
www.allitebooks.com

http:///
http://www.allitebooks.org

www.allitebooks.com

http:///
http://www.allitebooks.org

Architecting Mobile
Solutions for the
Enterprise

Dino Esposito

www.allitebooks.com

http:///
http://www.allitebooks.org

Published with the authorization of Microsoft Corporation by:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, California 95472

Copyright © 2012 by Dino Esposito

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any

means without the written permission of the publisher.

ISBN: 978-0-7356-6302-2

1 2 3 4 5 6 7 8 9 LSI 7 6 5 4 3 2

Printed and bound in the United States of America.

Microsoft Press books are available through booksellers and distributors worldwide. If you need support related

to this book, email Microsoft Press Book Support at mspinput@microsoft.com. Please tell us what you think of

this book at http://www.microsoft.com/learning/booksurvey.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/IntellectualProperty/

Trademarks/EN-US.aspx are trademarks of the Microsoft group of companies. All other marks are property of

their respective owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and

events depicted herein are ictitious. No association with any real company, organization, product, domain name,
email address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without

any express, statutory, or implied warranties. Neither the authors, O’Reilly Media, Inc., Microsoft Corporation,

nor its resellers, or distributors will be held liable for any damages caused or alleged to be caused either directly

or indirectly by this book.

Acquisitions and Developmental Editor: Russell Jones

Production Editor: Kristen Borg

Production Services: S4Carlisle Publishing Services

Technical Reviewer: Marco Bellinaso

Copyeditor: Sue McClung

Indexer: Margaret Troutman

Cover Design: Twist Creative • Seattle

Cover Composition: Karen Montgomery

Illustrator: S4Carlisle Publishing Services

www.allitebooks.com

http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx
http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx
http:///
http://www.allitebooks.org

To Silvia, because you’re stronger than you think.

To Michela, because you’re just the daughter I always dreamt of.

To Francesco, because you’re a terriic, quick learner.
—Dino

www.allitebooks.com

http:///
http://www.allitebooks.org

www.allitebooks.com

http:///
http://www.allitebooks.org

Contents at a Glance

Introduction xiii

PART I GoInG MobIlE

ChAptEr 1 pillars of a Mobile Strategy 3

ChAptEr 2 Mobile Sites vs. Native Applications 25

PART II MobIlE SITES

ChAptEr 3 Mobile Architecture 43

ChAptEr 4 Building Mobile Websites 63

ChAptEr 5 htML5 and jQuery Mobile 105

ChAptEr 6 Developing responsive Mobile Sites 137

PART III MobIlE APPlICATIonS

ChAptEr 7 patterns of Mobile Application Development 173

ChAptEr 8 Developing for iOS 207

ChAptEr 9 Developing for Android 267

ChAptEr 10 Developing for Windows phone 323

ChAptEr 11 Developing with phoneGap 381

Index 417

www.allitebooks.com

http:///
http://www.allitebooks.org

www.allitebooks.com

http:///
http://www.allitebooks.org

vii

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our

books and learning resources for you. to participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

Contents

Introduction xiii

PART I GoInG MobIlE

Chapter 1 Pillars of a Mobile Strategy 3

What Does “Going Mobile” Mean? . 4

Toward a Mobile Strategy 4

Deining a Mobile Strategy 7

Development and Costs 10

Outlining a B2C Strategy . 13

Focus on Your Audience 13

Delivery Models 16

Outlining a B2B Strategy . 19

Serve Your (Limited) Audience 19

Mobile Enterprise Application Platforms 21

Summary. 23

Chapter 2 Mobile Sites vs. native Applications 25

Not a Pointless Matter . 26

A False Dilemma—but True Differences 26

Reasons for the Perceived Dilemma 31

Aspects of Mobile Sites . 33

What’s Good About Mobile Sites 33

What’s Bad About Mobile Sites 34

www.allitebooks.com

http:///
http://www.allitebooks.org

viii Contents

Aspects of Native Applications . 37

What’s Good About Native Applications 37

What’s Bad About Native Applications 38

Summary. 40

PART II MobIlE SITES

Chapter 3 Mobile Architecture 43

Focusing on Mobile Use-Cases . 44

Stereotypes to Refresh 44

Analysis First 46

Mobile-Speciic Development Issues . 51

Toward a Mobile Application Layer 51

Server-Side Device Detection 57

Summary. 61

Chapter 4 building Mobile Websites 63

From Web to Mobile . 64

Application Structure 64

Amount of JavaScript 67

Application Device Proiles 69

Optimizing the Payload 71

The Ofline Scenario 75

Development Aspects of a Mobile Site . 76

Reaching the Mobile Site 76

Design of the Mobile Views 82

Testing the Mobile Site 88

The Device-Detector Site . 90

Routing to Mobile Views 91

Detecting Device Capabilities 93

Putting the Site Up 98

Summary. 104

www.allitebooks.com

http:///
http://www.allitebooks.org

ixContents

Chapter 5 HTMl5 and jQuery Mobile 105

jQuery Mobile Fast Facts . 106

Generalities of jQuery Mobile 106

Building Mobile Pages with jQuery Mobile 109

Working with Pages 117

HTML5 Fast Facts . 121

Semantic Markup 122

Web Forms and Data Entry 126

Programmer-Friendly Features 130

Using HTML5 Today 134

Summary. 136

Chapter 6 Developing Responsive Mobile Sites 137

A Developer’s Perspective of Device Detection . 138

The Client-Side Route 138

The Server-Side Route 142

Inside WURFL . 144

Structure of the Repository 144

Top 20 WURFL Capabilities 148

Using WURFL from ASP.NET 153

Implementing a Multiserving Approach . 158

Key Aspects of Mobile Views 159

Creating Device Proiles 160

Device Proiles in Action 161

Summary. 169

PART III MobIlE APPlICATIonS

Chapter 7 Patterns of Mobile Application Development 173

Mobile Applications Are Different . 174

Critical Aspects of Mobile Software 174

New Patterns and Practices 176

http:///

x Contents

Patterns for Interaction . 179

The Back-and-Save Pattern 179

The Guess-Don’t-Ask Pattern 182

The A-la-Carte-Menu Pattern 185

The Sink-or-Async Pattern 186

The Logon-and-Forget Pattern 189

Patterns for Presentation . 191

The Babel-Tower Pattern 191

The Do-as-Romans-Do Pattern 195

The List-and-Scroll Pattern 196

Behavioral Patterns . 199

The Predictive Fetch Pattern 199

The Memento-Mori Pattern 200

The As-Soon-As-Possible Pattern 202

Summary. 205

Chapter 8 Developing for ioS 207

Getting Ready for iOS Development . 208

A Brand New Platform for (So Many) Developers 208

Choosing the Development Strategy 212

Programming with Objective-C . 215

A Quick Look at Objective-C 215

The HelloWorld Program 224

Examining a Sample Application 231

Other Programming Topics 243

Programming with MonoTouch . 246

The .NET Framework on iOS 247

Examining a Sample Application 251

Deploying iOS Applications . 259

Testing the Application 259

Distributing the Application 263

Summary. 265

http:///

xiContents

Chapter 9 Developing for Android 267

Getting Ready for Android Development . 268

Development Tools and Challenges 268

Choosing the Development Strategy 270

The Android Jungle 275

Programming with the Android SDK . 278

Anatomy of an Application 278

Deining the User Interface 285

Examining a Sample Application 294

Other Programming Topics 308

Testing the Application 318

Distributing the Application 320

Summary. 321

Chapter 10 Developing for Windows Phone 323

Getting Ready for Windows Phone Development 324

Development Tools and Challenges 324

Choosing the Development Strategy 326

Programming with the Silverlight Framework . 329

Anatomy of an Application 329

Deining the User Interface 337

The MVVM Pattern 348

Examining a Sample Application 353

Other Programming Topics 366

Deploying Windows Phone Applications . 375

Testing the Application 375

Distributing the Application 378

Summary. 379

Chapter 11 Developing with PhoneGap 381

The Myth of Cross-Platform Development . 382

The Virtual Machine Approach 383

The Shell Approach 386

http:///

xii Contents

Building an HTML5 Solution . 392

JavaScript Ad Hoc Patterns 392

The Sample Application 398

Integrating with PhoneGap . 405

Supported Platforms 405

Building a PhoneGap Project 406

Final Considerations 412

Summary. 414

Index 417

http:///

 xiii

Introduction

As far back as 1999, some smart guys predicted that mobile would become the

primary focus of development in only a few years. Although it has taken a bit more

time than expected, the era of mobile software has arrived at last. Why did it take so

long? The answer is surprisingly simple: mobile software needed a critical mass of users

to develop before it could take off. The process of accumulating mobile users probably

started with the release of the irst iPhone back in 2007, but today, it has reached a
large enough mass to trigger all sorts of chain reactions.

Back in 1990 (yes, you read that right), Bill Gates gave a keynote talk at Comdex

titled “Information at Your Fingertips.” Let’s be honest—for 20 years, we pretended

we really had information (that we needed) at our ingertips, but at most, we had that
 information only at hand—which makes a huge difference. Now is the time, though,

that we can cover the short distance from hand to ingertips. With mobile devices
 everywhere, and especially with a revolutionary version of Windows on the horizon,

I believe we’re truly entering a new era of development—a paradigm shift.

Paradigm shifts just happen—and mobile represents a big one. Mobile enables new

business scenarios and new ways of doing the same business. Mobile affects nearly

everybody—users, professionals, and clearly developers. Writing mobile applications

is a challenge that the vast majority of developers will face in the near future. Overall,

mobile applications are simpler than desktop or web applications—but that’s true only

if you count just the number of functions. The hardest part of mobile development is to

identify the right set of use-cases and the right user experience and interaction model.

It turns out that the typical mobile application user is much less forgiving than the

average user of web or desktop applications. As developers, we forced users to play by

the rules of software for decades. In contrast, mobile developers will be forced to play

by the rules of user experience and conform to user expectations. This is how software

always should have been; but it’s deinitely not how software has been built for at least
the past 20 years. Moreover, before too many more years pass, mobile may well be the

only software that we will be called upon to write.

The term mobile refers to a variety of platforms, each with its own set of capabilities and

features, and each of which requires signiicantly different skills: different operating systems,
different programming languages, different application programming interfaces (APIs), and

even different computers. A mobile application is more sophisticated and more complex

than web applications with regard to resource management, data entry, sensors, data

storage, and life cycle. Furthermore, each operating system has its own set of development

guidelines and a proprietary deployment model.

http:///

xiv Introduction

This book is intended as a quick-but-juicy guide to issues that you may face while

developing a mobile project for one or multiple platforms. The book starts by analyzing

the various types of mobile solutions, which include websites, websites optimized

for mobile devices, and native mobile applications, and then identiies a few design
 patterns common to all mobile applications and technologies available on the various

platforms. Predictive fetch, back-and-save, and guess-don’t-ask are just a few of the

patterns being discussed and implemented. The book puts considerable emphasis

on mobile sites and frameworks, and on techniques to detect browser capabilities

 accurately. For example, the book offers a chapter on Wireless Universal Resource FiLe

(WURFL)—the framework being used by Facebook for mobile device detection—and

compares that to the detection capabilities in plain ASP.NET.

Furthermore, the book offers an overview of mobile development for the three

major platforms—iOS, Android, and Windows Phone. In particular, this book builds

the same application for all three platforms, discussing tools, frameworks, practices,

and illustrating architectural and structural differences along the way. Finally, the book

 covers PhoneGap and HTML5-based development for mobile devices.

After reading this book, you probably won’t be a super-expert in any of those

 platforms, but you’ll know enough to start producing code on any of the most popular

devices. You’ll also know enough to advise your customers and help them deine
 effective mobile strategies for their business.

Who Should Read This book

As companies start going mobile, they need a strategy long before they need a mobile

site or an iPhone app. But when companies have developed the strategy and start look-

ing into implementing it, they face the rough issue of not having or inding architects
and developers that know the mobile world from a variety of angles. Today, they can

easily ind great iPhone or Android developers, but they can hardly ind a consultant
that can suggest, based on strong evidence, whether a mobile site is preferable for

them.

This book is aimed at providing an architect summary of what you need to know

to design and implement mobile solutions. Today, a mobile solution often means

 arranging the same application for several different platforms (iPhone, Android,

 Blackberry, and Windows Phone), and doing that using a very speciic set of design
patterns with little in common with desktop or web apps. Last but not least, the effort

must be done in the context of the customer’s needs, expectations, and existing

 business.

http:///

 Introduction xv

Not a Mobile Developer? Not a Developer!
For a company with a consolidated business, mobile is a way to expand its horizon. The new

expansion stage of mobile is reaching out to companies and enterprises and prospecting

new ways of doing business. This is a paradigm shift with a deep impact that will give rise to

new professional jobs, much as the web itself did more than a decade ago.

That’s why I maintain that in only a couple of years, every developer will be either a

mobile developer or no developer at all. Being a mobile developer surely includes knowing

iOS, Windows Phone, HTML5, and Android, and perhaps BlackBerry, possibly Bada, and

even developing for smart TVs—and, of course, for the mobile web. More than anything

else, though, developers must acquire a “mobile mindset.” You can always igure out fairly
easily how to play a video on iOS, or how to make an Android device vibrate. But what isn’t

as easy to acquire is the intrinsic nature of mobile applications and the patterns behind

them, and which aspects to focus on for optimization.

Mobile is different. Overall, it’s simpler, but it’s also much less forgiving than other

types of applications.

Therefore, this book is for everybody who needs to acquire some mobile

 development insight. The book’s contents won’t become obsolete in just a few months

because I made a serious attempt to reach and report from the heart of the mobile

 experience. This book discusses technology, but it is not based on any particular

 technology; therefore, it’s an introductory text for any form of mobile development.

Who Should not Read This book

This book won’t make you a top-notch iPhone or Android developer; it’s intended to

help everybody (including those of you who are already top-notch iPhone or Android

developers) understand the entire mobile world. The goal is to get readers prepared

for architecting effective mobile solutions after a mobile plan has been inalized and
accepted. If you’re looking for detailed, step-by-step examples of how to play an

 animation, make the phone vibrate, or making an Internet call on all possible platforms,

you won’t usually ind them here. But I hope that you will ind enough to help you get
started with every aspect of mobile development.

http:///

xvi Introduction

organization of This book

This book is divided into three sections. Part I, “Going Mobile,” is about the possible

strategies to approach the mobile world. Part II, “Mobile Sites,” covers the architecture

and implementation of mobile sites and also touches on HTML5 and jQuery Mobile.

Part III, “Mobile Applications,” is about the three major mobile platforms of today—

iOS, Android, and Windows Phone—and also covers PhoneGap as a way of unifying

 development in a single codebase.

Finding Your Best Starting point in this Book
The different sections of Architecting Mobile Solutions for the Enterprise cover a wide

range of technologies associated with mobile development. Depending on your needs

and your existing understanding of mobile, you may wish to focus on speciic areas of
the book. Use the following table to determine how best to proceed through the book.

If you are Follow these steps

New to mobile and spent your entire
career doing other software-related
work

Read the chapters as they are laid out in the book.

A web developer looking into how
to build mobile sites

Focus primarily on Part II.

A chief technology oficer (CTO) or
chief architect

Focus on Part I irst, and then move to Part II and/or Part III,
depending on whether mobile sites or mobile apps are more
likely to be relevant in your context. But read the entire book
anyway.

Familiar with mobile app
 development in one (or more)
 platforms

You might want to start with the chapters that cover topics
that you are familiar with. These chapters are essential guides,
so it is likely that you won’t learn anything new there. But
if you ind that you miss some of the points discussed, then
you’ve got something already from the book. Next, I suggest
you focus on Chapter 7, “Patterns of Mobile Application
Development,” and Chapter 11, “Developing with PhoneGap.”

Note This table simply attempts to provide some guidance on how to learn

best from this book. In any case, I heartily recommend that you read all the

chapters thoroughly.

http:///

 Introduction xvii

Conventions and Features in This book

This book presents information using conventions designed to make the information

readable and easy to follow.

 ■ Boxed elements with labels such as “Note” provide additional information or

alternative methods for completing a step successfully.

 ■ Text that you type (apart from code blocks) appears in bold.

 ■ A plus sign (+) between two key names means that you must press those keys at

the same time. For example, “Press Alt+Tab” means that you hold down the Alt

key while you press the Tab key.

System Requirements

You will need the following hardware and software to set yourself up for development on

the various mobile platforms and compile the sample code that accompanies this book:

 ■ For iOS, you need a Mac computer with Xcode and the latest iOS software

development kit (SDK). If you plan to use MonoTouch, then you also need to get

at least a trial version of the product from http://www.xamarin.com. Note that

to deploy applications on a iOS device, you also need to be a registered Apple

developer enrolled in one of the Apple pay programs.

 ■ For Android, you can use a Windows PC, preferably equipped with Windows 7.

Note, however, that you can do Android development from a Mac or Linux PC

as well. You can use Eclipse or the IntelliJ IDEA as your integrated development

environment (IDE). You will need the Java SDK and the Android SDK installed.

You don’t need to be a registered developer to compile and deploy Android

applications on a device.

 ■ For Windows Phone, you need Microsoft Visual Studio Express for Windows

Phone, as well as a Windows PC.

Code Samples

This book comes with a few examples organized as follows:

 ■ Two ASP.NET websites conigured to use WURFL

http:///

xviii Introduction

 ■ The Guess application for iOS

 ■ The Guess application for Android

 ■ The Guess application for Windows Phone

 ■ The HTML5 Guess application for PhoneGap

The sample code contains iles that you can incorporate in your own projects using
the tools that you prefer.

Many of the chapters in this book include examples that let you try out new material

discussed in the main text. You can download all the sample projects from the following

page:

http://go.microsoft.com/FWLink/?Linkid=247992

Follow the instructions to download the Amse.zip ile.

Note In addition to the code samples, your system should have Visual Studio

2010 and Microsoft SQL Server 2008 installed. The instructions that follow

use SQL Server Management Studio 2008 to set up the sample database used

with the practice examples. If available, install the latest service packs for each

product.

Installing the Code Samples
Follow these steps to install the code samples on your computer so that you can use

them with the exercises in this book:

1. Unzip the Amse.zip ile that you downloaded from the book’s website (name a
speciic directory, along with directions to create it, if necessary).

2. If prompted, review the displayed End User License Agreement (EULA). If you

accept the terms, select the Accept option, and then click Next.

Note If the license agreement doesn’t appear, you can access it from

the same webpage from which you downloaded the Amse.zip ile.

www.allitebooks.com

http:///
http://www.allitebooks.org

 Introduction xix

Acknowledgments

It took me several months of deep dive to make sense of the many facets of mobile: the

customer’s angle, the developer’s perspective, the architect’s vision, and the myriads of

devices, operating systems, SDKs, and products. Many friends helped me out along the way.

First and foremost, I want to thank Marco Bellinaso of Mopapp, who irst introduced
me to the world of mobile apps and then served as an invaluable technical editor for

this book. Marco also tried to make me a fan of Objective-C, but I’m afraid his efforts

failed in that regard.

Devon Musgrave of Microsoft Press and Russell Jones of O’Reilly believed in this

book and made it happen, along with Kristen Borg and the other members of the

 editing team.

I was surprised to see how many friends asked to review chapters and enthusiastically

shared their feedback. I could see an underlying passion and pleasure in their work and

I’m not sure my monumental THANK YOU here is enough. In particular, I wish to thank

Luca Passani of ScientiaMobile. I met Luca at a web conference in London in 1999, where

he tried to sell me mobile as a hot business even back then. It took a bit more time, but his

vision was deinitely right. I really enjoyed the feedback about mobile site development and
HTML5 that I got from Jon Arne Saeteras of MobileTech and Daniele Bochicchio of 5DLabs.

IT and Microsoft Regional Director for Italy. The chapters on mobile apps and PhoneGap

beneited from the feedback of many people, including Davide Zordan, Ugo Lattanzi, Leon
Zandman, Catalin Georghiu, and Davide Senatore. All these people shared their real-world
experience with me concerning Windows Phone and PhoneGap.

Near-inal thanks go to my team at Crionet and E-tennis.net. As I write these
notes, we are inalizing the mobile apps for the worldwide audience of tennis fans
 following the Rome ATP Masters 1000 tournament. It’s the irst tournament to offer
a comprehensive mobile, web, and social experience and the irst one to offer mobile
apps on a full range of platforms, including not just iOS and Android, but also Windows

Phone and BlackBerry. Working with you guys is a privilege.

What else? Well, just a inal note. Take note of this name: Francesco Esposito. I’m
sure you’ll hear this name in the future. He’s 14 and he’s already an all-round mobile

developer. My use of the word developer is no accident, because that’s what he is,

 irrespective of schooling and age. In his way of coding, learning, thinking, and speaking,

I see crystal-clear talent. Being his dad, well, I feel proud.

http:///

xx Introduction

Errata & book Support

We’ve made every effort to ensure the accuracy of this book and its companion

 content. Any errors that have been reported since this book was published are listed on

our Microsoft Press site at oreilly.com:

http://go.microsoft.com/FWLink/?Linkid=247993

If you ind an error that is not already listed, you can report it to us through the
same page.

If you need additional support, email Microsoft Press Book Support at mspinput@

microsoft.com.

Please note that product support for Microsoft software is not offered through the

addresses above.

We Want to Hear from You

At Microsoft Press, your satisfaction is our top priority, and your feedback our most

valuable asset. Please tell us what you think of this book at:

http://www.microsoft.com/learning/booksurvey

The survey is short, and we read every one of your comments and ideas. Thanks in

advance for your input!

Stay in Touch

Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress.

http://twitter.com/MicrosoftPress
http:///

 1

Part I

Going Mobile

CHAPTER 1 Pillars of a Mobile Strategy . 3

CHAPTER 2 Mobile Sites vs. Native Applications.25

http:///

http:///

 3

C H A P T E R 1

pillars of a Mobile Strategy

In preparing for battle, I have always found that plans are useless, but planning is

indispensable.

—Dwight D. Eisenhower

In this chapter:

 ■ What Does “Going Mobile” Mean?

 ■ Outlining a B2C Strategy

 ■ Outlining a B2B Strategy

 ■ Summary

The modern era of mobile technology began with the release of the irst Apple iPhone in the
 summer of 2007.

The mobile conquest of the world has been a “soon-to-be” matter for quite some time in the past

decade. I still remember the irst-ever mobile-related conference being held in Amsterdam in the
summer of 2000—the Wrox Wireless Developer Conference. I was a speaker there, and the implicit

message for attendees was “Mobile development is here—hurry up.”

There was no hurry, actually.

Only a couple of years later, Microsoft released ASP.NET with its own set of mobile controls for

 optimized mobile websites. Later, mobile frameworks such as Microsoft .NET Compact Framework

and Java Micro Edition (J2ME) appeared; meanwhile, richer native operating systems such as Symbian

also appeared. However, the mobile conquest of the world never happened—and perhaps hadn’t

even begun—which begs the question: Why not?

The main reason is that the technology never reached a critical mass of users, and without that,

developers and software houses had no good reason to address the mobile space. But when the

Apple iPhone appeared, everything changed. Although the iPhone was not an entirely new idea, it

was an extremely well-done implementation. And, more importantly, a lot of people (on the order of

millions) liked it. That immediately created a breeding ground for new applications and gave mobile

technology a new form and immediacy.

http:///

4 pArt I Going Mobile

The lesson to learn from this is that software is the effect (not the cause) of the mobile

 phenomenon. People buy devices long before they have much compatible software to run on them.

Therefore, a compelling device, bought by a critical mass of users, creates a compelling market for

speciic software over time.

Today, there are a few popular mobile operating systems and a growing number of users willing

to pay to get nice applications to run on them. The popularity and convenience of mobile devices

drives companies to create their own mobile applications that can reach their customers while they’re

traveling. Mobile sites are still an excellent way to do that, but whether companies build mobile sites

or mobile applications targeted to a particular platform (today, that would include iPhone, Android,

BlackBerry, and Windows Phone), companies need to be part of the mobile revolution in much the

same way they became part of the web revolution a decade ago.

What Does “Going Mobile” Mean?

This book is aimed at architects and developers who are willing (or need) to implement mobile

 solutions for customers. A solution, however, is not necessarily and not simply a mobile application.

Today, and even more in the near future, a mobile solution will be created as a combination of a classic

website for desktop browsers, a website speciically designed for classes of mobile devices (known as
an “m-site”) and one or more applications for speciic mobile operating systems.

The deinition of a mobile solution is not carved in stone, for two excellent reasons. First, the
 mobile industry never sleeps; it churns out requirements and opportunities at an impressive pace, so

any current deinition of a mobile solution may change to incorporate new aspects in a matter of just
one or two years. Second, a mobile solution applies to a particular business scenario. The business

scenario ultimately determines the details of the solution and technologies, patterns, and platforms

that architects and developers will deal with. As an example, you may need to add some Facebook

applets or multiplatform desktop applications if the business has social networking implications.

Similarly, you might restrict the range of mobile platforms to just one if you’re building a vertical

enterprise-class solution for a single customer.

As I see things, going mobile is a far more serious task than simply writing an iPhone application.

Companies investing in mobile need a strategy long before they need a mobile site or a set of mobile

applications. This means companies must establish goals as well as review processes for achieving

those goals—simply put, they must have a strategy.

To paraphrase the quote from Dwight Eisenhower at the beginning of this chapter, in mobile

 development, plans are useless, but planning is indispensable.

toward a Mobile Strategy
So the irst step for a company “going mobile” is to deine a strategic plan. The strategic plan is

more conceptual than it is an operational plan with comprehensive implementation details. The

 strategic plan is visionary; it identiies the future direction of the business. Outlining a mobile strategy
 essentially consists of reviewing the current business processes with regard to a few mobile axioms.

http:///

 CHAPTER 1 Pillars of a Mobile Strategy 5

three Mobile Axioms

Gone are the days in which a website optimized for a bunch of desktop browsers was the only way

for a company to deliver an application. Today, there’s a growing demand for applications that users

can reach from a variety of platforms and browsers. In the past, software architects once reached for

the Holy Grail of multiplatform development—and we failed to grasp it. Now, as users increasingly

demand multiplatform applications, failure is simply not an option.

Mobile axioms are statements about mobile applications that are self-evident and assumed to be

true. You should have these concepts clear in your mind before you start planning your strategy:

 ■ Provide your services through multiple channels.

 ■ Look for new opportunities and new ways to provide your services.

 ■ Aim at making your customers’ lives easier.

Like the web a decade ago, mobile is about new ways of doing both a selection of old tasks and

entirely new actions. Mobile is highly attractive to users because they can get the services they

need in a variety of ways and using a variety of devices. As a company, “going mobile” means being

 committed to making your customers’ lives easier through ad hoc and personal services.

The fundamental point, however, is that this challenge is not limited to just a few segments of the

industry; it’s a global challenge.

Multiple Channels

As you can guess, going mobile likely involves signiicant investments on your side to restructure
existing processes, implement new ones, and ix—or at least extend—a portion of your back end
software.

Delivering services to a variety of channels is challenging. Mobile channels (tablets, devices, or

mobile sites) are more personal and typically involve smaller amounts of information. Your existing

back end must be able to serve these new requests effectively while preserving both scalability and

performance, and while still ensuring at least the same level of security.

A good example of an application delivered through multiple channels is Facebook; other

 examples are airline booking and home banking services.

New Ways to provide Services

Mobile is both about bringing existing services to people’s ingertips and about creating brand-new
services. A mobile device is a personal device, so everything that shows up there is potentially “at

your ingertips.” The real estate of a mobile device is considerably smaller than a laptop, but most
 applications and websites are padded with extra information (including menus and layout) that is not

necessarily required. The advantage of a mobile solution in this context is that it can provide exactly

what’s needed whenever the user needs it—instantly.

http:///

6 pArt I Going Mobile

A mobile user is typically traveling around. Your application may query the user’s current location

and use that information to offer new, unique, and tailor-made services. Location-aware services are

really at the heart of the extra power of mobile applications. This is not so much because a desktop

site is unable to detect the user’s location, but because a site can use the location details in much

more compelling and useful ways when the user is out of the ofice. This is deinitely an area to
 explore if your business is in any way related to location.

As an example, an application that provides information about transportation can use your

 location data to restrict search or sort results automatically, winnowing out nonessential data for

other locations. The same concept applies to mass retail applications, which might notify users of

special offers when they are close to a shop, or provide them with free coupons in a nearby shop that

they can reach within a few minutes.

Simplify Customers’ Lives

I see more and more companies from a variety of industry segments strongly committed to making

their customers’ lives easier and better. I believe that is a key challenge for attracting new customers

and keeping existing ones. On the other hand, by not going mobile, you risk alienating customers

from your brand.

As mentioned earlier, mobile applications are more personal than desktop applications. They’re

often relatively simpler in terms of logic and complexity, and they often consume smaller amounts of

information. That’s precisely what makes a customer’s life simpler—the application is more focused;

ideally, it can handle more related information aggregated from multiple remote sources. Basically, an

effective mobile application should be able to give users what they need at any particular moment.

Architecting the system around these new needs is the effort that companies should invest in.

It’s not simply a matter of software architecture, though. Architects may be able to tell the best

way of realizing an idea, but they can hardly identify what makes your users happier. In general,

an appropriate analysis and prioritization of use-cases selects the range of features that—once

 implemented—put more information at the user’s ingertips and make life easier.

Mobility and the Industry

According to a Gartner report presented in the spring of 2010, mobility occupies a relevant position

in the list of top priorities for chief information oficers (CIOs) of various industry sectors through

2013. According to this report, transportation and retail are the industry sectors that are paying the

most attention to mobility.

In these sectors, there’s a strong sentiment that it is an “either now or never” matter; there’s less

and less space left for companies that hesitate or just skip going mobile. The mobile space is open for

business (for now) and companies need to establish their presence as soon as possible. If they don’t,

others will ill the gap and become your toughest competitors.

Also, according to Gartner, beyond transportation and retail, other sectors interested in mobility

are healthcare, utilities, education, and—guess what—software publishers. Media and inancial
 services are also there, lower on the list.

http:///

 CHAPTER 1 Pillars of a Mobile Strategy 7

The trend that Gartner excerpts from CIOs’ priorities may be different from country to country;

however, past history shows that a general trend is always a trend that applies worldwide (though at a

different pace in various locations).

I can contribute my direct experience in Italy, where most leading mass retail companies are

only now experiencing what many experts call the irst stage of mobility—merely establishing a
static presence. Typically, this process is initiated via nearly functionless mobile sites that go hand

in hand with existing primary desktop sites. The next step usually involves adding a bit of context

through proactive alerts, and advertising based on location, identity, or perhaps barcode recognition.

Finally, the third level of mobility awareness concentrates on providing all-round services at users’

ingertips.

Deining a Mobile Strategy
Each business has its own mission, expressed as purposes and activities. A mobile strategy revisits and

extends these purposes and activities in light of new devices and a new lifestyle. The mobile axioms

should just inspire a realistic vision for the mobile business.

If this scares you, don’t worry: it’s nothing new—in fact, you’ve been there already, a decade ago.

Although different in features and results, the mobile revolution follows the same pattern that the

web revolution did. Early adopters content themselves with just being there and show customers

they’re online. Then, executives start developing a new vision of the business and architects actually

build it. It’s not a waterfall-like process; actually, it has a lot of inherent agility and looks like an

 intertwined process. In the end, every company ends up with what the management envisioned in

their future—good and bad.

What Do You Want to Achieve?

Personally, I think that for most companies, embarking on mobile projects is not a choice related

to gaining an immediate proit. Of course, that mostly depends on the type and size of company.
If your business is selling ringtones, then naturally you expect proits from your mobile software right
away. However, if your business is selling news, you might want to use mobile channels to make your

readers’ lives easier, so long as you can add such services at a reasonable cost to you. With the all-free

model becoming less affordable every day, going mobile and attracting readers with mobile device

capabilities is an immediate expense that hopefully will help achieve better results in the medium

term or in the long run.

With a strategy deined in terms of expectations and requirements (covering growth, proitability,
and markets), you can look at your overall mobile technology strategy. All in all, there are two

(not mutually exclusive) possible expectations: reaching the largest possible audience and improving

the experiences of existing customers by building a rich, jaw-dropping application. Implementing

each scenario may require a different set of concrete technologies, languages, and platforms. And

each scenario may have different costs.

http:///

8 pArt I Going Mobile

reach Out to Users

You reach mobile users by making your application available on the devices they use. This apparently

obvious, no-brainer statement hides all the complexity (and costs) of mobile development. Take a

closer look at this statement, though, and you’ll ind two huge questions whose actual implementation
determines the actual level of complexity (and costs) of reaching out to users:

 ■ Which devices are your customers using?

 ■ How do you make your application available on all of them?

Before you can answer those questions, you need to think about this: What’s a mobile device, anyway?

According to one widely accepted deinition, a mobile device is one that you might have with
you at any time, can be used more or less instantly, is a personal item, and can be used to connect

to a network. A laptop, for example, seems to match most of these requirements—except that you

are hardly likely to take it with you when you go out for a walk or buy groceries—and laptops don’t

usually start instantly. Cell phones mostly fall into the category of mobile devices (many cell phones

have at least some browsing capabilities). Finally, smartphones and tablets match all the deinitional
requirements.

Note Recently, I used the preceding words, more or less, to introduce mobile development

challenges to a developer audience. One of the attendees winked and playfully replied: “So,

you mean that my Windows Mobile phone is not a mobile device? It takes ages to boot up.”

A mobile strategy also depends on the level of control you can exercise over the devices your

users have. For example, if in your context, user means “employee,” then the company can decide

to support just one mobile platform and focus development on that. If you think that user means

“consumer,” however, then reaching out to a large audience usually means developing multiple similar

applications for various devices. The same applies to scenarios where user means “employee,” but the

company is giving its employees the option to use the device of their choice.

Deciding how to approach the technology is a delicate and critical point of a mobile strategy that

I’ll address in more detail in the section “Outlining a B2C Strategy,” later in this chapter.

Offer rich Applications

If you know that a signiicant share of your users connect to your site using a particular mobile device,
or if the content you’re offering can best be consumed on speciic popular devices, then your mobile
strategy should include the development of an ad hoc application optimized for that device. You

don’t have to target each possible family of devices; instead, you can establish priorities and add new

applications progressively.

Suppose that you own a radio station. You want to increase your audience so you can sell more ad

slots. Most radio listeners are faithful, so despite the switch to mobile, they may well still be listening

to their favorite radio station while out and about. They might be listening via radio-equipped MP3

www.allitebooks.com

http:///
http://www.allitebooks.org

 CHAPTER 1 Pillars of a Mobile Strategy 9

players, original equipment manufacturer (OEM)–applications using the embedded radio system

of a mobile phone, or Internet-based free radio programs. In all cases, users can listen, but they

can’t interact and increase your site trafic. But if you can develop a speciic mobile application and
let listeners interact with your back-end systems via the web, consume streamed live music, access

 podcasts, trafic reports, news, submit feedback, blog, and more, you can gain interactivity and
 increase user participation.

Should you address all the major mobile platforms at the same time? That mostly depends on both

your budget and management’s expectations. One common pattern is to build an iPhone application

irst, and then follow that up with an Android or iPad application. At a radio station, to continue with
the example, a tablet device such as the iPad may add little extra value compared to an iPhone. So

the second step in your strategy probably would be to develop an Android application, letting iPhone

and iPad users share the same application.

I’ll return to this point in a moment and address it more speciically in the next chapter, but keep
in mind that mobile applications don’t necessarily mean iPhone or Android applications. A mobile site

can be as functionally rich, and it is usually more cost-effective.

B2C and B2B

The full spectrum of mobile applications falls into one of these two categories:

 ■ Business-to-Consumer (B2C)

 ■ Business-to-Business (B2B)

A third label is worth mentioning, though: Consumer-to-Consumer (C2C). Although not terribly

relevant at the current stage of the industry, C2C provided the spark for the whole mobile revolution.

The mobile revolution we’re experiencing these days would probably have remained on hold for

another 10 years without a lot of (initially) independent developers who enthusiastically embraced

iPhone and Android programming and built clever applications (regardless of their usefulness). Some

of these developers capitalized on the success and exposure of a single application to build a business

and help the mobile revolution thrive.

Going B2C or B2B poses different challenges and drives different implementation choices. For

 example, in a B2C scenario, a key decision is about how to make the application available and get

consumers to notice it—whether it’s a free or paid application. In some cases, the question is a

 no-brainer (the app pretty much has to be free). In other cases, a more sophisticated model that

 offers a free (but perhaps feature or time-limited) version of the application is offered to entice users

to purchase the full-feature paid version. In still others, consumers can select either an ad-supported

version or an ad-free paid version.

In contrast, in a B2B scenario, you have a ixed number of users to reach. Here, your focus is on
enabling users to return what you expect quickly, effectively, and securely. Security and middleware,

in fact, are usually far more important in B2B scenarios.

http:///

10 pArt I Going Mobile

Development and Costs
Developing mobile applications is neither cheap nor quick. Many companies ind this surprising when
they approach mobile projects. But mobile development is only apparently similar to web or Windows

development; the two have different programming frameworks and often different (and uncommon)

programming languages. Furthermore, mobile suffers from the lack of a consolidated set of patterns.

Another reason that raises costs for mobile is the need to produce different user interfaces (often

both layout and images) for different devices. This has never been a requirement for web or desktop

applications. All these factors currently make mobile development signiicantly more expensive and

time-consuming than web development, although time will help alleviate some of these issues.

It is commonly believed that outsourcing development is preferable to having in-house

 development, largely because in-house development means that you irst need to invest in training.
It’s one thing to train a team of developers on ASP.NET and then have them build three sites in a row.

But it’s quite another to train a team on three different mobile platforms and then have them build

the same application three times from scratch—once for each relevant platform you plan to address.

Outsourcing allows you to eliminate in-house training costs and speed up development. In return

for this, however, you must pay more for the outside expertise. It’s worth exploring some of the

 reasons that make mobile development more expensive than many executives think at irst.

targeting Multiple platforms

The mobile ecosystem is populated by several different platforms, each of which has its own

 more-or-less unique set of features and capabilities. The most popular platforms today are iPhone,

iPad, Android, Windows Phone, and BlackBerry. The list of platforms, however, doesn’t end here.

Other platforms that you are likely to encounter or need to consider are Symbian, Windows Mobile,

Meego, Bada, QT, and webOS. And when you begin to look at using tablet devices, the range of

platforms that you may need to take into account grows even more, because there are tablet-speciic
variations of the aforementioned platforms, including Android Honeycomb, BlackBerry PlayBook, and

the upcoming Windows 8.

Each platform has its own operating system, its own programming application programming

 interface (API), and its own set of programming guidelines. Often, each mobile platform requires

 applications be written in a speciic programming language, such as Java, Objective-C, C#, or C++.

So does this mean that you must port or develop your application from scratch for each of these

platforms?

Frankly, very few applications (e.g., content providers) need to address all these platforms. More

typically, applications target a subset of no more than three or four of them. If it is crucial for your

business to reach the largest possible audience, even those running on low-end devices, then you

might want to look at HTML—speciically HTML5—to build a website optimized for mobile devices

(i.e., an m-site). As you’ll see in more detail in the next chapter, m-sites are often the irst option that
you should consider when targeting multiple platforms is a true business necessity. M-sites, however,

are not free of device issues either. In the end, building a mobile site can be considerably more

 complicated than building a website.

http:///

 CHAPTER 1 Pillars of a Mobile Strategy 11

Addressing the Device Fragmentation Issue

If you felt frustrated by desktop browser fragmentation—too many different browsers to optimize

webpages for—you have never explored the mobile jungle. Each device—and by device I don’t simply

mean smartphones—has its own browser, and each browser has its own user agent string, which

changes for each version and operating system update. And, of course, the actual set of capabilities

can change for each device as well. The screen size is probably the most important capability to take

into account because of real estate and pixel density.

The dimension of the device fragmentation problem is far larger with mobile browsers than with

desktop browsers. When it comes to mobile site development, you have thousands of different

device models to take into account, not just a few dozen smartphones, often with a pre-ixed set of
 capabilities. How can you approach such a task?

Writing a set of pages (if not the entire site) on a per-device basis is simply not feasible. The

 one-size-its-all approach is viable, but it comes at the cost of leaving a lot of older devices behind
and giving up on advanced features that smartphones have. This is typically not good enough for

companies whose success depends on online content, such as social networks, or media and news

companies. The alternative is multiserving, which basically consists of three points:

 ■ Group devices in classes based on their capabilities

 ■ Build a version of the site for each class of devices that you intend to support

 ■ Deine a strategy to serve the right site for each connecting device

That’s easy to say, but how can you determine the capabilities of a given device? How can you

know the size of the screen, the operating system, the quality of video codecs, whether the device

supports graphic processors or certain HTML features (e.g., ile upload and CSS gradients), the
 availability and accuracy of location services, and even much more speciic capabilities, such as image
inlining (the ability to display images from page-embedded Base64-encoded strings)?

For some of these capabilities, such as screen size, you can ask the browser itself. In fact, forums

are full of questions about how to determine effectively the “real” size of a screen on a particular

device and model. For other capabilities, such as image inlining, there’s just no way to make such a

query. You just must know it.

About 10 years ago, Luca Passani had the vision of starting a community-driven project aimed at

 collecting reliable information about the effective behavior of mobile devices. He created the WURFL

project, short for “Wireless Universal Resource File.” Today, WURFL is a centralized database that stores

detailed information (more than 500 different capabilities) about more than 15,000 mobile devices and

mobile browsers. Today, WURFL is managed by ScientiaMobile (http://www.scientiamobile.com) and made

available through both commercial and open-source licenses.

Multiserving takes mobile development to a new level of complexity, but this is where WURFL

shows its value: WURFL makes multiserving manageable. Multiserving is inherently expensive, but us-

ing WURFL can make it considerably less expensive.

http:///

12 pArt I Going Mobile

I’ll return to the topic of mobile site development in Chapter 4, “Building Mobile Websites,” and

cover WURFL features in detail in Chapter 6, “Developing Responsive Mobile Sites.”

Note WURFL is the device detection engine that powers a number of very large and

 popular mobile sites: Facebook, Google, AdMob, and a long list of mobile network

 operators and virtual network operators.

Looking for Best practices

If you are building a desktop website, you can rely on a number of tutorials, widgets, articles, books,

and posts that give you guidance. The same isn’t true for mobile software.

The importance and complexity of mobile site development is not yet perceived in its entirety.

Too many developers (and, worse, architects) succumb to the siren call that m-sites are simply

 standard websites with different Cascading Style Sheets (CSS) and layout.

Turning to native mobile applications, all you can ind are oficial API references, long and staid
 oficial guidelines in the form of white papers, and a ton of useful tips and tricks scattered in a variety
of question/answer sites (such as StackOverlow). This is largely because mobile applications are
relatively new and the entire space is fragmented; very few developers who program for iPhones

know (or are interested in) Android or Windows Phone development. Furthermore, the stereotypical

iPhone/Android developer considers mobile sites old-fashioned.

The bottom line is that when you are facing mobile development for business (for example, say

your boss told you that you have to build an application in just a few weeks), you have no good place

to look for common practices. Even when you can igure out most common practices, it’s tough to
know whether those common practices are also best practices.

the Marketplace tax

Finally, development of mobile applications is subject to appstores. Apple made this model popular

with i-tools (such as the iPhone, iPod Touch, and iPad); Microsoft took the same route with Windows

Phone (and seems to be inclined to forge ahead with it in Windows 8); Google (for Android) and RIM

for BlackBerry left their appstores optional for developers.

The role of appstores is crystal clear: they are there to protect users who buy or download

 applications from an appstore to their devices. The appstore owner guarantees the quality of

 published applications. For developers, getting approval from the appstore owner requires more

effort to ensure the quality of the inal product—which is not a bad thing for consumers. For
 companies, the appstore model means that there’s an extra distribution cost, which I like to call the

“marketplace tax.” Companies have to pay to gain the right to distribute even free applications, and

for paid applications, they typically have to provide about 30 percent of the app’s revenue to the

 appstores.

http:///

 CHAPTER 1 Pillars of a Mobile Strategy 13

outlining a b2C Strategy

A B2C strategy is built around two pillars: reaching out to users and making them happy. Both pillars

are quite generic and can be implemented in various scenarios with slight variations.

You may need to reach the largest audience possible, including holders of low-end devices devoid of

lat connectivity rates. Likewise, you may need to focus on holders (and potential holders) of smartphones.
You may need to push a mobile application with certain characteristics to keep existing users and make

them glad that they chose your brand. Alternatively, you may need a mobile application to attract and

engage new users by offering new services or new ways of consuming existing services.

Needless to say, a B2C approach is particularly suitable for companies that already operate their

core business in B2C mode. It comes as no surprise that, according to the Gartner report mentioned

earlier, the industry sectors most interested in mobile are transportation, retail, healthcare, software

publishers, inancial services, media, and in general, content providers.

Focus on Your Audience
Any business that aims at being successful should focus on its potential audience and make

 projections about the composition of this audience in terms of age and other social and personal

 aspects. With this consolidated information in hand, you can make better plans. In this regard,

a mobile strategy is merely a speciic form of business strategy.

A mobile audience is made up of people who own a mobile device and are (or may be) interested

in the services you provide. Figure 1-1 depicts these two sets of users and shows how mobile

 applications it in with your existing customer base.

Mobile usersYour
existing

customers

FIGuRE 1-1 Mobile applications as the point of contact between existing customers and mobile users.

Note With regard to Figure 1-1, it should be noted that the overlap between “mobile

 users” and “existing customers” is moving and may change from month to month. When

looking at the igure, don’t take the size of overlap as truly representative of all businesses.
The fact that the overlap is not null is perhaps the really important thing to remember.

http:///

14 pArt I Going Mobile

Not all of your existing customers will become users of your new mobile infrastructure, but some

generic mobile users will join the universe of your customers because of the mobile framework.

This also should be read the other way around: If you don’t go mobile, you may lose a share of your

 existing customers who are also mobile users.

A Quick Look at Global Numbers

It may sound obvious, but I’m going to say this anyway: the world is full of mobile devices. For the

most part, these are low-end devices with a basic HTML browser, a quarter VGA (QVGA) screen

(240 x 320 pixels), perhaps a camera, an MP3 player, and a few games and utilities.

According to the 2010 statistics of the International Telecommunication Union (ITU)—the agency

of the United Nations (UN) responsible for information and communication technologies—there

are 78 mobile devices per 100 inhabitants distributed all over the world, and a peak of 114 per 100

 inhabitants in developed countries (see http://www.itu.int/ITU-D/ict/statistics).

Whichever way you look at it, the data shows that there are a few billion mobile devices of

any type out there. How many of these are devices (and users) that you want to reach with your

 application? Probably as many as possible if you’re Facebook or Google; a small fraction is enough

otherwise.

The same ITU source reveals that there are about 30 Internet connections per 100 inhabitants all

over the world, and 70 per 100 in developed countries. Although the two numbers are not directly

related, this statistic gives a better approximation of the size of a potential mobile audience. However,

according to eMarketer (http://www.emarketer.com), in 2011 the smartphone penetration in the world

expressed as a percentage of all mobile devices is around 11 percent. That igure is expected to grow
to about 50 percent over the next three years.

The data is more interesting when you look at these numbers for selected areas and countries. For

 example, the smartphone share grows to 37 percent in North America and 32 percent in Western Europe.

It’s around 10 percent in Asia and stays below 5 percent in Africa and Latin America. Amazingly, the

 country with the highest penetration is Italy, with 47 percent currently (expected to grow to 67 percent by

2014). And this in a country—my country—that still has wide areas of digital divide, and where one family

out of three doesn’t even have a home broadband connection.

The next section presents a few more numbers to help you understand the big picture of mobile

connectivity.

A Deeper Look at Numbers

If you take global numbers literally, then by focusing on an iPhone application and disregarding mobile

sites entirely, you cut off 90 percent of the potential worldwide audience—and even more than that if you

consider that not all iPhone devices may be capable of running your application because of versioning

issues. From this perspective, a mobile site seems to be a very reasonable choice.

http:///

 CHAPTER 1 Pillars of a Mobile Strategy 15

Note That iPhone users are approximately 10 percent of the total smartphone- using

 population is an estimate that seems to ind many direct and indirect conirmations from
a variety of sources. Considering only the U.S. market, iPhone users represent about

 one-third of the smartphone segment, which is reported to range around 30 percent of the

total audience for mobile devices. Statistics, however, depend on a number of factors and

often represent little more than an opinion!

Regardless of your inal choice, blindly looking at global numbers is not necessarily the correct
approach.

Suppose that after running a few customer surveys and having analyzed your website logs, you know

that 50 percent of your real customer base use iPhones and connect from Italy. Given those igures, should
you really focus your effort only on a mobile site? Probably not. A desktop site that looks decent on most

devices, that looks good on iPhones, and features a native iPhone application is the best combination.

Note that the costs of implementing the iPhone application dwarf anything else.

On the other hand, if your business is selling ringtones or news, then you need to reach out to the

 widest possible audience, regardless of the devices they’re using. A solution that reaches this objective with

the lowest cost is your Holy Grail. Today, this means developing a solution based on HTML and JavaScript.

Facebook Was Not Built in One Day

In mobile, as well as in any business, time to market is critical. In laying out your strategy, consider

 applying an agile schema that lets you release applications piecemeal. Figure 1-2 presents the

 canonical Scrum process adapted to mobile projects.

Solution
backlog

Sprint
backlog

Sprint Working
Increment of the
solution

FIGuRE 1-2 A Scrum-like model for mobile solutions.

The entire set of features and applications (“product backlog,” according to the Scrum dictionary,

and labeled “Solution backlog” in the igure) is partitioned into multiple sprints or iterations. At
the end of each sprint, you release a working segment of the entire application (such as an iPhone

 application) and then are ready to reiterate the same process for another sprint (for example, an

equivalent Android application).

http:///

16 pArt I Going Mobile

More often than not, sprints for mobile solutions also include the following:

 ■ Arranging a website that’s usable by both mobile applications and sites. This means exposing

the core functions of the website as easily callable, Representational State Transfer (REST)–

based, HTTP endpoints. For example, if you’re building the website using the ASP.NET

Model-View-Controller (MVC), this may mean exposing an ad hoc controller that can serve

requests based on the use-cases that you implement in mobile clients.

 ■ Developing a set of pages (scripts, styles, graphics, and presentation logic) for a class of mobile

devices. You may want to start with high-end devices and proceed downward to enable more

and more lower-end devices to access some fraction of the full site functionality.

 ■ Optimizing the behavior of these pages with more accurate device-detection capabilities.

 ■ Developing native applications for most popular mobile platforms.

 ■ At each level, you can propagate valuable user feedback through the entire stack of

 applications you’ve built thus far.

To paraphrase a popular saying, “Rome was not built in one day.” I’d say that Facebook was

not always the huge platform we know today, either—after all, it’s been around only a few years.

A mobile solution, therefore, will look increasingly like a small platform of integrated services; it

 requires hard work and overcoming many challenges to complete.

Delivery Models
A B2C application is (ideally) distributed worldwide. The costs of spreading the word about its

 availability (not advertising…) are entirely up to you. A website is immediately available from any

place in the world, but again, the costs of spreading the word about it must be borne entirely by your

organization.

In the mobile world, appstores rule over the publication and distribution of platform-speciic
 applications. You publish your application to the appstore, giving it instant exposure to users of

a particular platform. Each device ships with an applet so that users can access the platform’s

 appstore—where your application gets published. Users can then access your application, read

release notes, check requirements (such as that your application requires Internet access, phone calls,

text services, local storage, and so on), see some screenshots, test-drive a trial version (if available and

supported)—and what then?

What do you expect the return from investing in a mobile application to be? More generally, how

do you expect to recover the costs of developing a mobile site and/or a few native applications?
That’s another part of overall strategy that management has devised.

Note Here, I’m talking about “spreading the word” and “publishing,” which you get for

free for the minimal costs of being a registered developer with the platform of choice.

Advertising your application in and out of the appstore is another story entirely.

http:///

 CHAPTER 1 Pillars of a Mobile Strategy 17

the Free/paid Dilemma

Mobile applications are typically very cheap when they’re not entirely free. The cost of the average

iPhone application is around $2—even less for games. The average iPhone user is expected to

 download (and pay for, if that’s required) about 80 applications in the course of a year.

Paid applications generate direct income subject to the marketplace tax (and, of course,

 government taxes). Free applications are generally built for marketing and branding purposes, or as

an additional form of customer service.

After reading analysis and projections, expert opinions, and analytics, I formed the idea that

 mobile applications should be free; they need to generate revenue in some other way. However, if

you’re an individual or a small company and happen to have a stand-alone (not bound to a strategic

business plan) mobile application, why give it away for free? If it’s a well-done application that ills a
hole in people’s mobile lives, you can likely recover your investment, and perhaps even more.

A third option is advertising-supported applications, which are free for users but generate revenue

for the author through dynamically inserted ads. Switching to a paid or ad-based model is an

 important step. If you irst release the application for free, you get a lot more downloads, which are
good for feedback. It also helps you understand how well received your application is and whether it

really ills a hole.

If you look into the most popular appstores such as the Apple App Store, Android Market,

 Windows Marketplace, and BlackBerry App World, you will ind that there are almost always more
paid applications than free applications. For example, in the Android market, free applications

 outnumber paid applications by about a 60/40 ratio.

The free/paid dilemma is not really a dilemma with a binary, black-or-white answer. There are a
few other models that mix free and paid content according to different recipes.

the Freemium Model

The Freemium model is based on the idea that you provide the full application free and then offer

users the chance to buy a few extra services. From a realistic business perspective, however, the

 Freemium model means that the vast majority of your users will consume your application for free;

only a minority will pay for any extra services.

So how can this model be worthwhile (inancially speaking) for mobile applications? First and
foremost, you need a lot of users, preferably on the order of millions, and at minimum on the order of

tens of thousands. Maintaining all these users probably has a cost as well. For example, if you need to

maintain a website to provide data to the mobile application, then you have a growing cost directly

related to the number of users. Even if your application can run as a self-contained device application,

you still may have some costs per user because you have to support users and reply to their emails.

An excellent example of a mobile application for which the Freemium model is perfect is Evernote

(http://www.evernote.com). These mobile applications work entirely on the devices they target; all they

need is storage space. According to http://blog.evernote.com/2011/01/04/evernote-2010-a-year- in-stats,

Evernote has more than 6 million users. Of those, only 3 percent pay an extra subscription fee.

http:///

18 pArt I Going Mobile

Another example is Searcheeze (http://www.searcheeze.com), a new startup that offers

 collaborative search. Users, both groups and individually, can run and publish a search on a given

topic. This search—realized by humans, not search engines—may be left free or published to an

internal marketplace. Becoming a Searcheeze user is free unless you want to buy extra services, such

as installing a private engine on your company’s servers.

the premium-with-Free-Sample Model

The premium-with-free-sample model is fairly new in the media industry, but it’s already the model

toward which most content providers and newspapers are moving. Basically, it consists in making a

signiicant portion of the content available for a small fee but leaving a fraction of the content free for
everybody to access.

The New York Times pioneered this model. It currently gives you a number of free articles per

month, after which you have to pay a fee to access more content. In contrast, the Boston Globe locked

three-quarters of its digital content and offers free access only to the remaining part. Repubblica.it,

Italy’s largest news site and second-best-selling newspaper, also uses this latter model. In addition,

Repubblica.it charges for access to its mobile site. In contrast, the desktop site is free, but you need a

smartphone to read it effectively.

It’s worth noting that the Boston Globe mobile solution is based on a HTML5-powered mobile site,

which maximizes the audience without incurring the costs of developing ad hoc mobile applications

and, importantly, without paying the typical 30 percent marketplace tax to an appstore owner.

 Appstores, in fact, may impose ad hoc policies for in-app payment. During the summer of 2011,

Amazon quickly modiied the Kindle iPhone and iPad applications to comply with new Apple policies
for subscription-based applications. At nearly the same time, the Financial Times application—a best-

selling program—was pulled from the store because it was patently in violation of the store rules.

As a result, the Financial Times now encourages customers to use its new HTML5-based mobile site,

which—guess what—has been optimized for iPhone browsers and looks nearly the same as a native

application.

the Quid-pro-Quo Model

As an Italian, I would have used another Latin phrase to express the same concept: do-ut-des.

 According to Wikipedia, the English usage of quid pro quo in fact matches the Italian usage of

do- ut-des perfectly, meaning “I give so that I can receive.”

This model is probably the one I feel most comfortable with. In my personal vision of the world,

a mobile application exists as a complimentary feature, a favor that the publisher does for me.

I reciprocate the favor by buying some of the publisher’s other content or services.

The free applications are entirely free; there are no strings attached. To use them fully, however,

you need to buy or consume some other services that the publisher relies on for income. Applications

you use in an airport, during a tennis tournament, or at a conference are all examples that fall in this

category. You get some services via the application in exchange for the simple fact that you’re there

(in airports or at conferences): you don’t pay directly for these services (mostly information and news),

www.allitebooks.com

http:///
http://www.allitebooks.org

 CHAPTER 1 Pillars of a Mobile Strategy 19

but you pay in some other way. For example, you probably paid to attend the conference or bought a

ticket through that airport.

Here’s another example of an application that I had the pleasure of knowing from an insider’s

 perspective: I ported it from iPhone and Android to Windows Phone. The application is called Postino; you

can ind out more about it at http://www.postinoapp.com. Postino was originally built for the iPhone and

then ported to a number of other platforms, one step at a time, as the result of a classic B2C strategy.

Postino lets you snap a picture as you travel and promptly creates a (virtual) postcard that you can send

to a friend. The postcard contains a message, a signature that you draw on the screen with your inger, and
an address. If the address is an email address, everything is free. If the address is a physical address, then

you must buy a virtual stamp and upload the card to a server, which will print and send a real postcard.

An application built around a simple but good idea can be free, generate income in an indirect

way, and still represent a success story for the developer (or the company), which may generate more

business.

outlining a b2b Strategy

I certainly don’t have the expertise and experience to embark on a comprehensive discussion about

the differences between B2C and B2B. As far as mobile strategies are concerned, there’s only one

important difference: B2B often gives you the chance to choose one speciic platform and vendor and
stick to that. From a software company perspective, B2B means that you’re helping another business

set up a mobile infrastructure that will be used to serve a limited and largely controlled audience,

such as the network of agents that operate in a given region.

For the purpose of this book, the difference between B2C and B2B is the same as the difference

between a public Internet site and an intranet site.

Serve Your (Limited) Audience
Let’s review the main traits of a strategy aimed at serving the needs of just one business. The mobile

interface is not open to the public; it’s consumed by special customers, such as employees, agents,

and consultants. Although you don’t have to capture a large audience, you instead have a relatively

small audience that you must serve in the best possible way. Forcing them to use one particular

 device or site is part of the deal.

B2B and the BlackBerry Case

What made BlackBerry so successful and BlackBerry devices so widely used? Sure, it offers email,

tasks, and calendaring; it may even support web browsing and a camera. You can do some instant

messaging and run a few utilities from an appstore that is one-tenth the size of Apple’s. But compared

to, say, an iPhone, a BlackBerry device looks like a child’s toy.

So why was it so successful (at least before the iPhone arrived)?

http:///

20 pArt I Going Mobile

The answer lies in the enterprise-class features that it offers. In particular, a BlackBerry device can

connect to an in-house enterprise server—the BlackBerry Enterprise Server (BES)—and receive email

updates, news, and task alerts in real time. How is that different from today’s Microsoft Exchange

Server connectivity in Windows Phone? It’s not, really; both are basically the same—but BlackBerry

was available somewhat earlier, and companies liked its features. As a BES administrator, you can

 apply policies and prevent a class of users from using the camera or instant messaging; you can force

them to use only certain applications or to navigate only certain sites. Moreover, you can install your

applications directly to your BlackBerry devices; you don’t need to distribute them publicly to an

 appstore irst.

In a nutshell, BlackBerry was a platform created to help members of an organization collaborate

with ease and effectiveness.

pick One Mobile Vendor

In a B2B scenario, a customer calls the software company and discusses requirements. The advisor has

to igure out just one solution that provides the requested services in a mobile way. Most of the time,
there are no constraints on existing devices and hardly any constraints to address on the platforms.

If you need a better mobile infrastructure to make employees collaborate, you probably have

no reason to build an iPhone application. In addition to the costs of development, you also need to

 account for the costs of providing an iPhone to all your employees. I can think of a few companies

who just did that—but I consider them the exception rather than the rule.

So in a B2B scenario, you should select just one vendor and platform and stick to that. From the

customers’ perspective, costs are clearly lower, and development time is traceable. Which vendor you

settle on depends on a number of factors, including the existing base of devices, deployment needs,

special security or middleware constraints, existing skills, and, of course, overall cost and personal

preferences.

I’ll return to this in a moment, but I think it’s important to call attention to that point, because

in a B2B scenario, the mobile vendor is not simply—and not necessarily—the vendor of a mobile

 operating system and API. In some cases, the candidate vendor doesn’t even have its own mobile

 operating system. Instead, it offers its middleware with a bunch of platform-speciic presentation
 layers for users to consume data and applications. According to Gartner’s Magic Quadrant for 2010,

Sybase is an excellent player in a B2B scenario—and Sybase doesn’t have an operating system;

 instead, it provides a strong and powerful middleware for mobile clients.

private Applications

When a company’s goal is to build mobile solutions for its workforce, any applications that it develops

should be private. A private mobile application is a mobile application that can be installed directly

on one or more devices, with no intervening appstore. Consider, for example, an iPhone application

written to serve the needs of a particular customer of yours—such as an application for sales agents.

That application is likely built to relect the use-cases and business processes of that customer.
It may have integrated some strong authentication policy. You don’t want it to go to the marketplace,

http:///

 CHAPTER 1 Pillars of a Mobile Strategy 21

and you don’t want others to even look at it, let alone try it or buy it. You want it to work like

 Windows—you create an application, prepare an installer, run the installer on the machines you want,

and that’s it—you’re done.

Private mobile applications are possible, but the process is not identical across the various

 platforms. In this regard, Android and BlackBerry are open: you can install just any application on just

any device. For BlackBerry, this freedom of installing applications can be controlled and restricted by

BES administrators. In Android, the only controller is the owner of the device.

Apple has a special enterprise program that, at the cost of $299/year, allows you to distribute
 applications freely within the members of your organization, whether through an intranet webpage, a

network share, or email channels. Windows Mobile—the predecessor of Windows Phone—is as open

as Android; Windows Phone still lacks an enterprise program. Currently, the recommended approach

for simulating a private, company-wide marketplace is to make the application public and free and

implement logic that unlocks the application only for users who have a speciic Personal Identiication
Number (PIN).

Mobile Enterprise Application platforms
In a B2B scenario, you typically choose a mobile vendor by analyzing its mobile enterprise application

platform (MEAP). A MEAP indicates the entire stack of mobile technologies, products, and services

that a mobile vendor (e.g., Sybase) offers.

MEAp vs. Stand-Alone Applications

When building a mobile solution, you could proceed by building a few stand-alone front-end

 applications that are based on an existing middleware or an ad-hoc back end and storage layer. But in

doing so, you will likely end up using tools, services, and technologies from different vendors for the

various phases of development.

MEAP is beneicial because by choosing a particular vendor, a company can often build a single
back end and front end and deploy them to a variety of devices. The mobile device functions as

a terminal that simply mirrors the content generated by the back end. A MEAP-based solution

 relies on proprietary middleware that you can customize and extend by writing applets using a few

 programming languages. The middleware serves data to the mobile client and controls both the user

interface and local in-device logic.

With a MEAP in place, a company can expand its horizons with less effort—no need to invest

in writing a new iPhone application; just deploy the same MEAP-speciic application to the iPhone
 presentation layer. No changes are required to the underlying business logic, and the list of mobile

front ends can be extended whenever the MEAP adds support for a new mobile platform.

In other words, a MEAP is an all-round business partner that specializes in mobile solutions. In this

context, the classic iPhone or Android mobile application is just the tip of the iceberg—the real meat

and potatoes are what lies under the surface.

http:///

22 pArt I Going Mobile

Gartner’s rule of three

To explain the importance of MEAPs and, at the same time, give companies an easy way to check their

afinity with a MEAP solution, Gartner developed the Rule of Three.

According to Gartner, a company should consider a MEAP seriously when the implementation of

its mobile strategy requires three or more mobile applications for three or more mobile operating

systems to be integrated with three or more back ends. It goes without saying that building a mobile

platform from scratch with these requirements is a huge effort that probably requires a monstrous

budget. In this context, a MEAP can introduce signiicant savings and—more importantly—keep the
company at the forefront of the technology, ready to release new products in a fraction of the time

that non-MEAP-using competitors might require.

MEAp and Gartner’s Magic Quadrant

How do you evaluate a MEAP? And more importantly, which vendors are actually MEAPs? Each year,

Gartner applies its proprietary Magic Quadrant methodology to competing players in a given area—in

this case, MEAP. The result is a diagram like the one shown in Figure 1-3.

Completeness of vision

Challengers Leaders

VisionariesNiche Players

A
b

ili
ty

 t
o

 e
xe

cu
te

FIGuRE 1-3 Gartner’s Magic Quadrant.

The rank the research returns for each evaluated player determines the coordinates in the diagram

and, subsequently, the quadrant into which that player falls. In the paper published in 2011, the

Leaders quadrant contains companies such as Sybase, Antenna Software, Syclo, RhoMobile, and Pyxis

Software.

http:///

 CHAPTER 1 Pillars of a Mobile Strategy 23

It is worth noting that, according to Gartner, the MEAP market is steadily heading for a $2 billion

volume in sales. So where are the other big companies commonly associated with mobile solutions?

To be a MEAP player, a vendor must have a comprehensive set of products and services to develop

and test applications and offer security, (cloud) storage, notiication, reporting, and synchronization.
Microsoft, Apple, and RIM appear in Gartner’s Magic Quadrant but are not considered leaders in this

segment.

Summary

No company can afford to ignore the mobile revolution taking place. Not all companies should

 proceed at the same pace or immediacy, but going mobile is a growing need and will soon be a

necessity. The expression “going mobile” refers to the process of deining a strategic plan that sets
business objectives that can be reached by restructuring internal processes, adopting innovative

technologies, and developing ad hoc new applications to reach users who are traveling or to let one’s

workforce operate eficiently while away from the ofice.

This chapter outlined the main aspects of a mobile strategy both in a B2C and a B2B scenario.

The next chapter takes a closer look at the two main ways of providing a mobile experience to users,

whether customers or employees: mobile websites and platform-speciic native applications.

http:///

http:///

 25

C H A P T E R 2

Mobile Sites vs. Native
Applications

When it is not necessary to make a decision, it is necessary not to make a decision.

—Lucius Cary, 2nd Viscount, Falkland

In this chapter:

 ■ Not a Pointless Matter

 ■ Aspects of Mobile Sites

 ■ Aspects of Native Applications

 ■ Summary

The modern era of mobile technology began with the release of the irst Apple iPhone in the

 summer of 2007. No—that’s not a mistake: this is exactly the same words that began Chapter 1,

“Pillars of a Mobile Strategy.” They are repeated here because this statement illustrates the origin of

the argument being debated in this chapter so well.

Mobile has been heralded as the next big thing for a decade. Since the late 1990s, it has been

repeatedly forecast as the vehicle for a huge innovation that’s going to affect our lifestyles. Although

the adoption of mobile devices has always been beyond a signiicant critical mass, the original
 forecast became reality only a few years ago, starting with the release of the iPhone in 2007.

Inevitably, the hype about mobile has always been bound to (and biased by) the use of a

 smartphone with its own set of native applications. But in the beginning, when forecasts about the

 upcoming mobile revolution were irst being made, mobile meant something completely different;
it meant having websites optimized for mobile devices.

Today, mobile sites and native applications are all too often pitted against each other, much like

the playbill of a sensational boxing match. Is this a correct representation of reality? Is putting one

“versus” the other a fair matchup? Let’s ind out.

To anticipate: The quick answer is that both mobile sites and native applications have full reason to

exist. The head-to-head approach is primarily a forced interpretation of their differences. As you saw

in Chapter 1, it’s quite common to ind both options (mobile site and native application) implemented
in an enterprise-class mobile strategy.

http:///

26 pArt I Going Mobile

not a Pointless Matter

Native applications and mobile sites represent different ways to implement a mobile solution

(in whole or in part). Analyzing and understanding the pros and cons of each approach is deinitely
a good thing, but approaching the topics as a contraposition between two mutually exclusive

 approaches is pointless. Being an advocate for one camp is ine; preferring one approach over the
other is also ine; but making a hard-nosed business decision is never a matter of preference. If you
understand the mechanics of native applications and mobile sites, there’s always a best route to take.

A False Dilemma—But true Differences
If you type keywords such as “native apps vs. mobile sites” into any search engine, you will get tons

of links, many of which discuss the pros and cons of each approach according to the vision of the

particular author. Most of the arguments do make sense, and I recommend that you read the content

of some of the irst links that Google and Bing return in response to such a search.

The real point, though, is different: the comparison of mobile sites vs. native applications is

 generally a false dichotomy, but mobile sites and native applications do represent two valid options

for a mobile solution. True differences do exist between mobile sites and native applications, and

understanding them is the key to pinpointing the pillars of your mobile solution.

Focus on the right Question

Contrasting mobile sites versus native applications is not the right way to approach this topic because

that approach attempts to ind a tough answer to an irrelevant question. For the developers reading
this, the subject is not much different than brainstorming whether JavaScript Object Notation (JSON)

or XML is preferable when building a distributed application. During the application-building process,

there probably will be a time when architects or developers need to make a decision as to whether

to employ JSON or XML, but the more critical questions to solve are, for example, how to design

the public interface of your services [i.e., Representational State Transfer (REST) vs. Simple Object

Access Protocol (SOAP)]; which transportation protocols should be involved; whether security and

 transactions matter; and so forth.

Back to mobile: If “native apps vs. mobile sites” is not the most relevant question, then what is?

As discussed in Chapter 1, you need to focus on the products, services, and audiences for which you

are building. Next, you should detail objectives and focus on the budget, resources, and timeline.

When all this is clear, you can move on to the architectural side of the project. At that point, you will

 probably discover that you have just one option left.

At any rate, a few true differences exist between a native application and a mobile site. The next

sections focus on the main traits of both.

http:///

 CHAPTER 2 Mobile Sites vs. Native Applications 27

the Main traits of Native Applications

A native application must play by the rules of the host operating system. This means that it’s subject

to restrictions (for example, limited storage capabilities and processing power). On the other hand,

it has the advantage of being able to use location and built-in services such as push notiication
 services, Short Message Service (SMS), and camera, use the full capabilities of the touch user interface,

and rely on a seamless install/update mechanism.

Many people tend to justify staying in the “native application” camp with the alleged fact that

users prefer native applications. All in all, you should take that as an arbitrary opinion. Although a

 native application (or lack thereof) may certainly have a marketing impact on your brand, in terms of

 functionality and features, here are the main traits:

 ■ A native application has the best chance to integrate well with the device and use hardware

and built-in software services.

 ■ A native application is much less exposed to network latency.

 ■ A native application may be able to work on totally disconnected devices.

 ■ A native application is an on-premises program, so it doesn’t require users to deal with URLs.

 ■ A native application typically offers a native user experience.

 ■ Users download native applications as an all-encompassing package in a single network request.

 ■ A native application must be created for each mobile platform that you intend to support.

Note A few of these points deserve further explanation. First, however, I need to note that

when I say “native application,” I’m deliberating omitting game applications. Typically, game

applications have a completely customized user interface and user experience, so some of the

points made here (such as the native user experience) simply do not apply to mobile games.

One aspect in which native applications have a clear advantage over mobile applications is their

 integration with built-in hardware and software services. A native application can be written to use the

speciic device capabilities, overall offering an unmatched user experience. Controlling camera and device
buttons, accessing global positioning satellite (GPS) services and telephony application programming

interfaces (APIs) such as SMS, phone calls, and contacts, is a clear plus. But not all applications require such

capabilities. In other words, even the irst point of the list—which is by far the most compelling—owes its
importance to the actual application requirements set by the stakeholders.

Another trait that highlights a remarkable difference between mobile and native applications is

the overall user experience. Elements of the user interface (e.g., controls) are a key part of the user

experience. A native application can use native user interface elements and the API that implements

the device-speciic interaction model. In the end, a native application automatically provides the same
user experience as other native applications. With a mobile site, achieving a gratifying user experience

is a bit harder to do, and the costs of implementation are on the developer’s shoulders.

http:///

28 pArt I Going Mobile

Finally, I wouldn’t say that a native application is necessarily faster than a mobile site, although

it’s true that native applications are much less subject to network latency and can recover from

 network failures more elegantly. Local storage is another feature that provides an advantage to native

 applications, even though it is a feature that some mobile sites can match if they employ HTML5.

(You’ll see more about this topic later in the book.)

Note The perceived speed of mobile sites depends on the browser and the markup and

script that you put on the page. The processing power of mobile devices is not the same

as a laptop, so running heavy scripts may be problematic. Animations and page transitions

that are coded on a mobile webpage don’t offer the same smooth and pleasant experience

as a native application does.

the Main traits of Mobile Sites

A mobile site is a plain website, just one that is optimized to serve an HTML layout that its in the tiny
real estate of the mobile device screen. Any website can be displayed on a mobile device browser so

long as that browser is designed to process the received markup. Most mobile phones today—and

all smartphones—can display desktop sites well by simply shrinking the content. Figure 2-1 shows the

results of viewing a very simple site such as Bing.com.

FIGuRE 2-1 A smartphone shrinks sites that are too large to it within the available screen real estate.

www.allitebooks.com

http:///
http://www.allitebooks.org

 CHAPTER 2 Mobile Sites vs. Native Applications 29

For users to be able to click links within the page, the ability to “zoom in” is a necessity. Most

people are used to zooming, but it’s deinitely not a contributor to the best possible user experience.

A true mobile site lives at a different URL, whose naming convention is typically m.xxx.com.

A true mobile site provides a selection of the content in the desktop site served in a manner that

 complements the capabilities of the mobile browser, including screen real estate. Figure 2-2 shows the

mobile version of the same Bing.com site.

FIGuRE 2-2 The mobile version of the Bing.com website.

The page size is considerably smaller; there are no images in the background, meaning that there

is no extra Hypertext Transfer Protocol (HTTP) request for the image, and a simpler layout highlights

the most crucial use-cases.

Note Optimizing content for the capabilities of mobile browsers is a huge topic that the

next two chapters will explore. Furthermore, the choice to use two distinct URLs for the

desktop and mobile site or to switch automatically to the mobile version if the requester

is a mobile device is the architect’s decision. However, in some cases, this decision may be

inluenced by nonfunctional requirements. For example, a content provider company may
decide to offer a free desktop site but ask users of the mobile site to pay a fee.

http:///

30 pArt I Going Mobile

Here are the main traits of a mobile site:

 ■ A mobile site can’t access native device features such as the accelerometer, gyroscope, camera,

audio, and tactile feedback.

 ■ A mobile site works by interacting with the web server; subsequently, it’s subject to network

latency and may be sensitive to high-trafic slowdowns.

 ■ A mobile site may not be able to do ofline work.

 ■ A mobile site can be reached only by typing the URL or creating a bookmark.

 ■ A mobile site is based on pure HTML (although some sites style the HTML elements to mimic

the user interface of a particular mobile operating system).

 ■ A mobile site is subject to the browser’s caching and rendering capabilities, which are not the

same for all devices but are nearly the same for the major mobile operating systems.

 ■ A mobile site is inherently cross-platform; it’s created once and at most may need some ad

hoc skins for speciic mobile devices (such as the iPhone).

 ■ A mobile site offers nearly the same Search Engine Optimization (SEO) beneits as a desktop
site.

If you limit the discussion here to the native browsers of the most popular mobile platforms

(iPhone/iPad, Android, Windows Phone, and BlackBerry), including additional browser applications
that you may install on these devices (such as Opera Mini), they collectively offer a set of features

rich enough to let a mobile site implement local storage, geolocation, and touch events. This rich

set of features is provided by the WebKit engine (see http://webkit.org) and can be tested using the

Modernizr JavaScript library (see http://www.modernizr.com). The next two chapters will explore these

topics further.

The WebKit engine can’t make the user experience for a mobile site fully equivalent to that of

a native application, but it deinitely provides users with something similar that’s tailor-made for a
mobile device.

Note Chapter 11, “Mobile Applications with PhoneGap,” discusses a JavaScript framework

for building native applications for a few mobile platforms, including iPhone and Android.

This framework is called PhoneGap (http://www.phonegap.com). With PhoneGap, you write

HTML pages styled with Cascading Style Sheets (CSS) and activated with JavaScript code

and optional libraries such as jQuery, jQuery Mobile, and other touch libraries, such as

Sencha Touch. PhoneGap offers its own JavaScript API that communicates with a platform-

speciic engine and allows developers to control cameras and other hardware devices with
JavaScript code. It should be noted that this capability is reserved to PhoneGap applications

and can’t be achieved in the normal context of a mobile site.

http:///

 CHAPTER 2 Mobile Sites vs. Native Applications 31

A Sure Differentiator: Ofline or Online?
All in all, and even beyond the user experience, the biggest difference between a native application

and a mobile site is that the former can be available at any time, even when the device is not

 connected to any network. A mobile site may hardly be available if the device is disconnected; and

anyway, the availability is subject to the caching rules of the browser. On the other hand, if the mobile

site makes intensive use of HTML5 features—speciically local storage and ofline caching—then it is
possible that the site degrades gracefully in a disconnected environment without displaying the ugly

empty page of the browser.

Note It is not unusual for a user to conigure the device to use only WiFi. This means that
these users accept being disconnected from the network occasionally. For these users, a

native application that works most of the time when disconnected and synchronizes with a

remote server when connected is probably the best option.

reasons for the perceived Dilemma
Before I delve a bit deeper into the aspects of mobile sites and native applications that can guide

your decisions (development issues, type of application, and pros and cons), let me share a few more

thoughts about the native vs. web dilemma.

perceived or real?

I clearly said that in my opinion, the mobile site vs. native application dilemma is the wrong way to

approach the development of a mobile strategy. Yet this is a very common question raised in forums,

training sessions, and interviews, and explained in blogs and articles.

After companies have outlined which business objectives they intend to pursue with a mobile strategy,

they need to igure out whether they need both a mobile site and a full set of mobile applications, or if
they would do better to concentrate their available resources on one fully funded project. At this point,

companies wonder what’s best for their users and call experts to ind the answer.

The question has just one right answer: It depends.

Although technically correct, this is not an answer at all, because it doesn’t really address any of

the original concerns and questions. A concrete answer depends on the business goals, objectives, and

overall mobile strategy.

So the right way of asking the question is: Given the following objectives and strategy, and these

speciic resources and budget, what would you recommend?

That’s the tricky point.

http:///

32 pArt I Going Mobile

too Many Forces

As you probably already understand, whatever answer one can provide to such a question needs to

be considered over a number of approval sessions. At each level, however, a different force may be

applied to stretch the result toward a particular direction.

Some executives are impressed by that really great iPad application they’ve just seen. So they

deinitely want to have an iPad application for themselves, and maybe even an iPhone application for
the customer base.

Then there are program managers who mostly consider the amount of work involved and

 concentrate on possible resource shortages. They see that they may need people with various skills

to do the work, and wonder whether they would need to outsource development to other companies

or hire freelancers (both of which always have elements of uncertainty). Program managers also

 recognize the complexity of having to deal with multiple projects (iPhone, iPad, and Android) and

the synchronization required across the teams to add new features or change existing ones, and to ix
bugs.

Next, are the developers, who almost always have a strong preference for one camp or the other.

It’s the nature of developers to convince themselves that what is cool and geeky is also the most

 useful solution for the company. (This is just another instance of the Pet Technology anti-pattern.)

Finally, there are the users, who have the bad habit of demanding more and more functionality

every day, no matter what technology they’re using.

The result is that people in these different camps tend to oversimplify. Hence, in every company

at the end of the umpteenth meeting, someone stands up and asks: so what are we doing? Are

we building a mobile site or a native application? And the question, still unanswered, goes to

 StackOverlow.

Note Here’s a real anecdote reported by a customer while explaining the company’s needs

for a mobile class. The boss showed up and said, “We think we need some mobile applications;

why don’t you guys take some classes and igure out what to do?” The team replied, “Well, we
practiced a bit with some mobile platforms; we can port our internal applications to Windows

Phone in days!” And the boss said, “Nice, but we want iPhone apps.”

More Concrete reasons to Waver

In the minds of most developers and managers, going mobile requires no more (and no less) than

planning an iPhone application. The reason for this appears at the very beginning of both this chapter

and the previous one.

Going with an iPhone application has been a good approach for the past few years. Today,

 however, and in the future, I doubt that’s still a suficient strategy. When a company develops a
 thorough mobile strategy, the result may be that having an iPhone application is not the irst step;
in fact, it may not be a step at all.

http:///

 CHAPTER 2 Mobile Sites vs. Native Applications 33

The growing support for HTML5 and JavaScript libraries means that mobile site solutions become

more powerful all the time. The possibility of linking a mobile site to a framework like Wireless

 Universal Resource File (WURFL) for accurate device detection adds another arrow to your quiver.

And inally, there’s the marketplace tax mentioned in Chapter 1. From the real world, I’ll select two
great examples of companies who left the native application route (speciically, iPhone) to embrace a
mobile site solution based on HTML5: the Boston Globe and the Financial Times.

My gut feeling is that the potential of mobile sites in combination with HTML5, WURFL, JavaScript,

and CSS has been only partially explored.

Aspects of Mobile Sites

A few pages ago, I outlined the main traits—positive and negative—of a typical mobile site. Let’s look

into this subject a bit closer to ind out more.

What’s Good About Mobile Sites
A mobile site is not a perfect solution for every possible scenario, or else I wouldn’t be discussing it

here and this book would probably have another title and contents. A mobile site, however, has some

very interesting aspects that you want to evaluate with due attention while looking at the ideal steps

to implement a strategy.

the Server-Side Solution

First and foremost, a mobile site is a website. As such, it is hosted on a web server and the

 development is entirely based on production of HTML pages and JavaScript code. This means that the

development team doesn’t need to become familiar with any new API, programming language, or, in

some cases, even a new computer (such as a Mac). You use the products and technologies that you

know are adept at creating websites, including ASP.NET, PHP, Java, and more.

Using a server-side solution has both beneits and disadvantages, as you’ll see. However, I like to
mention the beneit of keeping development costs low because such solutions require less code to
write, test, and maintain. In addition, ASP.NET and PHP developers are more numerous (and probably

currently less expensive) than iPhone or Android developers. The real value of a mobile site, however,

stems from its design and architecture. And those are not so cheap.

One Site Fits (Almost) All

A mobile site is one solution deployed to a web server and accessible to any mobile device via the

installed browser. You don’t strictly need to create a mobile website for iPhone, another for Android,

and yet another for BlackBerry or Windows Phone 7.

Sounds like the perfect trick, then. Unfortunately, things are not as smooth as those words may

make it seem. (Note, I don’t really think I made any inaccurate or wrong statements here; it’s just that

I temporarily omitted a few side notes.)

http:///

34 pArt I Going Mobile

In particular, because of its inherently cross-platform, web-based nature, a mobile site can be

 written once and then viewed from everywhere, including mobile devices. However, not all mobile

devices are the same and, as mentioned, device fragmentation is huge. So, to make sure that you

reach your audience properly, you may need to consider adding multiple “skins” to your mobile

site, one for each class of devices you’re targeting. This is probably not as costly as addressing

 different platforms with a native application, but it is certainly more expensive than writing a single

 desktop-style website.

The bottom line is that the slogan “One-site-its-all” is not entirely accurate in the mobile
space due to the enormous fragmentation of device capabilities. In the end, you may ind yourself
 optimizing (but not creating) the site for iPhone, Android, Windows Phone 7, and more.

Note Device fragmentation is a real and painful problem, but it won’t affect you much

as long as your strategy is focused on smartphone users. In other words, if you don’t care

much about reaching owners of low-end devices, the mobile site development model is

nearly the same as for a desktop site. However, the implementation of a mobile site should

adhere to a new set of patterns and practices.

hassle-Free Deployment

After you begin offering your services through a mobile site, any updates you have must be deployed only

to the production server to update all users immediately. Users just need to type the URL of a site every

time they want to access it, or else bookmark it—no more and no less than they need to do on a PC.

Note Users of a mobile site never receive alerts that a new (or just ixed) version of the
 application is available and waiting for them to download it. When you update the site,

users passively receive the update. Often, users don’t even see a list of changes or new

features. This means users have little control over all sites (not just mobile sites). In contrast,

native applications tend to be much more user-centric than sites.

What’s Bad About Mobile Sites
The effect of the contrasting forces mentioned earlier in this chapter produced the equation “mobile

equals iPhone or a native application.” It’s possible to save a good deal of work (and money) by

implementing a mobile strategy, but mobile sites are not as easy (or quick) to arrange as one might

expect. The next sections discuss the main drawbacks.

No Access to hardware Capabilities

Just as desktop website can’t interact with the hardware and ile system of your laptop or PC, a mobile
site can’t just interact with the hardware of a mobile device, including the camera, accelerometer, and

radio system. A mobile site is sandboxed in the mobile browser, in much the same way that a desktop

site is sandboxed in the desktop browser.

http:///

 CHAPTER 2 Mobile Sites vs. Native Applications 35

It’s up to the browser to release some of these constraints—and as more browsers add support for

HTML5, local storage and geolocation are no longer taboos on either desktop or mobile browsers.

Varied Browser Capabilities

A mobile site is restricted to run in a mobile browser. Although you write a mobile site with generic

technologies, such as HTML, CSS, and JavaScript, there’s no guarantee that a given page will look

the same across the full spectrum of available mobile browsers. Does that sound familiar? It should,

because it’s the same problem that site developers faced for desktop web browsers for years (the

“browser wars”) and that was resolved (or at least signiicantly mitigated) only with the advent of
powerful JavaScript libraries such as jQuery. Of course, you can use jQuery and the excellent jQuery

Mobile in mobile sites as well, so what’s the problem?

The problem is that device fragmentation—the number of devices with different capabilities (some

7,000+)—is huge. And there’s also a huge number of capabilities (500+) that may be relevant to check for

each device. Currently, you can’t check some of these capabilities by querying the browser because some

browsers are not reliable in their response and because the browser’s object model doesn’t expose any

property that can provide a direct answer. I’ll explore this point further with a brief example now, and then

I’ll return to this discussion in Chapter 6, “Developing Responsive Mobile Sites.”

It is critical for mobile sites to try to reduce trafic because there’s no guarantee that users have
a lat rate or are connected via a wireless network. In other words, the bandwidth your site requires
could cost your users a lot of money. For example, all browsers send an additional request to the

server when they encounter an image that they must download and display. Most browsers, however,

have the ability to process inline images, rendered as Base64-encoded strings and embedded in the

page. No browser is currently able to tell you that. As you can see, knowing about this capability can

be critical for mobile sites that aim at a very large audience. (Chapter 4, “Building Mobile Websites,”

will discuss WURFL as a way to address device fragmentation.)

The bottom line is that site development must address device fragmentation. The spread between

browsers, however, is signiicantly reduced if you limit your target to smartphones and browsers that
support the WebKit engine.

Network Latency

A mobile site runs by navigation; each link that users follow may generate additional trafic to and
from the device. As mentioned previously, additional trafic may be expensive for users, so the
 architect’s responsibility is to minimize the need for trafic. But how?

Using inline images and sprites are nice tricks, as are minifying and aggregating scripts and CSS

iles. Another trick is to use a Content Delivery Network (CDN) with subdomains for static resources.

Yet another possibility is to cache data locally (according to the capabilities of the actual browser).

If the browser supports HTML5, then local caching is no big deal; you can do that quite comfortably.

Otherwise, your storage capabilities are very limited.

http:///

36 pArt I Going Mobile

Web-Based Navigation

If the device is a touch device, following a link is as easy as pointing a inger and tapping. If not,
 usability decreases signiicantly as users are forced to use other navigation techniques such as relying
on focus (the highlighted text has the focus) and a cursor (moving a cursor among clickable items

 using the arrow keys).

But navigation is hardly optimal, even on touch displays. The inger, in fact, is not a stylus, and
 users often end up touching the wrong link. For this reason, mobile sites should be designed very

carefully, and ideally, they would follow the guidelines of device vendors. Most of the time, these

guidelines are available only for native applications, but they are useful because they relect some
general usability rules that work for mobile sites as well. Adopting any measures that limit the input

effort for users and avoiding crowded pages with more than three or four links are two key best

 practices. Another is to design the site map so that people can reach each destination with no more

than three taps. You’ll learn more about common practices for mobile site design in Chapter 4.

That being said, I have noticed that the majority of mobile sites offer a poor experience, which

is a good reason for architects and developers to focus more on the design of effective m-site

 functionality in the future.

Appstores and payments

Websites are simply deployed to a server; they’re not like applications, which can be packaged and

offered through an appstore. This means that users won’t ind an icon on their launch pad that starts
the site. All this makes mobile sites less enticing to many users, but it probably is not a valid reason to

drop them from your strategy.

A mobile site has total freedom to require membership and accept payments—even through

mobile devices. This is both good and bad news. It’s good because you are not subject to marketplace

taxes, and there’s no risk that someone will come your way asking you to share subscriber details.

But it’s bad because you have to add the development costs of a membership system and payment

 platform and lose the instant visibility to millions of users that popular appstores can offer.

It should be noted, though, that the additional development costs for a custom payment system

apply only once. You build this system in the back end of the site, and it will work for any mobile

 client that connects to the site. In contrast, adding a payment system to a native application requires

more work because you have to code it for each supported platform—and you’ll likely need to learn

a new API every time. On the other hand, a positive aspect of appstores is that you don’t have to

 manage hosting, advertising, or deployment costs.

Audience for a Mobile Site

If you look at absolute numbers, you can conclude that by using mobile sites, you can potentially

reach a larger share of users. But how many of them are your users or are interested in your services?

(That’s what the phrase “relativity of numbers” means.)

http:///

 CHAPTER 2 Mobile Sites vs. Native Applications 37

Although building a mobile site as the irst sprint in the implementation of a mobile strategy is
hardly a bad choice, there are scenarios where other options are probably more effective. So it really

 depends on the type of application you’re building.

For example, if you’re serving news or content that any individual may be interested in, then a mobile

site provides both a cost-effective solution and a return in terms of image. Recently, I went to a popular

tennis tournament with a friend. My friend could use a custom iPhone application to get live scores and

news from all the courts. With my Android, however, I had to be content with the shrunken version of the

desktop site, meaning that I spent most of my time zooming in and out. A well-done mobile site would

have offered nearly the same experience to everybody, regardless of the device.

Aspects of native Applications

The main trait of mobile applications is that they are platform-speciic. An iPhone application is simply
an application that works on only a particular family of devices. However, for many companies, mobile

applications and iPhone applications are essentially the same.

What’s Good About Native Applications
What’s good about native applications is often what’s bad about mobile sites, and vice versa. Let’s

ind out more.

Fast and Fully Integrated

A native application is usually as fast as the hardware allows, with no slowdown due to network

trafic and latency. Most native applications work by placing HTTP calls or accessing streamed data
over some protocol or web service. This interaction can certainly introduce a delay, but for native

 applications, this delay is limited to speciic operations; it doesn’t affect the rendering of the user
interface or in-app navigation.

Native applications have full access to all sorts of hardware devices and, more importantly, to

 software services such as background agents, broadcasters, and push notiication services.

Note The availability of background agents and services varies considerably, depending

on the platform. For example, applications running on iOS and Windows Phone face many

more restrictions than, say, on Android.

Appstore Integration

Users acquire or purchase native applications through a special store. That’s not only good for users

but is often also great for companies, because users have a deined place to look for applications. The
appstore provides search capabilities, categorization, and exposure, as well as handling payments.

http:///

38 pArt I Going Mobile

From the user’s perspective, an application that comes from an appstore is certiied and
 guaranteed to work and be safe. The appstore can’t guarantee the quality of the application itself, but

for that, the appstore infrastructure offers a user-driven feedback engine that can help potential users

make better decisions.

Depending on the platform, the appstore may be the only way (or just the easiest way) to get a

native application. For example, Apple and Microsoft make using their appstores mandatory (see the

Note), and provide speciic software (iTunes and Zune) to synchronize content between computers
and devices. Google (Android) and RIM (BlackBerry) have their own appstores, but users are also free

to install whatever they want from wherever they like.

Note Devices based on iOS (Apple) and Windows Phone 7 (Microsoft) can be unlocked

in a number of legal ways or through some free software that jailbreak the device. In the

 summer of 2010, the United States declared jailbreaking legal, over Apple’s objections. As a

user of a jailbroken device, however, you lose support from the manufacturer.

User Experience

A native application is called native because it shares the same set of controls and user interface widgets

used by original equipment manufacturer (OEM) applications. Therefore, it is possible to make the

overall user experience for native applications superior to anything else, including mobile sites and mixed

 applications (such as those written using frameworks like Rhodes, Titanium, and PhoneGap).

Most native applications perform common tasks in much the same way. For example, the process

of picking a date or displaying an alert box functions the same across applications—thus generating

a feeling of continuity for users. And, inally, let’s assume that users love native experiences that make
their particular phone cool. Often, these users are the same top managers who determine the mobile

strategy of the company.

What’s Bad About Native Applications
At the cost of repeating myself, the main trait of mobile applications is that they are platform-speciic.
This is bad news for companies addressing mobile development.

Isolated Mobile Continents

Each mobile operating system is a closed environment. An application developed for iPhone can run

only on another device that hosts a compatible version of the same operating system: iPad and iPod

Touch. There are no chances that the same application can run, full or sandboxed, on an Android or

BlackBerry device.

It means that to develop the same applications for multiple platforms, you need to learn different

languages, programming frameworks, and development tools, and, in some cases, also buy speciic
hardware or install speciic operating systems to develop. Table 2-1 lists programming languages,
frameworks, tools, and hardware required to write applications for the different mobile platforms.

www.allitebooks.com

http:///
http://www.allitebooks.org

 CHAPTER 2 Mobile Sites vs. Native Applications 39

TAblE 2-1 Equipment for Developing Applications for Most Popular Mobile Platforms

Platform
Computer
operating System

Tools Programming

iOS Mac OS Xcode
MonoDevelop
AppCode

Objective-C and iOS SDK
C# and MonoTouch

Android Mac OS
Windows
Linux

Eclipse
IntelliJ IDEA

Java and Android SDK
C# and MonoDroid

Windows Phone Windows Microsoft Visual
Studio

C# and Microsoft .NET Framework 4

BlackBerry Mac OS
Windows
Linux

Eclipse Java and BlackBerry SDK

Symbian Mac OS
Windows
Linux

Qt Quick C++ and Qt SDK

You’ll see that the “Tools” column of the table lists a couple of third-party products, such as

MonoDevelop from Xamarin and AppCode and IntelliJ IDEA from JetBrains. In the “Programming”

column, you’ll ind a reference to MonoTouch and MonoDroid, which are frameworks from Xamarin.

Cross-platform mobile development is the Holy Grail that everybody is seeking these days.

I certainly don’t expect to see one common mobile platform, either now or in the future. However,

a common language that lets developers share at least pieces of logic across various applications is

already close to reality today. That language is C#, which can be used for Windows Phone, iPhone,

and Android through Xamarin’s MonoTouch and MonoDroid platforms. HTML5 and JavaScript are

other valid options that reduce the distance between mobile continents. Today, frameworks such as

PhoneGap and Titanium make it relatively easy and cheap to migrate HTML projects between the

various mobile platforms, and such applications provide an excellent mix of web and native features.

The topic of native application development will be covered in more detail later in this book, in Part III,

“Mobile Applications.”

While waiting for true cross-platform development possibilities to appear in the future, enterprises

today face multiple development costs for each platform that they want to target. Costs are a

 function of both acquiring skills and of reuse—of both code and skills.

The main purpose of this book is not to make you a great iPhone or Android developer, but a

 better mobile developer or architect in general, who can move quickly from one platform to the next.

Such adaptability exempliies the type of skill that is in high demand in the mobile arena.

Minimized SEO

With a mobile site, the SEO tools you can use are the same as those for desktop web applications.

Each page of your mobile site can be indexed and exposed individually to search engines, so every

piece of your mobile content is reachable by users through search engines. Obviously, that’s not true

for native applications; however, any native application with a sound strategy behind it comes with a

(promotional) companion website. The content in this website can be indexed and ranked properly by

http:///

40 pArt I Going Mobile

search engines. The problem is not so much making your mobile application visible to search engines,

but what SEO strategy you can apply to push them. You likely need to create a companion website

solely to serve the purposes of increasing your application’s visibility through search engines.

In a nutshell, the real point is that with a mobile application (and without ad hoc efforts through

a website), Google or Bing will not return related links unless the searcher speciically enters your
 application or brand name. That’s not necessarily a problem for everyone, but it is an issue to

 consider.

Natural targets for Native Applications

The range of mobile applications that lend themselves well to be developed as native applications

is certainly larger than the range of applications that will work well on mobile sites. Games fall into

that range, as are applications that can run locally, without needing connectivity. This latter category

 includes personal utilities (notes, to-do lists, calendars, shopping lists, and so forth) as well as

 telephony utilities (contact managers, history, phone usage, and so on). Finally, popular applications

such as maps and front ends for social networks can provide the expected appealing user experience

only if they are coded as native applications.

Summary

Addressing the question of going mobile as if it were a simple matter of choosing either mobile sites

or native applications is patently wrong and pointless. Increasingly, the future for companies involves

planning a strategy that reaches the majority of mobile users—and you can devise a strategy by

 looking at numbers, both absolute and relative, budget, and how well it meets declared objectives.

At this point, the implementation of the strategy may require a complex architecture and multiple

nonsimultaneous steps.

You look at where your users—existing or potential—are, and igure out how to reach those users
and draw in others as well. You may be able to achieve this with any possible combination of mobile

sites and carefully crafted applications—some for speciic devices. There are no hard and fast rules.
Everything depends on context. I’ve been working in software architecture and mobile development

long enough to be able to say unambiguously that there are no easy questions and no easy answers.

Mobile sites or native applications are part of the answer, but making a binary choice between them

is most certainly not the right question.

http:///

 41

Part II

Mobile Sites

CHAPTER 3 Mobile Architecture. .43

CHAPTER 4 Building Mobile Websites. .63

CHAPTER 5 HTML5 and jQuery Mobile.105

CHAPTER 6 Developing Responsive Mobile Sites137

http:///

http:///

 43

C H A P T E R 3

Mobile Architecture

Before I came here, I was confused about this subject. Having listened to your

lecture, I am still confused. But on a higher level.

—Enrico Fermi

In this chapter:

 ■ Focusing on Mobile Use-Cases

 ■ Mobile-Speciic Development Issues

 ■ Summary

About a decade ago at a conference, when a wireless-speciic lavor of HTML was being pushed
as the foundation of mobile site development, I heard someone describing the bottom line for

websites and mobile websites by saying: “Well, the difference is more or less like Italian and Spanish.

As a Spaniard or Italian, you can understand Italian or Spanish, but speaking it is quite another story.”

That its my perspective: a mobile site and a website have a lot in common, but they are also

 radically different. This sounds like an oxymoron, and to some extent it is an oxymoron. Just changing

the layout of the master page and replacing a few Cascading Style Sheets (CSS) iles may work in
practice, but it doesn’t lead to an effective and functional solution. Creating the site to be smart

and responsive to changes of resolution is nice, but it mostly works only for desktop browsers. Such

 approaches have a number of performance-related drawbacks for mobile devices.

To design an effective mobile solution, you irst must recognize that mobile devices and browsers
are different tools operating in different environments. So you must ind the proper solutions that
work effectively in the mobile environment. Overall, building mobile sites is not that hard—I daresay

it’s even easier and faster than building desktop sites. The primary reason is that a mobile site is much

simpler and needs to implement only a small subset of the features that you might want to have on a

full-size desktop site.

However, especially in software, simplicity is a hard concept to expand on. In mobile, the boundary

between what’s simple and what’s simplistic is often blurred. As an architect, your main responsibility

is to make this boundary clear and ensure that the implementation doesn’t trespass over it.

In this chapter, I’ll outline the personal rules and practices that I’ve employed in mobile solutions

to date. I say “to date” because that’s just what I mean—mobile development is a relatively new ield,
and new and better practices may be discovered and applied every day. Overall, though, I believe that

http:///

44 pArt II Mobile Sites

the points below are quite generic and aim at the heart of the mobile design experience. Still, I urge

you to take all this with a grain of salt and evaluate it from the viewpoint of your own needs.

Focusing on Mobile use-Cases

The term website needs nearly no explanation today—websites have been part of everyday life

for the past decade, so I’ll be brief. A website is a stable and consolidated solution that relies on a

number of practices and resources, which—as developers—we don’t even think about. For years, the

content served by websites have been viewed through desktop computers and laptops containing a

 signiicant amount of RAM, huge disks, large screens, and mostly constantly powered by AC current.
More importantly, the content served by websites has been viewed by users while sitting comfortably

at a desk.

The key point is not so much whether you also can view a website on a mobile device, but

 whether—as a user—you really like doing so. Mobile devices, including high-end smartphones—are

not the same as laptops or computers. Subsequently, the mobile web experience cannot approach

the familiar desktop web experience unless you change layout, style, types of interactions, and the

content served to a mobile audience.

That is, it can’t unless you reconsider the mobile web experience from scratch.

Stereotypes to refresh
Most developers tend to look at a mobile solution as a spin-off of work already completed for the

desktop website. I don’t think the term spin-off is an incorrect word choice here; for the most part,

it is just right. The devil is in the details of how you actually spin the mobile solution off from the

website.

Lack of speciic practices and expert guidance has propagated a few myths around mobile web
development that I want to address now.

Note Recognizing myths is probably just a irst step toward building a number of widely
accepted practices for engineering effective mobile solutions. Hopefully we will be able to

produce valuable guidelines from analyzing and recognizing these myths.

Myth #1: people Don’t Like Mobile Sites: Why Bother?

This myth asks: Why bother designing and building mobile sites when people don’t even know the

difference? They may even complain if they’re sent off to another view when visiting their favorite site.

I’m not surprised that most users don’t recognize the difference between mobile and desktop

sites—they just navigate to a site with a laptop, a tablet, or a phone and expect to view and use it in

the best possible way.

http:///

 CHAPTER 3 Mobile Architecture 45

For example, when they connect with a laptop, they expect to be able to use the entire screen real

estate to do things. And they expect the same experience when they connect with a tablet or a phone.

Clearly, a phone doesn’t have the same screen size as a laptop; it also doesn’t have the same

power or even necessarily the same stable connectivity. It’s up to the development team to produce

 something that works well. I wonder whether the limited mobile trafic to sites isn’t really due to the
bad experiences that many of these sites offer when viewed from a mobile browser!

Also, users should not be asked to decide whether they want a mobile or desktop site. I see it

as the code’s responsibility to detect the capabilities of the device and adjust the user experience

 accordingly, while always providing a link somewhere so users can switch to the full site if they wish.

Myth #2: You Don’t Need Mobile Sites at All

This myth insists that because modern smartphones are powerful and feature-rich, developers can

save themselves the effort of building a mobile site—the plain website will work just ine.

Frankly, even the most cutting-edge smartphone these days is still too small to view comfortably

a page created for a desktop site. You can manage to read articles and post comments from a

 smartphone—I do that every day—but for regular use, there are a number of drawbacks. For one

thing, you strain your eyesight and stress your neck muscles. Further, using desktop sites on a

 smartphone requires intensive use of pinch-and-zoom and continuously panning of the content. Is

that pleasant?

Mobile devices have about one-sixth the physical screen real estate of laptops, and they have

about half the screen resolution (if not less). These numbers do matter. A well-done mobile site

should provide functionality equivalent to the full site without any need for users to zoom and pan.

If that’s not possible, it’s better to just cut that function entirely.

Finally, the world is not populated only by smartphones, even though smartphone users probably

drive most of the mobile trafic to websites. For your business, though, it might be crucial to be able
to provide at least a subset of functionality to simpler devices, with only a fraction of the capabilities

of an iPhone or a Windows Phone 7 device.

Myth #3: A tiny htML page Will Do the trick

This myth recognizes the need for a mobile site to be different from the full site, but it oversimpliies
the problem by saying that all you need is a plain HTML page with a bunch of links and bullet points.

I don’t really know whether it’s users who prefer to receive desktop pages and then proceed by

zooming and panning, or whether it’s developers who mostly address mobile needs through native

iPhone and Android applications rather than with HTML, ASP.NET, and JavaScript. But the fact is,

either enterprises need to take their mobile site development seriously as a stand-alone project

(or segment thereof) or they’d be better off letting their users zoom and pan on their phones.

Serving any mobile devices with a basic, scanty HTML page with a ixed width set around
300 pixels is not a brilliant idea. It may be the only option for low-end devices, but it makes for an

exceptionally poor experience on more advanced devices, which is what most users have now.

http:///

46 pArt II Mobile Sites

Mobile site development is about lexibility and inding the right balance between feature
 implementation and constraints set by hardware and software capabilities.

Myth #4: One Site Fits All

This myth recognizes the need to have a site that serves both desktop and mobile users. However, it

fails because it doesn’t acknowledge that mobile sites can’t just be simple spin-offs of the full site. So

it takes the tack that all you need is to build just one website that automatically adjusts to different

resolutions.

This is a subtle point. I deinitely like the idea of a site that users can visit with any device (laptops,
tablets, phones, e-readers, smart TVs, and more), but I don’t believe you can achieve this realistically

with a single codebase and by using client-side capabilities such as CSS and JavaScript.

In my opinion, we should aim at building one web experience that automatically adjusts to different

devices. This is quite different from having one site that its all possible devices.

To me, the idea of just-one-website doesn’t work as a rule, but it may work as an exception.

Analysis First
The interaction between users and the system in a mobile site is likely different than in the full-size

version of the same site, for the same reasons mentioned previously in the discussion of the myths

of mobile development: screen size, power, and sometimes unstable connectivity. You also should

 consider the frequent lack of a hardware keyboard (and even when a hardware keyboard exists, using

it is not as seamless as with a laptop), and touch capabilities that may lead you to redesign the way

some features are presented and implemented.

However, the top-tier reason for carefully selecting the use-cases for a mobile site is that users are

likely to use the site in a different way. Sometimes the actions they want to perform are a subset of

the full site; sometimes, instead, the two sets just overlap, and new scenarios must be added. Finally,

the mobile site may drive the need for entirely new features.

This means that before you embark on a mobile site project, you should have a clear idea of which

features you are going to implement, and you should spend an appropriate amount of time on a

preliminary analysis.

The analysis of the features required for a mobile site is the most delicate part of this work. Coding

is often fast because the number of features (and, subsequently, the number of sprints) is smaller

than on a desktop site. In addition, you often can reuse a lot of the code and services of the existing

 application’s back end.

Selection of Use-Cases

Any application of any form and shape is built around a bunch of use-cases. A use-case is simply the

description—more or less formal—of a possible interaction between the user and the system.

http:///

 CHAPTER 3 Mobile Architecture 47

A mobile site is often a subset of a larger site or application. Hence, the mobile site exists to make

it easier for traveling users to consume the content of the site. For a mobile solution, simpliied access
to the back end of the site means providing ad hoc user interfaces, location-aware prompts, and

direct links. Overall, this means making an accurate selection of the (few) use-cases to implement.

A practical rule of mobile development states that nearly 80 percent of the desktop site is of little

use to users who can’t resist connecting to your site while using a mobile device. Your efforts should

focus on use-cases, ordered by priority and selected through interviews, statistics, and guesses to

determine that 20 percent of functionality that users would like to have constantly available at their

ingertips. Focus on context. When designing functionality, ask yourself where users might be, why
they might be using the site, and in what ways you can help.

The small number of use-cases automatically will make menus, lists, and navigation paths

 reasonably short and easy to reach.

From Web to Mobile: A practical Example

Figure 3-1 presents a demo version of a fully functional website for booking tennis courts. You can

experiment with it live at http://www.easycourt.net/contosoen.

FIGuRE 3-1 The full site.

Figure 3-2 presents the same site as you would see it on an Android smartphone (zoomed a bit to

become usable).

http:///

48 pArt II Mobile Sites

FIGuRE 3-2 The full site viewed on a smartphone.

Let’s skip the obvious differences in the graphical layout required for a mobile page, and just focus

on the functional differences that you should take into account. The home page for a logged-on user

in the full site offers the functions listed in Table 3-1.

TAblE 3-1 Functions of the EasyCourt Home Page

Function Description and Rationale

Log out The user logs out.
The feature is there because the site can be viewed on a publicly available computer
(for example, in the clubhouse).

Change password A user changes his or her password.
This is a required feature in any application based on membership.

Book an available court Users restrict the time slots to the desired ranges and then proceed with actual
booking.
This is a core function of the site.

Look up existing bookings Users can check whether bookings exist under their name (for example, if someone
else booked a court for them).
This is a core function of the site.

In a mobile site, you might want to maintain the two core functions, slightly reworked from a

 usability and presentation perspective.

The role of the logout function is application-speciic in a mobile site. The browser (and the device)

is much more personal; such devices are rarely shared with other people. At the same time, though,

www.allitebooks.com

http:///
http://www.allitebooks.org

 CHAPTER 3 Mobile Architecture 49

a mobile device may be lost or stolen more easily than a laptop. Particularly for sites that manage

sensitive information, the logout function is required; where the type of information managed is not

critical, you can give the logout function a lower priority.

For the implementation of the Change-Password use-case, the user is required to enter both an

old and a new password, perhaps (usually) entering the new password twice. That’s too much work

to do on a mobile device, where typing is the hardest activity, and the input scope of soft keyboards

conlicts with the need to enter a strong password. To avoid changing or extending the logic of
 password management, such as by accepting a simple numeric personal identiication number
(PIN) from mobile users, you should drop this feature entirely from the mobile site. To change the

 password, users must log on to the full site to proceed.

Figure 3-3 shows a revised home page for the logged-on user of the mobile site.

FIGuRE 3-3 A revised home page for a logged-on mobile user.

The logout feature is supported here: By adding an extra link button to the caption bar, you can

keep the feature handy for users without sacriicing valuable screen real estate. The core functions
take up one menu item each and give users immediate feedback about what they can do: book a

court, review bookings, or leave a message.

The other links address features that were either absent from the main site or were presented

 differently here.

http:///

50 pArt II Mobile Sites

restructuring Existing Use-Cases

A mobile site doesn’t have to be a clone of the full site, even when implementing the same general

use-case. When designing the EasyCourt site, I focused on replicating the typical actions that a club

member would take to book a court. Based on feedback that I gathered, it turned out that checking

their balance (knowing how many hours you can book in a given period) was not on top of the list. So

the site warns users if they’re exceeding their balance when they try to enter a new booking, and they

can check their balance every time they enter a new booking.

Personal messages, such as expiration of their medical certiicates, are displayed when required,
whereas general messages, such as a summer party being held at the club, appear only in speciic
public areas of the site.

In Figure 3-3, you saw a Balance link at the bottom of the page that points to a plain page like that

shown in Figure 3-4.

FIGuRE 3-4 Providing speciic information quickly.

The beneit of this type of interaction is that you give users a quick way to ind speciic information
with only a couple of touches. Users will hardly connect to the desktop site just to ind their current
balances, but that’s exactly the type of quick information they may want to get from a mobile

 device—highlights of relevant facts and news rather than a full-blown page.

http:///

 CHAPTER 3 Mobile Architecture 51

Inventing New Use-Cases

Setting up a mobile site starting from an existing website also provides an opportunity to review

the use-cases for the existing solution and may spark ideas about new features. The EasyCourt full

site doesn’t have a History page where users can review the list of bookings they placed and the

other players they faced on the court. However, when I solicited feedback about which new possible

 features to include on a mobile site, History showed up prominently.

I wondered why History was considered (by nearly the same set of users) more important to have

in a mobile site than in the full site.

The answer lay in the way that people tend to use mobile devices. For example, people often use

them when they have nothing better to do (such as when they are hanging around in an airport,

standing in line, or stuck in some waiting room). At such times, you can unleash your curiosity. You

have time to revisit how often you play (and pay) at your club or how often you played your best

friend.

In general, a mobile site (and to a good extent, a mobile native application) should be designed

around the user much more than a regular site, even for nearly the same functions. Understanding

the priorities of mobile users is key; that’s why a code-irst approach—or, worse yet, a code-rework
approach—just won’t pay off. Mobile solutions are all about getting up close and personal with users.

Mobile-Speciic Development Issues

Sometimes, when reworking a site for an ideal mobile experience, you face the need to have new

queries and maybe new forms of updates incorporated into the application’s back end. A quick

comparison between the full site (Figure 3-1) and mobile site (Figure 3-3) should be enough for an

experienced architect.

The features “Messages From The Club,” “History,” and “Balance” that you see in the mobile page

have no direct counterparts in the full site. That means that you probably need different methods in

the business and data access layers to provide the requested data. In all cases, this concerns data that

is already in the database; you are just creating different types of queries and different view models

to work with.

How would you tackle this need architecturally?

toward a Mobile Application Layer
Any software of any reasonable complexity is best organized in layers. Each layer represents one

 logical section of the system. A layer will be hosted on a physical tier (i.e., a server), and multiple

 layers may be hosted on the same tier.

Here, let’s briely recap the basics of layered applications and then look at how that design applies
to mobile sites.

http:///

52 pArt II Mobile Sites

Layered Applications

Most applications are built on three layers—presentation, business, and data access. Of the three

layers, the business layer is by far the most blurred. The name business layer is quite generic, and the

architectural details depend strictly on business cases. Today, the business layer often results from the

aggregation of two interfacing layers—the domain layer and the application layer (see Figure 3-5).

Screen

Business Layer

Domain Layer

Screen

presentation Layer

Data Access Layer

Input model View model

Application Layer

Screen

FIGuRE 3-5 A typical layered architecture of modern web applications.

The domain layer is where you describe the model of your domain data and where you orchestrate

and expose domain-speciic services. For example, the domain layer includes a domain model that

you persist via an O/RM framework. Classes in the domain model have properties and methods
 (domain logic). A Booking class its naturally in the domain model of an application like the sample
EasyCourt site. Around this class, you likely need a number of services ranging from CRUD (create,

read, update, and delete bookings) to more sophisticated queries such as all the bookings for a given

 member in a given period. These services apply to domain entities and use data access tools.

All this should be nothing new to most developers and architects.

In a realistically complex application, CRUD is never plain CRUD. Adding a booking, for example,

is not simply a matter of writing one record to one database table. More often than not, the system

response to the user demand of entering a booking is a worklow that must be orchestrated at some
level. This is where the application layer (or service layer) its in.

http:///

 CHAPTER 3 Mobile Architecture 53

The application layer contains the application logic. It is that part of the business logic that

 contains endpoints, as required by use-cases. The application logic is the layer that you invoke directly

from the presentation layer. The application layer coordinates calls to the domain model, worklows,
services, and data access layer to orchestrate the behavior required by the various use-cases.

Identifying Mobile-Speciic Endpoints
As the name seems to suggest, application logic is application-speciic; therefore, it is not a layer
of code that you would expect to reuse much. A mobile site is a different application, so having a

 separate application layer makes total sense.

After identifying the use-cases for the mobile site, the next step is to check how much support the

existing application layer can provide for the new site. A new or modiied use-case likely will require
new code to orchestrate the back end. A different user interface, on top of the same behavior, likely

will require passing different data types around, and subsequently a modiied application layer.

The domain layer—both model and services—is, instead, highly reusable because it represents the

core logic behind the domain. From within the domain layer, inserting a booking requires exactly the

same action, regardless of who orders it or whether they did so from the full or the mobile website.

A mobile site needs its own application layer, and probably some extensions to the domain layer

for speciic core operations not initially accounted for. In this example (see Figure 3-3), I had to extend
the domain layer to support the history feature and to query for and push messages.

The key takeaway here is: Don’t be afraid to reinvent use-cases, and make sure that you supply

mobile devices with just the data they need—shaped appropriately. If this requires ad hoc new

 services, don’t be afraid to write them as necessary.

Deining an Application Layer for Mobile Clients
A mobile site is a website; as such, it may not need a web-based application programming interface

(API). A web-based API is essentially a collection of Hypertext Transfer Protocol (HTTP) endpoints

that connect the site to any middleware you may have. Such an API is a true necessity for native

 applications, but it is not necessarily required for a mobile site. A mobile site can simply be an

ASP.NET website made up of .aspx pages or resulting from a bunch of controllers.

However, if you opted for a single-page interface and the site is built around a single template and

extended and conigured via Ajax calls, then you likely need a well-deined collection of endpoints for

mobile view callbacks. Speciic endpoints will be responsible for serving just the data that the mobile
view expects. Figure 3-6 illustrates the big picture.

http:///

54 pArt II Mobile Sites

Web-based application layer
tailor-made for the use-cases

of a mobile website

D
o

m
a
in

D
a
ta

 A
cc

e
ss

Web-based application layer
tailor-made for the use-cases

of a native application

FIGuRE 3-6 An application layer for mobile clients.

To deine a web-based application layer, you currently have a variety of options.

If your site is based on an ASP.NET Model-View-Controller (MVC), you can simply add a new controller

and adjust routes to its action methods. Alternatively, you can host a classic Windows Communication

Foundation (WCF) service on the server side conigured to expose a web API. These two options require
different programming models and slightly different APIs. As part of the Microsoft .NET Framework 4.5,

you also can take advantage of the new ASP.NET web API, which combines the power of WCF and MVC

controllers. The result is that you can have an API that works the same under both ASP.NET MVC and

Web Forms and lets you create web endpoints with full support for ASP.NET MVC–speciic features such
as model binding, dependency injection, and routing, as well as WCF-speciic features such as content
 negotiation and query composition via OData.

Data Access practices

Strictly related to the deinition of a mobile web API is the deinition of a format in which data should
be exposed. Should that be JavaScript Object Notation (JSON)? Should it be a feed format such as

AtomPub? Should you access data using a query/update protocol such as OData?

If you build your mobile site around a relatively ixed template that you lesh out with requested
data, then JSON, returned by a plain or an OData service, is probably an excellent option. Consuming

a plain JSON stream that models your domain objects doesn’t require any external libraries in most

mobile browsers; however, the same is not true for JSON if it is returned by an OData service, which

probably requires a speciic library.

If you set up a classic site that simply serves up HTML, then data access takes place on the server,

and you can arrange to get the data through canonical tools, including plain ADO.NET commands or

O/RM frameworks. When the mobile site is the irst step of a larger project that will eventually include
platform-speciic applications, then setting up a layer of public endpoints that return JSON streams
makes much more sense.

http:///

 CHAPTER 3 Mobile Architecture 55

Should these endpoints be exposed through an OData service or a plain service that returns data

in a more generic format such as JSON?

OData is a web protocol designed to enable performing CRUD operations on publicly exposed

resources. An OData service is an HTTP-based data service that exposes data as name/value pairs
taken from a variety of collections (e.g., a relational table). The stream of data can be formatted as

an AtomPub or a JSON feed. In a way, OData is the web-based rework of the old idea behind Open

Database Connectivity (ODBC) and Object Linking and Embedding Data Base (OLE DB)—a common

API for accessing existing data in read/write mode.

Figure 3-7 provides an overview of the options that you have when you are creating an application

layer that provides data to a mobile client.

Custom API
exchanging custom

types optionally
 serialized as JSON

Custom API exchanging
custom types serialized

as JSON

OData Service ASp.NEt MVC
WCF/Web
Services

CRUD API exchanging data
as name/value pairs

formatted AtomPub or
JSON

FIGuRE 3-7 Options for a mobile application layer.

The difference between an OData service and a plain web service is in the API that you invoke

from the client. With OData, you have an API optimized for a CRUD scenario. You get raw data and

adapt it to the format you need on the client. With other approaches, you have to put more effort

into the design of the application layer but gain more freedom to return the data types that you

 prefer. You can design the low of data to match the needs of the client perfectly. As usual, neither
option is clearly preferable: you should choose the option that results in the best compromise

 between implementation costs, extensibility, and performance.

http:///

56 pArt II Mobile Sites

Local Output Caching

A key factor for a successful mobile site is using any possible tricks to save requests. In classic ASP.NET

programming, you can mark pages or sections of pages with the @OutputCache directive, meaning

that a request for a page or view is resolved quickly at the server gate without physically running the

request against the application’s back end. The output cache is a great feature to have in those pages

or views that are relatively static and change infrequently.

The output cache, however, still causes the client to place a request to the server. From a mobile

perspective—where HTTP requests have a higher cost than on laptops—the classic output cache trick

is much less compelling.

If the browser supports HTML5 local storage, you can try to implement your own local form of

output caching. Support for HTML5 local storage is required; otherwise, you have no chance to cache

data on the client beyond the small amount that you can store in a cookie (assuming that third-party

cookies are enabled on the mobile browser). Most smartphones have HTML5-ready browsers that

support local storage, so if those are your target, you can code application-speciic caches of data
and/or markup.

Figure 3-8 shows a view of the History page containing a list of the most recently updated

 bookings.

FIGuRE 3-8 A page that uses local caching.

http:///

 CHAPTER 3 Mobile Architecture 57

A local output or data cache requires that your site makes intensive use of Ajax to download

data. You create a page like the one in Figure 3-8 by placing a call to some remote service and then

populating a list view with downloaded data. If local storage is supported, the downloaded data is

then cached locally as a JSON string and reused for future requests. The duration of the cache is also

totally under your control.

Note Chapter 5, “HTML5 and jQuery Mobile,” will return to HTML5 and cover

 improvements in the markup language, as well as some key software development kits

(SDKs) such as local storage that add new functionality to the browser environment.

Server-Side Device Detection
Several thousand mobile browsers can connect to your site. Many of these have varying capabilities

that may not match the site’s markup and logic requirements. In general, anyone who is developing a

mobile site that goes beyond displaying some basic HTML should be concerned about the capabilities

of the requesting browser and should plan different versions for each page to accommodate the

 various clients. In general, almost no mobile sites are created for just one type of browser audience.

the rationale Behind Server-Side Device Detection

Mobile site development requires a couple of critical decisions: which devices you intend to serve and

how best to serve them the site content. Each request received by the server contains a signature that

identiies the requesting browser.

Note To be precise, this is not an absolute fact; there are some exceptions. For the

 purposes of this discussion, however, you can assume that every request contains

 information identifying the browser.

On the server, therefore, you can determine the requesting browser and match it to some known

capabilities for that browser—for example, whether that browser supports JavaScript or local storage,

or whether it can upload iles. You also can discover the size of the screen—or simply determine
whether it is a mobile device, a tablet, or perhaps a smart TV.

How would you arrive at the decision about which mobile browsers to support and how?

First and foremost, you never would base such a decision on speciic browser versions, such as
Windows Internet Explorer 9. Instead, you focus on browser capabilities. Unfortunately, though, very

few of the capabilities we’re interested in (including the basic capability of determining whether

a device is a phone or a tablet) can be detected programmatically from the information sent by

the browser alone. This fact created the need for device description repositories (DDRs), which are

 databases that store information about thousands of different devices and expose that information

via an API.

http:///

58 pArt II Mobile Sites

Today, a DDR is nearly mandatory for any mobile website that needs to check more than one or

two basic capabilities. As you’ll see in the next chapter, you probably can arrange your own code to

detect (quite reliably) whether a given device is mobile or not. You can hardly go beyond that point,

though. Without a DDR, you have two options: serving the same view to any mobile device regardless

of the effective capabilities, and relying on some CSS and JavaScript tricks to serve adjusted pages.

Both options have drawbacks. If you don’t distinguish between devices, then you expose yourself

to the risk of misbehavior and poor rendering on some devices, with a possible loss of business.

If you opt for a client-only solution, then you have control over what’s rendered, but you can’t really

serve optimized content to a speciic mobile device. (For example, you can decide whether some
content should be resized or hidden, but you can’t manage to download just the content that its the
 browser’s capabilities.)

Now, let’s briely explore two different approaches for creating sites for a multiple audience:
 multiserving and responsive design.

Note Chapter 6, “Developing Responsive Mobile Sites,” will discuss multiserving, responsive

design, and DDRs in more detail. Speciically, that chapter focuses on Wireless Universal
Resource FiLe (WURFL)—one of the most popular DDRs today.

Multiserving

The idea behind multiserving is that for each mobile request, the site composes the resulting page by

assembling views that are optimized for the proile to which that particular device belongs. As a de-

veloper, you build (or rent from the DDR of your choice) a mechanism that maps the user-agent string

of the requesting browser to a device proile. Based on the proile name, this mechanism will return
the actual name of the view (or page) to load to serve the request.

You typically create your own device proiles and customize them for the needs of your site and
business. A common strategy consists of having three proiles: Smartphone, Medium-level phones,
and Legacy phones. However, there’s no limitation on the number of proiles and, more important,
on the rules that restrict each proile. In general, you don’t want to have more than four or ive
 proiles because otherwise the workload becomes excessive.

The details of deining what devices fall in the various proiles are up to you. It is also up to you to
deine the capabilities that restrict devices to one proile or another. As an example, consider that the
Medium-level proile might include devices that provide basic Extensible Hypertext Markup Language
(XHTML) and CSS rendering, JavaScript, basic Document Object Model (DOM) manipulation, Ajax,

and a screen that’s less than 300 pixels in height. Similarly, the Smartphone proile includes devices
that support HTML5, animation, local storage, geolocation, and CSS3. A tablet proile could be
 considered as powerful as a smartphone, but with a larger screen size.

Multiserving applies the principle of Interface Segregation to mobile pages. The Interface Segregation

principle is about creating software modules (mobile views) that are simple, highly cohesive, and

 subsequently easy to edit and refactor. The principle ights scenarios in which you end up with fat modules
that become unmanageable; it recommends that you split them into simpler blocks.

http:///

 CHAPTER 3 Mobile Architecture 59

Note Project Liike is the product of the Microsoft’s Patterns-and-Practices group, whose

aim is to deine best practices for mobile sites. I’ve been a proud member of their advisors
board. The project takes the multiserving approach and identiies three device experiences
along the previous guidelines. The approach is named W-W-W (for Wow, Works, Whoops)

where the three words describe the reaction in front of a phone. Wow devices are

Smartphones; Works devices are Medium-level devices; and inally, Whoops devices are
Legacy devices. In Project Liike, the W-W-W approach is implemented using WURFL as the

DDR. The deinition of what makes a device Wow, Works, or Whoops is application-speciic.
For more information on the project, visit http://liike.github.com.

Just One Web

The term One Web refers to a vision in which there’s just one web, and sites should be designed to

provide the same experience regardless of the device used to view them. Device detection may be

necessary, and pages may require some relowing, but site functionality, layout, and content should
not be radically different.

As you can see, this approach—the same one we have used for years when designing desktop

 websites—entails a lot of work for mobile sites, much more work than was required for desktop websites.

Why? A lot more special cases exist to take into account in mobile environments than for desktops.

How would you attempt to make the One Web vision reality? A few approaches exist, but not all

of them may be considered pure from the original One Web perspective. In this book, I call a site

One Web compliant if it has just one source ile per page, yet still adapts to a variety of devices, as
 illustrated in Figure 3-9. In particular, Figure 3-9 compares One Web to multiserving: the difference

lies in where you run the logic that produces the markup.

One Web Page

Multiserving
Page

Page

Web server

FIGuRE 3-9 One Web vs. multiserving.

http:///

60 pArt II Mobile Sites

In One Web, the logic that produces the markup is embedded in the served page. In multiserving,

the logic is applied on the server instead, which then serves the inal markup optimized for the device.

Figure 3-10 shows a possible lowchart for the logic that picks up the most optimized content for
the requesting device in a multiserving scenario.

User agent

DDr matching logic

Smartphone

is a is a

Medium-level
Phone

Legacy
Phone

Analysis of capabilities

Device ID

is a

FIGuRE 3-10 Serving most optimized content for a device.

One way to implement One Web is by using CSS styles and media queries. Media queries help

select a CSS style based on the capabilities associated with the user agent. Media queries provide for

conditional download and application of a CSS style. Conditional download is based on the evaluation

of a Boolean expression that involves only a limited set of properties, such as device width.

A CSS-based solution its with the One Web philosophy because it doesn’t change the functionality
of the site when viewed on a mobile device; it simply limits or adjusts the layout as necessary. Media

queries alone, however, can’t work all the magic. A realistic One Web solution likely needs some

JavaScript code.

An emerging trend is Responsive Web Design, which makes extensive use of CSS optimization and

media queries to create dynamic layouts. Based on actual device width, pages resize their content

dynamically—and do it without code, by simply relying on percentages. Such pages use these tricks

to resize images, too. You can ind a nice introduction to Responsive Web Design here:
http://bit.ly/blRWZc.

As an alternative to CSS-only or CSS-based solutions, you can have code-only solutions for

maintaining a single codebase. You can write that all by yourself, or you can use one of the available

JavaScript frameworks.

For example, using the jQuery Mobile library shields you from a lot of trouble when it comes

to dealing with various mobile browsers. The jQuery Mobile library offers a uniied programming
 interface and abstracts away differences between browsers. However, you should note that

http:///

 CHAPTER 3 Mobile Architecture 61

jQuery Mobile doesn’t work in the same way on all possible browsers. Currently there are three levels

of browser support in jQuery Mobile. The lowest level means that rendering will fall back to plain

HTML and basic CSS. Chapter 5 will cover the topic of jQuery Mobile more fully.

Summary

Overall, building a mobile site is not really a dificult task, at least compared to building a full
 desktop site. Building a mobile site, however, is a delicate task that has some key requirements. First

and foremost, you should select carefully the use-cases you want to focus on. Second, you should

 re-architect carefully the application’s back end to pass the mobile front end only the data it needs,

and in the format that it needs.

That probably means that you need a different set of endpoints to call, or perhaps a reworked

 application layer, if your mobile site partners with an existing desktop site. But you should not need to

make any changes to the domain layer or data access layer.

Beyond that, a mobile site is a plain website consumed by special browsers. To build it, you use the

same set of tools and frameworks that you use for a regular site. ASP.NET Web Forms and ASP.NET

MVC are both great options. The single-page application pattern is also an option.

When it comes to mobile, you should instead focus a lot of attention on the user interface

to optimize collecting input and presenting data. A new family of components—and a new

 perspective—that use touch and take full advantage of the limited screen space are required. Mobile

devices augment user capabilities. For example, they can access new types of information (such as

geolocation) that may originate new use-cases and require new scenarios. The power of mobile

sites lives here; planning a mobile site solely as an appendix of your full desktop site is a big mistake.

 Often, in fact, deriving the design of the mobile site from the full site is a mistake.

Finally, you should be ready to face the myriad implementations of mobile browsers out there.

A responsive application—namely, an application that knows how to adjust itself to the request-

ing device—is the answer. To implement this, there are two main approaches: multiserving, which is

based on server-side device detection and DDRs; and the One Web approach, which relies on device

capabilities that can be tested on the client and uses CSS and JavaScript to adjust the markup.

The next chapter provides a few examples of mobile-optimized user interfaces and device

 detection, whereas Chapter 6 is fully dedicated to providing a developer’s perspective of device

 detection and offers an up-close-and-personal perspective of WURFL, the popular DDR.

http:///

http:///

 63

C H A P T E R 4

Building Mobile Websites

Intelligence is the ability to adapt to change.

—Stephen Hawking

In this chapter:

 ■ From Web to Mobile

 ■ Development Aspects of a Mobile Site

 ■ The Device-Detector Site

 ■ Summary

A mobile site, much like a native mobile application, is most likely to be consumed by users on the

move: people who are standing up, in a hurry, busy, or waiting in line. Under these conditions,

users are probably willing to connect to a site using a tiny device because they really believe that they

derive some beneit from the site. The site, therefore, must be direct, concise, and accurate.

It is essential that a mobile site should load quickly and allow users to reach all main functionalities

in just a few clicks or taps. The user interface should be extremely clear, but also clean and lawless
to show the options available at any time, yet still making the act of choosing an option easy. After

becoming familiar with the site, users often end up working with it semi-automatically, so even the

position of a single button can have an impact on the quality of feedback that you receive. Note that

the mobile Human-Computer Interaction (HCI) research ield, although new, is very active, and a lot
of studies exist about the dos and don’ts of interaction between mobile users and mobile devices and

software. Luca Chittaro has a paper that effectively summarizes what mobile HCI means to developers

and architects. You can read it here: http://goo.gl/lSG3s.

The previous chapter emphasized the importance of accurately selecting the use-cases to

 implement. The number of use-cases, however, should be kept small so that the site doesn’t end

up as a shrink-wrapped version of the full site. A pragmatic (and then not necessarily exact) rule is

that a mobile site rarely needs more than 20 percent of the features available in the full site. I’d even

go further by saying that sometimes, not even the 20 percent of features you take from a parent

 website should not necessarily be reimplemented “as is.” You might want to restructure some of these

 use-cases and even add new ad hoc use-cases for related scenarios.

A mobile site is a brand-new project that can inherit some code and services from an existing

site—more often than not, it inherits large shares of the business logic. This chapter covers a number

http:///

64 pArt II Mobile Sites

of issues and open points that you will want to solve before embarking on building a mobile site.

After addressing all these points, building the mobile site is reduced to the work of writing a relatively

simple and small website.

From Web to Mobile

You rarely build a mobile site without also having a full site in place. Most of the time, you build a

mobile site to serve mobile users better. In some cases, you start building both full and mobile sites

at the same time. Currently, it’s quite unlikely that you build a mobile site as a stand-alone project.

Whatever the case may be, however, this section aims at isolating the issues that differentiate a

 mobile site from a full website.

If you’re building a mobile site as a spin-off of an existing website, then the chances are good that

you will be able to reuse large portions of the existing application’s back-end code. Those include

the data access layer, the domain layer, and possibly a bunch of other distinct components (such as

 services and worklows) that you may already have in place, which will provide bits and pieces of
 business logic. If you can replicate some views without too much modiication, you may even end
up being able to reuse webpages and ASP.NET Model-View-Controller (MVC) controllers—more

 generally, parts of your presentation and application layers.

As you move towards the presentation layer, though, the chances of reuse diminish. How would

you deal with scripts, images, style sheets, and markup? For images and style sheets, there’s probably

an easy answer—you just have to reduce their size. For scripts and markup, the answer is less obvious

and likely is inluenced by context.

Application Structure
Before the community of web developers (re)discovered AJAX a few years ago, websites were always built

as a navigable collection of distinct pages. Jumping from one page to the next required links and forms.

The browser handled each request, which resulted in a full replacement of the current page.

AJAX changed the course of things by using the services of a small browser-hosted component—the

XmlHttpRequest (XHR) object—through which your script code can play the role of the browser and

 conduct server requests autonomously. The net effect is that webpages can contain ad hoc script code

that use XHR to download data or partial pages. After being downloaded, the content is processed by

some other script code and used to update the currently displayed page. AJAX can be used for some

 speciic (perhaps even critical) features, or it can be used extensively throughout the site. When that
 happens, the site architecture is usually referred to as the Single-Page Interface (SPI) model.

the Single-page Interface Model

In brief, the SPI model refers to a web application that behaves more or less like a desktop

 application—it has a primary user interface (UI) layout that is adjusted and reconigured via AJAX
calls. The page downloads everything it needs from the source site via script-controlled actions.

http:///

 CHAPTER 4 Building Mobile Websites 65

The SPI model has been recently formulated as a manifesto. You can read about it here:

http://itsnat.sourceforge.net/php/spim/spi_manifesto_en.php.

As an early AJAX adopter myself, I’ve always been a fan of the SPI model, but I’ve also always seen

it as a vector rather than a concrete pattern to implement. As a result, I have not fully implemented

the SPI model in a production site yet, primarily due to lack of conidence, proper facilities, and tools.
Moreover, I always found it dificult to sell a 100-percent JavaScript site to a customer—at least, that
was true up until two or three years ago. Today, the situation is different. The SPI manifesto dates

back to the summer of 2011.

With that said, I’m not completely sure that a SPI model is appropriate for just any mobile site.

An SPI model requires a lot of JavaScript, partly written by you and for the most part imported from

external libraries. You likely need quite a few of these libraries to provide for generic UI manipulation,

templates, and data binding. Some of these libraries are based on jQuery and jQuery Mobile. These

two libraries alone total some 200 KB (uncompressed) of script and style sheets.

Important In a production site, you typically apply miniication and GZIP compression to
script and other resources, thus reducing signiicantly the size of the download. Miniication

is the process of removing unnecessary characters from source code without breaking

any functionality. Applied to script iles, miniication also adds a (thin) layer of obfuscation
to your code, making it much harder for humans to read. GZIP is, instead, a popular
 compression format. Once properly miniied and gzipped for a production site, the jQuery
library is 31 KB and a bit less for jQuery Mobile.

In addition to script, SPI requires helpers for data binding and UI refresh, which adds a few more

tens of kilobytes. Popular libraries in this segment include JsRender, JsViews, Knockout, and Upshot.

In summary, the size of the JavaScript assets that a client will need to download can consume a

few hundred kilobytes, which can become a problem. Once downloaded, of course, the browsers

will cache the scripts; they don’t download the code over and over again. But the browser needs to

do a lot of work to render SPI pages—work that goes far beyond simply requesting and rendering

 markups. The more advanced the device browser is, the more the SPI model becomes affordable

(from a resource standpoint) for mobile sites.

Personally, I wouldn’t adopt the SPI model without irst performing deep analysis of the context.
The main challenges with an SPI implementation can be summarized as follows:

 ■ In case of intermittent connectivity, it’s dificult to igure out whether the problem is with the
application or the network. This may be frustrating. Not that this same problem doesn’t exist

for other models (i.e., the full-page refresh model), but at least tiny, non-SPI pages download

well, even with limited bandwidth. Moreover, with no connectivity at all, you immediately

grasp the nature of the problem—when nothing shows up, the problem is not the application.

 ■ Many sites require users to log on before they will serve content. If the users’ session expires,

the full-page refresh model redirects them to the logon page at the irst successive access. The

http:///

66 pArt II Mobile Sites

problem is both manifest and easily resolved. With an SPI site, although user authentication

is also AJAX-based, it may take hours before you igure out the root cause of the misbehavior
you’re observing. In SPI, user authentication requires due attention and effective client and

server-side implementation to work smoothly.

So let’s explore some other available options.

Note ASP.NET MVC 4 ships with a new project template that promotes the use of the SPI

model. The template uses Knockout and Upshot.

Full page refresh

At the extreme opposite of SPI lies the classic Full Page Refresh (FPR) model. FPR is how the web

worked for years: the browser makes a request for a new page, the web server returns the new page,

and the browser replaces the current page with the new rendered content. This process occurs

 repeatedly for each user action.

AJAX (on which SPI is heavily based) made the classic FPR web experience much less compelling,

and it also made it more natural for users to expect that only fragments of the current page would be

updated as the result of a given action. In a desktop scenario, the FPR model is cumbersome, so more

and more large sites are progressively adding AJAX-based capabilities.

However, the signiicant impact that FPR has had on desktop sites (which have large displays and
numerous auxiliary resources for downloading, caching, and refreshing content), is less so on mobile

sites because mobile pages are considerably smaller and lighter to begin with. Still, loading several

small pages may still be less engaging than updating bits and pieces of the currently displayed page.

Updating the current page may still be slow over a slow connection, but at least it doesn’t have a

dramatic impact on the user experience.

partial page refresh

Some middle ground between SPI and FPR can be found in the partial rendering that both ASP.NET

Web Forms and ASP.NET MVC support. In terms of trafic, partial page refresh (PPR) falls between
the two extremes—it is not as eficient as SPI, but it’s not as poor a user experience as FPR. The idea
is that the browser places a request as usual, but that request is captured at the script level—via

 embedded script—and silently transformed into an AJAX request.

On the server side, the web server handles requests as if they were regular full page requests,

but the response is packaged as an HTML fragment. The data being transferred is a mix of data and

markup—just the delta between the markup of the current page and the requested new page.

The beneit of the PPR model is that it offers many of the beneits of AJAX without the cost
of having to learn new programming features. In ASP.NET Web Forms, PPR happens relatively

 automatically through the UpdatePanel control; in ASP.NET MVC, it occurs through the

Ajax.BeginForm HTML helper.

http:///

 CHAPTER 4 Building Mobile Websites 67

In a nutshell, using PPR means that an FPR approach won’t require special skills on the

 development side. In contrast, an SPI model may represent a complete paradigm shift for many

 developers. PPR represents some middle ground.

Context Is King

Which of the previous options is preferable? There’s no obvious and clear answer. If you’re

 determined to ind just one answer, then the best approach depends strictly on the context and the
knowledge that you have about the devices that are going to access your site. If smartphone trafic
is predominant, you deinitely can opt for SPI. But if you’re interested in reaching the widest possible
audience, then you probably should opt for FPR.

The point, though, is that there’s probably no ideal solution that works in all cases. Mobile devices

are so different that you really should consider partitioning your audience into a few distinct classes

of devices and arrange a different solution for each. That could mean serving plain HTML pages to

older browsers while implementing a nicer SPI solution for smartphones.

Note In general, you always should consider AJAX seriously because it reduces the amount

of network trafic. Extensive use of AJAX, however, actually may raise the number of

Hypertext Transfer Protocol (HTTP) requests. In a mobile scenario, an HTTP request is more

expensive than in a desktop scenario because connections are slower, limited in number

(reduced parallelism in download), and also sometimes processed in a more convoluted

way, especially if the connection doesn’t happen over a WiFi network.

Amount of JavaScript
The amount of JavaScript that you might want to use for the pages of your mobile site is another

huge point. Processing JavaScript is crucial to minimize web trafic; on the other hand, it also affects
performance. Like it or not, mobile devices (even high-end smartphones) are not as powerful as

laptops. Among other things, this means that a mobile device may not be able to tolerate effectively

the same amount of JavaScript that you could employ in a full-ledged website. In this context, “not
able to tolerate” just means consuming more battery power even if the perceived page performance

is acceptable.

More Info The consumption of battery power tends to increase with the number of

HTTP requests. Subsequently, a JavaScript-intensive page is critical from the resource

 management perspective. Here’s a reference and some numbers: http://goo.gl/EKcyj. Other

excellent resources for making sense of the amount of JavaScript and its performance are

Steve Souders’s blog (http://stevesouders.com) and http://goo.gl/jyhV.

http:///

68 pArt II Mobile Sites

the jQuery Family of Libraries

Today, the jQuery library is a must for nearly any website. I’m personally dreaming of the day when

jQuery will be native to browsers and be integrated into every browser’s JavaScript engine. Until that

day comes (if ever), jQuery must be linked and downloaded if you plan to use it.

Note that jQuery is required even if you plan to use only jQuery Mobile, which offers a variety of

ready-made components for scaffolding a mobile site. Plug-ins for jQuery Mobile can put a “skin”

on your mobile site so that it looks like a native application with animations, navigation effects, and

snazzy presentation.

All in all, once miniied and gzipped, all this JavaScript is likely affordable for use with high-end
mobile browsers, even though JavaScript-based effects may emulate some native effects closely

but are never the same in terms of performance. With that said, you’ll need to be able to limit the

quantity of JavaScript in your pages if you want to enlarge your mobile horizons to non-smartphone

devices.

So except for smartphones, consider dropping jQuery and derived libraries entirely. On these non–

high-end devices, the chances of encountering quirks, bugs, unsupported features, and unexpected

behavior is quite high; therefore, why take the risk? By simplifying your page structure, you still should

be able to include some JavaScript-based dynamic behavior that relies only on Document Object

Model (DOM) support and basic language tools. A good rule of thumb is that (with the notable

exception of smartphones and tablets) any quantity of JavaScript beyond 10 KB can begin to degrade

load time and performance.

Note Whether you use jQuery or not, unobtrusive JavaScript always should be your guiding

star. Unobtrusive JavaScript means having a place at the start of the code where you attach

handlers to elements so that degradation in the case of unsupported features is easier to

handle.

JavaScript Microframeworks

For a desktop site, nobody really minds having a few hundreds of kilobytes in script code. Gmail, for

example, fully loaded, usually exceeds the range of kilobytes for loaded JavaScript code. The idea

of loading a full-ledged, monolithic JavaScript framework in a mobile site is often unaffordable,
 especially if you want to target more than just the top iPhone and top Android devices. Still, it’s useful

to be able to use the services of existing code and ready-made frameworks. JavaScript microframeworks

come to the rescue.

Microframeworks are small, highly focused libraries whose overall size is often only a few kilobytes;

sometimes even 1 KB or so. There’s no magic and no special tricks—microframeworks are so small not

only because they are miniied and gzipped, but also because they take on just one or two tasks.

You probably will want to pick up a library for asynchronous (async) loading: one for optimized

DOM traversing, one for touch gestures, and perhaps a few more. You can ind an interesting list of
such microframeworks at http://microjs.com; their average size is around 1 KB.

http:///

 CHAPTER 4 Building Mobile Websites 69

One microframework for general-purpose JavaScript programming in the context of mobile

sites is XUI (see http://xuijs.com). XUI is not speciic to a single task as are some of the libraries listed
on microjs.com; instead, it’s speciically designed for mobile scenarios, so you can consider it a
 competitor to other larger mobile frameworks such as jQuery Mobile and Sencha Touch. Unlike these

larger frameworks, XUI doesn’t force you into a given programming paradigm or page structure.

It focuses on a few tasks (e.g., DOM/CSS management) and totals only 5 KB gzipped. XUI is a good
alternative to jQuery libraries for mobile sites and offers a powerful alternative to jQuery libraries for

lower-end devices that support JavaScript, DOM, and Cascading Style Sheets (CSS).

Chapter 5, “HTML5 and jQuery Mobile,” will cover the whole topic of jQuery Mobile. Sencha Touch

is a JavaScript framework, originally created to add touch capabilities to mobile pages, but which is

now a full-ledged framework for developing mobile web applications that look and feel native on
most mobile platforms such as iOS and Android. You can ind out more about SenchaTouch at
http://www.sencha.com.

More Info A good resource for microframeworks, and for comparing their pros and cons

against larger script frameworks such as jQuery, is Addy Osmani’s work at http://goo.gl/jnE9t.

Application Device Proiles
Device fragmentation is huge in the mobile space. If the differences between browsers in desktop site

development scare you, then be aware that the mobile space is much worse.

On rare occasions, you can get by with just one set of pages for a mobile site. Ideally, you need

pages that can adjust intelligently to the characteristics of the requesting browsers. Sometimes you

just end up having multiple versions of the same page—one for each device (or class of device) that

you intend to support. Alternatively, sometimes you may have one common page template that you

ill up with device-speciic content. But at the end of the day, these are implementation details.

The crucial point is that you need to split your expected mobile audience into a few classes. Then,

for each page or view, you provide class-speciic markup. This is the essence of multiserving, as briely
described in Chapter 3, “Mobile Architecture.” Chapter 6, “Developing Responsive Mobile Sites,” will

illustrate multiserving with an example.

Note In most developed markets today, it is possible to cover most devices with good

 semantic markup of some kind and then progressively enhance the presentation and

 interaction using CSS and JavaScript. In this regard, the concept of device classes applies to

CSS as well: however, if you want to present different content to different classes of devices,

then you need to use multiserving because the markup will change between classes.

http:///

70 pArt II Mobile Sites

Practical Rules to Class Proiles
In the mobile space, neither the team building a given site nor the team producing a general- purpose

library can afford optimizing pages on a per-device basis—the number of potential devices to take

into account is just too large (in the order of several thousand). Hence, a common practice has

 become to classify all the devices you’re interested in into a few classes. How many classes do you

need to have, and how do you deine a class?

A device class typically gathers all devices that match a given set of capabilities. You deine the
classes based on the business cases and scenarios. A basic (but still arbitrary) classiication may consist
in splitting the whole range of requesting devices into three categories: smartphones, tablets, and all

other browsers. You provide a rich web experience to smartphones, serve the full site to tablets, and

offer plain HTML to all others.

How would you deine a smartphone? Everyone would agree that an iPhone is a smartphone
while, say, a Nokia 7110 is not. [The Nokia 7110, released in the fall of 1999, was the irst device
equipped with a Wireless Access Protocol (WAP) browser.] In contrast, the Nokia 6600 certainly was

a smartphone when it came out in 2004, but nobody would consider it a high-end phone today.

But there are no hard and fast rules. You should know that not only the device classes, but also the

rules that determine which class a given device belongs to, are highly variable and strictly speciic
to a business scenario. At the same time, this lack of ixed rules and practices makes it possible
for everybody to deine classes in a way that best its a given business. All you need is a reliable
 infrastructure that irst identiies the device and then tells you about its real capabilities. I’ll return to
that infrastructure in a moment.

As a purely intellectual exercise, here are some requirements that identify a modern smartphone in

2012. Note that these are likely to change, even in the near future.

 ■ Operating system (minimum version): all versions of iOS, Android 2.2, Windows Phone 7,

RIM OS 6, Samsung Bada 2.0, Symbian Anna, and Nokia Meego

 ■ Input mode: touchscreen

 ■ Screen size: 320 × 480 pixels

Admittedly, this deinition is rather arbitrary, and it may sound too restrictive for some while being
way too relaxed for others. Above all, this deinition will become progressively less pertinent as more
powerful devices hit the market.

A tablet has two main characteristics—it is a mobile device (not a desktop browser), and it has a

larger screen than a smartphone. You can probably set the lower boundary to 640 pixels today.

It is important to note that grouping all the remaining devices into a single class may be a tough

decision. Whether you really want to serve plain static HTML to all of them or further split the

 remaining devices into two or more classes is up to you.

How can you discover the capabilities of the browser for each device? How can you be sure that

the requesting browser is really a mobile device? If it’s suficient for your needs to just check the
screen size and screen resolution, then you might decide to go with CSS media queries for high-end

http:///

 CHAPTER 4 Building Mobile Websites 71

browsers, and use script code that simulates that on older browsers. Although this approach

may work in some cases, it’s not a route that will take you far. Instead, relying on a commercial

 device description repository (DDR) is probably the best way to go. Chapter 6 discusses a few DDR

 frameworks, focusing in particular on WURFL.

Dealing with Older Browsers

When I talk to executives planning the mobile strategy of their companies, I often get the impression

that when they say “mobile,” they just mean the iPhone and iPad. While it can’t be denied that

iPhones and other smartphones are actually responsible for most of the mobile trafic to sites, the
mobile universe contains many other types of cell phones and devices as well. Unfortunately, not

all of them have the same characteristics, but they are so numerous that you must ind a common
denominator approach.

In the process that you use to identify the device proiles to support, you must deine the bottom
of the stack at some point. Devices that fall into this sort of catchall group typically are served plain

HTML or, at least, the simplest markup that your mobile site can serve.

What’s the best way to handle this?

When you end up having a catchall device proile, it also means that there’s some rich library
you’re relying on for higher-end devices. The jQuery Mobile library is an excellent example. Such

mobile libraries sometimes offer to scale down the otherwise rich markup they produce on older

browsers automatically.

That’s apparently a fantastic deal for you: you write the mobile markup once, and it gets downgraded

automatically for less powerful browsers. Unfortunately, my current experience has not been particularly

positive on this point. Although most libraries do fulill their promises of downgrading the markup, the
quality of the HTML that they produce when that happens is often below your desired standards. You

probably want to take care of the HTML being served to older devices yourself rather than blindly relying

on the kind of hard-coded markup served by some libraries.

The bottom line is that while jQuery Mobile (and other libraries) can truly downgrade HTML based

on the requesting browsers, you’ll achieve a better inal effect if you manually ix up the output.
 Currently, I’m inclined to use jQuery Mobile—but only to serve smartphones and tablets.

Note Chapter 5 will cover jQuery Mobile in more detail, including more about its

 browser-graded support matrix. That feature is orthogonal to performing your own device

capability detection, but overall, I prefer to skip the automatic downgrading, at least with

the current version of most libraries.

Optimizing the payload
Minimizing the number of HTTP requests to websites is always a good thing, and it should be a

 central aspect of any strategy aimed at improving the performance of a site.

http:///

72 pArt II Mobile Sites

If you have ever tried to use a mobile device to connect to a very basic site with a few plain HTML

pages, a bit of CSS, and one or two images over a 3G data connection, you have experienced a delay,

or latency. This latency is relevant if the device is not one of the latest smartphones with a powerful

processor. In the mobile space, minimizing the total amount of data transferred and the number of

requests is not simply a matter of optimization; it is a crucial development point.

Over the years, a number of recommended practices have been worked out to help developers

build fast websites. Yahoo! has been quite active in this ield, publishing a very valuable document
that you can read here: http://developer.yahoo.com/performance/rules.html. The rules in that

 document are written for a generic website, but for the most part, they can be applied equally well to

both desktop and mobile sites. Here’s a summary of the key suggestions:

 ■ Take care of the page structure and ind the right place for scripts and style sheets.

 ■ Reduce the number of HTTP requests.

 ■ Reduce the size of resources.

 ■ Maximize the use of the browser cache.

Let’s briely go through the optimization aspects that are most relevant to mobile sites next.

the page Structure

A mobile browser may load pages signiicantly slower than a laptop browser. This means that not

just raw performance but also perceived performance is important. Little tricks, such as placing style

sheets at the top of the page in the <head> section help, because doing that means that the body of

the page will be ready to render as it is downloaded. The overall download time doesn’t change, but

at least users see some results a bit sooner.

Similarly, placing scripts at the bottom of the page is helpful because it reduces the impact that

 synchronously downloading scripts may have on page rendering. When browsers encounter a <script>

tag, they stop page rendering and proceed to download the script synchronously. Page rendering

resumes only after the script iles have been downloaded, parsed, and executed. When all the scripts are
at the bottom of the page, browsers don’t need to interrupt the page rendering process to load scripts;

 therefore, browsers are free to concentrate on displaying an early view of the page.

reduce the Number of requests

Too many HTTP requests are the primary cause of latency in websites. This statement is even truer

for mobile sites. Executing an HTTP request is an expensive operation, especially when that entails

connecting to a radio cell. In this case, to preserve battery power, the device sometimes cuts off the

connection right after receiving the HTTP response, meaning that to execute another request, a new

handshake is required, which consumes both time and resources.

For this reason, it is doubly sinful to let links to duplicate resources go unnoticed. Linking a script

twice doesn’t affect the rendering of the page, but while the performance hit is negligible on a

 laptop, it becomes a serious performance hit in a mobile scenario.

http:///

 CHAPTER 4 Building Mobile Websites 73

The same can be said for redirects. Each redirect requires two HTTP requests. Avoiding redirects

from a site is one way to reduce the number of requests that devices visiting that site have to place.

Most ASP.NET MVC books [including my book Programming ASP.NET MVC, 2nd ed. (Microsoft Press,

2011)] recommend that the Post-Redirect-Get pattern is appropriate for input forms because it saves

applications from unwanted F5 refreshes. In a mobile space, that also introduces extra requests; make

sure that you make a sound decision about your projects on this point. If you can afford to use AJAX,

that would probably be an ideal compromise.

Compacting resources

When your goal is to reduce the number of HTTP requests, there’s little better than merging two

or more iles. Image sprites, for example, illustrate just this point. A sprite is an image that results

from the concatenation of two or more images. That way, the browser can make a single request,

 downloading and caching multiple images at one time.

Image sprites are not always ideal. Using sprites works great with very small images, such as button

icons that are widely used across the pages, but sprites may not be as ideal for the relatively large

 images used by distinct pages. Downloading a 50 KB image may not be easy over a 3G connection

and with an older browser, so if the image is part of a sprite and the sprite size is 100 KB or more,

downloading it would take even more resources—probably enough to make the user experience

unpalatable.

Sometimes, to save an HTTP request, you can decide to encode a small image (one on the order of

just a few kilobytes) as a Base64 string and embed it directly in the page. The data Uniform Resource

Identiier (URI) scheme just serves this purpose.

The data URI scheme deines a standard for embedding data within the page instead of linking it
as an external resource. The scheme is deined in RFC 2397; you can read about this RFC on Wikipedia

at http://en.wikipedia.org/wiki/Request_for_Comments. The net effect of applying the data URI scheme

is that the content of the src attribute of the element matches the following template:

data:[<content-type>][;base64],<bytes of the image>

First, you place the data keyword followed by the Multipurpose Internet Mail Extensions

(MIME) type of the image. Next, you place the Base64 keyword followed by the Base64-encoded

 representation of the binary image. If you were embedding an image manually, here’s the markup

you would need:

The Base64 image encoding (also known as image inlining) saves a few HTTP requests and

 improves both the real performance and perceived performance of the page. It is not a feature to use

for just any image and page!

http:///

74 pArt II Mobile Sites

Note Most modern device browsers support image inlining, with the sole notable

 exception of the Windows Internet Explorer browser embedded in the versions of Windows

Phone prior to version 7.5. However, few older browsers support this feature, whose

 importance decreases as the capabilities and processing power of the browser increase.

Improve Your Control over the Browser Cache

If the primary objective of a mobile site is to minimize the number of requests, browser caching is

the primary tool that you have to manage. Moving auxiliary resources (i.e., style sheets and scripts)

to external iles often helps. Initially, the number of HTTP requests is higher, but after the irst access
auxiliary resources are cached, no more requested expiration occurs.

External resources are really beneicial if such resources are widely referenced from a variety of
pages. In home pages and rarely visited pages, inlining of resources (where possible) may be a better

option. In addition, you can drive the browser behavior about caching by using e-tags and Expires

headers on your critical resources.

Note In addition to optimizing the cache and minimizing HTTP requests, you might

want to employ all possible techniques that reduce the amount of data to download. This

 certainly includes ixes to application logic to return the smallest possible amount of data
and markup, but it also includes actions on the infrastructure, such as enabling compression

at the web server level and minifying scripts and style sheets. Finally, note that you should

always return data as JavaScript Object Notation (JSON) strings rather than XML strings.

(JSON was once named the “fat-free alternative” to XML.)

The browser cache also applies to AJAX responses. The use of AJAX makes the request go

 unobtrusively for the user, who remains in total control of a still responsive page. However, it doesn’t

mean that the request will end in a matter of milliseconds. Sometimes caching the AJAX response

helps to make most responses really instantaneous. This pattern, however, doesn’t work for all types

of requests. If you place a request to read the current balance of an account, you don’t want it to

be cached. If you use an AJAX request to auto-complete a text ield, you want to cache as much as
 possible. This is to say that control over the AJAX cache must exist, and in real-world scenarios, it must

be applied on a per-URL basis. Most libraries, though, offer an all-or-nothing control, which is hardly

the right thing for a mobile site.

Important As the Back button is the most popular button in a browser, you need to

 remember this point: you don’t want the page to reload when you hit that button. To avoid

reloading, it is not always enough to set the right cache headers. The size of the elements

also matters. The following link provides some numbers. It is a post from a couple years

ago, but it is still worth reading: http://www.stevesouders.com/blog/2010/07/12/mobile-

cache-ile-sizes.

http:///

 CHAPTER 4 Building Mobile Websites 75

The Ofline Scenario
A mobile site represents an excellent shortcut to implementing a mobile strategy because it brings

products and content to a variety of devices without writing a different application for each mobile

platform that you intend to support. At the same time, a mobile site requires constant connectivity to

work well. This aspect of mobile sites is going to be more and more of a showstopper for sites, and it

highlights the key difference between mobile sites and native applications. It’s not coincidental that

ofline applications have been given a role in using HTML5.

Ofline Sites with HTML5
An ofline experience without an HTML5-enabled browser is quite hard to achieve; while it’s not

 impossible, it does require a strong commitment. In other words, it’s not a feature that you would

want to offer as a free add-on to a customer!

When most people talk about ofline sites, they mostly mean online sites that perhaps occasionally
experience long downtime periods. The key to surviving such lack of connectivity is caching—in particular,

to take advantage of the browser’s ability to cache resources that a user may navigate to later, during a

downtime window. These resources include not only auxiliary iles, but also AJAX responses.

HTML5 lets you create a manifest ile and link to it from the <html> tag of the home page. In this

manifest code, you list the iles you want to keep cached, which resources are a fallback for other
(possibly missing) resources, and which resources are available only while online:

<!DOCTYPE html>

<html manifest="/offline.appcache">

 ...

</html>

The browser’s ability to cache a subset of the full site on the client isn’t a great thing, per se. It

 requires more than that to be truly effective. That means is that there is little value for users in just

navigating through a few static pages. While that’s considerably better than getting a 404 error

 message from the browser, it’s not really a decisive change.

persisting Application Data

Persisting application data locally is another aspect of websites strictly related to surviving an ofline status
interval. In an HTML5-enabled browser (again, most browsers in today’s smartphones are HTML5-ready),

you use the local storage application programming interface (API) to write name/value pairs in an
application-restricted area managed by the local browser. In the near future, the lat name/value format
may become even more sophisticated and evolve into a table-based and indexed format.

Persistence is also related to synchronization. The ability to persist data locally fully enables

 occasionally connected application scenarios. At the same time, in an occasionally connected

 scenario, you might want to offer a read-only view of the data or enable updates. When this happens,

you have either the problem of queuing operations or the problem of editing a local cache of data to

be synced with the server when the connection is re-established.

http:///

76 pArt II Mobile Sites

Overall, if you want to build a full-ledged, occasionally connected scenario, you’d better endow
yourself with a solid sync framework and/or consider using the OData protocol and facilities for your

data exchange.

Development Aspects of a Mobile Site

Based on the discussion in Chapter 3, the most important task when planning a mobile site planning

is selecting use-cases. This doesn’t mean, however, that use-case selection is unimportant when

developing full sites or other types of applications. It’s just that a mobile application and site are

structurally built around a few (and well-chosen) use-cases.

Even when you’re simply picking up a use-case from the root site, the way in which you implement

it for a mobile audience may require signiicant changes—possibly a different user interface and
perhaps even a different worklow.

At this point, let’s assume that you have a well-deined (and hopefully well-chosen) set of use-cases;
and let’s also suppose that you have everything required for the back end already in place. You are now

ready to start producing markup. But, irst and foremost, how do you reach the mobile site?

reaching the Mobile Site
A mobile site can be a stand-alone site located at its own unique URL, or it can result from the

 application logic serving appropriate content to desktop and mobile browsers. In the former case,

you just create a new ASP.NET project, design your pages for the mobile devices that you intend to

support, give your images and style sheet the size and properties they need, and go. In the latter

case, you have a single project where you just handle the desktop full-web case as a special case of a

mobile site. Let’s investigate the two options.

One Site, One Experience

Maybe partly inluenced by the One Web vision, I initially approached mobile development with the

idea of offering my users just one endpoint and host name. The plan was to hard-code the server with

the ability to detect device capabilities and serve the most appropriate content. So my irst mobile
project was a mere extension of an existing site: I just released a new version of the desktop site with

the additional ability to detect mobile browsers and serve ad hoc markup. I had just one

ASP.NET project with two distinct sets of pages/views for desktop and mobile.

Honestly, this didn’t take much effort to design and implement. It took only a little extra

 engineering to set up a page/view router to distinguish between and serve both mobile and desktop
requests. However, testing the site was painful. The only reliable source of information was to use a

real mobile device; switching the user agent string on desktop browsers just didn’t work effectively.

We’ll return to these test issues later in this chapter, and also demonstrate this one-site, one-

experience approach while presenting a demonstration of device capability detection.

http:///

 CHAPTER 4 Building Mobile Websites 77

The noteworthy point is that when you have just one site that can handle both mobile and desktop

browsers, you actually have one set of pages for full browsers and then multiple sets of pages for

each class of mobile devices that you support. Really, the desktop becomes the special case!

What about different use-cases? This isn’t a big issue. You always have a home page in both mobile and

desktop environments, so your mobile home page will just offer a different set of links and start a different

type of navigation. You only need some logic that, when a new browser session starts, the home page

request for http://www.yoursite.com produces the output of default.aspx, default.mobile.aspx, or perhaps

default.iphone.aspx.

two Sites, One Experience

Mostly for ease of development and testing, I soon switched to a different model: two sites, one

experience. The mobile site is a neatly separated entity and has its own URL. You have a stand-alone

mobile site reachable as a /mobile virtual directory of the main site or as a subdomain, such as

http://m.yoursite.com. Sometimes, the site takes its own extension, such as http.//www.yoursite.mobi. Any

option that you choose here is equally good, in my opinion, and mostly depends on other aspects of

the mobile strategy. In any case, it is always a good advice to provide users (at least on smartphones

and tablets) with a link to browse the full site.

Because the mobile site is isolated from the principal site, you can test it much more easily—

and you can use desktop browsers or mobile generic emulators (such as Opera Mobile Emulator)

to perform quick tests aimed primarily at evaluating the user interface and experience. Obviously,

it’s crucial to test on real devices, but for quick tests on markup, colors, position, and low, using a
 desktop program makes the process seamless.

Because you now have two distinct sites, you need an automatic mechanism to switch users to the

right site based on the capabilities of the requesting device.

routing Users to the right Site

It’s a mistake to assume a one-to-one correspondence between desktop and mobile pages. This

may happen but should not be considered a common occurrence. Note that by saying “page

 correspondence,” I simply mean that both applications can serve the same URL; I’m not saying

 anything about what each page actually will serve.

All in all, we can safely consider only the host name of any requested URL. If the host name belongs to

the desktop site and the requesting browser is detected to be a desktop browser, then everything works

as expected. Otherwise, the user should be displayed a landing page, where she will be informed that she’s

trying to access a desktop site with a mobile device. The user is given a chance to save her preference for

future similar situations. The preference is stored to a cookie and checked next.

If the request refers to a URL in the mobile site and the user seems to have a desktop browser,

consider showing another landing page rather than simply letting the request occur as usual. Finally,

if a request is placed from a mobile device to the mobile site, it will be served as expected; namely,

by looking into the device capabilities and iguring the most appropriate view. Figure 4-1 presents a
diagram of the algorithm.

http:///

78 pArt II Mobile Sites

Laptop

Request for a page
in the desktop site

Request for a page
in the mobile site

Serve requested
page

Show landing page
for mobile users

Show landing page
for desktop users

Detect device
capabilities and
serve appropriate
content

Device Laptop Device

FIGuRE 4-1 The desktop/mobile view switcher algorithm.

How would you implement this algorithm?

In ASP.NET, the natural tool to implement this routing algorithm is an HTTP module that is active

on both sites and capturing the BeginRequest event. The module will use plain redirection or, if

 possible, URL rewriting to change the target page as appropriate.

Here’s some code that implements the aforementioned algorithm in the desktop site:

public class MobileRouter : IHttpModule

{

 private const String FullSiteModeCookie = "FullSiteMode";

 public void Dispose()

 {

 }

 public void Init(HttpApplication context)

 {

 context.BeginRequest += OnBeginRequest;

 }

 private static void OnBeginRequest(Object sender, EventArgs e)

 {

 var app = sender as HttpApplication;

 if (app == null)

 throw new ArgumentNullException("sender");

 var isMobileDevice = IsRequestingBrowserMobile(app);

 // Mobile on desktop site, but FULL-SITE flag on the query string

 if (isMobileDevice && HasFullSiteFlag(app))

 {

 app.Response.AppendCookie(new HttpCookie(FullSiteModeCookie));

 return;

 }

 // Mobile on desktop site, but FULL-SITE cookie

 if (isMobileDevice && HasFullSiteCookie(app))

 return;

 // Mobile on desktop site => landing page

 if (isMobileDevice)

http:///

 CHAPTER 4 Building Mobile Websites 79

 ToMobileLandingPage(app);

 }

 #region Helpers

 private static Boolean IsRequestingBrowserMobile(HttpApplication app)

 {

 return app.Context.Request.IsMobileDevice();

 }

 private static Boolean HasFullSiteFlag(HttpApplication app)

 {

 var fullSiteFlag = app.Context.Request.QueryString["m"];

 if (!String.IsNullOrEmpty(fullSiteFlag))

 return String.Equals(fullSiteFlag, "f";

 return false;

 }

 private static Boolean HasFullSiteCookie(HttpApplication app)

 {

 var cookie = app.Context.Request.Cookies[FullSiteModeCookie];

 return cookie != null;

 }

 private static void ToMobileLandingPage(HttpApplication app)

 {

 var landingPage = ConfigurationManager.AppSettings["MobileLandingPage"];

 if (!String.IsNullOrEmpty(landingPage))

 app.Context.Response.Redirect(landingPage);

 }

 #endregion

}

Once installed in the desktop site, the HTTP module captures every request and checks the

 requesting browser. If the browser runs within a mobile device, the module redirects to the speciied
landing page. The landing page will be a mobile optimized page that basically offers a couple of

links: one to the home of the desktop site and one to the home of the mobile site. Figure 4-2 shows a

sample landing page viewed with an Android 2.2 device.

If the user insists on viewing the full site, then you can’t simply redirect to the plain home page. For

its nature, the HTTP module will intercept the new request and redirect again to the mobile landing

page. From the landing page, you can simply add a speciic query string parameter that the HTTP
module will detect on the successive request. Here’s the actual link that results in Figure 4-2:

Full site

You are responsible for deining the query string syntax; in this case, m stands for mode and f for

full. The task is not inished yet, though. At this point, users navigate to the home page of the site.
What about any other requests? Those requests, in fact, will be intercepted by the HTTP module.

By adding a cookie, you can provide additional information to the HTTP module about requests

 deliberately sent to the desktop site from a mobile device.

http:///

80 pArt II Mobile Sites

FIGuRE 4-2 The landing page of the EasyCourt demo site.

How can the user switch back to the mobile site? Ideally, any desktop site with a sister mobile site

should offer a clearly visible link to switch to the mobile version (and vice versa when the full site is viewed

on a mobile device). If not, the user won’t be offered a chance to choose the full or mobile site until the

cookie expires or is cleared. To clear cookies, users deal with the Settings page of the mobile browser.

Adding Mobile Support to an Existing Site

Where do you place the landing page? Is it on the desktop or on the mobile site? In general, it doesn’t

matter; however, if you put it on the mobile site, then you really can enable a scenario in which you

deploy a mobile site with all the required routing logic without touching codebase of the existing

desktop site.

In the demo site of EasyCourt, a commercial booking system for tennis courts, which I introduced

in Chapter 3, I just edited the Web.conig ile of the desktop site and deployed a library with the HTTP
module in the Bin folder. No changes were made to the source code. Here’s the coniguration script
to add a router HTTP module to the desktop site:

<system.webServer>

 <modules>

 <add name=”MobileRouter” type=”...” />

http:///

 CHAPTER 4 Building Mobile Websites 81

 </modules>

 ...

</system.webServer>

The Welcome page was deined on the mobile site. Note that the Welcome page always should be
visible, and it never should need authentication. Depending on how you deploy the mobile site—a

distinct root site/application or a child application/directory—you may need to tweak the Web.conig
ile of the mobile site to disable the HTTP module. If the mobile site is a distinct application, then it
needs its own Web.conig ile that has been fully conigured with the HTTP module. If the mobile site
is, instead, hosted as a child directory in the desktop site, then it inherits the coniguration settings of
the parent site (the desktop site), including the HTTP module. To speed up requests, you might want

to disable the HTTP module in the mobile site.

 Here’s the coniguration script that you need in the mobile site’s Web.conig ile. The script clears
the list of HTTP modules required by the mobile site:

<system.webServer>

 <modules>

 <clear />

 </modules>

 ...

</system.webServer>

In addition, you need to instruct the parent application/site explicitly to stop the default
 inheritance chain of settings. Here’s what you need:

<location path="." inheritInChildApplications="false">

<system.webServer>

 <modules>

 <add name="MobileRouter" type="..." />

 </modules>

 ...

</system.webServer>

</location>

Also, notice that when the mobile site is a child application/directory, then it inherits a bunch
of settings (for the section where inheritance is not disabled) that don’t need to be repeated (for

 example, connection strings and membership providers).

Note This example is based on the default Internet Information Services (IIS) 7.5

 coniguration—integrated pipeline mode. If you’re using the classic pipeline mode, then
instead of system.webServer/modules, you should operate on the system.web/httpModules

section.

http:///

82 pArt II Mobile Sites

Design of the Mobile Views
Mobile websites normally show a subset of the content offered by a desktop site. For example, if you

have a three-column layout in a desktop site, you probably want to remove (or move to additional pages)

 content displayed in two of the three columns. Reducing the amount of information improves the load

time of the site and makes better use of the available space. “Shrink-and-it” is a popular slogan.

An ideal layout for pages of a mobile site is based on a single column. The font size is large enough

to allow easy reading without zoom. The search bar (if any) ideally will go at the top, and navigation

links are commonly placed at the bottom. You might want to place a link to the desktop version of

the site somewhere on the mobile site.

Scrolling is accepted, especially vertical scrolling, but endless lists are annoying. Let’s briely review
some common scenarios now.

Input Elements

On a typical mobile site, most of the functionality is read-only. This fact seems to suggest that you are

not going to have that many chances to write input forms, and perhaps even that input forms are not

an aspect of development you want to invest much time in.

This is just wrong.

Exactly because most of the functionality is read-only and a mobile device is tiny and not as

 powerful as a laptop, providing speciic and restricted parameters is key. To type query parameters, or
to specify settings, input forms are a common presence on mobile pages anyway. Some typical web

and Windows controls need ixes, though, especially in light of the touch capabilities of many devices.

Typing text on mobile devices is hard and should be minimized. As we’ll see in later chapters, this

is easier to achieve with native applications, where you can control the input scope of soft keyboards

and attempt to display an optimized subset of keys to the user. In mobile sites, all is left to the

browser, although developers can use forms of auto-completion via AJAX.

If the browser understands HTML5, then you can just use the most appropriate type attribute on the

<input> element and let the browser do the rest. To be honest, what you get may differ quite a bit, even

on smartphones. For example, numbers and ranges are well supported on both iPhone and Android at

present, but the date type produces just the plain text box on Android. In iOS5, however, the browser

recognizes your intentions and displays the compelling iPhone date picker element (see Figure 4-3).

On the other hand, iOS still lacks the ability to upload iles from the browser, which is a feature
available in Android mobile browsers.

In general, data entry should be redesigned and even rethought case by case. For example, when

it comes to booking a tennis court in EasyCourt, the site offers a drop-down list with ready-made

dates, as shown in Figure 4-4. It should be noted, however, that this particular screen is not

 mobile-speciic but simply represents the plain transposition of a desktop page. You always should
wonder if there may be an innovative way of letting users enter their choices. Don’t stop at the classic,

 desktop-oriented way of building input forms. Mobile is different and user-centered.

http:///

 CHAPTER 4 Building Mobile Websites 83

FIGuRE 4-3 Entering dates in iOS5.

FIGuRE 4-4 Setting parameters for a query on available courts.

http:///

84 pArt II Mobile Sites

And inally, here’s a quick tip related to passwords. Strong passwords typically require mixing

lowercase and uppercase letters and numbers and symbols, but that’s too much work in a mobile

website. If possible, consider using numeric personal identiication numbers (PINs).

radio Buttons and Check Boxes

A common presence in many input forms, radio buttons and check boxes have just one problem in

mobile forms: they tend to be too small and hard to select with a touch. It is recommended that you

style these elements accordingly using padding and the companion label element. Don’t place such

elements too close to other elements, including other possibly related buttons.

Note On iOS, the tappable region is 44 points, which corresponds to a square of 7 mm.

This should be considered if you are creating a mobile site without using a framework such

as jQuery Mobile, which shields you from many details.

It is worth noting that jQuery Mobile completely rewrites the canonical markup for such input

 elements, as follows:

<input type="checkbox" name="rememberme" id="rememberme" data-theme="d" />

<label for="rememberme">Keep me logged</label>

The output produced by the preceding markup is shown in Figure 4-5.

FIGuRE 4-5 A check box that looks like a button and is really easy to tap.

http:///

 CHAPTER 4 Building Mobile Websites 85

In particular, jQuery Mobile surrounds the base HTML markup with padded DIVs to make it easier

for the user to tap. Compare the experience of tapping this with a regular check box that may even

need zooming to be read and selected (see Figure 4-6).

FIGuRE 4-6 A regular HTML check box, but zoomed.

When the user’s choice is a yes/no or on/off choice, it is common in mobile to use lip-switch
artifacts that are larger and more comfortable to use and easier to see. Although differently styled,

lip-switches are available in iOS, Android, and Windows Phone.

Scrollable and Drop-Down Lists

Radio buttons are a valid solution if you need only one selection out of just a few options. When the

number of options gets closer to 10, or more, you might want to consider a combo box or a plain

scrollable list.

One of the original Windows controls, the combo box provides the same experience on desktop

applications and websites. The same points previously discussed for radio buttons and check boxes

apply to combo boxes too—they’re usually too small to be touch-enabled effectively. You can play

with style sheets and use a larger font, but you manage to improve the result only a little bit—it

 remains far from ideal. Figure 4-7 compares native and adjusted combo boxes.

http:///

86 pArt II Mobile Sites

FIGuRE 4-7 Native and adjusted combo boxes.

Figure 4-7 shows the results that you get when you use jQuery Mobile. The bottom line, though,

is that you hardly want to use plain <select> elements on a mobile page without some graphical

 adjustments for size and touchability. On the other hand, <select> elements are more important than

ever in mobile pages because they can save users from typing free text.

Scrolling vertically is quite a natural gesture in a mobile scenario. However, the more you can group

related items, the better the inal experience for the user is. Once again, focus is king. Figure 4-8 shows a
couple of mobile views featuring grouped items and collapsible elements that effectively save valuable

screen real estate while providing optional information to users. Grids are effectively rendered on mobile

only rarely; smartly built vertical lists are a much more common and preferable choice.

FIGuRE 4-8 Collapsible and grouped elements.

http:///

 CHAPTER 4 Building Mobile Websites 87

In Figure 4-8, a collapsible element is the block that shows messages. As the icon suggests, it is

an area of the screen that can be collapsed. Other blocks are tables with one or multiple sections (to

use a terminology popular to iOS and Android developers). Some of the items serve as dividers of the

 sections and are styled differently, communicating the idea of grouped items.

If the list of items is particularly long, you might want to introduce some pagination. Essentially,

pagination works by irst loading a ixed number of items and then displaying a link at the end to get
more. Alternatively, more items can be loaded automatically when the user reaches the bottom of the

list. It is up to you to ensure that the DOM doesn’t end up containing too many items after a few click

requests for more items. If this happens, you might want to remove older items and move them to

another page that the user can request if needed.

Note If you want, you can play live with EasyCourt at http://www.easycourt.net/contosoen.

By reaching the site with a laptop and a mobile device, you can experience the different

levels of usability. The desktop site didn’t undergo any change to support mobile devices

except for the coniguration ile. For this reason, the desktop site currently doesn’t include
a link to the mobile site. This means that if you switch to the full site from a mobile one,

you can’t change back until you remove cookies for the site manually using the browser’s

Settings page.

Free text and Auto-Completion

No matter your efforts to save free text typing, sometimes users are just requested to enter a name

or a comment. There’s not much you can do to reduce the hassle of typing on a mobile soft keyboard

if you can’t igure out ways to allow the browser to offer a close-enough input scope. With native
 applications, it’s slightly better, but text typing remains a very sore point for mobile developers.

Auto-completion does help, but it costs you quite a bit of script code, which in turn increases the

payload for the page. Auto-completion must be coded through a plug-in—the jQuery UI auto- complete

plug-in works well with mobile pages. A plug-in that downloads data from an external source is the most

viable option when the potential number of options is in the order of hundreds. For a smaller number

of items, you can also consider the jQuery Mobile ilter bar. The base markup is the following:

 ...

 ...

 ...

Additional attributes will give the inal markup a strong auto-completion lavor, as in Figure 4-9.
Auto-completion also is sometimes a way to avoid long lists of hundreds of items that are very boring

to scroll through.

http:///

88 pArt II Mobile Sites

FIGuRE 4-9 A jQuery Mobile ilter bar selecting list items with “n.”

testing the Mobile Site
Testing a mobile site is not an easy task. You may use a mobile emulator (possibly more than one to

better simulate the various scenarios), but emulators are not enough. Testing on real devices is what

really matters and gives you the real perception of the application performance and user experience.

However, before you deploy to a few test devices (at least one per device class), you might want

to check user interface and logic on a more comfortable desktop machine. Emulators and user-agent

switchers can do some of the work for you.

Desktop Emulators

An emulator is a desktop application typically running on Windows that aims to mimic the behavior

and functions of a speciic browser. In mobile development, emulators are time-saving tools for

 irst-pass software testing.

Device/OS emulators are more speciic than browser emulators. Device/OS emulators (i.e., the Windows

Phone emulator) are created by device manufacturers and are generally really close to the device.

Browser emulators are generally written by third-party companies and serve mostly for verifying

the look and feel of the site at a given size and resolution. You should not consider a browser

 emulator for verifying the rendering of pages that have been optimized for certain classes of devices.

In general, emulators are a irst-aid device, and they can be used to test the behavior of the
 application on types of devices that you have no access to.

User Agent Switching

Most desktop browsers come with tools to switch the user agent (UA) string. By changing the default

UA string to that of a mobile device, you allow the browser to present the website with the credentials

of a particular mobile browser. Subsequently, the website will serve the mobile content that it has in

store. UA switchers are a special case of browser emulators.

http:///

 CHAPTER 4 Building Mobile Websites 89

The Firefox browser was the irst to offer such a powerful add-on. Today, you ind the same tool
for Google Chrome and Internet Explorer 9, as shown in Figure 4-10.

FIGuRE 4-10 The User Agent Switcher tool in Internet Explorer 9.

Opera Mobile Emulator is another interesting tool through which you can experience your site

as if you are visiting it through a number of speciied devices. Compared to the User Agent Switcher
Tool, the Opera Mobile Emulator is more lexible; more important, it is a single tool that can serve
multiple scenarios. In Figure 4-11, you see the emulator conigured to give the site being tested the
 appearance of running on a tablet.

FIGuRE 4-11 Selecting an emulator.

With all this said, it is worth making this point even clearer: you should test your mobile site on a

variety of mobile devices. In particular, don’t trust too much the apparent magic of UA switchers.

http:///

90 pArt II Mobile Sites

Let me illustrate a speciic scenario. The UA switcher forces the browser to send a particular UA string
and, subsequently, your server-side code recognizes the requesting browser as mobile. This is the only

certain fact.

At this point, your server-side code may inject some JavaScript that checks the browser’s capabili-

ties and adapts the markup. Your JavaScript code, however, will be querying the desktop browser, not

the mobile browser! Furthermore, a generic emulator like the Opera Browser Emulator may not be

able to imitate the real browser perfectly, which makes the test experience signiicantly less valuable.

The bottom line is that you should use switchers for quick testing, then move to device emulators,

and inally test on a selection of actual sample devices—the only source of truth.

Note If you want to test your mobile views on speciic devices (well, mostly smartphones),

all you need to do is get a hold of the same emulators that you use for testing native

 applications and then use the browsers that they offer.

In addition to buying or renting as many devices as you can, you can use a device-testing service

such as Keynote Device Anywhere (http://www.deviceanywhere.com). Another tool that is great for

remote debugging is Weinre (http://phonegap.github.com/weinre).

The Device-Detector Site

As an example of a mobile site that serves device-speciic content, let’s consider what it takes to build
a device-detector website with ASP.NET MVC. Figure 4-12 shows the desktop version of the site that

is being made mobile. It has a three-column layout and a variety of links. This site doesn’t do any

 particularly fancy things: it is limited to displaying the UA string and a few other browser capabilities.

FIGuRE 4-12 The desktop version of the Device-Detector sample site.

http:///

 CHAPTER 4 Building Mobile Websites 91

A mobile version of this site will remove a lot of bells and whistles and mostly focus on the primary

use-case: providing details about the current browser.

You should expect to see a single-column template with some graphics at the top (header) and

bottom (footer). In addition, a couple of links in the main content area just connect users to the page

with device details and contact (see Figure 4-13).

header

> Menu item #1

> Menu item #2

Caps Value

FooterFooter

header

FIGuRE 4-13 The mobile layout for the Device-Detector sample site.

In the early days of software development, about 20 years ago, it was natural to design the main

screen of applications (mainframe and desktop) through a main menu that accepted user selections

via mouse clicks or keystrokes. Nearly all applications were designed around a main menu that

 collected the various use-cases of the application.

The advent of pop-up and loating menus marked the end of this approach, which clearly was
limited to moderately complex applications. With mobile sites (and to some extent, also with native

applications), this old-fashioned model is revamped due to the relative simplicity of the logic and the

need to be direct and focused.

routing to Mobile Views
For a site that serves mobile content, an accurate detection of the device is key. In addition,

a (possibly) automated mechanism to route requests to the right view would be welcome. Up to

ASP.NET MVC 3, you have no tools to allow you to select the view and no convention-over-

coniguration (CoC) approach.

In ASP.NET MVC 4, instead, an enhanced infrastructure lets you give mobile views conventional

names that are resolved automatically by the system. For example, in ASP.NET MVC 4, a view named index.

mobile.cshtml will be used to serve requests for the Index action when coming from a generic mobile

device. ASP.NET MVC 4 is expected to give you even more control over the presentation layout, as it also

supports syntax like index.iphone.cshtml for a speciic class of mobile devices.

http:///

92 pArt II Mobile Sites

More Info For more information about MVC 4, refer to http://www.asp.net/mobile. In addi-

tion, you might want to look at my Programming ASP.NET MVC book for a deep coverage

of ASP.NET MVC 3.

Coniguring a Mobile-Aware View Engine
The source code that comes with this book provides a sample view engine that works well with

ASP.NET MVC3—the AmseViewEngine class. The engine builds on top of the built-in Razor view

 engine and allows you to invoke both desktop and mobile views. If the browser is detected as a

 mobile browser, the engine will attempt to resolve any view named Xxx as a view named Xxx.mobile.

If the mobile browser belongs to a speciic class, then it is mapped instead to an Xxx.proile view,

where proile indicates the name of the class.

You register the mobile-aware view engine in global.asax, as shown in this code:

public static void RegisterViewEngines(ViewEngineCollection viewEngines)

{

 viewEngines.Clear();

 viewEngines.Add(new AmseViewEngine(new AspnetMobileViewResolver()));

}

protected void Application_Start()

{

 ...

 RegisterViewEngines(ViewEngines.Engines);

}

The constructor of the view engine receives a user-deined class that knows the strategy to transform
the originally requested view to see if it exists in the site. In particular, the AspnetMobileViewResolver class

checks for xxx.mobile instead of xxx if it detects that the requesting browser is mobile.

View engines are a speciic feature of ASP.NET MVC. In ASP.NET Web Forms, you can achieve the
same result by registering an HTTP module that intercepts incoming page requests, detects whether

the requesting browser is a mobile browser, and redirects to a corresponding mobile page, if any.

Note The AmseViewEngine can be extended in a fairly easy manner to look for mobile

views in a distinct folder, such as Mobile. All you need to do is change the default value of

the ViewLocationFormats and PartialViewLocationFormats properties to point them to your

new Mobile folder. You set the properties in the view engine constructor.

routing to Mobile resources

Just as any other type of view, a mobile view may rely on a bunch of external resources, such as

 images, style sheets, and script iles. Because you control the markup of the mobile view, you can
 simply place all the references you need there. For example, you can link the jQuery Mobile library

http:///

 CHAPTER 4 Building Mobile Websites 93

only from the mobile layout; likewise, you might want to use smaller images for a mobile view or,

 better yet, you might want to embed images in the same view as Base64-encoded strings.

It is crucial to note, however, that mobile views may have their own set of resources. Most of the

time, you don’t need to differentiate mobile resources on a per-device-class basis.

Detecting Device Capabilities
So now there is a mechanism that can redirect automatically to a view that has been speciically
 designed for mobile browsers. But which part of the ASP.NET run time determines whether the

 requesting browser is a mobile browser? And, more important, which algorithm is used?

As you may understand, this is the central point of mobile site development—you may not need

detailed information in all cases about what a given device can or cannot do, but you always need to

know—with extreme accuracy—at least whether the requesting browser is mobile or not.

ASp.NEt Native Detection Engine

ASP.NET has its own detection API centered on the following code:

HttpContext.Request.Browser.IsMobileDevice

The IsMobileDevice property returns a Boolean value and indicates whether the current request

comes from a mobile device.

Without beating around the bush, this code is not really reliable. For example, it fails on a number

of popular devices, such as the HTC Desire and Samsung Galaxy S smartphones (both equipped

with Android); it also fails on a wide range of simpler devices, such as the Samsung GT S3370 Corby.

 Curiously, the native ASP.NET detection API succeeds with the BlackBerry, iPhone and iPod devices,

and with Windows Phone devices. Why is this so?

The value returned by the IsMobileDevice property results from a partly accurate analysis of the

UA string that ASP.NET performs under the hood. Essentially, ASP.NET uses the UA string as a key to

match the requesting browser to one of the predeined device proiles. A device proile is a text ile
with a .browser extension located on the server under the Windows folder at the following path:

// This is the path if you have the .NET Framework 4 installed on the server

\Microsoft.NET\Framework\v4.0.30319\Config\Browsers

Figure 4-14 offers a preview of the typical content of this folder.

http:///

94 pArt II Mobile Sites

FIGuRE 4-14 The content of the Browsers folder.

Files in this folder contain some basic information about a few families of browsers. Each family

contains a regular expression used to match the UA string. If a match is found, then the dictionary

of browser capabilities exposed to the application is illed with the values of the properties that are
known to apply to that family of devices.

This solution was devised years ago when the problem was detecting just a few desktop browsers.

Matching the UA string of a mobile device—and its nearly ininite variations—and identifying the
right value for a given property require a much richer and articulated database. The content of

browser iles can be extended and new iles can be created, but it doesn’t change the basic fact that
something stronger is needed.

The bottom line is that if you simply rely on the IsMobileDevice property, you seriously risk offering

a desktop site to many mobile devices. Worse yet, this especially happens with older devices that will

display just a basic site, to the frustration of users. What else can you do?

A Better Way of Detecting Mobile Devices

Detecting device capabilities is a dificult problem in mobile (not just ASP.NET mobile) because of
the wide fragmentation of devices. In my opinion, the device fragmentation problem has just one

exact solution that I’ll discuss thoroughly in Chapter 6. This solution is using a DDR like the Wireless

 Universal Resource File (WURFL).

Most DDRs are not free for every use; and free versions of most DDRs just reduce severely the

number of capabilities that they return. The bottom line is that you should be ready to spend money

when it comes to DDRs; your money will be well spent.

http:///

 CHAPTER 4 Building Mobile Websites 95

Anyway, I’d like to illustrate quickly a couple of totally free (but possibly only approximate)

 solutions that you might want to consider before you go to Chapter 6 and pick up your favorite

DDR framework. I’ll leave it up to you whether any of these options may work for you in the real-life

 battleield.

The irst option entails writing your own wrapper around the Browser.IsMobileDevice property. You

can create it as your own class, or perhaps as an extension method to the Request object. Regardless

of these implementation details, what really matters is the logic that you use to write the code. Here’s

a sample detection function written as an extension method for the native ASP.NET Request object:

public static class RequestExtensions

{

 public static Boolean IsMobileDevice(this HttpRequestBase request)

 {

 var response = request.Browser.IsMobileDevice;

 if (response)

 return true;

 // If response is false, there are still good chances to have a mobile device.

 // Let's check the user-agent string for common substrings.

 var userAgent = request.UserAgent.ToLower();

 response = userAgent.Contains(ºopera mini") ||

 userAgent.Contains("mobile") ||

 userAgent.Contains("samsung") ||

 userAgent.Contains("nokia") ||

 userAgent.Contains("htc") ||

 userAgent.Contains("android") ||

 userAgent.Contains("windows phone") ||

 userAgent.Contains("midp") ||

 userAgent.Contains("cldc");

 return response;

 }

}

If the IsMobileDevice native property returns true, then you can be sure that the requesting

browser is really a mobile browser. The problem is with false negatives. The simplest thing you can do

is check the UA string looking for common substrings associated with mobile agents. The preceding

example includes some manufacturer names and operating system names. The MIDP string refers to

the Mobile Information Device Proile (MIDP), a speciication that is part of the Java Platform Micro

Edition (Java ME) framework. MIDP works on top of the Connected Limited Device Coniguration
(CLDC), which is instead a lower-level speciication. In the end, both MIDP and CLDC are strings that

appear often in UA strings sent by mobile devices.

Finally, you may have noticed that this list contains no reference to popular devices such as iPhone

(and iPod/iPad) and BlackBerry. This is because ASP.NET 4 comes with .browser iles for detecting
both platforms (see Figure 4-14). As a result, the basic IsMobileDevice property works on iOS and

 BlackBerry devices.

A more powerful approach is based on a repository of mobile proiles that Microsoft built for
internal purposes and made public through a CodePlex project: http://mdbf.codeplex.com. It’s called

the Mobile Device Browser File (MDBF). If you visit the website, however, you ind out that it is a

http:///

96 pArt II Mobile Sites

dead project now. This means that the database for this project won’t be maintained and extended

any longer, although you still can download and use it. With the wave of new devices being released

every month, this is clearly a problem.

To use the MDBF repository, all you need to do is copy the ile in the App_Browsers/Devices
folder of your website. The content of the ile will be read by the ASP.NET infrastructure and used to
 populate the dictionary of browser capabilities.

You can extend the MDBF repository—an 18 MB XML ile—to keep it up to date. Likewise, you
can update .browser iles and add new ones. Both options, however, are not compelling because they
require a lot of maintenance work and research. And this is probably the reason why approximate and

exact solutions exist, and exact solutions are not free.

DDr Options

The quintessential DDR is, without a doubt, WURFL, by ScientiaMobile (http://www.scientiamobile.com).

WURFL was created in 2002—four years before the DDR acronym was irst coined on a World Wide Web
Consortium (W3C) mailing list. An open-source community-based initiative, WURFL is comprised of an

API and a data repository. The API maps incoming HTTP requests to a known device deinition and then
retrieves known capabilities for that device from the repository. The repository is updated independent of

the API so that companies just refresh the repository periodically without the need to change or rebuild

the application. The WURFL API is available for a variety of platforms and languages, including ASP.NET,

Java, C++, Ruby, and PHP. See http://wurl.sourceforge.net.

In the summer of 2011, the WURFL owners have moved the project to a different licensing model,

which is stricter in many ways. While the API is technically still open-source, the Affero GPL v3 license

now requires that users completely open-source the proprietary code linked to the WURFl API on

their servers. This requirement is typically not compatible with the requirements of commercial

 entities. Therefore, to avoid open-source provisions, companies can buy a commercial license for

WURFL API and data from ScientiaMobile. Note that the WURFL repository is distributed with a

 proprietary license that prevents you from copying the WURFL data and using it with third-party APIs.

Another interesting DDR speciically aimed at the ASP.NET platform is 51Degrees. See

http://51degrees.codeplex.com. 51Degrees relied originally on WURFL as the source for device

 information, but the change in the licensing model of WURFL forced to adopt a different and

 proprietary repository. Recently, 51Degrees has been relaunched with a new vocabulary (i.e., set of

property names) and new data. 51Degrees is a purely commercial initiative, but it offers a free version

as a teaser for the platform. The free version is limited to a DDR with just four properties: isMobile,

ScreenPixelWidth, ScreenPixelHeight, and LayoutEngine, which is simply the browser engine.

Other players in the DDR world are DetectRight (http://www.detectright.com) and DeviceAtlas

(http://www.deviceatlas.com). MobileAware (http://www.mobileaware.com) and NetBiscuits

(http://www.netbiscuits.com) are also names worth mentioning, although they do not offer pluggable

DDRs as part of their main business model. In other words, the DDR is just one component of a more

elaborate product.

http:///

 CHAPTER 4 Building Mobile Websites 97

Note Search engines may point you to a few other device detection initiatives, mostly

 created as an aspect of WURFL and, for this exact reason, subject to legal dispute. Accuracy

and level of service, however, don’t currently compare to any of the DDRs discussed here.

CSS Media Queries

Lateral thinking is about solving problems using an innovative approach and unconventional

 reasoning. The lateral thinking about device detection seems to be CSS Media Queries and responsive

(or adaptive) web design. Is detecting devices hard? Don’t do that, then; just take a bunch of basic

properties (e.g., screen size) and let the page adapt and relow accordingly.

The magic potion that enables responsive web design is CSS Media Queries. Introduced with CSS 3,

media queries simplify the design of sites that might be consumed through devices of different screen

sizes ranging from 24 inches on a desktop monitor to 3 inches on most smartphones. Media queries

are not speciically a technology for mobile development, but the lexibility of this feature makes it
really compelling to use to serve different devices with a single codebase.

The idea, in fact, is that you just create one site with a single set of functions and then apply

 different CSS styles to it by loading a different style sheet for different media. The great improvement

brought by CSS 3 is that a medium (such as a screen) now can be restricted to all devices that match

given rules. Here’s an example of media queries:

<link type="text/css"

 rel="stylesheet"

 href="downlevel.css"

 media="only screen and (max-device-width: 320px)">

Placed in a HTML page (or view), this markup links the Downlevel.css ile only if the page is viewed
through a browser with a width of 320 pixels or less. Note that there’s no explicit check on the type of

browser, whether mobile or desktop: all that matters is the real width of the screen. (Needless to say, with

a screen width of 320 pixels, it can only be a mobile phone or handheld device.) The only keyword should

be added for the sole purpose of hiding the statement from browsers that don’t support media queries.

These browsers, in fact, don’t understand the media type and go right ahead. The full documentation

about media queries can be found at http://www.w3.org/TR/css3-mediaqueries.

What’s the problem with media queries?

It is a common idea these days that by simply adding media queries to a site, you make it ready for

mobile clients. CSS media queries help making the page content more mobile-friendly, but they don’t

affect other critical areas, such as the number of HTTP requests per page, whether DOM manipulation

and AJAX are supported, or if a touchscreen is available.

Media queries can check out only a limited number of browser properties—namely, those listed

in the W3C standard: device width and height, orientation, aspect ratio, color depth, and resolution

to name the most frequently used ones. Most properties support the min- and max- preix to help
you write more precise queries. Being a CSS feature, media queries only can hide elements that are

http:///

98 pArt II Mobile Sites

too big or low-prioritiy to display on a small screen. You still pay the costs of downloading or keeping

these elements in memory. You can use some JavaScript in the pages to download or conigure
 images programmatically. In this way, heavy elements can be managed in a more optimized manner.

In addition, media queries require a browser that supports CSS3. So they work on most smartphones,

but not, for example, on Windows Phone 7.0. An all-browser solution for media queries is available

through a jQuery plug-in that you can get at http://www.protofunc.com/scripts/jquery/mediaqueries.
However, there’s no guarantee that the mobile browser where you may be using this plug-in can really run

jQuery.

Browser Capabilities

Detecting whether the requesting browser runs on a mobile device is only the irst step toward
 delivering an adequate experience to any mobile users. Once you have identiied a device correctly as
a mobile device, you should try to detect the capabilities of the device. For example, you might want

to know the version of the operating system, its real screen width and height, whether it supports

AJAX, if it can perform some DOM manipulation, and if CSS is supported. In addition, you might want

to optimize the user interface in case the device has a touchscreen or is really a tablet.

Finally, have you ever tried to visit a site with an older phone? If you have, then you know what I

mean. First, the phone will likely have no support for WiFI, so it will connect over the mobile network.

The slow connection will take a lot of time to see how many different connections are made to

download images, scripts, and auxiliary iles. You might always want to merge CSS and minify scripts,
but what about images? Sprites are a possible solution, but they require CSS support from the device.

Inline images (namely, images embedded in the page as Base64 strings) are another route to explore.

You need to know these and possibly more details about the speciic device. Some properties can
be tested programmatically with a bit of JavaScript. The following code, for example, shows how to

check programmatically whether AJAX is supported:

var xhr = window.ActiveXObject ? new ActiveXObject("Microsoft.XMLHTTP") : new XMLHttpRequest();

if (xhr === null)

 alert("No support for Ajax");

Many other properties can’t just be tested programmatically. For instance, how would you detect

programmatically if a device understands inline images, has a touchscreen, or is a tablet? For these

and other types of capabilities, you need a repository of information that is updated weekly, if not

more frequently. If delivering a great user experience on a variety of mobile devices is your goal, then

you need the appropriate tool. And you probably need to pay for it.

putting the Site Up
At the end of the day, a mobile site is just a website that has been designed according to a different

set of guidelines. Once you know whether the device is mobile and what its capabilities are, you can

proceed safely with the actual design of the site—layout, style, and markup.

http:///

 CHAPTER 4 Building Mobile Websites 99

Adjusting the Layout

In a mobile site, you might want to use mostly a single-column layout and move navigation and

search functions to the top and bottom of the page. Finally, you might want to leave the user free

to scroll vertically to locate what is relevant but doesn’t it on the physical page. Beyond these basic
rules, the design of a mobile site is all about inding the most friendly and creative way of presenting
your content. Here’s the layout ile for the mobile version of our site.

Note that the listing uses the ASP.NET MVC Razor syntax to describe the view. The Razor syntax

mixes plain HTML with executable expressions. Executable expressions are preixed with the
@ symbol. In particular, in the following example, the ViewBag expression refers to a collection

through which the page passes values to the view. A good step-by-step tutorial to Razor can be

found at http://goo.gl/9eTEm.

<html>

 <head>

 <meta name="viewport"

 content="width=device-width, initial-scale=1.0, maximum-scale=1.0,

 user-scalable=no" />

 <title>@ViewBag.Title</title>

 <link href="@Url.Content("~/Content/Styles/Site.css", mobile:true)"

 rel="stylesheet"

 type="text/css" />

 </head>

 <body>

 <div id="header">

 <img src="@Url.Content("~/Content/Images/logo.png", mobile:true)"

 class="image" alt="" />

 </div>

 <div id="content">

 <h2>Know Thy Devices</h2>

 <p>

 Find out details of the devices that visit your site.

 This demo also shows a sample mobile template.

 </p>

 </div>

 <div class="actual-body">

 @RenderBody()

 </div>

 <div id="footer">

 <p>Architecting Mobile Solutions for the Enterprise</p>

 </div>

 </body>

</html>

Note that this ile is named Layout.mobile.cshtml and is resolved in _Viewstart.cshtml, using an
enhanced version of the native UrlHelper object in ASP.NET MVC:

@using Mobi.Framework.ViewEngines;

@{

 Layout = Url.Content("~/Views/Shared/_Layout.cshtml", mobile:true);

}

http:///

100 pArt II Mobile Sites

As mentioned, the layout ile implements a single-column view and points to external resources
using our custom Url.Content method as a resource switcher.

Let’s ind out more about the viewport <meta> tag.

Most mobile browsers can be assumed to have a rendering area that’s much larger than the

 physical width of the device. This virtual rendering area is called the viewport. The real size of the

internal viewport is browser-speciic. However, for most smartphones, it is around 900 pixels. Having
such a large viewport allows browsers to host nearly any webpage, leaving users free to pan and

zoom to view content, as in the following illustration:

Browser area

Viewport

This behavior may perhaps be desirable (or at least not too disturbing) when you have a

 high-resolution smartphone; but what if your users host the site within a 240 × 320 device? It’s like

looking through a keyhole. To gain control over mobile browsers’ viewports, you add an explicit

 viewport <meta> tag and instruct the browser about it as follows:

<meta name="viewport"

 content="width=device-width, initial-scale=1.0, maximum-scale=1.0, user-scalable=no" />

In this example, you tell the browser to deine a viewport that is the same width as the actual
device. Furthermore, you specify that the page isn’t initially zoomed and can’t be zoomed in by users.

Setting the width property to the device width is fairly common, but you can indicate an explicit

number of pixels. Figure 4-15 shows how the same page looks on an older device with and without

the viewport tag.

Adjusting the Style

A mobile site deserves its own CSS ile where you deine a bunch of new styles required by the
 speciic user interface. In addition, the CSS ile will probably need to override some of the styles
shared with the desktop site (if any).

For example, you might want to remove background images and replace them with solid colors.

Background images are a great example to show how CSS media queries can hardly be the perfect it
when you need to provide multiple views for devices other than smartphones. With media queries,

you only have the device width to distinguish devices. However, when it comes to devices less than

300 pixels wide, you can still ind different capabilities. Some relatively powerful devices fall in this
category that have touchscreen and good HTML capabilities. For these devices (e.g., Samsung Corby),

http:///

 CHAPTER 4 Building Mobile Websites 101

you can still use background images, but you cannot for any devices smaller than 300 pixels. This is

to say that you can do a lot with CSS styles, but not everything. Beyond a threshold, you just need to

upgrade to another solution as WURFL. (See Chapter 6 for more information.)

FIGuRE 4-15 Effects of the viewport tag.

In a mobile style ile, it is important to use the padding property appropriately to ensure that

 clickable elements (in touch-enabled devices) are large enough to accommodate a relatively

 inaccurate pointing device like the human inger.

Adjusting the htML View

The sample site, Device Detector, while not realistic in terms of functionality, is an excellent starting

point for understanding the role of browser capabilities. Figure 4-16 compares the desktop and

 mobile versions of Device Detector.

FIGuRE 4-16 Desktop and mobile site face to face.

http:///

102 pArt II Mobile Sites

The mobile site requires an extra step to get to the real data: you must click the Details link. The

Index view is therefore different in our ASP.NET MVC application. The Index.mobile.cshtml view simply

renders a static markup with a couple of links. It is interesting to see where the Details link points. It

points to a Details action method on a new controller—the DeviceController—that is used only by the

mobile subsystem:

public class DeviceController : Controller

{

 public ActionResult Details()

 {

 ViewBag.UserAgent = Request.UserAgent;

 ViewBag.IsMobile = Request.Browser.IsMobileDevice;

 ViewBag.SupportTables = Request.Browser.Tables;

 ViewBag.MobileDeviceInfo = String.Format("{0}, {1}",

 Request.Browser.MobileDeviceModel,

 Request.Browser.MobileDeviceManufacturer);

 ViewBag.PreferredImageMime = Request.Browser.PreferredImageMime;

 ViewBag.ScreenSize = String.Format("{0} x {1}",

 Request.Browser.ScreenPixelsWidth,

 Request.Browser.ScreenPixelsHeight);

 ViewBag.SupportAjax = Request.Browser.SupportsXmlHttp;

 ViewBag.DomVersion = Request.Browser.W3CDomVersion;

 // Point to the device.cshtml view

 return View();

 }

}

The method would return the view generated from the Details.cshtml template. However, because

this method is invoked only from the mobile site, the actual view ile will be Details.mobile.cshtml.
However, the view engine being used here can pick up Details if it can’t ind Details.mobile.

The Details method collects some data about the requesting browser and composes them into the

view. As you can see in this example, the information about browser capabilities is what ASP.NET makes

available natively. I actually took the screenshots of this chapter from a site where I installed the MDBF

repository—now largely outdated, but far better than the default ASP.NET browser coniguration.

In particular, you can consume some of the capabilities being passed down to the view to fork your

rendering code, as shown here:

@if (ViewBag.SupportTables)

{

 <table id="deviceTableInfo" cellpadding="4" cellspacing="2">

 ...

 </table>

}

else

{

 ...

 ...

}

http:///

 CHAPTER 4 Building Mobile Websites 103

Figure 4-17 shows a screenshot of the site captured from an iPod device.

FIGuRE 4-17 The Device Detector site displayed on an iPod device.

Figure 4-18, instead, shows the same site on a low-level device, but it is still touch-based and has

some decent HTML capabilities (JavaScript and CSS support).

FIGuRE 4-18 The Device Detector site displayed on an Samsung Corby device.

http:///

104 pArt II Mobile Sites

Figures 4-17 and 4-18 don’t show noticeable differences in the rendered markups. However, if

you view it live, you see that the device of Figure 4-18—an older device—takes a while to render the

page for at least a couple of reasons. First, it doesn’t have much processing power, so any operation

(JavaScript or just downloading) is slower. Second, it doesn’t have WiFi support; so any download can

occur only via 3G. The rendering experience is somewhat painful because it irst displays the skeleton
of the HTML; next, it downloads the CSS and applies colors; and inally, it gets the picture and inserts
that into the layout. Tweaking HTML for older browsers is an operation that you might want to

 optimize on a per-page basis—if it is worth the cost.

Summary

This chapter tried to turn into practical advice and bits and pieces of code some of the most common

practices employed today to build mobile websites. The number of mobile devices is huge, but, on

the other hand, you don’t have to target all of them. Mobile development is about understanding

what you and your customers want and need. This is a crucial point and results in an ideal selection

of use-cases. Appropriate and well-described use-cases are essential for any application, but it is a

bit more important for mobile applications and sites. For mobile sites, in particular, I estimate that it

represents the largest share of the work.

Selection of use-cases helps to keep the whole application up-close-and-personal, establishing a

relationship between code and user that is much stricter than with any other type of application.

Beyond this point, building a mobile site is a matter of optimization: minimizing requests,

 minimizing content being downloaded, and minimizing the user’s activity. But it's also a matter of

 optimizing the design to ind a good compromise between UI widgets and touch capabilities. The
user interface is critical: common widgets like drop-down lists and check boxes, while valid to express

the behavior of a view, may require a different rendering and graphical structure.

Finally, a mobile site may largely reuse code in the back end of the sister desktop site. Coding the

back end is probably the simplest aspect of mobile site development. The next chapter covers in more

detail two technologies that have been mentioned only briely up to now: jQuery Mobile and HTML5.

http:///

 105

C H A P T E R 5

htML5 and jQuery Mobile

I always like to look on the optimistic side of life, but I am realistic enough to know

that life is a complex matter.

— Walt Disney

In this chapter:

 ■ jQuery Mobile Fast Facts

 ■ HTML5 Fast Facts

 ■ Summary

So far, this book has covered the foundation of mobile site development—a single-column layout,

different views, a viewport, browser detection, and the role (and understanding) of capabilities.

With these tools, you build basic applications that may be fully functional, but they aren’t necessarily

compelling to users.

Mobile users have high expectations in terms of user experience; they expect applications to

 provide an overall user interface similar to that of smartphones (e.g., iPhone): touch-based and

 populated by common widgets such as pick-lists and the iPhone-ish toggle switch. These widgets

don’t exist (yet?) as native elements of HTML and must be simulated using server-side controls that

output a mix of JavaScript and markup every time. The bottom line is that creating a plain site making

the best possible use of HTML, Cascading Style Sheets (CSS), and JavaScript is one thing; it is quite

another to make a compelling mobile site that looks like a native application or, at the very least,

behaves like one.

This chapter will introduce two alternate approaches to mobile site development. One is based

on the jQuery Mobile library; the other employs the full power of HTML5. Is it just a matter of

 preference? Well, it should be noted up front that while with jQuery Mobile, you can build one site

that works on any browser (mobile and desktop) in at least some way, a full HTML5 solution works

only on browsers that support it. The list of HTML5-compliant browsers includes the latest versions

of Safari, Firefox, Chrome, Opera, Konqueror, and Windows Internet Explorer, and default mobile

 browsers available on recent versions of major mobile platforms (iPhone, Android, and Windows

Phone 7.5). So HTML5 is more widespread than one may think and is deinitely worth a look.
Chapter 11, “Mobile Applications with PhoneGap,” will return to discussing a stand-alone HTML5-

based solution as a way to build cross-platform native applications through an intermediary tool like

PhoneGap.

http:///

106 pArt II Mobile Sites

jQuery Mobile Fast Facts

Working on top of the popular jQuery library, jQuery Mobile is built from the ground up to be a

mostly comprehensive platform for building mobile sites. In this regard, jQuery Mobile is more

 intrusive than jQuery. In fact, jQuery Mobile implements Progressive Enhancement from the ground

up. You code your way through the library, and the library takes care of rendering the markup in

the best possible way on the browser. By using jQuery Mobile, you don’t necessarily have to worry

about device detection and capabilities. The library guarantees that the output works also on older

 browsers; whether the obtained output is really what you want—well, that’s quite another story.

Important So are libraries like jQuery Mobile really the Holy Grail of mobile site

 development? Do these libraries have the power to free you from the need to detect

browser capabilities carefully? Like CSS media queries, libraries can shield you from dealing

with the nitty-gritty capabilities of speciic devices; but the power of libraries ends with the
rendering of the markup and perhaps with some general-purpose forms of optimization,

such as minimizing Hypertext Transfer Protocol (HTTP) requests and compressing data.

They can’t help much if you just need to know about capabilities that can’t be reliably

t ested via code such as inline images, screen resolution, and touch capabilities.

Generalities of jQuery Mobile
The main purpose of the jQuery Mobile library is enabling cross-platform, cross-device, and

 cross-browser programming of mobile websites. It shares the same architecture and programming

model of full jQuery. The biggest beneit of using JavaScript libraries like jQuery and jQuery Mobile is

that you learn a uniied application programming interface (API) and it works across a large number
of browsers. Consider that a signiicant part of the jQuery codebase deals with browser compatibilities
and performs tricks to ensure that users get nearly the same experience regardless of the browser.

Setup of the Library

The oficial site of jQuery Mobile is http://www.jquerymobile.com. You can get the latest version of

jQuery Mobile from http://code.jquery.com. This chapter is based on jQuery Mobile version 1.0.

The library is nearly unusable without a companion CSS ile. The library does a lot of work on any
page and transforms it from a plain collection of DIV tags into a usable, mobile-friendly document.

For this to happen, you need a slew of styles and images that have been created following strict

standards. The library comes with a predeined CSS ile you can use in your websites. Like many other
things, themes are customizable by developers, of course.

The following code shows the iles to link into any application page or just into a master page.
With reference to ASP.NET MVC, here’s the structure of a layout ile:

http:///

 CHAPTER 5 HTML5 and jQuery Mobile 107

<!DOCTYPE html>

<html>

<head>

 <title>jQuery Mobile Demos</title>

 <meta name="viewport" content="width=device-width" />

 <link rel="stylesheet"

 href="@Url.Content("~/Content/Styles/jquery.mobile-1.0.css")" />

 <link rel="stylesheet"

 href="@Url.Content("~/Content/Styles/site.css")" />

 <script type="text/javascript"

 src="@Url.Content("~/Content/Scripts/jquery-1.6.4.min.js")" />

 <script type="text/javascript"

 src="@Url.Content("~/Content/Scripts/jquery.mobile-1.0.js")" />

</head>

<body>

 @RenderBody()

</body>

</html>

As you can see, you need to reference the jQuery Mobile CSS ile (plus any other application-
speciic CSS ile), as well as the regular jQuery library. The regular jQuery library must be referenced
before the jQuery Mobile library.

Graded Support Matrix

The jQuery Mobile library targets a variety of browsers and divides them into three main groups

named A, B, and C. The partition is based on the capabilities that browsers provide with respect to the

library’s needs. Support for CSS media queries is a key capability in jQuery Mobile. Browsers without

media query capabilities still can be able to display jQuery Mobile pages effectively, but the inal user
experience is much less pleasant.

Now let’s ind out more about the capabilities required for browsers in the various groups.

Top-level browsers are called A-graded browsers. They typically support media queries, JavaScript,

Ajax, CSS, and full Document Object Model (DOM) manipulation. A-graded browsers are tested

 regularly and represent the group of browsers that the library is basically built against. There’s no

guarantee, however, that 100% of the library’s features are supported on just any A-graded browser.

B-graded browsers are less powerful but still capable and powerful. The most common deiciency
of B-graded browsers is that they lack Ajax. The library is not optimized for such browsers, so you

might expect to be able to carry out operations successfully but with a less pleasant experience. The

point is that B-graded browsers are less prioritized and subsequently have less opportunity to see

workarounds implemented in the core library to ix any misbehavior. If any of these browsers is critical
for you, you may even decide not to use jQuery Mobile or opt for more customized pages.

Finally, C-graded browsers are browsers that don’t support media queries and are limited in terms of

JavaScript, DOM manipulation, and CSS. When operating through a C-graded browser, a jQuery Mobile

page falls back to plain HTML and basic CSS. No DOM modiication is applied to page elements. For these
browsers, you should plan an alternative set of pages to improve the user experience. The most updated

matrix of browsers and grades is available at http://jquerymobile.com/gbs.

http:///

108 pArt II Mobile Sites

Figure 5-1 shows the same page on an A-graded and a C-graded browser.

FIGuRE 5-1 Comparing A-graded (left) and C-graded browsers.

Improvements in A-graded browsers are not simply aesthetic: links are padded to make it easier

for users to tap.

Important Note also that the plain HTML version of a page that you see on a C-graded

 browser may not always be as clean as in this example. To have a clear idea of what the output

of a page on a C-graded browser will look like, just disable JavaScript on the browser. The

 bottom line is that jQuery Mobile is an excellent solution for A-graded browsers; for other

browsers, it may need some work and probably different page templates.

themes and Styles

The jQuery Mobile library comes with a few predeined themes identiied with the irst letters of the
alphabet: a, b, c, and so forth. Each theme consists in a number of CSS styles being uniformly applied

to various HTML elements. Most of the time, you just pick up the theme you prefer, and the choice is

based on colors. The library defaults to theme C.

http:///

 CHAPTER 5 HTML5 and jQuery Mobile 109

You can apply a different theme to different parts of the page by using a data-* attribute. (You will

see more on data-* attributes in a moment.) Themes are applied by default but can be overwritten

using plain CSS commands on particular elements, as shown here with the class attribute:

<div data-role="footer" class="amse-footer center">

 ...

</div>

The preceding DIV element has been given the role of the footer; as such, it gets a particular

style from the library depending on the current theme. However, the class attribute can be used

to override some properties (e.g., colors, borders, and font). The class attribute will hardly replace

 settings completely; if that’s your purpose, you are probably better off creating your own custom

theme using the ThemeRoller tool of jQuery Mobile. (For more information about this tool, see

http://jquerymobile.com/themeroller.)

Data-* Attributes

In HTML5, data-xxx attributes are custom attributes that you can use to deine the semantic
of an element better. Such attributes are forced to have a name in the form of data-xxx, but any

 framework (or page) is responsible for specifying the xxx variable part, and, more important, for the

 interpretation of the attribute name. A data-xxx attribute always returns and accepts a string.

The jQuery Mobile library recognizes quite a few data-xxx attributes and uses them to decorate

HTML elements and give them a special meaning. The semantic expressed by the attributes

 determines the graphical output.

One of the most important data-* attribute in jQuery Mobile is the data-role attribute. It indicates

the role played by that speciic element in the context of the page. The attribute is commonly used to
decorate DIV tags and make them pass as very semantic-speciic components such as the header, the
footer, and content.

Note HTML5 data-* attributes are different from microformats. A microformat is still

a special HTML markup, but it has a general scope and is not limited to the current

 application when not on the current page, as data-* attributes are.

Building Mobile pages with jQuery Mobile
A mobile page is a relatively simple page often based on the single-column layout. In jQuery Mobile,

a page results from the combination of header, footer, and content elements. However, the page itself

doesn’t necessarily have to be a separate ile.

http:///

110 pArt II Mobile Sites

Note Any jQuery Mobile physical page starts with an HTML5-compatible doctype to alert

HTML5-ready browsers to express their full potential. At the same time, older devices with

non-HTML5 browsers will simply ignore the doctype, as well as ad hoc elements and

data-* attributes.

What’s a page?

In jQuery Mobile, a page can either be a single HTML ile or an internal section of an existing page. In

the library jargon, the two scenarios are referred to as single-page template and multipage template.

Nicely enough, the library allows you to navigate to pages regardless of their nature, whether they are

physical pages (distinct HTML iles) or logical sections of an existing HTML ile. Here’s the typical page
deinition:

<div id="homePage" data-role="page" data-theme="a" class="amse-bkgnd">

 ...

</div>

A page is identiied by a DIV element decorated with the data-role attribute set to the page value.

In the end, a jQuery Mobile page is mostly the root container of markup. The page can have its own

ID and can use the class attribute to override style settings. You can select the theme for the entire

page using the data-theme attribute. By default, the theme attribute accepts values like a, b, c, d,

and e. You are entitled to add more themes, however. You can refer to the jQuery Mobile online

 documentation for the graphical details of these predeined themes.

A jQuery Mobile page is often made of a header, a footer, and content. It should be noted,

 however, that this is just a convention: the page can contain any valid markup. A HTML ile can
 contain multiple elements marked as logical pages, such as the following:

<div id="homePage" data-role="page" data-theme="a" class="amse-bkgnd">

 ...

</div>

<div id="aboutPage" data-role="page" data-theme="b">

 ...

</div>

When multiple logical pages are used, you might want to use unique IDs for each of them, which

enables navigation and initialization.

Initializing pages

Any jQuery developer knows the ready event very well. The event is ired to your code as soon as
the page DOM is fully initialized, and the page author can complete the initialization of the page

elements safely. In jQuery Mobile, you don’t use the ready event; instead, you use the new pageinit

event:

<div id="homePage" data-role="page" class="amse-bkgnd">

 <script type="text/javascript">

http:///

 CHAPTER 5 HTML5 and jQuery Mobile 111

 $("#homePage").bind("pageinit", function () { alert("home"); });

 </script>

 ...

</div>

The difference is that in jQuery Mobile, Ajax is used to download requested pages and set up

animations and page transitions silently. This means that the display of the page (whether a real page

or a virtual page container) follows different rules than in classic jQuery.

In a nutshell, all you need to do is add a <script> tag within the page element and bind the

DIV that represents the page with the pageinit event. That code is guaranteed to be invoked every

time the page is loaded—whether following a link or by using an Ajax call. In pageinit, you typically

 register your jQuery plug-ins and do your initialization work (apply localized strings, set up controls,

and the like). Similar events exist for page display and unload.

Important In mobile development, the Back-and-Save pattern (or AutoSave) is pretty

popular in both native applications and mobile sites. The pattern suggests that you

 automatically save any data or selection the user makes on a form. In mobile applications,

you need to capture the return event (as exposed by the framework you’re using); in mobile

sites, this is harder to do at the DOM level. The jQuery Mobile library makes it easy. Chapter 7,

"Patterns of Mobile Application Development," will cover Back-and-Save and the other

mobile application development patterns in more detail.

headers and Footers with jQuery Mobile

Two commonly used values for the data-role attribute are header and footer. The header bar contains

the page title and a couple of optional buttons to the left and right (mimicking the iPhone template).

The header role receives a special style by the framework and undergoes some default manipulation.

As a developer, you can customize both the header template and the text and target of the buttons

completely. Here’s a sample header bar:

<div data-role="header">

 <h1>Demos</h1>

</div>

In particular, the irst heading element (H1–H6) is used to title the bar; if the content is not empty,

that text also becomes the page title, overriding any value assigned to the <title> element. The

 heading element that you use to title the header bar doesn’t matter so long as it is an Hx element—

the style applied is the same. If you want to give the page its own title distinct from the header

text, you use the data-title attribute on the page container. The irst link found in the header bar is
 automatically styled as a button and moved to the left. The second link, instead, is placed to the right.

If you want just one button to the right, you add an extra class attribute, as shown here:

<div data-role="header">

 <h1> Settings </h1>

 Back

 Save

</div>

http:///

112 pArt II Mobile Sites

The data-icon attribute selects one of the predeined icons in the jQuery Mobile themes; the
 ui-btn-right value moves the button to the right (in the example, it is not strictly needed because the

button to the right is the second one). It is interesting to note that if you use ASP.NET MVC and HTML

helpers, the preceding anchors must be rewritten as shown here:

@Html.ActionLink("Back", "index", "home", null, new {data_icon = "back"})

@Html.ActionLink("Save", "save", "home", null, new {data_icon="gear", @class="ui-btn-right"})

ASP.NET MVC will expand the underscore (_) to the dash (-) symbol automatically, and the

@ symbol escapes the word class, which otherwise would have another meaning to the Razor

compiler.

Unlike the header, the footer is not designed to simplify a given markup template. However, any

link that you place in the footer area is turned into a button automatically and any markup, including

form markup, is acceptable in the footer. In this way, you can place an application bar in the footer

or even a drop-down list to let the user choose, say, the language. Note that jQuery Mobile manages

the actual position of the footer bar. By using the data-position attribute, you can keep the position

constant to the bottom of the page:

<div data-role="footer" data-position="fixed" data-id="about-us">

 ...

</div>

When the user follows links between pages, jQuery Mobile applies transitions to the entire page.

Sometimes, you get a smoother effect by keeping the footer still. For this to happen, the footer must

be ixed on both pages making the transition; and in addition, both footers must have the data-id

attribute set to the same (unique) identiier. Figure 5-2 shows a sample page with a header, footer,
and placeholder for the body.

FIGuRE 5-2 The default page template in jQuery Mobile.

http:///

 CHAPTER 5 HTML5 and jQuery Mobile 113

To customize the header template entirely, you add a child DIV to the header block and populate it

at will. Note that in this case, you lose automatic manipulation; for example, links display as plain links.

You need to use the data-role=button attribute to make the transformation:

<div data-role="header">

 <div>

 <h3>Custom templates</h3>

 @Html.ActionLink("Back", "index", "home", null,

 new {data_icon = "back", data_role="button", @class="ui-btn-right"})

 </div>

</div>

Figure 5-3 shows a custom header template. Note that you also add CSS gradients to the background.

FIGuRE 5-3 A custom header template.

Lists, Lists, and Lists

As stated repeatedly up to now, the home page of a mobile site should simply provide a list of actions

like the classic main menu of applications of 30 years ago. The items of the menu can be rendered in

a number of ways—they can form a navigation bar, a button bar, a collection of tiles, or a plain list of

good-looking links. jQuery Mobile supports nearly any scenario, but in particular, it works great with

navigation bar and list views.

http:///

114 pArt II Mobile Sites

You enable a navigation bar by using the navbar role on a DIV element and adding buttons

through a UL collection. Here’s an example:

<div data-role="navbar">

 Results

 Draws

 Live scores

</div>

This code produces the following graphic:

results Draws Live scores

Conveniently enough, you can add style information to deine a ixed or variable width for
 elements. If not, jQuery Mobile will split the width evenly between the LI elements.

The listview role provides the most common user interface on mobile devices these days—very

close to iPhone and Android pick-lists. The following plain HTML code processed by jQuery Mobile

produces the output shown in Figure 5-4:

<div data-role=”content”>

 <div id=”mainmenu”>

 <ul data-role=”listview” data-inset=”true” data-theme=”d” data-dividertheme=”e”>

 <li data-role=”list-divider”>Content & formatting

 Custom templates

 Example #2

 Example #3

 <li data-role=”list-divider”>Forms

 One more

 Yet another

 </div>

</div>

By using variations of the UL and OL elements, you can create numbered lists and nested lists.

Graphical variations include the data-inset attribute responsible for the rounded corners and nice

scaffolding of Figure 5-4 and data-ilter to add a search bar with automatic auto-completion of the

list items statically added to the page. (This auto-completion doesn’t entail connecting to a remote

service to download dynamic data.)

You can add icons and images to the list items. Here’s the code that you use to add a small icon to

the left of the list item:

 Yet another demo

http:///

 CHAPTER 5 HTML5 and jQuery Mobile 115

FIGuRE 5-4 A jQuery Mobile list view.

The ui-li-icon class ensures that the image is left-aligned; note that the image element must be a

child of the anchor. Similarly, you can add text to the right of the list item. If you want the text to be

rendered automatically within a bubble, you mark the text with the ui-li-count class; otherwise, use

the ui-li-aside class. Here’s the markup that generates Figure 5-5:

<ul data-role="listview">

 <li data-role="list-divider">Content & formatting

 Custom templates

 !!!

 Example #2

 Example #3

 <li data-role="list-divider">Forms

 Basic demo <small>Need fix!</small>

 Yet another demo

FIGuRE 5-5 List views created with jQuery Mobile.

http:///

116 pArt II Mobile Sites

Fluid Layout

Although having multiple columns in the layout is hardly a great idea for a mobile site, having an

easy way to place a few elements side by side would be a great feature. In jQuery Mobile, you ind a
very basic but effective implementation of CSS grids and luid layouts that automatically adapt to the
screen.

The library makes available two main CSS classes—ui-grid and ui-block. The former marks a

DIV (or a FIELDSET) as the container grid, while the latter marks a DIV as a child element. The main

CSS classes, however, need a progressive letter to indicate the number of cells and the position,

 respectively. The ui-grid-a class, for example, split each row evenly into two blocks. The irst is
 assigned to the content referenced by ui-block-a; the second goes to ui-block-b. Here’s an example:

<fieldset class="ui-grid-a">

 <div class="ui-block-a"> First block </div>

 <div class="ui-block-b"> Second block </div>

 <div class="ui-block-c"> Third block </div>

</fieldset>

In this case, there is also a third cell assigned to a grid that can’t host more than two cells (it splits

the row width equally in half). The net effect is that the third DIV, styled as ui-block-c, wraps to a

second row. To keep the three child blocks on the same row, you change the grid style to ui-grid-b,

which splits into three equal parts (see Figure 5-6). Likewise, ui-grid-c splits into four parts and

ui-grid-d splits into ive parts.

FIGuRE 5-6 Fluid layout with jQuery Mobile.

Collapsible panels

Collapsible panels are easy too, as the following code snippet shows:

<div data-role="collapsible" data-theme="a" data-collapsed="true" data-content-theme="e">

 <h3>Drill down</h3>

 <div>

 This text was initially kept hidden from view.

 </div>

</div>

Assigned to a container element, the collapsible role uses the irst Hn child element to title the

panel and makes everything else collapsible. You can use data-collapsed to decide whether the

content is initially hidden or not. You use data-content-theme to style the content of the panel and

data-theme to style the header (see Figure 5-7).

http:///

 CHAPTER 5 HTML5 and jQuery Mobile 117

FIGuRE 5-7 Collapsible panels with jQuery Mobile.

By simply surrounding an array of collapsible panels with an outermost container, you can obtain

an accordion widget, as shown here:

<div data-role="collapsible-set">

 <div data-role="collapsible">

 ...

 </div>

 <div data-role="collapsible">

 ...

 </div>

 ...

</div>

This code produces the following graphic:

By placing style attributes on the parent container, all panels are styled the same. Otherwise, you

can style each panel individually.

Working with pages
A jQuery Mobile application is still a site, and it is made of pages or views if you use ASP.NET MVC.

The dynamics of the site are mostly expressed by linking pages and having the user jump from one

page to the next.

page Links and transitions

As mentioned previously, in jQuery Mobile, a page is preferably designed to use Ajax. In a way,

jQuery Mobile realizes the old dream of having Ajax on the site without notice and without having to

use a special API to enable it. In jQuery Mobile, you use links—that’s it. Under the hood, the library

 intercepts the call and makes it an Ajax operation if the browser supports Ajax.

http:///

118 pArt II Mobile Sites

Using Ajax under the covers enables the library to manipulate the DOM and to perform transitions,

thus providing an experience similar to that of native applications. (The effect, however, is hardly

the same because of the latency of the “real” network.) You can control the transition by using the

 data-transition attribute on the link to a page. Feasible values include slide (default), pop, fade, and

slideup. Here’s an example:

Home

You also can programmatically change page, as shown here:

$.mobile.changePage("about.html", { transition: "slideup"});

Note that the effect is not the same on any device and test carefully. You also can set the transition

for when you’re back from the navigated pack. You use the data-direction=”reverse” attribute on the

link. The type of transition performed when you move back is the same.

Once downloaded, a page is added to the current DOM. Note that if you have a single-page

 template, then all your logical pages are being held in the same DOM. This may have two effects—

memory occupation and ID conlicts. It is recommended that you implement a strict naming
 convention to prevent ID belonging to different pages to be the same—there’s no real memory

separation when the single-page template is used.

The jQuery Mobile does its best to keep memory occupation to a minimum and attempts to

unload portions of the DOM of a page when the page is no longer in the foreground. When the user

returns to the page, the markup is either retrieved from the browser cache or requested again. As a

developer, you can change this practice by instructing jQuery Mobile to cache the DOM of a given

page. Here’s how to proceed:

<div data-role="page" data-dom-cache="true">

 ...

</div>

Be careful, though, as caching a large DOM may affect overall performance.

Disabling Caching on Ajax Calls

In addition, you should note that Ajax calls are made through the regular jQuery library. When this

happens, some caching occurs for performance reasons. This means that the results of some Ajax calls

(including page transitions) may not be what you expect. If this is the case, you have just one option:

disabling the caching feature on Ajax calls:

$.ajaxSetup({ cache: false });

You need to call the ajaxSetup function only once. You do that at application startup, or just before

the irst time you execute the Ajax operation whose results you don’t want to cache.

Ajax is not used to follow page links in all cases. You can set the data-ajax attribute to false on

the link element and have the jQuery Mobile library follow the link in a browser-led way and without

transitions. The Ajax navigation system is also bypassed when the link speciies a nonempty target

attribute or has the rel attribute set to external:

http:///

 CHAPTER 5 HTML5 and jQuery Mobile 119

The effect of using rel or data-ajax is the same, but it is recommended that you use rel when

 linking outside the current site.

Note When an Ajax call fails and returns a 400 or 500 status code, the jQuery Mobile

 library reacts to the exception by displaying an alert box. In terms of user interface, that’s

highly desirable, but it leaves it up to you to igure out what’s happened.

Dialog Boxes

In Ajax programming, displaying modal message boxes has never been particularly easy. In jQuery

Mobile, it is insanely simple and especially natural. All you have to do is deine a link to a page and
state that you want that page to be opened in a dialog box, as follows:

 Dialog box

In addition to the data-rel attribute, you might want to indicate a data-transition attribute to

specify the transition effect that you want. By default, a Close button is added to the dialog box that

dismisses the dialog box without taking any further action except returning to the previous page.

Here’s the code for the sample dialog box shown in Figure 5-8:

<div id="demoPage1" data-role="page" class="amse-bkgnd">

 <div data-role="header">

 <h3>Dialog box</h3>

 </div>

 <div data-role="content" data-theme="b">

 Look I'm a regular page but displayed as a dialog box!

 Do you like this feature?

 Yes

 No

 Cancel

 </div>

</div>

FIGuRE 5-8 A jQuery Mobile dialog box.

http:///

120 pArt II Mobile Sites

The caption of the dialog box is inferred by the irst Hn element found on the page. Any link

 followed within the page closes the dialog box. To return to the previous page, you can click the Close

button or any other button that you may have around the page that returns to the original page. You

can obtain this functionality with the following code:

Cancel

Alternatively, you can close the dialog box programmatically by using the following JavaScript code:

$(".ui-dialog").dialog("close");

To display the three buttons in Figure 5-8 horizontally, you either use a grid or group the buttons

together, as shown here:

<div data-role="controlgroup" data-type="horizontal">

 Yes

 No

 Cancel

</div>

Finally, you can use themes to style dialog boxes in much the same way you do for regular pages.

Input Forms

In jQuery Mobile, you treat forms as usual. A form posts to its action URL using the speciied HTTP
verb. Forms are managed internally via Ajax. Forms exist to collect data from users and are full of

input elements. The jQuery Mobile recognizes the new input ields introduced with HTML5—email,

date, range, search, number, and phone, to name just a few. The library, however, attempts to provide

a uniied experience across a number of browsers. This means that jQuery Mobile transforms each
input into plain text and then builds some DOM, CSS, and JavaScript magic to improve the input

experience through date pickers, sliders, and controlled input.

In addition, you have handy ready-to-use search text boxes, drop-down lists, and toggle-switch

controls. Here’s an example of the markup that you need to arrange a toggle switch and a slider

(see Figure 5-9):

<div data-role="fieldcontain">

 <label for="slider">How is your day?</label>

 <input type="range" name="slider" id="slider" value="3" min="1" max="9" />

</div>

<div data-role="fieldcontain">

 <label for="slider">Are you ready?</label>

 <select name="readiness" id="readiness" data-role="slider">

 <option value="no">No</option>

 <option value="yes">Yes</option>

 </select>

</div>

http:///

 CHAPTER 5 HTML5 and jQuery Mobile 121

FIGuRE 5-9 A toggle-switch control.

Finally, it should be noted that for drop-down lists, you can choose between the native interface of

the browser or a jQuery Mobile manipulated standard user interface that mimics that of iPhone and

Android. To get the script-driven user interface, similar to native mobile operating systems, you add

the data-native-menu attribute and set it to false:

<select name="foo" id="foo" data-native-menu="false">

 <option value="a" >One</option>

 <option value="b" >Two</option>

 <option value="c" >Three</option>

</select>

The following screenshot illustrates the effect of having a SELECT element with the data-native-

menu attribute set to true and false, respectively.

HTMl5 Fast Facts

The HTML language has been around for about 20 years now and has gone through two main ages—

the age of static rendering and the age of dynamic rendering. Static rendering was prevalent in the

infancy of the web, when HTML was used only to render the content of hypertext documents with

minimal templating, a few related images, and mostly links to other documents. The ratio between

content and layout was approximately 90/10.

http:///

122 pArt II Mobile Sites

Dynamic rendering came a few years later, building on the rapid adoption of the web medium.

Along the way, the ratio between content and layout slowly but steadily moved toward 50/50. An
important change occurred in the late 1990s, when browser vendors made the representation of the

displayed document modiiable via JavaScript. That was the early days of the web, and it added an
entire new perspective to markup. HTML was then perceived as the language to provide a dynamic

representation of the content of a webpage; it was more of an application delivery format than a

plain document format.

HTML5 marks the beginning of the third age of the web, in which HTML advances at a brisk

pace toward becoming a true and full-ledged application delivery format. HTML5 is not limited to
 presentation; it also provides a slew of new functionalities for web and other types of applications.

The big change is that HTML5 is about client-side programming and about building applications that

can run within the browser with limited (or no) interaction with the back end.

What’s the purpose of an HTML5 executive summary in a mobile book? One reason is certainly

the central role that HTML5 plays in mobile development. Chapter 11, “Mobile Applications with

PhoneGap,” will demonstrate how to use PhoneGap to package a client HTML5 solution as a native

mobile application for a variety of platforms. In addition, if your focus is more on the web side of

mobile development, you should know that mobile browsers (and particularly Safari for iOS) offer an

excellent support for HTML5. I’d even say that in pages that target smartphones, you can use HTML5

without worry. The support is not uniform, of course, but key HTML5 features are easier to ind on
mobile browsers than desktop ones—at least, that’s the case at the moment.

Let’s ind out more now.

Semantic Markup
Compared to its predecessor (which was deined more than a decade ago), HTML5 is a signiicantly
richer markup language. One could say that all these years have not passed in vain, as HTML5 now

incorporates in its standard syntax many common practices that developers and designers employed

in thousands of websites. In doing so, HTML5 issues speciic rules on how to structure HTML elements
and deprecates tags that were introduced in the past to style elements. The new message is: use CSS

to style elements and use speciic, newly introduced tags to deine the structure of the document.

headers and Footers with htML5

Nearly any website out there shares a common layout that includes headers and footers, as well as a

navigation bar on the left side of the page. More often than not, these results are achieved by using

DIV elements styled to align to the left or the right. Most pages today end up with the following

 template, which also was used in the samples of this book:

<div id="page">

 <div id="header">

 ...

 </div>

 <div id="navbar">

http:///

 CHAPTER 5 HTML5 and jQuery Mobile 123

 ...

 ...

 ...

 </div>

 <div id="container">

 <div id="left-sidebar">

 ...

 ...

 ...

 ...

 </div>

 <div id="content">

 ...

 </div>

 <div id="right-sidebar">

 ...

 </div>

 </div>

 <div id="footer">

 ...

 </div>

</div>

The template includes a header, navigation bar, and footer, with a three-column layout. The

 preceding markup alone, however, doesn’t produce the expected results. For that, you need to add ad

hoc CSS styles to individual DIV elements and make them loat and anchor to the left or right edge.

What’s different in HTML5?

First, using HTML5 doesn’t mean that you stop using CSS to transform a layout into a good-looking

page. You still need to use the same bit of CSS to make the page look compelling and place segments

where they belong. However, now you can describe the page in a way that is much cleaner and also

easier for a designer working on a cascading style sheet to read. Essentially, with HTML5, you replace

 generic DIV elements with more semantically meaningful elements such as HEADER, FOOTER, and

ARTICLE. Here’s how you can rewrite the preceding template with the newest HTML tags:

<header> ... </header>

<nav> ... </nav>

<article>

 <aside>

 ...

 </aside>

 <section> ... </section>

 <section> ... </section>

 <section> ... </section>

 <aside>

 ...

 </aside>

</article>

<footer> ... </footer>

http:///

124 pArt II Mobile Sites

The NAV element logically groups links that would go on a navigation bar. The ARTICLE element

represents the container of any content for the page and incorporates ASIDE elements and SECTION

elements.

All of these are block elements and must be styled properly to form a presentable page. Other

new elements complete the list of enhancements, such as FIGURE and DETAILS. The FIGURE element

is designed to include igures with captions, whereas DETAILS replaces the canonical hidden DIV

element that developers use to hide optional content and display it via JavaScript when desired.

A Native Collapsible Element

The new DETAILS element is functionally equivalent to a DIV, but its internal content is interpreted by

the browser and used to implement a collapsible panel. Here’s an example of this new element:

<details open="true">

 <summary>Drill down</summary>

 <div id="details_inside">

 This text was initially kept hidden from view

 </div>

 </details>

The open attribute indicates whether or not you want the content to be displayed initially. The

SUMMARY element indicates the text for the clickable placeholder, whereas the remaining content

is hidden or shown on demand. At this time, Google Chrome is the only browser that supports this

feature (see Figure 5-10).

FIGuRE 5-10 The DETAILS element in action in Google Chrome.

The icon that you see in Figure 5-10 next to the “Drill down” caption is provided by the browser. The

DETAILS element requires a bit of CSS to look nice. Here’s the CSS used for the element in Figure 5-10:

<style>

 summary {

 border-top: solid 1px #000;

 border-bottom: solid 1px #000;

 font-size: 120%;

 font-weight: bold;

http:///

 CHAPTER 5 HTML5 and jQuery Mobile 125

 background: #0055ff;

 color: #efefef;

 padding:2px;

 border-top-left-radius: 5px;

 border-bottom-right-radius: 5px;

 }

 #details_inside {

 padding: 10px;

 background: #aabbe8;

 border-bottom-left-radius: 5px;

 border-bottom-right-radius: 5px;

 border-top-right-radius: 5px;

 }

</style>

It is key to note that fully HTML5-compliant browsers will provide drill-down capabilities for free.

 Likewise, it is interesting to remark the close similarity between the DETAILS element and the collapsible

role in jQuery Mobile that was discussed in the “Collapsible Panels” section, earlier in this chapter. The

jQuery Mobile provides excellent polyills (i.e., replacements) for many upcoming HTML5 features.

Adjusting htML5 pages for Older Browsers

The main problem with HTML5 is that only the latest versions of most popular browsers currently

support it. So there are still quite a few users out there who won’t be able to see your HTML5 page

properly. Needless to say, the ideal solution is serving ad hoc pages to different browsers. However,

in addition to the extra work of creating and maintaining multiple pages, you have the problem of

detecting the browser capabilities on the server. Some websites such as http://html5test.com/ will

analyze browsers and return a list of capabilities for you to arrange different pages.

A library like Modernizr (http://www.modernizr.com) will help create HTML5-ready pages by letting

you write plain HTML5 pages and adapting the DOM to the requesting browser via script. You can

learn more about how Modernizr works at http://www.modernizr.com/docs.

Finally, as far as section elements are concerned, you can use a simple but effective trick. You place

a child DIV element in each of the new HTML5 block elements:

<section>

 <div id="section">

 ...

 </div>

</section>

The CSS class ensures that you style the element properly on older browsers to match the HTML

semantic. A browser that doesn’t recognize an element typically does one of the following: it ignores

the element or generates a DOM node of an unknown type. By having a child DIV that provides the

expected behavior regardless of the actual browser recovery strategy, the rendering is consistent. At

most, you get two nested DIV blocks that do the same thing.

http:///

126 pArt II Mobile Sites

Missing Elements in htML5

As mentioned previously, HTML5 removes a few elements of little use whose presence would only

increase redundancy. The list of elements that are no longer supported most notably includes frame

and font elements. (The IFRAME element remains, however.)

In addition, a few style elements such as CENTER, U, and BIG are removed. The reason is that

this functionality can be achieved easily through CSS. For some reason, the current draft maintains

 analogous elements such as B and I. HTML5 also adds a new element—MARK—to highlight small

portions of text, as shown here:

mark {

 background: cyan;

}

...

<p>This demo shows the <mark>new</mark> DETAILS element.</p>

Most HTML5 browsers default to yellow as the highlight color; the background color, however, can

be styled easily via CSS. Figure 5-10 also demonstrates the MARK element.

Web Forms and Data Entry
Currently, HTML doesn’t support anything but plain text as input. There’s quite a bit of difference

 between dates, numbers, or even email addresses, not to mention predeined values. Today,
 developers are responsible to prevent users from typing unwanted characters and for client

validation of the entered text. The jQuery library has several plug-ins that simplify the task,

but this just reinforces my point—input is a delicate matter.

New Input types

HTML5 comes with a bunch of new values for the attribute type of the INPUT element. In addition,

the INPUT counts several new attributes that are mostly related to these new input types. Here are a

few examples:

<input type="date" />

<input type="time" />

<input type="range" />

<input type="number" />

<input type="search" />

<input type="color" />

<input type="email" />

<input type="url" />

<input type="tel" />

What’s the real effect of these new input types? The intended effect—though it’s not completely

standardized yet—is that browsers provide an ad hoc user interface so that users can enter a date,

time, or number comfortably. Some of these new input types speciically address the need of mobile
site users. In particular, the email, url, and tel types push mobile browsers on smartphones (e.g.,

iPhone, Android 2.0, Windows Phone 7.5) to adjust the input scope of the keyboard automatically.

Figure 5-11 shows the effect of typing in a tel input ield on an iPhone: the keyboard defaults to

numbers and phone-related symbols.

http:///

 CHAPTER 5 HTML5 and jQuery Mobile 127

FIGuRE 5-11 The tel input ield on Safari for iPhone, which is similar on Android and Windows Phone.

Today, not all browsers provide the same experience, and while most of them agree about the

user interface associated with the various input types, some key differences exist that may motivate

 developers to add script-based custom polyills. As an example, let’s consider the date type. As of

today, Opera 11 is the only browser that edits a date by automatically opening a calendar. Other

browsers (e.g., Chrome) provide buttons to navigate day by day (see Figure 5-12).

FIGuRE 5-12 The date input ield as currently implemented by Opera 11 and Chrome 10.

http:///

128 pArt II Mobile Sites

The previous chapter discussed how the iPhone browser—which so far is unique in the mobile

browser category—intelligently shows a date picker for a date input ield. In general, mobile browsers
on recent smartphones are quite accommodating to HTML5 elements. As a mobile site developer,

therefore, you might want to be very careful when using new input elements for email, number, url,

date, tel—well, just for everything!

Finally, it’s worth noting the placeholder attribute, which implements the long-awaited ability to

display a hint in a text box wherever possible. You won’t get any hint text displayed in range and

date/time input ields.

Note I decided not to put a screenshot for each input type for the sole reason that the user

interface that browsers serve is constantly changing and may be quite different by the time

you read this.

Validation

Not just developers want to prevent users from entering meaningful values; they also want to make

sure that what the user enters matches expectations. You can prevent users from typing letters where

numbers are expected, but there’s no way to prevent users from entering something into a text ield
that’s not, say, an email address.

The current HTML5 draft, however, doesn’t strictly mandate that browsers apply a sanitization

algorithm on individual input ields. The result is that current browsers behave differently. Opera, for

example, is quite strict in enforcing that users enter only valid values. For example, Opera stops users

from entering letters into a time ield, whereas Chrome doesn’t block typing but clears the ield upon
exit if the content is invalid. In general, there’s no guarantee of automatic sanitization of input as the

user leaves the ield. Instead there is an optional validation step performed when the form that that
input ield belongs to is submitted. This validation step is applied by default but can be disabled pro-

grammatically through the new novalidate attribute on the FORM element.

The draft deines the required attribute on the INPUT element to mark an input ield as mandatory,
as follows:

<input type="number" placeholder="length" required />

In addition, you have the pattern attribute, through which you specify a regular expression that the

actual content must comply with. The following example shows a text ield that allows users to type
any free text but requires validation against numbers:

<input type="text" placeholder="only digits" pattern="[0-9]" />

When validation fails, both Opera and Google provide visual feedback, as shown in Figure 5-13.

http:///

 CHAPTER 5 HTML5 and jQuery Mobile 129

FIGuRE 5-13 HTML5 validation in action in Google Chrome.

Predeined Entries
Another great improvement in HTML5 forms is the DATALIST element. The element is a specialized

version of the popular SELECT element. It provides the same behavior, except that the drop-down list

applies to a text input ield. Here’s an example:

<input list="countries" />

<datalist id="countries">

 <option value="Italy">

 <option value="Sweden">

 <option value="Denmark">

</datalist>

Important In the end, until browsers fully and uniformly support the new input ields,
 developers have quite a bit of work to do with JavaScript polyills to ensure that correct
data is posted to the server and that the users are informed properly about what is wrong.

Many inluential experts in this ield today encourage people to always use HTML5 input
ields, even on older browsers, saying that doing so won’t break existing pages—it will only
make them ready for the future and make the underlying markup more readable. This is

absolutely correct; however, the challenge with input ields (and not necessarily with the
entire HTML5 stack) is that it’s more problematic with browsers that recognize new input

types—they currently don’t offer a consistent experience. It’s not by chance that the jQuery

Mobile people downgrade internally all input ields to text and then implement the HTML5

experience by hand. Unless you’re using jQuery Mobile (it also works on desktop browsers),

that responsibility will be on your own shoulders.

The net effect is that when the input ield gets the focus, a menu displays, and the user either
can enter free text or pick up one of the predeined options. At present, only Opera 11 supports this
feature (see Figure 5-14).

http:///

130 pArt II Mobile Sites

FIGuRE 5-14 The DATALIST element in action.

programmer-Friendly Features
We all know that websites need an active Internet connection to work. Whether Ajax- or browser-led,

any requests that the user generates by interacting with the site is delivered at some remote endpoint

and downloads some response—typically, a webpage or auxiliary resources such as images, scripts,

and styles.

All browsers have some caching mechanism speciically introduced to save a few HTTP requests
by resolving static resources from the local computer. This mechanism has never been standardized.

Browsers use it today more as a form of internal optimization than as a way to enable users to work

on the site while ofline.

HTML5 comes with a couple of separate speciications for Data Storage and Ofline Applications.
All together, these APIs provide a framework for developers to build web applications that not only

force the browser to cache resources according to a public manifest, but also enable the local code

to save application data in a custom format and following application-speciic rules. Looking at this
from a distant perspective, one could say that data storage is a largely enhanced version of cookies,

whereas ofline working is a largely enhanced version of the classic browser cache.

Local Storage

HTML5 provides a standard API that makes saving data on the user’s machine more affordable and

represents an effective replacement for cookies. The average size of local storage is around 5 MB—

much more than a cookie.

You access the local storage through the localStorage property exposed by the browser’s window

object. The localStorage property offers a dictionary-based programming interface similar to that

of cookies. You have methods to add and remove items, to count the number of items in the store,

to get the value of a particular item, and to empty the store. Here’s how you can save a value and

retrieve it later:

<script type="text/javascript">

function save() {

 window.localStorage["message"] = "hello";

http:///

 CHAPTER 5 HTML5 and jQuery Mobile 131

}

function init() {

 document.getElementById("message").innerHTML = window.localStorage["message"];

}

</script>

Upon loading, the page retrieves and displays data from the local storage (if any). Data is saved to the

storage through a function invoked interactively. Data saved to the local storage remains on the user’s

machine indeinitely unless you programmatically empty it. The storage is speciic for the application.

In addition to localStorage, HTML5 provides a sessionStorage object with the same programming

interface but saves to the browser’s memory instead. The sessionStorage object is emptied at the end

of the current browser session. Web storage accepts primitive types (the spec is not restrictive on this

point, so any JavaScript type is acceptable), but complex objects can be saved as well if serialized to

the JavaScript Object Notation (JSON) format.

More Info Local storage is described separately from HTML5; full details about it (the

speciication is named Web Data Storage) can be found at http://www.w3.org/tr/webstorage.

Ofline Applications
Up until HTML5, the browser had total control over caching. HTML5 deines a public interface for
pages to instruct the browser about resource caching. Developers use the manifest cache special

resource to let the browser know which resources to cache and which ones to always request over the

network. You reference a manifest from the root HTML element, as shown here:

<html manifest="manifest.cache">

Note that the URL to the manifest doesn’t have to be a static ile. It can be a dynamic page (e.g.,
ASPX or PHP) so long as the resource is marked with a text/cache-manifest Multipurpose Internet

Mail Extensions (MIME) type. The content of a manifest ile is a plain list of resource names with some
syntax rules:

CACHE:

default.html

styles.css

logo.png

NETWORK:

login.aspx

/public/api

FALLBACK:

login.aspx nologin.png

The CACHE section indicates resources that always should be cached; the NETWORK section lists

resources that always should be requested from the server; the FALLBACK section indicates alternate

resources to use when network is not available.

http:///

132 pArt II Mobile Sites

More Info Ofline applications are described separately from HTML5; full details about this
topic can be found at http://www.w3.org/tr/ofline-webapps.

Geolocation

Another compelling functionality that you ind around the HTML5 standard is Geolocation, deined as
a uniied API that locates and describes the geographical position (i.e., latitude and longitude) of the
device that hosts the browser. The engine that HTML5 browsers are called to support is centered on

the new geolocation object exposed by the browser’s navigator object.

The following code demonstrates how to use the HTML5 API to take latitude and longitude and

pass that information to a Google Maps object. The inal result is shown in Figure 5-15.

<!DOCTYPE html>

<html>

<script type="text/javascript"

 src="http://maps.googleapis.com/maps/api/js?sensor=true" />

<script type="text/javascript">

 function initialize() {

 navigator.geolocation.getCurrentPosition(

 showPositionOnMap,

 function(e) {alert(e.message);},

 {enableHighAccuracy:true, timeout:10000, maximumAge:0 });

 }

 function showPositionOnMap(position) {

 var point = new google.maps.LatLng(

 position.coords.latitude,

 position.coords.longitude);

 var options = {

 zoom: 16,

 center: point,

 mapTypeId: google.maps.MapTypeId.ROADMAP

 };

 var map = new google.maps.Map($("#area"), options);

 var marker = new google.maps.Marker({

 position: point,

 map: map,

 title: "Dino Esposito" });

 }

</script>

<body onload="initialize()">

 <div id="area" style="width:100%; height:100%"></div>

</body>

</html>

http:///

 CHAPTER 5 HTML5 and jQuery Mobile 133

FIGuRE 5-15 Geolocation in action.

Note that browsers normally require the users of pages based on geolocation to approve the

 sharing of location data explicitly.

More Info Geolocation is described separately from HTML5; full details about this topic

can be found at http://www.w3.org/TR/geolocation-API.

Audio and Video

One of the biggest gains of HTML5 is saying farewell (but really?) to external plug-ins such as Flash

and Silverlight for just playing audio and video. HTML5 brings two new elements—AUDIO and

VIDEO—that point to a URL and play any content. The browser implementation of these tags is also

expected to provide a control bar for the user to pause and resume the playback. Here’s how to link

to an audio resource:

<audio poster="init.png" controls="controls">

 <source src="nicestory.wav" />

</audio>

The sore point of multimedia elements (mostly video) is the format of iles—both ile format and
codecs. The HTML5 standard won’t make an oficial ruling about codecs, so deciding the format to
support will remain up to each vendor. From a developer’s perspective, this is not exactly great news

because it represents a breaking point. Different browsers support different formats, and you should

detect the browser or provide multiple iles for the browser to choose. Here’s the syntax to indicate a

selection of video formats:

<video poster="init.png" controls="controls">

 <source src="tiger.mp4" type="video/mp4" />

 <source src="tiger.webm" type="video/ogg" />

 Oops, it seems that your browser doesn't support video.

</video>

http:///

134 pArt II Mobile Sites

Note that you use the controls attribute to display the control bar and the poster attribute to

specify an image to use as a splash screen until the media is ready to play.

Popular codecs are MP4, MOV, and AVI. These codecs pose licensing issues to browser vendors;

for this reason, Google and Opera are advocating for the new, royalty-free WebM codec and Firefox

is supporting OGG/Theora, which the Xiph.Org Foundation made royalty-free. Here’s the VIDEO

 element in action in Opera.

FIGuRE 5-16 The VIDEO element in action in Opera.

To cut a long story short, you should plan to have an MP4-encoded video for Internet Explorer and

Safari and OGG/Theora for all the others. At present, this seems to be the perfect solution to avoid
external plug-ins. But this is a matter that changes frequently, so look before you leap.

Using htML5 today
These days, HTML5 is being talked about a lot, and it is being touted as the next big thing no

matter what kind of software applications you’re involved with. As is usually the case with any hot

 technology, there’s always hype, as well as good points and strange facts.

the hype in htML5

HTML5 is not here yet, and the World Wide Web Consortium (W3C) is not expected to release any

recommendation for at least three more years. Until recently, and mindful of the past browser wars,

one would have just dismissed the argument about using an “announced-but-yet-to-come” new

version of the HTML language. One would have said something like, “Sure, it sounds great. But we’ll

probably look at it when most browsers are actively supporting it.”

So why talk about HTML5 today, at least three years ahead of any oficial recommendation?
HTML5 is relevant today because most browsers are already incorporating HTML5 capabilities in their

latest versions.

http:///

 CHAPTER 5 HTML5 and jQuery Mobile 135

Honestly, it’s hard to say whether companies are investing in HTML5 because they see real value

or because they need to be there because some of their competitors are. But, on the other hand, is

this a really relevant point? If your competitor is there, at the very minimum, you need to explore

in the same direction. The next version of HTML certainly will play the same prominent place in

web development that the technology had played so far. In addition, the new programmer-friendly

features in HTML5 make it possible to build other types of applications (for example, mobile native

applications for platforms like iPhone and Android).

I don’t know—and neither does anyone else—whether HTML5 and JavaScript will form the primary

development platform for the years to come. But HTML5 surely is worth a closer technical look.

htML5 and Browsers

Only the latest versions of most browsers support HTML5, although not to the same degree. This is

still largely reasonable because the draft is not inalized and maybe was not completely crystal-clear
when the development of today’s latest browsers started. As mentioned, the biggest problem in using

HTML5 today is not so much with browsers that don’t support HTML5 but with browsers that already

support it.

HTML5-ready browsers are still inconsistent in how they implement certain features, such as

input ields and some semantic elements. This poses a huge problem: what should you do? Should
you accept the reality that you will deliver sites that don’t look and behave consistently across all

 browsers? Or should you rather plan some extra work to make the site look consistent across all

HTML5-ready browsers—at your (possibly considerable) expense? And, at that point, what beneit is
HTML5 really going to give you at this time?

HTML5 brings huge beneits to web development (and other areas as well).

the Weirdness in htML5

HTML has always been a web technology. HTML5, instead, presents itself as a development

 framework in conjunction with CSS and JavaScript. Looking at the classic web, I am still bafled about
using HTML5 today. It’s a totally different story, however, if I look at using HTML5 outside the web.

The full set of HTML5 capabilities forms a compelling framework for mobile and tablet applications

and even for developing applications to be delivered over a variety of software platforms. A tool

like Adobe’s PhoneGap allows writing native applications for iOS, BlackBerry, Windows Phone, and

Android by using HTML5, CSS3, and recent JavaScript enhancements. In this context, you use the full

power of HTML5 without being concerned about the browser’s capabilities. Surprisingly enough, in

fact, all default browsers available on recent smartphone operating systems are HTML5-ready. Similar

full support for HTML5 development is provided in Adobe AIR and was announced by Microsoft

for Windows 8. In the end, HTML5 is probably ready today for good development; but it is mostly

 beneicial in closed environments.

http:///

136 pArt II Mobile Sites

Important To get an up-to-date matrix of how the various mobile browsers support

HTML5, you can check out http://mobilehtml5.org. This site is a very good attempt at

 tracking and understanding HTML5 compatibility on mobile and tablet browsers, and is

being maintained by Maximiliano Firtman, a popular author of many books on mobile web

development.

Summary

Many developers have grown up with the idea of building applications against the most powerful

platform possible but providing a way to degrade gracefully on older platforms. This has been the

primary approach for web development. In mobile development, this pattern is less effective, even

though the real effectiveness can be measured only in speciic contexts.

In mobile development, you should follow a bottom-up approach. First, ensure that you can serve

any browser; next, proceed by adding more and more features. Each enhancement step that you take

represents a class of mobile devices you intend to target and for which you may have the need to

 create ad hoc views. This is the essence of Progressive Enhancement.

How can you achieve it?

Several libraries, such as jQuery Mobile and SenchaTouch (http://www.senchatouch.com), offer an

ad hoc framework that guarantees that your markup works well enough on any device. Whether “well

enough” is really enough for you is your decision to make. I’d say that it doesn’t necessarily happen all

the time. You probably don’t want to serve plain HTML lists and headings to users; you want to style

those pages a little. A library like Modernizr can help in that it does feature detection for you and

simpliies the development of dual sites.

When it comes to managing multiple versions of the site (or simply multiple versions of the same

pages within one site), you need to ind a reliable way to identify devices and their capabilities. This is
just where we’re going with the next chapter.

http:///

 137

C H A P T E R 6

Developing responsive
Mobile Sites

There is no law governing all things.

—Giordano Bruno

In this chapter:

 ■ A Developer’s Perspective of Device Detection

 ■ Inside WURFL

 ■ Implementation of a Multiserving Approach

 ■ Summary

Mobile site development can be particularly easy or particularly tricky, with not much middle

ground. Depending on the actual requirements, building a mobile site can be as smooth

and pleasant as a walk in the park if you don’t need to care about the effective capabilities of the

 requesting browsers. However, it can get really problematic when you need to optimize and adjust

what’s served to each device. The major issue of mobile site development is not really the implemen-

tation of the functionalities—a mobile site generally has fewer functions and actions per page than

a desktop site. However, to ensure a great user experience, the team often has to resort to extremely

clever coding and design solutions. Overall, what’s painful about mobile sites is the wide range of

different devices (in the order of thousands) your site may be dealing with.

Years ago, we faced a similar problem for desktop browsers, which libraries like jQuery vastly

contributed to solving. Nevertheless, subtle differences between, say, different versions of Windows

Internet Explorer or Safari still make it more dificult and more expensive to build a site that looks
and works the same way regardless of the browser. However, the range of different capabilities that

you experience in desktop browsers is much smaller than what you may ind in the mobile space. The
problem is the same; the dimension, however, is quite different.

The key lesson that developers and architects have learned in the past is to focus on effective

capabilities rather than pointing out a generic behavior associated with a browser’s brand and name.

This principle, however, is simple to understand but yet hard to adopt. Chapter 4, “Building Mobile

Websites,” illustrated a few possible solutions, each of which works to some extent. This chapter, on

the other hand, presents a different approach (and a speciic framework) that currently represents

http:///

138 pArt II Mobile Sites

the state-of-the-art technology for device detection and capabilities. The idea is using an external

repository that, constantly updated, provides up-to-date information about any known devices and

their capabilities. Put another way, you trust a vendor and use its repository and related application

programming interface (API) to igure out what a given device and browser can or cannot do. This
chapter mainly focuses on WURFL, short for Wireless Universal Resource File—an open-source project

that you can read about at http://wurl.sourceforge.net.

A Developer’s Perspective of Device Detection

How can you detect browser capabilities? Without beating around the bush, detecting capabilities is

possible only by querying the browser. However, the browser lives on the client, and you likely need

to have this information available on the server to arrange and serve an ad hoc markup. How can you

carry browser information to the server and use it within an ASP.NET, PHP, or Java environment?

In addition, browsers expose programmatically only a very small set of capabilities, and hardly

through a clean and uniform API. A browser typically lets you know about the width and height of the

screen, Ajax support, and some HTML capabilities. This may or may not be suficient for you.

At present, there are two major schools of thought for solving the problem of detecting a browser’s

capabilities and adjusting the markup being served. One goes under the name of Responsive Web Design

(RWD) and pushes a client-side solution resulting from a combination of JavaScript and CSS. RWD was

 introduced briely in Chapter 4. The other solution centers on a human-managed repository of device
data that can be checked on the server and help generate device-speciic markup.

Let’s see what it means to trust (and not trust) the browser to igure out effective capabilities and
serve ad hoc pages over mobile devices.

the Client-Side route
Because the browser is the client side of a website, you need to build your solution from a huge

amount of JavaScript logic. This means that you arrange webpages around a relatively simple HTML

layout, which is then reconigured and styled dynamically on the client. That means having some ad
hoc JavaScript functions in your pages that check the browser’s width and height and then pick up a

different Cascading Style Sheet (CSS) style and perform some reorganization of the content.

The net effect is that an entirely different page structure may be served to different devices, with

some original elements hidden or moved around.

This is the essence of the Responsive Web Design (RWD) philosophy.

What’s Good About rWD

The most attractive point of RWD is that you build and maintain just one site regardless of the devices

that may be used to visit the site. With RWD, you have no need to adjust your solution to match any

new devices—if the screen size of new devices is known, the match happens automatically, and users

also will see the page layout change as they resize the browser’s window.

http:///

 CHAPTER 6 Developing Responsive Mobile Sites 139

As originally formulated by Ethan Marcotte in his book Responsive Web Design

(http://www.abookapart.com/products/responsive-web-design), RWD involves the use of a variety of

grids in the page layout and operates the dynamic substitution of images and blocks based on CSS

media queries. Just the use of media queries makes the design quite lexible because it moves to
the browser the burden of switching on the proper cascading style sheet whenever the size of the

 window matches one of the provided media types.

A good live example of RWD in action is the Boston Globe's website. As Figure 6-1 shows, by

 resizing the browser, the layout of the page changes signiicantly and the layout is different as well,
with some elements resized and other hidden.

FIGuRE 6-1 A live example of an RWD-powered website.

technical Aspects of rWD

Technically, RWD encourages the use of liquid layouts as opposed to classic ixed-width layouts.
A liquid layout is a very lexible grid in which every element is sized in percentage units, both in
 relationship with the parent container and with one another.

In addition to liquid grids, RWD deals with image and font resizing. Font resizing (and in some

cases, just a different font) are ways to maintain a good level of cleanliness and keep the text visible

and readable.

As the screen size grows or shrinks, you also might want to consider changing the size of the image

beyond the simple application of percentage-based width and height styles to the img element. That

http://www.abookapart.com/products/responsive-web-design
http:///

140 pArt II Mobile Sites

means employing tricks to request ad hoc images from the server. For example, a common solution

is based on using a custom attribute with the img tag that references the full-size image, whereas the

standard src attribute points to a low-quality image, as shown in the following code:

By using some ad hoc JavaScript code, you can scan the document and replace the URL of all img

tags with whatever URL is associated with the data-fullsrc attribute. This is the trick employed by

the code you ind at https://github.com/ilamentgroup/Responsive-Images, a site developed by the

 Filament Group. Upon page loading, the JavaScript helper ile detects the browser width and, using a
conigurable break-point value (i.e., 480 pixels), determines which image to set.

You should note that in this context, the use of CSS media queries (see Chapter 4) helps

 signiicantly in automating the change of layout at different resolutions. You can read more about

RWD at http://www.alistapart.com/articles/responsive-web-design.

What’s Bad About rWD

The irst problem with RWD to consider is that it is not a solution speciically created for mobile sites.
With its inherent lexibility, RWD can be used to arrange pages that it to mobile devices, but this
 approach is not free of issues (some of which are signiicant). The bottom line is that RWD is a great
approach for building compelling sites, and it reacts well to different browser window sizes. However,

it’s one thing if a user chooses to resize the desktop browser window; it is quite another if a user visits

the site using a mobile browser with a ixed screen size. The difference between desktop and mobile
browsers is in the underlying hardware—speed of download, reliability of connection, processing

power, cache size, memory, and so on—plus some contextual issues such as the ability to serve differ-

ent content to mobile users and use hardware (e.g., GPS).

In addition, a mobile site is considered to be a pretty unique solution. At best, very little in a desktop

site is speciically mobile-oriented. By construction, RWD can’t add mobile-speciic logic to a desktop site.

Now let’s review in more detail what’s problematic about RWD. These aspects are reduced here to

just ive categories: images, nonviewable content, CSS media queries, overall design considerations,
and development practices. The impact of these aspects on mobile projects is not uniform, but it is

hardly null either. The depth of impact, however, largely depends on what you mean by mobile.

If you plan to limit your site to smartphones only, then RWD is probably not such a bad idea, so

long as a single site solution its into your business model. You probably can adjust for the limitations
of an iPhone, a Windows Phone, or a high-end Android device. But what about other devices? So long

as your strategy is focused on smartphones, you can ignore other lower-end devices; otherwise, you

should ignore RWD and focus on the server-side route to device capability detection.

http:///

 CHAPTER 6 Developing Responsive Mobile Sites 141

Note Nearly all reports agree that a large share of mobile trafic is due to smartphones.

It can be estimated to be about 60 percent in general, but in some European countries,

smartphone trafic (mostly on the iPhone/iPad) is well beyond 80 percent. Yet, very few
 companies would lightheartedly decide to disregard a section of potential customers

 completely. That clearly depends on the company’s business core, but in general, going for

a mobile-speciic site is the preferred approach. And once you’re there, there’s no reason
for taking a client-side route: it seems much more eficient to detect capabilities on the
server and serve directly what’s needed.

technical Downsides of rWD Implementation

In any website, images tend to be numerous and large. On a smartphone, it may be acceptable to

stress CPU and memory to resize images on the ly. On any other device that is less powerful than
a high-end smartphone (e.g., 1 Ghz CPU, 512 MB of RAM, and a dedicated GPU), it is probably

much less acceptable. Therefore, as far as images are concerned, you want to employ some tricks to

download smaller ones no matter what. The beneits are partly limited by the need to add some extra
scripts and style sheets.

When an RWD page is resized, whether dynamically or because it is displayed on a mobile device,

sometimes it displays a greatly simpliied structure where, say, the layout is reduced to two columns
or even just one column. Where does the extra content go? Because everything happens rigorously

on the client side, any extra content is not even detached from the Document Object Model (DOM),

but is simply hidden at the CSS level. Seen from a mobile perspective, this means that RWD also has

the potential of downloading a large amount of content and logic that will never be displayed on the

mobile device.

CSS media queries work nicely for desktop solutions, as well as for very limited mobile scenarios,

those where you can exercise control over the browsers and have tested it enough to feel

 comfortable. CSS is about style; effective rendering is also about downloading content that has been

built appropriately for a mobile device. In mobile, performance is key, especially because mobile

applications are likely to be used over slow connections. Solutions employing CSS media queries to

adjust a single layout achieve the goal of hiding content based on a (very) small set of parameters

(screen, resolution, orientation, and color depth). CSS media queries give you no chance to optimize

the layout and style based on speciic capabilities such as support for WiFi, Ajax, preferred images,
video, plug-ins, and more. Overall, CSS media queries tend to offer the promise of a simple solution

along the lines of “design once, display everywhere.” However, this is a mostly false promise that

turns into a problem as soon as you widen your horizons and address more than just smartphones.

 Furthermore, support for CSS media queries is limited across mobile browsers, paradoxically meaning

that an RWD solution based on CSS media queries covers only a minimal share of mobile browsers.

In general, a mobile site must be resourceful and designed from scratch around a simple layout

illed with optimized markup that is guaranteed to work on the requesting browser. This requires
deep and accurate knowledge of the device capabilities—many more capabilities than the ive that
you can control over media queries where media queries themselves are supported.

http:///

142 pArt II Mobile Sites

As a inal note, consider that RWD brings a very complex page structure that requires a lot of work
to render. You may not notice any signiicant difference on a smartphone, but it surely will show up
on other devices.

Why a jQuery-Like Approach Is Not Always Effective

While it’ll never become a settled point, the browser compatibility problem for the desktop has

been simpliied signiicantly by the jQuery library. The library takes the burden of hiding a lot of
the browser differences and internally forks the code as appropriate to provide the same behavior

 regardless of the requesting browser. This simple pattern, however, doesn’t work in the mobile space.

A JavaScript library is hosted in the browser and, to do any magic, it can access only the

 information that the browser makes available. The browser capabilities directly available through

the browser are very limited, and those which can be tested programmatically (i.e., Ajax support or

 support for some HTML5 API, such as local storage) are only a small subset. A lot of properties you

want to check to optimize mobile download can’t just be tested on the ly—you must know about

them rather than detect them.

But even if you can manage to inject browser capabilities into the client page as JavaScript-

accessible data, you’re won’t go much further. The point of mobile is minimizing Hypertext Transfer

Protocol (HTTP) requests and the data being downloaded, and simplifying the markup. This can be

achieved only with strict control over the requests made on the server side.

Note If a jQuery-like approach to mobile is not ideal, what’s the point of a library like

jQuery Mobile? Does it really make sense? It’s a different issue. My point is that you cannot

blindly expect that some JavaScript library will take some HTML and magically turn that

into a mobile page. The jQuery Mobile library does a great job helping you to arrange a

mobile page; ad hoc content and architecture are up to you.

the Server-Side route
The server-side route to mobile development is based on the idea that you irst read about the

 effective browser capabilities. Next, armed with that knowledge, you intelligently decide what the

most appropriate content for the request and the browser would be.

How would you ind out about browser capabilities? At present, the most effective strategy seems
to be to use a Device Description Repository (DDR)—namely, some sort of database that stores nearly

all possible properties of nearly all devices and that is constantly updated as new devices hit the

market.

http:///

 CHAPTER 6 Developing Responsive Mobile Sites 143

Important Previously, I said that at present, employing a DDR seems to be the most

 effective strategy. Well, I’d even formulate around that the hypothesis that DDR is the only

possible way to know about effective device capabilities. As we’ll see later in this chapter, a

few capabilities exist that can’t be checked programmatically (e.g., whether inline images

are supported). For them, therefore, you have to know the value reading from a reliable

and credible store. In light of this, the real problem around DDR is picking up the most

 accurate and best-maintained DDR that offers the most favorable pricing model and a wide

range of delivery options (i.e., on-premise, cloud).

Device recognition and Description repositories

Very few server programming environments for building web applications offer native tools to query

for some browser capabilities. A notable exception is ASP.NET, which offers the Request.Browser
object. This object retrieves device information from a bunch of XML iles deployed to the server.
ASP.NET installs one XML ile per supported class of browser. The key to locating a record in this
 repository is the browser’s user agent (UA) string that gets passed with the HTTP request. If a match is

found between the UA string and the iles in the repository, then browser information is collected and
shared with the application. In ASP.NET, the machinery is hidden from view and all that a developer

has to do is check capabilities through the Request.Browser object.

In other environments, getting a device description repository and API is up to you. In Java, you

can probably look at Spring Mobile (see http://www.springsource.org/spring-mobile) but with caution.

Spring Mobile doesn’t currently detect speciic capabilities and is limited to telling you whether the
 requesting browser is on a mobile device. An extension to Spring Mobile is in the works and uses a

DDR under the hood (speciically, WURFL).

Chapter 4 discussed that the default ASP.NET mechanism is easy to use, but its effectiveness

depends exclusively on the accuracy and quality of the data in the repository being used. So what

would be a good repository of device information? Does one exist that can work in a cross-platform

manner?

DDrs and Crowd-Sourcing

The number of different models of mobile devices is in the order of thousands and growing. The

properties that a developer can ind interesting for each device proile in a particular use-case may
vary signiicantly, but if you take the union of all of them, you easily reach several hundred. How can
you ensure that a DDR can keep this information accurate and up to date?

An extremely popular DDR is WURFL— the Wireless Universal Resource File—an open-source

community-powered project started by mobile developer Luca Passani about a decade ago. At that

time, the term wireless was used with the same meaning as we use mobile today. WURFL is a XML

database that currently counts more than 15,000 proiles of mobile devices and matches half a million
UA strings available in the wild. A proile contains over 500 properties referred to as capabilities.

WURFL evolved into a commercial initiative in 2011.

http:///

144 pArt II Mobile Sites

Important WURFL is released under the AGPL v3 license—an open-source license

 approved by both the Free Software Foundation (FSF) and the Open Source Initiative (OSI).

Due to the strict licensing terms of AGPL v3, however, commercial users may need to buy a

commercial license. In a nutshell, to use WURFL without buying a commercial license, you

need to make your full source code available as open-source, regardless of the fact that the

code is hosted on your own web server. For more details, refer to

http://wurl.sourceforge.net/faqlicensing.php.

As discussed in Chapter 4, WURFL is not the only DDR out there, but WURFL can be considered the

de facto standard. Among other things, WURFL is employed in the mobile platform of Facebook and

Google.

Inside WuRFl

A DDR is the component that works like an oracle and tells you the whole truth about the mobile

browser that is viewing your page so that you can decide intelligently what response to serve. Let’s

explore the most popular DDR available today in more depth.

Structure of the repository
The WURFL DDR consists of an XML ile that measures about 1 MB compressed and about 15 MB

 expanded. You can download the ile from http://wurl.sourceforge.net. Note that before you download

the ile, you must agree explicitly to some terms and conditions. Basically, you are authorized to use
the WURFL ile without modiication and only through one of the standard WURFL APIs as provided by
 ScientiaMobile.

the Overall XML Schema

The WURFL data ile consists of a lat list of <device> elements. Here’s the overall skeleton of the

database:

<devices>

 <device id="..." user_agent="..." fall_back="...">

 <group id="...">

 <capability name="..." value="..." />

 ...

 </group>

 ...

 <device>

 ...

</devices>

The id attribute uniquely identiies a device with a name. The user_agent attribute indicates a

 speciic UA string to be matched.

http:///

 CHAPTER 6 Developing Responsive Mobile Sites 145

The key attribute is fall_back, which refers by name to other <device> elements. The fall_back

 attribute indicates the device from which missing capabilities of the present device will be inherited.

Put another way, each device section describes just the delta between the current device and its

parent device. All devices refer directly or indirectly to a root generic device, which ensures that any

capabilities supported always have a default value and no exceptions will be thrown during queries.

WURFL supports a number of root generic devices, one for each category of devices recognized:

mobile phones, tablets, smart TVs, and possibly more in the future.

Note An optional attribute that you may ind on some <device> elements is

actual_device_root, typically associated with devices whose WURFL ID terminates with _ver1.

This attribute is intended to point out the best proile to represent all devices in WURFL
with that manufacturer and model. For example, although you may ind 20 different
 proiles for, say, a Nokia N70, only one of those will be marked as actual device root. This is

useful for developers who use WURFL to generate lists of devices ordered by manufacturer

and model.

Groups of Capabilities

Each device is associated with a list of capabilities. A capability is described as a name/value pair
in which the value is always considered to be a string. This means that the WURFL API always will

return capability values as plain strings, with no attempt to match the value to a speciic type such as
 Boolean or Integer.

This choice has been made to prioritize extensibility and performance of the API over everything

else. In fact, quite a few capabilities take values from an enumeration of values. For example, the

pointing_method capability indicates how links are activated on the device. Possible values are stylus,

joystick, touchscreen, clickwheel, or the empty string. All these options could be expressed comfortably

as an enum type in the Java and .NET languages. However, in this case, any extension to the data ile
to add a new possible pointing method also would require a change to the API, which potentially

could break existing applications.

To keep things manageable, capabilities are split into groups. Table 6-1 lists the currently

 recognized groups. Groups, however, have no role in the API in the sense that you don’t need group

information to retrieve the value of a capability.

TAblE 6-1 The Most Relevant Groups of Browser and Device Capabilities in WURFL

Group Description

ajax Despite the name, this group deines capabilities that also go beyond plain Ajax
programming. It tells you whether Ajax is supported, but also whether DOM and CSS
manipulation and geolocation are allowed.

bearer Capabilities regarding networking aspects, such as support for radio, WiFi, virtual
private networking (VPN), and the maximum reachable bandwidth.

http:///

146 pArt II Mobile Sites

Group Description

chtml_ui Capabilities related to Compact HTML markup.

chips Capabilities related to features available through extra chips installed on the device
such as FM radio and a near-ield-communication (NFC) facility.

css Capabilities related to CSS features, such as sprites, borders, rounded corners, and
gradients.

display Capabilities related to screen size (both pixels and millimeters) and orientation.

lash_lite Capabilities related to built-in support for Flash application types and versions.

html_ui Capabilities related to content served with the HTML MIME type. The group includes
properties about viewports, HTML5 canvas, inline images, and preferred document
type deinition (DTD).

image_format Boolean capabilities related to the support of a few image formats.

j2me Capabilities telling developers which Java features are available for midlets in
the Java Micro Edition (Java ME) run-time location, screen size, sockets, images,
 multimedia and more.

markup Boolean capabilities related to a variety of markup types being supported, including
Extensible Hypertext Markup Language (XHTML), Wireless Markup Language
(WML), and HTML.

mms Capabilities that are relevant for MMS, such as images supported, videos, and
 maximum frame rate.

object_download Capabilities related to downloadable objects, such as video clips, images, wallpapers,
screensavers, and ringtones.

pdf Capabilities related to native support for PDF content.

playback Capabilities related to supported video formats and codecs for content downloaded
from websites.

product_info Capabilities related to the device, such as brand and model name; whether it is a
mobile device, phone, or tablet; operating system; keyboard; or browser.

rss Capabilities related to native support for Really Simple Syndication (RSS) feeds.

security Capabilities related to Hypertext Transfer Protocol Secure (HTTPS) support and
International Mobile Equipment Identity (IMEI) visibility.

sound_format Boolean capabilities related to a variety of different sound formats.

smarttv Capabilities that are relevant for smart TVs.

sms Capabilities that are relevant for Short Message Service (SMS), EMS (rich-text SMS),
and ringtones, including those speciic to vendors like Nokia and Panasonic.

storage Capabilities related to the size of the pages that the device can manage.

streaming Capabilities related to supported video formats and codecs for content streamed
from websites.

transcoding Capabilities aimed at identifying the request as coming from a transcoder or
a proxy—a piece of software that may act as a gateway and hide real device
 information. These capabilities are offered in case you need to handle such requests
in a special way.

wap_push Capabilities aimed at detecting effective Wireless Application Protocol (WAP)
 features.

xhtml_ui Capabilities related to XHTML markup.

http:///

 CHAPTER 6 Developing Responsive Mobile Sites 147

In addition to these groups, WURFL has a group of deprecated capabilities that may be removed

from the repository at any time. Details about the deprecated capabilities can be found at

http://wurl.sourceforge.net/help_doc.php#deprecated. For the most part, these are capabilities that

now are expressed more properly by other properties in one of the aforementioned groups.

This listing shows an excerpt illustrating the CSS capabilities of the generic device—the root of

WURFL devices:

<group id="css">

 <capability name="css_gradient" value="none" />

 <capability name="css_border_image" value="none" />

 <capability name="css_rounded_corners" value="none" />

 <capability name="css_spriting" value="false" />

 <capability name="css_supports_width_as_percentage" value="true" />

</group>

The following example, instead, shows the same group for a generic Android device:

<group id="css">

 <capability name="css_border_image" value="webkit"/>

 <capability name="css_rounded_corners" value="webkit"/>

 <capability name="css_spriting" value="true"/>

 <capability name="css_supports_width_as_percentage" value="true"/>

</group>

As you can see, some properties are overridden.

the WUrFL patch Files

The WURFL repository comes with two or more iles (arbitrarily named): one is the XML ile that
 represents the repository itself (usually named Wurl.xml); the others are patch iles that are usually
named after the pattern xxx_patch.xml. Patch iles are optional.

Note The WURFL API is based on a coniguration module through which you point to the
repository and optional patch iles. In ASP.NET, you can do that either programmatically

through a luent interface or via a custom section in the Web.conig ile.

A patch ile allows you to make changes to some capabilities within the default repository without
physically tweaking the original ile (which would break the license anyway, even if you did it on your
legally acquired copy). In other words, a patch ile is the provided way to override some content
 within the WURFL database. If any patch is found when the WURFL ile is parsed, its content is
 imported to build a modiied version of the repository. Here’s an excerpt from a patch ile that adds
support for Firefox 10 (in case it is not supported in the latest update of the repository):

<device user_agent="Firefox" fall_back="generic_web_browser" id="firefox">

 <group id="product_info">

 <capability name="brand_name" value="firefox" />

 </group>

</device>

http:///

148 pArt II Mobile Sites

<device user_agent="Mozilla/5.0 (Windows NT 5.1; rv:10.0) Gecko/20100101 Firefox/10.0"

 fall_back="firefox" id="firefox_10_0">

 <group id="product_info">

 <capability name="model_name" value="10.0"/>

 </group>

</device>

Why would you want to use a patch ile?

Overall, the primary reason for using a patch ile is that you have your own good reasons to assign
certain capabilities a different value. For example, suppose you tailor-made a website for tablet

 devices. Next, you run across a particular device whose screen is large enough to accommodate

the tablet user interface that you designed. Unfortunately, though, WURFL continues to consider

that particular device as something other than a tablet. You then create a new patch ile (or edit an
 existing one) and override the is_tablet capability, only for that particular UA. Here’s an example:

<device user_agent="your nice tablet device that WURFL doesn't consider a tablet"

 fall_back="generic_mobile" id="mytablet">

 <group id="product_info">

 <capability name="is_tablet" value="true" />

 </group>

</device>

Another scenario where patch iles are useful is when you need a capability that is not natively
supported in WURFL, either because it is too speciic for your application or because nobody ever
thought of it before. Finally, a patch ile can come to the rescue when some wrong data is found to
exist in the original WURFL database. For more information and examples of patch iles, visit
http://wurl.sourceforge.net/patchile.php.

top 20 WUrFL Capabilities
Let’s take a closer look at some of the WURFL capabilities to get a precise idea of the level of control

over the content being served that you can gain through WURFL. I picked my favorite 20 capabilities; but

the choice is arbitrary—it doesn’t mean that the remaining 500 or so capabilities are less important. Full

documentation about capabilities can be found at http://wurl.sourceforge.net/help_doc.php.

For the sole purpose of this section, I organized these 20 top capabilities on a per-scenario basis.

Identifying the Current Device

Table 6-2 lists some very handy capabilities that describe the device being used to carry the current

request. The table shows the name of the capability, its WURFL group, its description, and possible

values for it.

http:///

 CHAPTER 6 Developing Responsive Mobile Sites 149

TAblE 6-2 Device-Related Capabilities

Capability WuRFl Group Value Description

is_wireless_device product_info true/false The device is wireless.

is_tablet product_info true/false The device is a tablet.

is_smarttv smarttv true/false The device is a smart TV.

device_os
device_os_version

product_info string The name and version of the current
device (i.e., Android 2.2).

resolution_width
resolution_height

display integer The screen width and height in pixels.

max_image_width display integer The maximum width, in pixels, of
images as they can be viewed on the
device.

can_assign_phone_number product_info true/false The device can be associated with a
phone number. Used to distinguish
devices using a SIM only to browse
the web.

pointing_method product_info joystick, stylus,
touchscreen,
clickwheel,
“”

The method used to select links.
Note that the empty string indicates
classic four-way navigation on devices
with top, left, right, and bottom but-
tons to navigate links.

brand_name
model_name
marketing_name

product_info string The brand (i.e., HTC), model name
(i.e., HTC A8181), and even marketing
name of the device (i.e., HTC Desire).

Some of these properties allow you to catalog the device very precisely. For example, you can check

whether the incoming request comes from a browser hosted on a wireless device. The is_wireless_device

 capability returns true for any UA string matched to mobile devices such as cell phones, PDAs, and tablets

(but not laptops and smart TVs like AppleTV). If all you need is to detect a mobile device, this property

is all you need. For a more detailed analysis, you can also check is_tablet, which returns true on iPads;

and can_assign_phone_number, which returns true on mobile phones (which can have a phone number

assigned) but not on, say, iPods. Another similar capability is has_cellular_radio (in the bearer group): this

capability indicates whether the device can mount a SIM for whatever reason. You can have a SIM on an

iPad but not, say, on an iPod Touch.

If you need to distinguish iOs from Android or Windows Phone devices, you can use the device_os

and device_os_version capabilities. If you then need to know the exact device (manufacturer and

product name) go with model_name and brand_name.

The actual size of the screen is returned by resolution_width and resolution_height. Finally, information

about touch capabilities are is returned by the pointing_method capability when the value equals

touchscreen.

http:///

150 pArt II Mobile Sites

Note One might reasonably wonder why is_smarttv has its own group and isn’t grouped

with other analogous is_xxx capabilities. Smart TVs are a new market with tremendous

potential, and in the near future as more and more TVs will include a web browser site,

 developers may face the need to optimize for smart TVs as well. In WURFL, an ad hoc group

is already in place.

Serving Browser-Speciic Content
Table 6-3 lists a few capabilities that can help you ine-tune the markup that you serve to the browser.

WURFL is full of capabilities for ine-tuning the markup being served. The three capabilities below are
representative of scenarios in which you will want to use different markup templates on the server to

generate the view.

TAblE 6-3 Capabilities for Serving Ad Hoc Content

Capability WuRFl Group Value Description

viewport_supported html_ui true/false The browser supports the viewport
meta tag.

image_inlining html_ui true/false The browser can display images
embedded via the data Uniform
Resource Identiier (URI) scheme.

full_lash_support lash_lite true/false The browser fully supports Flash.

cookie_support xhtml_ui true/false The browser supports cookies.

preferred_markup markup string The preferred type of markup to
serve to the browser. (See later in this
section for more information on this
topic.)

png,
jpg,
gif,
tiff,
greyscale

image_format true/false The browser can display images of a
given type.

Some mobile browsers assume they can render every page, so they shrink the actual page to the actual

screen size and let users zoom in and out to view a section of the page in a convenient manner. The HTML

viewport meta attribute has been introduced to enable the developer to indicate which size the virtual

screen—the viewport— actually should have. The viewport meta tag is not standard, though, and it is safer

if you check before you emit it. The viewport_supported capability just tells you so.

Browsers treat images as separate resources and trigger an additional request to download them

(if not cached locally). For mobile devices, HTTP requests carry a much higher cost than they do

for desktop browsers, so any techniques are welcomed that reduce the number of HTTP requests

 necessary to inalize a page. A common technique consists of embedding small images as Base64-
encoded text within the HTML page, as demonstrated in Chapter 4.

http:///

 CHAPTER 6 Developing Responsive Mobile Sites 151

The image_inlining capability allows you to know in advance whether the requesting browser will

be able to show correctly an image embedded in this way. If you fail this check, though, the worst

problem you can run into is that the image is replaced by the browser’s speciic placeholder for
 missing images.

The lash_lite group has modeled Flash-related capabilities on mobile devices. Between 2007

and 2009, Adobe has promoted a Flash proile called Flashlite on mobile devices in Japan, South

Korea, the United States, and regions enabled for Global System for Mobile Communications (GSM).

Nokia has been one of the main proponents of Flashlite on their Series 60 devices for a long time.

The different Flashlite capabilities indicate whether the player can be used to deliver, for example,

 screensavers and wallpapers. The lash_lite group also contains the full_lash_support capability, which

tells you whether a given device can display the Flash content that we have come to love (or hate) on

the web.

Lately, and especially in relationship to Adobe’s recent moves, the focus on Flashlite for mobile has

diminished greatly. With Adobe focusing on HTML5 development, it is hard to imagine new mobile

development being done using Flash. However, there’s still older code around, so this WURFL group

still may play a role.

In mobile web, there are two types of markup languages, which are only apparently similar:

 ■ XHTMl MP This is a mobile-optimized markup format that browsers ind extremely fast to
parse and render. In addition, by simply seeing the Multipurpose Internet Mail Extensions

(MIME) type, any browser can reasonably perceive that the page is a mobile page.

 Unfortunately, the markup language is not as powerful as plain HTML, and support for DOM

manipulation, CSS, and JavaScript is not really advanced—at least not in a cross-browser way.

 ■ HTMl/viewport This is plain HTML markup with the addition of the viewport meta tag.

HTML/viewport was essentially introduced by iPhone and Safari for mobile. As the MIME type
is the same as for a full webpage, Apple added the viewport meta tag as a clue to the browser

about the page being mobile.

In WURFL, the preferred_markup capability indicates which type of markup is ideal for a given

browser. If the capability returns html_wi_oma_xhtmlmp_1_0, then you should serve XHTML MP

markup. If the returned value is html_web_4_0, then you’d better go with plain HTML and use the

viewport meta tag to mark the page as mobile.

Knowing in advance that the page is mobile helps the browser to arrange an optimal rendering

avoiding shrunk pages and the need of zooming in to interact effectively.

Understanding JavaScript Capabilities

Table 6-4 lists some of the capabilities related to the JavaScript support available in the device browser.

This is one of the trickiest points to consider when it comes to serving content to mobile devices. If

you mostly focus on smartphones or relatively recent high-end phones, you can assume JavaScript

support from the browser. Maybe you won’t ind advanced HTML5 capabilities in the browser, but the

http:///

152 pArt II Mobile Sites

core work of applying CSS and manipulating the DOM after Ajax calls is always possible. In general,

though, the more you enlarge your audience, the more you might want to check these basic aspects.

TAblE 6-4 JavaScript Capabilities

Capability WuRFl Group Value Description

ajax_xhr_type ajax none,
standard, msxml2,
 legacy_microsoft

An object that enables Ajax in the
browser.

ajax_support_ javascript ajax true/false The browser supports JavaScript.

ajax_manipulate_dom ajax true/false The browser allows to use JavaScript
to apply dynamic changes to the
DOM.

wii bearer true/false The browser supports WiFi
 connectivity.

The ajax_support_ javascript capability returns true if a minimum set of features are known to be

available on the device. The minimum set of features includes the ability to display message boxes

via functions like alert and conirm, access form elements and modify values dynamically, change

document location, and start timers. Ajax capabilities are measured against the browser object used

to trigger out-of-band calls. The ajax_xhr_type capability takes values like msxml2 or legacy_microsoft

if Ajax is possible via ActiveX components like Microsoft.MsXml2 and Microsoft.XmlHttp. The value is

standard if Ajax is implemented via the browser’s native XmlHttpRequest object.

Ajax capabilities are also doubly linked to WiFi support because a WiFi connection makes it easier

and faster to place a network call. You check whether the device has wii capabilities through the wii

Boolean capability. Note that WURFL only tells you that wii is supported on the phone. It doesn’t tell

you whether a WiFi connection is currently active or not. This comes as no surprise because WURFL is

a static data repository that only recognizes capabilities.

htML5-related Capabilities

WURFL also contains a bunch of capabilities that are related to the set of technologies that are

grouped under the HTML5 umbrella. Table 6-5 lists some of them.

TAblE 6-5 HTML5 Capabilities

Capability WuRFl Group Value Description

canvas_support html_ui true/false The browser supports canvases.

css_gradient css true/false The browser can render CSS3
 gradients.

ajax_preferred_geoloc_api ajax none,
gears,
w3c_api

The browser supports geolocation
either through Google Gears or the
W3C API.

http:///

 CHAPTER 6 Developing Responsive Mobile Sites 153

The canvas_support capability and the css_gradient capability are both Boolean properties that

 indicate whether the browser can display a canvas and can render a CSS gradient as speciied in CSS3.
Finally, the ajax_preferred_geoloc_api capability indicates whether the browser supports geolocation

and, if so, through which API. There are two options: Google Gears (now deprecated) and the W3C

API, which is the current standard.

Using WUrFL from ASp.NEt
Now that we know enough about WURFL capabilities, it would be nice to see what’s required to use

them in a real website. For this purpose, I’ll update the sample device detector website I built for

Chapter 4 and make it powered by WURFL for the device detection logic.

In Chapter 4, I presented an ASP.NET MVC application and used a custom algorithm to detect

mobile devices and then relied on the Mobile Device Browser File (MDBF) or native ASP.NET DDR

solutions for some additional capabilities. I didn’t need to use any special API—it was plain ASP.NET

programming. To incorporate WURFL, instead, you need to become familiar with its standard API.

I’m presenting the WURFL API in the context of an ASP.NET MVC website, but the steps and the logic

of the API are the same for ASP.NET Web Forms, Java, and PHP as well.

Introducing the WUrFL ApI

To enable the WURFL API, you reference the packages for the speciic platform (assemblies in .NET)
and add some bootstrap code to initialize the library and load the WURFL data. Past the onetime

initialization, you have a WURFL manager object that you might want to cache for serving successive

requests.

The WURFL manager object is the primary intermediary between your code and the WURFL data.

This object controls the device repositories and selects the right device for any provided UA string.

You use the manager to read about speciic capabilities. The manager object caches the WURFL data
internally and exposes it through an in-memory dictionary. As a developer, you are only responsible

for caching the manager in any way that suits you—local ASP.NET cache or any sort of distributed

cache you may be using, such as AppFabric Caching Services. Any access to capabilities happens in a

constant time because it is as complex and accessing a dictionary entry.

The manager returns a speciic device object based on the UA string or the entire request object
including additional HTTP headers. Note that currently the .NET API for WURFL is compiled against the

Microsoft .NET Framework 2.0. On one end, this ensures maximum compatibility; on the other hand,

however, it doesn’t allow you to use base types for intrinsic objects added later—HttpRequestBase, for

example. You must be ready to cast types to have things compile successfully.

Adding WUrFL to the Device Detector Website

The simplest way to add WURFL to an ASP.NET project is via NuGet. As Figure 6-2 shows, by typing

WuRFl API in the Search box of Microsoft Visual Studio, you immediately get the reference and can

enable your project to support WURFL in a click or two.

http:///

154 pArt II Mobile Sites

FIGuRE 6-2 Adding WURFL to a Visual Studio project via NuGet.

Figure 6-3 shows how the NuGet package modiies your project. It adds an App_Data folder and

copies the WURFL repository into it. Note that the NuGet package gives you the latest public release

of the repository available at the time that the package was uploaded. If you have a commercial

license, you may have access to more recent versions of the repository.

FIGuRE 6-3 The ASP.NET project as modiied by the WURFL NuGet package.

The next steps consist of tweaking the code in Global.asax to bootstrap the WURFL library and

adding actual code that deals with capabilities.

http:///

 CHAPTER 6 Developing Responsive Mobile Sites 155

Loading WUrFL Data

The following code shows the minimum that you need to have in your Application_Start handler. Note

that the RegisterRoutes method is related to the ASP.NET MVC plumbing.

protected void Application_Start()

{

 RegisterRoutes(RouteTable.Routes);

 RegisterViewEngines(ViewEngines.Engines);

 Wurfl.Initialize();

}

RegisterViewEngines is a method discussed in Chapter 3 that adds the ability to fork the views rendered

for mobile browsers automatically. The method enables you to have an index.mobile.cshtml view along

with an index.cshtml view and have the right one picked up based on whether the requesting browser is

mobile or not. Note that the code in Chapter 4 for switching automatically to mobile views now should be

updated to perform the device detection via WURFL.

The Wurl class feature in the listing is a helper class created to minimize the code to write to set

up WURFL in a project. Here’s the full source code:

public class Wurfl

{

 /// <summary>

 /// Internal name used to cache the manager

 /// </summary>

 private const String WurflManagerCacheKey = "__WurflManager_v1_3";

 /// <summary>

 /// Gets the currently cached instance of the WURFL manager object.

 /// </summary>

 public static IWURFLManager Manager

 {

 // We're assuming that the Cache object was correctly populated in global.asax at

 // application startup.

 get { return HttpContext.Current.Cache[WurflManagerCacheKey] as IWURFLManager; }

 }

 /// <summary>

 /// To be called once in the app, loads the WURFL database in memory.

 /// </summary>

 public static void Initialize()

 {

 const String wurflDataFilePath = "~/App_Data/wurfl-latest.zip";

 const String wurflPatchFilePath = "~/App_Data/web_browsers_patch.xml";

 var wurflDataFile = HttpContext.Current.Server.MapPath(wurflDataFilePath);

 var wurflPatchFile = HttpContext.Current.Server.MapPath(wurflPatchFilePath);

 var configurer = new InMemoryConfigurer()

 .MainFile(wurflDataFile)

 .PatchFile(wurflPatchFile);

 var manager = WURFLManagerBuilder.Build(configurer);

 HttpContext.Current.Cache[WurflManagerCacheKey] = manager;

 }

}

http:///

156 pArt II Mobile Sites

Note that patch iles are used in this example just for clarity. You should use patch iles only if you
really have something to ix in the repository.

To initialize WURFL, you indicate the location of the data. The conigurer is the object that knows how
to retrieve and load data iles for you. The InMemoryConigurer accepts ile names (data ile and patch ile)
as plain strings; on the other hand, ApplicationConigurer reads them from the Web.conig ile. To use the
ApplicationConigurer class, you need the following section of code in the coniguration:

<wurfl>

 <mainFile path="~/App_Data/wurfl.latest.zip" />

 <patches>

 <patch path="~/App_Data/my_patch.xml" />

 ...

 </patches>

</wurfl>

Once the conigurer is in place, you build the WURFL manager object and then cache it for any

l ater use. The previous listing also features a public property—Manager—to retrieve quickly a

 reference to the manager when you need to get device information.

Note The WURFL API supports both ZIP and GZ compression formats, so you can store

compressed iles on your web server as well. The uncompressed size is currently around
15 MB, while the compressed size is around 1 MB.

From the UA to a Virtual Device

WURFL igures out device capabilities by snifing the UA string. Internally, the UA string is processed

to remove noise that may have been added along the way by gateways and proxies and to identify

the pieces of information that really matter. Each UA goes through a pipeline of special components

called matchers that just attempt to match the normalized UA to keywords that they have been

instructed to deal with. For example, the WURFL library contains an Android matcher that knows how

to recognize all UAs coming from such devices. At the end of the matching phase, you have a Device

object ready for queries. Here’s the code that you need to get a Device object:

var deviceInfo = Wurfl.Manager.GetDeviceForRequest(Request.UserAgent);

You can call this code from anywhere in your pages where you have access to the ASP.NET HTTP

context. In an ASP.NET MVC application, you can call this code from within a controller method. In an

ASP.NET Web Forms page, you can call this code in any page event—for example, Page_Load.

The GetDeviceForRequest method accepts the UA string as well as the ASP.NET HttpRequest
object. Because the WURFL library is compiled against the .NET Framework 2.0, you cannot use the

 HttpRequestBase object which, in newer versions of ASP.NET, is just what HttpContext.Request returns.

Once you have a Device object, you can start querying for capabilities.

http:///

 CHAPTER 6 Developing Responsive Mobile Sites 157

Querying for Device Capabilities

Let’s see how to use WURFL to check whether the requesting browser is hosted in a mobile device.

As mentioned, this is the crucial test that helps our ASP.NET MVC application (via the custom view

engine) to switch automatically to a mobile view. Here is the code for this:

// Check whether the requesting browser is hosted in a mobile device

var ismobile = deviceInfo.GetCapability("is_wireless_device").ToBool();

The GetCapability method on the Device object takes a string representing the capability name

and returns a string. In general, the value of a WURFL capability maps to any of the following:

 ■ True/false Boolean strings

 ■ Integers

 ■ Plain strings

 ■ Special strings that correspond to entries in an enumerated type

By design, WURFL simply returns strings; any mapping to more speciic types is entirely on your own.
However, this also gives you the opportunity of shaping things the way you like. You also should create a

bunch of extension methods for strings to convert Boolean and integer strings quickly to actual Boolean

and Integer values. The ToBool method shown previously may be coded as shown here:

public static class StringExtensions

{

 public static Boolean ToBool(this String theString, Boolean defaultValue = false)

 {

 Boolean value;

 var success = Boolean.TryParse(theString.ToLower(), out value);

 return success ? value : defaultValue;

 }

}

That’s all you need to know about WURFL programming. What remains is iguring out the best
way to use capabilities to arrange your views.

The following listing illustrates how to detect device capabilities in a controller method and pass

the information down to the next view for actual display:

public ActionResult Details()

{

 var deviceInfo = Wurfl.Manager.GetDeviceForRequest(Request.UserAgent);

 ViewBag.UserAgent = deviceInfo.UserAgent;

 ViewBag.OS = String.Format("{0} {1}",

 deviceInfo.GetCapability("device_os"),

 deviceInfo.GetCapability("device_os_version"));

 ViewBag.Browser = String.Format("{0} {1} {2}",

 deviceInfo.GetCapability("brand_name"),

 deviceInfo.GetCapability("marketing_name"),

 deviceInfo.GetCapability("model_name"));

 ViewBag.IsMobile = deviceInfo.GetCapability("is_wireless_device").ToBool();

http:///

158 pArt II Mobile Sites

 ViewBag.IsTablet = deviceInfo.GetCapability("is_tablet").ToBool();

 ViewBag.SupportTables = deviceInfo.GetCapability("xhtml_table_support").ToBool();

 ViewBag.PointingMethod = deviceInfo.GetCapability("pointing_method");

 ViewBag.ScreenSize = String.Format("{0} x {1}",

 deviceInfo.GetCapability("resolution_width"),

 deviceInfo.GetCapability("resolution_height"));

 ViewBag.SupportAjax = !deviceInfo.GetCapability("ajax_xhr_type").NoneOrEmpty();

 ViewBag.PreferredMarkup = deviceInfo.GetCapability("preferred_markup");

 return View();

}

Figure 6-4 shows the site in action on an Android HTC Desire device.

FIGuRE 6-4 Detecting device capabilities with WURFL.

The sample application is available online at http://www.expoware.org/mobile. I invite you to visit

the site with your mobile device to experience live the power of WURFL.

Implementing a Multiserving Approach

A DDR platform gives you the power to grab a lot of information about the device and the browser

that is placing the HTTP request. In this way, you can make a decision about which content to serve—

whether rich HTML5 markup, Ajax-intensive script, or plain HTML, with more or less graphics and

multimedia content.

http:///

 CHAPTER 6 Developing Responsive Mobile Sites 159

This section irst summarizes the key aspects of a mobile site that you want to optimize for each
request and then proceeds to present an example of multiserving—deciding which view to serve

based on detected capabilities.

Key Aspects of Mobile Views
Developers of a mobile site that aims at reaching the widest possible audience should consider

carefully the implementation of a few different views for each page. Note that this isn’t just about a

desktop site that morphs into a mobile site. This is about a parent site—whether mobile or desktop—

that serves multiple versions of the same logical page, one per each device proile that it intends to
support.

Device-speciic versions of the same logical page differ for a number of aspects beyond markup:

image transcoding, viewport, and various ancillary forms of optimization.

Note By saying “the same logical page,” I deinitely hint at the same Index.cshtml page,
which may look different when viewed on an iPhone versus a cheap and old-fashioned

Nokia device. However, this only represents the most common scenario. It may not simply

be a matter of reorganizing markup and images; sometimes it also may be a matter of logic

and data being processed by the various views of the same page. In ASP.NET MVC jargon,

you may need to face the need to serve not just different view templates, but also different

view models for the same action.

Optimizing the Content rendered

While creating a view for a device proile, you also might need to check other rendering capabilities
to compress the markup and decrease data trafic.

This entails looking at whether or not CSS iles can be merged and if the device supports CSS
sprites. Also, gradients can be rendered as CSS instructions instead of using background images.

 Image inlining is another great example of little tweaks that you may apply to the markup to speed

up the download and rendering time. Video, sound, Flash content, and cookies may be subject to

further checks to avoid an unpleasant experience for some of your users.

resizing Images

Even on powerful smartphones, reducing the size and number of images is never a bad thing. There’s

nothing fancy about resizing an image, but it would be great if the task could be automated to some

extent. An approach you might want to consider is creating your own HTTP handler that serves as a

centralized dispatcher of image iles and properly resizes and converts them based on the capabilities
of the device.

http:///

160 pArt II Mobile Sites

Details of the implementation are up to you; for example, you can opt for dynamic resize and

caching or you can let the handler pick one of a few predeined images. In general, this is a very
 compelling service that commercial frameworks could offer to mobile developers.

Note When talking images and their sizes, it is not a secondary point to recall that a pixel is

not always a pixel in mobile environments due to dots-per-inch (DPI) issues. Currently, there

are pixel ratios of 1, 1.5, 2, and even 2.25. This is relevant info for images, icons, and other

graphics on the site.

Viewport Control

In any mobile page today, it is common to set the viewport. As mentioned, the viewport indicates—

to the browsers that support it—the effective size to use for the browser window. In other words, a

viewport is a request for the browser to not use any virtual window to host the content, but to stick to

a speciic width, which can be either relative or absolute. Here’s a common way to set the viewport in
an HTML page:

<meta name="viewport"

 content="width=device-width; initial-scale=1.0; maximum-scale=1.0; user-scalable=0;" />

It is key to remember that not all browsers support the viewport, especially those on older devices.

If you’re deining a view for very basic devices, make sure you check the viewport capability as well.
In WURFL, it is expressed through the viewport_supported capability and a few others in the html_ui

group.

Creating Device Proiles
To implement a multiserving approach, you need well-deined rules to partition the potentially large
number of different devices, a DDR platform to help in the implementation of such rules, and some

code artifacts to keep device detection and page routing smooth and effective.

Managing Segmentation

There’s not just one way to partition the full range of devices into classes. Each application can have

good reasons to deine its own set of classes. This may depend on the results of some analysis that
showed how potential users tend to reach the site; or it may be inspired heavily by characteristics

of the application itself. Flexibility is key, and each team knows very well what would be the ideal

 segmentation for client devices.

Rules indicate conditions that a device should meet to be admitted into a class and be served a

certain type of markup. So you irst deine your classes and grossly deine which devices fall into each;
next, you deine more formal rules and implement them against a DDR.

A simple but effective example of device segmentation can be the following: one class reserved

to iPhone and iPod Touch, one for all other smartphones, and perhaps one more for tablets. All

http:///

 CHAPTER 6 Developing Responsive Mobile Sites 161

 remaining devices will get a plain old XHTML page. Nothing prevents you from adding more or

 different proiles to best address the needs of, say, Windows Phone users. In general, however, the
number of different device proiles you end up with never should exceed ive. Beyond this threshold,
the effort may be excessive; and if you really need to distinguish, say, iPhone users from Android

 users, you’re probably better off going with a native application.

Note Before you decide to create distinct native applications for a few platforms, you also

can try skinning the site differently for iOS (and perhaps Android) using ad hoc CSS iles.
WURFL helps in detecting CSS support and OS information for the device.

Rules for a Device Proile
Each device proile is identiied by a bunch of rules. Rules are expressed in terms of capability values.
For example, one rule can be expressed as “all devices that support touch.” Another can be “all

 devices larger than 240 pixels.”

Not all the capabilities for WURFL—one of the largest repositories of device data—discussed so

far in this chapter are necessarily good for creating rules to classify devices. General parameters to

 consider are the width of the screen, touch and WiFi support, Ajax and JavaScript, the level of HTML,

and CSS support. Some of these capabilities may be inferred by looking at the operating system;

 others should be checked directly. For example, if the operating system is, say, iPhone OS or Android

(2.0 or later), you can assume excellent HTML capabilities that are nearly at the same level as a

 desktop browser.

In any case, to implement rules and segmentation, you need to employ a reliable and accurate

DDR platform.

Device Proiles in Action
As an example, let’s consider a scenario in which we have two proiles—smartphones and plain
mobile devices. Even though the number of proiles is fairly small, one of the proiles is quite hard to
deine. In fact, what’s your deinition of a smartphone?

The Smartphone Proile
Any attempt of providing a formal deinition of a smartphone risks being largely arbitrary. Yet,
 smartphones are a category of devices that produce the most mobile trafic and will be used more
and more. In terms of software and capabilities, a smartphone can be deined as follows:

 ■ A device that has touch capabilities

 ■ A device that is at least 300 pixels wide

 ■ A device that runs the iPhone OS or Android 2.0

http:///

162 pArt II Mobile Sites

This deinition probably shows the way to go but, admittedly, it is arbitrary and incomplete, especially
as far as the list of operating systems is concerned. You might want to add Windows Phone 7.5, RIM OS 6,

and some version of the Symbian OS to the list.

In our example, devices with the aforementioned capabilities will make it to the smartphone class.

Any other mobile devices will make it to another class that we use for all other devices. Everything

else is not mobile and will be treated as desktop. The following code shows a possible algorithm to

detect a smartphone. The algorithm is based on WURFL:

private static Boolean IsSmartphone(IDevice device)

{

 // Must be wireless

 if (!device.IsWireless())

 return false;

 // Must be touch

 if (!device.IsTouch())

 return false;

 // Must be 320px wide or more

 if (device.Width() < 300)

 return false;

 // Must be Android 2+ or iPhone OS

 if (device.HasOs("android", new Version(2, 0)))

 return true;

 if (device.HasOs("iphone os"))

 return true;

 return false;

}

Note that the implementation uses C# extension methods to enhance code readability. The IDevice

WURFL type doesn’t have any of the members of the code snippet. All of them are plain wrappers

around the GetCapability member of the IDevice type. Here’s the implementation of IsTouch:

public static Boolean IsTouch(this IDevice device)

{

 return device.GetCapability("pointing_method").Equals("touchscreen");

}

Even more interesting is the implementation of HasOs, which uses the .NET Framework Version

class to work around WURFL strings expressing a version number:

public static Boolean HasOs(this IDevice device, String os)

{

 return HasOs(device, os, new Version(0, 0));

}

public static Boolean HasOs(this IDevice device, String os, Version version)

{

 // Check OS

 var deviceOs = device.GetCapability("device_os");

 if (!deviceOs.Equals(os, StringComparison.InvariantCultureIgnoreCase))

 return false;

http:///

 CHAPTER 6 Developing Responsive Mobile Sites 163

 // Check OS version

 var deviceOsVersion = device.GetCapability("device_os_version");

 Version detectedVersion;

 var success = Version.TryParse(deviceOsVersion, out detectedVersion);

 if (!success)

 return false;

 return detectedVersion.CompareTo(version) >= 0;

}

public static Boolean HasOs(this IDevice device, String os, String version)

{

 // Check OS

 var deviceOs = device.GetCapability("device_os");

 if (!deviceOs.Equals(os, StringComparison.InvariantCultureIgnoreCase))

 return false;

 // Check OS version

 var deviceOsVersion = device.GetCapability("device_os_version");

 return deviceOsVersion.Equals(version, StringComparison.InvariantCultureIgnoreCase);

}

In WURFL, the version of an operating system also can be expressed as a string (e.g., Symbian

Anna). The inal overload for the HasOs method just covers this case.

In an analogous manner, you can deine additional IsXxx functions to deine other classes. For
example, IsMobile can be as simple as shown here:

private static Boolean IsMobile(IDevice device)

{

 // Must be wireless

 return device.IsWireless();

}

The IsWireless extension method just checks the is_wireless_device capability of WURFL.

Important When it comes to deining class proiles to partition the entire set of mobile
 devices that you face, be ready to deal with priorities too. It can likely happen that a UA

string matches multiple rules. Which one would you pick up? Think of tablets. They’re

 mobile; they’re probably smartphones (according to the previous deinition), and they can
display the full website easily. Either you provide true partitions (e.g., negate the is_tablet

WURFL capability for members of the smartphone group to distinguish from tablets) or

deine a priority rule as well.

A DDr-Based ASp.NEt routing System

Implementing segmentation rules is clearly a developer’s responsibility. This means that during the

processing of the request, right before ordering a HTML template to render the markup, the code

goes through a list of conditional statements and looks at known capabilities that the DDR of choice

associates with the current UA and other HTTP headers. At the end of the worklow, the code knows
the name of the HTML template that best its the requesting device.

http:///

164 pArt II Mobile Sites

Trying to be more speciic, where exactly would these conditional statements go? You have basically
two options: create the markup on the ly (not especially easy to do with ASP.NET Web Forms using default

controls) or redirect the request to a mobile landing page. In ASP.NET Web Forms, this can be achieved

by installing an HTTP module that intercepts incoming requests for ASP.NET pages, analyzes the UA, and

rewrites the URL to a page that best serves the device. Here’s some code to illustrate the point:

public class WurflHttpModule : IHttpModule

{

 public void Init(HttpApplication app)

 {

 app.BeginRequest += OnBeginRequest;

 }

 private void OnBeginRequest(Object source, EventArgs e)

 {

 var app = (HttpApplication) source;

 var context = application.Context;

 var page = ApplyRoutingWorkflowForMobile(context.Request);

 context.RewritePath(page);

 }

 private String ApplyRoutingWorkflowForMobile(HttpRequest request)

 {

 var originalPath = HttpContext.Current.Request.Path.ToLower();

 // Get device information from the DDR (WURFL in this case)

 var device = Wurfl.Manager.GetDeviceForRequest(request);

 if (device.IsSmartphone())

 return GetLandingPageFor(originalPath, "smartphone");

 ...

 return originalPath;

 }

}

The GetLandingPageFor method contains the application-speciic logic that determines the page
to serve for the application-speciic proile named smartphone. It goes without saying that the logic in

ApplyRoutingWorklowForMobile can be customized lexibly.

A DDr-Based ASp.NEt View Engine

As was shown in Chapter 4 and in the previous example in this chapter, when you use ASP.NET MVC,

things are simpler because of the neat separation existing in the framework between the processing

logic of the page and the rendering of the view. The previous approach, in fact, poses some

 development issues in the sense that it assumes that each possible mobile page is a stand-alone page

with its own processing and rendering logic. In simple scenarios when the data being represented is

the same and all that changes is the markup, you are exposed to the risk of code duplication.

In ASP.NET MVC, controllers process the request and generate the data for the view; the view is

then picked up as a parameter. The net effect is that you just need to fork the code that, in the same

regular request processing, selects the next view. Simple scenarios are greatly simpliied and even can
be automated by using some convention-over-coniguration. For example, you may decide that the

http:///

 CHAPTER 6 Developing Responsive Mobile Sites 165

default version of the site’s home page (whether mobile or desktop) is provided by index.cshtml.

Ad hoc views resulting from multiserving follow the naming convention of index.xxx.cshtml, where

xxx is the name that you assign to your device proiles. For example, if you detect a smartphone, you
then serve a view called index.smartphone.cshtml. If such a view is not deined, you fall back to the
default view, index.cshtml.

I’d code this algorithm via a DDR-powered custom view engine written along the following

 skeleton:

public class AmseRazorViewEngine : RazorViewEngine

{

 private readonly ViewResolverBase _resolver;

 public AmseRazorViewEngine() : this(new DefaultWurflViewResolver())

 {

 }

 public AmseRazorViewEngine(ViewResolverBase resolver)

 {

 _resolver = resolver;

 }

 protected override IView CreateView(ControllerContext controllerContext,

 String viewPath, String masterPath)

 {

 var resolvedViewPath = viewPath;

 var resolvedMasterPath = masterPath;

 if (!String.IsNullOrEmpty(viewPath))

 resolvedViewPath = _resolver.GetName(controllerContext.RequestContext, viewPath);

 if (!String.IsNullOrEmpty(masterPath))

 resolvedMasterPath = _resolver.GetName(controllerContext.RequestContext,

 masterPath);

 return base.CreateView(controllerContext, resolvedViewPath, resolvedMasterPath);

 }

 ...

}

The ViewResolverBase class represents the base class for components that transform the originally

requested view name into a different name according to some logic—in this speciic example, the
device capabilities as detected by WURFL. Here’s an excerpt from the WURFL resolver:

public override String GetName(RequestContext context, String viewName)

{

 var mobileView = TransformViewName(context.HttpContext.Request.UserAgent, viewName);

 return VirtualFileExists(context, mobileView) ? mobileView : viewName;

}

private String TransformViewName(String userAgent, String view)

{

 var device = Wurfl.Manager.GetDeviceForRequest(userAgent);

 if (device.IsSmartphone())

 return ModifyViewNameFor("smartphone"); // Some helper code here

http:///

166 pArt II Mobile Sites

 ...

 return view;

}

All in all, it is always a good thing to have quick-and-easy solutions for everything. Not that

 everything is easy in software, and quick-and-easy solutions are such just because they make

 assumptions and restrictions. So long as you know the underlying mechanics and which assumptions

and restrictions are applied, you can enjoy quicker development without losing the lexibility that
 allows you to take tougher challenges.

So in the end, we have a website with three lavors: desktop, smartphone, and plain mobile.
Figures 6-5 and 6-6 show the site on a smartphone (at least according to the previous and entirely

 arbitrary deinition) and a plain mobile device. For the purpose of illustration, I’m considering
 Windows Phone 7 to be a plain device, not a smartphone. This has been done only for the sake of the

demo!

FIGuRE 6-5 The WURFL Peek site on a device in the smartphone proile.

You can try the WURFL Peek site yourself by using your own device to visit

http://www.expoware.org/mobile.

http:///

 CHAPTER 6 Developing Responsive Mobile Sites 167

FIGuRE 6-6 The WURFL Peek site on a device in the mobile proile.

the role of jQuery Mobile

As you may have igured out from the visual themes, the smartphone view is extensively based
on jQuery Mobile. I provided an introduction to jQuery Mobile in Chapter 5, “HTML5 and jQuery

 Mobile.” The library does a great job of letting you create effective mobile user interfaces and also

 offers automatic fallback in case of older browsers. The library does use a lot of script and CSS

 facilities that—while common overall on most mobile browsers—may still produce a nonoptimal

rendering on older browsers. That’s precisely the point I want to make here.

The jQuery Mobile library bases its decision about whether a required implementation may work

on the requesting browser solely on the information that it gets directly from the browser or that it

can detect programmatically. As we’ve seen, the number of these capabilities can be measured in the

order of tens; a server-side DDR is at least one order of magnitude more powerful.

Not all mobile solutions need a DDR, but what a DDR can do in the context of multiserving is

much more than what jQuery Mobile (and other JavaScript libraries) can do.

Finally, consider that you have limited control over how fallback happens. The free plain HTML user

interface that you get in this case may not suit you. And more, the jQuery Mobile library is fairly small in

size (24 KB of miniied/gzipped script, plus 7 KB of miniied/gzipped CSS, plus another 10 KB of images),
but it also requires the full jQuery library, which takes up another 30 KB (miniied and gzipped). All this
content also will be downloaded (but probably cached) for a trivial HTML page anyway. My suggestion

is that you consider jQuery Mobile for rich devices, and use your own HTML pages for falling back.

http:///

168 pArt II Mobile Sites

Note As far as I can tell, no frameworks today support automatic, convention-based routing of

pages to mobile devices. A notable exception is ASP.NET MVC 4. The framework supports the

mobile sufix to identify the mobile display mode for a view requested by a mobile device (e.g.,

index.mobile.cshtml). ASP.NET MVC 4 also allows you to deine dynamic rules to create custom
display modes. ASP.NET MVC 4 doesn’t prescribe a DDR—it only offers the largely insuficient
native ASP.NET browser capabilities provider—but WURFL can be used easily to create custom

rules and custom display modes such as index.smartphone.cshtml.

rWD plus Server Side Components (rESS)

So far in this book, I have advocated the idea that content for a mobile site can be arranged

entirely on the client or entirely on the server. Arranging a mobile presentation on the client

requires a lot of CSS and some JavaScript (clever) tricks—and more important, it works by

 hiding, resizing, and repositioning downloaded content. This is RWD, and, among other things,

it relies on browsers to support CSS media queries.

Next, I discussed the server-side approach, where you rely on a DDR to tell you as much

as possible about the known capabilities of the requesting browser. Based on that, you

 intelligently serve the best content. A server-side approach is—in my opinion—more powerful

as it gives you the great chance to download only relevant content and also organized in the

most appropriate layout.

There’s also a kind of middle way, though, that’s based on a combined use of RWD on

the client and a server-side DDR. Luke Wroblewski called this approach RESS (short for

 REsponsive design plus Server Side components). You might want to read his post at

http://www.lukew.com/ff/entry.asp?1392.

At its core, an RESS solution is based on a single set of master pages written for RWD.

 Therefore, these pages can resize properly and lay out their content to a different structure

based on the screen size. At the same time, the content of these pages is not the same

 regardless of the browser. Such pages contain areas whose actual content is determined by

looking at the browser capabilities. The beneit is that you distribute the logic for adapting the
layout between server and client; and on the client, this logic is mostly native browser logic.

In addition, you have a single application for desktop and mobile browsers and a single set of

links to deal with.

RESS is a new ield, and it’s not completely clear whether it is a brilliant new idea or simply yet
another attempt to build effective mobile pages. An excellent and pragmatic perspective of RESS

and responsive sites can be found at http://www.slideshare.net/yiibu/pragmatic-responsive-design.

http://www.lukew.com/ff/entry.asp?1392
http://www.slideshare.net/yiibu/pragmatic-responsive-design
http:///

 CHAPTER 6 Developing Responsive Mobile Sites 169

Summary

We all want sites to be capable of adapting to the actual browser. This means desktop browsers with

a restricted window, as well as browsers whose rendering area is smaller. All mobile devices fall in the

second group.

A hot question being debated these days is whether you can afford to create a single website with

such a smart design that can handle browsers of any size effectively. This is the promise of RWD (as a

design approach) and also the promise of CSS media queries (as a more concrete technology).

With mobile sites, it is essential to minimize the amount of data being transferred. This includes

CSS, script, and image iles. Most of the time, RWD performs its magic by simply hiding DOM
 elements. This means that the memory footprint of the page remains quite large, which is another

problem in itself given the limited processing power of mobile devices. Furthermore, as it happens,

some resources are downloaded, but not to be used! While some tricks can be applied to download

smaller images, that often comes at the extra cost of downloading additional scripts and CSS style

sheets. Downloading extra stuff that is not even used is a luxury that nobody can afford in the mobile

space.

So if a single “liquid” design may not be affordable for mobile scenarios, what would be a valid

alternative? You use a server-side DDR to match the requesting device to a known proile and igure
out effective capabilities. Based on that information, you then intelligently serve the most appropriate

markup and create as many levels of segmentation as you think you need.

WURFL is the most popular DDR today. It brings a catalogue of mobile device proiles and a
 cross-platform API that spans ASP.NET, PHP, and Java. WURFL counts in its database over 15,000

unique device proiles (corresponding to many more real devices) and 500+ capabilities.

WURFL and RWD share the same goal, but RWD is limited to a few design-related capabilities

(device width/height, screen width/height, color depth, resolution, and orientation). WURFL has
more than 500 capabilities, most of which are also design-related. In mobile solutions, you need to

 understand the capabilities of the device and decide what to do. It’s not simply a matter of changing

the layout; it’s often also a matter of logic and data.

http:///

http:///

 171

Part III

Mobile Applications

CHAPTER 7 Patterns of Mobile Application Development . . .173

CHAPTER 8 Developing for iOS .207

CHAPTER 9 Developing for Android .267

CHAPTER 10 Developing for Windows Phone323

CHAPTER 11 Developing with PhoneGap381

http:///

http:///

 173

C H A P T E R 7

patterns of Mobile Application
Development

Life is what happens while you are busy making other plans.

—John Lennon

In this chapter:

 ■ Mobile Applications Are Different

 ■ Patterns for Interaction

 ■ Patterns for Presentation

 ■ Behavioral Patterns

 ■ Summary

In this chapter, we begin a tour of the exciting world of mobile applications. A mobile application is

not a website optimized for mobile devices. It is, instead, a relatively small and compact application

natively created for the operating system available on the device. The application is often a self-

contained application installed on the device, possibly interacting with sensors and local hardware

and connecting to the outside world. Mobile applications are one of the key reasons for today’s

growing smartphone market, and it is probably the most considered option when a company starts

thinking of establishing a mobile presence.

Mobile applications are written for a speciic version of a speciic operating system. Nearly any
major vendor of mobile devices has its own operating system and related software development kit

(SDK). Writing mobile applications for the iPhone/iPad platform is not the same as writing for the
Android platform, and writing for Windows Phone is different than writing for BlackBerry, Symbian,

or Bada. The list of mobile platforms is not endless, but it deinitely counts a few items that architects
and developers can’t just ignore.

It turns out that writing a mobile application is a development experience that may vary

 signiicantly depending on the platform of choice and the skills that one may have. For example,
if your team has a strong Java background, then writing for Android and BlackBerry is not a huge

 problem. The same can be said if you come from years of .NET development and face the task of

building Windows Phone applications.

http:///

174 pArt III Mobile Applications

All mobile applications, however, share a common set of characteristics that make them fairly

unique. This chapter discusses a speciic set of design patterns and ad hoc coding practices that may
apply to mobile applications.

Note Not all the patterns presented in the rest of this chapter necessarily apply to all

mobile applications. However, it’s also unlikely that none of the following patterns apply,

either. More important, these patterns apply on a per-function basis rather than on

per-platform basis.

Mobile Applications Are Different

Mobile applications are relatively simple applications that perform a speciic task for the user. Such
applications must be installed on the device to perform their tasks, sometimes interacting with the

device hardware, including camera, storage, and global positioning satellite (GPS) sensor. Mobile

applications also can be used to build user-speciic worklows by orchestrating pieces of custom
logic and native components such as the Short Message Service (SMS) subsystem, the default email

program, and the preinstalled browser.

Mobile applications are still software applications, so any well-known practices of good design

and development apply. However, mobile applications run on mobile devices, and such devices are

 signiicantly different from laptops and desktop computers.

Critical Aspects of Mobile Software
Mobile software is software designed to run only on very special devices. This apparently simple fact

imposes a number of constraints on developers and raises a few issues for which new patterns and

practices are required.

the Interaction Model

A key difference between desktop and mobile applications is that users of modern mobile

 applications likely will use a inger to point to any available content. Using a inger to select a menu
item is quite natural and a pleasant experience for the user, but not if the clickable item is too small.

A inger, in fact, will never be as precise as a mouse pointer or a stylus can be. What about typing

text, then? Whether the device has a hardware keyboard or relies on some software emulation, typing

on mobile devices is deinitely problematic. If the keyboard is provided via software, then it ends
up hiding a large part of the existing user interface. Sometimes it happens that the keyboard covers

some of the buttons that users may tap to conirm the operation. All of this is annoying and should
be addressed at the design level by keeping usability practices in mind.

http:///

 CHAPTER 7 Patterns of Mobile Application Development 175

the presentation Model

Touch-sensitive screens force you to increase the size of any clickable content—primarily buttons

and links. Unfortunately, you cannot simply make each button and link larger—the overall size of the

screen of a mobile device is much smaller than the screen of a laptop.

The combined effect of these two factors leads to a complete rethinking of the user interface of

a mobile application. A mobile application is designed around a few very speciic use-cases, each of
which inds its trigger on the home screen. In the implementation of each use-case, then the number
of steps that require user interaction should be kept to a minimum.

Presentation of the data is also subject to new rules. Scrolling is highly encouraged, and it is

done vertically for the most part. However, forms of horizontal scrolling are coming up, especially in

Windows Phone with the panorama view (see Chapter 10, “Developing for Windows Phone”). This is

a major and notable difference with desktop and web applications. A widely agreed guideline says

that horizontal scrolling should be avoided altogether on webpages and minimized in desktop user

 interfaces. In addition, in mobile, the horizontal swipe gesture is an accepted way to lip through
distinct but related blocks of content. While a swipe is just a gesture to introduce new but related

content, overall, it transmits the idea that you can navigate through content by lipping through
pages. As a developer, swiping is an excellent way to save valuable screen space while not sacriicing a
sense of continuity in the presentation experience.

the Behavior of the Application

Screen real estate is not the only resource that is limited on a mobile device. Processing power—

namely, the power of the CPU and the associated graphics processing unit (GPU)—is not comparable

to what is typical in desktop computing; therefore, it is used for memory and local storage. In

 particular, some devices also prevent (or at least complicate) the act of mounting an extra SD memory

card onto the device.

This means that memory consumption should be kept under strict control, and optimizing

 algorithms is more important than ever. Furthermore, for its inherent nature, a mobile device is

interruptible and is utilized by users in a way that requires a strong multitasking logic. Multitasking,

however, conlicts with a lack of processing power and memory. The net effect is that all applications
should be created from the ground up around the idea that they can be put in a rest state and even

removed from memory when the system reclaims their resources.

Finally, mobile applications run on battery power and are subject to the quirks of connectivity.

Because the user might be traveling when she deals with the device, the connectivity can come and

go at any time, and it also might change its quality as the user moves from a WiFi area to 3G roaming.

The actual behavior of mobile applications, therefore, depends on a variety of issues that most

developers never faced before.

http:///

176 pArt III Mobile Applications

Security Concerns for Mobile Software

In the past 15 years of web development, architects and developers have learned a lot about threats

to the security of data and applications and how to combat them. In particular, we’ve learned that it is

essential to use long passwords made of both capital and lowercase letters, numbers, and symbols.

Try typing such a strong password on a mobile device. You have to switch multiple times between

different keyboard layouts; in the end, all users would opt for a simpler password, and the application

developers would opt for number-only PINs. All this is effective, but it reduces the level of security.

Also, consider that a device is much easier to steal than a laptop and is also far easier to lose. In

addition, a mobile device often is lent to other people, if only for something simple and quick like a

phone call. All these common behaviors increase the risk of attacks and data loss.

The challenge is inding a good mix of measures that keep security at a high enough level without
making users’ lives signiicantly harder. Mobile security, however, is a whole new ield of research in
much the same way as web security was in the 1990s.

New patterns and practices
Mobile applications pose new challenges and require a new set of patterns and practices. Such design

patterns are necessary to drive the development of mobile applications and keep them effective and

aligned with the needs and expectations of people.

Mobile design patterns apply regardless of the actual operating system and development platform.

Three main areas of programming are affected by patterns because of their relevance: application life

cycle, storage and connectivity.

Application Life Cycle

In a desktop scenario, the user commonly starts and stops applications. The termination of a

 running program, therefore, is a deterministic event. A mobile operating system is a totally different

 environment for programs. In a mobile environment, a user is only allowed to start an application—

the system will be the one to stop the application. Borrowing from Java- and C#-speciic terminology,
I would even say that in a mobile environment, all running applications are at some point “garbage-

collected” by the operating system scheduler and terminated as appropriate.

This sort of application garbage collector will operate on application instances that have been

started once but are no longer interacting with the user in the foreground. These application

 instances are referred to as background applications. What background applications are allowed to

do may vary across different mobile operating systems like iOS, Android, and Windows Phone. In

general, while mobile operating systems seem to run multiple applications at the same time, that’s

mostly a trick played to keep users happy. In a mobile scenario, truly unlimited multitasking (where

multiple applications are alive and kicking at the same time) is just not affordable. Limited memory

and excessive pressure on the CPU would run the battery down, reducing the power for foreground

applications as well.

http:///

 CHAPTER 7 Patterns of Mobile Application Development 177

On mobile devices, applications swing between three possible states: actively running, paused with

some pending work, or paused waiting to be resumed or unloaded. The various mobile operating

systems differ for the actual implementation of these states, but the bottom line is that any mobile

application is designed to a different expectation than classic desktop and web applications (even

web applications run on a mobile device).

tools for Data Storage

Mobile applications are fundamentally conceived to be stand-alone applications. This certainly

doesn’t mean that mobile applications are totally disconnected from one another; instead, it means

that mobile applications require special tricks and application programming interfaces (APIs) to

share data. In all mobile platforms, applications are allowed to persist data locally to the device. This

can usually be done in a number of ways—via custom iles, local databases, or system-managed
data repositories such as the Settings bundle facility of iOS, ApplicationSettings in Windows Phone,

 SharedPreferences in Android, and PersistentStore object in BlackBerry.

Custom iles give you the maximum lexibility because they mostly offer a stream-based
 programming interface and can receive any serializable in-memory object. However, mobile

 applications sometimes are assigned a speciic section of the ile system, and their persistent data is
well isolated from the others. In Android and BlackBerry, the developers can control the visibility of

the iles and can access an external SD card programmatically. In Windows Phone and iOS, sharing

persistent data between applications requires tricks. In these platforms, however, it seems that the

way to share persistent content is the cloud—the iCloud platform for iOS and SkyDrive for Windows

Phone.

Local databases are still changing and evolving. A popular choice seems to be SQLite (see

http://sqlite.org for general information), a transactional SQL database engine that requires little or

no administration and lends itself very well to be hosted in devices as an application-speciic local
 database. SQLite is a widely usable, cross-platform solution. In Windows Phone, you also have the

 option of Microsoft SQL Server Compact Edition (SQL CE) and the Sync Framework for synchronizing

local and remote databases. SQL Anywhere from Sybase is an excellent and award-winning

 commercial product for syncing up mobile and remote data on a variety of platforms, including

iPhone, Android, BlackBerry, and Windows Mobile.

Just the ability to synchronize device data with the enterprise server is a key factor for mobile

applications. It is especially crucial for line-of-business mobile applications that employ a local cache

when the network is down and smoothly sync up with the remote server whenever the network

becomes available again. For this speciic problem, another class of solutions may appear soon on the
mobile horizon—mobile NoSQL solutions.

Put this way, the connection between NoSQL and mobile may be hard to ind, as a mobile
application can hardly be considered a data-intensive application. Nonetheless, NoSQL is a boldly

emerging approach in the mobile space. A NoSQL mobile platform is merely the mobile edition—

hosted right in the device—of a NoSQL database. This allows you to store plain objects locally

regardless of table schemas and relying on typical NoSQL query operations for retrieving saved

objects. In a NoSQL scenario, queries are expressed in terms of map/reduce operations, where the

http:///

178 pArt III Mobile Applications

map operation selects the item of interest (e.g., the WHERE clause of a classic query) and the reduce

operation receives a mapped object and performs any required work on it. In addition, you’ll have a

server NoSQL component living in your datacenter that you can sync up with.

Note The term NoSQL refers to a relatively new class of storage systems that do not

use SQL as the query language and may not require ixed schemas in their repositories.
NoSQL systems also differ from classic relational systems for the lack of JOIN operations

and incomplete support for atomicity, consistency, isolation, and durability (ACID)—the

pillars of the traditional, SQL-based relational model. Whereas typical relational solutions

work best in frequent but small read/write transactions and large batch and mostly read-
only transactions, NoSQL solutions can operate eficiently in scenarios where heavy read/
write transactions are required. Their improved performance is due to the release of ACID

 constraints and ixed table schemas.

A good example of mobile NoSQL is CouchBase Mobile, which is the mobile edition of the

 increasingly popular CouchDB database. From a developer’s perspective, CouchBase Mobile consists

of an embedded web server and a JavaScript interpreter to process queries. In CouchDB, map/reduce
operations are coded in JavaScript. Currently, CouchBase Mobile is available for Android and iOS.

Connectivity

In general, not all mobile applications need connectivity. Games and personal utilities (e.g., a to-

do list) may work locally forever without any problems. But when you wed mobile to business,

 connectivity becomes a crucial point. As mentioned, connectivity is frequently associated with data

synchronization and occasionally connected functionalities. However, from a developer’s standpoint,

connectivity triggers a number of potential headaches that can be rooted in one common cause:

mobile connectivity may not be reliable.

Mobile just means using a device while on the road, which by itself suficiently explains why
 connectivity should not be assumed to be reliable. You can lose connectivity as you walk through

a subway station, or it can be laky if you are in a crowded shopping mall a few days before the
 holidays.

The bottom line is that the user interface and network-dependent operations should be designed

and implemented according to speciic patterns that take into account a bit of troubleshooting and
try repeatedly before succeeding or giving up. If it’s critical for the user interface, connectivity should

be checked constantly—preferably via a background service. In this way, you can guarantee that

any network state change is detected and user interface (UI) elements can be enabled or disabled

in a timely fashion. Similarly, being connected and starting a network operation is no guarantee of

success—the network can go down at any time. Clearly, a WiFi connection is more reliable and faster

than a 3G connection on average, but far from making things simpler, this aspect adds yet another

parameter—type of connectivity—to consider for the implementation of network tasks.

http:///

 CHAPTER 7 Patterns of Mobile Application Development 179

Let’s explore now a few recommended patterns for design and implementation of features in

mobile applications.

Important This chapter and the following patterns are devised primarily with mobile native

applications in mind (e.g., Android, iPhone, and Windows Phone). However, some of the

next considerations and suggestions for their generality apply to mobile web applications

as well.

Patterns for Interaction

The patterns in this section are related to the way in which the user interacts with the application and

what the application should (or should not) do to make the user’s life easier and offer a better user

experience.

Note When it comes to patterns, names are extremely important. I’d even say that names

are as important as the content they express. One of the major beneits of using patterns
is that you can explain your idea of implementation by using common names. And those

names are unambiguously associated with a triad given by a strategy, a list of actors, and a

description of the role played by each actor in the strategy. Mobile patterns are a new ield,
so most of the names used here are new (and in some cases, even a bit arbitrary). In the

near future, there hopefully will be more stabilization on both names and strategies.

the Back-and-Save pattern
We all see that youngsters are incredibly quick to type on the hard and soft keyboards of mobile

phones and devices. They are this quick because they’re used to tapping and—not a trivial point—

because their ingers are tinier. Even when your application is created for a relatively young audience,
a feature like word auto-completion (which saves users the effort of typing an entire word or phrase)

is always welcome. This is great help in web and desktop applications, but it an even greater help in

mobile environments, where typing on a keyboard is deinitely a much harder task for everybody.

Formulating the pattern

The core idea behind this pattern is to take any reasonable measures to minimize the typing effort

of the user. This results from the combined effects of a few practices, one of which is automatically

 saving whatever the user has typed, regardless of how she leaves the current screen. The principle of

the Back-and-Save pattern is here:

Save the content of input screens when the user leaves (or is forced to leave) the screen.

http:///

180 pArt III Mobile Applications

This pattern goes hand in hand with the Auto-Save pattern, which can be expressed as shown here:

Save the content of input screens periodically.

This is the same feature that you can enable in Microsoft Word that silently saves your current

document after every given number of minutes (see Figure 7-1).

FIGuRE 7-1 The auto-save feature in Word.

Both Back-and-Save and Auto-Save express the same core idea—don’t request an explicit command

(i.e., a tap) from the user to save the data just entered. What’s been just typed is a nontrivial effort the

user made—don’t throw it away because the user leaves the screen by hitting the device’s Back or

Search button.

Consider that sometimes the user taps Back because she simply doesn’t see other ways of leaving

the screen: losing typed data is never a pleasure for her (especially if it’s taken great effort to type

it). Or consider another typical situation: the application crashes. If a user still can retrieve input data

from the previous session, he probably will be less angry with the application. Likewise, consider that

especially in input forms, the limited screen real estate of devices can make it hard to squeeze out

some extra space for a pair of Save/Clear buttons that keeps the overall user interface clean and clear.
The convention, therefore, is to reverse the classic pattern of web and desktop applications—save

regardless and clear/undo on demand, and only when that represents a valuable feature for the form.
Figure 7-2 presents the Settings screen for the browser application on an Android smartphone. As you

can see, there’s no hint of a Save or an Undo button, and the visible state of the screen is what has

been saved or will be saved upon exit.

Implementation of the pattern

The actual implementation of this pattern is subject to the speciic facilities that you ind on a
given platform. You can use a timer to save at a given interval; you can detect when the screen is

 being unloaded and do your saving work. Finally, you also can opt for a save-as-you-go approach

and permanently save data as the state of any given widgets in the user interface is altered. As an

 example, consider that the Android screen in Figure 7-2 is coded using a built-in component—the

PreferenceActivity class—that detects changes in visual controls and automatically saves for you.

Figure 7-3, instead, shows a feature of a free iPhone application (Postino) that takes photos and

lets you send them as physical postcards. At some point, you can add a message to the postcard and

even draw your signature. There’s no need to do anything to save; but shaking the phone (like an

Etch-a-Sketch) will clear any sign you’ve drawn. The Windows Phone version of Postino has a button

on the application bar to let users clear the signature.

http:///

 CHAPTER 7 Patterns of Mobile Application Development 181

FIGuRE 7-2 Settings of an Android browser application: no buttons to save or undo.

FIGuRE 7-3 Back-and-Save in action in Postino for iPhone (left) and Postino for Windows Phone with an explicit
command for undo.

http:///

182 pArt III Mobile Applications

Note Postino is available for iPhone, Android, and Windows Phone. For more information,

visit http://www.postinoapp.com.

Considerations for Mobile Data Entry

If the idea of a complete turnaround still sounds a bit harsh to you after years of programming with

explicit save/undo commands, then consider that having a Save Conirmation dialog box has been
treated as one of the big problems with current software by David Platt in his popular book Why

Software Sucks (Addison-Wesley, 2007). In his book, David focuses on the user experience and uses

a great analogy: A clerk will never ask you to conirm the groceries you’ve just put on the register
belt—it’s self-evident. Slightly rephrasing David’s concepts, in mobile applications, the data entry

 experience should follow the paper-and-pen analogy: what’s written stays there unless you actively

decide to remove it. Shaking the device to undo/redo is a fairly common practice.

the Guess-Don’t-Ask pattern
In addition to automatic saving, the data entry experience can and should be improved in any way.

This entails, for example, making extensive use of hints and watermarks on text boxes, and in general,

any smart form of interaction that can save space on the screen and help minimizing errors.

Formulating the pattern

Guess-Don’t-Ask has more of a general principle than a classic pattern. It expresses the idea that

the application should try to limit data entry as much as possible. If there’s something that you, as a

 developer, can do to save your users a click or some typing, then by all means do that. The principle

of the Guess-Don’t-Ask pattern is below:

Use any available resources to make intelligent guesses and save users the largest possible bit of

interaction.

This pattern is all about offering suggestions to users and guessing what they would most likely do

in a given scenario. Applications of this pattern range from coniguring auto-completion in text boxes
to providing tips on how to perform common tasks.

Another fairly common situation is illing in a form with address information. You might want to
use the GPS service to reverse a location to an address via the Bing or Google Maps service. In this

way, the address ields of the form can be illed automatically with a reasonable default value. For
the country ield, you also can try to guess it from the system locale or (perhaps more reliably) the
keyboard layout.

Guessing some input data that the user is going to enter (and, likewise, doing whatever is in

your power to predict user actions) bring a key beneit—these features give the perception that
the software is taking care of the user. It is much more common than you may think that mobile

http:///

 CHAPTER 7 Patterns of Mobile Application Development 183

 applications to be downloaded, used once, and then uninstalled or never used anymore. A little bit

of guessing can really make the difference between a good application that is successful and a good

 application that is just downloaded, but without enthusiasm.

Implementation of the pattern

As mentioned, Guess-Don’t-Ask is more a driving vector than an algorithm to implement at some

speciic point. It turns out that its implementation details are largely speciic for each application and
mostly left to the creativity and feeling of single developers. However, here’s a list of features that

represent good guesses at various stages of the application.

Input forms are deinitely an excellent place where you can exercise your guessing ability to

minimize input effort. You can preill ields with geographical information and greatly simplify data
entry by enabling word completion, facilitating voice-based input, and choosing the best-itting input
scope. Figure 7-4 shows the user interface of a classic grocery list application for Android that allows

you to add items by speaking.

FIGuRE 7-4 A voice-enabled input form.

Making typing Easier

When it comes to typing, the input scope plays a fundamental role. The input scope deines the type
of data being entered and is used to deine the layout of the onscreen keyboard. On mobile devices,
the onscreen (soft) keyboard for space constraints is necessarily limited to letters, numbers, or symbols.

http:///

184 pArt III Mobile Applications

However, depending on the speciic data type that is expected in a text box, having a given character in

the layout can save users a lot of switching and speed up the data entry. For example, Figure 7-5 shows the

keyboard layout used by the default browser applications in Windows Phone and Android.

FIGuRE 7-5 Different keyboard layouts in the Windows Phone and Android browser applications.

As a developer, you can conigure the keyboard layout programmatically to a large extent. It’s not that
you have to create a new layout from scratch every time; however, a well-made choice among the natively

supported layouts can make a good deal of difference. Figure 7-6 shows a Windows Phone screenshot

that is expected to contain a description. It may not look that much different from Figure 7-5, but in

 action, it looks very different. First, it starts with uppercase letters. Second, it allows the user to add a smile

with a single click. Finally, it supports word completion (but this can’t be guessed from the igure).

FIGuRE 7-6 A more speciic keyboard for entering a description text in Windows Phone.

http:///

 CHAPTER 7 Patterns of Mobile Application Development 185

If You Can’t Guess, then remember

Guessing requires logic—sometimes smart logic. However, there’s a much simpler yet effective way

to save users some data entry—remembering last entries and preferences. Again, how you take

 advantage of this pattern largely depends on the form that you’re writing. For example, Postino for

iPhone remembers the address and description that the user entered for the latest postcard and uses

those values as the default for the next one.

It should be noted that you don’t want to use this strategy every time. It makes sense for Postino,

because it is reasonable to expect that the user wants to send more postcards to people in the same

city, or with a similar if not identical text. The same strategy, instead, might offer little value in other

situations where the likelihood that the user has to clear everything before typing could be higher.

Sometimes, arranging statistics about how the user is dealing with the application can help make

more precise guesses about what’s appropriate to improve the user experience. As a general rule,

however, saying that keeping track of the last action/selection and use that as a default choice is, on
average, a rewarding approach.

Finally, if the data to enter can be taken from other storage places within the device (e.g., name or

address of a contact, email, and phone number), then there’s really no reason to do otherwise.

the A-la-Carte-Menu pattern
Older readers may recall that there was a time before the advent of Windows and pop-up menus that

all applications (mostly MS-DOS applications) started with a relatively small list of choices, such as

press 1 for this, press 2 for that, and so forth. One may argue that it was a totally different time and

that applications were much simpler. That’s right—but today’s mobile applications are incomparably

simpler than many desktop and web applications. More important, mobile applications (as well as

mobile websites) are built around a few speciic use-cases. And you should be able to make it clear to
the user from the beginning which options are available.

Formulating the pattern

The core idea of the A-la-Carte-Menu pattern is to make any action quick and direct for users at

any time. Users are almost never sitting comfortably when they use the application—they may be

 walking, waving for a taxi, stuck on a car or train, or maybe even eating or drinking. At any rate,

 immediacy is key in the mobile space. The pattern can be summarized as:

At any time, it should be clear for the user which action to take and how many options she has.

Options always should be limited, and any functions should be no more than two or three clicks away.

Implementation of the pattern

An effective implementation of this pattern deeply affects the usability and design of the application.

It is essential that you go with well-selected and detailed use-cases. In general, a mobile application

is a simple front end—the difference between great and not-so-great applications is mostly in the

selection of use-cases.

http:///

186 pArt III Mobile Applications

This clarity of thought should be evident since the home screen of the application. Figure 7-7

 provides two examples of what it means to list available choices in a crystal-clear way. The screenshot

on the left is the home page of a mobile web application (http://m.opentable.com); the other is

 Facebook for Android.

FIGuRE 7-7 Two examples of the A-la-Carte-Menu pattern.

The A-la-Carte-Menu pattern is often truly necessary because of touch devices—your ingers are
often too big to select links in webpages or certain buttons in mobile applications.

In addition, this pattern also relates to the idea of hiding rather than disabling controls that are

not going to be used by the user in a given context. This not only saves space but also contributes to

keeping the user interface clean and clear.

the Sink-or-Async pattern
It is widely agreed that it is a good idea for developers to opt for asynchronous implementations

of potentially long operations. This is a universal principle of software design—it’s not speciically
targeted to mobile software. However, in mobile applications, using synchronous code for operations

subject to network latency turns out to be signiicant ballast. Some operating systems may even kill
your application if it freezes the user interface for more than a given number of milliseconds.

http:///

 CHAPTER 7 Patterns of Mobile Application Development 187

Formulating the pattern

An operation coded asynchronously doesn’t block the UI thread and keeps the application much

more responsive. The Sink-or-Async pattern can be summarized as shown here:

Implement asynchronously any operations expected to perform for longer than a bunch of

milliseconds.

Expressed in this way, the pattern may sound a bit too tough; however, it addresses a very sensitive

point of most mobile applications. Imagine a user that, inadvertently or not, starts a Hypertext

 Transfer Protocol (HTTP) request to a web service. If not coded in an asynchronous way, the user

interface is blocked, and the user can’t hit Back to cancel the operation. This is frustrating to any user.

Implementation of the pattern

Generally speaking, asynchronous operations can be coded in one of two ways: by having a worker

thread make a synchronous request or by using the asynchronous API that the SDK of choice makes

natively available.

In terms of functionality, both approaches work so long as you have the possibility of spawning

your own background threads in the operating system and the programming framework allows

choosing between synchronous and asynchronous API. For example, in Windows Phone and Windows

8 Metro, you only have an asynchronous API—there’s no choice.

However, the bottom line is that loading or posting information asynchronously allows you iner
control over the user interface, which remains responsive. Going asynchronously requires a bit more

attention to refreshing the user interface with the results of the operation. It’s simply a matter of

 using the proper API.

Chaining Async Network Operations

The use-case you’re working on may require that two or more network calls are chained together,

and the next doesn’t start until the previous one terminates. This is never a problem if you can code

each network operation synchronously. In this case, you just execute operations sequentially:

var feed = GetSomeFeed(url1);

var content = ProcessData(url2, feed);

If you only have an async API available, how can you chain two or more calls? That’s precisely the

case in Windows Phone, where you have just no API to execute a network call synchronously. You

start with the following code for the irst call:

var request1 = (HttpWebRequest) HttpWebRequest.Create(url1);

var result1 = request1.BeginGetResponse(ProcessResponse1);

The ProcessResponse1 callback is invoked when the response has been obtained. If you need to

use part of the response to prepare a second call, you can only prepare the call within the body of the

ProcessResponse1 callback, as follows:

private static void ProcessResponse1(IAsyncResult asyncResult)

http:///

188 pArt III Mobile Applications

{

 // Get response of the first call

 var response = (HttpWebResponse) request.EndGetResponse(asyncResult);

 // Start a new async call from here

 :

}

It turns out that you probably can design the code to maintain a high level of readability with only

two or maybe three sequential calls; with more calls, it becomes a very intricate mess.

The problem here is not asynchrony—it’s readability. You can have sequential calls, each of which

executes asynchronously, but how would you code them in a readable way? An elegant way out

would be to use coroutines. A coroutine is a method that deines multiple entry and exit points and
that can maintain its state between invocations. In the end, the basic idea is keeping the overall

 worklow in a loop and starting the various steps as the results they need become available. The
 following pseudocode explains the idea:

while (!Task1_IsCompleted || !Task2_IsCompleted || !Task3_IsCompleted)

{

 if (!Task1_IsPending && !Task1_IsCompleted)

 ExecuteTask1(...);

 if (!Task2_IsPending && !Task2_IsCompleted)

 ExecuteTask2(...);

 if (!Task3_IsPending && !Task3_IsCompleted)

 ExecuteTask3(...);

}

The various properties used for controlling the loop are wrapped as members of a class and set

by ExecuteTaskN procedures as appropriate. You write operations as distinct async tasks, and the

 surrounding routine ensures that the overall worklow runs steps in the right sequence.

C# offers only the basics for building coroutines such as the yield statement and iterators. An

excellent introduction to coroutines and a C# implementation is provided at the following website by

Jeremy Likness: http://goo.gl/HPe9G.

In .NET 4.5 and C# 5.0, this problem will be solved brilliantly with the introduction of some

 syntactic sugar. C# 5.0 has two new keywords speciically designed for the purpose: async and await,

used as follows:

private async void startButton_Click(Object sender, RoutedEventArgs e)

{

 // First step

 var response1 = await ExecuteTask1();

 // Second step

 var response2 = await ExecuteTask2(response1);

 // Third step

 var response3 = await ExecuteTask2(response2);

 :

}

http:///

 CHAPTER 7 Patterns of Mobile Application Development 189

The await keyword instructs the compiler to generate code that executes the method

(i.e., ExecuteTaskN) asynchronously. In addition, the control low won’t move to the next instruction
until the current operation has completed. In the end, it looks like it is plain synchronous

 programming, but it is merely a sequence of async operations.

the Logon-and-Forget pattern
When you land on a webpage that requires authentication, you typically have a chance to ask the

 system to keep you logged on for a number of days. Having veriied your credentials, the system
emits an authentication cookie that the browser will use for future sessions until it expires. Figure 7-8

shows the logon window of the Twitter website.

FIGuRE 7-8 The logon box on the Twitter website.

Mobile applications should do the same, and possibly store the credentials for an even longer

time. Depending on the application, it may be acceptable to authenticate the user once, store his

 credentials, and keep on working until the user explicitly signs out.

Formulating the pattern

The Logon-and-Forget pattern is common in any mobile application that is bound to a remote web

service. A large share of mobile applications fall into this category because the remote web service

may simply be the back end of the application.

The idea behind this pattern is to save the user the burden of typing credentials over and over

again. It’s analogous to the single sign-on idea for web applications, except that it is a more viable

point in mobile because of the harder input experience. This pattern can be expressed as follows:

You should ask for credentials once, store them safely, and transparently authenticate the user in

every session.

The user should log on once, and then she should be able to use the application even if she forgets

the credentials and login duties.

http:///

190 pArt III Mobile Applications

Implementation of the pattern

An application that implements the Logon-and-Forget pattern starts by offering a classic logon screen

where the user can enter the user name and password. As mentioned, the classic Remember Me check

box we’ve clicked a million times is redundant here. The pattern is all about assuming that such a setting is

always on. Figure 7-9 shows the logon screen of the Facebook application for Android.

FIGuRE 7-9 The Logon-and-Forget pattern as implemented by Facebook for Android.

If the authentication succeeds, the application stores whatever data it needs to retain to make

 successive calls to the remote server. The shape and color of this data depends on the server

 application and its authentication protocol. If authentication is based on a homemade protocol and

basically consists in sending an HTTP request with credentials embedded in the body of the packet

then all the application needs to store safely are user name, password, PIN, token, and whatever the

server may require. If authentication is based on a protocol such as OpenID or OAuth (e.g., Twitter

and Facebook), then you need to store the access token that the server returns after a successful

authentication. For Twitter and Facebook, for example, that token is the magic key that will enable the

application to access the server-side user account and post and read messages, photos, and more.

How long should the credentials stay in place? A common practice is to keep credentials until the

user explicitly decides to log out, as in Figure 7-9. When the user logs out, credentials and any other

user-speciic data is cleared. It is also possible for the application to ask users periodically to renew
authentication. Personally, I consider this pattern annoying to the user. Log on once and forget about

credentials is deinitely the way to go.

http:///

 CHAPTER 7 Patterns of Mobile Application Development 191

Security Considerations

Web and mobile security looks like a balancing act between ease of use and risks. Even more so than

a laptop, a mobile device can be lost or stolen, and another person can pass himself off as you and

access all the information in the phone, such as email, personal data, pictures, and contacts. With the

Logon-and-Forget pattern implemented, this person also gains access to the information (and pos-

sibly the secrets) that the application stores. This fact can’t be denied.

If your application can reveal important secrets if it’s used by unauthorized users, then the

Logon-and-Forget pattern is either not implemented or at least left as an option under the user’s

 responsibility. In the latter case, the scenario will turn exactly into a weblike scenario.

As for storing credentials safely, you might want to use one of the system’s repositories. In one way

or another, these repositories are safe enough. In iOS, you use the Keychain repository, which signs

data stored with the application key. In Windows Phone, you can use isolated storage to store data

in a ile—even a clear text ile—with the guarantee that no other application can access that data
programmatically. However, isolated storage has a known location in the ile system, so there’s always
the risk that if the device is stolen, someone can navigate to the iles and read clear text. In Android,

you ind a similar situation. If you use a private system repository, then your data cannot be accessed
programmatically, which means that neither other programs nor the user via installed programs can

access private iles. However, low-level tools—mostly created for developers—always can be used to
explore the depths of the ile system.

In the end, if your application stores really critical data, you might want to use ciphering or

 encryption. There’s no guarantee that your iles can’t be read. And to be on the safe side, write
 applications that save application-speciic iles to a private store that isn’t programmatically accessible
by others.

Important For Android devices, encrypting or hiding sensitive data is always recommended

because if the phone is rooted and applications are allowed to access every fold of it, then

an external application can navigate and open just every ile.

Patterns for Presentation

The patterns in this section are related to the way in which the application should present data to the

user—some basic dos and don’ts of the user interface.

the Babel-tower pattern
Localization has always been a very important aspect of software applications, but the reality is that

only big companies can face the costs of a serious localization effort. On the other hand, very few

custom applications really need a deep and well-done localization that covers more than two or three

languages and span over the full spectrum of localization aspects.

http:///

192 pArt III Mobile Applications

In fact, there are many aspects of localization: there’s text to translate, graphics to adjust, and

maybe layouts to restructure. For relatively simple and small applications like mobile applications,

however, the translation aspect dwarfs everything else. Therefore, localization in this context is mostly

about displaying messages in the user’s native language.

Internationalization vs. Localization

Two similar terms are sometimes used when talking about multilingual software. They are

 internationalization (abbreviated as i18n) and localization (abbreviated as l10n). Internationalization

refers to changing the internal architecture of software so that it can handle multiple languages and

regional settings. On the other hand, localization refers to the speciic action of adding support for a
speciic language to already internationalized software.

Should you really care about internationalizing and then localizing your mobile applications? For

how many languages? To what level of accuracy?

Note The apparently weird shortcuts used to refer to internationalization and localization

stem from the number of letters found between initials—18 in the word internationalization

and 10 in the word localization.

Formulating the pattern

In the Bible, the Tower of Babel was built by humans to reach heaven. In return for this presumptuous

attempt, God punished humans by making their languages mutually incomprehensible. Today, the

term Babel Tower indicates a confusion of voices and languages.

The Babel-Tower pattern is inspired by the recognition that a typical mobile application is small

enough to be localized effectively with a modest investment into any business-relevant language that

you can identify. So the answer to the core question “Should I care about localization?” is something

along the lines of “Sure, why not!” The pattern can be summarized as follows:

Avoid hard-coded and ixed layout text and design your application to support the dynamic
injection of properly translated text.

A best-selling point of mobile applications is being highly comfortable for users. Offering the

application in a user’s own language is a double-edged sword. On one end, it would make the

 application more enjoyable and highly rated; on the other hand, if the localization is poorly done, the

beneit immediately turns into a drawback. For this reason, it is crucial that you give your application
an international structure from the beginning and that you design localization so that text and other

culture-speciic resources can be injected easily and ideally without needing to wait for a new release
of the application.

http:///

 CHAPTER 7 Patterns of Mobile Application Development 193

Implementation of the pattern

As mentioned, localization is the act of adapting an application to a speciic culture, whereas
 internationalization comes irst and consists of designing the code in such a way that localization is
possible. An internationalized application, therefore, supports:

 ■ Replacing text over all the screens

 ■ Replacing graphics

 ■ Replacing screen layouts

 ■ Replacing speciic portions of the application logic

These features are listed in the order in which I would personally address them. The irst and most
important step toward internationalization is enabling text replacement. This step is common to all

applications; other steps may not apply to every application.

Mobile operating systems are multilingual by design, meaning that once you make the application

available in multiple languages, the device will do the rest, picking up the right text automatically.

Mobile development platforms typically offer native tools to make text replaceable. In iOS as well

as in Android, BlackBerry, and Windows Phone, you add resource iles to the project that contain
 localizable text and optionally reference other auxiliary resources, such as graphics and screen

 layouts. Using resource iles is the irst step; referencing localized text in the user interface is the
 second. Each platform has its own API. Here’s an example of what you use in iOS to reference a

 localized string:

NSLocalizedString(@"HiThere", @"Welcome message displayed to logged users");

Instead of the plain string, you use a pointer to an entry in the resource ile. @HiThere is the ID
that identiies the real text in the resource ile selected for the current language. The second string in
the NSLocalizedString is merely a comment aimed at providing context information to translators and

developers. In other platforms, you ind nearly identical patterns and classes. And, overall, this is not
really different from what you may have done for years in web and desktop applications. So where’s

the challenge?

Resource iles are embedded in the binaries being packaged and installed onto the device. When
you release the application, you can add as many localized resource iles for as many languages you
like. If you receive feedback about the low quality of the translation of one of the languages, or if you

want to add a new language to the list, all you can do is prepare a new release.

The Babel-Tower pattern suggests that you consider using an external service to provide your

 application dynamically with translated text. Upon startup, the application connects to the server and

downloads the text it needs in the (single) language it needs. The text is cached locally and updated

only when the application receives notiication that an updated translation is available. You can either
design the application to check for updates automatically upon startup or arrange a push notiication
service.

http:///

194 pArt III Mobile Applications

This approach is beneicial in many ways. First, it shrinks your time to market, especially when you
intend to support several languages from the beginning. You can be published initially with only a

decent quality translation and improve it in a few weeks. The user receives frequent notiications of
updates, notices the difference, and may even be happier because she sees that you’re taking care

of her. The translation work is done remotely, meaning that you can buy the services of professional

translators or even set up a crowd-sourced mechanism that has users participate in the translation

efforts and vote for the best translation for a given text.

The downside of the Babel-Tower pattern is that you need a framework that makes it work. You

need your own API to download available text; you need an API to receive notiication of changes;
and you need an API to emit text and other resources in the application. Furthermore, you also need

an API for the back end to enable people or vendors to contribute translations.

Note In a recent multiplatform project of mine (consisting of multiple distinct applications

for a few mobile platforms), I developed the embryo of such a system. I limited it to a

Representational State Transfer (REST) service returning text and a device-speciic library to
extract text strings from cached data. That’s not really hard to do and involves code that is

highly reusable for any given platform. A work in progress that implements the full Babel-

Tower pattern is http://Tiyla.com.

Further Considerations

While most international websites are limited to just a few languages, international mobile

 applications are often offered in more than 10 languages. If you measure the amount of work,

 translating a mobile application is easier than translating a full-blown website. Other factors, however,

make mobile translations more challenging—for example, space constraints. English is the most used

language for applications, but the English language is one of the most compact languages. Space

is critical in mobile devices, so a user interface optimized for English text may experience overlows
when the text is translated to another language. This is a common scenario for a variety of European

languages, such as German, but it could be even more dramatic if you look at Chinese, which features

relatively short words but much larger fonts.

Text used in mobile applications must be much more concise than on equivalent desktop solutions.

This is because of space constraints, but also because of the hurrying and cognitive load that go with

reading on a small screen. Subsequently, the user interface of mobile applications is often padded

with speciic terms, abbreviations, symbols, and shortcuts of many kinds. Stated simply, there’s a
 context behind most mobile screens, and this context must be well understood by translators. The

quality of translation is therefore a critical factor. That’s why a professional translation service is an

option (if you have the budget), but it has to be a very good one. A crowd-sourcing platform for

 software translation sounds like a great compromise between cost and quality.

http:///

 CHAPTER 7 Patterns of Mobile Application Development 195

the Do-as-romans-Do pattern
In the 1990s, desktop applications conquered the world with their graphical user interfaces (GUIs); in

the 2010s, mobile applications are going to do the same, thanks to their natural user interfaces (NUIs).

A child of the multitouch capacity of devices, a NUI is made of a number of gestures, such as swiping

the screen to scroll and pan, pinching/stretching to zoom, tapping to click, tapping and holding to
open context menus, and shaking the device to undo and redo.

Mobile software platforms offer a native set of widgets and shared services that characterize

the look-and-feel of native applications. When you write your own application for a given mobile

operating system, you can’t help but stay as close as possible to the native look-and-feel. As that old

proverb says: when in Rome, do as the Romans do.

Formulating the pattern

The pattern can be summarized as follows:

It is compelling for users, and possibly also advantageous for developers, to abide by the look-

and-feel and capabilities of the host operating system.

Applying the pattern is compelling for users because your application will behave like others, so

common gestures will produce the same effect and common actions never will leave users bafled
and confused. In one word, the overall user experience is improved. For developers, it is beneicial,
too, because they can use a number of existing services and widgets. This means a lot of work saved

and more time to focus on what really makes your application unique and compelling.

Implementation of the pattern

The Do-as-Romans-Do pattern is another example of a pattern that has more of a guiding principle

than a concrete and detailed strategy to solve a common problem. Just for this reason, though, it is

probably even more important to follow.

Steps to implement the pattern boil down to keeping the overall user interface as close as possible

to the standards of the platform. This certainly means using native controls and common solutions for

data navigation and presentation. For example, most Android devices have a pair of Menu and Search

buttons. The intended role of these buttons is providing a Menu button and a Search box based on

the current state and context of the application. This means that for Android users, it is fairly common

to tap the Menu button when they wish to perform an action (e.g., quit a game or change settings),

but they can’t see any button or widget on the current screen. Likewise, the Search button is what

 Android users tend to tap when looking for speciic items. Figure 7-10 shows how a sample water
polo scoring application uses the Menu feature.

http:///

196 pArt III Mobile Applications

FIGuRE 7-10 Different context menus based on the state of the application.

When the match has not started yet, the menu offers to open a previously saved match, settings,

and information about the author. When the match is in progress, the menu is more compact and just

offers to save and suspend the current match or share the current score via email.

In Windows Phone, instead, you still have a Search button, but that button is not shown to third-

party developers. This means that developers are responsible for any in-app search feature.

This is not to say that one platform is preferable over another; it is only to remark that each

 platform is different and has its own speciic guidelines that third-party applications must comply
with for the sake of users.

Other examples of the Do-as-Romans-Do pattern can be found in the overall approach to

 application navigation and data presentation. For example, a Windows Phone application doesn’t

use tab strips but rather goes for a pivot or panorama layout. Likewise, a Windows Phone application

has an application bar similar to iPhone applications, whereas Android applications use the hardware

Menu and Search buttons.

the List-and-Scroll pattern
For years, we’ve been told that endless lists of items weren’t a good thing in both web and desktop

applications. Displaying too many items on a single webpage would make the page slower to

 download; displaying too many items within a desktop application would force the user to deal with

http:///

 CHAPTER 7 Patterns of Mobile Application Development 197

the scroll bar, which may not be fun. (Admittedly, though, mouse scroll wheels greatly alleviated this

issue.) So developers looked into pagination, and pagination toolbars became a common presence on

any webpage with more than 20 items to display.

In mobile applications, pagination happens less frequently and through a totally different user

interface. Displaying a long list of items in a mobile user interface is not necessarily a big deal for a

couple of surprising reasons—scrolling is a very natural gesture on handheld touch devices, and it is

also quite natural on larger tablets such as iPads. Native mobile applications rely on a richer software

infrastructure than most websites, so they can use data caching and REST services to return data-only

responses instead of HTML-based responses. The payloads are much smaller, and the download time

is not necessarily an issue. Furthermore, due to the Sink-or-Async pattern, any download happens

asynchronously, which makes the user experience much smoother anyway.

Formulating the pattern

Sometimes a long list of items should be displayed; in mobile applications, you don’t need to

 invent new ways of displaying a list. You just pick up the list widgets (or solutions) that the platform

makes available and stick to them. The core idea behind the List-and-Scroll pattern, therefore, is the

 following:

Don’t be afraid of using (vertical) lists in your mobile application, even long lists that contain

more than 100 items to scroll.

List-oriented widgets are available in the various mobile SDKs to simplify coding, but also to

reinforce the idea that listing is great to use in the mobile space. Moreover, mobile guidelines are

also rethinking the role of horizontal scrolling, which was banned from web and desktop applications

for being patently annoying. The reason of such as a turnaround is always the same—scrolling both

 vertically and horizontally is a natural gesture on touch devices, especially handheld devices like a

phone.

Implementation of the pattern

While building lists is a common task in mobile applications, the level of automation offered by the

various platforms is not the same. In Windows Phone, for example, it couldn’t be easier: all you do

is add a ListBox control to the screen and use data templates, and then you specify the layout for

individual rows and perform data binding. The ListBox control in Windows Phone is a self-contained,

reusable component that needs only a bit of coniguration; it doesn’t need you to program it unless
you intend to alter its predeined behavior.

In Android, the approach to building lists is nearly identical, and so are the tools that you ind in
the framework. What’s different, though, is the level of automation. In Android, in fact, you use the

ListView widget in the parent screen but need to provide it with an adapter object, which gets data

and does the binding job. This code has to be written every time, whereas it is mostly buried in the

framework in Windows Phone. In iOS, the situation is analogous to Android.

Vertical lists are the simplest approach and quite an effective one to display lists of items. However,

lists that are too long (containing over 100 items) may be boring to scroll for the user, who needs

http:///

198 pArt III Mobile Applications

a few swipes to reach the bottom. Pagination, therefore, still has a role in mobile development—it

serves to keep the initial load of the list to a reasonable threshold. A common practice is putting a

fake item at the bottom of the list that causes more items to appear. When hit, the fake item triggers

an event that adds more items to the list. Alternatively, you can download and show the next page

of items automatically as the user scrolls down until he reaches the bottom of the list. This form of

pagination is different from web pagination, as the number of data kept in memory is not constant

but grows with the pages visited.

horizontal Scrolling

Horizontal scrolling is deinitely an option you should consider in mobile user interfaces. It may not

suit every scenario, but it can help when you want to display more information in a limited screen

space. When the text being displayed is too long to it in a screen area, and if it is a monolithic text
that can be broken up into pieces, then it’s OK to wrap the text in an auto-scrollable horizontal

panel. The user just needs to pan the text left and right to read it all: I consider it to be the mobile

 replacement for tooltips. Figure 7-11 shows this pattern in action in Factor Master—a free Windows

Phone application for having a bit of fun with prime numbers.

FIGuRE 7-11 An example of panning text: the expression resulting from factorization can’t be broken up, so it can
be slid horizontally to the right with a inger movement.

http:///

 CHAPTER 7 Patterns of Mobile Application Development 199

Toolbars with too many items can sometimes be implemented in the same way, to scroll

 horizontally. All users see is a horizontal bar to swipe to ind the desired element—mostly an item
represented with some graphics (see Figure 7-12).

FIGuRE 7-12 A horizontally scrolling toolbar from Astro, a popular Android ile system manager.

behavioral Patterns

The patterns in this section are related to speciic behavior that the mobile application should

 implement while performing tasks that alter the state or connect to the outside world.

the predictive Fetch pattern
Predictive Fetch is a design pattern historically bound to Ajax. With Ajax, developers gained the ability

to place out-of-band calls to the web server and get raw data instead of full-blown HTML pages. In

this way, developers can fetch data ahead of using it and be ready to serve the next user requests

instantly. Predictive Fetch is ultimately a guess that you make based on evidence such as statistics that

prove what actions your users commonly take at a given point.

If a user spends more than a minute watching a certain video, then you quietly download abstracts

of other videos that you have stored that relate to the current one. There’s no guarantee that the user

will choose to see another video (let alone one of those that you proposed), but if he does, at least

you’ve eliminated any delay between two logically related and successive actions.

Formulating the pattern

Over the web, the Predictive Fetch pattern is employed to increase the responsiveness of the

 application and improve the user experience. In the mobile space, the original purpose of the pattern

is entirely preserved and even augmented. The pattern can be summarized as follows:

If you depend on network connectivity, download data that is likely to be used later and make

sure you have enough data stored at any time to survive a lack of connectivity.

This description contains the entire classic Predictive Fetch pattern from Ajax, plus a new

 perspective. In mobile, connectivity is not guaranteed to exist and be reliable. You cannot afford to

download data on demand—you must try constantly to download useful information in advance and

cache it for later—essentially saving for a rainy day.

http:///

200 pArt III Mobile Applications

Implementation of the pattern

An effective implementation of the Predictive Fetch pattern requires a deep understanding of how users

play with the application. For web applications, you can rely on logs and for more speciic analysis on
Google Analytics. For mobile applications, you can rely on Google Analytics for Mobile, which enables

tracking application usage in much the same way as in a website. All you do is call an API for each event or

screen view that you’re interested in. (See http://code.google.com/mobile/analytics for more about this.)

Armed with this information, you know what users are likely to do at a given stage and can code

 appropriately to get ahold of the data you may need next. This is the classic implementation of Predictive

Fetch, and while it deinitely relates to mobile applications, it is not speciically targeted to mobile.

In mobile, you have another more compelling reason to exercise your skills at prediction. As there’s

no guarantee that you will have connectivity when you need it, downloading and caching data for

later use will permit to survive lack of connectivity for hours, if not days. I call this aspect of mobile

applications the sliding download. As an example, consider an application that gives weather forecasts

for the day. Most similar applications work even if you’re disconnected. In the past, I have been

 disconnected for three days, and still I got regular forecasts. The trick is easy to unveil—such

applications download forecasts for a week or so in the reasonable hope that you won’t stay

 disconnected for more than an entire week. As soon as the application has a chance to connect, it will

download data for another week, and so forth.

Figure 7-13 shows a screenshot of the Postino application (for Windows Phone), which informs the

user about the currently available number of stamps. This number is downloaded from the server

and cached locally. When the user navigates to the page, the application attempts to download a

fresher report. If that fails, the cached number is displayed. This pattern allows the application to give

a continuous feel to the user regardless of connectivity problems, and overall, it transmits a positive

message—the application understands me and is taking care of me.

the Memento-Mori pattern
The expression “Memento mori” is a Latin phrase that translates as “Remember you will die.” It

is commonly believed that the words were uttered by the slave of a Roman general during the

 celebration of a successful military campaign. In the context of mobile development, Memento

Mori is a reminder of the mortal condition of any applications. In fact, in a mobile environment, the

 operating system—not the user—decides when an application has to stop.

Formulating the pattern

All mobile platforms allow only one application to control the device at a time. When the user starts a

new application, the one previously in the foreground goes to the background, ready to be resumed

if the user returns to it or quickly starts a new instance. Applications in the background are considered

to be paused applications and can be resumed instantly when the user navigates back to them. (The

details of how this happens vary with the operating system, but the core story remains the same.)

Furthermore, the operating system reserves the right to stop background applications at any time if

that helps to free much needed resources.

http:///

 CHAPTER 7 Patterns of Mobile Application Development 201

FIGuRE 7-13 An example of the Predictive Fetch pattern.

The primary purpose of the Memento Mori pattern is alerting applications to pay due attention to

notiications received from the operating system. Applications are notiied when they are no longer
in the foreground and are given only a few seconds of guaranteed lifetime to save any relevant state.

The pattern is summarized like this:

Applications always should save their relevant state when the operating system forces them into

the background.

Every application is then responsible for determining which data needs to be saved and how.

In general, you might want to save the application state directly to a permanent store. Operating

 systems, however, may offer some intermediate in-memory repository to speed up the resurrection

time. For instance, this is what Windows Phone does.

Note I deliberately used the term pause to indicate the state of applications in the

 background. These applications still may be allowed to do some work (that doesn’t in any

way affect the user interface) and may be abruptly terminated if idle. After being paused,

applications won’t receive any further notiication before being terminated.

http:///

202 pArt III Mobile Applications

Implementation of the pattern

Implementing the Memento Mori pattern is a matter of implementing the Memento pattern from

object-oriented programming. The Memento pattern is about object serialization and refers to the

object’s ability to save its public state to a stream so that a brand new instance with the same state

can be created later.

All programming frameworks provide good native support for object serialization and, more

often than not, they also offer a quick shortcut through system-managed dictionaries that are easier

to populate and are fast enough. In iOS, you can either save the application’s state to a class that

 conforms to the NSCoding protocol, or you can create a property list (plist). An iOS plist is basically

a dictionary serialized to an XML ile. In Android and in Windows Phone, you have native object
 serializer classes that do most of the work for you. The hardest part of working with the Memento

Mori pattern, however, is providing a formal deinition of your application’s state.

More often than not, and regardless of the operating system, what the user really gets when a

previously paused application resumes is a fresh new instance of the application that has been passed

any state saved. Saving state appropriately and accurately is vital for any mobile application.

the As-Soon-As-possible pattern
Occasionally connected applications are very common in the mobile space. They are applications

that require reliable connectivity to work properly but, at the same time, they sometimes are used in

places where connectivity is unavailable. This means that for such applications, it is critical to devise

operations to work both with and without a functioning network.

Formulating the pattern

The As-Soon-As-Possible pattern just aims at emphasizing the importance of always having a plan B

when planning critical and durable operations from within a mobile application. It is encapsulated in

the following statements:

Remote operations that are critical for the application should be implemented in a protected

manner and reiterated a few times before failing. In case of failure, however, the operation should

be recorded and played back as connectivity returns.

The expression “as soon as possible” just indicates that the message that the user sends to the

 application when commanding an operation is “Perform this task as soon as possible and any way

you can, at your earliest convenience.” The failure is intended to be temporary, and there should be at

least the guarantee that the data the application refers to can be recovered later.

Implementation of the pattern

The As-Soon-As-Possible pattern is strictly related to network operations such as the POST of data

to a remote server. You can implement the pattern in two ways that I like to call Black-or-White and

Grayscale.

http:///

 CHAPTER 7 Patterns of Mobile Application Development 203

The Black-or-White algorithm indicates that you attempt to perform the operation, and if it fails,

you notify the user and add the operation to an internal queue. As soon as the network comes back,

all the operations in the queue are performed. An operation is removed from the queue only when it

completes successfully.

The Grayscale algorithm indicates that you break down the data to post in small pieces (a few

 kilobytes in size each) and attempt to send them separately. You might want to vary the size of the

packets depending on the network connection: smaller pieces if over 3G, and larger pieces if over

WiFi. An operation is completed only when all of its pieces have been sent successfully. If the network

fails to execute a given step, you queue that step and proceed to the next step only when it has

 completed successfully.

The Grayscale algorithm requires collaboration from the server, which typically will return a token

on the irst request. The token must be sent with all successive pieces and will be used as the key to
link all the pieces of the same original operation.

Detecting Network Changes

Even once established, a connection may go down at any time. The most likely reason is that the user

is moving around and can go out of range in a matter of minutes. So never trusting the network state

is one of the golden rules of mobile (native) applications.

In general, you might want to always have a set of helper functions to check quickly if the network

is available—or better yet, you might want to set up a background service that notiies of network
changes.

Note The term background service here refers to a platform-speciic component that acts
as a listener and receives system notiications about a variety of events. You create this
component and register it with the system. Such a component is managed by the system

and turns out to have a minimal impact on battery life.

For detecting network changes, the ideal is to have a background service detect changes and

 update the user interface asynchronously and to have your own helper function that you actively

invoke to check connectivity before embarking on a user-commanded network operation.

In Android, you create a background service for detecting network changes using a receiver;

namely, an application extension that captures system events of a certain type ired by other
 applications as well as system events. Figure 7-14 shows a simple (global) notiication receiver that is
limited to showing pop-up messages. More likely, an application would have an embedded receiver

that performs code, refreshes the user interface, or both.

http:///

204 pArt III Mobile Applications

FIGuRE 7-14 An Android receiver in action.

In iOS, you use the SystemConiguration framework, and more speciically the SCNetworkReach-

abilityRef interface, to monitor the network state of a device. In Windows Phone, you have a couple

of classes that claim they can tell you about the state of the network. They are DeviceNetworkInformation,

for Windows Phone 7.5, and NetworkInterface, which works in all versions of Windows Phone. Both

classes have methods that return a Boolean value if connectivity is available. Using these methods,

though, is not entirely reliable because both methods may fail to tell you if you have access to the

Internet. They seem to be reliable only in telling you whether a connection is available, but not if you

are actively using it. In my tests, I’ve found the following trick much more reliable:

// Works in all versions of Windows Phone

private static Boolean IsConnected()

{

 var networkType = NetworkInterface.NetworkInterfaceType;

 return networkType != NetworkInterfaceType.None;

}

We’ll return to the topics of network state and connectivity for the various platforms in the next

chapters dedicated to speciic platforms.

Note Being able to check programmatically the state of the network, including the type of

connectivity you’re having, may require a special permission in your application manifest

ile.

http:///

 CHAPTER 7 Patterns of Mobile Application Development 205

Summary

Writing a mobile application, regardless of the target platform and the details of the SDK to use, is

not the same as writing a desktop or web application. Overall, it is an easier task because a mobile

 application has a far lower number of use-cases to plan for than a web or desktop application.

 However, a mobile application poses a number of challenges that the developer must be ready to

face. This chapter discussed a dozen design patterns that attempt to provide guidance for the most

common of these challenges (at least, the most common ones that I have encountered so far).

http:///

http:///

 207

C H A P T E R 8

Developing for iOS

Before everything else, getting ready is the secret of success.

—Henry Ford

In this chapter:

 ■ Getting Ready for iOS Development

 ■ Programming with Objective-C

 ■ Programming with MonoTouch

 ■ Deploying iOS Applications

These days, many chief technology oficers (CTOs) are struggling to deine the ideal strategy to
 integrate mobile development into their platforms. One reason that developing mobile solutions is

problematic is that even today, the word mobile often just means “iPhone and iPad” to many executives.

Mobile software has many facets, the most compelling of which is probably an iPhone app. We

have executives who are impressed by a cool iPhone app they’ve seen and now want to replicate it.

We have program managers impressed by the amount of work (and money) it would take to provide

a comprehensive mobile solution that reaches a wide audience share. And then we have mobile users.

Mobile users just use their devices; they enjoy apps and sites so long as they are easy to use, are

 compelling in some way, and address a speciic need—perhaps a non-business need, but still a need.

Mobile users don’t have explicit demands, but they are extremely selective and not particularly

forgiving. In the mobile space, users are no longer the victims of developers’ manias and obsessions.

In mobile development, the user is king, and applications are made to please the user.

In this context, iOS—the mobile operating system run by iPhone, iPod Touch, and iPad devices—

contributed signiicantly toward establishing some de facto standards for mobile technology,
 usability, and application capabilities. Today, a mobile solution sometimes consists solely of a mobile

site. However, every time someone goes beyond the level of a mobile site, then an iOS native

 application is built.

http:///

208 pArt III Mobile Applications

Getting Ready for ioS Development

This chapter attempts to cover the key aspects of application development for the iOS operating system.

Because this book is not intended to teach you iOS programming in detail, this chapter (as well as the

upcoming chapters on Android and Windows Phone) won’t delve into the depths of the Apple software

development kit (SDK); however, hopefully it will provide a clear guide to the available options and a full

overview of what’s required and where you can start when planning a real-world development project

that goes beyond the basics.

A Brand New platform for (So Many) Developers
At irst, approaching the task of building iOS applications can be a very annoying—or very exciting—
experience for developers who have never worked with Mac computers and Apple programming

tools before. I know numerous people in both camps, and I can say that building iOS applications is

special in a way that other programming is not.

Especially if you, like me, have a strong .NET and Microsoft Visual Studio background, then you

should be prepared to face a whole new world and a brand-new development platform. In general,

when you, as a .NET developer, embrace full-range mobile development, nothing will be the same

anymore. The irst thing you have to change is your computer!

Getting a Mac Computer

You can’t do any iOS development without irst getting a computer equipped with a Mac operat-
ing system. In the Apple world, you will ind two operating systems: Mac OS X and iOS. The former

runs on laptop and desktop computers, and the latter runs on mobile devices. As obvious as it may

seem, iOS derives from Mac OS X and serves multiple Apple devices, including Apple TV. Both iOS

and Mac OS X share the same set of core components.

Mac hardware is not known to be cheap; however, you don’t need to buy the most expensive

Mac computer to do some good iPhone development. The cheapest Mac computers (Macbook or

MacMini) are easily good enough to run the Mac integrated development environment (IDE) and the

iPhone emulator.

You need a Mac computer to compile iPhone applications because those applications rely on

libraries that simply don’t exist in Windows and Linux.

Note Technically speaking, you can run some versions of Mac OS X on a Windows-equipped

machine and save yourself the cost of buying a Mac computer. Unfortunately, this practice

is not legal; it’s a violation of the Apple OS license. Legally, you may install the OS only on

Apple hardware. The reverse is not true; you can legally install a version of Windows on a

Mac computer.

http:///

 CHAPTER 8 Developing for iOS 209

Getting Familiar with the IDE

Any development for the Mac platform, including iPhone and iPad, requires Xcode. Xcode is Apple’s

toolkit for developers. It includes an IDE, a design tool (Interface Builder), a compiler, and the iOS

emulator, as well as a set of tools for instrumentation and performance analysis. You can get Xcode

either from the Mac store or directly from http://developer.apple.com/xcode. Currently, Xcode 4 is a

free download for all members of the iOS and Mac developer programs.

Figure 8-1 offers a view of the Xcode environment.

FIGuRE 8-1 The Xcode environment.

The other essential download for iPhone development is the iOS SDK. Normally, you are given the

option of installing the SDK while installing Xcode.

The iOS programming platform is based on the set of Cocoa Touch frameworks: the iOS version

of the Mac OS X Cocoa application programming interface (API). Cocoa Touch includes nearly

 everything that you need to create iOS programs: audio, video, graphics, networking, local and cloud

storage, control over hardware, and access to built-in applications such as the address book, phone

features, and maps.

Joining a Developer program

To download tools and start practicing with iOS code, you need to enroll in one of the Apple

 developer programs. To start with, you can simply create a free account and use that to download

Xcode and the iOS SDK. This coniguration enables you to write code and compile iOS programs
at will—but you can’t deploy any of them to any physical devices. If you want to go beyond the

 boundaries of the iOS simulator and experience the thrill of running your app on a real phone, as in

Figure 8-2, then you have to join a paid program.

http:///

210 pArt III Mobile Applications

FIGuRE 8-2 From the iOS simulator to a real iPhone device.

To become an oficial iOS developer, you need to pay a fee of $99/year. Paying the fee unlocks
your account and enables your Xcode environment to deploy any applications to a registered

test device as an option. (It should be noted that there’s a limitation on the number of developer

 applications that you can install on a test device.)

You register an iOS device (i.e., iPhone, iPad, or iPod Touch) as a test device from Xcode.

 Subsequently, all you need to do is keep the device connected to the computer running Xcode.

The environment detects the device status. If a connected device is not currently registered as a

test device, Xcode will ask you if you want to promote the device to the rank of a test device.

The annual fee also enables developers to submit inished applications to the App Store for

 certiication and publishing. The App Store is the only channel a developer has to distribute
 applications. In an enterprise scenario—at the cost of a different license—you can distribute

 applications through your intranet (or over the web) to devices that hold the enterprise certiicate.
For more information, visit http://developer.apple.com.

http:///

 CHAPTER 8 Developing for iOS 211

Important As mentioned, membership dues are paid yearly. Membership allows you to

publish applications to the App Store for the duration of your membership. Also, note

that applications that you publish while a member remain available in the store only for

the duration of your membership. Therefore, if you don’t renew your membership, your

 published applications will be delisted.

iphone vs. ipod touch vs. ipad

The iOS world is populated by at least three main types of device: iPhone, iPod Touch, and iPad.

 Today, all of them can be equipped with the same version of iOS so long as the hardware of the

 device is aligned with the requirements of the operating system. For example, this means that you

can’t upgrade an iPhone 3G released back in 2008, or an equally old iPod Touch to the latest iOS5.

That begs a question: Should you address these types of device differently and consider creating

 distinct applications? To answer this, let’s irst take a closer look at the differences between these devices.

Very few differences exist between an iPod Touch and an iPhone device, and all of them are linked

to the availability of speciic hardware subsystems. For example, the iPod Touch lacks the radio and
cellular systems found in the iPhone, so it can’t be used to make phone calls. Likewise, the iPod Touch

can’t host a SIM card, and therefore it can’t connect to the Internet over a 3G network. An iPod Touch

also may lack a gyroscope sensor. For most applications, these differences don’t matter. In the end,

unless you aim to build an application that relies on, say, phone calls and text messages extensively,

there’s usually no reason to fork development between iPhone and iPod Touch. Most of the time, it

sufices that you disable any user interface (UI) elements that trigger functions not available on the
iPod Touch.

Regardless of the (few) hardware differences, iPhone and iPod Touch share the same screen size.

That’s important, because screen size alone is a major factor that may cause you to fork development.

Screen size is also what makes the iPad (and tablets in general) special and often worthy of a speciic
version of your software. Like the iPod Touch, the iPad lacks a radio system and can’t be used to make

phone calls or send text messages. Unlike the iPod Touch, though, an iPad may have the 3G subsystem.

In addition, the irst version of the iPad lacked a camera.

To sum up, an application for the iOS platform is usually optimized for the iPhone device and

works unchanged on iPod Touch devices. Applications written for iPhone work on iPad devices as

well, but the larger real estate screen of iPad devices may suggest you fork and develop around a

different set of use-cases. When running on iPad, an iPhone application either will run in a smaller

area of the screen or will be stretched to cover the full screen. Note, however, that you also can create

dual-purpose applications that incorporate an iPad-speciic layout. In this case, the system picks the
proper layout automatically.

http:///

212 pArt III Mobile Applications

Choosing the Development Strategy
An iOS application is internally based on the set of Cocoa Touch frameworks. Calls to the various

components are glued together by Objective-C statements. Objective-C, therefore, is the primary

programming language of the iOS platform.

Development of iOS applications started in 2008, when Apple opened the App Store to applications

contributed by third-party developers. For the irst couple of years, using Objective-C to perform direct
access to the Cocoa Touch frameworks was the only possible way to write iOS applications. Even today, the

vast majority of the 500,000+ iOS applications are written in Objective-C.

Objective-C, though, is no longer the only option that developers can use to build iOS applications.

A few other higher-level frameworks have been built on top of Cocoa Touch that developers can program

using other languages that they may already know or be more comfortable using.

Using Objective-C

Without beating around the bush, Objective-C is neither a popular language nor a language that

you can learn on the ly. Compared to popular object-oriented languages such as Java and C#,
 Objective-C may look a bit old-fashioned and even weird. Objective-C is essentially the ANSI C

 language extended with some object-oriented features mostly inspired by Smalltalk syntax.

Note The previous statements about Objective-C are likely biased by my personal

 background, preference, and attitude. So don’t give this opinion more value than it

 deserves—and, especially, don’t take it personally if you disagree!

Although Objective-C ultimately supports classes and object orientation, it does so through a

syntax that looks a bit unfamiliar to C++ developers and even less familiar to C# and Java developers.

Note also that you can develop for iPhone using C or C++. This is just what many game developers

do, largely for portability reasons.

Garbage collection is the programming aspect that marks a key difference between Objective-C

and C#/Java. Not all versions of the Objective-C compiler available for iOS applications support
garbage collection—that is, the ability to pass responsibility for releasing object instances at the

right time to a system-provided automatic collector. As a result, iOS developers may be entirely

 responsible for managing the lifetime of objects. The object lifetime can be managed manually by the

 developer—as in classic C-style programming—or in a sort of automatic way by marking objects so

that the compiler will make inferences about their expected lifetimes.

Note Xcode 4.2 introduced Automatic Reference Counting (ARC), which greatly simpliied
the memory management of Objective-C objects.

Beyond garbage collection, the syntax for deining classes and invoking objects’ members is fairly

unique in Objective-C. For example, the deinition of a class is distinct from the implementation, and

http:///

 CHAPTER 8 Developing for iOS 213

invoking methods looks more like sending a message than placing a direct method call. Furthermore,

symbols like + and – are used to mark a method as static or instance. In the end, writing Objective-C

code is certainly not an impossible task, as the huge number of applications available clearly demon-

strates. At the same time, the costs of writing iOS applications don’t end with learning Objective-C.

You also need to become familiar with the Cocoa Touch frameworks to build user interfaces and in-

voke helper services. Finally, you need some familiarity with the Xcode environment and with facilities

such as Interface Builder.

The bottom line is that most developers can become productive on Objective-C regardless of

their background and skills. However, developers with a strong Java, C#, or even Microsoft Visual

Basic background may ind it easier to approach iOS development from another angle. Enter the
MonoTouch project.

Using Monotouch and C#

MonoTouch is an ad hoc framework developed by Xamarin that lets you write iOS applications using

a subset of the Microsoft .NET Framework and the C# language. Unlike Objective-C and the direct iOS

SDK access, MonoTouch is a commercial product; to use it, you must buy a license. A single developer

license will cost you about $399. (You can ind more information about MonoTouch at
http://www.xamarin.com.)

Using MonoTouch doesn’t save you from having to get a Mac computer for development, or from

downloading and using Xcode. In the end, MonoTouch is simply a framework that offers a .NET facade on

top of some of the Cocoa Touch frameworks. You call classes with the same interface used for equivalent

.NET objects, which have functionality mapped to iOS-speciic frameworks. MonoTouch requires the
Mono framework—the cross-platform .NET Framework—as well as the iOS SDK. To write code, you use

the MonoDevelop tool and rely on Xcode (and, optionally, Interface Builder) for any UI work.

Overall, MonoTouch makes it possible to write iOS applications using a more modern and

 feature-rich programming language such as C#. In doing so, you can employ your .NET Framework

skills and even reuse some C# code you may have. One key point is that the only code you can share

with .NET projects is back-end code. As far as the UI code is concerned, MonoTouch allows you to

write event handling and presentation code following .NET patterns; but overall, you’re still using the

Cocoa Touch philosophy and moving around the same data as in an Objective-C application.

Important On the reusability side, it is worth noting that MonoTouch comes with a

twin framework—MonoDroid—that wraps the Android SDK and allows you to program

Android applications using C# and skills from the .NET Framework. More importantly,

if you’re planning to port an existing iOS application to Android (or vice versa) if you

use MonoTouch and MonoDroid, you can easily ind yourself reusing 90 percent of the
 back-end code. Also porting to and from Windows Phone is much easier than one may

think at irst. When starting a journey to ind the Holy Grail of cross-platform mobile
 development, MonoTouch, MonoDroid, and the C# language on the background are a

 really great start. There will be more about MonoTouch later in this chapter, and Chapter 9,

“Developing for Android,” will discuss MonoDroid briely.

http:///

214 pArt III Mobile Applications

Using the phoneGap Framework

Adobe’s PhoneGap is a framework that transforms a client-side web application into a native

 application for a variety of mobile operating systems, including the iOS platform. As a developer,

you write a classic client-side web application using HTML5, Cascading Style Sheets (CSS), and

 JavaScript. You write and test the application on your favorite platform, using your favorite tools. For

example, you can write a client-side web application using Visual Studio 2010 or perhaps WebStorm

by JetBrains or even a plain text editor such as Notepad++ (see http://www.notepad-plus-plus.org) or

Sublime Text 2 (see http://www.sublimetext.com). Both Notepad++ and Sublime Text 2 have versions

for Windows and Mac OS.

A client-side web application is a web application made up of static HTML pages. By “static HTML

page,” I just mean a webpage that is not downloaded from any remote web server and doesn’t rely

on a server-side technology such as ASP.NET or PHP. The HTML page then can be made as dynamic as

you like by using JavaScript and Ajax calls to remote endpoints.

You build the user interface using HTML5, and make it compelling with CSS. HTML5 is essential

because it incorporates a feature called “local storage,” which gives you the ability to save data locally.

Your client application also may link to the PhoneGap JavaScript library to gain access to additional

features and device-speciic hardware such as the camera and accelerometer.

You test the application on the development machine (e.g., a Windows machine with Visual Studio)

using an HTML5-compliant browser such as Chrome, Safari, or Windows Internet Explorer 10.

If you aim to target primarily iOS or Android, then you need to test on desktop editions of Safari and

Chrome, respectively.

After the client web application is complete, you create an ad hoc project for the platform (using

Xcode on iOS) and incorporate the PhoneGap framework for the platform and the web source iles.
You then build and deploy the project as usual on the platform. The web application is packaged as

a shell of native code, which internally uses a full-screen web view to load the locally stored HTML

pages. Exposed as JavaScript functions, the PhoneGap JavaScript library acts as a bridge between

 client pages and native device features.

Building a PhoneGap application requires HTML5 and web skills, plus some familiarity with the

PhoneGap framework, but you don’t need any speciic iOS skills to build successful applications.
Moreover, you can reuse essentially the same web codebase to package applications for a variety

of mobile platforms, including iOS, Android, Windows Phone, and BlackBerry. Chapter 11, “Mobile

 Applications with PhoneGap,” covers PhoneGap development in more detail.

Other Options

Whle Objective-C, MonoTouch, and PhoneGap are the three most popular options for building iOS

applications, other options exist. In particular, you might want to look into Appcelerator’s Titanium

(http://www.appcelerator.com/titanium).

Titanium Mobile is a framework similar to PhoneGap in that it allows you to use JavaScript and

can build native applications for a variety of mobile platforms. But in other ways, the two frameworks

http:///

 CHAPTER 8 Developing for iOS 215

are quite different. You develop a Titanium mobile application using JavaScript and the Titanium

 framework. As it turns out, no HTML or CSS is required to deine the user interface. Instead, you build
views and add logic only through the Titanium framework. The classes in the framework then are

expanded, at compile time, into a mobile-native counterpart on the target platform. Put another way,

the Titanium infrastructure reads your JavaScript and translates it into native iOS or Android code.

To build Titanium applications, you need only the ad hoc tools provided with the default

 package. You don’t have to create a different project for each platform. Another difference is

that PhoneGap currently supports a larger number of mobile platforms. There’s no license fee

 associated with Appcelerator’s Titanium; instead, you pay only if you request support (see

http://www.appcelerator.com/products/plans-pricing).

Finally, yet another option for iOS applications that’s worth at least a brief mention is the possibility

of using tools that package existing applications written against a given UI framework into an iOS

 application. The same pattern that you ind behind the PhoneGap initiative can be found in the
Adobe’s Creative Suite 5.5, which also includes a packager for iOS and Android. Vendors of vertical

solutions [e.g., business intelligence, Customer Relationship Management (CRM) solutions, and

databases] may offer similar features, which just include an iOS packager on top of apps developed

against their platforms.

In the end, you have many options to produce iOS applications. This chapter focuses on the two

most popular ones: Objective-C and MonoTouch.

Programming with objective-C

Let’s start with a quick look at the fundamental programming language of the iOS platform. The

building blocks of the iOS development platform are the Objective-C programming language; the

Cocoa Touch framework, which provides a set of built-in libraries to code against; and a run-time

environment.

The primary role of the run-time environment is processing input from the compiler and

 dynamically performing operations on objects, such as creating new instances and invoking methods

on existing instances. In particular, a basic operation of an object-oriented language, such as invoking

a method on an object in Objective-C, is resolved through the run-time system making the whole

thing look more like sending a message to the object than invoking a public and ixed endpoint on
the instance.

A Quick Look at Objective-C
As mentioned, Objective-C is the plain C language padded with some object-oriented extensions.

Overall, the syntax looks quite different from C++ or Java, and this is just one of the aspects of

Objective-C that scares developers at irst. I assume here a basic knowledge of the C language and
just focus on what extends it.

http:///

216 pArt III Mobile Applications

Deining a Class
Unlike most popular object-oriented languages (with the notable exception of C++), Objective-C

requires that you split the deinition of a class into two parts that we can call as interface and
 implementation. The two parts are usually saved to distinct iles. The interface deines the
class blueprint, including public properties and methods and, optionally, the parent class. The

 implementation actually provides code for the declared members. Overall, in Objective-C, the process

of deining a class is similar to the Java or C# process of deining and implementing an interface.

Note Saving interface and implementation to distinct iles is not mandatory, though it
is highly recommended for the sake of clarity and design. In general, however, you can

have interface and implementation in the same ile. Likewise, the same ile can contain
 multiple class deinitions. Naming also can be arbitrary, but you usually name interface and
 implementation iles after the class name and give them .h and .m extensions, respectively.

According to common programming practices, to deine a UserAccount class, you create two iles:
Useraccount.h and Useraccount.m. The .h extension that you use for interfaces is related to header

iles of the C language:

@interface UserAccount : MyLibraryRootObject

 // Declare properties and methods here

@end

In Objective-C, the @interface and @end directives wrap up any interface declaration. Here’s an

example that includes ields, properties, and methods:

#import <Foundation/Foundation.h>

@interface UserAccount : NSObject {

 BOOL isActive; // This is equivalent to fields in Java/C#

}

@property (strong, nonatomic) NSString *name;

@property (strong, nonatomic) NSString *password;

- (BOOL) Login;

- (BOOL) LoginAndStayLogged:(BOOL)someBoolValue;

- (BOOL) LoginWithOptions:(BOOL)stayLogged

 throwOnError:(BOOL)someBoolValue

 message:(NSString *)someText;

- (void) Test; // void and parameterless

@end

NSObject and NSString are foundation types of Cocoa; you need to import the Foundation.h

header ile to ind their deinition. The #import directive is equivalent to using in C# and Java.

The @property directive deines a property that is expected to have a getter/setter method.
When you declare a property, you can indicate a bunch of attributes by enclosing them in round

 brackets. For example, strong indicates that the property is owned by the object and is not simply a

weak reference to some external object. The nonatomic attribute indicates that the default getter will

 simply return the value without dealing with locks in a multithreaded environment. In a class, ields
must be enclosed in a pair of curly brackets.

http:///

 CHAPTER 8 Developing for iOS 217

In a method declaration, return types and parameter types are wrapped in round brackets with the

return type that precedes the method name. Parameters follow the method name preixed by a colon
and the type name. The name of the irst parameter is implicit; the names of additional parameters
are preferably explicit. It is common that the role of the irst argument is igured out by the name of
the method. This is shown in the previous code, where throwOnError and message indicate the second

and third argument for the LoginWithOptions method.

Note that the following syntax, where additional parameters are unnamed, would compile as well.

However, this approach is discouraged because it would result in poorly readable code when calling

the method. I’ll return to this point momentarily when discussing object messaging:

- (BOOL) LoginWithOptions:(BOOL)stayLogged :(BOOL)someBoolValue :(NSString *)someText;

A method can take a variable number of arguments. In this case, it will have the following prototype:

- (NSString *) formatString: (NSString *) pattern, ...;

The minus symbol qualiies the method as an instance method; the plus symbol qualiies the
method as a static method. No minus and plus just indicates a plain C function.

In Xcode, right after typing the preceding code, you get a warning about missing the

 implementation of the name and password properties (see Figure 8-3).

FIGuRE 8-3 Deining a class in Xcode.

Let’s switch to the implementation ile.

Note Objective-C allows you to omit the return type or the type of a parameter. In this

case, the compiler assumes it to be the type actually returned by methods. You indicate this

type unresolved at compile time as the id type. The id type is similar to the dynamic type

that you have in C#. It is worth noting that the dynamic type in C# also relies on a run-time

system that evaluates the expression dynamically.

http:///

218 pArt III Mobile Applications

Namespaces and Naming Conventions

Objective-C doesn’t have namespaces. For this reason, you are encouraged to add a unique preix to
the name of your classes to avoid collisions. Preixes are usually a short sequence of uppercase letters

(two or three letters) representing the initials of your library or company. If you derive a custom class

from a standard Cocoa class, then you should name the new class by simply replacing the Cocoa

preix (NS) with your own.

The name of Cocoa classes begins with NS for historical reasons. Cocoa, in fact, is based on the

NeXTSTEP development framework, and NS are just the corresponding initials.

As for naming conventions, the fundamental point to keep in mind is that method and property

names are based on camelCasing; and type information in variable names is not recommended, but it

may be tolerated if the variable is not of a basic type such as string or number.

Implementing a Class

To implement a class, you start by importing the deinition of that class from a previously created .h ile.
The template of an implementation ile looks like the code shown here:

#import "UserAccount.h"

@implementation UserAccount

 // Actual implementation of class members

@end

Properties need a getter/setter method, depending on when they’ve been declared. You can name
and implement these methods as you like. If you do so, though, you must point to methods in the

header ile via the getter and setter property attributes, as follows:

@property (getter = getValueForIsActive, setter = setValueForIsActive) BOOL isActive;

Default names for getters and setters are supported, too. They are Xxx and setXxx, where Xxx

is the property name. Objective-C, in fact, tends not to use the get preix on simple accessors. You
also can use the @synthesize directive if you want the compiler to create getter/setter methods
 automatically for you. This is equivalent to the following C# code:

public Boolean IsActive {get; set;}

Here’s how to use the @synthesize directive and deine the body of methods:

@implementation UserAccount

@synthesize name;

@synthesize password;

- (BOOL) login {

 return TRUE;

}

- (BOOL) loginAndStayLogged:(BOOL)someBoolValue {

 return TRUE;

}

http:///

 CHAPTER 8 Developing for iOS 219

- (BOOL) loginWithOptions:(BOOL)stayLogged

 throwOnError:(BOOL)someBoolValue

 message:(NSString *)someText {

 return TRUE;

}

- (void) test {

 return;

}

@end

In the implementation of methods, you use self to refer to the current object (i.e., this in C# and

Java) and use super to refer to the parent class (i.e., base in C#). The equivalent for null, instead, is nil.

Object Messaging

As mentioned, in Objective-C, you “send a message” to an object rather than invoking a method on

an object. The syntax required takes the following form:

[receiver message]

In the code snippet, receiver denotes an object, whereas message denotes the name of the method

to execute. If any parameters are involved, they are chained to the message. It should be noted that the

method to execute is expressed as a string and is resolved dynamically by the run-time environment.

Here’s the code that you need to create a new instance of the UserAccount class and attempt a login:

NSString *message = @"Login failed";

UserAccount *account = [[UserAccount alloc] init];

[account loginWithOptions:TRUE throwOnError:TRUE message:message];

To instantiate a new object, you irst allocate enough memory for it, and then you initialize the
object. The alloc and init methods are deined on the NSObject class and are common to any objects

that you happen to use in an iOS application.

When calling a method with multiple parameters, the good practice of using named parameters shines:

[account loginWithOptions:TRUE throwOnError:TRUE message:message];

Rewritten in C#, the preceding code looks like this:

UserAccount account = new UserAccount();

account.loginWithOptions(true, true, message); // Not highly readable code indeed

With named parameters, in C#, it also can be rewritten as follows:

UserAccount account = new UserAccount();

account.LoginWithOptions(true, throwOnError:true, message:message); // Much more readable

In C#, you don’t need a special declaration to enable named parameters and the name of the

formal parameter matches the parameter name; in Objective-C, formal parameters and parameter

names are distinct. The syntax for methods that accept just one parameter is simpler:

[account LoginAndStayLogged:TRUE];

http:///

220 pArt III Mobile Applications

Technically speaking, the method name in a message selects the method to execute. For this

 reason, messages often are referred to as selectors. Selectors also include parameter names for

 methods that accept parameters.

Important In Objective-C, an attempt to invoke a method on a null object doesn’t result in

an exception. It simply returns a null value.

It is also worth noting that in Objective-C, you can read the value of a property deined on an
object using both the square-bracket syntax and the Java/C# common syntax based on the dot:

// id account = [[UserAccount alloc] init]; // Don't work with the dot syntax!

UserAccount *account = [[UserAccount alloc] init];

id user = [account name];

id pswd = account.password;

Both expressions compile and work well. Note, though, that you can use the dot syntax only on

object instances of a known type. The previous code would give you a compile error if you deine the
account object of type id.

protocols

Objective-C uses the term interface to refer to the blueprint of a class being created. In other

 object-oriented languages, there’s no such element: creating the class means specifying its structure

and implementation. The closest you get to the concept of an Objective-C interface in programming

languages like C# and Java is with abstract classes.

In Java and C#, an interface is something different; it primarily serves the purpose of grouping

together members that other classes may expect to ind in some objects. What you call an interface

in Java and C# is known as a protocol in Objective-C. Protocols are not heavily used in Cocoa Touch

and are just an optional programming tool that you may or may not choose to use. Here’s an example

where optional and required methods are also present:

@protocol UserAccountProtocol

- (BOOL) LoginWithOptions:(BOOL)stayLogged

 throwOnError:(BOOL)someBoolValue

 message:(NSString *)someText;

@optional

- (NSDate *) GetExpirationDate;

@required

- (BOOL)Login;

@end

A class may implement one or more protocols. Protocols are listed in the class header following

the super class. Note that the verbiage that the Objective-C documentation uses for “implementing

an interface” is “adopting a protocol”:

@interface UserAccount : NSObject < UserAccountProtocol >

...

@end

http:///

 CHAPTER 8 Developing for iOS 221

Objective-C provides statements to check whether an object conforms to a given protocol.

Categories

In any object-oriented language, you can derive a new class from an existing class and add new

 methods and properties or replace overridable members. To do so, you just need the header of

the class and a compiled version of its implementation. Normally, you can’t extend an existing class

 without having its source code.

In C#, though, you are allowed to add new methods to an existing class via extension methods.

An extension method is a plain static method written with a slightly different syntax. The extra syntax

elements allow the compiler to resolve apparently wrong calls made to the base type by redirecting

the call to the extension object. For example, if you deine an extension method ToInt on the String

type, then you are actually telling the compiler to accept calls made to ToInt from within String

objects. These apparently wrong calls—you actually have no ToInt method on the String type—will

be resolved by calling the ToInt method where it is really deined. In the end, extension methods are
some syntactic sugar to make developers’ life a bit easier and to increase code readability.

In Objective-C, you achieve a similar capability through categories. A category is a separate ile
that adds new methods (not new properties) to a given class. The implementation of these methods

gains full visibility over the class internal members, including private members:

#import "UserAccount.h"

@interface UserAccount (ChangePasswordCategory)

 // Declarations of new methods that manage change of the password

@end

You implement methods that it into a category in a separate implementation ile.

You can have as many categories as you wish for a given class. The only restriction is that each

category has a unique name and declares (and deines) a different set of methods. At run time,
 native and category methods are undistinguishable and can be used to achieve the same capabilities.

 Likewise, category methods are listed as part of the blueprint of the extended class and therefore will

be inherited by derived classes.

You mostly use categories to extend native types (NSString, NSObject, and the like) with additional

helper methods.

Exception handling

Exception handling in Objective-C looks nearly the same as in Java and C#. It is based on the classic

four statements—try, catch, throw, and inally. In Objective-C, these statements take the form of

directives, as shown here:

@try {

 ...

}

@catch (UserAccountException *uae) {

http:///

222 pArt III Mobile Applications

 ...

}

@catch (NSException *ne) {

 ...

}

@catch (id ue) {

 ...

}

@finally {

 ...

}

You can catch different types of exceptions, and you should list them from the most speciic to the
most generic. In the @catch blocks, you can just recover from the exception or you can rethrow the

same exception. You also can swallow the original exception and throw another exception that better

suits your needs.

The @inally directive runs regardless of whether the operation attempted in the @try block

 completed successfully or threw an exception.

You can throw exceptions from anywhere in your code. It just sufices that you get hold of an
instance of an exception object and pass it to the @throw directive, as shown here:

id uae = [NSException exceptionWithName: @"UserAccountException"

 reason: @"Your credentials are invalid"

 userInfo: nil]

@throw uae;

You can create your own exception types by deriving a new class from NSException.

Note In the preceding code snippet, a static method is called on the NSException class to

create a named exception. The method is called exceptionWithName, and, as you can see,

it refers quite clearly to its irst parameter. The remaining parameters are referred by name.
This is a good programming practice in Objective-C.

Memory Management

In Objective-C, memory management is explicit, whereas in other languages such as C# and Java, it is

mostly hidden from developers. Nearly all concepts discussed here apply to other languages as well,

except that the compiler and the virtual machine will make it kind of transparent.

The key fact to notice about objects that you create in Objective-C is that they are subject to

 reference-counting. Reference-counting means that any individual object is associated with a number

that indicates how many owners it has. An owner is, in this context, just another object that is

 currently holding a reference. When the reference count for the object goes down to zero, then the

system deallocates the object.

To be precise, an object is a plain reference to a memory location where its data is stored. The

memory location is associated with a reference count (also known as a retain count); when the count

http:///

 CHAPTER 8 Developing for iOS 223

is zero, then the memory becomes available for other objects, but it is not automatically cleared.

Here’s an example of creating an object:

UserAccount *account = [UserAccount alloc] init];

The code creates a UserAccount object. The newly created object has a reference count of 1. You

create an object using a method whose name begins with alloc, new, or copy.

Every time you pass the object to a method of another object, then the reference count of the

passed object is increased by 1. The receiving object is then responsible for decreasing the reference

count once it has inished with it.

According to Cocoa Touch ownership rules, you are responsible for the reference count of

 objects that you create explicitly and objects that you receive. Being responsible for the reference

count means releasing your ownership as soon as possible. This decreases the reference count and

 contributes to ensuring that the memory location of the object will be reused eventually. You release

an object using the release message:

UserAccount *account = [UserAccount alloc] init];

...

[account release]

account = nil;

Setting the released object to nil may avoid future problems. In fact, invoking a method on a nil

object results in a no-operation; invoking a deallocated object may crash the application.

Auto-releasing is another aspect of memory management in iOS. Sometimes you need to create

an object and then return it—for example, as the return value of a method. In this case, you send the

 autorelease message to the object, which basically means that the object will receive a release call at some

point in the future. Auto-release is a form of deferred release. Here’s how to use auto-release in code:

- (NSArray *) getRegisteredUsers {

 NSArray *users = [NSArray new];

 // ...

 return [users autorelease];

}

Objects that received the autorelease message go in the auto-release pool and typically are

processed at every iteration of the system’s run loop. Like old-fashioned Windows applications, iOS

applications are based on a message loop. Every loop picks up a message from the queue, creates an

auto-release pool, dispatches the message, and processes the auto-release pool, removing objects

with a reference count of zero or with a pending auto-release.

What if you need to increase the reference count of an object—such as an auto-release object?

You just send the retain message. The retain message is useful to last for the lifetime of an object

beyond the current scope.

All Cocoa Touch objects have a method called dealloc, which the run-time environment invokes

automatically when the object’s reference count drops to zero. This is the last chance that an object

has to release resources it holds, such as instance variables.

http:///

224 pArt III Mobile Applications

Finally, in iOS 5, Objective-C supports ARC, which moves the burden of memory management to

the compiler and aligns Objective-C to other languages, such as C# and Java. With ARC enabled, the

following code doesn’t produce any memory leaks:

NSObject *yourObject = [[NSObject alloc] init];

// Use the object but don't call release

This is because the compiler will detect increments of the reference count not followed by a proper

decrement algorithmically and adds a decrement call automatically. Once compiled, the preceding

code looks like this:

NSObject *yourObject = [[NSObject alloc] init];

// Use the object but don't call release

[yourObject release];

ARC is a simple setting in Xcode that must be enabled on a project. However, using ARC in a project

binds you to a few policies. If you’re new to Objective-C, using ARC is a no-brainer, and policies will just

sound like programming features. If you’re familiar with Objective-C and memory management, ARC

may change some of your habits. Refer to the Apple documentation for more details.

the HelloWorld program
Armed with some basic knowledge of Objective-C, let’s see what it takes to create a basic application

with Xcode. As a irst step, I’ll just take one of the sample iOS projects that Xcode creates for you and
dissect its source code.

Application Startup

In Figure 8-1, you saw the default project templates that Xcode has to offer. After you pick up one of

those, you are asked to name your project and, more important, to select the target platform. The options

are iPhone (which would also work on iPod Touch devices), iPad, and Universal, as shown in Figure 8-4.

FIGuRE 8-4 Choosing options for the project.

http:///

 CHAPTER 8 Developing for iOS 225

Any iOS program is launched from a main starter method that’s usually located in the Main.m ile.
Here’s the typical implementation of the main method:

#import <UIKit/UIKit.h>

#import "AppDelegate.h"

int main(int argc, char *argv[])

{

 @autoreleasepool {

 return UIApplicationMain(argc, argv, nil, NSStringFromClass([AppDelegate class]));

 }

}

The role and signature of the main method is the same as in every C program. In particular, the

argc parameter indicates the number of command-line arguments, whereas argv is a an array of

strings where the irst element contains the command line as a string and remaining elements are
command-line arguments.

The main method creates the top-level auto-release pool and then starts the application with a

call to UIApplicationMain. The @autoreleasepool directive tells the compiler that the following block

is an auto-release block, meaning that any objects allocated within are subject to ARC and will be

released when the pool is drained. Note that @autoreleasepool is syntactic sugar for some code that

would explicitly create the pool like this:

NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];

The UIApplicationMain method creates a singleton UIApplication object. The UIApplication object

is ultimately responsible for loading the user interface and starting the application.

In iOS applications, the UIApplication object routes incoming user events and action messages

sent to controls. It also maintains a list of all the windows currently open in the application. A window

is represented by a UIWindow object and displays a view which is, in turn, represented by a UIView

object. Most applications count just one window and a number of views inside the window.

As you can see, UIApplicationMain also takes a third and a fourth argument. The third argument

(nil in the previous snippet) refers to the main window class to create for the application. Passing nil

indicates that you will build the window starting from the content of an XIB ile.

Note If you read through the documentation, you will run into NIB and XIB iles in the
same context. Originally, iles with UI deinitions were binary iles known as NIB iles,
 created and edited exclusively via Interface Builder. XIB iles are a more recent introduction
and provide the same content, but in a human-readable XML format. XIB iles are compiled
into NIB iles when the application is built.

The fourth argument refers to the name of the app-delegate class to use. If nil, then the name is

assumed to be AppDelegate, and a class with this name is assumed to be in the project In the following

code snippet, the app-delegate name is indicated explicitly as the name of the class AppDelegate:

return UIApplicationMain(argc, argv, nil, NSStringFromClass([AppDelegate class]));

http:///

226 pArt III Mobile Applications

A delegate is an object that gets notiied when the object to which it is connected reaches
 certain events or states. An app-delegate is therefore the object that receives notiications when the
 UIApplication object reaches certain states such as “inished launching” or “will terminate” or receives
a memory warning.

the App-Delegate Object

The app-delegate is a class implemented by default in a couple of .h and .m iles. Here’s the public
interface of a standard app-delegate for a single-view iOS application:

#import <UIKit/UIKit.h>

@interface AppDelegate : UIResponder <UIApplicationDelegate>

@property (strong, nonatomic) UIWindow *window;

@property (strong, nonatomic) ViewController *viewController;

@end

The AppDelegate object adopts the UIApplicationDelegate protocol. The protocol lists all the

 messages that a UIApplication object can receive in its lifetime. The most important of these messages

is application:didFinishLaunchingWithOptions. This message arrives when the application has inished
starting, and it represents your last chance to do some work before the user interface is displayed to

the user. Here’s the implementation of a sample app-delegate:

#import "AppDelegate.h"

#import "ViewController.h"

@implementation AppDelegate

@synthesize window;

@synthesize viewController;

// Message application:didFinishLaunchingWithOptions

- (BOOL)application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions

{

 // Create a window object that covers the entire screen

 self.window = [[UIWindow alloc] initWithFrame:[[UIScreen mainScreen] bounds]];

 // Create a view from NIB and adds its controller (for iPhone and iPad)

 if ([[UIDevice currentDevice] userInterfaceIdiom] == UIUserInterfaceIdiomPhone)

 {

 self.viewController = [[ViewController alloc] initWithNibName:@"UI_iPhone" bundle:nil];

 }

 else

 {

 self.viewController = [[ViewController alloc] initWithNibName:@"UI_iPad" bundle:nil];

 }

 // Set the view controller

 self.window.rootViewController = self.viewController;

 // Show the window

 [self.window makeKeyAndVisible];

 return YES;

}

http:///

 CHAPTER 8 Developing for iOS 227

When the application:didFinishLaunchingWithOptions message arrives, the least you can do is

display the main window of the application. This is accomplished by sending the makeKeyAndVisible

message to the application itself.

Other interesting events you ind in the UIApplicationDelegate protocol are

 applicationWillResignActive and applicationDidEnterBackground. Both events have the same signature:

- (void)applicationWillResignActive:(UIApplication *)application

{

 ...

}

- (void)applicationDidEnterBackground:(UIApplication *)application

{

 ...

}

The former event is ired when the application is about to move from an active to an inactive
state. The latter event ires when the application is pushed to the background. In this case, it is your
responsibility to release shared resources and save any relevant state information for later, when the

application will be resumed.

Note Compared to the signature of other messages in the UIApplicationDelegate protocol,

the application:didFinishLaunchingWithOptions message may seem a bit weird. In the hope

of making the Objective-C syntax more digestible to C# and Java developers, here’s the C#

signature of the application:didFinishLaunchingWithOptions message:

bool application(UIApplication *application, NSDictionary *launchOptions)

This is how MonoTouch exposes the message to application developers.

Dissecting the project

In an iOS project, you ind a bunch of XIB iles. XIB iles are created when the user interface behind the

iPhone application is saved. XIB iles are analogous to form designer iles in .NET. As the XIB ile provides
the graphical user interface for a view, a view-controller object provides its behavior (see Figure 8-5).

Expressed as a pair of .h and .m iles, a view-controller class governs the behavior of a view and
handles things like initialization and touch events. You typically have a view-controller class for each

XIB ile.

In iOS, a view is different from a window. A view is simply a rectangular area hosted in a window.

The view displays content such as text, drawing, animation, and, of course, controls. You typically have

a single window, but multiple views displayed one at a time. In iOS, you have various specialized views

such as table, web, alert, and navigation.

http:///

228 pArt III Mobile Applications

FIGuRE 8-5 A sample iOS project.

An iOS project includes a PLIST ile that acts as the manifest of your application. Other support
iles that you may have are lists of localized strings and images. All auxiliary resources are packaged
together in a bundle when you build your application. In the iOS jargon, a bundle is a directory that

contains executable and auxiliary iles. You control name, version, and other aspects of the bundle
from the PLIST ile of the project. (In Visual Studio, this is similar to the project’s Properties page.)

the View-Controller Object

Let’s have a look at the internals of a simple view-controller object. The header of a simple single-view

iOS project looks like the following:

#import <UIKit/UIKit.h>

@interface ViewController : UIViewController

@end

The following code is an excerpt from the implementation of the view-controller:

#import "ViewController.h"

@implementation ViewController

- (void)viewDidLoad

{

 [super viewDidLoad];

}

- (void)viewDidUnload

http:///

 CHAPTER 8 Developing for iOS 229

{

 [super viewDidUnload];

}

- (void)didReceiveMemoryWarning

{

 [super didReceiveMemoryWarning];

}

- (void)viewWillAppear:(BOOL)animated

{

 [super viewWillAppear:animated];

}

- (void)viewDidAppear:(BOOL)animated

{

 [super viewDidAppear:animated];

}

- (void)viewWillDisappear:(BOOL)animated

{

 [super viewWillDisappear:animated];

}

- (void)viewDidDisappear:(BOOL)animated

{

 [super viewDidDisappear:animated];

}

- (BOOL)shouldAutorotateToInterfaceOrientation:(UIInterfaceOrientation)interfaceOrientation

{

 // Return YES for supported orientations

 if ([[UIDevice currentDevice] userInterfaceIdiom] == UIUserInterfaceIdiomPhone) {

 return (interfaceOrientation != UIInterfaceOrientationPortraitUpsideDown);

 } else {

 return YES;

 }

}

@end

The most relevant methods are viewDidLoad and viewDidUnload, where you complete the

 initialization for display and release subviews, respectively.

A Look at a Table-Speciic View-Controller
Let’s briely consider the structure of a more sophisticated view-controller, such as the one you

would use in a master/detail application. The default Master/Detail project template that you get
from Xcode creates one view-controller for the master view and one for the details view. Here’s the

 interface for the controller of the master view:

@interface MasterViewController : UITableViewController

@property (strong, nonatomic) DetailViewController *detailViewController;

@end

http:///

230 pArt III Mobile Applications

As you can see, in this case, the base class of the view-controller is more specialized than

 UIViewController. The UITableViewController class provides the basic behavior expected for the

 view-controller of a table-based view. The following code snippet illustrates what’s different in a table

view-controller:

@implementation MasterViewController

// Customize the number of sections in the table view.

- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView

{

 return 1;

}

// Customize the number of rows in a section.

- (NSInteger)tableView:(UITableView *)tableView numberOfRowsInSection:(NSInteger)section

{

 return 1;

}

// Customize the appearance of table view cells.

- (UITableViewCell *)tableView:(UITableView *)tableView

 cellForRowAtIndexPath:(NSIndexPath *)indexPath

{

 static NSString *CellIdentifier = @"Cell";

 UITableViewCell *cell = [tableView dequeueReusableCellWithIdentifier:CellIdentifier];

 if (cell == nil) {

 cell = [[UITableViewCell alloc]

 initWithStyle:UITableViewCellStyleDefault reuseIdentifier:CellIdentifier];

 if ([[UIDevice currentDevice] userInterfaceIdiom] == UIUserInterfaceIdiomPhone) {

 cell.accessoryType = UITableViewCellAccessoryDisclosureIndicator;

 }

 }

 // Configure the cell

 cell.textLabel.text = NSLocalizedString(@"Detail", @"Detail");

 return cell;

}

@end

A table view is split into sections and rows. The irst two messages for the table view indicate how
many sections you’re going to have and how many rows will be in each section. The third message—

the cellForRowAtIndexPath message—prepares the cell for the given item to show in the table.

Note As you may have igured out, programming for iOS requires at least a working
knowledge of some design patterns; the Model-View-Controller (MVC) is one of these.

In the end, it stresses the idea that the view and the logic behind it should cooperate but

remain distinct blocks of code. The same is true for any data being worked on in the view—

the model.

http:///

 CHAPTER 8 Developing for iOS 231

Examining a Sample Application
Guess is a sample application that you get as companion code with this book. (For more information

on accessing companion material to this book, see the section “Code Samples” in the Introduction.)

It implements a simple game: guessing a number in a given range. The application consists of a Home

view, where you enter the player’s name, and a Play view, where you enter a number and get a response.

A Scores view and an About view complete the application. Figure 8-6 shows the Home view and the

Play view of the application.

FIGuRE 8-6 The Guess application in action.

the App-Delegate

The Guess application is based on a navigation application template where a bunch of views are

linked to one another. The following code shows the header of the app-delegate for the application:

#import "Player.h"

@interface GuessAppDelegate : UIResponder <UIApplicationDelegate>

@property (nonatomic, strong) UIWindow *window;

@property (nonatomic, strong) UINavigationController *navigationController;

@property (nonatomic, strong) Player *player;

@end

http:///

232 pArt III Mobile Applications

As you can see, it exposes a window object and a navigation controller. In addition, the

 app-delegate has access to a Player object that represents the central object of the domain.

The implementation of the app-delegate just provides a handler for the didFinishLaunchingWithOptions

message. The message handler creates the main screen and sets the navigation controller. The navigation

controller receives as an argument the controller of the main view—the HomeViewController object. Here’s

a code snippet:

- (BOOL)application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions

{

 self.window = [[UIWindow alloc] initWithFrame:[[UIScreen mainScreen] bounds]];

 HomeViewController *homeViewController = [[HomeViewController alloc]

 initWithStyle:UITableViewStyleGrouped];

 self.navigationController = [[UINavigationController alloc]

 initWithRootViewController:homeViewController];

 self.navigationController.navigationBar.barStyle = UIBarStyleBlack;

 [self.window makeKeyAndVisible];

 return YES;

}

The inal lines of the preceding code just pick up the graphical style of the navigation bar and
display the main window.

the Player Class

The Player class incorporates the state and parameters of the game. The header is shown here:

@interface Player : NSObject<NSCoding>

@property (nonatomic, copy) NSString *name;

@property (nonatomic, assign) NSUInteger level;

@property (nonatomic, assign) NSUInteger score;

@property (nonatomic, strong) NSDate *scoreDate;

- (id)initWithName:(NSString *)name level:(NSUInteger)level;

@end

The Player class inherits from NSObject and conforms to the NSCoding protocol. The NSCoding

protocol marks the class as serializable. The properties on the class indicate the name of the player, as

well as the level of the game, the current score, and the date.

The class features one method that initializes the game starting from the name of the player and

level. Now let’s look at the implementation of the initWithName method:

- (id)initWithName:(NSString *)name level:(NSUInteger)level

{

 _name = [name copy]; // get a copy of the string object

 _level = level;

 _score = 0;

 return self;

}

http:///

 CHAPTER 8 Developing for iOS 233

The Player class also contains a comparer method that will be used later in the Scores view to sort

the results:

- (NSComparisonResult)compare:(Player *)player

{

 if (self.score > player.score)

 {

 return NSOrderedAscending;

 }

 else

 {

 return NSOrderedDescending;

 }

}

Finally, let’s have a look at class serialization. In iOS, serialization is referred to as encoding,

whereas the process of deserializing an archived object instance is called decoding. The method

 encodeWithCoder demonstrates serialization, whereas the method initWithCoder creates an instance

of the class from a decoder:

- (void)encodeWithCoder:(NSCoder *)aCoder

{

 [aCoder encodeObject:_name forKey:kNameKey];

 [aCoder encodeInteger:_level forKey:kLevelKey];

 [aCoder encodeInteger:_score forKey:kScoreKey];

 [aCoder encodeObject:_scoreDate forKey:kScoreDateKey];

}

- (id)initWithCoder:(NSCoder *)aDecoder

{

 _name = [aDecoder decodeObjectForKey:kNameKey];

 _level = [aDecoder decodeIntegerForKey:kLevelKey];

 _score = [aDecoder decodeIntegerForKey:kScoreKey];

 _scoreDate = [aDecoder decodeObjectForKey:kScoreDateKey];

 return self;

}

Names like kNameKey and kLevelKey are constants that refer to the entry in the serialization

stream where the value of the corresponding property will be saved or read. In Objective-C, you

deine a constant as you would in plain C:

#define kNameKey @"name"

#define kLevelKey @"level"

This code uses member names preixed by an underscore. Where do these member names come
from? The implementation of the Player class contains the following line:

@synthesize name = _name, level = _level, score = _score, scoreDate = _scoreDate;

The @synthesize directive instructs the compiler to provide a default getter/setter method for the
property. The _xxx expression, where xxx refers to the name of the property, just indicates the name

of the ield to use in the getter and setter to read and write the actual value.

http:///

234 pArt III Mobile Applications

the home View

In iOS development, you can deine the view using a visual designer (i.e., Interface Builder) or you

can create the entire view programmatically by placing UI components in the speciic location that
you want. Overall, using Interface Builder is quick, but it’s not as immediate and straightforward as it

would be to do the same thing in Visual Studio. In any case, creating views programmatically is not

much less unusual in iOS development than in .NET development. The home view of Guess has been

created programmatically. I’ll discuss the use of Interface Builder later in this chapter.

The following code presents the view-controller of the main view. It is a UITableViewController,

meaning that the user interface is structured as a table:

@interface HomeViewController : UITableViewController<UITextFieldDelegate>

{

 @private

 UITextField *_nameTextField;

 UISegmentedControl *_levelSegmentedControl;

}

@end

The interface lists a couple of private members for the text box used to enter the player name and

the radio buttons to choose the level (a UISegmentedControl component in iOS). Initialization of visual

elements and positioning take place in the implementation of the HomeViewController class.

The user interface of the main view features the navigation bar, a table with input elements, and a

couple of buttons to start the game and see the scores. All these elements are created in the loadView

method of the HomeViewController class. Here’s the code that sets up the Start button that you saw

in Figure 8-6:

- (void)loadView

{

 // Invoke the method on the base class

 [super loadView];

 // Sets the background color of the view

 self.view.backgroundColor = [UIColor whiteColor];

 // Sets up the Start button

 UIImage *redButtonImage = [[UIImage imageNamed:@"redButton"]

 stretchableImageWithLeftCapWidth:kButtonImageLeftCap

 topCapHeight:0];

 UIButton *startButton = [UIButton buttonWithType:UIButtonTypeCustom];

 [startButton setTitle:@"Start"

 forState:UIControlStateNormal];

 [startButton setBackgroundImage:redButtonImage

 forState:UIControlStateNormal];

 [startButton addTarget:self

 action:@selector(showPlay)

 forControlEvents:UIControlEventTouchUpInside];

 startButton.titleLabel.font = [UIFont boldSystemFontOfSize:kFontSize];

 startButton.frame = CGRectMake(kButtonPaddingX,

 CGRectGetMaxY(self.tableView.frame),

http:///

 CHAPTER 8 Developing for iOS 235

 self.view.frame.size.width - (kButtonPaddingX * 2.0f),

 redButtonImage.size.height);

 // Other code here

 ...

}

The button consists of a background image and a caption. The image is stretched to cover the

entire area of the button. The event touch-up ends up invoking the showPlay method. The showPlay

method is deined as follows:

- (void)showPlay

{

 if (_nameTextField.text && ![_nameTextField.text isEqualToString:@""])

 {

 currentAppDelegate.player = [[Player alloc]

 initWithName:_nameTextField.text

 level:_levelSegmentedControl.selectedSegmentIndex];

 UIViewController *playViewController = [[PlayViewController alloc] init];

 [self.navigationController pushViewController:playViewController animated:YES];

 }

 else

 {

 UIAlertView *alertView = [[UIAlertView alloc]

 initWithTitle:@"Error"

 message:@"Please insert a player name"

 delegate:nil

 cancelButtonTitle:@"OK"

 otherButtonTitles:nil];

 [alertView show];

 }

}

If the text box is left empty, the application displays a message box. Otherwise, it creates a new

 instance of Player using the speciied name and level and stores it in the global app-delegate. Next,
the showPlay method sets up a view-controller for the Play view and pushes it to the navigation

controller requesting some animation. The net effect is that when the user taps the Start button, the

application moves to the rightmost view of Figure 8-6—the Play view, which is discussed next.

the play View

In the sample project, the Play view is created from an XIB ile. You create and edit XIB iles using
 Interface Builder, one of the add-on tools of Xcode. Interface Builder is similar to Visual Studio

 designers in that it offers drag facilities and WYSIWYG editors to create views (see Figure 8-7).

All graphical designers have the problem of matching their visual components to object

 references. Each platform seems to have a slightly different solution to this problem. As we’ll see in

the next chapter dedicated to Android programming, each visual component is given a unique ID.

When creating the view, you programmatically igure out the exact name of the class associated
to the ID, get an instance, and assign that to a local variable. In Windows Phone, the Visual Studio

 designer does all the work for you. All you do is assign components a unique ID and the tool gives

you ready-made object references through view properties that have the same name as the ID.

http:///

236 pArt III Mobile Applications

FIGuRE 8-7 Interface Builder in action.

In iOS and Interface Builder, things are even more different. You don’t assign unique IDs to the

components that you drop onto a view surface; you create outlets instead. An outlet is an artifact that

hides plain object references. You need an outlet to gain programmatic access to a visual element. For

example, if you want to set the text of a label after a button click, you need an outlet to the label.

Once you add a new component to the view, you open up the Inspector editor pane. The Inspector

has an area for referencing new outlets. You irst select the element to reference and then drag from
the outlet area directly to the source code of the view-controller header ile, as in Figure 8-8.

FIGuRE 8-8 Inserting a new outlet.

http:///

 CHAPTER 8 Developing for iOS 237

When you drop the element, a small window will pop up, asking you to name the outlet and

 inalize the operation. This is illustrated in Figure 8-9.

FIGuRE 8-9 Finalizing the creation of an outlet.

Creating an outlet edits the header ile. Here’s the header ile of the view-controller class for the
Play view:

@interface PlayViewController : UIViewController

{

@private

 NSUInteger _attempts;

 NSUInteger _rangeMin, _rangeMax;

 NSUInteger _answer;

 NSUInteger _levelLimit;

}

@property (nonatomic, strong, readonly) IBOutlet UILabel *levelLabel;

@property (nonatomic, strong, readonly) IBOutlet UILabel *attemptsLabel;

@property (nonatomic, strong, readonly) IBOutlet UILabel *rangeLabel;

@property (nonatomic, strong, readonly) IBOutlet UITextField *numberTextField;

- (IBAction)try:(id)sender;

@end

The header ile has outlets for a few labels and one text box. It doesn’t have any outlet for the
 button. What about adding event handlers to a button? In iOS, you add event handlers via actions.

The process of adding an action is similar to adding outlets except that you start dragging from

another area in the Inspector pane. When you select a UI component, the Sent Events area of the

 Inspector pane is populated with the list of related events. All you do is drag from the selected

http:///

238 pArt III Mobile Applications

event to the source view of the header. You name the action with the name of the method in the

 implementation that will handle the event. In the previous code snippet, try indicates the handler for

the touch-up (i.e., tap/click) event. Here is its implementation:

- (IBAction)try:(id)sender

{

 if (![_numberTextField.text isEqualToString:@""])

 {

 // Read and process the value the user has entered

 NSUInteger tryValue = _numberTextField.text.integerValue;

 if (tryValue > _answer && tryValue <= _rangeMax)

 {

 _rangeMax = tryValue;

 }

 else if (tryValue < _answer && tryValue >= _rangeMin)

 {

 _rangeMin = tryValue;

 }

 else if (tryValue == _answer)

 {

 // Calculate the score

 NSUInteger score = _levelLimit / _attempts;

 // Jump to the success view

 ResultViewController *resultViewController = [[ResultViewController alloc]

 initWithNibName:@"ResultViewController" bundle:nil];

 // Update the view with the score

 resultViewController.result = score;

 [self.navigationController pushViewController:resultViewController animated:YES];

 }

 // Refresh the UI for another attempt

 _numberTextField.text = nil;

 ++_attempts;

 [self updateAttempt];

 }

}

When the user has guessed the hidden number, the code jumps to another view controlled by the

ResultViewController class (see Figure 8-10).

Note In both the header and implementation iles, there’s no place where you can see
the try method explicitly linked to a touch-up event. This binding is maintained in the

source code of the XIB ile—a plain XML ile. However, the binding isn’t clearly visible,
even if you go to the effort of opening the XIB ile. In fact, UI elements and events are
identiied in Interface Builder by number. In Interface Builder, the touch-up event has no
 human-readable name, but it is identiied with the number 19.

http:///

 CHAPTER 8 Developing for iOS 239

FIGuRE 8-10 The Result view.

Important In summary, there are two approaches to writing code that deals with UI

 components and their events. You can create UI components programmatically (e.g., using

buttons, labels, text ields, and toolbars) by instantiating and placing them at a given
 position, or you can use Interface Builder and do the same work in a WYSIWYG manner.

If you take the latter approach, outlets and actions are your way to gain programmatic

 control over the UI components. If you opt for the former approach, you create object

 references and can conigure them (i.e., adding actions) at will.

the Scores View

In the previous listing, although briely commented, the following line didn’t get the emphasis it

 actually needs:

// Assign the score of the current player to the Result view and ...

resultViewController.result = score;

http:///

240 pArt III Mobile Applications

The setter of the result property on the view-controller of the Result view takes care of saving

the score in some persistent storage. In iOS (and, in general, in all mobile platforms), you have a few

 options to persist data. One is certainly based on a relational database. For iOS and Android, this

 option relies on the services of the SQLite database. Another option entails creating custom iles.
A third option is probably the simplest—using a system-provided persistent dictionary. Mostly

 created to let an application save a user’s preferences, such a dictionary actually can be used to

store any serializable data that can be identiied with a unique key. In iOS, this dictionary is the
 NSUserDefaults class. The sample application uses the dictionary to create a single entry with the

Players list and the best scores. The key is “Players,” and the content is an array of (serializable) Player

objects. The following code shows how to save a score to the dictionary:

// Gain access to the NSUserDefaults dictionary

NSUserDefaults *userDefaults = [NSUserDefaults standardUserDefaults];

// Read the value for the entry kPlayersArrayKey (a constant for "Players")

NSData *playersData = [userDefaults objectForKey:kPlayersArrayKey];

// Deserialize any content found to an array of Player objects

NSMutableArray *playersArray = nil;

if (playersData)

{

 playersArray = [NSKeyedUnarchiver unarchiveObjectWithData:playersData];

}

if (!playersArray)

{

 // Allocate a 1-element array

 playersArray = [[NSMutableArray alloc] initWithCapacity:1];

}

// Add the current player to the array

[playersArray addObject:currentAppDelegate.player];

// Add the array back to the dictionary

playersData = [NSKeyedArchiver archivedDataWithRootObject:playersArray];

[userDefaults setObject:playersData forKey:kPlayersArrayKey];

[userDefaults synchronize];

The Scores view reads data back from the dictionary and prepares a table of results. In doing so,

it uses a UITableViewController that is very common in iOS applications. A table view is a collection

of cells that is analogous to a single-column HTML table. Cells in a table view can have a default or

custom template. The sample application uses a custom cell. Let’s examine the source code of the

ScoresViewController class. Here’s the header ile:

@interface ScoresViewController : UITableViewController

{

@private

 NSArray *playersArray;

}

@end

http:///

 CHAPTER 8 Developing for iOS 241

The implementation follows:

@implementation ScoresViewController

- (id)initWithNibName:(NSString *)nibNameOrNil bundle:(NSBundle *)nibBundleOrNil

{

 self = [super initWithNibName:nibNameOrNil bundle:nibBundleOrNil];

 if (self)

 {

 self.title = @"Scores";

 NSData *playersData = [[NSUserDefaults standardUserDefaults]

 objectForKey:kPlayersArrayKey];

 if (playersData)

 {

 playersArray = [(NSArray *)[NSKeyedUnarchiver unarchiveObjectWithData:playersData]

 sortedArrayUsingSelector:@selector(compare:)];

 }

 }

 return self;

}

// Customize the number of sections in the table view

- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView

{

 return 1;

}

- (NSInteger)tableView:(UITableView *)tableView numberOfRowsInSection:(NSInteger)section

{

 return playersArray.count;

}

// Customize the appearance of table view cells

- (UITableViewCell *)tableView:(UITableView *)tableView cellForRowAtIndexPath

 :(NSIndexPath *)indexPath

{

 static NSString *cellID = @"cellID";

 ScoresTableViewCell *cell = [tableView dequeueReusableCellWithIdentifier:cellID];

 if (cell == nil)

 {

 cell = [[ScoresTableViewCell alloc]

 initWithStyle:UITableViewCellStyleSubtitle reuseIdentifier:cellID];

 }

 cell.selectionStyle = UITableViewCellSelectionStyleNone;

 cell.accessoryType = UITableViewCellAccessoryNone;

 cell.player = [playersArray objectAtIndex:indexPath.row];

 return cell;

}

@end

A table has a number of sections, and each section has a number of rows. A section is just a group

of rows within the table with its own title. In this example, the table has one section that is as long as

the list of players in the deserialized array.

http:///

242 pArt III Mobile Applications

A new cell is created on demand within the handler for the message cellForRowAtIndexPath on the

UITableViewController class. You create an instance of the cell object that you want, conigure it with
the data you need, and return.

The cell of the sample application is made of three pieces of information: player name, date, and

score. You start by creating a class as follows:

@interface ScoresTableViewCell : UITableViewCell

{

 UILabel *_nameLabel;

 UILabel *_scoreLabel;

 UILabel *_dateLabel;

}

@property (nonatomic, strong) Player *player;

@end

When initialized, the cell object receives a Player object. In the setter of the Player property, the

three private members are set to the content of the Player object.

In iOS, a table cell can have some predeined position (and style). For example, the textLabel property

on the parent UITableViewCell class refers to the title of the cell and is rendered in bold. On the other

hand, the detailTextLabel property refers to a detail line and is rendered in gray and with smaller text.

The sample code shown here irst saves references to these members into local variables and then
 proceeds with some graphical work aimed at creating a custom area to the right edge for the score:

- (id)initWithStyle:(UITableViewCellStyle)style reuseIdentifier:(NSString *)reuseIdentifier

{

 self = [super initWithStyle:style reuseIdentifier:reuseIdentifier];

 if (self)

 {

 // Get references to writable parts of the cell

 _nameLabel = self.textLabel;

 _dateLabel = self.detailTextLabel;

 // Create the area for the score (rightmost)

 CGRect scoreLabelFrame = CGRectMake(

 self.frame.size.width - kScoreLabelWidth - kScoreLabelPadding,

 0.0f,

 kScoreLabelWidth,

 self.frame.size.height);

 // Place a UILabel component in the area and add it to the cell view

 _scoreLabel = [[UILabel alloc] initWithFrame:scoreLabelFrame];

 _scoreLabel.textAlignment = UITextAlignmentRight;

 [self addSubview:_scoreLabel];

 }

 return self;

}

The cell layout is populated when the code assigns a value to the Player property of the custom

ScoreTableViewCell. Here’s the setter of the Player property:

http:///

 CHAPTER 8 Developing for iOS 243

- (void)setPlayer:(Player *)player

{

 _player = player;

 _nameLabel.text = _player.name;

 _scoreLabel.text = [NSString stringWithFormat:@"%d", _player.score];

 _dateLabel.text = [NSDateFormatter

 localizedStringFromDate:_player.scoreDate

 dateStyle:NSDateFormatterShortStyle

 timeStyle:NSDateFormatterShortStyle];

}

Figure 8-11 shows the inal result.

FIGuRE 8-11 The Scores view.

Other programming topics
This brief analysis of the Guess application has demonstrated the most common aspects of iOS

and mobile programming. A couple of relevant APIs have been left out: accessing the network and

 performing common tasks, such as sending an email.

http:///

244 pArt III Mobile Applications

Accessing the Network

The following code shows how to prepare a call to a given URL. You set the Hypertext Transfer

 Protocol (HTTP) address through the NSURL class and use the NSMutableURLRequest class to send it.

Here’s the initialization code:

NSURL *url = [NSURL URLWithString:@"http://yourserver.com/app"];

NSMutableURLRequest *request = [NSMutableURLRequest requestWithURL:url];

To add content to the body of the HTTP request, you prepare a string like the following and stuff it

into the request object:

NSString *params = [[NSString alloc] initWithFormat:@"foo=bar&key=value"];

[request setHTTPMethod:@"POST"];

[request setHTTPBody:[params dataUsingEncoding:NSUTF8StringEncoding]];

Finally, you ire the request using a call to the NSURLConnection object:

[[NSURLConnection alloc] initWithRequest:request

 delegate:self];

To capture the response, it sufices that you use the following method:

- (void)connectionDidFinishLoading:(NSURLConnection *)connection

The response that you get is of type NSMutableData. You can then transform this object into an

array of bytes or a string.

Common tasks

In iOS and in other mobile operating systems, you have ready-made classes to perform a bunch

of common tasks, such as sending an email, a text message, adding a contact, or placing a phone

call. For example, in iOS, you use the MFMailComposeViewController class to display the standard

email dialog box to the user. The class offers you methods to set recipients, subject, body, and even

 attachments:

MFMailComposeViewController *picker = [[MFMailComposeViewController alloc] init];

picker.mailComposeDelegate = self;

[picker setSubject:@"Hi there!"];

// Recipients

NSArray *toRecipients = [NSArray arrayWithObject:@"you@someserver.com"];

NSArray *ccRecipients = [NSArray arrayWithObjects:@"friend@someserver.com];

[picker setToRecipients:toRecipients];

[picker setCcRecipients:ccRecipients];

// Attach a file

NSString *path = [[NSBundle bundle] pathForResource:@"notes" ofType:@"txt"];

NSData *data = [NSData dataWithContentsOfFile:path];

[picker addAttachmentData:data mimeType:@"text" fileName:@"notes"];

// Set the body of the message

NSString *body = @"My two cents.";

http:///

 CHAPTER 8 Developing for iOS 245

[picker setMessageBody:body];

[self presentModalViewController:picker animated:YES];

[picker release];

The user, however, is allowed to send the email as is or manually edit any ield. When done, the
email is submitted to the iOS system mail application for actual delivery.

It should be noted that the device may not be conigured to send emails programmatically. If not,
you always can directly invoke the system mail application, as shown here:

NSString *recipients = @"mailto:you@someserver.com?cc=friend@someserver.com&subject=Hi there!";

NSString *body = @"&body=My two cents.";

NSString *email = [NSString stringWithFormat:@"%@%@", recipients, body];

email = [email stringByAddingPercentEscapesUsingEncoding:NSUTF8StringEncoding];

[[UIApplication sharedApplication] openURL:[NSURL URLWithString:email]];

The key difference is that in the irst case, you integrate a system dialog box within your
 application. In the second case, your application is pushed to the background and the default Mail

application is launched.

In a similar way, you can deal with Short Message Service (SMS) messages. In this case, the class

to use is MFMessageComposeViewController. Note, however, that you won’t be able to send SMS in a

fully automated way without the user explicitly tapping the Send button.

Navigation and Controllers

We briely touched on navigation while discussing the sample application. Let’s review what it takes

to move to a different view. Applications typically have a navigation controller that is set upon

 launching, as follows:

self.navigationController = [[UINavigationController alloc]

The navigation controller keeps track of the various views displayed and organizes them into

a stack. Every view that you navigate to since the application irst displayed is added to the stack.
 Navigating to a new screen just adds a new view to the stack; navigating back just pops the topmost

view from the stack. The default UI navigation controller takes care of the functionality of the back

button that brings you back to the previous screen in the stack.

The following code shows how to display a new view:

ResultViewController *resultViewController = [[ResultViewController alloc]

 initWithNibName:@"ResultViewController" bundle:nil];

[self.navigationController pushViewController:resultViewController animated:YES];

You irst get a new instance of the controller for the next view, and then you send the
 pushViewController message to the navigation controller that identiies the controller of the new view
as the argument. As an additional argument, you can indicate an animation parameter. Animated

transitions are an important part of the user experience, so you might want animation turned on.

http:///

246 pArt III Mobile Applications

By default, when you push a new controller on the stack, a back button appears with the caption

set to the title of the previous view. The UINavigationController class also has a method you can use

to jump to the home page. To navigate to the home page, you need to add your own button and

 attach it to an action, as shown here:

(void)backToHome

{

 [self.navigationController popToRootViewControllerAnimated:YES];

}

Another popular type of controller is the UITabBarController. It renders a tab bar interface that is

fairly convenient when you want to provide different views about the same data, or perhaps keep

the functions well separated. The UITabBarController manages the tab view user interface and the

 controllers responsible for the various child views. It’s like having a double level of control: Each

tabbed view has its own controller, and all tabs are managed by the UITabBarController and displayed

as the user taps. Here’s how to create a tab bar:

- (void)applicationDidFinishLaunching:(UIApplication *)application {

 tabBarController = [[UITabBarController alloc] init];

 FirstViewController* tab1 = [[FirstViewController alloc] init];

 SecondViewController* tab2 = [[SecondViewController alloc] init];

 NSArray* controllers = [NSArray arrayWithObjects:tab1, tab2, nil];

 tabBarController.viewControllers = controllers;

 window.rootViewController = tabBarController;

}

For each tab, you provide a UITabBarItem object that indicates text and image to display in the

user interface. You associate a UITabBarItem object with the view-controller of a child tab at any time

before the tab bar is displayed.

Programming with MonoTouch

A large number of developers who need to write iPhone applications have a strong background

in Java or .NET. In both cases, learning Objective-C, although not impossible, is deinitely a time-
consuming (and expensive) task. What other choice do you have?

MonoTouch is a commercial framework that allows you to use the C# language to write iOS

 applications. Not only can you use a truly object-oriented, modern, and elegant language to write

iPhone and iPad applications, but also you can use a subset of the .NET Framework for common tasks.

The MonoTouch framework is built on top of the Mono framework and is sold by Xamarin

(http://www.xamarin.com), the same company that built Mono—a cross-platform compiler and

 language run time that brings .NET well outside the Windows platform. Mono packages, in fact, exist

for a few Linux distributions, Mac OSX, and Solaris.

http:///

 CHAPTER 8 Developing for iOS 247

the .NEt Framework on iOS
Although MonoTouch is not the only alternative to using Objective-C and Xcode for writing iOS

 applications, it is probably the most lexible one. With MonoTouch, you have nearly full coverage
of the iOS SDK features, plus the ability to invoke native Objective-C or C/C++ compiled code.
This means that you can incorporate Objective-C code in your projects, as well as .NET assemblies

 produced by Visual Studio. Let’s ind out more about the internal architecture of MonoTouch and
then proceed with a simple example.

From Mono to Monotouch

You typically write a MonoTouch application on a Mac computer using the C# language. It’s not for

the faint-hearted, but you could even write your source code with Visual Studio. In any case, you need

a Mac to compile your sources for iOS and test on the emulator.

In your code, you call classes whose naming and programming interfaces are the same as the

classes in the .NET Framework. In reality, though, you have no .NET Framework assemblies deployed

in any form to your Mac. The classes you call belong to the Mono software platform.

Mono is a collection of software tools aimed at making the .NET Framework available on a variety

of alternate platforms—Mac OSX is just one of these. The Mono framework comprises a bunch

of tools for each platform, including a C# compiler, a run-time environment, a version of the Base

Class Library (BCL) compatible with the original .NET Framework, and the Mono Class Library (MCL),

which includes classes for capabilities that aren’t in the .NET Framework but still are needed on

 non-Windows platforms.

The Mono run time is particularly important for iOS applications. The run time contains subsystems

for threading, interoperability, and garbage collection. It also contains the Just-in-Time (JIT) compiler

that turns intermediate code to binary code on the ly. Unfortunately, Apple doesn’t accept any code
that requires JIT compilation in the App Store, the only place to distribute your iOS applications.

For this reason, the Mono run time includes an Ahead-of-Time (AOT) compiler that runs past the

standard C# compiler and reduces your application to native iOS code. The AOT compiler also enables

you to use generics, a feature that, according to .NET, would require JIT compilation.

In summary, you write your C# code, and then the combination of the Mono and AOT compilers

turns it into the .NET Intermediate Language (IL) irst and then directly into ARM assembly code, the

low-level language for iOS devices.

Note Processors used by Apple devices—iPhone, iPod Touch, and iPad—are A4 and A5

processors developed internally by Apple but compatible with the ARM architecture. This

same architecture will be supported by Microsoft on Windows 8.

http:///

248 pArt III Mobile Applications

pillars of Monotouch Applications

MonoTouch applications are compiled against a subset of the BCL of .NET Framework 4. This speciic
proile required by MonoTouch applications makes it impossible to use existing .NET assemblies
 without prior recompilation. The MonoTouch proile is roughly equivalent to the Silverlight 4.0 proile
of the Windows-based .NET Framework.

So your code may target classes like System.Net.WebClient and use the usual .NET interface of such

classes. Under the hood, though, this and other classes are bound to iOS native classes and features.

For this reason, you also need the iOS SDK installed to write MonoTouch applications. As mentioned,

the level of coverage of iOS features that you’ll ind in MonoTouch is nearly 100 percent.

In addition to the iOS edition of BCL classes, MonoTouch provides a bunch of classes that are

speciic to iOS applications. The application model, in fact, is the same as if you use Objective-C. This
means that you still will have a UIApplication object around events like FinishedLaunching. The user

interface will be based on UIKit elements such as UILabel, UIButton, and UISegmentedControl. The

name of properties and constants are preserved or slightly adapted. In the end, using MonoTouch is

like programming for classic .NET, but using a set of new namespaces and assemblies.

Analysis of a Simple Monotouch project

You write a MonoTouch application using MonoDevelop, a cross-platform IDE that runs on Linux

and Windows as well as Mac. For developers coming from the .NET world (or even the Java world),

MonoDevelop is a more familiar tool than Xcode—or at least that has been the experience of my co-

workers and myself. Figure 8-12 offers a view of the MonoDevelop IDE for iOS applications.

FIGuRE 8-12 The MonoDevelop IDE.

After creating a HelloWorld application, your MonoDevelop project contains a list of iles that is
nearly identical to an Objective-C Xcode project, as shown in Table 8-1.

http:///

 CHAPTER 8 Developing for iOS 249

TAblE 8-1 Files in a Simple MonoTouch Project

File Description

Main.cs Application starter and main entry point.

AppDelegate.cs The delegate for the application responsible for starting the user interface,
as well as listening (and optionally responding) to application events from
iOS.

HelloWorldViewController.cs Controller of the main view of the application. In this case,
HelloWorldViewController is the only screen of the application.

HelloWorldViewController.designer.cs Designer class for the view; it contains references to visual elements
 declared in the XIB ile. This is a plain .NET partial class.

HelloWorldViewController.xib Standard XIB ile deining the UI of a view. This ile will be edited, opening
an instance of Interface Builder.

In particular, the Main.cs ile starts the application, as shown here:

using System;

using MonoTouch.Foundation;

using MonoTouch.UIKit;

namespace HelloWorld

{

 public class Application

 {

 // This is the main entry point of the application.

 static void Main (String[] args)

 {

 // Feel free to indicate another AppDelegate class name

 UIApplication.Main (args, null, "AppDelegate");

 }

 }

}

The AppDelegate class has a slightly more compact structure than it does in Xcode:

[Register ("AppDelegate")]

public partial class AppDelegate : UIApplicationDelegate

{

 UIWindow window;

 HelloWorldViewController viewController;

 public override bool FinishedLaunching (UIApplication app, NSDictionary options)

 {

 window = new UIWindow (UIScreen.MainScreen.Bounds);

 viewController = new HelloWorldViewController ("HelloWorldViewController", null);

 window.RootViewController = viewController;

 window.MakeKeyAndVisible();

 return true;

 }

}

The Register attribute is used to register a MonoTouch class explicitly with the Objective-C run

time, using a short name. The FinishedLaunching overridden method performs any tasks that are

http:///

250 pArt III Mobile Applications

required to prepare the view. In this method, the application’s window is created to cover the entire

screen and the view-controller instance is created and attached to the window. Finally, the window is

displayed and given input focus. It should be noted that this method is given a ixed amount of time
to return. If it stalls for more than a few seconds, iOS will stop the process.

The designer class has a structure that is very similar to analogous .NET classes that you may know

from ASP.NET or Windows Forms programming:

[Register ("HelloWorldViewController")]

partial class HelloWorldViewController

{

 [Outlet]

 MonoTouch.UIKit.UITextField quantityTxt { get; set; }

 [Outlet]

 MonoTouch.UIKit.UITextField percentageTxt { get; set; }

 [Outlet]

 MonoTouch.UIKit.UILabel resultLabel { get; set; }

 [Outlet]

 MonoTouch.UIKit.UIButton calcButton { get; set; }

 [Outlet]

 MonoTouch.UIKit.UIButton clearButton { get; set; }

}

The designer ile is created automatically by MonoDevelop and stores any outlets and actions that
are created in Interface Builder. In the previous code, you see references to a bunch of visual elements

that produce the view shown in Figure 8-13.

FIGuRE 8-13 A sample view for a simple percentage calculator.

http:///

 CHAPTER 8 Developing for iOS 251

As the XIB ile is edited in Interface Builder, you add outlets and actions as described in the section

“Using Objective-C,” earlier in this chapter.

Note that in MonoTouch, you also can handle actions as events using the .NET Framework syntax,

except that you must use iOS names. Here’s the code that programmatically deines an action for the
click/tap event on a button:

calcButton.TouchUpInside += delegate { ... };

In event handlers, you can access BCL classes and employ your existing .NET skills.

reusing Existing .NEt Code

Code reusability with .NET also reaches signiicant levels. It should be noted that you can’t just drop in
existing assemblies that you may have created for .NET projects. Any assemblies that you import must

be compiled for the speciic MonoTouch .NET proile. This means that reusability applies, but at the
source level and so long as referenced classes exist in the target proile.

In addition, when evaluating MonoTouch, consider that MonoTouch is just the iOS leg of a single

product that lets you address the Android platform as well. MonoTouch, in fact, is paired with

 MonoDroid, which features the same idea and patterns, but applied to the Android platform. This is

another great advantage, as your .NET code now may be ported to a signiicant extent across .NET,
Windows Phone, iOS, and Android.

There’s no magic here, so don’t expect miracles; you can simply count on a reliable and effective

cross-platform solution.

Examining a Sample Application
InstantScore is a small application that, just for its overall simplicity, demonstrates the power of

the mobile paradigm. Mobile applications don’t have to be overly complex to become useful to

 customers. The idea behind, and the selection of, use-cases is what really determines the success of

an application. Without a good idea that addresses a speciic need, you will hardly have a successful
mobile application.

The sample application examined in this section connects to a web service and reports the status

and score of a few tennis matches. The irst version of this application was written in less than a
couple of hours by a junior .NET developer using MonoTouch for the irst (or maybe second) time. The
application allowed a few people to stay constantly informed about ongoing matches during a tennis

tournament and helped them to estimate how long they could relax before their next shift on a given

court.

This application was never submitted to the App Store; we simply managed to deploy it as a beta

application to a couple of speciic devices. (I’ll say more about the deployment of iOS applications at
the end of the chapter.)

http:///

252 pArt III Mobile Applications

A Master/Detail View

The master/detail pattern is fairly common in mobile views. You provide a scrollable list of items, the
user picks one, and a new screen replaces the old one. The AppDelegate of the sample application

deines the controller of the main view as a standard UINavigationController class:

public override bool FinishedLaunching (UIApplication app, NSDictionary options)

{

 window = new UIWindow (UIScreen.MainScreen.Bounds);

 var controller = new RootViewController();

 navigationController = new UINavigationController (controller);

 window.RootViewController = navigationController;

 // Make the window visible

 window.MakeKeyAndVisible ();

 return true;

}

The root view-controller derives from the UITableViewController class. It sets the application title

and connects to the web service to get the list of matches. The whole process is coordinated from the

ViewDidLoad method:

public partial class RootViewController : UITableViewController

{

 public RootViewController () : base ("RootViewController", null)

 {

 Title = "Live";

 }

 public override void ViewDidLoad ()

 {

 base.ViewDidLoad ();

 // Download matches

 var list = InstantScoreHelpers.DownloadCurrentMatches();

 // Bind the list of matches to the table view

 TableView.Source = new MatchesDataSource (this, list);

 }

 ...

}

It is interesting to notice that in this previous code, you can arrange for the download to take place

synchronously or asynchronously. In Windows Phone and Silverlight, on the other hand, it can happen

only asynchronously:

// Download content in a synchronous manner

public static IList<MatchItem> DownloadCurrentMatches()

{

 var webClient = new WebClient();

 var content = webClient.DownloadString(new Uri("http://..."));

 return Parse(content);

}

http:///

 CHAPTER 8 Developing for iOS 253

The MatchItem class just deines the match entity being handled, as follows:

public class MatchItem

{

 public String Icon {get; set;}

 public String Text {get; set;}

 public String Score {get; set;}

}

As is, the code crashes if there’s no Internet connectivity or the host is not reachable for any

 reason. In MonoTouch, you use the NetworkReachability class to ind information about the
 reachability of a given host:

var nr = new NetworkReachability(host);

To get a binary answer, you need a couple of other lines of code. One of the MonoTouch SDK

 examples, though, provides a helper class—the Reachability class—that you can invoke in a very

 natural way in case you don’t need to distinguish between WiFi and 3G connectivity:

if(!Reachability.IsHostReachable(host))

{

 // Skip

}

Once you’ve got the list of matches, the next step consists of populating the table. Figure 8-14

shows the layout of the main view.

FIGuRE 8-14 The main view of the sample application.

http:///

254 pArt III Mobile Applications

populating the table View

Any controller that derives from UITableViewController has a TableView property of type UITableView.

You need to pass a couple of objects to this table view: the data source to populate the table and a

delegate to handle user activity. The TableView object has two distinct properties for this—Source and

Delegate—that you can set separately:

TableView.Source = new MyDataSource();

TableView.Delegate = new MyTableDelegate();

The data source will derive from UITableViewDataSource, whereas the delegate object derives from

UITableViewDelegate.

You also can set the Source property with an instance of a class that derives from UITableViewSource.

This base class combines the capabilities of a delegate and a data source. Here’s an example:

public class MatchesDataSource : UITableViewSource

{

 RootViewController _controller;

 IList<MatchItem> _matchList;

 public MatchesDataSource (RootViewController controller, IList<MatchItem> currentMatches)

 {

 _controller = controller;

 _matchList = currentMatches;

 }

 public override int NumberOfSections (UITableView tableView)

 {

 return 1;

 }

 public override int RowsInSection (UITableView tableview, int section)

 {

 return _matchList.Count;

 }

 public override UITableViewCell GetCell (UITableView tableView, NSIndexPath indexPath)

 {

 string cellIdentifier = "Cell";

 var cell = tableView.DequeueReusableCell (cellIdentifier);

 if (cell == null) {

 cell = new UITableViewCell (UITableViewCellStyle.Subtitle, cellIdentifier);

 cell.Accessory = UITableViewCellAccessory.DisclosureIndicator;

 }

 // Configure the cell

 cell.TextLabel.Text = _matchList[indexPath.Row].Text;

 cell.DetailTextLabel.Text = _matchList[indexPath.Row].Score;

 cell.ImageView.Image = UIImage.FromFile(_matchList[indexPath.Row].Icon);

 return cell;

 }

http:///

 CHAPTER 8 Developing for iOS 255

 public override void RowSelected (UITableView tableView, NSIndexPath indexPath)

 {

 // More code here

 ...

 }

}

The data source class overrides RowsInSection and NumberOfSections to set the length and

 structure of the table. Another method that is mandatory to use in a data source class is GetCell.

As the name suggests, GetCell returns the cell object to add to the table during rendering.

In the implementation of a table view, you usually don’t create one cell for each data item. Before

you create a cell, you ask the table view to get one cell of the speciied type. The cell type is referred
to as the cell identiier:

string cellIdentifier = "Cell";

var cell = tableView.DequeueReusableCell (cellIdentifier);

If the table view can’t return a valid cell object, then you create a new one:

if (cell == null) {

 cell = new UITableViewCell (UITableViewCellStyle.Subtitle, cellIdentifier);

 // The cell will have an arrow (>) at the end indicating that there's

 // another view associated with the row. Other accessories are checkmark (if

 // the row is selected) and + symbol (if a new row can be added to the table).

 cell.Accessory = UITableViewCellAccessory.DisclosureIndicator;

}

The table view maintains a pool of cell objects and groups them using the cell identiier. You don’t
need to use different identiiers if your table is populated by cells of the same type. If you need to
 display cells of different types (e.g., cells with different layouts), then you might want to assign an

identiier to each type and have the table view create multiple pools of cell objects. The table view
returns a plain cell object, and it is your responsibility to conigure it with the content of the current
data item. That is done as follows:

cell.TextLabel.Text = _matchList[indexPath.Row].Text;

cell.DetailTextLabel.Text = _matchList[indexPath.Row].Score;

cell.ImageView.Image = UIImage.FromFile(_matchList[indexPath.Row].Icon);

The index of the row is expressed as an NSIndexPath object, which represents the path to a speciic
element in a hierarchy of nested collections. You need to invoke the Row property to get the real

index if you have a single collection of elements.

Finally, the content of the table view can be modiied by adding, deleting, and reordering rows.
This can be done either programmatically, with the user interface providing clues on how to do

that, or through built-in row accessories that use some capabilities of the table view object. Another

 interesting facility that you ind in the table view object is the ability to refresh its content by
 reloading data. You use the reloadData method to do this.

http:///

256 pArt III Mobile Applications

Important The working of the UITableView object, discussed here in the context of

MonoTouch, is exactly the same one you would experience coding while in Objective-C.

the Detail View

The RowSelected method contains the logic that triggers when the user selects a given table row.

If you intend to navigate to another view, the irst thing to do is create a controller for the detail view,
as follows:

public override void RowSelected (UITableView tableView, NSIndexPath indexPath)

{

 // Prepare the next view

 var DetailViewController = new DetailViewController ();

 ...

 // Move to the next view

 controller.NavigationController.PushViewController (DetailViewController, true);

}

If you’re having a detail view, then you also likely have some data to pass from the master view to

the detail view. In the sample application, the detail view contains references to the selected match.

Here’s an excerpt from the DetailViewController class:

public class DetailViewController : UIViewController

{

 MatchItem _currentMatch;

 public void SetDetailItem (MatchItem match)

 {

 if (currentMatch != match) {

 currentMatch = match;

 ConfigureView ();

 }

 }

 void ConfigureView ()

 {

 if (currentMatch!= null) {

 Title = _currentMatch.Text;

 ...

 }

 }

}

http:///

 CHAPTER 8 Developing for iOS 257

You call SetDetailItem from within RowSelected to pass information from the master view to the

detail view:

public override void RowSelected (UITableView tableView, NSIndexPath indexPath)

{

 // Prepare the next view

 var detailViewController = new DetailViewController ();

 // Pass data

 detailViewController.SetDetailItem(_matchList[indexPath.Row]);

 // Move to the next view

 controller.NavigationController.PushViewController (DetailViewController, true);

}

Figure 8-15 shows the resulting master and detail views.

FIGuRE 8-15 Two views of the sample application.

http:///

258 pArt III Mobile Applications

Objective-C or Monotouch: Your take?

MonoTouch provides wrappers for Objective-C objects and entirely relies on Cocoa Touch

and native iOS frameworks under the hood. Is there any value in using MonoTouch over

 Objective-C?

Admittedly, this is a highly debatable point in which a few facts can be observed but

 conclusions remain quite personal. A key fact is that you need to understand the logic of the

iOS user interface to build MonoTouch applications. MonoTouch may shield you from some—

but not all—of the frameworks that form Cocoa Touch. Further, when you use MonoTouch

(or MonoDroid), the code that you reuse, or the code where you can use your .NET skills, is

 generally the back-end code and any helper code (which isn’t really a bad thing anyway). The

logic behind the presentation layer remains speciic to the platform of choice.

At the very end of the day, picking up Objective-C/Cocoa Touch versus C#/MonoTouch is a
choice based on the programming language and the framework that you like most. If you are a

.NET person, you immediately feel at home with MonoTouch. But if you already managed to learn

Objective-C, regardless of your background, you may ind little value in moving to MonoTouch.

Furthermore, a MonoTouch application is about 10 times larger than an iOS application built

with the native Apple SDK. It’s a matter of a few megabytes versus a few hundred kilobytes. So long

as your application doesn’t exceed the limit that Apple allows for downloading applications over a

3G connection (currently set to 20 MB), the size is not typically a big concern for iOS applications,

where most of the time you have at least a 16 GB on-board memory card for iPhone and iPad

and a 8 GB card for iPod Touch devices. When you consider MonoDroid—the MonoTouch’s twin

 framework for Android—to write Android applications, the size becomes much more critical, given

the wide range of devices with different hardware capabilities that you encounter.

If you haven’t come to a clear decision yet, then these additional aspects may help you.

(I don’t believe that developers with a strong orientation towards either Objective-C or

MonoTouch will change their mind because of the following points, though.)

 ■ The Objective-C community is much richer than MonoTouch’s. This means that you will

ind a lot more examples, components, tutorials, and various contributions to support
you. This isn’t surprising (the iOS SDK has been around for longer), nor does it mean

you have insuficient documentation from Xamarin and won’t have a community of
MonoTouch users to help you.

 ■ You can write code switching between MonoDevelop and Xcode, which still is used for UI

tasks.

What’s my personal take for iOS development? It’s easy: I feel physical pain when I’m

 exposed to some Objective-C syntax for longer than ive minutes or so. Having learned enough
about Cocoa Touch, I do use MonoTouch with ease for the presentation layer and enjoy the

pleasure of using .NET-like classes for logic, network, and storage chores.

http:///

 CHAPTER 8 Developing for iOS 259

Deploying ioS Applications

Applications written for iOS are packaged into application bundles and downloaded to the device.

An application bundle contains any code and resources associated with an executable program.

The bundle is like a directory with a ixed structure that stores executables and resources in speciic
 locations. Your IDE of choice—whether Xcode or MonoDevelop—is responsible for producing an

 application bundle. The Info.plist ile in the project is your way to conigure naming, structure, and
other parameters of the application bundle.

The bundle gets deployed to a device and executed. The details of how this apparently simple

 deployment process takes place are a bit tricky. First and foremost, you can’t deploy a freshly

 compiled bundle on just any device. The bottom line is that there are two ways for a bundle to make

it to a physical iOS device: the bundle is available from the App Store and can be installed on any iOS

device or the bundle is created for a speciic set of devices and can be installed on those devices (a
device is identiied via a unique ID).

Let’s ind out more about testing and distributing the application.

testing the Application
So you inally wrote a few lines of code that may not contain any errors. You proudly click the Run

button, and the IDE compiles your code and makes it ready to run. What happens next? The freshly

created bundle needs be installed on some device—either physical or virtual.

Joining an Apple Development program

All mobile SDKs come with a tool that almost can simulate the behavior of the real device, and iOS is

no exception. Regardless of the IDE and frameworks that you use to write your iOS application, you

always rely on the Apple iOS simulator to test your work. The irst option that you have to run your
application is just deploying to a virtual device, the iOS simulator.

So long as you only test on the simulator, you don’t have to pay anything to anybody. For example,

Xcode deploys compiled code to the simulator virtual machine for free. The same goes for MonoTouch.

To deploy on a physical device instead, the irst thing that you need to do is enroll in one of Apple’s
paid development programs. For more information, see http://developer.apple.com/programs/start/ios.

Ad hoc programs are also available for companies.

If you use MonoTouch, you also need to get a MonoTouch license; the trial version of MonoTouch

doesn’t allow you to deploy to a physical device.

Getting Your Development Certiicate
The irst time that you run Xcode after becoming a registered developer, Xcode creates a

 development certiicate for you and stores it in your Mac computer’s keychain. A development

 certiicate assigns you a private key and identiies you as an iOS developer. Any further use of this
development certiicate is transparent to you.

http:///

260 pArt III Mobile Applications

At the end of each compile session, Xcode uses the private key from your development certiicate
to sign the application bundle. If the certiicate is somehow invalid, the build fails.

Being a registered (and paying) developer is not enough to enjoy the thrill of seeing your

 application running on an iPhone, however. As a general rule, in the Apple world, deployment of

 applications is strictly controlled. You can’t install applications directly on just any device. By “directly,”

I mean that you can’t copy a signed application bundle yourself to just any iOS device. Deployment

must go through Xcode, iTunes, or direct download from the App Store.

For Xcode to install a freshly compiled bundle to a device, another certiicate is required that ties
together a developer identity (your development certiicate), an application ID (determined by the
project), and one or more speciic devices. This is known as the provisioning proile.

For an iOS to run on a device, at least one provisioning proile is required. How can you get one?
And how can you identify a device?

registering a Device

Xcode can manage the provisioning proile for you and make it entirely transparent, so long as you
are using a device registered for development. If you have a “development” device connected to the

computer, all that’s required to test the application live on that device is hit the Run button. Under the

hood, Xcode will manage certiicates and provisioning proiles for you.

A “development” device is an iOS device whose unique identiier (UDID) has been registered with
Apple and associated with your developer account. You can do that from Xcode by connecting the

device to the computer and using the Organizer submenu of the Window menu.

As an alternative, you can register a device manually by connecting to the iOS Provisioning Portal

at http://developer.apple.com/ios/manage/overview/index.action. Once connected to the portal, you

can manage your devices. Figure 8-16 shows the page of the portal where you can see the details of

a particular device and the list of proiles it is associated with. A device, in fact, can be associated to
multiple provisioning proiles; similarly, a provisioning proile can include multiple devices.

FIGuRE 8-16 The iOS Provisioning Portal.

http:///

 CHAPTER 8 Developing for iOS 261

If you choose to register a device manually within the portal, then you are required to enter the

UDID of the device. The UDID is a 40-character string that uniquely identiies an iOS device much as
a serial number does. The UDID is an Apple-only number, and it is different from the International

Mobile Equipment Identity (IMEI) number used by the GSM network to identify devices. You can read

the UDID of a phone by connecting it to the computer and launching Xcode or iTunes. You also can

read the UDID directly from the device by navigating to the Settings page.

Note You are allowed to register up to 100 non-unique development devices per year of

enrollment. Any UDID that you add counts toward that threshold, even if it is a duplicate

or you deleted another one. In other words, if you remove a previously added device, you

won’t get back the entry until your year of enrollment expires and is renewed. Moreover,

if you add the same device again, it consumes one more entry. You’ll be credited 100 new

entries the irst day of any new enrollment. For example, if you enrolled on January 1, you’ll
receive 100 new entries on January 2 of the next year (provided that you renew, of course).

Getting the Provisioning Proile
Once the developer certiicate is installed and you have a registered device connected to the
 computer, you simply build the application and tell Xcode that you want to test on the attached

 device. In this case, Xcode gets a development provisioning proile automatically.

As an alternative, you can connect to the iOS Provisioning Portal, create the proile manually, and
download it to the connected device. Once created, the development provisioning proile is installed
on the device and needs no further work for successive builds.

Enabling Beta testing

Beta testing indicates a scenario in which you want to distribute your application to a relatively large

number of users. Stepping into the beta testing stage is surprisingly simple: all you need is an ad hoc

 distribution provisioning proile that enables a given application to run on a bunch of selected devices.

A distribution provisioning proile is different from a development provisioning proile in that it
requires a different type of certiicate—a distribution certiicate versus a development certiicate—in
addition to an app ID and a list of enabled devices. A distribution certiicate enables the owner of the
account to publish applications for one year. The certiicate can be revoked and re-created at any
time from the provisioning portal.

There are two types of app IDs: wildcard and explicit. A proile with a wildcard app ID can be used
to install and start any applications that don’t have an explicit App ID set in the bundle. A proile with
an explicit app ID restricts to install only the speciied application. The following is the default App ID
which sets up for a wildcard provisioning proile:

ABCDE12345.*

http:///

262 pArt III Mobile Applications

The irst part of the App ID is the bundle seed ID automatically generated for a given developer
account. The second part—the asterisk—indicates the wildcard for the application name. You typically

use this App ID for most of your Xcode development, but resort to an explicit App ID when you want

to distribute your application for beta testing. The following string indicates an explicit App ID:

ABCDE12345.MyApp

Before creating a distribution provisioning proile, you register the App ID with your account. Next,
you pick up a distribution certiicate and select all the devices the application is enabled to run on. All
devices must be registered as development devices using their UDID.

There’s no distinction between the devices that you use for development and the devices of

your beta testers: both must be registered, and both contribute to reach the yearly threshold of

100 devices. You probably need more accounts if you reach the maximum number of devices per

 account. Figure 8-17 shows the page on the iOS Provisioning Portal that allows you to create an ad hoc

 distribution provisioning proile.

FIGuRE 8-17 Creating a new distribution provisioning proile.

Sharing beta builds with testers may be your next problem. Once you have selected the beta

proile in Xcode, and Xcode has successfully compiled the application against that proile, you deliver
the resulting package (an .ipa ile) to testers via email or in some other way. The IPA package contains
both the executable and proile. Testers can install the IPA ile on their devices using iTunes.

http:///

 CHAPTER 8 Developing for iOS 263

Over-the-Air Beta testing

To reduce the burden of beta testing an application, you can use the TestFlight service, which is

available at http://testlightapp.com. As a developer, you sign up with the service and create a team

of testers for a given application. A team of testers consists of a collection of UDID strings. Once you

have a distributable IPA that works against those testers, you upload the bits to the site and distribute.

The site then will make your application available for download to testers.

As a tester, you sign up to the TestFlight service and register your device(s) with the site. The site

offers a number of ways for you to show up and be invited to test an application. In any case, if you

accept the task of testing an application—you need to be invited by the developer; you can’t pick up

an application to test yourself—you’ll receive via email a link to a copy of the application that will run

just on your device.

TestFlight is a very effective way to share your beta builds with a restricted number of users and,

maybe more important, is an effective way to ind beta testers. The site shortens your testing phase
and allows you to address and solicit feedback more quickly.

Distributing the Application
A developer account gives you the right to deploy applications on no more than 100 devices.

 Subsequently, the only possible way to sell or just distribute your application is to upload it to the

Apple marketplace—the App Store.

Note The App Store channel is the only possible way to install applications on an iOS

 device unless you jailbreak the device. Jailbreaking consists of installing a custom kernel

that removes the limitations imposed by Apple and allows users to download applications

outside the oficial App Store. Once you jailbreak your device, you gain root access to it and
can manage it directly without using iTunes for everything. A jailbroken device can connect

to the App Store and functions just like a regular device. On July 26, 2010, the U.S. Library

of Congress afirmed that the practice of jailbreaking is not a violation of copyright law.
This statement, though, must be reviewed and reiterated every three years.

the App Store

The App Store is the oficial Apple online platform for distribution of iPad, iPhone, and iPod Touch

applications. Users access the App Store via iTunes, the web, or directly from their devices through

 native applications.

The idea behind the App Store is to provide a single place where users can look for applications

and developers can publish applications. With some modiication, the idea of a centralized application
store has been adopted by other mobile platforms such as Android and Windows Phone. An oficial
application store is also slated for debut with the Windows 8 platform.

http:///

264 pArt III Mobile Applications

Publishing an application to the App Store is a multistep process. First, you package the application

for App Store distribution. Next, you submit the application for approval. Finally, once the application

has been certiied and signed by Apple, it goes to the App Store and becomes available to the
masses. At this point, it can be installed on any iOS device that it was compiled for.

To submit an application to the App Store, you need a distribution provisioning proile that’s valid
for the App Store. You achieve this by doing what is shown in Figure 8-17, except that you switch

to the App Store distribution method. Once you hold the distribution proile for the App Store, you
 compile your application against that, submit it, and wait for approval.

If your application behaves well, doesn’t crash, and is respectful of the guidelines, it will be

 published. The process to get a response from Apple usually takes a few days, but the wait time can

vary. However, it should never take more than two weeks to get a response. It should be noted that

you undergo the same process—submit, wait, and maybe retry—when you publish an update as well.

This happens regardless of the quality of the update, whether it is a full new release with new features

or just a quick bug ix.

You can publish free applications or sell them for a minimum price of $0.99. Apple offers free

hosting and marketing but deducts 30 percent of your revenues at the source. For free applications,

though, the App Store is totally free.

Note Any applications published to the App Store remain there so long as your developer

account is in good standing. If you fail to renew your membership, Apple will remove your

applications from the App Store. In addition, Apple won’t accept any new submissions until

you join again. However, downloaded applications will continue working on the devices.

In-house Deployment

In-house deployment is useful when you build the application for internal purposes and want to

distribute it only to your employees and/or contractors. The whole process is nearly the same as with
beta testing, except for the type of license required and certiicates involved. In particular, to enable
in-house deployment, you need a Developer Enterprise Program license.

The Developer Enterprise Program license enables you to distribute the application to up to

500 devices. With a basic ad hoc distribution, you can reach up to 100 devices. Note that the

distribution certiicate expires after one year. However, applications published to the App Store or
distributed privately via in-house deployment don’t expire automatically.

To compare the Developer Program and Developer Enterprise Program, refer to http://developer.

apple.com/programs/start/ios.

http://developer.apple.com/programs/start/ios
http://developer.apple.com/programs/start/ios
http:///

 CHAPTER 8 Developing for iOS 265

Important To publish applications to the App Store, you need a developer license, acquired

as an individual or a company. If you enroll in the Developer Enterprise Program, you get

other beneits (i.e., in-house deployment), but you will not be able to publish applications
to the public App Store.

Summary

When it comes to mobile application development, iOS is the irst platform to take into account. How
would you write iOS applications? Most of the existing applications have been written using the iOS

SDK and the Objective-C language. Objective-C is an extended version of the C language. It offers a

richer syntax that allows objects and messages to be handled in a sort of object-oriented approach.

Although there are no dificult new concepts to learn in Objective-C, its syntax looks rather weird,
at least compared to the elegance of Java and C#. To cut a long story short, if you’re OK with the

 language syntax and ind yourself making progress with it, by all means, do your iOS development
with the native iOS SDK and related frameworks.

What other options do you have?

This chapter presented MonoTouch, a framework that offers a C# compiler and a set of .NET-like

classes. If you are escaping from Objective-C, using MonoTouch is like being in heaven. Regardless of

whether you use MonoTouch or Objective-C, this chapter touched on some common scenarios that

you encounter when writing and deploying iOS applications.

The next chapters tackle the other two major mobile platforms—Android and Windows Phone—

and inish with a review of an HTML5-based framework for building mobile applications, called
PhoneGap.

http:///

http:///

 267

C H A P T E R 9

Developing for Android

He who stops being better stops being good.

—Oliver Cromwell

In this chapter:

 ■ Getting Ready for Android Development

 ■ Programming with the Android SDK

 ■ Summary

L ike it or not, one of the key factors to the success of the iOS is certainly that it’s a closed

 environment. There are just a few hardware conigurations and one operating system. Both aspects
are strictly controlled by Apple, and carriers have no control over the operating system. As a user,

you receive notiication of system updates directly from Apple; as a developer, you have just one
 counterpart to talk to (and sometimes to quarrel with).

More speciically, this means that as a developer, you don’t face the problem of adapting your
user interface and presentation logic to different resolutions and different hardware—or, at least,

there are only three options to deal with: iPhone, iPod Touch, and iPad. Most of the time, this all

comes down to giving some applications (not even all applications) a different user interface on iPad

so they can take advantage of the larger screen. When you do so, however, you’re really starting

another project—one with a high level of code reuse. Within the same application, you rarely need to

 accommodate different user interface and hardware conigurations.

In iOS, you still may distinguish a few different versions of the operating system, and subsequently

a few varying levels of the application programming interface (API). This means that an application

written for iOS 4 may not run on a fairly old iPod Touch, but frankly, there are few differences beyond

this point. The iOS panorama is deinitely not fragmented.

In Android, you face a completely different situation.

Google started Android as an open-source project and, unlike Apple, Google doesn’t mandate a

unique and non-modiiable version of the operating system and hardware coniguration. As a result,
the range of different Android devices that your application may need to run on is quite wide. This

makes Android development challenging, and potentially quite expensive.

http:///

268 pArt III Mobile Applications

Getting Ready for Android Development

As mentioned in Chapter 8, “Developing for iOS,” the primary goal of these platform-speciic chapters
is not to teach programming for them in depth. Instead, at the end of this chapter, you should have a

clear idea of what it takes to write Android applications—but you probably will have a long way to go

before you can reasonably call yourself an expert Android developer.

Development tools and Challenges
Let’s review the irst basic steps required to create your irst Android application. You need to

 download a couple of software development kits (SDKs) and pick up an integrated development

 environment (IDE) where you write and compile the source code. By using an IDE, you save yourself

the burden of dealing with command-line tools when compiling, debugging, and deploying

 applications to the emulator or to the physical device. If you prefer to use the command line, however,

you will ind all that you need in the Android SDK.

Finally, it is worth noting that you can do Android development on a variety of computers—you

can use a Mac, or a Linux or Windows development machine.

Becoming an Android Developer

The primary and native language of Android development is Java. As you’ll see later in this chapter,

you can use C# or even JavaScript to write Android applications, but in such cases, your calls are

bridged to the components of the Android SDK, which is a Java framework.

Important Just to be clear, you can download everything that you need to write Android

applications for free, without having to create an account anywhere. Deployment on a

physical device is always free if you use SDK tools or do it manually. However, you may

need to buy a license if you use a commercial IDE.

You don’t need to register anywhere as an oficial Android developer to download and start using
the SDKs and embedded tools. However, you do need an account, and you also must pay a small

 one-time fee (currently $25) if you want to distribute your applications through Google Play (which

was formerly known as Android Market).

Warning While discussing Android application deployment, one thing you might want to

be aware of is that sometimes (and mostly on Windows) your device may need an extra

driver or some software that enables synchronization between the computer and the

 device. Don’t be too surprised if that happens to be true in your case, too. In particular,

I faced that with a couple of HTC devices. No big deal, though—in the end, it usually takes

only a few moments for Windows to locate the driver automatically. In the worst case,

 inding it may require a quick search.

http:///

 CHAPTER 9 Developing for Android 269

Coniguring the Environment
To do any Android development, you also need to install the Java Development Kit (JDK), which

includes both the Java Runtime Engine (JRE) and the Android SDK. You can download the JRE from

http://www.oracle.com/technetwork/java/javase/downloads/index.html, and the Android SDK from

http://developer.android.com/sdk.

You can download the Android SDK for Windows, Mac OS, and Linux. If you use Windows, then

an installer downloads the JDK for you if it’s not already installed. Whether you use Eclipse or IntelliJ

IDEA (from JetBrains) as the IDE, you also must add the path to the Android SDK to the preferences

settings of the IDE; otherwise, no target SDK shows up when you try to create a new project, and the

IDE will give you no chance to start writing code. On Windows, the Android SDK usually installs in the

following folder:

C:\Program Files\Android\Android-Sdk

The SDK that you install at irst is only a starter package. So the inal step in setting up your
 environment is to download some other essential SDK components. You do that through one of the

tools included in the starter package—the AVD Manager (see Figure 9-1).

FIGuRE 9-1 The AVD Manager.

The AVD Manager has a graphical interface through which you can select new or updated

 components to install. Through this tool, you also can create and conigure Android virtual devices if
you intend to test your code on the emulator.

picking Up Your Favorite IDE

A fairly common choice among Android developers is to use Eclipse as the IDE. You can download

Eclipse from http://www.eclipse.org/downloads. After downloading Eclipse, you also might want to

ensure that you have the Android-speciic plug-in. After the plug-in is fully conigured, you ind
Android-speciic project templates available when you start a new project. Figure 9-2 offers a view of
the Android project template in the Eclipse environment.

http:///

270 pArt III Mobile Applications

FIGuRE 9-2 The Eclipse environment for Android.

Another interesting IDE option for Android developers is IntelliJ IDEA. IntelliJ IDEA is a commercial

product; however, it comes with a free Community Edition that provides great support for Android

development. Figure 9-3 offers a view of the IntelliJ IDEA environment.

Both products are proicient at helping you write Java code. Both, however, provide minimal
 support for WYSIWYG scenarios (i.e., preview) and for user interface (UI) design. Personally, I use

 IntelliJ IDEA for my Android development.

Choosing the Development Strategy
Deining a development strategy that targets the Android platform is fairly easy: you just use the Java

language and the Android SDK. Other options exist, but choosing this native strategy doesn’t pose any

particular issues, such as having to learn a new language that may look old-fashioned or even weird.

http:///

 CHAPTER 9 Developing for Android 271

FIGuRE 9-3 The IntelliJ IDEA environment.

Java is an easy language to come to grips with. Even if you, like me, never have used it seriously

before, it likely will take you only a few moments to become somewhat familiar with it. The code

that you need to make an Android application work doesn’t necessarily require implementation of

 patterns and use of inversion of control tools. If you know object-oriented principles and have written

programs with C#, C++, or even Microsoft Visual Basic .NET, you will easily grasp the parts of Java that

you need for Android.

Using Java and the Android SDK

Java is a fully object-oriented language that is, in many respects, similar to C#. Java lacks some of the

syntactic sugar that the C# compiler offers, such as extension methods, the dynamic type, and the var

facility. However, a solid knowledge of object-oriented techniques provides plenty of background for

good Android programming.

There are many reasons for choosing Java as the primary language for Android programming.

First and foremost, Java is a known and widely used language with a rich ecosystem of programming

tools. Compared to C/C++ (and to some extent, Objective-C), Java doesn’t use pointers explicitly, so it
dramatically reduces the chances of memory leaks and accidental overwrites.

Before smartphones came to hold the spotlight, Java was already in use in several mobile scenarios

thanks to the Java Micro Edition (Java ME)—a Java platform designed for embedded systems

and mobile devices. Although Java ME has been overtaken in the news by the newer smartphone

 operating systems, it still holds a large share of the market and powers many popular devices, such as

Nokia’s Series 40. So Java is already a familiar language for many early mobile developers.

http:///

272 pArt III Mobile Applications

Another excellent reason for picking up Java is that it runs in a virtual machine. This is beneicial in
two ways. First, the virtual machine shields developers from the underlying hardware. Second, it runs

applications in a sandbox, which prevents one poorly written (or malicious) application from bringing

down the entire system.

Having said that, you should be aware that although Android uses the Java syntax, it’s not a true

Java platform. In fact, that speciic aspect is at the origin of a legal battle between Google and Oracle,
which is the current owner of the Java language. You write applications using the Java language, but

your source code does not get compiled to the bytecode of the Java Virtual Machine. Instead, your

Android Java source code gets compiled to a custom virtual machine that uses a completely different

bytecode. This Google version is called the Dalvik virtual machine.

Note At this point, it’s worth taking a brief look at the previous chapter to investigate why

Apple decided to go with Objective-C for native iOS development. Objective-C was the

 language of choice for NeXT, the platform that Steve Jobs created after leaving Apple in

the 1990s. Later, NeXT and Apple merged. Subsequently, the Mac OS operating system

was created from NeXTSTEP—the NeXT operating system. Objective-C was the language

of choice for NeXTSTEP, so it became the language of choice of Mac OS initially, and of iOS

more recently.

Using MonoDroid and C#

Java is not the only option available for writing Android applications. You also can use the C# language

and a subset of the Microsoft .NET Framework to target Android devices. To do that, you need

 MonoDroid—a MonoTouch twin product developed by Xamarin.

MonoTouch is a commercial product that requires you to buy a license. A single developer license

will cost you about $399 (you can get more information at http://www.xamarin.com).

You can use MonoDroid on a Windows machine and write code using Xamarin’s MonoDevelop

IDE, or even by using an extension to Microsoft Visual Studio.

A MonoDroid application executes within an instance of the Mono virtual machine. The Mono

 virtual machine lives side by side with Google’s Dalvik virtual machine on all devices. To access

functionality, developers use a set of classes that look like classes in the .NET Framework, except that

they bind to the Android API under the hood. The build process for a MonoDroid application passes

through four steps:

1. Processing resources from Android resource iles to .NET-compatible resource iles

2. Creating the .NET code

3. Processing of the .NET code to create Java wrappers

4. Final packaging of the Android executable

http:///

 CHAPTER 9 Developing for Android 273

As with MonoTouch on iOS, MonoDroid can reuse a lot of existing .NET code, but mostly in the

 back-end area. The presentation layer of MonoDroid applications closely relects the philosophy and
behavior of Android activities. You must know that if you’re going to write MonoDroid applications

effectively.

Using the phoneGap Framework

In the panorama of mobile programming tools, Adobe’s PhoneGap is a fairly unique framework that

can turn a bunch of client-side webpages into a native application for a variety of mobile operating

systems, including the Android platform.

As a developer, you write a classic client-side web application using HTML5, Cascading Style Sheets

(CSS), and JavaScript. You can write and test the application on your favorite development platform

using your favorite tools. For example, you can use Visual Studio 2010, or WebStorm (from JetBrains),

or any other text editor.

Note On a personal note, although I see a lot of value in using MonoTouch to target iOS,

I don’t honestly see the same value (or at least not necessarily) for Android. For me, the

 primary reason to consider MonoTouch is to avoid Objective-C because I would prefer

a more classic object-oriented language. As mentioned in Chapter 8, though, you still

need to learn Cocoa Touch to program for MonoTouch. And for Android, you still need

to understand how the Android user interface works. So it boils down to a Java vs. C#

 trade-off, including tools and ecosystem. Even with my strong .NET background, I ind the
Java offering quite compelling and well worth the price. As an important side note, by the

way, Java-based Android applications are far smaller than MonoDroid applications. Android

has a large base of devices, and not all of them come with a large SD card. Storage is a

 problem, so having small applications is much more important on Android than on iOS.

It is important to note that the core input to the PhoneGap framework is a collection of static

HTML pages that may possibly use JavaScript and Ajax calls to download data from remote endpoints.

You build the user interface using HTML5 and make it compelling through CSS. HTML5 is essential

because it incorporates a local storage feature, thus giving you the ability to save data locally. The

 client application also may link to the PhoneGap JavaScript library to gain access to additional

 features and device speciic hardware, such as a camera or accelerometer.

Using HTML5 is highly recommended because it also gives you free goodies, such as native date

pickers (if the browser supports that) and access to local storage. The best HTML5 browsers are

 currently mobile browsers on the mobile platforms that PhoneGap speciically addresses.

You test the application on the development machine (for example, a Windows machine with Visual

Studio) using an HTML5-compliant browser such as Chrome, Safari, or Windows Internet Explorer 10. If

you aim to target Android primarily, then you should test against desktop editions of Chrome.

Once the client web application is complete, you use the PhoneGap framework for Android. You

create an ad hoc project and build and deploy it. The original set of webpages is packaged as a

http:///

274 pArt III Mobile Applications

browser-based native application with access to the native device features that you claimed via the

PhoneGap JavaScript library.

Building a PhoneGap application doesn’t require many Android skills, though you still need an

Android project, an Android IDE, and the various SDKs. I’ll cover PhoneGap development in more

detail for iOS and Android in Chapter 11, “Mobile Applications with PhoneGap.”

Other Options

As mentioned in Chapter 8 for iOS, you also have cross-platform options for development for

Android. Speciically, you might want to look into Appcelerator’s Titanium Mobile (see http://www.

appcelerator.com/titanium) and Adobe’s Flash Builder 4.6.

Titanium Mobile produces a native application on the target platform that is not based on the

services of the default device browser. You develop an application using JavaScript and the Titanium

framework. As it turns out, you don’t actually use HTML and CSS to deine the user interface; instead,
you build views and add logic solely through the Titanium framework. The classes that you use in

the framework then are expanded, at compile time, into a mobile native counterpart on the target

platform that you choose.

To build Titanium Mobile applications, you need the ad hoc tools provided with the default

 package. No license fee is associated with Appcelerator’s Titanium unless you want support, in which

case you can buy an enterprise license.

Flash Builder can produce applications for both iOS and Android. It uses the Adobe’s AIR engine.

You write applications using ActionScript for the logic and mXML for expressing the user interface.

The programming environment is both stunning and effective, with a lot of facilities, and would be an

excellent and natural choice for developers who already have good Flash skills (see Figure 9-4).

FIGuRE 9-4 The Flash Builder IDE in action.

http://www.appcelerator.com/titanium
http://www.appcelerator.com/titanium
http:///

 CHAPTER 9 Developing for Android 275

Even more impressive is how you target different platforms in Flash Builder. Figure 9-5 shows the

Run Conigurations dialog box, where all you need to do is choose the target platform—either iOS or
Android.

Note You also can use Flash Builder to compile applications for the BlackBerry platform.

You choose from the list of supported platforms when you create the project.

FIGuRE 9-5 Testing applications with Flash Builder.

the Android Jungle
Carriers, as well as companies and individuals, can tweak and recompile the Android operating system

and adapt it to any particular hardware and needs they have. The original goal of the Android project

was to make available a totally open mobile operating system and API. That decision was probably

made with the best possible intentions; however, I’m not sure that the net effect of that decision has

been completely positive.

Firmware, Carriers, Manufacturers, and You

On a mobile device, the operating system is loaded into a read-only memory area (known as ROM for

short). Because this system code stays irmly in memory and is not subject to dynamic modiication, it
is also often referred to as irmware.

http:///

276 pArt III Mobile Applications

Note Terms like operating system and irmware are nearly synonymous in the mobile

 context. On personal computers, however, irmware is often integrated with hardware
 components and controls the behavior of that piece of hardware. Also, irmware on
 personal computers, more often than not, is loaded dynamically via device drivers. On

much simpler mobile devices, the irmware is the operating system, which includes both
hardware controllers and basic applications.

The irmware that you ind on Apple devices is truly the stock irmware released by the
o perating system vendor (Apple itself, in this case). On Windows Phone devices, you may ind some
 customization applied by carriers and manufacturers, which consists mostly of adding additional

 applications, perhaps written by accessing an internal API. For example, only manufacturers can

 produce Windows Phone applications that have custom tile sizes.

On Apple and Microsoft Windows Phone devices, however, you have no chance to customize the

irmware. But for Android, things are different.

Carriers and manufacturers can modify the Android irmware as originally released by Google. In
doing so, they often enhance the user interface. HTC does this when it adds HTC Sense on its devices.

They also may add proprietary applications and even lock the device so it will operate only on a given

carrier or in a speciic region. In addition, individual developers can replace the factory irmware with
their handcrafted irmware.

Note Installing custom irmware may not be a good idea unless you know what you’re
 doing. Unfortunately, many users and developers do this to avoid having to rely on carriers

and manufacturers to push updates (which often happens slowly, if at all) for any given

 device model.

ApI Levels

When Google releases a new update to the Android operating system, carriers and manufacturers

are supposed to propagate it down to users. Any Android release requires updates to the custom

irmware; this means carriers and manufacturers have to create the updates and go through a testing
cycle. However, whether they do so is not simply a matter of adding a bit of delay to the update

process. Manufacturers in particular may have different goals than the operating system producer

(Google). So it is not uncommon to ind that only a few older models get updated to the latest
 version of the operating system—and even those, in general, propagate quite slowly. In the long run,

the gap between the level of API available in the latest version and the already distributed API level

available in older, not-updated versions can get quite large. This not only generates confusion and

 disappointment for users, but is a total disaster for developers.

http:///

 CHAPTER 9 Developing for Android 277

Each release of Android is characterized by an API level that grows over the previous version.

 Fortunately, higher releases are backward-compatible. For instance, if you target API Level 8, you can be

sure that your code will run on devices with a version of the operating system that offers API Level 10.

So what should you do? Should you always choose the lowest common denominator approach? If

so, what is the current bottom API level?

As an example, consider that the latest version of the Android system is currently 4.0 (API Level 15).

However, a very large share of devices run on Android 2.x, and even Android 1.6 is still fairly popular.

Android 2.2 (code-named Froyo) runs API Level 8 (see http://developer.android.com/guide/appendix/

api-levels.html).

Note Today, a reasonable bottom level for Android, if you really want to make sure you

don’t leave out any devices, is version 1.6. Version 2.1 or even version 2.2 is acceptable as

well, if you’re willing to abandon the oldest devices.

Different Screen Sizes

In addition to API levels, the toughest issue you face when writing Android applications is dealing

with different screen sizes. Android 1.6 was the irst version of the operating system to ship with
 native support for multiple screens. And Android 3.2 is the irst version with an additional and speciic
API for controlling the layout of views speciically for tablets.

Support for multiple screens means that the SDK gives you programming tools to shield your code

from different resolutions and different pixel densities. Some work on your own is required, though.

In particular, you should avoid using hard-coded pixel values and use relative sizing—typically, you

use ad hoc values for pseudocommands like ill-parent and wrap-content. In addition, you might want

to detect orientation changes and swap layouts as appropriate. For simplicity, Android classiies com-

mon screen sizes into four groups: small, normal, large, and extra large. In your project, you should

ideally provide different layouts for each of these screen sizes. You are not forced to support them all;

however, if you don’t, you should declare in the application’s manifest ile which screen sizes you sup-

port. Note that if you declare a list of supported screen sizes, then your application won’t execute on

devices that don’t support any of those supported sizes.

In addition to screen sizes, you need to consider pixel density. Pixel density is deined as the
 number of pixels in a given area of a screen of a given size. Android deines four densities: low,
 medium, high, and extra high. You are expected to provide drawable content (images) for each

 density level to ensure that bitmaps don’t stretch or shrink when rendered.

Finally, Android provides a way for developers to indicate measurements using device-

independent units that are processed and transformed into real pixels when the code runs on a given

device. You use the dp unit for distances and the sp unit for font sizes.

http://developer.android.com/guide/appendix/api-levels.html
http://developer.android.com/guide/appendix/api-levels.html
http:///

278 pArt III Mobile Applications

Note Sometimes you may encounter code that uses the dip unit. That unit is exactly the

same as dp, and the compiler treats them in the same way. The dp unit is usually preferred

because it is more consistent with the sp used for fonts.

Programming with the Android SDK

Let’s start with a quick look at the skeleton of an Android application. You need to acquire the basic

fundamentals of Android programming (views, user interface, and event handling), and get used to

the SDK.

Anatomy of an Application
This chapter will use IntelliJ IDEA Community Edition as the editor. The project structure, however, is

nearly identical if you use Eclipse.

Note IntelliJ comes with a classic Windows installer, so coniguring the environment is easy.
You only need to indicate where you installed the Java and Android SDKs.

Dissecting the project

A typical Java project consists of quite a few folders, each with a speciic content and meaning. The
most important folders are Src, Lib, and Res.

As you can see in Figure 9-6, the Src folder contains the source code of the project, including Java

classes such as activity classes (speciic to Android), helper classes, enumerated types, and custom
types. You can group some of these classes in packages by simply creating child directories and

 adding classes. Note that a Java package is a close relative to a C# namespace.

The Lib folder is the repository of externally linked libraries. For example, if you’re writing an application

that uses Twitter, then you probably want to use an external library (e.g., Twitter4j) that saves you from the

burden of dealing directly with the OAuth protocol. An external Java library is usually a .jar ile.

The Res folder is the central repository of all your graphical resources. The Res folder has a number of

subfolders, each containing a different type of resources. For example, the Layout subfolder contains the

XML iles that describe the application views, whereas the Drawable folders store bitmaps of different sizes.
The system will intelligently select which one to use based on the actual pixel density of the device.

http:///

 CHAPTER 9 Developing for Android 279

Note Android employs a sort of convention-over-coniguration (CoC) approach in the
naming of folders. For example, Layout-land indicates the folder where landscape views

are stored. Likewise, Drawable-hdpi indicates bitmaps for high-density devices, and

 Drawable-land is where you store bitmaps for landscape views.

the Manifest File

In Android, every application needs to have a manifest ile located in the project root folder. An Android
manifest is an XML ile named AndroidManifest.xml (note that the name of the ile can’t be changed).

The manifest contains selected information about the application. The system looks into the manifest

ile before it installs or runs the application. As the irst item in the manifest, you set the package name and
version of the application. The package name is comparable to the assembly name of .NET applications. It

usually takes the form of com.company.application, where company is a word that identiies the author and
application is a word that identiies the application. However, there’s no strict requirement that you name
your Android applications (and Java packages in general) that way.

FIGuRE 9-6 A sample Android project in Intellij IDEA.

http:///

280 pArt III Mobile Applications

Note In Java, a widely used naming convention (yet, still simply a convention) is that

 applications are named after one’s domain name. For example, if your company’s domain

is contoso.com, then your Java/Android packages should be named com.contoso.XXX—the

reverse order of the elements of a domain name. Likewise, if your company has established

a domain such as contoso.org, then the suggested name would be org.contoso.XXX. The

convention has the sole purpose of ensuring that unique names are always picked up.

Here’s how a minimally working manifest ile looks:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.expoware.camera"

 android:versionCode="1"

 android:versionName="1.0">

 <application android:label="My app"

 android:icon="@drawable/app_logo">

 <activity android:name="MyAppActivity"

 android:label="@string/app_name">

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 </application>

</manifest>

In the manifest, you set the public name and icon of the application and provide information

about the starter component. An Android application is made of one or more activity classes. An

activity is a close relative to a UI view controller in iOS or a UI page in Windows Phone. The name

 activity just refers to a component that allows the user to do something on that screen. All the

 activities that an application plans to use must be declared as child elements of the application node.

Each activity element indicates the name of the class behind the activity and optional information,

such as the required screen orientation and launch mode.

The intent-ilter node speciies special intents (if any) of the activity. Intents are essentially actions
the activity may perform on some data. Some predeined actions are VIEW to view a screen and
CALL to initiate a phone call. You indicate supported actions through the action element, whereas

the category element just adds more information about how the action will be executed. For more

 information on intents and advanced aspects of Android programming, the best reference is the

Android SDK documentation at http://developer.android.com.

One piece of information that you often need to add to a manifest ile is the list of permissions
the application must have to work properly. Note that in Android, you need to specify a permission

for nearly every signiicant form of coding. Want to save a ile? You need to add permission. Need to
access the Internet? You also need permission.

http:///

 CHAPTER 9 Developing for Android 281

Finally, in the manifest ile, you may need to indicate supported screens, the minimum level of the
 Android API that you support, and the non-default Android packages that you need to link to (such

as maps).

Important Android is certainly not the only platform that requires permissions. However, in

Android, the manifest that project wizards create contains no permissions by default, so as

a developer, you are forced to explicitly add all permissions that you require. In contrast, in

Windows Phone development, the manifest created by the default project template already

declares a variety of permissions, so you almost never need to deal with them. Note also that

permissions in this context refers to notifying users of potentially intrusive actions that your

application will take. Some of these actions (such as placing a phone call or accessing the

Internet) may cost users money or take up space on the phone, so the policy is that applica-

tions must let users know what they need and get their approval beforehand. Permissions,

in fact, are listed before a user installs the application from the market, so users can decide

whether to go ahead with the install. No such facility exists if the user manually installs the

application outside the market. In any case, any attempt to execute code without having

declared related permissions simply fails.

Application Startup

In Android, you don’t need any special starter code as you do in iOS. You just need to declare in the

manifest the main entry point into the application. An entry point is an activity class with a particular

intent ilter declaration like the following:

<activity android:name="MyAppActivity"

 android:label="My application">

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

</activity>

In Android, an intent is a message being sent to target components such as an activity or a

 background service. An intent is a data structure that carries information about the action to perform

and is represented by an instance of the Intent class. An intent ilter, instead, is the list of intents that a
target component (e.g., an activity) can handle.

An Android entry point must be able to support the MAIN action and the LAUNCHER category.

MAIN is a standard Android action that is sent to start a component. LAUNCHER is an attribute that

causes the entry point to be listed in the application launcher pad with its own icon and label.

Android Application Components

An Android application results from the combination of up to four different types of components.

The most commonly used are activities and services; other components are broadcast receivers and

content providers.

http:///

282 pArt III Mobile Applications

An activity is expected to provide a screen for the user to interact with. Typically, an activity hosts

a view, which can be an application-speciic view or perhaps a system-provided view. An activity is
associated with a window and commonly (but not necessarily) covers the entire screen. An application

needs to have at least one main activity to start and can have a number of other activities—roughly

one per screen. Activities are organized in a stack and when a new activity starts it goes to the top

of the stack. The user can then navigate through the stack using the Back button. Activities receive

 notiication from the system about relevant facts during their lifetime. For example, activities are
 notiied when they are pushed to the background and restored.

A service is a UI-less component and runs in the background typically engaged in the performance

of long-running tasks such as uploading or downloading data and application-speciic calculations.
In general, a service is used to perform any tasks that are asynchronous with the respect to the main

user interface. A service is typically started by an activity.

A broadcast receiver listens to special messages being broadcast by the system or individual

 applications. An interesting example of a broadcast message is a network-state that is sent out when

you get or lose connectivity. You get similar messages when your connectivity changes from WiFi to

3G, when the battery is dangerously low, or when a Short Message Service (SMS) item is received.

Broadcast is not limited to the system; applications can broadcast, too. A receiver is often UI-less but

can display notiications on the status bar. Also, a receiver is usually quite a simple component and
relays work to other services or activities.

Finally, a content provider is a component that manages shared data and optionally exposes query

and update capabilities for other components to invoke. An example is the provider for data about

the contacts you have stored in the phone.

the “hello, World” program

At this point, let’s have a look at what a minimal “Hello, World” style program may look like in

 Android. It is centered on an activity like the following:

public class MyAppActivity extends Activity {

 @Override

 public void onCreate(Bundle savedInstanceState)

 {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.myapp);

 }

}

The base class Activity offers a virtual method named onCreate that—at the very minimum—you

override to give the activity a view to show. As you can see, the onCreate method may receive data

from the system in the form of a Bundle object—a dictionary-like object.

The Bundle parameter of onCreate is always null unless the activity itself stored some data in it

overriding the onSaveInstanceState method. In particular, the onSaveInstanceState method is invoked

just before the activity is destroyed. An activity is destroyed and immediately re-created when, for

example, the screen orientation changes. In this way, you can manage to restore the application to its

http:///

 CHAPTER 9 Developing for Android 283

previous state. The Bundle parameter is also non-null when the activity is pushed to the background

and then gets terminated by system to reclaim its resources. On the next start (i.e., the user navigates

back) a new instance is created with the saved state information.

The other thing to note about the previous code is the setContentView method. As the name

 suggests, the method sets a view. The view is identiied by ID. The setContentView method receives

the identiier of the view. Let’s learn more about how to identify application resources.

Here’s a diagram that shows the life cycle of an activity:

The activity is finishing or
being destroyed by the system

Activity
launched

Activity
running

Activity
shut down

App process
killed

onCreate()

onStart()

onresume()
User navigates
to the activity

Apps with higher priority
need memory

User navigates
to the activity

User returns
to the activity

The activity is
no longer visible

Another activity comes
into the foreground

onpause()

onStop()

onDestroy()

onrestart()

http:///

284 pArt III Mobile Applications

Application resources

In Android, identiiers are expressed as constants exposed by ad hoc classes. Android offers several

classes, each one grouping a speciic type of resource. For example, R.layout is a class that contains

identiiers for layout resources, and R.id is a class that contains identiiers for UI widgets, such as
 buttons or text boxes. All R.xxx classes in the Android SDK contain a bunch of predeined constants.

In general, any expression of the type R.layout.XXX is resolved automatically if you have a ile
called XXX.xml in the Res/Layout folder. Similar rules exist for other R classes. For example, R.id.xxx is

resolved to an identiier xxx if you have a UI widget with that ID in the current activity view. A layout

ile describes the content of a view. We’ll return to layout iles in a moment. For now, though, let’s
focus on the android:id attribute:

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:orientation="vertical"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent">

 <TextView android:id="@+id/description" />

 <Button android:id="@+id/buttonOK"

 android:text="Click me" />

</LinearLayout>

As mentioned, the Android SDK comes with an R.id class that exposes a few predeined constants;
you reference predeined constants using the expression @id/xxx. You use the expression @+id/xxx

to force the creation of an ID named xxx in the R.id class that gets compiled with your source code.

In Android, you get references to UI widgets by calling the method indViewById. Getting these

references is necessary if you intend to interact with that widget:

Button ok = (Button) findViewById(R.id.buttonOK);

If you want to handle events on a widget you need a listener. A listener is an instance of a framework

class that implements an event-speciic interface. For the click event, you need something like this:

okButtonClickListener = new View.OnClickListener() {

 public void onClick(View v) {

 okButtonClick((Button) v);

 }

};

Any activity class then will have a private member for each event handler and a private member

for any UI widget you need to interact with. The following listing illustrates a sample application that

presents a button. If clicked, the button updates the content of a label:

public class MyAppActivity extends Activity

{

 Button ok;

 TextView description;

 private View.OnClickListener okListener = new View.OnClickListener() {

 public void onClick(View v) {

 UpdateLabel();

http:///

 CHAPTER 9 Developing for Android 285

 }

 };

 @Override

 public void onCreate(Bundle savedInstanceState)

 {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

 initializeWidgets();

 addHandlers();

 }

 private void initializeWidgets()

 {

 ok = (Button) findViewById(R.id.buttonOK);

 description = (TextView) findViewById(R.id.description);

 }

 private void addHandlers()

 {

 ok.setOnClickListener(okClickListener);

 }

 private void UpdateLabel()

 {

 description.setText("Clicked");

 }

}

Deining the User Interface
The user interface of an Android application consists of XML iles, through which you deine the
layout of a view. A view is made of widgets such as buttons, spinners, text boxes, and check boxes. In

addition, you have other resources, such as menus, strings, and graphical shapes, to deal with.

Deining a Layout
In Android, the term layout means the structure of any content displayed in a view. You can deine
the content being displayed in a view either programmatically or declaratively. In the former case,

you build the visual tree by creating instances of widgets and adding them to the root element of

the view. In the latter case, you provide an XML-based description of the expected user interface and

have the activity to parse it and igure out the widgets to create.

The following code shows how to complete the user interface of an activity, adding a

 programmatically created widget to an XML-deined layout:

public void onCreate(Bundle savedInstanceState)

{

 super.onCreate(savedInstanceState);

 // Create the original view from a layout file (res/layout/main.xml)

 setContentView(R.layout.main);

http:///

286 pArt III Mobile Applications

 // Create pieces to be added dynamically

 TextView text = new TextView(this);

 text.setText("Added programmatically");

 // Add content dynamically to the view of the current activity

 addContentView(text, new LinearLayout.LayoutParams(

 LinearLayout.LayoutParams.FILL_PARENT,

 LinearLayout.LayoutParams.WRAP_CONTENT));

 ...

}

You still can call addContentView even if you didn’t call setContentView beforehand. All you get in this

case is a relatively empty template in which all that appears is what you explicitly added through code.

Note, though, that in case you’re creating a layout from scratch you should start with a layout

 object such as LinearLayout. You’re not allowed to have a TextView or a Button as the root of the view.

To add widgets programmatically at a speciic point of an existing hierarchy, you must locate the
 parent object and then add the view to its subtree, as shown here:

// Get the root container

LinearLayout linear = (LinearLayout) findViewById(R.id.yourLayoutId);

linear.setOrientation(LinearLayout.VERTICAL);

text = new TextView(this);

text.setText("Some text here");

// Add the object to the layout

linear.addView(text);

You need a layout ile for any activities you create. An exception to this rule is when you derive
your activity from one that comes with a predeined layout, such as ListActivity or PreferenceActivity.

Layout types

In Android, you have four main types of layouts: FrameLayout, LinearLayout, TableLayout, and

 RelativeLayout.

An extremely simple container, FrameLayout is basically a placeholder for a single object. Ideally,

you use it to reserve a blank space in your main layout where some dynamic content will be displayed.

The content of the FrameLayout is a single object, but with any level of nesting you like. All child

 objects of a FrameLayout are always rendered from the upper-left corner of the screen.

LinearLayout is one of the most frequently used layouts. It works by stacking its child elements

either horizontally or vertically. An interesting capability of the LinearLayout object is support for

weight. Weight is an integer meant to indicate the importance of a child element and is set to 0

by default. A higher weight value provides a hint for the activity, which will try to stretch weighed

 elements to a larger size.

TableLayout looks like an HTML table, but it doesn’t feature most of the advanced capabilities of

HTML tables. In particular, it doesn’t support graphics such as borders or padding and only supports

rows. Columns are calculated based on the maximum number of cells required by a single row. Cells

in a row are not allowed to span over multiple columns.

http:///

 CHAPTER 9 Developing for Android 287

RelativeLayout is a container in which contained elements indicate their preferred position relative

to the parent. Likewise, a child object can specify its position relative to another element identiied by
ID. As an example, you can align two objects with the right edge or place one under the other or to

the right or left of another.

When deining a layout, you must provide at least width and height information. The code here
shows an example:

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:orientation="vertical"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent">

 ...

</LinearLayout>

The orientation setting is just as important to set but at least it has a default value—horizontal. If

you miss layout_width and layout_height, you get a run-time error. You use special values like

ill_parent to instruct the widget to extend horizontally as much as possible and wrap_content to have

it take up just the real estate it needs. Both values help a lot in creating Android user interfaces that

survive multiple screens.

Note The XML schema used by Android layouts has several points in common with the

Extensible Application Markup Language (XAML) schema used by Windows Presentation

Foundation (WPF) applications and Windows Phone applications. In particular, the

LinearLayout component is similar to XAML’s StackPanel, whereas TableLayout is a close

relative to Grid.

Change of Orientation

When the device is rotated to a portrait or landscape view, you might want to switch the layout

 accordingly. Android looks for layout and resources in an orientation-speciic folder that is
 characterized by a –land or –port sufix. If the application is in portrait mode and there’s no folder like
Layout-port or Drawable-port, then Android automatically falls back to the Layout (and Drawable)

folders.

Keep in mind that change of orientation means that the application will be destroyed and then

immediately restarted. Note that in iOS, a change of orientation doesn’t result in the activity to be

destroyed and re-created. It is your responsibility to guarantee that no relevant state is lost in the

process. You can use the onSaveInstanceState method on the activity class to save your state before

the orientation change:

@Override

public void onSaveInstanceState(Bundle outState)

{

 // Save current total score

 outState.putInt(“Goals1", homeGoals);

 outState.putInt(“Goals2", visitorsGoals);

http:///

288 pArt III Mobile Applications

 outState.putString("Home", homeTeam);

 outState.putString("Visitors", visitorsTeam);

}

@Override

public void onCreate(Bundle savedInstanceState)

{

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

 ...

 // Restore state (if any)

 if (savedInstanceState != null)

 {

 ...

 }

}

The state is saved to a Bundle object and can be restored when onCreate is invoked again upon

restart.

Style and themes

Multiple graphic attributes can be grouped together into a style. The overall developer experience is

analogous to styles as you may know them from XAML. Here’s how you style an element:

<Button style="@style/CoolButton" android:text="I'm a cool button" />

In this case, CoolButton is a style deined in a XML ile located in the Res/Values folder of the
 project. The name of the XML ile doesn’t matter. (It is usually called Styles.xml, though.)

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <style name="CoolButton">

 <item name="android:layout_width">fill_parent</item>

 <item name="android:layout_height">wrap_content</item>

 <item name="android:background">#00ff00</item>

 </style>

</resources>

A style can be inherited from an existing style. If the parent style is a system style, you use the

 parent attribute on the style element, as shown here:

<style name="CoolButton" parent="@android:style/BaseButton">

 ...

</style>

If you want to inherit from one of your styles, then you use a slightly different syntax, which is

similar to the CSS syntax. The name of the style results from the concatenation of the parent style

with the derived style. For example, you can have CoolButton.Shadowed, where both are user-deined
styles deined within the same application.

An Android style can be used to style individual elements as well as an entire application. If you

want to style an entire application, then you use the theme attribute to reference the style by name in

the <application> tag within the Android manifest ile.

http:///

 CHAPTER 9 Developing for Android 289

Graphical Shapes

Solid colors are the simplest option to paint the background of layout widgets. You are not limited

to solid colors, however. You use a shape to deine a combination of graphical entities to render
as the background of layouts. The following code shows a shape that simply contains a gradient.

Let’s assume that the code is taken from a ile named Apptitlebar.xml located in the appropriate
 Drawable-xxx folder under /Res/Layout:

<?xml version="1.0" encoding="UTF-8"?>

<shape xmlns:android="http://schemas.android.com/apk/res/android"

 android:shape="rectangle">

 <gradient android:startColor="#001020"

 android:endColor="#0000ff"

 android:angle="180" />

</shape>

In this particular example, the shape is a rectangle and contains a bluish gradient. To give an area

of the screen this background, you proceed as follows:

<LinearLayout android:id="@+id/titlebarRow"

 android:orientation="horizontal"

 android:background="@drawable/apptitlebar"

 android:layout_width="fill_parent">

 ...

</LinearLayout>

The background attribute references a drawable resource named apptitlebar. The name of the

resource must match the name of a ile in one of the Drawable-xxx folders.

Here’s an example of a slightly more sophisticated shape with a rounded rectangle, padded, with a

border and a gradient in the background:

<?xml version="1.0" encoding="UTF-8"?>

<shape xmlns:android="http://schemas.android.com/apk/res/android"

 android:shape="rectangle">

 <stroke android:color="#ffffff"

 android:width="1px" />

 <padding android:left="5dp"

 android:top="5dp"

 android:right="5dp"

 android:bottom="5dp" />

 <corners android:radius="5dp" />

</shape>

When it comes to WYSIWYG capabilities, IDE tools for Android—whether Eclipse or IntelliJ—pale

in comparison to Visual Studio tooling. Recently, Eclipse integrated a simple graphical tool that lets

you use dragging to compose widgets. At present, IntelliJ provides a viewer, but not a designer

(see Figure 9-7).

http:///

290 pArt III Mobile Applications

FIGuRE 9-7 WYSIWYG support in IntelliJ IDEA.

Adding an Options Menu

Android devices feature a Menu button that, when touched by users, automatically opens an Options

menu that applies to the current context.

The Options menu refers to a feature has similarities with both the main menu and the context

menu of desktop applications. In fact, the Options menu is usually hidden and shows up only when

the user touches the Menu button. The Options menu always displays at the bottom of the screen,

and it is dismissed right after a selection is made.

As a user, you touch the Menu button when you’re looking for a list of possible actions to take at a

given stage of the application. Just for this reason, the list of options presented by the menu may be

signiicantly different at different times. You can handle these differences in either of two ways. For
example, you can create a single menu and add or remove items and disable and enable items on a

per-display basis; or you can reset and repopulate the menu before each display. You typically choose

the latter option if the two menus to display are signiicantly different.

The menu is an application resource and should be deined as an XML ile located in the Res/Menu
folder. The name of the XML ile is unimportant, but it determines the name of the menu that you’ll
be referencing later.

http:///

 CHAPTER 9 Developing for Android 291

Here’s a concrete example of the content that a menu resource may have:

<?xml version="1.0" encoding="utf-8"?>

<menu xmlns:android="http://schemas.android.com/apk/res/android">

 <item android:id="@+id/menuSave"

 android:icon="@drawable/save"

 android:title="Save" />

 <item android:id="@+id/menuShare"

 android:icon="@drawable/share"

 android:title="Share" />

</menu>

All items are grouped under the <menu> node, and each item is characterized by a <item> node.

Each item contains at least an ID, a title, and an icon. You can reference titles and icons from the

 resources of the application using resource IDs. The previous example deines two menu items—to
save and share the current state of the application.

To create submenus, you simply create nested <menu> subtrees. Creating a menu from a resource

is the most common approach, but you can also do that programmatically by irst creating a Menu

object and then illing it up with MenuItem objects.

To deal with menus in an Android activity, you must know about a couple of overridable methods

of the Activity class. They are onCreateOptionsMenu and onPrepareOptionsMenu, and both take a

Menu object and return a Boolean value:

@Override

public boolean onCreateOptionsMenu(Menu menu)

{

}

@Override

public boolean onPrepareOptionsMenu(Menu menu)

{

}

The onCreateOptionsMenu is invoked only once, the irst time the Menu button is touched in the

application’s instance. (Note that this behavior is slightly different in Android 3.0 and later versions.)

If your menu is relatively static and never changes, or it limits its changes to enabling/disabling
items, then you may want to initialize it only once and move adjustments to the implementation of

 onPrepareOptionsMenu.

If your application’s menu might need to be signiicantly restructures (depending on the context),
then you’re better off creating it from scratch each time the Menu button is touched. In this case, you

save yourself overriding onCreateOptionsMenu and concentrate on onPrepareOptionsMenu. In the

example listed here, you see an implementation of onPrepareOptionsMenu that chooses between two

different menus. The method onPrepareOptionsMenu is invoked every time the menu is about to dis-

play. Both methods receive the menu object as an argument—the menu object is created by system

as soon as the user taps the Menu button:

@Override

public boolean onPrepareOptionsMenu(Menu menu)

http:///

292 pArt III Mobile Applications

{

 // Clear the current menu

 menu.clear();

 // Determine the menu to load based on the context

 int menuResourceId = IsMatchPlaying() ?R.menu.duringmatch : R.menu.general;

 MenuInflater inflater = getMenuInflater();

 inflater.inflate(menuResourceId, menu);

 return true;

}

The method irst clears the current menu and then repopulates it based on the known state of the
application. Note that you have menu methods to override on a per-activity basis (see Figure 9-8).

FIGuRE 9-8 The Options menu in action.

The inal aspect of menus to consider is how you handle the user’s clicking. As you’ll see in a
moment, this particular aspect of Android programming is vintage and calls back to memory the

Windows SDK programming style of the 1990s:

@Override

public boolean onOptionsItemSelected(MenuItem item)

{

 // Handle item selection

 switch (item.getItemId())

http:///

 CHAPTER 9 Developing for Android 293

 {

 case R.id.menuNewGame:

 StartNewGame();

 return true;

 case R.id.menuSettings:

 showSettings();

 return true;

 default:

 return super.onOptionsItemSelected(item);

 }

}

All you need to do is override the onOptionsItemSelected method, grab the unique ID of the

 selected item, and arrange a switch statement to decide on the next step.

Note Speaking of menus, another really interesting concept is the menu group. A menu

group is a logical way to group menu items so that you can enable and disable them in a

single shot. To create a group menu, you use the <group> element to group multiple menu

items. Each group is given a unique ID. Group menus have no impact on the user interface.

Localization

Localizing the text of an Android application requires that you keep all the strings the application uses

in a Strings.xml ile located in the Res/Values folder. Here’s a snippet of one of these iles:

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <string name="app_name">Waterpolo Instant Score</string>

 <string name="ui_refresh">Refresh</string>

</resources>

For localization to work smoothly, you need to reference entries in this ile from anywhere in your
code. Here’s how you would set the caption of a button to a localizable string in a layout ile:

<Button android:id="@+id/buttonRefresh"

 style="@style/button “

 android:text="@string/ui_refresh">

</Button>

You use the @string expression to preix the string ID. In code, you use the getString method as

deined on the Activity class.

String caption = getString(R.string.ui_refresh);

Strings for the default language of the application should go in the Strings.xml ile located in the
Res/Values folder. For any localized version you may have, you create a Res/Values-xx folder, where

xx are the two letter initials of the language. For example, it would be Res/Values-it for Italian and
Res/Values-es for Spanish. The system will pick up the string ID from the correct container based on
the current locale.

http:///

294 pArt III Mobile Applications

If a string is not found in the current localized set of strings, then the system will fall back to the

value stored in the default container.

Examining a Sample Application
Let’s view what it takes to build the same Android application from Chapter 8. As you may recall,

Guess is the sample multiplatform application that you get as companion code for this book. Guess

implements a simple game: guessing a number in a given range. Figure 9-9 shows the Main screen

and the Game screen of the application.

FIGuRE 9-9 The Guess application in action.

The application consists of a Home view, where you enter the player’s name, and a Play view,

where you enter a number and get a response. A Scores view and an About view complete the

 application.

Note To obtain a numeric-only keyboard in Android, you should set the attribute

android:inputType to phone and explicitly assign a value to the android:digits attribute, such

as “0123456789.”

http:///

 CHAPTER 9 Developing for Android 295

the Application Manifest

The Guess application is based on four activities—the Home screen (the application’s main screen),

the Game screen, the score list, and the About screen. Navigation between screens occurs when the

user taps a button or a menu item.

The application manifest ile is shown here:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.expoware"

 android:versionCode="1"

 android:versionName="1.0">

 <uses-permission android:name="android.permission.VIBRATE"/>

 <application android:label="@string/app_name" android:icon="@drawable/icon">

 <activity android:name="GuessActivity"

 android:windowSoftInputMode="stateVisible|adjustPan"

 android:label="@string/app_name">

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 <activity android:name=".GameActivity"

 android:windowSoftInputMode="stateVisible|adjustPan" />

 <activity android:name=".AboutActivity" />

 <activity android:name=".ScoreListActivity" />

 </application>

</manifest>

In addition to declaring the aforementioned activities (one of which is the launcher), the manifest

declares that the application may be using the phone vibrator. Beside this, the other remarkable point

of the manifest is the use of the windowSoftInputMode attribute on the activities (GuessActivity and

GameActivity) that show some interactive user interface.

the home View

The user interface of the home screen (see Figure 9-9) results from the vertical composition of four

blocks: the title bar, player bar, level bar, and command bar. Here’s the full layout as saved in the

project:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:id="@+id/home"

 android:orientation="vertical"

 style="@style/home"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent">

 <LinearLayout android:id="@+id/titleBarArea"

 style="@style/titleBarArea"

 android:layout_width="fill_parent"

 android:layout_height="75dp">

 ...

 </LinearLayout>

 <RelativeLayout android:id="@+id/playerBar"

http:///

296 pArt III Mobile Applications

 style="@style/gameConfigArea"

 android:orientation="horizontal"

 android:layout_width="fill_parent"

 android:layout_height="wrap_content">

 ...

 </RelativeLayout>

 <RelativeLayout android:id="@+id/levelBar"

 style="@style/gameConfigArea"

 android:orientation="horizontal"

 android:layout_width="fill_parent"

 android:layout_height="wrap_content">

 ...

 </RelativeLayout>

 <RelativeLayout android:id="@+id/commandBar"

 style="@style/commandArea"

 android:layout_width="fill_parent"

 android:layout_height="wrap_content">

 ...

 </RelativeLayout>

</LinearLayout>

The use of a RelativeLayout component makes it possible to place widgets relative to others in the

same block. For example, in Figure 9-9, you see the label “Player” side by side with a text box. Here’s

the markup that you may use to place them side by side without using absolute measurements:

<TextView android:id="@+id/playerNameLabel"

 style="@style/playerNameLabel"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="@string/playerLabel" />

<EditText android:id="@+id/playerNameEdit"

 style="@style/playerNameEdit"

 android:layout_width="fill_parent"

 android:layout_height="wrap_content" />

All the graphical details for both widgets are actually stored in the style elements, as shown here:

<style name="playerNameLabel">

 <item name="android:layout_marginTop">10dp</item>

 <item name="android:gravity">center_horizontal|center_vertical</item>

 <item name="android:textStyle">bold</item>

 <item name="android:textSize">18dp</item>

</style>

<style name="playerNameEdit">

 <item name="android:layout_marginTop">5dp</item>

 <item name="android:layout_marginRight">5dp</item>

 <item name="android:layout_marginLeft">15dp</item>

 <item name="android:layout_toRightOf">@+id/playerLabel</item>

 <item name="android:gravity">center_horizontal</item>

 <item name="android:padding">5dp</item>

 <item name="android:inputType">textPersonName|textCapWords</item>

</style>

http:///

 CHAPTER 9 Developing for Android 297

It is interesting to note the combined effect of layout_marginLeft and layout_toRightOf. The latter

places the text box to the right of the label (identiied by ID), whereas the former sets a margin
 between the two.

Finally, keep in mind that as a developer, you always should strive to make input as easy as possible for

users. Loading the most convenient keyboard layout is the primary aspect of this effort. In this example,

the text box where the user is expected to type the player’s name can have the inputType attribute

 conigured as textPersonName and textCapWords. This guarantees that the irst letter is always uppercase
and that the user gets proper suggestions related to person names (see Figure 9-10).

FIGuRE 9-10 Context-sensitive auto-completion in a text box.

The Chapter 8 example used a segmented button control to let users select a level. Segmented

buttons are a special lavor of radio button that is typical of iOS. In Android 2.x, you don’t have such a

compelling component, but you can achieve the same effect using plain radio buttons:

<RadioGroup android:id="@+id/levelGroup"

 android:orientation="horizontal"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content">

 <RadioButton android:id="@+id/level_basic"

 android:layout_width="100dp"

 android:layout_height="wrap_content"

 android:text="Basic" />

 ...

</RadioGroup>

http:///

298 pArt III Mobile Applications

The difference is merely graphical. Segmented buttons exist natively in more recent levels of the

Android API (i.e., version 4.0) but you can ind snippets of some fallback implementations easily. For
the UI shown in Figure 9-10, I started from the code discussed here: http://goo.gl/a5Zp9.

Note In addition to radio buttons, you could have considered an Android spinner—in

 other words, a drop-down list. The reason why I ruled spinners out is that it would require

two taps to make a selection: the irst tap to open the list and the second tap to make
the selection. A spinner is good when the list of options is longer than just two or three

 elements. If the choices can be comfortably listed in the width of a mobile device, you

should opt for radio buttons because they allow a quicker selection for the user.

When you start the application and the Home screen shows up, the (soft) keyboard is already

 visible and the input focus is on the text box. There are a couple of things you can do here to improve

the user’s experience. First, you can manage to ensure that the keyboard is visible so that the user can

start typing right away. Second, you can remember name and level so that if the same player returns,

she doesn’t have to type her name again. On the other hand, isn’t the device a (mostly) personal item?

In general, popping up the (soft) keyboard may be problematic because it may cover a signiicant
part of the user interface. Without beating around the bush, this is a problem that you must address

on a per-case basis. However, Android makes some tools available. For example, you can set the

windowSoftInputMode attribute on the activity to control how the keyboard is displayed. In Guess, the

attribute is set to a couple of values: stateVisible and adjustPan. The former entails that the keyboard

is always displayed when the user navigates forward to the activity, but not when the user navigates

back to the activity. (The stateAlwaysVisible value will keep it visible in all cases instead.)

As the (soft) keyboard pops up at the bottom of the screen, the rest of the user interface may be

hidden from view. By default, Android scrolls the current window so that the view with input focus

is visible along with the keyboard. This approach is called panning. In alternative to panning, there’s

resizing where (if possible) the window is resized to make room for the keyboard. You set resizing by

using the adjustResize attribute.

the play View

When the user taps the Start button, the application saves the player name and level as default

 settings for future games and launches the Game activity. This new activity needs to know about

player name and level to adjust its user interface and scoring system. Here’s how you push another

view to screen passing some arguments:

public void StartGame()

{

 // Figure out selected level and player

 GameLevel selectedLevel = getSelectedLevel();

 String player = PlayerNameEditRef.getText().toString();

 // Save current status for later

http:///

 CHAPTER 9 Developing for Android 299

 PreferenceHelper.SaveGame(this, new GameInfo(player, selectedLevel));

 // Start the new activity and pass data explicitly

 Intent i = new Intent(this, GameActivity.class);

 i.putExtra(Constants.PlayerNameKey, player);

 i.putExtra(Constants.GameLevelKey, selectedLevel.ordinal());

 startActivity(i);

}

The new activity sets up its user interface from the layout ile and then tweaks it with passed data:

String playerName = getIntent().getStringExtra(Constants.PlayerNameKey);

GameLevel level = GameLevel.Basic;

int index = getIntent().getIntExtra(Constants.GameLevelKey, -1);

if(index >= 0 && index < GameLevel.values().length)

 level = GameLevel.values()[index];

Game currentGame = new Game(playerName, level);

The methods getIntExtra and getStringExtra are used to extract data associated with the starter

intent. Next, the Game activity sets up an internal class—the Game class—that holds the logic of the

game.

The user types a number from a numeric keyboard (see Figure 9-9) and taps the Try button. When

this happens, a method is invoked on the Game class. If the typed value is outside the current range

of values where the number to guess lies, then a toast message is displayed and the device vibrates:

public void NewAttempt(int number)

{

 boolean isValid = currentGame.isValidAttempt(number);

 if (!isValid)

 {

 // Toast

 Toast theToast = Toast.makeText(this,

 getString(R.string.InvalidAttempt),

 Toast.LENGTH_SHORT);

 theToast.show();

 // Vibrate

 Vibrator v = (Vibrator) getSystemService(Context.VIBRATOR_SERVICE);

 v.vibrate(300); // milliseconds

 return;

 }

 ...

}

If the attempt is not successful, the activity refreshes the status of the game, updating the number

of attempts. Android allows you to use an HTML-like syntax to compose text where you use mixed

styles. Here’s an example that renders the string “Between X and Y” using lighter weight and different

color for the boundaries of the range:

String rangeTemplate =

 "%s <small>%,d</small>" +

http:///

300 pArt III Mobile Applications

 " %s <small>%,d</small>";

String rangeMarkup = String.format(rangeTemplate,

 getString(R.string.betweenLabel), currentGame.Lowest,

 getString(R.string.andLabel), currentGame.Highest);

StatusLabelRef.setText(Html.fromHtml(rangeMarkup));

The static method fromHtml takes a HTML-like string and produces an Android-compatible

markup that can be displayed on a view. In this example, we’re assigning an HTML-like output to a

plain TextView widget.

The Game activity features a menu with two options—Hint to get a hint about a number you can

try and Quit if you wish to surrender and stop the game. This interface is shown in Figure 9-11.

FIGuRE 9-11 A context-sensitive menu displayed during the game.

When you tap the Menu button to display the menu, the keyboard disappears, and you need to

give explicit focus to the text box to have it come back and continue the game. If you choose to quit

the game, a message box is displayed that looks like Figure 9-12.

http:///

 CHAPTER 9 Developing for Android 301

FIGuRE 9-12 A message box displayed when the game is over.

In Android, you can create a single global instance of the AlertDialog class and use it to display any

messages throughout the activity. In the sample application, I have an initializer class for each activity

where I do all preparation work, including saving references to UI widgets, attaching event handlers,

and preparing ready-to-use objects for pop-up and toast messages:

public class GameActivityInitializer

{

 private static AlertDialog theDialogBox;

 public static void MessageBox(Activity parent, String message)

 {

 theDialogBox.setButton("OK", new DialogInterface.OnClickListener() {

 public void onClick(DialogInterface dialog, int id) {

 dialog.dismiss();

 }

 });

 theDialogBox.setMessage(message);

 theDialogBox.setTitle(parent.getString(R.string.app_name));

 theDialogBox.show();

 }

 public static void PrepareWidgets(GameActivity parent)

 {

 final GameActivity theParent = parent;

http:///

302 pArt III Mobile Applications

 if (theParent == null)

 return;

 // More code here

 ...

 // Prepare the dialog box object

 AlertDialog.Builder builder = new AlertDialog.Builder(parent);

 theDialogBox = new AlertDialog.Builder(parent).create();

 }

}

Note that you can’t use any of the aforementioned HTML facilities in a plain alert dialog box. So if you

want to display a pop-up dialog box with colors and widgets, you have to create a custom dialog box. This

is precisely what you want to display when the user inally guesses the number (see Figure 9-13).

FIGuRE 9-13 The dialog box for the winner.

You need to do a number of things when the user wins the game. You might want to hide the

keyboard, display the dialog box from Figure 9-13, and reset the game status. Here’s the code to do

all this:

InputMethodManager im = (InputMethodManager) getSystemService(Context.INPUT_METHOD_SERVICE);

im.hideSoftInputFromWindow(

 this.getCurrentFocus().getWindowToken(),

http:///

 CHAPTER 9 Developing for Android 303

 InputMethodManager.HIDE_NOT_ALWAYS);

// You won!

YouWonDialog dialog = new YouWonDialog(this, new WinDialogEventListener(currentGame));

dialog.show();

// Quit game and fix underlying UI

SaveGame();

currentGame.quit();

UpdateGameStatus();

The dialog box is the most interesting aspect of this part of the application. Let’s ind out more.
Here’s an excerpt from the YouWonDialog custom class:

public class YouWonDialog extends Dialog implements View.OnClickListener

{

 public static String ScoredPointsKey = "Points";

 public static String SecretNumberKey = "Number";

 private Button startButton, scoresButton;

 private TextView pointsScored, secretNumber;

 private IDialogListener _onYouWonDialogListener;

 private Context currentContext;

 public YouWonDialog(Context context, IDialogListener listener)

 {

 super(context);

 _onYouWonDialogListener = listener;

 currentContext = context;

 setContentView(R.layout.winner);

 setTitle(R.string.youWon);

 againButton = (Button) findViewById(R.id.againButton);

 scoresButton = (Button) findViewById(R.id.scoresButton);

 pointsScored = (TextView) findViewById(R.id.scoreLabel);

 secretNumber = (TextView) findViewById(R.id.secretNumber);

 startButton.setOnClickListener(this);

 scoresButton.setOnClickListener(this);

 }

 ...

}

The dialog box is based on a layout ile set in the class constructor. The class also receives an object
of type IDialogListener, which is a custom interface used to abstract the way in which the dialog box

communicates with the rest of the application. More often than not, dialog boxes need to receive

data to display and return the processed data. The interface streamlines the process:

public interface IDialogListener

{

 public void Completed(Bundle bundle);

 public Bundle Initialize();

}

http:///

304 pArt III Mobile Applications

The dialog box receives initialization data from Initialize and returns values (if any) through

 Completed. The caller—in this case the Game activity—will pass a dialog listener object to the

 YouWonDialog class.

The two buttons—Scores and Again—share the same handler but behave in a slightly different

way:

public void onClick(View v)

{

 if (v == againButton)

 {

 Bundle bundle = new Bundle(); // In case you need to return values from the dialog

 _onWinDialogListener.Completed(bundle);

 dismiss();

 }

 if (v == scoresButton)

 {

 Intent i = new Intent(currentContext, ScoreListActivity.class);

 currentContext.startActivity(i);

 dismiss();

 }

}

The Again button just dismisses the dialog box and returns in Play mode; instead, the Scores

 button navigates to the Scores view.

the Scores View

The Scores view essentially consists of a list of data items. In similar situations, you can derive the

activity class from a special system-provided class—the ListActivity class. The ListActivity class is

designed to display a list of items taken from a data source, such as an array. The ListActivity class

extends the base Activity class by adding ad hoc methods to handle item selection and data binding.

ListActivity is one of the Android classes to ship with a default layout—a full-screen list view. This

means that if you simply pass data, then you still can have your data displayed through a default

 layout. You are welcome to change the default layout using the setContentView method. However, it

is mandatory that any custom layout that you provide contains a ListView object with the id attribute

set to @android:id/list. You don’t need the + symbol here because list is a system-deined ID and
doesn’t have to be added dynamically to the R class. Nicely enough, you also can specify a custom

view for when the list view is empty. This empty view must have the id attribute set to @android:id/

empty. Here’s the layout for our scores view. It contains the default ListView plus a text header:

<LinearLayout android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:background="#393939">

 <TextView android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:gravity="center_horizontal"

 android:text="@string/topScorer">

 </TextView>

http:///

 CHAPTER 9 Developing for Android 305

 <ListView android:layout_height="fill_parent"

 android:layout_width="fill_parent"

 android:layout_marginTop="20dp"

 android:id="@android:id/list">

 </ListView>

</LinearLayout>

Here’s the skeleton of a sample list activity that will display the best scores of the game:

public class ScoreListActivity extends ListActivity

{

 @Override

 public void onCreate(Bundle savedInstanceState)

 {

 super.onCreate(savedInstanceState);

 requestWindowFeature(Window.FEATURE_NO_TITLE);

 setContentView(R.layout.scoreslist);

 // Load saved scores

 LoadScores();

 }

 private void LoadScores()

 {

 ArrayList<ScoreInfo> scores = ReadScoresFromHistory();

 Bind(scores);

 }

 private ArrayList<ScoreInfo> ReadScoresFromHistory()

 {

 GuessHistory history = PreferenceHelper.LoadHistory(this);

 // Sort results

 Collections.sort(history.Scores, new ScoreComparator());

 return history.Scores;

 }

 private void Bind(ArrayList<ScoreInfo> scores)

 {

 ArrayAdapter<ScoreInfo> adapter = new ScoresAdapter(this, scores);

 setListAdapter(adapter);

 }

 ...

}

Let’s assume for now that we know how to load and save data to a permanent local storage.

(I’ll return to Android data persistence in a moment.) The saved data is an array of ScoreInfo objects:

public class ScoreInfo implements Serializable

{

 public int Points;

 public String DateOfScore;

 public String Name;

http:///

306 pArt III Mobile Applications

The class must be serializable because we intend to save a list of instances to the ile system so that
the best scores can be tracked and the list populated. In the preceding code, we read from the ile
system and copy scores to some sortable array; next we invoke data binding.

When the Scores view is being displayed, we load an array of ScoreInfo objects from the storage

and manage to display it. When a new game is inished, the new score is added to the list and
 persisted. Once we hold the array of scores, you arrange some data binding logic to display it.

In Android, data binding requires the services of an adapter object. The adapter knows about

the ListView, data items, and the template of individual cells. The adapter is the repository of your

data binding logic. The adapter holds the data to display and knows about the list and its layout. To

 populate a list, all you need to do is assign a proper adapter to the list. The setListAdapter method is

built into the ListActivity class just to bind the default list to the given adapter.

Here’s the code for a score adapter that uses a custom cell template named listitem. You deine a
custom cell template as a layout ile:

public class ScoresAdapter extends ArrayAdapter<ScoreInfo>

{

 private final Activity context;

 private final ArrayList<ScoreInfo> scores;

 public ScoresAdapter(Activity context, ArrayList<ScoreInfo> currentScores)

 {

 super(context, R.layout.listitem, currentScores);

 this.context = context;

 this.scores = currentScores;

 }

 @Override

 public View getView(int position, View convertView, ViewGroup parent)

 {

 // Some code here

 }

 }

The getView method is the heart of an adapter. The method is invoked for each cell that its
into the currently visible part of the list view. The implementation shown here used the view-holder

 pattern that is very similar to what was shown in Chapter 8 for iOS.

The getView method receives a View object that is one of the cells the system will render. The position

argument tells you whether you’re currently rendering the irst or, say, the ifth visible cell in the list. If the
cell view object is null, you create it using a system inlater (a sort of factory for layout elements) and the
layout of choice; otherwise, you retrieve a valid cell object via the view-holder pattern:

@Override

public View getView(int position, View convertView, ViewGroup parent)

{

 ViewHolder holder;

 View listItemView;

 listItemView = convertView;

http:///

 CHAPTER 9 Developing for Android 307

 if (convertView == null)

 {

 LayoutInflater inflater = context.getLayoutInflater();

 listItemView = inflater.inflate(R.layout.listitem, null, true);

 holder = new ViewHolder();

 holder.ScoreDate = (TextView) listItemView.findViewById(R.id.scoreDate);

 holder.ScorePlayer = (TextView) listItemView.findViewById(R.id.scorePlayer);

 holder.ScorePoints = (TextView) listItemView.findViewById(R.id.scorePoints);

 listItemView.setTag(holder);

 }

 else

 {

 holder = (ViewHolder) convertView.getTag();

 }

 // Set the text/icon to display

 String pts = String.format("%,d", scores.get(position).Points);

 holder.ScorePoints.setText(pts);

 holder.ScoreDate.setText(scores.get(position).DateOfScore);

 holder.ScorePlayer.setText(scores.get(position).Name);

 return listItemView;

}

static class ViewHolder

{

 public TextView ScorePoints;

 public TextView ScorePlayer;

 public TextView ScoreDate;

}

You deine a ViewHolder internal class and give it as many members as there are bindable widgets

in the cell template. When the cell is null, you store in a new ViewHolder instance references to

 bindable widgets and then cache the view holder instance within the cell instance using the setTag

method. At the end of the rendering, the ListView has a cell object for each of displayed cells—

probably less than the bindable items.

On the next display (or during scrolling), it may happen that the ListView has to render, say, the

irst cell. This time, though, the content may be different, but not the references to the widgets in the
cell template. The cached ViewHolder instance saves you from repeatedly calling into the expensive

 indViewById method. Once you’ve got your ViewHolder, you simply set its properties to the actual value—

as ViewHolder members reference widgets any updates is relected to the actual cell. Figure 9-14 shows
the inal results.

Note The ViewHolder class is deined as static to save keeping a reference to the outer
class and to avoid access to any members of the containing class.

http:///

308 pArt III Mobile Applications

FIGuRE 9-14 The Scores view.

Other programming topics
The sample Guess application touches on a variety of aspects of mobile and Android programming.

The list of hot topics, though, doesn’t end here. In this section, we’ll discuss storage, network access,

and common tasks such as sending an email or a SMS.

permanent Data Storage

Android offers three different places to save data permanently: in a dictionary of preferences, ile
streams, and SQLite database tables.

You have a dictionary model in the SharedPreferences object, which is appropriate for a small

amount of partially related data, such as player name and game level in the previous example. For

data that don’t it the dictionary model, you might want to try streams or relational SQLite tables.

Let’s ind out more about shared preferences.

To save simple stand-alone values such as settings or preferences, you need an instance of the

SharedPreferences object plus an ad hoc editor object if you are writing to it:

SharedPreferences storage = getSharedPreferences(filename, MODE_PRIVATE);

http:///

 CHAPTER 9 Developing for Android 309

Shared preferences are saved to an XML ile with the given name. The visibility of the ile depends
on the second argument that you specify. MODE_PRIVATE indicates that only the current application

has access to the ile. Other options are MODE_WORLD_READABLE and MODE_WORLD_WRITEABLE,

which would make the content visible to every application for reading, writing, or both. To save data,

you also need an editor. Here’s how to proceed:

SharedPreferences storage = getSharedPreferences(filename, MODE_PRIVATE);

SharedPreferences.Editor editor = storage.edit();

editor.putString("Player", playerName);

editor.putInt("Level", gameLevel);

editor.commit();

To write data to the system dictionary, you use an API that is nearly identical to that of the Bundle

class. Methods like putInt and putString take a key and a value and update the internal dictionary.

When you commit the editor, data is written to an underlying XML ile.

A nice feature of the preferences API is that when it comes to reading, you don’t have to worry

about exceptions. There’s no need to check whether the XML ile really exists. You just try to read and
provide default values should the read fail for any reason, as follows:

SharedPreferences storage = getSharedPreferences(filename, MODE_PRIVATE);

String player = storage.getString("Player", "");

int level = storage.getInt("Level", GameLevel.Basic);

The SharedPreferences object supports a bunch of types natively. In addition to strings, you can

read and write primitive data types such as int, long, loat, and Boolean.

Accessing the Network

In a mobile application, checking the state and the type of the network before embarking in Internet

operations is crucial. In some cases, you also might want to apply different algorithms or take

 different countermeasures if the user is connected via a WiFi network or a mobile network. Large

uploads of documents—for example, a synchronization procedure between client and server—should

be planned carefully: the more it takes to upload, the higher the risks that the network will go down.

Handling these nasty situations is up to you. Checking the network state and type is not a big deal. It

only requires that you become familiar with a couple of Android API functions.

In Android, programmatic access to the Internet is subject to permissions. In particular, you need to

declare in the application manifest that the application is going to check the network state and access the

Internet. Why is it also required to declare the intention of simply checking the network state?

In Android, you check the network state via the ConnectivityManager class—a system class that

doesn’t simply exist to answer your inquiries but it also monitors all possible connections (including

WiFi, UMTS, and GPRS) and their changes. The class may broadcast messages about network changes

and has the ability to try to fail over to another type of network when connectivity is lost. In a

 nutshell, the ConnectivityManager class allows applications to access any available information about

any available networks. As you can see, it is a rather critical class and Android designers igured that

http:///

310 pArt III Mobile Applications

you must declare its use so that users can be notiied of that when they install the application. Here’s
the code you need to enter in the application’s manifest ile:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.expoware"

 android:versionCode="1"

 android:versionName="1.0">

 <uses-permission android:name="android.permission.INTERNET" />

 <uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />

 <application android:label="Guess"

 android:icon="@drawable/icon">

 ...

 </application>

</manifest>

The ConnectivityManager class offers two key methods—getNetworkInfo and getActiveNetworkInfo.

Both methods return a NetworkInfo object through which you can examine the state of the network and

make your further decisions. The former method checks just the speciied type of network (WiFi, GPRS,
and the like); the latter, instead, checks the currently active network, if any. Here’s how to use the class to

check if connectivity is available:

public class HttpHelper {

 public static Boolean IsInternetAvailable(Context context)

 {

 ConnectivityManager cm;

 cm = (ConnectivityManager) context.getSystemService(Context.CONNECTIVITY_SERVICE);

 NetworkInfo ni = cm.getActiveNetworkInfo();

 if (ni != null && ni.isAvailable() && ni.isConnected())

 return true;

 return false;

 }

}

If you invoke the getSystemService method from within an Activity class, then you don’t need

to obtain a Context object irst. Otherwise, the simplest thing to do is just pass the context as an
 argument to any helper class.

placing http Calls

In Android, downloading data via the Hypertext Transfer Protocol (HTTP) is quite simple; on the

other hand, processing downloaded data into usable data objects is more bothersome than, say, in

.NET. The Android API lacks some of the facilities that make downloading data from the web easy in

 Windows Phone. Here’s the code required to arrange a GET call:

String url = "...";

String responseText = "";

try {

 DefaultHttpClient client = new DefaultHttpClient();

 HttpGet request = new HttpGet();

 request.setURI(new URI(url));

 HttpResponse response = client.execute(request);

 InputStream in = response.getEntity().getContent();

http:///

 CHAPTER 9 Developing for Android 311

 BufferedReader reader = new BufferedReader(new InputStreamReader(in));

 responseText = reader.readLine();

 reader.close();

}

catch(URISyntaxException uriSyntaxException)

{

}

catch(IOException ioException)

{

}

As a irst step, you get a new instance of the DefaultHttpClient class. This class governs the

 execution of the request, grabs request headers and body, and downloads a response packet. The

request itself is packaged in an ad hoc class that depends on the HTTP verb to use: you have HttpGet

for a GET command and HttpPost for a POST command. You also have analogous classes for other

HTTP verbs such as HttpDelete, HttpPut, and HttpHead.

On the request object, you can set headers and the URL to call. To execute a request, you call the

Execute method on the DefaultHttpClient object. This method works synchronously and returns an

HttpResponse object. The response object always wraps a inal response with a valid HTTP status code.

Note You can wrap the call in a new thread to avoid blocking the user interface.

Alternatively, you can use your own class derived from AsyncTask and perform any

 background work while still being able to update the user interface. For more information

on AsyncTask, you can refer to the documentation at http://developer.android.com/

reference/android/os/AsyncTask.html.

In synchronous operations, you need to write some ad hoc code to extract usable data from the

response stream. You irst access the content being returned as a stream:

InputStream in = response.getEntity().getContent();

Next, you get a reader to read the content of the stream. If you want to read piecemeal, you can

stick to a basic reader. If you want to read lines of text, you may use the BufferedReader class:

BufferedReader reader = new BufferedReader(new InputStreamReader(in));

responseText = reader.readLine();

If the response is on a single line—a fairly common scenario—then the BufferedReader class helps

with its readLine method. If you want to read the entire content regardless of the number of lines, you

have to implement a loop yourself.

To post data to a web server, you change the class that you use for the request: instead of HttpGet,

you use HttpPost. Beyond that, placing a POST call differs from a GET call for the extra work that it

takes to write name/value pairs in the body of the request packet. Here’s the code:

DefaultHttpClient client = new DefaultHttpClient();

HttpPost request = new HttpPost(url);

try {

http:///

312 pArt III Mobile Applications

 List<NameValuePair> data = new List<NameValuePair>();

 data.add(new BasicNameValuePair("key", "value"));

 ...

 request.setEntity(new UrlEncodedFormEntity(data));

 HttpResponse response = client.execute(request);

}

catch()

{

 ...

}

You irst create a name/value pair to populate the body of the POST request and then attach the
dictionary to the request.

Broadcasters

The IsInternetAvailable method we discussed works great if called at the beginning of a network

operation. In mobile, much more than in a desktop scenario, the connectivity can come and go

at any time. From the application perspective, the connectivity change is an asynchronous event,

whereas the IsInternetAvailable method operates synchronously. To detect asynchronous events like

the change of the network state, you deine a broadcast receiver and set it to listen to connectivity

change events. This entails writing a class that inherits from BroadcastReceiver, as shown here:

public class NetworkStateReceiver extends BroadcastReceiver

{

 @Override

 public void onReceive(Context context, Intent intent) {

 // Your reaction here

 }

}

The canonical behavior of a broadcast receiver is expressed by the onReceive method. The method

provides you with the context of the Android application that you can use to retrieve global objects.

Writing the receiver class is only the irst step. The next is registering the receiver. A receiver can
be registered in either of two ways—statically in the application’s manifest or programmatically in

the application’s main activity. The two methods are not equivalent and produce different run-time

conditions. Let’s tackle static registration irst.

You add a <receiver> section in the manifest ile and indicate one or more intent ilters to specify
which events you’re interested in. Here’s the manifest ile for a sample application that reacts in some
way to network state changes:

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.expoware.hidoing"

 android:versionCode="1"

 android:versionName="1.0">

 <uses-permission android:name="android.permission.INTERNET" />

 <uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />

http:///

 CHAPTER 9 Developing for Android 313

 <application android:label="Hi-Doing" android:icon="@drawable/icon">

 <activity android:name="HiDoingActivity"

 android:label="@string/app_name">

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 <receiver android:name="NetworkStateReceiver">

 <intent-filter>

 <action android:name="android.net.conn.CONNECTIVITY_CHANGE" />

 </intent-filter>

 </receiver>

 </application>

</manifest>

The name attribute of the <action> element just contains one of the predeined messages:
 CONNECTIVITY_CHANGE is just the system-provided message that identiies broadcast messages
about changes in the connectivity state.

With this coniguration in place, the onReceive method of the NetworkStateReceiver class will

be invoked every time your device gets connected or disconnected to the network—regardless of

whether it is WiFi or 3G.

Statically registered receivers are entirely managed by the system that is responsible for their

life cycle. In a way, these receivers are global and referenced in a system table so long as the host

 application is installed on the device. When the event the receiver registered for occurs, the system

always will call the receiver, regardless of whether the process that hosts the receiver is running or not.

It turns out that static registration is good for special lavors of Android application that are
 designed to run as services—always in the background, mostly UI-less and guaranteed to kick

in under certain conditions. If you want to capture the network state change event within the

 boundaries of the running application—and use it to update the user interface—then you must opt

for dynamic registration.

Dynamic registration occurs with a few lines of code that you execute upon application startup

and resume. In addition, when the application is paused, you also need to unregister the receiver.

Let’s see what it takes to handle two related events—network access and change of connectivity type.

You begin by adding a couple of private members to the main activity class:

private BroadcastReceiver networkStateReceiver;

private IntentFilter connectivityChangeFilter;

You initialize these members upon application startup (typically in onCreate), as shown here:

connectivityChangeFilter = new IntentFilter("android.net.conn.CONNECTIVITY_CHANGE");

networkStateReceiver = new NetworkStateReceiver();

registerReceiver(networkStateReceiver, connectivityChangeFilter);

You can call registerReceiver multiple times to add multiple intent ilters. You repeat the same code
also in onResume—the method invoked on the activity when an Android application resumes from

http:///

314 pArt III Mobile Applications

the background. To stay on the safe side, you also unregister receivers from within onPause—namely,

when the Android application makes it to the background:

@Override

public void onResume()

{

 super.onResume();

 if (networkStateReceiver != null && connectivityChangeFilter != null)

 registerReceiver(networkStateReceiver, connectivityChangeFilter);

}

@Override

public void onPause()

{

 super.onPause();

 if (networkStateReceiver != null)

 unregisterReceiver(networkStateReceiver);

}

With this code in place, the receiver applies only to your application and is not invoked when some

of the monitored events occur but the host application is not running. The life cycle of the receiver

object terminates right after calling the onReceive method.

A receiver that is tightly bound to a single application likely will need to update the user interface

when the event occurs. For example, you may want to enable or disable a few UI buttons when the

connectivity is down.

You add a custom constructor to the receiver class and pass it any references to any objects that

it may need to call. The code shown here passes the Activity reference through the constructor; the

Activity reference is cached and used when it is time to refresh the user interface:

public class NetworkStateReceiver extends BroadcastReceiver

{

 HiDoingActivity _main;

 public NetworkStateReceiver(HiDoingActivity main)

 {

 _main = main;

 }

 @Override

 public void onReceive(Context context, Intent intent) {

 _main.RefreshView();

 }

}

The code shown so far detects only whether the application is (or is not) connected to the Internet.

If in addition, you want to monitor when the connection type changes (i.e., from WiFi to 3G and vice

versa), then you need to add a second intent ilter, as shown here:

connectivityChangeFilter = new IntentFilter("android.net.conn.CONNECTIVITY_CHANGE");

wifiChangeFilter = new IntentFilter("android.net.wifi.STATE_CHANGE");

networkStateReceiver = new NetworkStateReceiver();

registerReceiver(networkStateReceiver, connectivityChangeFilter);

registerReceiver(networkStateReceiver, wifiChangeFilter);

http:///

 CHAPTER 9 Developing for Android 315

Next, in onReceive, you can get a reference to the connectivity manager and check the type of the

network you’re connected to:

@Override

public void onReceive(Context context, Intent intent)

{

 // Get the connectivity manager

 ConnectivityManager cm;

 cm = (ConnectivityManager) context.getSystemService(Context.CONNECTIVITY_SERVICE);

 // Get network information

 NetworkInfo wifi = cm.getNetworkInfo(ConnectivityManager.TYPE_WIFI);

 NetworkInfo mobile = cm.getNetworkInfo(ConnectivityManager.TYPE_MOBILE);

 // Do your checks

 if (wifi.isAvailable())

 {

 // Handle wifi scenario

 }

 if (mobile.isAvailable())

 {

 // Handle 3G scenario

 }

}

Compared to web and desktop applications, the state of connectivity in mobile is much more un-

stable. It may go down or change type in a matter of seconds. Therefore, it is crucial for applications

to be ready to detect changes and react properly.

Note When you opt for statically registered receivers, you can attach and detach them as

you like, per screen or per application, depending on the use that you’re planning.

Common tasks

Nearly any graphical user interface (GUI) platform has some reusable pieces of code that applications

can use to implement common tasks in the same guise as the system. In Windows, you have common

dialog boxes to select and save a ile or pick up a color or a font. Mobile platforms are no exception.
In mobile, reusable system code is applets to send an email, take a picture, select a contact, send a

text message, and more.

In Android, you use intents for executing a variety of system tasks, such as sending a text message,

placing a phone call, or, as we’ll see in a moment, capturing a picture and sending it via email.

You have two ways for working with the device camera in Android. You can choose to operate at

a very low level and use the camera API, or you can rely on the services of the built-in application. In

the latter case, you need to get an instance of the corresponding intent and just pass it to startActivity:

Intent camera = new Intent(android.provider.MediaStore.ACTION_IMAGE_CAPTURE);

startActivity(camera);

http:///

316 pArt III Mobile Applications

Notice that you don’t need to declare any special capabilities in the application’s manifest if you

simply use the camera intent. Instead, if you use the API directly, then it is required that you add the

following permission (and feature) to the manifest:

<uses-permission android:name="android.permission.CAMERA" />

<uses-feature android:name="android.hardware.camera" />

Important The reason that the camera intent is not subject to permissions is that the

task is an interactive one that can’t just start and complete without explicit user consent.

Permissions serve the purpose of warning users about things that the software may be

doing that can cost something to users. Having the user take a picture is an explicit and

interactive action, so no permissions are required. The same applies to emails and text

 messages: no permissions are required if you bring up the system application. A permission

is required if you intend to send emails or SMS messages silently.

All in all, just calling the default camera application is kind of pointless; you need to establish a

bit of interaction to make things more interesting. At the very minimum, you want to instruct the

 application to save the taken picture to a particular location and with a given name:

String capturedImage = Environment.getExternalStorageDirectory().getAbsolutePath() + picName;

Uri uri = Uri.fromFile(new File(capturedImage));

camera.putExtra(MediaStore.EXTRA_OUTPUT, uri);

The putExtra method on the Intent class adds the speciied Uniform Resource Identiier (URI)
as the output ile name. The URI is just a value added to the data collection of the intent; the code
 associated with it, though, adds a role to the data and contains instructions for a particular intent. You

can choose to save the ile to the SD card (as in the example) or the local memory. In both cases, if
you use directories, you should ensure that the entire tree exists.

What if you want to display a preview and maybe send an email later? In this case, you need to

claim a notiication for when the camera intent has done its job—that is, after the user has accepted

the picture through the standard Done/Cancel pair of buttons.

When you need to receive a response from a started activity, you no longer use the method

startActivity but opt for startActivityForResult instead:

startActivityForResult(camera, 435); // 435 is your request code

The numeric parameter in the call is arbitrary and indicates a request code. In other words,

 because the same handler will be invoked for any results from any launched intent, you use that code

to understand which action is required on your own. The request code is a way for the handler to

select notiications and ignore those that just don’t apply. The notiication comes through a protected
virtual method of the activity that starts the intent—the onActivityResult method:

http:///

 CHAPTER 9 Developing for Android 317

@Override

protected void onActivityResult(int requestCode, int resultCode, Intent intent)

{

 if (requestCode != 0) // Use 0 or whatever request code you set

 return;

 if (resultCode != -1) // User cancelled photo capture

 return;

 ...

}

The resultCode parameter indicates whether the user accepted or rejected the photo. It is –1 if you

clicked on Done; it is 0 otherwise.

If you want to send the picture that you’ve just taken via email, you need to invoke another intent:

Intent email = new Intent(android.content.Intent.ACTION_SEND);

startActivity(Intent.createChooser(email, "Send mail..."));

The createChooser method is responsible for the additional step of choosing the medium to share

the picture through (see Figure 9-15).

FIGuRE 9-15 Choose the application to send the email.

http:///

318 pArt III Mobile Applications

You may conigure the email by adding attachments and recipients. Here’s some code to do that:

email.setType("image/jpeg");

email.putExtra(android.content.Intent.EXTRA_EMAIL, new String[] {"some@contoso.com" });

email.putExtra(android.content.Intent.EXTRA_SUBJECT, "One for you");

email.putExtra(android.content.Intent.EXTRA_TEXT, "Thought it was a nice pic!");

email.putExtra(Intent.EXTRA_STREAM, Uri.parse("file://" + capturedImage));

The setType method indicates the type of the attachment. The various calls to the putExtra method

set speciic pieces of information for the intent: email address, subject line, and text. The attachment
is appended as a stream, and the reference to the ile is obtained via a stream (see Figure 9-16).

FIGuRE 9-16 Sending an email via code.

Let’s ind out more about what it takes to test and distribute the application. Curiously, things are
somewhat reversed in Android compared to iOS. Testing is much more problematic in Android than

in iOS—but distribution is much easier on Android.

testing the Application
Testing your Android code is quite a comfortable task due to the rich support for debugging and

tooling that you ind in both Eclipse and IntelliJ. The Android emulator offers some nice features, such

as the ability to set different screen resolutions. It is, however, quite slow, and adding more RAM is the

http:///

 CHAPTER 9 Developing for Android 319

only thing that seems to make it run a bit faster. One of the reasons for such poor performance is that

this is an emulator, not a simulator like the iPhone tool. The Android emulator attempts to emulate

the ARM processor, which makes it slower; on iOS, the iPhone tool is a simulator, doesn’t attempt to

mimic the ARM processor, and is considerably faster.

This is, however, only one side of the coin. You can’t say you tested your Android application

enough if you haven’t tested it on a variety of devices. And that’s precisely the sore point.

Enabling Devices

Unlike iOS, you have no system-enforced restrictions on installed applications in Android. So long

as you have an Android executable (an APK ile), you can install and run it on any compatible device.
It’s only the user—not the system—that can prevent this. It may be different on some devices, but

in general, any lavor of Android offers a way to accept or deny install of applications coming from
 unoficial application markets. If you don’t have a setting, as in Figure 9-17, there’s no chance that
your executable can be installed and run.

FIGuRE 9-17 Application settings for installing applications from unknown sources.

If this may be an issue for distribution, though, it isn’t for testing. As a developer, you likely have a

bunch of test devices where you can install just about everything.

http:///

320 pArt III Mobile Applications

Selecting test Devices

Testing on devices is far easier in iOS (and Windows Phone) than it is in Android. The root of the

 problem is what was addressed earlier in the chapter, about the Android jungle.

To test an Android application thoroughly—even an Android application that targets a relatively

low API level (Level 8, for example)—you need to have at least three or four devices available. Having

only one device that qualiies as a smartphone may not be suficient; and in addition, you have tablets
and a myriad of cheaper, smaller phones to take into account.

The Resource page on the Android website (http://developer.android.com/resources) provides a

couple of great links with statistics about the most popular versions of the Android OS and most

 common screen sizes. Based on that, you can form a clearer idea about how to position your

 application in the Android jungle. At present, an application written for Android 2.1 allows you to

reach 93 percent of devices, and one written for Android 2.2 handles more than 80 percent. This says

that you probably can focus your testing efforts on devices that support just one operating system.

A similar statistics exists for screen sizes. At present, normal size and high or medium dot-per-inch

(DPI) values cover more than 80 percent of devices.

Once you have identiied the characteristics of abstract devices, how would you get physical
 devices? It is desirable that you get devices from a variety of vendors, too—HTC, Motorola, or

 Samsung, for instance.

It’s not going to be easy; neither is it cheap, necessarily. Perhaps for this reason, some companies

are coming up with testing services on a variety of devices. One example of such a company is

 Apkudo (http://www.apkudo.com). And inally, don’t forget that you still can use the Android emulator
to test applications on conigurations that you can reproduce with real devices. Although the
 emulator does not allow you to test speciic hardware, at least it will give you feedback on how your
application may look on different screen sizes and orientations.

Note Let me also add that not just any Android applications need the same testing effort.

The right strategy depends on the speciic application and scenario.

Distributing the Application
As mentioned, distribution of applications in the Android world is free and not restricted in any

way. You can place the executable on a website or distribution list and have users receive and install

the application with ease. Google also offers Google Play as a place to showcase your applications

where users can search and install the software they like. Google Play is not the only market for

Android applications: Amazon Appstore, GetJar, Opera Mobile App Store, and AndAppStore are a few

 alternatives.

http:///

 CHAPTER 9 Developing for Android 321

Google play

To publish applications to Google Play, you need to register as a Google Play developer and pay a

one-time fee of $25. Once registered, you have access to a bunch of tools for monitoring downloads

and updating publishing options.

Your application can be published for free or for a fee. In the latter case, you also need to set up a

special merchant account. The same is required if your application uses in-app billing.

Note that Google Play allows you to publish multiple executables under the same application

name. This addresses the scenario in which your application targets multiple screen sizes and

 operating system versions. If you upload multiple executables, then Google Play will pick up the most

appropriate executable based on the characteristics of the requesting device.

Signing the Application

You can’t publish an application if its executable isn’t signed digitally. As a developer, you must obtain

a certiicate that will be used to identify you as the author of the application.

There’s no need to buy a certiicate from an authorized certiicate authority (CA); a self-issued
certiicate is acceptable. The Android SDK provides a tool to generate a certiicate—the keytool

 application. Once you have the certiicate, you need to compile the application for release and sign
the resulting executable. There’s a command-line tool for signing—the jarsigner tool—but often this

task is integrated in the IDE of choice. Figure 9-18 shows the dialog box that you get from IntelliJ.

FIGuRE 9-18 The wizard to sign an Android executable in IntelliJ.

Summary

If you look at most statistics, Android is the most popular platform. But if you look at how most

 companies address mobile, Android is hardly the most popular platform. Developing Android

 applications may be very challenging and even expensive due to the wide range of devices and the

many slightly and subtly different Android-based irmwares all around.

http:///

322 pArt III Mobile Applications

It all depends on your deinition of Android—devices, operating system versions, and screens.
The more deined your boundaries, the easier it is to develop for Android. Due to fragmentation, you
sometimes end up releasing software, taking the risk that it won’t run perfectly on just any device

that runs the operating system.

If you focus on software aspects instead, developing for Android is not hard even if you don’t have

Java skills. Moving to native Android development from .NET, for example, is relatively easy. If you

have C++ or object-orientation skills, you can manage to write Android code quite easily.

Using Java and native SDKs is not the only option for Android applications; you can take the C#

route with MonoDroid or the hybrid route using PhoneGap, as well as a cross-platform framework

such as Titanium or Flash Builder. Overall, however, I consider using Java and native SDKs the primary

choice: it’s clearly the most compact and performing option, and it is a largely affordable option from

a development perspective.

http:///

 323

C H A P T E R 1 0

Developing for Windows phone

Genius is 1 percent inspiration and 99 percent perspiration.

—Thomas A. Edison

In this chapter:

 ■ Getting Ready for Windows Phone Development

 ■ Programming with the Silverlight Framework

 ■ Deploying Windows Phone Applications

 ■ Summary

W indows Phone, the successor to Windows Mobile, is Microsoft’s newest operating system for

smartphones. Similar to Apple (and unlike Google), Microsoft exercises strict control over

the hardware platform on which Windows Phone applications can run. This makes it easier to write

 applications because you don’t have innumerable resolutions and varying hardware capabilities (such

as odd sensors or cards) to deal with.

The Windows Phone application programming interface (API) and development tools are

 high-quality, and they don’t require any signiicant learning curve—at least, not from developers
already familiar with the Microsoft .NET Framework paradigm and related languages, such as C#. For

developers approaching Windows Phone with a C++ or Java background, the path is also smoother

because of the quantity of relevant tutorials and articles available from both the vendor and from the

community.

Note Overall, Windows Phone development is no more than a mild challenge for anyone

with a working knowledge of an object-oriented language and for everyone who’s a quick

learner. Noticeably, the list of Windows Phone developers includes quite a few eighth-grade

students from around the world. I know this very well, because my son (who is currently

14 years old) is one of them. If you’re curious, you can check out a number of applications

by typing expoware.org on the Windows Phone Marketplace.

http:///

324 pArt III Mobile Applications

Getting Ready for Windows Phone Development

If you already have a .NET Framework background, you’re almost done. You truly can plan to deliver

applications without having to deal with most of the usual mobile gap—learning new languages,

becoming familiar with new frameworks, and perhaps dealing with new operating systems, tools, and

computers.

Even if you’re not coming to Windows Phone with a .NET background, you’ll feel at home quite

soon anyway.

Development tools and Challenges
Getting ready for Windows Phone development requires a single download and a uniied setup
process. You can get Windows Phone–speciic tooling as an extension to a professional version of
Microsoft Visual Studio or by acquiring a speciic edition of the free Visual Studio Express platform.
At the end of the setup program, you’re all set; there’s no need to tweak system variables or install

additional tools. You will have the Visual Studio code editor, a simple embedded graphic designer, a

debugger, and the Windows Phone emulator for testing applications. You can also rely on Microsoft

Expression Blend (a separate product and download) for an even richer and interactive development

and designer experience.

Becoming a Windows phone Developer

You can download the tools for free, which means you can practice with the framework at no cost.

At this stage, though, you will be allowed to test your applications only via the emulator. To feel the

thrill of running your applications on a real device, however, you have to be a registered Windows

Phone developer.

You become an oficial Windows Phone developer by enrolling in the Microsoft developer

 program for Windows Phone. Having an account will cost you about $99 per year but will enable

you to publish applications for free or for a fee on the Microsoft Windows Phone Marketplace at

http://www.windowsphone.com. Your entry point in the world of Windows Phone development is the

App Hub, located at http://create.msdn.com.

the Visual Studio Environment

The primary language for Windows Phone development is C#, but you can use Microsoft Visual Basic

as well. You start by creating a new project from the dialog box shown in Figure 10-1.

As you can see from Figure 10-1, a Windows Phone application is essentially a special lavor of
Silverlight. Therefore, any Silverlight development skills that you may have enable you to be a highly

productive Windows Phone developer right away—or almost, anyhow.

http:///

 CHAPTER 10 Developing for Windows Phone 325

FIGuRE 10-1 The Windows Phone programming environment in Visual Studio 2010.

Note If you spent the last ive years in a cave, lost in a rainforest, or simply busy with
some overwhelming project, Silverlight is a lightweight spin-off of the .NET Framework

that originally was created to host binary applications on webpages in a totally safe way.

In a sense, Silverlight is the counterpart to Adobe Flash. Silverlight applications can run

in a browser plug-in and have access to a subset of the full .NET Framework. That same

 framework has been reworked to run on a virtual machine hosted in a Windows

Phone–equipped device.

As Easy as possible, but No Easier

From a merely technical perspective, writing Windows Phone applications is not dificult for the
majority of developers. The technical hurdles can be nearly zero if you’re already a .NET, Windows

Presentation Foundation (WPF), or Silverlight developer, but they’re also quite low if you’re a Java or

C++ developer. The combination of C# as the programming language and tools cuts off a large part

of the gap. If you have other types of background experience, the learning curve may be a bit steeper,

but typically not what I would see as a signiicant issue.

Instead, I see another potential issue with Windows Phone development: sometimes it can be too

easy to use.

Having an easy-to-use platform is not an excuse for writing bad applications that disregard

 established patterns and principles of software design and that downplay usability and user

 experience.

http:///

326 pArt III Mobile Applications

Important The real challenge for a mobile application is not in getting users to download

and install it, but in being used. The true value of a mobile application lies in the idea,

implementation, and graphical surroundings. When that experience is poor, the app is

a failure. Similarly, an application that’s a pleasure to use but is not backed by a strong

use-case is destined for oblivion. The same idea—implemented differently—can lead to

a radically different experience. I’ll return to this point later when discussing the sample

application—Guess-the-Number. At present, I’ve been able to ind at least ive analogous
apps on the Windows Phone Marketplace (and as many on the Google Play Store, formerly

known as Android Market). None of these applications are a joy to use (to say the least) and

they fail at most of the patterns presented in Chapter 7, “Patterns of Mobile Application

Development.” A great and easy-to-use platform poses an additional challenge to

 developers—it’s so easy that you may be led to release your creation too early.

Choosing the Development Strategy
Deining the development strategy to target the Windows Phone platform is fairly easy. I would even

say it has only a plan A: Use the C# (or Visual Basic) language and the speciic segment of the .NET
Framework that is bound to the project.

What about other options?

As you’ll see in Chapter 11, “Developing with PhoneGap,” you can use the PhoneGap software

development kit (SDK) to turn a bunch of static HTML5 and JavaScript pages into a Windows Phone

application. Personally, I would consider this option viable only in situations such as when you are

writing the same application for multiple platforms at the same time. For example, suppose that your

customer needs an application for iOS, Android, Windows Phone, and BlackBerry to be available on

a given and ixed date (perhaps a public event such as a conference or a sports tournament). In this
scenario, PhoneGap can be a real time-saver. For everything else, writing native Windows Phone

 applications is usually a fast-enough process that you don’t need to look for alternative solutions.

Important By “fast enough,” I simply mean that you are unlikely to face delays due to the

need for becoming familiar with the language or the SDK. Rest assured that a complex

 application that faces a dozen of use-cases still takes longer than an application with only a

couple of screens.

Silverlight-Based Applications

For Windows Phone development, you can choose between two distinct but not entirely mutually

exclusive frameworks: the Silverlight framework and the XNA framework.

http:///

 CHAPTER 10 Developing for Windows Phone 327

A simple but effective argument to differentiate the framework is the following: you use

the Silverlight framework for business applications and the XNA framework for game-oriented

 applications.

Such a rule is not carved in stone, however. You can choose one as your primary framework, yet

still be able to import the functionality you need from the other. For example, you can write games

using the Silverlight framework but integrate your Silverlight-based application with XNA-only

 capabilities, such as write access to the media library of the device.

The primary difference between the Silverlight and XNA frameworks is the execution model.

A Silverlight-based application runs as most .NET applications do: it is essentially an event-driven

 application that looks for events exposed by visual controls. In contrast, an XNA-based application is

driven by a loop that constantly refreshes the screen, bringing new content into play as determined

by other concurrently running application components.

The basic idea underlying a Silverlight application is that you have bunch of pages, each of

which represents a screen. A screen is made up of visual controls arranged in a given layout. As the

user interacts with these controls, various events are raised and handled in code, starting from the

 code-behind class of the screen. (You’ll see later that the code-behind class is just the starting point

for the processing logic of a screen.) The Silverlight framework has a strong API for data binding and

user interface management. Support for graphics is good for simple two-dimensional (2-D) shapes,

but minimal for three-dimensional (3-D) projections.

XNA Applications

The Silverlight framework is the natural choice for Windows Phone applications except when you’re

planning to build a game that includes animation and advanced graphics—precisely the areas in

which the XNA framework excels. On the other hand, the acronym XNA originally stems from the

name Xbox New Architecture and is the Microsoft set-top box platform for game development. It’s

worth noting that you can write highly graphical Windows Phone applications using XNA Game

 Studio 4.0, which was released in the fall of 2010, along with the Windows Phone development tools.

Gaming and advanced 2-D and 3-D graphics represent the major strength of the XNA framework.

XNA-based applications don’t have anything anywhere near the idea of controls or data-binding

facilities. You still can do all of these things, of course, but the implementation costs rest entirely on

your shoulders.

htML-Based Applications

As mentioned earlier, you also can use the latest version of Adobe’s PhoneGap framework to build

Windows Phone applications. In the panorama of mobile programming tools, Adobe’s PhoneGap

is an increasingly popular framework built around a simple but effective idea: turning a bunch of

 client-side webpages into a native application by embedding web resources [HTML, JavaScript,

or Cascading Style Sheets (CSS)] into a rather scanty native application centered on a web view

 component.

http:///

328 pArt III Mobile Applications

Any logic that you need should be coded in JavaScript and embedded within HTML pages. You

can use Ajax to make external calls, and you might want to use the capability of HTML5 to store data

locally. PhoneGap provides bridges to some native capabilities (mostly sensors) and is extensible with

any piece of native code that you need to populate further the ecosystem of objects that you have

access to from within the browser.

The performance of PhoneGap applications is strictly dependent on the capabilities of the browser

and its support for HTML5. Using HTML5 is not mandatory, but it is highly recommended due to the

access it offers to speciic capabilities, such as local storage. You need at least Windows Phone 7.5 to
run a PhoneGap-based application.

I’ll cover PhoneGap development in the next chapter.

the Windows phone—Way Ahead

Windows Phone was released in the fall of 2010 and—I’ll say it—it was good enough for a start, but

was not a full-ledged development platform. A development platform is much more than a useful
editor, compiler, and emulator. It requires a complete API (with background agents, total support for

common tasks, feature-complete user interface (UI) components, and sync capabilities) and it also

needs an effective infrastructure for beta testing and companywide, private appstores. A capable

HTML5 browser would help, too.

In 2011, Windows Phone 7.5 illed some of these holes. In particular, the API becomes richer and

the Marketplace Beta made its debut, along with a valid HTML5 browser based on Windows Internet

Explorer 9.

Note The browser embedded in Windows Phone 7.0 was based on a hybrid engine

 between Internet Explorer 7 and Internet Explorer 8. According to the capabilities tracked

by device description repositories (DDRs), from the perspective of mobile web, Windows

Phone 7 is hardly considered a high-end device. (See Chapters 3 and 6 for details on device

segmentation and multiserving.) In Project Liike—Microsoft’s Patterns & Practices project

for mobile web—Windows Phone 7 falls in the medium-end group of devices, whereas

Windows Phone 7.5 falls in the high-end group.

The roadmap features another minor release planned for 2012, code-named Tango, and a

major release planned for 2013, code-named Apollo. The latter is expected to bring signiicant
 improvements in the attempt to reduce the gap with iOS and Android. Expected features include

app-to-app communication and integration, an enterprise-level marketplace, expandable storage via

SD cards, more control over the camera, deep SkyDrive integration, and native BitLocker encryption.

From a developer’s standpoint, the irst Windows Phone was mostly about a new user interface
and user experience—the popular Metro interface, destined to land on the Windows territory, too,

with Windows 8. With Mango, Microsoft just completed the work that a irst good release of a mobile
platform would have required.

http:///

 CHAPTER 10 Developing for Windows Phone 329

From now on, it’s a battle to improve the platform, to make it run on the largest possible number

(and types) of devices and conquer the masses.

the Metro Interface

The focus of the irst release of Windows Phone was the user interface and user experience and Metro

was its prophet. Metro is the blanket term used to indicate a collection of design principles that have

inspired Microsoft in the creation of the new interface of Windows Phone and more. In fact, Metro is

also behind the new user interface and platform restructuring being operated for Windows 8.

According to Wikipedia, Metro is a “design language” inspired by “design principles of classic Swiss

graphics” that emphasize cleanliness and readability. If Metro is mainly a design language, then a

Metro application is a Windows (Phone) application whose user interface and user experience are

inspired by the Metro principles.

How is this going to change the life of developers? Metro is only the recommended User Interface/
User Experience (UI/UX) of Windows Phone and, maybe more important, of the next Windows version.

As far as mobile Windows Phone applications are concerned, you build them using native controls.

These controls are styled after Metro, but this is a mere detail for you. If you’re creating custom

 controls, you might want to ensure that they it well with the Metro principles. If you’re creating a
mobile site, you might want to make a masterly move and switch to a Metro user interface when the

site is viewed on a Windows Phone device.

More than Metro in itself, the recommended guidelines for the platform and common patterns

and practices (such as those we discussed in Chapter 7) are relevant to developers.

Programming with the Silverlight Framework

Let’s start with a quick look at the skeleton of a Windows Phone application written using the

 Silverlight framework. The rest of this chapter will be based on the assumption that a Windows Phone

application is always written against the Silverlight framework.

Anatomy of an Application
Windows Phone 7 is essentially Silverlight 3, whereas Windows Phone 7.5 is a close relative to Silverlight 4.

What do terms like essentially and close relative actually mean?

The Silverlight framework for Windows Phone is not identical to the Silverlight framework that you

use in web applications because there’s been some adaptation that made sense for a phone device.

Speciically, Windows Phone applications are considered trusted applications and are not sandboxed.
Therefore, you can connect to any URL you like, well outside the same-origin policy that you

 experience within the browser. Similarly, the management of isolated storage is different—there are

no limits to the amount of data you can save, so long as there’s storage available. At the same time,

access to contacts and the user’s document is subject to explicit user approval.

http:///

330 pArt III Mobile Applications

Visual Studio offers different templates to start off with a Windows Phone application. It’s all about

the number of features that should be initially generated in the source code and the overall layout of

the user interface. The anatomy of a Windows Phone application is the same, regardless of the layout.

Let’s start with a plain application project.

Dissecting the project

A minimal Windows Phone project consists of just a few iles—a manifest ile, an application deinition
ile, a main page ile, and a handful of graphical resources (see Figure 10-2).

FIGuRE 10-2 A sample Windows Phone project.

As you grow your application, you may feel the need to add more project folders. However, there’s

no convention-over-coniguration (CoC) schema being applied here.

I usually group screens under a Views folder and, if I’m using the Model-View-ViewModel (MVVM)

pattern (more on this pattern later), I tend to create a ViewModels folder as well. Likewise, I tend to

group auxiliary resources (e.g., images, sounds, and literals) under a single folder. At any rate, there’s

no reason why my choices are better than yours; we’re talking about arbitrary organization of the

project iles.

Important There are some restrictions on the location of iles. The splash screen bitmap
(SplashScreenImage.jpg), as well as the application icon (ApplicationIcon.png) and tile icon

(Background.png), are required to stay in the root of the project. In addition, the splash

screen bitmap can’t even be renamed (it can be disabled, though, as we’ll see later in this

chapter). Instead, you can rename application and tile icons easily by editing the manifest

ile.

http:///

 CHAPTER 10 Developing for Windows Phone 331

the Manifest File

Public information about a Windows Phone application results from the content of three iles in the
Properties folder of the project. The AssemblyInfo.cs ile is a common ile in any .NET project. The role and
content of this ile are not different in Windows Phone. You use this ile to specify copyright and versioning
information. In Windows Phone, it is required that you set the neutral language of the application, as

in Figure 10-3. Leaving the neutral language ield unspeciied doesn’t affect the functionality of the
 application, but it may prevent the executable from being uploaded to the marketplace.

FIGuRE 10-3 Using the project’s Property page to set the neutral language.

You can set the neutral language programmatically as well, by adding the following line to the

 AssemblyInfo.cs ile:

[assembly: NeutralResourcesLanguageAttribute("en-US")]

Note that the Assemblyinfo.cs ile can be opened and edited in the code editor as well. The dialog
box of Figure 10-3 is just an additional facility. In the Properties folder, you ind two similar-looking
manifest iles, but only one is the real Windows Phone manifest ile, analogous to manifest iles we’ve
met in iOS and Android development. The AppManifest.xml ile exists only for compatibility with the
Silverlight framework. It is the same ile that you may know from classic Silverlight programming. In
Windows Phone, it’s essentially an empty ile at development time:

<Deployment xmlns="http://schemas.microsoft.com/client/2007/deployment"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">

 <Deployment.Parts>

 </Deployment.Parts>

</Deployment>

The Deployment.Parts element is expected to present the list of binary iles (assemblies) that form
the Silverlight package. This manifest ile is completed at compile time. Here’s how it looks like once
the HelloWorld executable—a XAP package—is ready:

<Deployment xmlns="http://schemas.microsoft.com/client/2007/deployment"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

http:///

332 pArt III Mobile Applications

 EntryPointAssembly="HelloWorld"

 EntryPointType="HelloWorld.App"

 RuntimeVersion="3.0.40624.0">

 <Deployment.Parts>

 <AssemblyPart x:Name="HelloWorld" Source="HelloWorld.dll" />

 </Deployment.Parts>

</Deployment>

The classic mobile application manifest ile is WMAppManifest.xml, which is the ile that you
should edit to tweak information about your application. This is the ile that the operating system
looks into before it installs or runs the application. You don’t usually touch this ile unless you want to
rename icons or move or rename the main screen page.

Here’s what a typical Windows Phone manifest ile looks like:

<Deployment xmlns="http://schemas.microsoft.com/windowsphone/2009/deployment"

 AppPlatformVersion="7.0">

 <App xmlns=""

 ProductID="{e0ce571d-cbcc-4639-94b1-a057d0186830}"

 Title="HelloWorld"

 RuntimeType="Silverlight"

 Version="1.0.0.0"

 Genre="apps.normal"

 Author="Expoware" HelloWorld app"

 Publisher="Expoware">

 <IconPath IsRelative="true" IsResource="false">ApplicationIcon.png</IconPath>

 <Capabilities>

 ...

 </Capabilities>

 <Tasks>

 <DefaultTask Name ="_default" NavigationPage="MainPage.xaml"/>

 </Tasks>

 <Tokens>

 <PrimaryToken TokenID="HelloWorldToken" TaskName="_default">

 <TemplateType5>

 <BackgroundImageURI IsRelative="true"

 IsResource="false">Background.png</BackgroundImageURI>

 <Count>0</Count>

 <Title>HelloWorld</Title>

 </TemplateType5>

 </PrimaryToken>

 </Tokens>

 </App>

</Deployment>

In the manifest, you set the public name and icon of the application, as well as providing

 information about the main screen. In the Tasks section, you can indicate a relative path for the main

screen page. You can’t indicate a relative path for application icon and tile icon.

One of the main purposes of the manifest ile is presenting the operating system with the
 capabilities that the application needs—network access, identity, media library, sensors, contacts,

phone dialer, and so forth. In this regard, Windows Phone as an operating system fully honors

 capabilities and wouldn’t let you use something (for example, the camera) if you don’t declare that

http:///

 CHAPTER 10 Developing for Windows Phone 333

you’re going to use it. You list capabilities in the Capabilities section of the manifest ile, as shown
here:

<Capabilities>

 <Capability Name="ID_CAP_APPOINTMENTS"/>

 <Capability Name="ID_CAP_CAMERA"/>

 <Capability Name="ID_CAP_CONTACTS"/>

 <Capability Name="ID_CAP_IDENTITY_DEVICE"/>

 <Capability Name="ID_CAP_IDENTITY_USER"/>

 <Capability Name="ID_CAP_LOCATION"/>

 <Capability Name="ID_CAP_MEDIALIB"/>

 <Capability Name="ID_CAP_NETWORKING"/>

 <Capability Name="ID_CAP_PHONEDIALER"/>

 <Capability Name="ID_CAP_PUSH_NOTIFICATION"/>

 <Capability Name="ID_CAP_SENSORS"/>

</Capabilities>

It is your responsibility as a savvy developer to declare only the capabilities that you really use.

You can use the Marketplace Test Kit or the Windows Phone Capability Detection Tool to detect the

 application capabilities. These tools are installed with the Windows Phone package.

The most important point, however, is something else. When you submit an application to the

marketplace, the capabilities of the application are detected programmatically by inspecting the

binary code. The capabilities list that you provided is then overwritten with the actual list of required

capabilities. In light of this, you can simply write your code and access any API that you need, blissfully

ignoring the issue of capabilities. There are two notable exceptions. If the original list compiled in the

executable doesn’t include the capability for Internet access (ID_CAP_NETWORKING), that won’t be

added silently. Second, the capability for the forward-facing camera will not be modiied during the
submission process: it’s maintained if found in the original manifest, but it’s not added otherwise.

Note The automatic treatment of capabilities is certainly an aspect that speeds up

 application development a bit. So I think it can be a good thing for most developers. At the

same time, it doesn’t help building an awareness of capabilities and their purpose. I suggest

that you always declare in your manifest ile all the capabilities that the application needs to
work effectively.

Application Startup

A Windows Phone project is made of an App.xaml ile with the related App.xaml.cs code-behind class.
The Extensible Application Markup Language (XAML) ile contains references to global resources (i.e.,

styles, colors, animations, and templates) for the various pages, whereas the C# class gathers handlers

for global events such as unhandled exceptions, navigation failures, and life-cycle events. Here’s the

markup for the App.xaml ile:

<Application

 x:Class="HelloWorld.App"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

http:///

334 pArt III Mobile Applications

 xmlns:phone="clr-namespace:Microsoft.Phone.Controls;assembly=Microsoft.Phone"

 xmlns:shell="clr-namespace:Microsoft.Phone.Shell;assembly=Microsoft.Phone">

 <Application.Resources>

 <!--Application Resources-->

 </Application.Resources>

 <Application.ApplicationLifetimeObjects>

 <shell:PhoneApplicationService

 Launching="Application_Launching" Closing="Application_Closing"

 Activated="Application_Activated" Deactivated="Application_Deactivated"/>

 </Application.ApplicationLifetimeObjects>

</Application>

The App.xaml ile indicates the starter object—HelloWorld.App in the example—and provides an
implementation for it. This class is responsible for the launch of the application instance:

public partial class App : Application

{

 public PhoneApplicationFrame RootFrame { get; private set; }

 public App()

 {

 UnhandledException += Application_UnhandledException;

 InitializeComponent();

 InitializePhoneApplication();

 }

 // Life cycle events

 ...

 // Phone initialization

 private void InitializePhoneApplication()

 {

 if (phoneApplicationInitialized)

 return;

 RootFrame = new PhoneApplicationFrame();

 RootFrame.Navigated += CompleteInitializePhoneApplication;

 RootFrame.NavigationFailed += RootFrame_NavigationFailed;

 phoneApplicationInitialized = true

 }

 private void CompleteInitializePhoneApplication(Object sender, NavigationEventArgs e)

 {

 // Set the root visual so that the application can display its UI

 if (RootVisual != RootFrame)

 RootVisual = RootFrame;

 // Remove this handler since it is no longer needed

 RootFrame.Navigated -= CompleteInitializePhoneApplication;

 }

}

The InitializeComponent method performs the Silverlight initialization—a Windows Phone

 application is a Silverlight application anyway—whereas InitializePhoneApplication performs

 additional tasks that are speciic to the Windows Phone platform. The initialization of the Windows

http:///

 CHAPTER 10 Developing for Windows Phone 335

Phone application consists of setting up the root frame and replacing the splash screen. Let’s see how

this takes place in the sample application.

the Application Frame

One of the irst steps in the launch of a Windows Phone application is the creation of a new

instance of the PhoneApplicationFrame class. This class is the top-level container, and only one

instance of PhoneApplicationFrame exists for the entire application. The frame class holds all the

pages and maintains an internal stack where the visited pages are tracked for the sake of Back

button functionality.

The application frame is not made visible as early as it is created. Instead, the root frame is bound

to a completion event—the Navigated event. In the handler of the Navigated event, the root frame

object is inally rendered by assigning it to the RootVisual property of the Application class. The

PhoneApplicationFrame class reads the Uniform Resource Indicator (URI) of the main application page

from the manifest and navigates to it. When navigation is complete—namely, when the main page is

fully loaded—the Navigated event ires, the RootVisual property is set, the splash screen is dismissed,

and the application’s main page is served to the user.

The pages of a Windows Phone application are required to be instances of a class that inherits

from PhoneApplicationPage.

Application Life Cycle

In Windows Phone, only one application at a time can be in the foreground. When the user launches

a new application or when an asynchronous event takes place [e.g., an incoming phone call, a Short

Message Service (SMS), or just the screen gets engaged], the current application is pushed to the

background. What happens at this point depends on the version of the operating system that you’re

running.

In Windows Phone 7, an application that goes to the background is a dead application. However,

the system gives a chance to the current page and the application to copy any relevant state to global

repositories. In particular, the page will save to an in-memory dictionary—the State dictionary—

whereas the application will save to the isolated storage.

If the user navigates back to the application, all she gets is a brand-new instance of the application.

The system, however, passes any saved state to the new instance so that the application can present

itself to the user as the continuation of the previous session, rather than as a brand-new session.

An application that knows how to save its state and restore from a passed state intelligently is said

to be an application that supports tombstoning.

In Windows Phone 7.5, multitasking is supported and the overall behavior can compare to some

extent to what we’ve seen for iOS as well as Android. Note, though, that Android can have real

 background services, whereas iOS has real background services only for a few scenarios such as voice

over IP (VOIP) and global positioning satellite (GPS)–based applications. Beyond that, iOS just gives

an application a few minutes to complete a task after it is closed.

http:///

336 pArt III Mobile Applications

Figure 10-4 presents the possible states of an application and transition events.

OnNavigatedto page event
Launching application event

Up and running

Dormant state

tombstoneNo notice

OnNavigatedFrom page event
Closing application event

OnNavigatedto page event
Activated application event

OnNavigatedFrom page event
Deactivated application event

FIGuRE 10-4 The Windows Phone application life cycle.

When an application is irst launched, then the Launching application event is ired. You can
handle this event from within the App.xaml ile. You normally don’t handle this event. Also, the
main page receives the OnNavigatedTo event to perform its own initialization. Initialization also

can be performed in the class constructor or the Loaded event—it is up to you. When the user exits

the application (typically hitting the Back button from the home screen or the Home button from

 anywhere), the application instance receives a Closing event and the displayed page receives a

 OnNavigatedFrom event. In the Closing event, you might want to save any preferences or data that

you like to reuse in the next session.

As the Memento-Mori pattern indicates (see Chapter 7 for details on this pattern), applications are

actually garbage-collected by the system. So an application that is up and running may be pushed to

the background at any time—for example, when the user starts a search or a phone call is received.

In this case, the current page receives an OnNavigatedFrom event and the global Deactivated event is

ired. The application might want to save state at this stage because it never knows what will happen
to it in the next few moments. Once deactivated, the application is put in a dormant state. The

 application remains in this state until it is resumed or until free memory is required. When resumed,

the application receives an Activated global event, where you might want to restore the user interface

related to any previously saved data. If the dormant application instance was sacriiced for memory
instead, the user receives a brand-new instance, as if she were dealing with tombstoned instances in

Windows Phone 7.

Dormant applications are live applications; when they’re back to the foreground, there’s no

need to restore any state. In Figure 10-4, though, you see that the same events are ired when the

http:///

 CHAPTER 10 Developing for Windows Phone 337

 application is restored from tombstoning and from the dormant state. In Windows Phone 7.5, a new

property has been added to the ActivatedEventArgs class that informs you whether you should restore

any state or not. The property is a Boolean property named IsApplicationInstancePreserved.

Deining the User Interface
Let’s explore in more detail the primary aspects of the Windows Phone user interface. In this section,

we’ll discuss graphical resources, layout, views, and styles.

Icons and the Splash Screen

A Windows Phone application is made of a few standard graphic iles—the splash screen bitmap, the

application icon, and the tile icon. It is required that these iles have a speciic size and, in some cases,
also a speciic name.

The application icon is displayed in the launch pad within a square box painted with the currently

selected accent color. (In Windows Phone, the accent color is the color used for relevant parts of the

user interface, such as the launch menu and tiles.) The expected size of the icon is 62 × 62 pixels.

Tiles are just one of the features that make Windows Phone unique. Tiles are square boxes

 displayed (and in some cases, animated) in the startup screen of the phone. Tiles are pictures

that measure 172 × 172. For a nice effect, you might want to keep tile icons black and white on a

 transparent background (see Figure 10-5).

FIGuRE 10-5 Tiles and application icons in Windows Phone.

http:///

338 pArt III Mobile Applications

The accent color is used as the background of tiles and icons.

The splash screen is automatic in Windows Phone. So long as you have a graphic ile named
SplashScreenImage.jpg in the root folder of the project you’re done. The graphic ile should be 480 × 800.
You can’t rename or move this ile and this ile, as well as other application graphic iles, should be
associated with a Content build action in Visual Studio.

Not all applications need a splash screen. According to Microsoft’s guidelines, you need one if your

application will take longer than one second to load. In addition, you generally need a splash screen if

the user usually has the time to read what’s in it. If it appears and disappears too quickly, you prob-

ably don’t need it.

To disable the splash screen, you just remove the splash screen ile from the project. Note, though,
that some Windows Phone applications might load quickly the irst time but slow down on successive
invocations. This is commonly due to extra work done upon loading to process saved data and

 preferences.

Note The built-in splash screen mechanism is not programmable but can be replaced

 altogether. Reasons to replace it are adding some animation or progress bar or ensuring

that it stays up for a minimum time. In both cases, you remove the static bitmap and bring

up programmatically a full-screen pop-up that updates its markup step by step and is

 optionally controlled by a timer. When done, you dismiss the pop-up and display the actual

main page.

pivot and panorama Layouts

Windows Phone offers two special types of application-level layouts—pivot and panorama views.

A pivot application offers an experience similar to a tabstrip. A pivot is made of a collection of pages

loaded individually. The pivot view offers natively the ability to navigate horizontally among the

pages using touch gestures.

Panorama applications are made of a single page that contains multiple panes. Also, in this case,

you get free horizontal scrolling and a nice rendering that displays in the current view a small portion

of the next pane as a hint to the user that more is available.

Pivot and panorama layouts are just one possibility, and their adoption should be the result of

a user experience analysis rather than a random choice. Pivot and panorama layouts should be

 considered mutually exclusive. In general, panorama layouts are more expensive in terms of memory

as the content of all panes is kept in memory at any time. For this reason, you should not have more

than three or four panes. With a pivot view, you don’t have the same pressure on memory, but

 usability suggests that you keep the number of pages under control. Figure 10-6 shows an example of

a pivot and panorama layout.

http:///

 CHAPTER 10 Developing for Windows Phone 339

FIGuRE 10-6 Pivot and panorama views.

Deining a Custom Layout
The visual interface of Windows Phone pages is expressed using XAML as in Silverlight applications.

XAML describes the application user interface in much the same way HTML describes the structure of

a document.

A XAML user interface is rooted in a container element that lays out its child elements by stacking

them horizontally (or vertically), using a row/column grid or direct x,y coordinates. Elements are

 identiied by name using the x:Name attribute. Table 10-1 lists the container elements that you can

use in XAML.

TAblE 10-1 Container Elements in XAML

Container Element Description

Border Incorporates a single child element and renders a border all around.

Canvas Contains any number of child elements located at speciic relative coordinates. The
order of child elements is unimportant.

http:///

340 pArt III Mobile Applications

Container Element Description

Grid Lays out elements in a matrix of any number of rows and columns. Each row/column
can be sized properly. Child elements must be assigned explicitly to a particular cell.
The grid is a pure layout element and doesn’t allow to style cells (i.e., no way to paint
the background or a border).

StackPanel Stacks any number of child elements either vertically or horizontally. Elements are
rendered as they appear in the markup. You can use margins to control relative
 distances.

UserControl Incorporates a single child element and wraps it up as a new custom element to be
reused in other containers.

Pivot and Panorama are special controls that act as container elements. Here’s how to deine a
pivot with two pages:

<controls:Pivot x:Name="guessPivot" Title="Guess" Foreground="#fff">

 <controls:PivotItem Header="Game">

 <Home:HomeScreen x:Name="homeScreen" />

 </controls:PivotItem>

 <controls:PivotItem Header="Scores">

 <Scores:ScoreScreen x:Name="scoreScreen" />

 </controls:PivotItem>

</controls:Pivot>

It should be noted that pivot items are not real pages that you reference by URI. Instead, they

are chunks of XAML that you either deine inline or reference through a user control, as in the
 preceding code snippet. A user control is saved as a XAML ile, but it has references via the name of
its code-behind class.

The following code snippet shows the incipit of a Windows Phone page. Namespaces in root

 elements are important information for the parser to understand tag names:

<phone:PhoneApplicationPage

 x:Class="Guess.Views.GuessMainPage"

 xmlns:phone="clr-namespace:Microsoft.Phone.Controls;assembly=Microsoft.Phone"

 xmlns:controls="clr-namespace:Microsoft.Phone.Controls;assembly=Microsoft.Phone.Controls"

 xmlns:Home="clr-namespace:Guess.Views.Home"

 xmlns:Scores="clr-namespace:Guess.Views.Scores">

 ...

</phone:PhoneApplicationPage>

The Class attribute indicates the name of the class that backs up the page—the code-behind

class. Namespace declarations are bound to namespaces in the current assembly or in the speciied
 assembly. For example, the Home:HomeScreen element is resolved looking for a class named Guess.

Views.Home.HomeScreen.

Style and Designer tools

Each XAML element sports a long list of graphical and behavioral attributes, including templates and

animations. Although you could set these properties inline in the XAML, doing so would result in

code that is hard for humans to read.

http:///

 CHAPTER 10 Developing for Windows Phone 341

To deine the user interface of Windows Phone applications, you can use Expression Blend, a tool

that comes with the Windows Phone 7 SDK (see Figure 10-7).

FIGuRE 10-7 Expression Blend in action on the sample application.

Nicely enough, Expression Blend can open and manipulate the same project iles that you use
in Visual Studio. In Expression Blend, you drag elements to a drawing surface, set properties and

 attributes, and have the tool generate XAML for you. Switching from a rich and intuitive design tool

to Visual Studio is quick and effective. With Expression Blend, you hardly feel the need to tweak the

XAML manually. Because you manage XAML with a smart tool, you may not care about readability of

the XAML.

Whether you use Expression Blend or not, however, you should plan to manipulate graphical

properties more effectively via styles. Here’s a sample style that gives a gradient blue background to

buttons:

<Style x:Key="guessButtonStyle" TargetType="Button">

 <Setter Property="FontSize" Value="32" />

 <Setter Property="FontWeight" Value="Bold" />

 <Setter Property="Foreground" Value="#ededed" />

 <Setter Property="Background" Value="{StaticResource buttonBkgndBrush}" />

</Style>

In particular, any button styled with the guessButtonStyle properties will have been given fore-

ground color and font settings:

<Button x:Name="startButton" Style="{StaticResource guessButtonStyle}" />

http:///

342 pArt III Mobile Applications

What about the background? The value of the Background property is deined through a static
resource. A static resource is a XAML resource (brush, color, or pen) that is global to the application or

to a given container (e.g., a user control). You deine static resources once and reuse them frequently;
static resources are ultimately a performance trick. Here’s a gradient background brush:

<LinearGradientBrush x:Key="buttonBkgndBrush" EndPoint="0,1">

 <GradientStop Color="#7777fd" Offset="0" />

 <GradientStop Color="#2222aa" Offset="1" />

</LinearGradientBrush>

To make a resource static, you just deine it in the Resources section of a container element. Here’s
an example for application-wide resources:

<!-- This code belongs to app.xaml -->

<Application.Resources>

 <guessFx:LocalizedStrings x:Key="LocalizedStrings" />

 <!--Colors-->

 <Color x:Key="appbarBackground">#0b5890</Color>

 <Color x:Key="appbarForeground">#ffffff</Color>

 ...

 <!--Brushes-->

 <SolidColorBrush x:Key="alertBrush" Color="#ff9933" />

 ...

 <!--Animations-->

 ...

 <!--Styles-->

 ...

</ Application.Resources>

For performance reasons, it is also advisable that you avoid using colors as constants throughout

the XAML iles and code. In XAML, to paint the background of any elements, you need a brush, not a

color. Properties that let you set the background through a color string are actually doing the work of

creating a brush dynamically for you. As you can see, there’s no reuse and a white brush (for instance)

is created several times in an application instance. With a global white brush (or even color deinition),
you create static references that can be invoked from anywhere in the application. Also, literals can

be attached as resources to XAML attributes. The primary goal for using string resources beneit,
 however, is not performance but ease of localization. (We’ll return to localization in a moment.)

Dark and Light themes

Windows Phone supports two predeined themes—dark and light—and leaves the user free of

 choosing one. The dark theme is the default, but the user can change it via the Settings page, as in

Figure 10-8.

http:///

 CHAPTER 10 Developing for Windows Phone 343

FIGuRE 10-8 Choosing the theme for the device.

More important, applications are not allowed to force the phone to a particular theme. Applications,

instead, should be smart enough to adapt to the current theme (and accent color, if needed).

It is required that applications display well and clearly in both themes. An application that presents

a confusing user interface under either theme will not be accepted in the marketplace.

Text boxes and input controls are the most problematic aspects of supporting both themes.

 Depending on the graphics of the application, you may not be able to work out a unique user

 interface that works well in both scenarios. In this case, you might ind it easier to detect the current
theme and adjust your visual settings programmatically. Here’s some sample code:

var light = (Visibility) Application.Current.Resources["PhoneLightThemeVisibility"];

if (light == Visibility.Visible)

{

 // Light theme

 ...

}

else

{

 // Dark theme

 ...

}

http:///

344 pArt III Mobile Applications

As you can see, the current theme is exposed to developers as an application-wide resource.

 Starting from here, you can arrange your own helper methods to expose dark or light theme as

simple Boolean properties.

the Application Bar

Windows Phone devices have no menu button, but the API offers the application bar component as

a way to provide the application with an easy-to-access toolbar for common tasks. You can place up

to four buttons in the application bar, each with an icon and a text hint. In addition, you can add an

application bar menu where you convey additional items, as well as those that you can’t render easily

with a small icon.

The application can be styled to a good extent, but it is not the same as other Windows Phone

controls. You can set foreground and background colors, as well as a level of opacity. You can’t use

gradients and, maybe more important, you can’t use data binding to populate the bar.

This means that to make text and icons in the application bar localizable and context-sensitive, you

should resort to some C# code. You usually deine the application bar in the XAML for a Windows

Phone page, as shown here:

<phone:PhoneApplicationPage.ApplicationBar>

 <shell:ApplicationBar IsVisible="True"

 Opacity="0.5"

 ForegroundColor="{StaticResource appbarForeground}"

 BackgroundColor="{StaticResource appbarBackground}"

 IsMenuEnabled="False">

 <!-- Buttons should be listed here -->

 ...

 </shell:ApplicationBar>

</phone:PhoneApplicationPage.ApplicationBar>

If the list of buttons doesn’t change with the state of the application and is not subject to

 localization issues, then you can just add buttons in the ApplicationBar element:

<shell:ApplicationBarIconButton IconUri="/Images/appbar_hint.png" Text="Hint"/>

More often than not, though, you might want to create your own application-speciic helpers to
assign each XAML page its own application bar. In doing so, you set button hints to localized text:

public static void SetupForOngoingGameScreen(GameScreen page)

{

 page.ApplicationBar.IsVisible = true;

 page.ApplicationBar.Buttons.Clear();

 page.ApplicationBar.MenuItems.Clear();

 // Add buttons

 AppendButtonInternal(page, "/images/appbar/appbar_hint.png", Literals.AppBarHint, page.

Hint);

 AppendButtonInternal(page, "/images/appbar/appbar_quit.png", Literals.AppBarQuit, page.

Quit); }

private void AppendButtonInternal(PhoneApplicationPage page,

 String iconFile, String caption, EventHandler handler = null)

http:///

 CHAPTER 10 Developing for Windows Phone 345

{

 // Define the button

 var button = new ApplicationBarIconButton()

 {

 IconUri = new Uri(iconFile, UriKind.Relative),

 Text = caption

 };

 // Add to the application bar

 page.ApplicationBar.Buttons.Add(button);

 // Attach click handler

 if (handler != null)

 button.Click += handler;

}

The application bar in Figure 10-9 has two buttons, one with an icon and one with text, and a level

of opacity of 0.5.

FIGuRE 10-9 The application bar in action.

As mentioned, you can’t have more than four icons on the bar. For everything else, you can add an

embedded menu:

<shell:ApplicationBar IsVisible="True" IsMenuEnabled="True">

 <shell:ApplicationBarIconButton IconUri="/Images/appbar_button1.png" Text="Button 1"/>

 <shell:ApplicationBarIconButton IconUri="/Images/appbar_button2.png" Text="Button 2"/>

 <shell:ApplicationBar.MenuItems>

 <shell:ApplicationBarMenuItem Text="MenuItem 1"/>

 <shell:ApplicationBarMenuItem Text="MenuItem 2"/>

 </shell:ApplicationBar.MenuItems>

</shell:ApplicationBar>

http:///

346 pArt III Mobile Applications

The menu shows up when the user taps the dots item (as in Figure 10-9) or licks up the application
bar area. The application bar is subject to some built-in animation and graphical adjustments. You

might want to choose colors and icons carefully and test the application with both dark and light

theme to ensure that no poor effect comes up that may preclude approval of the application. For

 details about icons, refer to the “User Experience Design Guidelines for Windows Phone” paper

 available at http://goo.gl/h7vCo.

Important The application bar should be considered a native part of the Windows Phone

platform; this means that if you need some global system menu in your application, the

 application bar is the recommended way to achieve it.

Localization of text

In Windows localization of text, the use of localization in the user interface is fairly straightforward.

Localizing everything else, instead, is mostly up to you. The good news, however, is that the need to

localize more than text is not usually urgent.

The procedure to localize text is the same as in any .NET application: you add a resource ile to the
project and identify any literal with a unique key. Visual Studio will generate a class from the resource

ile automatically so that you can reference literals as constants. Having a ile named Literals.resx, as
in Figure 10-10, with the access modiier lag set to Public (watch out, the default is Internal), enables
you to refer strings in C# code using the following straightforward syntax:

AppendButtonInternal(page, "/images/appbar/appbar_about.png", Literals.AppBarAbout, page.About);

The expression Literals.XXX returns the string associated with the XXX name in the Literals.resx ile.
To add resources for another language, you simply add a new .resx ile following a special naming
convention: Literals.xx-yy.resx, where xx-yy represents the identiier of the culture. To add Italian text,
for example, you create Literals.it-IT.resx. Note that the .resx ile without culture information in the
name is associated with the neutral language set for the application.

FIGuRE 10-10 The resource editor in Visual Studio.

http:///

 CHAPTER 10 Developing for Windows Phone 347

To reference the same literals from within XAML markup, some extra work is required. In particular,

you need a helper class to expose resources to XAML elements. Here’s an example that you can

 import verbatim in your applications:

public class LocalizedStrings

{

 private static readonly Literals Resources = new Literals();

 public Literals Strings

 {

 get { return Resources; }

 }

}

The name LocalizedStrings is arbitrary; the Literals class, instead, is bound to the RESX resource

ile you created in the project. All that you do is exposing, through a public read-only property,
an instance of the auto-generated resource class. The next step is linking the helper class to the

 application resources so that it becomes visible to the XAML parser. You create a global application

resource in App.xaml, as shown here:

<Application

 x:Class="Guess.App"

 ...

 xmlns:guessFx="clr-namespace:Guess.Utils.Resources">

 <Application.Resources>

 <guessFx:LocalizedStrings x:Key="MyStrings" />

 ...

 </Application.Resources>

 ...

</Application>

You can give any arbitrary name to the x:Key attribute, but need to correctly reference the

namespace where the LocalizedStrings class is located. Finally, you bind resource literals to XAML

 elements as static resources. The following example shows how to display a localizable label:

<TextBlock

 Text="{Binding Path=Strings.HomePlayerLabel, Source={StaticResource LocalizedStrings}}" />

For most .NET applications, this work would sufice, but in Windows Phone, you need to take
one more step. In particular, you need to explicitly indicate which languages are supported—having

culture-speciic resource iles is necessary but not suficient.

The annoying thing is that you have no dedicated user interface to do that. So you must open the

.csproj ile in a text editor and manually tweak the content of the <SupportedCultures> element (see

Figure 10-11). The CSPROJ ile is an XML ile that contains information about the project. By default,
the ile contains the following markup:

<Project ToolsVersion="4.0" DefaultTargets="Build"

 xmlns="http://schemas.microsoft.com/developer/msbuild/2003">

 <PropertyGroup>

 ...

 <SupportedCultures>

 </SupportedCultures>

http:///

348 pArt III Mobile Applications

 </PropertyGroup>

</Project>

To add cultures (beyond the neutral language), you insert a semicolon-separated list of culture

identiiers, as shown here:

<SupportedCultures>it-IT;es-ES</SupportedCultures>

Once you save everything and deploy, the system inally will be able to pick up resources for the
current culture intelligently. And, nicely enough, the application will change language as the user

changes the preferred language in the phone settings.

FIGuRE 10-11 Editing the CSPROJ ile to add supported cultures.

the MVVM pattern
In the 1980s, the introduction of the Model-View-Controller (MVC) pattern for the design of

 applications was a milestone. The primary goal of MVC is splitting the application in distinct pieces—

the model, the view, and the controller. The model refers to the data being worked on in the view

and, to a large extent, the state of the application. The view refers to the generation of any graphical

elements displayed to the user and captures and handles any user gestures. The controller maps user

gestures to actions on the model and selects the next view. These three actors are often referred to as

the MVC triad.

Over the years, the MVC pattern evolved into a slightly different pattern such as the Model-View-

Presenter (MVP) pattern. In MVP, the basic idea is the same, but the model is exposed out of the view

through an interface that the presenter commands. MVP today offers a powerful combination of

separation of concerns, code cleanliness, and readability.

The MVP pattern is quite generic and can be adapted to nearly any applications—web, desktop,

mobile—on a variety of software platforms. In the Microsoft ecosystem, the advent of the XAML

http:///

 CHAPTER 10 Developing for Windows Phone 349

technology replaced the classic MVP pattern with an idiomatic version that uses some capabilities of

the XAML technology. This pattern is known as Model-View-ViewModel, or MVVM for short.

Generalities of the pattern

To better understand the mechanics of the MVVM pattern, we should start from its ancestor, the

MVP pattern. The two patterns share the same underlying idea—MVVM is much more technology-

oriented, however, and therefore can be referenced as an idiomatic version of MVP. Figure 10-12

presents the diagram of the MVP pattern.

Presenter

View

Return
values

Invoke
method

View

presenter

Yes No Middle
tier

Model
Model

New view?

Forwards
user

actions

Redirect
to a new

MVP
triad

FIGuRE 10-12 The MVP pattern.

According to the pattern, each screen is articulated in two main elements. The view contains

 interface elements and handles gestures. The presenter performs actions to serve requests captured

by the view. The presenter may invoke back-end services to produce expected responses.

Where’s the model?

In the context of the pattern, the model is deined as the data being worked on in the view. In this
regard, it has very little to do with the data and domain model of the application. In the context of

the pattern, the model is populated by the presenter and is passed to the view for rendering.

The difference between classic MVP and idiomatic MVVM is all in how the model is implemented.

In classic MVP, for each view, you abstract the model to an interface and implement that interface

in the view. As in Figure 10-12, the presenter holds a reference to the view and uses the exposed

interface to pass data to display. The model is not implemented explicitly anywhere, but it is deined
implicitly in the interface shared between the view and the presenter.

More speciically, the presenter computes data interacting with the back end and is then
 responsible for binding that data to the view. Data binding occurs under the control of the presenter

and must be coded explicitly by the developer.

In MVVM, you use the XAML data-binding infrastructure for display. Subsequently, the model

exists as a distinct entity to be linked to the view via XAML elements. Figure 10-13 shows the MVVM

diagram for Windows Phone and other XAML-based applications (e.g., WPF and Silverlight). The

 presenter becomes the View-Model. The presenter exposes public properties for the XAML-based

http:///

350 pArt III Mobile Applications

view to bind to. The presenter receives commands from the view and performs actions against the

business logic layer of the application.

Invokes a
method
according to
the user
action

Forwards user
actions Data binding

Back end

View

ViewModel

Methods

properties

FIGuRE 10-13 The MVMM pattern.

Important Personally, I consider MVVM a misleading name. MVVM is a name that some

team at Microsoft started using at some point to reinforce a design approach that was

 already known as Presentation Model. Presentation Model and MVVM specialize the

MVP pattern by merging Model and Presenter so that a direct binding connection can

 exist between the view and the presentation model. I consider MVVM a misleading name

 because it contains the word model twice. You don’t have two models—you have just one

model that describes the data being bound to the view. This model is incorporated in a

component that also exposes actions for the view to invoke.

Design of the View-Model Class

MVVM is considered a best programming practice for XAML-based applications. It is not a must,

however. In general, a pattern does not add value per se; the value of using patterns is in what they

may produce: increased readability, testability, and extensibility (in a word, quality) of the code.

In Windows Phone, you can write great code with or without MVVM; but if you follow the MVVM

 approach, you have a sure step to great code.

To implement MVVM in a Windows Phone, you have just three basic rules to follow. First, associate

each screen (be it a page, a user control, or a pop-up) with an ad hoc presenter class; second, make

the presenter class available to the XAML elements. Third, use the XAML data-binding syntax to link

portions of the user interface with public properties on the presenter class. And, by the way, once

you’re there, stop using the word presenter and replace it with view-model. Figure 10-14 describes the

architecture of MVVM in the context of a XAML-based project.

http:///

 CHAPTER 10 Developing for Windows Phone 351

SampleViewModel.cs

Back end

Sample.xaml

Data binding

Method binding

ViewModel
instance

UI
elements

FIGuRE 10-14 MVVM in a XAML-based project.

The view-model class has methods and properties that serve the need of the view.

Let’s consider a view like that of Figure 10-15, where the user has to enter the name of the player

and the level of the game. Finally, the user can click a button to start the game. (This is the home

screen of the sample application that will be explored more in depth in a moment.)

FIGuRE 10-15 A sample view.

The view-model class for this view may be as follows:

public class HomeViewModel : INotifyPropertyChanged

{

 public String PlayerName { get; set; }

 public GameLevel Level { get; set; }

 public Boolean IsBasic

 {

 get { return Level == GameLevel.Basic; }

 set {

 Level = GameLevel.Basic;

 OnPropertyChanged("IsBasic");

 }

 }

 public Boolean IsMedium

 {

 get { return Level == GameLevel.Medium; }

 set {

 Level = GameLevel.Medium;

 OnPropertyChanged("IsMedium");

http:///

352 pArt III Mobile Applications

 }

 }

 public Boolean IsSuper

 {

 get { return Level == GameLevel.Super; }

 set {

 Level = GameLevel.Super;

 OnPropertyChanged("IsSuper");

 }

 }

 public void Start()

 {

 if (String.IsNullOrEmpty(PlayerName))

 {

 MessageBox.Show(Literals.GlobalMissingPlayerName);

 return;

 }

 App.MainPage.NavigationService.Navigate(

 new Uri("/views/game/gamescreen.xaml", UriKind.Relative));

 }

 // More code

 ...

}

The class has a property—PlayerName—for the name of the player, and a property—Level—that

indicates the level of game. The player name is bound to the text box in the user interface; what

about the radio buttons used to set the level? How would you bind them?

A possibility is adding view-speciic properties such as IsBasic. The property returns a Boolean

value when read: true if the current level is Basic; false otherwise. When set, the property would just

set Level to the speciic value the radio button represents.

The Start method instead triggers the behavior expected for when the user taps the Start button—

in this case, navigating to the actual gaming screen.

the Data-Binding Engine

The second step of implementing MVVM requires that we make the view-model class available to the

XAML elements. This can be done either declaratively by adding a new resource to the XAML ile or
programmatically from within the code-behind class of the view. Here’s the code to do that:

public partial class HomeScreen : UserControl

{

 private readonly HomeViewModel _viewModel;

 public HomeScreen()

 {

 InitializeComponent();

 startButton.Click += startButton_Click;

 _viewModel = new HomeViewModel();

 DataContext = _viewModel;

 }

http:///

 CHAPTER 10 Developing for Windows Phone 353

 void startButton_Click(Object sender, RoutedEventArgs e)

 {

 _viewModel.Start();

 }

}

Any XAML element has a DataContext property that represents the source of data-binding

 expressions used within the boundaries of the element. In this case, we’re deining the view-model
class as the source of data-binding expressions used in the XAML of the entire screen. Furthermore,

the Start method of the view-model class is bound to the Start button in the view.

The third step of MVVM is using the XAML-binding syntax to connect visual elements and public

properties of the view-model. Here’s how to set the player name and game level:

<TextBox x:Name="playerName"

 Text="{Binding Path=PlayerName, Mode=TwoWay}"

 InputScope="PersonalSurname" />

<RadioButton x:Name="levelBasic" GroupName="Level"

 Content="{Binding Path=Strings.HomeLevelBasic,

 Source={StaticResource LocalizedStrings}}"

 IsChecked="{Binding Path=IsBasic, Mode=TwoWay}" />

...

The Binding keyword sets a binding between the visual element and the value of the bound expression.

If the two-way mode is used, then changes entered by the user to the user interface are automatically

propagated back to the linked view-model property. For the bidirectional binding to work, the view- model

class also needs to implement the INotifyPropertyChanged interface. In this way, the view-model can

 notify binding clients that a property value has changed. Note the following code:

public class HomeViewModel : INotifyPropertyChanged

{

 ...

 public event PropertyChangedEventHandler PropertyChanged;

 public void OnPropertyChanged(String property)

 {

 var handler = PropertyChanged;

 if (handler != null)

 {

 handler(this, new PropertyChangedEventArgs(property));

 }

 }

}

You can download the companion code for this chapter for a full implementation of the MVVM

pattern in the context of a full application.

Examining a Sample Application
Let’s look at what it takes to build the same application from Chapter 8, “Developing for iOS,” and

Chapter 9, “Developing for Android,” for Windows Phone. As you may recall, Guess implements the

old game of guessing a secret number. It supports various levels, each of which corresponds to a

http:///

354 pArt III Mobile Applications

larger interval for the number to guess. Best scores achieved with the phone are then stored and

displayed in a separate screen. Figure 10-16 shows the main screen and the game screen of the

 application.

FIGuRE 10-16 The Guess application in action.

As you can see, Guess for Windows Phone is a pivot application. It consists of a Home view, where

you enter the player’s name, and a Play view, where you enter a number and get a response. A Scores

view and an About view complete the application.

the home View

Guess is a pivot application, but it uses a custom template for the pivot. The custom template just

adds a personalized header with a gradient and a small icon. You deine a custom style for the pivot
in App.xaml, as shown here:

<Style x:Key="guessPivot" TargetType="controls:Pivot">

 <Setter Property="Template">

 <Setter.Value>

 <ControlTemplate TargetType="controls:Pivot">

 <Grid HorizontalAlignment="{TemplateBinding HorizontalAlignment}"

http:///

 CHAPTER 10 Developing for Windows Phone 355

 VerticalAlignment="{TemplateBinding VerticalAlignment}">

 <Grid.RowDefinitions>

 <RowDefinition Height="Auto"/>

 <RowDefinition Height="Auto"/>

 <RowDefinition Height="*"/>

 </Grid.RowDefinitions>

 <Grid Grid.Row="0" Background="{StaticResource captionBrush}">

 <!-- New caption bar -->

 <Grid>

 <controlsPrimitives:PivotHeadersControl x:Name="HeadersListElement"

 Grid.Row="1"/>

 <ItemsPresenter x:Name="PivotItemPresenter"

 Margin="{TemplateBinding Padding}"

 Grid.Row="2"/>

 </ControlTemplate>

 </Setter.Value>

</Style>

By default, the pivot is made of three rows—the title, the header with scrollable items, and the

content. All we did was replace the topmost area to make it bigger and styled differently.

Each pivot child view is represented as a user control. The pivot is composed in the main

 application page. In the constructor of the main application page, you also register a handler for the

selection-change event of the pivot, as follows:

private void Pivot_SelectionChanged(Object sender, SelectionChangedEventArgs e)

{

 var pivot = sender as Pivot;

 if (pivot == null)

 return;

 var index = pivot.SelectedIndex;

 if (index >= 0)

 {

 // Configure the application bar for the pivot item

 GuessAppBarHelpers.SetupFor(this, index);

 }

}

The handler is mainly responsible for adjusting the application bar when a new pivot item is

 selected. In the main page, you also implement the Back-and-Save pattern (see Chapter 7). The

OnBackKeyPress event ires whenever the user taps the Back button while on the home page. Note
that the home page is the current page when any of the pivot items is selected. A handy feature could

be navigating back to the irst tab when Back is hit, and exiting if Back is hit from the irst tab. In any
case, you might want to save any relevant state when the Back button is hit. Look at this code:

protected override void OnBackKeyPress(CancelEventArgs e)

{

 // Save state

 App.StateManager.Save();

 // Are we on the root pivot item?

 var pivotIndex = guessPivot.SelectedIndex;

 if (pivotIndex > 0)

http:///

356 pArt III Mobile Applications

 {

 GoToHomeScreen();

 e.Cancel = true;

 return;

 }

 base.OnBackKeyPress(e);

}

Unlike in iOS and Android, in Windows Phone you can access visual elements programmatically, by

name, directly from the code-behind class. Not that the work required to set up references in other

mobile platforms is not necessary in Windows Phone; more simply, this work is done automatically by

Visual Studio. Here’s the code that checks whether a non-empty player name has been entered:

public void Start()

{

 if (String.IsNullOrEmpty(PlayerName))

 {

 MessageBox.Show(Literals.GlobalMissingPlayerName);

 return;

 }

 App.MainPage.NavigationService.Navigate(

 new Uri("/views/game/gamescreen.xaml", UriKind.Relative));

}

To move to a different page, you use the navigation service and point it to the URI of the XAML

ile. The navigation service is exposed from the Windows Phone main page class. If you use the
MVVM pattern, you may not have a reference to the page available. For this reason, you might ind it
helpful to deine a bunch of global references to the various screens of the application:

public partial class App : Application

{

 public static GuessMainPage MainPage;

 ...

}

Finally, keep in mind that as a developer, you always should strive to make input as easy as possible

for users. Picking up the most convenient keyboard layout is the primary aspect of this effort. The text

box for the player name is expected to accept a string like a person’s name. In Windows Phone, you

control the input scope of the keyboard through the InputScope property. A good selection for the

input scope when a name is being accepted by the input ield is PersonalSurname, which does its best

to help you enter a person’s last name; speciically, it automatically uses an uppercase letter at the
beginning and another one after each space (see Figure 10-17):

<TextBox x:Name="playerName" InputScope="PersonalSurname" ... />

http:///

 CHAPTER 10 Developing for Windows Phone 357

FIGuRE 10-17 Typing a name.

When designing a mobile user interface, you always should pay attention to the effects of the

 keyboard on the user interface. In particular, you don’t want the keyboard to cover either the text box

itself or a relevant button. Consider that the soft keyboard never covers the application bar. Windows

Phone attempts to do a bit of work to ensure that the focused control is not covered. You should

double-check that everything happens as you want it to. Failing here likely would cause users to rate

your application poorly because the application becomes very hard to use.

the play View

When the user taps the Start button, the application saves the player name and level as default

 settings for future games and displays the gaming screen. The game screen just reads any data it

needs from the storage; you have no need to pass data explicitly over the navigation system. (There

will be more information on saving settings later in this chapter.)

The sample application consumes the logic of the game from a speciic class that is responsible
for generating the secret number, counts hints and attempts, updates the current range for user’s

 feedback, and calculates the inal score (see Figure 10-18).

http:///

358 pArt III Mobile Applications

FIGuRE 10-18 A digits-only keyboard for guessing a number.

The application guides the user to guessing the number, providing accurate feedback. If you enter

a value outside the current range, the device vibrates:

public void NewAttempt()

{

 var number = AttemptedNumber;

 var isValid = _currentGame.IsValidAttempt(number);

 if (!isValid)

 {

 // Vibrate (300ms)

 VibrateController.Default.Start(300.Milliseconds());

 return;

 }

 var success = _currentGame.MakeAttempt(number);

 if (!success)

 {

 Update();

 return;

 }

 // You won!

 ...

}

http:///

 CHAPTER 10 Developing for Windows Phone 359

The application bar—adapted to the context—offers a button to request a hint. At any time, you

can quit the game and learn the secret number. You can quit the game from the application bar or

by tapping the question-mark button in Figure 10-18. When you do so, a little animation reveals the

secret number (see Figure 10-19).

FIGuRE 10-19 An animated message box displayed when the game is over.

You deine an animation as a XAML storyboard resource as follows:

<Storyboard x:Key="QuitPanelAnimation">

 <DoubleAnimation x:Name="Anim1"

 From="100"

 To="0"

 Duration="0:0:0.10"

 Storyboard.TargetProperty="Width"

 AutoReverse="False" />

</Storyboard>

http:///

360 pArt III Mobile Applications

The sample animation moves the value of the Width property from 0 to 100 percent in a fraction

of time. The animation XAML, though, doesn’t say much about the holder of the Width property. That

has to be set in code; this makes it possible for you to reuse the same animation for various targets:

internal void ToggleQuitPanel()

{

 // Set the target UI element being animated via the storyboard

 var storyboard = (Storyboard)Application.Current.Resources["QuitPanelAnimation"];

 Storyboard.SetTarget(storyboard.Children.ElementAt(0) as DoubleAnimation, quitPanel);

 EventHandler ehOpening = null;

 EventHandler ehClosing = null;

 ehOpening = (s, e1) =>

 {

 storyboard.Stop();

 storyboard.Completed -= ehOpening;

 quitMessage.Visibility = Visibility.Visible;

 secretNumber.Text = String.Format("{0:#,#}", _viewModel.SecretNumber);

 quitImage.Visibility = Visibility.Collapsed;

 };

 ehClosing = (s, e1) =>

 {

 storyboard.Stop();

 storyboard.Completed -= ehClosing;

 quitMessage.Visibility = Visibility.Collapsed;

 secretNumberText.Text = String.Empty;

 quitImage.Visibility = Visibility.Visible;

 };

 if (quitPanel.Margin.Left == 0)

 {

 storyboard.Completed += ehClosing;

 }

 else

 {

 storyboard.Completed += ehOpening;

 }

 // Start animation

 storyboard.Begin();

}

You also need to deine handlers for when the animation ends. The handler will inalize graphical
settings, such as displaying the secret number in an initially hidden panel.

When the user inally inds the secret number, a pop-up dialog box displays with a summary of the

game:

// You won!

var dialog = new WinDialog(_currentGame);

dialog.Focus();

DialogManager.Show(_view, dialog);

http:///

 CHAPTER 10 Developing for Windows Phone 361

DialogManager is a helper class that internally uses an instance of the Popup class. The actual

 content of the dialog box is provided through a user control. Here’s the code that prepares and

 displays the pop-up box:

public static void Show(PhoneApplicationPage page, UserControl content)

{

 _page = page;

 if (_popupWindow == null)

 _popupWindow = new Popup();

 var colorBrush = new SolidColorBrush(Colors.Black) {Opacity = 0.75};

 var overlay = new Canvas { Background = colorBrush };

 overlay.Children.Add(content);

 _popupWindow.Child = overlay;

 _popupWindow.IsOpen = true;

}

The preceding code also dims the underlying screen, thus providing a full modal effect, as in

 Figure 10-20.

FIGuRE 10-20 The dialog box that the winner sees.

http:///

362 pArt III Mobile Applications

You don’t need to do much in the handler of the New button in Figure 10-20: you simply reset the

game and dismiss the pop-up box. It is more interesting, instead, what you do in the handler of the

Scores button. You are currently on the Game page, and you want to return to the main page—the

pivot page—and select a particular tab.

Simply navigating back to the main page may not be enough. You need to identify which tab you

want selected. To do that, you can use query string parameters, as shown here:

public void ViewScores()

{

 var urlBase = String.Format("/views/guessmainpage.xaml?{0}=1", App.PivotIndexKey);

 App.MainPage.NavigationService.Navigate(new Uri(urlBase, UriKind.Relative));

}

You use a ixed query string parameter name and set it to 1—the index of the Scores tab in the
pivot window. Whenever the user navigates to a page, Windows Phone ires the OnNavigatedTo event

to the target page:

protected override void OnNavigatedTo(NavigationEventArgs e)

{

 var index = 0;

 if (NavigationContext.QueryString.ContainsKey(App.PivotIndexKey))

 {

 index = NavigationContext.QueryString[App.PivotIndexKey].ToInt();

 }

 if (index >0)

 guessPivot.SelectedIndex = index;

 base.OnNavigatedTo(e);

}

You retrieve the query string parameter from the QueryString dictionary and select the proper tab.

the Scores View

The Scores view consists essentially of a list of data items. In Windows Phone, you just arrange a view

with a ListBox and proceed with data binding. For a nice effect, though, you might want to customize

the template of the list items, as follows:

<ListBox x:Name="ScoreListBox"

 ItemsSource="{Binding History}">

 <ListBox.ItemTemplate>

 <DataTemplate>

 <StackPanel Orientation="Vertical">

 <Grid Width="430">

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="200"></ColumnDefinition>

 <ColumnDefinition Width="220"></ColumnDefinition>

 </Grid.ColumnDefinitions>

 <TextBlock Grid.Column="0"

 Text="{Binding PlayerName}" >

 <TextBlock TextAlignment="Right"

 Grid.Column="1"

 Text="{Binding Score,

 Converter={StaticResource NumberWithThousands}}" />

http:///

 CHAPTER 10 Developing for Windows Phone 363

 <TextBlock TextAlignment="Right"

 Grid.Column="1"

 Text="{Binding Level}" />

 <TextBlock Grid.Column="0"

 Text="{Binding DateOfScore,

 Converter={StaticResource NiceDate},

 ConverterParameter='ddd dd MMM yyyy, HH:mm:ss'}" />

 </Grid>

 <Rectangle Fill="#0ff" Grid.ColumnSpan="2" />

 </StackPanel>

 </DataTemplate>

 </ListBox.ItemTemplate>

</ListBox>

The data template is made of two columns. The leftmost column displays the player name and the

date underneath. The rightmost column displays the score and the level underneath.

The data source of the list box is an array of ScoreInfo objects, deined as shown here:

public class ScoreInfo

{

 public String PlayerName { get; set; }

 public DateTime DateOfScore { get; set; }

 public GameLevel Level { get; set; }

 public Int32 Score { get; set; }

}

A ScoreInfo instance is created whenever some user wins a game. The newly created instance is

then added to the application data and saved to the local storage. When the Scores view is being

displayed, the list of saved scores is retrieved, sorted, and bound to the list box.

The list-box data template ends up displaying dates and numbers. What about formatting? You

have two options: you can modify ScoreInfo to expose preformatted strings instead of speciic types,
or you can use XAML converters.

Note XAML converters make particular sense when you’re using MVVM. If you’re doing

manual data binding, then the logic that you would put in a converter is a constituent part

of your manual data-binding code.

A XAML converter is a plain class that converts values of one type to values of another type. In

doing so, a converter may apply any transformation you wish. Here’s an example for converting a

number to a string placing separators for thousands:

public class ThousandsConverter : IValueConverter

{

 // From Int32 to String

 public Object Convert(Object value, Type targetType, Object parameter, CultureInfo culture)

 {

 return String.Format("{0:#,#}", value);

 }

http:///

364 pArt III Mobile Applications

 // From String back to Int32

 public Object ConvertBack(Object value, Type targetType, Object parameter,

 CultureInfo culture)

 {

 Int32 number;

 return Int32.Parse((String) value);

 }

}

In this case, the converter is quite speciic, and the formatting logic is hard-coded. You also can
have more parametric converters. Here’s one that converts dates to strings and that accepts the date

format as a parameter:

public class DateConverter : IValueConverter

{

 public Object Convert(Object value, Type targetType, Object parameter, CultureInfo culture)

 {

 return parameter == null

 ? ((DateTime) value).ToString("dd MMM yyyy HH:mm:ss")

 : ((DateTime) value).ToString(parameter as String);

 }

 public Object ConvertBack(Object value, Type targetType, Object parameter,

 CultureInfo culture)

 {

 return DateTime.Parse((String)value);

 }

}

The XAML data-binding syntax has speciic placeholders for converters and related parameters.
Here you create score items with dates and thousand separators:

<TextBlock Grid.Column="0"

 Text="{Binding DateOfScore,

 Converter={StaticResource NiceDate},

 ConverterParameter='ddd dd MMM yyyy, HH:mm:ss'}" />

<TextBlock TextAlignment="Right"

 Grid.Column="1"

 Text="{Binding Score, Converter={StaticResource NumberWithThousands}}" />

The NiceDate name in the code snippet seems an odd element. That’s why we have one more step

to accomplish: you must expose converter instances to the XAML parser by registering converter

instances as resources in the local XAML ile or, if necessary, at the application level. In doing so, you
give instances a name such as NiceDate:

<UserControl.Resources>

 <amse:ThousandsConverter x:Key="NumberWithThousands" />

 <amse:DateConverter x:Key="NiceDate" />

</UserControl.Resources>

As mentioned, the list of scores is maintained as an array of ScoreInfo objects. The list is persisted

as part of the application data. When read from storage, the scores are unordered. You can use the

http:///

 CHAPTER 10 Developing for Windows Phone 365

LINQ syntax to sort in any way a list of objects. Here’s a snippet from the view-model class behind the

Scores screen:

public class ScoreViewModel : INotifyPropertyChanged

{

 public IList<ScoreInfo> History

 {

 get

 {

 return (from s in App.StateManager.Current.History

 orderby s.Score descending

 select s).ToList();

 }

 }

 ...

}

Figure 10-21 shows the inal Scores screen in Guess for Windows Phone.

FIGuRE 10-21 The Scores view.

http:///

366 pArt III Mobile Applications

From the application bar, you start a new game and clear the history of the game on the phone. To

start a new game, you just select the Games tab. Clearing the history is not a big deal per se; however,

it poses the issue of refreshing the list box right after the click. Look at this code:

public void ClearScores(Object sender, EventArgs e)

{

 // Retrieves and clears the list of scores from storage

 var history = new List<ScoreInfo>(App.StateManager.Current.History);

 history.Clear();

 // Saves empty list back

 App.StateManager.Current.History = history;

 // Refresh the UI

 App.TheScoreScreen.Refresh();

}

For the moment, let’s skip the StateManager object in the snippet; this topic will be covered in the

section titled “Permanent Data Storage,” below. Let’s say it represents our access point to the phone’s

local storage. To refresh the user interface, you simply reset the data context of the view:

public void Refresh()

{

 DataContext = new ScoreViewModel();

}

Changing the data context has the effect of redrawing the user interface immediately.

Other programming topics
The sample Guess application touches on a variety of aspects of mobile and Windows Phone

 programming. The list of hot topics, though, doesn’t end here. Frankly, we can’t call the overview

of the Guess application complete until we go into the details of the storage layer. In this section,

however, network access and common tasks such as sending an email or an SMS, or connecting to the

marketplace, will be discussed.

permanent Data Storage

A mobile platform usually offers three different ways to save data permanently: Windows Phone is no

exception. You have a plain simple dictionary model in the ApplicationSettings object, which is appro-

priate for a small amount of partially related data, such as player name and game level in the previous

example. ApplicationSettings is a property of the IsolatedStorageSettings class. Here’s how you use it:

IsolatedStorageSettings appSettings = IsolatedStorageSettings.ApplicationSettings;

appSettings.Add("player", "Dino");

You also have methods to read and delete an entry. The ApplicationSettings class is a string/
object dictionary. It can contain any .NET object, so long as it is serializable. The beauty of

 ApplicationSettings is that is doesn’t require you to (explicitly) care about saving and loading:

 persistence happens automatically. Application settings are stored locally on the phone.

http:///

 CHAPTER 10 Developing for Windows Phone 367

For data that doesn’t it the dictionary model, you might want to try streams or relational tables.
Let’s ind out more about streams. Compared to a dictionary, streams have the power of a much

 larger lexibility of the schema. You are not limited to a name/value schema and can deine lexibly
the relevant state of the application that you intend to persist. Next, you face the problem of

 serializing that relevant state to the phone storage.

In Guess, the relevant state is deined as follows:

public class GuessInternalState

{

 public GuessInternalState()

 {

 PlayerName = "???";

 Level = GameLevel.Basic;

 SecretNumber = -1;

 History = new List<ScoreInfo>();

 }

 public String PlayerName { get; set; }

 public GameLevel Level { get; set; }

 public Int32 Hints { get; set; }

 public Int32 Attempts { get; set; }

 public Int32 SecretNumber { get; set; }

 public IList<ScoreInfo> History { get; set; }

}

You now need an infrastructure that can save and reload this class to and from storage. It should

come as no big surprise that the necessary code is quite generic and can be written in a highly

 reusable way. The Guess sample application comes with the following class, which saves a generic

class called T to a given ile in the isolated storage:

public class StorageManager<T>

{

 private readonly String _applicationDataFile;

 public StorageManager() : this("AppDataFile.dat")

 {

 }

 public StorageManager(String fileName)

 {

 _applicationDataFile = fileName;

 }

 public void Save(T data)

 {

 SaveDataToStorage(_applicationDataFile, data);

 }

 public T Load()

 {

 return LoadDataFromStorage(_applicationDataFile);

 }

 // More implementation details here

 ...

}

http:///

368 pArt III Mobile Applications

To save and load, you can use JavaScript Object Notation (JSON) serialization and the stream’s API:

protected virtual Boolean SaveDataToStorage(String file, T data)

{

 // Iso store reference

 var isoStore = default(IsolatedStorageFile);

 // Result of the whole operation

 var result = false;

 // Create the serializer object.

 var serializer = new DataContractJsonSerializer(typeof(T));

 // Grabs the handle to the isolated storage, creates the file, and stores data.

 try

 {

 using (isoStore = IsolatedStorageFile.GetUserStoreForApplication())

 {

 using (var targetStream = isoStore.OpenFile(file, FileMode.Create))

 {

 serializer.WriteObject(targetStream, data);

 result = true;

 }

 }

 }

 catch (InvalidDataContractException)

 {

 if (isoStore != null)

 isoStore.DeleteFile(file);

 }

 catch (SerializationException)

 {

 if (isoStore != null)

 isoStore.DeleteFile(file);

 }

 catch

 {

 // Possible exceptions are: IsolatedStorageException | DirectoryNotFound

 }

 // Returns outcome of the operation

 return result;

}

And here’s how you read the data back:

protected virtual T LoadDataFromStorage(String file)

{

 // Iso store reference

 var isoStore = default(IsolatedStorageFile);

 // Initialize the object to return.

 var data = default(T);

 // Create the serializer object.

 var serializer = new DataContractJsonSerializer(typeof(T));

http:///

 CHAPTER 10 Developing for Windows Phone 369

 // Grabs handle to the isolated storage, opens the file (if existing) and reads data.

 try

 {

 using (isoStore = IsolatedStorageFile.GetUserStoreForApplication())

 {

 if (isoStore.FileExists(file))

 {

 using (var stream = isoStore.OpenFile(file, FileMode.Open))

 {

 data = (T) serializer.ReadObject(stream);

 }

 }

 }

 }

 catch (NullReferenceException)

 {

 // code

 }

 catch (IsolatedStorageException)

 {

 if (isoStore != null)

 isoStore.DeleteFile(file);

 }

 // Returns data

 return data;

}

In the companion code of this book, these classes are buried in a reusable Windows Phone library.

How would you manage storage from the application? To offer a simple programming interface to

the developer, you can add another layer of code, as shown here:

public class StateManager<T> where T:class, new()

{

 private static readonly StorageManager<T> Storage = new StorageManager<T>();

 private static T _state;

 public void Save()

 {

 if (_state == null)

 return;

 Storage.Save(_state);

 }

 public void Load()

 {

 _state = Storage.Load() ?? new T();

 }

 public void Clear()

 {

 _state = new T();

 Storage.Save(_state);

 }

 public void Reset()

http:///

370 pArt III Mobile Applications

 {

 Clear();

 Load();

 }

 public T Current

 {

 get { return _state ?? (_state = new T()); }

 }

}

At this point, any user application like Guess requires a single step to set up storage (in addition to

linking the library with the storage framework). You deine the class that describes the relevant state
(i.e., GuessInternalState) and provide a static entry point in the storage layer:

public partial class App : Application

{

 public static StateManager<GuessInternalState> StateManager =

 new StateManager<GuessInternalState>();

 ...

}

To load and save the state, you use the following code:

// Load the state

App.StateManager.Load()

...

// Save the state

App.StateManager.Save();

Finally, in Windows Phone, you still have some options for storing data relationally. In Windows

Phone 7.5, an application can use LINQ to SQL to store relational data in a local Microsoft SQL Server

Compact edition database. The procedure requires that you start by writing all database-related

classes, such as tables and data context. If you’re familiar with LINQ to SQL, that means writing

 manually all the classes that the Data Import Wizard in Visual Studio would write for you in a LINQ to

SQL .NET project.

Next, you create a new database ile in the isolated storage. This has to be an empty .sdf ile
by default. You use the stream API to do this. Finally, you use the LINQ to SQL API to populate the

 database. Data will be stored in the isolated storage. Note that although Windows Phone 7.5 supports

most LINQ to SQL features, some limitations still apply. Check it out at http://goo.gl/oF6RS.

Note In Windows Phone 7, you don’t have native support for SQL Server Compact edition,

but you still can rely on some other option, one of which is certainly SQLite. Note, though,

that SQLite support on Windows Phone 7 is not well established, as it is on iOS and

Android. You might want to resort to some Object/Relational Mapper (O/RM) facade that
wraps up many of the details—an example is CoolStorage. You also might want to consider

some other alternatives, such as Sterling (see http://sterling.codeplex.com).

http:///

 CHAPTER 10 Developing for Windows Phone 371

Accessing the Network

In a mobile application, the network comes and goes—and especially will change (from WiFi to

GPRS and vice versa). This self-evident fact creates two key consequences for developers: the need to

always check the network before participating in Internet operations, and the responsibility to ensure

that the application works well even in the absence of connectivity. It is an ugly experience to launch

a mobile application only to receive a cursory message box explaining that the application can’t work

because of an unspeciied network error.

In mobile, network connectivity can be of different types: for example, it can be based on WiFi

or General Packet Radio Service (GPRS). Different qualities of connectivity may make you choose a

 different strategy to implement the same operation. You probably can ignore the type of network

if all you need to place is a GET call to grab a couple of strings. If you’re planning a large upload

or download, then you might want to reconsider the algorithm and implement a compensation

 mechanism to try again and again until the whole mass of data has been moved.

Furthermore, as network changes happen asynchronously with respect to the application, you

should be able to detect changes to the network state as they happen. This is beneicial because it
makes your application highly responsive as the network-related parts of the user interface turn on

and off with the network state.

Windows Phone offers two slightly different APIs for version 7.0 and 7.5. The API available in

Windows Phone 7.5 is more phone-oriented and exposes more detailed information. No API, though,

offers a direct method that reliably answers the fundamental question: whether you can safely start

a network operation. In other words, the entire Windows Phone network-checking API is based on

detected capabilities rather than effective capabilities.

So the API offers the following method to check network availability:

// Use this in Windows Phone 7.5

if (!DeviceNetworkInformation.IsNetworkAvailable)

{

 // You can't perform a network operation

 ...

}

// Use this in Windows Phone 7.0

if (!NetworkInterface.GetIsNetworkAvailable())

{

 // You can't perform a network operation

 ...

}

The Boolean response that you get in both cases refers to the availability of some network of

some type. It doesn’t tell you whether you have effective access to the Internet. More, it may return

true even if you are not connected to any network, but networks are available. Here’s a much more

 effective way to check whether you can start a network operation:

http:///

372 pArt III Mobile Applications

private static Boolean IsConnected()

{

 var networkType = NetworkInterface.NetworkInterfaceType;

 return networkType != NetworkInterfaceType.None;

}

The network type is quite speciic about the network interface—WiFi, Ethernet, mobile broadband,
and more. In Windows Phone 7.5, you ind simpler functions that just answer common questions:

DeviceNetworkInformation.IsWIFIEnabled

DeviceNetworkInformation.IsCellularDataEnabled

DeviceNetworkInformation.IsCellularDataRoamingEnabled

For detecting network changes, you can rely on the following global handler:

NetworkChange.NetworkAddressChanged += new NetworkChange_NetworkAddressChanged;

With the preceding line, you register your own handler for a system event that ires whenever the
network address changes:

void NetworkChange_NetworkAddressChanged(Object sender, EventArgs e)

{

 // Detect the current network type

 var type = Microsoft.Phone.Net.NetworkInformation.NetworkInterface.NetworkInterfaceType;

 // Decide what to do ...

 switch(type)

 {

 case NetworkInterfaceType.Wireless80211:

 ...

 }

}

This API works in any version of Windows Phone. The latest Windows Phone 7.5 has a slightly

 different event handler that also speciies the type of change—connection, disconnection, or change
of characteristics. Using this event handler, along with an effective strategy to detect effective

 connectivity, you can adjust the user interface and disable buttons that perform network tasks.

placing http Calls

The Windows Phone programming interface for network operations is entirely asynchronous. If you feel

you need a synchronous API because you have a sequential worklow of operations to implement, well,
you’d better spend your time trying to work out your own chainable sequence of operations on top of

existing async API rather than exploring tricks to make an async API work synchronously.

Windows Phone offers two classes for networking operations: WebClient and HttpWebRequest. The

latter gives you total freedom of arranging whatever Hypertext Transfer Protocol (HTTP) call you may

need. The former just offers a simpliied programming interface, but it doesn’t support all possible HTTP
use-cases. A simple rule of thumb can be to try using WebClient, and if you can’t ind a solution quickly,
then upgrade to HttpWebRequest. Here’s an example of using WebClient to download a string:

http:///

 CHAPTER 10 Developing for Windows Phone 373

var url = ...;

var client = new WebClient();

client.DownloadStringCompleted += client_DownloadStringCompleted;

client.DownloadStringAsync(new Uri(url, UriKind.Absolute));

The response is received by the speciied callback function:

void client_DownloadStringCompleted(Object sender, DownloadStringCompletedEventArgs e)

{

 var responseAsString = e.Result;

 ...

}

At the end of a HTTP operation, you probably want to update the user interface. There are some

threading issues to consider. With WebClient, the callback is invoked on the same thread—whether it

is the UI main thread or a background thread. From a background thread, you can’t update the user

interface directly. Instead of just updating controls, as shown here:

labelNumber.Text = someNumber;

you resort to the following:

Dispatcher.BeginInvoke(() => { labelNumber.Text = someNumber; };

Cross-thread access will throw an exception.

Note To stay on the safe side with Internet operations, I recommend that you always wrap

any operation in a try/catch block. This will prevent issues from incorrect detection of

 connectivity, but also issues due to async changes of connectivity type.

If the web request doesn’t fall in the range of solutions supported by WebClient, you then can

choose to use HttpWebRequest. Because of the async programming interface, arranging a call to

HttpWebRequest is a bit annoying. The following code shows how to prepare a call:

var request = WebRequest.CreateHttp(url);

request.Method = "POST";

var package = new UploadPackage {Request = request, Parameters = parameters, UiWindow = ui};

request.BeginGetRequestStream(a => GetRequestStreamCallback(a, dataToPost), package);

The last instruction ends the preliminary phase of preparing the request. When the speciied
callback ires, you can start populating the body of the request. It is recommended that you wrap any
data to write in the body in a helper structure, such as UploadPackage in this example:

private static void GetRequestStreamCallback(IAsyncResult asyncResult, Byte[] postData)

{

 try

 {

 var package = (UploadPackage) asyncResult.AsyncState;

 var request = (HttpWebRequest) package.Request;

 var postStream = request.EndGetRequestStream(asyncResult);

http:///

374 pArt III Mobile Applications

 // Write to the request stream

 postStream.Write(postData, 0, postData.Length);

 postStream.Close();

 // Start the asynchronous operation to get the response

 request.BeginGetResponse(GetResponseCallback, package);

 }

 catch (WebException webException)

 {

 ...

 }

 catch (InvalidOperationException e)

 {

 ...

 }

}

Finally, another callback—GetResponseCallback—will give you access to any response. Note that in

this example, the data to write in the body of the request has been passed as an array of bytes. This is

a valid approach if you have, say, an image to upload.

Common tasks

In Windows Phone, common tasks are grouped in two categories of API: launchers and choosers.

A launcher is a common piece of the system user interface that launches a task in a ire-and-forget
manner. The typical example is opening a browser window to a given URL:

var web = new WebBrowserTask { URL = "http://www.expoware.org/mobile" };

web.Show();

Another great example of a launcher is the common dialog box that appears when sending an

email:

var body = ...;

var subject = ...;

var email = new EmailComposeTask

 {

 To = "support@contoso.com",

 Body = body,

 Subject = subject

 };

email.Show();

Nicely enough, both the email and SMS composer dialog boxes let you set some ields to
programmatically determined values.

A chooser, instead, is a dialog box that is expected to return a value to the caller application. For

example, the application starts the camera so that the user can snap a photo. Once done, the control

returns to the application, which is given a chance to access the photo:

var task = new CameraCaptureTask();

task.Completed += cameraCaptureTask_Completed;

task.Show();

http:///

 CHAPTER 10 Developing for Windows Phone 375

Executing the preceding code opens the camera application so that the user can take a picture. As soon

as the picture is accepted, the control reverts to the application and the completed callback is invoked:

public static void cameraCaptureTask_Completed(Object sender, PhotoResult e)

{

 if (e.TaskResult == TaskResult.Cancel)

 {

 if (e.Error != null)

 MessageBox.Show(e.Error.Message);

 return;

 }

 if (e.TaskResult == TaskResult.None)

 {

 MessageBox.Show(LiteralResources.ErrorPhotoChooserTask);

 return;

 }

 if (e.TaskResult == TaskResult.OK && e.ChosenPhoto != null)

 {

 // e.ChosenPhoto is the stream with the captured image

 ...

 }

}

Similarly, you can pick up an email address from the list of user contacts:

var emailChooserTask = new EmailAddressChooserTask();

emailChooserTask.Completed += emailChooserTask_Completed;

emailChooserTask.Show();

The callback receives the email of the selected contact and can process it as expected.

Deploying Windows Phone Applications

Now, let’s ind out more about what it takes to test and distribute a Windows Phone application.

testing the Application
To test your application through the Windows Phone emulator, there are no prerequisites other than

having the necessary tools up and running. To test the application on a real device, at a minimum,

you need to be a registered App Hub developer. That’s not enough, though, as you also need to

register some test devices.

registering a Device

Any Windows Phone device is enabled to download any number of publicly released applications.

Only a few devices, however, are entitled to run code in development. In particular, as a developer,

you must register all devices that you intend to use for testing. Once your phone is registered, you

can install, execute, and test unsigned (and not released) applications. A registered device is unlocked,

and you can install any application on it under your responsibility.

http:///

376 pArt III Mobile Applications

To register your phone, you need a computer running Windows with the Zune client software
installed and a currently valid App Hub developer account. You then connect the phone to the

 computer and run the Windows Phone Developer Registration tool, shown in Figure 10-22.

FIGuRE 10-22 Registering a development device using the Windows Phone Developer Registration tool.

To identify yourself as a registered developer, you enter your credentials to the App Hub account.

It is important to note that the phone must be connected to the computer for the unlock procedure

to work. Each developer account is limited to a maximum of three development devices. At any time,

each Windows Phone device can’t have more than 10 non-marketplace applications installed.

the Beta program

The Marketplace Beta is an extension of the Windows Phone Marketplace that enables you to publish

an uninished version of the application so that a few other people can download and test it. To

 access a beta application as a user, you don’t need to unlock your phone. All you need is to ind a
deep link to the beta application, navigate it with the phone, and follow the instructions. The overall

experience is not very different from installing a inished application from the marketplace.

As a developer, you just upload a beta version of the application, as shown in Figure 10-23.

The link to download the application is potentially accessible by everybody who learns it. However,

the application will install successfully only on phones whose Windows Live ID matches one of

the Live IDs in the application’s package. As a developer, in fact, you also are required to list a few

 Windows Live IDs for users authorized to download the application. Any user whose Live ID is added

to the beta submission will receive an email from the marketplace with a link for the download. You

can’t invite more than 100 users to join the beta. Any beta application expires a maximum of 90 days

after release. As a developer, though, you can terminate the program at any time.

http:///

 CHAPTER 10 Developing for Windows Phone 377

FIGuRE 10-23 Uploading a beta of the application.

Terminating the beta won’t affect installed copies of the application, which will expire after

90 days. At this point, when users attempt to start the application, they will be given the option to

 uninstall it or send you feedback through the Marketplace client application.

Note Each Windows Phone is associated with a Windows Live ID to access the marketplace

and download applications. If the developer fails to add a Windows Live ID to the beta

 submission, the user won’t be able to install the application.

The Marketplace Beta works well in scenarios in which you effectively start a beta program that

involves quite a few users. Once uploaded, the application is signed and wrapped up for publication

(i.e., a layer is added to it that makes it expire after 90 days at most) and becomes available in a

 matter of hours.

It is important to notice that submissions to the Marketplace Beta do not result in instantaneous

availability of the bits to the users. For this reason, the Marketplace Beta is not ideal in situations in

which you need to release frequent updates to a single customer. In this case, it is recommended that

you associate a customer’s device with an App Hub account and proceed with direct downloads.

http:///

378 pArt III Mobile Applications

You can’t update an existing beta, in fact. Instead, you have to terminate the current beta, ensure

that users uninstall existing applications, and set up a new beta program that will take hours to be

available.

Distributing the Application
The only way to distribute a Windows Phone application is via the Marketplace. The structure of the

Windows Phone marketplace is similar to appstores that you have for iOS applications. It is also similar

to the Google Play Store, but not third-party Android stores.

the Windows phone Marketplace

You can publish applications to the marketplace for as little as $0.99 and for no more than $499.99.

You can submit an unlimited number of paid applications and no more than 100 free applications. Mi-

crosoft will get 30 percent of the price for each copy of the application sold through the marketplace.

The marketplace will offer free hosting and advertising for all your applications. At this time, the

marketplace is the only channel for distributing a Windows Phone application, except for unlocked

devices.

Important How can you arrange a limited circulation of the application today? You might

want to make the application freely available and ask users to enter a key to unlock all the

potential. In doing so, you also should provide a demo key to Microsoft for due certiication
of the application.

the Submission process

The submission process requires you to upload the inal XAP package of the application and provide
metadata such as application title, description, search keywords, version number, and screenshots and

other related graphics.

Detection of capabilities will occur at this time through code scanning. Only the detected

 capabilities will be added to the inal manifest. Once uploaded, the application goes through the
certiication process, which entails both automated and manual checking of the features. If something
goes wrong, you’ll receive a detailed report with instructions to reproduce the failure and ix it. If all is
good, you’ll just receive a conirmation email and a link to the application’s page on the marketplace.

It normally takes only a few days to get a irst response. Application updates will go through the
same route. More details about the submission process can be found at http://goo.gl/dnzjF.

the Marketplace ApI

The Windows Phone marketplace comes with an API for a better integration with the application. For

example, the following two lines of code bring up the review page of your application on the market-

place for the user to rate your application:

http:///

 CHAPTER 10 Developing for Windows Phone 379

var task = new MarketplaceReviewTask();

task.Show();

Analogously, you can select a list of published applications and list them to your users, provided

that it makes sense in the context in which you’re in.

As part of the Marketplace API, the Windows Phone SDK offers support for creating trial and

try-and-buy versions of a given application. In addition, you can choose to add advertising to the

 application via a native control in Windows Phone 7.5.

Summary

Windows Phone is a complete rewrite of the Microsoft mobile operating system. As a platform,

 Windows Phone uses the Silverlight framework for development and borrows some ideas from iOS

for the overall organization of the surrounding application infrastructure.

Although not all Windows Phone devices have the same screen size and hardware equipment,

 developing for Windows Phone devices is much easier than, say, for Android. There’s nothing like the

Android jungle in Windows Phone.

Compared to writing iOS and Android applications, developing applications for Windows Phone

is a piece of cake. OK, because I’ve been a .NET guy since the early days, you may ind that I’m just a
little bit biased here. However, you will ind that the development tools for Windows Phone develop-

ment are deinitely of top quality. The API is straightforward to learn if you already have a .NET and
Silverlight background, and it is easy to learn even if you are relatively new to .NET programming.

Beyond this, writing a Windows Phone application poses the same challenges as any other mobile

application—local storage, fake multitasking, wacky connectivity, limited resources, constrained input,

and more.

It happened a couple of times already, and I expect it to happen even more in the future: hired

to write a multiplatform application, I ended up using a hybrid platform (like PhoneGap) for iOS,

Android, and BlackBerry, but then I turned to writing a truly native application for Windows Phone.

If you have a strong .NET background, this doesn’t really cost you that much more. On a side note,

consider that Windows Phone also has a signiicantly characteristic user interface (the Metro style)
that may make it hard to accept (for users and maybe even for Microsoft) an iPhone-like or a neutral

user interface and experience.

The next chapter will tackle PhoneGap, a compelling framework for building hybrid mobile

 applications: half native and half web-based.

http:///

http:///

 381

C H A P T E R 1 1

Developing with phoneGap

Ability is nothing without opportunity.

— Napoleon Bonaparte

In mobile strategic consulting, there are two main scenarios. One is when your customer just needs

to use the mobile media for internal purposes. The other is when the customer needs to use mobile

 media to reach their customers. In the former case, the challenge is to pick one platform and to

build the entire stack of applications against that. A number of factors may inluence the choice,
such as devices in use throughout the company, the skills of the development team, and the existing

infrastructure. In the latter case, the challenge is to deine a strategy that reaches out to the widest
possible audience at minimum cost. You reach a large audience by having a mobile website and

also possibly by pushing out applications for a variety of platforms—iOS, Android, Windows Phone,

 BlackBerry, Symbian, Bada, and so forth.

When developing mobile applications for multiple platforms, things can get tough. Each platform

is different—different software development kits (SDKs), different programming languages, different

programming paradigms, different development tools, and sometimes even different operating

systems and computers. Many organizations quite reasonably tend to develop the back end in house

and outsource development for the various mobile platforms that they want to support. In this way, at

least they save something on training and have a skilled team developing from day one. But the sore

point is always the same—cost.

For example, writing the same application for three different platforms will cost you as much

 overall as developing three different applications. Even if the back end is the same for all the

 platforms, most of the cost of mobile development lies in the presentation layer, which remains highly

speciic (if not unique) for each platform.

Since the beginning of the mobile revolution, there’s been an effort in the industry to ind
 low(er)-cost solutions for cross-platform application development. The bad news is that no magic is

possible; you can ind a variety of solutions, but there’s no silver bullet yet. The good news is that you
have tools, and subsequently a margin, to craft your own solution that delivers multiple applications

at a fraction of the cost of plain native development done from scratch.

A moment ago, I mentioned lower-cost solutions rather than low-cost solutions. Relativity reigns in

cross-platform mobile development.

http:///

382 pArt III Mobile Applications

This inal chapter discusses a prominent framework that currently is considered the primary choice
for anyone looking for quick development of multiplatform mobile solutions. This framework is

PhoneGap.

Originally developed by Nitobi, PhoneGap was acquired by Adobe in October 2011 and seems to

be a centerpiece in Adobe’s mobile strategy. PhoneGap is built around a very simple (but effective)

idea: you build a local HTML5 application, and the framework packages it as a native application for

a variety of mobile platforms. With PhoneGap, the majority of web developers—regardless of their

server background (ASP.NET, PHP, Java, or Ruby)—can get up and running quickly, writing mobile

 applications using familiar technologies such as JavaScript and Cascading Style Sheets (CSS).

Does that sound like magic? Well, if you look only at the results, it may sound like magic, but just

as in magic, tricks are being played behind the curtain. In this regard, PhoneGap is no exception.

Important As of version 1.5 of PhoneGap released in March 2011, most of the ile names
have been changed to use the preix cordova instead of phonegap. Also in some posts, the

name Cordova is used to indicate PhoneGap 1.5. I’ll point out the differences later on, but

I’m adding this note just to clarify that any naming related to Cordova refers to a particular

version of the PhoneGap framework.

The Myth of Cross-Platform Development

If you’re a senior developer or architect—a nice way to say, if you have some silver hair—then the

idea of cross-platform development probably has crossed your path a few times already, even before

mobile. The fact is that using a single framework to build applications for different platforms will work

only if you are willing to accept some compromises.

Given the fragmentation in mobile at the hardware level, you can’t reasonably expect to pick a

 framework, write the same application for different platforms, and have it behave as smoothly and as fast

as a native application on each platform, with the same compelling native user interface. In a way, it is like

the old game of picking two options out of three. Great user experience, excellent performance, and lots

of programming goodies are available to you—but you’re allowed to pick only two.

Overall, I recognize two main paradigms for cross-platform development:

 ■ The Virtual Machine approach is about writing the application using an abstraction layer that a

platform-speciic virtual machine will translate in the best possible way to the mechanics of the
underlying platform.

 ■ The Shell approach is about hosting a web application in a shell of native code. In this regard,

the use of HTML5 and its advanced capabilities (e.g., input forms, local storage, and ofline
behavior) is a key factor.

The following sections explain each approach in more detail.

http:///

 CHAPTER 11 Developing with PhoneGap 383

the Virtual Machine Approach
In general terms, a virtual machine is an environment that creates a sort of abstraction layer on top

of some underlying hardware. Device drivers probably were the irst great example of an abstraction
layer—a public and uniied programming interface exposed to the operating system and internally
deep knowledge of a particular hardware that was used to make the device work as expected. The

Java language is also a great example of a virtual machine. The source code that you write in Java

then is compiled to bytecode and processed by a virtual machine at run time. Due to this architecture,

the same source code can run on any platform where a Java virtual machine exists.

This pattern just lies behind some of the frameworks for cross-platform mobile development.

Structure of the Application

Frameworks based on the virtual machine pattern expose an abstracted application programming

interface (API) that is not speciic to the target system, such as iOS or Android. Such an API does
expose concepts that map directly to native iOS (or Android) features, but at the API level, developers

are not required to acquire and use any speciic knowledge about a given platform. Figure 11-1 offers
a graphical representation of the virtual machine pattern.

Android

VIrtUAL MAChINE

...

Framework classes

ABStrACt ApI

iOS

You are here

FIGuRE 11-1 Architecture of a virtual-machine solution.

In this model, you face a single (and very generic) API with which you write your application. Any

calls you make to this exposed API then are mapped internally to class methods speciic to a given
mobile platform.

A framework based on the virtual machine pattern usually comes with an integrated development

environment that lets you create an application project and then compile it for a number of different

platforms.

http:///

384 pArt III Mobile Applications

titanium Mobile

Appcelerator’s Titanium is a comprehensive framework for developing applications that target

 multiple platforms, including desktop and mobile platforms such as iOS, Android, BlackBerry, Mac

OS, and Linux. The key aspect of Titanium is that you need only web skills to write cross-platform

 applications. Titanium Mobile is the segment of the overall SDK that targets mobile development.

(See http://www.appcelerator.com for more information on the product and the company.)

Titanium Mobile offers an extensive API based on JavaScript. Hold on, though—it’s not at all

like writing an HTML page using jQuery and Ajax. First, there’s no HTML; the Titanium framework

consists of a set of JavaScript components that you invoke and glue together to build the desired user

 interface and implement the desired navigation and behavior.

This may not be considered mainstream programming, such as using HTML, CSS, and Ajax with

jQuery. Still, it is probably faster than learning a brand-new language and SDK, such as Objective-C

and Cocoa Touch or Java and Android SDK.

Titanium comes with its own IDE, in which you create projects and write JavaScript code. Your

source code then gets packaged as a native application and deployed. The package includes the

 virtual machine for the selected platform as well as some bytecode created from the JavaScript

source. At build time, the source code goes through a process called “cross-compiling,“ which

produces a semi-compiled JavaScript code that is packed as binary code in the bundle, along with

resources such as images. When the application runs, the bytecode is interpreted on the device and

transformed to equivalent calls to native components to produce the desired effects (see Figure 11-2).

Native SDK

Platform native modules
(i.e., iOS / Android)

Titanium API

Your JavaScript source code

Ja
va

S
cr

ip
t

p
a
rs

e
r

FIGuRE 11-2 The internal architecture of a Titanium application.

Because of the interpretation step, the application may not be as quick to load as an application

that’s entirely written against the native SDK. In addition, debugging can be problematic in

 interpreted environments. However, Titanium Mobile uses an Eclipse-based integrated development

environment (IDE) that offers a debugger, so you can set breakpoints and inspect variables at run

time comfortably. The deployment experience also is greatly simpliied. To build your application
for iOS, you must open the project in the Titanium Studio IDE running on a Mac. In contrast, when

you open the project on, say, a Windows machine, you can build the same project for Android or

 BlackBerry and deploy it to any connected devices.

http:///

 CHAPTER 11 Developing with PhoneGap 385

The Titanium API offers a set of classes to create the user interface, interact with sensors

and device services (contacts, calendar, and media), and deal with persistence, localization, and

 networking. To add more functionality, you can create extension modules for the native platform

or even fork the JavaScript API on GitHub. The source code is available at https://github.com/

appcelerator/titanium_mobile. The following code snippet shows the classic HelloWorld application for

Titanium:

var window = Titanium.UI.createWindow({

 title: "Hello, Titanium",

 backgroundColor: "#00f"

 color: "#fff"

});

var label = Titanium.UI.createLabel({

 color: "#ff0",

 font: {font-size: 30, font-weight: bold}

});

var button = Titanium.UI.createButton({

 title: "Say hello"

});

button.addEventListener("click", function(e) {

 label.text = "You clicked me";

});

window.add(label);

window.add(button);

window.open();

As you can see, it’s still plain old JavaScript with a CSS and Document Object Model (DOM)–like

syntax allowed to deine the layout of the user interface.

Note The suite of Titanium products is often (and reasonably) compared to Adobe

AIR because it can be used to create applications for Windows, Mac, Linux, and mobile

 platforms.

Flash Builder

Adobe offers a version of Flash Builder that also allows you to compile Adobe AIR applications for

a few mobile platforms: iOS and Android, plus BlackBerry PlayBook. The product—Flash Builder

 Premium 4.6—uses native extensions to Adobe AIR to support those three mobile platforms.

As developers, this means that you can use a rich IDE where you deine the application layout
 using the mXML markup language and add logic through ActionScript iles (see Figure 11-3).

At run time, your code is compiled against the AIR run-time environment and executed within the

AIR virtual machine. You have no need to write directly to a mobile SDK; you can use existing skills to

write iOS and Android applications.

http:///

386 pArt III Mobile Applications

FIGuRE 11-3 The Adobe Flash Builder 4.6 environment in action.

the Shell Approach
Nearly every mobile native platform offers a component to view a webpage. The idea behind the Shell

 approach is to integrate a web-view native component with the user interface of the application. You can

mix a native user interface with web-based content to different degrees. For example, Figure 11-4 shows

an application whose user interface is half native and half HTML-based. As you can see, the inal effect is
very nice, and there’s little noticeable difference for users.

FIGuRE 11-4 A mixed user interface with native and HTML views. The navigation bar is native; the rest of the user
interface is an HTML page.

http:///

 CHAPTER 11 Developing with PhoneGap 387

You can take this approach even further and build native applications whose entire user interface is

HTML-based.

What about the source of the HTML content? Does it have to be downloaded from a remote

server and require an active connection? Or should it be embedded as local resources in the native

 application? It can actually work both ways.

The sample application shown in Figure 11-4 displays a page from a remote server accessed

over Hypertext Transfer Protocol (HTTP). The application also displays a friendly user interface

when connectivity is unavailable., the PhoneGap framework allows you to write native applications

whose user interface is entirely HTML-based, but whose HTML resources are packed with the mobile

 application and referenced locally through the ile:// protocol.

Structure of the Application

The Shell pattern requires a shell of native code that hosts a set of HTML pages. The native shell has a

simple structure; it hosts an instance of the web-view component that each mobile platform provides

to display web content. The web-view component is displayed in full-screen mode, so in this case, the

HTML content is all that the user sees and interacts with (see Figure 11-5).

Web view

FIGuRE 11-5 The structure of a solution based on the Shell pattern.

As a developer, all (or most) of what you do is write a set of HTML pages. Navigation between

 pages is managed by the embedded browser (the web-view component from Figure 11-5) and

 controlled via device interactivity (such as clicking the Back button). The HTML-based user interface,

http:///

388 pArt III Mobile Applications

however, should consider offering its own navigation system, which will be uniform across the

 platforms. This is especially important for iOS, which runs on devices that lack a physical Back button.

the phoneGap Framework

PhoneGap is an open-source framework that enables developers to write mobile applications by

packaging static HTML pages in a shell of native code. The shell of native code has a fairly simple

structure: it is a native window with a single web view. The web view displays a set of HTML pages

(and associated iles) embedded as resources in the application’s bundle.

A PhoneGap application is a native application in the sense that it must go through the canonical

approval process required on some platforms (such as iOS and Windows Phone) and is distributed

and installed through appstores. However, its overall performance is sometimes not as smooth and

fast as a truly native application. This is because all layout rendering takes place via the web-view

component. As you can see, the embedded device browser plays a key role in the performance of a

PhoneGap application. For this reason, it is not surprising that the same web codebase, after being

packaged as an application, may behave differently on different devices.

Note PhoneGap applications usually perform their best on iOS devices because of the

high quality of the Safari mobile browser. On Android, performance depends on the actual

device characteristics, as well as the features and capabilities of the user agent. Another

platform that might be a great target for a PhoneGap application is Bada, because some

Samsung devices equipped with Bada 2.0 (speciically Samsung Wave 3) ship with an
 excellent HTML5 browser.

A PhoneGap application binds a native library that acts as the bridge between the web-view,

in-browser environment and the underlying platform. HTML pages can invoke objects from the

PhoneGap JavaScript library that refer to device-speciic features, such as haptic feedback, an
 accelerometer, a camera, and more. The PhoneGap JavaScript library calls into ad hoc objects

 published in the browser environment following the extensibility model of the device browser

(see Figure 11-6).

Important I want to focus on this key point. By using PhoneGap, you gain the ability to

express your user interface and logic using HTML5, CSS, and JavaScript. You don’t lose

the ability to access device-speciic features and hardware. The most commonly used
features are exposed to you automatically and comfortably via the PhoneGap JavaScript

library. If you need more, or need a different API, you can create your own native shells of

code and plug them into the PhoneGap framework. Furthermore, you’ll likely reuse your

HTML+CSS+JavaScript solution across all the mobile platforms that PhoneGap currently

supports: iOS, Android, Windows Phone, BlackBerry, Symbian, and webOS.

http:///

 CHAPTER 11 Developing with PhoneGap 389

PhoneGap
JavaScript Library

PhoneGap
Native Library

PhoneGap
plug-ins

FIGuRE 11-6 The run-time environment of a PhoneGap application.

In this way, you can not only use predeined PhoneGap wrappers for most device sensors and
functionality, but you also can add new JavaScript objects based on platform-speciic functions that
are not natively mapped by PhoneGap.

A custom extension to PhoneGap is called a plug-in. To create a plug-in, you need a piece of native

code that is written in one of the languages supported by the platform and invokes native functions.

For example, for iOS, you can write a PhoneGap plug-in by using Objective-C to call functions in

Cocoa Touch. Then this native code is embedded in a class derived from a PhoneGap base class for

the target platform. Finally, a bit of JavaScript code just wraps the native code. Here’s an example of a

PhoneGap plug-in for playing video on Android devices:

window.plugins.webintent.startActivity({

 action: WebIntent.ACTION_VIEW,

 url: 'http://.../someVideo.mp4'},

 function() {alert('It works.');},

 function() {alert('Failed to open the URL');}

});

In this particular case, you don’t need any native code because the PhoneGap JavaScript library

already contains the logic to start an activity. Playing a video is simply a matter of requesting the

 ACTION_VIEW standard action on a given resource. But this example illustrates how you would write

and deploy a custom activity in other cases to perform exactly the tasks you need.

A PhoneGap application displays an HTML- and CSS-based user interface, and all its behavior is

controlled by JavaScript routines. You can use a variety of popular JavaScript frameworks in your

PhoneGap front end, including jQuery Mobile, jQuery UI, or any of the JavaScript microframeworks

out there.

http:///

390 pArt III Mobile Applications

Sencha Touch (see http://www.sencha.com) is another popular JavaScript library optimized for

building mobile web solutions that can be compiled then natively with PhoneGap. Sencha Touch

forces you to create the user interface via a number of ad hoc JavaScript components. Basically, an

application based on Sencha Touch is a single-page application centered on the following code:

new Ext.Application({

 launch: function() {

 new Ext.Panel({

 fullscreen: true,

 dockedItems: [{xtype:'toolbar', title:'Simple Demo'}],

 layout: 'fit',

 styleHtmlContent: true,

 html: '<h2>Hello from Sencha!</h2>'

 });

 }

});

The Ext.Application object is the main application object, and its launch method contains startup

code. In particular, the startup code in this example creates a full-screen panel that displays a “Hello“

message. The Ext.Panel object is the main container within which all the HTML magic will happen.

Here, you can use Ajax calls and any form of in-memory manipulation of the page DOM. The word

touch in the name of the library is not coincidental. It is there to remind people of the great support

for touch events and animations that the library offers, along with ad hoc themes for iOS and

 Android.

handmade hybrid Applications

PhoneGap performs the trick of taking a bunch of HTML pages and packaging them (and related

resources) all into a single native application bundle. You write a single codebase composed of HTML,

CSS, and JavaScript. You decide which JavaScript framework (if any) to use, and you freely use CSS

and HTML markup to deine the layout of the user interface. Navigation, beyond the basic forms of
navigation natively offered by the host browser, is up to you.

Important Unlike Titanium and Flash Builder, with PhoneGap, you sometimes may have

a single codebase—but not a single project. You must create a platform-speciic project

using Xcode, Eclipse, Microsoft Visual Studio, or whatever else is required on the platform

to compile and deploy a native application. In return, PhoneGap currently supports more

mobile platforms than Titanium. More often than not, in fact, you might need to tweak

the user interface on a given platform because of minor issues with browsers or to relect
the native user interface of the platform better. For example, you can decide to have a

tab bar at the bottom of the page in the iPhone version and at the top of the page in

Android. For Windows Phone, the user interface is considerably different and may require

more customization. With that said, however, you still can use PhoneGap to reuse all your

JavaScript logic, changing only the CSS or some HTML markup.

http:///

 CHAPTER 11 Developing with PhoneGap 391

As you’ll see in more detail later on in the chapter, with PhoneGap applications, the major problem

lies in page transitions and navigation. Compared to truly native applications, PhoneGap applications

sometimes may be slower and less luid in such transitions. The result depends on the quality of the
device browser, but for exactly that reason, it’s beyond your control. Therefore, you may want to

consider an alternative solution that consists of having a skeleton with a native header, footer, and

navigation, but where all screens are based on (local or remote) HTML, displayed through a web view

(see Figure 11-7).

Native header

Web view
for home screen

Native footer

Web view
for screen #1

Native header

Native footer

Web view
for screen #2

Native header

Native footer

Native
transition

Native
transition

FIGuRE 11-7 The structure of a handmade hybrid solution.

This way, you can focus your HTML efforts on individual pages for individual screens and don’t need to

embed navigation logic in HTML. This may be beneicial in two ways. First, it offers a better experience to
users because transitions are smoother and use the same animation as truly native applications. Second,

it allows you to build an overall experience that is more consistent with native applications than you can

achieve with PhoneGap solutions alone. For example, you could give your application a menu in Android,

an application bar in Windows Phone, and a canonical Back button in iOS without artifacts and simulation.

At the same time, such a solution is not free of issues. It still requires that you create and maintain

one project per platform. Compared to a pure PhoneGap scenario, the project is only a bit more

 sophisticated; you can decide how much more sophisticated you want it to be. In addition, because

you use the web view only for displaying HTML, it is hard (but not impossible) to access device

 hardware and trigger native code from the HTML. One approach worth exploring entails intercepting

links within the web view and handling them from within native code.

Overall, considering that most tools offer to create the bare skeleton of application that you need

through a wizard (this is true with Xcode and Visual Studio, for example), this hybrid approach can be

a low-cost way of developing multiplatform applications that are essentially based on simple content

presentation.

http:///

392 pArt III Mobile Applications

Important When you host a web-view component in a mobile application page, you may

run into some security issues related to linking cross-domain URLs. As a general rule, make

every effort to ensure that the page displayed always posts to URLs on the origin site and

doesn’t link via anchors to any external resource. In a way, this is an even stricter policy

than the usual cross-domain policies that you face in general web programming, such as

making Ajax calls from within a client page. It is key to notice that web views hosted via the

PhoneGap framework are not subject to cross-domain restrictions. There’ll be more on this

later in this chapter in the section titled “Ajax and Cross-Domain Issues.“

building an HTMl5 Solution

Let’s see what it takes to write a full PhoneGap application. The irst step requires that you create a
set of HTML pages that serve the expected user interface and behavior of the desired application. As

most mobile browsers support HTML5 very well, you can fully use markup enhancements brought by

HTML5, such as input elements and a new API such as local storage. The logic is based on JavaScript

and may use any library you feel comfortable with. In this example, I’ll be using a bit of jQuery Mobile

(and the core jQuery library as a dependency).

JavaScript Ad hoc patterns
In highly dynamic HTML pages, the amount of JavaScript code may be signiicant. This means that
without strong discipline, you end up with kludges and spaghetti code. My suggested approach is

splitting the JavaScript code into four main areas: presentation, localization, application state, and

application behavior.

The goal of these sections is preparing the ground for the sample Guess application that was

developed for iOS, Android, and Windows Phone in the previous chapters. The application is a simple

game of guessing a secret number.

the JavaScript presentation Layer

It’s fairly common in JavaScript—but also fairly naive—to mix code that updates the user interface

with code that orchestrates actions following a user’s requests. On the other hand, JavaScript was

 created to be a simple-to-use tool in the hands of non-developers. And original creators, in a way,

made a point of having a language for nearly everybody (like a scripting language) but powerful

enough to mimic what at the time was reckoned to be the language to code for the web—Java.

For many years, JavaScript has been a language that could deliver true power in proper hands,

but also messy code in most hands. Today, JavaScript skills are—more often than not—speciied as a
strong requirement in web-related job applications. When a language gains popularity, it tends to be

used for increasingly complex tasks. At some point, more discipline becomes a necessity.

http:///

 CHAPTER 11 Developing with PhoneGap 393

A golden rule of JavaScript programming is to have a global object that contains all your functions

and object declarations. You might want to have a line similar to the following on top of all your

JavaScript iles:

var GLOBALS = GLOBALS || {};

The name GLOBALS is clearly arbitrary, but the way to instantiate it is not. In JavaScript, any global

 variable becomes an entry in the global system namespace. An application that has multiple global

variables inevitably pollutes the global namespace. The whole topic of polluting (or not) the JavaScript

namespace is, in my humble opinion, less relevant than it may seem for most developers. You

 deinitely should care about it if you write a library or an extension that others may use in their own
 application-speciic JavaScript code, but it’s quite another animal when you write JavaScript for yourself.

The global namespace is rooted in the browser’s window object, so it never trespasses the

 boundaries of the browser’s session. So what is referred to as a global namespace is, in the end, the

global namespace for the browser’s session. That’s probably not a big concern if you’re only writing

script code for a webpage. But good habits are never bad to practice; good habits are relatively cheap

and keep your code cleaner and easier to maintain.

As declared above, GLOBALS ensures that an entry with that name is created in the global

namespace if it doesn’t exist already. If the entry already exists, then a reference to it is associated

with the name GLOBALS in the scope of the current script ile.

For each screen of the application, a presenter JavaScript object is created, as shown here:

var GLOBALS = GLOBALS || {};

GLOBALS.HomePresenter = function () {

 var that = {};

 // Populate the UI with localized text and attach event handlers.

 that.init = function () {

 ...

 $("#buttonStart").val(GLOBALS.Literals.HomeStartButton);

 $("#buttonStart").click(that._onStart);

 }

 // Handle click event on Start button

 that._onStart = function () {

 ...

 // Push next screen

 $.mobile.changePage("/Views/game.html", {});

 }

 // Return a new instance

 return that;

}

GLOBALS.GamePresenter = function () {

 ...

}

GLOBALS.WinnerPresenter = function () {

 ...

}

http:///

394 pArt III Mobile Applications

A presenter class encapsulates all the required knowledge about element IDs and uses jQuery and

jQuery Mobile (or any other helper library that you may use) for building and manipulating the user

interface. Any interaction between the application logic and user interface takes place through the

members of the presenter object.

Note Using presenter objects also makes it easy to have unobtrusive JavaScript code that

doesn’t stuff HTML elements with script and style references and default values.

Each HTML screen needs some initialization. Everything can be summarized in the following code:

<div id="homepage" data-role="page">

 <script type="text/javascript">

 $("#homepage").bind("pageinit", function () { GLOBALS.appInitialize() });

 $("#homepage").bind("pageshow", function () { GLOBALS.pageInitialize("home") });

 </script>

</div>

Each page—in this example, jQuery Mobile pages are used (as explained in Chapter 5, “HTML5

and jQuery Mobile“)—binds to the pageinit event for onetime initialization, and it binds a handler to

pageshow for each per-display initialization:

// App startup

GLOBALS.appInitialize = function () {

 var languageSuffix = GLOBALS.getLanguage();

 GLOBALS.loadLanguage(languageSuffix);

 GLOBALS.loadPresenters();

 GLOBALS.initializeState();

}

// Page startup

GLOBALS.pageInitialize = function (screen) {

 if (screen == "home")

 GLOBALS.Presenters.Home.init();

 if (screen == "game")

 GLOBALS.Presenters.Game.init();

 if (screen == "winner")

 GLOBALS.Presenters.Winner.init();

}

Presenters are instantiated once when the page loads for the irst time. References to presenters
are stored as members of the GLOBALS object for use later during the display of the page. Here’s the

code that instantiates the presenters:

GLOBALS.loadPresenters = function () {

 GLOBALS.Presenters.Home = new GLOBALS.HomePresenter();

 GLOBALS.Presenters.Game = new GLOBALS.GamePresenter();

 GLOBALS.Presenters.Winner = new GLOBALS.WinnerPresenter();

}

In the code that starts up a HTML client application, you also will ind some logic that deals with
localization and state management. Let’s ind out more.

http:///

 CHAPTER 11 Developing with PhoneGap 395

the JavaScript Localization Layer

There are only a few ways to deal with localization in JavaScript. In websites, you often take care of

localization on the server side by either checking the browser’s locale or the server’s thread locale—

depending on the needs—and then loading the appropriate set of resources: literals, images, views,

and so forth.

For a client-side HTML page that serves as the foundation of a mobile application, you probably

don’t need anything more than a way to pick up a different set of strings based on the browser’s

locale. You can work out your own solution for that, even though some globalization plug-ins exist for

jQuery.

Right off the bat, you need to igure out the language of the browser. For a mobile phone, the

language of the browser corresponds to the language of the device. (The same is not necessarily true

for a laptop where browsers normally offer to set the language independently from the operating

system.) The following code detects the browser language:

GLOBALS.getLanguage = function () {

 var language = navigator.language;

 if (typeof navigator.language == "undefined")

 language = navigator.systemLanguage; // IE only

 // Some browsers return XX; some return XX-XX: cut to first 2 letters to be on the safe side

 language = language.substring(0, 2).toUpperCase();

 return language;

}

The code uses a different approach for Windows Internet Explorer, as opposed to other browsers,

and returns a string containing the language settings. It also truncates the string to the irst two
 letters of the culture, which may be returned as (for example) en or en-us. Then you can use the

 language string to select the appropriate dictionary of string literals, as shown here:

GLOBALS.loadLanguage = function (lang) {

 GLOBALS.Literals = GLOBALS.AvailableLiterals[lang].value;

}

AvailableLiterals is deined as follows for an application that supports English and Italian:

GLOBALS.AvailableLiterals = {

 EN: { value: GLOBALS.Literals_En },

 IT: { value: GLOBALS.Literals_It }

}

Finally, literals are deined in distinct dictionaries, one per supported language:

GLOBALS.Literals_En = {

 Separator: ",",

 HomePlayerLabel: "Player",

 ...

}

GLOBALS.Literals_It = {

 Separator: ".",

http:///

396 pArt III Mobile Applications

 HomePlayerLabel: "Giocatore",

 ...

}

At any location in the user interface that requires a localized string, you use an entry from the

Literals dictionary:

$("#inputPlayerLabel").text(GLOBALS.Literals.HomePlayerLabel);

The preceding code, excerpted from a presenter object, just sets a label in one of the application

pages.

the JavaScript Application State

Any mobile application needs to save its own state for at least two reasons: to give a sense of

 continuity to the user and to save some typing. This means that you should igure out the shape of
the application state quite early in the development process. You then load the application state at

the startup of the home page with the following code:

GLOBALS.initializeState = function () {

 GLOBALS.Current = new GuessState();

}

In this example, GLOBALS.Current can be accessed from any page. It returns the current state of

the application. GuessState is a JavaScript object whose structure closely resembles the structure of

the application; it has a member for each signiicant piece of information that the application needs
to store persistently. Here’s an example:

var GuessState = function () {

 var that = {},

 DefaultPlayerName = "???",

 NoSecretNumber = -999;

 that.init = function () {

 var loadedFromState = this.load();

 if (!loadedFromState) {

 that.Player = DefaultPlayerName;

 that.setLevel(GameLevels.Basic);

 }

 that.SecretNumber = NoSecretNumber;

 that.Attempts = 0;

 that.Hints = 0;

 that.History = [];

 }

 // More code here

 ...

 // Return a new instance

 return that;

}

http:///

 CHAPTER 11 Developing with PhoneGap 397

Because the sample code is the HTML version of the Guess game discussed in previous chapters,

you shouldn’t be surprised to ind properties such as Attempts, Hints, SecretNumber, and History in

the application’s state.

To display the number of attempts that the player has made in the game session, you use the

 following expression:

alert(GLOBALS.Current.Attempts);

The state of the application must be saved to some storage and retrieved from there. This is where

an HTML5-ready browser comes in handy, with its support for local storage.

Note Browsers hosted on devices running operating systems such as Android 2.0 and

later, any iOS, Windows Phone 7.5, and all the devices identiied as smartphone operating
 systems in Chapter 6, “Developing Responsive Mobile Sites,“ typically offer good support

for HTML5, which makes it possible to wrap up HTML5 applications as native applications,

as you’ll see later in this chapter.

In HTML5, you use the localStorage object to save data as plain text or in a JSON format. Here’s the

code that saves the GuessState object to the local storage of the browser:

var GuessState = function () {

 var that = {},

 ...

 that.save = function () {

 var serialized = JSON.stringify(GLOBALS.Current);

 window.localStorage[GLOBALS.GuessStateEntry] = serialized;

 }

}

It should be noted that JSON.stringify—a utility to turn a JavaScript object into a JSON string—

cannot be assumed to be available on just any browser. However, it is safe to assume that it is

supported in browsers on devices running advanced mobile operating system versions.

When the GuessState object is initialized, it should read values from the local storage. This is what

the load function does:

var GuessState = function () {

 var that = {},

 ...

 that.load = function () {

 var serialized = window.localStorage[GLOBALS.GuessStateEntry];

 if (serialized == null || typeof serialized === "undefined")

 return false;

 var obj = JSON.parse(serialized);

 this.Player = obj.Player;

 this.SecretNumber = obj.SecretNumber;

 ...

 }

}

http:///

398 pArt III Mobile Applications

It is key to note that assigning a deserialized object directly to GLOBALS.Current may make

any methods that you may have currently deined on GLOBALS.Current disappear. So long as you

have a state object deined as an anemic object (just properties, no methods), deserializing to

GLOBALS. Current directly works just ine. Otherwise, because serialization persists only properties,
you deserialize to a temporary variable and then manually copy values to the existing instance of

 GLOBALS.Current. In this case, that’s precisely what is required, because this example has save and

load methods deined on the state object itself.

the JavaScript Application Behavior

The logic of the application depends on yet another JavaScript object, which also is deined as a
member of the GLOBALS root container. Object containers are often referred to as namespaces in

JavaScript.

For the speciic case of this Guess application, the application behavior consists of methods
that implement the logic of the game. You need a method to check whether a given number is a

 successful or an invalid attempt; you’ll also have methods that perform such actions as generating a

new number, resetting counters as a new game is started, quitting the game, providing a hint, and

calculating the score.

These methods have no awareness of the details of the user interface. They are fully isolated

from other layers and therefore are fully testable. The actions that these methods implement is

 orchestrated by code in the page presenters.

the Sample Application
In past chapters, you’ve seen the same application—Guess—coded for a variety of platforms: iOS,

Android, and Windows Phone. This chapter concludes the demonstration by writing the same

 application with HTML5 and JavaScript, and then using PhoneGap to turn it into a native application.

Screens and Navigation

When you build an HTML5 application—especially an HTML5 application that will be transformed

into a native mobile application, you should decide up front whether to design for a Single-Page

Interface (SPI) or an interface with multiple pages. As discussed in Chapter 4, “Building Mobile

 Websites,“ an SPI application is based on a single HTML page whose sections are managed

 dynamically so that it serves the appropriate visuals to the user at the appropriate times.

An SPI application has essentially no true navigation between pages. The URL remains the same;

which means that when mobile users tap the Back button, they are taken back to the previous

 application by default. There’s a lot you can do to prevent this from happening. For example, you

can implement your own strategy for linking and history navigation. The point is that controlling

 navigation is up to you.

http:///

 CHAPTER 11 Developing with PhoneGap 399

A library such as jQuery Mobile takes care of much of this burden and also allows you to have an

SPI application with embedded pages. Chapter 5 discussed this; in that chapter, you saw how jQuery

Mobile allows you to treat a DIV element with a particular data-role attribute as a plain page.

This sample application uses different pages. It moves from one page to another using the

changePage function of jQuery Mobile, as well as plain links.

Figure 11-8 provides a view of the three screens of the sample Guess application. The following

code generates the main screen of the application:

<div id="inputPanel">

 <div>

 <table class="inputForm">

 <tr>

 <td class="input.tdLabel"><label id="inputPlayerLabel"></label></td>

 <td class="input.tdInput"><input type="text" id="inputPlayer" data-role="none" >

 </td>

 </tr>

 <tr>

 <td class="input.tdLabel"><label id="inputLevelLabel"></label></td>

 <td class="input.tdInput">

 <select id="inputLevel" data-native-menu="false" data-mini="true">

 <option id="Basic" value="0">Basic</option>

 <option id="Medium" value="1">Medium</option>

 <option id="Super" value="2">Super</option>

 </select>

 </td>

 </tr>

 </table>

 </div>

 <div>

 <input type="button" id="buttonStart" data-role="none" />

 </div>

</div>

FIGuRE 11-8 The Guess application as it appears in Safari for Windows.

http:///

400 pArt III Mobile Applications

The user interface is plain HTML5 and CSS. The drop-down list with levels is rendered in a way that

resembles native mobile widgets using the jQuery Mobile transformations. In this regard, using the

data-native-menu attribute is key. In contrast, the data-mini attribute just attempts to keep the visuals

as tiny as possible.

Styling the Screen

To add color and layout information in a HTML5 user interface, you use CSS. Browsers aligned with

the HTML5 standard offer a great support for CSS, but not in a truly uniform manner.

Most basic features of CSS3 (i.e., rounded corners, text effects, and backgrounds) are supported

across browsers. However, don’t be too surprised to see that some embellishment effects, such as

gradients, aren’t supported in all browsers once you port the HTML application to a given platform.

Overall, I see this as a minor problem. Currently, I experienced trouble with gradients on Windows

Phone 7 and 7.5. These issues will disappear as the new version of the operating system with a brand

new browser arrives. However, for HTML5 and CSS3, coverage of what you can expect in mobile

browsers can be found by visiting the Mobile HTML5 site (http://mobilehtml5.org/).

Because CSS is a key technology in enabling you to skin pages, you might want to put some effort

into attaching CSS styles to page elements in an unobtrusive way. As much as possible, you should

avoid placing style information inline. The following code should be considered as bad practice and

avoided (though we all know that dirty tricks are sometimes necessary):

<div style="background-color: #fff; width: 70%; ...">

 ...

</div>

It is largely preferable to use CSS classes, as shown here:

<div class="inputPanel>

 ...

</div>

A CSS class is simply a way to group a bunch of CSS settings, as here:

/*

 This defines inputPanel as a CSS class and these settings are applied to

 all elements styled with class="inputPanel" in the markup.

 */

.inputPanel

{

 margin: 10px;

 padding: 10px;

 border-radius: 15px;

 background-color: #00f;

 opacity: 0.8;

}

You should use a CSS class when there are good chances to reuse it across pages and elements. To

style individual elements, you don’t use the class attribute at the element level, but in the CSS ile, you
point settings directly to an element with a given ID. This code shows how to do that:

http:///

 CHAPTER 11 Developing with PhoneGap 401

/*

 This defines settings that are automatically applied to any elements

 in pages with an ID of inputPanel. There's no need to add anything to page

 elements beyond the ID attribute. Styling will happen automatically.

 */

#inputPanel

{

 margin: 10px;

 padding: 10px;

 border-radius: 15px;

 background-color: #00f;

 opacity: 0.8;

}

Proper use of CSS techniques helps a lot to keep the code clean and readable and, more

 important, makes it easy to edit and skin further.

testing Logic and Markup

An HTML5 application that must be transformed into a web-based mobile application is hard to test

outside emulators and real devices. However, you can achieve a good approximation of the outcome

by testing the HTML on a variety of desktop browsers—Chrome, Safari, and Internet Explorer 9 in

particular.

Although such testing is only the irst step, if something goes wrong or doesn’t show up well
here, it’s unlikely that it will work smoothly on the device. I ind that this Chrome, Safari, and Internet
Explorer 9 browser combination is effective for gaining an idea of how the markup will behave on

Android, iOS, and Windows Phone platforms, respectively.

Working on desktop browsers (with a properly resized window) allows you to ix major snags
and move to the next step—integrating logic and markup with PhoneGap scripts and in a

 platform- speciic PhoneGap project—comfortably.

Note I don’t use emulators much for testing HTML5 markup that is expected to go into

a PhoneGap application. I ind these techniques much more effective when you are
 developing a mobile site. It’s quite possible that you may have to tweak the markup of

a PhoneGap application for speciic device browsers, and that using emulators doesn’t
add much value—but of course, that’s just my experience. Emulators tend to be slow (i.e.,

Android), and desktop browsers often are equipped with some handy plug-ins that help

when debugging. To test native feature of the phone (such as contacts, the camera, and so

on), you need to use a device emulator or a real device.

As you’ll see in a moment, to create a PhoneGap application, you need to create a native project

for each of the platforms that you intend to address. You may have to tweak the original HTML that

you tested on desktop browsers or emulators, and you may even need some changes to your code.

The wide spectrum of Android devices is problematic for PhoneGap applications. You may ind
Android 2.x running on small devices with a 320 × 240 resolution, as well as larger smartphones that

http:///

402 pArt III Mobile Applications

have a 800 × 480 or higher screen resolution. As described in Chapter 9, “Developing for Android,“

the Android SDK suggests that you address this problem by sizing visual elements in device-inde-

pendent pixels. You don’t have such facilities in HTML—though you can probably use percentages to

get close (at the cost of making the markup and CSS considerably more complex to handle). If you’re

targeting Android from a mobile site, you can use a device description repository (DDR) like Wireless

Universal Resource FiLe (WURFL; see Chapter 6 for more about this) to decide which markup to serve

to which class of devices. In this way, you can treat small- and large-screen Android devices differently.

Nothing of the kind is possible when you use PhoneGap. The same application will run unchanged

on any Android device, regardless of the screen size. For this reason, I recommend you test the

markup of Android applications thoroughly, particularly on small screens, early in the development

process so that you can apply any needed changes to the overall layout. Figure 11-9 shows the game

screen of Guess, as it appears compiled as a native Android application on a low-level device running

Android 2.2, with a screen resolution of 240 × 320.

FIGuRE 11-9 The Guess PhoneGap application running on a small Android device.

As you can see, when a user is entering a number, the soft keyboard appears in the foreground,

but ends up covering the Try button—which is the primary button the user might want to tap at that

stage. So then the user is forced to tap the device’s Back button to hide the keyboard and then tap

again to set the focus and enter a new number. That’s not really a pleasant experience. This might

suggest you should swap the position of the Try button and the Hint/Quit pair of buttons.

http:///

 CHAPTER 11 Developing with PhoneGap 403

Before we look into porting the HTML5 application to PhoneGap, it’s worth spending a bit of

time reviewing some Ajax points, because Ajax is a technology that you likely will use in your HTML5

 solution to take data from remote sources.

Ajax and Cross-Domain Issues

When it comes to client HTML pages, the Same Origin Policy (SOP) applies. Simply put, SOP refers to

the default settings of most browsers, which simply refuse to allow cross-domain calls via JavaScript

and Ajax. So long as you place Ajax calls to URLs located in the same domain as the originating page,

everything works just ine. Otherwise, the browser applies its security measures and denies the call.

There are various ways to work around this issue. For example, you can set up a proxy service in

your web server—the same server that served the current page to the browser—and use that as a

router for reaching external sites outside the domain. So long as you can exercise some control over

the target site, you can use JSON with Padding (JSONP).

JSONP assumes that the server accepts an extra string parameter on the call and treats that

parameter as the name of a JavaScript function that will receive the JSON response. For example,

 suppose that the following URL returns a JSON string:

http://someserver/method

For completeness, let’s assume that the JSON string has the following format, where xxx may be a

randomly generated number:

{ Number:xxx }

Suppose also that the web application behind the URL supports JSONP and deines jsCallback as

the extra parameter name for clients to request JSON paddings. The name jsCallback is arbitrarily

deined by a web application that intends to support JSONP callers.

A caller will then invoke the following URL:

http://someserver/method?jsCallback=myLocalFuncToProcessJson

The response that JSONP-enabled web application returns is the following string:

myLocalFuncToProcessJson('{Number:xxx')

The myLocalFuncToProcessJson function is deined locally on the caller page and will be invoked
automatically to process the response. Clearly, the name of the myLocalFuncToProcessJson function is

also arbitrarily deined by the page author.

The JSONP protocol takes advantage of the fact that the SCRIPT tag is not subject to cross-domain

restrictions, so the following markup has the effect of downloading a script expression that invokes a

local function. Because browsers process script right after downloading, the JSON response padded in

a function call is processed immediately:

<script src="http://someserver/method?jsCallback=myLocalFuncToProcessJson" />

http:///

404 pArt III Mobile Applications

Some JavaScript libraries (speciically jQuery) have their own wrappers that create the above
SCRIPT tag on the ly, making it invisible to developers. The following code shows what it takes to
place a JSONP call with jQuery:

var url = "...";

$.getJSON(url + "?js=?", null,

 function (data) { showData(data) });

The url variable is completed with a query string parameter referring to the agreed parameter

that carries the name of the wrapper JavaScript function. In jQuery, however, you are not required

to indicate the name of the local wrapper function. You just use the ? symbol as a placeholder for

the name of a function that jQuery generates on the ly. This dynamically generated function will be
 calling into the inline function that you provide with the call. The net effect is that the downloaded

JSON data is passed to the unnamed function that you indicate in the call.

Note Cross-Origin Resource Sharing (CORS) is the name of a W3C draft that discusses an

oficial way to make cross-domain calls opt in for servers instead of leaving the decision
to browsers. Currently, the latest versions of most popular browsers have some form of

 support for CORS. For more information, see http://www.w3.org/TR/cors/.

What about cross-domain issues and HTML pages hosted in a PhoneGap application? Native

mobile applications, like desktop applications and server-side web applications, are not subject to

cross-domain restrictions. But what about a PhoneGap application that is a native application using a

web view to display its content?

The good news is that there are ways to bypass cross-domain restrictions in PhoneGap compiled

applications. This means that you have a way to use Ajax calls from script code freely to call any

remote URLs. According to the PhoneGap wiki, this is possible because HTML pages are invoked

internally using the ile:// protocol instead of http://, and for this reason, the restriction doesn’t apply.

There are, however, a few things to note.

First and foremost, you still need to claim that you're using the Internet for your mobile project. This

must be done for each platform in accordance with what was discussed in Chapter 8, “Developing for

iOS,“ for iOS; Chapter 9, “Developing for Android,“ for Android; and Chapter 10, “Developing for Win-

dows Phone,“ for Windows Phone. As PhoneGap supports additional platforms, too, you might want

to check out details for each of them.

Most mobile browsers automatically cache the response received for any Ajax calls. If you own

the server, then you might want to try setting a no-cache header in the response to prevent this.

 Otherwise, adding a random number to each request is an effective trick. See the following code:

// Adding a variable number to a URL

var url = "http://www.expoware.org/services/random/get?t=" + new Date().getMilliseconds();

This example used the number of milliseconds; you can use a randomly generated number for

more reliably random results. By the way, you can use the URL shown here to my personal website

http:///

 CHAPTER 11 Developing with PhoneGap 405

for some tests. This URL returns a random number between 0 and 1,000. You should be able to make

calls to this URL from any HTML5 page compiled to a native PhoneGap-based application.

Important Cross-domain calls work only when you test the application from the real

 device. To test from the desktop computer, you can try a couple of ways. One entails using

Safari for Windows on the root ile of your site accessed via the ile:// protocol. Safari is

unique in that it allows you to place Ajax calls from a ile:// loaded page. Another way to

do this is by using a tool like Sleight, which operates as a web server that is local to the

 directory of HTML pages in such a way that it intercepts resources being invoked from

pages in the directory and proxies requests to a conigured remote server for all resources
that aren’t located locally. Developed by Andrew Lunny, Sleight is a Node.js application that

 complements the PhoneGap platform. You can get it from http://github.com/alunny/sleight.

If you’re using jQuery Mobile, then you should enable the framework to place cross-domain calls.

By default, jQuery Mobile doesn’t place cross-domain calls unless you change the value of the cors

setting in the mobileinit event as follows:

<script type="text/javascript">

 $(document).bind("mobileinit", function () {

 $.support.cors = true;

 });

</script>

<script type="text/javascript" src="Content/Scripts/jquery.mobile.min.js"></script>

Note that you should bind the mobileinit event before you link the jQuery Mobile library. This

should be done for every page.

In recent versions of PhoneGap, a feature called white-listing has been enabled for some platforms—

notably iOS and Android, but not Windows Phone yet. White-listing refers to holding a list of websites

that your application is enabled to call via cross-domain calls. If the white-list is conigured and a site is not
listed, then PhoneGap will deny the request. In iOS, the list of sites is found in the Phonegap.plist ile. In
Android, it is saved as a Phonegap.xml ile in the Res/xml project folder.

Integrating with PhoneGap

Once you have a reliably working website made of local resources—HTML pages, CSS style sheets,

images, and JavaScript iles—you are ready to make it run natively on a variety of platforms that
include, but not limited to, iOS, Android, and Windows Phone 7.5.

Supported platforms
As of version 1.5 of PhoneGap, the list of supported platforms is as detailed in Table 11-1 (arranged in

descending order by importance). For an updated support matrix, add a reference to http://phonegap.

com/about/features.

http://phonegap.com/about/features
http://phonegap.com/about/features
http:///

406 pArt III Mobile Applications

TAblE 11-1 Platforms Supported by PhoneGap 1.5

Platform basic Requirements

iOS You must have a computer running Mac OS X Snow Leopard (10.6) and must be
a registered Apple developer. The resulting code works on devices capable of
 supporting iOS 3.0 and newer versions. With the exception of Compass on iPhone
3G, all PhoneGap device-related features are supported.

Android You can write Android applications using PhoneGap for Android 1.6 and later. All
PhoneGap device-related features are supported on Android.

Windows Phone You can target Windows Phone 7.5 and must be a registered Windows Phone
 developer. All PhoneGap device-related features are supported on Windows Phone.

BlackBerry Even though you can use PhoneGap to create applications for BlackBerry 4.6 and 4.7,
it is recommended that you start with BlackBerry 5, which is where support for most
device-related features has been added. PhoneGap doesn’t offer BlackBerry support
for Compass and Media.

webOS No support for compass, ile, media, and contacts.

Bada A recently added platform, it doesn’t yet offer full support for the features that
might be available on the phone.

Symbian No support for compass, ile, and media.

As PhoneGap is merely a way to package a web application into a native shell of code, you need to

be ready to manage a different project for each platform you intend to support.

Building a phoneGap project
To create a PhoneGap application for any given platform, you need a native project and native

SDKs and programming tools. For example, this means that for iOS development, you must have a

Mac computer, be a registered Apple developer, and have Xcode and the iOS SDK installed on the

 computer.

Once you have a native empty project up and running, you take the next step of adding the web

source iles and connecting all the wires. Although the overall procedure is relatively seamless, don’t
think that you will never face issues.

Getting ready for phoneGap Applications

Your original set of HTML pages may need some tweaks to run as a PhoneGap application.

Frankly, it’s hard to say whether these changes that you may need depend on the device web-view

component, the PhoneGap framework, the JavaScript framework that you may use, your JavaScript

code, or perhaps a combination of all these things. Fact is, don’t be surprised if you need to adjust

your web application before it runs just ine as a native PhoneGap-powered application. The following
is a list of changes that I experienced using jQuery Mobile as a JavaScript framework.

In particular, paths to auxiliary resources and pages should be relative and not have trailing slashes.

Also, it wouldn’t hurt if you can ensure that case-sensitivity in names is respected. In addition, if

you’re using jQuery Mobile, then you may need to make some manual changes here and there to

http:///

 CHAPTER 11 Developing with PhoneGap 407

ensure that the CSS works as expected. A common snag for me is setting a background image for

a page. So far, I haven’t been able to set one, except through some inline style information:

div id="homepage" data-role="page" style="background:url('background.jpg')">

The image ile should be available in the root folder of the web resources.

Also, be aware that some further changes may be required to your JavaScript code to address

 possible subtle differences between browser engines—this may not happen every time, but it is

something you can expect to see.

Finally, you may add to your script code any additional code that has to do with device

 capabilities—contacts, vibration, media, accelerometer, camera, and geolocation, for example—as

well as handlers for device-speciic events and navigation. PhoneGap, in fact, offers its own API to
deal with back events. This is code that you need to deal with and test live on a device using the irst
platform you compile for. Once you have come to a successful coniguration of JavaScript, HTML, and
CSS, you can hope that it can be ported to other platforms in nearly no time.

Let’s see a few examples.

Building a iOS Application

Installing PhoneGap for iOS creates a new project template right in the Xcode environment, as shown

in Figure 11-10.

FIGuRE 11-10 PhoneGap projects in Xcode.

All you do is pick up a PhoneGap project, and then a sample application is created for you in

Xcode. After you compile the application for the irst time, a Www folder is created in the project.
Next, you copy your web application over it. Finally, you are ready to test your new iOS application.

The Www folder should act as the root of the site. PhoneGap defaults to the Index.html ile as

http:///

408 pArt III Mobile Applications

the entry point to the application. However, a HTML5 application becomes native because in the

PhoneGap project (on every platform), there’s some startup code that loads a web view into the main

screen. If you like to use a different page to open the application initially, you just change the URL

being passed to the web view.

As mentioned, the iOS environment is where PhoneGap applications do their best. The steps for

creating PhoneGap applications for iOS are really just the ones that have been discussed. For more

information on iOS compilation and packaging, refer to Chapter 8.

Figure 11-11 shows the Guess application in action. Overall, the speed and responsiveness is really

good.

FIGuRE 11-11 The PhoneGap Guess application running on iOS.

Building an Android Application

To set up an Android PhoneGap project, the irst step to accomplish is linking the PhoneGap JAR

ile—the Java PhoneGap library—to the project, which you must do manually. You can use both
Eclipse and IntelliJ IDEA for this. Then you create a new Www folder under the Assets project folder

and ill it with your web resources. The Www folder is the root of the web application that PhoneGap
will render natively to Android.

Next, after adding the JavaScript ile (Cordova.js in version 1.5) to the web resources, and after
linking it from pages, you ensure that you have a ile named Plugins.xml located under the Res/xml

http:///

 CHAPTER 11 Developing with PhoneGap 409

project folder. If it doesn't yet exist, create an Xml subfolder. You can get this ile from the sample
Android project that comes with the PhoneGap package. Here’s the default content of this ile:

<?xml version="1.0" encoding="utf-8"?>

<plugins>

 <plugin name="App" value="org.apache.cordova.App"/>

 <plugin name="Geolocation" value="org.apache.cordova.GeoBroker"/>

 <plugin name="Device" value="org.apache.cordova.Device"/>

 <plugin name="Accelerometer" value="org.apache.cordova.AccelListener"/>

 <plugin name="Compass" value="org.apache.cordova.CompassListener"/>

 <plugin name="Media" value="org.apache.cordova.AudioHandler"/>

 <plugin name="Camera" value="org.apache.cordova.CameraLauncher"/>

 <plugin name="Contacts" value="org.apache.cordova.ContactManager"/>

 <plugin name="File" value="org.apache.cordova.FileUtils"/>

 <plugin name="Network Status" value="org.apache.cordova.NetworkManager"/>

 <plugin name="Notification" value="org.apache.cordova.Notification"/>

 <plugin name="Storage" value="org.apache.cordova.Storage"/>

 <plugin name="Temperature" value="org.apache.cordova.TempListener"/>

 <plugin name="FileTransfer" value="org.apache.cordova.FileTransfer"/>

 <plugin name="Capture" value="org.apache.cordova.Capture"/>

 <plugin name="Battery" value="org.apache.cordova.BatteryListener"/>

</plugins>

The Plugins.xml ile contains the list of extensions being used to enrich the JavaScript environment.
If you create your custom extensions of native code to add a new feature or replace an existing one,

you register your extension within this ile.

Finally, you should edit the source code of the root activity as follows:

public class MyActivity extends DroidGap

{

 @Override

 public void onCreate(Bundle savedInstanceState)

 {

 super.onCreate(savedInstanceState);

 super.loadUrl("file:///android_asset/www/index.html");

 }

}

In particular, you should inherit the activity from DroidGap and make it call the loadUrl method to

load the root ile of your local web application. You don’t usually need additional activities because all
your logic is expected to be in the HTML pages.

Note that the Android emulator may sometimes be too slow, and it may cause a timeout. To avoid

that, you can focus your testing on a real device. But there’s an alternative, which is accomplished by

the following code:

super.loadUrlTimeoutValue(milliseconds);

In fact, you can even increase the timeout of the loadUrl method programmatically. Figure 11-12

shows the sample application on an advanced Android smartphone.

http:///

410 pArt III Mobile Applications

FIGuRE 11-12 The Guess web application packaged as a native Android application.

Building a Windows phone Application

PhoneGap offers a relatively easier experience when used within Visual Studio to create applications

for Windows Phone. When you download the package, you get a ZIP ile to install manually in the
Visual Studio project templates. In particular, you need to copy the project template ile (in PhoneGap
1.5, it’s called Cordova-1.5.0-Starter.zip) in the following folder:

C:\Users\[Name]\My Documents\Visual Studio 2010\Templates\ProjectTemplates\Silverlight for

Windows Phone

 As a result, you get a brand-new item in the list of Visual Studio projects, as shown in Figure 11-13.

There’s no need for you to change anything in the project—you build it and it gets you a

 “Hello-World“ style application. The next step is simply replacing the content of the Www folder with

the iles of your local web application.

Creating a PhoneGap application for Windows Phone 7.5 requires some changes and may generate

a few additional issues than with iOS and Android. A common snag is that some resources—mostly

images—appear to be missing when you start the application. To ix this, ensure that all resource iles
have a build action of Content and are copied to the output directory if they are newer than existing

iles. You control these settings from the Properties box in Solution Explorer.

http:///

 CHAPTER 11 Developing with PhoneGap 411

FIGuRE 11-13 Creating a Windows Phone project with PhoneGap 1.5.

Finally, the web-view component in Windows Phone 7.5 doesn’t support the JavaScript alert

 function. To avoid replacing all occurrences of alert in your JavaScript source code, you might want to

use the following code in just one global place:

GLOBALS.appInitialize = function () {

 ...

 window.alert = navigator.notification.alert;

}

In my sample code, this line is in the function that I use to initialize the application. Figure 11-14

shows the sample application compiled natively for Windows Phone 7.5.

FIGuRE 11-14 PhoneGap Guess for Windows Phone.

http:///

412 pArt III Mobile Applications

Final Considerations
Developing for PhoneGap is easy and dificult at the same time. It is easy because most of what you
do consists of writing an HTML5 application. Because web skills are fairly common these days, there’s

likely no need to learn new languages and gain new skills. Compared to learning new languages, such

as Objective-C, and mastering new SDKs, it seems faster and more comfortable. Is this really true?

the Common Denominator

As PhoneGap uses HTML5 and web development, it can’t speciically address the native features of any
platform. Using the Menu button in Android or the Back button in Windows Phone requires tricks and

extensions to the basic HTML source code. Support for the Back button is particularly problematic.

On platforms that recognize it (e.g., Android and Windows Phone), the Back button is designed to

let the user navigate through the screens of the application. The Back button and related navigation

is managed by the operating system, which exposes a proper API to applications. When the user

 interface is HTML-based, the user interface is hosted in a web-view component; in a web world, the

Back button is used to navigate through hosted pages. When Ajax is used to provide smoother and

faster navigation, no new URL is necessarily added to the history, so tapping the Back button once

may exit the entire application.

History and navigation is managed by libraries such jQuery Mobile, and PhoneGap offers facilities;

as a developer, you have the responsibility of testing and debugging. It may be a bit annoying, and it

certainly adds more time to the development process.

the Skin Factor

PhoneGap doesn’t just unify the behavior and user experience of an application under various

 platforms; it also uniies the user interface. Because the user interface of a PhoneGap is based on CSS,
by simply replacing the CSS, you can skin the same HTML pages differently. Some popular JavaScript

libraries—speciically jQuery Mobile—offer a native iPhone-like user interface that you may not want
to have on Android or Windows Phone.

Your design team (or CSS that you can obtain somewhere on the Internet) can probably create an

ad hoc stylesheet that you just replace in the pages when creating the project for a given platform.

This is a irst step that dispels the dream of having a single codebase when you use PhoneGap. There’s
more, however.

The user interface intended as styles of controls and text is just one aspect of a mobile platform.

A different CSS may help, but to make a PhoneGap application look like a native one, more changes

must sometimes be made to the HTML layout—and sometimes to the JavaScript code as well.

phoneGap Is Not the Silver Bullet

PhoneGap is an excellent choice when creating applications with a completely customized user

 interface, such as games or applications that, for their purpose, require a handcrafted user interface.

http:///

 CHAPTER 11 Developing with PhoneGap 413

Prototyping the user interface with HTML is certainly quicker than using native tools on most

platforms—with perhaps the exception of Windows Phone and Microsoft Expression Blend. The

results, however, is hardly as fast as a truly native application. Speed is the irst aspect of PhoneGap
applications that users may notice. On the other hand, there’s not much that you can do to make a

PhoneGap application run faster. The speed of PhoneGap applications depends for the most part on

the browser, and the browser depends on the speciic device. Especially on Android, this may be a
problem.

As mentioned earlier, if you’re writing a mobile site, you can use server-side capability detection to

optimize the markup being served. With native applications, this is much harder to implement. It's not

that having alternate markup in HTML5 is not possible, but it makes PhoneGap development much

harder.

In the end, developing for PhoneGap is only apparently quick. If you have to produce applications

for multiple platforms, using PhoneGap may save time on the whole. Overall, however, it’s like

that old adage—nine women can’t deliver a baby in one month. Similarly, PhoneGap can’t deliver

 applications for three different platforms in a fraction of the time.

With PhoneGap, you have to maintain multiple projects, deal with subtle browser and web-view

differences (e.g., there is no alert function in Windows Phone) and, more important, debugging is

hard. Often, debugging ends up being a series of calls to message boxes.

The native PhoneGap application hasn’t really got much to test, so the crucial point is to test the

HTML5 application effectively. As mentioned earlier, my favorite option is using a desktop browser

and any facilities that you may have on the desktop, such as a Visual Studio–integrated debugger,

Firebug, and similar tools. When the application is doing well on HTML5-compliant desktop browsers,

and you have tested it with phone-speciic features that require an emulator, you can build native
applications. From now on, debugging on the device message boxes is probably the only way to go at

the moment.

Documentation is good, but keep in mind that the business model behind PhoneGap is centered

on training. PhoneGap is free; training and support is what generates revenues for Adobe. Keep this in

mind before you draw the line and make a decision.

When to Use phoneGap

So does this mean that PhoneGap is not worth the cost? Well, having PhoneGap is much better than

not. However, I believe that the right way to look at PhoneGap is to consider it as an interesting

 option, not a silver bullet.

Using HTML5 and script to arrange an iOS application under PhoneGap is an approach that works

very well. I believe this is due to a couple of reasons: excellence of Safari Mobile as a browser (overall

speed and support for HTML5) and relatively uniform hardware capabilities of devices. In addition,

jQuery Mobile and other JavaScript libraries tend to offer an iOS-oriented user interface natively

which, of course, is good for developers of iOS applications.

http:///

414 pArt III Mobile Applications

Android development is problematic overall, regardless of the frameworks that you use. The

fragmentation of devices makes the choice of using HTML harder to ine-tune for optimal results
than native or mobile website development. On average, the performance of the Android browser

is acceptable, but often not as good as on iOS. Proper handling of the Back button is a major issue

when it comes to PhoneGap for Android.

If you only have a small amount of .NET background, I wouldn’t consider PhoneGap an option for

building Windows Phone applications. Moreover, even if you never used .NET, I’d also suggest you

take a close look at native tools before you opt for PhoneGap Windows Phone development. It may

get better in the future, but my gut feeling is that the combination between PhoneGap, the Windows

Phone web-view component, and JavaScript libraries for nice page transitions and touch gestures is

a sort of alchemy. In the end, building an effective Windows Phone application that runs and loads

slower than a native application will cost you nearly the same in terms of development time than a

truly native application.

What about other platforms such as BlackBerry, Bada, and Symbian? If these are just a few more

applications that you add to complete the suite of products, you probably can consider using

PhoneGap for relatively quick development and to provide an adequate native user experience. How-

ever, if Symbian, Bada, or BlackBerry applications are critical in your mobile strategy, then I would rec-

ommend that you carefully consider going with truly native solutions before you opt for PhoneGap.

Note It may be worth stating, as a inal point, that when I started on this book project in
the fall of 2011, I had very positive feelings about PhoneGap. Then a serious project came

in, and after having a good deal of trouble inding the right mix of JavaScript, PhoneGap,
and HTML5, we opted for hybrid native applications—native skeletons and web views to

display server-side HTML. Certainly, I’m not saying that this approach replaces PhoneGap;

but, on the other hand, each project is different. Having more available tools means more

choices—but sometimes also more chances to make the wrong decision!

Summary

Probably the biggest source of trouble for mobile developers is building the presentation layer. A

platform-speciic user interface must be built for any operating system. This entails learning about
the intended role of hardware buttons (e.g., the Search button is intended differently in Android

and Windows Phone); it entails using and programming native widgets, and giving the application a

 navigation system that is coherent with the platform’s guidelines.

Each platform has its own set of tools for building the user interface. You have designers in iOS

and Windows Phone; a designer also comes with Eclipse for Android. The power of designers is not

the same, though. And building a complex user interface is far easier and quicker for Windows Phone

than for iOS, Android, or BlackBerry.

http:///

 CHAPTER 11 Developing with PhoneGap 415

Not all apps follow the oficial UI guidelines of their target platform; some applications, even very
successful ones, create their own customized user interfaces (custom navigation bars, tabs, buttons,

lists, etc.). In this case, the argument of having a native application for having the native user interface

is not valid; and actually, a unique HTML-based custom user interface can make sense. It should be

clear that this approach may not work for all applications—quite the opposite, in fact. But when tak-

ing this route is acceptable, then PhoneGap helps immensely—possible performances issues aside, of

course.

With HTML5, you can focus your UI efforts on the building of a unique experience for a variety

of platforms. HTML5, CSS, and JavaScript are popular technologies, but they are also fairly easy

for newcomers to get. PhoneGap uses these skills and adds a shell of native code around an HTML

 codebase to package a native application that runs in the device browser.

It’s effective, and often much quicker, to develop than a native solution. But it’s not free of issues

as far as the inal user experience is concerned. Any PhoneGap application will be evaluated on its
own merits when it comes to being approved for the Apple App Store or Windows Marketplace, re-

gardless of the underlying technology used to write it. However, this just transfers the responsibility of

building a great application to you. Sounds good, but isn’t this just what developers are paid for? Yes,

but make sure that you pick up the right tool for the task.

http:///

http:///

 417

onCreateOptionsMenu and

onPrepareOptionsMenu methods, 291

actual_device_root attribute, <device> elements in

WURFL XML data ile, 145
adapter objects in Android, 306

ad hoc distribution provisioning proile, creating, 262
ad hoc user interfaces, 47

Adobe AIR, 274

compilation of applications for mobile

platforms, 385

Adobe Creative Suite 5.5, 215

Adobe PhoneGap framework. See PhoneGap framework

agile schema for piecemeal release of applications, 15

AGPL v3 licenses, 144

Ahead-of-Time (AOT) compiler, 247

AIR. See Adobe AIR

AJAX, 64

beneits and disadvantages of using, 67
browser caching of responses, 74

browsers' support of, 107

capabilities in WURFL, 152

checking for browser support of, 98

and cross-domain issues, 403

Full Page Refresh (FPR) model and, 66

group of capabilities in WURFL, 145

page links and transitions in jQuery Mobile, 117

Predictive Fetch pattern, 199

requirement for use to download data for local

output or data cache, 57

use in jQuery Mobile to download and display

pages, 111

Ajax.BeginForm HTML helper, 66

A-la-Carte-Menu pattern, 185

examples of, 186

AlertDialog class, 301

alert function, JavaScript, 411

alloc and init methods, NSObject class, 219

Index

Symbols
3G connections, 178

51Degrees, 96

@catch directive in Objective-C, 222

@inally directive in Objective-C, 222
- (minus sign)

denoting instance methods in Objective-C, 217

@OutputCache directive, 56

+ (plus sign)

denoting static methods in Objective-C, 217

@property directive, 216

@synthesize directive in Objective-C, 218, 233

@throw directive in Objective-C, 222

A
A4 and A5 processors for Apple devices, 247

accent color, background for tiles and icons in Windows

Phone, 337

accordion widget, creating with jQuery Mobile, 117

actions, adding in iOS, 237, 239, 251

ActionScript, 274, 385

ActivatedEventArgs class, 337

Activated global event, 336

ActiveX components, Ajax capabilities via, 152

activities in Android, 281

completing user interface, 285

displaying alert messages during activity, 301

editing source code of root activity in PhoneGap

project, 409

Game application (example), 295

life cycle of an activity, 283

Activity class, 282

getSystemService method, 310

http:///

Android

418 Index

Android, 10

background services, 335

service detecting network changes, 203

building PhoneGap application for, 408

context menus based on application state, 196

date type on, 82

detecting changes in visual controls and saving

automatically, 180

developing for, 267–322

Android jungle, 275–278

choosing development strategy, 270–275

deining user interface, 285–294
development tools and challenges, 268–270

examining sample application, 294–308

other programming topics, 308–318

programming languages and equipment, 39

programming with Android SDK, 278–321

testing the application, 318–320

encrypting or hiding sensitive data, 191

Facebook for Android, Logon-and-Forget

pattern, 190

full website viewed on (example), 48

grocery list application with voice-based

input, 183

Guess (sample) PhoneGap application running

on, 402

horizontally scrolling toolbar from Astro, 199

HTC Desire device, detecting capabilities with

WURFL, 158

keyboard layout in browser application, 184

ListView widget, 197

Menu and Search buttons, 195

MonoDroid framework wrapping Android

SDK, 213, 251

open to any applications, 21

PhoneGap applications on, 388

receiver in action, 204

Settings screen for browser application, 180

SharedPreferences, 177

storing credentials, 191

system requirements for development, xvii

wide spectrum of devices, problems for

PhoneGap apps, 401

animation

creating animated message box for Windows

Phone app, 359

transitions in iOS, 245

Anywhere from Sybase, syncing up mobile and

remote data, 177

API levels in Android, 276

APIs (application programming interfaces)

abstract API of virtual machine pattern, 383

mobile platforms, 10

App_Browsers/Devices folder, MDBF ile in, 96
Appcelerator, Titanium Mobile, 274

AppDelegate class (in MonoTouch), 249

app-delegate object

Guess application (example), 231

HelloWorld program (example), 226

App Hub developer account, 376

app ID for iOS applications, 261

Apple

appstore for i-tools, 12

enterprise program for mobile applications, 21

Apple development program, joining, 259

Apple iPhone, 3

application bar in Windows Phone, 344–346

application behavior. See behavior of mobile

applications

application components (Android), 281

ApplicationConigurer class, 156
application device proiles, 69

practical rules for categorizing in classes, 70

applicationDidEnterBackground message, 227

application:didFinishLaunchingWithOptions

message, 226

application icon, creating for Windows Phone

app, 337

application layer, 52

content and functions of, 53

deining for mobile clients, 53
options for, 55

application resources in Android, 284

ApplicationSettings object, 366

application startup

in Android, 281

Windows Phone app programmed in

Starlight, 333

application state, JavaScript application in PhoneGap

HTML5 solution, 396–398

applicationWillResignActive message, 227

App Store (Apple)

and delivery models for mobile applications, 18

distribution of iOS applications, 263

submitting inished applications to, 210
appstores, 12

B2C strategy and, 16

beneit for users of native applications, 37
beneits of, lacking for mobile sites, 36
mobile sites and, 18

http:///

 background services in mobile applications

 Index 419

App.xaml ile, 333, 354
creating global application resource in, 347

deining static resource, 342
ARC (Automatic Reference Counting), 212

support by Objective-C, 224

ARM assembly code, 247

ARM processor, 319

<article> elements in HTML5, 123

<aside> elements in HTML5, 124

ASP.NET

@OutputCache directive, 56

DDR-based ASP.NET routing system, 163

DDR-based view engine, 164

native detection engine, 93

pointing to WURFL repository and patch

iles, 147
Request.Browser object, retrieving device

information, 143

using WURFL from, 153–159

from UA to virtual device, 156

introduction to WURFL API, 153

querying for device capabilities, 157

web API, 54

ASP.NET MVC, 164

automatic, convention-based routing of pages

to mobile devices, 168

building device-detector site on, 90

deining web-base application layer, 54
Razor syntax describing site view, 99

structure of jQuery Mobile layout ile, 106
support of partial page refresh, 66

ASP.NET Web Forms

DDR-based routing system, 164

support of partial page refresh, 66

Assemblyinfo.cs ile, 331
As-Soon-As-Possible pattern, 202–205

detecting network changes, 203

implementing, 202

async and await keywords (C# 5.0), 188

asynchronous operations, 186–189

AsyncTask class, 311

AtomPub feeds, 55

attributes, indicating in Objective-C property

declarations, 216

audience

focus on, in B2C strategy, 13

for a mobile site, 36

serving B2B audience, 19

<audio> element in HTML5, 133

authentication

Logon-and-Forget pattern, 190

problems with, in SPI sites, 65

auto-completion

context-sensitive, in a text box, 297

on mobile sites, 87

auto-releasing in iOS memory management, 223

AutoSave pattern. See Back-and-Save pattern

auxiliary resources, moving to external iles, 74
AVD Manager, 269

b
B2B (business-to-business) applications, 9

outlining strategy for, 19–23

mobile enterprise application platforms

(MEAPs), 21

picking one mobile vendor, 20

private applications, 20

serving your audience, 19

B2C (business-to-consumer) applications, 9

outlining strategy for, 13–19

delivery models, 16–19

focus on your audience, 13

global statistics, quick look at, 14

Babel-Tower pattern, 191–194

formulating, 192

further considerations for mobile

translations, 194

implementation of, 193

internationalization versus localization, 192

Back-and-Save pattern, 111, 179

considerations in mobile data entry, 182

implementation of, 180

in Postino for iPhone and Windows

Phone, 181

Back button

avoiding page reloads when pressed, 74

navigating through activities stack in

Android, 282

support for, in PhoneGap applications, 412

background

deining with graphical shapes for Android
layout, 289

styling in XAML for Windows Phone app, 342

background applications, 176, 200

background services in mobile applications, 335

notifying of network changes in Android, 203

http:///

bada

420 Index

Bada, 10

using PhoneGap to develop for, 414

Base64 image encoding, 73

Base Class Library (BCL), 247

battery power consumption, reducing with use of

more JavaScript, 67

behavior of mobile applications, 175

behavioral patterns, 199–204

As-Soon-As-Possible pattern, 202–205

Memento-Mori pattern, 200–202

Predictive Fetch pattern, 199

JavaScript, in PhoneGap HTML5 solution, 398

BES (BlackBerry Enterprise Server), 20

best practices for mobile development, inding, 12
beta applications

for iOS, sharing with testers, 262

publishing for Windows Phone, 376

beta testing

enabling for iOS application, 261

over-the-air beta testing for iOS

applications, 263

Binding keyword, 353

BlackBerry, 10

appstore, optional for developers, 12

compiling applications with Flash Builder, 275

developing for, programming language and

equipment, 39

IsMobileDevice property, using on, 95

open platform, 21

PersistentStore object, 177

success in B2B market, 19

using PhoneGap to develop for, 414

Black-or-White implementation, As-Soon-As-

Possible pattern, 203

booking tennis courts (EasyCourt example site),

conversion to mobile site, 47–49

Boston Globe, 33

delivery model, 18

example of RWD in action on website, 139

broadcast receivers in Android apps, 281, 312

registering, 313

browser caching

control over, in HTML5, 131

improving control over, 74

ofline site availability via, 75
browser emulators, 88

.browser ile extension, 93

browsers

adjusting HTML5 pages for older browsers, 125

dealing with older browsers, 71

detecting browser language using

JavaScript, 395

detecting capabilities of, 98

determining on server and matching to

capabilities, 57

determining which mobile browsers to support

and how, 57

differences between desktop and mobile, 140

discovering capabilities of, for mobile

devices, 70

fallback in case of older browsers, 167

global namespace, JavaScript and, 393

HTML5 and, 135

HTML5-compliant, 105, 273

HTML5 input ields support, 129
jQuery Mobile graded support matrix, 107

local storage, 130

mobile browsers' support for HTML5, 122, 136

mobile device fragmentation issue, 11

mobile site development and, 137

optimization of content for, 29

support for image inlining, 74

supporting HTML5 local storage, 56

testing PhoneGap HTML5 application in desktop

browsers, 401

User Agent Switcher tools, 88

validation of input on forms, 128

varied capabilities of, mobile sites and, 35

video codecs supported, 134

video formats, 133

Windows Phone, 328

brushes, painting background of XAML

elements, 342

BufferedReader class, 311

Bundle object, 282

application state saved to, 288

bundles, 228

business layer, 52

business objectives and native application versus

mobile site strategy, 31

business-to-business applications. See B2B

applications

business-to-consumer applications. See B2C

applications

http:///

 combo boxes on mobile sites

 Index 421

C
C#

adding new methods to existing class via

extension methods, 221

async and await keywords (C# 5.0), 188

basics for building coroutines, 188

Java versus, for Android development, 273

cross-platform mobile development with, 39

interfaces, 220

named parameters for methods, 219

primary language for Window Phone

development, 324

using with MonoDroid for Android

development, 272

using with MonoTouch in iOS development, 213,

246

C++

development for iPhone using, 212

use in development for Symbian, 39

C2C (consumer-to-consumer) applications, 9

caching

browser caching for ofline use of mobile
sites, 75

browser caching in HTML5, 131

improving control over browser cache, 74

local caching of data for mobile browsers, 35

local output, 56

WURFL manager object, 153

camera intent in Android apps, 316

cameras

capturing picture and sending via email in

Android, 315

starting camera application in Windows

Phone, 374

canvas support capability, 153

Capabilities section of manifest ile, Windows Phone
app, 333

carriers, Android and, 275, 276

categories in Objective-C, 221

cell phones

detecting, 149

display of website content, 28

cells, creating in table-based view, 242

certiicates
distribution certiicate for iOS, 261
getting development certiicate for iOS, 259

certiication and publishing of iOS apps, 210
chaining async network operations, 187

Change-Password use-case, 49

check boxes on mobile sites, 84

child application/directory of desktop site, mobile
site as, 81

Chittaro, Luca, 63

choosers, Windows Phone, 374

ciphering or encryption, using for critical data, 191

C language

development for iPhone using, 212

Objective-C and, 215

class attribute, using to apply different themes, 109

classes

deining in Objective-C, 212, 216
implementing in Objective-C, 218

implementing protocols in Objective-C, 220

namespaces and naming conventions in

Objective-C, 218

ready-made, performing common tasks in iOS

and other mobile systems, 244

CLDC (Connected Limited Device Coniguration), 95
clear/undo on demand, 180
client-side route to device detection, 138–142

beneits of RWD, 138
disadvantages of RWD, 140

technical aspects of RWD, 139

why jQuery-like approach isn't always

effective, 142

client-side web applications

transforming to native applications, 214

writing, 273

Closing event, 336

cloud, sharing persistent data among

applications, 177

Cocoa classes, NS preix for class names, 218
Cocoa Touch frameworks, 209

dealloc method for objects, 223

.NET facade on top of (MonoTouch

framework), 213

ownership rules and reference counting, 223

codebase composed of HTML, CSS, and JavaScript

for PhoneGap apps, 390

codecs for video, 133

popular codecs, 134

CodePlex project, 95

code samples for this book, xvii

collapsible panels

creating with HTML5, 124

creating with jQuery Mobile, 116

colors, not using as constants in XAML iles and
code, 342

combo boxes on mobile sites, 85

http:///

common tasks

422 Index

common tasks

performing in Android, 315–319

performing in iOS, 244

performing in Windows Phone, 374

Compact HTML markup, 146

compacting resources, 73

compilers, Mono and AOT compilers in Mono

framework, 247

compression

enabled at web server level, 74

ZIP and GZ formats, support by WURFL API, 156
connection type changes, monitoring in

Android, 314

connectivity

checking for network, 204

listening to changes with broadcast receiver in

Android, 312

mobile network connectivity, different types and

qualities, 371

of mobile applications, 178

of mobile devices, 175

CONNECTIVITY_CHANGE message, 313

ConnectivityManager class, 309, 315

getNetworkInfo and getActiveNetworkInfo

methods, 310

constants

colors as, avoiding in XAML iles and code, 342
deining in Objective-C, 233

consumer-to-consumer (C2C) applications, 9

container elements in XAML, 339

Content Delivery Network (CDN), using for mobile

sites, 35

content provider components in Android apps, 281,

282

Context object, 310

context-sensitive auto-completion in a text box, 297

context-sensitive menus, display during Android

Guess game, 300

control bar for audio and video playback, 133

controlled input, 120

controls attribute, <video> element in HTML5, 134

controls, hiding controls not being used, 186

convention-over-coniguration (CoC) naming
convention, 279, 330

converters (XAML), 363

CoolStorage, 370

Cordova, 382. See also PhoneGap

coroutines, 188

CORS (Cross-Origin Resource Sharing), W3C

draft, 404

CouchBase Mobile (mobile NoSQL), 178

CouchDB database, 178

CPU power in mobile devices, 175

createChooser method, choosing medium to share

picture through, 317

cross-compiling, 384

cross-domain issues

Ajax and, 403

and HTML pages hosted in PhoneGap

application, 404

necessity for testing cross-domain calls using

real mobile device, 405

security issues with linking of URLs, 392

Cross-Origin Resource Sharing (CORS), W3C

draft, 404

cross-platform development

myth of, 382–392

shell approach, 386–392

virtual machine approach, 383–386

cross-platform mobile development, 381. See

also PhoneGap framework

C# language and, 39

cross-platform options for Android

development, 274

cross-platform, web-based nature of mobile sites, 34

CRUD operations in applications, 52

OData service, CRUD API, 55

.csproj ile, editing in to add supported cultures in
Windows Phone, 347

CSS (Cascading Style Sheets)

browser capability of rendering gradient as

speciied in CSS3, 153
browsers' support of, 107

classes, 125

commands to apply different themes, 109

in HMTL pages, readying for PhoneGap, 407

in PhoneGap applications' codebase, 390

media queries, 97

browser support for, in jQuery Mobile, 107

disadvantages and limitations of, 141

use in RWS for dynamic image substitu-

tion, 139

predeined ile for JQuery library, 106
rendering capabilities to compress markup and

decrease data trafic, 159
skinning a site differently for platforms using ad

hoc CSS iles, 161
style for mobile device-detection site, 100

http:///

 Developer Enterprise Program license

 Index 423

styling for <details> element in HTML5, 124

styling screen in PhoneGap HTML5

application, 400

using in Responsive Web Design, 60

using to implement One Web, 60

using to write client-side web applications, 214

using with HTML5, 123

D
Dalvik virtual machine, 272

data access layer, 52

data access practices, deining for mobile web
API, 54

data-ajax attribute, using with links, 119

data-* attributes in HTML5, 109

databases

local databases for mobile applications, 177

NoSQL, 178

storing relational data in Microsoft SQL Server

database from Windows Phone, 370

synchronizing remote and local databases, 177

data binding

in Android, 306

list box in Windows Phone application, 362–365

using XAML infrastructure in MVVM

pattern, 349, 352

data context of a view, resetting to refresh UI in

Windows Phone, 366

DataContext property, XAML elements, 353

data entry

considerations in mobile data entry, 182

new input types in HTML5, 126

redesign for mobile sites, 82

data-fullsrc attribute, elements, 140

<datalist> element in HTML5, 129

data-native-menu attribute, 121

data-rel attribute, 119

data-role attribute, 109

data storage

local storage in HTML5, 397

permanent, in Android, 308

permanent, in Windows Phone, 366–370

tools for, 177

data-transition attribute, 119

data types, conversion with XAML converters, 363

data URI scheme, 73

date pickers, 120

dates

on smartphones, 82

treatment by different mobile browsers, 127

DDRs (device description repositories), 57, 94, 96.

See also WURFL

ASP.NET routing system based on, 163

ASP.NET view engine based on, 164

capabilities in multiserving, versus jQuery

Mobile, 167

and crowd sourcing, 143

most effective strategy for inding browser
capabilities, 142

RWD plus server side components (RESS), 168

use when targeting Android from mobile

site, 402

Deactivated event, 336

dealloc method, 223

debugging PhoneGap apps for mobile platforms,

dificulty of, 413
decoding (deserialization), 233

DefaultHttpClient class, 311

Execute method, 311

delivery models, 16–19

freemium model, 17

free/paid dilemma, 17
premium-with-free-sample model, 18

quid-pro-quo model, 18

deployment

hassle-free deployment of mobile site

updates, 34

iOS applications, 259–265

Windows Phone applications, 375–379

Deployment.Parts element, 331

design patterns

MVC (Model-View-Controller) pattern, 230, 348

MVP (Model-View-Presenter) pattern, 348

MVVM (Model-View-ViewModel) pattern, 349–

353

Presentation Model, 350

desktop emulators, using to test mobile sites, 88

desktop/mobile view switcher algorithm, 78
desktop websites

adding mobile support to, 80

from web to mobile, practical example, 47–49

<details> elements in HTML5, 124

using to implement collapsible panel, 124

detailTextLabel property, 242

DetectRight, 96

Developer Enterprise Program license, 264

http:///

developing for Android

424 Index

developing for Android, 267–322

Android jungle, 275–278

API levels, 276

different screen sizes, 277

irmware, carriers, and manufacturers, 275
choosing development strategy, 270–275

other options, 274

using Java and Android SDK, 271

using MonoDroid and C#, 272

using PhoneGap framework, 273

deining user interface, 285–294
development tools and challenges, 268–270

becoming an Android developer, 268

coniguring the environment, 269
picking up your favorite IDE, 269

distributing the application, 320

examining sample application, 294–308

other programming topics, 308–318

accessing the network, 309

broadcasters, 312–315

common tasks, 315–319

permanent data storage, 308

placing HTTP calls, 310

programming with Android SDK, 278–321

anatomy of an application, 278–285

testing the application, 318–320

enabling devices, 319

selecting test device, 320

developing for iOS, 207–266

becoming an oficial developer, 210
choosing development strategy, 212–215

other options, 214

using MonoTouch and C#, 213

using Objective-C, 212

using PhoneGap framework, 214

deploying iOS applications, 259–265

preparing for

getting a Mac computer, 208

getting familiar with the IDE, 209

joining developer program, 209

programming with MonoTouch, 246–258

programming with Objective-C, 215–246

HelloWorld program (example), 224–230

other programming topics, 243–246

quick look at Objective-C, 215–224

developing for Windows Phone, 323–380

choosing development strategy, 326–329

HTML-based applications, 327

Silverlight-based applications, 326

the way ahead, 328

XNA applications, 327

deploying applications, 375–379

testing the application, 375–378

distributing applications, 378–380

getting ready for development, 324–329, 325

becoming Windows Phone developer, 324

development tools and challenges, 324

Visual Studio environment, 324

programming with Silverlight, 329–375

anatomy of an application, 329–337

application frame, 335

application life cycle, 335

application startup, 333

deining user interface, 337–348
examining sample application, 353–366

manifest ile, 331–337
MVVM pattern, 348–353

permanent data storage, 366–370

developing with PhoneGap, 388–416

building HTML5 solution, 392–405

Guess application (example), 398–405

JavaScript ad hoc patterns, 392–398

handmade hybrid applications, 390–392

HTML-and CSS-based UI with JavaScript

controlling behavior, 389

integrating with PhoneGap, 405–414

building a PhoneGap project, 406–411

inal considerations, 412–414
supported platforms, 405

writing plug-ins for PhoneGap, 389

development aspects of mobile sites, 76

design of mobile views, 82–88

free text and auto-completion, 87

input elements, 82–84

radio buttons and check boxes, 84

scrollable and drop-down lists, 85

reaching the site, 76–81

adding mobile support to existing site, 80

one site, one experience, 76

routing users to right site, 77–80

two sites, one experience, 77

testing the site, 88

development certiicate for iOS, 259
distribution certiicate versus, 261

development issues, mobile-speciic, 51–61
server-side device detection, 57–62

toward a mobile application layer, 51–57

http:///

 dynamic layouts, creation in Responsive Web Design

 Index 425

development of mobile applications, 10

addressing device fragmentation problem, 11

costs, in-house versus outsourcing, 10

looking for best practices, 12

marketplace tax, 12

targeting multiple platforms, 10

development provisioning proile, getting, 261
DeviceAtlas, 96

DeviceController on mobile site, 102

device description repositories. See DDRs

device detection

developer's perspective of, 138–144

client-side route, 138–142

server-side, 57–62

just one web, 59

multiserving, 58

rationale behind, 57

device-detector site, building, 90–104

detecting device capabilities, 93–98

browser capabilities, 98

DDR options, 96

using ASP.NET native detection engine, 93

using CSS media queries, 97

using MDBF repository of mobile proiles, 95
writing wrapper for IsMobileDevice prop-

erty, 95

layout of mobile version, 91

putting the site up, 98

adjusting HTML view, 101–104

adjusting layout, 99

adjusting style, 100

routing to mobile views, 91–93

<device> elements, WURFL XML data ile, 144
device fragmentation issue, 11

leading to varied browser capabilities, 35

mobile sites and, 34

device (manufacturer and product name), inding in
WURFL, 149

DeviceNetworkInformation class, Windows Phone

7.5, 204

Device object, 156

GetCapability method, 157

device/OS emulators, 88
device proiles, 58, 93

creating, 160

rules for device proile, 161
DDR-based ASP.NET routing system, 163

DDR-based ASP.NET view engine, 164

RWD plus server side components (RESS), 168

smartphone proile, 161

device segmentation, managing in device

proiles, 160
device-testing services, 90

dialog boxes

closing programmatically with JavaScript

code, 120

creating with jQuery Mobile, 119

displaying for winner of Android Guess

app, 302–304

excerpt from the YouWonDialog custom

class, 303

IDialogListener object, 303

pop-up dialog box displaying summary of game

in Windows Phone, 360

DialogManager class, 361

didFinishLaunchingWithOptions message, 232

distributing applications

Android application, 320

iOS application, 263–266

App Store, 263

in-house deployment, 264

Windows Phone applications, 378–380

distribution certiicates, 261
distribution provisioning proile, 261

creating ad hoc provisioning proile, 262
valid for the App Store, 264

<div> element with particular data-role attribute,

treated as plain page, 399

Do-As-Romans-Do pattern, 195–196

implementation of, 195

doctype, HTML5-compatible, on jQuery Mobile

pages, 110

domain layer, 52

reuse for mobile site, 53

domain model in domain layer, 52

DOM (Document Object Model), 68

browsers' support of, 107

dormant applications in Windows Phone, 336

dots-per-inch (DPI) issues, 160

downloads of data, reducing amount of, 74

dp unit for distances, 277

drill-down capabilities in HTML5, 124

drop-down lists

choice between native interface of browser or

jQuery Mobile UI, 121

on mobile sites, 86

using with forms in jQuery Mobile, 120

dynamic layouts, creation in Responsive Web

Design, 60

http:///

EasyCourt website (example), conversion to mobile site

426 Index

E
EasyCourt website (example), conversion to mobile

site, 47–49

Eclipse IDE, 269

downloading and installing, 269

testing and debugging features, 318

using for PhoneGap Android project, 408

email dialog box, displaying in iOS, 244

email type, <input> elements, 126

emulators

Android, 318

testing HTL5 markup, 401

using to test mobile site, 88

encoding/decoding, 233
encryption, using for critical data, 191

endpoints, mobile-speciic, identifying, 53
collection of endpoints for mobile view

callbacks, 53

enterprise-class features, BlackBerry, 20

entry point into Android applications, 281

event handlers, adding via actions in iOS, 237

events

handling actions as, in MonoTouch, 251

handling on UI widgets in Android, 284

Evernote, freemium delivery model, 17

exception handling in Objective-C, 221

executable expressions in ASP.NET MVC Razor

syntax, 99

explicit app IDs for iOS applications, 261

Expression Blend, 324

deining UI of Windows Phone applications, 341
Ext.Application object, 390

Extensible Application Markup Language. See XAML

external resources, beneits for mobile sites, 74
Ext.Panel object, 390

F
Facebook, 16

Android application, Logon-and-Forget

pattern, 190

Factor Master for Windows Phone, horizontal

scrolling in, 198

fall_back attribute, <device> elements, 145

fallback in case of older browsers, 167

feeds, AtomPub or JSON, 55

51Degrees, 96

<igure> elements in HTML5, 124
ile formats for video, 133

ile:// protocol pages, placing Ajax calls from, 405
ilter bar, jQuery Mobile, 87
Financial Times, 33

iOS application, 18

indViewById method, 284
Firefox 10, WURFL patch ile adding support for, 147
irmware

Android, 275

modiications of, 276
in mobile context, 276

Firtman, Maximiliano, 136

Flash Builder, 385–387

compiling applications for BlackBerry, 275

PhoneGap versus, 390

using for iOS and Android development, 274

Flash, device capabilities in WURFL, 151

Flashlite, device capabilities in WURFL, 151

luid layout for mobile pages, creating with jQuery
Mobile, 116

folders

in Java projects, 278

naming in Android, 279

 elements, no longer supported in

HTML5, 126

fonts, resizing with RWD, 139

<footer> elements in HTML5, 123

footers

creating in HTML5, 123

creating with jQuery Mobile, 112

foreground applications, 200

<form> elements, nonvalidate attribute, 128

forms

Back-and-Save pattern applied to input, 180

creating in jQuery Mobile, 120

using Guess-Don't-Ask pattern for input, 183

web forms and data entry in HTML5, 126–130

new input types, 126–128

predeined entries, 129
validation of input, 128

FPR. See Full Page Refresh model

<frame> elements, no longer supported in

HTML5, 126

frameworks

for cross-platform mobile development, 39

mixed applications written with, 38

freemium model, 17

free/paid dilemma, 17
Full Page Refresh (FPR) model, 66

deciding whether to use, 67

functions listed on home page of full site

(example), 48

http:///

 home page for a logged-on user in full site, functions offered by (example)

 Index 427

G
Game activity in Android app, 298

menu with options, 300

games

omission from native application category, 27

XNA framework for, 327

garbage collection, Objective-C and, 212

garbage collector for applications, 176

Gartner’s Magic Quadrant

for 2010, 20

MEAP and, 22

General Packet Radio Service (GPRS), 371

geolocation

browser support of, 153

functionality in HTML5, 132

Geolocation API, w3c speciication, 133
GetDeviceForRequest method, 156

getIntExtra and getStringExtra methods, 299

GET method (HTTP), calling in Android, 310

getter/setter method, properties in
Objective-C, 218, 233

getView method, adapter object in Android, 306

Global.asax ile, adding WURFL support to, 154
global object containing all functions and object

declarations in JavaScript programs, 393

Google

Android operating system. See Android

appstores for mobile devices, 12

Google Analytics for Mobile, 200

Google Chrome

DETAILS element in, 124

validation of input, 129

Google Maps object, passing latitude and longitude

to, 132

Google Play, 321

distributing Android applications through, 268

GPRS (General Packet Radio Service), 371

GPS (global positioning satellite) services, access to,

native applications vs. mobile sites, 27

gradients

CSS gradient capability, 153

rendered as CSS instructions instead of using

background images, 159

graphical shapes in Android applications, 289

graphics processing unit (GPU), 175

Grayscale implementation, As-Soon-As-Possible

pattern, 203

grocery list application with voice-based input

(Android), 183

groups of browser and device capabilities in

WURFL, 145

Guess application (example), 231–243

app-delegate object, 231

building in Android, 294–308

creating with Silverlight for Windows

Phone, 353–366

Guess web application packaged as native

Android app, 410

Home view, 234

PhoneGap Guess for iOS, 408

PhoneGap Guess for Windows Phone, 411

PhoneGap HTML5 solution, 398–405

Player class, 232

Play view, 235–239

Scores view, 239–243

Guess-Don't-Ask pattern, 182–185

implementation of, 183

remembering if you can't guess, 185

GUIs (graphical user interfaces), 195

GZIP compression for script and other resources, 65

H
hardware

mobile sites not having access to capabilities

of, 34

native applications' integration with, 37

HCI (Human Computer Interaction) research, 63

<header> elements in HTML5, 123

headers and footers

creating footer with jQuery Mobile, 112

creating header with jQuery Mobile, 111

custom header template in jQuery Mobile, 113

markup in HTML5, 122

“Hello, World” program

in Android, 282

creating in Xcode, 224–230

hidden optional content in HTML5, 124

hiding rather than disabling controls not being

used, 186

highlighting in HTML5, 126

hints, displaying in text boxes, 128

history, management in PhoneGap applications, 412

History page using local caching (example), 56

Hn element, caption for dialog box, 120

home page for a logged-on user in full site,

functions offered by (example), 48

http:///

Home view

428 Index

Home view

Android Guess application (example), 295

Guess application (example) in Windows

Phone, 354

horizontal scrolling in mobile applications, 175, 198

HTML

applications based on, in Windows Phone

development, 327

dealing with, in older browsers, 71

in handmade hybrid PhoneGap

applications, 391

HTML/viewport markup, 151
mixed user interface with native and HTML

views, 386

native applications with UI based entirely on

HTML, 387

static HTML pages, 214

tiny HTML page for mobile sites, myth of, 45

HTML5, 10, 105, 121–136

browser local storage, 75

browsers and, 135

building HTML5 solution with PhoneGap, 392–

405

JavaScript application behavior, 398

JavaScript application state, 396–398

JavaScript localization layer, 395

JavaScript presentation layer, 392–394

sample application, 398–405

central role in mobile development, 122

data-* attributes versus microformats, 109

as development framework with CSS and

JavaScript, 135

doctype compatible with, on jQuery Mobile

pages, 110

fast facts about, 121

HTML5-powered mobile sites, 18

hype in, 134

input ields introduced in, 120
local storage, 56

mobile browsers' support for, 136

mobile site solution based on, 33

ofline sites with, 75
programmer-friendly features, 130–134

audio and video, 133

geolocation, 132

local storage, 130

ofline applications, 131
semantic markup, 122–136

adjusting pages for older browsers, 125

elements removed in HTML5, 126

headers and footers, 122

native collapsible element, 124

new elements, 124

using for PhoneGap user interface, 273

using to write client-side web applications, 214

web forms and data entry, 126–130

new input types, 126–128

predeined entries, 129
validation, 128

WURFL, HTML5-related capabilities, 152

HTML view, adjusting for mobile device-detector

site, 101–104

HTTP

placing HTTP calls from Windows Phone, 372–

374

placing HTTP calls in Android, 310

requests

increasing with extensive use of AJAX, 67

minimizing number to websites, 71

reducing number for better site perfor-

mance, 72

HttpContext.Request, 156

HttpContext.Request.Browser.IsMobileDevice, 93

HttpDelete class, 311

HTTP endpoints connecting website to

middleware, 53

HttpGet class, 311

HttpPost class, 311

HttpRequestBase object, 156

HttpRequest object, 156

HttpWebRequest class, 372

Human-Computer Interaction (HCI) research, 63

hybrid native applications, PhoneGap and, 414

I
iCloud platform, 177

icons

adding to list elements in jQuery Mobile, 114

creating for Windows Phone app UI, 337

Windows Phone application, 330

id attribute, ListView object in Android, 304

identiiers in Android, 284
IDEs (integrated development environments)

downloading and installing Eclipse, 269

Eclipse-based IDE in Titanium Mobile, 384

Eclipse or IntelliJ IDEA for Android

development, 269

http:///

 interruptible nature of mobile devices

 Index 429

getting familiar with Xcode IDE, 209

IntelliJ IDEA, 270

MonoDevelop IDE, 248, 272

Titanium, 384

IDevice WURFL type, 162

IDialogListener object, 303

IIS (Internet Information Services) 7.5, integrated

pipeline mode, 81

images

dynamic substitution of images in RWD, 139

employing tricks to download smaller ones, 141

inlining, 73

browser support for, 150

resizing, 159

splash screen image preceding video

playback, 134

 element

custom data-fullsrc attribute used to reference

full-size image, 140

src attribute, 73

implementing classes in Objective-C, 218

index.cshtml view, 155

index.mobile.cshtml view, 155, 168

Index view in mobile device-detection site, 102

industry sectors, mobility and, 6

in-house deployment of iOS applications, 264

in-house development, 10

InitializeComponent method, 334

InitializePhoneApplication method, 334

inlining images, 73, 150

InMemoryConigurer, 156
INotifyPropertyChanged interface, 353

input

Back-and-Save pattern applied to form

input, 180

challenge to developers from HTML5 input

ields, 129
predeined entries in HTML5 forms, 129
using Guess-Don't-Ask pattern for form

input, 183

validation in HTML5, 128

<input> element, type attribute, 82

new values in HTML5, 126–128

input elements on mobile sites, 82–84

input forms, creating with jQuery Mobile, 120

InputScope property, Windows Phone, 356

inputType attribute, 297

Inspector editor pane, 236

Sent Events area, 237

instance methods in Objective-C, 213, 217

integrated development environments. See IDEs

integration with hardware and software services

full integration of native applications, 37

native applications vs. mobile sites, 27

IntelliJ IDEA, 269, 270

Community Edition, 278

sample Android project in, 279

testing and debugging features, 318

using for PhoneGap Android project, 408

wizard to sign Android executable, 321

Intent class, putExtra method, 316

intent ilter in Android applications, 281
interaction model for mobile applications, 174

interaction between users and system in mobile

site, 46

patterns for interaction, 179

A-la-Carte-Menu pattern, 185

Back-and-Save pattern, 179–182

Guess-Don't-Ask pattern, 182–185

Logon-and-Forget pattern, 189–191

Sink-or-Async pattern, 186–189

Interface Builder, 234

creating UI components in, 239

deining views in iOS, 235–239
interfaces

for classes in Objective-C, 220

in Java and C#, 220

Interface Segregation principle, applied to mobile

pages, 58

internationalization

features of internationalized applications, 193

versus localization, 192

International Telecommunication Union (ITU),

statistics on mobile devices, 14

Internet

programmatic acces to in Android, 309

use of, for mobile projects in PhoneGap, 404

Internet Explorer

detecting browser language, 395

and support for image inlining, 74

User Agent Switcher tool in IE9, 89

Internet Information Services (IIS) 7.5, integrated

pipeline mode, 81

interpreted environments, 384

interruptible nature of mobile devices, 175

http:///

ioS

430 Index

iOS

background services, 335

building lists, 197

building PhoneGap application for, 407

developing applications with PhoneGap, 413

developing for, 207–266

choosing development strategy, 212–215

deploying iOS applications, 259–265

equipment and programming languages, 39

getting ready for development, 208–210

iPhone vs. iPod Touch vs. iPad, 211

programming with MonoTouch, 246–258

programming with Objective-C, 215–246

distinguishing from Android and Windows

Phone in WURFL, 149

IsMobileDevice property, using on devices, 95

Keychain repository, 191

PhoneGap applications on, 388

referencing localized text strings, 193

SCNetworkReachabilityRef interface, 204

Settings bundle facility, 177

sharing persistent data between

applications, 177

system requirements for development, xvii

tappable region and input elements, 84

iOS Provisioning Portal

connecting to and registering development

device, 260

creating ad hoc distribution provisioning

proile, 262
creating provisioning proile manually, 261

iOS simulator, testing applications with, 259

iPad, 10, 211

iPhone, 3, 10, 211

date picker element, 82

effect of typing in tel input ield, 126
irst release, beginning modern era of mobile

technology, 25

going mobile with iPhone application, 32

percentage of smartphone users using, 15

Postino application, 180

iPod Touch, 211

IsApplicationInstancePreserved property, 337

IsInternetAvailable method, 312

IsMobileDevice property, 93

writing wrapper for, 95

IsolatedStorageSettings class, 366

isolated storage, using to store credentials, 191

Italy, penetration of mobile devices, 14

J
jailbreaking, 38

Java

versus C# for Android development, 273

interfaces, 220

language of Android development, 268

naming convention for applications, 280

package name for Android applications, 279

PhoneGap JAR ile, linking to Android
project, 408

Spring Mobile, 143

typical project, dissecting, 278

using with Android SDK, 271

virtual machine, 383

Java Development Kit (JDK), installing, 269

Java Micro Edition (Java ME), 271

Java Platform Micro Edition (Java ME) framework, 95

Java Runtime Engine (JRE), 269

JavaScript

ad hoc patterns in PhoneGap HTML5

solution, 392–398

application behavior, 398

application state, 396–398

localization layer, 395

presentation layer, 392–394

amount to use for pages of mobile site, 67

browsers' support for, 107

checking browser capabilities, 98

code and libraries for SPI model, 65

frameworks used with PhoneGap, 389

goal of unobtrusive JavaScript, 68

libraries' tendency to offer an iOS-oriented user

interface natively, 413

linking ile to PhoneGap Android project, 408
microframeworks, 68

PhoneGap framework, 30

PhoneGap library, 273

Titanium Mobile API, 384

using to write client-side web applications, 214

using with Titanium Mobile framework for native

applications, 214

WURFL, capabilities related to JavaScript support

in device browsers, 151

JavaScript Object Notation. See JSON

JDK (Java Development Kit), installing, 269

JIT (Just-in-Time) compilation, 247

http:///

 lib folder

 Index 431

jQuery, 65

beneits of using, 106
family of libraries, 68

media query plug-in, 98

placing JSONP call with, 404

why jQuery-like approach to mobile isn't always

effective, 142

jQuery Mobile, 65, 68, 105–121, 142

building mobile pages with, 109–117

collapsible panels, 116

default page template, 112

deinition of a page, 110
luid layout, 116
headers and footers, 111

lists, 113

capabilities of, 167

changes to HTML pages readying for

PhoneGap, 406

controlling navigation in PhoneGap HTML5

solution, 399

data-* attributes, 109

dealing with mobile browsers, 60

excellent polyills for HTML5 features, 125
fast facts about, 106

ilter bar, 87
graded support matrix for browsers, 107

levels of browser support in, 61

main purpose of, 106

markup for input elements, 84

scaling down rich markup on older browsers, 71

setup of the library, 106

themes and styles, 108

transformations, 400

working with pages, 117–121

dialog boxes, 119

input forms, 120

page links and transitions, 117

jQuery UI auto-complete plug-in, 87

JRE (Java Runtime Engine), 269

JSON (JavaScript Object Notation)

exposing data as, 54

returning data as, instead of XML strings, 74

saving data for local storage in HTML5

application, 397

JSON.stringify utility, 397

JSON with Padding (JSONP), 403

JsRender library, 65

JsViews library, 65

Just-in-Time (JIT) compilation, 247

K
keyboards

checking effect on UI in Windows Phone, 357

choosing layout to speed data entry, 184

considerations in mobile development, 46, 174

numeric-only keyboard in Android, 294

picking most convenient layout for Windows

Phone Guess app, 356

Keynote Device Anywhere, 90

Knockout library, 65

l
languages

detecting browser language using

JavaScript, 395

indicating supported languages in Windows

Phone app, 347

setting neutral language of Windows Phone

app, 331

latitude and longitude, getting and passing to

Google Maps object, 132

LAUNCHER category, support by Android entry

point, 281

launchers, Windows Phone, 374

Launching application event, 336

layered applications, 51–57

typical layered architecture of modern web

applications, 52

layout

adjusting for mobile device-detection site, 99

deining custom layout in Windows Phone
app, 339–348

deining in Android user interface, 285
dynamic layouts, creation in Responsive Web

Design, 60

luid layout for mobile pages with jQuery
Mobile, 116

layout iles in Android, 284
pivot and panorama layouts in Windows Phone

apps, 338

use of liquid layouts encouraged by RWD, 139

XML schema used by Android layouts, 287

layout_marginLeft and layout_toRightOf, 297

Leaders quadrant (Gartner's Magic Quadrant), 22

Lib folder, 278

http:///

libraries

432 Index

libraries

capabilities of, in mobile site development, 106

JQuery family of, 68

for SPI model, 65

life cycle of applications, 176

diagram for Windows Phone application, 336

Windows Phone application in Silverlight, 335

Likness, Jeremy, 188

LinearLayout, 287

links

direct links for mobile sites, 47

page links in jQuery Mobile, 117

LINQ syntax, using to sort list of objects, 365

LINQ to SQL, using in Windows Phone 7.5, 370

liquid layouts, 139

ListActivity class, 304

List-and-Scroll pattern, 196–199

formulating, 197

horizontal scrolling, 198

implementation of, 197

list boxes, Scores view in Windows Phone Guess app

(example), 362–365

ListBox object, 362

listeners, event listeners in Android UI widgets, 284

lists

building in mobile application, automation

of, 197

creating for mobile pages with jQuery

Mobile, 113

populating in Android Guess game

(example), 306

sample list activity displaying scroes in Android

game, 305

scrollable and drop-down lists on mobile

sites, 85

ListView object, Android Guess game

(example), 304–308

listview role, 114

local caching for mobile browsers, 35

local databases for mobile applications, 177

localization, 191

internationalization versus, 192

JavaScript layer in PhoneGap HTML5

solution, 395

localizing text of Android application, 293

text localization in Windows Phone, 346–349

local output caching, 56

local storage

in HTML5, 56, 130

native applications versus mobile sites, 28

persisting application data, 75

Web Data Storage speciication, 131
localStorage object, 397

localStorage property, window objects, 130

location-aware prompts, 47

logical page, differences in device-speciic versions
of same page, 159

logic and markup, testing in PhoneGap HTML5

application, 401

Logon-and-Forget pattern

formulating, 189

implementation of, 190

security considerations, 191

logout function in a mobile site, 48, 49

Lunny, Andrew, 405

M
Mac computers

getting for iOS development, 208

Titanium Studio IDE running on a Mac, 384

Mac OS X, 208

Cocoa API, 209

Magic Quadrant methodology, 22

MAIN action, support by Android entry point, 281

makeKeyAndVisible message, 227

manifest iles
for Android applications, 279–281

example of, 280

Guess application (example), 295

for browser caching, 131

linked from <html> tag of home page in

HTML5, 75

for Windows Phone applications, 331–337

example of typical ile, 332
manufacturers, Android and, 275

map/reduce operations, NoSQL queries expressed
as, 177

Marcotte, Ethan, 139

<mark> element in HTML5, 126

Marketplace Beta, 376

marketplace tax on mobile application

development, 12

markup

ine-tuning markup served to browser, 150
and logic, testing in PhoneGap HTML5

application, 401

WURFL, the preferred_markup capability, 151

markup languages, types in use for mobile web, 151

http:///

 mobile strategy, deining

 Index 433

Master/Detail project template, 229
matching visual components to object

references, 235

MDBF (Mobile Device Browser File), 95, 102, 153

MEAPs (mobile enterprise application platforms), 21

versus stand-alone applications, 21

media queries (CSS), 97, 100

disadvantages and limitations of, 141

dynamic substitution of images in RWD based

on media queries, 139

use in Responsive Web Design, 60

using to implement One Web, 60

Meego, 10

Memento-Mori pattern, 200–202

formulating, 201

implementation of, 202

memory consumption by mobile applications, 175

memory management in Objective-C, 212, 222–224

menus

adding Options menu to Android app, 290–293

A-la-Carte-Menu pattern, 185

application bar in Windows Phone pages, 345

context-sensitive menus displayed in Android

Guess game, 300

messages

displaying alerts during Android app

activities, 301

sending to objects in Objective-C, 219

<meta> tag, viewport, 100

methods

adding to an existing class, 221

declarations in Objective-C, 217

deining body of in Objective-C, 218
invoking in Objective-C, 213

Metro interface, 329

MFMailComposeViewController class, 244

MFMessageComposeViewController, 245

microformats versus HTML5 data-* attributes, 109

microframeworks (JavaScript), 68

Microsoft, developer program for Windows

Phone, 324

Microsoft Expression Blend, 324

Microsoft .NET Framework 4.5, new ASP.NET web

API, 54

Microsoft’s Patterns-and-Practices group, Project

Liike, 59

Microsoft SQL Server Compact Edition (SQL CE), 177

storing Windows Phone data in, 370

middleware for mobile clients, 20

MIDP (Mobile Information Device Proile), 95

MIME types, 151

miniication and compression of resources, 74
scripts and GZIP compression, 65

mobile applications

HTML5 capabilities for, 135

real challenge for, 326

mobile architecture, 43–62

focusing on mobile use-cases, 44–51

analysis irst, 46–51
stereotypes and myths, 44–46

mobile-speciic development issues, 51–61
server-side device detection, 57–62

toward a mobile application layer, 51–57

MobileAware, 96

mobile, deinition of term, xiii
mobile development

era of primary focus of development, xiii

insight into, xv

main goals of, 142

patterns of. See patterns of mobile application

development

role of HTML5 in, 135

Mobile Device Browser File (MDBF), 95, 153

mobile devices, statistics on numbers and users

of, 14

mobile enterprise application platforms. See MEAPs

mobile generic emulators, 77

Mobile HTML5 website, 400

“mobile mindset” for developers, xv

mobile NoSQL solutions, 177

mobile platforms. See platforms for mobile

applications

mobile proiles, MDBF (Mobile Device Browser File)
repository, 95

mobile solutions

axioms about mobile applications, 5

deining a mobile strategy, 4, 7
meaning of "going mobile", 4

mobility and the industry, 6

multiple channels, 5

new ways to provide services, 5

simplifying customers' lives, 6

types of, xiv

mobile-speciic development issues.
See development issues, mobile-speciic

mobile strategy, deining, 4, 7
B2B strategy, 19–23

B2C and B2B, 9

B2C strategy, 13–19

deciding what to achieve, 7

http:///

mobile strategy, deining

434 Index

mobile strategy, deining, continued

development and costs, 10–13

and dilemma over native applications or mobile

sites, 31

offering rich applications, 8

reaching out to users, 8

mobile websites (m-sites), 10

building, 63–104

adapting existing site to mobile, 64

amount of JavaScript to use for pages, 67

application device proiles, 69
application structure, 64

compacting resources, 73

dealing with older browsers, 71

deciding whether to use SPI, FPR, or PPR, 67

design of mobile views, 82–88

development aspects, 76

device-detector site, 90–104

Full Page Refresh (FPR) model, 66

improving control over browser cache, 74

ofline scenario, 75
optimizing payload, 71

page structure, 72

Partial Page Refresh (PPR) model, 66

reaching the mobile site, 76–81

reducing number of HTTP requests, 72

Single-Page Interface (SPI) model, 64

building pages with jQuery Mobile, 109–117

developing responsive sites, 137–170

developer's perspective of device detec-

tion, 138–144

implementing multiserving approach, 158–

168

major issue of site development, 137

WURFL, 144–158

development of, best practices, 12

similarities and differences from websites, 43

versus native applications, 25–40

applications as natural targets for native ap-

plications, 40

bad aspects of mobile sites, 34

bad aspects of native applications, 38

false dilemma but true differences, 26

focusing on right question, 26

good aspects of mobile sites, 33

good aspects of native applications, 37

main traits of mobile sites, 28–30

main traits of native applications, 27

ofline or online availability, 31
reasons for perceived dilemma, 31–33

Model-View-Controller pattern. See MVC pattern

Model-View-Presenter (MVP) pattern, 348

Model-View-ViewModel pattern. See MVVM pattern

MODE_PRIVATE visibility for ile, 309
Modernizr library, 30, 125

MODE_WORLD_READABLE visibility for ile, 309
MODE_WORLD_WRITEABLE visibility for ile, 309
Mono Class Library (MCL), 247

MonoDevelop IDE, 248, 272

MonoDroid framework, 213, 251

using with C# for Android development, 272

Mono framework, 246

making .NET Framework available on alternate

platforms, 247

MonoTouch framework

less value in using for Android, 273

programming with, 246–258

analysis of simple project, 248

from Mono to MonoTouch, 247

pillars of MonoTouch applications, 248

reusing existing .NET code, 251

using with C# in iOS development, 213

Mono virtual machine, 272

MP4 codec, 134

multiplatform applications, 5

targeting multiple platforms, 10

multiserving, 11, 58

implementing multiserving approach, 158–168

creating device proiles, 160
device proiles in action, 161–169
key aspects of mobile views, 159

One Web versus, 59

multitasking on mobile devices, 176

support in Windows Phone 7.5, 335

MVC (Model-View-Controller) pattern, 230, 348

MVP (Model-View-Presenter) pattern, 348

MVVM (Model-View-ViewModel) pattern, 330,

349–353

design of view-model class, 350–352

mXML, 274, 385

n
named parameters for methods, 219

namespaces

JavaScript global variables and global system

namespace, 393

and naming conventions in Objective-C, 218

naming conventions in Objective-C, 218

http:///

 object messaging in objective-C

 Index 435

native applications

development of, inding best practices, 12
development patterns, 179

mobile sites versus, 25–40

applications as natural targets for native ap-

plications, 40

bad aspects of mobile sites, 34

bad aspects of native applications, 38

false dilemma but true differences, 26

good aspects of mobile sites, 33

good aspects of native app;ications, 37

main traits of mobile sites, 28–30

main traits of native applications, 27

ofline or online availability, 31
reasons for perceived dilemma, 31–33

transforming client-side web applications

to, 214

web-based API, necessity for, 53

natural user interfaces (NUIs), 195

Navigated event, 335

navigation

and Back button support in PhoneGap

applications, 412

and controllers in iOS, 245

navigation service in Windows Phone, 356

PhoneGap HTML5 sample application, 398

problems with PhoneGap applications, 391

web-based, for mobile sites, 36

navigation bars

creating in HTML5, 123

creating in jQuery Mobile, 114

<nav> element in HTML5, 124

navigation controller, 232

nested lists, creating with jQuery Mobile, 114

.NET Framework

API for WURFL, 153

on iOS, 247–251

from Mono to MonoTouch, 247

reusing existing .NET code, 251

Silverlight spin-off, 325

using subset to target Android devices, 272

Windows Phone development and, 323

NetBiscuits, 96

network changes, detecting, 203

network-dependent operations, design and

implementation for mobile applications, 178

NetworkInfo object, 310

networking operations, Windows Phone, 372

NetworkInterface class, Windows Phone, 204

network latency, mobile sites and, 35

networks

accessing in Android, 309

accessing in Windows Phone, 371

NetworkStateReceiver class, onReceive method, 313

neutral language, setting for Windows Phone

app, 331

New York Times, premium-with-free-sample

model, 18

nil values, 219

setting released object to nil, 223

Nokia 7110, 70

nonvalidate attribute, <form> elements, 128

NoSQL, deined, 178
NoSQL solutions, mobile, 177

NSCoding protocol, 232

NSException class, creating exception types

from, 222

NSLocalizedString, 193

NSObject class, 232

alloc and init methods, 219

NuGet package, adding WURFL to ASP.NET

project, 153

NUIs (natural user interfaces), 195

numbered lists, creating with jQuery Mobile, 114

numeric-only keyboard in Android, 294

o
Objective-C, 212

programming with, 215–246

categories, 221

deining a class, 216
examining sample application, 231–243

exception handling, 221

formal parameters and parameter names, 219

HelloWorld program, 224–230

implementing a class, 218

memory management, 222–224

namespaces and naming conventions, 218

object messaging, 219

other programming topics, 243–246

protocols, 220

quick look at the language, 215

reason it became development language for

iOS, 272

using for iOS development, 212

Object Linking and Embedding Data Base (OLE

DB), 55

object messaging in Objective-C, 219

http:///

object references, matching visual components to

436 Index

object references, matching visual components

to, 235, 239

Object/Relational Mapper (O/RM), 370
object serialization, 202

class serialization in iOS, 233

OData protocol, 54, 55, 76

OData services, 55

ODBC (Open Database Connectivity), 55

ofline applications, 131
ofline availability

mobile sites

persisting application data, 75

using HTML5, 75

native applications versus mobile sites, 31

OGG/Theora codec, 134
OLE DB (Object Linking and Embedding Data

Base), 55

OnBackKeyPress event, 355

onCreate method, Activity class, 282

onCreateOptionsMenu method, Activity class, 291

One Web, 59

implementing using CSS styles and media

queries, 60

OnNavigatedFrom event, 336

OnNavigatedTo event, 336, 362

onPrepareOptionsMenu method, Activity class, 291

onReceive method

broadcast receivers in Android, 312

NetworkStateReceiver class, 313

onResume method, 313

onSaveInstanceState method, activity class in

Android, 287

OpenID or OAuth authentication protocols, 190

Opera

DATALIST element in action, 130

VIDEO element in action, 134

Opera Mobile Emulator, 77, 89

operating systems

abiding by look-and-feel and capabilities of host

system, 195

and irmware in mobile context, 276
foreground, background, and paused

applications, 200

Mac OS X and iOS, 208

versus middleware for mobile clients, 20

mobile devices, mobile applications for, 173

multitasking on mobile devices, 176

smartphones, 70

support for mobile applications in multiple

languages, 193

optimization, CSS

optimizing content rendered, 159

use in Responsive Web Design, 60

Options menu, adding to Android app, 290–293

orientation

change of, switching Android layout for, 287

setting for Android layout, 287

outlets, creating in iOS, 236, 239, 251

output, caching locally, 56

outsourcing development, 10

P
packagers for iOS and Android applications, 215

padding property, using in mobile style ile, 101
pages

deining in jQuery Mobile, 110
structure for faster mobile sites, 72

page transitions, problems with PhoneGap

applications, 391

pagination, 197

in lists on mobile sites, 87

panning text, 198

panorama layout, 338

paradigm shift in development, xiii

Partial Page Refresh (PPR) model, 66

deciding whether to use, 67

Passani, Luca, 11, 143

passwords

Change-Password use-case, mobile site

implementation, 49

dificulty of using strong passwords on mobile
sites, 84

limitations on strong passwords on mobile

devices, 176

patch iles, WURFL, 147, 156
website for more information and examples, 148

patterns of mobile application development, 173–

206

behavioral patterns, 199–204

As-Soon-As-Possible pattern, 202–205

Memento-Mori pattern, 200–202

Predictive Fetch pattern, 199

critical aspects of mobile software, 174–176

behavior of the application, 175

interaction model, 174

presentation model, 175

security concerns for mobile software, 176

http:///

 premium-with-free-sample model

 Index 437

interaction patterns, 179

A-la-Carte-Menu pattern, 185

Back-and-Save pattern, 179–182

Guess-Don't-Ask pattern, 182–185

Sink-or-Async pattern, 186–189

new patterns and practices, 176–179

application life cycle, 176

connectivity, 178

tools for data storage, 177

presentation patterns, 191–199

Babel-Tower pattern, 191–194

Do-As-Romans-Do pattern, 195–196

List-and-Scroll pattern, 196–199

pattern type attribute, <input> elements in

HTML5, 128

paused applications, 200, 201

payments for mobile site use, 36

performance

improving for mobile sites, 71

compacting resources, 73

control over browser cache, 74

page structure, 72

recommended practices, 72

reducing number of HTTP requests, 72

PhoneGap apps for mobile platforms, 413

permanent data storage

in Android, 308

in Windows Phone, 366–370

permissions

adding to Android manifest ile, 281
and camera intent in Android, 316

persistence of data by mobile applications, 177

persisting application data locally, 75

personal identiication numbers (PINs), 176
using instead of passwords on mobile sites, 84

PhoneApplicationFrame class, 335

PhoneApplicationPage class, 335

PhoneGap framework, 30

developing with, 388–416

building HTML5 solution, 392–405

handmade hybrid applications, 390–392

HTML-and CSS-based UI with JavaScript con-

trolling behavior, 389

integrating with PhoneGap, 405–414

writing plug-ins for PhoneGap, 389

using for Android development, 273

using for iOS development, 214

using in Windows Phone development, 327

phones. See also smartphones

device proiles for, 58
photographs, capturing and sending via email in

Android, 315–318

piecemeal release of applications, 15

pivot layout, 338

creating for Guess application in Windows

Phone, 354

deining in XAML custom UI, 340
pixels

and dots-per-inch (DPI) issues, 160

pixel density, 277

placeholder type attribute, <input> elements in

HTML5, 128

platforms for mobile applications

equipment for development of applications, 39

isolation by mobile operating system, 38

supported by PhoneGap, 406

targeting multiple platforms, 10

Platt, David, 182

playback of audio and video, 133

Player class, 232

Play view

in Android Guess application (example), 298–

304

Guess application (example) in iOS, 235–239

Guess application (example) in Windows

Phone, 357–362

PLIST iles, 228
plug-ins, creating for PhoneGap, 389

Plugins.xml ile, PhoneGap project in Android, 408
poster attribute, <video> element in HTML5, 134

Postino application, 19, 180

Back-and-Save pattern in, 181

for Windows Phone

number of stamps currently available, 200

remembering last entries on iPhone, 185

website for information on, 182

POST method (HTTP), calling in Android, 311

Post-Redirect-Get pattern, increase of HTTP requests

from, 73

PPR. See Partial Page Refresh model

Predictive Fetch pattern, 199

example of, 201

PreferenceActivity class (Android), 180

preferences API in Android, 309

preixes, adding to class names in Objective-C, 218
premium-with-free-sample model, 18

http:///

presentation

438 Index

presentation

model for mobile applications, 175

patterns for, 191–199

Babel-Tower pattern, 191–194

Do-As-Romans-Do pattern, 195–196

List-and-Scroll pattern, 196–199

presentation layer, 52

JavaScript, in PhoneGap applications, 392–394

main cost of mobile development in, 381

Presentation Model, 350

presenter

in MVP pattern, 349

in MVVM pattern, 349

previews, pictures taken by Android camera, 316

private applications, 20

processing power in mobile devices, 175

processors used by Apple devices, 247

programmer-friendly features in HTML5, 130–134

audio and video, 133

geolocation, 132

local storage, 130

ofline applications, 131
programming languages for mobile platforms, 10

Project Liike, 59

projects

building PhoneGap project for any given

platform, 406–411

creating Windows Phone project with PhoneGap

1.5, 411

necessity of creating platform-speciic projects
in PhoneGap, 390

properties

deining in Objective-C with @property
directive, 216

getter/setter method for in Objective-C, 218,
233

reading value of in Objective-C, 220

protocols in Objective-C, 220

provisioning proiles
associated with iOS development device, 260

distribution provisioning proile, 261
getting, 261

publishing applications

Android application to Google Play, 321

iOS applications to Apple App Store, 264, 265

pushViewController message, 245

putExtra method, Intent class, 316

Q
QT, 10

quarter VGA (QVGA) screen, 14

queries, NoSQL, 177

query string parameters, using to identify tab in

Windows Phone app, 362

quid-pro-quo model, 18

R
radio buttons

in Android application, 297

on mobile sites, 84

Razor syntax, ASP.NET MVC, 99

reaching out to users, 8

readers, obtaining for stream content in

Android, 311

read-only memory (ROM), 275

redirects, avoiding for better site performance, 73

reference-counting in Objective-C, 222

ARC support in iOS 5, 224

references to UI widgets, getting in Android, 284

registerReceiver method, 313

RegisterRoutes method, 155

RegisterViewEngines method, 155

registration

iOS development device, 260

iOS test device, 210

Windows Phone testing device, 375

relational databases, NoSQL versus, 178

RelativeLayout container, 287, 296

“relativity of numbers”, 36

rel attribute, using with links, 119

release of applications, piecemeal, 15

releasing objects, 223

reloading, avoiding when user hits Back button, 74

“Remember you will die.” (Memento mori), 200

remembering last entries and preferences, 185

Representational State Transfer (REST) service

returning text, 194

Repubblica.it, 18

Request.Browser object, 143

Res folder, 278

resizing images, 159

resource editor in Visual Studio, 346

resource iles, using, 193

http:///

 segmented buttons

 Index 439

resources

application resources in Android, 284

browser caching of, controlling in HTML5, 131

compacting, 73

creating global application resource in App.xaml

ile, 347
exposing to XAML elements, 347

making static in XAML, 342

references to global resources for Windows

Phone app, 333

Responsive Web Design. See RWD

Responsive Web Design (Marcotte), 139

RESS (REsponsive design plus Server Side

components), 168

.resx (resource) ile, adding in Windows Phone
app, 346

retain message in Objective-C, 223

RFC 2397 (data URI scheme), 73

rich applications, 8

R.id class (Android SDK), 284

RIM. See also BlackBerry

appstores for BlackBerry applications, 12

role played by an element in context of a page, 109

ROM (read-only memory), 275

root site/application, mobile site deployed as, 81
RootVisual property, 335

router HTTP module, adding to desktop site, 80

RWD (Responsive Web Design), 60, 138

beneits of, 138
disadvantages of, 140

plus server side components (RESS), 168

technical aspects of, 139

technical downsides of implementation, 141

website for further information, 140

S
Safari browsers

on iPhone, tel input ield on, 127
placing Ajax calls from a ile:// loaded page, 405

Same Origin Policy (SOP), 403

save-as-you-go approach, 180

Save Conirmation dialog box as problem with
current software, 182

saving data

Back-and-Save and AutoSave patterns, 179

ScientiaMobile, 96

WURFL project, 11

SCL CE (Microsoft SQL Server Compact Edition), 177

Scores view

Guess application (example) in iOS, 239–243

Guess application (example) in Windows

Phone, 362–366

in Android Guess application (example), 304–

308

screens

determining size for mobile devices, 11

different screen sizes in Android, 277

information about main screen in Windows

Phone app, 332

on mobile devices, limitations of, 45

PhoneGap HTML5 solution, sample

application, 398

styling, 400

quarter VGA (QVGA) screen, 14

size information in WURFL, 149

<script> elements, not subject to cross-domain

restrictions, 403

scripts

minifying, 74

placement at bottom of web page, 72

scrollable lists on mobile sites, 85

scrolling

horizontal scrolling in mobile applications, 175,

198

List-and-Scroll pattern, 196–199

Scrum process adapted to mobile projects, 15

SDKs (software development kits)

Android SDK wrapped by MonoDroid

framework, 213

installing Android SDK, 269

iOS SDK, 209

programming with Android SDK, 278–321

anatomy of an application, 278–285

using Java and Android SDK, 271

Windows Phone SDK

support for creating trial versions of an ap-

plication, 379

Searcheeze, freemium delivery model, 18

<section> elements in HTML5

<article> elements in, 124

child <div> element in each of new HTML5

block elements, 125

security considerations

linking cross-domain URLs, 392

Logon-and-Forget pattern, 191

for mobile devices and sites, 48

for mobile software, 176

segmented buttons, 297

http:///

<select> elements

440 Index

<select> elements

with data-native-menu attribute set to true or

false in jQuery Mobile, 121

on mobile sites, 86

selectors in Objective-C, 220

semantic markup in HTML5, 122–126

adjusting HTML5 pages for older browsers, 125

elements removed from HTML5, 126

headers and footers, 122

native collapsible element, 124

Sencha Touch framework, 69, 390

SEO (search engine optimization)

beneit of mobile sites for, 30
minimized, with native applications, 39

serialization, 202

class serialization in iOS, 233

server-side device detection, 57–62

just one web, 59

multiserving, 58

rationale behind, 57

server-side route to mobile development, 142–144

server-side solution, mobile sites and, 33

service component in Android apps, 281

service layer, 52

sessionStorage object, 131

setContentView method, 283, 304

setListAdapter method, ListActivity class, 306

Settings page, Windows phone applications, 342

shapes, deining in Android applications, 289
SharedPreferences object, 308

data types supported, 309

sharing data between mobile applications, 177

shell approach to cross-platform development, 382,

386–392

PhoneGap framework, 388

structure of the application, 387

Short Message Service (SMS) messages, handling in

iOS, 245

signing Android applications, 321

Silverlight, 324

applications based on, in Windows Phone

development, 326

deined, 325
programming with, 329–375

anatomy of an application, 329–337

application frame, 335

application life cycle, 335

application startup, 333

deining user interface, 337–348

dissecting the project, 330

examining sample application, 353–366

manifest ile, 331–337
MVVM pattern, 348–353

SIM, detecting whether device can mount, 149

Single-Page Interface (SPI) model, 64, 398

challenges in implementation of, 65

deciding whether to use, 67

Sink-or-Async pattern, 186–189

chaining async network operations, 187

formulating, 187

implementation of, 187

skin factor, PhoneGap applications and, 412

SkyDrive for Windows Phone, 177

Sleight (Node.js application complementing

PhoneGap), 405

sliders, 120

smartphones

deining, 70
device proile for, 161
display of website content, 28

large share of mobile trafic, 141
mobile browsers on, effect of email, url, and tel

input types, 126

and need for mobile sites, 45

RWD for mobile site development, 140

testing mobile sites on, 90

smart TVs, 149

ad hoc group in WURFL, 150

development for, xv

software modules (mobile views), creating, 58

SOP (Same Origin Policy), 403

Souders, Steve, 67

blog, information on browser cache and ile
sizes, 74

speed

native applications versus mobile sites, 28

perceived speed of mobile sites, 28

SPI model. See Single-Page Interface model

splash screen

creating for Windows Phone app, 337

disabling in Windows Phone, 338

SplashScreenImage.jpg ile, 338
Spring Mobile, 143

sprites, 73

sp unit for font sizes, 277

SQL CE (Microsoft SQL Server Compact Edition), 370

SQLite, 177

storing Android data in tables, 308

using to store data from Windows Phone, 370

http:///

 touch

 Index 441

SQL Server Compact Edition database, storing data

from Windows Phone, 370

src attribute, element, in data URI scheme, 73

Src folder, 278

stand-alone front-end applications versus MEAPs, 21

startActivityForResult method, 316

startActivity method, 315

State dictionary, Windows Phone application, 335

static HTML pages, 214

static methods in Objective-C, 213, 217

Sterling object-oriented database, 370

streams, using for data storage in Windows

Phone, 367

strings returned for WURFL capabilities, 157

styles

adjusting style for mobile device-detection

site, 100

in Android applications, 288

CSS styles in jQuery Mobile themes, 108

implementing One Web using CSS styles, 60

style elements removed from HTML5, 126

using for Windows Phone user interface, 341

style sheets. See also CSS

minifying, 74

placement to enhance performance of page, 72

<summary> element in HTML5, 124

swiping, 175

Sybase, 20

Symbian, 10

equipment and programming language for

development, 39

using PhoneGap to develop for, 414

Sync Framework for databases, 177

synchronizing local and remote databases, 177

synchronous operations

subject to network latency, 186

writing ad hoc code to extract data from

response stream, 311

SystemConiguration framework (iOS), 204
system requirements for mobile development, xvii

T
TableLayout, 287

table-speciic view-controller, 229
HomeViewController (Guess application

example), 234

ScoresViewController class (Guess application

example), 240

tablets

deining class of, 70
detecting, 149

distinguishing from smartphones, 163

HTML5 capabilities for applications, 135

platforms, 10

telephony APIs, access to, 27

tel type, <input> elements, 126

test device, registering an iOS device as, 210

TestFlight service, 263

testing

Android application, 318–320

selecting test device, 320

effective testing of PhoneGap HTML5

application, 413

iOS applications, 259

logic and markup in PhoneGap HTML5

application, 401

mobile sites, 88

Windows Phone applications, 375–378

text boxes, 120

context-sensitive auto-completion in Android

app, 297

displaying hints in, 128

text/cache-manifest MIME type, 131
textLabel property, UITableViewCell class, 242

ThemeRoller tool of jQuery Mobile, 109

themes

in Android applications, 288

dark and light themes in Windows Phone

apps, 342–344

detecting and adjusting visual settings for in

Windows Phone, 343

predeined, in jQuery Mobile, 108
using to style dialog boxes in jQuery Mobile, 120

tiles in Windows Phone app UI, 337

timer, using to save at given interval, 180

Titanium framework, 384

PhoneGap versus, 390

Titanium Mobile framework, 214, 274, 384

Titanium Studio IDE, 384

Tiyla.com, implementation of Babel-Tower

pattern, 194

toggle-switch controls, using with forms in jQuery

Mobile, 120

toolbars, scrolling horizontally, 199

touch

Cocoa Touch frameworks, 209

information about capabilities in WURFL, 149

Sencha Touch framework, 69

http:///

touch-sensitive screens

442 Index

touch-sensitive screens, 175

Tower of Babel, 192

transitions

in dialog boxes, creating in jQuery Mobile, 119

page

in jQuery Mobile, 112

problems with PhoneGap applications, 391

translated text for mobile applications, 193

further considerations, 194

try, catch, throw, and inally statements in
Objective-C, 221

type attribute for HTML5 <input> elements, 82

new values, 126–128

typing text on mobile devices, 82, 174

free text and auto-completion, 87

minimizing with Back-and-Save pattern, 179

u
UA (user agent) strings

MIDP and CLDC strings in, 95

switching, 88

from UA to virtual device in WURFL, 156

use by ASP.NET detection API, 93

using to get browser information, 143

UI. See user interface

UIApplicationDelegate protocol, 226

UINavigationController class, 245

backToHome method, 246

UISegmentedControl component in iOS, 234

UITabBarController class, 246

UITableViewCell class, 242

UITableViewController class, 230, 234

creating new cells on demand, 242

UI widgets, getting references to in Android, 284

UL and OL elements, variations creating numbered

and nested lists, 114

unique identiier (UDID) for iOS development
device, 260, 261

UpdatePanel control, 66

Upshot library, 65

URIs (Uniform Resource Identiiers)
data URI scheme, 73

using for camera output iles, 316
UrlHelper object in ASP.NET MVC, 99

URLs

desktop versus mobile sites, 29

linking of cross-domain URLs, security issues

with, 392

url type, <input> elements, 126

use-cases for mobile sites, 44–51

analysis irst, 46
from web to mobile, practical example, 47–49

inventing new use-cases, 51

restructuring existing use-cases, 50

selection of use-cases, 46

selection in mobile site planning, 76

stereotypes and myths about, 44

A tiny HTML page will do the trick, 45

One site its all, 46
People don't like mobile sites: Why bother?, 44

You don't need mobile sites at all, 45

“User Experience Design Guidelines for Windows

Phone” paper, 346

user agent strings. See UA (user agent) strings

user agent switching. See UA (user agent) strings

user experience

beneits of native applications, 38
native applications versus mobile sites, 27

user interface (UI)

ad hoc, for mobile site as subset of larger site or

application, 47

deining for Android application, 285–294
deining for Windows Phone app in

Silverlight, 337–348

application bar, 344–346

custom layout, 339–348

dark and light themes, 342–344

icons and splash screen, 337

localization of text, 346–349

pivot and panorama layouts, 338

style and designer tools, 340–342

design and implementation for mobile

applications, 178

GUIs and NUIs, 195

HTML- and CSS-based UI in PhoneGap

applications, 389

making PhoneGap app look like native app, 412

Metro interface for Windows Phone, 329

mixed user interface with native and HTML

views, 386

native applications with UI based entirely on

HTML, 387

PhoneGap HTML5 solution (Guess sample

app), 400

tweaking in PhoneGap apps to relect native
UI, 390

writing code dealing with components and

events, 239

http:///

 Why Software Sucks (Platt)

 Index 443

V
validation of input in HTML5, 128

vendor and platform, selecting for B2B

applications, 20

vertical solutions, vendors of, including iOS

packager, 215

video

new features in HTML5, 133

PhoneGap plug-in for playing video on

Android, 389

view-controller object, 228

creation in MonoTouch, 250

HomeViewController object, 232

look at table-speciic view-controller, 229
MFMessageComposeViewController, 245

PlayViewController (Guess application

example), 237

ResultViewController class (Guess appliction

example), 238

ScoresViewController class (Guess application

example), 240

ViewHolder class, 307

view-model class, design of, 350–352

viewport meta tag, 100, 151

support for, 150

viewport, setting, 160

ViewResolverBase class, 165

views

activities components in Android, 282

DDR-based ASP.NET view engine, 164

folders in Silverlight Windows Phone

project, 330

forking views rendered by mobile browsers

automatically, 155

getView method of Android adapter object, 306

in iOS, 227

Home view (Guess application example), 234

Play view (Guess application example), 235–

239

preparing in MonoTouch, 250

Scores view (Guess application exam-

ple), 239–243

key aspects of mobile views, 159

virtual machine approach to cross-platform

development, 382, 383–386

structure of the application, 383

Titanium Mobile, 384

virtual machine (Java), 272, 383

Google's Dalvik virtual machine, 272

Mono virtual machine, 272

visibility of shared preferences ile in Android, 309
Visual Basic, use in Windows Phone

development, 324

Visual Studio, 289

adding WURFL API to project via NuGet, 153

building PhoneGap application for Windows

Phone, 410

Data Import Wizard, 370

getting Windows Phone-speciic tooling as
extension to, 324

programming environment, 324

resource editor, 346

using extension with MonoDroid, 272

voice-based input, 183

W
W3C (World Wide Web Consortium)

Cross-Origin Resource Sharing (CORS) draft, 404

Geolocation API, 153

HTML5 and, 134

web applications

client-side, transforming to native

applications, 214

mobile applications versus, xiii

writing client-side web application, 273

web-based API, 53

web-based navigation, 36

WebClient class, 372

Web.conig ile of mobile site, tweaking to disable
HTTP module, 81

Web Data Storage speciication, 131
web forms. See forms

WebKit, features provided by, 30

WebM codec, 134

webOS, 10

web services, 55

websites. See also mobile websites

recommended principles for building fast

sites, 72

similarities and differences from mobile sites, 43

web views hosted via PhoneGap, no cross-domain

restrictions, 392

Weinre, remote debugging with, 90

white-listing feature (PhoneGap), 405

Why Software Sucks (Platt), 182

http:///

WiFi connectivity

444 Index

WiFi connectivity

browser support of, 152

WiFi connection versus 3G connection, 178

wildcard app IDs for iOS applications, 261

window object, localStorage property

(browsers), 130

Windows 8, 10

support for ARM architecture, 247

Windows Communication Foundation (WCF) service,

using to deine web-based application layer, 54
Windows Live IDs, 376

Windows Mobile, 10

open platform, 21

windowSoftInputMode attribute, use on activities in

Android app, 295

Windows Phone, 10

Application Settings, 177

appstore for applications, 12

building PhoneGap application for, 410

chaining async network operations, 187

detecting network changes, 204

developing for, 323–380

choosing development strategy, 326–329

deploying applications, 375–379

getting ready for development, 324–329

programming languages and equipment, 39

programming with Silverlight frame-

work, 329–375

emulator, 88

keyboard for entering description text, 184

keyboard layout in browser application, 184

lack of enterprise program, 21

ListBox control, 197

Microsoft Exchange Server connectivity, 20

Postino application, 180

number of stamps currently available, 200

sharing persistent data between

applications, 177

storing credentials, 191

system requirements for development, xvii

use of PhoneGap to develop for, 414

XAML schema used by applications, 287

Windows Phone Developer Registration tool, 376

Windows Phone Marketplace, 323, 324, 376

API for better integration with the

application, 378

distributing applications via, 378

submitting applications to, 378

Windows Phone SDK, support for creating trial

versions of an application, 379

Windows Presentation Foundation (WPF), XAML

schema used by applications, 287

Windows systems, installing Android SDK, 269

wireless devices. detecting, 149

Wireless Universal Resource File. See WURFL

WMAppManifest.xml ile, 332
word auto-completion, 179

World Wide Web Consortium. See W3C

Wroblewski, Luke, 168

Wurl class, 155
WURFL manager object, 156

WURFL (Wireless Universal Resource File), 11, 94,

96, 143

AGPL v3 open source license, 144

download site, 144

linking mobile site to, 33

Peek site, 166

structure of the repository, 144–148

groups of capabilities, 145

overall XML schema, 144

patch iles, 147
top 20 capabilities, 148–153

HTML5-related capabilities, 152

identifying current device, 148

serving browser-speciic content, 150
understanding JavaScript capabilities, 151

use to create custom rules and custom display

modes, 168

using from ASP.NET, 153–159

from UA to virtual device, 156

introduction to WURFL API, 153

loading WURFL data, 155

querying for device capabilities, 157

view resolver, 165

X
Xamarin, MonoTouch framework, 246

XAML (Extensible Application Markup Language)

App.xaml ile for Windows Phone app, 333
container elements in user interface, 339

converters, 363

deining animation as XAML storyboard
resource, 359

deining application bar for Windows Phone
page, 344

http:///

 zooming, ability to zoom in and click links on mobile sites

 Index 445

MVVM (Model-View-ViewModel) pattern, 349–

353

schema used by WPF and Windows Phone

applications, 287

style and designer tools, 340–342

Expression Blend, 341

Xcode, 209

Automatic Reference Counting (ARC) in version

4.2, 212

creating basic application (HelloWorld), 224–230

app-delegate object, 226

application setup, 224–226

dissecting the project, 227

view-controller object, 228

deining a class in, 217
Interface Builder, 235

MonoTouch and, 213

PhoneGap projects in, 407

XHTML MP, 151

XIB iles, 227
bindings of UI elements and events, 238

XML

AndroidManifest.xml iles, 279
CSPROJ ile in Windows Phone, 347
returning data as JSON strings instead of

XML, 74

schema of WURFL data ile, 144
schema used by Android layouts, 287

XmlHttpRequest (XHR) object, 64

Ajax implemented via browser's native

object, 152

XNA framework, 326

using in Windows Phone development, 327

XUI micro framework, 69

Z
zooming, ability to zoom in and click links on mobile

sites, 29

http:///

http:///

About the Author

A longtime trainer and top-notch architect, Dino Esposito is the

author of many popular books for Microsoft Press that have

helped the professional growth of thousands of .NET developers.

His latest books are Programming ASP.NET 4 and Programming

ASP.NET MVC3, which have been translated into a variety of

languages. Every month, at least ive different magazines and
websites throughout the world publish Dino’s articles, which cover

topics ranging from web development to software design

 practices, and from mobile development to ASP.NET Model-View-

Controller (MVC) and social network development.

An ASP.NET Most Valuable Professional (MVP), Dino is available for onsite consulting

and training on web and mobile development and software practices. When traveling,

Dino is often the guest star of user-group meetings in Europe. If you run a user group,

feel free to get in touch.

In the rest of his everyday working life, Dino is the CTO of Crionet (http://www.crionet.

com), a fast-growing company providing software and mobile services to professional

sports, especially tennis. Dino led a team that created a range of mobile apps for Android,

iOS, Windows Phone, and BlackBerry, such as the oficial app for the Rome ATP Masters
1000 tournament. Dino also contributed to the popular (and multiplatform) Postino app

(http://www.postinoapp.com) for sharing real postcards from mobile pictures, and writes for

the Mopapp technical blog (http://www.mopapp.com).

Dino speaks regularly at industry conferences all over the world, including Microsoft

TechEd, DevConnections, and premiere European events such as DevWeek, Software

Architect, and BASTA. He is fairly active on social media; you can follow Dino on

 Twitter as @despos, and read his mobile blog at http://www.mopapp.com/blog. The

blog focuses on a wide range of mobile-related topics, including native app planning

and development, sales monitoring, patterns and strategies for the various platforms,

mobile site development, responsive Web design, smart TV programming, HTML5, and

appstore interactions.

Finally, Dino makes every reasonable effort to become a better domain expert in

tennis. This means watching tennis live and on TV, and planning new applications—but

especially playing tennis on dusty clay courts at CT Monterotondo, in Monterotondo,

Italy.

http:///

http:///

http:///

What do
you think of
this book?
We want to hear from you!

To participate in a brief online survey, please visit:

Tell us how well this book meets your needs —what works effectively, and what we can

do better. Your feedback will help us continually improve our books and learning

resources for you.

Thank you in advance for your input!

microsoft.com/learning/booksurvey

http:///

	Introduction
	Part I: Going Mobile
	Pillars of a Mobile Strategy
	What Does “Going Mobile” Mean?
	Toward a Mobile Strategy
	Defining a Mobile Strategy
	Development and Costs

	Outlining a B2C Strategy
	Focus on Your Audience
	Delivery Models

	Outlining a B2B Strategy
	Serve Your (Limited) Audience
	Mobile Enterprise Application Platforms

	Summary

	Mobile Sites vs. Native Applications
	Not a Pointless Matter
	A False Dilemma—but True Differences
	Reasons for the Perceived Dilemma

	Aspects of Mobile Sites
	What’s Good About Mobile Sites
	What’s Bad About Mobile Sites

	Aspects of Native Applications
	What’s Good About Native Applications
	What’s Bad About Native Applications

	Summary

	Part II: Mobile Sites
	Mobile Architecture
	Focusing on Mobile Use-Cases
	Stereotypes to Refresh
	Analysis First

	Mobile-Specific Development Issues
	Toward a Mobile Application Layer
	Server-Side Device Detection

	Summary

	Building Mobile Websites
	From Web to Mobile
	Application Structure
	Amount of JavaScript
	Application Device Profiles
	Optimizing the Payload
	The Offline Scenario

	Development Aspects of a Mobile Site
	Reaching the Mobile Site
	Design of the Mobile Views
	Testing the Mobile Site

	The Device-Detector Site
	Routing to Mobile Views
	Detecting Device Capabilities
	Putting the Site Up

	Summary

	HTML5 and jQuery Mobile
	jQuery Mobile Fast Facts
	Generalities of jQuery Mobile
	Building Mobile Pages with jQuery Mobile
	Working with Pages

	HTML5 Fast Facts
	Semantic Markup
	Web Forms and Data Entry
	Programmer-Friendly Features
	Using HTML5 Today

	Summary

	Developing Responsive
Mobile Sites
	A Developer’s Perspective of Device Detection
	The Client-Side Route
	The Server-Side Route

	Inside WURFL
	Structure of the Repository
	Top 20 WURFL Capabilities
	Using WURFL from ASP.NET

	Implementing a Multiserving Approach
	Key Aspects of Mobile Views
	Creating Device Profiles
	Device Profiles in Action

	Summary

	Part III: Mobile Applications
	Patterns of Mobile Application Development
	Mobile Applications Are Different
	Critical Aspects of Mobile Software
	New Patterns and Practices

	Patterns for Interaction
	The Back-and-Save Pattern
	The Guess-Don’t-Ask Pattern
	The A-la-Carte-Menu Pattern
	The Sink-or-Async Pattern
	The Logon-and-Forget Pattern

	Patterns for Presentation
	The Babel-Tower Pattern
	The Do-as-Romans-Do Pattern
	The List-and-Scroll Pattern

	Behavioral Patterns
	The Predictive Fetch Pattern
	The Memento-Mori Pattern
	The As-Soon-As-Possible Pattern

	Summary

	Developing for iOS
	Getting Ready for iOS Development
	A Brand New Platform for (So Many) Developers
	Choosing the Development Strategy

	Programming with Objective-C
	A Quick Look at Objective-C
	The HelloWorld Program
	Examining a Sample Application
	Other Programming Topics

	Programming with MonoTouch
	The .NET Framework on iOS
	Examining a Sample Application

	Deploying iOS Applications
	Testing the Application
	Distributing the Application

	Summary

	Developing for Android
	Getting Ready for Android Development
	Development Tools and Challenges
	Choosing the Development Strategy
	The Android Jungle

	Programming with the Android SDK
	Anatomy of an Application
	Defining the User Interface
	Examining a Sample Application
	Other Programming Topics
	Testing the Application
	Distributing the Application

	Summary

	Developing for Windows Phone
	Getting Ready for Windows Phone Development
	Development Tools and Challenges
	Choosing the Development Strategy

	Programming with the Silverlight Framework
	Anatomy of an Application
	Defining the User Interface
	The MVVM Pattern
	Examining a Sample Application
	Other Programming Topics

	Deploying Windows Phone Applications
	Testing the Application
	Distributing the Application

	Summary

	Developing with PhoneGap
	The Myth of Cross-Platform Development
	The Virtual Machine Approach
	The Shell Approach

	Building an HTML5 Solution
	JavaScript Ad Hoc Patterns
	The Sample Application

	Integrating with PhoneGap
	Supported Platforms
	Building a PhoneGap Project
	Final Considerations

	Summary

	Index

