Tools for Debugging
	Linking Errors and Source Code from the Browser
	Tailing the Log Files

	Summary

	Chapter 7: RadRails Views
	Opening the RadRails Views
	Documentation Views
	Ruby Interactive (RI) View
	Ruby Core, Ruby Standard Library, and Rails API

	Servers View
	Starting a Server with Additional Arguments
	Managing Non-Rails Servers from the Servers View

	Launching External Tools from Eclipse
	Rails Console
	Rails Plugins View
	RubyGems View
	Rake Tasks
	Generators View
	Rails Shell View
	RegExp View
	Problems View
	Tasks View
	Test::Unit View
	Summary

	Chapter 8: Configuration Reference
	General
	Appearance
	Editors
	Annotations
	Linked Mode
	Quick Diff
	Spelling

	Keys
	Workspace

	Aptana
	Browsers/User Agents
	Editors
	Code Assist
	Colors
	Folding
	Formatting
	Typing
	RHTML Templates

	Start Page

	Rails
	Ruby
	Appearance
	Editor
	Syntax Coloring

	Errors/Warnings
	Task Tags

	Summary

	Chapter 9: Other Useful Plugins
	Database Management
	Installing DBViewer
	Creating New Connections
	DB Tree View
	SQL Execute View
	SQL History View
	DBViewer Configuration

	Version Control with Eclipse
	Installing Subclipse
	SVN Repository Exploration
	Projects and Repositories
	Checking out an Existing Project
	Importing a New Project into a Repository

	Update, Edit, Compare, and Commit
	The Synchronize View
	History View

	Summary

	Index



