
www.allitebooks.com

http://www.allitebooks.org

ffirs.indd iffirs.indd i 19/01/13 11:47 AM19/01/13 11:47 AM

www.allitebooks.com

http://www.allitebooks.org

BEGINNING

SHAREPOINT® 2013 DEVELOPMENT

INTRODUCTION . xxiii

 � PART I GETTING STARTED WITH SHAREPOINT 2013

CHAPTER 1 Introduction to SharePoint 2013 . 3

CHAPTER 2 Overview of the SharePoint 2013 App Model . 33

CHAPTER 3 Developer Tooling for SharePoint 2013 . 55

CHAPTER 4 Understanding Your Development Options . 89

CHAPTER 5 Overview of Windows Azure for SharePoint . 119

 � PART II FUNDAMENTAL SHAREPOINT 2013 DEVELOPMENT
BUILDING BLOCKS

CHAPTER 6 Developing, Integrating, and Building Applications

in SharePoint 2013 . 151

CHAPTER 7 Packaging and Deploying SharePoint 2013 Apps 175

CHAPTER 8 Distributing SharePoint 2013 Apps . 201

CHAPTER 9 Overview of the Client-Side Object Model and REST APIs 219

CHAPTER 10 Overview of OAuth in SharePoint 2013 . 255

 � PART III ADVANCED DEVELOPER TOPICS IN SHAREPOINT 2013

CHAPTER 11 Developing Integrated Apps for Offi ce

and SharePoint Solutions . 279

CHAPTER 12 Remote Event Receivers in SharePoint 2013 . 307

CHAPTER 13 Building Line-of-Business Solutions Using Business

Connectivity Services . 321

CHAPTER 14 Developing Applications Using Offi ce Services 343

CHAPTER 15 Developing Workfl ow Applications for SharePoint 2013 369

APPENDIX A . 399

INDEX . 407

ffirs.indd iffirs.indd i 19/01/13 11:47 AM19/01/13 11:47 AM

www.allitebooks.com

http://www.allitebooks.org

ffirs.indd iiffirs.indd ii 19/01/13 11:47 AM19/01/13 11:47 AM

www.allitebooks.com

http://www.allitebooks.org

BEGINNING

SharePoint® 2013 Development

ffirs.indd iiiffirs.indd iii 19/01/13 11:47 AM19/01/13 11:47 AM

www.allitebooks.com

http://www.allitebooks.org

ffirs.indd ivffirs.indd iv 19/01/13 11:47 AM19/01/13 11:47 AM

www.allitebooks.com

http://www.allitebooks.org

BEGINNING

SharePoint® 2013 Development

Steve Fox

Chris Johnson

Donovan Follette

ffirs.indd vffirs.indd v 19/01/13 11:47 AM19/01/13 11:47 AM

www.allitebooks.com

http://www.allitebooks.org

Beginning SharePoint® 2013 Development

Published by
John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2013 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-118-49584-1
ISBN: 978-1-118-49586-5 (ebk)
ISBN: 978-1-118-65477-4 (ebk)
ISBN: 978-1-118-65487-3 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201)
748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifi cally disclaim all warranties, including
without limitation warranties of fi tness for a particular purpose. No warranty may be created or extended by sales or pro-
motional materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold
with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional services.
If professional assistance is required, the services of a competent professional person should be sought. Neither the pub-
lisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to
in this work as a citation and/or a potential source of further information does not mean that the author or the publisher
endorses the information the organization or Web site may provide or recommendations it may make. Further, readers
should be aware that Internet Web sites listed in this work may have changed or disappeared between when this work was
written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with stan-
dard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media such
as a CD or DVD that is not included in the version you purchased, you may download this material at http://book-
support.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2012955721

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related trade dress are
trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affi liates, in the United States and other coun-
tries, and may not be used without written permission. Microsoft and SharePoint are registered trademarks of Microsoft
Corporation. All other trademarks are the property of their respective owners. John Wiley & Sons, Inc., is not associated
with any product or vendor mentioned in this book.

ffirs.indd viffirs.indd vi 19/01/13 11:48 AM19/01/13 11:48 AM

www.allitebooks.com

http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://booksupport.wiley.com
http://www.wiley.com
http://www.wiley.com
http://www.allitebooks.org

For my wife.

—Steve Fox

For the delights of my life, Heather, Courtenay, and

Morgan.

—Donovan Follette

For the loves of my life, Vicki, Sam, and Kate.

—Chris Johnson

ffirs.indd viiffirs.indd vii 19/01/13 11:48 AM19/01/13 11:48 AM

www.allitebooks.com

http://www.allitebooks.org

ffirs.indd viiiffirs.indd viii 19/01/13 11:48 AM19/01/13 11:48 AM

www.allitebooks.com

http://www.allitebooks.org

ABOUT THE AUTHORS

STEVE FOX is a Director in MCS for Microsoft with more than 17 years of IT
experience ranging from natural language to Offi ce and SharePoint and most recently
to Windows Azure development. His current focus is enabling the cloud for enterprise
organizations.

DONOVAN FOLLETTE is a Sr. Technical Evangelist for Microsoft with more than
25 years of experience designing and building enterprise business applications.
His current focus is on developers and helping them wrap their mind around the
all-new cloud app model for Offi ce and SharePoint 2013.

CHRIS JOHNSON is an avid developer and a speaker. He is the General Manager
of Provoke Solutions, Inc. and a Microsoft Gold Partner in Seattle, Washington, that
is one of the world’s most renowned and sought-after online experience consultancies.
Provoke Solutions specializes in software solutions for SharePoint and the Microsoft
technology stack (http://www.provokesolutions.com). In November 2011, Chris
left Microsoft Corporation after nine and a half years where he most recently was a
Senior Technical Product Manager for the SharePoint product group in Redmond,

Washington, managing SharePoint’s professional developer audience technical marketing programs.
Chris moved to Redmond in 2007 to work on the software engineering team on the SharePoint
2010 release after working for Microsoft New Zealand. In New Zealand he consulted for customers
across the Asia Pacifi c region on designing and implementing Content Management Server and
SharePoint deployments. Chris’s background is in Microsoft software development and he enjoys
all things technical. He is a speaker at numerous conferences around the world such as Tech.Ed,
SharePoint Best Practices Conference, SharePoint Connections, and the worldwide SharePoint
Conference. Chris holds a Bachelor of Computer Science and enjoys throwing himself out of
perfectly good airplanes from time to time. Contact Chris on his blog at www.looselytyped.net.

ffirs.indd ixffirs.indd ix 19/01/13 11:48 AM19/01/13 11:48 AM

http://www.provokesolutions.com
http://www.looselytyped.net

ffirs.indd xffirs.indd x 19/01/13 11:48 AM19/01/13 11:48 AM

ABOUT THE TECHNICAL EDITOR

ANDREW CONNELL is a developer, author, instructor, and co-founder of Critical
Path Training, a SharePoint education–focused company. He has a background in
content management solutions and Web development that spans back to his time
as a student at the University of Florida in the late 1990s managing class sites.
He has consistently focused on the challenges facing business today to maintain
a current and dynamic online presence without having to rely constantly on Web
developers or have a profi ciency in Web technologies.

Andrew is an eight-time recipient of Microsoft’s Most Valuable Professional
(MVP) award (2005–2012) for Microsoft Content Management Server (MCMS) and Microsoft
SharePoint Server. He has authored and contributed to numerous MCMS and SharePoint books over
the years, including Professional SharePoint 2007 Web Content Management Development
(Wrox, 2008), Inside Microsoft SharePoint 2010 (MSPress, 2011) and (Wrox, 2010), and Real
World SharePoint 2010 (Wrox), among others, and is the author of numerous articles both for the
Microsoft Developer Network (MSDN) and for various magazines.

Andrew has presented at numerous conferences in the United States, Europe, and Australia.
You can fi nd Andrew on his blog (www.andrewconnell.com/blog) or follow him on
Twitter @andrewconnell.

ffirs.indd xiffirs.indd xi 19/01/13 11:48 AM19/01/13 11:48 AM

http://www.andrewconnell.com/blog
https://twitter.com/andrewconnell

ffirs.indd xiiffirs.indd xii 19/01/13 11:48 AM19/01/13 11:48 AM

CREDITS

Acquisitions Editor

Mary James

Project Editor

Victoria Swider

Technical Editor

Andrew Connell

Production Editor

Christine Mugnolo

Copy Editor

Paula Lowell

Editorial Manager

Mary Beth Wakefi eld

Freelancer Editorial Manager

Rosemarie Graham

Associate Director of Marketing

David Mayhew

Marketing Manager

Ashley Zurcher

Business Manager

Amy Knies

Production Manager

Tim Tate

Vice President and Executive Group

Publisher

Richard Swadley

Vice President and Executive Publisher

Neil Edde

Associate Publisher

Jim Minatel

Project Coordinator, Cover

Katie Crocker

Proofreader

Sarah Kaikini, Word One New York

Indexer

Robert Swanson

Cover Designer

Elizabeth Brooks

Cover Image

© Stefano Borsani / iStockphoto

ffirs.indd xiiiffirs.indd xiii 19/01/13 11:48 AM19/01/13 11:48 AM

ffirs.indd xivffirs.indd xiv 19/01/13 11:48 AM19/01/13 11:48 AM

ACKNOWLEDGMENTS

FIRST, thanks to the acquisitions and editorial staff at Wiley. It’s great to continue to work with such
a good crew of people. Next, thanks to Andrew Connell for helping steer us in the right direction
through technical editing. Also, thanks to Victoria Swider who tirelessly moved us through the
editing and production process. Additionally, thanks to the many Microsoft folks who gave their
time for technical questions and conversations. And last, thanks to you, the developer community.
Without you, this book would not even be possible.

—Steve Fox

THANKS to Andrew Connell, technical editor, for providing his technical expertise and insight and
Victoria Swider, project editor, for her patience as the authors juggled busy travel and conference
schedules to fi nd time-slices for writing. I would also like to acknowledge my Microsoft colleagues
whom I learned much from as Offi ce and SharePoint 2013 were taking shape: Mauricio Ordonez,
Rob Howard, Mike Ammerlaan, Rolando Jimenez Salgado, Gareth Pinto, Stephen Oliver, and
Brady Gaster. You are all a pleasure to work with and greatly respected. And thanks to you, the
reader, My hope is that this book will introduce you to the opportunity for developing a new class
of productivity solutions in the form of Apps for Offi ce and SharePoint, and that your solutions,
whether built and provided behind the fi rewall or installed from Offi ce.com, will fi nd their way into
the hands of the all-important end users, whose day will be a bit better because they are using your
software. Enjoy!

—Donovan Follette

THANKS must go out to our wonderful editors and staff at Wiley for ushering me through my fi rst
technical book project. Their patience and fl exibility were invaluable given the authors’ hectic day
jobs, speaking engagements, and travel schedules. I know at times it was like herding cats! A huge
debt of gratitude to the one and only Andrew Connell who provided the elite technical air cover
and expertise to keep us all on the straight and narrow and accurate! Thanks to Nick Swan and the
team at Lightning Tools for their insights into real-world SharePoint application metrics. Finally, to
all the folks at Microsoft who assisted with answering questions, providing support, and generally
being really helpful as I wrote this book — Thank you all.

—Chris Johnson

ffirs.indd xvffirs.indd xv 19/01/13 11:48 AM19/01/13 11:48 AM

http://Office.com

ffirs.indd xviffirs.indd xvi 19/01/13 11:48 AM19/01/13 11:48 AM

CONTENTS

INTRODUCTION xxiii

PART I: GETTING STARTED WITH SHAREPOINT 2013

CHAPTER 1: INTRODUCTION TO SHAREPOINT 2013 3

Getting to Know SharePoint 4

Defi ning SharePoint by Function 5

Defi ning SharePoint by User 5

Introducing the User Interface 6

Introducing the Structure 8

Addressing the Needs of the Developer 9

Extending SharePoint 2013 10

Breaking It Down for Developers 12

SharePoint 2013: The Platform 15

SharePoint Installation Types 16

SharePoint 2013 Capabilities 18

Site Collections and Sites 20

SharePoint 2013 APIs 24

SharePoint Central Administration 26

Application Management 27

Monitoring 28

Security 28

General Application Settings 28

System Settings 28

Backup and Restore 29

Upgrade and Migration 29

Confi guration Wizard 29

Apps 29

Summary 29

Recommended Reading 31

CHAPTER 2: OVERVIEW OF THE SHAREPOINT 2013 APP MODEL 33

SharePoint 2013 App Model 33

Apps for Offi ce 34

Apps for SharePoint 35

Moving to the Cloud 37

ftoc.indd xviiftoc.indd xvii 19/01/13 11:50 AM19/01/13 11:50 AM

xviii

CONTENTS

Understanding the Three Apps for SharePoint Deployment
 Models 38

SharePoint-Hosted 38

Autohosted 44

Provider-Hosted 49

Summary 52

Recommended Reading 53

CHAPTER 3: DEVELOPER TOOLING FOR SHAREPOINT 2013 55

SharePoint Development Across Developer Segments 56

Web-Based Development in SharePoint 57

Site Settings 58

Developing SharePoint Applications Using SharePoint
 Designer 65

Developing SharePoint Applications Using Napa 69

Developing SharePoint Applications Using Visual Studio 2012 74

Other Tools for SharePoint Development 82

Developing with Expression Blend 83

Debugging Using Fiddler 85

Summary 85

Recommended Reading 87

CHAPTER 4: UNDERSTANDING YOUR DEVELOPMENT OPTIONS 89

Application and Solution Types 90

Common Developer Tasks 93

Creating Web Parts 93

Creating SharePoint-Hosted Apps 101

Working with SharePoint Data 106

Creating Cloud-hosted Apps 109

Creating Event Receivers 109

Creating ASPX Pages 112

Creating Master Pages 114

Summary 116

Recommended Reading 117

CHAPTER 5: OVERVIEW OF WINDOWS AZURE FOR SHAREPOINT 119

Defi ning the Cloud 120

Defi ning Windows Azure 121

ftoc.indd xviiiftoc.indd xviii 19/01/13 11:50 AM19/01/13 11:50 AM

www.allitebooks.com

http://www.allitebooks.org

xix

CONTENTS

Windows Azure Platform 122

Data Layer 123

Services Layer 123

Integration Layer 123

Developing Windows Azure Applications 124

SharePoint and Windows Azure 133

Understanding SharePoint Cloud-Hosted Apps and Windows Azure 134

Creating a Simple Autohosted SharePoint App 136

Summary 146

Recommended Reading 147

PART II: FUNDAMENTAL SHAREPOINT 2013 DEVELOPMENT
BUILDING BLOCKS

CHAPTER 6: DEVELOPING, INTEGRATING, AND BUILDING
APPLICATIONS IN SHAREPOINT 2013 151

Development Models Available in SharePoint 2013 152

Application Integration Options in SharePoint 2013 153

User Interface Integration 154

Events and Logic Integration 166

Data Integration 168

Summary 171

Recommended Reading 173

CHAPTER 7: PACKAGING AND DEPLOYING
SHAREPOINT 2013 APPS 175

Anatomy of an App 176

Manifest and Assets 178

SharePoint Solution Package 179

Web Deploy Package 180

Database Package 181

Packaging and Publishing an App 182

Packaging an App 182

Private Publishing in an App Catalog 183

Deploying an App 184

SharePoint-Hosted App Deployment 185

Provider-Hosted App Deployment 188

Autohosted App Deployment 196

Summary 199

Recommended Reading 200

ftoc.indd xixftoc.indd xix 19/01/13 11:50 AM19/01/13 11:50 AM

xx

CONTENTS

CHAPTER 8: DISTRIBUTING SHAREPOINT 2013 APPS 201

Publishing Apps in the SharePoint Store 203

Creating a Client ID and Secret 204

Pricing and Licensing Apps 206

Submitting Apps 208

Getting Apps Validated 211

Application Life Cycle 212

Using Seller Dashboard Metrics 213

Upgrading Apps 214

Summary 216

Recommended Reading 217

CHAPTER 9: OVERVIEW OF THE CLIENT-SIDE
OBJECT MODEL AND REST APIS 219

Introducing Remote APIs in SharePoint 2013 220

Client-Side Object Model (CSOM) Basics 221

Managed Code (.NET) 222

Setup 223

Querying 224

JavaScript 228

Setup 229

Querying 230

Security and Cross-Domain Calls 236

Windows Phone 237

Setup 238

Querying 239

REST and OData 241

Getting Started with REST and OData 242

Filtering and Selecting 244

Creating, Updating, and Deleting 246

Client-Side Object Model API Coverage 250

Summary 252

Recommended Reading 253

CHAPTER 10: OVERVIEW OF OAUTH IN SHAREPOINT 2013 255

Introduction to OAuth 256

OAuth in SharePoint 2013 257

Creating and Managing Application Identities 258

ftoc.indd xxftoc.indd xx 19/01/13 11:50 AM19/01/13 11:50 AM

xxi

CONTENTS

Application Authentication 263

App and User Context in API Calls 266

Managing Tokens in Your Application 266

Application Authorization 269

Requesting Permissions Dynamically 271

App-Only Policy 271

On-Premises App Authentication with S2S 272

Summary 275

Recommended Reading 276

PART III: ADVANCED DEVELOPER TOPICS IN SHAREPOINT 2013

CHAPTER 11: DEVELOPING INTEGRATED APPS
FOR OFFICE AND SHAREPOINT SOLUTIONS 279

The New App Model for Offi ce 280

The Offi ce JavaScript Object Model 286

Document-based Apps 286

Functional Capabilities by Offi ce Client 291

Mailbox-based Apps 292

App Security 297

Integrating Apps for Offi ce with SharePoint 298

Standalone Apps for Offi ce 299

Apps for Offi ce Integrated with an App for SharePoint 300

Summary 305

Recommended Reading 306

CHAPTER 12: REMOTE EVENT RECEIVERS IN SHAREPOINT 2013 307

Introducing Remote Event Receivers 308

App-level Life-cycle Remote Event Receivers 318

Summary 319

Recommended Reading 320

CHAPTER 13: BUILDING LINE-OF-BUSINESS SOLUTIONS USING
BUSINESS CONNECTIVITY SERVICES 321

Business Connectivity Services in SharePoint 2013 322

BCS in Apps for SharePoint 328

Building a BCS-enabled Business Solution 332

Summary 339

Recommended Reading 341

ftoc.indd xxiftoc.indd xxi 19/01/13 11:50 AM19/01/13 11:50 AM

xxii

CONTENTS

CHAPTER 14: DEVELOPING APPLICATIONS USING
OFFICE SERVICES 343

WOPI and the New Offi ce Web Apps Server 344

What’s New in Excel Services 348

Word Automation Services and the New PowerPoint
Automation Services 355

The New Machine Translation Services 359

What’s New in Access Services 362

Summary 366

Recommended Reading 368

CHAPTER 15: DEVELOPING WORKFLOW APPLICATIONS FOR
SHAREPOINT 2013 369

Introducing Workfl ow Manager 370

The Big New Features for SharePoint Designer 371

Visio Professional, SharePoint Designer, and Workfl ow 372

Workfl ow and Visual Studio 383

Workfl ow in Apps for SharePoint 390

Summary 397

Recommended Reading 398

APPENDIX A: ANSWERS TO EXERCISES 399

INDEX 407

ftoc.indd xxiiftoc.indd xxii 19/01/13 11:50 AM19/01/13 11:50 AM

INTRODUCTION

SHAREPOINT IS AN AMAZINGLY BROAD collaborative platform; it is used by many people for a range
of collaborative activities such as content management, project management, social networking,
information governance, and so on. In SharePoint 2013 you will fi nd some signifi cant and evolution-
ary leaps — specifi cally the movement toward a cloud-based approach to building and deploying
SharePoint apps. For those of you who are new to SharePoint, this won’t seem like such a radical
evolution — especially those of you who are Web developers today. However, for those of you who
are returning SharePoint enthusiasts, SharePoint 2013 is quite an evolution for how you build and
develop SharePoint applications.

What you’ll learn in this book is that SharePoint 2013 has a lot to offer the developer. You can move
from the small-scale development project where you’re building custom apps such as Web Parts, to
the larger, enterprise-grade solution that leverages cloud-hosted apps and services, and integrates with
other Microsoft and non-Microsoft technologies. This is the incredible part about SharePoint — it is
a platform with huge potential in multiple directions. If you’re a beginning SharePoint developer, you
should strap yourself in, because you’re in for a great ride.

WHO THIS BOOK IS FOR

Simply put, this book is aimed at the developer who is new to SharePoint. The book assumes that
you have some programming experience and a passion to learn how to develop for SharePoint, but
this book does not assume that you’ve programmed against SharePoint before.

With regard to your general development background, the two assumptions in this book are that
you have some familiarity with Web development, and you have an understanding of .NET pro-
gramming. With regard to Web development, this book assumes that you understand HTML, and
you might have an understanding of Cascading Style Sheets (CSS), Extensible Markup Language/
Extensible Stylesheet Language (XML/XSL), and dynamic languages such as JavaScript. You might
also have a light understanding of ASP.NET and are looking to better understand how to leverage
these skills with SharePoint. In any case, you have some understanding of the fundamentals of Web
and .NET development, and are looking to apply that knowledge to the SharePoint space.

As you work throughout this book, your knowledge will certainly grow in the previously mentioned
areas. The authors recommend that you take some time to ensure you’re up to speed on the HTML5
standards and how you can leverage JavaScript as well as the many JQuery libraries that are becom-
ing increasingly important in Web development. Understanding the design concepts behind cloud
computing is also benefi cial.

If you are already familiar with SharePoint, then you’re starting from a point of advantage.
For example, you’ll recognize SharePoint artifacts such as lists, document libraries, and of course
you’ll see familiar APIs in the Server Object Model and Client-Side Object Model. However, don’t

flast.indd xxiiiflast.indd xxiii 19/01/13 11:49 AM19/01/13 11:49 AM

http://ASP.NET

xxiv

INTRODUCTION

expect everything to be exactly the same in SharePoint 2013 as it was in SharePoint 2010. For exam-
ple, there is a broader array of SharePoint services available; you’ll need to start thinking about the
new cloud-hosted app model, as well as treating core artifacts within SharePoint as “apps,” and so on.

Irrespective of whether you’re new to SharePoint or a returning developer from SharePoint 2010,
you’re going to get something out of this book. For the new SharePoint developer, think of this book
as a new journey for you where we’ll lay out the fundamentals to get you going. For the returning
SharePoint developer, think of this book as a refresher and guide to what’s new.

WHAT THIS BOOK COVERS

Just like SharePoint 2010 was, SharePoint 2013 is a signifi cant leap forward from its previous
release, and you will fi nd a ton of features built into the platform for you to leverage in your solu-
tion development. Because SharePoint is a broad platform that covers so much, this book also covers
quite a bit of ground. As a Wrox Beginning book, though, the goal of the book is to get you started
with many of the fundamentals to provide adequate knowledge for entry-level SharePoint program-
ing and to provide preparation for advanced programming in the future.

In this book you can expect to see coverage of the following:

 ➤ Getting started with development for SharePoint 2013

 ➤ Becoming familiar with tools that you will use to develop for SharePoint

 ➤ Becoming familiar with common SharePoint development tasks

 ➤ Understanding “the cloud”

 ➤ Programming against lists and developing custom Web Parts

 ➤ Integrating line-of-business (LOB) data with SharePoint and Microsoft Offi ce

 ➤ Building and deploying apps to the Offi ce Store

 ➤ Creating service-oriented solutions for SharePoint

 ➤ Leveraging many of the out-of-the-box features in your SharePoint development

 ➤ Integrating SharePoint and Microsoft Offi ce

 ➤ Implementing OAuth and security in SharePoint

This book does not cover earlier versions of SharePoint per se (you might fi nd references to how fea-
tures have changed), but does cover areas that span SharePoint Foundation 2013, SharePoint Server
2013, and Offi ce 365, given the importance of cloud-hosted apps in this version of SharePoint. You
can also expect to fi nd references to other resources as you work through the book — resources such
as blogs, Microsoft Developer Network (MSDN) articles, C9 training modules, and source code —
all the things that you need to get started developing for SharePoint.

flast.indd xxivflast.indd xxiv 19/01/13 11:49 AM19/01/13 11:49 AM

xxv

INTRODUCTION

HOW THIS BOOK IS STRUCTURED

The goal is to quickly take you from the basics of SharePoint to creating a new instance of SharePoint
and setting up your development environment, and then into how you can develop for SharePoint.
The book is heavy on coding exercises, but tries to stick to a common set of .NET patterns to ensure
you walk away understanding the different ways in which you can code for SharePoint. Moving from
beginning to advanced means that you can expect the walk-throughs and chapters to become increas-
ingly more complex as you move deeper into the book. The walk-throughs have been created to be
concise and walk you through all the steps you must accomplish to complete a coding task.

The structure of the book mimics the development ramp-up cycle for SharePoint. That is, you must
fi rst understand the breadth of the SharePoint platform. You then install it and the development
environment, and begin to code — the tasks are simple at fi rst, but grow increasingly more complex.
You will fi nd that when coding against SharePoint, you might do certain development tasks more
than others (such as programming against lists and creating custom Web Parts). As such, Part II
covers these topics. Also, you might fi nd that as you advance in your SharePoint development, you
will need to incorporate either HTML5, Windows Azure, or Web services in your SharePoint solu-
tions. Part III covers advanced topics such as workfl ow and leveraging BCS because you might need
to begin to integrate different concepts into one solution, such as Web services and content types to
build an external list programmatically.

This book is structured in three parts. The reason for this three-way split was to help ramp you up
gradually to the different areas of SharePoint development.

Part I: Getting Started with SharePoint 2013 — Part I is about the fundamentals, and as
such, covers the following areas:

Chapter 1: Introduction to SharePoint 2013 — This chapter introduces you to the
fundamental concepts and areas in SharePoint.

Chapter 2: Overview of SharePoint 2013 App Model — This chapter provides an
overview of the new way in which you build SharePoint apps using the SharePoint-
hosted and Cloud-hosted app model.

Chapter 3: Developer Tooling for SharePoint 2013 — This chapter walks through
the primary developer tools you use when building and deploying SharePoint
applications.

Chapter 4: Understanding Your Development Options — This chapter discusses the
different options available to a developer such as SharePoint solutions vs. apps and
which APIs to use when developing your SharePoint applications.

Chapter 5: Overview of Windows Azure for SharePoint — This chapter provides an
introduction to Windows Azure, a critical ingredient in cloud-hosted apps.

flast.indd xxvflast.indd xxv 19/01/13 11:49 AM19/01/13 11:49 AM

xxvi

INTRODUCTION

Part II: Fundamental SharePoint 2013 Development Building Blocks — Part II dives a little
deeper into the SharePoint platform to begin discussing some of the more common areas
you’ll come across, and as such, covers the following:

Chapter 6: Developing, Integrating, and Building Applications in SharePoint 2013 —
This chapter focuses on some of the more common developer tasks that you’ll need to
understand.

Chapter 7: Packaging and Deploying SharePoint 2013 Apps — This chapter
discusses how you can use the developer tools to build and deploy SharePoint
applications.

Chapter 8: Distributing SharePoint 2013 Apps — This chapter walks through the ways
in which you distribute a SharePoint application, such as through the Offi ce Store.

Chapter 9: Overview of the Client-Side Object Model and REST APIs — This
chapter discusses how you can use the Client-Side Object Model in your
SharePoint-hosted or cloud-hosted apps.

Chapter 10: Overview of OAuth in SharePoint 2013 — This chapter discusses the
ways in which you need to build OAuth into your SharePoint apps to ensure your
cloud-hosted apps and app events are able to integrate seamlessly with SharePoint.

Part III: Advanced Developer Topics in SharePoint 2013 — The fi nal part of the book,
Part III, covers more advanced topics, some of which you may not use until you’ve mastered
the basics of SharePoint. The areas covered in this part are as follows:

Chapter 11: Developing Integrated Apps for Offi ce and SharePoint Solutions — This
chapter discusses the different types of integration that you can achieve by using the
new Apps for Offi ce model in your SharePoint apps.

Chapter 12: Remote Event Receivers in SharePoint 2013 — This chapter provides an
in-depth view of how to develop and deploy event receivers in SharePoint.

Chapter 13: Building Line-of-Business Solutions Using Business Connectivity
Services (BCS) — This chapter discusses how to integrate external systems, also
known as line-of-business systems, into your SharePoint site.

Chapter 14: Developing Applications Using Offi ce Services — This chapter explores
some of the newer Offi ce Services and walks through ways in which you can build
compelling applications through services such as Excel Services or Access Services.

Chapter 15: Developing Workfl ow Applications for SharePoint 2013 — This chapter
discusses how you can integrate custom workfl ow into your application to manage
business processes.

By the time you fi nish this book, you will have a well-grounded view of SharePoint 2013 and be
able to actively develop and deploy applications to SharePoint. For the new SharePoint developer,
you may want to tackle the chapters in order; the book was designed to take you from least to most
complex. If you’re an experienced SharePoint developer, then you may fi nd yourself jumping ahead.
Either way, the goal is to collectively ensure you get something out of this book that helps you in
your SharePoint journey.

flast.indd xxviflast.indd xxvi 19/01/13 11:49 AM19/01/13 11:49 AM

xxvii

INTRODUCTION

WHAT YOU NEED TO USE THIS BOOK

To use this book, at a minimum you’ll need to have the following:

 ➤ An instance (or access to an instance) of SharePoint set-up. This could be Offi ce 365,
SharePoint Foundation, or SharePoint Server. You might fi nd for specifi c sections of the
book you need one or more of these types of SharePoint.

 ➤ Visual Studio 2012 Professional or above

 ➤ Microsoft Offi ce 2013 Professional

 ➤ SharePoint Designer 2013

 ➤ Windows Azure SDK and Windows Azure Tools for Visual Studio

 ➤ Windows Azure Subscription

Any other special requirements (for example, an Offi ce Store account) are discussed in the individual
chapter.

CONVENTIONS

To help you get the most from the text and keep track of what’s happening, we’ve used a number of
conventions throughout the book.

TRY IT OUT

The Try It Out is an exercise you should work through, following the text in the book.

 1. They usually consist of a set of steps.

 2. Each step has a number.

 3. Follow the steps through with your copy of the database.

How It Works

After each Try It Out, the code you’ve typed is explained in detail.

WARNING Boxes like this one hold important, not-to-be forgotten information

that is directly relevant to the surrounding text.

NOTE Notes, tips, hints, tricks, or asides to the current discussion are off set and

placed in italics like this.

flast.indd xxviiflast.indd xxvii 19/01/13 11:49 AM19/01/13 11:49 AM

xxviii

INTRODUCTION

As for styles in the text:

 ➤ We highlight new terms and important words when we introduce them.

 ➤ We show keyboard strokes like this: Ctrl+A.

 ➤ We show fi lenames, URLs, and code within the text like so: persistence.properties.

 ➤ We present code in two different ways:

We use a monofont type with no highlighting for most code examples.

We use bold to emphasize code that's particularly important in the present context.

SOURCE CODE

As you work through the examples in this book, you may choose either to type in all the code manu-
ally or to use the source code fi les that accompany the book. All the source code used in this book is
available for download at http://www.wrox.com. After you’re at the site, simply locate the book’s
title (either by using the Search box or by using one of the title lists) and click the Download Code
link on the book’s detail page to obtain all the source code for the book.

NOTE Because many books have similar titles, you may fi nd it easiest to search

by ISBN; this book’s ISBN is 978-1-118-49584-1.

After you download the code, just decompress it with your favorite compression tool. Alternatively,
you can go to the main Wrox code download page at http://www.wrox.com/dynamic/books/
download.aspx to see the code available for this book and all other Wrox books.

ERRATA

We make every effort to ensure that there are no errors in the text or in the code. However, no one
is perfect, and mistakes do occur. If you fi nd an error in one of our books, like a spelling mistake or
faulty piece of code, we would be very grateful for your feedback. By sending in errata you may save
another reader hours of frustration and at the same time you will be helping us provide even higher
quality information.

To fi nd the errata page for this book, go to http://www.wrox.com and locate the title using the
Search box or one of the title lists. Then, on the book details page, click the Book Errata link. On
this page you can view all errata that has been submitted for this book and posted by Wrox editors.
A complete book list including links to each book’s errata is also available at www.wrox.com/misc-
pages/booklist.shtml.

flast.indd xxviiiflast.indd xxviii 19/01/13 11:49 AM19/01/13 11:49 AM

www.allitebooks.com

http://www.wrox.com
http://www.wrox.com/dynamic/books/download.aspx
http://www.wrox.com/dynamic/books/download.aspx
http://www.wrox.com
http://www.wrox.com/miscpages/booklist.shtml
http://www.wrox.com/miscpages/booklist.shtml
http://www.allitebooks.org

xxix

INTRODUCTION

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/techsup-
port.shtml and complete the form there to send us the error you have found. We’ll check the
information and, if appropriate, post a message to the book’s errata page and fi x the problem in sub-
sequent editions of the book.

P2P.WROX.COM

For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a Web-based
system for you to post messages relating to Wrox books and related technologies and interact with
other readers and technology users. The forums offer a subscription feature to e-mail you topics
of interest of your choosing when new posts are made to the forums. Wrox authors, editors, other
industry experts, and your fellow readers are present on these forums.

At http://p2p.wrox.com you can fi nd a number of different forums that can help you not only as
you read this book, but also as you develop your own applications. To join the forums, just follow
these steps:

 1. Go to p2p.wrox.com and click the Register link.

 2. Read the terms of use and click Agree.

 3. Complete the required information to join as well as any optional information you want to
provide and click Submit.

You will receive an e-mail with information describing how to verify your account and complete the
joining process.

NOTE You can read messages in the forums without joining P2P but to post your

own messages, you must join.

After you join, you can post new messages and respond to messages other users post. You can
read messages at any time on the Web. If you want to have new messages from a particular forum
e-mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works as well as many common questions specifi c to P2P
and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

flast.indd xxixflast.indd xxix 19/01/13 11:49 AM19/01/13 11:49 AM

http://p2p.wrox.com
http://www.wrox.com/contact/techsupport.shtml
http://www.wrox.com/contact/techsupport.shtml
http://P2P.WROX.COM
http://p2p.wrox.com
http://p2p.wrox.com

flast.indd xxxflast.indd xxx 19/01/13 11:49 AM19/01/13 11:49 AM

PART I
Getting Started with SharePoint
2013

 � CHAPTER 1: Introduction to SharePoint 2013

 � CHAPTER 2: Overview of the SharePoint 2013 App Model

 � CHAPTER 3: Developer Tooling for SharePoint 2013

 � CHAPTER 4: Understanding Your Development Options

 � CHAPTER 5: Overview of Windows Azure for SharePoint

c01.indd 1c01.indd 1 19/01/13 10:23 AM19/01/13 10:23 AM

c01.indd 2c01.indd 2 19/01/13 10:23 AM19/01/13 10:23 AM

Introduction to SharePoint 2013

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ Understanding what SharePoint is

 ➤ Learning about the high-level feature areas and functionality of

SharePoint 2013

 ➤ Understanding the relevance of these feature areas and functionality

to the developer

SharePoint 2010 launched a major evolution in the product’s life — it was a fi rst-class platform
that enabled you to not only leverage a wide array of out-of-the-box features to manage col-
laboration, but it also provided a rich development platform. This made developing solutions
powerful and relatively straightforward. With SharePoint 2013 arrives a new paradigm shift,
one much more closely aligned to Microsoft’s overall shift to the cloud. For those of you who
have been on the SharePoint train for some time, this means thinking in a slightly different
way about how you develop applications for SharePoint. For those who are new to SharePoint,
welcome. You’re in for one heck of a ride!

SharePoint is an exciting Web-based technology. In its fi fth version, SharePoint has under-
gone quite a transformation from the initial releases, and the types of things you can do with
SharePoint run far and wide. Those who have had the chance to see the product grow up will
be surprised and happy with many of the changes that are now built into the platform. In fact,
existing SharePoint developers will witness what arguably is a sea-of-change in the features
and functionality that SharePoint provides, as well as an evolution in the tools supported and
the developer community that rallies around the technology. Aspiring SharePoint developers
will realize quite a bit of power exists in the platform and should have the capability to put it
into practice by the end of this book.

1

c01.indd 3c01.indd 3 19/01/13 10:23 AM19/01/13 10:23 AM

4 ❘ CHAPTER 1 INTRODUCTION TO SHAREPOINT 2013

SharePoint is maturing into a cloud-centric platform that will enable you to build and deploy a wide
array of solutions, as well as take advantage of the build-and-publish model that SharePoint users
and developers have come to enjoy. It has also evolved into a platform that is much more open by
design. This means that developers are moving beyond what was predominantly an ASP.NET- or
JavaScript-based development approach. In SharePoint 2013, you have the ability to bring your own
hosted Web applications and technologies to the table and use OAuth authentication and registra-
tion hooks that are built into SharePoint to integrate those apps into the SharePoint experience. This
is a signifi cant evolution, and one not to be undersold.

Similar to SharePoint 2010, SharePoint 2013 offers such a wide array of features that claiming to be
an expert across all the workloads will be challenging for any one person. You will need to dedicate
some time to become an expert, but the journey will be worth it.

With that in mind, this chapter introduces you to what SharePoint is and walks through some of the
high-level areas for the developer. This chapter also answers the question of what capabilities make
SharePoint a platform that is interesting and compelling for you, the developer, to learn. It also helps
you understand why SharePoint 2013 is evolving to the cloud.

Specifi c topics include discussion around programmability, new app models, platform services, and
the ways in which you can build and deploy a SharePoint solution.

GETTING TO KNOW SHAREPOINT

Simply put, SharePoint 2013 (also referred to as SharePoint after this point) is a platform to sup-
port collaboration — a central Web-based portal for you to manage your own and your colleague’s
documents, social activities, data, and information. This defi nition is pretty broad, but try framing
it within a scenario: you manage projects on a daily basis and must also manage teams of people
across those projects. Within the project, people are having meetings, creating documents, exchang-
ing ideas, managing schedules, and so on. Without a central place to manage these activities and
documents, you’re using fi le shares on servers; you’re exchanging documents via mail; and you’re
using one or more different types of management software to help keep a common view of activities.
Within this one scenario, you should be able to see the problem. A fi le share can go down anytime,
so what’s the backup? Documents aren’t versioned. Context is lost around a project as elements are
spread out across different technologies. And security around those documents is diffi cult to manage
and control in an effective in an effective and effi cient way.

Project management is but one scenario that paints a picture of collaboration. Many others exist,
and this is why SharePoint has seen such broad adoption. Often companies see great advantages
with SharePoint through simple document management; that is, being able to store, version, create,
and manage documents in one central place. However, what these companies soon discover is that
many more features are built into SharePoint such that its use goes beyond simple document man-
agement. Users soon begin to see Business Intelligence (BI) features, discoverability benefi ts (that is,
search functions), social features, and governance abilities, among the many other areas of which
they can take advantage.

c01.indd 4c01.indd 4 19/01/13 10:23 AM19/01/13 10:23 AM

http://ASP.NET

Getting to Know SharePoint ❘ 5

Defi ning SharePoint by Function

To provide you with an idea of the types of things that you can do with SharePoint, Figure 1-1
breaks SharePoint out into three separate areas:

 ➤ Collaboration — As you read through this book, you’ll see the notion of collaboration as
a very strong theme for SharePoint. This is because SharePoint is about bringing people
together through different types of collaboration, such as enterprise content management
(ECM), Web content management (WCM), social-computing through the use of newsfeeds,
discoverability of people and their skills, creating dashboards to fulfi ll your BI needs,
and so on. Given the new app model in SharePoint 2013, collaboration is managed through
apps. Developers can extend, customize, or build their own Apps for SharePoint as well
manage collaboration on SharePoint.

 ➤ Interoperability — SharePoint is also about bringing this collaboration together through
interoperability. This means Offi ce and Web-based document integration, and the capabil-
ity to build and deploy secure and custom solutions that integrate line-of-business (LOB)
data with SharePoint and Offi ce, integrating with wider Web technologies, or deploying
applications to the cloud.

 ➤ Platform — As you’ll see, SharePoint is a platform
that supports not only interoperability and collabo-
ration but also extensibility, through a rich object
model, a solid set of developer tools, and a growing
developer community. One of the key paradigm shifts
here, though, is the notion of the cloud in SharePoint.
The cloud introduces new app models: new ways of
developing, deploying, and hosting SharePoint appli-
cations; new forms of authentication through OAuth;
and new ways of data interoperability using OData
(and REST).

These are three key themes that you will fi nd crop up throughout most discussions of SharePoint
and implicitly through many of the capabilities you’ll get to explore throughout this book.

So, at its essence, SharePoint is a Web-based platform that provides the following:

 ➤ A set of native, out-of-the-box capabilities to support productivity and collaboration

 ➤ An open and extensible set of APIs and services that you can use to build light apps or
cloud-based apps using your own hosting technology

 ➤ Infrastructure to manage security and permissions against the various artifacts (for exam-
ple, documents and list items)

 ➤ A management and confi guration engine that provides deep administrative abilities, both
for the cloud-hosted version of SharePoint and the on-premises SharePoint server.

Defi ning SharePoint by User

Depending on the role of the person who is using SharePoint, the stated defi nition might take on a
slightly different hue.

FIGURE 1-1

Customizations (e.g., Apps for SharePoint)

Interoperability (e.g., Office, LOB)

SharePoint 2013 – Core Platform

c01.indd 5c01.indd 5 19/01/13 10:23 AM19/01/13 10:23 AM

6 ❘ CHAPTER 1 INTRODUCTION TO SHAREPOINT 2013

For example, for the end user, SharePoint enhances productivity by providing a core set of con-
nected applications that essentially act as the Web-based application platform. The applications
enable people to connect using wiki sites, workspaces, lists, document libraries, and integration with
Microsoft Offi ce applications such as Outlook, Excel, and Word 2010.

From an organizational point of view, the unifi ed infrastructure enables the organization to rally
around a central point of collaboration — be it through an organizational portal, a team site, or
a personal My Site. It also enables organizations to integrate LOB systems, such as SAP, Siebel,
PeopleSoft, and Microsoft Dynamics, into the information worker experience through SharePoint.
Furthermore, it enables you to tap into your growing cloud services and data that you might be
developing and deploying.

From a developer’s perspective, you can take advantage of a wide platform (arguably the widest his-
torically for the platform) to build and deploy many different types of applications. These range from
simple HTML and JavaScript applications to managed code and .NET cloud apps that are deployed
to Windows Azure.

The response to business needs arrives through the capability to use SharePoint as a toolset in the
everyday work lives of an organization’s employees — for example, routing documents through
managed processes, providing social newsfeeds and updates, or managing and tracking project doc-
uments. In essence, SharePoint represents a platform that offers the organization a lot of functional-
ity to do many different things, with collaboration lying at the heart of them.

Introducing the User Interface

Taking a look at the SharePoint user interface at this point might be helpful for you. Although you
can create sites from many different templates, Figure 1-2 shows a Team Site and calls out some of
the areas of the page:

 ➤ Area 1 is where you can access other areas of Offi ce 365 such as Outlook or the Site
Settings.

 ➤ Area 2 provides a search box for you to enter queries and search the site collection.

 ➤ Area 3 contains some quick launch tiles that can help you get started with your site (note
you can click the Remove This link to hide them).

 ➤ Area 4 provides a place for you to upload and view documents.

 ➤ Area 5 shows quick links to other areas of your Team Site.

You’ll fi nd a common set of options in many sites (such as the link bar at the top of the site).
Depending on the type of site that you create, you’ll fi nd a different set of default options available.
For example, some have more BI functions or governance workfl ow or social features built into
them. This all depends on the type of site.

If you’re a developer reading this book, you might be happy to know that many parts of the
SharePoint development experience are customizable. For example, in Figure 1-2 you could pro-
grammatically add data from external LOB systems into your site, you could integrate a Web app
from Windows Azure, or you could create a light HTML and JavaScript and deploy to your Team

c01.indd 6c01.indd 6 19/01/13 10:23 AM19/01/13 10:23 AM

Getting to Know SharePoint ❘ 7

site. You could also customize the branding of the site. For example, Figure 1-3 shows a sample
SharePoint site that has more branding. This example uses some of the native SharePoint capabilities
to confi gure the look and feel, but you could create a much more elaborate, branded, and custom
look-and-feel for any of your SharePoint sites.

FIGURE 1-3

FIGURE 1-2

1 2

3

4

5

c01.indd 7c01.indd 7 19/01/13 10:23 AM19/01/13 10:23 AM

8 ❘ CHAPTER 1 INTRODUCTION TO SHAREPOINT 2013

Thus, the Web-based experience that SharePoint provides out-of-the-box integrates core (as well as
external) applications and functionality that end users can employ during their daily work lives.

In Figure 1-4, note that the default view has changed. This is because the site is now in Edit mode,
which enables you to customize the SharePoint site. In this view, you can add Web parts, HTML or
JavaScript apps, integrate external applications, and so on. The fact that you can quickly put a site
into Edit mode, make some changes, and then save those changes back to the server is one of the
great advantages of SharePoint.

 FIGURE 1-4

Introducing the Structure

The structural taxonomy of SharePoint comprises multiple levels. On the fi rst level you have a site
that is made of a template. As mentioned earlier, you have a variety of templates that you can use for
a given site — either out of the box or custom. Within a site, you can create more subsites — using
the same set of site templates. So it’s essentially a parent site, or site collection, with subsites. Within
a specifi c site, you then add (or create and deploy to the sites) apps. Now for those of you who have
been around SharePoint for a while, this will feel a little weird: Everything is now an app. That is,
lists, document libraries, form libraries, and so on are all apps — just different types of apps. For
those who are new to SharePoint, this idea won’t seem so jarring; thinking about a site comprising
apps is a pretty natural way to think about Web platforms today. Also, as you start building apps
for a marketplace, then the concept of an app (as opposed to differentiating across lists, document
libraries, and so on) begins to make even more sense. Figure 1-5 shows you a small set of apps that
are available to you by default within your SharePoint site.

c01.indd 8c01.indd 8 19/01/13 10:23 AM19/01/13 10:23 AM

www.allitebooks.com

http://www.allitebooks.org

Addressing the Needs of the Developer ❘ 9

For organizations, SharePoint provides a one-stop shop for leveraging the SharePoint infrastructure
not only for internal sites to manage your day-to-day project needs and as a business process work-
fl ow, but also activities and infrastructure to manage your publicly facing sites. The key point is that
SharePoint provides the infrastructure for many types of sites and for site and app development.

As you’ll see throughout this book, the native SharePoint experience is, in many ways, customizable.
Given the breadth of integration possibilities with SharePoint 2013, there’s an adjunct set of tech-
nologies including Windows Azure, PHP, and other Web technologies that might factor into your
SharePoint development experience.

ADDRESSING THE NEEDS OF THE DEVELOPER

At its essence, SharePoint is a platform. And to see how SharePoint can help you as a developer, you
must understand those platform capabilities. When you explore and learn the range of functionality
that make up the platform, you’ll begin to see some interesting and compelling opportunities emerge
for the developer.

Take a look at a practical example. As you have seen, a business productivity platform implies having
a platform for end users to make them more collaborative and productive in their day-to-day work
lives — and SharePoint can certainly do that. In short order, it can be used as an application for end
users. For example, a Human Resources (HR) department might use SharePoint to manage employee
reviews, or a sales team might use it to manage a monthly sales-forecasting dashboard for BI.

In all of these scenarios, SharePoint fi rst represents an end user collaboration platform, and second
represents a base that skilled developers can augment or extend. So, when your sales manager comes

FIGURE 1-5

c01.indd 9c01.indd 9 19/01/13 10:23 AM19/01/13 10:23 AM

10 ❘ CHAPTER 1 INTRODUCTION TO SHAREPOINT 2013

to you (the developer) and asks you to design a SharePoint site collection that integrates daily sales
data from an SAP system and plot high-potential markets on a map in the SharePoint site — so
salespeople can see current sales pipeline versus opportunity areas — you wonder in what ways this
type of app would manifest in SharePoint.

Let’s look at this task from two perspectives:

 ➤ End users want a site they can open, manage their sales documents and spreadsheets, fi lter
and pivot data in, and then get a quick view on the map to see where they should be target-
ing. They want ease of use and actionable apps.

 ➤ Developers want to craft an experience that is easy to use and intuitive — but also effi cient
to manage.

As a developer, you’ll want to keep both perspectives in mind when performing the task. In doing
so, implementing a solution for each task will likely require leveraging a combination of native
features — such as document libraries and lists — and core services, capabilities, and APIs built
into the platform to get you to the next level from a development perspective. You can also inte-
grate either third-party or your own custom cloud-based services to round out the development
experience.

For this particular example with your sales manager, you could use a combination of Business
Connectivity Services (BCS), which is a set of services within SharePoint that enables you to connect
to LOB systems and Excel Services, so you can create “pivotable” spreadsheets for salespeople. The
end result of using BCS is a dynamically generated list app to contain the sales data and a docu-
ment library app where you would house the spreadsheets. Therefore, you need to create two types
of apps — a document library that leverages Excel Services and an external list app that loads the
external LOB data. You could then integrate an HTML or JavaScript-based app that uses a cloud-
deployed service to create a Bing map, and then overlay pushpins that are color-coded green for
high potential, and red for low potential (or saturated) markets. This app would be the third one
needed — but behind it sits a service you’re plugging into (such as the Bing Maps service) and your
own custom service that has the logic to create the pushpins based on some set of business rules or
information. You can accomplish the development and deployment of these three apps either using
apps that are deployed to an existing Team site, or by creating your own custom site with the Sales
department branding.

The key takeaway from this example is that depending on what your audience requires, you can use
SharePoint to create interesting experiences. You should be thinking about all these options as you
design and build your SharePoint experience.

Extending SharePoint 2013

Although SharePoint represents a set of connected apps and functionality, it still has a vast array of
opportunities for developers to extend and enrich the end-user experience at multiple levels. This
experience is obviously important when you think about SharePoint in the context of the enterprise
developer. However, when independent software vendors (ISVs) think about the custom experience
they want to deploy to their customers, having a reliable platform beneath their feet that they can

c01.indd 10c01.indd 10 19/01/13 10:23 AM19/01/13 10:23 AM

Addressing the Needs of the Developer ❘ 11

deploy to and use to customize their SharePoint solutions becomes vital. Furthermore, they require
a place to monetize; that is, a marketplace that provides not only a place for deployment and adver-
tising, but also a place for in-product or catalog integration. Their business depends on platform
stability, predictability, accessibility, and discoverability. So what does it mean to extend SharePoint
2013?

With the entry and integration of broader cloud-hosted models, extending and building on
SharePoint means a wider array of Web development partners, customers, and ISVs can participate
in the SharePoint phenomenon. Some of these forms of participation include the following:

 ➤ Building “light” apps (for example, HTML and JavaScript apps) for SharePoint

 ➤ Leveraging the new cloud-hosted app models to either build Windows Azure–based apps or
use technologies from a broader set of Web standards and technologies

To further understand this extensibility in a paper available through Forester Research (www.for
rester.com/rb/Research/now_is_time_to_determine_sharepoints_place/q/id/45560/t/2)
entitled, “Now Is the Time to Determine SharePoint’s Place in Your Application Development
Strategy,” John R. Rymer and Rob Koplowitz reinforce a model of SharePoint 2013 that is com-
posed of different layers. The two authors propose that SharePoint has an application layer, where
end users integrate with the out-of-the-box collaboration and productivity applications; a custom-
ization layer, where either power users or developers can begin to customize the SharePoint experi-
ence for the end user; and a third layer, which is the application development layer.

This application development layer is where things get very interesting for developers. At this layer
you’ll mostly fi nd the solution developer who builds and deploys (or integrates through existing
SharePoint artifacts such as Web parts or event receivers) applications or business solutions. What’s
also interesting is how this application development layer has evolved. Figure 1-6 illustrates how
SharePoint 2013 has evolved from earlier application development paradigms.

FIGURE 1-6

2007

Services (e.g., IIS)

SharePoint SharePoint

Custom
Code

Custom
Code

Declar. App
&

Workflow
Events

Services
(e.g., Azure, IIS) Services

(e.g., Azure,
IIS)SharePoint

2010 2013

_api

_api

CSOM

c01.indd 11c01.indd 11 19/01/13 10:23 AM19/01/13 10:23 AM

http://www.forrester.com/rb/Research/now_is_time_to_determine_sharepoints_place/q/id/45560/t/2
http://www.forrester.com/rb/Research/now_is_time_to_determine_sharepoints_place/q/id/45560/t/2

12 ❘ CHAPTER 1 INTRODUCTION TO SHAREPOINT 2013

Figure 1-6 shows that SharePoint 2007 ran custom code or services from IIS or other servers. The
custom code for the most part ran within an application pool using IIS resources. In 2010, SharePoint
supported running on IIS (or other servers) and also introduced sandboxed solutions and the Client-
side Object Model (CSOM), which then enabled contained solutions and client-side code to run.
This version also brought the introduction of a Windows Azure that was more integrated with the
SharePoint development paradigm — both on the server and on the client. In 2013, this development
paradigm takes Windows Azure integration to the next level — in some cases natively using Windows
Azure as the deployment, storage, and computing mechanism. Figure 1-6 illustrates workfl ow run-
ning in Windows Azure and hooking into SharePoint through a refactored REST API (_api). Thus,
at the application development layer quite an evolution has occurred within SharePoint 2013.

NOTE If you’re not familiar with Windows Azure yet, don’t worry. Read Chapter 5,

“Overview of Windows Azure for SharePoint”; you’ll also see lots of examples

throughout the book that introduce you to this new cloud technology from Microsoft.

In light of these different layers, extending SharePoint means something slightly different in
SharePoint 2013 than in past versions, including:

 ➤ A more open approach to development

 ➤ A broader integration with the cloud

 ➤ Support for open source and non-Microsoft technologies

 ➤ Bringing your own hosted apps to the SharePoint experience (Think of the Facebook app
model: Facebook is a rich social platform that enables you to run apps, but those apps don’t
run within Facebook; they just consume parts of Facebook.)

Breaking It Down for Developers

As you might have gathered by now, SharePoint development can mean a number of things. For
example, if you want to simply add an app to a page, you might consider yourself a developer. If
you customize the branding of a SharePoint site, you might only have to interact with page layouts
or master pages (that is, the way in which you structure content in SharePoint) but you still may be
a developer. Finally, if you do deeper-level solution development, you might be creating HTML5
and JavaScript applications that interact with SharePoint through native APIs, or use .NET and the
cloud-hosted app model with Windows Azure. This type of development would mean you’re a devel-
oper who uses Visual Basic or C# along with potentially leveraging different application program-
ming methods such as Model, View, and Controller (MVC) apps and REST services. As you delve
more into the managed-code side of the house to build your SharePoint apps, you will, of course,
enter into a more complex development paradigm.

NOTE This book doesn’t get into a lot of non-Microsoft Web technologies that

you could use with SharePoint. However, you can use many diff erent types of

open-source, third-party, or non-Microsoft technologies to build Web applica-

tions that you could then integrate back with SharePoint.

c01.indd 12c01.indd 12 19/01/13 10:23 AM19/01/13 10:23 AM

Addressing the Needs of the Developer ❘ 13

Exploring the Diff erent Levels of SharePoint Development

The point is that there are different levels of “development” in regards to SharePoint, and each level
serves the end user of the SharePoint site in some way. One way of looking at it is to think of devel-
opment as cutting across a spectrum with the following areas:

 ➤ Power user: Someone who has advanced privileges on a SharePoint site, administers permis-
sions, manages administration of a SharePoint site, manages apps on the site, and might
even create lightly customized sites for consumption.

 ➤ Designer: Someone who is largely in charge of branding and master page customizations,
designing the user experience, designs graphics for the site, implements CSS or other style
sheets, and so on.

 ➤ Website developer: Someone who develops managed code, mark-up code, or unmanaged/
client-side code solutions for SharePoint sites. This is you!

Although those of you who have a SharePoint background might split this spectrum even further,
development in general can fall within the preceding three areas. You might argue that the people
performing both tasks of site-branding and app development are equally identifi ed as developers on
the SharePoint platform, but the fact is that actual development can range from using HTML5 and
JavaScript to .NET and service-based technologies (that is, REST or WCF) to non-Microsoft Web
technologies. This spectrum is not only symptomatic of SharePoint being a broad platform but also
a symptom of the different standards, applications, and interoperability that SharePoint must sup-
port as a good citizen of the Web. Web interoperability is even more important with the 2013 release
given the focus on cloud-hosted apps.

If you break down these levels of development and use across Rymer and Rob Koplowitz’s different
layers of SharePoint, you’ll fi nd that the largest population of SharePoint consumers interacts with
the applications layer. These consumers are the end users, and they represent your core audience for
building and deploying your custom applications to SharePoint. Power users of SharePoint might
operate at the customization layer because they possess a high degree of SharePoint knowledge.

Then there is the Web (or SharePoint) developer. You are, in many cases, the person who develops
those custom applications for SharePoint or the next killer app in the ISV ecosystem. You are also
the one for whom this book was written. In some cases, you as the developer might collaborate with
the power users or designers, and in others you will work independently of one another.

As a power user, designer, or Web developer, you have a number of development tools at your dis-
posal. They range from in-browser tools, for example, Napa, to designer tools such as SharePoint
Designer, to more traditional development IDEs, including Visual Studio 2012, that support man-
aged, unmanaged, and client-side code; debugging; ALM; and so on.

With regard to developer productivity, this means that you can use either Visual Studio 2012 or
SharePoint Designer (SPD) as your core set of developer tools. As a professional Web developer,
you’ll likely use Visual Studio as your core toolset — especially if you’re a .NET programmer look-
ing to get into the SharePoint space. As for SPD, you’re more than likely going to use it to edit mas-
ter pages and page layouts, as well as to build noncomplex workfl ows using a Visual Rules approach
(for example, using Visio 2013 and SPD). As a complement to these tools, you might also use
Expression Blend either as a way to build more advanced and interactive UIs (through Expression
Blend) or through Expression Web for baseline Websites.

c01.indd 13c01.indd 13 19/01/13 10:23 AM19/01/13 10:23 AM

14 ❘ CHAPTER 1 INTRODUCTION TO SHAREPOINT 2013

NOTE Chapter 3, “Developer Tooling for SharePoint 2013,” explores developer

tools in more detail.

In terms of rich platform services, SharePoint 2013 offers the developer a wide array of methods
for getting, managing, and updating objects and data within a SharePoint site. With this version
of SharePoint you’ll see increased investments in REST and OData, app authentication through
OAuth, and, of course, a host of client-side APIs using the client-side object model to enable many
different types of application programming and solution development. In this book, you’ll discover
new application programming interfaces (APIs), new investments in the developer, and new services
that will enable you to build many different types of apps, and you’ll also learn about how to enable
LOB system integration to bring external data into your SharePoint applications.

NOTE This book is divided into three parts, each of which covers these new

areas in increasingly greater detail and at increasingly advanced levels.

Deploying Your Application

After you build your application, you need to deploy it. In SharePoint 2013, you can deploy two
primary types of apps: Apps for SharePoint and SharePoint Solutions.

Those who have been around SharePoint before might recognize Solutions: they are the Windows
SharePoint Services Solution Packages (WSPs) that represent small- to large-scale packages that are
used to customize or augment SharePoint sites in some way. SharePoint Solutions are typically run
as full-trust solutions and require a farm-level deployment. In SharePoint 2010, you could also
run Solutions (.WSP) in a partial-trust sandboxed environment, and although this sandboxed
environment still exists in 2013, it will be deprecated in the future.

NOTE Because SharePoint deployments typically comprise Web front-end

 servers, application servers, and database servers, the deployment and confi gu-

ration of these servers is called a SharePoint farm. WSPs run at the farm level,

meaning you can install and manage them across the entire SharePoint farm.

Sandboxed solutions run in a special partial-trust environment that has its own

measures and quota to ensure the application is isolated.

Apps for SharePoint (.APP) are new to SharePoint 2013 and are standalone applications that pro-
vide specifi c confi guration information and functional components to a SharePoint site. Apps for
SharePoint are easy to install, use, manage, upgrade, and delete. You can add Apps for SharePoint
from a corporate catalog or the Marketplace. You can also leverage two different hosting models:
one that is a lighter app and is hosted within SharePoint (think HTML and JavaScript apps) and one
that is hosted within the cloud-hosted model (think Windows Azure–hosted apps).

c01.indd 14c01.indd 14 19/01/13 10:23 AM19/01/13 10:23 AM

SharePoint 2013: The Platform ❘ 15

Within these different types of SharePoint deployment techniques, you can do the following:

 ➤ Import a standard Windows SharePoint Services Solution Package (WSP) into your
SharePoint farm.

 ➤ Build and deploy a solution to a SharePoint instance within the corporate fi rewall.

 ➤ Build and deploy solutions to a SharePoint site hosted on the wider Internet.

 ➤ Package and deploy the .APP to the cloud, but confi gure and register it to load in
SharePoint.

As you think about SharePoint 2013 development, keep the following things in mind:

 ➤ SharePoint’s new direction is more cloud-centric. You should be thinking about this from
design to deployment.

 ➤ SharePoint has a rich object model, as well as a set of services and APIs that you can lever-
age when developing custom solutions.

 ➤ Visual Studio 2012 has a mature, out-of-the-box experience for building and deploying
SharePoint solutions.

 ➤ You can build and debug SharePoint sites remotely.

 ➤ A number of ways are available to interact with SharePoint data (for example, the client-side
object model).

 ➤ You can leverage BCS to build rich LOB apps.

 ➤ Multiple integration points exist across other Microsoft and third-party applications (such
as Offi ce 2010, SAP, PeopleSoft, Microsoft Dynamics, Microsoft Silverlight, and so on).

 ➤ A cloud-based deployment methodology now exists for SharePoint 2013 that is defi ned
using the .APP deployment.

 ➤ You can deploy SharePoint 2010 solutions on premises or to the cloud (that is, SharePoint
Online). However, the future is deployment to the cloud.

These points represent just a sampling of what you can do with SharePoint, and the goal of this
book is to show you how you can get started with all of these tasks and more. Keep in mind that
when SharePoint references business productivity, it not only means for the applications that you’ll
be building and customizing for your end users, but also for the developers as you build apps that
deploy into this platform for business productivity.

SHAREPOINT 2013: THE PLATFORM

SharePoint maintains a high-level architecture that is made up of a number of components
(see Figure 1-7). You fi rst install the core software on Windows so you can create SharePoint farms.
A SharePoint farm is, in essence, one or more servers that make up your SharePoint instance. As a
developer you should understand the three-tiered structure and roles of the SharePoint farm archi-
tecture, which includes a Web server role (a fast, load-balanced, lightweight server that responds to

c01.indd 15c01.indd 15 19/01/13 10:23 AM19/01/13 10:23 AM

16 ❘ CHAPTER 1 INTRODUCTION TO SHAREPOINT 2013

user requests and loads Web pages), Application server
role (which provides the service features for SharePoint
such as Excel Services), and Database server role (which
stores content and service data). Your apps may interact
with any one or all of these server roles.

You can have a standalone server acting as the entire
farm (for example, all the components listed in Figure 1-7
installed or working on one machine). For testing and light
workloads, this confi guration might be adequate, depend-
ing on the hardware specifi cations. For larger organiza-
tional deployments, inclusive of failover and redundancy,
a one-server farm is not adequate. However, the Windows
operating system is your underlying install base — spe-
cifi cally, Windows Server 2008, 2008 R2, and Windows
Server 2012. SharePoint heavily leverages SQL Server
as its underlying content database and ASP.NET/IIS as
the application service server. You can then install either
SharePoint Foundation (the free version) or SharePoint
Server (which is loaded with enterprise-grade features),
on top of which you would build and install your customizations. Or, as an alternative to installing
SharePoint Foundation or SharePoint Server, you can sign up for Offi ce 365, which provisions and
manages the underlying infrastructure for you but still gives you the power of programmability.

SharePoint Installation Types

When you install SharePoint, you can choose different types of deployments and installation types.
There are three main ways to install and use SharePoint.

SharePoint Foundation

SharePoint Foundation ships as a free, downloadable install and represents the foundational parts
of SharePoint. It includes a number of features such as security and administration, user and Team
site collaboration, and a number of apps (such as document libraries and lists). In essence, it pro-
vides a baseline set of features that enable you to get started with both using and developing for
SharePoint.

Although the functionality that ships in SharePoint Foundation is less broad than that which ships
in SharePoint Server, downloading and installing SharePoint Foundation costs you nothing. You
can get up and running very quickly with this version and begin your development work using it. In
SharePoint 2013, though, you also have the ability to create SharePoint Online sites very quickly —
and have a rich development model there as well.

SharePoint Server

SharePoint Server offers a wealth of features that extend upon those offered in SharePoint
Foundation. These features include additional app types, Offi ce server-side services such as Word
and Excel Services, enhanced search versions, enhanced BI, and much more.

FIGURE 1-7

Customizations (WSPs, APPs, etc.)

SharePoint Foundation

SQL Server ASP.NET

Windows Operating System

SharePoint Server

c01.indd 16c01.indd 16 19/01/13 10:23 AM19/01/13 10:23 AM

http://ASP.NET
http://ASP.NET/IIS

SharePoint 2013: The Platform ❘ 17

NOTE You can get more information from an IT pro perspective on topics such

as what’s new in SharePoint 2013, installation methods, farm architecture, and

more from the following TechNet article: http://technet.microsoft.com/
en-us/sharepoint/fp142366.aspx.

The following list provides a sampling of some of the services available in SharePoint Server:

 ➤ Access Services: Allows creation of new Access service applications using the Access 2013
Preview client. View, edit, and interact with Access Services databases in a browser.

 ➤ Access Services 2010: Allows continued maintenance of SharePoint 2010 Access service
applications by using Access 2010 clients and Access 2013 Preview clients. Does not allow
users to create new applications.

 ➤ App Management Service: Allows you to install apps from the internal app catalog or the
public SharePoint store.

 ➤ Business Data Connectivity: Access line-of-business data systems.

 ➤ Excel Services: View and interact with Excel fi les in a browser.

 ➤ Machine Translation Service: Performs automated machine translation.

 ➤ Managed Metadata Service: Access managed taxonomy hierarchies, keywords, and social
tagging infrastructure as well as content type publishing across site collections.

 ➤ PerformancePoint: Provides the capabilities of PerformancePoint Services.

 ➤ PowerPoint Conversion: Converts PowerPoint presentations to various formats.

 ➤ Search: Crawls and indexes content and serves search queries.

 ➤ Secure Store Service: Provides single sign-on authentication to access multiple applications
or services.

 ➤ State Service: Provides temporary storage of user session data for SharePoint Server
components.

 ➤ Usage and Health Data Collection: Collects farm-wide usage and health data and provides
the ability to view various usage and health reports.

 ➤ User Profi le: Adds support for My Sites, profi le pages, social tagging, and other social
 computing features.

 ➤ Visio Graphics Service: Views and refreshes published Microsoft Visio diagrams in a Web
browser.

 ➤ Word Automation Services: Performs automated bulk document conversions.

 ➤ Work Management: Provides task aggregation across work management systems, including
Microsoft SharePoint Products, Microsoft Exchange Server, and Microsoft Project Server.

 ➤ Microsoft SharePoint Foundation Subscription Settings Service: Tracks subscription IDs
and settings for services that are deployed in partitioned mode. Windows PowerShell only.

c01.indd 17c01.indd 17 19/01/13 10:23 AM19/01/13 10:23 AM

http://technet.microsoft.com/en-us/sharepoint/fp142366.aspx
http://technet.microsoft.com/en-us/sharepoint/fp142366.aspx

18 ❘ CHAPTER 1 INTRODUCTION TO SHAREPOINT 2013

You can also choose to purchase the Internet-specifi c edition, SharePoint for Internet Sites, which
provides rich publishing templates and workfl ow that you can use to create and deploy SharePoint
sites to the wider Web (for example, building a scalable SharePoint site for public, anonymous
access).

Offi ce 365

Offi ce 365 has emerged as a third, fully cloud-hosted model for SharePoint — as opposed to hosting
your own farm in your own on-premises Data Center. It has also become a great place where you
can develop rich applications (both as SharePoint-hosted and cloud-hosted apps) and scale without
the cost of managing the on-premises infrastructure. It doesn’t have all the same services and fea-
tures as SharePoint Server, but does carry with it some great development capabilities.

As a developer, you have the capability to customize any of the SharePoint editions, whether it’s
SharePoint Foundation, Server, or Offi ce 365. For example, beyond thematic or branding customiza-
tions, you can also develop and deploy custom solutions to each of these SharePoint versions. There
are .NET applications that you build using C# or Visual Basic and then deploy into SharePoint as
.WSPs or .APPs, or there are lighter-weight apps such as HTML5 and JavaScript apps that you can
also deploy. What’s important to understand is how that customization opportunity varies across
the different versions; you’ll explore this throughout the book to understand how to choose across
these options.

SharePoint 2013 Capabilities

A default set of capabilities (or features) is built into SharePoint that enables you to take advantage
of the platform without doing any development. You can also use or extend these core capabili-
ties when building your apps. Microsoft has historically referred to these capabilities as work-
loads. These workloads provide a way to talk about the different capabilities of SharePoint coming
together, and you should see these workloads as not only representing a core set of related applica-
tions but also as opportunities for your application development.

For those who are experienced SharePoint developers, you’ll remember that Microsoft described
the core capabilities for the SharePoint through workloads (seen in many 100-level presentations on
SharePoint). In SharePoint 2010, these workloads were:

 ➤ Sites: Representing the different types of sites available for use and the features within
these sites

 ➤ Communities: Representing the community and social features such as blogs and wikis

 ➤ Content: Representing core enterprise content management features

 ➤ Search: Representing the search-driven features

 ➤ Insights: Representing business intelligence features such as KPIs

 ➤ Composites: Representing the ability to integrate external applications by using, for
 example, Business Connectivity Services

These previous workloads have not gone away in SharePoint 2013; moreover, Microsoft has
extended them to add more features and provide tighter integration.

c01.indd 18c01.indd 18 19/01/13 10:23 AM19/01/13 10:23 AM

www.allitebooks.com

http://www.allitebooks.org

SharePoint 2013: The Platform ❘ 19

Table 1-1 lists a sampling of the core capabilities for SharePoint 2013. Those of you who are expe-
rienced developers will see a lot of familiar areas because a lot of what you had in SharePoint 2010
is still available in SharePoint 2013, with a number of added areas. For example, note from the
services listed previously in the “SharePoint Installation Types” section that Machine Translation
Service, Access Services, App Management Service, and Work Management Service are new to
SharePoint 2013. Furthermore, rather than Offi ce Web Apps being a service, it is now a separate
server product — which for IT pros will impact the design of your SharePoint farm topology. Also,
what was FAST search in 2010 as a separate server product has been subsumed within SharePoint
2013 — which is fantastic because it improves the search experience immensely in this release. The
whole movement to the cloud in general is a major shift in the way of thinking about SharePoint
development; it is simultaneously exciting and challenging as developers need to think about app
design and deployment in different ways than before.

Each of the example capabilities in Table 1-1 offers many different development opportunities.

TABLE 1-1: Sample SharePoint Capabilities

CAPABILITY NATIVE FEATURES EXAMPLE EXTENSIBILITY

Sites Sites is where you’ll predominantly fi nd the col-

laborative aspects of SharePoint. Sites contain

an abundance of features, including the capabil-

ity to create, store, and retrieve data, and man-

age, tag, and search for content, documents, and

information. You also have connectivity into the

Microsoft Offi ce 2013 client applications through

the list and document library.

Sites, site templates, Apps

for SharePoint, workfl ow,

master pages, site pages

Social Provides social and social networking capabili-

ties, newsfeeds, and profi le searching and tag-

ging, along with the capability to search, locate,

and interact with people through their skills,

organizational location, relationships, and rating

of content.

Search customization,

rating and tagging capa-

bilities, blogs, wikis,

metadata tags

Content Contains the capability to explore, search, and

manage content using Web pages, apps, work-

fl ow, or content types.

Apps for SharePoint,

workfl ows, Word or Excel

Services

Search The ability to search content inside and outside

of SharePoint in a rich and dynamic way with

real-time document views through Offi ce Web

Apps. Also, the integration of information in

structured database systems and on-premises or

cloud-based LOB systems such as SAP, Siebel,

and Microsoft Dynamics.

SharePoint Search, Search

customization, Business

Data Connectivity (BDC)

continues

c01.indd 19c01.indd 19 19/01/13 10:23 AM19/01/13 10:23 AM

20 ❘ CHAPTER 1 INTRODUCTION TO SHAREPOINT 2013

CAPABILITY NATIVE FEATURES EXAMPLE EXTENSIBILITY

Insights Predominantly about BI and support, for exam-

ple, the capability to integrate Microsoft Access

into SharePoint; leverage Excel and SQL Server

to access and display data on a Web page;

enable the use of dashboards and key perfor-

mance indicators (KPIs) to transform raw data

into actionable information.

Excel Services, Access

Services, dashboards,

BDC, PerformancePoint

Services

Interoperability Ranges from LOB integration to Offi ce integra-

tion through the new Apps for Offi ce application

model (think HTML and JavaScript-fueled custom

task panes that link to cloud services instead of

VSTO managed code add-ins) to custom solution

development.

BDC, Apps for Offi ce, cus-

tom development

Branding Changing the look and feel of your site through

built-in template changes or more detailed and

organizationally driven branding.

Out-of-the-box confi gura-

tion (for look and feel),

master pages and custom-

ized Apps for SharePoint

You will discover many more ways to develop for SharePoint as your journey deepens and you
become more familiar with all the different facets of the SharePoint capabilities. For a complete
list of updates for SharePoint 2013, visit: http://technet.microsoft.com/en-us/library/
ff607742(v=office.15).

Site Collections and Sites

The site is the core artifact to SharePoint and represents the starting point for developers; that is,
you can’t start developing until you have created a site collection. A variety of site templates are
available for you to use. Figure 1-8 shows a selection of default templates from which you can
choose when creating a new site collection. This example includes some of the choices available for
creating a new site collection within an Offi ce 365 instance, but a similar set of templates are avail-
able within SharePoint Foundation and Server. The ones in Figure 1-8 are only a subset of those
available. To view the other ones, when creating a new site collection in the new site collection
dialog click the Meetings, Enterprise, Publishing, or Custom tabs to see more. Each of these tabs
contains specifi c templates that you can use for those purposes — for example, managing meet-
ings, blogs, short-term document workspaces, longer-term projects, and, of course, building custom
templates.

TABLE 1-1 (continued)

c01.indd 20c01.indd 20 19/01/13 10:23 AM19/01/13 10:23 AM

http://technet.microsoft.com/en-us/library/ff607742
http://technet.microsoft.com/en-us/library/ff607742

SharePoint 2013: The Platform ❘ 21

Because you need a SharePoint site as a starting point, let’s fi rst go ahead and create a SharePoint
site. This exercise assumes you have an Offi ce 365 tenancy up and running. At the time of writing,
you could go to: http://www.microsoft.com/office/preview/en and click the Try button, and
then under the Enterprise category click Try. You’ll then be guided through a short wizard to provi-
sion an Offi ce 365 instance.

TRY IT OUT Creating Your First SharePoint Site

To create a simple Team site within your Offi ce 365 instance:

 1. Navigate to the administration portal of your Offi ce 365 portal: https://portal.microsofton
line.com/admin/default.aspx. Enter your Offi ce 365 user ID (for example, superme@mydomain
.onmicrosoft.com) and a password.

 2. Click the Admin drop-down list and select SharePoint, which opens the SharePoint Administrator
Center, (see Figure 1-9).

FIGURE 1-8

FIGURE 1-9

c01.indd 21c01.indd 21 19/01/13 10:23 AM19/01/13 10:23 AM

http://www.microsoft.com/office/preview/en
https://portal.microsoftonline.com/admin/default.aspx
https://portal.microsoftonline.com/admin/default.aspx
mailto:superme@mydomain.onmicrosoft.com
mailto:superme@mydomain.onmicrosoft.com

22 ❘ CHAPTER 1 INTRODUCTION TO SHAREPOINT 2013

 3. In the SharePoint Administration Center, click Site Collections — located on the left side of the
screen.

 4. Under the Site Collections tab, select New and then click Private Site Collection as shown in
Figure 1-10.

FIGURE 1-10

 5. In the new site collection dialog (shown in Figure 1-11), provide a Title and a Public Website
Address, select a Template (for this example choose the Developer Site under the Collaboration
tab), leave the Time Zone to the default setting, add yourself as the Administrator, and provide a
Storage Quota and Server Resource Quota.

 6. Click OK.

FIGURE 1-11

c01.indd 22c01.indd 22 19/01/13 10:23 AM19/01/13 10:23 AM

SharePoint 2013: The Platform ❘ 23

 7. Wait a couple of minutes while Offi ce 365 provisions the new site using the Developer Site
template. When it’s done, click the link to your new site, shown in Figure 1-12: https://
mydomain.sharepoint.com/sites/dev.

FIGURE 1-12

The new site should look similar to Figure 1-12. Go ahead and explore the site. You can click the live
tiles at the top of the site, click the links on the left-hand side of the site, add subsites to this site collec-
tion, and so on.

How It Works

The baseline artifact that you created here was a site collection. The site collection in this case was a
developer-specifi c site and represents the uppermost root site that you’ll work from within SharePoint.
You can now add default apps (such as lists or document libraries), create and deploy Apps for
SharePoint, confi gure the look and feel of the site, and so on.

The site collection is a site that you can customize and interact with. You grow your SharePoint site
collection by adding additional Websites to it. Any site you create underneath the site collection is
called a subsite. This might seem confusing, but just think of the site collection being the parent and
the sites within that collection being the children. This is important because by default children sites
inherit the parent site’s properties (such as permissions).

Creating the site collection is the most fundamental development task within SharePoint; once
you’ve completed this, you’re ready to begin building apps. To do so, it helps to understand the types
of APIs that are available to you.

c01.indd 23c01.indd 23 19/01/13 10:23 AM19/01/13 10:23 AM

https://mydomain.sharepoint.com/sites/dev
https://mydomain.sharepoint.com/sites/dev

24 ❘ CHAPTER 1 INTRODUCTION TO SHAREPOINT 2013

SharePoint 2013 APIs

After you create a new site collection, you now have the fundamental parent object in place to begin
coding against. As a developer, you’ll want to understand what you can do with this site now that
it’s created. This requires a baseline understanding of the available APIs and services. You’ll want
to be most familiar with two sets of object model levels: the server object model and the client-side
object model.

Server Object Model

The server object model is reserved for full-instance SharePoint Foundation or SharePoint Server
installations. You essentially have carte blanche access to the server when you install and host it
yourself. It is also the broadest of the available APIs within the managed SharePoint classes. You can
build many different types of applications using the server object model for tasks such as document
library or list creation or manipulation, retrieving user information, site administration, backup,
taxonomy and metadata management, and so on. The bulk of the server object model classes are
available in the Microsoft.SharePoint namespace.

The server object model is available through a set of assemblies that are deployed to the global
assembly cache (GAC), so you must deploy apps on the server for them to use these classes and
libraries. However, you can do quite a lot with them. For example, the following code snippet sets
the title and description for a list called Tasks and then calls the Update method to update the
changes:

SPList myTaskList = mySPTaskSite.Lists["Tasks"];
myTaskList.Title="Sales Task List";
myTaskList.Description="A list of sales tasks.";
myTaskList.Update();

Client-side Object Model

The client-side object model is also available for your use in remote or client-side applications.
These applications could be .NET, Silverlight, or one of the new additions to SharePoint 2013,
the mobile API. This is signifi cant because it provides you with the ability to create and deploy
apps that are not necessarily dependent on server-side resources. For example, the following
code snippet shows a sampling of SharePoint client-side code. You can see right away that the
client-side object model looks somewhat different; in this snippet, you’re setting the context for
your SharePoint site, loading it, and then calling the ExecuteQuery() method — which executes
everything that has been set before that line of code (think of a more optimized, batch processing
approach). The fi nal line of code sets the Text property of the lblSPLabel object (a label) to be the
title of the SharePoint site.

ClientContext context = new ClientContext("http://MySharePointSite");
Web web = context.Web;
context.Load(web);
context.ExecuteQuery();
lblSPLabel.Text = web.Title;

c01.indd 24c01.indd 24 19/01/13 10:23 AM19/01/13 10:23 AM

http://MySharePointSite

SharePoint 2013: The Platform ❘ 25

JavaScript Object Model

SharePoint 2013 also has a JavaScript object model. This is an extension to what is available in the
client-side object model and provides an opportunity for you to build a broad variety of SharePoint-
hosted apps that can further integrate with HTML5, JQuery, and other Web technologies.

Moving Beyond the Models

Beyond the server object model and client-side object model, many other ways exist that you can
build applications and solutions for SharePoint. For example, you can use a rich set of OData and
REST (Representational State Transfer) services to interact with SharePoint data. Note also that
the client-side object model has many REST counterparts to ensure you have multiple ways to build
your Web apps. The REST services within SharePoint support both Atom and JSON formats.

Within each SharePoint site that you create, you’re going to fi nd many different opportunities to
create and program against data. In the world of SharePoint, data can mean many different things,
such as:

 ➤ Integrating with Access Services

 ➤ Interacting with SQL Server data

 ➤ Interacting with service endpoints through BDC to integrate with LOB and non-Microsoft
systems

 ➤ Leveraging SQL Server Reporting Services or PerformancePoint Server to bring enhanced BI
into your solutions

 ➤ Coding against data that might come from a SharePoint list where users manually enter the
list data, and you programmatically code against it

To help with data programmability, you can use both the server- and client-side object models, but
WCF Data Services are also supported within SharePoint. This enables you to interact with data
through a LINQ provider and use LINQ syntax in .NET or Silverlight applications. For example,
you can target both listdata.svc for list data or client.svc for accessing SharePoint entities
beyond list data.

The preceding APIs represent a core set of ways in which you can program against SharePoint —
from the fully self-hosted server instance to the cloud-hosted Offi ce 365. Beyond these core APIs
and services, you’ll fi nd you can programmatically interact with many of the services that ship with
SharePoint Foundation or Server. You’ll also fi nd that you can build and deploy cloud-hosted apps
(whether to Windows Azure or to other domains or Web technologies).

Many of you who will develop for SharePoint may also administer certain aspects of your
SharePoint site. This might mean that you have to install and confi gure SharePoint, understand how
to upgrade some of your solutions from SharePoint 2010 to 2013, or even create new Web applica-
tions or sites using the Central Administration site functions. Because cases may occur where you

c01.indd 25c01.indd 25 19/01/13 10:23 AM19/01/13 10:23 AM

26 ❘ CHAPTER 1 INTRODUCTION TO SHAREPOINT 2013

want to leverage the capabilities built into SharePoint Central Administration, the following section
provides an overview of interacting with SharePoint 2013 in this manner.

SHAREPOINT CENTRAL ADMINISTRATION

Although this book is not on administration, it is worth having a high-level introduction to the
topic. After you install SharePoint 2013 (Foundation or Server), a separate site collection is cre-
ated for your use for performing the different administrative functions that you might do on a daily
basis. This site collection is called the Central Administration site. This site collection is run as its
own Web application in IIS and is separate from the site collections you create, but it is still the
central point of administration for your SharePoint site. All farm server administrators can access
this site, and, much like your regular SharePoint sites, you can edit and customize the Central
Administration site. Figure 1-13 shows the SharePoint Central Administration site.

If you sign up for an Offi ce 365 instance, you also have an administration site that you will certainly
use. You saw this already in the exercise you walked through earlier, and in Figure 1-14 you can see
a variety of site collection administration features — including BCS content type management, pro-
fi le management, term store management, and search management, among others.

FIGURE 1-13

c01.indd 26c01.indd 26 19/01/13 10:23 AM19/01/13 10:23 AM

SharePoint Central Administration ❘ 27

Within these administrative features you can manage a number of activities, which are broken out
into the following nine areas:

 ➤ Application management

 ➤ Monitoring

 ➤ Security

 ➤ General application settings

 ➤ System settings

 ➤ Backup and restore

 ➤ Upgrade and migration

 ➤ Confi guration wizard

 ➤ Apps

The following sections explain how to use the Central Administration site to manage activities
across all of these nine areas.

Application Management

Application Management is the place where you can accomplish tasks such as create new Web
applications and site collections, and, more generally, manage the services that are installed on your
SharePoint site (for example, Excel Services or BCS) and manage your content database. Using the
application management options, you can accomplish tasks such as modify the properties of the
content database, activate features, create new site collections, and so on.

FIGURE 1-14

c01.indd 27c01.indd 27 19/01/13 10:23 AM19/01/13 10:23 AM

28 ❘ CHAPTER 1 INTRODUCTION TO SHAREPOINT 2013

NOTE The content database is a SQL Server that stores SharePoint data, and is

the reason why SharePoint takes a dependency on SQL Server upon installation.

Monitoring

Monitoring is the central place within Central Administration to manage reporting, monitoring,
and the status of your SharePoint site. The Monitoring site contains three areas:

 ➤ Health status: Health status provides a place for you to see the status of different services
on your SharePoint Server (such as Visio services or farm-level services). You can see which
services are failing, for example, through reports you access in this area. Health status also
enables you to defi ne rules (such as the scheduling of application pool recycles).

 ➤ Timer jobs: Timer jobs enable you to defi ne specifi c jobs to run and when to run them (such
as search crawl log cleanup or audit log trimming jobs).

 ➤ Reporting: Reporting provides you with a set of tools that enables you to create and manage
reports, run diagnostic logging, and view reports on various server-side activities.

Security

Security covers a number of areas, including the management of administrator accounts, the con-
fi guration and management of service accounts, the management of password change settings and
policies, and the specifi cations of authentication providers, trusted identity providers, antivirus set-
tings, blocked fi le types, self-service security, and secure token services. The security settings in this
area supplement the security in the main browser UI, where users and site administrators can assess
specifi c permissions that relate to users for their sites.

General Application Settings

The General Application Settings site is where you confi gure a number of general options for your
SharePoint site collections and sites. For example, you’ll often fi nd that you want to have the capa-
bility for your SharePoint site to send mail to users. You confi gure these options from within this
part of the site.

Also, in the context of WCM, you might want to manage a number of deployment and approval
options (such as content deployment location and approvers of that content). You also manage that
type of activity from within the General Application Settings.

In general, think of this site as the generic settings for your SharePoint sites.

System Settings

Converse to using the SharePoint site settings, you might also want to confi gure more server-centric
settings such as farm-level or access features, or even manage the services (for example, Excel
Services) that are available to users of the site collection. You manage these types of settings from
within the System Settings site.

c01.indd 28c01.indd 28 19/01/13 10:23 AM19/01/13 10:23 AM

www.allitebooks.com

http://www.allitebooks.org

Summary ❘ 29

Backup and Restore

At some point, you might fi nd that you must back up and restore your SharePoint site. The backup
and restore features within Central Administration enable you to create and schedule regular back-
ups for your SharePoint, perform ad hoc backups, restore from a previously backed-up SharePoint
site, and so on. Essentially, this is your point of entry if you want to ensure that you have a failover
plan for backing up a site.

Although you might think you’ll never need to use the backup and restore features, sometimes
heightened permissions sets converge with mistakes, which often result in new users deleting parts
of a site by accident — which might include something you’ve created as a developer.

Upgrade and Migration

At some point, you might fi nd yourself wanting to upgrade from one version of SharePoint to
another — for example, moving from SharePoint Standard to SharePoint Enterprise. This requires a
license and some facility to upgrade the server.

You can do this type of action from within the Upgrade and Migration part of the Central
Administration site. Note that you can also install service patches and check on installation and
upgrade progress from within this part of the administration toolset.

Confi guration Wizard

The Confi guration Wizard is simply a step-by-step wizard that confi gures your SharePoint server for you.
You should have seen this wizard when you fi rst installed SharePoint. However, if you want to run it again
after installation to change some of the confi gurations on your SharePoint server, you can do so.

Apps

Apps is a new category within the Central Administration site that enables you to manage different
facets of the apps that are installed on your SharePoint instance. For example, you can use Apps
to manage the licenses, ensure that apps are running and performing in an error-free way, and also
manage the App Catalog.

SUMMARY

This chapter provides a fi rst look at SharePoint — both for those who have never seen it and for
those who are experienced SharePoint developers.

In this chapter, SharePoint is broadly defi ned as a business productivity platform for the enterprise
and the Internet. More specifi cally, for the developer (and in the context of this book), you should
see SharePoint as a platform that supports developer productivity, has extensive platform services,
and can support multiple deployment options. With SharePoint you can leverage an abundance of
APIs, a rich server and client-side object model, and a powerful set of services to create some very
compelling applications. A great set of tools is also available that will support your efforts at evolv-
ing or improving your SharePoint development skills.

c01.indd 29c01.indd 29 19/01/13 10:23 AM19/01/13 10:23 AM

30 ❘ CHAPTER 1 INTRODUCTION TO SHAREPOINT 2013

EXERCISES

Answers to Exercises can be found in Appendix A.

 1. Defi ne what SharePoint is for both the end user and the developer.

 2. What are the diff erent types of applications you can build for SharePoint 2013?

 3. What are some of the key services in SharePoint 2013?

 4. What are the two diff erent types of object models in SharePoint, and how might you use them?

 5. Create a new SharePoint site using the Team site template. Add a new list and document library.

Add list items to the list and add documents to the document library.

c01.indd 30c01.indd 30 19/01/13 10:23 AM19/01/13 10:23 AM

Recommended Reading ❘ 31

 � WHAT YOU LEARNED IN THIS CHAPTER

ITEM DESCRIPTION

SharePoint Collaborative platform for many diff erent types of organizations.

SharePoint for the

Developer

SharePoint is about developer productivity, the availability of rich platform

services, and the capability to manage and deploy your applications with

maximum fl exibility.

SharePoint

Foundation

Core edition for SharePoint. It ships as a free download.

SharePoint Server The Enterprise edition of SharePoint (full-featured) referred to as SharePoint

throughout the book.

Offi ce 365 Cloud-hosted version of Offi ce and SharePoint that provides you with a rich

version of SharePoint both for collaboration and development.

SharePoint Central

Administration

The site collection that you use to administer your SharePoint site.

SharePoint

Administration Center

The administration site for Offi ce 365.

RECOMMENDED READING

SharePoint 2013 Developer Overview — http://msdn.microsoft.com/en-us/library/
jj164084(v=office.15).aspx

TechNet article on API updates — http://technet.microsoft.com/en-us/library/
ff607742(v=office.15)

c01.indd 31c01.indd 31 19/01/13 10:23 AM19/01/13 10:23 AM

http://msdn.microsoft.com/en-us/library/jj164084(v=office.15).aspx
http://msdn.microsoft.com/en-us/library/jj164084(v=office.15).aspx
http://technet.microsoft.com/en-us/library/ff607742(v=office.15)
http://technet.microsoft.com/en-us/library/ff607742(v=office.15)

c01.indd 32c01.indd 32 19/01/13 10:23 AM19/01/13 10:23 AM

Overview of the SharePoint
2013 App Model

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ Understanding what Apps for Offi ce and Apps for SharePoint are

 ➤ Introducing the three new Apps for SharePoint deployment models

WROX.COM DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at
http://www.wrox.com/WileyCDA/WroxTitle/productCd-1118495845.html on the
Download Code tab. The code for this chapter is divided into the following major examples:

 ➤ AutohostedEmployeeList.zip

 ➤ SPHostedApp_SimpleDateApp.zip

The fi rst chapter of this book covered what SharePoint 2013 is and why you should care.
It also walked you through some of the basic architectural concepts and showed you some
screenshots to get you familiar with the look and feel of a SharePoint site — both the
SharePoint site you would interact with on a daily basis and the Administration site.

This chapter dives deeper into the new SharePoint 2013 app model, building on the discussion
from Chapter 1. This chapter also walks you through a couple of how-to examples, showing
you some basic development examples against the new app models.

SHAREPOINT 2013 APP MODEL

You can install SharePoint in two primary ways. As with SharePoint 2010, you can install
the full version of SharePoint Server and have all of your assets and content running in an
on-premises environment. Alternatively, you can provision an instance of Offi ce 365 (O365)

2

c02.indd 33c02.indd 33 19/01/13 1:27 PM19/01/13 1:27 PM

http://www.wrox.com/WileyCDA/WroxTitle/productCd-1118495845.html
http://WROX.COM
http://wrox.com

34 ❘ CHAPTER 2 OVERVIEW OF THE SHAREPOINT 2013 APP MODEL

and then take advantage of SharePoint Online (or a cloud-hosted version of SharePoint). You saw
some examples of SharePoint Online in Chapter 1, “Introduction to SharePoint 2013,” and you’ll see
more in this chapter. Irrespective of how you deploy your SharePoint instance, the new app model
for SharePoint holds true for both on-premises versions of SharePoint (SharePoint Server) and
cloud-hosted versions (O365).

Although you have the ability to manually create SharePoint 2013 site collections and
confi gure and brand those sites to your business needs, this book is about development. One of the
key evolutionary areas in SharePoint 2013 is the new app model. You implement the new cloud
model, broadly speaking, through the creation and deployment of either Apps for SharePoint or Apps
for Offi ce.

Apps for Offi ce

Apps for Offi ce are a new breed of Offi ce 2013 applications that use a nonmanaged code approach
to building in-context document and mail apps (think Excel, Word, and Outlook add-ins). These
apps enable you to use HTML, CSS, or JavaScript to build lightweight apps that integrate with
cloud-based apps. The cool thing here is that you can use a rich JavaScript object model to integrate
with parts of the document or mail item. Apps for Offi ce consist of a web page plus an XML-based
confi guration fi le called a manifest fi le, which confi gures items such as links to an external website,
permissions, and so on. You can think of Apps for Offi ce as web apps.

Although Apps for Offi ce primarily target Offi ce, you can integrate them with Offi ce 365,
documents, and mail items — artifacts that might in some way integrate with SharePoint.
Figure 2-1 shows an example of an App for Offi ce. In this example, the App for Offi ce is integrated
with the mail and it displays data from a Windows Azure SQL database within the mail item:
Related Requests from Chris Johnson.

FIGURE 2-1

c02.indd 34c02.indd 34 19/01/13 1:27 PM19/01/13 1:27 PM

SharePoint 2013 App Model ❘ 35

Apps for SharePoint

Apps for SharePoint (or SharePoint App) is the offi cial name for apps you build and deploy
to SharePoint. For those familiar with SharePoint, think of the SharePoint App as the evolution
of the SharePoint Solution (that is, WSP). As mentioned in Chapter 1, the SharePoint App uses the
.APP extension (whereas the SharePoint Solution uses .WSP).

The SharePoint App is a move toward a more cloud-centric development model — one where the
code does not reside on the same server as SharePoint. This is a result of a greater migration of code
to the cloud and a need to architect a platform to support smother updates and code that is loosely
coupled to SharePoint and deployed to the cloud, as well as to mitigate the growing problems that
server-side code typically presents (for example, performance and site-loading issues if the code is
not properly written, deployed, or tested). Figure 2-2 shows an example of an app for SharePoint
that integrates Windows Azure data — in fact, the same data that is being consumed in the app in
Figure 2-1 is likewise integrated with SharePoint in Figure 2-2.

FIGURE 2-2

As mentioned earlier, when you build an app for SharePoint, you are building an .APP fi le. In
reality, the .APP fi le is a “package” of fi les similar to a CAB fi le. Within the .APP package are a
number of key fi les that are primarily made up of confi guration fi les and libraries. For example,
Figure 2-3 illustrates an .APP fi le that is created when you build and publish an app for SharePoint
(you will walk through this later in this chapter). If you change the .APP extension to .ZIP you
can see that the .APP consists of a number of fi les and another ZIP fi le. The zipped fi les represent
the web portions of your SharePoint application, whereas the XML fi les represent more detailed
confi guration information for your app.

c02.indd 35c02.indd 35 19/01/13 1:27 PM19/01/13 1:27 PM

36 ❘ CHAPTER 2 OVERVIEW OF THE SHAREPOINT 2013 APP MODEL

One of the key XML confi guration fi les that you’ll see in both Apps for SharePoint and Apps
for Offi ce is the AppManifest.xml fi le. In this confi guration manifest you’ll fi nd key elements such
as app meta data, app permissions and scope for those permissions, GUIDs for Web apps, and so on.
The following code snippet shows a simple example of an AppManifest.xml fi le.

<?xml version=”1.0” encoding=”utf-8” ?>
<App xmlns=”http://schemas.microsoft.com/sharepoint/2012/app/manifest”
 Name=”AutohostedEmployeeList”
 ProductID=”{125f9ba3-5efc-414a-ac53-023919ac2142}”
 Version=”1.0.0.0”
 SharePointMinVersion=”15.0.0.0”
>
 <Properties>
 <Title>AutohostedEmployeeList</Title>
 <StartPage>~remoteAppUrl/Pages/Default.aspx?{StandardTokens}
 </StartPage>
 </Properties>

 <AppPrincipal>
 <AutoDeployedWebApplication/>
 </AppPrincipal>

 <AppPrerequisites>
 <AppPrerequisite Type=”AutoProvisioning” ID=”RemoteWebHost” />
 </AppPrerequisites>
<AppPermissionRequests><AppPermissionRequest
Scope=”http://sharepoint/content/sitecollection/web”
Right=”Write” /></AppPermissionRequests></App>

NOTE You can edit the AppManifest.xml fi le using either the Visual Studio 2012

IDE (visual designer), or you can right-click the AppManifest.xml fi le and select

View Code to directly work with the XML.

FIGURE 2-3

c02.indd 36c02.indd 36 19/01/13 1:27 PM19/01/13 1:27 PM

http://schemas.microsoft.com/sharepoint/2012/app/manifest
http://sharepoint/content/sitecollection/web

Moving to the Cloud ❘ 37

MOVING TO THE CLOUD

The .APP structure enables you to confi gure and deploy apps to SharePoint while also building,
packaging, and referencing libraries that are deployed to the cloud. Although the new app model
is very “cloud-centric,” you’re not always forced to deploy code into the cloud. Alternatively, you
could deploy your cloud data to an on-premises IIS server. In this deployment scenario, the code
does not live on the SharePoint server, but you’re still using the cloud-app model to deploy it to
IIS. In this non-cloud application, you’re using IIS — which could be an entirely on-premises
installed and deployed app (which might be the case if you’ve installed the full SharePoint Server
version on-premises). In the cloud app, the Windows Azure domain is off-premises (for example,
in the public cloud data centers that Microsoft manages). However, both types of apps have two
components: the confi guration fi le (.APP), and the assemblies that execute your code, which are
deployed into a separate server domain. Thus, you’re either running these new SharePoint Apps in
your or your customer’s premises or the Internet.

The point is that the method for deploying a cloud app in each architecture is similar; the difference
lies in where each app is hosted. Figure 2-4 illustrates two potential application architectures,
refl ecting on code that is deployed to Windows Azure or code that is deployed to IIS. In the non-
cloud application, you’re using IIS — which could be an entirely on-premises installed and deployed
app (which might be the case if you’ve installed the full SharePoint Server version on-premises).
In the cloud app, the Windows Azure domain is off-premises (for example, in the public cloud
data centers that Microsoft manages). However, both types of apps have two components: the
confi guration fi le (.APP), and the assemblies that execute your code, which are deployed into a
separate server domain. Thus, you’re either running these new SharePoint Apps in your or your
customer’s premises or the Internet.

FIGURE 2-4

Non-Cloud Cloud

SharePoint2013 IIS

APP
Application

Code

SharePoint2013 Windows Azure

APP
Application

Code

One of the major shifts away from previous SharePoint App models has been a new design goal to
move code off of the server. The term design goal refers to the fact that backward compatibility
is still possible with SharePoint 2013, but because of where SharePoint is heading, continuing to
use these server-intensive development/deployment models is not recommended. Microsoft will
be de-emphasizing a lot of these non-cloud areas moving forward (and in some cases deprecating
support; for example, the future deprecation of support for Sandboxed Solutions). Microsoft just
can’t stop the support for these across one release though given the amount of apps that were
written and are supported by SharePoint.

c02.indd 37c02.indd 37 19/01/13 1:27 PM19/01/13 1:27 PM

38 ❘ CHAPTER 2 OVERVIEW OF THE SHAREPOINT 2013 APP MODEL

As you consider the development story for SharePoint 2013, keep the following facts in mind:

 ➤ A key future direction is in the cloud, so you should get engaged with this new app model now.

 ➤ Microsoft will continue to support some older capabilities in 2013, but not necessarily
pervasively talk about them due to a strategy to drive deployment to the cloud.

 ➤ Some platform capabilities will be deprecated more quickly at some to-be-determined future
date, therefore you should begin to cease use of them today (for example, Sandboxed Solutions).

In short, heed the evolution to the cloud and design apps appropriately. The implication of this
evolution towards the cloud is no server-side code. SharePoint 2013 offers new options centered
on a growing set of client-side APIs and programmability. This means leveraging HTML, CSS, and
JavaScript more. It also means getting used to managing and authenticating cross-domain calls using
OAuth and interacting with SharePoint data using an expanded set of REST and OData capabilities.

This chapter specifi cally discusses the Apps for SharePoint — Chapter 11 discusses Apps for Offi ce in
greater detail. The App for SharePoint deployment model has three different fl avors, as discussed
in the next section.

UNDERSTANDING THE THREE APPS FOR SHAREPOINT
DEPLOYMENT MODELS

Because SharePoint 2013 is moving in the direction of the cloud, there are three new types of
deployment models available to help you achieve this goal for the Apps for SharePoint:

 ➤ SharePoint-hosted

 ➤ Autohosted

 ➤ Provider-hosted

Each one of these types of deployment models possesses characteristics that make it ideal for
different types of app development. The following sections examine the deployment models in
greater detail.

SharePoint-Hosted

The SharePoint-hosted deployment type represents a way to deploy client-side, lightweight apps to
SharePoint 2013. The easiest way to think about the SharePoint-hosted app is as an application that
has no server-side code. It is an application made up of static application fi les or pages that reside
on your SharePoint tenancy or instance. Think of HTML and JavaScript fi les that enable client-side
coding. When users access the SharePoint-hosted app, they are redirected to the page that contains
your application. The SharePoint-hosted deployment type is good for lighter-weight apps such as
branded list views, media apps, or weather apps.

If you decide to leverage the SharePoint-hosted deployment model, then you are limited to code that
does not run on the server. However, also know that client-side applications can be quite powerful.
For example, you can still use Silverlight with SharePoint 2013, and as mentioned, you also can take
advantage of HTML (more specifi cally the newer HTML5 standards) along with JavaScript. You can use
these in tandem with the client-side object model to interact with SharePoint data (for example, list data).

c02.indd 38c02.indd 38 19/01/13 1:27 PM19/01/13 1:27 PM

www.allitebooks.com

http://www.allitebooks.org

Understanding the Three Apps for SharePoint Deployment Models ❘ 39

To help illustrate how you build a SharePoint-hosted app, let’s go ahead and create a simple
SharePoint-hosted app using the following steps.

TRY IT OUT Creating a SharePoint-Hosted App (SPHostedApp_SimpleDateApp.zip)

To complete this exercise, ensure you have the following:

 ➤ Visual Studio 2012 downloaded and installed

 ➤ SharePoint Developer Tools installed

 ➤ An Offi ce 365 trial site set up for your use

You can reference the following TechNet article to walk through the process to set up your
development environment: http://msdn.microsoft.com/zh-cn/library/sharepoint/
ee554869%28v=office.15%29.

After you have your environment set up and ready, you can begin to create your fi rst SharePoint-Hosted app:

 1. Open Visual Studio, and click File ➪ New Project. Navigate to Offi ce/SharePoint ➪ Apps, and
then select App for SharePoint 2013.

 2. Provide a name for the app (SPHostedApp_SimpleDateApp), select a location for the project, and
click OK, as shown in Figure 2-5.

FIGURE 2-5

 3. In the New App for SharePoint wizard, add the SharePoint site URL that you want to debug and
then select the SharePoint-hosted model as the way you want to host your app for SharePoint
(see Figure 2-6).

c02.indd 39c02.indd 39 19/01/13 1:27 PM19/01/13 1:27 PM

http://msdn.microsoft.com/zh-cn/library/sharepoint/ee554869%28v=office.15%29
http://msdn.microsoft.com/zh-cn/library/sharepoint/ee554869%28v=office.15%29

40 ❘ CHAPTER 2 OVERVIEW OF THE SHAREPOINT 2013 APP MODEL

FIGURE 2-6

 4. Click Finish.

 5. After Visual Studio generates the project, double click the AppManifest.xml fi le, which is located
within the SharePoint project.

 6. In the Scope drop-down list, select Web, which is the scope of permissions that you’re confi guring.
See Figure 2-7.

FIGURE 2-7

c02.indd 40c02.indd 40 19/01/13 1:27 PM19/01/13 1:27 PM

Understanding the Three Apps for SharePoint Deployment Models ❘ 41

 7. In the Permission drop-down list, select Read, which is the type of permission you’re confi guring.
See Figure 2-8.

FIGURE 2-8

 8. Double-click the Default.aspx fi le and replace PlaceHolderAdditionalPageHead and
PlaceHolderMain with the following bolded code.

<%@ Page Inherits="Microsoft.SharePoint.WebPartPages.WebPartPage,
Microsoft.SharePoint, Version=15.0.0.0, Culture=neutral, PublicKeyToken=71e9bce111e9429c"
MasterPageFile="~masterurl/default.master" language="C#" %>
<%@ Register Tagprefix="SharePoint"
Namespace="Microsoft.SharePoint.WebControls"
Assembly="Microsoft.SharePoint, Version=15.0.0.0,
Culture=neutral, PublicKeyToken=71e9bce111e9429c" %>
<%@ Register Tagprefix="Utilities" Namespace="Microsoft.SharePoint.Utilities"
Assembly="Microsoft.SharePoint, Version=15.0.0.0,
Culture=neutral, PublicKeyToken=71e9bce111e9429c" %>
<%@ Register Tagprefix="WebPartPages" Namespace="Microsoft.SharePoint.WebPartPages"
Assembly="Microsoft.SharePoint,
Version=15.0.0.0, Culture=neutral, PublicKeyToken=71e9bce111e9429c" %>

<asp:Content ID="Content1" ContentPlaceHolderId="PlaceHolderAdditionalPageHead"
runat="server">
 <script type="text/javascript" src="../Scripts/jquery-1.6.2.min.js"></script>

 <link rel="Stylesheet" type="text/css" href="../Content/App.css" />
 <script type="text/javascript" src="../Scripts/App.js"></script>

c02.indd 41c02.indd 41 19/01/13 1:27 PM19/01/13 1:27 PM

42 ❘ CHAPTER 2 OVERVIEW OF THE SHAREPOINT 2013 APP MODEL

</asp:Content>

<asp:Content ID="Content2" ContentPlaceHolderId="PlaceHolderMain" runat="server">
 <script type="text/javascript">
 function hello() {
 var currentTime = new Date();
 $get("timeDiv").innerHTML = currentTime.toDateString();
 }
 </script>
 <div id="timeDiv"></div>
 <input type="button" value="Push me!" onclick="hello();"/>
</asp:Content>

 9. After you fi nish adding the code snippet, right-click the SharePoint app (for example,
SPHostedApp_SimpleDateApp) and click Publish, as shown in Figure 2-9. This builds your
SharePoint-hosted app (that is, the .APP package discussed earlier) and prepares it for you for
deployment to your SharePoint site.

FIGURE 2-9

 10. When prompted, click Finish to complete the build process.

 11. Windows Explorer automatically opens when the app is built, so copy the Windows Explorer
folder path to the clipboard (see Figure 2-10). You’ll use this folder path when uploading the .APP
package to SharePoint.

FIGURE 2-10

 12. Navigate to your SharePoint Online site, and then click the New App to Deploy link.

 13. In the Deploy App dialog, click the Upload link.

c02.indd 42c02.indd 42 19/01/13 1:27 PM19/01/13 1:27 PM

Understanding the Three Apps for SharePoint Deployment Models ❘ 43

 14. Click Browse, and then paste the folder path
you copied to the clipboard in the Choose File
to Upload dialog. Click Open.

 15. Click OK, and then click Deploy.

 16. When prompted to trust the app, click Trust
It (see Figure 2-11).

 17. When the app has been deployed, click the
Site Contents link. You should now see your
app listed on the page.

 18. Click the app tile to load your SharePoint-hosted
app (see Figure 2-12). Click the Push me! button.

How It Works

The SharePoint-hosted app is a lightweight application,
and in this example you created and deployed a simple
app that displayed the current time when you clicked a
button object. To accomplish this, you can see in the
following code that you added the hello function,
created a new var object called currentTime, and then set the inner HTML of the timeDiv DIV object
to be the string representation of the current Date.

…
<asp:Content ID="Content2" ContentPlaceHolderId="PlaceHolderMain" runat="server">
 <script type="text/javascript">
 function hello() {
 var currentTime = new Date();
 $get("timeDiv").innerHTML = currentTime.toDateString();
 }
 </script>
 <div id="timeDiv"></div>
 <input type="button" value="Push me!" onclick="hello();"/>
</asp:Content>
…

You then deployed the App for SharePoint using the Publish feature in Visual Studio 2012. You also
explicitly set the permissions level of the app before you deployed it, so when you clicked the Trust It
button, this level of permission was enabled by SharePoint for your application. Setting permissions is a
common task that you’ll do across many different SharePoint apps.

The benefi ts here are that you can not only get code off of the server, but you’re now leveraging
JavaScript to bring your app to life on the client. The SharePoint-hosted deployment technique is
lightweight, but you will fi nd yourself doing a lot of client-side coding such as JavaScript or HTML,
so make sure if you’re not up to speed on either of these two technologies you spend a little time
learning them. If you want to move beyond the client and build cloud-based apps, you can use the
Autohosted deployment model.

FIGURE 2-11

FIGURE 2-12

c02.indd 43c02.indd 43 19/01/13 1:27 PM19/01/13 1:27 PM

44 ❘ CHAPTER 2 OVERVIEW OF THE SHAREPOINT 2013 APP MODEL

Autohosted

The Autohosted deployment model is a signifi cant departure from previous SharePoint applications.
In this model you build Apps for SharePoint, but the code is seamlessly deployed to Windows
Azure in the background — so SharePoint automatically creates the cloud-hosted app for you.
Thus, for all intents and purposes code looks like it’s running on SharePoint, when in fact in the
background it’s deployed to a special Offi ce 365 Windows Azure instance (so in effect a different
domain) and registered as an authenticated and authorized app with SharePoint.

You don’t have complete access to the entire platform capabilities of the Windows Azure platform
with the Autohosted deployment model; however, you do have enough of the platform to build some
interesting applications. (You’ll learn more about Windows Azure in Chapter 5.) In essence, you can
leverage Windows Azure Web Sites and Windows Azure SQL Database in the Autohosted model. To
help illustrate the Autohosted deployment model, take a look at the following example.

TRY IT OUT Creating an Autohosted App (AutohostedEmployeeList.zip)

To create an Autohosted app, follow these steps:

 1. Open Visual Studio 2012 and click File ➪ New Project.

 2. Navigate to the Offi ce/SharePoint option, select Apps, and then click App for SharePoint 2013.

 3. Provide a name for the app (AutohostedEmployeeList) and a location, and then click OK
(see Figure 2-13).

FIGURE 2-13

c02.indd 44c02.indd 44 19/01/13 1:27 PM19/01/13 1:27 PM

Understanding the Three Apps for SharePoint Deployment Models ❘ 45

 4. In the New App for SharePoint wizard, add your O365 SharePoint developer site URL. Click
Validate and enter your O365 credentials to cache the developer site credentials with your project.

 5. Select Autohosted from the How do you want to host your app for SharePoint? drop-down list
(see Figure 2-14).

 6. Click Finish.

FIGURE 2-14

 7. Double-click the Default.aspx page and click the Source tab at the bottom of the Visual Studio
IDE.

 8. Replace the code in the Default.aspx page with the following bolded code:

<%@ Page Language="C#" AutoEventWireup="true" CodeBehind="Default.aspx.cs"
Inherits="AutohostedEmployeeListWeb.Pages.Default" %>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0
Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>Employee List</title>
</head>
<body>
 <form id="form1" runat="server">
 <div>Employee List</div>
 <table>
 <tr><td><asp:Label ID="lblName" runat="server" Text="Name:"

c02.indd 45c02.indd 45 19/01/13 1:27 PM19/01/13 1:27 PM

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml

46 ❘ CHAPTER 2 OVERVIEW OF THE SHAREPOINT 2013 APP MODEL

Font-Names="Calibri"></asp:Label></td>
 <td><asp:TextBox ID="txtbxName" runat="server" Width="205px">
</asp:TextBox></td></tr>
 <tr><td><asp:LinkButton ID="lnkbtnAddEmployee"
runat="server" Font-Names="Calibri"
OnClick="lnkbtnAddEmployee_Click">Add Employee</asp:LinkButton></td>
 <td></td></tr>
 <tr><td></td><td><asp:ListBox ID="lstbxEmployee"
runat="server" Width="212px" Font-Names="Calibri"></asp:ListBox></td>
 </tr>
 <tr><td><asp:Label ID="lblErrorMsg" runat="server" Text=""
Font-Names="Calibri"></asp:Label></td></tr>
 </table>
 </form>
</body>
</html>

 9. Switch to the Design view. You should see something similar to Figure 2-15. The user interface
enables you to add a name into a text box and then add the name to the list box.

FIGURE 2-15

 10. Right-click the Default.aspx page in Solution Explorer and select View Code. The C# code-
behind for the ASP.NET page opens.

 11. Replace the code in the Default.aspx.cs page with the following bolded code:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;

namespace AutohostedEmployeeListWeb.Pages
{
 public partial class Default : System.Web.UI.Page
 {
 string strEmployeeName = "";

c02.indd 46c02.indd 46 19/01/13 1:27 PM19/01/13 1:27 PM

http://ASP.NET

Understanding the Three Apps for SharePoint Deployment Models ❘ 47

 SharePointContextToken contextToken;
 string accessToken;
 Uri sharepointUrl;

 protected void Page_Load(object sender, EventArgs e)
 {
 TokenHelper.TrustAllCertificates();
 TokenHelper.TrustAllCertificates();
 string contextTokenString = TokenHelper.GetContextTokenFromRequest(Request);

 if (contextTokenString != null)
 {
 contextToken = TokenHelper.ReadAndValidateContextToken(contextTokenString,
Request.Url.Authority);
 sharepointUrl = new Uri(Request.QueryString["SPHostUrl"]);
 accessToken = TokenHelper.GetAccessToken(contextToken,
 sharepointUrl.Authority).AccessToken;
 lnkbtnAddEmployee.CommandArgument = accessToken;
 }

 }

 protected void lnkbtnAddEmployee_Click(object sender, EventArgs e)
 {
 string accessToken = ((LinkButton)sender).CommandArgument;

 if (IsPostBack)
 {
 sharepointUrl = new Uri(Request.QueryString["SPHostUrl"]);
 }

 strEmployeeName = txtbxName.Text;

 if (txtbxName.Text != "")
 {
 lstbxEmployee.Items.Add(new ListItem(strEmployeeName));
 }
 else
 {
 lblErrorMsg.Text = "Please enter a valid name.";
 }
 }
 }
}

 12. Right-click the top-level SharePoint project and select Publish. This builds your project and
creates the .APP package. At this point, you can follow the exact same process you did earlier in
“Creating a SharePoint-Hosted App,” using steps 9–16 to upload, deploy, and explicitly trust the
SharePoint app.

 13. When you’re done, click the Site Contents link, and click the tile for the newly added App for
SharePoint. Your Autohosted app loads.

c02.indd 47c02.indd 47 19/01/13 1:27 PM19/01/13 1:27 PM

48 ❘ CHAPTER 2 OVERVIEW OF THE SHAREPOINT 2013 APP MODEL

 14. Add some names into the Name fi eld, and then click the
Add Employee link to add the names to the list box. Your
app should look similar to Figure 2-16.

How It Works

The Autohosted app is a lightweight cloud-hosted application that
auto-deploys code into Windows Azure and then surfaces this
code within SharePoint 2013. In this example, you created a
simple employee list app that enables the user to enter and add some names to a list box. In the code,
you used a set of class-level objects to store key variables such as the name of the employee
(strEmployeeName), security token data (contextToken and accessToken), and SharePoint
URI (sharepointUri). The key event method (lnkbtnAddEmployee_Click) was triggered by the
link button.

A couple things worth noting: With the new hosted models, the question of how you authenticate
your app is an important one. SharePoint 2013 introduces a new authorization model that leverages
OAuth to register apps and events within that app with SharePoint. At a high level, a SharePoint App
requests permissions when it is installed — you explicitly trust the app that you’re installing into your
SharePoint instance. If you do not trust the app, it will not be installed. To facilitate trusting the app,
you set the security token using the TokenHelper class, but then you needed to ensure that token was
tied to the object sending the request (LinkButton object). Also, within the lnkbtnAddEmployee_
Click event, you’re confi guring the security against the SharePoint URI as well. Setting trust and secu-
rity context for the app are two critical aspects of the new world of cloud apps.

Beyond the security elements, the following code that you used in the exercise is fairly straightforward:
you’re assigning the strEmployeeName string variable with the text the user enters into the Name fi eld.
Then, assuming the text fi eld is not null, you’re adding it to the list box.

…
 protected void lnkbtnAddEmployee_Click(object sender, EventArgs e)

 string accessToken = ((LinkButton)sender).CommandArgument;

 if (IsPostBack)
 {
 sharepointUrl = new Uri(Request.QueryString["SPHostUrl"]);
 }

 strEmployeeName = txtbxName.Text;

 if (txtbxName.Text != "")
 {
 lstbxEmployee.Items.Add(new ListItem(strEmployeeName));
 }
 else
 {
 lblErrorMsg.Text = "Please enter a valid name.";
 }
}
…

FIGURE 2-16

c02.indd 48c02.indd 48 19/01/13 1:27 PM19/01/13 1:27 PM

Understanding the Three Apps for SharePoint Deployment Models ❘ 49

You might have noticed the new URL for your Autohosted app; it probably looks something like the
following:

https://a9d21e97-5c8d-4f75-9804-b548b8df8d21.o365apps.net/Pages/Default.aspx?SPHostUrl=

https%3a%2f%myspsite.sharepoint.com%2fsites%2fspdev&SPLanguage=en-US

From this URL, you can begin to see how the new cloud-hosted app model leverages a GUID specifi c
to your app, deploys it to Windows Azure (using the O365apps.net domain), and then appends a set of
standard tokens to ensure the application integrates and maps to your SharePoint site. This is built from
the following element within the AppManifest.xml fi le.

 <StartPage>~remoteAppUrl/Pages/Default.aspx?{StandardTokens}</StartPage>

Of course, many other confi guration options are available to you within the AppManifest.xml fi le, and
you can build many interesting apps using the Autohosted deployment model.

The Autohosted model is one of two cloud-hosted app models that are new to SharePoint 2013.
Autohosted provides the automated deployment and management of your cloud-hosted app, but
it does come with some restrictions. For example, you have limited surface area for leveraging
Windows Azure, database size limits of the SQL Database, and no direct connection string access
to the SQL Database. The other cloud-hosted model, the Provider-hosted app, gives you much more
fl exibility and allows you to draw on all of the Windows Azure features.

Provider-Hosted

The Provider-hosted deployment model is a richer and more fl exible version of the Autohosted
deployment model. In this model, your code runs in a different domain — often framed in the
context of cloud deployment. For example, you can deploy your code to Windows Azure and then
register it to authenticate and integrate with SharePoint 2013.

NOTE You can also deploy an application to IIS and it could be considered

Provider-hosted.

When users access a cloud-hosted application deployed using the Provider-hosted app model, they
are redirected to a web page that resides in an external domain or server — where the application
code resides. One of the key reasons this is relevant is that the external server doesn’t necessarily
need to be a Windows Server–based application; you could be running a PHP app on a Linux/
Apache server and still have that web application integrated with SharePoint.

c02.indd 49c02.indd 49 19/01/13 1:27 PM19/01/13 1:27 PM

https://a9d21e97-5c8d-4f75-9804-b548b8df8d21.o365apps.net/Pages/Default.aspx?SPHostUrl=
https://a9d21e97-5c8d-4f75-9804-b548b8df8d21.o365apps.net/Pages/Default.aspx?SPHostUrl=
http://O365apps.net

50 ❘ CHAPTER 2 OVERVIEW OF THE SHAREPOINT 2013 APP MODEL

For example, Figure 2-17 illustrates an ASP.NET MVC4 web app that is deployed to Windows
Azure. It uses jQuery, MVC, HTML5, and other modern web development techniques to create rich
web applications. It is possible to integrate this app with SharePoint 2013 — and more. The bigger
question is, “How does it work?”

FIGURE 2-17

Similar to the Autohosted model, a special Visual Studio project template is available for you to
use to create, integrate, and deploy a web application that is married and registered to SharePoint
2013. The process is fairly exhaustive to describe in this chapter; however, later chapters cover it
in greater detail (see also the Recommended Reading for a link to a walk-through). At a high level,
though, you need to ensure you have registered the application such that SharePoint is aware of
the app. You do this through the creation of a client ID (that is, a GUID), which is included in the
web.config of the web app and the AppManifest.xml fi le. To follow is an example of a Provider-
hosted AppManifest.xml fi le.

<?xml version="1.0" encoding="utf-8" ?>
<App xmlns="http://schemas.microsoft.com/sharepoint/2012/app/manifest"
 Name="MyFirstProviderHostedApp"
 ProductID="{4b640267-b19a-4555-8af4-80a67ecf6f88}"
 Version="1.0.0.0"
 SharePointMinVersion="15.0.0.0">

c02.indd 50c02.indd 50 19/01/13 1:27 PM19/01/13 1:27 PM

http://schemas.microsoft.com/sharepoint/2012/app/manifest
http://ASP.NET

Understanding the Three Apps for SharePoint Deployment Models ❘ 51

 <Properties>
 <Title>MyFirstProviderHostedApp</Title>
 <StartPage>http://mysalesdataapp.azurewebsites.net/?{StandardTokens}
 </StartPage>
 </Properties>

 <AppPrincipal>
 <RemoteWebApplication ClientId="9F579786-BD34-4736-8E30-97D6AF648E7B" />
 </AppPrincipal>
<AppPermissionRequests><AppPermissionRequest
Scope="http://sharepoint/content/sitecollection/web" Right="Read" /></
AppPermissionRequests></App>

You also need to ensure that the application is registered and secured using the TokenHelper
class, much like you did with the Autohosted app. You might also need to register and associate
a certifi cate with the app and your developer site given that SharePoint Online is HTTPS. After
you’ve created and are hosting the Windows Azure (or another type of Web app) in your hosted
domain, you can then integrate it with SharePoint. For example, securing and deploying the
Windows Azure app that was represented at the high-level architecture in Figure 2-4 looks similar
to Figure 2-18 when deployed to SharePoint. The Windows Azure application is now fully integrated
and loading from a separate domain — but looks and feels like a SharePoint app and is registered
with SharePoint.

FIGURE 2-18

c02.indd 51c02.indd 51 19/01/13 1:27 PM19/01/13 1:27 PM

http://mysalesdataapp.azurewebsites.net/
http://sharepoint/content/sitecollection/web

52 ❘ CHAPTER 2 OVERVIEW OF THE SHAREPOINT 2013 APP MODEL

The Provider-hosted model is the most fl exible of the three new types of deployment models. The
key item to remember with the Provider-hosted deployment model is that you own the management
of that code in a separate domain — this would include managing the billing of apps, data, or
services deployed to Windows Azure in a Provider-hosted app. (The Autohosted model is managed
automatically by SharePoint with one bill through your Online Services subscription.) This also
means you own updating, testing, integrating, and so on for this separately hosted application.
With that management overhead, though, comes quite a bit of power to integrate an array of
different types of web applications and technologies, making it necessary to have all three options
available from which to choose.

SUMMARY

The three new deployment models for Apps for SharePoint are the SharePoint-hosted, Autohosted,
and Provider-hosted app models.

The SharePoint-hosted app model should be used for lightweight, smaller apps where you don’t need
server-side code. You can build them using the client-side object model, HTML and JavaScript. The
scope for a SharePoint-hosted app is the site collection.

The Autohosted app model is also used for lightweight apps, but the code for this app is
automatically deployed to Windows Azure. You can tap into the power of Windows Azure Web
Sites and SQL Database to build data-driven apps. The scope for Autohosted apps is at the site or
tenancy level.

The Provider-hosted app model is about power and fl exibility. The code does not live in SharePoint,
but lives in a separate domain. This could be Windows Azure — in which case you can take full
advantage of all of the features of the Windows Azure platform, or it could be IIS (by leveraging the
Provider-hosted template in Visual Studio), or even a completely separate PHP app that lives in your
own domain-hosted environment. There is quite a bit of fl exibility built into this app model, but
what comes with it is the need to manage your own code that lives in this separate domain.

These new models are a paradigm shift from previous versions of SharePoint and will surely change
the way in which you think about, design, and deploy your apps.

The next chapter explores the SharePoint 2013 developer tooling in greater detail.

EXERCISES

Answers to Exercises can be found in Appendix A.

 1. What are the diff erent deployment model types for Apps for SharePoint?

 2. What key Web technologies can you use with the Provider-hosted deployment model?

 3. Build a Provider-hosted app that uses IIS on your local server instead of using Windows Azure.

c02.indd 52c02.indd 52 19/01/13 1:27 PM19/01/13 1:27 PM

Recommended Reading ❘ 53

 � WHAT YOU LEARNED IN THIS CHAPTER

ITEM DESCRIPTION

App for Offi ce A new type of app to integrate Web apps or services with Offi ce or

SharePoint.

App for SharePoint The new way of deploying apps to SharePoint 2013.

SharePoint-hosted App A lightweight, client-side app. The scope is the site collection and code

must be client-side (e.g., HTML and JavaScript).

Autohosted App A cloud-hosted app that auto-deploys code to Windows Azure and

automatically registers apps with SharePoint. It can be scoped to site

collection or tenancy, and app permissions are managed through

OAuth.

Provider-hosted App A cloud-hosted app that can leverage Windows Azure or other web

technologies. It is the most fl exible of cloud-hosted apps and can be

scoped to site collection or tenancy. App permissions are managed

through OAuth.

RECOMMENDED READING

SharePoint 2013 Development Environment Setup — http://msdn.microsoft.com/zh-cn/
library/sharepoint/ee554869%28v=office.15%29

SharePoint 2013 Developer Resources — http://msdn.microsoft.com/en-us/office/apps/
fp160950.aspx

Creating a Basic Provider-Hosted App — http://msdn.microsoft.com/en-us/library/office/
apps/fp142381%28v=office.15%29.aspx

c02.indd 53c02.indd 53 19/01/13 1:27 PM19/01/13 1:27 PM

http://msdn.microsoft.com/zh-cn/library/sharepoint/ee554869%28v=office.15%29
http://msdn.microsoft.com/zh-cn/library/sharepoint/ee554869%28v=office.15%29
http://msdn.microsoft.com/en-us/office/apps/fp160950.aspx
http://msdn.microsoft.com/en-us/office/apps/fp160950.aspx
http://msdn.microsoft.com/en-us/library/office/apps/fp142381%28v=office.15%29.aspx
http://msdn.microsoft.com/en-us/library/office/apps/fp142381%28v=office.15%29.aspx

c02.indd 54c02.indd 54 19/01/13 1:27 PM19/01/13 1:27 PM

Developer Tooling for
SharePoint 2013

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ Understanding the diff erent tooling options for SharePoint 2013

 ➤ Choosing to use one tool over another

WROX.COM DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at http://www.wrox.com/
WileyCDA/WroxTitle/productCd-1118495845.html on the Download Code tab. The code
for this chapter is divided into the following major examples:

 ➤ SP_Hosted_Custom_List.zip

At this stage in the book, you’ve now been introduced to what SharePoint is, you’ve learned
about the new app model, and you’ve even written a couple of applications for SharePoint
2013. From here on out, you’re going to dive deeper into the developer world.

This chapter covers the different tools that you as a developer will want to have in your
toolkit. You may have or use more or fewer tools than what this chapter discusses, but
ultimately this chapter is about the core developer tools you should either use or need to be
aware of when embarking on your SharePoint development projects.

With that in mind, this chapter covers three main developer tools: Web-based development
using the new Napa development app, SharePoint Designer 2013, and Visual Studio 2012.
Depending on your skills and design goals, you might use these environments or tools in
different ways, and so the goal of this chapter is to not only introduce you to these different
possibilities but to also walk you through some practical examples.

3

c03.indd 55c03.indd 55 19/01/13 10:59 AM19/01/13 10:59 AM

http://www.wrox.com/WileyCDA/WroxTitle/productCd-1118495845.html
http://www.wrox.com/WileyCDA/WroxTitle/productCd-1118495845.html
http://WROX.COM
http://wrox.com

56 ❘ CHAPTER 3 DEVELOPER TOOLING FOR SHAREPOINT 2013

SHAREPOINT DEVELOPMENT ACROSS
DEVELOPER SEGMENTS

Chapter 1, “Introduction to SharePoint 2013,” discussed the spectrum of SharePoint developers and
the different ways in which they use SharePoint. As a reminder, you can divide this spectrum into
the following:

 ➤ End users: who use the platform as an application platform

 ➤ Power users: who create and administer (and maybe brand) sites

 ➤ Designers: who brand the site and build the user experience

 ➤ Developers: who build and deploy apps

Thinking about a life cycle around each of these personas, you can imagine ways in which these
people might work together or act independently on something that was created for or by them.
For example, the end user is the ultimate consumer of what exists out of the box. Meanwhile, the
developer builds apps and the designer brands and builds the user experience for the SharePoint sites
that the power user confi gures, thus the end users are downstream from the development process.
Further upstream, you have the developer and the designer who might work together (and in some
cases are the same person) to deliver both the code and the user experience, branded or otherwise,
to the power user and ultimately to the end user. The point is that a range of people interact
with SharePoint — from the developer all the way downstream to the end user — you can see a
representation of this in Figure 3-1.

FIGURE 3-1

Developer Designer Power User End User

Keeping in mind these various types of
developers, this chapter is all about the
different tools that you can use to develop
for SharePoint and the types of apps that
you would build or tasks that you would
accomplish with these tools. Figure 3-2
provides an interesting way to divide up
the tasks and apps that have traditionally
been associated with SharePoint
development tasks. On the Design side,
you can see apps and tasks that would
require a more lightweight toolset (for
example, SharePoint Designer and Napa),
and on the Develop side you see apps that
require a more managed code approach FIGURE 3-2

- Lightweight apps (HTML, JS) - Custom artifacts (Web parts,
 lists, content types)

- Cloud-based apps/services

- Workflow

- Create sites, lists, doc
 libraries, etc.

- Branding/themes

Design Develop

- ... - ...

c03.indd 56c03.indd 56 19/01/13 10:59 AM19/01/13 10:59 AM

Web-Based Development in SharePoint ❘ 57

(for example, Visual Studio). Each of these tools will be discussed in this chapter within the context
of these developer tasks and a broader set of developer experiences.

On the Design side of Figure 3-2, you might be creating apps such as custom lists, HTML apps,
master pages, and the like. You could also get into some coding activities, and more than likely that
code experience will center on HTML, XML, ASP.NET, JavaScript, and other client-side languages.
You might also get into some integration with Silverlight.

On the Develop side of Figure 3-2, development centers on C# or VB.NET (managed code) and
possibly scripted languages as well. Using Visual Studio, you’ll also fi nd that development efforts
might be managed as a part of an application life cycle, which is more broadly called application
life-cycle management (ALM), where source code is checked into team folders (in Team Foundation
Server, for example), and you can add SharePoint development projects to those folders and manage
them centrally. You’ll also fi nd custom solutions that leverage other parts of the .NET Framework
such as Windows Workfl ow (WF)–based solutions or REST-based services built and leveraged in
other SharePoint apps. Using the .NET Framework is especially useful for when you build out your
cloud-hosted apps using Windows Azure.

What this development paradigm results in for you, though, is ultimately choice. Depending on
what you’re trying to develop for SharePoint, each of these tools offers varying degrees of usefulness
for your task at hand.

The following sections walk through each of these development experiences so you can get a better
sense for how you might leverage each of them in different ways.

WEB-BASED DEVELOPMENT IN SHAREPOINT

As mentioned earlier, one can defi ne SharePoint development in a number of ways. As a power user
you might leverage more of the native SharePoint features to do development through the Web-based
environment. Power users typically have escalated permissions on a SharePoint site and are able to
accomplish tasks such as the following:

 ➤ Creating and managing site collections and site permissions

 ➤ Confi guring a new theme to the site

 ➤ Adding a new app to the site

 ➤ Creating and deploying multimedia for site-wide consumption

 ➤ Confi guring and customizing searches

 ➤ Creating external data lists

Although some might argue that these are merely tasks that a power user or IT pro might perform,
one thing about SharePoint is that the lines are sometimes blurred where one user persona starts
and another ends. For example, with many of the Web-based functions that you can perform when
developing for SharePoint a direct relationship exists to a development task. That is, you might see
the SharePoint Web interface as an endpoint to the development experience. For example, if you
create a custom app you will need to add it from an organizational-wide gallery (for example, a
corporate catalog). If you’re working with a designer to create a new master page, you’ll need to

c03.indd 57c03.indd 57 19/01/13 10:59 AM19/01/13 10:59 AM

http://ASP.NET
http://VB.NET

58 ❘ CHAPTER 3 DEVELOPER TOOLING FOR SHAREPOINT 2013

associate that new master page with a specifi c site through the site settings of that SharePoint site.
The types of Web-based tasks that you can perform go on and on (and you’ll likely evolve from
the more Web-based tasks to the more diffi cult coding tasks as you get deeper into SharePoint
development).

To some people these Web-based tasks are more centric to power-user features, and to others they
are inclusive within the development process. However, the main takeaway is that a developer will
interact with the Web-based features with SharePoint as well as potentially leverage other tools
discussed in this chapter. A power user might also leverage these same Web-based features. In
either case you require escalated privileges on the SharePoint site, and a connection exists to the
development process (that is, a power user creates a site to which a developer drops his custom app).
Thus, SharePoint development comprises a broad spectrum of activities and tools.

SITE SETTINGS

One of the main parts of SharePoint you should become familiar with (if you haven’t already) is
the Site Settings. You can access the Site Settings page by clicking the gear icon in the right-hand
corner of the SharePoint site and then selecting Site Settings. You’ll fi nd most of the confi gurations
for your site on this page, so it’s a good place to start when trying to understand where you can, for
example, change the theme of your site, activate features, manage permissions, and so on. Figure 3-3
shows the Site Settings page. Note that the core features of the Site Settings page are split out into
major categories. For example, most of your security settings are available to you in the Users and
Permissions category, theming in Web Designer Galleries, and so on.

FIGURE 3-3

c03.indd 58c03.indd 58 19/01/13 10:59 AM19/01/13 10:59 AM

Site Settings ❘ 59

As you can see from Figure 3-3, you can manage many functions through Site Settings. One of the
key tasks you’ll do as a developer or site administrator, for example, is to view the permissions of
an app. Permissions are core to SharePoint and allow you to control who has access to specifi c areas
and apps within your site and also to provision augmented permissions for, say, people you want
to have editing capabilities on your site. With regard to app permissions, you saw in Chapter 2,
“Overview of SharePoint 2013 App Model,” how you could confi gure permissions through Visual
Studio 2012 (using the AppManifest.xml), but you also have a way to view app permissions from
the Site Settings. To view the app permissions, click Site App Permissions under Site Settings.
Figure 3-4 shows this page. Specifi cally, you can see that a number of apps are deployed to this
SharePoint site, each with a specifi c identifi er used for permissions.

FIGURE 3-4

For those of you familiar with SharePoint 2007 or 2010, you also know that you can build
“features,” which are a special type of SharePoint solution that you can deploy. After you deploy
them, you can activate or deactivate features through a confi guration page within Site Settings.
To see the Feature Gallery, click Manage site features under Site Actions. Note that a number of
features are either activated or deactivated in this gallery. Site administrators (and those who have
full control over the site) can also use the Site Features page as a place to manage the features in
your SharePoint farm. Figure 3-5 shows the Site Features page.

c03.indd 59c03.indd 59 19/01/13 10:59 AM19/01/13 10:59 AM

60 ❘ CHAPTER 3 DEVELOPER TOOLING FOR SHAREPOINT 2013

It you have some extra time, it is a good idea to explore the different areas of the Site Settings page
to become familiar with all the confi guration settings you can manage in SharePoint.

Although you can use Site Settings to confi gure elements of your SharePoint site, you can also
directly edit your SharePoint site. Editing a site enables you to accomplish many different tasks,
such as adding a Web part, adding HTML content to your page, confi guring apps, and so on. If
you return to the home site of your SharePoint site, click Site Actions ➪ Edit Page. The functions
available to you at this point range from inserting apps to editing to custom list generation. If you
click inside the top-level Web part to expose the in-context ribbon, you’ll see that you can now
edit the page using the ribbon controls. Thus, although the Site Settings provide you with
confi gurable settings for the applications that you deploy to SharePoint (or for changing the
confi guration of the site that hosts your applications such as themes or master pages), the Edit mode
enables those with elevated permissions to contribute to the development of content on the
site — see Figure 3-6.

FIGURE 3-5

c03.indd 60c03.indd 60 19/01/13 10:59 AM19/01/13 10:59 AM

Site Settings ❘ 61

The editing experience ranges from formatting text to adding images or multimedia. For example,
suppose you’ve created a training video and you now want to embed that video in a Web part on
a page. You can use the Edit menu to add the video to the Web page, where SharePoint will then
provide you with the necessary controls to play the video. Although this type of task might not
constitute hard-core, managed code development, you are still advancing the content of your site, so
in a sense you are technically “developing” your site.

You can get a little more into the code by embedding HTML directly within your SharePoint site
when it’s in Edit mode. This task feels a little more like development, so give it a try in the following
activity.

TRY IT OUT Embedding HTML

To embed HTML into your SharePoint site, follow these steps:

 1. Open your SharePoint site and navigate to the home
page of the site.

 2. Click the Page tab, and then click Edit ➪ Insert.

 3. Position your cursor on the page, and click Embed
Code, as shown in Figure 3-7.

FIGURE 3-6

FIGURE 3-7

c03.indd 61c03.indd 61 19/01/13 10:59 AM19/01/13 10:59 AM

62 ❘ CHAPTER 3 DEVELOPER TOOLING FOR SHAREPOINT 2013

 4. Add some HTML code into the code fi eld, as shown in Figure 3-8.

FIGURE 3-8

 5. Click Insert. The result will be similar to what’s shown in Figure 3-9.

FIGURE 3-9

c03.indd 62c03.indd 62 19/01/13 10:59 AM19/01/13 10:59 AM

Site Settings ❘ 63

 6. Click Page ➪ Save. This saves the HTML you entered to the SharePoint site as in Figure 3-10 —
see the “Hello World!” text added inline.

FIGURE 3-10

How It Works

This exercise is a very simple example to illustrate the ease with which you can enter HTML into your
SharePoint site and pages. You add code, and behind the scenes SharePoint uses a special “container”
that renders your HTML on the SharePoint page.

The HTML container (or App part) represents a way for you to add HTML source to the page. When
the site loads, the source is treated as a part of the page and is then rendered.

Note that you’re not limited to only HTML when embedding code on the page; you can add code such
as JavaScript that will also run when the page loads.

Let’s move on to something a little different and add a video to a SharePoint site. This exercise
serves to contrast the more Web-based use of SharePoint with adding markup.

TRY IT OUT Adding a Media Player App

To add a Media Player app to your SharePoint site:

 1. Open your SharePoint site and navigate to the home page of the site.

 2. Click the Page tab, and then click Edit ➪ Insert.

 3. Position your cursor on the page, and click Insert.

c03.indd 63c03.indd 63 19/01/13 10:59 AM19/01/13 10:59 AM

64 ❘ CHAPTER 3 DEVELOPER TOOLING FOR SHAREPOINT 2013

 4. Click Web Part ➪ Media Web Part, and then click Add. The result should look like Figure 3-11.

How It Works

SharePoint natively supports multimedia as well as Silverlight, which you can use to create and deploy
rich media applications to SharePoint. Two main out-of-the-box Web parts are available that are media-
centric. The fi rst is the generic Silverlight Web part, which represents a “host container” for Silverlight
applications. The second is the Multimedia Web part, which is in essence a Silverlight Web part that sup-
ports and serves the multimedia that is associated with the Web part. So, in this exercise you “mapped”
a video with the Multimedia Web part, which further enabled you to view the video when you clicked
the play button. The generic Multimedia control is nice in that it provides a set of controls to play, pause,
and stop the video as well as increase the volume or toggle between thumbnail and full-screen views. The
mapping of the video essentially represents a source property that is being set behind the scenes so that
the mediaelement object, a native part of the Silverlight video-playing capabilities, understands where to
fi nd and play the video.

The two preceding Try It Outs reinforce the point that development for SharePoint can start out in
relatively simple ways. As you’ll see throughout this book though, developing apps will evolve to an
exercise that is more complex and one that accesses and uses resources from other domains.

FIGURE 3-11

c03.indd 64c03.indd 64 19/01/13 10:59 AM19/01/13 10:59 AM

Developing SharePoint Applications Using SharePoint Designer ❘ 65

DEVELOPING SHAREPOINT APPLICATIONS USING
SHAREPOINT DESIGNER

A lot of developers say they prefer not to use SharePoint Designer as a tool for developing against
SharePoint. However, you might be remiss if you didn’t include SharePoint Designer within your
toolkit, because you’re going to fi nd that SharePoint Designer can make some development tasks easier.

SharePoint Designer has evolved from FrontPage (an earlier Web designer tool) to SharePoint
Designer (a SharePoint-centric designer tool that was rolled out with SharePoint 2010). SharePoint
Designer can be used for a variety of designer functions for SharePoint, including creating and
editing sites, pages, lists, and content types. Also, SharePoint Designer is useful for creating
rules-based, declarative workfl ow that can then be imported in Visual Studio for deeper-level
customization.

When you fi rst open SharePoint Designer, you need to provide it with the URL for your SharePoint
site and authenticate as an elevated user — or else you won’t be able to make any changes to the site.
SharePoint Designer inherits standard SharePoint permissions.

After you open your site in SharePoint Designer, a number of navigable options and some
information about your site appear, such as site metadata, permissions, subsites, and so on, as
shown in Figure 3-12.

FIGURE 3-12

c03.indd 65c03.indd 65 19/01/13 10:59 AM19/01/13 10:59 AM

66 ❘ CHAPTER 3 DEVELOPER TOOLING FOR SHAREPOINT 2013

The Navigation pane on the left in Figure 3-12 provides a way for you to navigate across the major
functional areas of SharePoint Designer to quickly get to the things that you need to do. The
Navigation pane provides links to the following functionality:

 ➤ Lists and Libraries: Allows you to create, edit, and manage lists and libraries.

 ➤ Workfl ows: Facilitates the creation of rules-based workfl ow (that you can import into Visual
Studio and extend).

 ➤ Site Pages: Provides the ability to create and edit site-level Web pages.

 ➤ Site Assets: Different assets such as content, fi les and folders within a SharePoint site.

 ➤ Content Types: Provides the ability to create, edit, and manage content types.

 ➤ Site Columns: Supports the creation, editing, and management of site columns.

 ➤ External Content Types: Enables you to create ADO.NET or Web service–based external
content types for deployment to the Business Connectivity Services.

 ➤ Data Sources: Create and manage data source connections to a SharePoint site.

 ➤ Master Pages: Create, edit, and manage the master pages mapped to a specifi c SharePoint site.

 ➤ Site Groups: Displays the groups of sites within your SharePoint site.

 ➤ Subsites: Shows the subsites within the site collection.

 ➤ All Files: Displays all fi les in the SharePoint site.

Depending on your level of permission to a given site, some of these features might be hidden to you
from within the SharePoint Designer IDE. For example, without administrator privileges, you can’t
see the Master Pages link in the Navigation pane, so you will not be able to build and deploy master
pages to that SharePoint site.

SharePoint Designer offers some very useful features and to cover them all would take a separate
book. However, this book covers a few to get you at least started and familiar with SharePoint
Designer. For example, in this chapter you’ll use SharePoint Designer to create site pages and master
pages. In later chapters in the book, you’ll also use SharePoint Designer for creating external content
types and workfl ow.

To get you started, use the following steps to create a list using SharePoint Designer.

TRY IT OUT Creating a List Using SharePoint Designer

To create a list in SharePoint using SharePoint Designer, perform the following steps:

 1. Open SharePoint Designer 2013.

 2. On the left-hand navigation, click Lists and Libraries. The default options appear for Lists and
Libraries.

c03.indd 66c03.indd 66 19/01/13 10:59 AM19/01/13 10:59 AM

http://ADO.NET

Developing SharePoint Applications Using SharePoint Designer ❘ 67

 3. Click SharePoint Lists in the ribbon and select Tasks, as shown in Figure 3-13.

 4. Provide a name for the Tasks List (such as My To Do List), as shown in Figure 3-14, and click OK.

FIGURE 3-13

FIGURE 3-14

FIGURE 3-15

 5. Click the Save button.

 6. After you’ve saved the Tasks list, return to your SharePoint site. You should now see your new My
To Do List there, as shown in Figure 3-15.

c03.indd 67c03.indd 67 19/01/13 10:59 AM19/01/13 10:59 AM

68 ❘ CHAPTER 3 DEVELOPER TOOLING FOR SHAREPOINT 2013

FIGURE 3-16

 8. You can explore the UI and controls if you want; otherwise, simply click the File tab and then Save to
save a version of the InfoPath template locally, and then click the Quick Publish button to publish the
list form to your SharePoint site. (Note that while not visible in the Figure 3-16, you’ll fi nd a small
set of shortcut icons above the File tab in the InfoPath UI, such as Save, Quick Publish, Redo, etc.)

 9. Navigate to your SharePoint site to view the new To Do list form, shown in Figure 3-17.

FIGURE 3-17

 7. Return to SharePoint Designer and click the InfoPath Forms button in the ribbon. The InfoPath
Designer opens, which enables you to customize a list form for your new To Do list (see Figure 3-16).

c03.indd 68c03.indd 68 19/01/13 10:59 AM19/01/13 10:59 AM

Developing SharePoint Applications Using Napa ❘ 69

 10. Use the form to enter new list items, and then click Save when complete.

How It Works

SharePoint Designer provides you with a way to design and customize your SharePoint site. In this
example, SharePoint Designer uses the client-side SharePoint APIs and permissions to create artifacts in
SharePoint on your behalf. It also uses InfoPath, which is a forms tool, to create a very simple custom
form for your SharePoint list.

Although the preceding exercise showed you a relatively simple task, you can create some interesting
and rich customizations with SharePoint Designer. Furthermore, SharePoint Designer is but one of a
few tools you can use. A newer addition to SharePoint (and Offi ce) development is Napa, a browser-
based development tool.

DEVELOPING SHAREPOINT APPLICATIONS USING NAPA

For those of you who are not new to SharePoint development, you know that getting your
development environment set up can take a little time. In SharePoint 2010, you had to locally install
a number of software applications, such as SharePoint, SQL Server, Visual Studio, and so on, and
confi gure your environment for use. You were then relegated to debug on your locally installed
SharePoint instance. Fast-forward to SharePoint 2013, and the development story has evolved quite
a bit. For example, you can set up a cloud-based version of SharePoint (Offi ce 365) and develop
remotely against that instance; you can have a locally installed version of SharePoint and have your
tools locally installed; and you also have browser-based options for quicker, lightweight application
development — which you can export to Visual Studio. Enter Napa.

Napa enables you to very quickly build and deploy solutions into SharePoint using a rich browser-
based approach. It allows developers to get started quickly developing for SharePoint, and if you
desire, to migrate the code you write in Napa to run and debug in Visual Studio as well.

As you’ve seen, SharePoint 2013 has evolved towards the “App” model. Interestingly, Napa is really
just another rich app that you can use to develop for SharePoint. So, you install it and use it just like
any other app; start at the developer site and proceed from there. Figure 3-18 illustrates the live tiles
that are by default available to you when you
fi rst create your SharePoint developer site. You
can see the “Get tools to build apps” link in
the fi rst tile on the left.

Clicking this link redirects you to the install
location for Napa, where you can follow
the instructions to download and trust the
Napa app within your Offi ce 365 tenancy.
(Installing the Napa development tools app is
similar to installing other apps.)

After you install Napa, you can then go ahead
and launch it and use it to build apps for FIGURE 3-18

c03.indd 69c03.indd 69 19/01/13 10:59 AM19/01/13 10:59 AM

70 ❘ CHAPTER 3 DEVELOPER TOOLING FOR SHAREPOINT 2013

SharePoint 2013. For example, in Figure 3-19 you can see the default Napa experience. The main
window offers the code view. This is where you add your client-side code. Note to the left of the
main window the folders (for example, Content, Images, Pages, and Scripts) with fi les within them.
You can navigate and use these different folders to add your code to build out your app. The left-hand
portion of the screen contains another set of important options for running the project, removing the
app, viewing the properties of the app, opening the app in Visual Studio, and sharing the project.

FIGURE 3-19

Napa doesn’t have all the features of Visual Studio; however, you can get started very quickly with
your coding efforts and, of course, open the project in Visual Studio to leverage all the options
within a fully featured development IDE.

Use the following steps to go ahead and build a simple app using Napa.

TRY IT OUT Building a Simple JavaScript App Using Napa

To create a SharePoint-hosted app using Napa:

 1. Open your SharePoint site.

 2. Click Get tools to build apps in the live tiles on your home page.

 3. If you haven’t installed the tools, you will be prompted to install at this point. If you have
installed the tools already, click Add New Project.

 4. As shown in Figure 3-20, click App for SharePoint, provide a name for the app (such as
MyFirstNapaApp), and click Create.

c03.indd 70c03.indd 70 19/01/13 10:59 AM19/01/13 10:59 AM

Developing SharePoint Applications Using Napa ❘ 71

FIGURE 3-20

 5. On the left side of the page that appears, click Pages, and then click Default.aspx.

 6. Within PlaceHolderMain, add the following highlighted code.

<%-- The markup and script in the following Content element will be placed in
the <body> of the page --%>
<asp:Content ContentPlaceHolderId="PlaceHolderMain" runat="server">

 <div>
 <p id="message">
 <!-- The following content will be replaced with the user name
when you run the app - see App.js -->
 initializing...
 </p>
 </div>

 <div>
 <select id='dropdiv' onchange="getBookInfo(this)">
 <option value='1'>Beginning SharePoint 2013 Development</option>
 <option value='2'>Beginning ASP.NET 4.0</option>
 <option value='3'>Professional SharePoint Development using Silverlight</option>
 </select>
 </div>

</asp:Content>

c03.indd 71c03.indd 71 19/01/13 10:59 AM19/01/13 10:59 AM

http://ASP.NET

72 ❘ CHAPTER 3 DEVELOPER TOOLING FOR SHAREPOINT 2013

 7. Note the onchange event in the HTML that you added. You need to add this event code as
JavaScript. You could add inline, or to conform to JavaScript-coding best practices, you could
add to the Apps.js fi le in the Scripts folder. Click the Apps.js fi le and then add the following
JavaScript code at the bottom of the fi le:

// This function is executed if one of the choices is selected in the table.
function getBookInfo(object)
 {
 var selected = object.options[object.selectedIndex].value;
 var ISBN;
 var Price;
 var Message;
 if (selected == '1')
 {
 ISBN = "091283900129";
 Price = "$39.99";
 Message = "Book Info: " + ISBN + " | " + Price;
 alert(Message);
 }
 else if (selected == '2')
 {
 ISBN = "298734689102";
 Price = "$42.99";
 Message = "Book Info: " + ISBN + " | " + Price;
 alert(Message);
 }
else if (selected == '3')
 {
 ISBN = "948302381002";
 Price = "$36.99";
 Message = "Book Info: " + ISBN + " | " + Price;
 alert(Message);
 }
 }

 8. You can now click Run Project (as shown in
Figure 3-21) using the options in the bottom-left
tray to debug the project in SharePoint. Your
project will package, upload, and deploy, and
you’ll be prompted to trust it. The dialog shown
in Figure 3-22 appears as the project is being
packaged and deployed, and you’ll be prompted
to trust it when it is deployed to SharePoint.

 9. To test out the SharePoint-hosted app (which
in this case is a drop-down list with options),
open the app. You should see a message on the
page that says “hello” to whoever is logged into
the Offi ce 365 session. When you click one of the
options in the drop-down list, the app prompts
you with some additional information about that
option, as shown in Figure 3-23.

FIGURE 3-21

Run Project

FIGURE 3-22

c03.indd 72c03.indd 72 19/01/13 10:59 AM19/01/13 10:59 AM

Developing SharePoint Applications Using Napa ❘ 73

How It Works

A couple of things are going on in this code. For example, the simple message that is displayed is default
code that is included within every app for SharePoint you build using Napa. You can remove it and add
your own code. In this exercise, you added the Select HTML object that provides you with a type of
HTML drop-down box with three options — different books that have been added as selections. Also,
a JavaScript function called getBookInfo() is called every time you change your selection in the drop-
down box.

JavaScript is a dynamic language that runs on the client. What that means is when the client
loads the browser and subsequently the page, it runs the script that you’ve embedded within the
page within your Napa app. However, one of the key things you need to be aware of when using
JavaScript to develop for SharePoint is that it doesn’t maintain state, so you have to incorporate it
into the design of your applications.

As you can see from the code in the preceding Try it Out, JavaScript events are encapsulated within
the script tag and live in the page within which they are called. This is not the only way to call
JavaScript code — you can also store the code in a separate fi le (for example, foo.js) that is further
stored within SharePoint as a site asset. If you were to store the JavaScript separately, you would
not encapsulate the script in script tags — you would merely add the methods and any helper
functions to that .JS (.js) fi le so they execute when called from the page.

<script language="javascript" type="text/javascript">
function foo()
{
...

}
 </script>

FIGURE 3-23

c03.indd 73c03.indd 73 19/01/13 10:59 AM19/01/13 10:59 AM

74 ❘ CHAPTER 3 DEVELOPER TOOLING FOR SHAREPOINT 2013

With the example using inline JavaScript, the getBookInfo method call triggers when the user
changes her selection within the list box. You can see in the following code that the event that
triggers is the onChange event.

<select id='dropdiv' onchange="getBookInfo(this)">
 <option value='1'>
Professional SharePoint 2007 Development
 </option>
 <option value='2'>
Beginning ASP.NET 3.5
 </option>
 <option value='3'>
Professional SharePoint Development using Silverlight
 </option>
</select>

Depending on what the user selects, you can see that the object (that is, the selected item) is passed
with the call to getBookInfo. The variable called selected then gets the value of the selected
item, which further enables the code to run a conditional check against the selected item. So, if the
selected item is the fi rst item, other variables are set and then subsequently concatenated and pushed
out in an alert event to the user.

As you can see, Napa is an exciting evolution in the SharePoint development story. Lightweight
apps can be simple to build and easy to deploy. However, in some cases you might require a more
rigorous and powerful set of capabilities such as those offered by IntelliSense, ALM options,
rich debugging, and so on. For these types of features, you’ll likely want to use Visual Studio,
covered next.

DEVELOPING SHAREPOINT APPLICATIONS
USING VISUAL STUDIO 2012

Visual Studio 2012 ships with a standard set of project-level and item-level templates that make
SharePoint development much easier and more powerful than in previous versions. With SharePoint
2010, you could leverage Visual Studio 2010 to do a lot of your development, and with Visual
Studio 2012 you now have many new features and options.

To help with your development efforts, Microsoft ships a standard set of project templates out of
the box with an additional set of project item templates. For example, you can create a SharePoint
2013 Project and then add any number of SharePoint project items to that project using the template
options. (You do require a local instance of SharePoint to be installed to use these options.)
Figure 3-24 illustrates the different project-level options for you.

c03.indd 74c03.indd 74 19/01/13 10:59 AM19/01/13 10:59 AM

http://ASP.NET

Developing SharePoint Applications Using Visual Studio 2012 ❘ 75

The following project-level templates are available by default in a Visual Studio project:

 ➤ SharePoint 2010 Project/SharePoint 2013 Project: An empty SharePoint project that enables
you to add one or more item-level templates to build out a solution

 ➤ SharePoint 2010 Silverlight Web Part/SharePoint 2013 Silverlight Web Part: Rich media
Web part that uses Silverlight as the rendering engine

 ➤ SharePoint 2010 Visual Web Part/SharePoint 2013 Visual Web Part: Web part that
provides designer capabilities so you can drag and drop ASP.NET UI controls and then add
code-behind

 ➤ Import SharePoint 2010 Solution Package/Import SharePoint 2013 Solution Package:
Template that enables you to import and then redistribute packaged solutions to your
SharePoint farm

 ➤ Import Reusable SharePoint 2010 Workfl ow/Import Reusable SharePoint 2013 Workfl ow:
Template that enables you to import and then redistribute and deploy existing workfl ow
solutions to your SharePoint farm

These project-level templates provide a wide array of functionality, ranging from an empty
SharePoint project to different types of Web parts to workfl ow applications, or the importation of
legacy applications that you want to run in SharePoint 2013.

In addition to project-level templates, a set of options is available for the item level. An item is
something you add to a project, such as a list or event receiver (see Figure 3-25).

FIGURE 3-24

c03.indd 75c03.indd 75 19/01/13 10:59 AM19/01/13 10:59 AM

http://ASP.NET

76 ❘ CHAPTER 3 DEVELOPER TOOLING FOR SHAREPOINT 2013

The item-level templates available in Visual Studio are as follows:

 ➤ List: Provides a list designer experience for you to quickly design, build, and deploy lists to
SharePoint.

 ➤ Remote Event Receiver: Enables you to build event-driven applications (for example, an
event fi res when a new list item is added to a list) that respond to specifi c user or site actions.

 ➤ Content Type: Enables you to create custom content types that derive from existing
SharePoint content types such as documents, announcements lists, columns, fi elds, and so
on, that can be reused across your SharePoint site.

 ➤ Workfl ow: Supports application code that manages activities defi ned within a business
process (for example, multi-tiered approval process).

 ➤ Empty Element: Provides a way for you to leverage Visual Studio to build SharePoint
artifacts that don’t have project- or item-level templates associated with them.

 ➤ Site Column: A column that can be reused across your SharePoint site.

 ➤ Module: Container that you can use to deploy fi les or dependency assets (for example,
JavaScript source) to your SharePoint site.

 ➤ Client Web Part (Host Web): Type of Web part that is a container that loads external assets
or apps (could be external to the SharePoint site such as a Bing map or an asset or Web page
within the SharePoint site).

 ➤ UI Custom Action (Host Web): Represents a method to host buttons, links, or menus that
support a customized path for the user.

FIGURE 3-25

c03.indd 76c03.indd 76 19/01/13 10:59 AM19/01/13 10:59 AM

Developing SharePoint Applications Using Visual Studio 2012 ❘ 77

 ➤ Task Pane App: A new type of App for Offi ce artifact that can surface HTML/CSS/JavaScript
apps within parts of SharePoint (for example, a task pane within Outlook in O365).

 ➤ Content App: A new type of App for Offi ce that is surfaced within the doc itself (for
example, a fl oating app that links Excel Web access data to Bing maps).

You’ll come across other templates as you leverage the Visual Studio tools — and as you engage with
the SharePoint community that built a number of Visual Studio add-ins for SharePoint. The goal for
these project- and item-level templates is to make the tasks of building, debugging, and deploying
a range of application types and artifacts to SharePoint easy. In SharePoint 2013, a range of new
features exist that have been added to Visual Studio 2012. The following are a sampling of these
new feature areas:

 ➤ Designers for lists and content types

 ➤ Ability to create site columns

 ➤ Silverlight Web part options

 ➤ Ability to publish SharePoint solutions to remote SharePoint servers

 ➤ Test SharePoint performance by using profi ling tools

 ➤ Create sandboxed Visual Web parts

 ➤ Improved support for sandboxed solutions

 ➤ Support for JavaScript debugging and IntelliSense for JavaScript

Each of the preceding is important in different ways. For example, if you look at the underlying
structure of lists, you’re into heavy XML structures, so having a designer experience is a much
more effi cient way to lay out, build, and deploy custom list templates to SharePoint. Further,
remote development and debugging is a huge leap forward. In SharePoint 2010, you were relegated
to debugging against your local instance. This is especially important when trying to discover
ill-performing code artifacts, and the profi ling tools help you to identify those performance sore
spots such that code on your SharePoint site doesn’t slow down overall use and load times. You
could package and deploy remotely, but debugging was limited. Also, with the increased focus on
JavaScript, having the right tools to debug and leverage IntelliSense is important to increase your
developer productivity.

Beyond the wealth of available templates, Visual Studio supports even more great features. For
example, the Server Explorer provides you with the capability
to visualize the key artifacts within your SharePoint site such
as lists, list items, workfl ows, and so on. Visual Studio also has
standard ways to build, package, and publish applications using
right-click menu options, as shown in Figure 3-26. Using these
menu options, you can build and deploy through the Build menu
and then right-click your project to Retract it; Visual Studio does
all the cleanup for you — exactly what you would expect when
cleaning your solutions and apps from the SharePoint instances.

Given the different types of available templates, the developer now has more options than ever
to structure and deploy an application to SharePoint in a more productive and manageable way.

FIGURE 3-26

c03.indd 77c03.indd 77 19/01/13 10:59 AM19/01/13 10:59 AM

78 ❘ CHAPTER 3 DEVELOPER TOOLING FOR SHAREPOINT 2013

Whether you’re building a SharePoint solution (that is, .WSP) or a new App for SharePoint (that is,
.APP), you have the right options for your development needs.

Another work item that returns in Visual Studio 2012 is source-code control (often discussed within
the context of application life-cycle management or ALM).
With the ALM features built into Team Foundation Server
(TFS), you have ample opportunity to manage your source
code in a streamlined way. For example, when you create a new
project you can right-click the project in Solution Explorer,
select Add Solution to Source Control (see Figure 3-27), and then
confi gure a TFS server for your application code.

Because there are so many features Visual Studio offers to help
develop applications in SharePoint, it is helpful to familiarize
yourself with them in greater detail. Use the steps in the
following Try It Out to explore some of the Visual Studio 2012 features through the creation of a
SharePoint-hosted app.

TRY IT OUT Building a SharePoint-Hosted App Using Visual Studio 2012

To create a SharePoint-hosted app:

 1. Open Visual Studio 2012, and click File ➪ New ➪ Project.

 2. Navigate to the Offi ce/SharePoint template folder and then click Apps. Select Apps for SharePoint 2013.

 3. Provide a name for the app (SP_Hosted_Custom_List), and click OK.

 4. When prompted, select SharePoint-hosted and click Finish, as shown in Figure 3-28.

FIGURE 3-27

FIGURE 3-28

c03.indd 78c03.indd 78 19/01/13 10:59 AM19/01/13 10:59 AM

Developing SharePoint Applications Using Visual Studio 2012 ❘ 79

 5. When Visual Studio creates the project, right-click the project in Solution Explorer, and then
select Add ➪ New Item.

 6. Select the List item and then provide a name (Employees) and click Add, as shown in Figure 3-29.

FIGURE 3-29

 7. After you add, you’ll be prompted to select
the type of list you want. Leave the default
choice, which is Default (Blank), and click
Finish.

 8. Visual Studio loads the default view into
the main IDE window. Select additional
columns to add to your custom list as
shown in Figure 3-30. You can select as
many as you like or type in your own
column name and select a Type.

 9. When you’ve fi nished adding columns,
double-click the AppManifest.xml fi le
and amend the Scope to be Web and the
Permission to be Read.

FIGURE 3-30

c03.indd 79c03.indd 79 19/01/13 10:59 AM19/01/13 10:59 AM

80 ❘ CHAPTER 3 DEVELOPER TOOLING FOR SHAREPOINT 2013

 10. Double-click the Default.aspx page and add the bolded code from the following snippet.

<asp:Content ContentPlaceHolderId="PlaceHolderAdditionalPageHead"
runat="server">
 <script type="text/javascript" src="../Scripts/jquery-1.6.2.min.js">
</script>

 <link rel="Stylesheet" type="text/css" href="../Content/App.css" />

 <script type="text/javascript" src="../Scripts/App.js"></script>

 <script type="text/javascript">
 $(document).ready(function () {
 SP.SOD.executeFunc('sp.js', 'SP.ClientContext', function ()
{ sharePointReady(); });
 });
 </script>
</asp:Content>

<%-- The markup and script in the following Content element will be placed in
the <body> of the page --%>
<asp:Content ContentPlaceHolderId="PlaceHolderMain" runat="server">

<WebPartPages:WebPartZone
 runat="server"
 FrameType="TitleBarOnly"
 ID="full"
 Title="loc:full" >
<WebPartPages:XsltListViewWebPart
 ID="XsltListViewEmployeeWebPart"
 runat="server"
 ListUrl="Lists/Employees"
 IsIncluded="True"
 NoDefaultStyle="TRUE"
 Title="Employees"
 PageType="PAGE_NORMALVIEW"
 Default="False"
 ViewContentTypeId="0x">
</WebPartPages:XsltListViewWebPart>
</WebPartPages:WebPartZone>

</asp:Content>

 11. When done, press F6 to build the project. When the project builds successfully, right-click the
SharePoint project and select Publish. When prompted, click Finish to prepare the SharePoint-
hosted app.

 12. When Windows Explorer opens, copy the folder path of the .APP fi le.

 13. Navigate to your SharePoint site, and click New App to Deploy.

 14. In the Deploy App dialog, click the Upload link, browse to your .APP by clicking the browse
button (here’s where you can paste in your folder path), and click OK.

c03.indd 80c03.indd 80 19/01/13 10:59 AM19/01/13 10:59 AM

Developing SharePoint Applications Using Visual Studio 2012 ❘ 81

 15. Click Deploy, and when prompted, click the Trust It button.

 16. After your app successfully deploys, click the Site Contents link and then click the newly deployed
SharePoint-hosted app. Your newly deployed SharePoint-hosted app loads.

 17. Add a couple of new list items to your Web part view of the Employees custom list — see
Figure 3-31.

How It Works

The SharePoint-hosted app is meant to be for lightweight applications. The exercise you just completed
leveraged the new list designer to add a custom list to your SharePoint site as well as a view to that list
using an ASP.NET XSLT List View Web part — added to your ASP.NET default.aspx page through
code. The XSLT View Web part is not new to SharePoint, but provides a way to surface a view of it in
SharePoint Web pages. The list designer experience, however, will evolve the way in which you work
with lists because it abstracts the XML representation of that list. For example, in previous versions of
SharePoint, you would need to hand-code the XML for the list. The following is the top-level list template
XML, to which a more complex XML schema is associated.

<?xml version="1.0" encoding="utf-8"?>
<Elements xmlns="http://schemas.microsoft.com/sharepoint/">
 <ListTemplate
 Name="Employees"
 Type="10000"
 BaseType="0"
 OnQuickLaunch="TRUE"
 SecurityBits="11"
 Sequence="410"
 DisplayName="Employees"
 Description="My List Definition"
 Image="/_layouts/15/images/itgen.png"/>
 </Elements>

To see this XML, you can navigate to the new list you added and click the Elements.xml and Schema.xml
fi les.

FIGURE 3-31

c03.indd 81c03.indd 81 19/01/13 10:59 AM19/01/13 10:59 AM

http://schemas.microsoft.com/sharepoint/
http://ASP.NET
http://ASP.NET

82 ❘ CHAPTER 3 DEVELOPER TOOLING FOR SHAREPOINT 2013

This exercise is useful not only to show you how to create a list, but also to show you the XML rep-
resentation of that list. In a sense, this illustrates the way in which tooling is maturing around the
SharePoint platform to make it easier for you to build SharePoint applications.

You’re going to leverage more than just JavaScript and simple ASP.NET code when building Apps
for SharePoint using Visual Studio 2012. For example, those familiar with SharePoint 2010 will
remember the client-side object model (CSOM); you’ll fi nd that you use this API within the different
hosted model apps (across JavaScript, Silverlight, and .NET). The following code snippet walks
through setting the context for a SharePoint site, integrating the OAuth accessToken object within
the context which is new to SharePoint 2013 and facilitates cross-domain app authentication. It then
creates a Collaborative Application Markup Language (CAML) query, which is an XML language
that enables you to build raw queries against SharePoint lists. The code also creates a query against
a list and returns the items from the list. You can see a custom Customer object that is used to
transpose the returned list items and bind them to a Listbox.

…
ClientContext clientContext =
 TokenHelper.GetClientContextWithAccessToken(sharepointUrl.ToString(),
 accessToken);
 Web web = clientContext.Web;
 clientContext.Load(web);
 List list = clientContext.Web.Lists.GetByTitle("Customers");
 CamlQuery camlQuery = new CamlQuery();
 camlQuery.ViewXml = "<View/>";
 ListItemCollection listItems = list.GetItems(camlQuery);
 clientContext.Load(list);
 clientContext.Load(listItems);
 clientContext.ExecuteQuery();

 foreach (ListItem listItem in listItems)
 {
 Customer tempCustomer = new Customer();
 tempCustomer.Name = listItem["Title"].ToString();
 tempCustomer.Company = listItem["Company"].ToString();
 listOfCustomers.Add(tempCustomer);
 }

 lstbxCustomerData.DataSource = listOfCustomers;
 lstbxCustomerData.DataBind();

OData is useful in a very similar way. You can use a REST URI to access data within lists and then
cycle through the XML or JSON feed and integrate within your application. The following URI
returns the list items in the Customers list.

https://me.sharepoint.com/sites/sp/_api/web/lists/getbytitle('Customers')/items

OTHER TOOLS FOR SHAREPOINT DEVELOPMENT

This chapter covers much about the core tools that are available for SharePoint development. Of course,
you’ll come across many other niche tools in addition to the main ones — some of which can be
proprietary to your organization. Two of these lesser known tools are quite helpful in the right

c03.indd 82c03.indd 82 19/01/13 10:59 AM19/01/13 10:59 AM

https://me.sharepoint.com/sites/sp/_api/web/lists/getbytitle('Customers')/items
http://ASP.NET

Other Tools for SharePoint Development ❘ 83

situation: Expression Blend, which is for design, especially when you’re building out Silverlight-
based applications, and Fiddler, for debugging.

Developing with Expression Blend

Visual Studio, SharePoint Designer, and Napa are your core developer tools for SharePoint, so you
won’t see as much coverage here for Expression Blend as you did for the aforementioned tools.
However, getting at least an introduction to Expression is important, because it provides a great
suite of applications offering Web, design, and encoding features.

One of the main reasons to introduce Expression Blend here is that it offers a great way to design
Silverlight-based and Deep Zoom applications. Silverlight is a great way to create rich media and
dynamic applications — and this dynamic user experience begins with the use of Expression Blend.
Furthermore, Deep Zoom can also provide some interesting media experiences with images. For
example, the Hard Rock Memorabilia site (http://memorabilia.hardrock.com) leverages the
Deep Zoom capabilities within a Silverlight application embedded within an HTML page — see
Figure 3-32.

FIGURE 3-32

NOTE For more information on Silverlight and Deep Zoom, visit the fol-

lowing MSDN article: http://msdn.microsoft.com/en-us/library/
cc645050(v=VS.95).aspx.

The experience on the site enables you to zoom in on the different images on the page with
remarkable clarity because the application refocuses each time it zooms into an image. Although you

c03.indd 83c03.indd 83 19/01/13 10:59 AM19/01/13 10:59 AM

http://memorabilia.hardrock.com
http://msdn.microsoft.com/en-us/library/cc645050(v=VS.95).aspx
http://msdn.microsoft.com/en-us/library/cc645050(v=VS.95).aspx

84 ❘ CHAPTER 3 DEVELOPER TOOLING FOR SHAREPOINT 2013

can create Deep Zoom applications like the one in Figure 3-32, you can also create more everyday
business applications using Silverlight. For example, much like you would create a WinForm
application using Visual Studio, you could just as easily create a Silverlight application using
Expression Blend. The added value you get with Silverlight is additional rich-design functionality
built into Expression that provides support for animation, behaviors, action triggers, gradient
design, and so on — so it truly offers much more of a design experience than the designer that ships
with the Silverlight templates within Visual Studio. Figure 3-33 shows how you can create dynamic
controls in your Silverlight applications using Expression Blend.

FIGURE 3-33

After you create these rich controls, you
can then import them into Visual Studio
and add event handlers to them as shown in
Figure 3-34, enabling you to combine the design
and development experience into one seamless,
managed process.

Design is an important aspect of SharePoint
development, and as you evolve in your
SharePoint journey you will begin to look for
more ways to enhance the design experience for
your application development.

FIGURE 3-34

c03.indd 84c03.indd 84 19/01/13 10:59 AM19/01/13 10:59 AM

Summary ❘ 85

Debugging Using Fiddler

One other tool that you’ll likely want to learn how to use is Fiddler, an HTTP debugging application
written by Eric Lawrence. Fiddler is an excellent way to capture key statistics and metadata for
network transactions, data packets (for example, XML or JSON data), performance and load
times, and so on (see Figure 3-35). As you build and deploy your apps, especially now that you’ll
be focusing some of your time on cloud-based apps, tasks such as understanding how and where
different traffi c is being routed within your application, monitoring load times, and detecting
bottlenecks, will be essential to building performing and usable apps. Fiddler provides these
capabilities through its tracing functions (and more), as you can see in Figure 3-35.

FIGURE 3-35

You can download Fiddler for free from: http://www.fiddler2.com/fiddler2/.

SUMMARY

Several major development tools are available to you in SharePoint 2013 with which you can
perform different types of development — ranging from power use to a design to managing code.
Some of these specifi c tools include Napa, SharePoint Designer, Visual Studio, Expression Blend,
and Fiddler.

c03.indd 85c03.indd 85 19/01/13 10:59 AM19/01/13 10:59 AM

http://www.fiddler2.com/fiddler2/

86 ❘ CHAPTER 3 DEVELOPER TOOLING FOR SHAREPOINT 2013

You will fi nd more tools as you become an active part of the SharePoint developer community.
The support for SharePoint development is growing, and with the release of Visual Studio 2012,
good life-cycle and template support exists for those just getting into the world of SharePoint
development.

In the next chapter, you take the next step in your SharePoint development journey and learn about
the essential skills you’ll need to pick up and how you should make choices against the range of
solution and application types when building your SharePoint solutions.

EXERCISES

 1. Describe the range of development tools that you can use for SharePoint development.

 2. Summarize when you would use one tool over another.

 3. Build out some simple applications leveraging the core project- and item-level templates in

Visual Studio 2012.

c03.indd 86c03.indd 86 19/01/13 10:59 AM19/01/13 10:59 AM

Recommended Reading ❘ 87

 � WHAT YOU LEARNED IN THIS CHAPTER

ITEM DESCRIPTION

SharePoint

Development

The spectrum of development ranges from power user to designer to

managed code development.

Napa This browser-based development tool enables you to build a variety of

apps for SharePoint.

SharePoint Designer You can use this designer tool to create and edit sites, pages, content

types, and columns, build workfl ow, design master pages, and much more.

Visual Studio This fully featured development IDE off ers project- and item-level

templates for you to build a variety of SharePoint apps and solutions.

Expression Blend This rich design tool integrates with Visual Studio and enables you to build

Silverlight and rich media applications.

Fiddler You can use this Web-debugging tool to help you understand network

traffi c, metadata, and data transactions in your applications.

RECOMMENDED READING

Napa Overview — http://msdn.microsoft.com/en-us/library/jj220041%28v=office
.15%29.aspx

Visual Studio 2012 Overview — http://technet.microsoft.com/visualstudio/eng/whats-new
Getting Started with SharePoint 2013 Development — http://msdn.microsoft.com/en-us/

library/jj163980%28v=office.15%29.aspx

Fiddler Download — http://www.fiddler2.com/fiddler2/
Expression Blend Overview — http://expression.microsoft.com/en-us/cc507094.aspx

c03.indd 87c03.indd 87 19/01/13 10:59 AM19/01/13 10:59 AM

http://msdn.microsoft.com/en-us/library/jj220041%28v=office.15%29.aspx
http://msdn.microsoft.com/en-us/library/jj220041%28v=office.15%29.aspx
http://technet.microsoft.com/visualstudio/eng/whats-new
http://msdn.microsoft.com/en-us/library/jj163980%28v=office.15%29.aspx
http://msdn.microsoft.com/en-us/library/jj163980%28v=office.15%29.aspx
http://www.fiddler2.com/fiddler2/
http://expression.microsoft.com/en-us/cc507094.aspx

c03.indd 88c03.indd 88 19/01/13 10:59 AM19/01/13 10:59 AM

Understanding Your
Development Options

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ Understanding the diff erent options for your SharePoint

development

 ➤ Understanding common developer tasks and skills required for

each of them

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at: http://www.wrox.com/
WileyCDA/WroxTitle/productCd-1118495845.html on the Download Code tab. The code
for this chapter is divided into the following major examples:

 ➤ C4_Code_Options.zip

Thus far, you’ve been introduced to SharePoint 2013, learned about the different app mod-
els that are new to SharePoint, and walked through the tooling options for SharePoint. By
now, you should have a pretty good understanding of the fundamentals from a development
perspective. However, when you embark on your development journey with SharePoint
you will be confounded with one question again and again: How should I develop this in
SharePoint?

This might seem like a simple question, but the answer relies on factors not only within the
technical scope of SharePoint features (that is, “What feature can I use to fulfi ll this business
requirement?”), but it also relies on factors outside of your SharePoint project (for example,
“Does this need to be in source code?” or “Can I accomplish this with an out-of-the-box

4

c04.indd 89c04.indd 89 19/01/13 11:02 AM19/01/13 11:02 AM

http://www.wrox.com/WileyCDA/WroxTitle/productCd-1118495845.html
http://www.wrox.com/WileyCDA/WroxTitle/productCd-1118495845.html
http://WROX.COM
http://wrox.com

90 ❘ CHAPTER 4 UNDERSTANDING YOUR DEVELOPMENT OPTIONS

feature?” and so on). To answer the question, you’ll need to understand the features built into,
for example, each SharePoint site template, what APIs to use when, and what solution type to use
(*.WSP versus *.APP). Thus, knowing and understanding your options is key to successful develop-
ment in the SharePoint world.

APPLICATION AND SOLUTION TYPES

When developing applications for SharePoint, remember that you have a few different ways to
build and deploy a SharePoint application or solution. The following is a short list of the types of
options — both historical and today:

 ➤ Farm-level solution: Typically associated with either SharePoint Server or SharePoint
Foundation, this type of solution (.WSP or SharePoint feature) is an application that is
installable and accessible across any site collection within a SharePoint farm.

 ➤ Sandboxed solution: Lightweight solution or feature that is deployed to a sandboxed envi-
ronment (that is, a restricted execution environment that allows programs to access specifi c
resources and data within the SharePoint site) and can be deployed to Offi ce 365 or on-
premises SharePoint installations.

 ➤ SharePoint-hosted app: Lightweight app (.APP) that is deployed to SharePoint but leverages
client-side code such as HTML, JavaScript, and CSS.

 ➤ Cloud-hosted app: Apps (.APP) that are hosted in the cloud, but can be deployed to either
SharePoint on-premises or Offi ce 365. These are either Autohosted or Provider-hosted (as
discussed in Chapter 2, “Overview of SharePoint 2013 App Model”).

Each one of these options has pros and cons that you will need to understand — not only so you can
choose between them, but also so you can really take advantage of all the services, APIs, or features
that are available within each one of these options. You may also have combinations of a few of
these options — you’re not relegated to just using one or the other. For example, you may combine
SharePoint-hosted with Cloud-hosted.

INSTALLATION TYPE MATTERS

The type of SharePoint installation (SharePoint Server or Offi ce 365) also plays a
role in choosing a development solution and choosing the APIs to use within that
solution. For instance, if you’re building an application for SharePoint Foundation
or SharePoint Server, you can develop and deploy solutions that have farm-level
scope (farm-level solution). You also can use a broader set of SharePoint-specifi c
APIs; that is, you can use both the Server-Side Object Model and the Client-Side
Object Model. If your target installation is Offi ce 365, you will likely use Cloud-
hosted apps, in which case you won’t use the Server-Side Object Model, but design
your apps using the Client-Side Object Model and more broadly the Windows
Azure platform.

c04.indd 90c04.indd 90 19/01/13 11:02 AM19/01/13 11:02 AM

Application and Solution Types ❘ 91

Table 4-1 further explores some of the differences you need to think about across the development
options.

TABLE 4-1: Considerations Across SharePoint Deployment

CONSIDERATION

FARM-LEVEL

SOLUTION

SANDBOXED

SOLUTION

SHAREPOINT

HOSTED CLOUD HOSTED

App scope Farm/site

collection

Sandbox Site Site or tenancy

Architecture Site Site Website Multi-tenant app

Developer skills Full stack .NET HTML/JS Full stack

Server code Yes No No Yes

Key limitations None Limited OM,

extensibility

No server code Hosting expertise

required

Note that if your target SharePoint installation is SharePoint Server, then you have the option
of using the farm-level solution, which supports all the different types of app development. In
regards to being able to leverage SharePoint APIs, services, and features, the farm-level solution
is the most powerful out of the different solutions (as measured by the breadth of SharePoint API
you can use).

Sandboxed solutions, inversely, are the most restricted. You can build some interesting applications
with them, but they do not affect the whole server farm (unlike the farm-level solution), and they
can be deployed by the site collection administrator and are isolated to resources within the site
collection to which they are deployed. (You won’t see too much coverage of sandboxed solutions in
this book because Microsoft is emphasizing using the cloud-hosted app models moving forward and
deprecating sandboxed solutions.)

You might think of SharePoint-hosted apps as sister apps to the sandboxed solutions. They are also
lightweight apps that are meant to leverage site collection resources and artifacts; however, one of
the key differences is that you typically leverage unmanaged code to build these apps. Also, as men-
tioned earlier, the cloud-hosted apps are pretty powerful; you can deploy them on full installations
of SharePoint (for example, SharePoint Server) or you can deploy them in Offi ce 365. They bring
the broader elements of the cloud into SharePoint and can leverage some of the core REST APIs and
client-side object model.

With these points in mind, you might be asking yourself in what situation do you use one over the
other. Although Table 4-1 provides some measure of differentiation, Table 4-2 provides a little more
guidance around when you might use one option over the other.

c04.indd 91c04.indd 91 19/01/13 11:02 AM19/01/13 11:02 AM

92 ❘ CHAPTER 4 UNDERSTANDING YOUR DEVELOPMENT OPTIONS

TABLE 4-2: Recommendations on When to Use Which Option

CONSIDERATION WHEN TO USE

Farm-level solution Use this solution for applications being deployed to SharePoint Server or

SharePoint Foundation. Suitable for enterprise-grade solutions (such as

Sales Management dashboard that is integrated with SAP) that require farm-

level (or site-collection level) resource access, cross-site collection deploy-

ment, or need to execute server-side code.

Sandboxed

solution

Given the strategic direction toward the cloud-hosted model, it is rec-

ommended that moving forward you should use the SharePoint-hosted

model instead of the sandboxed solution. (While supported for backward

 compatibility, these are marked as deprecated in MSDN.)

SharePoint-hosted Use when you have smaller, lightweight apps that are centric to a specifi c site

collection or SharePoint page (for example, custom list view on a Web page or

custom content type). If you have any server-side code requirements, you can-

not use SharePoint-hosted apps.

Cloud-hosted Use when you don’t want any running code on the server, if you’re targeting

Offi ce 365, or if you want to build a Web app on a diff erent infrastructure

(e.g., Google, Amazon, LAMP, etc.). Use Autohosted for smaller-scale apps

(for example, ASP.NET data views or forms) and Provider-hosted for enterprise-

grade cloud apps (for example, expense apps that use third-party state-level

services to calculate tax). The client-side object model or REST APIs can sub-

stitute some of the server-side object model functionality (especially when

interacting with list data). Also, you must manage your own hosting of the app

for Provider-hosted apps and the permissions/app authentication for either

Autohosted or Provider-hosted depending on what you’re trying to accomplish

in the app.

In general, you’ll fi nd that the more SharePoint applications you develop the better sense of what
to use for a particular situation you’ll have, and you’ll begin to ask a specifi c set of questions as
you start to gather requirements for your SharePoint applications. These questions will range
from understanding the installation scenario to data security to business process and workfl ow to
 leveraging third-party services.

NOTE A word of advice to those of you starting out as SharePoint developers:

always look to see whether what the business is asking for already exists within

SharePoint before you re-create it. You will save time and money by leveraging

the extensive amount of out-of-the-box features that are available to you.

While understanding when to use a specifi c scenario is important, so are the common developer
tasks and skills that you’ll need to leverage in your day-to-day SharePoint development career.

c04.indd 92c04.indd 92 19/01/13 11:02 AM19/01/13 11:02 AM

http://ASP.NET

Common Developer Tasks ❘ 93

With that in mind, let’s talk about the more common tasks in which you can expect to engage as a
SharePoint developer.

COMMON DEVELOPER TASKS

Although everything is technically an “app” in SharePoint 2013, you will fi nd yourself building
different types of apps, and when doing so, you will run into several of the same tasks many times
over. It is helpful to identify these familiar tasks so that you can hone the skills associated with
them, as you’ll be using them often. Some of the more common tasks you’ll likely fi nd yourself doing
are as follows:

 ➤ Creating Web Parts

 ➤ Creating SharePoint-hosted apps

 ➤ Accessing and managing data

 ➤ Creating cloud-hosted apps

 ➤ Creating event receivers

 ➤ Creating ASPX pages

 ➤ Creating master pages

Let’s walk through each of these tasks and explore what they are and the skills required for your
success in completing them.

Creating Web Parts

One of the most common developer tasks you’ll likely engage in is the creation and deployment
of a Web Part. This historically has been the key artifact that a developer develops and deploys to
SharePoint.

In SharePoint 2013, you work primarily with three different types of Web Parts: Standard, Visual,
and Silverlight. Many other SharePoint artifacts might feel like a Web Part, but in many cases these
are ASP.NET objects, containers, or IFRAMEs that provide dynamic client-side code rendering and
pass-through capabilities to other Web Parts or applications, or views to list data. Because of the
rich designer capabilities, the Visual and Silverlight Web Parts will likely be your fi rst choice; how-
ever, this section covers all three.

Standard Web Parts

A Standard Web Part provides the plumbing for you to create a Web Part and deploy it to
SharePoint. When you create a Standard Web Part, you are creating most objects from scratch and
assembling the Web Part without the aid of a designer. This can be good and bad. If you’re a skilled
developer and are familiar with the ASP.NET/SharePoint APIs and object model, then this won’t
be too much trouble. However, you do gain some advantage when using more designer-driven Web
Parts, if nothing more than to improve your productivity around creating a user interface for your
Web Part.

c04.indd 93c04.indd 93 19/01/13 11:02 AM19/01/13 11:02 AM

http://ASP.NET
http://ASP.NET

94 ❘ CHAPTER 4 UNDERSTANDING YOUR DEVELOPMENT OPTIONS

To follow is a short code snippet that includes a text box, label, and button control that are being
instantiated, properties set, and a Click event that corresponds to the button control. In this
code snippet, you can see that the four controls are declared at the class level, and then in the
CreateChildControls method the properties for those objects are set, the Add method is called
to add the controls to the Controls collection (to display them in the Web Part), and the myBut-
ton_Click event is called to render the user’s entry as text in one of the labels. If you have not
coded Web Parts before, this is pretty standard; that is, creating the controls, setting the properties
for those controls, adding the controls to the Controls collection, and also adding any event han-
dlers for those controls. This code illustrates the explicit code you need to write to generate the UI
through ASP.NET objects:

namespace MyFirstDevTask.TaskOneWebPart
{
 [ToolboxItemAttribute(false)]
 public class TaskOneWebPart : WebPart
 {
 Label myLabel = new Label();
 TextBox myTextbox = new TextBox();
 Label myResponse = new Label();
 Button myButton = new Button();

 protected override void CreateChildControls()
 {
 myLabel.Text = "Enter Text:";
 myResponse.Text = "";
 myTextbox.Enabled = true;
 myTextbox.Text = "";
 myButton.Text = "Click Me";
 this.Controls.Add(myLabel);
 this.Controls.Add(myTextbox);
 this.Controls.Add(new LiteralControl("
"));
 this.Controls.Add(myResponse);
 this.Controls.Add(new LiteralControl("
"));
 this.Controls.Add(myButton);

 myButton.Click += new EventHandler(myButton_Click);
 }

 void myButton_Click(object sender, EventArgs e)
 {
 string userResponse = myTextbox.Text;
 myResponse.Text = userResponse;
 }
 }
}

Figure 4-1 shows the end result if you were to deploy this Web
Part to SharePoint.

FIGURE 4-1

c04.indd 94c04.indd 94 19/01/13 11:02 AM19/01/13 11:02 AM

http://ASP.NET

Common Developer Tasks ❘ 95

Visual Web Parts

The Visual Web Part is different from the Standard Web Part in that you have a designer experience
for creating the user interface (UI) for the Web Part. This makes it very easy to add controls and
code-behind for this type of Web Part. Because SharePoint is built on ASP.NET, you have many of
the same underlying constructs and objects that you might have learned through ASP.NET for the
creation of a Standard Web Part. You can create and apply many of the same objects and events
when building out a Visual Web Part that you might have used when building out an older
ASP.NET Web Part.

Using the designer experience in Visual Studio to create the Web Part UI, you can drag and drop a
wide array of library controls from the toolbox onto the designer surface. Where you would manu-
ally write the code in the Standard Web Part to create controls or events, in the Visual Web Part you
use a method with which you’re likely familiar: drag and drop the control and then double-click
the control in the designer to add the code-behind. For example, if you were to take the same func-
tionality shown earlier in the Standard Web Part and implement it in the Visual Web Part, then you
would have an ASP.NET user control (ASCX fi le) that represents the UI with a code-behind fi le. The
ASCX user control code would look like the following:

<asp:Label ID="myLabel" runat="server" Text="Enter Text:"></asp:Label>
 <asp:TextBox ID="myTextbox" runat="server"></asp:TextBox>
<p>
 <asp:Label ID="myResponse" runat="server" Text="Label"></asp:Label>
</p>
<asp:Button ID="myButton" runat="server" onclick="myButton_Click"
 Text="Click Me" />

The code-behind for the ASCX user control would look like the following:

using System;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;

namespace MyFirstDevTask.TaskTwoWebPart
{
 public partial class TaskTwoWebPartUserControl : UserControl
 {
 ...

 protected void myButton_Click(object sender, EventArgs e)
 {
 string userResponse = myTextbox.Text;
 myResponse.Text = userResponse;
 }

 }
}

c04.indd 95c04.indd 95 19/01/13 11:02 AM19/01/13 11:02 AM

http://ASP.NET
http://ASP.NET
http://ASP.NET
http://ASP.NET

96 ❘ CHAPTER 4 UNDERSTANDING YOUR DEVELOPMENT OPTIONS

Note that the control declarations do not appear in this specifi c ASCX code-behind (ASCX is the
fi le extension for the ASP.NET user control fi le); however, a reference exists to the ASCX control
in the core Web Part class that loads the user control you build with the designer experience at run-
time. The following shows the code that represents this reference inside of the core Web Part class.
Note that the _ascxPath object simply represents a fi lesystem path to the location of the ASCX fi le
you created using the designer.

public class TaskTwoWebPart : WebPart
 {
 private const string _ ascxPath =
@"~/ _ CONTROLTEMPLATES/MyFirstDevTask/TaskTwoWebPart/TaskTwoWebPartUserControl.ascx";

 protected override void CreateChildControls()
 {
 Control control = Page.LoadControl(_ ascxPath);
 Controls.Add(control);
 }

 }

Figure 4-2 shows what this Visual Web Part
looks like.

Now that you’ve seen a bit of code behind both a
Standard and Visual Web Part, let’s walk through an
exercise to create a new Visual Web Part. This exercise assumes that you’ve created a SharePoint site
(a developer site).

TRY IT OUT Creating a Visual Web Part

Visual Web Parts provide a designer experience for your Web Part customization. To create a Visual
Web Part, perform the following steps:

 1. Open Visual Studio 2012.

 2. Click File ➪ New Project, navigate to Offi ce/SharePoint ➪ SharePoint Solutions, and then select
SharePoint 2013 – Empty SharePoint Solution.

 3. Provide a name for the project (MyFirstSPProject), as shown in Figure 4-3.

 4. After the new project has been created, right-click the SharePoint project and select Add ➪

New Item.

 5. In the Add New Item dialog, select the Visual Web Part item template.

FIGURE 4-2

c04.indd 96c04.indd 96 19/01/13 11:02 AM19/01/13 11:02 AM

http://ASP.NET

Common Developer Tasks ❘ 97

 6. A prompt appears, asking you to designate the application as a sandboxed solution or a farm-level
application. Select Deploy as a farm solution, and click Finish, as shown in Figure 4-4.

FIGURE 4-3

FIGURE 4-4

c04.indd 97c04.indd 97 19/01/13 11:02 AM19/01/13 11:02 AM

98 ❘ CHAPTER 4 UNDERSTANDING YOUR DEVELOPMENT OPTIONS

 7. Provide a name for the Visual Web Part (MyNewVisualWebPart), and click Add. See Figure 4-5.

FIGURE 4-5

 8. After the Visual Web Part is added to the project, right-click the SharePoint project and select
Add ➪ Class, and provide a name for the new class (Sales).

 9. Click Add.

 10. Add the bolded code as per the following code snippet:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace MyFirstSPProj
{
 class Sales
 {
 public int ID { get; set; }
 public string Quarter { get; set; }
 public string TotalSales { get; set; }
 }
}

c04.indd 98c04.indd 98 19/01/13 11:02 AM19/01/13 11:02 AM

Common Developer Tasks ❘ 99

 11. Right-click the Default.aspx page and select View Designer. Click the Source tab and add the
bolded code as per the following code snippet:

<%@ Assembly Name="$SharePoint.Project.AssemblyFullName$" %>
<%@ Assembly Name="Microsoft.Web.CommandUI, Version=15.0.0.0, Culture=neutral,
PublicKeyToken=71e9bce111e9429c" %>
…

<p style="font-family: calibri">
 My First Visual Web Part</p>
<asp:GridView ID="salesGridView" runat="server" CellPadding="4"
Font-Names="Calibri" Font-Size="Small" ForeColor="#333333" GridLines="None">
 <AlternatingRowStyle BackColor="White" ForeColor="#284775" />
 <EditRowStyle BackColor="#999999" />
 <FooterStyle BackColor="#5D7B9D" Font-Bold="True" ForeColor="White" />
 <HeaderStyle BackColor="#5D7B9D" Font-Bold="True" ForeColor="White" />
 <PagerStyle BackColor="#284775" ForeColor="White" HorizontalAlign="Center" />
 <RowStyle BackColor="#F7F6F3" ForeColor="#333333" />
 <SelectedRowStyle BackColor="#E2DED6" Font-Bold="True" ForeColor="#333333" />
 <sortedascendingcellstyle backcolor="#E9E7E2" />
 <sortedascendingheaderstyle backcolor="#506C8C" />
 <sorteddescendingcellstyle backcolor="#FFFDF8" />
 <sorteddescendingheaderstyle backcolor="#6F8DAE" />
</asp:GridView>

<asp:LinkButton ID="lnkGetSalesData" runat="server" Font-Names="Calibri"
Font-Size="Small">Get Sales</asp:LinkButton>

 12. Double-click the Default.aspx.cs fi le and add the bolded code as per the following
code snippet:

using System;
using System.ComponentModel;
using System.Web.UI.WebControls.WebParts;
using System.Collections.Generic;

namespace MyFirstSPProj.MyNewVisualWebPart
{
 [ToolboxItemAttribute(false)]
 public partial class MyNewVisualWebPart : WebPart
 {

 List<Sales> mySalesData = new List<Sales>();
 Sales FY11 = new Sales();
 Sales FY12 = new Sales();
 Sales FY13 = new Sales();

 public MyNewVisualWebPart()
 {
 }

 protected override void OnInit(EventArgs e)
 {

c04.indd 99c04.indd 99 19/01/13 11:02 AM19/01/13 11:02 AM

100 ❘ CHAPTER 4 UNDERSTANDING YOUR DEVELOPMENT OPTIONS

 base.OnInit(e);
 InitializeControl();
 }

 protected void Page_Load(object sender, EventArgs e)
 {
 }

 protected void lnkGetSalesData_Click(object sender, EventArgs e)
 {
 FY11.ID = 1;
 FY11.Quarter = "FY11";
 FY11.TotalSales = "$2,002,102.00";
 mySalesData.Add(FY11);

 FY12.ID = 2;
 FY12.Quarter = "FY12";
 FY12.TotalSales = "$2,500,201.00";
 mySalesData.Add(FY12);

 FY13.ID = 3;
 FY13.Quarter = "FY13";
 FY13.TotalSales = "$2,902,211.00";
 mySalesData.Add(FY13);

 salesGridView.DataSource = mySalesData;
 salesGridView.DataBind();
 }
 }
}

 13. Right-click the SharePoint project and select
Deploy. This builds and deploys the Visual
Web Part to your SharePoint site.

 14. After the Visual Web Part successfully
deploys to the SharePoint site, navigate to
the top-level SharePoint site.

 15. Click Page and then Edit.

 16. Click the Insert tab, and then select Web
Part ➪ Custom, and then add the newly
deployed Visual Web Part. The result will
look similar to Figure 4-6.

How It Works

In this exercise, you created a simple Visual Web
Part. The Web Part uses a Sales object with three
properties: a record ID, fi scal quarter, and sales
fi gure, as shown in the following:

FIGURE 4-6

c04.indd 100c04.indd 100 19/01/13 11:02 AM19/01/13 11:02 AM

Common Developer Tasks ❘ 101

Class Sales
{
 public int ID {get; set;}
 public string Quarter {get; set;}
 public string TotalSales {get; set;}
}

The code then added three objects to a List collection that was then bound to the GridView object.
This event was triggered by a linkbutton, which created the List collection and bound it to the
GridView.

Silverlight Web Part

Beyond the Standard and Visual Web Parts,
you can also use the Silverlight Web Part.
The Silverlight Web Part provides a way to
deploy rich media applications to SharePoint.
The Silverlight Web Part combines a Web Part
and Silverlight application into one project
(so it uses the Web Part infrastructure
to deploy the Silverlight application) that it
then deploys to SharePoint. Behind the scenes,
the Web Part represents a container that points
to a Silverlight application that it deploys to
SharePoint. Similar to the Visual Web Part,
you can use a designer experience to build
rich Web Parts (also ones that can leverage the
CSOM API to interact with SharePoint data).
Use the Silverlight Web Part for rich media
applications, data-bound applications,
and applications that you want to use across all
versions of SharePoint.

Figure 4-7 shows a simple Silverlight Web Part
that has been deployed to SharePoint.

Creating SharePoint-Hosted Apps

SharePoint-hosted apps are a newer breed of app in SharePoint 2013 and are generally a good fi t
across many developers’ needs. This is because many SharePoint applications can be lightweight in
nature, they leverage only client-side code, and they don’t require heavy back-end processing
elements. SharePoint-hosted apps are by far the easiest app to create and deploy; the contents
of the app are deployed to a single SharePoint site.

A number of different elements can make up a SharePoint-hosted app. For example, in
Figure 4-8 note the range of available options, such as Content Type, Workfl ow, or even
App for Offi ce.

FIGURE 4-7

c04.indd 101c04.indd 101 19/01/13 11:02 AM19/01/13 11:02 AM

102 ❘ CHAPTER 4 UNDERSTANDING YOUR DEVELOPMENT OPTIONS

Another reason that SharePoint-hosted apps
are popular is that you can create some of the
more common SharePoint artifacts you use
on a regular basis; that is, lists, content types,
and site columns, and then deploy them to
a cloud-hosted or on-premises instance of
SharePoint.

Lists are a core part of SharePoint and have
a rich object model that you can use to code
against them. As a potential part of lists, site
columns are reusable column defi nitions that
you can create and then repurpose across
the SharePoint site. For example, if you need
a very specifi c site column called Tax Rate
that has a calculation embedded within it,
you can use that site column to enforce some
level of consistency across your lists and sites. Content types are also a reusable object that you can
repurpose across your SharePoint site. Content types can come in different shapes and sizes; for
example, you might defi ne a content type as a set of columns or as a custom document template.
One common use of content types is for custom documents (for example, a legal contract with
boilerplate text).You create the content type and bind that content type to a document library. You
can create site columns, content types, and lists in a variety of ways. For example, you can create
each one of these objects through the SharePoint Web interface. You can also leverage SharePoint
Designer to create all of these objects or even Visual Studio to create content types and list
defi nitions. Using Visual Studio makes it possible to begin integrating list defi nitions into other
applications or redeploying a custom list defi nition across multiple SharePoint sites.

In the following Try It Out you take a look at how to use Visual Studio to build custom site columns
for lists.

TRY IT OUT Creating a Site Column Using Visual Studio 2012

The project templates in Visual Studio 2012 make it convenient for you to create site columns, content
types, and lists. To create a custom site column using Visual Studio:

 1. Open Visual Studio 2012, click File ➪ New, and then click Project.

 2. Select the Empty SharePoint Project in the SharePoint 2013 project node. Provide a name for the
project (SPH_Sales) and click OK.

 3. In the project creation wizard, make sure your SharePoint site is typed in correctly and then select
the farm-level solution for the level of trust. Click Finish.

 4. Visual Studio creates an empty SharePoint project for you. When it’s done, right-click the
top-level project node and select Add ➪ New Item.

 5. Select the Site Column template and provide a name for the fi le (Sales) and click Add — see
Figure 4-9.

FIGURE 4-8

c04.indd 102c04.indd 102 19/01/13 11:02 AM19/01/13 11:02 AM

Common Developer Tasks ❘ 103

 6. Add the following bolded code to the Elements.xml fi le that is created in the default project.

<?xml version="1.0" encoding="utf-8"?>
<Elements xmlns="http://schemas.microsoft.com/sharepoint/">
 <Field
 ID="{4c3a41d4-366d-44c7-910c-74716019ae75}"
 Name="Sales"
 DisplayName="Sales"
 Type="Choice"
 Required="FALSE"
 Group="Sales Levels">
 <CHOICES>
 <CHOICE>Premier</CHOICE>
 <CHOICE>Gold</CHOICE>
 <CHOICE>Silver</CHOICE>
 <CHOICE>Bronze</CHOICE>
 <CHOICE>Non-Affiliated</CHOICE>
 </CHOICES>
 <Default>Bronze</Default>
 </Field>
</Elements>

 7. Press F6 to build the project. When the project successfully builds, click Build and then Deploy to
deploy the site column to SharePoint.

FIGURE 4-9

c04.indd 103c04.indd 103 19/01/13 11:02 AM19/01/13 11:02 AM

http://schemas.microsoft.com/sharepoint/

104 ❘ CHAPTER 4 UNDERSTANDING YOUR DEVELOPMENT OPTIONS

 8. Navigate to your SharePoint site and click Site Actions ➪ Site Settings. Under Galleries, click
Site Columns. You should now see a Customers group with a Sales Levels site column — see
Figure 4-10.

FIGURE 4-10

 9. Click the Sales site column to see
the details of the column, shown in
Figure 4-11.

 10. Navigate to the top-level SharePoint site,
click Add an App and create a new Custom
List called Sales.

 11. Click the List tab and then select List
Settings.

 12. Click the Add from site columns link.

 13. In the Groups drop-down menu,
select Sales Level and then select
Sales Type. Click Add, as shown in
Figure 4-12.

FIGURE 4-11

FIGURE 4-12

c04.indd 104c04.indd 104 19/01/13 11:02 AM19/01/13 11:02 AM

Common Developer Tasks ❘ 105

 14. Click OK to add the new site column you
created to the list.

 15. Add a new item to the Sales list. You’ll
now see an option with the new site col-
umn, as shown in Figure 4-13.

 16. Your newly amended list should now look
similar to Figure 4-14.

FIGURE 4-13

FIGURE 4-14

How It Works

A column is the constituent part of a list and is composed of one or more items. You create and store
site columns at the site level, and thus you can reuse them across your SharePoint site. In this example,
you created a site column and added it to the Sales list. You could also leverage this type of column in
other lists across your site — thus making it a primary distinguishing factor across the normal and site
columns.

Although you can create lists manually through the browser or in SharePoint Designer, you might
have the need to create a site column, list defi nition, or content type using Visual Studio (for exam-
ple, you want to package and distribute a content type with a larger solution). Using the out-of-the-
box project templates, these objects are much easier to create than in past versions of SharePoint.
When you do create objects such as site columns, list defi nitions, or content types using Visual
Studio, you need to be familiar with the Collaborative Application Markup Language (CAML)
syntax and structure for the objects you’re trying to create (CAML is an XML syntax specifi c
to SharePoint). For example, the following XML defi nes a site column that you can deploy to a
SharePoint site and then reuse across the site. The site column defi nes a reusable list of Sales types
for a program a company is running; it does this through the XML defi nition of the site column.

<?xml version="1.0" encoding="utf-8"?>
<Elements xmlns="http://schemas.microsoft.com/sharepoint/">

c04.indd 105c04.indd 105 19/01/13 11:02 AM19/01/13 11:02 AM

http://schemas.microsoft.com/sharepoint/

106 ❘ CHAPTER 4 UNDERSTANDING YOUR DEVELOPMENT OPTIONS

 <Field ID="{4c3a41d4-366d-44c7-910c-74716019ae75}"
 Type= "Choice"
 FillInChoice="TRUE"
 Name="Sales"
 DisplayName="Sales"
 Group="Sales Levels">
 <CHOICES>
 <CHOICE>Premier</CHOICE>
 <CHOICE>Gold</CHOICE>
 <CHOICE>Silver</CHOICE>
 <CHOICE>Bronze</CHOICE>
 <CHOICE>Non-Affiliated</CHOICE>
 </CHOICES>
 <Default>Bronze</Default>
 </Field>
</Elements>

You can create a site column manually in SharePoint Designer or in Visual Studio. In this exercise,
you used Visual Studio, which treats the site column like any other SharePoint project; it creates a
feature and then deploys the XML elements fi le (which represents the defi nition of the site column)
to the appropriate place within SharePoint.

Working with SharePoint Data

One of the most common tasks when working with SharePoint is interacting with the various data
sources such as lists or document libraries. The great thing about SharePoint is that you have a number
of different options for interacting with this data. For example, you have the Server Object Model,
the Client-Side Object Model (which has become more powerful since SharePoint 2010), REST (or
OData) services, SharePoint Services (which ship out-of-the-box and cover a wide array of scenarios),
and Business Connectivity Services or BCS (which provide a rich set of APIs for working with external
data systems such as SAP, Microsoft Dynamics CRM, or PeopleSoft). You’ll see each of these methods
of working with data discussed throughout the book, but this section introduces you to a couple of
select examples of tasks that you’ll likely do on a daily basis across some of these services and APIs.

Before you can do anything with SharePoint programmatically, you need to establish a connection and
context with your SharePoint site. For the most part, this means using (or adding) a reference in your
project to Microsoft.SharePoint.dll or Microsoft.SharePoint.Client.dll. With the appropri-
ate references added to your project, you can then begin to set the context and code within that context.
For example, you can set the context for a SharePoint site using the Server Object Model by adding the
Microsoft.SharePoint.dll to your project reference and then use the following using statements to
wrap your code. In this code snippet, you set the site collection context and can either call the OpenWeb
method on that site context, or use the RootWeb property to set the context of the SPSite object (that
is, mySiteCollection). You would then add your code where the comment is marked.

using (SPSite mySiteCollection = new SPSite(mySiteUrl))
 {
 using (SPWeb mySPSite = mySiteCollection.RootWeb)
 {
//Code here.
 }
 }

c04.indd 106c04.indd 106 19/01/13 11:02 AM19/01/13 11:02 AM

Common Developer Tasks ❘ 107

NOTE There is a separate set of DLLs for using the Client-Side Object Model

with Silverlight. For more information, go here: http://msdn.microsoft.com/
en-us/library/office/jj164060(v=office.15).aspx.

The SharePoint Client-Side Object Model is a way to read and write data from SharePoint lists (and
enables you to do it through remote client apps). After adding the Microsoft.SharePoint.Client
.Runtime.dll and Microsoft.SharePoint.Client.dll references, you can use the following code
to set the context with your SharePoint site. When you’ve created your application code, you then
call the ExecuteQuery method to batch-process that code. The fi nal statement (the Close method)
disposes of the context from memory.

String mySiteUrl = "http://fabrikamhockey/acme";
ClientContext mySPSiteContext = new ClientContext(mySiteUrl);

//Code here.

mySPSiteContext.ExecuteQuery();
mySPSiteContext.Close();

You will fi nd yourself using both the Server and Client-Side Object Model in different scenarios; for
server-side only applications you can use the Server Object Model, and for remote client or cloud-
hosted apps you can use the SharePoint Client-Side Object Model.

In SharePoint 2013, your options for interacting with lists expand to include REST. To use REST,
which supports full create, read, update, and delete (CRUD) operations, you construct a RESTful
HTTP request using the Open Data Protocol (OData) standard. This enables you to perform, for
example, GET or POST operations against your SharePoint lists. The following REST URI retrieves
all the items in the Customers list:

https://me.sharepoint.com/sites/sp/_api/web/lists/getbytitle('Customers')/items

The REST URI is quite versatile as well; you can use it in JavaScript or .NET apps to interact with
your list data. The REST interface is effi cient because it exposes all the SharePoint entities and
operations — some of which are not available in the other APIs, and you can also manage the
returned data through XML or through JSON, so programming your client apps is fl exible (you can
use client-side script or .NET apps against the REST URIs). The following code illustrates how you
can make a GET request that returns a JSON representation of all of your site’s lists by using jQuery:

$.ajax({
 url:http://myspsite/_api/web/lists,
 type: "GET",
 contentType: "application/json;odata=verbose",
 headers: {
 "ACCEPT","application/json;odata=verbose",
 "Authorization","Bearer" + accessToken
 },
 })

c04.indd 107c04.indd 107 19/01/13 11:02 AM19/01/13 11:02 AM

http://msdn.microsoft.com/en-us/library/office/jj164060(v=office.15).aspx
http://msdn.microsoft.com/en-us/library/office/jj164060(v=office.15).aspx
http://fabrikamhockey/acme
https://me.sharepoint.com/sites/sp/_api/web/lists/getbytitle('Customers')/items
http://myspsite/_api/web/lists

108 ❘ CHAPTER 4 UNDERSTANDING YOUR DEVELOPMENT OPTIONS

After you’ve obtained context with the SharePoint object model, you can interact with data that
resides on SharePoint. For example, you can iterate over every list in SharePoint and get the title
of the list, you can retrieve views of specifi c lists, or you can update properties or list items in lists
programmatically. The following code snippet shows the use of the Server Object Model to obtain
the SharePoint site context, but now you’re iterating through the lists (see bolded code) on the
SharePoint site and adding each list title to a list box.

string mySiteUrl = "http://intranet.contoso.com/acme/";
string myListItemInfo = "";

using (SPSite mySiteCollection = new SPSite(mySiteUrl))
 {
 using (SPWeb mySPSite = mySiteCollection.RootWeb)
 {
 foreach (SPList mySPList in mySPSite.Lists)
 {
 myListItemInfo = mySPList.Title.ToString();
 lstbxListTitles.Items.Add(myListItemInfo);
 }
 }
 }

Again, you can do similar types of list interaction by using the SharePoint Client-Side Object Model.
The following code snippet shows the setting of the site context again but the bolded code retrieves
a list called Inventory from SharePoint and then loads it with a query to fi lter on the Salmon fi eld.

String spURL = "http://fabrikamhockey/acme";
ClientContext spSiteContext = new ClientContext(spURL);
List myProducts = spSiteContext.Web.Lists.GetByTitle("Inventory");
spSiteContext.Load(spSiteContext.Web);
spSiteContext.Load(myProducts,
list => list.Fields.Where(field => field.Title == "Salmon"));
spSiteContext.ExecuteQuery();
spSiteContext.Close();

When updating list data, you can choose between using the Server Object Model, CSOM, or
REST services). One example is to use the Server Object Model and then call the Update method
to update items on a SharePoint list. For example, the following code takes the same site context
code shown earlier, but instead of iterating through the list, it now creates an instance of a specifi c
list and then adds a record to the list comprising two fi elds (Product_Name and Product_SKU). You
can see the fi nal call in this case is the Update method to add the new item (newListItem) to the
SharePoint site.

using (SPSite mySPSite = new SPSite("http://fabrikamhockey/acme"))
 {
 using (SPWeb mySPWeb = mySPSite.OpenWeb())
 {
 SPList productsList = mySPWeb.Lists["Products"];
 SPListItem newListItem = productsList.Items.Add();
 newListItem["Product_Name"] = "Salmon";

c04.indd 108c04.indd 108 19/01/13 11:02 AM19/01/13 11:02 AM

http://intranet.contoso.com/acme/
http://fabrikamhockey/acme
http://fabrikamhockey/acme

Common Developer Tasks ❘ 109

 newListItem["Product_SKU"] = "SLM-30989";
 newListItem.Update();
 }
 }

Depending on what API you use, you might come across the need to use Collaborative Application
Markup Language (CAML) constructs, which can get a bit hairy. In essence, CAML enables you to
build an XML-based query to return data from a SharePoint list. The following illustrates a CAML
query that returns all the results (up to 100). You can construct CAML queries across any of the
SharePoint APIs.

 var camlQuery = new SP.CamlQuery();
 camlQuery.set _ viewXml('<View><RowLimit>100</RowLimit></View>');
 this.collListItem = oList.getItems(camlQuery);

Beyond CAML queries, you can also use Language Integrated Query (LINQ) statements to query
SharePoint list data. LINQ is a very effective way to query data, which is supported in SharePoint
2013. For example, the following LINQ statement retrieves the list item (from a list represented
through the myCustomerList object) where the customer name (represented as c) is Acme.

var customers =
 from c in myCustomerList
 where c == "Acme"
 select c;

You’ll fi nd many different ways to interact with SharePoint lists. Becoming familiar with both a
server-side and client-side way to do this is best.

Creating Cloud-hosted Apps

Chapter 2 covered cloud-hosted apps, so this section does not go into too much detail other than to
say that you will be using this type of app quite a bit. A couple of things to call out here, though,
are that you have the fl exibility to use the CSOM and REST APIs within these apps. You must also
manage OAuth (when your app calls back into SharePoint) and app permissions, which beyond
moving to a more cloud-hosted model, is one of the key changes in SharePoint 2013.

Creating Event Receivers

SharePoint supports a wide array of event receivers, which are events that are triggered through a
system or user action such as updating a list or adding a new document to a document library. You
can create event receivers for a wide variety of objects such as lists, list items, sites, and so on. For
instance, suppose you want to load external data as additional company metadata (such as company
or national holidays) when a user creates a new calendar item. This requires a Web service call to
load the data and an event receiver to load the data when the user creates a new list item. You might
also want to log a transaction when certain lists are updated; this is another effective way to use
event receivers. You can also build event receivers against feature activations or deactivations if you
want. This can be particularly handy when you need to clean up dependent features or assemblies
when a feature is activated or deactivated. The event receiver can help remove any ancillary fi les or
dependent Web Parts from the Web Part gallery or the fi lesystem.

c04.indd 109c04.indd 109 19/01/13 11:02 AM19/01/13 11:02 AM

110 ❘ CHAPTER 4 UNDERSTANDING YOUR DEVELOPMENT OPTIONS

Event receivers are very easy to build and deploy to SharePoint: you create event receivers using
the Visual Studio Event Receiver project or item template. Let’s go ahead and create a simple event
receiver in the following Try It Out to get you familiar with the process.

TRY IT OUT Creating a Simple Event Receiver

Event receivers are effective ways to add triggers into your SharePoint solutions. To create a simple
event receiver, perform the following steps:

 1. Open your SharePoint site and create a new list called TestList.

 2. Open Visual Studio 2012 and click File ➪ New Project, and select Event Receiver in the
SharePoint 2013 project template folder.

 3. Provide a name for your project (MyFirstEventReceiver) and click OK.

 4. When prompted in the wizard, select the List Item Events option under the type of event receiver
with which you want to associate your event, select the Document Library option under the event
source, and select An item was added as the specifi c event (see Figure 4-15).

 5. Click Finish.

 6. In the SPEventReceiver.cs fi le, added the following bolded code. This applies some of the code
discussed thus far and adds a new list item in another list.

using System;
using System.Security.Permissions;
using Microsoft.SharePoint;

FIGURE 4-15

c04.indd 110c04.indd 110 19/01/13 11:02 AM19/01/13 11:02 AM

Common Developer Tasks ❘ 111

using Microsoft.SharePoint.Utilities;
using Microsoft.SharePoint.Workflow;

namespace MyFirstEventReceiver.SPEventReceiver
{
 public class SPEventReceiver : SPItemEventReceiver
 {
 public override void ItemAdded(SPItemEventProperties properties)
 {
 base.ItemAdded(properties);
 logAnAnnouncementEvent(properties);
 }

 private void logAnAnnouncementEvent(SPItemEventProperties properties)
 {
 string eventTitle = properties.ListTitle;
 string mySiteUrl = "http://w15-sp/";

 using (SPSite mySiteCollection = new SPSite(mySiteUrl))
 {
 using (SPWeb mySPSite = mySiteCollection.RootWeb)
 {
 SPList mySPList = mySPSite.Lists["TestList"];
 SPListItem newListItem = mySPList.Items.Add();
 newListItem["Title"] =
 "Event triggered from the following list: " + eventTitle;
 newListItem.Update();
 }
 }
 }
 }
}

 7. Click Build and then Deploy to build and deploy the event receiver project to your
Share Point site.

 8. Navigate to the Documents list and click Add Item to add a new document. When done, click OK.
Figure 4-16 illustrates what this looks like.

 9. Navigate to the TestList list, and you can see a new list item — see Figure 4-17.

FIGURE 4-16 FIGURE 4-17

c04.indd 111c04.indd 111 19/01/13 11:02 AM19/01/13 11:02 AM

http://w15-sp/

112 ❘ CHAPTER 4 UNDERSTANDING YOUR DEVELOPMENT OPTIONS

How It Works

An event receiver is in essence a custom DLL that gets deployed and called to the global assembly cache
(GAC) within SharePoint. Visual Studio, using the project template, creates a feature that then refer-
ences the custom assembly when the action that triggers the event occurs. In this example, you added
an event that triggered whenever someone added an event to the Announcements list. Specifi cally, the
ItemAdded event was a default event handler that was created; it is here where you can add your code.
For example, the bolded method (logAnAnnouncementEvent) you added will have your event handler
code in it (shown here). Note that you’re passing the properties of the event, which you can use when
building out your event handler code.

public override void ItemAdding(SPItemEventProperties properties)
{
 base.ItemAdding(properties);
 logAnAnnouncementEvent(properties);
}

Within the logAnAnnouncementEvent page, you can see in the following that the one property used is
the Title of the list, which is then stored in the eventTitle object.

private void logAnAnnouncementEvent(SPItemEventProperties properties)
{
 string eventTitle = properties.Title;
 string mySiteUrl = "http://intranet.contoso.com/";

 using (SPSite mySiteCollection = new SPSite(mySiteUrl))
 {
 using (SPWeb mySPSite = mySiteCollection.RootWeb)
 {
 SPList mySPList = mySPSite.Lists["TestList"];
 SPListItem newListItem = mySPList.Items.Add();
 newListItem["Title"] = "Event triggered from the following list:
 " + eventTitle;
 newListItem.Update();
 }
 }
}

Most of the other code will now be familiar to you because you’ve already seen how you add an
item to a list. As you explore event receivers, be sure to try out some other types of events that are
more complex and involve other parts of the SharePoint site — or external data that you can lever-
age within your SharePoint site.

Creating ASPX Pages

Those of you familiar with ASP.NET might recognize the .ASPX extension; this is the core ASP
.NET Web page. Because SharePoint is built on ASP.NET, the individual pages within SharePoint
are of this specifi c type. What sets SharePoint ASPX pages apart from other ASP.NET sites is

c04.indd 112c04.indd 112 19/01/13 11:02 AM19/01/13 11:02 AM

http://intranet.contoso.com/
http://ASP.NET
http://ASP.NET
http://ASP.NET

Common Developer Tasks ❘ 113

that you get a lot of native capabilities built into an ASPX page when you create it. For example,
SharePoint ships with a number of capabilities such as edit functionality and Web Part capabilities,
and when you create a new ASPX page it derives parent features and loads and registers dependent
assemblies that are required to render the page and controls on that page correctly. If you examine
the following code in the default Web Part ASPX page you can see that a number of directives exist
that register specifi c assemblies to the page. SharePoint requires that these directives exist. Don’t
worry; you won’t have to memorize what all of them are. SharePoint Designer creates many of them
for you by default, so you can focus on page creation and customization.

<%@ Page language="C#" MasterPageFile="~masterurl/default.master"
Inherits="Microsoft.SharePoint.WebPartPages.WebPartPage,
Microsoft.SharePoint,Version=15.0.0.0,Culture=neutral,
PublicKeyToken=71e9bce111e9429c"
meta:webpartpageexpansion="full"
meta:progid="SharePoint.WebPartPage.Document" %>
<%@ Register Tagprefix="SharePoint" Namespace="Microsoft.SharePoint.WebControls"
Assembly="Microsoft.SharePoint, Version=15.0.0.0,
Culture=neutral, PublicKeyToken=71e9bce111e9429c" %>
<%@ Register Tagprefix="Utilities" Namespace="Microsoft.SharePoint.Utilities"
Assembly="Microsoft.SharePoint, Version=15.0.0.0,
Culture=neutral, PublicKeyToken=71e9bce111e9429c" %>
<%@ Import Namespace="Microsoft.SharePoint" %>
<%@ Assembly Name="Microsoft.Web.CommandUI, Version=15.0.0.0,
Culture=neutral, PublicKeyToken=71e9bce111e9429c" %>
<%@ Register Tagprefix="WebPartPages" Namespace="Microsoft.SharePoint.WebPartPages"
Assembly="Microsoft.SharePoint, Version=15.0.0.0,
Culture=neutral, PublicKeyToken=71e9bce111e9429c" %>

You can create a simple ASPX page for SharePoint without any of the frills that the Web Part pages
deliver and the code for this type of page would look more readable (see the following). However,
note that this page would not contain any of the standard SharePoint controls and would not inherit
the structure and style that is laid out by the master page.

NOTE Web Part pages are a special type of ASPX page that provide structure

using diff erent Web Part zone layouts.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<%@ Page Language="C#" %>
<html dir="ltr" xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
<meta name="WebPartPageExpansion" content="full" />
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Untitled 1</title>
</head>
<body><form id="form1" runat="server">
</form>
</body>
</html>

c04.indd 113c04.indd 113 19/01/13 11:02 AM19/01/13 11:02 AM

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml

114 ❘ CHAPTER 4 UNDERSTANDING YOUR DEVELOPMENT OPTIONS

Although a couple of different paths exist for creating ASPX pages for SharePoint, using SharePoint
Designer 2013 is the easiest. This is because not only is code like the preceding created for you, but
you can also use templates to create Web Part pages — a special type of ASPX page that has Web
Parts located in specifi c ways on the page. You could alternatively use Visual Studio 2012 to create
ASPX pages, but you would have to manually add the preceding namespace registration directives
and then manually add the page to the appropriate page on the site. By default, SharePoint Designer
can save the ASPX pages you create in a number of places (for example, the Site Assets library).

Beyond the assemblies that are registered through the directives, you also have HTML markup
interlaced with ContentPlaceHolder controls and ASP.NET controls. Again, if you’re familiar
with ASP.NET, then these concepts won’t be new to you. If you’re not, ContentPlaceHolder con-
trols and ASP.NET controls are how you render functional controls or applications on the ASPX
page. For example, one of the default ContentPlaceHolder controls is the search control, which is
expressed in the following code:

<asp:Content ContentPlaceHolderId="PlaceHolderSearchArea" runat="server">
 <SharePoint:DelegateControl runat="server" ControlId="SmallSearchInputBox"/>
</asp:Content>

Depending on the level of complexity of your ASPX page, you might have more or fewer of the pre-
ceding controls — some that work independently of one another or others that work hand-in-glove
with one another.

Creating Master Pages

Master pages are an ASP.NET creation that SharePoint inherits from being built on ASP.NET.
SharePoint uses master pages to provide a consistent structure and layout for each of the pages
in a SharePoint site. Similar to a single CSS fi le providing structure for many Web pages, a single
master page can serve multiple sites and defi ne the look, feel, and behavior that you want for all the
pages of that site. Using the master page as the structural foundation of your site, you can then add
other content or custom applications or Web Parts to your SharePoint site.

When you install SharePoint, it installs a single master page to your SharePoint site by default. You
can then create a copy of the default.master master page and customize it to your liking or add
a new, custom master page that provides the branding and behavior you want for your SharePoint
site. SharePoint Designer provides some great capabilities for managing, creating, and editing master
pages; for example, you can edit and view your changes from within SharePoint Designer and then
check it in for approval to your SharePoint site.

When a user navigates to a SharePoint site, the site or content page references a master page, which
is then merged with the page. This produces an output that combines the layout of the master page
with the content from the site page. The following bolded code shows a token reference (the token
being ~masterurl/default.master) to the master page that was used for that site:

<%@ Page language="C#" MasterPageFile="~masterurl/default.master"
Inherits="Microsoft.SharePoint.WebPartPages.WebPartPage,
Microsoft.SharePoint,Version=15.0.0.0,Culture=neutral,
PublicKeyToken=71e9bce111e9429c"
meta:webpartpageexpansion="full" meta:progid="SharePoint.WebPartPage.Document" %>

c04.indd 114c04.indd 114 19/01/13 11:02 AM19/01/13 11:02 AM

http://ASP.NET
http://ASP.NET
http://ASP.NET
http://ASP.NET
http://ASP.NET

Common Developer Tasks ❘ 115

A master page is characterized by the .master fi le extension. The master page itself can contain
an array of objects. For example, the master page can contain HTML, JavaScript, CSS, and ASP.
NET server controls. When you examine the syntax of the master page, you’ll see text and controls
that render a look and feel that is specifi c to SharePoint. This is especially true when you look at the
default.master master page, which includes all the breadcrumbs and default menu and navigation
options that are specifi c to SharePoint.

However, you’ll also see a series of ContentPlaceHolder objects (discussed earlier) within a
master page, which defi ne regions where content or controls can appear. When you’re custom-
izing SharePoint master pages, you need to have a set of ContentPlaceHolder controls on the
page, for example, global breadcrumb, top-level navigation, search, and title. You can add more
ContentPlaceHolder controls than are required by default; however, you cannot remove the ones
that are required or else your content or site pages might fail to render.

NOTE For the complete list of required controls, go to the following MSDN

 article: http://msdn.microsoft.com/en-us/library/ms467402.aspx.

The following code snippet shows some of the different types of text and controls that you can fi nd
within a SharePoint master page. Note that these are taken from the default.master, which ships
with all versions of SharePoint, so you can explore the full set of code and controls that ship with
this master page by reviewing the fi le from within SharePoint Designer.

<title id="onetidTitle"><asp:ContentPlaceHolder id="PlaceHolderPageTitle"
runat="server"/>
</title>
<SharePoint:CssLink runat="server" Alternate="true"/>
<SharePoint:Theme runat="server"/>
<SharePoint:CssRegistration Name="minimalv4.css" runat="server"/>
<SharePoint:CssRegistration Name="layouts.css" runat="server"/>
<SharePoint:ULSClientConfig runat="server"/>

<a href="javascript:;" onclick="javascript:this.href='#mainContent';"
class="ms-SkiptoMainContent" accesskey="<%$Resources:wss,maincontent_accesskey%>"
 runat="server">
<SharePoint:EncodedLiteral runat="server"
text="<%$Resources:wss,mainContentLink%>" EncodeMethod="HtmlEncode"/>

…
<asp:ContentPlaceHolder id="PlaceHolderWelcomeMenu" runat="server">
<div class="lb ms-mini-trcMenu">
<wssuc:Welcome id="IdWelcome" runat="server" EnableViewState="false">
</wssuc:Welcome>
<wssuc:MUISelector runat="server"/>
</div>
</asp:ContentPlaceHolder>
…
<div>

c04.indd 115c04.indd 115 19/01/13 11:02 AM19/01/13 11:02 AM

http://msdn.microsoft.com/en-us/library/ms467402.aspx
http://ASP.NET
http://ASP.NET

116 ❘ CHAPTER 4 UNDERSTANDING YOUR DEVELOPMENT OPTIONS

<asp:ContentPlaceHolder id="PlaceHolderTitleBreadcrumb" runat="server" />
</div>
...
<div id="DeveloperDashboard" class="ms-developerdashboard">
<SharePoint:DeveloperDashboard runat="server"/>
</div>
...
</body>
</html>

When managing your master pages, be mindful of any changes you make to the existing master
pages. In fact, avoid at all costs editing any of the default master pages that ship with SharePoint
and always copy and edit alternate, renamed copies so you never lose a snapshot to which you can
safely return. If you’re going to be doing a lot of master page customization in the future, start with
a minimal master page (which contains the bare minimum set of controls necessary for a SharePoint
site) and add onto that as practice to get familiar with how they work.

SUMMARY

There are many different types of options you have when developing SharePoint solutions, which
range from farm-level to sandboxed to cloud-hosted to SharePoint-hosted. Each one of these options
provides different levels of SharePoint API support and support for broader Web
technologies (such as PhP or HTML5).

Regardless of the development option you choose, you will fi nd yourself running into several com-
mon tasks you’ll engage in as a SharePoint developer time and time again. These include creating
Web Parts, creating SharePoint-hosted apps, accessing and managing data, creating cloud-hosted
apps, creating event receivers, creating ASPX pages, and creating master pages. It is important to be
familiar with these tasks to gain a fundamental base of development knowledge. Understanding how
you can leverage different API choices within these tasks is also important for you to understand.

Many of the topics covered in this chapter resurface throughout the book as you write more code
and explore more of the programmatic capabilities that SharePoint has to offer. Thus, as you move
throughout this book, try and frame each application discussion with an understanding of the type
of solution and how you might use the different SharePoint APIs within that solution.

EXERCISES

You can fi nd answers to exercises in Appendix A.

 1. Using Visual Studio 2012, create a simple Standard Web Part and Visual Web Part using the code

snippets in this chapter.

 2. Create a custom ASPX page that leverages two or more controls from the ASP.NET Toolbox and

publish to SharePoint.

 3. Create a simple master page that has a logo and some header text.

c04.indd 116c04.indd 116 19/01/13 11:02 AM19/01/13 11:02 AM

http://ASP.NET

Recommended Reading ❘ 117

 � WHAT YOU LEARNED IN THIS CHAPTER

ITEM DESCRIPTION

Web Part SharePoint leverages the ASP.NET framework and provides diff erent

types of Web Parts to use when building solutions. The most common

Web Parts include the Standard Web Part (baseline Web Part avail-

able in SharePoint), Visual Web Part (adds a designer experience for

the UI to Standard Web Parts), Silverlight Web Part, and Data View

Web Parts (exposes list data in a custom-formatted way).

SharePoint-hosted app This is a lightweight app you can deploy to a specifi c site collection

(such as list view or content type).

Site column You can reuse this custom column across a SharePoint site.

Content type This is a custom object with metadata that can range from predefi ned

columns to custom documents that you can reuse across a SharePoint

site.

Cloud-hosted app This is an Autohosted or Provider-hosted app that you build and

deploy to the cloud (for example, Windows Azure).

List This is a standard way of representing data in SharePoint. You interact

with list data using the server-side object model, CSOM, or Rest APIs.

Event receiver This is an event that is triggered when the system or user performs an

action.

ASPX page This is the standard page in SharePoint. Built on ASP.NET, SharePoint

supports simple ASPX pages (no controls) or more complex pages

that come predefi ned with controls and layouts (for example, Web

Part page).

Master page A master page provides a single point of branding and structure that

you can leverage across a SharePoint site.

RECOMMENDED READING

Overview of cloud-hosted apps — http://msdn.microsoft.com/en-us/library/fp179930
(v=office.15).aspx

Event receivers — http://msdn.microsoft.com/en-us/library/jj220051.aspx
REST services for SharePoint 2013 — http://msdn.microsoft.com/en-us/library/

fp142386.aspx

Overview of master pages for SharePoint 2013 — http://msdn.microsoft.com/en-us/library/
jj191506(v=office.15)

c04.indd 117c04.indd 117 19/01/13 11:02 AM19/01/13 11:02 AM

http://msdn.microsoft.com/en-us/library/fp179930(v=office.15).aspx
http://msdn.microsoft.com/en-us/library/fp179930(v=office.15).aspx
http://msdn.microsoft.com/en-us/library/jj220051.aspx
http://msdn.microsoft.com/en-us/library/fp142386.aspx
http://msdn.microsoft.com/en-us/library/fp142386.aspx
http://msdn.microsoft.com/en-us/library/jj191506(v=office.15)
http://msdn.microsoft.com/en-us/library/jj191506(v=office.15)
http://ASP.NET
http://ASP.NET

c04.indd 118c04.indd 118 19/01/13 11:02 AM19/01/13 11:02 AM

Overview of Windows Azure
for SharePoint

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ Defi ning cloud computing

 ➤ Using Windows Azure

 ➤ Understanding how to integrate SharePoint 2013 and

Windows Azure

WROX.COM DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at http://www.wrox.com/
WileyCDA/WroxTitle/productCd-1118495845.html on the Download Code tab.
The code for this chapter is divided into the following major examples:

 ➤ MyFirstAzureApp.zip

 ➤ AzureClientAppWebPart.zip

 ➤ MyFirstAutohostedApp.zip

As you’ve seen thus far, the new SharePoint app model includes a rich cloud integration model
(called cloud-hosted applications). Although you can leverage broader web strategies when
building and deploying your SharePoint app, Windows Azure is one of Microsoft’s primary
cloud-based technologies that you’ll need to be familiar with when building your apps; it is key
to the development model in SharePoint 2013.

Windows Azure is Microsoft’s cloud platform technology, and in and of itself, is a very pow-
erful technology. It’s not just a place to deploy your code; a whole set of services exists that
you as a developer can use in your SharePoint solution development. This chapter provides a
deeper look at Windows Azure so you can leverage more of its underlying platform services.

5

c05.indd 119c05.indd 119 19/01/13 11:05 AM19/01/13 11:05 AM

http://www.wrox.com/WileyCDA/WroxTitle/productCd-1118495845.html
http://www.wrox.com/WileyCDA/WroxTitle/productCd-1118495845.html
http://WROX.COM
http://wrox.com

120 ❘ CHAPTER 5 OVERVIEW OF WINDOWS AZURE FOR SHAREPOINT

DEFINING THE CLOUD

To understand Windows Azure, you must fi rst know a bit about the cloud. Cloud computing (a
broader descriptor for the cloud) is all about leveraging the Web as a set of resources for the
development and deployment of your solutions. Traditionally, cloud computing has been defi ned
as categories of services — for example, Infrastructure as a Service (IAAS), Platform as a Service
(PAAS), and Software as a Service (SAAS). Each one of these categories is fairly different in the
context of development. For instance, you might think of IAAS as hosted virtual machines (VMs)
you manage remotely; PAAS as where you deploy code, data, binary large objects (BLOBs), web apps,
and other application artifacts to a cloud-based environment (such as Windows Server 2008 R2 and
IIS); and SAAS as subscription-based services that you can sign up to use (for example, Offi ce 365).

Although these three categories of services dominate the way in which the cloud is characterized,
the cloud has four generally accepted pillars:

 ➤ Pool resources with other cloud users.

 ➤ Manage your own services and apps through the management portal.

 ➤ Apps and services can grow and contract with your business needs.

 ➤ Pay for only what you use in regards to the cloud.

Figure 5-1 illustrates these four core pillars of the cloud. You can apply each principle in some way
to the categories of services.

FIGURE 5-1

Both the categories of services and the core pillars of cloud computing apply to Windows Azure.
For example, you can create and deploy a set of virtual machines to Windows Azure, build out a
SharePoint farm on those virtual machines, and then manage it remotely. Within this virtualized
farm, you’re potentially pooling resources; you’re managing the services through your portal or
tools; you can grow or shrink the SharePoint farm (number of servers in the farm), therefore, it is
elastic; and it is usage-based because you’re only getting billed for what you use.

In addition to understanding the relationship across the cloud services (IAAS, PAAS, and SAAS)
categories and the pillars that defi ne cloud computing, getting beneath the surface area of the cloud
and digging into Windows Azure is also important. This is not only because integrating the two
technologies provides the developer with interesting and compelling solution opportunities, but it’s
also because now Windows Azure is a more native part of the SharePoint 2013 platform. Thus, it’s
critical that you understand how you can use Windows Azure in your SharePoint development.

c05.indd 120c05.indd 120 19/01/13 11:05 AM19/01/13 11:05 AM

Defi ning Windows Azure ❘ 121

DEFINING WINDOWS AZURE

Windows Azure is a fl exible cloud-computing platform that provides services for virtualizing VMs;
building, deploying, and managing resources, data, and services; and building cloud-based applications
and websites. What all this means is that you can leverage physical data centers that Microsoft has
built and supports globally (see Figure 5-2) and deploy your applications to run in geographically
dispersed locations. Within each of these locations are racks of servers (for example, Windows
Server 2008 R2) that enable you to deploy into these remote locations. This, in essence, represents
the cloud (or at least Microsoft’s cloud) and the benefi ts to the cloud: the fact that you have
virtualized environments around the world that you don’t need to physically manage, and with
which you can start up and use in a matter of minutes.

FIGURE 5-2

As Microsoft’s key cloud platform, Windows Azure enables you to provision and scale resources to
the cloud without having to worry about chasing and managing your on-premise hardware. When
you use Windows Azure you not only get application scale (hardware needs expanding as your data
and application needs grow), but you also get patching and operating-system management (your
cloud-hosted environment is always up to date), and a 99.9 percent uptime guarantee.

You might think of Windows Azure as consisting of three major pieces:

 ➤ A core set of platform services and capabilities: A variety of core platform services
(discussed later in this section) are available for use. Each of these services has a set of APIs
and an SDK so you can take advantage of them.

 ➤ Development and management tools: You can download the Windows Azure SDK and
Visual Studio companion tools, which make developing and deploying Windows Azure
applications very easy.

 ➤ The marketplace: You can build and deploy applications and make them available in the
Windows Azure marketplace.

c05.indd 121c05.indd 121 19/01/13 11:05 AM19/01/13 11:05 AM

122 ❘ CHAPTER 5 OVERVIEW OF WINDOWS AZURE FOR SHAREPOINT

As a developer, you also have a main web portal, which you use to manage your applications,
services, database, websites, virtual machines, and so on. Additionally, you have a rich, underlying
set of APIs (for example, REST and .NET) that support task automation (for example, creating a
new virtual machine). Figure 5-3 illustrates what this web portal looks like. Note that clicking each
of the available options on the left side of the portal invokes a view that displays meta data as well
as performance and usage information, and enables you to confi gure properties of that service. It
also provides you with the ability to create new service instances (for example, a website or SQL
Database) and confi gure properties against those newly created services.

FIGURE 5-3

WINDOWS AZURE PLATFORM

The Windows Azure platform is composed of many different services. You can leverage them in
your application design, deployment, and management. Figure 5-4 shows the different layers within
Windows Azure: Data, Service, and Integration (the Client layer is any application that consumes
the services within Windows Azure).

c05.indd 122c05.indd 122 19/01/13 11:05 AM19/01/13 11:05 AM

Windows Azure Platform ❘ 123

Data Layer

Within the Data layer are a number of different types of data storage mechanisms (or features that
map directly to data storage) — both nonrelational and relational. The nonrelational storage
features enable you to store assets such as virtual machine images (Drive) or images or videos (Blobs),
create nonrelational tables, manage message queues along a service bus, and manage data caching
in your distributed applications. The relational data features include the core Windows Azure SQL
Database (think of this as the cloud version for the on-premises SQL Server), along with reporting
services (SQL Reporting) and the ability to stream near real-time data streams from data transactions
(Stream Insight). Throughout this chapter and indeed your broader development efforts you can
use these core Windows Azure services in many different ways when building SharePoint
applications — from learning solutions that leverage Media Services to synchronizing data in the
cloud using the SQL Data Sync Service. A diverse set of services are available to build a wide array
of applications.

Services Layer

The Services layer contains a number of default services that you can use when building your
solutions, ranging from Media Services to core Cloud Services (including creating websites and
Worker role classes, as well as leveraging Hadoop on Windows Azure to process Big Data requests).
For many of these services, you can use baked-in functionality and a set of APIs within your
application. For example, if you want to build a multimedia learning solution, you could leverage
the Media Services to upload WMVs, transcode them to MP4s, save them to BLOB storage, create a
public URL for access, and then stream them from Windows Azure to SharePoint.

Integration Layer

The Integration layer contains some fundamental services such as a geo-replicated content delivery
network (CDN) or Traffi c Manager — these are often core platform capabilities. Other important
integration services are in this layer, too, such as Virtual Private Network (which enables you to

FIGURE 5-4

c05.indd 123c05.indd 123 19/01/13 11:05 AM19/01/13 11:05 AM

124 ❘ CHAPTER 5 OVERVIEW OF WINDOWS AZURE FOR SHAREPOINT

connect a virtual machine to your on-premises system) or workfl ow and business process and
integration services. All of these capabilities enable you to integrate systems or secure them.

DEVELOPING WINDOWS AZURE APPLICATIONS

Windows Azure is not just about services. It is an ever-evolving cloud platform that has a set of tools
and SDKs that enable you to get started quickly developing cloud applications.

Getting started with Windows Azure requires the following:

 ➤ Visual Studio (2010 or 2012)

 ➤ Windows Azure SDK and Tools for Visual Studio

 ➤ Windows Azure subscription

You can also integrate different SDKs and tools with Visual Studio 2010 or Visual Studio 2012. The
Windows Azure tools and SDK are free downloads. After you download the tools and SDK, you
must set up a Windows Azure account. You can sign up for a free 90-day account to get started.

NOTE Remember that the cloud is about pay-per-use: as you use more com-

pute, storage, data, and other service capabilities, the more you’ll be charged

per month.

After you download the Windows Azure tools and SDK and create a Windows Azure account, you
can use Visual Studio to build and deploy applications to your account. When you’re ready you will
be able to test, stage, and ultimately deploy your applications to a production environment. While
you’re developing (and especially while you’re developing offl ine), you can use the emulator — an
emulated Windows Azure environment that is installed with the tools — to test your applications
locally.

Figure 5-5 illustrates at a high level the process of developing cloud applications. In the diagram,
you can see the left side represents a local development environment. Installed in this environment
are the tools, SDK, and emulator as well as the .NET and Visual Studio development toolset.
(Windows Azure also supports PHP, Java, Node.js, and other types of non-Microsoft technolo-
gies through SDKs and community tooling.) You can build and test your applications locally, but
at some point you’ll need to deploy these apps to your production account, and which account
you choose depends on what licensing structure your company has purchased (for example, basic
subscription or pay-per-use account versus enterprise license account). In any case, you deploy into
an account using a LiveID (or Microsoft account ID) username and password information. The
Windows Azure account has a unique subscription ID and allows you to add co-admins so others
can manage the services that are deployed to it. Note in the right side of Figure 5-5 how the cloud
environment is hosted in a physical data center (as shown earlier in the chapter); thus your applica-
tion, service, or data becomes available to others when you deploy into this production environment.

c05.indd 124c05.indd 124 19/01/13 11:05 AM19/01/13 11:05 AM

Developing Windows Azure Applications ❘ 125

You can lock down the applications (using Windows Azure Active Directory technology) and have
an authenticated, single sign-on experience, or you can have a fully anonymous-access site or service
that is leveraged by your application.

Development

Environment

Emulator

Data Center

Cloud

Environment

Production

FIGURE 5-5

A number of elements must be in place to get started developing, so the following exercise walks you
through where you can fi nd the software to set up your development environment.

TRY IT OUT Setting Up Your Development Environment

To set up your Windows Azure development environment, you fi rst install Visual Studio and then the
Windows Azure tools install on top of it.

To install the trial version of Visual Studio:

 1. Download and install Visual Studio 2012. At the time of this writing, you could get the trial
edition at http://www.microsoft.com/visualstudio/en-us. You have your choice of different
SKUs (or Visual Studio versions) available; choose Professional or above.

 2. When you click the appropriate SKU, select Run when prompted. Visual Studio asks for a
download location and begins installing the product.

To install the Windows Azure SDK and tools:

 1. Download and install the Windows Azure tools for Visual Studio 2012. At the time of this
writing, you could get the tools at http://www.windowsazure.com/en-us. You can also get
the software and tools through the Web PI: http://www.microsoft.com/web/downloads/
platform.aspx.

 2. Click the Develop link, which takes you to all the available SDKs and tools. Under languages,
click .NET, the fi rst option shown in Figure 5-6.

c05.indd 125c05.indd 125 19/01/13 11:05 AM19/01/13 11:05 AM

http://www.microsoft.com/visualstudio/en-us
http://www.windowsazure.com/en-us
http://www.microsoft.com/web/downloads/platform.aspx
http://www.microsoft.com/web/downloads/platform.aspx

126 ❘ CHAPTER 5 OVERVIEW OF WINDOWS AZURE FOR SHAREPOINT

 3. Click the Install button, and then select Install with Visual Studio 2012.

 4. Select Run when prompted, which invokes the Web Platform installer.

 5. Click Install, as shown in Figure 5-7, and then follow the wizard to accept the license and begin
the installation process.

FIGURE 5-6

FIGURE 5-7

c05.indd 126c05.indd 126 19/01/13 11:05 AM19/01/13 11:05 AM

Developing Windows Azure Applications ❘ 127

How it Works

The installation process is fairly self-explanatory; just follow the wizard. If you want to download a
permanent version of Visual Studio, you can visit http://www.microsoft.com/visualstudio/en-us
and you should be able to buy the most recent version. If you’re an MSDN subscription holder, you
should be able to download Visual Studio 2012 under your subscription license there.

After you’ve installed Visual Studio and the Windows Azure tools/SDK for Visual Studio, you need to
sign up for a Windows Azure account. To do this, click the Home link on the main Windows Azure
site, click the Free Trial button, and then click the Try it Free* button (see Figure 5-8). You’ll be
prompted for your LiveID and a wizard will walk you through a sign-up process. After you sign up,
you’ll then be able to navigate to your portal and begin creating cloud services, websites, and so on.

FIGURE 5-8

Now that you have your development environment up and running and a Windows Azure account
ready to go, you’ll want to get hands on with developing for Windows Azure. To do this, the follow-
ing Try It Out walks you through creating your fi rst Windows Azure application. The application is
a simple REST-based Web API project that will return some hard-coded sales data.

TRY IT OUT Creating Your First Windows Azure Application

To create your fi rst Windows Azure application, perform these steps:

 1. Open Visual Studio 2012.

 2. Click File ➪ New Project and select Visual Studio Solution.

 3. Right-click the solution and select Add ➪ New Project.

 4. Select Cloud, and provide a name for your project: MyFirstAzureApp.

 5. Add a location and click OK (see Figure 5-9).

c05.indd 127c05.indd 127 19/01/13 11:05 AM19/01/13 11:05 AM

http://www.microsoft.com/visualstudio/en-us

128 ❘ CHAPTER 5 OVERVIEW OF WINDOWS AZURE FOR SHAREPOINT

 6. In the New Windows Azure Cloud Service dialog, shown in Figure 5-10, select the ASP.NET
MVC 4 Web Role project.

FIGURE 5-9

FIGURE 5-10

c05.indd 128c05.indd 128 19/01/13 11:05 AM19/01/13 11:05 AM

http://ASP.NET

Developing Windows Azure Applications ❘ 129

 7. Click the right-arrow button to add the Web
role to the Azure solution. Click the pen-
cil icon to edit the name of the Web role
(MyFirstAzureWebAPI).

 8. Click OK.

 9. In the New ASP.NET MVC Project dialog,
select the Web API option.

 10. Leave the default option, and click OK.

How it Works

Visual Studio creates the plumbing for a new Web
API project, which includes a Windows Azure (Cloud)
project and the Web API (MVC) project. Figure 5-11
highlights four parts of the solution for your benefi t.
The Cloud project represents a “wrapper” project
around the Web API MVC project. The Cloud
project contains confi guration information and links
 autodeployment and publishing features for developers to easily deploy their code to Windows Azure.
The three other parts are standard MVC (that is, model, view, and controller) components. MVC
components process incoming requests, manage user input and interactions, and execute application
logic. The controller is typically separate and is created to generate an HTML view of the request. The
model is, for example, a class that is used to model incoming or connected data. The view is what is
displayed to the user.

The next series of steps in the process of creating an application with Windows Azure entails creat-
ing a simple model to represent data. The following exercise walks you through this process.

TRY IT OUT Creating a Model (MyFirstAzureApp.sln)

Now create a simple model to represent the data (which will be a small set of sales data), and then
expose that data as a return value using the default controller. The example uses the default plumbing
code as much as possible to keep things straightforward.

 1. Right-click the Models folder and select Add ➪ Class. Name the class Sales and then click Add.

 2. Add the following bolded code to the Sales class, which provides you with a small set of
properties for your custom Sales object.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;

namespace MyFirstAzureWebAPI.Models
{

Cloud Project

Controller

Model

View

FIGURE 5-11

c05.indd 129c05.indd 129 19/01/13 11:05 AM19/01/13 11:05 AM

http://ASP.NET

130 ❘ CHAPTER 5 OVERVIEW OF WINDOWS AZURE FOR SHAREPOINT

 public class Sales
 {
 public string Company { get; set; }
 public string FY09Sales { get; set; }
 public string FY10Sales { get; set; }
 public string FY11Sales { get; set; }
 }
}

Now that you’ve created a model (or class), you’ll use this class to create a return List collection
object that your Web API service will return in JSON format.

 3. Expand the Controllers folder and double-click the ValuesController class.

 4. Amend the class with the following bolded code (note these are fi ctional companies and sales
fi gures).

using System;
using System.Collections.Generic;
using System.Linq;
using System.Net;
using System.Net.Http;
using System.Web.Http;
using MyFirstAzureWebAPI.Models;

namespace MyFirstAzureWebAPI.Controllers
{
 public class ValuesController : ApiController
 {
 // GET api/values
 public List<Sales> Get()
 {
 List<Sales> mySales = new List<Sales>();

 mySales.Add(new Sales
 {
 Company="Contoso",
 FY09Sales="$9,020,398,122,332.00",
 FY10Sales="$10,111,309,312,998.00",
 FY11Sales="$11,033,990,102,443.00"
 });

 mySales.Add(new Sales
 {
 Company="Fabrikam",
 FY09Sales="$7,332,444,552,112.00",
 FY10Sales="$5,019,132,011,668.00",
 FY11Sales="$3,889,940,589,901.00"
 });

 mySales.Add(new Sales
 {
 Company = "Wingtip",
 FY09Sales = "$9,032,522,000,129.00",
 FY10Sales = "$9,115,339,990,899.00",
 FY11Sales = "$9,001,439,321,666.00"

c05.indd 130c05.indd 130 19/01/13 11:05 AM19/01/13 11:05 AM

http://System.Net
http://System.Net

Developing Windows Azure Applications ❘ 131

 });

 return mySales;

 }
…

 }
}

The code that you added uses the Sales object to create a List collection object. When you
append the Web API URI with "api/values" it will return the three Sales objects within the
List collection as a JSON formatted object.

 5. Press F6 to build.

 6. When you’ve added and successfully compiled the code, press F5 to debug the cloud application.
(The solution uses the local cloud emulator to debug the Web API.)

 7. When debugging, you’ll see the ASP.NET default page appear (within the 127.0.0.1 domain). When
you append the "api/values" path to the URL (as in Figure 5-12), the Web API service passes
back a JSON-formatted object.

FIGURE 5-12

How it Works

The MVC templates are a versatile set of ASP.NET Web templates, and the Web API is a specifi c
 template that enables you to easily build REST-based services for Windows Azure. You’ll fi nd that
Cloud services (such as REST or WCF-based services) will be important to your cloud development
efforts for a number of reasons, such as service reuse or application extensibility. In this exercise, you
built a REST API with the scaffolding provided by the MVC templates, and the result was a REST
 service that returned a JSON object.

The JSON object, shown in the following code (with purely fi ctional data), refl ects the List collec-
tion you created in the Get method. In essence, this is a small set of data that is returned to you via the
REST service call.

[
{
"Company":"Contoso",
"FY09Sales":"$9,020,398,122,332.00",
"FY10Sales":"$10,111,309,312,998.00",
"FY11Sales":"$11,033,990,102,443.00"
},
{
"Company":"Fabrikam",
"FY09Sales":"$7,332,444,552,112.00",
"FY10Sales":"$5,019,132,011,668.00",

c05.indd 131c05.indd 131 19/01/13 11:05 AM19/01/13 11:05 AM

http://ASP.NET
http://ASP.NET

132 ❘ CHAPTER 5 OVERVIEW OF WINDOWS AZURE FOR SHAREPOINT

"FY11Sales":"$3,889,940,589,901.00"
},
{
"Company":"Wingtip",
"FY09Sales":"$9,032,522,000,129.00",
"FY10Sales":"$9,115,339,990,899.00",
"FY11Sales":"$9,001,439,321,666.00"
}
]

When deployed, the REST service would behave similarly, except the endpoint would be confi gured to
a production URI (for example, http://myapp.cloudapp.net).

Congratulations! You’ve created your fi rst Windows Azure application; that is, a REST-based Web
API that returns JSON data. When you deploy it to a production environment, you can use the REST
service from a multitude of clients and process the JSON data within your applications — whether it
is SharePoint, Windows Phone, Windows 8, or other device/tablet applications.

Even before you deploy your fi rst application to your Windows Azure account, you can use this
REST service locally within the cloud emulator environment with other applications. Although you
won’t deploy this application to Windows Azure now (you’ll have the opportunity to deploy many
different applications to Windows Azure throughout the book), you can right-click the cloud project
(MyFirstAzureApp) and select Publish. This invokes the Publish Windows Azure Application dialog,
which enables you to walk through a wizard and deploy your application directly to your Windows
Azure subscription — which you can then manage within the Windows Azure portal. See Figure 5-13
for the Start page of the Publish Windows Azure Application wizard.

FIGURE 5-13

c05.indd 132c05.indd 132 19/01/13 11:05 AM19/01/13 11:05 AM

http://myapp.cloudapp.net

SharePoint and Windows Azure ❘ 133

At this point, you should at least have a basic understanding of what Windows Azure is, how to set
up the Windows Azure development environment, and the types of applications that you can build
using Windows Azure. You might now be asking yourself, “Why all the Windows Azure hubbub?”
When paired with SharePoint 2013, Windows Azure becomes important in two ways:

 ➤ It is natively integrated within the SharePoint application development and deployment
experience — you use Windows Azure to build and deploy cloud-hosted applications.

 ➤ You can also use Windows Azure in the broader cloud application development experi-
ence — just like you could use an array of other Web technologies and standards.

The next section of this chapter covers how SharePoint and Windows Azure integrate both in
general and through the two main app models: the Autohosted model and the Provider-hosted
model, covered in Chapter 2, “Overview of the SharePoint 2013 App Model.”

SHAREPOINT AND WINDOWS AZURE

SharePoint and Windows Azure are two sizeable platforms unto themselves. SharePoint is one of
Microsoft’s leading server productivity platforms — the collaborative platform for the enterprise
and the Web. Windows Azure is Microsoft’s operating system in the cloud. Separately, they have
their own strengths, market viability, and developer following. Together, they provide many power-
ful benefi ts. For example:

 ➤ They help expand how and where you deploy your code and data.

 ➤ They increase opportunities to take advantage of the Windows Azure “metered usage”
model while at the same time reducing the storage and failover costs of on-premises
applications.

 ➤ They provide you with new business models and offerings that you can take to your
customers to increase your own solution offerings.

SharePoint and Windows Azure have evolved quite a bit since mid-2010 (when Microsoft introduced
the topic) into a mature set of integrated technologies. Figure 5-14 illustrates the fact that each of the
three categories of Windows Azure can in some way, shape, or form be integrated with SharePoint.
For example, within the IAAS category, you can stand up servers in Windows Azure with fully
functional SharePoint farms (whether they are stand-alone servers or connected servers that include
Web front ends, index servers, SQL Servers, and so on). You can see here it’s possible to support
SharePoint for Internet Sites (FIS) sites, or Business Intelligence (BI) servers that run SQL Reporting
apps. You can also create development and test or training environments on Windows Azure
Virtual Machine (or IAAS). Within PAAS, you use the core services within Windows Azure to build
 applications, so much of what you would do here to integrate with SharePoint apps or sites would be
hosting WCF or REST services in the cloud, integrating with workfl ow, building media-rich
applications, hosting data, and so on. Finally, the SAAS model extends on the subscription-based
Offi ce 365 core functionality to integrate with Windows Azure and build complete cloud-based
solutions (for example, a training solution that uses Media Services to stream videos to your

c05.indd 133c05.indd 133 19/01/13 11:05 AM19/01/13 11:05 AM

134 ❘ CHAPTER 5 OVERVIEW OF WINDOWS AZURE FOR SHAREPOINT

Windows Azure is not just about the integration of cloud apps with SharePoint though; it’s also
about extending your apps in other directions and to other endpoints. For example, you can
also build services that not only integrate Windows Azure SQL Database data with SharePoint
but also wrap cloud-based services that project to devices, phones, and Windows 8 tablets. With the
integration of SharePoint and Windows Azure, cloud-based applications are entirely possible.

Understanding SharePoint Cloud-Hosted Apps
and Windows Azure

In SharePoint 2010, Windows Azure and SharePoint were two distinct platforms and technologies;
you could integrate them easily enough, but they were not part of the same “system.” However, in
SharePoint 2013 this has changed. As discussed in Chapter 1, “Introduction to SharePoint 2013,”
SharePoint 2013 introduces different types of “cloud” applications. In fact, you can build two types
of Windows Azure integrated applications. Chapter 2 also covered these, but in this chapter you
revisit them more in the context of Windows Azure. The fi rst type of application is Autohosted, and
the second is Provider-hosted (sometimes referred to as self-hosted). The major difference between
the two is that Autohosted applications natively support a set of Windows Azure features (for
example Web Sites and SQL Database) with the SharePoint development and deployment experi-
ence, and Provider-hosted applications are meant to integrate with a broader set of web technolo-
gies and standards than Autohosted applications, one of which is Windows Azure. Thus, you can
take advantage of the entire Windows Azure stack when building Provider-hosted apps that use
Windows Azure.

FIGURE 5-14

SharePoint site) or line-of-business (LOB) applications such as Dynamics CRM integration or
data-synchronized apps that refl ect on-premises LOB applications.

c05.indd 134c05.indd 134 19/01/13 11:05 AM19/01/13 11:05 AM

SharePoint and Windows Azure ❘ 135

To show just how closely integrated Windows Azure and SharePoint have become, for the
Autohosted app model, Offi ce 365 has its own fl avor of a Windows Azure site that it uses behind
the scenes. You can use it to effectively leverage the core Windows Azure features. Not only is this
important from the feature-sharing aspect between the two platforms, but it’s also important from a
security perspective — HTTPS is supported across these two connected domains.

This HTTPS support extends to Provider-hosted applications that are deployed to Windows Azure
as well. For example, if you build and deploy a Windows Azure Web Site, you’ll note that it natively
supports HTTP and HTTPS. This has signifi cant implications for when you want to secure your
web assets and have them conversant with SharePoint. That is, you don’t have to purchase a
certifi cate from a trusted body such as GoDaddy, upload it, build it into your Windows Azure
application, and so on. All you need to do is deploy your website to Windows Azure and then
register the HTTPS-based URL with SharePoint and connect the applications.

You use the Autohosted cloud app model to build and deploy smaller, cloud-hosted apps to
SharePoint. The Autohosted app leverages a smaller subset of the Windows Azure platform — namely
Web Sites and SQL Database. Using these areas, you can build some lightweight, data-driven apps
where the code lives in Windows Azure and the confi guration for that code lives in SharePoint.
Figure 5-15 illustrates how an app deployed to SharePoint comprises two main parts: the .APP that
is deployed to SharePoint, which contains confi guration and registration information, and the
functional code, which is deployed to Windows Azure.

One of the principal items to keep in mind with Autohosted apps is that they’re an evolution
towards a more cloud-hosted model. When you compare Autohosted apps to Sandboxed solutions,
for example, you have much more power and developer capability at your fi ngertips with the former.
But similar to Sandboxed Solutions, Autohosted apps get your code off of the server, while still
allowing you to build interesting applications.

FIGURE 5-15

SharePoint

App

.APP

c05.indd 135c05.indd 135 19/01/13 11:05 AM19/01/13 11:05 AM

136 ❘ CHAPTER 5 OVERVIEW OF WINDOWS AZURE FOR SHAREPOINT

Autohosted apps are different from Provider-hosted apps in that the SharePoint environment
executes code that is deployed to Windows Azure; this is abstracted from the view of the developer
but is still a native part of Windows Azure. This is really good for singular deployment and billing,
and enables you to build once, but automatically deploy to the right places.

Provider-hosted apps are a slightly different breed with which you can build more broad-reaching
web apps that integrate with SharePoint. Within Provider-hosted apps, you’re managing your own
hosted web environment and then integrating the applications, services, or data from those separate
domains with SharePoint (for example, one domain being SharePoint and the other being Windows
Azure). Thus, using a Provider-hosted app is not as simple as using the Autohosted app in regards
to integrating Windows Azure. The Autohosted app model automatically registers the code that is
deployed to Windows Azure, but in the Provider-hosted model you need to confi gure the registration
of the Windows Azure application to authenticate the app and the events in that app such that they
can fi re within the SharePoint environment. As discussed previously though, there are mechanisms
between Windows Azure and SharePoint that make the authentication process a smooth one (such
as HTTPS support across SharePoint and Windows Azure Web Sites). Also, the SharePoint client-
side APIs facilitate cross-domain events such as reading or writing list items.

Provider-hosted apps are also different because you can deploy and integrate apps that go beyond
Windows Azure. Thus, it’s not just about Windows Azure; the Provider-hosted apps support PHP,
Java, and so on.

Throughout this book you will learn how to create a variety of different Autohosted and Provider-
hosted apps as well as how to use OAuth and other security and token providers to register the app
and the events within that app for SharePoint. To get started, this chapter introduces you to two
simple examples. The fi rst example uses the native Windows Azure integration built into SharePoint
2013 (the Autohosted app), and the second example shows you how to create a lightweight connec-
tion with SharePoint 2013 using the Client App Web Part. Given the fi rst part of this book focuses
on the fundamentals, the exercises here are more basic, and therefore the more advanced examples
for Provider-hosted apps aren’t covered until later in the book.

Creating a Simple Autohosted SharePoint App

In the Autohosted cloud app model, as discussed earlier, part of the application you create is
 auto-deployed to Windows Azure and the other part is deployed to SharePoint. To help illustrate
this process, create an Autohosted application in the following example.

TRY IT OUT Building Your First Autohosted App (MyFirstAutohostedApp.sln)

To create your fi rst Autohosted app:

 1. Open Visual Studio 2012.

 2. Select File, and then New Project.

 3. Expand the Offi ce/SharePoint node and select Apps, as shown in Figure 5-16.

c05.indd 136c05.indd 136 19/01/13 11:05 AM19/01/13 11:05 AM

SharePoint and Windows Azure ❘ 137

 4. Type MyFirstAutohostedApp as the project name.

 5. Select the App for SharePoint 2013 project, and click OK.

 6. In the New App for SharePoint dialog, enter the name of the app, the SharePoint site you’ll be
using for debugging and deployment, and select Autohosted in the drop-down box, as shown in
Figure 5-17. When done, click Finish.

FIGURE 5-16

FIGURE 5-17

c05.indd 137c05.indd 137 19/01/13 11:05 AM19/01/13 11:05 AM

138 ❘ CHAPTER 5 OVERVIEW OF WINDOWS AZURE FOR SHAREPOINT

 7. Right-click MyFirstAutohostAppWeb and select Add New, and then select Class.

 8. Call the class People, and then click Add.

 9. In the newly added People class, insert the following bolded code.

…
public class People
{
 public string Name { get; set; }
 public string Email { get; set; }
 public int Age { get; set; }
}
…

 10. Press F6 to build the project.

 11. Right-click the Default.aspx page and switch to Source view by clicking the tab in the lower
part of the main window.

 12. Insert the following bolded line of code into the Default.aspx page.

…

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
<title></title>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <asp:GridView ID="grdViewPeople" runat="server"></asp:GridView>
 </div>
 </form>
</body>
 </html>

 13. Press F6 to build the project.

 14. Double-click the Default.aspx.cs fi le. This is the code-behind for the Default.aspx page.

 15. Insert the following bolded code into the Default.aspx.cs fi le. Leave all the other code that was
created by default there.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;

namespace MyFirstAutohostedAppWeb.Pages
{
 public partial class Default : System.Web.UI.Page
 {
 List<People> myPeeps = new List<People>();

 protected void Page_Load(object sender, EventArgs e)

c05.indd 138c05.indd 138 19/01/13 11:05 AM19/01/13 11:05 AM

http://www.w3.org/1999/xhtml

SharePoint and Windows Azure ❘ 139

 {
 var contextToken = TokenHelper.GetContextTokenFromRequest(Page.Request);
 var hostWeb = Page.Request["SPHostUrl"];

 using (var clientContext = TokenHelper.GetClientContextWithContextToken
 (hostWeb, contextToken, Request.Url.Authority))
 {
 clientContext.Load(clientContext.Web, web => web.Title);
 clientContext.ExecuteQuery();
 Response.Write(clientContext.Web.Title);
 clientContext.ToString();
 }

 GeneratePeepsData();
 DataBindPeepsData();

 }
 private void GeneratePeepsData()
 {
 People clsPeep1 = new People();
 clsPeep1.Name = "John Doe";
 clsPeep1.Age = 24;
 clsPeep1.Email = "john.doe@contoso.com";
 myPeeps.Add(clsPeep1);

 People clsPeep2 = new People();
 clsPeep2.Name = "Jane Doe";
 clsPeep2.Age = 22;
 clsPeep2.Email = "jane.doe@contoso.com";
 myPeeps.Add(clsPeep2);
 }

 private void DataBindPeepsData()
 {
 grdViewPeople.DataSource = myPeeps;
 grdViewPeople.DataBind();
 }
 }
}

 16. Press F6 to build the project.

 17. Right-click MyFirstAutohostedApp, and select Publish. In the Publish Offi ce Apps dialog, select
Finish. This builds and packages the SharePoint app, but does not deploy it. Windows Explorer
automatically opens when the build and package process is complete. Copy the folder path in
Windows Explorer; you’ll need this later on in this exercise.

 18. Navigate to your SharePoint Online Developer Site home page, and click New apps to deploy.

 19. In the Deploy App dialog, select the upload link, click Browse when prompted, and then click
Deploy.

c05.indd 139c05.indd 139 19/01/13 11:05 AM19/01/13 11:05 AM

mailto:john.doe@contoso.com
mailto:jane.doe@contoso.com

140 ❘ CHAPTER 5 OVERVIEW OF WINDOWS AZURE FOR SHAREPOINT

 20. When prompted, click Trust It, as shown
in Figure 5-18.

When the app is installed, click the link to the
app. Something similar to Figure 5-19 appears.

Congratulations! You’ve built your fi rst
Autohosted app.

How It Works

In the earlier exercise where you created a
Windows Azure MVC4 application, you used
the Windows Azure Cloud template to create the Windows Azure project.
However, when you create a SharePoint Autohosted app, the deployment
and packaging process automatically manages the deployment of part
of the project to SharePoint and the other part to Windows Azure.
Therefore, in this exercise MyFirstAutohostedApp was packaged and
deployed to SharePoint, and MyFirstAutohostedAppWeb was packaged
and deployed to Windows Azure automatically.

Within the Default.aspx page (which is deployed to Windows Azure), you added a simple class object
to represent a person. The person had three properties: a name, email address, and age.

 public class People
 {
 public string Name { get; set; }
 public string Email { get; set; }
 public int Age { get; set; }
 }

To keep things simple, you then created two helper methods that were called when the default pages
were loaded. The fi rst one, GeneratePeepsData, created two instances of the People object, populated
the properties, and then added the newly created objects to the List<People> collection object. The
second method, DataBindPeepsData, data-bound the List<People> collection object to the data grid
you added to the Default.aspx page.

You might be curious to understand how SharePoint knows to point off to the page you
deployed to Windows Azure, and how it allows the cross-domain access. This is defi ned automatically
for you in the AppManifest confi guration fi le. You can see the following XML snippet that shows
the default remoteAppUrl token (which is auto-created by Visual Studio) and a pointer to the
Default.aspx page. The StandardTokens token then adds some additional information to the URL
such as SharePoint host URL and language.

 …
 <Properties>
 <Title>MyFirstAutohostedApp</Title>
 <StartPage>~remoteAppUrl/Pages/Default.aspx?{StandardTokens}</StartPage>
 </Properties>
 …

FIGURE 5-19

FIGURE 5-18

c05.indd 140c05.indd 140 19/01/13 11:05 AM19/01/13 11:05 AM

SharePoint and Windows Azure ❘ 141

Let’s now walk through a second example that more explicitly splits the Windows Azure piece from
the SharePoint piece. In this example, you’ll again use the Autohosted template, but this time you’ll
fi rst publish the Windows Azure application you created earlier and then use the Client App Web
Part to integrate the Windows Azure application with SharePoint. This is the most lightweight way
to integrate Windows Azure with SharePoint (and is tantamount to an iframe object that registers
the Windows Azure application with SharePoint).

This example is composed of two parts:

 ➤ An application that has been built and deployed to Windows Azure

 ➤ A lightweight confi guration application that will be deployed to SharePoint

For the Windows Azure application, you can use the web page you created and published to
Windows Azure in the fi rst exercise or create a new one using the method described earlier for
creating and publishing an application to Windows Azure. Either way, you should have a web page
that is deployed to Windows Azure. When deployed, you can see from Figure 5-20 that the URL in
SharePoint includes both the SharePoint site URL and the URL for the Windows Azure application.

F IGURE 5-20

TRY IT OUT Building A Client App Web Part (SPClientAppWebPartForAzure.sln)

To create a Client App Web Part that loads a Windows Azure site, perform the following steps:

 1. Open Visual Studio 2012 and create a new solution project called SPClientAppWebPartForAzure.

 2. After the solution is created, right-click the solution and click Add ➪ New Project and select
Cloud, .NET Framework 4.0, and Windows Azure Cloud Service.

 3. Provide a name for the project (SPAzureClientAppWebPart) and click OK.

 4. In the New Windows Azure Cloud Service dialog, select the ASP.NET Web Role and click the
right-arrow button.

 5. Edit the name of the new project (GetPeople) and click OK.

 6. After the project has been created, right-click the App_Data folder and select Add ➪ New Item.

 7. Select Data, and then click XML File. Provide a name for the XML fi le (People.xml), and click Add.

 8. Add the following XML to the People.xml fi le.

<?xml version="1.0" encoding="utf-8" ?>
<People>
 <Peep Name="John Doe" Email="john@contoso.com" />
 <Peep Name="Jane Doe" Email="jane@fabrikam.com"/>
 <Peep Name="Cooper McGovern" Email="cooper.mcgovern@acme.net" />
 <Peep Name="Satya Saiid" Email="satya@fabrikam.com" />
 <Peep Name="Fred Nietzche" Email="fred.neitzche@postmodern.net" />
 <Peep Name="Aaron Schtick" Email="aarons@postcolonial.com" />
</People>

c05.indd 141c05.indd 141 19/01/13 11:05 AM19/01/13 11:05 AM

http://ASP.NET
mailto:john@contoso.com
mailto:jane@fabrikam.com
mailto:cooper.mcgovern@acme.net
mailto:satya@fabrikam.com
mailto:fred.neitzche@postmodern.net
mailto:aarons@postcolonial.com

142 ❘ CHAPTER 5 OVERVIEW OF WINDOWS AZURE FOR SHAREPOINT

 9. Double-click the Default.aspx page, click the Source tab, and replace the default markup with
the following code.

<%@ Page Title="Home Page" Language="C#" MasterPageFile="~/Site.Master"
AutoEventWireup="true"
CodeBehind="Default.aspx.cs"
Inherits="GetPeople._Default" %>
<asp:Content runat="server" ID="FeaturedContent" ContentPlaceHolderID="FeaturedContent"
>
 <section class="featured">
 <div class="content-wrapper">
 <h2>My Peeps</h2>
 <asp:GridView ID="grdPeopleData"
 runat="server">
 </asp:GridView>
 </div>
 </section>
</asp:Content>

 10. Right-click Default.aspx and select View Code.

 11. Replace the default code with the following bolded code.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Xml.Linq;

namespace GetPeople
{
 public partial class _Default : Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {
 GetPeopleData();
 }

 private void GetPeopleData()
 {
 var xDoc = XDocument.Load(Server.MapPath("App_Data/People.xml"));
 var query = from p in xDoc.Descendants("Peep")
 orderby p.Attribute("Name").Value
 select new
 {
 Name = p.Attribute("Name").Value,
 Description = p.Attribute("Email").Value
 };
 grdPeopleData.DataSource = query;
 grdPeopleData.DataBind();

 }
 }
}

c05.indd 142c05.indd 142 19/01/13 11:05 AM19/01/13 11:05 AM

SharePoint and Windows Azure ❘ 143

 12. Press F6 to build the Windows Azure application, and then press F5 to run the application in
debug mode.

 13. To publish your Windows Azure application, right-click the Windows Azure project and select
Publish. Click Finish when you’re ready to publish the app to the cloud.

After you’ve published your Windows Azure application, you’re ready to create the SharePoint
application.

 14. Create a new Visual Studio 2012 project.

 15. Select Offi ce/SharePoint ➪ Apps ➪ Apps for SharePoint 2013.

 16. Provide a name for the project (AzureClientAppWebPart) and click OK.

 17. Leave the defaults, except in the hosting options select Autohosted as shown in Figure 5-21.

 18. Click Finish.

FIGURE 5-21

 19. Right-click the Web Part of the project, and select Remove.

 20. Right-click the SharePoint project, and select Add ➪ New Item.

 21. In the Add New Item dialog, select Offi ce/SharePoint and then click Client Web Part (Host Web).

c05.indd 143c05.indd 143 19/01/13 11:05 AM19/01/13 11:05 AM

144 ❘ CHAPTER 5 OVERVIEW OF WINDOWS AZURE FOR SHAREPOINT

 22. Provide a name for the Client Web Part (MyAzureApp) and click Add.

 23. Right-click the AppManifest.xml fi le and select View Designer.

 24. Under Permission Requests, select Web as the scope and then Read as the level of permissions.

 25. Right-click the AppManifest.xml fi le and select View Code.

 26. Amend the StartPage property so that it points to your Windows Azure website as shown by the
following bolded code.

<?xml version="1.0" encoding="utf-8" ?>
<App xmlns="http://schemas.microsoft.com/sharepoint/2012/app/manifest"
 Name="AzureClientAppWebPart"
 ProductID="{50be3f58-ee99-420e-af96-85cf73904fa1}"
 Version="1.0.0.0"
 SharePointMinVersion="15.0.0.0">
 <Properties>
 <Title>AzureClientAppWebPart</Title>
 <StartPage>http://myazuresite.cloudapp.net/?{StandardTokens}</StartPage>
 </Properties>

 <AppPrincipal>
 <AutoDeployedWebApplication/>
 </AppPrincipal>

 <AppPrerequisites>
 <AppPrerequisite Type="AutoProvisioning" ID="RemoteWebHost" />
 </AppPrerequisites>
<AppPermissionRequests><AppPermissionRequest
Scope="http://sharepoint/content/sitecollection/web"
Right="Read" />
</AppPermissionRequests></App>

 27. Right-click the Elements.xml fi le in the newly added Client Web Part and amend the Content
property to include the Windows Azure Web page as show in the following bolded code.

<?xml version="1.0" encoding="utf-8"?>
<Elements xmlns="http://schemas.microsoft.com/sharepoint/">
 <ClientWebPart Name="MyAzureApp" Title="MyAzureApp Title"
 Description="MyAzureApp Description" DefaultWidth="300" DefaultHeight="200">
 <Content Type="html" Src="http://myazuresite.cloudapp.net" />
 </ClientWebPart>
</Elements>

 28. Press F6 to build after you’ve amended these fi les.

 29. When you’ve successfully built the app, right-click the SharePoint project, select Publish, and then
click Finish. The result should look something like Figure 5-22.

 30. After your project publishes, follow the same steps to upload and deploy the project into your
SharePoint developer site as you did in steps 16 onwards in the previous Try It Out.

c05.indd 144c05.indd 144 19/01/13 11:05 AM19/01/13 11:05 AM

http://schemas.microsoft.com/sharepoint/2012/app/manifest
http://myazuresite.cloudapp.net/?
http://sharepoint/content/sitecollection/web
http://schemas.microsoft.com/sharepoint/
http://myazuresite.cloudapp.net

SharePoint and Windows Azure ❘ 145

You should now see the newly published app in SharePoint, as shown in Figure 5-23

FIGURE 5-22

FIGURE 5-23

How it Works

The Client App Web Part is an alternate way to expose Windows Azure applications in SharePoint. This
exercise illustrated how you walk through creating a Windows Azure app and then integrate it with
SharePoint using the Client App Web Part. You might think of it as an iframe of sorts.

If you click the deployed app from within Apps in Testing, you won’t see the default SharePoint UI
built around the app; it is redirected from SharePoint to load the remotely hosted domain. However, if
you copy and paste the URL after the Windows Azure page loads, you should see something similar to
http://myazuresite.cloudapp.net/?SPHostUrl=https://myazuresite.sharepoint

.com&SPLanguage=en-US. This shows that the Windows Azure website, although remotely hosted in
a separate Windows Azure domain, is registered and loaded as a SharePoint application.

However, clicking the Page tab, selecting Edit ➪ Insert ➪ App Part, and selecting the Client Web Part
you just created and deployed to SharePoint adds the Web part that integrates the Windows Azure
application with SharePoint. Figure 5-24 shows what this integration looks like.

c05.indd 145c05.indd 145 19/01/13 11:05 AM19/01/13 11:05 AM

http://myazuresite.cloudapp.net/?SPHostUrl=https://myazuresite.sharepoint.com&SPLanguage=en-US
http://myazuresite.cloudapp.net/?SPHostUrl=https://myazuresite.sharepoint.com&SPLanguage=en-US

146 ❘ CHAPTER 5 OVERVIEW OF WINDOWS AZURE FOR SHAREPOINT

FIGURE 5-24

With the SharePoint Client App Web Part, you can see that the Windows Azure website or application
appears with the SharePoint UI and navigation around it.

SUMMARY

This chapter provides a fi rst look at Windows Azure, Microsoft’s key cloud platform technology.
Within the broader area of cloud computing, you can develop many different types of cloud-based
solutions using Windows Azure.

You can integrate Windows Azure with SharePoint 2013, both generally and specifi cally. Generally, you
use the Autohosted and Provider-hosted app models to leverage the power of Windows Azure in the
cloud-hosted app models. Two specifi c ways to integrate with SharePoint using the Autohosted cloud
app and the Client App Web Part. Key to understanding this integration is knowing that SharePoint
natively uses Windows Azure in the Autohosted project template, but that you can use the Client App
Web Part to integrate remotely hosted Windows Azure applications or use the provider-hosted project
template to create this integration. As you progress throughout the book, you’ll return to the Provider-
hosted app as it is a more advanced topic requiring some additional confi guration and setup.

EXERCISES

Answers to Exercises can be found in Appendix A.

 1. Identify the core categories of cloud computing and Windows Azure.

 2. What are some of the key features available in Windows Azure?

 3. What are the two key cloud apps in SharePoint 2013 where you can integrate Windows Azure?

 4. Build an Autohosted application that uses Windows Azure Web Sites and the REST service you

built in the fi rst exercise.

c05.indd 146c05.indd 146 19/01/13 11:05 AM19/01/13 11:05 AM

Recommended Reading ❘ 147

 � WHAT YOU LEARNED IN THIS CHAPTER

ITEM DESCRIPTION

Cloud Computing Using web-based resources to deliver applications, services,

and data.

Windows Azure Microsoft’s key cloud computing platform technology.

Autohosted Cloud App A new type of SharePoint cloud app that uses Windows Azure

natively to deploy code.

Provider-Hosted Cloud App A new type of SharePoint cloud app that enables you to

integrate broader web technologies such as Windows Azure,

HTML5 PHP, Java, and so on into SharePoint.

SharePoint Client App Web Part A new type of SharePoint artifact that you can use to surface

Windows Azure apps inside of SharePoint.

RECOMMENDED READING

Overview of SharePoint and Offi ce App development: http://msdn.microsoft.com/en-us/
library/office/apps/jj220030

SharePoint 2013 Developer MSDN site at http://msdn.microsoft.com/en-us/library/
jj163794(v=office.15)

Steve Fox’s blog (which shows how to integrate SharePoint and Windows Azure in more general
ways) at http://blogs.msdn.com/steve_fox

Windows Azure Developer Portal at http://www.microsoft.com/windowsazure

c05.indd 147c05.indd 147 19/01/13 11:05 AM19/01/13 11:05 AM

http://msdn.microsoft.com/en-us/library/office/apps/jj220030
http://msdn.microsoft.com/en-us/library/office/apps/jj220030
http://msdn.microsoft.com/en-us/library/jj163794(v=office.15)
http://msdn.microsoft.com/en-us/library/jj163794(v=office.15)
http://blogs.msdn.com/steve_fox
http://www.microsoft.com/windowsazure

c05.indd 148c05.indd 148 19/01/13 11:05 AM19/01/13 11:05 AM

PART II
Fundamental SharePoint 2013
Development Building Blocks

 � CHAPTER 6: Developing, Integrating, and Building Applications in

SharePoint 2013

 � CHAPTER 7: Packaging and Deploying SharePoint 2013 Apps

 � CHAPTER 8: Distributing SharePoint 2013 Apps

 � CHAPTER 9: Overview of the Client-Side Object Model and REST APIs

 � CHAPTER 10: Overview of OAuth in SharePoint 2013

c06.indd 149c06.indd 149 19/01/13 11:09 AM19/01/13 11:09 AM

c06.indd 150c06.indd 150 19/01/13 11:09 AM19/01/13 11:09 AM

6
Developing, Integrating,
and Building Applications
in SharePoint 2013

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ Understanding the basics of the new SharePoint application model

in SharePoint 2013

 ➤ Understanding the fundamental building blocks of application

development in SharePoint 2013

 ➤ Building your fi rst SharePoint 2013 application

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at http://www.wrox.com/Wiley
CDA/WroxTitle/productCd-1118495845.html on the Download Code tab. The code for this
chapter is divided into the following major examples:

 ➤ Dataintegration.zip

 ➤ EventsandLogicintegration.zip

 ➤ UserInterfaceintegration.zip

As you read in Chapter 2, “Overview of SharePoint 2013 App Model,” SharePoint
applications forge a new path for developers in the SharePoint 2013 release. They are designed
to take custom code out of the running SharePoint processes to increase stability and security,
and at the same time offer more fl exibility to developers. In SharePoint 2010 and earlier,
developers were forced to write code that was limited to the confi nes of what SharePoint
allowed. For example, in SharePoint 2010 the version of the .NET Framework was 3.5

c06.indd 151c06.indd 151 19/01/13 11:09 AM19/01/13 11:09 AM

http://www.wrox.com/WileyCDA/WroxTitle/productCd-1118495845.html
http://www.wrox.com/WileyCDA/WroxTitle/productCd-1118495845.html
http://WROX.COM
http://wrox.com

152 ❘ CHAPTER 6 DEVELOPING, INTEGRATING, AND BUILDING APPLICATIONS IN SHAREPOINT 2013

and developers couldn’t write code that used the 4.0 Framework because the SharePoint process
wouldn’t allow for it. Many of these limitations have plagued SharePoint developers for years.
The new SharePoint application model allows developers’ code to run outside of the SharePoint
processes, thus freeing them from these limitations. Developers are free to use whatever version of
the .NET Framework they desire. In fact, they could write all their applications’ code in PHP or Java
if they so desired. This freedom is a huge plus for developer happiness and productivity. However,
along with this fundamental shift in the way custom applications are built come some limits in the
way that code can integrate with SharePoint that experienced SharePoint developers will notice from
previously writing full-trust applications.

This chapter covers the various options the new SharePoint application model offers for integrating
and extending SharePoint, including many of the fundamental techniques, tools, and building blocks
that the new model offers and how they map to the common application layers of UI, events, and data.

DEVELOPMENT MODELS AVAILABLE IN SHAREPOINT 2013

In Chapter 2 you learned about the new application model for SharePoint solutions. This new model
differs both in architecture and capability from traditional full-trust solutions offered in SharePoint
2007 and SharePoint 2010. As you start developing solutions for SharePoint 2013 you need to
decide which of the following two models best suits your needs:

 ➤ A full-trust solution

 ➤ A new SharePoint application

Each has its respective pros and cons and you must carefully weigh which will suit your purposes
best. One of the driving design decisions behind SharePoint applications was to provide a
development model that was agnostic to whether the application was being used in SharePoint on
premises or to Offi ce 365 in the cloud. This point is extremely important to keep in mind as you
decide how to build your application, and you are advised to seriously consider future plans for
using SharePoint Online. Your organization might very well want to move to SharePoint Online in
the coming years and will need many of its apps to go with it.

Although both the older full trust–style apps and the newer SharePoint applications offer some
of the same capabilities, they differ in several areas. Table 6-1 summarizes some of the high-level
components, or building blocks, that each offers.

TABLE 6-1: Full Trust Solutions versus SharePoint Applications

COMPONENT SHAREPOINT APPS FULL TRUST SOLUTION

Web Parts X

App parts X

ASP.NET server controls X

ASP.NET user controls X

List and library templates X X

c06.indd 152c06.indd 152 19/01/13 11:09 AM19/01/13 11:09 AM

http://ASP.NET
http://ASP.NET

Application Integration Options in SharePoint 2013 ❘ 153

Content types X X

Event handlers X

Remote event receivers X

Pages and page layouts X

Files X X

Master pages X

Ribbon and list actions X X

Workfl ows X

Apps for Offi ce X

Custom JavaScript list view

renderings

X

Custom JavaScript column

renderings

X

All SharePoint 2013 solutions are made up from a combination of one or more of the preceding
building blocks. Typically, a solution built on SharePoint consists of three high-level application
layers, not unlike solutions built with other technologies:

 ➤ User interface

 ➤ Logic

 ➤ Data storage

The developer’s task is to decide what SharePoint components best fulfi ll the requirements for
each of the preceding application layers. A solution might, for example, mean using a Web Part for
display purposes, an event receiver for processing and logic, and a list for storing and managing the
solutions data. These basic architectural decisions don’t change based on your decision to build a
full-trust solution or SharePoint application. You must still map your requirements to each of the
capabilities these models provide to ensure it is suitable for your needs.

APPLICATION INTEGRATION OPTIONS IN SHAREPOINT 2013

The new application model in SharePoint 2013 offers a number of options for your application to
deeply integrate with SharePoint, other systems, and data. These options fall into the following
categories:

 ➤ User interface integration

 ➤ Events and logic integration

 ➤ Data integration

c06.indd 153c06.indd 153 19/01/13 11:09 AM19/01/13 11:09 AM

154 ❘ CHAPTER 6 DEVELOPING, INTEGRATING, AND BUILDING APPLICATIONS IN SHAREPOINT 2013

When you think about building a solution, you must evaluate your options for how you want to
surface your application inside SharePoint (UI), how you want to call code and process actions when
a user uses your application (events and logic), and how and where you store and work with your
application’s data and data that resides in other systems (data). Understanding what options are
available and how they work is critical when designing your application.

The following sections cover some of the most common options you have for each of the layers (UI,
events, and data) in the new SharePoint application model.

User Interface Integration

Three main integration points are available to you in the SharePoint user interface as part of the
SharePoint application model:

 ➤ App Parts and Pages

 ➤ Ribbon and Action menus

 ➤ Navigation

App Parts and Pages offer you the ability to surface your applications’ user interface to your users.
For people familiar with SharePoint 2010, App Parts are similar to Web Parts. Navigation lets
users fi nd your application, and integrating with the Ribbon and Action menus lets your users
take actions in the same familiar location that they do elsewhere in SharePoint. Using one or more
of these building blocks enables you to integrate your application’s user interface with that of
SharePoint’s and expose your app to its users.

App Parts and Pages

App Parts are reusable and confi gurable windows into your application. They are analogous to
Web Parts in SharePoint 2010; however, the UI is generated and served remotely within your
application as opposed to being generated from code running in the SharePoint process. Typically,
the interface is rendered from another environment such as Windows Azure in the cloud or IIS on
premises. Additionally, App Parts show in the Web Part gallery alongside all the other Web Parts in
SharePoint, so they are easy to fi nd and add to your SharePoint pages. Your solutions can consist of
one or more App Parts, which should typically surface parts of your application that make sense
to show alongside other Web Parts, such as a summary of data or a small set of controls. Figure 6-1
shows a weather App Part that has been added to the homepage of a site. It acts much like a Web
Part would except that the UI of your application is embedded within the part via an iFrame. This
means your application UI can be served from anywhere you choose, as long as it is accessible from
the user’s browser. As you will see later in this section, part of an App Part’s confi guration is the
URL that the iFrame should be pointed at. Along with this URL you can feed additional parameters
that your App’s logic can pick up from the query string. These can be properties set via the App
Parts property panel, for example.

c06.indd 154c06.indd 154 19/01/13 11:09 AM19/01/13 11:09 AM

Application Integration Options in SharePoint 2013 ❘ 155

NOTE When designing your application try to think about how parts of your

application and its data might be useful in other places, and use an App Part if

appropriate.

Pages are much like an App Part except that they are viewed in a larger, fuller window style. Unlike
with an App Part though, when someone launches your app’s page via a navigation link or similar
method, the whole browser is directed to your app’s page thus giving your app full control over
what is displayed. This ability enables you to include and show much more of your application to the
user. Using Pages is good for when you need a lot of room to do things such as have the user fi ll in
a large form or show a lot of data. Additionally, parameters can be passed along on the URL much
like with an App Part. SharePoint provides a number of controls to assist you in branding your
application so that it fi ts well with the look and feel of SharePoint. This includes a top navigation
bar, as shown in Figure 6-2.

FIGURE 6-1

c06.indd 155c06.indd 155 19/01/13 11:09 AM19/01/13 11:09 AM

156 ❘ CHAPTER 6 DEVELOPING, INTEGRATING, AND BUILDING APPLICATIONS IN SHAREPOINT 2013

NOTE To maintain a consistent user experience in your solutions, App Parts and

Pages in SharePoint 2013 allow you to include a “Chrome Control” that adds a

top navigation bar and defi nes standard styles for your application. This helps

you make your application UI look consistent with that of SharePoint’s.

To get a better feel for how App Parts and Pages work, try your hand at creating an app and adding
these new elements to it. The following activity walks you through the process.

TRY IT OUT Building Your First SharePoint Application (UserInterfaceIntegration.zip)

In this exercise you create a new SharePoint application, add an App Part to it, and deploy it to SharePoint
Online. Prior to beginning this exercise you should have already signed up for and created your developer
Offi ce 365 SharePoint site. You can do that via the http://msdn.microsoft.com/sharepoint website.

 1. Run Visual Studio 2012 as Administrator.

 2. Select File ➪ New ➪ Project.

 3. In the New Project dialog, expand Templates ➪ Visual C# ➪ Offi ce/SharePoint ➪ Apps.

 4. Select App for SharePoint 2013 and enter the Name, MyFirstSharePointApp. Click OK.

 5. In the Specify the App for SharePoint settings dialog, provide the URL to your Offi ce 365
developer site and click the Validate button to confi rm connectivity to the site.

 6. For the question, “How do you want to host your app for SharePoint?” select Autohosted, and
then click Finish.

 7. Right-click the MyFirstSharePointApp project and select Add ➪ New Item. In the Add New Item
dialog select Client Web Part and name it MyAppPart. Click Add.

 8. Open the Elements.xml under MyAppPart if it is not already open.

FIGURE 6-2

c06.indd 156c06.indd 156 19/01/13 11:09 AM19/01/13 11:09 AM

http://msdn.microsoft.com/sharepoint

Application Integration Options in SharePoint 2013 ❘ 157

 9. Replace the <Content Type="html" Src="" /> block with the following and save the fi le:

<Content Type="html" Src="~remoteAppUrl/Pages/Default.aspx?{StandardTokens}" />

 10. Open the Default.aspx page.

 11. Replace everything after the line starting with <%@ Page with the following code:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0
Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title></title>
 <script src="https://ajax.aspnetcdn.com/ajax/4.0/1/MicrosoftAjax.js"
type="text/javascript"></script>
 <script type="text/javascript"
src="https://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.7.2.min.js"></script>

 <script type="text/javascript">
 var hostweburl;

 $(document).ready(function () {
 hostweburl = decodeURIComponent(getQueryStringParameter("SPHostUrl"));
 var scriptbase = hostweburl + "/_layouts/15/";

 var dclink = document.createElement("link");
 dclink.setAttribute("rel", "stylesheet");
 dclink.setAttribute("href", scriptbase + "defaultcss.ashx");

 var head = document.getElementsByTagName("head");
 head[0].appendChild(dclink);
 });

 function getQueryStringParameter(paramToRetrieve) {
 var params = document.URL.split("?")[1].split("&");
 var strParams = "";
 for (var i = 0; i < params.length; i = i + 1) {
 var singleParam = params[i].split("=");
 if (singleParam[0] == paramToRetrieve)
 return singleParam[1];
 }
 }
 </script>

</head>
<body>
 <form id="form1" runat="server">
 <h1 class="ms-core-pageTitle">Your First SharePoint Application!</h1>
 <h1 class="ms-accentText">Put your app UI here.</h1>
 <div>
 <h2 class="ms-webpart-titleText">Use the SharePoint CSS</h2>
 links

 You can use the SharePoint CSS in your app by referencing it in your pages.
 </div>
 </form>
</body>
</html>

c06.indd 157c06.indd 157 19/01/13 11:09 AM19/01/13 11:09 AM

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml
https://ajax.aspnetcdn.com/ajax/4.0/1/MicrosoftAjax.js
https://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.7.2.min.js

158 ❘ CHAPTER 6 DEVELOPING, INTEGRATING, AND BUILDING APPLICATIONS IN SHAREPOINT 2013

You should see your page render as shown in
Figure 6-5. It is using the SharePoint style sheet.

 14. Navigate back to your SharePoint site.

 15. Navigate to your site’s homepage by clicking the
Home link in the Quick Navigation on the left
side of the page.

 16. Click the Page ribbon and select Edit. You will
now add your new App Part to your site’s
homepage.

 12. Press F5 to compile, package, deploy, and debug your application. When the process is complete,
a browser launches to a page asking, “Do you trust MyFirstSharePointApp?” Click Trust It to
continue. You should see your application listed, as shown in Figure 6-3:

 13. Click on your app’s tile image to navigate to it. You might see a security certifi cate warning as
shown in Figure 6-4. This is because your app isn’t correctly secured with SSL while running in
your development environment. Click the Show content button to continue.

FIGURE 6-4

FIGURE 6-5

FIGURE 6-3

c06.indd 158c06.indd 158 19/01/13 11:09 AM19/01/13 11:09 AM

Application Integration Options in SharePoint 2013 ❘ 159

 17. Click the Insert Ribbon tab and click the App Part button.

 18. Select MyAppPart from the list of parts and click Add to add the part to your page.

 19. Click Save in the ribbon when the operation completes.

You should now see your new App Part displayed on the page with both the name of your site displayed
and “My application goes here!” as shown in Figure 6-6. Congratulations — you have just created a
SharePoint application!

FIGURE 6-6

How It Works

In this exercise you fi rst created a new project using one of the new project templates in Visual Studio
2012 for SharePoint application development. These templates provide the starting point for any new
app, a project for packaging the declarative parts of your application that don’t include compiled code
for installation into SharePoint, and a Web project for your app’s code for Provider-hosted and auto-
hosted applications. When you run the solution, Visual Studio packages up these projects and deploys
the app project package (.app fi le in the bin directory) to your SharePoint site’s application gallery.
Alongside that process it runs your app’s code in a Web project on your local development IIS instance.
Ultimately, after your Autohosted application is packaged for release that project will be packaged up
for deployment into a location in Azure where it will run instead.

The App Part you created is simply an HTML <iframe> window into your application as specifi ed
by the src property on the Content node of your App Parts elements.xml fi le. However, it also adds
some special tokens to the URL query string of that page to pass it additional information about who
the caller is. This information is then used by the TokenHelper.GetClientContextWithContextToken

c06.indd 159c06.indd 159 19/01/13 11:09 AM19/01/13 11:09 AM

160 ❘ CHAPTER 6 DEVELOPING, INTEGRATING, AND BUILDING APPLICATIONS IN SHAREPOINT 2013

helper function to assist in the construction of a CSOM client context that makes calls to SharePoint
authenticated as that application and caller. This ensures your app’s code can make only operations
it has been allowed to do. Chapter 10, “Overview of OAuth in SharePoint 2013,” covers this topic in
depth. The JavaScript and markup that you added to the Default.aspx page dynamically added a style
sheet link to the page, the source of which was the CSS from your SharePoint site. It defi nes the styles it
uses to show the UI with the same fonts and styles as SharePoint.

As with traditional Web Parts, you may also confi gure App Parts with custom properties. You can
do this in the Elements.xml fi le for the App Part. App Parts support the following types of custom
properties:

 ➤ String: Gives a simple text box input fi eld

 ➤ Int: Renders as an input fi eld that only accepts integers

 ➤ Boolean: Renders as a check box fi eld

 ➤ Enum: Renders as a drop-down fi eld

For example, if you wanted your App Part to accept a confi guration property where the user could
choose from one of three options, you could use the following XML:

<Property Name="colorProp" Type="enum" RequiresDesignerPermission="true"
DefaultValue="R" WebCategory="My App Part Settings"
WebDisplayName="Fav Color">
 <EnumItems>
 <EnumItem WebDisplayName="Red" Value="R"/>
 <EnumItem WebDisplayName="Green" Value="G"/>
 <EnumItem WebDisplayName="Blue" Value="B"/>
 </EnumItems>
</Property>

This code would render as shown in Figure 6-7.

Additionally, you can choose to pass the value set for these properties to
your App Part via the URL by setting them as tokens in the Src attribute
on the Content node in the Elements.xml fi le:

<Content Type="html"
Src="~remoteAppUrl/Pages/Default.aspx?{StandardTokens}& Property1=_ colorProp _" />

Ribbon and Action Menus

The ribbon was fi rst introduced in SharePoint 2010 and provides the central location for all actions
that a user may want to take on documents and other data. In SharePoint 2010, developers could
include custom actions for their applications in the ribbon; SharePoint applications also allow this
customization. This enables you to include actions where users expect them, alongside all the other
standard actions SharePoint provides (see Figure 6-8).

FIGURE 6-7

c06.indd 160c06.indd 160 19/01/13 11:09 AM19/01/13 11:09 AM

Application Integration Options in SharePoint 2013 ❘ 161

FIGURE 6-8

NOTE When designing your SharePoint application consider including your

application’s common actions on the ribbon. Doing so makes them easy for

users to fi nd and provides a consistent user experience.

The Action menu is a context-aware menu on items in a SharePoint list or library. For example,
in a SharePoint document library the Action menu exposes common functions such as Check In
and Check Out (see Figure 6-9). Another term commonly used for this menu is ECB (Edit Control
Block). SharePoint applications allow you to include additional actions on this menu. For example, it
is a great location to expose your application’s functions that apply to a single list item. You should
also consider including the action in the ribbon for consistency; however, the ECB offers quicker
access for the user, so including it in both locations is advised.

FIGURE 6-9

c06.indd 161c06.indd 161 19/01/13 11:09 AM19/01/13 11:09 AM

162 ❘ CHAPTER 6 DEVELOPING, INTEGRATING, AND BUILDING APPLICATIONS IN SHAREPOINT 2013

To get a feel for how to develop with the Ribbon in a SharePoint application try the following
exercise that walks you through the process.

TRY IT OUT Adding a Custom Action to Your Application

In this exercise you add a new Ribbon action to your application that, when clicked, will call your
application. You must have completed the App Part exercise, “Building Your First SharePoint
Application,” in the previous section before starting this example.

 1. Ensure you have the MyFirstSharePointApp solution open in Visual Studio 2012.

 2. Right-click the MyFirstSharePointApp project and select Add ➪ New Item. In the Add New Item
dialog select UI Custom Action (Host Web) and name it MyAppAction. Click Add.

 3. Open the Elements.xml under MyAppAction if it is not already open.

 4. Replace the entire contents of the fi le with the following code. This defi nes your Ribbon button.
The CustomAction node contains information specifying that the action resides in the ribbon
and should be present on all custom lists as defi ned by the RegistrationId attribute. The
CommandUIDefinition node defi nes the button and that it should reside inside the Manage tab in
the list item Ribbon. Finally, the CommandUIHandler node specifi es the URL that should be called
when the action is initiated. In this example, you also pass the IDs of the list and list item to the
page so that they can be used in the action code.

<?xml version="1.0" encoding="utf-8"?>
<Elements xmlns="http://schemas.microsoft.com/sharepoint/">
 <CustomAction Id="00ec7345-f310-4fb1-a836-5cef4d0ad2fa.MyAppAction"
 RegistrationType="List"
 RegistrationId="100"
 Location="CommandUI.Ribbon"
 Sequence="100"
 Title="MyAppAction action">
 <CommandUIExtension>
 <CommandUIDefinitions>
 <CommandUIDefinition Location="Ribbon.ListItem.Manage.Controls._
children">
 <Button
 Id="Ribbon.Library.Connect.PropertyViewer"
 Alt="MyAppAction action"
 Sequence="115"
 Command="Invoke_CustomAction"
 LabelText="MyAppAction action"
 TemplateAlias="o1"/>
 </CommandUIDefinition>
 </CommandUIDefinitions>
 <CommandUIHandlers>
 <CommandUIHandler
 Command="Invoke_CustomAction"
 CommandAction="~remoteAppUrl/Pages/Default.aspx?{StandardTokens}
&ListURLDir={ListUrlDir}&SelectedListID={SelectedListId}
&SelectedItemID={SelectedItemId}"/>
 </CommandUIHandlers>
 </CommandUIExtension>
 </CustomAction>
</Elements>

c06.indd 162c06.indd 162 19/01/13 11:09 AM19/01/13 11:09 AM

http://schemas.microsoft.com/sharepoint/

Application Integration Options in SharePoint 2013 ❘ 163

 5. Open the Default.aspx.cs page.

 6. Replace the entire Page_Load method with the following code:

protected void Page_Load(object sender, EventArgs e)
{
 var contextToken = TokenHelper.GetContextTokenFromRequest(Page.Request);
 var hostWeb = Page.Request["SPHostUrl"];

 using (var clientContext = TokenHelper.GetClientContextWithContextToken (
hostWeb,contextToken, Request.Url.Authority))
 {
 clientContext.Load(clientContext.Web,
 web => web.Title);

 clientContext.ExecuteQuery();
 Response.Write(clientContext.Web.Title);
 clientContext.ToString();

 if (Page.Request["SelectedListID"] != null)
 {
 Guid listId = Guid.Parse(Page.Request["SelectedListID"]);

 Microsoft.SharePoint.Client.List list =
clientContext.Web.Lists.GetById(listId);

 clientContext.Load(list,
 l => l.Title);

 clientContext.ExecuteQuery();

 Response.Write("<p>Action taken on:" + list.Title + "</p>");
 }
 }
}

 7. Press F5 to compile, package, deploy, and debug your application. When the process completes,
a browser launches to a page asking, “Do you trust MyFirstSharePointApp?” Click Trust It to
continue. You should see your application listed when the compile and deploy operation is complete.

 8. Click the Add an app link and select a Custom List. Call it My Custom List and then click Create.

 9. Click My Custom List from the list.

 10. Click the Items ribbon tab. You should see your custom action within the Manage group as shown
in Figure 6-10.

FIGURE 6-10

c06.indd 163c06.indd 163 19/01/13 11:09 AM19/01/13 11:09 AM

164 ❘ CHAPTER 6 DEVELOPING, INTEGRATING, AND BUILDING APPLICATIONS IN SHAREPOINT 2013

 11. Click the MyAppAction ribbon action. If a security warning appears, click the option to continue
to the site. (This warning appears if your application site is not correctly secured with SSL in your
development environment.)

 12. You should see your application with the text “Action taken on: My Custom List” on the page.
The application has used the Client-Side Object Model to call back into SharePoint and retrieve
the name of the list from which your application custom action was triggered.

How It Works

In this exercise you added a custom action button to the SharePoint Ribbon. As part of the button
confi guration you specifi ed a page in your application as the destination when the button is
clicked. Passed along on the query string was an additional piece of information about the ID of
the list that was in the user’s context when it was clicked. The app’s page code used that ID to call
back into SharePoint via a CSOM call to retrieve the list’s DisplayName. Similar to the previous
exercise, the Ribbon button defi nition was packed up as part of your app’s package and deployed
to SharePoint. There are many different locations where you can choose to place custom Ribbon
buttons. You can fi nd a list of these on MSDN (http://msdn.microsoft.com/en-us/library/
ee537543.aspx).

Navigation

To ensure a consistent way for users to fi nd and interact with apps, SharePoint 2013 provides two
standardized navigational elements:

 ➤ Quick Launch navigation (see Figure 6-11)

 ➤ All Site Content tiles (see Figure 6-12)

FIGURE 6-11

c06.indd 164c06.indd 164 19/01/13 11:09 AM19/01/13 11:09 AM

http://msdn.microsoft.com/en-us/library/ee537543.aspx
http://msdn.microsoft.com/en-us/library/ee537543.aspx

Application Integration Options in SharePoint 2013 ❘ 165

App developers have little control over the style and location of the Quick Launch navigation
because it is provided by SharePoint and the inclusion of your app in this navigation is dictated by
the user. However, app developers have more control over the appearance of their application’s tiles
available in the Site Contents section of a SharePoint 2013 site. You are able to specify the name and
tile icons shown.

As a developer you can specify the following properties via the AppManifest.xml fi le in your
application:

 ➤ Name

 ➤ Title (shown in the SharePoint site UI)

 ➤ Tile icon (96 3 96 PNG)

Try out the following exercise to learn how to change the look of your application with a custom tile
and name.

TRY IT OUT Customizing Your Application’s Name and Tile

In this exercise you set a new tile image for your application. You must have completed the “Building
Your First SharePoint Application” in the “App Parts and Pages” section before starting this example.

 1. Ensure you have the MyFirstSharePointApp solution open in Visual Studio 2012.

 2. Locate and double-click the AppManifest.xml fi le in the MyFirstSharePointApp project to open it
in Design view.

 3. Change the title of the application to My First SharePoint Application.

FIGURE 6-12

c06.indd 165c06.indd 165 19/01/13 11:09 AM19/01/13 11:09 AM

166 ❘ CHAPTER 6 DEVELOPING, INTEGRATING, AND BUILDING APPLICATIONS IN SHAREPOINT 2013

 4. Click Browse next to the Icon path text box. From the downloaded
code package for this chapter locate the MyAppIcon.png fi le, select it,
and click Open.

 5. Press F5 to package and deploy your application.

 6. After the app deploys, you should see its new title and icon displayed
(see Figure 6-13).

How It Works

In this exercise you customized the title and icon for your application. A SharePoint application’s con-
fi guration properties are stored in the AppMenifest.xml fi le. Visual Studio 2012 provides a designer-
based interface over this fi le so you can confi gure these properties easily; however, you can also go into
the XML itself to set them.

Events and Logic Integration

Providing a UI for users is usually the most prominent aspect of any application. However,
responding to the actions users take either within an application, or to interact with an application,
is also extremely important. SharePoint applications provide the ability to both respond to activities
within your application (such as a button click) and respond to activities within SharePoint (such as
a document being checked out).

Responding to activities within your application is very straightforward. Your application’s UI
and code run remotely from SharePoint and are simply surfaced via App Parts and Pages. For that
reason, responding to an event such as a button being clicked in your application is entirely tied to
your application’s programming framework. For example, if your app is built with ASP.NET then
you simply catch the OnClick event for an ASP.NET button. SharePoint does not get in your way for
these types of events.

The following exercise shows you how to add code behind a button in your SharePoint application
that responds when it is pressed.

TRY IT OUT Responding to Events Within Your Application
(EventsandLogicintegreation.zip)

In this exercise you add a button to your application and include code that is run when it is pressed.
You must have completed the “Building Your First SharePoint Application” in the “App Parts and
Pages” section before starting this example.

 1. Ensure you have the MyFirstSharePointApp solution open in Visual Studio 2012.

 2. Open the Default.aspx fi le under the MyFirstSharePointAppWeb project.

 3. Insert the following code directly after </div>.

<asp:Button ID="Button1" runat="server" Text="Do Something"
OnClick="Button1_Click" />

<asp:Label ID="txtUser" runat="server" Text=""></asp:Label>

FIGURE 6-13

c06.indd 166c06.indd 166 19/01/13 11:09 AM19/01/13 11:09 AM

http://ASP.NET
http://ASP.NET

Application Integration Options in SharePoint 2013 ❘ 167

 4. Open the Default.aspx.cs fi le.

 5. Replace the Page_Load method with the following code:

protected void Page_Load(object sender, EventArgs e)
{
 var contextToken = TokenHelper.GetContextTokenFromRequest(Page.Request);
 var hostWeb = Page.Request["SPHostUrl"];

 if (!IsPostBack)
 {
 Button1.CommandArgument = contextToken;

 using (var clientContext =
TokenHelper.GetClientContextWithContextToken(hostWeb, contextToken,
 Request.Url.Authority))
 {
 clientContext.Load(clientContext.Web, web => web.Title);
 clientContext.ExecuteQuery();
 Response.Write(clientContext.Web.Title);
 clientContext.ToString();
 }
 }
}

The Button1.CommandArgument = contextToken; line ensures that the contextToken is stored
for later use on postback events when the button is clicked. You need it to make subsequent
CSOM calls.

 6. Add the following new method after the Page_Load method:

protected void Button1_Click(object sender, EventArgs e)
{
 var contextToken = ((Button)sender).CommandArgument;
 var hostWeb = Page.Request["SPHostUrl"];

 using (var clientContext =
TokenHelper.GetClientContextWithContextToken(hostWeb, contextToken,
 Request.Url.Authority))
 {
 clientContext.Load(clientContext.Web.CurrentUser);
 clientContext.ExecuteQuery();

 txtUser.Text = clientContext.Web.CurrentUser.LoginName;
 }
}

 7. Press F5 to package and deploy your application.

 8. After your app deploys, add your app’s App Part to the homepage of your site by clicking Page ➪
Edit ➪ Insert ➪ App Part. Select MyAppPart from the list and then click Add.

 9. Inside your App Part you should now see a button called Do Something. Click it.

c06.indd 167c06.indd 167 19/01/13 11:09 AM19/01/13 11:09 AM

168 ❘ CHAPTER 6 DEVELOPING, INTEGRATING, AND BUILDING APPLICATIONS IN SHAREPOINT 2013

 10. You should now see your full login name
displayed directly below the button, as
shown in Figure 6-14.

How It Works

In this exercise you added a button to your
application and responded to it being clicked.
Nothing is particularly special about this button
over and above a standard ASP.NET
button; however, it is worth understanding the role of the contextToken and the need to keep it
between postbacks to your code so that further calls to the CSOM can be made. In the exercise you
stored it in the CommandArgument for the button; however, the same could have been achieved in a vari-
ety of other ways, such as a hidden control on the page. The important thing is that it is in a location
that you are able to retrieve at a later time during a postback event — you need this context in order to
call SharePoint via the CSOM on subsequent requests.

For responding to events that occur inside SharePoint, such as a document’s being saved or updated,
SharePoint provides event receivers. In SharePoint 2010 developers could use event receivers to
receive events from SharePoint when a user took certain actions such as checking in a document or
saving a list item. SharePoint 2013 also provides event receivers that allow applications to respond to
events occurring within a SharePoint site. The primary difference from SharePoint 2010 is that event
receivers now trigger code that runs remotely outside the SharePoint process in your application’s
code. They do this via a commonly defi ned Web service interface. This means the code that you
want to respond to events could reside in almost any system you like, as long as it is callable over
HTTP/HTTPS from the SharePoint Server or Offi ce 365. An example might be your application
code that runs in Windows Azure.

NOTE For a deeper look into remote event receivers please read Chapter 12,

“Remote Event Receivers in SharePoint 2013.”

Data Integration

At the heart of every application is data, which is typically what users want to work with within
your application. SharePoint provides a number of out-of-the-box options for storing and working
with data. These options fall into two categories:

 ➤ Storing and manipulating data within SharePoint

 ➤ Working with data that lives external to SharePoint

From the very fi rst version of SharePoint, the goal has been to make working with data simple and
straightforward for users. The simplest example of this is the concept of list data. Users are able to
store and work with tabular style data via a common Web interface. Many see using lists analogous
to using a table of data in a database. SharePoint applications can also take advantage of these

FIGURE 6-14

c06.indd 168c06.indd 168 19/01/13 11:09 AM19/01/13 11:09 AM

http://ASP.NET

Application Integration Options in SharePoint 2013 ❘ 169

same data storage capabilities natively. By using lists SharePoint offers developers the ability to
take advantage of many of the data storage capabilities that SharePoint provides without having to
reinvent the wheel. If used properly, SharePoint can save time and effort and potentially reduce the
management and support costs of your operation.

At the core of the data storage capabilities within SharePoint are the following:

 ➤ Lists: For storing structured data, much like in a table

 ➤ Libraries: For storing unstructured data, such as in a document or fi le

SharePoint provides a comprehensive set of APIs for developers to use within applications to interact
with and manipulate data that resides in SharePoint. For SharePoint applications those APIs are
exposed in the Client-Side Object Model (CSOM).

NOTE Chapter 9 goes more in depth on Client-Side Object Model (CSOM) and

the various APIs available in it.

To get a better feel for the data storage capabilities SharePoint provides, try out storing data in lists
within SharePoint in the following exercise.

TRY IT OUT Storing Data in SharePoint Using the Client-Side Object Model
(DataIntegration.zip)

In this exercise you create new items in a SharePoint list using the CSOM API set. You must have com-
pleted the “Building Your First SharePoint Application” in the “App Parts and Pages” section before
starting this example.

 1. Ensure you have the MyFirstSharePointApp solution open in Visual Studio 2012.

 2. If you haven’t already done so in a previous exercise create a new custom list in your site called
My Custom List (choose Site Contents ➪ Add an App ➪ Custom List. Call it My Custom List and
then click Create.)

 3. Open the Default.aspx fi le under the MyFirstSharePointAppWeb project in Visual Studio.

 4. Open the Default.aspx.cs fi le and replace the Button1_Click method with the following:

protected void Button1_Click(object sender, EventArgs e)
{
 var contextToken = ((Button)sender).CommandArgument;
 var hostWeb = Page.Request["SPHostUrl"];

 using (var clientContext =
TokenHelper.GetClientContextWithContextToken(hostWeb, contextToken,
 Request.Url.Authority))
 {
 Microsoft.SharePoint.Client.List list =
clientContext.Web.Lists.GetByTitle("My Custom List");

 for (int i = 0; i < 10; i++)

c06.indd 169c06.indd 169 19/01/13 11:09 AM19/01/13 11:09 AM

170 ❘ CHAPTER 6 DEVELOPING, INTEGRATING, AND BUILDING APPLICATIONS IN SHAREPOINT 2013

 {
 ListItemCreationInformation itemCreateInfo =
new ListItemCreationInformation();
 Microsoft.SharePoint.Client.ListItem newListItem =
list.AddItem(itemCreateInfo);
 newListItem["Title"] = "New Item " + i.ToString();
 newListItem.Update();
 }

 clientContext.ExecuteQuery();
 }
}

 5. Press F5 to package and deploy your application.

 6. After the app deploys, add your app’s App Part to the homepage of your site by selecting Page ➪
Edit ➪ Insert ➪ App Part. Select MyAppPart from the list, and then click Add.

 7. Inside your App Part you should now see a button called Do Something. Click it. A
ServerUnauthorizedAccessException error appears, as shown in Figure 6-15. This is because
your application currently only has Read access to your SharePoint site. You need to modify your
app’s permissions.

FIGURE 6-15

 8. Click Stop Debugging in Visual Studio.

 9. Double-click the AppManifest.xml fi le under MyFirstSharePointApp.

 10. Under Permission Settings, add the following options:

 ➤ Scope: List

 ➤ Permission: Write

 11. Press F5 to package and deploy your application.

 12. Notice that SharePoint now asks you which list you want to allow it access to edit or delete items
in. Select My Custom List from the drop-down menu. Click Trust It to continue.

 13. You might need to re-add your App Part due to the change in app security settings.

 14. Click Do Something in your App Part.

c06.indd 170c06.indd 170 19/01/13 11:09 AM19/01/13 11:09 AM

Summary ❘ 171

 15. After the operation completes, open My
Custom List in the SharePoint site. You
should see that ten items have been added to
the list, as shown in Figure 6-16.

How It Works

In this exercise you added list items to a SharePoint
list. You confi gured your application to ask for
permission to have edit rights on the list.
SharePoint apps can ask for access to various
security scopes of varying levels. Your applica-
tion should only demand the permissions it needs
to operate correctly. An app asking for too many
permissions might make a user unwilling to
grant them and therefore unable to use the app.
Additionally, users cannot grant applications per-
mission to resources that they themselves do not
have appropriate access to.

NOTE You can read more about all the available permission scopes

and rights on MSDN (http://msdn.microsoft.com/en-us/library/
fp142383(v=office.15).aspx).

Additionally, SharePoint offers developers a range of mechanisms and APIs for integrating with
data that lives outside of SharePoint. Although the data exists external to SharePoint, these APIs
and features offer the ability to integrate with data much the same way you would with data stored
inside SharePoint itself. The capability is called Business Connectivity Services and you can read
more about these advanced data integration options in Chapter 13, “Building Line-of-Business
Solutions Using Business Connectivity Services.”

SUMMARY

SharePoint development has fundamentally shifted its focus to provide a model that is better suited
to running SharePoint in the cloud. SharePoint applications solve many of the issues of running
code in the cloud by extracting the run time of that code out of the core SharePoint process and into
either Windows Azure or another hosting environment of your choice.

Like many application frameworks, SharePoint provides the key mechanisms for building out your
UI, event, and data layers and integrations through the use of tiles and App Parts, remote event
receivers, and a comprehensive Client-Side Object Model that your application can use to call into
and manipulate data in SharePoint lists and libraries, respectively.

FIGURE 6-16

c06.indd 171c06.indd 171 19/01/13 11:09 AM19/01/13 11:09 AM

http://msdn.microsoft.com/en-us/library/fp142383(v=office.15).aspx)
http://msdn.microsoft.com/en-us/library/fp142383(v=office.15).aspx)

172 ❘ CHAPTER 6 DEVELOPING, INTEGRATING, AND BUILDING APPLICATIONS IN SHAREPOINT 2013

Whether you are building a complex CRM system or a much simpler application, you should
certainly consider building a SharePoint application. Your code will be transportable to SharePoint
Online and available to users in that environment.

EXERCISES

You can fi nd answers to exercises for this chapter in Appendix A.

 1. What are the high-level diff erences of the SharePoint application model versus the older

full-trust model?

 2. Describe the three types of high-level integration available for SharePoint applications.

 3. How does an App Part diff er from a traditional Web Part?

 4. How are permissions granted to an application and who can grant them?

 5. How can you visually style your apps like SharePoint with little eff ort?

c06.indd 172c06.indd 172 19/01/13 11:09 AM19/01/13 11:09 AM

Recommended Reading ❘ 173

 � WHAT YOU LEARNED IN THIS CHAPTER

ITEM DESCRIPTION

SharePoint application Applications are a reusable unit of application functionality that is

installable in a SharePoint site.

User interface integration

points

SharePoint applications are able to surface UI in SharePoint sites

using App Parts and Pages.

Event integration SharePoint applications can respond to events in their user

interface and be called by remote event receivers in SharePoint.

Data integration SharePoint off ers a wide range of APIs that SharePoint

applications can use via the Client-Side Object Model.

Full-trust code Full-Trust code is custom code that runs within the SharePoint

runtime process.

RECOMMENDED READING

Develop apps for SharePoint — http://msdn.microsoft.com/en-us/library/jj163794
(v=office.15).aspx

App permissions in SharePoint 2013 — http://msdn.microsoft.com/en-us/library/
fp142383(v=office.15).aspx

App for SharePoint UX design guidelines — http://msdn.microsoft.com/en-us/library/
jj220046(v=office.15).aspx

c06.indd 173c06.indd 173 19/01/13 11:09 AM19/01/13 11:09 AM

http://msdn.microsoft.com/en-us/library/jj163794(v=office.15).aspx
http://msdn.microsoft.com/en-us/library/jj163794(v=office.15).aspx
http://msdn.microsoft.com/en-us/library/fp142383(v=office.15).aspx
http://msdn.microsoft.com/en-us/library/fp142383(v=office.15).aspx
http://msdn.microsoft.com/en-us/library/jj220046(v=office.15).aspx
http://msdn.microsoft.com/en-us/library/jj220046(v=office.15).aspx

c06.indd 174c06.indd 174 19/01/13 11:09 AM19/01/13 11:09 AM

Packaging and Deploying
SharePo int 2013 Apps

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ Packaging an application you have built

 ➤ Deploying each SharePoint application type

 ➤ Creating a private app catalog

WROX.COM DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at http://www.wrox.com/
WileyCDA/WroxTitle/productCd-1118495845.html on the Download Code tab. The code
for this chapter is divided into the following major examples:

 ➤ MyAutoHostedApp.zip

 ➤ MySharePointHostedApp.zip

 ➤ SharePointProviderHostedApp.zip

 ➤ SharePointAppPackage.app

In SharePoint 2010 and earlier, code and artifacts were packaged and deployed to the
SharePoint farm as either full-trust solutions or sandbox solutions. In both cases the assets
in the solutions were extracted and installed upon installation, or at runtime in the case
of sandbox solutions. Additionally, code assets were deployed and at runtime were loaded
and run from within the SharePoint code processes. This meant that great care had to be
taken so the code didn’t break any of the rules of best practice; otherwise, you would face a
poorly performing solution. In the new app model, things are similar in that some assets are
deployed when an application is installed; however, how apps are built, packaged, and where

7

c07.indd 175c07.indd 175 19/01/13 11:13 AM19/01/13 11:13 AM

http://www.wrox.com/WileyCDA/WroxTitle/productCd-1118495845.html
http://www.wrox.com/WileyCDA/WroxTitle/productCd-1118495845.html
http://WROX.COM
http://wrox.com

176 ❘ CHAPTER 7 PACKAGING AND DEPLOYING SHAREPO INT 2013 APPS

and how they are deployed are signifi cantly different. The new app model has been fundamentally
designed to address the concerns and issues of running code in the SharePoint execution processes,
thus allowing more fl exible deployment options, cloud-enabled applications, and better APIs and
programming models for developers.

Much of the content in this book focuses on SharePoint apps and the options they offer developers.
This chapter is all about what makes up an application from the inside out and how to deploy
applications in a variety of scenarios.

ANATOMY OF AN APP

For any SharePoint 2013 apps to deploy and be of use to anyone, they must be fi rst packaged into
.app packages, which in turn are Open Packaging Convention (OPC) packages, and therefore
Zip fi les in disguise. If you rename them with a .zip extension you can open and extract them
much like you would any other Zip package. The OPC packaging format is fully documented and
standardized. You can read more about it and working with packages at: http://msdn.microsoft
.com/en-us/magazine/cc163372.aspx.

A SharePoint app package has four main parts:

 ➤ Manifest

 ➤ SharePoint solution package

 ➤ Web deploy package

 ➤ Database package

For those developers familiar with full-trust solution .wsp fi les in SharePoint 2010, this concept
of a single fi le containing multiple subparts might seem familiar (excluding the database package
portion). In SharePoint 2010, WSP solutions also included a manifest, fi les and assets, and code
packages (DLLs). However, in SharePoint 2013 the format and deployment of these assets varies
greatly.

The manifest in an app package contains important information such as the app’s name and
version.

The SharePoint solution package contains XML-based declarations for SharePoint components such
as lists and content types that should be deployed as part of the app.

The Web deploy package is the code portion of your app. It is the package that will be deployed to
Azure as part of an Autohosted app.

Finally, the database package contains the SQL Azure deployment package that deploys and creates
a database as part of an Autohosted app deployment, and might include post deployment scripts to
populate tables with data.

To better understand the format and contents of an app package, take a look inside one in the
following Try It Out.

c07.indd 176c07.indd 176 19/01/13 11:13 AM19/01/13 11:13 AM

http://msdn.microsoft.com/en-us/magazine/cc163372.aspx
http://msdn.microsoft.com/en-us/magazine/cc163372.aspx

Anatomy of an App ❘ 177

TRY IT OUT Exploring an App Package (SharePointAppPackage.app)

In this exercise you open an .app package fi le and explore its parts. You will use the prebuilt and
 provided .app fi le found in the code downloads for this chapter called SharePointAppPackage.app.

 1. Copy the SharePointAppPackage.app fi le to a location on your hard drive; for example, c:\
tmp\SharePointAppPackage.app.

 2. Right-click the fi le and choose Rename.

 3. Remove the .app extension and replace it with .zip. You might need to turn on Show fi le
extensions in Windows Explorer options if you don’t see the .app extension when you go to
rename it.

 4. If you are asked whether you are sure you
want to rename the fi le choose OK.

 5. After renaming it, open the Zip fi le. You
should see a set of fi les similar to the one
shown in Figure 7-1.

 6. Select all the fi les and copy them to a new
location outside of the Zip fi le. This step
assists with opening and exploring them.

 7. Open the AppManifest.xml fi le. You will
see the manifest markup as shown in the
following code snippet. This contains the
name of the app, ID, version, and other
information about the app code and where it’s located.

<?xml version="1.0" encoding="utf-8"?>
<App xmlns="http://schemas.microsoft.com/sharepoint/2012/app/manifest"
Name="SharePointAppPackage" ProductID="{6b80672f-3edc-409c-94fe-608ee4264280}"
Version="1.0.0.0" SharePointMinVersion="15.0.0.0">
 <Properties>
 <Title>SharePointAppPackage</Title>
 <StartPage>~remoteAppUrl/Pages/Default.aspx?{StandardTokens}</StartPage>
 </Properties>
 <AppPrincipal>
 <AutoDeployedWebApplication />
 </AppPrincipal>
 <AppPermissionRequests>
 <AppPermissionRequest Scope="http://sharepoint/content/sitecollection/web"
Right="FullControl" />
 </AppPermissionRequests>
 <AppPrerequisites>
 <AppPrerequisite Type="Capability" ID="A83C8D70-71DE-4260-9FB8-677418EB47F2" />
 <AppPrerequisite Type="Feature" ID="5B79B49A-2DA6-4161-95BD-7375C1995EF9" />
 <AppPrerequisite Type="AutoProvisioning" ID="Database" />
 <AppPrerequisite Type="AutoProvisioning" ID="RemoteWebHost" />
 </AppPrerequisites>
</App>

FIGURE 7-1

c07.indd 177c07.indd 177 19/01/13 11:13 AM19/01/13 11:13 AM

http://schemas.microsoft.com/sharepoint/2012/app/manifest
http://sharepoint/content/sitecollection/web

178 ❘ CHAPTER 7 PACKAGING AND DEPLOYING SHAREPO INT 2013 APPS

How It Works

The fundamental part of an app package is the app.manifest fi le. As you have seen in this example
it is straightforward to open and look around inside an app package. It is also recommended you take
a look inside the SharePointAppPackage.Web.zip fi le. This is the app code and pages packaged in a
Web deploy package.

The Database1.dacpac fi le is the SQL Database project for the app that will be deployed to SQL Azure
when the application is installed.

The last important element is the SharePointAppPackage.wsp fi le. This is the SharePoint Solution
package that contains defi nitions for things such as content types, columns, lists/libraries, and features.

In the following sections you will explore each of these main components that go into an app
package in more detail and also try out building your own.

Manifest and Assets

At the heart of an .app fi le is the app manifest fi le. This fi le is the central location that SharePoint
reads from when interrogating an app. The manifest contains things such as the app name, product
ID, version, security information, and information about the starting page of the app. An example
of a simple app manifest follows:

<?xml version="1.0" encoding="utf-8"?>
<App xmlns="http://schemas.microsoft.com/sharepoint/2012/app/manifest"
Name="SharePointAppPackage" ProductID="{6b80672f-3edc-409c-94fe-608ee4264280}"
Version="1.0.0.0" SharePointMinVersion="15.0.0.0">
 <Properties>
 <Title>SharePointAppPackage</Title>
 <StartPage>~remoteAppUrl/Pages/Default.aspx?{StandardTokens}</StartPage>
 </Properties>
 <AppPrincipal>
 <AutoDeployedWebApplication />
 </AppPrincipal>
 <AppPermissionRequests>
 <AppPermissionRequest Scope="http://sharepoint/content/sitecollection/web"
Right="FullControl" />
 </AppPermissionRequests>
 <AppPrerequisites>
 <AppPrerequisite Type="Capability" ID="A83C8D70-71DE-4260-9FB8-677418EB47F2" />
 <AppPrerequisite Type="Feature" ID="5B79B49A-2DA6-4161-95BD-7375C1995EF9" />
 <AppPrerequisite Type="AutoProvisioning" ID="Database" />
 <AppPrerequisite Type="AutoProvisioning" ID="RemoteWebHost" />
 </AppPrerequisites>
</App>

In this example you can see in the app node the name of the application specifi ed; the product ID,
which uniquely signifi es this app; the version of the app; and the minimum version of SharePoint
that is required. Although at the time of writing there is only one version of SharePoint 2013, in
the future developers will be able to target their apps at a minimum version to ensure compatibility.

c07.indd 178c07.indd 178 19/01/13 11:13 AM19/01/13 11:13 AM

http://schemas.microsoft.com/sharepoint/2012/app/manifest
http://sharepoint/content/sitecollection/web

Anatomy of an App ❘ 179

Additionally, in the AppPermissionRequests node an application can specify the minimum
permissions it needs granted for it to work correctly. In this case it is asking for full control
permissions on the host Web. Finally, the manifest specifi es a number of AppPrerequisites. These
are IDs of features and capabilities that must be enabled or turned on in the SharePoint site and
farm so that the app can run. For example, the sample code is requesting that the Media Player Web
Part feature be activated and as well as the Managed Metadata Service Capability. As a developer
you don’t need to know the IDs by GUID. The Visual Studio tools assist with this via a GUI-style
property panel.

When you deploy an app to SharePoint the fi rst thing SharePoint does is unpack and take a look
at the manifest fi le. This tells SharePoint what sort of app it is, such as Autohosted. Additionally,
SharePoint looks for the other deployment assets such as a SharePoint solutions package, a Web
deploy package, and a database package. Each of these are deployed differently and are discussed in
the following sections.

SharePoint Solution Package

An .app fi le may also contain a SharePoint solution package, which would in turn contain a variety
of SharePoint components such as the following:

 ➤ Lists/libraries

 ➤ Site columns

 ➤ Content types

 ➤ Event receivers

 ➤ Modules

 ➤ UI actions

Much like in SharePoint 2010 full-trust applications and sandbox solutions, the aforementioned
components are defi ned declaratively using XML and packaged in a .wsp fi le, which makes up the
SharePoint Solution fi le. In fact, in many regards the new app model’s .wsp packages are the next
generation of solution package formats that started with custom template .stp fi les in SharePoint
2003. Much of the declarative XML contained within these new packages shares historical roots in
the earlier template formats. However, don’t be fooled — many of the techniques and options you
might have used in the past are no longer supported or available in the new packaging format, so
caution is advised.

In the past, understanding the structure of a .wsp fi le was important, and in many ways it still is
for those looking to do more advanced debugging and diagnosis. However, the SharePoint tools in
Visual Studio have developed so much in the 2012 edition that the packaging format is largely taken
care of for you along with inclusion of the .wsp inside an app package.

Similar to an .app fi le, a .wsp fi le is another type of fi le in disguise — in this case a .cab fi le.
These can be simply renamed and opened with Windows Explorer. Also like an .app fi le, a .wsp fi le
contains a manifest and other supporting assets.

c07.indd 179c07.indd 179 19/01/13 11:13 AM19/01/13 11:13 AM

180 ❘ CHAPTER 7 PACKAGING AND DEPLOYING SHAREPO INT 2013 APPS

Along with the manifest fi le, a .wsp fi le contains XML defi nitions for the components it contains,
which are grouped into Features. A Feature can be activated or deactivated through the SharePoint
UI and is a fundamental building block of SharePoint solutions. When you’re building apps many
of the same Feature constructs apply. Components are grouped into Features, which are packaged
into a .wsp. Visual Studio takes care of much of the Feature creation for you; however, it is worth
being familiar with the contents of a .wsp so that if you need or want to learn about how something
works under the hood you know where to look.

During installation of an app the .wsp package is used to deploy the Features and artifacts to the
app Web, which is the SharePoint site that is created for the instance of the application. Note
the .wsp isn’t deployed to the host Web, which is the site that the application is installed in.
Therefore, lists, content types, and so on that are defi ned in this package will be deployed to the
app Web only.

Only two types of components can be deployed into the host Web versus the app Web. Those are:

 ➤ Client Web Part (Host Web) also known as App Parts

 ➤ Custom UI Action (Host Web)

These are not included in the .wsp but rather included in the app package as Features without a
parent .wsp.

Web Deploy Package

If you are building an Autohosted application then the app package produced by Visual Studio
will contain a Web deploy package containing your app code and pages. Web Deploy is a tool
produced by Microsoft that can take Web deploy packages and deploy the contents to an Internet
Information Server (IIS) enabled server. It is also a packaging format that can be used for deploying
to Azure. Because Autohosted apps use Azure, your code and pages are packaged as a Web deploy
package for automated deployment to Azure when an Autohosted app is installed. When the app
is installed, SharePoint Online takes the Web deploy package included in the app’s .app fi le and
automatically deploys it to Azure. This creates a running website with your app’s code and pages in
it. Additionally, SharePoint Online creates a new client ID and client secret and sets up the app with it
so that the OAuth and API calls all work (read more about OAuth, client IDs, and client secrets in
Chapter 10, “Overview of OAuth in SharePoint 2013”). Likewise, when the app is uninstalled, the
website in Azure is removed. This entire process is managed by SharePoint Online without any user
or developer involvement, hence the name Autohosted model.

If you take a look inside an .app fi le for an Autohosted app, you will fi nd the Web deploy package
contained within it packaged into a .zip fi le and named the same name as the app in Visual Studio
with a “.web” appended. For example, SharePointAppPackage.Web.zip fi le shown the in the fi le
list in Figure 7-2 is the Web deploy package.

c07.indd 180c07.indd 180 19/01/13 11:13 AM19/01/13 11:13 AM

Anatomy of an App ❘ 181

Database Package

Like Web deploy packages a database package may be included in an Autohosted app’s .app
package. This is commonly called a DACPAC because it’s a fi le with a .dacpac extension, but it
is the packaging name for the Data-tier Applications technology (DAC for short, chosen because
DTA was already taken), introduced in SQL Server 2008 R2. Essentially a DACPAC is a packaging
format for databases.

A DAC is a self-contained unit of SQL Server database deployment that enables
data-tier developers and database administrators to package SQL Server objects
into a portable artifact called a DAC package, also known as a DACPAC.

“Data-tier Applications.” Microsoft TechNet Library

For developers, Visual Studio supports building .dacpac fi les with the SQL Server Database Project
type. SQL Azure also supports deploying DACPACs, hence the use of DACPACs in Autohosted app
packages.

In the same way code packages work, if SharePoint Online detects a DACPAC in the app package it
will extract it, create a database in SQL Azure, and deploy the DACPAC. This, in turn, creates the
tables, relationships, and associated SQL objects needed in the database to support the application.

A question you might be asking yourself at this point is, “How does my SharePoint app know
where the database is?” SharePoint will replace a specially named connection string in your app’s
web.config fi le after the database has been set up and confi gured. To ensure this works correctly
you must have a connection string property named SqlAzureConnectionString and confi gured in
the app’s web.config fi le as follows:

<add key="SqlAzureConnectionString" value="Data
Source=(localdb)\MyDatabaseProjName;Initial
Catalog=AutohostedAppDatabase;Integrated Security=True;Connect
Timeout=30;Encrypt=False;TrustServerCertificate=False" />

FIGURE 7-2

c07.indd 181c07.indd 181 19/01/13 11:13 AM19/01/13 11:13 AM

182 ❘ CHAPTER 7 PACKAGING AND DEPLOYING SHAREPO INT 2013 APPS

NOTE As of this writing, Microsoft has indicated that the use of the SqlAzure
ConnectionString confi guration property is subject to change moving forward.

After you have the database connection string, you can treat the database and access it like any
other SQL Azure database, and all the same data access and query techniques apply.

WARNING When thinking about developing Autohosted applications, it is impor-

tant to consider the life cycle of an Autohosted app and the impact it has on data

stored in the SQL database. Like the Web deploy package for an Autohosted

app, the SQL database is also deleted after the app is uninstalled. This causes

data loss, and there is no way to get it back.

PACKAGING AND PUBLISHING AN APP

Now that you understand the four main parts of an app you can begin the process of packaging
and publishing your own app. When you package an app you essentially take the Web deploy
package, database package, SharePoint solution package and app.manifest and combine them
into an .app fi le. After you have an .app fi le you are ready to publish it to a location where users
can install it. You can publish an app either using a private app catalog or the public SharePoint
store. The following sections walk you through publishing to a private app catalog and Chapter 8,
“Distributing SharePoint 2013 Apps,” discusses publishing to the public SharePoint store.

Packaging an App

After you have completed developing an app and are ready to deploy it to either an on-premises
SharePoint farm or to SharePoint Online, you need to get it ready for deployment by packaging it.

As Chapter 3, “Developer Tooling for SharePoint 2013” discusses, Visual Studio 2012 provides
some excellent tools to increase your productivity when writing SharePoint apps, but the help
doesn’t stop there. Visual Studio provides a number of tools to help you package your apps into
.app fi les for either automated or manual deployment. In fact, when you press F5 to debug an
application, Visual Studio packages the app
and deploys it automatically to SharePoint
for you!

Visual Studio provides integrated publishing
wizards that guide you through the process
of packaging your application. This wizard
varies depending on the type of application
you have built, but in each type the process
starts by using the Publish function available
when you right-click your application
project. See Figure 7-3.

FIGURE 7-3

c07.indd 182c07.indd 182 19/01/13 11:13 AM19/01/13 11:13 AM

Packaging and Publishing an App ❘ 183

Depending on the type of app you have built, the deployment wizard varies and requires
different information. For example, in some cases it asks for a client ID and client secret whereas
in SharePoint-hosted apps no additional information is needed at all. The following section,
“Deploying an App,” explores the deployment process in more detail for each type of application
package and walks through examples of each.

Private Publishing in an App Catalog

Before an application can be installed you must publish it to either a private app catalog, on
premises or in SharePoint Online, or in the public Marketplace provided by Microsoft. Many
organizations may want to build applications that only they intend to use, or they may turn off the
ability to purchase apps from the Marketplace and only offer apps they provide in the private app
catalog. The app catalog enables organizations to offer a private and curated app catalog that they
control to users in the organization.

An app catalog is simply a SharePoint site based on a provided template. An organization can create
and confi gure an app catalog in a few simple steps and offer users a curated list of apps with which
the organization is comfortable with. After you create the apps, installing them from the catalog
into a site is seamless and integrated into the existing app installation process.

In following exercise you will learn how to create a new app catalog for privately deploying apps to.

TRY IT OUT Creating a Private App Catalog in Offi ce 365

In this example you create an app catalog for SharePoint Online. You need a SharePoint Online site
prior to starting this exercise.

 1. Navigate to portal.microsoftonline.com
and log in with your Offi ce 365 credentials.
You must be a tenant administrator in order to
do this exercise.

 2. Under the Admin menu in the top navigation,
click SharePoint to go to the SharePoint Online
tenant admin pages as shown in Figure 7-4.

 3. Click apps in the left-side navigation in the screen that appears.

 4. Click the App Catalog link.

 5. Select the Create a new app catalog site option and then click OK.

 6. On the Create page, enter Contoso App Catalog in the Title fi eld.

 7. Ensure /sites/ is selected in the drop-down list and then type in AppCatalog in the box to the
right. This is the site collection URL for the site.

 8. Enter your name in the Administrator fi eld and make sure it resolves to the correct account using
the provided tick button to the right. The form should look like the one shown in Figure 7-5.

 9. Click OK to create the catalog; the site will start to be created.

FIGURE 7-4

c07.indd 183c07.indd 183 19/01/13 11:13 AM19/01/13 11:13 AM

http://portal.microsoftonline.com

184 ❘ CHAPTER 7 PACKAGING AND DEPLOYING SHAREPO INT 2013 APPS

 10. After the process completes, go back into the app confi guration settings in your tenant admin by
clicking the apps link in the left-side navigation.

 11. Click the App Catalog link. The catalog site that you just created appears. You have now created
a private app catalog for your organization and can start to populate it with apps.

How It Works

An app catalog is simply a SharePoint collection based on a particular template. In this exercise
you created the catalog site collection via the SharePoint Online tenant admin site. This instructed
SharePoint to create the site and confi gure it to be the catalog for your tenancy. It is now ready for apps
to be deployed to it.

DEPLOYING AN APP

The options available for deploying apps depend on your deployment scenario and application
type. There are three main application types and each one requires a different deployment scenario.
Table 7-1 summarizes these various scenarios.

TABLE 7-1: Application Deployment Summary

APP TYPE APP CODE DEPLOYED TO APP PACKAGE DEPLOYED TO

SharePoint-hosted N/A App catalog or Marketplace

Provider-hosted Azure or other App catalog or Marketplace

Autohosted Azure App catalog or Marketplace

FIGURE 7-5

c07.indd 184c07.indd 184 19/01/13 11:13 AM19/01/13 11:13 AM

Deploying an App ❘ 185

SharePoint-hosted apps are a bit simpler than the others given that there isn’t any Web deploy
package to have deployed, and because they generally consist of HTML pages and JavaScript only.
SharePoint-hosted apps don’t have any other dependencies on a runtime environment for this
reason.

Provider-hosted apps are a bit more complex and consist of just an app package without any Web
deploy package in it. This is because the provider of the app is already required to be hosting it
either in Azure or some other Internet-accessible location. The provider of the app manages running
the code for the app and any associated databases or dependent resources.

Autohosted app packages are the only ones that contain Web deploy packages and/or database
packages. This is because Autohosted apps are the only app types where SharePoint needs
to take both the Web deploy package and database package and deploy them to Azure when
the app is installed. Azure is currently the only option for autodeployment in the Autohosted
scenario.

SharePoint-Hosted App Deployment

SharePoint-hosted apps are the simplest of the three app types to package and deploy because
of the lack of a code package and associated deployment steps. All that is required is to package
the application using the Publish wizard in Visual Studio and then deploy the app to either the
Marketplace or an app catalog. After the app is deployed, users can install the app on their site.
When this occurs, SharePoint takes the app package, creates a new app Web for that instance of
the application, and provisions the pages and content from the app package into it. Any custom UI
actions and App Parts are also deployed to the host Web.

Try your hand at deploying a SharePoint-hosted app in the next exercise to learn how
straightforward the process is.

TRY IT OUT Deploying a SharePoint-Hosted App

In this example you create a very basic SharePoint-hosted app using Visual Studio 2012 development
tools and deploy that new app to the app catalog. You will need to use the app catalog created from the
previous Try It Out, “Creating a Private App Catalog in Offi ce 365.”

 1. Ensure you have created an app catalog. See the earlier exercise, “Creating a Private App Catalog
in Offi ce 365.”

 2. Open Visual Studio and create a new app for a SharePoint 2013 project called SharePoint
Hosted App by selecting File ➪ New Project ➪ App for SharePoint 2013. In the Name fi eld enter
MySharePointHostedApp.

 3. In the New Project wizard specify SharePoint-hosted as shown in Figure 7-6.

c07.indd 185c07.indd 185 19/01/13 11:13 AM19/01/13 11:13 AM

186 ❘ CHAPTER 7 PACKAGING AND DEPLOYING SHAREPO INT 2013 APPS

 4. After the project has been created, right-click the project and select Publish. The publishing
wizard for the application launches; see Figure 7-7.

FIGURE 7-6

FIGURE 7-7

c07.indd 186c07.indd 186 19/01/13 11:13 AM19/01/13 11:13 AM

Deploying an App ❘ 187

 5. Click Finish. A new Windows Explorer window opens with your application package called
MySharePointHostedApp.app showing.

 6. Open a browser window and navigate to the tenant admin portal for your Offi ce 365
environment at: http://portal.microsoftonline.com.

 7. Under the Admin menu in the top
navigation, click SharePoint to go to the
SharePoint Online tenant admin pages.

 8. Click apps in the left-side navigation.

 9. Click the App Catalog link. The app
catalog you created in the previous exercise
appears.

 10. Click the Distribute apps for
SharePoint tile.

 11. Click the New App button. A prompt
appears asking you to pick the .app fi le for
your application.

 12. Click Browse and select the .app fi le that
Visual Studio packaged for you in step
5. Click OK. A dialog appears asking for
information about your application, as
shown in Figure 7-8.

 13. You are not required to enter any information unless you want to. Click Save to proceed. You
should now see your application in the app catalog, as shown in Figure 7-9.

FIGURE 7-8

FIGURE 7-9

 14. Navigate to your development site in SharePoint Online.

 15. Click Site Contents in the left-side navigation.

 16. Click Add an App.

c07.indd 187c07.indd 187 19/01/13 11:13 AM19/01/13 11:13 AM

http://portal.microsoftonline.com

188 ❘ CHAPTER 7 PACKAGING AND DEPLOYING SHAREPO INT 2013 APPS

How It Works

In this exercise you created a rudimentary SharePoint-hosted app that simply lists the name of the
currently logged-in user. You packaged the app ready for deployment using the Publish wizard in
Visual Studio and then uploaded and confi gured the app in the app catalog in SharePoint Online.
You then installed the app on a SharePoint Online site. Behind the scenes, SharePoint created a new
SharePoint site specifi cally for this installation of the application and deployed the application’s assets,
such as pages and JavaScript, to the appropriate places. You can see in the URL for the app the domain
name created and set up specifi cally for the app instance. These steps are done on demand each time a
SharePoint-hosted app is installed. When the application is run it uses the JavaScript Client-Side Object
Model to make a call to web.get_currentUser(); to retrieve the currently logged-in user. This code is
in the /Scripts/App.js fi le in the Visual Studio project.

Provider-Hosted App Deployment

Provider-hosted applications are the most complex of the three app types because hosting and running
the application code is up to the developer, rather than allowing SharePoint and Azure do these things
for you. However, with the increased complexity comes increased fl exibility, because you manage
your application’s back end. This means that making fi xes or updates to it is straightforward, and the
ultimate user for the application might never know or care to know about the changes being made
to the application. Only if you make changes to the components of your app that reside within the
SharePoint site itself would you need to issue an update to the application package in the app catalog
or Marketplace. However, you should consider that you might need to deal with multi-tenancy issues,
such as tenant specifi c–data partitioning, given that an app may be installed on multiple sites.

 17. Click From Your Organization in the left-side
navigation and you should see your newly added
application listed, as shown in Figure 7-10.

 18. Click the tile for the application and click Trust
It when prompted. SharePoint Online begins to
provision your app in the site.

 19. When the process completes, click the newly installed
app tile. The Start page for your application appears;
your username will be listed as shown in Figure 7-11.

FIGURE 7-10

FIGURE 7-11

c07.indd 188c07.indd 188 19/01/13 11:13 AM19/01/13 11:13 AM

Deploying an App ❘ 189

Deploying a Provider-hosted application happens in two main stages:

 1. Deploying the application back end

 2. Deploying the SharePoint application package

The application backend can theoretically be any technology and is not limited to Internet
Information Server. The only stipulation is that the SharePoint farm or SharePoint Online must be
able to communicate with it over HTTP (port 80) and HTTPS (port 443).

For on-premises applications, Provider-hosted applications are the only choice when back-end code
is involved. This requires setting up server-to-server authentication (see Chapter 10).

Now try out deploying a Provider-hosted application in the following exercise using SharePoint
Online and Windows Azure.

TRY IT OUT Deploying a Provider-Hosted App

In this example you create a very basic SharePoint Provider-hosted application using Visual Studio and
Azure Web Sites. You need a SharePoint Online tenant set up as well as an Azure account with Azure
Web Sites enabled. You also need to have the app catalog created from the previous exercise, “Creating
a Private App Catalog in Offi ce 365,” prior to starting this exercise.

 1. Log into the Azure management portal and create a new Azure Web Site as shown in Figure 7-12.
You must give it a unique URL, so remember to write it down because you will need it later on.

FIGURE 7-12

 2. After the site is created, go into the Azure dashboard for the site and download the publishing
profi le for Visual Studio using the Download publish profi le link. Save the fi le locally somewhere.

 3. Navigate to SharePoint Online’s tenant admin screens
by logging into: http://portal.microsoftonline
.com, clicking the Admin menu in the top right of the
homepage and then selecting SharePoint. Create a
new SharePoint Developer site by clicking into the Site
Collections management page, and then click the New
button and select Private Site Collection, as shown in
Figure 7-13. FIGURE 7-13

c07.indd 189c07.indd 189 19/01/13 11:13 AM19/01/13 11:13 AM

http://portal.microsoftonline.com
http://portal.microsoftonline.com

190 ❘ CHAPTER 7 PACKAGING AND DEPLOYING SHAREPO INT 2013 APPS

 5. After the site has been created, navigate to it and then navigate to the following page in the browser:
https://<my SPO site url>.sharepoint.com/sites/mydevsite/_layouts/15/appregnew.aspx.

 6. After the form appears, complete it by clicking the Generate button to create the client ID and
secret for you.

 7. Give your application a name such as My Awesome App.

 8. In the App Domain box specify the exact URL for the Azure Web Site you created in step 1. The
form should look like Figure 7-15.

 4. Give your site a title; for example, My New Site, as well as a URL, such as mydevsite. Select the
Developer Site template from the list of available templates, as shown in Figure 7-14, and then
click OK.

FIGURE 7-14

FIGURE 7-15

c07.indd 190c07.indd 190 19/01/13 11:13 AM19/01/13 11:13 AM

https://<mySPOsiteurl>.sharepoint.com/sites/mydevsite/_layouts/15/appregnew.aspx

Deploying an App ❘ 191

 9. Click Create to create the application
registration. For more details on app IDs,
see Chapter 10.

 10. Copy all the details provided about the
application registration. Figure 7-16 shows
an example.

 11. Create a new SharePoint app in Visual Studio using the App for SharePoint 2013 template.

 12. Enter the name of your app in the fi rst box; for example, My Awesome App.

 13. Enter the URL to your SharePoint Online development site.

 14. Select Provider-hosted from the app type drop-down list. When it’s complete, the form should
look similar to Figure 7-17.

FIGURE 7-16

FIGURE 7-17

 15. Click Finish.

 16. Right-click the Web project in the solution and select
Publish as shown in Figure 7-18.

 17. Click the Import button and select the profi le fi le you
downloaded from Azure previously. Download it from
Azure if you skipped this step earlier. Validate the
connection to make sure it’s working by clicking the
Validate Connection button as shown in Figure 7-19. FIGURE 7-18

c07.indd 191c07.indd 191 19/01/13 11:13 AM19/01/13 11:13 AM

192 ❘ CHAPTER 7 PACKAGING AND DEPLOYING SHAREPO INT 2013 APPS

 18. Click Publish and let your site deploy. When the deployment fi nishes, a browser should pop up a
screen like the one shown in Figure 7-20.

FIGURE 7-20

FIGURE 7-19

c07.indd 192c07.indd 192 19/01/13 11:13 AM19/01/13 11:13 AM

Deploying an App ❘ 193

 19. Go back into the Azure management dashboard for your site and click the Confi gure tab. Create
the ClientId and ClientSecret app settings and copy in the App ID and App Secret you generated
in step 10 (see Figure 7-21). Azure Web Sites reads them from here even if you have them in your
web.config. Not confi guring the settings in Azure will mean your app crashes.

FIGURE 7-21

 20. Click the Save button to commit the settings to Azure.

 21. Right-click the SharePoint app project in Visual Studio and choose Publish. If the Publish wizard
is not already on the profi le page, click profi le in the left-side navigation to get to the Start screen.

 22. Type a new profi le name; for example, Offi ce 365 Profi le, and click Next.

 23. On the Hosting page enter the full URL to your Azure Web Site, including the /pages/default
.aspx; for example, https://cjsproviderhostedapp.azurewebsites.net/pages/default.
aspx. See Figure 7-22.

FIGURE 7-22

c07.indd 193c07.indd 193 19/01/13 11:13 AM19/01/13 11:13 AM

https://cjsproviderhostedapp.azurewebsites.net/pages/default.aspx
https://cjsproviderhostedapp.azurewebsites.net/pages/default.aspx

194 ❘ CHAPTER 7 PACKAGING AND DEPLOYING SHAREPO INT 2013 APPS

 26. Click Finish. A new Windows Explorer window opens with your application package called
MySharePointProviderHostedApp.app.

 27. Open a browser window and navigate to the tenant admin portal for your Offi ce 365
environment at: http://portal.microsoftonline.com.

 28. Under the Admin menu in the top
navigation, click SharePoint to go to the
SharePoint Online tenant admin pages.

 29. Click Apps in the left-side navigation.

 30. Click the App Catalog link. The app
catalog you created in the previous exercise
appears.

 31. Click the Distribute apps for SharePoint tile.

 32. Click the New App button. You are
prompted to pick the .app fi le for your
application.

 33. Click Browse and select the .app fi le that
Visual Studio packaged for you in step
26. Click OK. A dialog appears asking for
information about your application, as
shown in Figure 7-24.

 24. Enter the App ID you generated into the Client ID fi eld and the App Secret into the Client Secret fi eld.

 25. Click Next. A summary page appears like the one shown in Figure 7-23.

FIGURE 7-23

FIGURE 7-24

c07.indd 194c07.indd 194 19/01/13 11:13 AM19/01/13 11:13 AM

http://portal.microsoftonline.com

Deploying an App ❘ 195

 34. You are not required to enter any information, but you can enter the information if you want
to, and then click Save. Your SharePointProviderHostedApp application appears in the app
catalog.

 35. Navigate to your development site in SharePoint Online.

 36. Click Site Contents in the left-side navigation.

 37. Click Add an App.

 38. Click From Your Organization in the left-
side navigation; you should see your newly
added application listed.

 39. Click the tile for the application. A prompt
appears asking whether to trust your app.

 40. Click Trust It, as shown in Figure 7-25.
Your new app appears listed in the site
contents.

 41. Click it. You are redirected to your app
and should see the title (whatever you called your site when you created it) of your site written to
the page, as shown in Figure 7-26.

FIGURE 7-25

FIGURE 7-26

How It Works

In this exercise you created a rudimentary SharePoint Provider-hosted app that simply lists the name
of the host site that app is installed in. You created, packaged, and deployed the code portion of
your application to an Azure Web Sites site and confi gured the client ID and secret in the settings for
that application. You then packaged and deployed the SharePoint app using Visual Studio’s Publish
 wizard. Once the packaging process was complete you uploaded the newly created app package to the
app catalog in SharePoint Online.

Behind the scenes Visual Studio uses Web Deploy to deploy the app code to the Azure Web Site. When
the application ran, it used the Client-Side Object Model (CSOM) combined with OAuth to call back

c07.indd 195c07.indd 195 19/01/13 11:13 AM19/01/13 11:13 AM

196 ❘ CHAPTER 7 PACKAGING AND DEPLOYING SHAREPO INT 2013 APPS

to SharePoint and retrieve the name of the host Web SharePoint site. It did this using the client ID and
secret you set up in the Azure settings along with the TokenHelper class provided in the app template
project in Visual Studio (read more about client IDs and secrets in Chapter 10).

Autohosted App Deployment

Autohosted application deployment is almost as straightforward as SharePoint-hosted application
deployment. This is because SharePoint Online takes care of all the heavy lifting deploying the code
and database packages to Azure for you as well as creating and managing client IDs and secrets.

In the following exercise you will give creating a simple Autohosted app a go and deploy it into
SharePoint Online using a private app catalog.

TRY IT OUT Deploying an Autohosted App

In this example you create a very basic SharePoint Autohosted application using Visual Studio. You
need a SharePoint Online tenant set up as well as the app catalog created from the previous exercise,
“Creating a Private App Catalog in Offi ce 365,” prior to starting this exercise.

 1. Create a new SharePoint app in Visual Studio using the App for SharePoint 2013 template by
selecting File ➪ New Project ➪ App for SharePoint 2013.

 2. Enter the name of your app in the fi rst box; for example, MyAutoHostedApp.

 3. Enter the URL to your SharePoint Online developer site.

 4. Select Autohosted from the app type drop-down list. When you have completed the form it should
look similar to Figure 7-27.

FIGURE 7-27

c07.indd 196c07.indd 196 19/01/13 11:13 AM19/01/13 11:13 AM

Deploying an App ❘ 197

 5. Click Finish.

 6. Right-click the Web project in the solution and select Publish.

 7. Click Next. A summary page appears like the one shown in Figure 7-28.

FIGURE 7-28

 8. Click Finish. Once the wizard completes a new Windows Explorer window opens with your
application package called MyAutoHostedApp.app showing.

 9. Open a browser window and navigate to the tenant admin portal for your Offi ce 365
environment at: http://portal.microsoftonline.com.

 10. Under the Admin menu in the top navigation, click SharePoint to go to the SharePoint Online
tenant admin pages.

 11. Click Apps in the left-side navigation.

 12. Click the App Catalog link.

 13. Click the Distribute apps for SharePoint tile.

 14. Click the New App button. A prompt appears
asking you to pick the .app fi le for your
application.

 15. Click Browse and select the .app fi le that Visual
Studio packaged for you in step 8. Click OK. A
dialog appears asking you to enter information
about your application, as shown in Figure 7-29.

FIGURE 7-29

c07.indd 197c07.indd 197 19/01/13 11:13 AM19/01/13 11:13 AM

http://portal.microsoftonline.com

198 ❘ CHAPTER 7 PACKAGING AND DEPLOYING SHAREPO INT 2013 APPS

 16. You are not required to enter any information, but if you want, enter the information and
then click Save to proceed. You should now see your SharePointAutoHostedApp
application in the app catalog.

 17. Navigate to your development site in SharePoint Online.

 18. Click Site Contents in the left-side navigation.

 19. Click Add an App.

 20. Click From Your Organization in the left-
side navigation; you should see your newly
added application listed.

 21. Click the tile for the application. A pop-up
dialog opens, asking whether you trust
your app.

 22. Click Trust It, as shown in Figure 7-30.
Your new app becomes listed in the site
contents.

 23. Click it. You are redirected to your app and should see the title of your site written to the page,
as shown in Figure 7-31. Note that the URL of your app pages sits in o365apps.net. This is the
SharePoint Online–controlled Azure tenancy that your code package was automatically deployed
to during installation.

FIGURE 7-30

FIGURE 7-31

How It Works

In this exercise you created a rudimentary SharePoint Autohosted app that simply lists the name of the
host site that app is installed in. You packaged the app using the Visual Studio Publish wizard and then
deployed to your app catalog in SharePoint Online. When you installed the application, SharePoint

c07.indd 198c07.indd 198 19/01/13 11:13 AM19/01/13 11:13 AM

http://o365apps.net

Summary ❘ 199

Online took the code package from the app package and deployed it to Azure for you. It then installed
the application in your SharePoint site. Note that in this example you didn’t need to deal with client IDs
and secrets. That is because SharePoint Online creates and confi gures those for you in the Autohosted
scenario. When the application ran it used the Client-Side Object Model (CSOM) combined with
OAuth to call back to SharePoint and retrieve the name of the host Web SharePoint site.

SUMMARY

Visual Studio 2012 combined with SharePoint 2013 provides a robust and comprehensive set of
development tools for SharePoint applications. Whether you decide to create a SharePoint-hosted,
Provider-hosted or Autohosted application, the options and publishing tools available in Visual
Studio make packaging and publishing your application package a straightforward process.

For organizations and individuals looking to build an application just for themselves or provide
a curated set of applications to their users, then the private app catalog provides a seamless way
to publish those applications. Chapter 8, “Distributing SharePoint 2013 Apps,” discusses the
options available to publish applications to a wider audience with the app store or Marketplace in
SharePoint Online.

EXERCISES

You can fi nd the answers to exercises for this chapter in Appendix A.

 1. What are four main components of an .app package fi le?

 2. Describe the architecture of a Provider-hosted application.

 3. What types of SharePoint components are able to be deployed to the host Web during app

installation?

c07.indd 199c07.indd 199 19/01/13 11:13 AM19/01/13 11:13 AM

200 ❘ CHAPTER 7 PACKAGING AND DEPLOYING SHAREPO INT 2013 APPS

 � WHAT YOU LEARNED IN THIS CHAPTER

ITEM DESCRIPTION

App Catalog This is a private catalog of selected applications deployed by an administrator

and installable in a site.

App Package This is the packaging and fi le format for SharePoint apps.

Database

Package

This contains the SQL Azure deployment package that deploys and creates a

database as part of an Autohosted app deployment, and might include post

deployment scripts to populate tables with data.

Manifest This is an app package that contains important information such as the app’s

name and version.

SharePoint

Solution Package

This contains XML-based declarations for SharePoint components such as lists

and content types that should be deployed as part of the app.

Web Deploy

Package

This is the code portion of your app. It is the package that will be deployed to

Azure as part of an Autohosted app.

RECOMMENDED READING

How to package apps for SharePoint for publishing by using Visual Studio — http://msdn.microsoft
.com/en-us/library/office/apps/jj220044.aspx

c07.indd 200c07.indd 200 19/01/13 11:13 AM19/01/13 11:13 AM

http://msdn.microsoft.com/en-us/library/office/apps/jj220044.aspx
http://msdn.microsoft.com/en-us/library/office/apps/jj220044.aspx

Distributing SharePoint
2013 Apps

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ Distributing apps via the SharePoint Store

 ➤ Licensing and managing apps in the Store

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at: http://www.wrox.com/
WileyCDA/WroxTitle/productCd-1118495845.html on the Download Code tab. The code
for this chapter is divided into the following major examples:

 ➤ SharePointAppPackage.app

So you have built the next million-dollar idea into a SharePoint app and you want to make
sure the world buys it. The SharePoint Store is a good starting point for making sure the
largest number of people sees your app. But how do you take your app and distribute it
through the SharePoint Store? What are your licensing options? How can you manage your
apps after they are out in the wild being used by millions of happy users? This chapter
provides guidance and answers for these questions.

Over the past fi ve years, the app phenomenon has taken the world by storm. The concept of
an app isn’t new — it has been around for decades, ever since the fi rst personal computer.
What makes the app concept so popular today is the ease of fi nding and buying low-cost and
(mostly) high-value apps easily and quickly. Today that concept centers mostly on smartphones;
however, ecosystems are quickly developing around other types of computing, such as social
computing and gaming. Although they are not the fi rst to the game enterprise, software
vendors are starting to take notice and make sure they offer their users additional capabilities
and options not available out of the box with their products through reusable, additive, and
easily discovered components — also known as apps. Many people are already used to paying

8

c08.indd 201c08.indd 201 19/01/13 11:16 AM19/01/13 11:16 AM

http://www.wrox.com/WileyCDA/WroxTitle/productCd-1118495845.html
http://www.wrox.com/WileyCDA/WroxTitle/productCd-1118495845.html
http://WROX.COM
http://wrox.com

202 ❘ CHAPTER 8 DISTRIBUTING SHAREPOINT 2013 APPS

for apps because of their familiarity with the concept from the smartphone world, and vendors are
benefi ting from this familiarity by taking a percentage of the sale for themselves. The marketplace
is selling access to their user base and benefi tting fi nancially from it. To warrant the marketplace
provider taking a percentage, a compelling and sizable audience must exist for the developers.

Enter SharePoint — one of the most widely used and popular enterprise software platforms on the
planet today. Hundreds of millions of licenses to it have been sold. Thousands of huge organizations
use it to do everything from team collaboration to building their Internet site. One of the challenges
independent software vendors (ISVs) have had is getting their products out in front of all those
users. Many have done very well at this challenge and profi ted immensely from it, but many haven’t.
Microsoft is fi nally letting developers and ISVs get a front-and-center stage for their products right
within the product itself — the SharePoint Store (see Figure 8-1).

FIGURE 8-1

The SharePoint Store offers users and IT departments the ability to fi nd, buy, install, and manage
apps. IT can confi gure the store so it is in charge of what is purchased, or it can let users do
the same. As you have read in this book, the app model offers a tightly controlled method for
integrating with SharePoint that preserves the sanctity of organizations’ data while also allowing
them to offer additional capabilities and services that users might want.

c08.indd 202c08.indd 202 19/01/13 11:16 AM19/01/13 11:16 AM

Publishing Apps in the SharePoint Store ❘ 203

This chapter delves into how you can apply, submit, publish, and manage apps in the SharePoint
Store. This marketplace is open to everyone, and Microsoft actively encourages not only large ISVs,
but also smaller independent developers to build and submit apps to the Store. All you need is a
great idea, a bit of time, and a store account.

PUBLISHING APPS IN THE SHAREPOINT STORE

When you have completed developing your app and are ready to publish the next thing you need to
do is to sign up and get access to the Seller Dashboard. The Seller Dashboard is the back-end entry
point for developers and ISVs to access the SharePoint Store. It’s where you can submit, publish, and
manage your apps.

To apply for access you simply create an account with Microsoft on the website at: http://
sellerdashboard.microsoft.com. You must sign in with a Microsoft account and answer some
questions about yourself or the company you are registering. After you’re registered you receive
access to the Seller Dashboard. However, this access doesn’t let you start publishing applications
immediately. Microsoft conducts a verifi cation process to ensure you are who you say you are and
that you have completed the information suffi ciently. You will be notifi ed when this process is
complete via e-mail.

After you successfully log in to the Store, you will see the Seller Dashboard, as shown in Figure 8-2.

FIGURE 8-2

c08.indd 203c08.indd 203 19/01/13 11:16 AM19/01/13 11:16 AM

http://sellerdashboard.microsoft.com
http://sellerdashboard.microsoft.com

204 ❘ CHAPTER 8 DISTRIBUTING SHAREPOINT 2013 APPS

WARNING At the time of this writing only SharePoint-hosted and Provider-

hosted app types are supported in the SharePoint Store. Microsoft has indicated

this restriction will be lifted at a later date after the new SharePoint Online is out

of preview. This means Autohosted apps are not currently allowed to be submit-

ted to the store for publication.

You are now ready to start submitting apps. The two high-level steps in this process are:

 1. Creating a client ID

 2. Submitting an app package

Chapter 10, “Overview of OAuth in SharePoint 2013,” discusses client IDs in detail, but for now
all you need to know is that they provide an identity used in the authentication and authorization
process between an app and SharePoint. On the other hand, Chapter 7, “Packaging and Deploying
SharePoint 2013 Apps,” discusses what the various packaging and deployment options are for
applications. Understanding these concepts prior to building and submitting an app is important, so
if you haven’t read Chapter 7 yet please do so. The remainder of this chapter assumes you have read
Chapter 7 and therefore understand these concepts.

Creating a Client ID and Secret

A client ID and client secret form a critical component of how the OAuth authentication and
authorization fl ows work between apps and SharePoint. They are used to secure and verify calls as
well as identify apps when calls are made.

For Provider-hosted apps you are required to apply for a client ID and secret prior to submitting
the app. This is because you need to both supply them as part of the app package and, more
importantly, you need to confi gure them in your app’s back-end code. The back-end code of your
application must be up and running prior to submission so that Microsoft can successfully test
the application and verify it.

When you’re creating private apps, you create a client ID and secret through the appregnew.aspx
page (see Chapter 10 for more detail on this process). For apps you want to distribute through the
SharePoint Store, you need to obtain the client ID and secret from the Seller Dashboard. This is a
straightforward process (as shown in the following Try It Out) and requires you to supply a friendly
name, the domain name on which the app code back end will be hosted, and the period for which
the ID/secret should be valid for.

TRY IT OUT Creating a New Client ID through the Seller Dashboard

In this example you create a new client ID and secret combination using the Seller Dashboard. You fi rst
need a Seller Dashboard account to get these items.

 1. Log in to the Seller Dashboard on the http://sellerdashboard.microsoft.com website.

 2. Click the Client IDs link.

c08.indd 204c08.indd 204 19/01/13 11:16 AM19/01/13 11:16 AM

http://sellerdashboard.microsoft.com

Publishing Apps in the SharePoint Store ❘ 205

 3. Click the Add a new oauth client id link as shown
in Figure 8-3.

 4. Enter a friendly name for the client ID; for
example, MyAppKeys.

 5. In the App Domain fi eld enter the domain name
of where your Provider-hosted application code
resides; for example, myapp.contoso.com.

 6. In the App Redirect URL fi eld enter the fully qualifi ed domain name and path to the redirect URL
page in your app code. This fi eld accepts authorization codes from SharePoint (see Chapter 10).
Note that it must be HTTPS; for example, https://myapp.contoso.com/redirecturi.aspx.

 7. Pick the duration you want the client ID and secret to be valid for. The default is one year.

 8. After it’s complete, the form should look like the one shown in Figure 8-4.

FIGURE 8-3

FIGURE 8-4

 9. Click the Generate Client ID button. A confi rmation screen with your client ID and secret
appears, as shown in Figure 8-5.

c08.indd 205c08.indd 205 19/01/13 11:16 AM19/01/13 11:16 AM

https://myapp.contoso.com/redirecturi.aspx
http://myapp.contoso.com

206 ❘ CHAPTER 8 DISTRIBUTING SHAREPOINT 2013 APPS

 10. Make a copy of this page and store these details somewhere safe. This is very important! No way
exists to retrieve them again after you have dismissed this screen.

 11. After you have made a safe and secure copy of the details shown, click Done.

 12. You can now confi gure your Provider-hosted app with the client ID and secret combination you
generated.

How It Works

In this exercise you created a new client ID and secret through the Seller Dashboard. In the background
the Seller Dashboard keeps a record of the combination for use when your app code talks to SharePoint.
You need to manually create a combination for Provider-hosted apps because you need to manually set
them in your app code project. For SharePoint-hosted and Autohosted apps, the client ID and secret are
created automatically upon installation and you never need to worry about them.

Pricing and Licensing Apps

After you have created a client ID and client secret, but before you submit an app to the Store, you
need to make some important decisions about how you will price and license the app. The fi rst

FIGURE 8-5

c08.indd 206c08.indd 206 19/01/13 11:16 AM19/01/13 11:16 AM

Publishing Apps in the SharePoint Store ❘ 207

question to ask yourself is whether your app will be free or not. There is a lot to consider when
making this decision. You might want to make the app free and make money by having ads in the
app. Alternatively, you could offer a free version that supports in-app purchases that cost money and
unlock additional functionality in your application.

For paid apps you can offer a price per user and set an upper bound for the most an organization
will pay for your app. This method allows you to say, for example, that for above 500 users, the app
costs the same no matter how many users it is for.

NOTE At the time of this writing the SharePoint Store does not support

commerce or licensing support for in-app purchases. This capability is possible

through the use of a third-party payment system and licensing checks, but it is

outside the boundary of the SharePoint Store and Seller Dashboard and is up to

the developer to provide and manage.

You might also want to support offering a trial of your application. The SharePoint Store supports
the ability to limit the use of the trial to a particular time period and a number of users.

Another important point to consider is that app developers must include code-based checks
in their code to check for a valid license. This ensures the individual or organization has purchased
the appropriate license for your app. This isn’t enforced by SharePoint itself and is the developer’s
responsibility. This is done in two steps:

 1. Request the licenses from SharePoint.

 2. Verify the licenses with the Store.

To request the licenses from SharePoint you make a call using the Client-Side Object Model (CSOM)
as follows:

ClientResult<AppLicenseCollection> licenses =
Microsoft.SharePoint.Client.Utilities.Utility.GetAppLicenseInformation(ctx, productId);
ctx.ExecuteQuery();

This returns the list of licenses that the user has for the application. The next step is to verify
those licenses. To do that you need to submit the license to the validation Web service hosted and
run by Microsoft. The REST-based call to verify a license is at: https://verificationservice
.officeapps.live.com/ova/verificationagent.svc/rest/verify?token={token}.

The {token} parameter is a URI-encoded representation of the license token (.NET uses
Uri.EscapeDataString or something similar). The response from the service includes information
about whether the license is valid or has expired, the license type, number of seats, and when it
expires. You can then make determinations based on this information in your application code to
decide what you want to do. Some considerations include:

c08.indd 207c08.indd 207 19/01/13 11:16 AM19/01/13 11:16 AM

https://verificationservice.officeapps.live.com/ova/verificationagent.svc/rest/verify?token={token}
https://verificationservice.officeapps.live.com/ova/verificationagent.svc/rest/verify?token={token}

208 ❘ CHAPTER 8 DISTRIBUTING SHAREPOINT 2013 APPS

 ➤ Revoking access

 ➤ Allowing access

 ➤ Turning on or off features based on whether the users are paid or free

 ➤ Turning on features if users have bought more than a certain number of seats

 ➤ Warning users their license is going to expire soon and they should consider buying a
new one

The options are limitless, which is why leaving it up to the developer to decide what to do and
enforce those options through code is part of the app model design. You are not limited to the
decision-making process. You could, for example, confer with another system as part of the process
such as another licensing system or in-app payment system. These are just examples, but the fi nal
pricing and licensing decisions will vary based on the individual app.

Submitting Apps

Once you make a decision on pricing and licensing your app, you are ready to submit it. The two
main steps for submitting and publishing an app through the Seller Dashboard are the following:

 1. Submit the app.

 2. Receive app validation.

You are responsible for submitting the app, and Microsoft is responsible for validating and
approving the app.

To submit an app, you must provide details about your application. Some of these include:

 ➤ App type

 ➤ Title

 ➤ Description

 ➤ Logo and graphics

 ➤ App package

 ➤ OAuth client ID and secret details (Provider-hosted apps)

 ➤ Pricing and licensing information

Some of these details are easier to answer than others, and thinking them through prior to
submitting your app is advisable. Don’t worry if you get stuck, however; you can save your
submission as a draft and come back to it at a later date.

In this next exercise you will try out the process of submitting an app to the SharePoint Store.
The example will only submit a test application and won’t submit the app for fi nal validation with
Microsoft, however, the application won’t end up being published to the SharePoint Store.

c08.indd 208c08.indd 208 19/01/13 11:16 AM19/01/13 11:16 AM

Publishing Apps in the SharePoint Store ❘ 209

TRY IT OUT Submitting an App to the Store

In this example you submit a Provider-hosted app package to the store for publishing. You need a valid
.app package, artwork, and associated app details. You also must have created a client ID in the Seller
Dashboard (see the “Creating a Client ID and Secret” section earlier in this chapter).

 1. Log in to the Seller Dashboard on the http://sellerdashboard.microsoft.com website.

 2. Click the Add a new app link. A page appears prompting you to choose an application type, as
shown in Figure 8-6.

 3. Select App for SharePoint from the list and click Next.

FIGURE 8-6

 4. Now it’s time to start entering all the data about the application. Enter My App into the Title fi eld
and 1 in the Version fi eld. Select Travel + Navigation from the Category drop-down list.

 5. Click the + in the logo area. This prompts you to pick a logo. The logo must be 96 × 96 in size.
A logo in the correct dimensions is available in the source code download package for this chapter
(applogo.png).

 6. Click the app package icon and select the SharePointAppPackage.app fi le from the download
package for this chapter.

c08.indd 209c08.indd 209 19/01/13 11:16 AM19/01/13 11:16 AM

http://sellerdashboard.microsoft.com

210 ❘ CHAPTER 8 DISTRIBUTING SHAREPOINT 2013 APPS

 7. Click the “My app is a service and requires
server to server authorization” check box. This
specifi es that your app is Provider-hosted and
an OAuth client ID and secret is required. Select
the client ID you created earlier, as shown in
Figure 8-7.

 8. Click Next.

 9. On the details screen enter a short and a long description for the app. These can be anything
you like.

 10. You need to specify at least one screenshot of 512 × 384 dimensions for the application in order to
submit an app. Click the + on the fi rst screenshot and select screenshot1.png from the download
package for this chapter.

 11. In the support URL fi eld enter the URL of your website where users can get assistance on your
application; for example, http://www.acewidgets.com.

 12. Click Next.

 13. Select the pricing and licensing for the application. In this example, make it a paid-for application,
so select the “My app is for purchase” option.

 14. Select 1.99 in the Price per User drop-down list.

 15. Select 50 in the Price Threshold drop-down list. This number signifi es that the most an
organization will need to purchase is 50 licenses.

 16. At this point you might see a warning about
your payout information not being complete
(see Figure 8-8). If you see this warning, click
“My app is free” so that you can move on.

 17. Click Save as Draft, unless this is for a real app submission, in which case, click Submit for
Approval. You can now see your newly created app submission in draft status in the manage
section, as shown in Figure 8-9.

FIGURE 8-7

FIGURE 8-8

FIGURE 8-9

c08.indd 210c08.indd 210 19/01/13 11:16 AM19/01/13 11:16 AM

http://www.acewidgets.com

Publishing Apps in the SharePoint Store ❘ 211

How It Works

In this exercise you prepared an application submission to the SharePoint Store by providing the
details for the application and associated artwork such as the logo and screenshots. Behind the scenes
Microsoft keeps a catalog of these details. When, and if, you submit the application for fi nal validation,
Microsoft’s test and verifi cation teams receive your application and then install it on a set of test sys-
tems for verifi cation and testing. In this example you didn’t submit the sample application for verifi ca-
tion, however, for a production application you would.

After your application has been submitted, validated (more on that in the next section), and
published, the Apps page in the Seller Dashboard gives you the ability to edit the application’s
details or unpublish the app. See Figure 8-10 for an example of a published app page in the Seller
Dashboard.

FIGURE 8-10

Getting Apps Validated

When you submit an application for publishing in the store by Microsoft, the app goes through a
series of checks and tests. Microsoft conducts these tests to ensure apps are high-quality and that
they meet the rules and policies Microsoft has put in place.

c08.indd 211c08.indd 211 19/01/13 11:16 AM19/01/13 11:16 AM

212 ❘ CHAPTER 8 DISTRIBUTING SHAREPOINT 2013 APPS

App developers must ensure their creations meet Microsoft’s rules and regulations. If your app fails
one or more of these rules, it will be rejected and you will be notifi ed with details of the failure and
the policy that the app didn’t pass. You can correct the issue and resubmit the app when it’s ready.

The rules that your app must adhere to fall into the following high-level categories:

 ➤ App value: Does it provide value to the customer?

 ➤ Advertising rules: Does your app show ads in an appropriate manner?

 ➤ In-app purchases: Does the description of your app state what is for sale in your app?

 ➤ Reliability and performance: Does your app error out?

 ➤ Predictability: Does the app do only what it says it does — for example, with customer
data?

 ➤ Customer in control: Does your app ask for permission to do things with customer data?

 ➤ Content: Does your app contain adult or obscene content?

 ➤ Accuracy: Does the name and marketing information of your application accurately
represent the app?

 ➤ Updates: Does an update to your app remove functionality?

 ➤ Supported capabilities: Does your app use only supported APIs?

You can view a comprehensive list of rules and policies online on the MSDN website at: http://
msdn.microsoft.com/en-us/library/office/apps/jj220035.aspx. As of this writing these
rules are at version 1.2, but are subject to change at any time by Microsoft.

APPLICATION LIFE CYCLE

After you have an application in the store, keeping track of any issues and problems people are
having with it and submitting updates to add new functionality or correct any issues is very
important. It is generally well understood that a popular application in any ecosystem often has a
responsive developer who is assisting customers with issues they are having and releasing updates
to fi x common issues. Additionally, customers love buying an app and then seeing ongoing value
delivered through regular updates and feature additions.

The Seller Dashboard gives app publishers some tools to assist with the life-cycle process:

 ➤ Metrics about your apps

 ➤ App update process

These tools are discussed at length in the following sections.

c08.indd 212c08.indd 212 19/01/13 11:16 AM19/01/13 11:16 AM

http://msdn.microsoft.com/en-us/library/office/apps/jj220035.aspx
http://msdn.microsoft.com/en-us/library/office/apps/jj220035.aspx

Application Life cycle ❘ 213

Using Seller Dashboard Metrics

The Store captures a number of helpful metrics that can help with giving you insights into how your
app is being used and whether any issues are occurring. The following are a few of the metrics that
are gathered:

 ➤ Downloads

 ➤ Purchases

 ➤ Trials

 ➤ Purchased seats

 ➤ Installs

 ➤ Uninstalls

 ➤ Runtime errors

Figure 8-11 shows an example of the metrics overview page showing all your apps in the Seller
Dashboard.

FIGURE 8-11

Figure 8-12 shows an example of the detailed metrics for a given application in the Seller
Dashboard.

c08.indd 213c08.indd 213 19/01/13 11:16 AM19/01/13 11:16 AM

214 ❘ CHAPTER 8 DISTRIBUTING SHAREPOINT 2013 APPS

Capturing additional information and metrics to help you run your apps is also highly advisable.
You can use tools such as Google Analytics to monitor usage of an app because app pages and App
Parts are Web pages.

Gathering information about crashes or errors that occur in an app is also extremely important
so that you can make further diagnoses. Having a customer complaining about an app crashing
and not having any visibility into why it might be happening can be infuriating to a developer.
Capturing more information than you think you need is often the best plan. Following on from that,
monitoring your error logs and proactively getting in touch with customers who are experiencing an
issue often goes a long way toward keeping a happy customer.

Upgrading Apps

From time to time you will either want to release a new feature in an app or release a new version to
fi x a found bug or issue. To update an app, simply submit a new version of your app package using
the same Product ID (in the app manifest fi le). Doing this signifi es that it is an update and not a new
application.

In many cases, however, you might not need to submit an update. For Provider-hosted apps, the
only time you need to submit an update is if the components in the app package change, not if the
back end of the app changes. The reason is that with a Provider-hosted app, you can change the
back end of the app, any pages, code, databases, and assets without needing to touch any of the
parts that are deployed to SharePoint. This capability can be extremely helpful when resolving
issues, can be done quickly, requires no input or effort from the customer, and can be controlled
by you. However, in some instances this capability can cause issues. Think about the scenario

FIGURE 8-12

c08.indd 214c08.indd 214 19/01/13 11:16 AM19/01/13 11:16 AM

Application Life cycle ❘ 215

when you do update the SharePoint components of an app and change its behavior for some reason.
Now your back-end code must support those who have installed version 1 of the application and
also version 2! Be careful not to make breaking changes to the back end code without thinking
through the ramifi cations of doing so.

When you do submit an app update to the store or app catalog, the user will see a visual indicator
beside the app that an update is available and will be prompted to update it.

After the update starts, SharePoint locks the application while the update is in progress. This stops
people from inadvertently trying to launch the app while the update is happening.

What happens during the update depends on the application type. The following summarizes at a
high level what occurs for each:

For Provider-hosted and SharePoint-hosted apps (apps with a WSP in them):

 ➤ A backup of the application’s SharePoint site is taken.

 ➤ The update is applied to the backup.

 ➤ If the update succeeds, the update is applied to the primary application’s SharePoint site.

 ➤ SharePoint executes the PostUpdate Web service, if one is provided.

For Autohosted apps:

 ➤ SharePoint updates the SQL Azure database if the app contains a DACPAC (see Chapter 7
for more on this topic).

 ➤ SharePoint then runs the same steps as for Provider-hosted and SharePoint-hosted apps
(see the preceding bulleted list).

The PostUpdate Web service referenced in the earlier steps is one of several events that are raised in
the life cycle of an application. These are calls that are made by SharePoint to remote Web services
that you as an app developer host and run, which means you are notifi ed when these events occur.
These events include the following:

 ➤ App Installed (InstalledEventEndpoint node in the app manifest)

 ➤ App Uninstalling (UninstallingEventEndpoint node in the app manifest)

 ➤ App Upgraded (UpgradedEventEndpoint node in the app manifest)

You can use these events to do things such as:

 ➤ Set up data when a customer installs an app.

 ➤ Remove data when a customer uninstalls an app.

 ➤ Change data when a customer upgrades.

 ➤ Record the version a customer is using when he upgrades.

How to use these events is up to the developer. Even if you only use them to record what installs
have taken place and what version customers are running, this information might come in handy for
debugging and diagnosis purposes.

c08.indd 215c08.indd 215 19/01/13 11:16 AM19/01/13 11:16 AM

216 ❘ CHAPTER 8 DISTRIBUTING SHAREPOINT 2013 APPS

SUMMARY

The SharePoint Store offers developers and ISVs access to the potentially hundreds of millions of
SharePoint customers and users around the world, creating a global marketplace for components,
add-ons, and a full line of business apps. The store is an unprecedented channel to get these reusable
and resalable components into customers’ hands.

For users of SharePoint it provides a single trusted location for procurement of apps. Today, users
generally need to research and fi nd components themselves and then go through the common and
often arduous process of asking their IT department to install the component on their SharePoint
farm. The IT department often balks at the task, given the risk involved in installing others’ code
on the SharePoint servers and so typically only the most popular apps ever see the light of day
in SharePoint. The store helps fi x that situation by offering a sandboxed and secure location for
installing components where the IT department can have a level of trust that the apps won’t bring
down the SharePoint farm due to poor programming or the like. However, apps may still be able
to read, edit, copy, and delete data depending on the permissions they ask for and are granted,
so caution is still advised. To assist with this problem SharePoint provides the ability for the IT
department to shut off access to the store and only provide apps through a curated private app
catalog experience that IT controls.

Developers should seriously consider offering applications to others through the store, thus helping
others with their innovative apps and also potentially making money in the process.

EXERCISES

You can fi nd answers to the exercises for this chapter in Appendix A.

 1. What app type requires a pre-created client ID and secret prior to submission to the SharePoint

Store?

 2. What are some of the options you have as an app publisher for monetizing your application

through the store?

 3. What are the Web services available to catch the life-cycle events of an application?

c08.indd 216c08.indd 216 19/01/13 11:16 AM19/01/13 11:16 AM

Recommended Reading ❘ 217

 � WHAT YOU LEARNED IN THIS CHAPTER

ITEM DESCRIPTION

Pricing and licensing The store off ers the ability to publish free and paid-for application types.

Validation Apps must not violate a set list of policies set by Microsoft for inclusion in

the marketplace.

Submission The submission process includes creating client IDs and secrets

(Provider-hosted apps only) and then submission of the app and its

assets.

RECOMMENDED READING

How to create or edit your seller account in the Microsoft Seller Dashboard — http://msdn
.microsoft.com/en-us/library/office/apps/jj220034.aspx

Licensing apps for Offi ce and SharePoint — http://msdn.microsoft.com/en-us/library/
office/apps/jj163257.aspx

c08.indd 217c08.indd 217 19/01/13 11:16 AM19/01/13 11:16 AM

http://msdn.microsoft.com/en-us/library/office/apps/jj220034.aspx
http://msdn.microsoft.com/en-us/library/office/apps/jj220034.aspx
http://msdn.microsoft.com/en-us/library/office/apps/jj163257.aspx
http://msdn.microsoft.com/en-us/library/office/apps/jj163257.aspx

c08.indd 218c08.indd 218 19/01/13 11:16 AM19/01/13 11:16 AM

Overview of the Client-Side
Object Model and REST APIs

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ Understanding the API options available in SharePoint 2013

 ➤ Learning how to use the new CSOM APIs

 ➤ Learning about REST and OData support in SharePoint 2013

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at: http://www.wrox
.com/WileyCDA/WroxTitle/productCd-1118495845.html on the Download Code tab. The
code for this chapter is divided into the following major examples:

 ➤ MyODataJavaScriptApp.js

 ➤ MyFirstCSOMConsole.zip

 ➤ JavaScriptCSOMApp.js

SharePoint applications begin a fundamental shift away from building code that runs within
the SharePoint process. Along with this shift comes the start of a movement away from
using the historical API sets that don’t provide support for this newly decoupled code. In
this chapter you learn about and explore the updated and new options available for working
with SharePoint at a programmatic level. You also learn when is best to use the various
options, how they work, and most importantly, how to use them to your advantage. As this
chapter explains, many of the design philosophies, technologies, and principles that went into
SharePoint are shared with services on the Internet with which developers are already familiar,
such as Twitter and Facebook. This means learning them should be more straightforward and
far simpler than learning a proprietary system.

9

c09.indd 219c09.indd 219 19/01/13 11:18 AM19/01/13 11:18 AM

http://www.wrox.com/WileyCDA/WroxTitle/productCd-1118495845.html
http://www.wrox.com/WileyCDA/WroxTitle/productCd-1118495845.html
http://WROX.COM
http://wrox.com

220 ❘ CHAPTER 9 OVERVIEW OF THE CLIENT-SIDE OBJECT MODEL AND REST APIS

INTRODUCING REMOTE APIS IN SHAREPOINT 2013

When SharePoint fi rst started gaining traction with users all across the world around the year 2002,
the product was very different than the developer friendly platform it is today. Initially, SharePoint
wasn’t built with developers in mind. It didn’t offer good extensibility points or customization
techniques, which lead to people’s customizing SharePoint in unsupported and often fragile ways.
Microsoft heard loud and clear from people all over the world that they wanted to be able to do
things such as change the branding and make templates for parts of SharePoint. As a result, releases
such as SharePoint 2007 and the move from ASP to ASP.NET represented great steps forward,
and new options for extensibility emerged. People were able to build Web parts and had access to
SharePoint’s Server-Side Object Model (Server OM) that allowed them to call into SharePoint data
and perform operations programmatically. These features enabled developers to build solutions of
all kinds. However, this code that leveraged the Server OM ran as part of SharePoint’s processes.
The code would load within SharePoint, which made it vital to ensure that it was of high quality;
otherwise, the code could adversely affect SharePoint. Issues such as high memory consumption
and high CPU load became prevalent. In fact, Microsoft has often acknowledged that many of the
critical support issues customers raised with them had their root cause identifi ed as issues with
custom code in the SharePoint process. This was, of course, not a good thing for SharePoint’s image
and reputation. Matters were further complicated by the fact that, at times, the Server OM was hard
to use. For example, developers needed to know how and when to dispose of objects correctly. Not
doing so could lead to high memory consumption. Conversely, disposing of the wrong thing could
cause crashes.

Additionally, SharePoint has for some time provided a set of SOAP-based Web services that
enable users to do some, but by no means all, of the same things the Server OM provided. These
Web services revolved around sending and receiving a SOAP-formatted XML payload to and
from SharePoint. These services have not stood the test of time well though. They are bulky and
cumbersome and have been in dire need of an upgrade.

In the SharePoint 2013 release, those same Web services exist for backward compatibility. In fact,
in SharePoint 2013 Microsoft has signaled it is deprecating these older SOAP-based services, which
means you are unlikely to see them in future releases. Deprecating is a warning to stop using these
services and to start thinking about shifting your code to the newer, more modern APIs.

Because the Server Object Model and the SOAP Web services are the two main APIs available for
programmatically integrating with SharePoint, and because both of these options have signifi cant
drawbacks in their approach given modern recent developments in API and protocol design,
SharePoint 2013 addresses these issues head-on. The new release of SharePoint provides a new,
consolidated set of APIs for developers based on newer Web standards and modern coding practices,
and targets integration scenarios that are the most prevalent and common. For developers who build
solutions that integrate with SharePoint this is good news.

The rest of this chapter is dedicated to walking you through SharePoint 2013’s API improvements,
assisting you with learning about them, and providing guidance on where and when to use
them.

c09.indd 220c09.indd 220 19/01/13 11:18 AM19/01/13 11:18 AM

http://ASP.NET

Client-Side Object Model (CSOM) Basics ❘ 221

CLIENT-SIDE OBJECT MODEL (CSOM) BASICS

In SharePoint 2010 Microsoft took the fi rst steps toward providing better remote API options to
developers with the introduction of the Client-Side Object Model, or CSOM. The CSOM came in
three varieties:

 ➤ Managed Code (.NET)

 ➤ ECMA Script (also known as JavaScript)

 ➤ Silverlight

This model provided developers with the ability to access some functionality of SharePoint from
remote code applications. For example, a Silverlight application running on a Web page could
call back into SharePoint and retrieve data, or another system written in a .NET language could
do the same. In fact, the underlying protocols that the CSOM used to talk to SharePoint were
XML and JSON (JavaScript Object Notation) and were fully documented so that other systems
capable of HTTP requests could make the same calls if they wanted. This was a huge step ahead
of the SharePoint Server OM because your code could run remotely. It also hid much of the pain
and overhead of having to deal with the SOAP Web services. However, the fi rst version had one
major drawback: it only provided API coverage to features in SharePoint Foundation such as sites,
lists, and documents, and not to features available in the SharePoint Server standard or enterprise
versions of the software.

SharePoint 2013 has added focus on remote APIs with the CSOM and its underlying protocols as
the primary API for interacting with SharePoint moving forward. SharePoint 2013 provides access
to its APIs in several forms to assist developers:

 ➤ Managed code assemblies (.NET)

 ➤ JavaScript

 ➤ REST/OData

 ➤ Windows Phone assemblies

 ➤ Silverlight assemblies

Depending on your solution or project you must decide on the suitability and applicability of using
one or more of the preceding to accomplish your tasks. For example, if you are building a Windows
Forms application for Windows with C# you would use the Managed CSOM. If you are building
a Web Part/app part for SharePoint you can use the JavaScript CSOM in your app’s front-end code
and the Managed CSOM for the server-side code.

If you fi nd that an applicable precompiled library doesn’t exist for the platform you are using then
you must consider the REST/OData endpoints. They provide Web standards–based HTTP/HTTPS
endpoints that are platform agnostic.

Underlying all of these choices is a standards-based protocol based on REST, OData, and XML.
Each of the libraries simply abstracts the complexity of calling the underpinning services for you
and adds a layer of helper libraries to nicely package those up.

c09.indd 221c09.indd 221 19/01/13 11:18 AM19/01/13 11:18 AM

222 ❘ CHAPTER 9 OVERVIEW OF THE CLIENT-SIDE OBJECT MODEL AND REST APIS

At the heart of the new API set is _API. This is a consolidated single endpoint for all remote APIs
in SharePoint 2013. _API refers to the location from which it is accessible in the SharePoint URL
structure: http://yourservername/sitename/_api.

Although _API provides the central location for API services, SharePoint 2010 also supported (in
a more limited manner) some REST services with the ListData.svc service. Those of you who
are familiar with the ListData.svc service will be glad to hear backward compatibility has been
preserved in SharePoint 2013 by leaving the ListData.svc path in place.

_API is fully REST and OData enabled. REST stands for Representational State Transfer, and
people commonly refer to an API as RESTful when it meets the defi nition laid out as part of
the founding REST principles. You can read more on the background of REST in the creator’s
dissertation on the topic at: http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_
arch_style.htm.

The Open Data Protocol (OData) specifi es a protocol for requesting and working with data over
commonly accepted Web protocols such as HTTP, JSON, and XML. OData builds on the principles
of REST to provide a common resourcing URL structure and parameter system to make querying
and working with data simpler. This chapter goes into more detail on this topic later.

_API builds on the foundation laid in the SharePoint 2010 CSOM by providing access to many more
areas of SharePoint, including the following, which are all discussed in detail later in the chapter:

 ➤ Lists and libraries

 ➤ User profi les

 ➤ Search

 ➤ Workfl ow

 ➤ Publishing

 ➤ Social feeds and sharing

 ➤ Taxonomy

 ➤ Web

 ➤ Business data

_API provides a consistent and unifi ed place where SharePoint provides access to its remote APIs.
Each of the CSOM libraries and object models discussed in the rest of this chapter build on a
common foundation of API design based on standards-based protocols such as HTTP, REST,
OData, and XML to provide an open and accessible API infrastructure.

MANAGED CODE (.NET)

In SharePoint 2010 Microsoft provided a version of the managed code CSOM for developers of
.NET applications. This library has been rebuilt for SharePoint 2013 and is provided as part of the
SharePoint installation. As in the 2010 release, it is provided as part of a redistributable package for
developers to include in their applications.

c09.indd 222c09.indd 222 19/01/13 11:18 AM19/01/13 11:18 AM

http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

Managed Code (.NET) ❘ 223

It is made up of the following .NET assemblies:

 ➤ Microsoft.SharePoint.Client.Runtime.dll

 ➤ Microsoft.SharePoint.Client.dll

 ➤ Microsoft.SharePoint.Client.DocumentManagement.dll

 ➤ Microsoft.SharePoint.Client.Publishing.dll

 ➤ Microsoft.SharePoint.Client.Taxonomy.dll

 ➤ Microsoft.SharePoint.Client.UserProfiles.dll

 ➤ Microsoft.SharePoint.WorkflowServices.Client.dll

Later in this chapter you learn about which parts of the CSOM are in what DLL and namespace,
but the naming of the DLLs should also give you a few hints.

Setup

You can install the DLLs on any computer by downloading the SharePoint Client Components SDK
available at: http://www.microsoft.com/en-us/download/details.aspx?id=30355.

Additionally you can fi nd them in the following location on a machine with SharePoint installed, as
shown in Figure 9-1:

%ProgramFiles%\Common Files\Microsoft Shared\web server extensions\15\ISAPI

FIGURE 9-1

After you have added references to these DLLs from your .NET application such as a Windows
Forms application or console application, you can add a using statement as follows:

using Microsoft.SharePoint.Client;

In managed code one of the fi rst things you must do to make calls to SharePoint is to establish a
ClientContext. It sets up things such as the URL to your SharePoint site and the authentication

c09.indd 223c09.indd 223 19/01/13 11:18 AM19/01/13 11:18 AM

http://www.microsoft.com/en-us/download/details.aspx?id=30355

224 ❘ CHAPTER 9 OVERVIEW OF THE CLIENT-SIDE OBJECT MODEL AND REST APIS

details needed to communicate with the services. You can instantiate a ClientContext object along
with the URL of your site as shown here:

ClientContext context = new ClientContext("http://MySharePointSite");

After you have established a ClientContext the next thing most people want to know is how to
interact with SharePoint data. The core set of SharePoint data objects in the CSOM are as follows:

 ➤ Site

 ➤ Web

 ➤ List

 ➤ ListItem

If you are familiar with the SharePoint Server-Side Object Model these items will all sound familiar.
However, the naming convention is slightly different, and in the CSOM the “SP” on the front is
omitted. However, they map one to one with their server-side equivalent.

In an installation where your SharePoint Server uses Windows Authentication (NTLM) to secure
it, the CSOM passes the authentication context of the application process along with it. For
example, if you ran your console application under your account the CSOM would be running as
you are making the calls to SharePoint. This means you would need to have the correct privileges
in SharePoint for the operations or data you were trying to access or you would receive an access
denied exception. So, for example, if you were trying to manipulate ListItem object data with the
CSOM you would need the corresponding security privileges on those list items in SharePoint.

Querying

The CSOM has been built from the ground up with two important features in mind:

 ➤ Batching

 ➤ Returning only the data that you need

When you work with remote systems and call them over potentially latent and unknown bandwidth
connections, these two things are very important. You must be able to keep the number of calls
and responses to a minimum and you should only bring back the minimum amount of data you
need to do your job. For this reason the CSOM only executes calls when you ask it to and includes
all statements and operations since the last time you made it execute. This might at times seem
cumbersome to someone new to using the CSOM; however, it enforces the developer’s involvement
in these choices and ultimately helps make better performing code.

The core object required to work with almost every aspect of the CSOM is a Site or Web object.
Because all SharePoint data is stored in sites these objects are usually the fi rst ones you need to
instantiate.

You can do it by querying the context for the Site and Web objects corresponding to the URL with
which you constructed the ClientContext. You do this with the .Site and .Web properties like so:

c09.indd 224c09.indd 224 19/01/13 11:18 AM19/01/13 11:18 AM

http://MySharePointSite

Managed Code (.NET) ❘ 225

ClientContext clientContext = new ClientContext("http://MySharePointSiteUrl");
Site site = clientContext.Site;
Web web = clientContext.Web;

Once you have your Site and Web context objects you are ready to start working with data in them.
As mentioned previously the CSOM only brings back the data you ask it to. You use the Load
method on the ClientContext to do this as follows:

List list = web.Lists.GetByTitle("Movies");
ListItemCollection listItems = list.GetItems(CamlQuery.CreateAllItemsQuery(50));
clientContext.Load(listItems, items => items.Include(item => item["Title"]));
clientContext.ExecuteQuery();

In the Load statement the Include command instructs the CSOM to include that property in the
results. In the example this instructs the CSOM to load the Title property. Now you are ready to
execute the operation against the SharePoint Server. Remember, the CSOM only sends commands to
SharePoint when you are ready. Calling Load does not do that. The transaction only executes when
you call the ExecuteQuery method, like this:

ClientContext clientContext = new ClientContext("http://MySharePointSiteUrl");
Web web = clientContext.Web;
clientContext.Load(web);
clientContext.ExecuteQuery(); // this line executes the instructions

By making the developer explicitly request that the instructions be carried out, the CSOM enables
you to batch your commands into appropriate sets and thus minimize the number of requests and
responses to and from the server. On a highly latent connection this can save many seconds of
transmission time and thus help keep your application speedy.

NOTE If you attempt to use a property on a CSOM object and get a

PropertyOrFieldNotInitializedException you likely have not asked for it to

be returned and loaded by specifying it in a Load command.

This same technique is applicable in other scenarios and operations, such as bringing back only the
properties you desire; for example:

ClientContext clientContext = new ClientContext("http://MySharePointSiteUrl");
Web web = clientContext.Web;
clientContext.Load(web, w => w.Title, w => w.Description);
clientContext.ExecuteQuery();

Here the Load method is called, passing along a description of the properties to return. If you don’t
specify these properties only the default ones will be returned.

The CSOM also allows for operations such as creating data. Because you don’t have a
reference to an existing object, the CSOM instead uses a creation information object such as
ListItemCreationInformation to capture all the information, such as the column data, about
the ListItem.

c09.indd 225c09.indd 225 19/01/13 11:18 AM19/01/13 11:18 AM

http://MySharePointSiteUrl
http://MySharePointSiteUrl
http://MySharePointSiteUrl

226 ❘ CHAPTER 9 OVERVIEW OF THE CLIENT-SIDE OBJECT MODEL AND REST APIS

The following example shows a basic use of the ListItemCreationInformation class to insert a
new row into a list:

ClientContext clientContext = new ClientContext("http://MySharePointSiteUrl");
Web web = clientContext.Web;
List list = web.Lists. GetByTitle("Tasks")
clientContext.Load(web);
clientContext.Load(list);
ListItemCreationInformation itemCreateInfo = new ListItemCreationInformation();
ListItem listItem = list.AddItem(itemCreateInfo);
listItem["Title"] = "New Announcement!";
listItem.Update();
clientContext.ExecuteQuery();

Some other examples of creation information classes include:

 ➤ ListCreationInformation

 ➤ WebCreationInformation

 ➤ ViewCreationInformation

 ➤ FileCreationInformation

To try a practical example of using the CSOM in a console application, work through the following
exercise.

TRY IT OUT My First CSOM Console App (MyFirstCSOMConsole.zip)

In this exercise you create a console application that uses the Managed .NET CSOM to talk remotely to
a SharePoint on-premises server. You need a SharePoint 2013 site, Visual Studio 2010 or 2012, and the
SharePoint Client Components SDK installed. You can fi nd the completed code for this exercise in the
MyFirstCSOMConsole.zip fi le included with the code download for this chapter.

 1. In your SharePoint site create a new Custom list called Movies by clicking in Site Contents ➪ Add
App, then pick Custom List from the list and call it Movies. Click Create.

 2. Click on the List tab of the ribbon and choose Create Column.

 3. Select Number and call the column Length. Click OK to create the new column.

 4. Add three or four new list items to the list for your favorite movies along with their lengths.

 5. Open Visual Studio and create a new project by choosing Visual C# ➪ Windows ➪ Console
Application project. Call it MyFirstCSOMConsole. Click OK to create the project.

 6. Right-click References, then choose Add Reference.

 7. Click Browse and browse to the %ProgramFiles%\Common Files\Microsoft Shared\web
server extensions\15\ISAPI folder.

 8. Select Microsoft.SharePoint.Client.Runtime.dll and Microsoft.SharePoint.Client.dll.
Click Add.

 9. At the top of your Program.cs fi le add using Microsoft.SharePoint.Client;.

c09.indd 226c09.indd 226 19/01/13 11:18 AM19/01/13 11:18 AM

http://MySharePointSiteUrl

Managed Code (.NET) ❘ 227

 10. In the Main() function of your app add the following code. This code queries your SharePoint site
for its Title and queries the Movies list for its items, only bringing back the ID, Title, and Length
fi elds. You need to replace servername and sitename with your own SharePoint Server details.

ClientContext clientContext = new ClientContext("http://servername/sitename");
Site site = clientContext.Site;
Web web = clientContext.Web;
clientContext.Load(web, w => w.Title);

List list = web.Lists.GetByTitle("Movies");
ListItemCollection listItems = list.GetItems(CamlQuery.CreateAllItemsQuery(50));
clientContext.Load(listItems, items => items.Include(item => item["Title"],
item => item["Length"], item => item.Id));

clientContext.ExecuteQuery();

Console.WriteLine(web.Title);

foreach (ListItem item in listItems)
{
 Console.WriteLine(string.Format("Item: {0}, {1}, {2}", item.Id,
item["Title"], item["Length"]));
}

ListItemCreationInformation itemCreateInfo = new ListItemCreationInformation();
ListItem listItem = list.AddItem(itemCreateInfo);
listItem["Title"] = "Diamonds Are Forever";
listItem["Length"] = 120;
listItem.Update();

clientContext.Load(listItems, items => items.Include(item => item["Title"],
item => item["Length"], item => item.Id));
clientContext.ExecuteQuery();

Console.WriteLine("Added Movie: " + listItem["Title"]);

 11. Press F5 to run your console application. The Title of your site appears followed by a row for each
movie in the Movies list. Finally, you can also see that your new ListItem was added to the list.
Figure 9-2 outlines what you should see in the console window.

FIGURE 9-2

c09.indd 227c09.indd 227 19/01/13 11:18 AM19/01/13 11:18 AM

http://servername/sitename

228 ❘ CHAPTER 9 OVERVIEW OF THE CLIENT-SIDE OBJECT MODEL AND REST APIS

How It Works

In this exercise you created a console application that used the Managed .NET CSOM to query your
SharePoint Server. You limited the data you received back by indicating in the Load statements just the
properties you wanted and only executed the calls when ready with the ExecuteQuery statement.

Behind the scenes the CSOM is constructing queries to the SharePoint Server with XML and send-
ing them to the _vti_bin/Client.svc CSOM endpoint. SharePoint is then interpreting the calls and
returning the results in a JSON payload that the CSOM then unpacks into the resultant CSOM objects.

JAVASCRIPT

Alongside the Managed .NET Client-Side Object Model (Managed CSOM) is the JavaScript Client
Object Model (JS CSOM).

NOTE See the previous section, “Managed Code (.NET),” for background

 foundational information about the CSOM that isn’t repeated in this section.

The primary purpose of the JS CSOM is to allow JavaScript code running on pages within the
context of SharePoint to talk back to SharePoint without requiring a full-page postback. It is not
designed or intended for developers to use outside of the context of pages served from SharePoint.

Similar to the Managed CSOM, the JS CSOM also is built to batch requests to ensure performance.
However, one of the fundamental differences is that the JS CSOM is designed with asynchronous
calls and callbacks in mind. This ensures that transactions that take some time to complete don’t
potentially block the calling thread, possibly impacting the UI of your application.

To access the JS CSOM the calling page must reference the following two fi les:

 ➤ SP.Runtime.js

 ➤ SP.js

Each of these is located in the /_layouts/15/ directory under each SharePoint site; for example,
http://myserver/sitename/_layouts/15/SP.js.

You can also fi nd these fi les on any SharePoint 2013 server in the following location:

%ProgramFiles%\Common Files\Microsoft Shared\
web server extensions\15\TEMPLATE\LAYOUTS

NOTE Although the JS CSOM libraries are available, sometimes simple REST/

OData HTTP-based calls might be just as easy for you to use. If you are familiar

with making REST/JSON-based calls then they might also be worth considering.

However, you would lose some of the benefi ts of the CSOM, such as automatic

batching.

c09.indd 228c09.indd 228 19/01/13 11:18 AM19/01/13 11:18 AM

http://myserver/sitename/_layouts/15/SP.js

JavaScript ❘ 229

Setup

By default, pages that run within the context of SharePoint typically have the appropriate JavaScript
references already defi ned in the master page. This means you shouldn’t need to reference them
in each page of your application. However, understanding what it means to be within the context
of SharePoint is important. It means that the page is served from the same domain as SharePoint,
rather than from another location such as in Azure. In cloud-hosted SharePoint apps, this is the
default. Pages are loaded and served from SharePoint, which is possible because they can contain
only out-of-the-box SharePoint controls, HTML, and JavaScript, so no custom code runs within the
SharePoint process itself.

One way to tell whether your page uses the SharePoint master page is to look for the following Page
declaration at the top of the page:

<%@ Page Inherits="Microsoft.SharePoint.WebPartPages.WebPartPage,
Microsoft.SharePoint, Version=15.0.0.0, Culture=neutral,
PublicKeyToken=71e9bce111e9429c"
MasterPageFile="~masterurl/default.master" language="C#" %>

If you have a page that doesn’t inherit the SharePoint master page then you must include references
to the appropriate JavaScript CSOM fi les. An example of this would be in an App Part when you
don’t want the full SharePoint master page wrapping your App Part’s user interface.

To add the references manually you must include the following script references:

<script type="text/javascript"
src="https://ajax.aspnetcdn.com/ajax/4.0/1/MicrosoftAjax.js"></script>
<script type="text/javascript" src="/_layouts/15/sp.runtime.debug.js"></script>
<script type="text/javascript" src="/_layouts/15/sp.debug.js"></script>

If your page is served from outside of the SharePoint site, such is the case with Autohosted apps
(served from Azure) or Provider-hosted apps, then you must dynamically generate the script
includes in JS to ensure they include the fully qualifi ed domain name (FQDN) in the URL. This is
because you need to have the JS fi les served from the SharePoint Server itself to ensure the browser
doesn’t block the JS CSOM calls because of cross-site scripting protections.

To do this you can use the SPHostUrl query string parameter passed to your SharePoint app as
follows:

<script type="text/javascript">
 var hosturl;
 $(document).ready(function () {
 hosturl = decodeURIComponent(getQueryStringParameter("SPHostUrl"));
 var scriptbase = hostweburl + "/_layouts/15/";

 $.getScript(scriptbase + "SP.Runtime.js",
 function () {
 $.getScript(scriptbase + "SP.js", scriptLoaded);
 }
);
 });

 function scriptLoaded () {

c09.indd 229c09.indd 229 19/01/13 11:18 AM19/01/13 11:18 AM

https://ajax.aspnetcdn.com/ajax/4.0/1/MicrosoftAjax.js

230 ❘ CHAPTER 9 OVERVIEW OF THE CLIENT-SIDE OBJECT MODEL AND REST APIS

 // your code goes here
 }

 function getQueryStringParameter(paramToRetrieve) {
 var params = document.URL.split("?")[1].split("&");
 var strParams = "";
 for (var i = 0; i < params.length; i = i + 1) {
 var singleParam = params[i].split("=");
 if (singleParam[0] == paramToRetrieve)
 return singleParam[1];
 }
 }
</script>

In the preceding code the JQuery $(document).ready method is called when the page has loaded
and it’s safe for the script to continue. The code then uses the getScript method to dynamically
load the JavaScript fi les. It also uses the SPHostUrl query string parameter passed to dynamically
ensure it is retrieving the fi les from the originating SharePoint site. After that call completes, the
scriptLoaded method is called. The ScriptLoaded method is the location you can safely place
your JS CSOM code.

NOTE For demonstration purposes all the examples in the rest of this chapter

use a cloud-hosted SharePoint app in Offi ce 365 and use the Napa Offi ce 365

development tools. These items enable you to develop lightweight cloud-hosted

apps within a browser in a SharePoint Online developer site.

These items are available in the Offi ce 365 app marketplace. Install them into

your developer site prior to continuing.

Querying

Similarly to the Managed CSOM, the JS CSOM also includes built-in batching and fi ltering. These
features are especially important in client applications where the browser executing the code is
always remote and often on an unknown quality of connection. To ensure your application stays
responsive and fast you must take measures to make as few requests as possible and only return the
data you really need.

Prior to making any requests you must set up a ClientContext. To get the context associated with
the site and page the script is running on, use the get_Current() method:

var clientContext = context = new SP.ClientContext.get_current();

You can then start requesting data. One of the simplest requests you can make is for the information
about the site, like so:

var web;
web = clientContext.get_web();
clientContext.load(web);

c09.indd 230c09.indd 230 19/01/13 11:18 AM19/01/13 11:18 AM

JavaScript ❘ 231

Now you are ready to make the request to the server. Because you don’t want to block the
application thread processing while this potentially long-running task is in progress, you provide
callback functions that will be called either after the operation completes or if an error occurs.

To do this, make a call to executeQueryAsync like this:

clientContext.executeQueryAsync(
 myQuerySucceeded,
 myQueryFailed);

In the myQuerySucceeded function you can start using the objects you asked for:

function onQuerySucceeded() {alert(this.web.Title);}

Additionally, your application should be able to handle when errors occur. This might be due to
connectivity issues, for example, like the following:

function myQueryFailed(sender, args) {alert('Call to SharePoint failed :(');}

When querying lists and libraries you have the choice of querying for a specifi c item whose ID you
already know using the getItemById(id) method, or with a query using the getItems(query)
method. The latter is slightly more complex in that you need to set up the query against that list
using CAML syntax. The following sample code shows querying a simple list for all items whose
Title column equals “Foo”:

 var list = listContext.get_web().get_lists().getByTitle('My Custom List');

 var camlQuery = new SP.CamlQuery();

 camlQuery.set_viewXml(
 '<View><Query><Where><Eq><FieldRef Name=\'Title\'/>' +
 '<Value Type=\'Text\'>New Item 1</Value></Eq></Where></Query>' +
 '<RowLimit>10</RowLimit></View>');

 items = list.getItems(camlQuery);

 context.load(items);
 context.executeQueryAsync(myQuerySucceeded, myQueryFailed);

You can use the CAML query to carefully construct the exact query against the list you want to
make and also the data you want to bring back.

To create and manipulate list items, use the ListItemCreationInformation object as shown in
the following code example. This gives you a context object that allows you set up the item prior to
sending it to the server along with the data you want to create:

var newListItem;

function createItems()
{
 var listContext = new SP.AppContextSite(context, hostUrl);
 var list = listContext.get_web().get_lists().getByTitle('My Custom List');

 var itemCreateInfo = new SP.ListItemCreationInformation();
 newListItem = list.addItem(itemCreateInfo);

c09.indd 231c09.indd 231 19/01/13 11:18 AM19/01/13 11:18 AM

232 ❘ CHAPTER 9 OVERVIEW OF THE CLIENT-SIDE OBJECT MODEL AND REST APIS

 newListItem.set_item('Title', 'Created via JS CSOM!');
 newListItem.update();
 context.load(newListItem);
 context.executeQueryAsync(onCreateListItemsSuccess,onCreateListItemsFail);
 }

function onCreateListItemsSuccess() {
 alert('New ListItem created: ' + newListItem.get_id());
}

// This function is executed if the above call fails
function onCreateListItemsFail(sender, args) {
 alert('Failed to create list item. Error:' + args.get_message());
}

For updates you simply get the list item in question, make the update to the data, and then call
update() on it like so:

var listItem = list.getItemById(1);
listItem.set_item('Title', 'Updated via JS CSOM');
listItem.update();

You can try out these APIs and techniques in the following exercise to get a better feel for how they
work with SharePoint Online using the new Napa developer tools.

TRY IT OUT Using the JavaScript Client-Side Object Model in a SharePoint-Hosted
App Using Napa for Offi ce 365

In this exercise you create a SharePoint application using only JavaScript and the Napa Offi ce 365
development tools. You must have the Napa application installed from the Offi ce 365 marketplace prior
to starting this exercise. The full JavaScript source for this exercise is available in the code download in
the JavaScriptCSOMApp.js fi le.

 1. Ensure you have Napa Offi ce 365 Development Tools installed in your development site in
Offi ce 365.

 2. Click Site Contents in your site navigation
to see a list of all apps installed in your
site.

 3. Locate Napa Offi ce 365 Development
Tools in the list and click it as shown in
Figure 9-3.

 4. Click Add New Project.

 5. Select App for SharePoint and enter MyFirstJavaScriptApp in the Project name box. Click
Create to continue. Napa creates a set of template fi les and folders for you. Explore the structure
and get familiar with the layout of the application.

 6. Open the Scripts folder and then open the App.js fi le. This is the default fi le that contains the
JavaScript for your application.

FIGURE 9-3

c09.indd 232c09.indd 232 19/01/13 11:18 AM19/01/13 11:18 AM

JavaScript ❘ 233

 7. At the bottom of the fi le add the following code:

function getParameterByName(name)
{
 name = name.replace(/[\[]/, "\\\[").replace(/[\]]/, "\\\]");
 var regexS = "[\\?&]" + name + "=([^&#]*)";
 var regex = new RegExp(regexS);
 var results = regex.exec(window.location.search);
 if(results == null)
 return "";
 else
 return decodeURIComponent(results[1].replace(/\+/g, " "));
}

 8. Replace the sharePointReady() function with the following code. This gets the host URL for use
later.

var hostUrl;

function sharePointReady() {
 context = new SP.ClientContext.get_current();
 web = context.get_web();
 hostUrl = getParameterByName('SPHostUrl');
 createList();
}

 9. Directly after the sharePointReady() function insert the following code. This creates a new list.

var newList;

function createList() {
 var hostContext = new SP.AppContextSite(context, hostUrl);
 web = hostContext.get_web();

 var newListInfo = new SP.ListCreationInformation();
 newListInfo.set_title('My Sample List');
 newListInfo.set_templateType(SP.ListTemplateType.genericList);

 newList = web.get_lists().add(newListInfo);

 context.load(newList);
 context.executeQueryAsync(onCreateListSucceeded, onFailed);
}

function onCreateListSucceeded() {
 alert('New list created: ' + newList.get_title());
}

// This function is executed if the above call fails
function onFailed(sender, args) {
 alert('Failed. Error:' + args.get_message());
}

c09.indd 233c09.indd 233 19/01/13 11:18 AM19/01/13 11:18 AM

234 ❘ CHAPTER 9 OVERVIEW OF THE CLIENT-SIDE OBJECT MODEL AND REST APIS

 10. Click the Run Project button in the bottom left
of the window to test out the application. When
it completes, a message appears like the one
shown in Figure 9-4.

 11. Right-click the launch link and open your app in
a new window to start your application.

 12. A JavaScript alert message appears, stating,
“Failed. Error: Access denied. You do
not have permission to perform this

action or access this resource.” This is
supposed to happen. The reason is that you have not yet given your application permissions to
create lists in the app’s host Web. Click OK to continue then close the window. Click Close in the
Launch App dialog in Napa to get back to your code.

 13. In the lower left of the window click the wrench icon to open the Property
panel for your application, as shown in Figure 9-5.

 14. Click into the Permissions tab and set the permissions for Web under
Content to Full Control.

 15. Run the project again using the Run Project button in the bottom left of
the window. A permissions request window appears, asking you to grant the application full
control of the site. Click Trust It.

 16. An alert window appears, stating, “New list created: My Sample List.” Click OK.

 17. Check that your list was created by clicking the link in the top left of the page to get to your
developer site. Click Site Content and fi nd the new list called My Sample List. Click it to open
the list. Currently, no data is in it.

 18. Within the sharePointReady function, change the createList(); call to createItems();.

 19. After the sharePointReady function, add the following code:

function createItems()
{
 var listContext = new SP.AppContextSite(context, hostUrl);
 var list = listContext.get_web().get_lists().getByTitle('My Sample List');

 for(var i=0; i < 10; i++)
 {
 var itemCreateInfo = new SP.ListItemCreationInformation();
 var newListItem = list.addItem(itemCreateInfo);
 newListItem.set_item('Title', 'Created via JS CSOM! - ' + i);
 newListItem.update();
 context.load(newListItem);
 }
 context.executeQueryAsync(onCreateListItemsSuccess,onFailed);
}

function onCreateListItemsSuccess() {
 alert('New ListItems created');
}

FIGURE 9-4

FIGURE 9-5

c09.indd 234c09.indd 234 19/01/13 11:18 AM19/01/13 11:18 AM

JavaScript ❘ 235

 20. Run and launch the app again using the Run Project button in the bottom left of the window.
This time an alert appears stating, “New ListItems created.”

 21. Check the list in the SharePoint site to ensure the data has been created. You should see ten new
items created in the list.

 22. Within the sharePointReady function, change the createItems(); call to updateListItem();.

 23. Directly after the sharePointReady function, insert the following code:

var updatedItem;

function updateListItem() {
 var listContext = new SP.AppContextSite(context, hostUrl);
 var list = listContext.get_web().get_lists().getByTitle('My Sample List');

 var listItem = list.getItemById(1);
 listItem.set_item('Title', 'Updated via JS CSOM');
 listItem.update();

 context.load(listItem);
 context.executeQueryAsync(onUpdateItemSucceeded, onFailed);
}

function onUpdateItemSucceeded() {
 alert('Updated item!');
}

 24. Run and launch the app again. This time an alert appears stating, “Updated item!”. Again,
check the SharePoint list to see that the fi rst item in the list has been updated.

 25. Within the sharePointReady function, change the updateListItem(); call to getItems();.

 26. Directly after the sharePointReady function, insert the following code:

var items;

function getItems()
{
 var listContext = new SP.AppContextSite(context, hostUrl);
 var list = listContext.get_web().get_lists().getByTitle('My Sample List');

 var camlQuery = new SP.CamlQuery();
 camlQuery.set_viewXml(
 '<View><Query><Where><Eq><FieldRef Name=\'Title\'/>' +
 '<Value Type=\'Text\'>Updated via JS CSOM</Value></Eq></Where></Query>' +
 '<RowLimit>10</RowLimit></View>'
);
 items = list.getItems(camlQuery);
 context.load(items);
 context.executeQueryAsync(onGetListItemsSuccess,onFailed);
}

function onGetListItemsSuccess() {

c09.indd 235c09.indd 235 19/01/13 11:18 AM19/01/13 11:18 AM

236 ❘ CHAPTER 9 OVERVIEW OF THE CLIENT-SIDE OBJECT MODEL AND REST APIS

 var listItemEnumerator = items.getEnumerator();

 while (listItemEnumerator.moveNext()) {
 var item = listItemEnumerator.get_current();
 alert(item.get_item('Title'));
 }
}

27. Run and launch the app again. An alert appears stating, “Updated via JS CSOM” indicating that
the app was able to query the list for the item it previously updated.

How It Works

In this exercise you created a SharePoint-hosted app using the new Napa tools available in Offi ce 365.
These tools allow for lightweight application development within a browser environment without
requiring any client-side installation. The app used the JavaScript CSOM and then created a new list
using the SP.AppContextSite method to call into the host Web and create and manipulate data. This
call is necessary to ensure SharePoint brokers the calls to the host Web. If you attempted to make
the calls directly to the host Web the browser would stop you due to cross-site scripting security
requirements because the two sites are on a different domain.

The app fi rst created a brand-new list based on the generic list type (the same as creating a custom list
via the Web UI) and then inserted 10 new list items into it. Finally, the app updated one of those list
items and then queried the list for that newly updated item. The JS CSOM wraps the underlying API
calls to SharePoint for you and provides convenient wrapper objects and methods.

When you ran the application Napa packaged the application into an application package (.app fi le)
and then deployed and installed it in SharePoint for you.

WATCH THE JAVASCRIPT CSOM AT WORK WITH FIDDLER

If you are interested in seeing the underlying API calls to SharePoint from the
JavaScript CSOM you can do so with a tool called Fiddler. You can download
Fiddler from: http://www.fiddler2.com. Using Fiddler you can see all the HTTP
traffi c between your computer and another such as Sharepoint.com, where Offi ce
365 is hosted. When watching Fiddler look for requests to URLs with paths that
end in: /_vti_bin/client.svc/ProcessQuery. You will see XML payloads being
sent to SharePoint along with JSON responses.

Security and Cross-Domain Calls

JavaScript engines in modern browsers include security mechanisms that do not allow JavaScript to
make calls across domains. This means that scripts can only get data from the domain where they
were served. For example, if your page is served from http://www.myserver.com then JavaScript
will not be allowed to make calls to http://www.someotherserver.com. This is to stop cross-site

c09.indd 236c09.indd 236 19/01/13 11:18 AM19/01/13 11:18 AM

http://www.fiddler2.com
http://www.myserver.com
http://www.someotherserver.com
http://Sharepoint.com

Windows Phone ❘ 237

scripting attacks (XSS). Because of this limitation SharePoint also provides some mechanisms that
let your SharePoint JS calls get at information in other domains including:

 ➤ SP.AppContextSite

 ➤ Web proxy

The SP.AppContextSite helper allows you to set up the CSOM ClientContext to make calls to
other SharePoint sites. This site could be the host website or another site collection or server entirely.
This helper proxies the calls you make via the SharePoint site on the domain where your JavaScript
was served, thus getting around the cross-site scripting issues. You must use this technique if you
are using Offi ce 365 and your app is hosted on another domain, or if you are using app isolation for
application deployment on premises. The latter option creates a subdomain just for your application.
Your script will, therefore, need to call out beyond its own domain, and AppContextSite helps
with that.

Additionally, you can use the Web proxy SharePoint to call other non-SharePoint endpoints. To use
it you must create an SP.WebRequestInfo object and set up the URL and method for the call you
want to make as follows:

var context = SP.ClientContext.get_current();

var crossDomainRequest = new SP.WebRequestInfo();

crossDomainRequest.set_url("http://looselytyped.net/feed/");
crossDomainRequest.set_method("GET");

var response = SP.WebProxy.invoke(context, crossDomainRequest);

This code proxies the call to the remote endpoint via SharePoint and returns the results. You can use
this technique to call out to any HTTP/HTTPS-enabled endpoint; however, always remember the
call goes through SharePoint and is therefore open to being viewed by someone with access to that
server/service. HTTPS will not help because the call to SharePoint will be terminated and decrypted
on the SharePoint Server prior to the request being made to the destination endpoint. However,
this feature allows developers to get around many of the intricacies of cross-site scripting that are
otherwise too complex to solve.

WINDOWS PHONE

Like with the .NET managed code and JavaScript CSOMs, CSOM libraries are available for both
Windows Phone and Silverlight. This availability allows developers to use the same common library
and patterns to integrate Windows Phone mobile apps in almost the same way they would in a
JavaScript-based SharePoint-hosted application. The reason mobile apps are not exactly the same is
because a developer must take into consideration a few additional things in mobile scenarios that are
not as prevalent in other types of applications. For example, you must think about scenarios where
the phone is not connected to a data network. Will it support offl ine data sync? What about on
different types and speeds of data network? How do you connect to the SharePoint Server while you
are not on the same network and possibly behind a fi rewall? Finally, what about your authentication
options? These are all things you must consider and design for in your mobile applications.

c09.indd 237c09.indd 237 19/01/13 11:18 AM19/01/13 11:18 AM

http://looselytyped.net/feed/

238 ❘ CHAPTER 9 OVERVIEW OF THE CLIENT-SIDE OBJECT MODEL AND REST APIS

The Windows Phone CSOM assists you with some of these issues; however, many others are up to
you as a developer to work out how you want to support them. The Windows Phone CSOM offers
support for new authentication options by supporting forms authentication, basic authentication,
and Offi ce 365 authentication. Previously, there wasn’t a CSOM library that would run on
Microsoft’s Windows Phone, and communication was limited to Web service calls. Additionally,
authentication was very hard, nearing impossible for many. Additional products that facilitated
transforming forms authentication to Windows authentication put it out of reach for most. The new
Windows Phone CSOM solves this problem by wrapping each of the authentication options for you
so that you don’t have to do the plumbing work. However, they still might offer some challenges
such as not supporting Windows authentication (NTML), which many on-premises SharePoint
implementations rely on. However, the authentication options that are supported certainly cover
many of the scenarios that are more broadly applicable in mobile scenarios where the user is out of
the offi ce and connecting over the Internet.

Additionally, the Microsoft SharePoint SDK for Windows Phone 7.1 adds support in Visual Studio
2012 for SharePoint mobile project templates that allow you to get building applications faster with
some convenient templates you can extend and build on.

The improvements offered for Windows Phone mobile applications with the 2013 release include:

 ➤ Visual Studio templates to get you started

 ➤ SharePoint Client-Side Object Model support

 ➤ Extended authentication support (forms, basic, Offi ce 365)

Setup

To start building Windows Phone applications that communicate with SharePoint you need the
following components:

 ➤ Visual Studio 2010

 ➤ Windows 7 or Vista

 ➤ A SharePoint Server on premises or an Offi ce 365 site

 ➤ SharePoint SDK for Windows Phone 7.1

 ➤ Windows Phone SDK 7.1

NOTE SharePoint does not support being run on a Windows 7, Windows 8, or

Vista operating system. If you don’t have access to another machine running

SharePoint 2013 then a good option is to sign up for Offi ce 365.

c09.indd 238c09.indd 238 19/01/13 11:18 AM19/01/13 11:18 AM

Windows Phone ❘ 239

After you have the requisite applications and SDKs installed you can fi nd the CSOM libraries for
referencing in the following:

%ProgramFiles (x86)%\Microsoft SDKs\SharePoint\v15.0\Phone\v7.1\Libraries

This directory includes the three main DLLs you need:

 ➤ Microsoft.SharePoint.Client.Phone.dll

 ➤ Microsoft.SharePoint.Client.Phone.Runtime.dll

 ➤ Microsoft.SharePoint.Phone.Application.dll

Much like the Managed CSOM, you must reference these DLLs in your application to get access to
the CSOM types required.

You may also start your project from one of the provided Visual Studio templates:

 ➤ The Windows Phone empty SharePoint application

 ➤ The Windows Phone SharePoint List application

These templates, by default, reference the required
CSOM assemblies for you. The empty application,
as its name suggests, gives you a blank canvas
to create your application, whereas the list
application template lays down some starter fi les
to get you started building an app that reads
and saves data in a SharePoint list. It walks you
through a series of steps in a wizard that allows
you to pick your SharePoint site, list, and fi elds
with which you want to interact and then builds
the appropriate views and view models using a
Model-View-ViewModel (MVVM) design pattern
(see Figure 9-6).

Querying

The only major difference between the Windows Phone CSOM and the Managed CSOM that you
will not be familiar with from previous releases is in how you set up authentication. This step is
required prior to making any CSOM calls. To do it you fi rst pick the authentication option that your
SharePoint site uses. You create a ClientContext object and then set up the Credentials property
on it. In the following example the Credentials property is set to authenticate using Offi ce 365:

ClientContext context = new ClientContext("https://contoso.sharepoint.com/");
Authenticator auth = new Authenticator();

auth.AuthenticationMode = ClientAuthenticationMode.MicrosoftOnline;
context.Credentials = auth;

FIGURE 9-6

c09.indd 239c09.indd 239 19/01/13 11:18 AM19/01/13 11:18 AM

https://contoso.sharepoint.com/

240 ❘ CHAPTER 9 OVERVIEW OF THE CLIENT-SIDE OBJECT MODEL AND REST APIS

NOTE The Windows Phone CSOM library assists your authenticating with

SharePoint Online by opening a Sign In window that allows the user to sign in to

the SharePoint site, as shown in Figure 9-7. Providing a username and password

and circumventing this user interaction are not possible at this time.

FIGURE 9-7

Alternatively, if your SharePoint Server uses forms authentication, then you can supply a username
and password as follows:

auth.AuthenticationMode = ClientAuthenticationMode.FormsAuthentication;

auth.UserName = "Your_UserName";
auth.Password = "Password";

c09.indd 240c09.indd 240 19/01/13 11:18 AM19/01/13 11:18 AM

REST and OData ❘ 241

After you indicate your authentication options you are ready to start making CSOM calls to
SharePoint. The code is almost the same as what you would use with the JavaScript or Managed
CSOM; however, because Windows Phone Silverlight requires all network calls to be made
asynchronously, you must cater callbacks in that manner for when your CSOM call succeeds or
fails. To illustrate this process the following code makes a CSOM call to retrieve a list from the
SharePoint Server:

List list = context.Web.Lists.GetByTitle("My Custom List");

// Load the query and execute the request to fetch data.
context.Load(list);

context.ExecuteQueryAsync((object obj, ClientRequestSucceededEventArgs args) =>
 {
 // success
 var SiteId = list.Id;
 },
 (object obj, ClientRequestFailedEventArgs args) =>
 {
 // query failed.
 });

As you can see the code defi nes a success and a failure function inline using a lambda expression.
In your success function you can query and use the now “full” objects you asked for in your
CSOM query.

The Windows Phone Silverlight Client-Side Object Model provides a great set of functionality
to quickly get you up and running querying and interacting with SharePoint. You must take into
account some differences with authentication and some runtime subtleties such as asynchronous
callbacks. However, for the most part you can use the CSOM the same way you use the Managed
CSOM.

REST AND ODATA

REpresentational State Transfer (REST) is a prevalent pattern for designing easily consumed data
APIs over the Internet. You might hear an API described as RESTful if it is designed to be used over
HTTP protocols and is in line with the principles of REST. These principles are as follows:

 ➤ Client-Server: The client is unaware of how the server stores or manages the data and
doesn’t need to know in order to use the API.

 ➤ Stateless: The server does not store any context or state about the calling client.

 ➤ Cacheable: The results of the calls to the API defi ne themselves as being cacheable, or not.

 ➤ Layered: The client does not mind whether the call to the API is transmitted via common
Internet technology such as load balancers.

 ➤ Uniform Interface: This provides a simple and known way to access data through standard
URI addressing and self-describing so that a client can discover how to access data.

c09.indd 241c09.indd 241 19/01/13 11:18 AM19/01/13 11:18 AM

242 ❘ CHAPTER 9 OVERVIEW OF THE CLIENT-SIDE OBJECT MODEL AND REST APIS

Many services offer REST-based APIs to ease access to their systems in a commonly understood
manner. SharePoint 2013 builds on this foundation to offer access in a “RESTful” way to allow
remote systems to interact with it in a platform agnostic and open way. For developers this means
that using other helper libraries and frameworks for working with REST is a viable method, and the
time to become profi cient in a proprietary API is decreased.

OData or Open Data Protocol is a protocol defi nition for querying, fi nding, and updating data over
HTTP. It offers defi ned methods for specifying common query operations and defi nes the format in
which data is returned. SharePoint 2013 uses WCF Data Services v5.0 which implements the OData
v3 specifi cation. For more information on OData you can visit: http://www.odata.org.

Combining a RESTful Web API with OData gives a powerful combination of simple and easy-to-use
APIs that have a well-defi ned interface and interaction model. In practical terms, having access to a
RESTful OData-based API means the following for SharePoint developers:

 ➤ Standard URIs for addressing data

 ➤ Simple use of GET, POST, PUT/MERGE, and DELETE HTTP methods

 ➤ JSON or XML (ATOM) responses

 ➤ Simple query/fi lter semantics

The following sections describe each of the preceding points with simple-to-follow examples of how
they are addressed in SharePoint 2013’s implementation of its REST/OData Web API endpoints.

Getting Started with REST and OData

You can fi nd SharePoint’s REST/OData APIs in the _API URL space under each SharePoint site.
For example:

https://servername/sitename/_api/

_api is the root URI for all REST/OData calls. SharePoint also supports calls to the _vti_bin/
client.svc/ URI to maintain backward compatibility with the previously available but more
limited REST API in SharePoint 2010.

To query for data, issue a GET request. To update data you use either a PUT or MERGE request passing
the data you want to update. But fi rst you must specify which namespace it belongs in, such as Web,
Site, or Search. Other groups include:

 ➤ _api/web

 ➤ _api/site

 ➤ _api/search

 ➤ _api/publishing

After you specify a namespace you must address an object, method, indexer, or property on it.
Figure 9-8 depicts the URI address system.

c09.indd 242c09.indd 242 19/01/13 11:18 AM19/01/13 11:18 AM

http://www.odata.org
https://servername/sitename/_api/

FIGURE 9-8

http:// server name /_api/

? $

&

OData operationsite/

/

namespace

object

property

indexer

method

index

parameter

(

,

)

)

(

c09.indd 243c09.indd 243 19/01/13 11:18 AM19/01/13 11:18 AM

244 ❘ CHAPTER 9 OVERVIEW OF THE CLIENT-SIDE OBJECT MODEL AND REST APIS

To retrieve the list of lists on a SharePoint site simply issue a GET request to the following:

https://servername/sitename/_api/web/lists

To retrieve the details about a list simply make a GET request to that list’s URI indicated in the
previous response’s id property. For example:

https://servername/sitename/ _ api/Web/Lists(guid'f57d3ddc-4522-4145-a0fe-72abbd6ea8fc')

This example uses the Lists method with a parameter to specify the ID of the list. You could also
use the list’s entity name; for example:

https://servername/sitename/_api/Web/Lists/MoviesList

Additionally, you can address a list by name using the getbytitle function as follows. This
addresses the list with its name versus its entity name:

https://servername/sitename/_api/Web/Lists/getbytitle('movies')/items

To access the items within a list add /items to the URI:

https://servername/sitename/_api/Web/Lists/MoviesList/Items

By default you will receive an ATOM feed XML response containing the lists in your site. If
you want to receive a JSON payload instead, set the HTTP Accept header to application/
json;odata=verbose. This signals that you want JSON instead of the default ATOM
payload. JSON is typically lighter weight and better suited to mobile scenarios where speed is
important.

Filtering and Selecting

When you query for data it’s important to ask for only the data you really need. This keeps
payload sizes down and speeds up delivery of the data. _Api uses OData semantics to let you do
this by fi ltering records and selecting properties you want. The common operators you can use for
manipulating the result set include the following:

 ➤ $filter, for fi ltering results

 ➤ $select, for selecting properties to return

 ➤ $expand, for expanding properties to return

 ➤ $orderby, for ordering results

 ➤ $top, for taking the top X results

The simplest way to learn about these operations is to try them out for yourself, as shown in the
following exercise.

c09.indd 244c09.indd 244 19/01/13 11:18 AM19/01/13 11:18 AM

REST and OData ❘ 245

TRY IT OUT OData Operations on Data

In this exercise you try out querying and fi ltering for data using the REST/OData _Api in SharePoint
2013.

 1. Create a new list in your SharePoint 2013 site by clicking Site Contents from the Quick Launch
navigation.

 2. Click Add an App.

 3. Choose Custom List and call it Movies.

 4. After the list is created, add some list items to it of your favorite movie titles.

 5. Modify the URL to navigate to the following URI. Review the payload XML that is returned:

 https://servername/sitename/_api/Web/Lists/MoviesList/Items

 6. Modify the URL by adding (1) on the end (shown in the following code). This returns the fi rst
item in the list:

https://servername/sitename/_api/Web/Lists/MoviesList/Items(1)

 7. Modify the URL and add a $filter parameter like the following, specifying the title of one of
the movies you added earlier:

?$filter=Title eq 'Aliens'

 8. Add a $select parameter to just select the Title property of the list item:

https://servername/sitename/_api/Web/Lists/_api/Lists/ /Items?
$filter=Title eq 'Aliens'&$select=Title

You should see a payload similar to the following:

<?xml version="1.0" encoding="utf-8" ?>
<feed xml:base="https://servername/sitename/_api/"
xmlns="http://www.w3.org/2005/Atom"
xmlns:d="http://schemas.microsoft.com/ado/2007/08/dataservices"
xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata"
xmlns:georss="http://www.georss.org/georss" xmlns:gml="http://www.opengis.net/gml">
<id>0d01b697-f8f4-496a-bc66-81e4ab7d8208</id>
<title />
<updated>2012-11-03T07:07:21Z</updated>
<entry m:etag=""2"">
<id>f6126125-fddb-4651-bedd-d797c6ef06f4</id>
<category term="SP.Data.MoviesListItem"
scheme="http://schemas.microsoft.com/ado/2007/08/dataservices/scheme" />
<link rel="edit"
href="Web/Lists(guid'f57d3ddc-4522-4145-a0fe-72abbd6ea8fc')/Items(1)" />
<title />
<updated>2012-11-03T07:07:21Z</updated>
<author>
<name />

c09.indd 245c09.indd 245 19/01/13 11:18 AM19/01/13 11:18 AM

http://www.w3.org/2005/Atom
http://schemas.microsoft.com/ado/2007/08/dataservices
http://schemas.microsoft.com/ado/2007/08/dataservices/metadata
http://www.georss.org/georss
http://www.opengis.net/gml
http://schemas.microsoft.com/ado/2007/08/dataservices/scheme

246 ❘ CHAPTER 9 OVERVIEW OF THE CLIENT-SIDE OBJECT MODEL AND REST APIS

</author>
<content type="application/xml">
<m:properties>
<d:Title>Aliens</d:Title>
</m:properties>
</content>
</entry>
</feed>

Notice that only the Title property is returned.

 9. Modify the querystring as follows to order your movie titles alphabetically:

?$select=Title&$orderby=Title

 10. Modify the querystring as follows to just retrieve the fi rst movie:

?$select=Title&$orderby=Title&$top=1

How It Works

In this exercise you queried SharePoint list data using the REST/OData API. When a request is made to
SharePoint via this API, SharePoint uses WCF Data Services support for OData to parse and interpret
the query on the URL. It then uses that information to translate the query into an internal SharePoint
list query (called a CAML query) and executes the query. By adding OData support parameters to the URL
you are able to refi ne the query you make to SharePoint and just return the data you specifi cally need.

Creating, Updating, and Deleting

The REST endpoints also accept requests to create, update, and delete data using POST, PUT, and
PATCH commands.

 ➤ POST is used for creating data

 ➤ PUT is used for updating (all property values specifi ed)

 ➤ PATCH is used for updating (specifi ed properties only)

When using any of the preceding commands from JS running on a SharePoint page, you also must
include the form digest from the page in the appropriate HTTP header:

X-RequestDigest: formDigest

You can get the formDigest from the object returned from a POST call to /_api/contextinfo, or if
you are building a SharePoint-hosted app then you can simply get the value of the formDigest with
this JQuery function:

$('#__REQUESTDIGEST').val()

c09.indd 246c09.indd 246 19/01/13 11:18 AM19/01/13 11:18 AM

REST and OData ❘ 247

You are then ready to send your create, update, or delete command to SharePoint. To practice doing
so, take a look at the following activity.

TRY IT OUT Creating a New List in the Host Web

In this example you use a SharePoint-hosted app using the Napa Offi ce 365 Development Tools and use
the REST/OData API to create a new list in the host Web. You must have the Napa application installed
from the Offi ce 365 marketplace prior to starting this exercise. The full JavaScript source for this exer-
cise is available in the code download in the MyODataJavaScriptApp.js fi le.

 1. Ensure you have Napa Offi ce 365 Development Tools installed in your development site in Offi ce 365.

 2. Click Site Contents in your site navigation to see a list of all apps installed in your site.

 3. Locate “Napa” Offi ce 365 Development
Tools in the list and click it, as shown in
Figure 9-9.

 4. Click Add New Project in the screen that
appears.

 5. Select App for SharePoint and enter
MyODataJavaScriptApp in the Project
name box. Click Create to continue. Napa creates a set of template fi les
and folders for you. Explore the structure and get familiar with the
layout of the application.

 6. In the lower left of the window click the wrench icon to open the
Property panel for your application as shown in Figure 9-10.

 7. Click the Permissions tab and set the permissions for Web under Content
to Full Control.

 8. Open the Scripts folder and then open the App.js fi le. This default fi le contains the JavaScript
for your application.

 9. Add the following code to the bottom of the fi le. This helps you get the various parameters that
were passed to the page from the querystring:

function getParams() {
 var params = {};
 location.search.split('?')[1].split('&').forEach(function (param) {
 var key = param.split('=')[0],
 val = decodeURIComponent(param.split('=')[1]);
 params[key] = val;
 });
 return params;
}

FIGURE 9-9

FIGURE 9-10

c09.indd 247c09.indd 247 19/01/13 11:18 AM19/01/13 11:18 AM

248 ❘ CHAPTER 9 OVERVIEW OF THE CLIENT-SIDE OBJECT MODEL AND REST APIS

 10. Replace the sharePointReady() function with the following. This code loads the SP.Request
Executor.js JavaScript fi le that helps with cross-domain calls. The app needs this to call into the
host Web because it’s on a different domain name:

var params;
var scriptbase;

function sharePointReady() {
 context = new SP.ClientContext.get_current();
 params = getParams();
 scriptbase = params.SPHostUrl + "/_layouts/15/";
 $.getScript(scriptbase + "SP.RequestExecutor.js", execCrossDomainRequest);
}

 11. Add the following new function. This uses a POST command to post a JSON payload with the
new list information to the host web’s REST API:

function execCrossDomainRequest()
{
 var executor;
 executor = new SP.RequestExecutor(params.SPAppWebUrl);

 var data = JSON.stringify({ '__metadata': { 'type': 'SP.List' },
 'AllowContentTypes': true, 'BaseTemplate': 100,
 'ContentTypesEnabled': true, 'Description': 'My list description',
 'Title': 'My New List' });

 var requestUri = params.SPAppWebUrl +
 "/_api/SP.AppContextSite(@target)/web/lists?@target='"
 + params.SPHostUrl + "'";

 executor.executeAsync(
 {
 url: requestUri,
 method: "POST",
 body: data,
 headers: {
 "accept": "application/json;odata=verbose",
 "content-type":"application/json;odata=verbose",
 "content-length": data.length,
 "X-RequestDigest": $('#__REQUESTDIGEST').val()
 },
 success: successHandler,
 error: errorHandler
 }
);
}

function successHandler(data) {
 alert('success');
}

function errorHandler(data, errorCode, errorMessage) {
 alert("Failed :(Error:" + errorMessage);
}

c09.indd 248c09.indd 248 19/01/13 11:18 AM19/01/13 11:18 AM

REST and OData ❘ 249

12. Click the Run Project button in the bottom left
of the window to test out the application. When
it completes a message appears like the one
shown in Figure 9-11.

13. Right-click the launch link and open your app in
a new window to start your application. When
you are prompted to trust your app, click Trust
It to continue.

14. A JavaScript alert message appears, stating
“Success.” The app has created the list in the
host Web.

15. Navigate to the host website by clicking the title of your site in
the navigation.

16. Click Site Content to see a list of the apps/lists in your site. You
can see the new list called My New List that your app created,
as shown in Figure 9-12.

How It Works

In this exercise you created a SharePoint-hosted app that created a new list in the host or parent Web.
To do this it used the REST/OData API and a POST command to post the creation information as
a JSON payload in the request. Because the request was from one domain to another, you used the
SP.RequestExecutor framework to proxy the call via the app Web to the host Web. This step was nec-
essary due to the cross-domain security boundary browsers put on JavaScript.

The JSON payload consisted of a JSON representation of an SP.List object, along with the properties
needed for creation such as the BaseTemplate ID and the Title.

By making a POST request along with this JSON to the /_api/SP.AppContextSite(@target)/web/
lists URI, SharePoint proxies the request to the host Web for you along with the JSON. Because the
request is a POST SharePoint knows you want to create something. SharePoint knows you want to cre-
ate a list because the URI specifi es the /web/list REST endpoint. SharePoint looks in the body of the
request for the details on the list you want to create and creates it.

WATCH THE REST/ODATA CALLS WITH FIDDLER

If you are interested in seeing the HTTP(S) calls to SharePoint from the JavaScript
you can do so with a tool called Fiddler. You can download Fiddler from http://
www.fiddler2.com. Using Fiddler you can see all the HTTP traffi c between your
computer and another such as Sharepoint.com, where Offi ce 365 is hosted. When
watching Fiddler look for POST requests to /_api/SP.AppContextSite(@target)/
web/lists. You can see JSON payloads being sent and received from SharePoint.

FIGURE 9-11

FIGURE 9-12

c09.indd 249c09.indd 249 19/01/13 11:18 AM19/01/13 11:18 AM

http://www.fiddler2.com
http://www.fiddler2.com
http://Sharepoint.com

250 ❘ CHAPTER 9 OVERVIEW OF THE CLIENT-SIDE OBJECT MODEL AND REST APIS

CLIENT-SIDE OBJECT MODEL API COVERAGE

As previously mentioned in this chapter, one of the original drawbacks with the prior
implementation of the Client-Side Object Model was its lack of coverage for SharePoint APIs and
access to functionality. In the past the CSOM was limited to mostly site, Web, and list operations as
part of SharePoint Foundation.

SharePoint 2013’s implementation of the CSOM signifi cantly builds on the coverage of functionality
available. It has now expanded to cover most of the surface area of SharePoint Server, not just
SharePoint Foundation.

The CSOM is split into a number of different DLLs and namespaces based on functional areas
they cater to, which are outlined for you in the following lists. Because the API coverage is so vast
in 2013, these lists are only a summary of the most important and widely used areas. They are not
exhaustive so you should check MSDN for full reference documentation. Discussing every area of
the CSOM would be a whole book on its own so this section is designed to point you in the right
area of the CSOM to look for the functionality you desire, as opposed to showing you examples of
every area included.

Core functionality contains all the base-level CSOM functionality that you need for working with
sites and data. These classes are included in Microsoft.SharePoint.Client.dll:

 ➤ Administration

 ➤ Event receivers

 ➤ Sharing

 ➤ Web Parts

 ➤ Analytics

 ➤ Business Data Catalog (BDC)

 ➤ Apps

 ➤ Lists

 ➤ Site

 ➤ Web

 ➤ User

 ➤ Site health

Content contains APIs for working with SharePoint’s vast document management features such as
Document Sets. These build on the foundation provided by the list and fi le classes with the features
found in SharePoint Server Standard and Enterprise. Signifi cant new features in 2013 surface in
these classes with new APIs for managing metadata-driven navigation, video, and legal discovery
features. These are included in Microsoft.SharePoint.Client.Publishing.dll, Microsoft
.SharePoint.Client.DocumentManagement.dll, Microsoft.SharePoint.Client.Taxonomy
.dll, and Microsoft.Office.Client.Policy.dll:

c09.indd 250c09.indd 250 19/01/13 11:18 AM19/01/13 11:18 AM

Client-Side Object Model API Coverage ❘ 251

 ➤ Document management

 ➤ Discovery

 ➤ Document Sets

 ➤ Information policy

 ➤ Publishing

 ➤ Publishing navigation

 ➤ Taxonomy

 ➤ Video

User Profi les provide access to do things such as read and write to the microfeed on people’s My
Sites, access and update user profi le information, and work with social data such as whom people
follow and what they like. These classes are included in Microsoft.SharePoint.Client
.UserProfiles.dll:

 ➤ Social

 ➤ User profi les

 ➤ Microfeed

 ➤ Reputation model

Search enables you to search and fi nd information and documents in the search index. This is a
great way to make fast queries for information in lieu of creating queries over lists and libraries in
sites. The Query class can be found in Microsoft.SharePoint.Client.Search.dll.

Workfl ow classes let you fi nd, start, create, and query for the status of workfl ows running in
SharePoint. The Workfl ow Services classes are included in Microsoft.SharePoint.Client
.WorkflowServices.dll.

Work Management in SharePoint 2013 offers enhanced capabilities for managing work in teams
with features such as task lists and tracking. These classes are included in Microsoft.SharePoint
.WorkManagement.Client.dll:

 ➤ Work management

 ➤ Tasks

Application Services is where services with APIs surface in the CSOM. A new service API in 2013
is the ability to submit jobs for automated translation. The Translation classes can be found in
Microsoft.Office.Client.TranslationServices.dll.

Education in SharePoint 2013 adds site templates and features for managing classes in an education
environment. These APIs let you manage things such as classes, lessons, assignments, communities,
events, and grades. Education-related classes can be found in Microsoft.Office.Client
.Education.dll.

c09.indd 251c09.indd 251 19/01/13 11:18 AM19/01/13 11:18 AM

252 ❘ CHAPTER 9 OVERVIEW OF THE CLIENT-SIDE OBJECT MODEL AND REST APIS

SUMMARY

Building solutions that communicate with a remote system always hinges on that system providing
great remote API support. SharePoint 2013 builds on the foundation laid in SharePoint 2010 and
brings full support for the highly popular Internet API standards REST and OData. This offers
developers new opportunities to interact with SharePoint like never before.

For those who are developing systems in .NET or Windows Phone, that same support is extended
with the Managed Client-Side Object Model and Windows Phone CSOM to wrap the underlying
protocol calls for you. It also adds out-of-the-box support for batching requests so that you don’t
need to think as much about ensuring your app performs the best it can.

For those building SharePoint apps, the CSOM is fully embraced because the JavaScript CSOM
brings the benefi ts of batching and fi ltered results with the ease of the CSOM wrappers. Whether
you are building a SharePoint-hosted App or a Provider-hosted app you can take advantage of these
benefi ts to interact with SharePoint.

Finally, SharePoint 2013 has a robust and wide array of API coverage across the product, not just
the list and data APIs in the previous release.

All of these improvements together provide a comprehensive and sophisticated API set that should
meet the needs of almost all who want to interact with SharePoint remotely. All are conveniently
located at _Api and based on open and documented standards over Internet standard protocols.

EXERCISES

Answers to Exercises can be found in Appendix A.

 1. What are three types of Client-Side Object Model libraries provided in SharePoint 2013?

 2. What additional capabilities does OData off er on top of the REST support provided in SharePoint?

 3. What types of operations are supported with REST and OData in SharePoint 2013?

 4. What are the key benefi ts of using the provided CSOM libraries versus rolling your own calls to

the REST/OData APIs?

c09.indd 252c09.indd 252 19/01/13 11:18 AM19/01/13 11:18 AM

Recommended Reading ❘ 253

 � WHAT YOU LEARNED IN THIS CHAPTER

ITEM DESCRIPTION

CSOM Client-Side Object Model libraries providing API access to SharePoint.

REST REpresentational, State Transfer protocol. An API that adheres to REST principles laid

out by the protocol’s creator.

OData Open Data Protocol for enhanced querying and resulting data over a REST API. A

standard proposed by Microsoft and others to the OASIS standards consortium.

JSON JavaScript Object Notation. A text standard-based representation of data and objects

in a JavaScript-friendly format.

Cross-Site

Scripting

When JavaScript code attempts to call code or endpoints in another domain from

which it was served.

_API The location at which all REST and OData API endpoints are surfaced by

SharePoint 2013.

RECOMMENDED READING

Work with data in SharePoint 2013 — http://msdn.microsoft.com/en-us/library/
fp179893(v=office.15).aspx

How to access SharePoint 2013 data from remote apps using the cross-domain library — http://
msdn.microsoft.com/en-us/library/fp179927(v=office.15).aspx

c09.indd 253c09.indd 253 19/01/13 11:18 AM19/01/13 11:18 AM

http://msdn.microsoft.com/en-us/library/fp179893(v=office.15).aspx
http://msdn.microsoft.com/en-us/library/fp179893(v=office.15).aspx
http://msdn.microsoft.com/en-us/library/fp179927(v=office.15).aspx
http://msdn.microsoft.com/en-us/library/fp179927(v=office.15).aspx

c09.indd 254c09.indd 254 19/01/13 11:18 AM19/01/13 11:18 AM

Overview of OAuth
in SharePoint 2013

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ Getting to Know OAuth

 ➤ Discovering how SharePoint 2013 uses OAuth

 ➤ Seeing how to use OAuth in Apps for SharePoint

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at: http://www.wrox.com/
WileyCDA/WroxTitle/productCd-1118495845.html on the Download Code tab. The code
for this chapter is divided into the following major examples:

 ➤ SharePointTokenCacheApp.zip

 ➤ Tokens.zip

 ➤ S2SScript.txt

As you read in Chapter 9, “Overview of the Client-Side Object Model and REST APIs,”
SharePoint 2013 provides a new, rich set of APIs that you can use to work with SharePoint
data and functionality. Key to using these APIs is the ability to securely call them and receive
access when doing so. Additionally, SharePoint provides the ability to secure content to
groups and individuals, and it is critical that anyone calling code be subject to the same set of
authorization criteria as anyone using the SharePoint Web browser user interface. This ensures
information is kept secure and that only people with the correct privileges can access it. To do
this effectively SharePoint 2013 has built-in support for the common and open authorization
standard OAuth 2.0.

10

c10.indd 255c10.indd 255 19/01/13 11:19 AM19/01/13 11:19 AM

http://www.wrox.com/WileyCDA/WroxTitle/productCd-1118495845.html
http://www.wrox.com/WileyCDA/WroxTitle/productCd-1118495845.html
http://WROX.COM
http://wrox.com

256 ❘ CHAPTER 10 OVERVIEW OF OAUTH IN SHAREPOINT 2013

This chapter explains the new application authentication and authorization features available to
developers. You will learn how applications can make calls to SharePoint to perform operations
such as retrieving data as part of building SharePoint applications. This chapter also provides a brief
overview of OAuth and explains how to set up OAuth to grant applications access to resources in
SharePoint.

INTRODUCTION TO OAUTH

OAuth is an open standard managed by the Internet Engineering Task Force and is designed to
allow applications to access services in a Web-friendly manner on behalf of an application or user.

Some might ask, “Why not just give the caller my username and password?” This unfortunately
poses some issues that OAuth avoids:

 ➤ The app can do everything and anything your account can do. This means that if the calling
code had your username and password it could, for example, change your password or do
things that you would rather it didn’t have access to. Because the app has your username
and password it is as if you are making the calls and the service has no idea who the real
caller is.

 ➤ To the service, all calls look the same whether it is you or the calling app making the calls.
This means keeping an audit trail is almost pointless because there is no way to tell who the
caller really was if the same username is being used each time. Additionally, if you give your
username and password to multiple services and one of them deletes information, you have
no way to know which one it was. Obviously, this could cause some problems if you are not
careful.

 ➤ You can’t revoke access to a particular service without changing your password. This
means that you would need to update your password on all those services that you want
to continue working. If a few services are involved this task can be error-prone and
cumbersome.

Here is a simple analogy to help explain this concept. Imagine an offi ce building that is secured
using swipe cards. A lot of sensitive information is stored in this offi ce building and many people
work in it each day. Now imagine each of those workers were issued the exact same swipe card.
From the door lock–system logs you couldn’t tell who was accessing the building and when.
Additionally, if you fi red a worker and she didn’t give her swipe card back you would need to reissue
everyone one else a new key. This is the same as sharing your username and password.

To solve these issues, OAuth introduces the concept of an application identity or application
principle. This is simply an identity given to an app much the same way a user has a username and
password. It offers the ability to control and manage access to resources at an application level
versus a user level, and therefore you don’t need to give an app your username and password to
access any desired resources. Furthermore, this means an app’s access can be monitored, audited,
and revoked if needed. For an app to gain access to a service the user must deliberately grant that
specifi c application access to that specifi c service. Access is only granted once that app identity is
checked and verifi ed as valid with permissions to the resource. This access may be scoped to specifi c
resources within the service. This means, for example, that the user could grant the app access to

c10.indd 256c10.indd 256 19/01/13 11:19 AM19/01/13 11:19 AM

OAuth in SharePoint 2013 ❘ 257

some data, but not to change the user’s password. This also means that a user may revoke an app’s
access to the service at any time without needing to affect other applications’ access.

So, revisiting the analogy, if the building security system used an OAuth style access system, each
worker in the building would be granted an ID, and then his swipe card with that ID on it would be
granted access to the particular areas of the building that he was allowed to be in. When a worker
is revoked access, the building owner simply revokes access for that worker’s ID in the system. That
way when the worker tries to swipe in he is denied access. Or, in the case when a worker changes
departments, the building owner simply signifi es that for that particular ID the person is now
denied access to Level 1, for example, and is allowed access to Level 2. It’s the same in OAuth. Each
app (the equivalent of a person in the analogy) is granted an ID and a set of privileges. When the
caller tries to access a resource, the ID is verifi ed and a check is made to ensure he is allowed access
to that particular resource. If access is allowed, the call proceeds and if not, the caller is denied.

OAuth is supported and used by many large services on the Internet today such as Facebook and
Twitter. Numerous open source libraries exist for various languages to assist with the standard
OAuth messages involved in authorizing and calling a service. The SharePoint 2013 app framework
and tools also include many helper libraries and functions to wrap a lot of the underlying OAuth
protocol exchanges. In many cases a developer might never be aware of the communication and
messages OAuth uses behind the scenes.

OAUTH IN SHAREPOINT 2013

SharePoint apps use OAuth to authorize calls to SharePoint APIs. When an app calls an API in
SharePoint to, for example, get some list data, SharePoint checks that the app identity is valid and
has permissions to the resource; for example, a list. Additionally, the app may pass information
about what the calling user identity is so that SharePoint can also check that the user has access to
the resource. When discussing OAuth in the context of SharePoint, the following standard naming
conventions are commonly used and therefore worth understanding:

 ➤ Content owner: The user who installs the app and grants the application access to
particular resources.

 ➤ Client app: The SharePoint app that uses an API to access and make calls to the content
server (SharePoint).

 ➤ Content server: The SharePoint environment that has the resources the client app wants to
access.

 ➤ Authentication server: A service that both the client app and content server trust that
creates the various tokens used in the OAuth process. In SharePoint the Authentication
server is either Azure Access Control Services (ACS) in the case of Offi ce 365 or a Security
Token Service (STS) hosted with SharePoint in the case of SharePoint on premises.

When you’re building SharePoint apps, the three different app types fall into two distinct categories
in regard to authentication and authorization:

 ➤ Internally authenticated apps: Includes SharePoint-hosted apps

 ➤ Externally authenticated apps: Includes Autohosted and Provider-hosted apps

c10.indd 257c10.indd 257 19/01/13 11:19 AM19/01/13 11:19 AM

258 ❘ CHAPTER 10 OVERVIEW OF OAUTH IN SHAREPOINT 2013

The key difference between these two categories is that externally authenticated apps must explicitly
authenticate with SharePoint, whereas internally authenticated apps do not. Take, for example,
the case of a SharePoint-hosted app with some client-side code that uses the JavaScript Client-Side
Object Model (CSOM) to create a SharePoint list item. In this case the JS code doesn’t need to
authenticate explicitly with SharePoint. This is considered internal authentication because the code
is served from the SharePoint domain.

An externally authenticated app is one where the code runs outside of the security boundary of
SharePoint. For example, when your app code is running in Azure, that code must authenticate with
SharePoint using OAuth prior to making API calls. As part of this process several important IDs,
secrets, and “tokens” are used to authenticate and authorize a user and calls to the APIs:

 ➤ Client ID

 ➤ Client secret

 ➤ Context token

 ➤ Access token

The client ID and client secret are pre-issued identifi ers and secret strings that only SharePoint and
the app know about. These are shared and are used to sign the various tokens involved in the process.

The context token includes information about who the caller is and the Security Token Service (STS)
that signed and issues tokens for this server. It also includes a “refresh token” that is used to request
access tokens.

The access token is a token passed when accessing an API and is requested from the STS by the app
when it needs to make calls.

The following sections show you how to create and manage client IDs and secrets, how the various parts
of the authentication fl ows work, and how apps are granted access to various SharePoint resources.

CREATING AND MANAGING APPLICATION IDENTITIES

In the previous section you saw how applications have an identity as well as users. When an app
takes an action in the context of a user, SharePoint records this information. For example, when
a SharePoint list item is created or modifi ed and you later view that list item, you will see the Last
Modifi ed and Created information listed as “by My Simple App on behalf of Joe Bloggs,” where My
Simple App is the name of the application (application principle) and Joe Bloggs is the name of the
user for whom the app made the request. The following activity shows how this works in practice
and helps you get started working with application identities by creating a simple application and an
associated application identity.

TRY IT OUT Application Identities (ApplicationIdentity.js)

In this exercise you create a simple SharePoint-hosted application that uses the JavaScript CSOM to
talk to SharePoint using the Napa tools in Offi ce 365. You need the Napa application installed from the
Offi ce 365 marketplace prior to starting this exercise. You can fi nd the completed code for this exercise
in the ApplicationIdentity.js fi le included with the code download for this chapter.

c10.indd 258c10.indd 258 19/01/13 11:19 AM19/01/13 11:19 AM

Creating and Managing Application Identities ❘ 259

 1. In your SharePoint site create a new Custom list called Gadgets. Do this by clicking in Site Contents, and
click Add App. Select Custom List from the list and call it Gadgets. Click Create.

 2. Ensure you have Napa Offi ce 365 Development Tools installed in your development site in Offi ce 365.

 3. Click Site Contents in your site navigation to see a list of all apps installed in your site.

 4. Locate Napa Offi ce 365 Development Tools in the list and click it.

 5. Click Add New Project.

 6. Select App for SharePoint and enter MyNewApp in the Project name box. Click Create to continue.
Napa creates a set of template fi les and folders for you. Explore the structure and get familiar
with the layout of the application.

 7. Open the Scripts folder and then open the App.js fi le. This default fi le contains the JavaScript for
your application.

 8. Replace the contents of the fi le with the following code:

var context;
var web;
var user;

// This code runs when the DOM is ready. It ensures the SharePoint
// script file sp.js is loaded and then executes sharePointReady()
$(document).ready(function () {
 SP.SOD.executeFunc('sp.js', 'SP.ClientContext', sharePointReady);
});

var hostUrl;

function sharePointReady() {
 context = new SP.ClientContext.get_current();
 web = context.get_web();
 hostUrl = getParameterByName('SPHostUrl');
 createItems();
}

function createItems()
{
 var listContext = new SP.AppContextSite(context, hostUrl);
 var list = listContext.get_web().get_lists().getByTitle('Gadgets');
 var itemCreateInfo = new SP.ListItemCreationInformation();
 var newListItem = list.addItem(itemCreateInfo);
 newListItem.set_item('Title', 'Microsoft Surface 32GB with Touch Cover');
 newListItem.update();
 context.load(newListItem);
 context.executeQueryAsync(onCreateListItemsSuccess,onFailed);
}

function onCreateListItemsSuccess() {
 alert('List Item created');
}

// This function is executed if the preceding call fails
function onFailed(sender, args) {

c10.indd 259c10.indd 259 19/01/13 11:19 AM19/01/13 11:19 AM

260 ❘ CHAPTER 10 OVERVIEW OF OAUTH IN SHAREPOINT 2013

 alert('Failed. Error:' + args.get_message());
}

function getParameterByName(name)
{
 name = name.replace(/[\[]/, "\\\[").replace(/[\]]/, "\\\]");
 var regexS = "[\\?&]" + name + "=([^&#]*)";
 var regex = new RegExp(regexS);
 var results = regex.exec(window.location.search);
 if(results == null)
 return "";
 else
 return decodeURIComponent(results[1].replace(/\+/g, " "));
}

 9. In the lower left area of the window click the wrench icon to open the Property panel for your
application.

 10. Click the Permissions tab and set the permissions for Web under Content to Full Control.

 11. Run the project using the Run Project button in the bottom left of the window; a permissions
request window appears, asking you to grant the application full control of the site. Click Trust It.

 12. An alert window appears showing, “List Item created.” Click OK.

 13. Check that your list was created by clicking the link in the top left of the page to get to your
developer site. Click Site Content and fi nd the Gadgets list. You should see the new list item that
was created.

 14. View the list item by clicking the “…” beside the list item and selecting View Item.

 15. Review the Created At information at the bottom of the page. It will say “by MyNewApp on
behalf of.”

How It Works

In this exercise you created a SharePoint-hosted application using the Napa tools that created a new list
item in a SharePoint list. The app created the list item on behalf of the user, and you can see this infor-
mation in the Created By and Modifi ed By fi elds on the newly created list item. This is because when
the app makes the CSOM call, the application identity is passed and SharePoint understands that the
call is being made on behalf of a user via an application.

An application identity consists of an ID, name, and a domain where the app is hosted. The type of
application and environment will dictate a particular method for creating new application identities/
registrations.

The manual options for creating new registrations include the following:

 ➤ Manually register a new identity in SharePoint.

 ➤ Obtain a new identity for the app market from the Seller Dashboard.

 ➤ Register a new identity using PowerShell.

c10.indd 260c10.indd 260 19/01/13 11:19 AM19/01/13 11:19 AM

Creating and Managing Application Identities ❘ 261

In some scenarios, creation of an app identity is automated for you. Those are as follows:

 ➤ Deploying and debugging via Visual Studio during development

 ➤ Using the Autohosted app type

During development Visual Studio takes care of temporarily creating an app identity for you
during the deployment and confi guration of your application so that you don’t have to. A new
one is created each time you deploy, but you can’t rely on these identities for long periods of time.
SharePoint Online will also take care of the creation of an app identity for you upon deployment
and installation of an Autohosted app, however you must create an app identity when you are not
building an Autohosted app and when one or more of the following apply:

 ➤ You have completed development and are ready to deploy your app.

 ➤ You are building a Provider-hosted app for either SharePoint Online or SharePoint on
premises.

 ➤ You are building an app for the marketplace in SharePoint Online.

NOTE If you are packaging your application and will be distributing it via the

marketplace in SharePoint Online you must obtain an application identity via

the Seller Dashboard. To read more about this process refer to Chapter 8,

“Distributing SharePoint 2013 Apps.”

If you want to deploy the app locally on a SharePoint on-premises deployment or privately (not via
the marketplace) in SharePoint Online then you must manually register a new application identity.
You can do it via the AppRegNew.aspx page, which is located at: http://yourservername/_
layouts/15/appregnew.aspx. AppRegNew.aspx and allows you to either specify or generate a client
ID (another name for app ID) and a client secret. Additionally, it requires you to specify a friendly
name for the app and the domain that hosts the app. After you complete a new registration, a page
appears listing the details. You should make a note of these somewhere safe. You need them to
update the manifest fi les in Visual Studio.

After you have a static client ID and client secret you then must update the values in the following
locations:

 ➤ In the app project AppManifest.xml fi le, change the AppPrincipal,
RemoteWebApplication client ID node as follows:

<AppPrincipal>
 <RemoteWebApplication ClientId="<Client ID Here>"/>
</AppPrincipal>

 ➤ In the Web.config fi le in the app code project, change the AppSettings, client ID, and
client secret nodes as follows:

<appSettings>
 <add key="ClientId" value="<Client ID Here>" />
 <add key="ClientSecret" value="<Client Secret Here>" />
</appSettings>

c10.indd 261c10.indd 261 19/01/13 11:19 AM19/01/13 11:19 AM

262 ❘ CHAPTER 10 OVERVIEW OF OAUTH IN SHAREPOINT 2013

 ➤ The app domain is the host name of where your application remote Website and code is
hosted. This could be a Website in Azure; for example, www.contoso.com.

 ➤ The redirect URI is used for when apps request permissions on the fl y versus explicitly in the
app manifest fi le. This should be the URL of the page that accepts the authorization code
postback from SharePoint after the authorization has been processed. This fi eld can be left
blank if you are not requesting permissions on the fl y from SharePoint.

The following exercise walks you through creating an application identity in SharePoint Online.

TRY IT OUT Creating an App Identity

In this exercise you create a new application identity registration in SharePoint Online. You need a
SharePoint Online site and need to be a site collection administrator.

 1. In your SharePoint site navigate to /_layouts/15/appregnew.aspx.

 2. Click Generate beside App ID and App Secret.

 3. In the Title fi eld type My First App.

 4. In the App Domain, type the domain name of the location you will deploy your Provider-hosted
app to; for example, www.contoso.com.

 5. Leave the Redirect URI blank.

 6. Click Create.

 7. A set of information appears about your application identity. Copy this information to a safe
location. It will look similar to the following:

The app identifier has been successfully created.
App Id: b5759c4d-9572-4154-a569-8ad254c2c7ca
App Secret: U6xxmVq1txVitMiqTffVt/G9c+JjXbMwNFijziv2YxU=
Title: My First App
App Domain: www.contoso.com
Redirect URI:

How It Works

In this exercise you created a new application identity. Behind the scenes SharePoint creates the regis-
tration and then saves it by way of the application management shared service. It is persisted to the ser-
vices database and can be read from any of the SharePoint Servers in the farm.

You can also look up some of the details about a registered app using the AppInv.aspx page, which
is located at: http://yourservername/_layouts/15/appinv.aspx. You must supply the client ID
for the app. Note that the page doesn’t provide the client secret of your app, just the display name
and host domain information.

c10.indd 262c10.indd 262 19/01/13 11:19 AM19/01/13 11:19 AM

http://www.contoso.com
http://www.contoso.com
http://www.contoso.com

Application Authentication ❘ 263

APPLICATION AUTHENTICATION

Now that you understand what application identities are and how to create and set them up in
SharePoint, you can take a look at how those identities are used as part of the authentication
between applications and SharePoint.

Whenever an app that is subject to external authentication needs to make an API call into
SharePoint it must fi rst confi rm it has a valid and usable set of authentication tokens to do so. The
two key tokens are:

 ➤ Context token

 ➤ Access token

The context token is passed when an application is launched. It contains information about who the
calling user is and details about the SharePoint site where the application was launched. The access
token is used when an application makes a call to a SharePoint API.

Several steps make up the authentication fl ow when these two tokens are issued and used, but there
are fi ve main occurrences that make up high-level fl ow when a user launches an app in SharePoint:

 1. User logs into SharePoint.

 2. SharePoint gets a context token for the user.

 3. Context token is passed to the app when launched.

 4. App uses the context token to request an access token.

 5. Access token is passed with API calls.

The full process for app authentication is slightly more complex, as shown in Figure 10-1. This
detailed, step-by-step version of process is explained in the following steps:

Browser

SharePoint Server

STS (ACS)

Contoso.com

7

6

9

8

10

5

4

1

2
3

FIGURE 10-1

c10.indd 263c10.indd 263 19/01/13 11:19 AM19/01/13 11:19 AM

http://Contoso.com

264 ❘ CHAPTER 10 OVERVIEW OF OAUTH IN SHAREPOINT 2013

 1. User requests a SharePoint page with an App Part included.

 2. SharePoint requests a context token from ACS for the user, including context information
about the user and a refresh token that can be used for requesting access tokens.

 3. ACS returns the signed context token to SharePoint.

 4. SharePoint returns the page with an iFrame for the App Part, including the content token as
a query string parameter on the URL for the iFrame source.

 5. The browser renders the page and iFrame, and a request to the remote app is made to render
the App Part iFrame contents. The context token is passed on the URL.

 6. The app code validates the content token to ensure its authenticity using a shared secret that
only the app and SharePoint/ACS know. The app then uses the refresh token to request an
access token from ACS.

 7. ACS returns an access token. These can be cached and used multiple times. The expiry time
is provided in the token so the app knows when to request a new one.

 8. The app makes an API call to SharePoint such as a CSOM call or REST API request. The
access token is included in the authorization HTTP header.

 9. The SharePoint API call returns the data requested.

 10. The app renders the page content and the result is returned.

NOTE Both the context token and access tokens are Base64-encoded

JavaScript Object Notation (JSON) objects that follow the JSON Web Token

(JWT) format. If you are interested in viewing the full structure of the tokens you

can Base64-decode the tokens, which gives you the JSON-formatted token.

In the case of SharePoint Online Azure Control Services (ACS), the STS is involved in creating both
the context token and access tokens. In purely on-premises situations, SharePoint acts as the STS.
You can fi nd more on this topic later in this chapter in the “On-Premises App Authentication”
section.

To assist with the various token-centric processes, such as validating tokens and requesting new
ones from code, the default Visual Studio 2012 SharePoint application templates provide a helper
class called TokenHelper. It wraps up the calls to ACS and so on to simplify the process for you.

The best way to illustrate some of the helper functions and classes that TokenHelper.cs provides is
to walk through an example exercise, as follows.

TRY IT OUT Using TokenHelper (Tokens.zip)

In this exercise you create a simple SharePoint Autohosted application and use the TokenHelper class
to access the ContextToken passed. You can fi nd the code for this exercise in the download package for
this chapter in the fi le called Tokens.zip.

c10.indd 264c10.indd 264 19/01/13 11:19 AM19/01/13 11:19 AM

Application Authentication ❘ 265

 1. Create a new SharePoint app project in Visual Studio by choosing File ➪ New ➪ Project. Pick the
App for SharePoint 2013 project template.

 2. Name your app SharePointApp and click OK.

 3. If required, specify the URL of your SharePoint online site for the site to use for debugging.

 4. Ensure Autohosted is selected in the hosting type drop-down menu.

 5. Click Finish.

 6. Locate and open the TokenHelper.cs fi le.

 7. Find the CreateJsonWebSecurityTokenHandler function and make the function public instead
of private as follows:

public static JsonWebSecurityTokenHandler CreateJsonWebSecurityTokenHandler()

 8. Locate and open the Default.aspx.cs fi le.

 9. Replace the Page_Load function with the following code:

protected void Page_Load(object sender, EventArgs e)
{
 var contextToken = TokenHelper.GetContextTokenFromRequest(Page.Request);
 var hostWeb = Page.Request["SPHostUrl"];

 JsonWebSecurityTokenHandler tokenHandler =
 TokenHelper.CreateJsonWebSecurityTokenHandler();
 SecurityToken securityToken = tokenHandler.ReadToken(contextToken);
 JsonWebSecurityToken jsonToken = securityToken as JsonWebSecurityToken;
 SharePointContextToken token = SharePointContextToken.Create(jsonToken);

 Response.Write("Context Token: " + contextToken);
 Response.Write("STS: " + token.SecurityTokenServiceUri);
}

 10. Press F5 to run and debug the project.

 11. If prompted to trust the application, click Trust It.

 12. When presented with the list of apps in your site, locate and click your new application.

 13. A Web page appears that contains the Base64-encoded context token and the URL of the STS
that issued the token. In the case of ACS it is as follows:

https://accounts.accesscontrol.windows.net/tokens/OAuth/2

 14. Copy the ContextToken value to the clipboard.

 15. In a new window, navigate to www.base64decode.org and paste the ContextToken into the
Value to decode box.

 16. Click Decode to decode the Base64-encoded string. A JSON representation of your ContextToken
appears, and you can see where all the values passed are included.

c10.indd 265c10.indd 265 19/01/13 11:19 AM19/01/13 11:19 AM

https://accounts.accesscontrol.windows.net/tokens/OAuth/2
http://www.base64decode.org

266 ❘ CHAPTER 10 OVERVIEW OF OAUTH IN SHAREPOINT 2013

How It Works

In this exercise you created a new application that accepted the ContextToken from SharePoint. You
used the TokenHelper class to assist with decoding and parsing out the SharePointContextToken
object. Contained within the decoded context token is information about the token, including the
issuing party — in this case, Azure Access Control Services acting as the STS.

App and User Context in API Calls

SharePoint provides the ability for apps to make calls to SharePoint with access tokens that are
either on behalf of a user or without user context, also known as app-only context. When an access
token is used that is on behalf of a user, SharePoint treats the call as if the user is making the call.
This means it is subject to the same permissions that user has. Additionally, an app can make an
app-only call to SharePoint, which means no user context is passed and only the permissions that
the app has been granted apply.

The TokenHelper class provides helper methods for getting each of these types of tokens. To get an
access token that includes the calling user’s context, use the following method:

TokenHelper.GetAccessToken

To get an app-only access token, use the following method:

TokenHelper.GetAppOnlyAccessToken

See the “Application Authorization” section later in this chapter for more on app and user
authorization and how permissions are determined by SharePoint.

Managing Tokens in Your Application

As previously mentioned, when an application is launched by a user a context token is passed to it.
After this has happened it is up to the application to handle the tokens and potentially store them
for future use or pass between app pages. These tasks are left to the application to manage because
SharePoint has no knowledge of the inner workings of the application. The developer must decide
how she wants to manage these tokens when the application passes them after it is launched. Some
basic options are available, including the following:

 ➤ Cache the token for a period of time.

 ➤ Pass the token around as needed but don’t store it.

To assist with caching, the tokens provide a CacheKey and an expiry that can make caching more
straightforward for the developer. The CacheKey is a property on the token that is unique to that
particular token. It can be used, as the name suggests, as a primary key for that token in a cache of
the developer’s choosing, such as ASP.NET application state. Additionally, the expiry time can be
used in the application to fl ush the old tokens from the cache after they have expired.

c10.indd 266c10.indd 266 19/01/13 11:19 AM19/01/13 11:19 AM

http://ASP.NET

Application Authentication ❘ 267

The following exercise walks through a simple example of how to use ASP.NET application state to
cache the appropriate tokens so that they can be used between page requests.

TRY IT OUT Caching Tokens (TokenCache.zip)

In this exercise you create an Autohosted application that, when run, receives and then caches the
ContextToken using application state. You can fi nd the code for this exercise in the download package
for this chapter in the fi le called TokenCache.zip.

 1. Create a new SharePoint App project in Visual Studio by choosing File ➪ New ➪ Project. Select
the App for SharePoint 2013 project template.

2. Name your app SharePointTokenCacheApp and click OK.

3. If required, specify the URL of your SharePoint online site for the site to use for debugging.

4. Ensure Autohosted is selected in the hosting type drop-down menu.

5. Click Finish.

6. Locate and open the TokenHelper.cs fi le.

7. Find the CreateJsonWebSecurityTokenHandler function and make the function public instead
of private as follows:

public static JsonWebSecurityTokenHandler CreateJsonWebSecurityTokenHandler()

8. Locate and open the Default.aspx fi le and add the following code inside the <div> tags:

<asp:Button ID="Button1" runat="server" Text="Process" OnClick="Button1_Click"/>

9. Locate and open the Default.aspx.cs fi le and replace the contents with the following code:

using System;
using System.Collections.Generic;
using System.IdentityModel.Tokens;
using System.Linq;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;
using Microsoft.IdentityModel.S2S.Tokens;

namespace SharePointTokenCacheAppWeb.Pages
{

CACHE THE REFRESH TOKEN

As part of the context token, SharePoint provides another token called a refresh
token. This token is typically valid for six months and can be used to request access
tokens for a particular user. This capability is very handy if your app needs to make
calls into SharePoint as a particular user when the user isn’t using the app; for
example, on a timed basis such as a timer job.

c10.indd 267c10.indd 267 19/01/13 11:19 AM19/01/13 11:19 AM

http://ASP.NET

268 ❘ CHAPTER 10 OVERVIEW OF OAUTH IN SHAREPOINT 2013

 public partial class Default : System.Web.UI.Page
 {

 protected void Page_Load(object sender, EventArgs e)
 {
 if (!this.IsPostBack)
 {
 var contextToken =
 TokenHelper.GetContextTokenFromRequest(Page.Request);
 var hostWeb = Page.Request["SPHostUrl"];

 JsonWebSecurityTokenHandler tokenHandler =
 TokenHelper.CreateJsonWebSecurityTokenHandler();
 SecurityToken securityToken = tokenHandler.ReadToken(contextToken);
 JsonWebSecurityToken jsonToken =
 securityToken as JsonWebSecurityToken;
 SharePointContextToken token =
 SharePointContextToken.Create(jsonToken);

 Application[token.CacheKey] = contextToken;

 Button1.CommandArgument = token.CacheKey;

 }
 }

 protected void Button1_Click(object sender, EventArgs e)
 {
 var contextToken =
 (string)Application[((Button) sender).CommandArgument];
 var hostWeb = Page.Request["SPHostUrl"];

 using (var clientContext =
 TokenHelper.GetClientContextWithContextToken(hostWeb, contextToken,
 Request.Url.Authority))
 {
 clientContext.Load(clientContext.Web, web => web.Title);
 clientContext.ExecuteQuery();
 Response.Write(clientContext.Web.Title);
 clientContext.ToString();
 }
 }
 }
}

 10. Press F5 to run and debug the project.

 11. If prompted to trust the application, click Trust It.

 12. When presented with the list of apps in your site, locate and click your new application.

 13. A Web page appears with the Process button on it. Click the button. The page will display the
Title of your Website.

c10.indd 268c10.indd 268 19/01/13 11:19 AM19/01/13 11:19 AM

Application Authorization ❘ 269

How It Works

In this exercise you created a new application that cached the ContextToken passed to it in the ASP
.NET application cache. It used the CacheKey property to uniquely key the token in the cache. This
allowed subsequent page requests to locate the ContextToken in the cache and use it to make API calls
to SharePoint. Without caching the ContextToken in this manner, subsequent page requests or
postbacks wouldn’t include the ContextToken in the POST parameters and API calls wouldn’t be possible.

APPLICATION AUTHORIZATION

After an application call to a SharePoint API has been authenticated, the next step in the chain of
security processing is to check whether the app and user have the appropriate rights to the resources
they are attempting to access. These permissions can be assigned two ways:

 ➤ Statically

 ➤ Dynamically

Statically assigned permissions are defi ned
as one or more permission requests in the
AppManifest.xml fi le. They are defi ned by the
application developer and are the permissions
that the app requests when it is installed. When
a user adds the app to the site, she is presented
with a consent dialog screen, as shown in
Figure 10-2, asking for the user to grant the
permissions being asked for.

Note that granting permissions is an “all or nothing” operation. A user cannot, for example, only
grant one of the two permissions being asked for. This is another example of why asking only for
the permissions that app needs at a minimum to run is important.

After a user grants the application the appropriate permissions, they are recorded in SharePoint in
the application management shared service. They are then referred to when an app makes an API
call for access to resources.

Additionally, an application may dynamically request permissions on the fl y during execution. This
allows for scenarios where the application might not know what resources it needs to begin with, or
when it might start with only basic rights and then request more as appropriate. This is discussed
more in the next section, “Requesting Permissions Dynamically.”

NOTE When designing your application, only statically defi ne the minimum

permissions the app needs to run. Defi ning permissions that give the application

full control over an entire site will cause the user and admin concern if these

permissions are not needed.

FIGURE 10-2

c10.indd 269c10.indd 269 19/01/13 11:19 AM19/01/13 11:19 AM

http://ASP.NET
http://ASP.NET

270 ❘ CHAPTER 10 OVERVIEW OF OAUTH IN SHAREPOINT 2013

Permission requests for apps are analogous to granting permissions for a user to access a resource.
For example, granting a user contributor access on a document library is the same as granting an
application read/write-access on that library.

You statically defi ne permission requests in the AppManifest.xml fi le. Here is an example:

<AppPermissionRequests>
<AppPermissionRequest Scope="http://sharepoint/content/sitecollection/web"
Right="FullControl" />

</AppPermissionRequests>

Two pieces of information are needed in a permissions request:

 ➤ Scope

 ➤ Right

The scope defi nes what component the permission request is for. It is not a URL although it looks
like one. These components (also referred to as a permissions provider) are from a defi ned list. They
cover various aspects of SharePoint such as sites, lists, and libraries. Some example scopes include
the following:

 ➤ http://sharepoint/search

 ➤ http://sharepoint/content/sitecollection/web

 ➤ http://sharepoint/content/sitecollection/web/list

 ➤ http://sharepoint/projectserver

 ➤ http://sharepoint/social/microfeed

 ➤ http://sharepoint/taxonomy

NOTE The preceding list is not exhaustive and only shows a short list of the

possible scopes.

The right defi nes what level of access is being requested. For example, the application might be
asking only for read-access to a particular resource versus read/write access. The various rights
available vary for each particular scope. The most common rights are:

 ➤ Read

 ➤ Write

 ➤ Manage

 ➤ FullControl

By combining a scope with a right, developers can defi ne a vast number of permissions.

c10.indd 270c10.indd 270 19/01/13 11:19 AM19/01/13 11:19 AM

http://sharepoint/content/sitecollection/web
http://sharepoint/search
http://sharepoint/content/sitecollection/web
http://sharepoint/content/sitecollection/web/list
http://sharepoint/projectserver
http://sharepoint/social/microfeed
http://sharepoint/taxonomy

Application Authorization ❘ 271

Requesting Permissions Dynamically

Many situations exist where an application might not know ahead of time what permissions it
needs. Take, for example, the situation where an app reads documents in document libraries and
does something with them. In this situation the app will not know ahead of time what document
libraries those documents reside in, or how many document libraries they are stored in. This means
the application might need to request permissions dynamically from the user. SharePoint 2013 has a
method for doing this by prompting the user to allow additional permission requests by redirecting
the user to another consent dialog. The TokenHelper class has a helper method to assist with
constructing the URL for the consent page:

TokenHelper.GetAuthorizationUrl(sharePointSiteUrl.ToString(),
"Web.Read List.Write",
"https://myapp.com/RedirectAccept.aspx"));

This helper method returns a URL pointing at the OAuthAuthorize.aspx page along with the
permissions you are requesting, the app client ID, scope, and the redirect-accept URI. You can then
direct the user to that URL using Response.Redirect(). Another possibility is to pop up a modal
dialog with JavaScript containing an iFrame to this page. After the permissions request is complete,
SharePoint redirects back to the URI you specify (in the preceding example, RedirectAccept.aspx)
along with an authorization code.

https://myapp.com/RedirectAccept.aspx?code=authcode

That authorization code found in the query string parameter code can then be used to request an
access token that includes those additionally granted permissions. The TokenHelper class has a
method for assisting with this:

TokenHelper.GetAccessToken(authorizationCode, targetPrincipalName,
targetUri.Authority, targetRealm, redirectUri).AccessToken;

This access token is also cacheable. It will expire, however, so you should also cache the refresh
token given back, which will allow the app to request additional access tokens when they expire.

TokenHelper also has a method for getting a CSOM ClientContext object directly using the
authorization code:

TokenHelper.GetClientContextWithAuthorizationCode(targetUrl,targetPrincipalName,
authorizationCode, targetRealm, redirectUri)

App-Only Policy

The three “contexts” in which authorization is validated in SharePoint are as follows:

 ➤ User-only policy

 ➤ App+user policy

 ➤ App-only policy

User-only policy is what is evaluated when users are using the SharePoint Web UI. SharePoint
checks their permissions to do certain actions/activities and either allows or denies the activity.

The app+user policy is typically used when an app makes an API call to SharePoint. In this policy
both the app and the user must have appropriate permissions/rights in SharePoint to complete the

c10.indd 271c10.indd 271 19/01/13 11:19 AM19/01/13 11:19 AM

https://myapp.com/RedirectAccept.aspx
https://myapp.com/RedirectAccept.aspx?code=authcode

272 ❘ CHAPTER 10 OVERVIEW OF OAUTH IN SHAREPOINT 2013

action successfully. If the call is being made to a document library the user does not have access to, the
call will fail — access is denied. Likewise, if the app does not have permissions, the call will also fail.

In some situations an application might not want or need to act on behalf of a user. Additionally,
there may be instances when you want to temporarily allow users to take actions on resources that
they don’t have explicit permissions on. This later scenario is analogous to temporarily elevating
permissions using the full-trust code model of the past.

In these scenarios the application model allows apps to make calls to SharePoint only in the context
of the application and not the user. This is called “app-only” context. Therefore, app-only policy
means that only the app’s permissions are checked when the call is made, so if the user does not
have access to a resource but the app does, the call will still succeed. As mentioned earlier, this is
a good way to temporarily elevate permissions for a user. The app can be granted permissions on
things that the user doesn’t normally have access to. An example of when this could be useful is for
situations such as submitting a document to a secure location or perhaps approving a document that
the user doesn’t have access to via SharePoint and only has access to via the application.

To use the app-only policy you must do two things:

 ➤ Allow app-only permission in the app manifest.

 ➤ Create an app-only access token.

An app defi nes that it needs app-only access in the AppManifest.xml fi le by the developer setting
the AllowAppOnlyPolicy attribute as follows:

<AppPermissionRequests AllowAppOnlyPolicy="true">

NOTE Because of the additional capabilities this access allows, only certain site

collection administrators can grant applications requesting this permission.

At run time an app-only access token must be created in order to make calls just like the application
does. Again, the TokenHelper class makes this easy with the following helper function:

TokenHelper.GetAppOnlyAccessToken(contextToken.TargetPrincipalName,
sharepointUrl.Authority, contextToken.Realm).AccessToken;

ON-PREMISES APP AUTHENTICATION WITH S2S

In some situations an organization might need its SharePoint environment and solutions to be purely
on-premises. This could be for security reasons, technical reasons such as in disconnected network
situations, or simply because on-premises solutions are the company policy. In these situations,
using Offi ce 365, Azure Access Control Services (ACS), and apps hosted in Azure will not work.
An alternative is to host the apps on premises along with the SharePoint sites and to use Server
to Server (S2S) authentication. S2S effectively removes reliance on Azure Access Control Services
(ACS). In its place SharePoint acts as the Security Token Service (STS) and predefi ned certifi cates are
used to sign and verify the tokens that are generated. S2S uses extensions to the OAuth 2.0 protocol
that are not (at the time of this writing) currently part of the OAuth 2.0 standard, but have been
submitted by Microsoft for future inclusion.

c10.indd 272c10.indd 272 19/01/13 11:19 AM19/01/13 11:19 AM

On-Premises App Authentication with S2S ❘ 273

Applications that run using S2S are also said to be “high-trust” apps. High-trust apps must
authenticate users independently themselves versus being passed a trusted identity as part of the
context token from SharePoint. Typically, applications would authenticate a user using Windows
Authentication (NTLM) or a similar scheme. High-trust apps are considered “high trust” because
SharePoint trusts the application and trusts that it has authenticated and identifi ed the user context
being passed as part of an API call.

Part of the reason why high-trust apps establish the identity of users themselves is because of other
authentication/authorization needs in on-premises scenarios. Take, for example, the scenario where
a fi nancial organization needs to keep all its data on premises for regulatory reasons. It builds an
app that works with data in a variety of other on-premises systems and its organization uses Active
Directory (AD) to manage users and security in those systems. A high-trust app would use a user’s
Windows identity to authenticate him and check his permissions; that same identity could also be
used for downstream systems such as SQL Server.

This means that high-trust apps can play in the same playground as other on-premises applications
and, most importantly, use the same internally mandated authorization and authentication system.

Setting up S2S authentication requires a number of manual setup steps for it to work properly.
Following them correctly is important to ensure proper authentication operation.

You must setup and confi gure two items prior to starting the S2S confi guration:

 ➤ User Profi le Service Application

 ➤ App isolation

For more setup steps for app isolation, see the following MSDN document: http://msdn
.microsoft.com/en-us/library/office/apps/fp179923.aspx.

After you have the prerequisites set up then you can complete the following:

 1. Create and export a certifi cate.

 2. Register the app (see the previous section, “Creating and Managing Application Identities”).

 3. Create a Provider-hosted app.

After completing the preceding items, you can start building Provider-hosted apps that are deployed
on premises with IIS and SharePoint. The app and SharePoint are able to generate and verify the
tokens required based on the trust set up with the certifi cate. You’ll need to create a certifi cate so
that your app can generate and verify the tokens. You can either create a self-signed certifi cate or
use a certifi cate obtained from a certifi cate issuing authority. A self-signed certifi cate is simply a
certifi cate that you sign yourself rather than obtaining it from a trusted issuing authority, and, for
the purposes of these steps, is adequate to use. To create a self-signed certifi cate, follow these steps
(Windows Server 2012):

 1. Open IIS Manager.

 2. Click Server Certifi cates.

 3. Select Create Self-Signed Certifi cate from the action menu.

 4. Give your certifi cate a name, such as MyAppCert. Click OK and when complete you will see
your new certifi cate listed.

c10.indd 273c10.indd 273 19/01/13 11:19 AM19/01/13 11:19 AM

http://msdn.microsoft.com/en-us/library/office/apps/fp179923.aspx
http://msdn.microsoft.com/en-us/library/office/apps/fp179923.aspx

274 ❘ CHAPTER 10 OVERVIEW OF OAUTH IN SHAREPOINT 2013

 5. Open your new certifi cate by double-clicking it.

 6. Click Copy to File.

 7. Click Next, leaving the fi elds with their defaults.

 8. Click Next again, leaving the fi elds with their defaults.

 9. Give your certifi cate a fi lename, such as c:\MyAppCert.cer.

 10. Right-click your certifi cate in IIS Manager and choose Export.

 11. Give it a fi lename such as c:\MyAppCert.pfx.

 12. Provide a password and remember it.

You are now ready to register a new app identity in SharePoint. To do this, you can use the
following PowerShell script. You need to generate a new GUID for the $clientid value, set the path
to your certifi cate, and set the name of the app appropriately. (You can fi nd the following script in
the download materials for this chapter in the S2SScript.txt fi le.)

$clientid = "7c17e591-f4da-46fc-b85c-a22a6b09c059"
$publicCertificatePath = "C:\MyAppCert.cer"

$certificate = Get-PfxCertificate $publicCertificatePath
$web = Get-SPWeb "http://servername"
$realm = Get-SPAuthenticationRealm -ServiceContext $web.Site
$fullAppIdentifier = $issuerId + '@' + $realm

New-SPTrustedSecurityTokenIssuer -Name "My App"
-Certificate $certificate -RegisteredIssuerName $fullAppIdentifier

Register-SPAppPrincipal -NameIdentifier $fullAppIdentifier -Site $web
-DisplayName "My App"

$serviceConfig = Get-SPSecurityTokenServiceConfig
$serviceConfig.AllowOAuthOverHttp = $true
$serviceConfig.Update()

The preceding script does the following:

 ➤ Sets up a new trusted security token issuer.

 ➤ Creates a new app identity/registration.

 ➤ Turns off SSL for OAuth for development purposes.

NOTE Turning off SSL for OAuth makes it easier when developing to get your

application up and running. No SSL certifi cates are needed which simplifi es

setup and confi guration on developer machines with diff erent machine names.

Now you are ready to create a Provider-hosted app in Visual Studio using the Microsoft Offi ce
Developer Tools for Visual Studio 2012 - Preview 2. Follow these steps:

c10.indd 274c10.indd 274 19/01/13 11:19 AM19/01/13 11:19 AM

Summary ❘ 275

 1. Create a new SharePoint App project with Visual Studio.

 2. Specify Provider-hosted as the app type during creation.

 3. When you are asked whether you want to Use a Certifi cate to authenticate, say that you do
and specify the path to the PFX certifi cate fi le you exported. Provide the password you also
specifi ed during the export.

 4. Enter the $clientid GUID you created for the earlier PowerShell script into the Issuer ID
fi eld in the wizard.

 5. Complete the wizard and complete your application development.

 6. Click F5 to deploy and test your application.

For more detailed step-by-step instructions on the preceding task, go to the MSDN site at: http://
msdn.microsoft.com/en-us/library/office/apps/fp179901.aspx#Cert.

SUMMARY

OAuth in SharePoint 2013 offers many new opportunities for integrating with both SharePoint
Online and SharePoint on premises. The introduction of an application identity gives developers
and administrators alike new opportunities for authenticating and authorizing access to content
and information in SharePoint. By building on the already-large ground swell of developer support
for OAuth in the community, SharePoint can offer access to its APIs in a standards-based and
well-understood manner, thus reducing the complexity and proprietary nature of the process. The
authorization system built into SharePoint 2013 offers developers fl exibility and control over asking
for access to resources while at the same time balancing that with the security needs and controls
needed by users and IT professionals running SharePoint environments.

The OAuth system is part of the new framework for building applications; however, the effects of
offering standardized, remotely callable APIs is also further reaching, enabling developers a wider
range of integration options dependent on their environment and scenarios.

EXERCISES

Answers to Exercises for this chapter can be found in Appendix A.

 1. How can you create new application identity registrations in SharePoint 2013 and what are the

uses of the client ID and client secret?

 2. Describe the three main token types that comprise the OAuth fl ow.

 3. How can the application principal be used to elevate permissions for a calling user?

 4. What OAuth tokens can be cached and for how long?

c10.indd 275c10.indd 275 19/01/13 11:19 AM19/01/13 11:19 AM

http://msdn.microsoft.com/en-us/library/office/apps/fp179901.aspx#Cert
http://msdn.microsoft.com/en-us/library/office/apps/fp179901.aspx#Cert

276 ❘ CHAPTER 10 OVERVIEW OF OAUTH IN SHAREPOINT 2013

 � WHAT YOU LEARNED IN THIS CHAPTER

ITEM DESCRIPTION

OAuth An open protocol to allow secure authorization in a simple and

standard method from Web, mobile, and desktop applications.

Application principal An application identity giving the ability to grant access to resources

on a per-application basis.

Server to Server

authentication

The on-premises model for setting up application authentication

between a SharePoint Server and application code.

RECOMMENDED READING

Authorization and authentication for apps in SharePoint 2013 — http://msdn.microsoft.com/
en-us/library/office/apps/fp142384.aspx

OAuth authentication and authorization fl ow for cloud-hosted apps in SharePoint 2013 — http://
msdn.microsoft.com/en-us/library/office/apps/fp142382.aspx

How to create high-trust apps for SharePoint 2013 using the server-to-server protocol — http://
msdn.microsoft.com/en-us/library/office/apps/fp179901.aspx

c10.indd 276c10.indd 276 19/01/13 11:19 AM19/01/13 11:19 AM

http://msdn.microsoft.com/en-us/library/office/apps/fp142384.aspx
http://msdn.microsoft.com/en-us/library/office/apps/fp142384.aspx
http://msdn.microsoft.com/en-us/library/office/apps/fp142382.aspx
http://msdn.microsoft.com/en-us/library/office/apps/fp142382.aspx
http://msdn.microsoft.com/en-us/library/office/apps/fp179901.aspx
http://msdn.microsoft.com/en-us/library/office/apps/fp179901.aspx

PART III
Advanced Developer
Topics in SharePoint 2013

 � CHAPTER 11: Developing Integrated Apps for Offi ce and

SharePoint Solutions

 � CHAPTER 12: Remote Event Receivers in SharePoint 2013

 � CHAPTER 13: Building Line-of-Business Solutions

Using Business Connectivity Services

 � CHAPTER 14: Developing Applications Using Offi ce Services

 � CHAPTER 15: Developing Workfl ow Applications for SharePoint 2013

c11.indd 277c11.indd 277 19/01/13 11:21 AM19/01/13 11:21 AM

c11.indd 278c11.indd 278 19/01/13 11:21 AM19/01/13 11:21 AM

Developing Integrated Apps for
Offi ce and SharePoint Solutions

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ Creating integrated Offi ce 2013 solutions using the new app model

 ➤ Understanding the new app model concepts and JavaScript object

model (JSOM) for Offi ce

 ➤ Learning when and how to use the common patterns for developing

and deploying Apps for Offi ce 2013

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at http://www.wrox.com/
WileyCDA/WroxTitle/productCd-1118495845.html on the Download Code tab. The code
for this chapter is divided into the following major examples:

 ➤ CompositeOSPAutoHosted.zip

 ➤ ExploreMailApp.zip

 ➤ ExploreOffi ceAPI.zip

 ➤ FirstApp.zip

The Microsoft Offi ce desktop applications are used by millions of individuals worldwide.
Whether it’s a teenager putting his fi rst PowerPoint presentation together for a class project,
a doctoral candidate writing her thesis in Word, or a Wall Street fi nancial analyst performing
Monte Carlo simulations within Excel, the Offi ce desktop applications are a valued tool in the
hands of their user. Through their use, people express their ideas, document their theories and
discoveries, and make decisions based on analyzed results. Because of this widespread popu-
larity, it is a good idea to land SharePoint 2013 and Offi ce 2013 integrated solutions within

11

c11.indd 279c11.indd 279 19/01/13 11:21 AM19/01/13 11:21 AM

http://www.wrox.com/WileyCDA/WroxTitle/productCd-1118495845.html
http://www.wrox.com/WileyCDA/WroxTitle/productCd-1118495845.html
http://WROX.COM
http://wrox.com

280 ❘ CHAPTER 11 DEVELOPING INTEGRATED APPS FOR OFFICE AND SHAREPOINT SOLUTIONS

the context of the user’s productivity tools. This is where you want to integrate the reach of the Web
with the rich collaboration features of SharePoint in a way never before possible.

This chapter shows you how solutions built using the new app model for Offi ce 2013 can be
combined with SharePoint 2013 to bring a host of new business solution opportunities to end users.
Although you can still build integrated solutions that use Visual Studio Tools for Offi ce (VSTO)
or Visual Basic for Applications (VBA) for that matter, the new Offi ce app model provides a way
to bring the power of the Web into Offi ce. Think of this as a modern browser being hosted inside
of Offi ce 2013 (Microsoft Word, Excel, Outlook, and Project) that fully supports HTML5 and
JavaScript. The new app model also includes a unifi ed JavaScript object model (JSOM) that is shared
across the aforementioned Offi ce 2013 applications that enables the hosted web page and document,
or e-mail in the case of Outlook, to interact! With this new app model you can build an app for
Offi ce or couple it with an app for SharePoint for an integrated solution. The app can either be
standalone (as in the case of an app for Offi ce) or deployed as part of an app for SharePoint 2013,
but in either case it can be distributed to potentially millions of users via the Offi ce Store on Offi ce
.com or directly to enterprises via an established sales relationship. Building integrated apps for
Offi ce and SharePoint is truly worth your consideration since the market for these app business
solutions encompasses on-premises installations of SharePoint 2013 and Offi ce 365 tenancies as well.

THE NEW APP MODEL FOR OFFICE

The new app model for Offi ce 2013 works in a similar manner as the new app model for SharePoint
2013 to mitigate many of the challenges developers have faced in the past. The result has become a
better platform for developers to include a broader set of technologies in their solutions while not
having the risk of impacting the core runtime environments of SharePoint and the Offi ce clients. In
Chapter 2, “Overview of the SharePoint 2013 App Model,” you learned how the new app model for
SharePoint 2013 helps to improve some problem areas that SharePoint 2010 h ad around full-trust
deployments that could impact server and end-user performance if code misbehaved. It also allows
developers to move beyond the restrictions imposed by sandboxed solutions. In the same way, the
new app model for Offi ce 2013 addresses a number of challenges developers and IT have faced
historically in Offi ce with add-in installations, but it also is forward-looking in its adoption of
web-based standards such as HTML5, CSS, JavaScript, and so on, which can now better facilitate web
developers in surfacing valued cloud-based assets inside of Offi ce.

The new app model for Offi ce can be considered an evolutionary and logical step in the
programmability/extensibility model for the Offi ce clients. As the desktop, laptop, and other device
form factors have evolved, so have the underlying hardware architectures. For instance, Offi ce now
runs on Windows RT which utilizes the ARM architecture that thin, lightweight tablet and PC
devices are built on. However, the ARM architecture does not support the traditional extensibility
models for Offi ce: VBA and VSTO. Therefore, solutions that developers have built using VBA and
VSTO are lost to users of these devices. The new app model for Offi ce is the extensibility model that
bridges this hardware/software divide. It now brings a new class of developer solutions to both the
platforms that Offi ce traditionally ran on as well as ARM devices and even the services layer to include
the Offi ce Web Apps where a version of Excel, Word, PowerPoint and Outlook run in the browser.

The new app model addresses a few other typical challenges for the developer and for IT. Take VBA
solutions and VSTO add-ins for example: these are written to provide powerful business solutions,

c11.indd 280c11.indd 280 19/01/13 11:21 AM19/01/13 11:21 AM

http://Office.com
http://Office.com

The New App Model for Offi ce ❘ 281

and VBA and VSTO developers write code specifi c to each Offi ce client. The deep object model is
not the same for Word as for Excel or PowerPoint, so a developer codes and maintains a different
solution for each client. Additionally, with the advent of the Offi ce Web Apps available in SharePoint
2010, the VBA code and COM-based add-ins became incompatible with the Web server environ-
ment. Essentially, a VBA solution or add-in developed for the rich client had no future with respect
to being deployed to run within the Offi ce server-side services on SharePoint.

Identifying the add-ins installed throughout the enterprise has been a challenge for IT, but due to
the add-ins’ tight coupling with the Offi ce client, a need exists to fully test add-ins with each new
version release of Offi ce. Historically, these challenges have made rolling out a new version of Offi ce
across the enterprise diffi cult.

The new app model for Offi ce nicely mitigates the challenges for both the developer and IT. For the
developer, the object model and unifi ed JSOM for Offi ce is consistent across the clients. The intent
is that with the unifi ed JSOM, the app can run across the desktop applications that support Apps for
Offi ce without any changes — something that could not be done with VSTO add-ins. Also, because
the app is essentially running in a browser inside Offi ce, the added benefi t is that the app can run
equally well in the Offi ce Web App under SharePoint. Although all the Offi ce Web Apps don’t
yet have this functionality in the Offi ce 2013 release, this is the direction for the new app model.
Therefore a developer’s solution written with the new app model is intended to run anywhere the
Offi ce client runs as well as in the server environment where the Offi ce Web Apps run. The solution
will not need to be altered to run in any of the locations. It’s just going to take some time to attain
parity across all the platforms.

IT benefi ts from the new application model because by its nature, there is no footprint on the Offi ce
client itself: Apps for Offi ce do not require an install. IT chooses how Apps for Offi ce are made available
within the enterprise, providing central management and governance. As apps are made available in
the enterprise, users can discover and access them from within the Offi ce client. The client understands
how to instantiate an app for Offi ce, monitor the app’s behavior, and provide telemetry information
to IT for reporting and decision making. For more information on telemetry, monitoring, and reporting
of Apps for Offi ce, please see the recommended reading list at the end of this chapter.

Now that you have access to all these benefi ts that the new Offi ce app model brings forth, it is
worth taking a look at how simple it is to build your fi rst app for Offi ce. The following activity
walks you through this process.

TRY IT OUT Building Your First App for Offi ce (FirstApp.zip)

Imagine extending Offi ce by merely composing and using standard web technologies with no program-
ming environment except a text editor! This exercise shows the simplicity of the new Offi ce app model
where an app can be broken down into a simple equation: Offi ce = 1 manifest fi le + 1 HTML page + 1
Offi ce client. To create one just follow these steps:

 1. Create a new folder on your local disk and name it AppManifests.

 2. Right-click on the folder and select Share with ➪ Specifi c people. Type Everyone in the text box,
click the Add button, and then click Share.

 3. Create another new folder on your local disk and name it FirstApp.

c11.indd 281c11.indd 281 19/01/13 11:21 AM19/01/13 11:21 AM

282 ❘ CHAPTER 11 DEVELOPING INTEGRATED APPS FOR OFFICE AND SHAREPOINT SOLUTIONS

 4. Create the following markup document in your text editor, and save the document as FirstApp
.html in the FirstApp folder:

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <meta charset="UTF-8" />
 <meta http-equiv="X-UA-Compatible" content="IE=9"/>
 <link rel="stylesheet" type="text/css" href="Program.css" />
 </head>
 <body>
 <p>My First app for Office!</p>
 </body>
</html>

 5. Create the following CSS document in your text editor, and save the CSS document in the same
folder where you saved the previous HTML document, as Program.css:

body
{
 position:relative;
}
li :hover
{
 text-decoration: underline;
 cursor:pointer;
}
h1,h3,h4,p,a,li
{
 font-family: "Segoe UI Light","Segoe UI",Tahoma,sans-serif;
 text-decoration-color:#4ec724;
}

 6. Using Microsoft Paint or any application that can create a .PNG fi le, create a 32332 pixel
image, and save the fi le in the same folder where you saved the previous CSS document, as
FirstApp.png.

 7. Enter the following XML in your text editor to create a manifest document, and save this fi le in
the AppManifests folder with the name FirstApp.xml: be sure to replace [YourDriveLetter]
in the following XML with the actual letter of your local drive where you saved the FirstApp
folder.

<?xml version="1.0" encoding="UTF-8"?>
<OfficeApp xmlns="http://schemas.microsoft.com/office/appforoffice/1.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="TaskPaneApp">
 <Id>c6ec2456-9fca-4f27-85c3-4623b25ef0ae</Id>
 <Version>1.0</Version>
 <ProviderName>Microsoft</ProviderName>
 <DefaultLocale>en-US</DefaultLocale>
 <DisplayName DefaultValue="My First App" />
 <Description DefaultValue="My first app for Office."/>
 <IconUrl DefaultValue="[YourDriveLetter]:\FirstApp\FirstApp.png" />
 <Capabilities>
 <Capability Name="Workbook" />
 <Capability Name="Document" />

c11.indd 282c11.indd 282 19/01/13 11:21 AM19/01/13 11:21 AM

http://www.w3.org/1999/xhtml
http://www.w3.org/2001/XMLSchema-instance
http://schemas.microsoft.com/office/appforoffice/1.0

The New App Model for Offi ce ❘ 283

 </Capabilities>
 <DefaultSettings>
 <SourceLocation DefaultValue="[YourDriveLetter]:\FirstApp\FirstApp.html" />
 </DefaultSettings>
 <Permissions>ReadWriteDocument</Permissions>
</OfficeApp>

Now that you have the fi les created for your fi rst app for Offi ce, you need to wire up the Offi ce
client so it knows where to look for app manifests.

To set the Trusted Catalog Location, follow these steps in either Word or Excel:

 8. From the File menu, select Options ➪ Trust Center.

 9. On the Trust Center page, click the Trust Center Settings button.

 10. In Trust Center, click Trusted App Catalogs and in the Catalog URL type:
\\[YourMachineName]\AppManifests\ and click the Add Catalog button. Click the check box
beside the newly added item so it will show up in the menu, and then click OK on the screen,
again when prompted, and a third time on the Options dialog. Then close Word or Excel.

Now you can use your fi rst app for Offi ce by following these steps:

 11. Open Word or Excel. From the Insert menu, select Apps for Offi ce ➪ See All.

 12. Click Shared Folder and then click Refresh.

 13. Click My First App and then click the Insert button.

Your fi rst app for Offi ce should resemble Figure 11-1 in Word 2013.

FIGURE 11-1

c11.indd 283c11.indd 283 19/01/13 11:21 AM19/01/13 11:21 AM

284 ❘ CHAPTER 11 DEVELOPING INTEGRATED APPS FOR OFFICE AND SHAREPOINT SOLUTIONS

How It Works

In this exercise you fi rst created a network share as a trusted catalog location for storing Apps for
Offi ce manifest fi les. This is essentially an easy way for an enterprise to make Apps for Offi ce available
to employees, although it is not the only way. Alternatively, if an organization has a SharePoint 2013
site or Offi ce 365 SharePoint Online site, it can make Apps for Offi ce available by setting up SharePoint
to be the trusted catalog location for manifest fi les. For apps purchased directly from the Offi ce Store
by individuals, Offi ce.com serves as the trusted catalog location for these manifests. Also, because the
apps are purchased using a Microsoft LiveID, they roam with the user. If users log in to Offi ce with
that same LiveID on any machine, all their Apps for Offi ce will be available to them!

Following the creation of the network share, you created four very simple fi les. For an app for Offi ce,
only three of them are actually required: the manifest .xml, .icon, and .html fi le. The .css fi le is
optional. In this Try It Out you simply used a text editor so you could see the core components without
having any tooling overhead. But as you will see, using a tool like Visual Studio helps make this much
easier and provides structure and validation while building you Apps for Offi ce.

Because an app for Offi ce is simply a web page being rendered inside of Offi ce, you can build your
web pages using any web technology that will render in Internet Explorer version 9.0 (or later) or
an equivalent browser. Therefore, Apps for Offi ce can use any features supported by HTML5 and
JavaScript. What is not supported in the Offi ce clients are ActiveX controls embedded in web pages.
ActiveX controls are blocked from rendering in the Offi ce clients for security purposes.

You’ll notice the manifest fi le is an extremely lightweight .xml fi le that serves to identify the app for
Offi ce to the host Offi ce client applications. Although some of the XML elements in the manifest fi le
are quite self-explanatory, there are a few worth highlighting:

 ➤ The element OfficeApp has an attribute xsi:type set to TaskPaneApp. The xsi:type is
used to identify how the app for Offi ce is to render within the Offi ce client. In the preceding
activity you chose the TaskPaneApp. Other valid types are ContentApp and MailApp. A task
pane app renders in the Offi ce clients in the same way that you traditionally see with various
add-ins. Task pane apps are docked by default on the right-hand side of the client, but can
be undocked so they fl oat, too. Alternatively, content apps are inserted onto the document
itself. Essentially, think of these like you would a chart or picture that the user has complete
control over. Content apps for Offi ce are printed and saved with the document just like any
other inline object associated with a document. MailApp renders in the Offi ce mail clients
only when specifi c patterns for app activation are met within the mail item. You will see
how this works in the mailbox app example later.

 ➤ The id element must contain a globally unique value. In the preceding example you simply
used a GUID provided and this suffi ced for an example on your local machine. However,
for your real-world app for Offi ce, you use a tool to generate a GUID. This unique id value
identifi es your app for Offi ce in the Offi ce Store or in your corporation trusted catalog
location.

c11.indd 284c11.indd 284 19/01/13 11:21 AM19/01/13 11:21 AM

http://Office.com

The New App Model for Offi ce ❘ 285

 ➤ Each xsi:type called out earlier has a specifi c set of Capabilities that designate the
contexts within which it can be rendered. The Capabilities element is the location where
you identify Capability elements. For instance, the TaskPaneApp has the capability to only
render in a client that supports a workbook, document, or project. Here in the manifest you
designate these. Sometimes your app for Offi ce might only target a workbook whereas other
times your app can be used in one or more of the other options. By listing each Capability
here, when a user clicks the Insert ➪ Apps for Offi ce button on the ribbon in a client, if that
Offi ce client supports the xsi:type/Capability combination, then your app for Offi ce will
show as one of the available apps for that client. Table 11-1 shows the mapping between
xsi:type and Capabilities. You can anticipate these to broaden and deepen over time
across more Offi ce clients.

TABLE 11-1: XSI:TYPE to Capability Mapping

XSI:TYPE WORKBOOK DOCUMENT PROJECT PRESENTATION MAILBOX

TaskPaneApp X X X X

ContentApp X

MailApp X

 ➤ As mentioned previously, the beauty of Apps for Offi ce is that there is no install on the
Offi ce client. Also, the SourceLocation element is where the magic of your app for Offi ce
meets with the power of the new Offi ce clients. You simply designate the URL or location
where you want Offi ce to retrieve your web application, and the user can then begin to
interact with Offi ce and your productivity solution.

 ➤ Lastly, security and protection for the user is of utmost importance. The manifest fi le is
where the Permissions element defi nes what type of permissions your app for Offi ce will
need to interact with the Offi ce client. You’ll see these permissions described in detail later,
but knowing that the manifest fi le is where you’ll identify the permissions for your app for
Offi ce is important.

Before the Offi ce clients start “looking” for Apps for Offi ce available to users within an organiza-
tion on SharePoint, either on premises, in Offi ce 365, or on a network fi leshare, you must fi rst set up
the Trusted App Catalog location in at least one of the Offi ce clients installed on the user’s machine.
After you designate this location, all the other client applications that support Apps for Offi ce will
use this setting and render the appropriate selections for apps that target that specifi c Offi ce client.
In the preceding activity you set this location manually through the Trust Center; however, in an
enterprise it can be pushed out via Active Directory Group Policy. In this way IT can maintain
control and governance over the Apps for Offi ce allowed within the enterprise and can completely
turn off the ability for employees to browse the Offi ce Store if that’s the restriction IT wants to
enforce. After the Trusted App Catalog designation is set, the Offi ce client applications are ready to
render any Apps for Offi ce that a user has available to select!

c11.indd 285c11.indd 285 19/01/13 11:21 AM19/01/13 11:21 AM

286 ❘ CHAPTER 11 DEVELOPING INTEGRATED APPS FOR OFFICE AND SHAREPOINT SOLUTIONS

Now that you have the fundamental components identifi ed for building an app for Offi ce, check
out the following introduction to the JavaScript object model and how Visual Studio helps enable
developing integrated solutions using the new app model for Offi ce.

THE OFFICE JAVASCRIPT OBJECT MODEL

The Offi ce JavaScript Object Model provides the ability for your web application and the Offi ce
host application to interact, and that’s where the creativity and innovation of your web-based
solution can intersect with the creativity and innovation of the Offi ce user.

You can think of Apps for Offi ce in two ways: those that will interact with documents (document
based) and those that will interact with mail items (mailbox based). At the time of this writing,
document-based apps include Word, Excel, PowerPoint, and Project. The xsi:type TaskPaneApp
and ContentApp are document-based apps for Offi ce. The mailbox-based app, xsi:type MailApp,
is, of course, associated with the Outlook rich client and companion Outlook Web App (OWA).
Therefore, although the Offi ce JSOM is a unifi ed object model, due to the differences between
the sheer nature of a document and a mailbox item, you will use different parts of the Offi ce API
depending on which Offi ce applications your app for Offi ce will target.

Fortunately, you do not need to build the manifest fi le and all the constituent parts in a raw text
editor for an app for Offi ce as you did in the previous Try It Out, but you instead have the power of
Visual Studio to make this job much less tedious. With the Apps for Offi ce tools installed in Visual
Studio, the File ➪ New Project process is a guided experience that automatically generates an
appropriate manifest fi le for a TaskPaneApp, ContentApp, or MailApp. You then have an immediate
F5, debug runtime experience. Of course, you can go on to fi ne-tune and customize the manifest and
build out your app, but Visual Studio provides for you a solid starting point.

Document-based Apps

The Offi ce JSOM provides many capabilities for document-based apps for Offi ce. With Offi ce
JSOM, your web application can programmatically interact with a selection the user has made, read
or write to your document, react to events as the user enters a specifi c location or changes data in the
document, save one or more settings in the document so that they are persisted for the next time
the document is opened, and much more. However, the thing to keep in mind, especially for those
who have written VBA or built add-ins in the past, is that the Offi ce JSOM is not for automation
of the Offi ce client itself, but for enabling programmatic interaction between the document and your
task pane or content app. Everything you do using the Offi ce JSOM is focused around the user
and the document, and should enable that experience to be a productivity gain for the user.

The Microsoft.Office.WebExtension namespace contains the JavaScript objects needed to
programmatically interact with the Offi ce client applications that support Apps for Offi ce. In code,
this namespace is referred to by the alias Office. The Visual Studio app for Offi ce project template
includes the Office.js library in the Scripts/Lib folder for the Web project. Figure 11-2 shows
the core objects in the API.

c11.indd 286c11.indd 286 19/01/13 11:21 AM19/01/13 11:21 AM

The Offi ce JavaScript Object Model ❘ 287

The main objects you will use for document-based apps are Office, .context, and .document.
When your App for Offi ce is specifi c to Microsoft Outlook, then you will use the .mailbox object to
access the APIs specifi c to programming against the mail client — but this object is covered in fur-
ther detail later. If you are creating Apps for Offi ce specifi cally for Microsoft Project, you will use
the .project part of the Offi ce API.

To keep this discussion straightforward, for Microsoft Word and Excel, the document object
provides the functional capabilities needed for document interaction. With this you can read and
write an active selection, bind to named locations in the document, and react to events at the
document or bound-location level. Almost all methods in the Offi ce JSOM are asynchronous to not
tie up the UI as your method call executes. A typical line of code used to retrieve the data the user
has selected in the document looks like this:

Office.context.document.getSelectedDataAsync(…)

Although not a lot of methods are in the API, they provide the fundamental building blocks for you to
build your solution — it’s up to your imagination on how you stitch them together to meet a business
need. Let’s now explore what Visual Studio provides for Apps for Offi ce and explore the API.

TRY IT OUT Using the Offi ce JSOM for Document-based Apps (Explore Offi ce API.zip)

Here you will get a feel for the baseline App for Offi ce’s project template that Visual Studio sets up for
you. Then you will add some additional code to explore the API for Offi ce.

 1. Run Visual Studio 2012 as Administrator. Select New Project.

 2. In the New Project dialog, expand the Templates ➪ Visual C# ➪ Offi ce/SharePoint ➪ Apps nodes.
Select App for Offi ce 2013 and provide the Name: ExploreOfficeAPI. Click OK.

FIGURE 11-2

Office

.context

.document .mailbox

Mailbox API

.project

Project APICommon document API

Microsoft.Office.WebExtension

Office API entry point

.roamingSettings

Save mail app custom
properties

c11.indd 287c11.indd 287 19/01/13 11:21 AM19/01/13 11:21 AM

288 ❘ CHAPTER 11 DEVELOPING INTEGRATED APPS FOR OFFICE AND SHAREPOINT SOLUTIONS

 3. In the Create App for Offi ce dialog, leave the default Task pane app selected, but uncheck Project
and PowerPoint because you will not be targeting these Offi ce clients. Click Finish.

Before you press F5, take a quick look at the boilerplate app and the artifacts in the solution. The
solution contains two projects. The fi rst project, ExploreOfficeAPI, has only the manifest fi le
in it. If you double-click the ExploreOfficeAPI.xml fi le you see a nice UI to set the values in the
manifest fi le. You can, of course, view the raw XML by expanding the node and clicking on the
XML fi le itself. You will also notice the second project called ExploreOfficeAPIWeb. This proj-
ect is a boilerplate “remote web” application in that it must ultimately be hosted on a remote web
server. For the F5 experience, it runs in IIS Express on the local machine. You can use this web
project to build your web application or you could ultimately replace it with another one of your
own. As you browse through the project you’ll see that Visual Studio has provided a number of
folders with the fi les needed to serve as the basis for an app for Offi ce. A discussion about these
various fi les appears later.

 4. Press F5 to start debugging. (Internet Explorer must have script-debugging enabled for the app
to run.)

 5. By running the app from Visual Studio, the app is automatically registered with the Offi ce client
it is targeted for and inserted into the client. Click on any cell in the spreadsheet and click the Set
Data button.

 6. Click on any other cell in the spreadsheet and type any text value. Press Enter so the value saves
into the cell. Re-select the cell by clicking on it and then press the Get Data button. The value of
the cell is loaded into the TaskPaneApp text box.

 7. Close the Excel application to stop the debugging session.

 8. To explore the API, in the Solution Explorer expand the ExploreOfficeAPIWeb node, expand the
Pages node, and click the ExploreOfficeAPI.html fi le to open it.

 9. In the HTML page, locate the entire <div id="Content"> element and replace it completely with
the following code:

 <button onclick="writeToDoc()"> Write to Document </button>

 <button onclick="readFromSelection()"> Read from Document Selection
 </button>

 <button onclick="bindToData()"> Bind to User-selected Data </button>

 <button onclick="readFromBoundData()"> Read from Bound Data </button>

 <button onclick="addAnEvent()"> Add an Event </button>

 Show: <div id="show"></div>

 10. In the Solution Explorer under the Scripts/Offi ce node, open the ExploreOfficeAPI.js fi le and
replace all the code with the following:

Office.initialize = function (reason) {
 $(document).ready(function () {
 showResult('Document Ready');
 });
};

function writeToDoc() {

c11.indd 288c11.indd 288 19/01/13 11:21 AM19/01/13 11:21 AM

The Offi ce JavaScript Object Model ❘ 289

 Office.context.document.setSelectedDataAsync([["apples"],
["pears"], ["oranges"], ["cherries"]], function (asyncResult) {
 if (asyncResult.status === "failed") {
 showResult('Error: ' + asyncResult.error.message);
 }
 });
}

function readFromSelection() {
 Office.context.document.getSelectedDataAsync("matrix",
function (asyncResult) {
 if (asyncResult.status === "failed") {
 showResult('Error: ' + asyncResult.error.message);
 }
 else {
 showResult('Read from Selection: ' + asyncResult.value);
 }
 });
}

function bindToData() {
 Office.context.document.bindings.addFromSelectionAsync("matrix",
{ id: 'fruitBinding' },
 function (asyncResult) {
 if (asyncResult.status === "failed") {
 showResult('Error: ' + asyncResult.error.message);
 } else {
 showResult('A binding type of ' + asyncResult.value.type
 + ' was added with an id of ' +
 asyncResult.value.id);
 }
 });
}

function readFromBoundData() {
 Office.select("bindings#fruitBinding").getDataAsync({
coercionType: "matrix" },
 function (asyncResult) {
 if (asyncResult.status === "failed") {
 showResult('Error: ' + asyncResult.error.message);
 } else {
 showResult('Value of bound selection: ' + asyncResult.value);
 }
 });
}

function addAnEvent() {
 Office.select("bindings#fruitBinding").addHandlerAsync(
"bindingDataChanged", fruitHandler, function (asyncResult) {
 if (asyncResult.status === "failed") {
 showResult('Error: ' + asyncResult.error.message);
 } else {
 showResult('New event handler added for binding.');
 }
 });

c11.indd 289c11.indd 289 19/01/13 11:21 AM19/01/13 11:21 AM

290 ❘ CHAPTER 11 DEVELOPING INTEGRATED APPS FOR OFFICE AND SHAREPOINT SOLUTIONS

}
function fruitHandler(eventArgs) {
 eventArgs.binding.getDataAsync({ coerciontype: "matrix" },
function (asyncResult) {

 if (asyncResult.status === "failed") {
 showResult('Error: ' + asyncResult.error.message);
 } else {
 showResult('Show bound data change: ' + asyncResult.value);
 }
 });
}

function showResult(text) {
 document.getElementById('show').innerText = text;
}

 11. Press F5. When the Excel document loads, click each button from top to bottom to see how the
API allows programmatic interaction with the document. Once you add the event, type inside
the bound area and change one of the fruit entries and press enter. You’ll see the results show
in the task pane with your change. Close Excel.

 12. Now to show the benefi t of the unifi ed object model across the Offi ce client applications, click on
the ExploreOfficeAPI project. In the Properties pane fi nd the Start Action property and set it to
Microsoft Word. Press F5.

 13. Click down through the buttons again from top to bottom. After you add the event, change a
value within a cell, but you need to click outside the table for the event to fi re in Word. Close
Word.

 14. In Visual Studio click open the ExploreOfficeAPI.js if it is not already open.

How It Works

The [YourAppnameHere].js is the JavaScript fi le that Visual Studio generates specifi cally for your
app. For this Try It Out the name is ExploreOfficeAPI.js. All the other fi les in the Scripts folder by
default are for reference purposes so you can readily take advantage of the jQuery and ASP.NET AJAX
libraries. But this specifi c JavaScript fi le is where you write the code for your app.

Looking at the ExploreOfficeAPI.js fi le, a document-ready function executes as the initialize process
completes after the app is started. In this function you simply wrote to the web page indicating that the
document is loaded and ready.

Let’s take a look into each of the functions. Notice that the writeToDoc function just passes in a
hard-coded array of string values. This automatically creates a matrix structure for the data: in this
case a single column with four rows. A matrix is a static two-dimensional structure of columns and
rows. You could have multiple columns in the matrix by following the pattern such as [["apple",
"red"], ["banana", "yellow"]] for two columns and two rows and so on. The Office.context
.document.setSelectedDataAsynch method does the work for you to create the matrix within
the document at any location where the cursor is located.

The readFromSelection function requires the CoercionType to be passed in to the Office.context
.document.getSelectedDataAsynch method. Here you see the fi rst parameter of this method uses

c11.indd 290c11.indd 290 19/01/13 11:21 AM19/01/13 11:21 AM

http://ASP.NET

The Offi ce JavaScript Object Model ❘ 291

matrix because the selected data, in this case it is in a columns and rows form. Other coercion types
are Text, which can be a single word or any number of paragraphs, and a Table data type that is also a
two-dimensional array but differs from a matrix structure in that it supports named columns and rows.
It also is dynamic in that it will grow and shrink as additional rows are added or deleted. So when
a table is bound, the binding automatically adjusts as the table shrinks or grows. A matrix binding
remains static with the originally set number of columns and rows. Word also supports HTML and Ooxml
data types so you can get selected data in HTML or Open XML form.

Any data that the user selects on the screen can be bound so that you can essentially get a programmatic
handle for it to refer to in your code. In the bindToData function, you called the Office.context
.document.bindings.addFromSelectionAsync method and passed in the coercion type of matrix
with an id that is your specifi c name for the binding. To retrieve the contents of the bound data at any
time as shown in the readFromBoundData function, you use Office.select where you identify the
specifi c binding by the id you want and the coercion type.

Lastly, you added an event to your specifi c binding so that any time data changes within the binding
you can take action upon it. Here again you used Office.select identifying the specifi c binding you
want the bindingDataChanged event to fi re on.

Functional Capabilities by Offi ce Client

A number of other functional capabilities are available in the API but these are so numerous that
they will need to be left to your own discovery. http://dev.office.com has the full documentation
for the Apps for Offi ce JSOM. Table 11-2 identifi es some of the more popular additional functional
capabilities and shows how they map to the Offi ce client applications.

TABLE 11-2: Functional Areas vs. App Support Summary

FUNCTIONAL AREA WORD EXCEL/EXCEL WEB APP PROJECT POWERPOINT OUTLOOK/OWA

Set/Get data as

HTML, OOXML

X

Get File X X

Custom XML parts X

Bindings X X

Settings X X X X

Set/Get data as

text, table, matrix

X X X X

App-specifi c API X X

c11.indd 291c11.indd 291 19/01/13 11:21 AM19/01/13 11:21 AM

http://dev.office.com

292 ❘ CHAPTER 11 DEVELOPING INTEGRATED APPS FOR OFFICE AND SHAREPOINT SOLUTIONS

Mailbox-based Apps

Certainly as widely used by business professionals as Excel is for number crunching and Word is for
authoring documents, a vast number of people exist whose days are built around communicating,
scheduling, managing contacts, and ordering their day’s tasks with Outlook. Therefore, historically,
Outlook has been one of the most targeted Offi ce clients for third-party add-ins. Outlook tends to
be a hub application in the business person’s day and a primary point of reference. Plus, if for some
reason during the day a person doesn’t have access to his or her desktop, a web companion called
Outlook Web Access is available as long as he or she has access to a browser and an Internet
connection. This tight bond between business people and their Outlook is what makes it such a key
new opportunity for landing your app for Offi ce.

The MailApp for Offi ce differs from the TaskPaneApp and the ContentApp in a couple of ways.
First, it is not associated with a document, and second, it does not render in a task pane in Outlook
nor on the surface of a mail item like the ContentApp does in a workbook. Rather, MailApps
are activated in the Outlook, OWA, or Outlook mobile UI based upon activation rules defi ned in
your app for Offi ce manifest fi le. This declarative set of rules evaluates contextual content within
an e-mail message or appointment item when it is opened. If the contextual content within the
item matches one or more of the activation rules then the MailApp will be automatically activated
and show in the UI. This differs from the document-based apps for Offi ce that must be manually
selected and inserted via the ribbon by the user. Lastly, another signifi cant difference is that the
manifest fi le is deployed to an Exchange server, App Catalog, rather than to SharePoint or a network
share. Microsoft has pre-installed at least four mailbox-based apps to the Offi ce 365 Exchange App
Catalog for each tenancy. These Apps for Offi ce — Action Items, Bing Maps, Suggested Meetings,
and Unsubscribe — are found in the Exchange admin center under Organization ➪ Apps. Although
the Offi ce 365 Exchange administrator can globally disable these apps for their tenancy, they cannot
be uninstalled. However, given that they are available to users, they will automatically activate for a
user when the activation rules are met within a mail item.

For a mailbox-based app, the activation rules act on contextual information within the mail item
and provide the unique opportunity to build genuine productivity solutions for those who live in
their Outlook. You can use several built-in, well-known entity types to activate a MailApp. These
include URL, contact, task suggestion, meeting suggestion, phone number, address, and e-mail
address. In your app manifest, using the Rule element, you would include the evaluation of one or
more of these in the form of <Rule xsi:type="ItemHasKnownEntity" EntityType="Contact"
/>, for instance. You can further scope the activation rule by adding an additional attribute of
RegExFilter where the rule will only activate if, say, the RegExFilter="ID". With this rule the
intent is that you are only interested in identifying contacts from the state of Idaho. Hence, your
MailApp would activate only when contact information contains an uppercase ID value. Although
the well-known entity types will save you a ton of code writing, you will sometimes, of course,
want a fully customized rule. Suppose you want to provide a convenient way for an Outlook user
to interact with a back-end Line of Business (LoB) application or your Software as a Service (SaaS)
application when the system sends an autogenerated e-mail to a stakeholder. In these situations you
build your own rule using the ItemHasRegularExpressionMatch type. With this type you provide
your own RegExValue to pattern match against the contextual information in the item body
(whether HTML or plain text), subject, or sender’s SMTP address. This fully customized rule, as
with any other rule, can then stand alone or be combined with other rules in a rule collection. You

c11.indd 292c11.indd 292 19/01/13 11:21 AM19/01/13 11:21 AM

The Offi ce JavaScript Object Model ❘ 293

can combine the RuleCollection type using a Mode of And or Or with other rule collections to
create complex rules. This fl exibility in rule and rule collection construction provides you the ability
to control precisely what needs to be in the mail or appointment item for your MailApp to activate.
When a rule is not met, the MailApp will not show in the UI.

From an app model perspective, you still have a manifest fi le and you write your mailbox-based
app using your favorite web technologies and host the app on any server you like. From a JSOM
perspective you still use the Offi ce JSOM but you use the Office.context.mailbox object. From
the mailbox object you can get information relating to the specifi c message or appointment item and
access a limited set of profi le information about the user. For more advanced scenarios you can call
back into Exchange using Exchange Web Services (EWS) where you can create new e-mail messages
and appointments to provide a more deeply integrated mailbox-based app for Offi ce. For now, in the
following Try It Out, you can explore well-known entities, rules and rule collections, and regular
expressions for customized pattern matching.

TRY IT OUT Using the Offi ce JSOM for Mailbox-based Apps (Explore MailApp.zip)

In this exercise you work with the fundamentals of MailApps using a complex rule in the manifest fi le,
retrieving information from the mail item, and displaying the information in a web page for the user
to see. Because MailApps deploy to the Exchange App Catalog, you will deploy it to your Offi ce 365
developer tenancy Exchange Server. Just follow these steps:

 1. Run Visual Studio 2012 as Administrator. Select New Project.

 2. In the New Project dialog, expand the Templates ➪ Visual C# ➪ Offi ce/SharePoint ➪ Apps nodes.
Select App for Offi ce 2013 and provide the Name: ExploreMailApp. Click OK.

 3. In the Create App for Offi ce dialog, select Mail app in. Click Finish.

 4. The ExploreMailApp.html fi le should be displayed by default. If it’s not, open it from the Pages
folder and replace the entire <body>…</body> contents with the following:

<body>
 <div id="Content">
 <h4>Display some of what's available to developers:</h4>
 User Profile name:

 User Profile time zone:

 Email item Subject:

 Email item From:

 Email item To:
 <table>
 <tr><td>Urls</td><td id="urls" /></tr>
 <tr><td>Contact Names and Addresses</td><td id="contactNames" /></tr>
 <tr><td>Invoices</td><td id="regexInvoices" /></tr>
 </table>
 </div>
</body>

c11.indd 293c11.indd 293 19/01/13 11:21 AM19/01/13 11:21 AM

294 ❘ CHAPTER 11 DEVELOPING INTEGRATED APPS FOR OFFICE AND SHAREPOINT SOLUTIONS

 5. Open the ExploreMailApp.xml manifest fi le and replace the entire <Rule>…</Rule> rule
collection node with the following:

 <Rule xsi:type="RuleCollection" Mode="And">
 <Rule xsi:type="RuleCollection" Mode="Or">
 <Rule xsi:type="ItemIs" ItemType="Message" />
 <Rule xsi:type="ItemIs" ItemType="Appointment" />
 </Rule>
 <Rule xsi:type="RuleCollection" Mode="Or">
 <Rule xsi:type="ItemHasKnownEntity" EntityType="Contact"
RegExFilter="ID" FilterName="state" IgnoreCase="false" />
 <Rule xsi:type="ItemHasKnownEntity" EntityType="Url" />
 <Rule xsi:type="ItemHasRegularExpressionMatch"
 PropertyName="BodyAsHTML" IgnoreCase="true"
 RegExName="Invoices"
 RegExValue="\bINVOICE#\s*([0-9][0-9][0-9][0-9][0-9][0-9])+\b"/>
 </Rule>
 </Rule>

 6. Open the JavaScript fi le and replace the entire contents with the following:

Office.initialize = function () {
 $(document).ready(function () {
 var userProfile = Office.context.mailbox.userProfile;
 $('#displayName').text(userProfile.displayName);
 $('#timeZone').text(userProfile.timeZone);

 var item = Office.context.mailbox.item;
 $('#subject').text(item.normalizedSubject);
 $('#from').text(item.from.displayName);
 $('#to').text(item.to[0].displayName);

 //Get all the well-known entities to show this pattern and use for URLs.
 var myEntities = item.getEntities();

 // Build an array of Urls using the Urls entity.
 var myUrls = myEntities.urls;
 // Loop over the myUrls array.
 var myString = "";
 for (i = 0; i < myUrls.length; i++) {
 myString += "" + myUrls[i]
+ "" + "
";
 }
 // Write the Contacts found to the web page
 $('#urls').html(myString);

 // Build an array of Contacts by directly accessing the filtered entity
 // by name.
 var myContacts = item.getFilteredEntitiesByName("state")
 // Loop over the myContacts array.
 myString = "";
 for (i = 0; i < myContacts.length; i++) {
 myString +=
 myContacts[i].personName + ", " + myContacts[i].addresses
+ "
";
 }

c11.indd 294c11.indd 294 19/01/13 11:21 AM19/01/13 11:21 AM

The Offi ce JavaScript Object Model ❘ 295

 // Write the Contacts found to the web page
 $('#contactNames').html(myString);

 // Handle invoices from RegEx matches
 var myInvoices = item.getRegExMatches();
 //Loop over the myInvoices collection.
 myString = "";
 for (var i in myInvoices.Invoices) {
 myString += myInvoices.Invoices[i] + ", ";
 }
 // Write the invoices found to the web page
 $('#regexInvoices').text(myString);

 });
};

 7. Before you run this, click on the ExploreMailApp node in the Solution Explorer and view the
Properties. Notice that the Start Action is set to start using Microsoft Outlook Web Access. You
could set the Start Action to Microsoft Outlook, but using OWA is best for testing to avoid any
impact on your current Outlook confi guration.

 8. Press F5 to start debugging. (Internet Explorer must have script debugging enabled for the app to
run.) Visual Studio immediately prompts you for your mailbox credentials. Enter your Offi ce
365 developer subscription in the form of YourO365UserName@YourO365DeveloperDomain
.onmicrosoft.com and the password for the account. If you choose the Remember my e-mail
option, you won’t be bothered by Visual Studio any longer with this prompt, but if you ever want
the prompt back to possibly deploy to another mailbox, then delete this e-mail address from the
E-mail Address property for the ExploreMailApp node.

 9. After your browser opens, log in to Offi ce 365 using the same account and password from step 8.

 10. Because you might not have any e-mail items already in your mailbox that will fi re the activation
rules you’re using, create and send a new e-mail to your Offi ce 365 account with each of the
following on a separate line in the e-mail body exactly as they are shown here:

 a. http://bing.com

 b. Joe Doe, 1234 SW East ST, Boise, ID, 88763

 c. Jon Doe, 624 West South ST, Sturgis, SD, 55557

 d. INVOICE# 000768, Invoice# 023457, invoice# 009888, invoice# 987

 11. When you receive the e-mail, click on it. In the location above the body where MailApps render,
you’ll see a tab labeled ExploreMailApp. Click on this tab to see your MailApp in action.

How It Works

Take a look at the all-important activation rule. It is called a complex activation rule, but that doesn’t
necessarily mean it’s complicated to create one. With this rule you simply want your MailApp to
activate when the mail item is either a message or appointment and has any well-known contact or
URL entity types or a regular expression custom pattern match for invoices. To do this you can see that
you nest two Mode="Or" rule collections inside a Mode="And" rule collection node. To simplify how to
conceptualize this, see the following structure.

c11.indd 295c11.indd 295 19/01/13 11:21 AM19/01/13 11:21 AM

http://bing.com

296 ❘ CHAPTER 11 DEVELOPING INTEGRATED APPS FOR OFFICE AND SHAREPOINT SOLUTIONS

<Rule xsi:type="RuleCollection" Mode="And"> (this is the overarching AND)
 <Rule xsi:type="RuleCollection" Mode="Or"> (the OR for Message/Appointment)
...
 </Rule>
 <Rule xsi:type="RuleCollection" Mode="Or"> (the OR for well-known Entities/RegEx)
...
 </Rule>
</Rule>

Additionally, the rule is an example of how to set a fi lter on a well-known entity to only select contacts
that have an address in the state of Idaho. This fi lter is provided a name so the resulting set can be
interrogated directly via code. The syntax for this rule is:

<Rule xsi:type="ItemHasKnownEntity" EntityType="Contact" RegExFilter="ID"
FilterName="state" IgnoreCase="false" />

Lastly, the complex rule has a custom regular expression to pattern-match for a text-based literal,
ignoring letter case, in combination with any six-digit value. This is to simulate how easily you can
surface information to the user that might be sourced from back-end LoB or SaaS systems. Consider
this: the invoices could actually be links in the MailApp to directly access the LoB system, or you could
call out to back-end web services using the invoice numbers, aggregate data from a variety of sources,
and construct an information-rich web page for display in the MailApp. Lots of possibilities here!

Nothing is special about the html fi le; it’s just a place to display the goodies available to you in the
mail item.

The code in JavaScript is pretty straightforward and shows how to access some of the properties on the
user profi le and item objects. What’s more interesting is how you get the information of interest out of
the well-known entities and the matches for the custom regular expression rule.

The pattern fi rst used is to retrieve all the well-known entities that have been processed by calling the
item.getEntities() method. An important point here is that although you don’t have an activation
rule based on some of these well-known entities, Outlook is still fi nding all of them. Therefore, you can
use this method to retrieve them, see whether any contain data, and process the data any way you like.
In this case you are only interested in checking the well-known URL entity. Once retrieved, the array is
traversed and any URL present is constructed as a hyperlink and written to the web page.

The contacts are retrieved directly using the item.getFilteredEntitiesByName("state") method by
passing in the string value of "state" to match the FilterName specifi cally used in the rule. This way
you process only the contacts that matched the RegExFilter="ID" on the rule.

Finally, you use the item.getRegExMatches() method to get all the invoice numbers found in the mail
item that matched your custom regular expression.

This Try It Out is not at all exhaustive of the many different ways you can interact with mail and
appointment items in a MailApp, but hopefully it pulls together enough of the concepts and code
to get you rolling. Mailbox-based apps can provide a convenient vector for engaging a user for
interaction with your back-end systems. These can be great companion apps for your SaaS or LoB
systems because they render everywhere, whether within Outlook on the rich client, OWA, or
Outlook mobile.

c11.indd 296c11.indd 296 19/01/13 11:21 AM19/01/13 11:21 AM

The Offi ce JavaScript Object Model ❘ 297

App Security

When delivering any technology solution you must give special attention to the types of security
measures that have been taken to keep the user’s computer safe from malicious attacks. As a
developer, you need to have a good sense for what the security framework is and the freedom and
constraints with which you have to work.

Figure 11-3 shows the security framework for Apps for Offi ce. Your App for Offi ce actually runs in
an Internet Explorer 9 or 10 Web Control out of process from the Offi ce client app itself, in a sandbox
host process. This provides a security boundary between your app and the client application and
also isolates your app if it should have performance issues. The Offi ce client application hosts the
Web Extensibility Framework Runtime, which is the broker that manages communication and
monitoring between the two processes, translates the JavaScript calls to native ones, and remotely
renders your App for Offi ce in the client application’s UI as a TaskPaneApp, ContentApp, or
MailApp.

FIGURE 11-3

Office Client Application

Remoted app
User Interface

Web Extensibility
Framework Runtime

Internet Explorer 9/10
Web Control

Your app for Office

Office JSOM

Sandbox Host Process

This security framework cannot be altered. However, as the developer, you can declaratively request
what level of security permissions your app for Offi ce needs to carry out its business within the
manifest fi le via the <Permissions> element. You should be familiar enough with the API to set
the requested level of permission based on your API use. To use a part of the API that requires more
permissions than you’ve requested in the manifest will result in the Offi ce client blocking the use of
that specifi c part of the API at runtime. This, of course, results in an error being thrown and most
likely a frustrated user.

For document-based apps you can request the permission levels shown in Table 11-3. The table
intentionally represents gradations from least-privileged permission to most-privileged permission
as you move down the table, where Restricted has the least permission on the document and
ReadWriteDocument has the most.

c11.indd 297c11.indd 297 19/01/13 11:21 AM19/01/13 11:21 AM

298 ❘ CHAPTER 11 DEVELOPING INTEGRATED APPS FOR OFFICE AND SHAREPOINT SOLUTIONS

TABLE 11-3: Document-based Permissions

PERMISSION DESCRIPTION

Restricted Permission that applies to all TaskPaneApps, enables activation, and

allows use of the Settings object

ReadDocument Includes the Restricted permission, and also enables the TaskPaneApp

to use the API to read the document, manage bindings, and subscribe to

events

ReadAllDocument Includes the Restricted and ReadDocument permissions, and also enables

the TaskPaneApp to use the API to obtain a binary copy of the document

WriteDocument Includes the Restricted permission, and also enables the TaskPaneApp to

use the setSelectedDataAsync API to write to the document

ReadWriteDocument Includes the ReadAllDocument and WriteDocument permissions, and also

enables the TaskPaneApp to use all write APIs

*Source: Offi ce manifest’s schema reference for apps on MSDN

Table 11-4 shows the MailApp permissions. Note that if your MailApp requires the
ReadWriteMailbox permission, then an Exchange administrator must install the app. Apps that
require this permission level cannot be installed by the user.

TABLE 11-4: Mailbox-based Permissions

PERMISSION DESCRIPTION

Restricted Permission that applies to all MailApps, enables the ItemIs and

ItemHasKnownEntity activation rules, enables use of the RoamingSettings

object, and is a subset of the app JavaScript Object Model

ReadItem Applies to the selected item, includes the Restricted permission, and enables

the MailApp to use all the well-known entities and regular expression

activation rules to read all properties and to write custom properties

ReadWriteMailbox Includes all the ReadItem permission and also enables the MailApp to use

the makeEWSRequestAsync method to read and write all properties of any

item in the user’s mailbox

INTEGRATING APPS FOR OFFICE WITH SHAREPOINT

You can integrate Apps for Offi ce with SharePoint in two ways. One method is to confi gure Offi ce
clients to use SharePoint as the central location to browse the available Apps for Offi ce internal to
the enterprise. This is an IT/administrator-managed location for manifest fi les built in to SharePoint.
Apps for Offi ce managed this way can be considered standalone Apps for Offi ce. These standalone
apps only have SharePoint as the location for their manifest fi le but they have no other integration or

c11.indd 298c11.indd 298 19/01/13 11:21 AM19/01/13 11:21 AM

Integrating Apps for Offi ce with SharePoint ❘ 299

dependency on SharePoint. This is the primary way that IT can centrally approve and manage
Apps for Offi ce they want to make available internally across the enterprise, whether the app was
internally developed or purchased directly from a vendor.

Another way to integrate these is to incorporate Apps for Offi ce into SharePoint and deploy them
with an app for SharePoint. These might be documents or document templates that contain one or
more Apps for Offi ce, but they are associated specifi cally with an app for SharePoint that in turn
provides a solution that specifi cally uses SharePoint artifacts, services, and APIs. The caveat is that
Apps for Offi ce deployed inside of an app for SharePoint are not discoverable through the Offi ce
client UI because the app for Offi ce manifest fi le is deployed inside the AppWeb where the app for
SharePoint is deployed. You will see an example of this in a later Try It Out.

Standalone Apps for Offi ce

In the case of the standalone app for Offi ce, in the same way you set up the network share as a
trusted app catalog in the fi rst Try it Out in this chapter, you can navigate to the Options setting in
one of the Offi ce clients and add the URL for your Apps for Offi ce catalog site on SharePoint. After
this location is identifi ed to the Offi ce clients, when the user chooses to “See all” when inserting an
app for Offi ce, the client application UI shows these apps under the My Organization tab. The
following Try It Out shows how a standalone app for Offi ce is made available to enterprise users via
SharePoint.

TRY IT OUT Locating the Apps for Offi ce Catalog in SharePoint Online

IT personnel can centrally manage the Apps for Offi ce they want to make available to the enterprise via
a special storage location for manifest fi les on SharePoint. This exercise shows where to manage these
fi les in Offi ce 365 SharePoint Online and how to confi gure the Offi ce clients to look to this location for
Apps for Offi ce. To do so, follow these steps:

 1. Log in to portal.microsoftonline.com with your developer tenancy username and password.

 2. On the Offi ce 365 Preview admin center page, click the Service Settings link, then the Sites link,
and the link under “Don’t see what you are looking for?”

 3. On the SharePoint Administration Center page, click the Apps link, and then click the App
Catalog link on the right side of the page.

 4. Click the Apps for Offi ce link to display the manifest storage location.

 5. Copy the URL in the browser’s address bar.

 6. In the center of the Apps for Offi ce page, click the new item link.

 7. Browse to the AppManifests folder on your local machine, (the one you created in the fi rst Try It
Out), select the FirstApp.xml fi le, click Open, click OK to upload it, and click Save.

 8. Open either Word or Excel and log in to the Offi ce client using your Offi ce 365 developer tenancy
username and password. The login to the Offi ce client is in the upper-right corner of the client
application. When prompted, choose the Organization or School option and enter your Offi ce
365 credentials.

c11.indd 299c11.indd 299 19/01/13 11:21 AM19/01/13 11:21 AM

http://portal.microsoftonline.com

300 ❘ CHAPTER 11 DEVELOPING INTEGRATED APPS FOR OFFICE AND SHAREPOINT SOLUTIONS

 9. Follow the steps 8–10 in the fi rst Try It Out in this chapter to set the Trusted Catalog Locations,
except this time, paste in the URL you copied.

 10. Before clicking the Add Catalog button, trim back the URL by removing everything from
_layouts/… forward through the end of the URL. Your fi nal URL should look something like
https://[YourDeveloperTenancyDomain].sharepoint.com/sites/OSPAppCat/. Click the
Add Catalog button.

 11. Click the check box beside the newly added item so it will show up in the menu, and then click
OK. Close and reopen the Offi ce client so your change takes effect.

 12. Return to your browser Apps for Offi ce page. Click the new item icon, click Browse to fi nd the
manifest fi le you created in the fi rst exercise, and upload it.

 13. In the Offi ce client you restarted, from the Insert menu, select Apps for Offi ce ➪ See All, and click
My Organization. You might need to click the Refresh icon. Choose My First App and Insert it.

How It Works

The Apps for Offi ce location on SharePoint is a custom document library specifi cally for storing manifest
fi les. After an app for Offi ce is built by either enterprise developers or purchased from a software
vendor, the manifest fi le for the app for Offi ce is given to IT. IT can then upload the manifest fi le to
this SharePoint location and the app is then discoverable by any Offi ce users when they browse the My
Organization catalog from the client UI. Also, from this central location, IT can choose to revoke a
manifest at any time, giving them complete control over what internally available Apps for Offi ce end
users have access to on the desktop.

Apps for Offi ce Integrated with an App for SharePoint

For standalone Apps for Offi ce, SharePoint provides a nice platform for IT to govern these apps
within the enterprise. However, integrating Apps for Offi ce into an app for SharePoint solution
also makes a lot of sense. From the previous chapters you learned that Apps for SharePoint can be
SharePoint-hosted, Provider-hosted, or Autohosted. In all of these cases, irrespective of the hosting
platform, one or more Apps for Offi ce can be included within the app for SharePoint. Also, as
mentioned earlier, the caveat is that these Apps for Offi ce are not discoverable via the Offi ce client
UI as with the Apps for Offi ce that are registered in the SharePoint Apps for Offi ce catalog. These
Apps for Offi ce are available and usable only by the users who have access to the SharePoint site
where the app for SharePoint was added.

From the developer’s perspective, the Apps for Offi ce artifacts are deployed in the app for
SharePoint AppWeb infrastructure and the back-end Web application/services are deployed to their
appropriate hosting environment. However, as integrated parts of the solution, the Apps for Offi ce
are available then to the user where the app for Offi ce can interact directly with the APIs and ser-
vices exposed by the back-end application. This coupling of one or more Apps for Offi ce with an
app for SharePoint opens an opportunity for developers to build a whole new class of point pro-
ductivity solutions, delivered worldwide as a single unit through the Offi ce Store, to anyone using
SharePoint 2013 on-premises and/or Offi ce 365 SharePoint Online. This all speaks to the potential

c11.indd 300c11.indd 300 19/01/13 11:21 AM19/01/13 11:21 AM

Integrating Apps for Offi ce with SharePoint ❘ 301

market for the distribution of your app, but in terms of the breadth of opportunity for building com-
posite app solutions, these can be point solutions that target small niche companies to solutions that
meet specifi c needs within any of the broader vertical markets spanning both the private and public
sectors. Wow, that’s developer opportunity!

Let’s examine how to couple an app for Offi ce with an app for SharePoint. In the following example
you work an Autohosted exercise.

TRY IT OUT Integrating an App for Offi ce with an App for SharePoint
(CompositeOSPAutoHosted.zip)

An app for SharePoint can be either SharePoint-hosted, provider-hosted or autohosted. In all of these
cases, you can incorporate one or more Apps for Offi ce into the app for SharePoint to be delivered as
part of a rich composite productivity solution. This exercise shows the basics for how to build such an
app; follow these steps:

 1. Run Visual Studio 2012 as Administrator. Select New Project.

 2. In the New Project dialog, expand the Templates ➪ Visual C# ➪ Offi ce/SharePoint ➪ Apps nodes.
Select App for SharePoint 2013 and provide the Name: CompositeOSPAutoHosted. Click OK.

 3. In the Specify the App for SharePoint settings dialog, provide the URL to your Offi ce 365 developer
site and click the Validate button to confi rm connectivity to the site.

 4. For the question, “How do you want to host your app for SharePoint?” select Autohosted, and
click Finish.

 5. Open the Default.aspx fi le from the Pages folder and replace everything between the
<body>…</body> elements with the following:

<form id="form1" runat="server">
 <div>
 <asp:ScriptManager ID="ScriptManager1" runat="server"
 EnablePartialRendering="true" />
 <asp:UpdatePanel ID="PopulateData" runat="server" UpdateMode="Conditional">
 <ContentTemplate>

 <table border="1" cellpadding="10">
 <tr><th> App for Office in an app for SharePoint</th></tr>
 <tr><td>
 <h2>SharePoint Site Accessed</h2>
 <asp:Label runat="server" ID="WebTitleLabel"/>
 <h2>SharePoint AppWeb, right-click and Open in new tab</h2>
 <asp:HyperLink ID="HyperLink1" runat="server">SPAppURL</asp:HyperLink>
 <h2>Current logged-in User:</h2>
 <asp:Label runat="server" ID="CurrentUserLabel" />
 <h2>Users of the Site</h2>
 <asp:ListView ID="UserList" runat="server">
 <ItemTemplate ><asp:Label ID="UserItem" runat="server"
 Text="<%# Container.DataItem.ToString() %>"></asp:Label>

 </ItemTemplate>
 </asp:ListView>
 <h2>Lists available on the Host Web</h2>

c11.indd 301c11.indd 301 19/01/13 11:21 AM19/01/13 11:21 AM

302 ❘ CHAPTER 11 DEVELOPING INTEGRATED APPS FOR OFFICE AND SHAREPOINT SOLUTIONS

 <asp:ListView ID="ListList" runat="server">
 <ItemTemplate ><asp:Label ID="ListItem" runat="server"
 Text="<%# Container.DataItem.ToString() %>"></asp:Label>

 </ItemTemplate>
 </asp:ListView>
 </td>

 </tr>
 </table>
 </ContentTemplate>
 </asp:UpdatePanel>
</div>
</form>

 6. Right-click on the Default.aspx fi le from the Pages folder and choose View Code.

 7. Add the following variables just before the Page_ Load method:

string siteName;
string currentUser;
List<string> listOfUsers = new List<string>();
List<string> listOfLists = new List<string>();

 8. Inside the Page_ Load method replace all the code with the following:

// The following code gets the client context and site information
// by using TokenHelper.

var contextToken = TokenHelper.GetContextTokenFromRequest(Page.Request);
var hostWeb = Page.Request["SPHostUrl"];
var spAppWeb = Page.Request["SPAppWebUrl"];

using (var clientContext =
TokenHelper.GetClientContextWithContextToken(hostWeb, contextToken,
 Request.Url.Authority))
 {
 //Load the properties for the web object.
 var web = clientContext.Web;
 clientContext.Load(web);
 clientContext.ExecuteQuery();

 //Get the site name.
 siteName = web.Title;

 //Get the current user.
 clientContext.Load(web.CurrentUser);
 clientContext.ExecuteQuery();
 currentUser = clientContext.Web.CurrentUser.LoginName;

 //Load the lists from the Web object.
 ListCollection lists = web.Lists;
 clientContext.Load<ListCollection>(lists);
 clientContext.ExecuteQuery();

 //Load the current users from the Web object.
 UserCollection users = web.SiteUsers;
 clientContext.Load<UserCollection>(users);

c11.indd 302c11.indd 302 19/01/13 11:21 AM19/01/13 11:21 AM

Integrating Apps for Offi ce with SharePoint ❘ 303

 clientContext.ExecuteQuery();

 foreach (User siteUser in users)
 {
 listOfUsers.Add(siteUser.LoginName);
 }

 foreach (List list in lists)
 {
 listOfLists.Add(list.Title);
 }

 // Display on page
 HyperLink1.Text = spAppWeb.ToString()
+ "/Lists/AppCompositeDocLibrary/";
 HyperLink1.NavigateUrl = spAppWeb.ToString()
+ "/Lists/AppCompositeDocLibrary/";
 WebTitleLabel.Text = siteName;
 CurrentUserLabel.Text = currentUser;
 UserList.DataSource = listOfUsers;
 UserList.DataBind();
 ListList.DataSource = listOfLists;
 ListList.DataBind();

 }

 9. Right-click ListCollection and select Resolve using Microsoft.SharePoint.Client. This also
fi xes the syntax error for UserCollection.

 10. To set the permissions being requested of SharePoint by the app, double-click the AppManifest
.xml node in the Solution Explorer. In the manifest designer click the Permissions tab. Under
Permission requests, click just under Scope to drop down the list, and then select Web. Select
Read under Permission.

 11. At this point you just have a standard Autohosted app, but press F5 to make sure everything
debugs correctly.

 12. Provide your credentials at the various prompts, and when prompted for whether or not for
SharePoint to trust this app, click Trust It.

 13. Close the browser to stop debugging.

 14. To add a TaskPaneApp to the solution, right-click the CompositeOSPAutoHosted node in the
Solution Explorer and select Add ➪ New Item.

 15. In the Add New Item dialog, select App for Offi ce and provide the name
AutoHostedTaskPaneApp.

 16. In the Create App for Offi ce dialog, select Excel only as the TaskPaneApp and click Finish.

Visual Studio has added all the components of the TaskPaneApp that you used earlier when
building an app for Offi ce, but has placed them appropriately in either the Web portion of
the solution that will be deployed to the Web server or within the part of the app that will
be deployed as SharePoint artifacts in your remote site. Notice the AutoHostedTaskPaneApp
.html, .js, and .png fi les are all placed nicely in the web structure and the app for Offi ce

c11.indd 303c11.indd 303 19/01/13 11:21 AM19/01/13 11:21 AM

304 ❘ CHAPTER 11 DEVELOPING INTEGRATED APPS FOR OFFICE AND SHAREPOINT SOLUTIONS

manifest .xml fi le is within the SharePoint structure for deployment. Visual Studio also added an
Offi ceDocuments folder to the SharePoint project that contains a base Excel
document that has a TaskPaneApp associated with it.

 17. To create a document library for the Excel fi le, right-click the CompositeOSPAutoHosted node
and select Add ➪ New Item.

 18. Select List, name it AppCompositeDocLibrary, and click Add.

 19. In the Choose List Settings dialog, click “Create a non-customizable list based on an existing list
type of:” and in the drop-down list select Document Library. Click Finish.

 20. When the list designer opens, click the … button under Use this template as the default to
browse for a template. In the dialog open the Offi ceDocuments folder and select the Excel
AutoHostedTaskPaneApp.xlsx fi le, click Open.

 21. Click Content Types, and in the Content Type Settings click to highlight the entire Document
row, then right-click and select Delete, and click OK.

 22. Press F5, and respond appropriately to all the prompts as the app for SharePoint deploys. After
your web page appears, right-click the link to the AppWeb document library and select Open in
new tab. Navigate to the newly opened tab in your browser to see the document library.

 23. In the AppCompositeDocLibrary, click the Files tab ➪ New Document ➪
AppCompositeDocLibraryContentType1.

 24. Excel will open with its TaskPaneApp, but the AutoHostedTaskPaneApp.html web page is now
being served up from the Pages directory on your remote server!

How It Works

A number of steps in creating an app for SharePoint contain one or more Apps for Offi ce. Here you
simply created an out-of-the-box Autohosted app for SharePoint. You then added a standard
TaskPaneApp to the solution and its web components, CSS, image, JavaScript and HTML, were added
to the web project and the manifest fi le was added to the SharePoint project by Visual Studio. These, too,
are then deployed to the Autohosted website. You set permissions in the Autohosted app’s manifest
fi le so it could be trusted to read the Host Web. Your app automatically has full permissions on the
AppWeb, but if you want your app to do anything outside the scope of the AppWeb, then permission
must be granted to the app when it is installed the fi rst time.

Lastly, you ran the app and navigated from its landing page to the AppWeb document library and
opened the Excel document deployed in your AppWeb that contained an app for Offi ce. The app for
Offi ce, because it is hosted in your AppWeb context, can reach back into SharePoint and out to the Web
to bring together any mixture of content needed for your business solution. This is an example of
nesting an app for Offi ce inside an autoprovisioned app for SharePoint. It can also be done coupled
with a SharePoint-hosted or Provider-hosted app.

c11.indd 304c11.indd 304 19/01/13 11:21 AM19/01/13 11:21 AM

Summary ❘ 305

The number of ways to stitch these composite apps together to create innovative solutions for end
users is possibly as broad as our collective creativity. Also, the joy in building productivity software
is to somehow empower users to do something a bit better, easier, and faster than they could before
they had the solution. Building rich integrated Apps for Offi ce and SharePoint can be just such
solutions in the hands of end users.

SUMMARY

The new app model for Offi ce opens up opportunities for developers to use standard web technologies
to develop a new class of applications called Apps for Offi ce and provides a broader opportunity
across devices and hardware platforms to land productivity solutions. These solutions can then be
made available to end-users worldwide via the Offi ce.com store or through established direct sales
channels that a software provider may already have with customers.

The JavaScript object model that enables the new app model is unlike its predecessors, VBA and
VSTO, in that it does not seek to enable any automation of the Offi ce client itself. The JSOM
enables you to access the power of the Web in your web application and interact with the document
or mail item within an end-user’s working context. This is where productivity gains can happen.

Lastly, there are a number of deployment models for Apps for Offi ce. These apps can be discovered
within the Offi ce client UI as a user navigates to the Offi ce Store, a corporate network share, or via
an enterprise’s Apps for Offi ce catalog location on SharePoint. Apps for Offi ce can also be nested
within an app for SharePoint where they are accessible only within the AppWeb context, but can be
a key part of composite, point productivity solutions. These composite apps can of course be delivered
via the Offi ce Store. Visit the MSDN http://dev.office.com site for developer guidance to get
set up with an Offi ce 365 Developer tenancy and the process for setting up a developer account with
the Offi ce Store.

EXERCISES

Answers to Exercises can be found in Appendix A.

 1. What technologies can a developer use to create Apps for Offi ce?

 2. How does the new JSOM for Offi ce diff er from VSTO and VBA?

 3. What are the three types of Apps for Offi ce currently available?

 4. If you want to programmatically work with a specifi c section of a document to read/write to it at

will, what must you do?

c11.indd 305c11.indd 305 19/01/13 11:21 AM19/01/13 11:21 AM

http://dev.office.com
http://Office.com

306 ❘ CHAPTER 11 DEVELOPING INTEGRATED APPS FOR OFFICE AND SHAREPOINT SOLUTIONS

 � WHAT YOU LEARNED IN THIS CHAPTER

ITEM DESCRIPTION

Manifest An XML document that describes an app for Offi ce to the Offi ce client.

MailApp An app for Offi ce that is associated with mail items. It diff ers from

TaskPaneApps and ContentApps in that it renders automatically in the UI

based on rules being satisfi ed by data within the context of the mail item.

TaskPaneApps and ContentApps must be inserted by user action.

TaskPaneApp An app for Offi ce that renders alongside the document. The task pane itself can

be undocked and fl oat, but its content is not part of the document itself.

ContentApp An app for Offi ce that is part of the document in the same way that a chart

or image is part of a document. It prints when the document is printed and is

saved with the document.

Offi ce.js The JavaScript library for Offi ce.

RECOMMENDED READING

http://dev.office.com

JavaScript API for Offi ce, http://msdn.microsoft.com/en-us/library/office/apps/
fp142185.aspx

Preparing your app for submission to the Offi ce Store, http://msdn.microsoft.com/en-US/
office/apps/fp179865

c11.indd 306c11.indd 306 19/01/13 11:21 AM19/01/13 11:21 AM

http://dev.office.com
http://msdn.microsoft.com/en-us/library/office/apps/fp142185.aspx
http://msdn.microsoft.com/en-us/library/office/apps/fp142185.aspx
http://msdn.microsoft.com/en-US/office/apps/fp179865
http://msdn.microsoft.com/en-US/office/apps/fp179865

Remote Event Receivers
in SharePoint 2013

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ Getting to know remote event receivers (RERs)

 ➤ Understanding how to confi gure remote event receivers for various

authentication methods

 ➤ Introducing app-level remote event receivers

WROX.COM DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at http://www.wrox.com/
WileyCDA/WroxTitle/productCd-1118495845.html on the Download Code tab.
The code for this chapter is divided into the following major examples:

 ➤ C12DocLibRERO365.zip

 ➤ C12RERO365.zip

Because SharePoint continues to play a deeper and more integral role in corporate business
systems and processes, getting beyond farm-level custom solutions and sandbox limitations
by being able to call Web services as a result of internal events fi ring became imperative for
SharePoint — and the new app model now supports it! SharePoint has had event receivers
for some time, but with previous versions of SharePoint your custom code ran either in full
trust as a farm solution or in the sandbox with the constraints it imposed. With SharePoint
2013, rather than calling into code running on SharePoint, remote event receivers can now
be built as web services and the URL endpoint can be registered with SharePoint. When an
event fi res on one or more of the numerous events associated with SharePoint components,
the Web service is called, SharePoint passes in the item properties for the event, and the Web

12

c12.indd 307c12.indd 307 19/01/13 11:23 AM19/01/13 11:23 AM

http://www.wrox.com/WileyCDA/WroxTitle/productCd-1118495845.html
http://www.wrox.com/WileyCDA/WroxTitle/productCd-1118495845.html
http://WROX.COM
http://wrox.com

308 ❘ CHAPTER 12 REMOTE EVENT RECEIVERS IN SHAREPOINT 2013

service carries out its business. Both synchronous and asynchronous calls to your web service are
supported, and the Web service can also call back into SharePoint, authenticated via OAuth, to read
and write as needed. Synchronous “before” events denoted with “-ing,” such as adding, deleting,
and so on can perform validation and cancel the event. “After” events denoted with “-ed” — for
instance, deleted, added, and so on, can either be synchronous or asynchronous.

Additionally, with the new app model for SharePoint, three new app-level events are provided for
app life-cycle management: Installed, Uninstalling, and Upgraded. These app-level events also call
out to remote event receiver web services you write and host.

This chapter walks you through some of the nuances in how to construct the remote event receivers
based on whether you are in a high-trust server-2-server (S2S) protocol, behind the fi rewall envi-
ronment, or are using OAuth. Offi ce 365 SharePoint Online with its Internet-facing endpoints uses
OAuth, the authentication method for your app, if you need to call back into SharePoint to perform
follow-on actions.

INTRODUCING REMOTE EVENT RECEIVERS

Traditionally, event receivers in SharePoint have been used for a wide range of purposes in busi-
ness solutions, from sending out email or spawning announcement notifi cations, to data validation,
to canceling a current user action and redirecting him to another action. Event receivers are often
used simply for logging or tracking documents in a library for reporting purposes. The new remote
event receivers take nothing away from the multiplicity of ways developers can employ them. But
more importantly they comply with the objectives of the new app model to move the execution of
developer code outside of SharePoint and provide a consistent programming and run-time experi-
ence on-premises and across SharePoint Online. Because the remote event receivers run off-box
from SharePoint, you do not need to install .dlls for event receivers on the SharePoint server. Also,
unlike the SharePoint Online sandbox environment, your event receiver is no longer required to
complete within 30 seconds and you can now call out to as many external services as needed to sup-
port the work required for an event to logically be completed.

However, keep in mind that event receivers were not intended to be depended upon as a mechanism
to build a transactional system. These are not wrapped in a transaction framework of, say, a begin
and an end commit. So use them wisely and be careful to try not to coerce them into high-value,
mission-critical, transactional scenarios they were not meant to be used for.

In the following Try It Out you build a simple RER for Offi ce 365 SharePoint Online to see how
event receivers are constructed using Visual Studio and get a sense for how these remote events work.

TRY IT OUT Building a Remote Event Receiver for Offi ce 365
 SharePoint Online (C12RERO365.zip)

For this activity you will use your Offi ce 365 tenancy to deploy two lists and exercise a remote event
receiver. The remote event receiver web service is autodeployed to Windows Azure, and OAuth is used
for the RER to call back into SharePoint Online to log an entry in another list.

c12.indd 308c12.indd 308 19/01/13 11:23 AM19/01/13 11:23 AM

Introducing Remote Event Receivers ❘ 309

 1. Run Visual Studio 2012 as Administrator. Select New Project.

 2. In the New Project dialog, expand the Templates ➪ Visual C# ➪ Offi ce/SharePoint ➪ Apps nodes.
Select App for SharePoint 2013 and provide the name: C12RERO365. Click OK.

 3. In the Specify the name for your app for SharePoint settings dialog, set the SharePoint site URL
you will deploy the app to and choose SharePoint-hosted as the location to host your app for
SharePoint. Click Finish.

 4. Right-click on the C12RERO365 project node in Solution Explorer and select Add ➪ New item.

 5. Select List, provide the name, ListToFireEvents, and click Add.

 6. In the Choose List Settings dialog, select Create a non-customizable list based on an existing list
type of, select Custom List from the drop-down list, and click Finish.

 7. Right-click on the C12RERO365 project node in Solution Explorer and select Add ➪ New item.

 8. Select List, provide the name, RemoteEventLog, and click Add.

 9. In the Choose List Settings dialog, select Create a non-customizable list based on an existing list
type of, select Custom List from the drop-down list, and click Finish.

 10. Right-click on the project node in Solution Explorer and select Add ➪ New item.

 11. Select Remote Event Receiver, leave the default name of RemoteEventReceiver1, and click Add.

 12. In the Choose Event Receiver Settings dialog, select List Item Events for the type of event receiver
you want and Custom List for the event source. Click An item is being added and then click Finish.

 13. Visual Studio automatically adds C12RERO365Web, a Web project to host your remote event
receiver. In the C12RERO365Web project locate the RemoteEventReceiver1.svc node that was
added. This SOAP-based web service is the endpoint for receiving the SharePoint events remotely.
Right-click on the RemoteEventReceiver1.svc node and select View Code if the fi le is not
already open in Visual Studio.

 14. Delete the following lines from the code:

using (ClientContext clientContext =
 TokenHelper.CreateRemoteEventReceiverClientContext(properties))
 {
 if (clientContext != null)
 {
 clientContext.Load(clientContext.Web);
 clientContext.ExecuteQuery();
 }
 }

 15. In the exact location you deleted the above code, insert the following:

 // Do not log events written to the remote event log list
 string RemoteEventListTitle = "RemoteEventLog";

 // Check to see if it is an event on the RemoteEventLog that fired
 // and return if so.

c12.indd 309c12.indd 309 19/01/13 11:23 AM19/01/13 11:23 AM

310 ❘ CHAPTER 12 REMOTE EVENT RECEIVERS IN SHAREPOINT 2013

 // You do not want to log these events and an infinite loop would occur
 // as well.
 if (string.Equals(properties.ItemEventProperties.ListTitle,
 RemoteEventListTitle, StringComparison.OrdinalIgnoreCase))
 return result;

 // Evaluate the type of event and perform an edit and respond accordingly.
 switch (properties.EventType)
 {
 case SPRemoteEventType.ItemAdding:
 if (string.Equals(properties.ItemEventProperties.AfterProperties
["Title"].ToString(), "TestCancel", StringComparison.OrdinalIgnoreCase))
 {
 result.ErrorMessage = "Title cannot be 'TestCancel'.";
 result.Status = SPRemoteEventServiceStatus.CancelWithError;
 }
 else
 {
 // Retrieve and write the remote events logging list
 // for the adding event.
 using (ClientContext clientContext =
TokenHelper.CreateRemoteEventReceiverClientContext(properties))
 {
 clientContext.Load(clientContext.Web);
 clientContext.ExecuteQuery();
 List myEventLogList =
clientContext.Web.Lists.GetByTitle(RemoteEventListTitle);

 try
 {
 // Add the event entry to the EventLog list.
 string myItemTitle = "Remote event logged: "
+ DateTime.Now.ToString(" yyyy/MM/dd-HH:mm:ss") + ", Event type: "
+ properties.EventType.ToString() + ", Title: "
+ properties.ItemEventProperties.AfterProperties["Title"].ToString();
 ListCollection myLists = clientContext.Web.Lists;
 List myRemoteEventList =
myLists.GetByTitle(RemoteEventListTitle);
 clientContext.Load<ListCollection>(myLists);
 clientContext.Load<List>(myRemoteEventList);
 ListItemCreationInformation listItemCreationInfo = new
ListItemCreationInformation();
 var listItem =
myRemoteEventList.AddItem(listItemCreationInfo);
 listItem["Title"] = myItemTitle;
 listItem.Update();
 clientContext.ExecuteQuery();
 }

 catch (Microsoft.SharePoint.Client.ServerException)
 {
 // If a SharePoint server error occurs, return.

c12.indd 310c12.indd 310 19/01/13 11:23 AM19/01/13 11:23 AM

Introducing Remote Event Receivers ❘ 311

 return result;
 }
 }
 }
 break;
 }

 16. Right-click on the AppManifest.xml fi le in the C12RERO365 project in Solution Explorer and
select View Code.

 17. To make testing the remote event receiver more convenient, you can set the app to start on the list
page by changing the StartPage element in the manifest to the following:

<StartPage>~appWebUrl/Lists/ListToFireEvents</StartPage>

 18. In the Solution Explorer, right-click on C12RERO365 and select Deploy. (Not F5. The Autohosted
Web service must be fully deployed to Windows Azure.) When the browser launches the trust
request page, click Trust It.

 19. On the ListToFireEvents page, add a new item to the list and click Save.

 20. After adding the item, go to the address bar in your browser and click in the bar so the cursor
is at the end of the URL. Delete everything back to …/Lists/. Following the slash (/), type
RemoteEventLog and press Enter so the browser navigates to the remote event log list. You’ll see
the list item that wrote back to SharePoint using CSOM from within the remote event receiver
web service.

 21. Using the browser’s back button, navigate back to the ListToFireEvents. Add another new item,
but title it TestCancel, and click Save. Since there is logic in the remote event to not allow an
item with this specifi c title, an error message is being returned to the user. Go ahead and cancel
out of the add, or change the title and choose to save. In either case, you can again navigate to the
RemoteEventLog list and see that the item with a title of TestCancel was not added.

 22. Close the browser to stop the debugging session and return to the RemoteEventReceiver.svc.cs
fi le to view the code.

How It Works

When you started this Visual Studio project you created two lists to deploy with the app. When add-
ing the remote event receiver to the project, you stepped through the wizard and selected the An item
is being added event. Although you didn’t select any event sources that fi re when an event has com-
pleted, the Visual Studio project template automatically provides two methods in the remote event:
ProcessEvent and ProcessOneWayEvent. Both methods pass in a rich RemoteEventProperties
object from which you can determine everything about the event that just happened. The differ-
ence between the two methods is that ProcessEvent is for synchronous processing, and the UI in
SharePoint will wait until your remote event code completes. Because synchronous events can also be
canceled by your code, the ProcessEvent returns an SPRemoteEventResult object. You can option-
ally set properties on this object so SharePoint can know how to proceed when the remote event
receiver has completed its processing. The ProcessOneWayEvent method is for asynchronous process-
ing and returns void.

c12.indd 311c12.indd 311 19/01/13 11:23 AM19/01/13 11:23 AM

312 ❘ CHAPTER 12 REMOTE EVENT RECEIVERS IN SHAREPOINT 2013

Synchronous “-ing” actions, adding, deleting, updating, in SharePoint must use the ProcessEvent
method. The “-ed” events, those that have already added, updated, deleted, can also use
the ProcessEvent if you want synchronous processing for your code or they can use the
ProcessOneWayEvent method. Keep in mind, “-ed” events with synchronous processing, by defi nition,
cannot be canceled because the action has already happened in SharePoint. Asynchronous “-ed” events
that use the ProcessOneWayEvent method can be a fi re-and-forget asynchronous action. You can also
choose to call back into SharePoint after your code actions complete. What’s important to note is that
the ProcessOneWayEvent method does not hang the UI waiting for your code to complete so you can
have long-running processes that are initiated by a SharePoint event if you need to.

In the code example you can observe a few fundamental concepts on how to handle the type of
event you’re processing, how to cancel an event if a validation check fails, and how to call back into
SharePoint to do a follow-on action. Because the ProcessEvent method will pass back to SharePoint
a SPRemoteEventResult object, the result object is instantiated and available for use. You might
or might not choose to change any properties in this object, but in any case, it will be passed back. A
switch statement is used to determine the type of event that was fi red on SharePoint. This makes isolat-
ing code you want to use based on any specifi c event easy. Drilling into the ItemAdding case, a check
exists to see whether a specifi c value is present in the title. If so, the event loads an error message and
cancels with an error. This simple example shows the pattern for how you can insert validation logic
in a remote event receiver. Lastly, if the validation completes, then the pattern for how to call back into
SharePoint using CSOM is shown. In this simple case, another list is being written to as a log for items
being added to the ListToFireEvents.

Before you ran the code you made a confi guration change to the manifest fi le to set the start page. By
default, the starting page is set to Default.aspx but in your case you wanted the starting page to be
the ListToFireEvents page.

For the code implications, in step 14 in this example, you deleted several project template boilerplate
lines of code that indicated how to call back into SharePoint using the client side object model and
how to use OAuth to authenticate your remote web service. However, all the code you deleted is
actually used within the code you added back in, it’s just in its proper location for what you needed
to do here. Since the C12RERO365 part of your solution gets deployed to SharePoint Online and the
C12RERO365Web part gets automatically deployed to Windows Azure, OAuth is required for the
web service to call back into SharePoint. Here too much is managed for you by the TokenHelper
class incorporated into the project template. This line of code, ClientContext clientContext =
TokenHelper.CreateRemoteEventReceiverClientContext(properties), works all kinds of magic
on your behalf and is fully discussed in Chapter 10, “OAuth.” In this example, using OAuth and
CSOM you were able to write a log entry into the RemoteEventLog list every time an item was added
to the ListToFireEvents.

Remote event receivers follow the typical three patterns for authentication that are used for
Autohosted and SharePoint-hosted Apps for SharePoint: on-premises only, in the cloud only, and
hybrid where part is on-premises and part is in the cloud. Remote event receivers only need to be
concerned about authentication if they need to call back into SharePoint to perform some action

c12.indd 312c12.indd 312 19/01/13 11:23 AM19/01/13 11:23 AM

Introducing Remote Event Receivers ❘ 313

on SharePoint. If your remote event receiver is of the fi re-and-forget model, or if you are simply
performing a validation and optionally cancelling an event, you do not need to be concerned with
authentication in your code, but the manifest does need to have the correct designation. Figure 12-1
shows the on-premises-only and cloud-only confi gurations as well as the appropriate authentication
used by the remote event receiver if your code needs to call back into SharePoint.

FIGURE 12-1

SharePoint
On-Premises

Office 365
SharePoint Online

Remote Event
Receiver Hosted

Remote Event
Receiver Hosted

Synchronous or Asynchronous

Synchronous or Asynchronous

(optional)
Call back via S2S

(optional)
Call back via OAuth

Windows Azure ACS

On-Premises

Online Service

Some enterprises that have their SharePoint site on-premises will choose to be confi gured for a
hybrid environment where their remote event receivers may reside either on internal servers or in
the cloud. In this case the enterprise might want a single authentication method and programming
model for its remote event receivers that will work equally well regardless of where the remote event
receiver is hosted. To accommodate this, the enterprise must follow the Microsoft-provided guid-
ance to confi gure SharePoint to use Windows Azure Access Control Services (ACS) as the authoriza-
tion service and expose the appropriate endpoints for SharePoint and any internally hosted remote
event receivers to the public Internet. ACS must be able to access these endpoints to provide the
needed authentication via OAuth. Figure 12-2 shows this hybrid pattern.

c12.indd 313c12.indd 313 19/01/13 11:23 AM19/01/13 11:23 AM

314 ❘ CHAPTER 12 REMOTE EVENT RECEIVERS IN SHAREPOINT 2013

Although you have the opportunity to call back into SharePoint to do additional work within the
app web, host web, or elsewhere depending on your app’s permissions, sometimes you might simply
want to make some alterations on the list item and its properties that are currently being processed
in the ProcessEvent method. You can do this by evaluating any value passed in on the properties
object and then use the SPRemoteEventResult object and its ChangedItemProperties object to
pass your alterations back to SharePoint.

For instance, you can use the properties.ItemEventProperties.AfterProperties object in
your validation logic to assess whether the incoming values are as you expected them to be. Once
you make any changes to your result object this will be passed back to SharePoint. SharePoint will
update the list columns accordingly.

The following Try It Out walks you through using the SPRemoteEventResult object. Additionally,
you will see in this example that because your app does not explicitly need to call back into
SharePoint to read/write data, there is no need to use the TokenHelper class in your code.

TRY IT OUT Creating a Remote Event Receiver for a Document
Library and Content Type (C12DocLibRERO365.zip)

For this exercise you use your Offi ce 365 tenancy to deploy a document library that contains custom
content type, custom columns, and a remote event receiver. The remote event receiver web service is
autodeployed to Windows Azure.

FIGURE 12-2

SharePoint
On-Premises

or

Remote Event
Receiver Hosted

Synchronous
or Asynchronous

(optional)
Call back via OAuth

Windows Azure ACS

On-Premises

Online Service

c12.indd 314c12.indd 314 19/01/13 11:23 AM19/01/13 11:23 AM

Introducing Remote Event Receivers ❘ 315

 1. Run Visual Studio 2012 as Administrator. Select New Project.

 2. In the New Project dialog, expand the Templates ➪ Visual C# ➪ Offi ce/SharePoint ➪ Apps nodes.
Select App for SharePoint 2013 and provide the name: C12DocLibRERO365. Click OK.

 3. In the Specify the name for your app for SharePoint settings dialog, set the SharePoint site URL
to the app you will deploy to and choose SharePoint-hosted as the location to host your app for
SharePoint. Click Finish.

 4. Right-click on the C12DocLibRERO365 project node in Solution Explorer and select Add ➪ New
item.

 5. Select Site Column, provide the name, DocNumber, and click Add.

 6. Right-click on the C12DocLibRERO365 project node in Solution Explorer and select Add ➪ New
item.

 7. Select Content Type, provide the name, MyC12Document, and click Add.

 8. In the Choose Content Type Settings dialog, select Document from the drop-down list as the con-
tent type to inherit from and click Finish.

 9. In the content type designer, under the Columns tab, choose Click here to add a column. Using
the drop-down list, select and add three columns: Author, Status, and your custom column Doc
Number, and save the content type.

 10. Right-click on the C12DocLibRERO365 project node in Solution Explorer and select Add ➪ New item.

 11. Select List, provide the name, MyDocumentLibrary, and click Add.

 12. In the Choose List Setting dialog, click the Create a customizable list based on radio button and
select Document Library from the drop-down list. Click Finish.

 13. In the list designer under the Columns tab, scroll down if needed and click the Content Types
button.

 14. In the Content Type Settings dialog, select Click here to add a content type and select
MyC12Document from the drop-down list.

 15. Select the row of the MyC12Document item; click Set as Default and Save.

 16. To now remove the extraneous Document content type that was previously the default docu-
ment so it will not show within SharePoint, click Content Types again, select the entire row for
Document, right-click the selected row, and choose Delete. Click OK.

 17. Click on the list designer Views tab. In the Available columns pane, select the Title column and
click the right-facing arrow button to move it to the right-hand side.

 18. Click on the list designer List tab and copy the List URL. Navigate to the AppManifest.xml fi le,
right-click and select View Code.

 19. Replace the StartPage element contents so the element looks something like this: <StartPage>~
appWebUrl/Lists/MyDocumentLibrary?{StandardTokens} </StartPage>. Save and close the
manifest fi le. This change directs SharePoint to start at your document library when your app
launches.

c12.indd 315c12.indd 315 19/01/13 11:23 AM19/01/13 11:23 AM

316 ❘ CHAPTER 12 REMOTE EVENT RECEIVERS IN SHAREPOINT 2013

 20. Before going any further, press F5 to validate that the content type and document library are
working correctly.

 21. When the MyDocumentLibrary page opens, click on the Files tab to open the ribbon. On the
ribbon click the New Document drop-down to see your MyC12Document. Click it.

 22. Word 2013 will open and all the metadata columns associated with your content type will display
in the Document Information Panel (DIP) at the top of the document. It’s these columns that can
be validated or augmented in your remote event receiver code. Go ahead and add some values in
the fi elds and save the document. Word will prompt you to select a location to save the fi le.
Under the Current Folder, click MyDocumentLibrary. Alternatively, you can browse to the
document library via the appropriate URL for your site. Close the Word document and refresh
the page to see the metadata stored in the columns. Close the browser to stop debugging.

 23. Right-click on the C12DocLibRERO365 project node in Solution Explorer and select Retract. If
the retract fails, login to the Offi ce 365 site and remove the app manually from the Site Contents
page. Hover over the app tile, click the ellipsis (…) and select Remove.

 24. Right-click on the C12DocLibRERO365 project node in Solution Explorer and select
Add ➪ New item.

 25. Select Remote Event Receiver, leave the default name of RemoteEventReceiver1, and click Add.

 26. In the Choose Event Receiver Settings dialog, select List Item Events for the type of event receiver
you want. Notice that Visual Studio selects your MyDocumentLibrary by default, so leave this
and select An Item is being added. Click Finish.

 27. If the code for the remote event receiver does not automatically open, right-click on the
RemoteEventReceiver1.svc node and select View Code.

 28. Delete the following lines from the code:

using (ClientContext clientContext =
 TokenHelper.CreateRemoteEventReceiverClientContext(properties))
 {
 if (clientContext != null)
 {
 clientContext.Load(clientContext.Web);
 clientContext.ExecuteQuery();
 }
 }

 29. In the exact location from which you deleted the above code, insert the following:

 // Generate a random number to simulate an external system providing
 // a reference number for a document.
 Random r = new Random();
 int myDocNum = r.Next(100) + 1000;

 // Evaluate the type of event and perform an edit and adjust
 // the result object accordingly.

c12.indd 316c12.indd 316 19/01/13 11:23 AM19/01/13 11:23 AM

Introducing Remote Event Receivers ❘ 317

 switch (properties.EventType)
 {
 case SPRemoteEventType.ItemAdding:
 // Set a default title if no Title was input.
 If
(properties.ItemEventProperties.AfterProperties.ContainsKey("vti_title")
 && string.IsNullOrEmpty
(properties.ItemEventProperties.AfterProperties["vti_title"].ToString()))
 {
 result.ChangedItemProperties.Add("vti_title",
properties.ItemEventProperties.AfterProperties["_Author"].ToString()
 + "-" + myDocNum);
 }

 // Set a default status to Draft if no status value was input.
 if
(properties.ItemEventProperties.AfterProperties.ContainsKey("_Status")
 && string.IsNullOrEmpty
(properties.ItemEventProperties.AfterProperties["_Status"].ToString()))
 {
 result.ChangedItemProperties.Add("_Status", "Draft");
 }

 // Always provide a document number.
 result.ChangedItemProperties.Add("DocNumber", myDocNum.ToString());

 break;
 }

 30. In the Solution Explorer, right-click on C12DocLibRERO365 and select Deploy. (Not F5. The
Autohosted Web service must be fully deployed to Windows Azure.) Go through the process of
adding a new document by clicking on your content type under the FILES tab on the document
library landing page. The DIP will be displayed as before; make no changes to the DIP fi elds, save
and close your document.

 31. Refresh the browser to see that your fi le has been added but notice that all the list columns now
have information in them due to the processing that happened in the remote event receiver.

How It Works

The biggest difference in this example from the fi rst Try It Out is that you used the
SPRemoteEventResult object that is returned to SharePoint. SharePoint honors any modifi cation you
made to the object and updates the document list columns appropriately. It’s important to note that
although you must choose Trust It when your app is installed, when using the SPRemoteEventResult
object only, if your code is not explicitly calling back into SharePoint using CSOM or REST to read/
write data, then you do not need to write code that uses the TokenHelper class. This example shows
the pattern where your remote event receiver can impact data being written to SharePoint by modifying
the SPRemoteEventResult object directly.

c12.indd 317c12.indd 317 19/01/13 11:23 AM19/01/13 11:23 AM

318 ❘ CHAPTER 12 REMOTE EVENT RECEIVERS IN SHAREPOINT 2013

APP-LEVEL LIFE-CYCLE REMOTE EVENT RECEIVERS

Microsoft has put a signifi cant investment into the life-cycle management for apps in the new cloud
app model. One of the investments is to enable you, the developer, to tap into three key events
in your app’s life cycle: when your app has been installed, when your app is uninstalling, and when
your app is upgraded. By writing remote event receivers for when these app-level events fi re, you can
provide invaluable information back to your own service endpoints. You can track and analyze the
install, upgrade, and uninstall your app worldwide from the offi ce.com SharePoint store.

Creating app-level events is just like creating a normal RER. These events are functionally equiva-
lent and coded exactly like the SharePoint-level remote event receivers, including synchronous and
asynchronous processing options, and they can use OAuth for authentication or S2S when behind
the fi rewall. However, because the steps to create app-level remote event receivers differ from how to
create SharePoint-level remote event receivers, the following Try It Out provides guidance on creat-
ing these app-level remote event receivers.

TRY IT OUT Wiring Up App-level Life-Cycle Remote Event Receivers

For this exercise you will use the C12DocLibRERO365 Visual Studio solution from the previous Try It
Out to examine how to include app-level events in your app for SharePoint.

 1. Run Visual Studio 2012 as Administrator and open the C12DocLibRERO365 solution.

 2. Click on the C12DocLibRERO365 project in the Solution Explorer.

 3. In the Properties pane for the project, notice the three properties: Handle App Installed, Handle
App Uninstalling, and Handle App Upgraded. These are all set to False by default.

 4. Set Handle App Installed to True.

 5. If the code page does not automatically open, navigate to the AppEventReceiver.svc.cs fi le to
view the code. The code should look really familiar by now because it’s identical to what you have
been working with — it is just for handling the app-level events.

 6. Navigate to the AppManifest.xml fi le. In the Properties node an InstalledEventEndpoint
element has automatically been added. If you change the other two app-level properties to True,
these events will also be registered in the manifest fi le.

How It Works

App-level life-cycle events have to fi re on the periphery; that is, when your app fi rst touches SharePoint
and is installed to when it is upgraded or is uninstalling. Therefore, these events must be registered at
the app manifest level; the app life-cycle manager within SharePoint registers these event requests and
ensures they happen.

All other SharePoint-level event receivers are registered with the SharePoint artifact inside the app.
They get deployed when your app is installed and fi re within the context of your app’s execution
when the appropriate list, library, or other SharePoint artifact is used. Microsoft provides both lev-
els of events so your app can be notifi ed when events are happening during the running of your app
as well as when your app is moving through its life cycle.

c12.indd 318c12.indd 318 19/01/13 11:23 AM19/01/13 11:23 AM

http://office.com

Summary ❘ 319

SUMMARY

This chapter introduced you to the evolution of event receivers on the SharePoint platform: remote
event receivers. Rather than relying on full-trust code deployed and running on the SharePoint
server, remote event receivers are Web services where the URL is registered with SharePoint and
called when an event fi res on your specifi ed SharePoint artifact. This provides the way for your app,
which is executing remotely from SharePoint, to be called as events are transpiring or have trans-
pired within your installed app on SharePoint.

Remote event receivers support both a server-to-server (behind the fi rewall) confi guration for
authentication or OAuth. In either case, appropriate authentication is required for your code to call
back into SharePoint to perform a follow-on action. Both synchronous and asynchronous methods
are provided for this in the web service.

Lastly, this chapter introduced you to the all-new events that fi re during the app’s life cycle: when
it is installed, upgraded, or uninstalling. These events round out the ability for your remote app to
interact with SharePoint from its beginning install, during its execution, through its upgrade, and at
the end of life.

EXERCISES

You can fi nd answers to exercises in Appendix A.

 1. What is the name of the asynchronous method in the remote event receiver?

 2. If you want to cancel an event and provide an error message, what enumeration would you

use on SPRemoteEventServiceStatus, and what property would you place the text for your

message into?

 3. What two primary ways can you confi gure authentication on SharePoint for your app to have the

ability to call back into SharePoint to perform follow-on actions?

 4. Where would you look in your Visual Studio project to see whether an app-level event has been

identifi ed in your app?

c12.indd 319c12.indd 319 19/01/13 11:23 AM19/01/13 11:23 AM

320 ❘ CHAPTER 12 REMOTE EVENT RECEIVERS IN SHAREPOINT 2013

 � WHAT YOU LEARNED IN THIS CHAPTER

ITEM DESCRIPTION

Remote event

receivers

Web services where the URL is registered with SharePoint and called when

events you identify on SharePoint artifacts are transpiring or have transpired

on SharePoint.

SP remote event

result

The SPRemoteEventResult object is used only on the synchronous method

call and is passed back to SharePoint for processing. You can modify this object

prior to its return to SharePoint.

Call back to

SharePoint

Both synchronous and asynchronous events can call back into SharePoint

using CSOM or REST for follow-on actions but either an S2S or OAuth authenti-

cation confi guration must be in place.

App-level events App-level events are identifi ed in the app manifest and registered with

SharePoint to fi re during the app’s lifecycle events of installed, updated, and

uninstalling.

RECOMMENDED READING

Creating high-trust Apps for SharePoint 2013 using the server-to-server protocol —
http://msdn.microsoft.com/en-us/library/fp179901(v=office.15).aspx

c12.indd 320c12.indd 320 19/01/13 11:23 AM19/01/13 11:23 AM

http://msdn.microsoft.com/en-us/library/fp179901(v=office.15).aspx

Building Line-of-Business
Solutions Using Business
Connectivity Services

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ Getting to know Business Connectivity Services in Offi ce 365

SharePoint Online

 ➤ Understanding how to build app-level external content types using

OData

 ➤ Working with SharePoint and Offi ce integration using Apps for

SharePoint and BCS

WROX.COM DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at http://www.wrox.com/WileyCDA/
WroxTitle/productCd-1118495845.html on the Download Code tab. The code for this
chapter is divided into the following major examples:

 ➤ C13EmployeeBCSApp.zip

 ➤ C13EmpReferralBCSAppForOffi ce.zip

 ➤ Employee.bdcm

Business Connectivity Services (BCS) in SharePoint 2010 made tremendous strides over
Microsoft Offi ce SharePoint Server (MOSS) 2007, bringing the capability to conveniently
 connect line-of-business (LOB) systems to the masses. BCS in SharePoint 2013 continues
on this trajectory with new features that make BCS even more compelling to have as a core
 component when developing solutions for SharePoint users.

13

c13.indd 321c13.indd 321 19/01/13 11:26 AM19/01/13 11:26 AM

http://www.wrox.com/WileyCDA/WroxTitle/productCd-1118495845.html
http://www.wrox.com/WileyCDA/WroxTitle/productCd-1118495845.html
http://WROX.COM
http://wrox.com

322 ❘ CHAPTER 13 BUILDING LINE-OF-BUSINESS SOLUTIONS USING BUSINESS CONNECTIVITY SERVICES

Looking back, with MOSS 2007 developers had to fuss around and work directly with the XML to
set up connections to LOB systems using the Business Data Catalog. Also, after set up, these ADO
.NET- or Web services-based connections were read-only. However, in SharePoint 2010 the tooling
was ratcheted up signifi cantly in both SharePoint Designer 2010 and Visual Studio 2010, making
it easier for power users, IT professionals, and developers alike to create read-write connections in
BCS solutions that ranged from no-code to rich, deeply integrated, code-based solutions spanning
SharePoint, Offi ce clients, and LOB systems.

For example, Duet Enterprise is one such solution. It is a product developed and licensed as a joint
venture between Microsoft and SAP. Microsoft engineers built all the SharePoint integration compo-
nents and SAP engineers used the tooling on the SAP platform to expose functional business services
from the SAP side. Therefore, Duet Enterprise serves as a reference point in determining the best inte-
gration strategy for bringing ERP data into SharePoint because it provides the pattern for the techni-
cal architecture and the delineation of business functions surfaced in SharePoint and the LOB system.
If your enterprise is looking for deep BCS integration with one of your LOB systems, then you are
strongly encouraged to have your architects review the technical documentation for Duet Enterprise
on TechNet. It can serve as a framework for discussion as you build your integration and develop-
ment plan. Some key tenants for deep SharePoint BCS and LOB integration include the following:

 ➤ SharePoint is not a replacement for the LOB presentation layer.

 ➤ Do not replicate LOB functionality in SharePoint — augment functionality with SharePoint
integration.

 ➤ The LOB is the system of record, SharePoint is not.

 ➤ Use the claims-based security infrastructure of SharePoint when connecting to the LOB
services, and plan for high availability and reuse of this infrastructure component.

 ➤ Flow relevant user profi le/identity data from the LOB into custom SharePoint profi le
elements as needed.

 ➤ Flow relevant LOB permissions data from the LOB into custom SharePoint profi le elements
as needed.

 ➤ SharePoint permissions should refl ect LOB permissions.

These are some of the principles that you’ll see employed in the Duet Enterprise design. So, if you
are looking beyond tactical, point solutions for integration to your LOB systems, and if you are
considering deep integration with a LOB system, then consider investigating Duet Enterprise as a
reference architecture. Additionally, seeing the likes of Microsoft and SAP join together and build
an enterprise-scale product on top of BCS should give you a lot of confi dence that it’s an infrastruc-
ture that you can build on too. This chapter offers you a look at some of the new BCS capabilities in
SharePoint 2013, most specifi cally with access to OData endpoints and the new app-level external
content types (ECTs) that you can leverage in your business solutions.

BUSINESS CONNECTIVITY SERVICES IN SHAREPOINT 2013

Before looking into what’s new in BCS for SharePoint 2013, let’s do a quick level-set on the exter-
nal content type (ECT), a key component in Business Connectivity Services. The ECT is metadata
that describes the connection information, methods (create, read, update, delete) that can be

c13.indd 322c13.indd 322 19/01/13 11:26 AM19/01/13 11:26 AM

http://ADO.NET
http://ADO.NET

Business Connectivity Services in SharePoint 2013 ❘ 323

performed against the connection, data defi nitions for data elements, and any parameters that
might pass between the client and external LOB data source. Security permissions can be set on
the ECT to allow access by specifi c users or groups, and a wide array of authentication methods
are supported, including Windows, claims-based, username and password, and certifi cate. ECTs
serve as the basis for external lists. Unlike other lists in SharePoint that have their data stored in the
SharePoint content database, external lists retrieve their data from the LOB data source every time
the list is accessed by a user or programmatically. Therefore, external lists bring real-time data to
SharePoint stakeholders. ECTs can also be made available to SharePoint search for indexing, and the
LOB system data is included in a user’s search result, trimmed by permissions.

A signifi cant benefi t of BCS is that it can provide a central location where IT manages a consistent
approach for accessing LOB systems. By investing in building ECTs on a common infrastructure
that surfaces LOB information in a usable and reusable form, business users, power users, and
developers alike can become consumers of data served up by the ECTs in a variety of contexts.
These range from confi guring a dashboard of business data Web parts on a page, to confi guring
document templates for Word to include business data columns, to developers building custom
enterprise solutions. Also, the developer’s’ programming pattern is consistent when building against
ECTs because no matter what the LOB system is, they code exactly the same way against the ECT
to retrieve or update the data. Because IT also builds the ECTs, it can ensure the effi ciency of the
ECT by defi ning the fi lters and throttling limits on the accesses to the back-end systems.

External content types were broadly welcomed in SharePoint 2010, and Microsoft built on the ECT
foundation in SharePoint 2013 by providing new capabilities. Figure 13-1 shows the various BCS
components and highlights the primary Microsoft BCS investments in this release.

FIGURE 13-1

Connector Framework

WCF

SQL

.NET

OData

App-Scoped External
Content Types

Extensibility Features

CSOM APIs +

Server OM

REST API

Remote Event
Receivers

Presentation Features

External Lists

External Data
ColumnsHybrid Connectivity

External Content Types (ECTs)

Business Data Connectivity Service

SharePoint 2013

c13.indd 323c13.indd 323 19/01/13 11:26 AM19/01/13 11:26 AM

324 ❘ CHAPTER 13 BUILDING LINE-OF-BUSINESS SOLUTIONS USING BUSINESS CONNECTIVITY SERVICES

In the connector framework, alongside the already-popular SQL, WCF, and .NET connectors, the
new highly requested OData connector joins the ranks. With the proliferation of OData produc-
ers, services that expose their data using the OData protocol, this new class of data services is now
available for your BCS solutions.

With the new app model for SharePoint, where apps have a particular scope upon install into
SharePoint, BCS now has app-scoped ECTs, too. In other words, an ECT can be created for and
deployed within the scope of the app upon install. Typically, where an ECT has a farm-level, on-
premises, or tenant-wide scope in Offi ce 365, your app for SharePoint can have ECTs in your solu-
tion that run isolated within the app boundaries.

Another much-desired capability for BCS external lists was to have REST support for accessing
them. This feature, too, was a signifi cant investment by Microsoft to make the BCS data available
via REST, but it has done so while also making meaningful contributions in the CSOM for access-
ing BCS data.

Microsoft also made signifi cant investments in this release to support alerts and event receivers
on external lists; both highly requested features by users and developers. Users can now create
alerts in external lists in the same way they do on other SharePoint lists. Event receivers have been
available on SharePoint artifacts for some time, but now BCS is a fi rst-class citizen in the event
infrastructure. For SharePoint to be notifi ed that data has changed on an external list, confi guration
both on SharePoint and the external data source is required. The data source needs a way to become
aware of underlying data changes; for example, SQL triggers or a service that periodically polls the
data source to detect changes. It also needs a way for SharePoint to subscribe to it to receive noti-
fi cation of changes. SharePoint now has the infrastructure to support this interaction and provides
a way to register this “notifi cation channel” through an extension to the BDC model schema to
include the new EventSubscriber and EventUnsubscriber stereotypes. At a high level, the com-
munication fl ow for SharePoint to subscribe to be notifi ed when there is a data change on the exter-
nal system works like this: when the Subscribe method is called on the ECT associated with an
external system, the Subscribe method passes the event type and delivery address to the external
system. The external system records this information in a database and then returns a subscription
ID to SharePoint. When the Subscribe method completes, notifi cation of a data change can be sent
from the external system to the delivery address REST endpoint on SharePoint. Receipt of the noti-
fi cation, in turn, fi res an event on the external list and calls into your remote event receiver. Please
refer to MSDN for full documentation on this subject.

Of the numerous Microsoft investments for BCS in 2013, let’s fi rst take a look at setting up an ECT
that connects to an OData service. You will use Offi ce 365 SharePoint Online in this Try It Out
since it supports Business Connectivity Services.

TRY IT OUT Adding a Business Data Connectivity Model to Offi ce 365
 SharePoint Online (Employee.bdcm)

In this exercise you upload a Business Data Connectivity Model (BDCM) fi le to Offi ce 365 SharePoint
Online that defi nes an OData connection to the OData Northwind service endpoint available on
Odata.org. After the external content type is created you then create an external list in a site collec-
tion of your choice. This ECT is available tenancy wide. For this exercise you will need an Offi ce 365

c13.indd 324c13.indd 324 19/01/13 11:26 AM19/01/13 11:26 AM

http://Odata.org

Business Connectivity Services in SharePoint 2013 ❘ 325

Developer Site or an Offi ce 365 Enterprise Preview trial. Visit either http://on both dev.office
.com to sign up for a Developer Site or http://on both office.com/preview for an Offi ce 365
Enterprise Preview trial.

 1. Log in to the Offi ce 365 portal.microsoftonline.com site using an account with administra-
tive rights on the tenancy.

 2. From the Dashboard page, click Service Settings.

 3. On the Service Settings page, click Sites.

 4. On the Sites page, click the link following the question, “Don’t see what you are looking for?”

 5. On the SharePoint Administration Center page, click BCS.

 6. On the BCS page, click Manage BDC Models and External Content Types. (In an on-premises
installation you would use the SharePoint Central Administration portal and navigate to
Application Management ➪ Manage service applications and Business Connectivity Service.)

 7. Click the Import icon in the ribbon and browse to the Employee.bdcm fi le found in the code sam-
ples for this chapter. Click Open and click Import. The BDCM fi le will be validated on import;
when it has successfully completed, click OK. (If you do not have permissions to import, click
Set Metadata Store Permissions and make sure you have administrator-level permissions on the
Metadata store.)

 8. In the ribbon, click the drop-down list to select different views of the BDC Metadata Store and
select BDC Models. Click the NorthwindModel check box, and as shown in Figure 13-2, click the
Set Object Permissions button in the ribbon.

FIGURE 13-2

c13.indd 325c13.indd 325 19/01/13 11:26 AM19/01/13 11:26 AM

http://on%20both%20dev.office.com
http://on%20both%20dev.office.com
http://onbothoffice.com/preview
http://portal.microsoftonline.com

326 ❘ CHAPTER 13 BUILDING LINE-OF-BUSINESS SOLUTIONS USING BUSINESS CONNECTIVITY SERVICES

 9. Browse the directory to fi nd and select your user account, and then click the Add button. While
your user account is selected in the lower window, click all the check boxes under Permissions to
enable the full set of permissions, and then click OK. This gives your account full rights to man-
age the BDC Model.

 10. In the ribbon, click the drop-down list to select different views of the BDC Metadata Store and
select External Content Types. Click the Employee check box and click the Set Object Permissions
button in the ribbon.

 11. Browse the directory to fi nd and select your user account, and then click the Add button. While
your user account is selected in the lower window, click all the check boxes under Permissions to
enable the full set of permissions for your account to access and manage the ECT. Click the check
box to Propagate permissions to all methods and click OK.

 12. Navigate to any site collection in your Offi ce 365 tenancy where you want to create an external
list for the ECT. When in the site collection, click Site Contents and select Add an app.

 13. Scroll through the apps until you can see the External List tile as shown in Figure 13-3. Click it to
add an External List.

FIGURE 13-3

 14. In the Adding External List dialog, enter Northwind Employees for the name and click the Select
External Content Type icon.

 15. In the External Content Type Picker, select the Employee external content type, click OK and the
result should look like Figure 13-4. Then click Create.

c13.indd 326c13.indd 326 19/01/13 11:26 AM19/01/13 11:26 AM

Business Connectivity Services in SharePoint 2013 ❘ 327

 16. On the Site Contents page scroll until you see the new Northwind Employees app. Click the tile
to open the external list. Additionally, a link to the Northwind Employees external list has been
added in the left navigation bar under Lists. The completed external list should look something
like Figure 13-5.

FIGURE 13-4

FIGURE 13-5

c13.indd 327c13.indd 327 19/01/13 11:26 AM19/01/13 11:26 AM

328 ❘ CHAPTER 13 BUILDING LINE-OF-BUSINESS SOLUTIONS USING BUSINESS CONNECTIVITY SERVICES

How It Works

In this example, the .bdcm fi le was already created for you to simply see the pattern for how to wire up
the model in the administration portal. This is one pattern you can follow if you already have ECTs in
your SharePoint 2010 environment and you want to move them to your 2013 environment. You can
export them from 2010 and import them into 2013. For Offi ce 365 SharePoint Online, only BDCMs
that are SOAP-based or OData-based connections are supported — no .NET or ADO.NET (SQL direct
connections) can be used in SharePoint Online. Also, the SOAP and OData ECTs can only use group-
based permissions with authentication managed via the Secure Store Service (SSS).

If you navigate to the Employee.bdcm provided in the code sample download for this chapter and
open it in Notepad or any XML editor, you can view the XML document structure. Following are a
few of the high-level elements with which you should be familiar:

 ➤ LobSystem: This describes the type of connection (DotNetAssembly, Database, Webservice,
or OData) to the external data source.

 ➤ LobSystemInstance: This describes the specifi c implementation of the LobSystem; with
this element you can see the metadata describing the service URL endpoint and data format.

 ➤ Entity: This describes the business entity or object. It contains both Methods and data defi -
nitions described in a collection of Parameters.

 ➤ Method: This represents the read-write capabilities for the Entity. At a minimum a
method of the type SpecificFinder that will return one item, and a Finder that will
return all items must exist. These two methods are required for an ECT. Methods of the
type Updater, Deleter, and Creator are optional depending on whether your external
data source allows them. Or even if the external data source does have methods available
beyond Finder and SpecificFinder, you choose which methods you want to implement
in your ECT. Through the ECT creation process using the SharePoint Designer wizard or in
Visual Studio, you create the mappings for the methods you want to expose in your ECT to
the corresponding methods in the external data source. Lastly, methods can be scoped using
a FilterDescriptor.

 ➤ Parameter: This describes the data elements that will fl ow to and from the external system.

BCS IN APPS FOR SHAREPOINT

In the previous exercise you installed a business data connectivity model into SharePoint Online and
the external content type you created became available tenancy wide and could be used in any site
collection — restricted by permissions, of course. However, the SharePoint 2013 app model provides
a new opportunity for you to deliver Apps for SharePoint that have the BDCM deployed at the app-
level so it is scoped only to that specifi c app for SharePoint. This opens up a whole new opportunity
to deliver Apps for SharePoint from the Offi ce.com Store that have a self-contained BCS connec-
tion to any OData source that you choose to provide. The key point is that app-level solutions must
connect to OData sources; that’s the only connection type supported in an app for SharePoint. In
the following activity you build an app for SharePoint with an OData connection and see how it’s
defi ned to SharePoint.

c13.indd 328c13.indd 328 19/01/13 11:26 AM19/01/13 11:26 AM

http://Office.com
http://ADO.NET

BCS in Apps for SharePoint ❘ 329

TRY IT OUT Building an App-level BCS Solution for Offi ce 365

 SharePoint Online (C13EmployeeBCSApp.zip)

This exercise shows you how to create an app-level scoped BCS connection and then access the exter-
nal list for the app for SharePoint via a REST call.

 1. Run Visual Studio 2012 as Administrator. Select New Project.

 2. In the New Project dialog, expand the Templates ➪ Visual C# Offi ce/SharePoint Apps nodes.
Select App for SharePoint 2013 and provide the Name: C13EmployeeBCSApp. Click OK.

 3. In the New App for SharePoint dialog, set the Offi ce 365 SharePoint Online site URL to use for
debugging and choose SharePoint-hosted as the location to host your app for SharePoint. Click
Finish.

 4. Right-click the C13EmployeeBCSApp project node in Solution Explorer and select Add Content
Types for an External Data Source.

 5. In the Specify OData Source dialog, enter http://services.odata.org/Northwind/
Northwind.svc/.

 6. In the Data Source Name, enter Northwind OData Producer. Click Next.

 7. In the Select the Data Entities dialog, select Employees and confi rm that the Create list instances
for the selected data entities check box is checked. Click Finish.

 8. Visual Studio creates an External Content Types node in the Solution Explorer. Expand the nodes
until you see Employee.ect, and then double-click the node to open the ECT designer. In the
designer you can select individual rows to delete data elements, and you can also add fi lters in
the designer; a fi lter limit of 100 is set by default.

 9. In the Solution Explorer, open the Pages node, right-click Default.aspx, and select View
Markup.

 10. Locate the <asp:Content…> element, and replace the entire <div>…</div> containing the
id="message" paragraph with the following elements:

<h1>App-level BCS OData Connection</h1>
<div id="showEmployeeInfo"></div>

 11. In the Solution Explorer expand the Scripts node and click on the App.js fi le to open it.

 12. Replace all the code with the following:

$(document).ready(function () {
 window.C13EmployeeBCSApp = window.C13EmployeeBCSApp || {};

 C13EmployeeBCSApp.Grid = function (hostElement, spWebURL) {
 this.hostElement = hostElement;
 // Verify proper structure for SharePoint Web URL for REST call.
 if (spWebURL.length > 0 &&
 spWebURL.substring(spWebURL.length - 1, spWebURL.length) != "/")

c13.indd 329c13.indd 329 19/01/13 11:26 AM19/01/13 11:26 AM

http://services.odata.org/Northwind/Northwind.svc/
http://services.odata.org/Northwind/Northwind.svc/

330 ❘ CHAPTER 13 BUILDING LINE-OF-BUSINESS SOLUTIONS USING BUSINESS CONNECTIVITY SERVICES

 spWebURL += "/";
 this.spWebURL = spWebURL;
 }

 C13EmployeeBCSApp.Grid.prototype = {

 init: function () {
 //Retrieve data from app-level External List via REST
 $.ajax({
 url: this.spWebURL +
 "_api/lists/getbytitle('Employee')/items?" +
 "$select=BdcIdentity,EmployeeID,LastName,FirstName,Title,HomePhone",
 headers: {
 "accept": "application/json",
 "X-RequestDigest": $("#__REQUESTDIGEST").val()
 },
 success: this.showEmployees
 });
 },

 showEmployees: function (data) {
 var items = [];
 // Build table for showing Employees
 items.push("<table>");
 items.push("<tr><td>Employee ID</td>" +
 "<td>Last Name</td>" +
 "<td>First Name</td>" +
 "<td>Title</td>" +
 "<td>Phone Number</td></tr>");

 $.each(data.d.results, function (key, val) {
 items.push('<tr id="' + val.BdcIdentity + '">' +
 '<td>' + val.EmployeeID + '</td>' +
 '<td>' + val.LastName + '</td>' +
 '<td>' + val.FirstName + '</td>' +
 '<td>' + val.Title + '</td>' +
 '<td>' + val.HomePhone + '</td></tr>');
 });

 items.push("</table>");

 $("#showEmployeeInfo").html(items.join(''));
 }
 }

 ExecuteOrDelayUntilScriptLoaded(getEmployees, "sp.js");
});

function getEmployees() {
 var gridEmployee = new C13EmployeeBCSApp.Grid($("#showEmployeeInfo"),
 _spPageContextInfo.webServerRelativeUrl);
 gridEmployee.init();
}

 13. Press F5 to start debugging. When the Site Contents page loads, click the C13EmployeeBCSApp tile.

 14. After the app loads, your page should look like Figure 13-6.

c13.indd 330c13.indd 330 19/01/13 11:26 AM19/01/13 11:26 AM

BCS in Apps for SharePoint ❘ 331

 15. While the app for SharePoint is running you can go back to Visual Studio and set breakpoints in
the App.js fi le and then refresh the browser page to track your way through the code.

 16. But just as important, knowing how to fi nd out where SharePoint is putting things and how to
access them when at the app-level is always good. To take a look, in the browser trim the URL in
the address bar from the tail end back to just after the / following C13EmployeeBCSApp/. This
preserves the root appWeb URL where your app for SharePoint is installed. Now you can use the
REST _api for SharePoint to look at your appWeb structure in the browser.

 17. Following the root appWeb URL, type _api/web/ to see the base information about your
appWeb.

 18. Following _api/web/, type lists/ to see the lists that were deployed to your appWeb. There are
several, but the two key lists are the Employee and BusinessDataMetadataCatalog lists.

 19. To view the Employee list, you can use the same syntax you used in your App.js fi le to retrieve
the Employee list data, so use _api/lists/getbytitle('Employee')/items in your browser.
You can further refi ne your return payload by appending ?$select=BdcIdentity,EmployeeID,
LastName,FirstName,Title,HomePhone to the previous URL.

 20. Navigate to the BusinessDataMetadataCatalog via _api/web/lists/
BusinessDataMetadataCatalog/; notice that it’s just a document library inside your appWeb.

 21. To make this a little more concrete so that your .bdcm fi le is stored in a standard document library,
you can navigate to this list and display it natively within your appWeb, too. Trim your base URL

FIGURE 13-6

c13.indd 331c13.indd 331 19/01/13 11:26 AM19/01/13 11:26 AM

332 ❘ CHAPTER 13 BUILDING LINE-OF-BUSINESS SOLUTIONS USING BUSINESS CONNECTIVITY SERVICES

back to the root again as called out in step 16 and append BusinessDataMetadataCatalog/
Forms/allitems.aspx to see your BDCMetadata fi le in its appWeb document library. Since this is
a standard document library, you can download the .bdcm fi le if you choose.

 22. Navigate to the external list created for your app for SharePoint by appending Lists/Employee/
to your root appWeb URL.

 23. Close the browser and the app for SharePoint will be retracted.

How It Works

In this exercise you worked through how nicely Visual Studio tooling helps you to create an external
content type by connecting to an OData producer (data source). Although SharePoint supports a num-
ber of connection methods for tenancy-wide BDC Models, Apps for SharePoint only support OData
connections. Also, an app for SharePoint can only have one BDCMetadata.bdcm fi le associated with it;
however, multiple entities can exist within the external content type for the app for SharePoint. If you
download the BDCMetadata.bdcm fi le from its document library location in the appWeb and open it
in Notepad, you can map it to the Property Values in the external content type Elements.xml fi le.
Using the BDCMetadata.bdcm fi le in an app for SharePoint is essentially an extension of the fi le-based
metadata catalog capability introduced in SharePoint 2010. It is just being put to practical use here in a
document library inside an app for SharePoint.

The modifi cations to the HTML were minimal and the JavaScript did all the work. The primary work of
the JavaScript was to use the relative URL retrieved from the SharePoint page context, and ensure it was
properly formed to serve as the basis for building out the REST URL. Essentially the code just checks to
see whether the URL has a trailing slash and if it doesn’t, one gets appended. From that point on the pro-
cess is pretty straightforward: if the REST URL access is successful then an HTML table will be built and
the returned data will be added in accordingly as the SharePoint page is displayed. This simple example
should get your creative juices fl owing when considering the wealth of possibilities in accessing OData
data sources in Apps for SharePoint and being able to retrieve any data you want to display via REST!

The last part of the exercise was to mainly show that by simply using the REST-based _api against your
appWeb you can discover and get eyes on anything that is being deployed in your app for SharePoint.
A developer always feels at a disadvantage when he or she can’t get visibility into something. The _api
provides the way for you to interrogate your appWeb just as if it were any other site in SharePoint.

Now that you have the fundamentals of how to build and deploy an app-level ECT, you can take it
a step further and build out a business solution. In the following section you combine some of what
you learned in Chapter 11, “Developing Integrated Apps for Offi ce and SharePoint Solutions,” with
what you have now experienced here.

BUILDING A BCS-ENABLED BUSINESS SOLUTION

A common practice in SharePoint is to use document libraries that have prebuilt Offi ce document
templates associated with them as the content type. When the user clicks in the SharePoint ribbon
to create a new document, the assigned document template can be created by default. The user can
quickly fi ll in the template and save it back to the document library.

c13.indd 332c13.indd 332 19/01/13 11:26 AM19/01/13 11:26 AM

Building a BCS-enabled Business Solution ❘ 333

Historically, you could have document templates that also included a Visual Studio Tools for Offi ce
(VSTO) add-in that loaded into a task pane when the document opened. This add-in could virtually
do just about anything that any Windows rich-client applications could do, including call Web ser-
vices, retrieve data from back-end databases, and more. Data retrieval and the ability to then place
the retrieved data into the document was a common pattern.

In the following exercise you create a SharePoint-hosted app that has a number of components:
an app-level ECT that retrieves employees from an OData source, a document library that has a
custom document template for employee referrals, and a document template content type that is a
TaskpaneApp for Offi ce and reads the employees in the app-level external list so users can click an
employee and load their data into the Word document template.

TRY IT OUT Building an Integrated BCS Solution with an App for SharePoint
 Containing an App for Offi ce (C13EmpReferralBCSAppForOffi ce.zip)

This exercise shows you how to build an integrated solution where the app for SharePoint is SharePoint-
hosted and contains an app-level ECT for its data source and an app for Offi ce that consumes the
external list data using REST.

 1. Run Visual Studio 2012 as Administrator. Select New Project.

 2. In the New Project dialog, expand the Templates ➪ Visual C# ➪ Offi ce/SharePoint ➪ Apps nodes.
Select App for SharePoint 2013 and provide the Name: C13EmpReferralBCSAppForOffice.
Click OK.

 3. In the New App for SharePoint dialog, set your Offi ce 365 SharePoint Online Developer or
Enterprise Preview site URL to use for debugging and choose SharePoint-hosted as the location to
host your app for SharePoint. Click Finish.

 4. Right-click the C13EmpReferralBCSAppForOffice project node in Solution Explorer and select
Add ➪ Content Types for an External Data Source.

 5. In the Specify OData Source dialog, enter http://services.odata.org/Northwind/
Northwind.svc/.

 6. In the Data Source Name, enter Northwind OData Producer. Click Next.

 7. In the Select the Data Entities dialog, select Employees and confi rm that the Create list instances
for the selected data entities check box is checked. Click Finish.

 8. Visual Studio creates an External Content Types node in the Solution Explorer; this should all be
familiar to you from the last exercise.

 9. Open Word (2013) but before opening a document enter the phrase employee referral in the
search bar and click the search icon. When the employee referral form is found, click it and then
click Create.

 10. Click on Your Logo Here, delete it, and change the Company Name to Company Inc.

 11. If the Develop tab is not showing above your ribbon, click File ➪ Options. Click Customize
Ribbon and on the far right click the Developer check box. Click OK to close the dialog.

c13.indd 333c13.indd 333 19/01/13 11:26 AM19/01/13 11:26 AM

http://services.odata.org/Northwind/Northwind.svc/
http://services.odata.org/Northwind/Northwind.svc/

334 ❘ CHAPTER 13 BUILDING LINE-OF-BUSINESS SOLUTIONS USING BUSINESS CONNECTIVITY SERVICES

 12. To add a content control to the document so the JavaScript in your app for Offi ce can interact
with a named object on the form, click the left side of the line beside the Employee Name. Click
the Developer tab and click on the leftmost Aa in the Controls group. This is the Rich Text con-
tent control.

 13. With the content control highlighted in the document (if it is not then click it), click the Properties
button in the Controls group in the ribbon. In the Title text box, enter ccSPUserTitle and click
OK.

 14. Repeat the previous step three more times, placing your cursor in the leftmost position on the line
beside E-Mail Address (in the Employee Information section), and Candidate Name and Phone
No (in the Referral Information section), and provide these respective Title values for each of the
content controls: ccSPUserEmail, ccEmployeeName, and ccEmployeePhone.

 15. Select File ➪ Options ➪ Computer and browse to a location of choice to save this fi le. If prompted
to Save, click OK, but you do not want to maintain compatibility. Close Word.

 16. Return to Visual Studio, right-click the project, and click Add ➪ New item. Select App for Offi ce,
name it EmployeeReferralForm and click Add.

 17. In the Choose the type of app you want to create and where you want it to appear dialog, uncheck
Excel and PowerPoint and click Next.

 18. In the Choose a document for your app for Offi ce dialog, select Insert the app into an existing
document and click Browse to go to the location where you just saved the Word document. Select
the document you saved and click Finish.

 19. Right-click the project, and click Add ➪ New item. Select List, name it
EmployeeReferralLibrary, and click Add.

 20. In the Choose List Settings dialog, drop-down the Default (Blank) list, select Document Library
and click Next.

 21. In the Choose a template for this document library dialog, select Use the following document as
the template for this library, and click Browse. The Open fi le dialog opens with fi les showing from
within your project. Open the OfficeDocuments folder, select the Word document, click Open
and then click Finish. It’s important that you select the fi le that is within your project and not the
original fi le you saved. The fi le within your project has been prepared to be an App for Offi ce
template.

 22. Visual Studio opens the new document library in the list designer. Click on the Columns tab if it
is not selected and click the Content Types button.

 23. Click the Document row to select the entire row, right-click it and select Del to delete it. Click
OK. This allows your content type to be the only one presented to the user of the list.

 24. Click the List tab at the top of the list designer and copy the entire List URL.

 25. In Solution Explorer, navigate to the AppManifest.xml fi le, right-click, and select
View Code. Replace just the Pages/Default.aspx portion of the URL with Lists/
EmployeeReferralLibrary. When you deploy the app for SharePoint, the list will be the default
location to which the app opens.

c13.indd 334c13.indd 334 19/01/13 11:26 AM19/01/13 11:26 AM

Building a BCS-enabled Business Solution ❘ 335

 26. The StartPage element should look like this:

<StartPage>~appWebUrl/Lists/EmployeeReferralLibrary?{StandardTokens}</StartPage>

 27. For the code, in Solution Explorer, expand the Pages node and open the EmployeeReferralForm
.html fi le. Replace all the XML between the body tags with the following:

<h2>App for Office using External List Data</h2>
<div id="Content"></div>
<div id="showEmployeeInfo"></div>

 28. Expand the Scripts node and open the EmployeeReferralForm.js fi le. Replace all the JavaScript
with the following:

var user;
var appWebURL; // URL of the appWeb

Office.initialize = function (reason) {
 $(document).ready(function () {

 var $getExternalDataButton = $('<input type="button"
 value="Retrieve Employee BCS Data from
 SharePoint"/>').appendTo($("#Content"));
 $("#Content").append($('<div id="Result"></div>'));

 initializeConnectionToSharePoint(function () {
 $("#Result").append($("<div>SharePoint references loaded,
 click to load data.<div>"));

 // Bind to the named Content Controls in the document
 createContentControlBindings();

 // Automatically load SharePoint user information
 // into the Employee Content Controls in the form
 Office.select("bindings#ccSPUserTitle")
 .setDataAsync(user.get_title(), function () { });
 Office.select("bindings#ccSPUserEmail")
 .setDataAsync(user.get_email(), function () { });
 });

 $getExternalDataButton.click(function () {
 getEmployees();
 });

 $(document).on('click','.dataRow', function () {
 //identity
 var id = $(this).attr('id');
 var empFirstName = $('.FirstName[data-identity="' + id + '"]').text();
 var empLastName = $('.LastName[data-identity="' + id + '"]').text();
 var empHomePhone = $('.HomePhone[data-identity="' + id + '"]').text();

 // Get the bound Content Controls for the Employee referral candidate
 // and load with the data from the clicked on row in the table.

c13.indd 335c13.indd 335 19/01/13 11:26 AM19/01/13 11:26 AM

336 ❘ CHAPTER 13 BUILDING LINE-OF-BUSINESS SOLUTIONS USING BUSINESS CONNECTIVITY SERVICES

 Office.select("bindings#ccEmployeeName")
 .setDataAsync(empFirstName + " " + empLastName, function () { });
 Office.select("bindings#ccEmployeePhone")
 .setDataAsync(empHomePhone, function () { });
 });
 });
};

function createContentControlBindings() {

 Office.context.document.bindings.addFromNamedItemAsync("ccSPUserTitle", "text",
 { id: "ccSPUserTitle" }, function () { });

 Office.context.document.bindings.addFromNamedItemAsync("ccSPUserEmail", "text",
 { id: "ccSPUserEmail" }, function () { });

 Office.context.document.bindings.addFromNamedItemAsync("ccEmployeeName", "text",
 { id: "ccEmployeeName" }, function () { });

 Office.context.document.bindings.addFromNamedItemAsync("ccEmployeePhone", "text",
 { id: "ccEmployeePhone" }, function () { });
}

function initializeConnectionToSharePoint(functionToExecuteOnReady) {
 // Because calling back into SharePoint,
 // need to dynamically load SP JavaSript references
 var scriptbase = "/_layouts/15/";
 $.getScript(scriptbase + "SP.Runtime.js",
 function () {
 $.getScript(scriptbase + "SP.js", getAppWebAndUser);
 }
);

 function getAppWebAndUser() {
 var context = SP.ClientContext.get_current();
 var website = context.get_web();
 context.load(website);
 user = website.get_currentUser();
 context.load(user);
 context.executeQueryAsync(onGetAppWebUserSuccess, onGetURLFail);

 function onGetAppWebUserSuccess() {
 appWebURL = website.get_url();
 functionToExecuteOnReady();
 }
 function onGetURLFail(sender, args) {
 $("#Content").append($("<div>Problems connecting to SharePoint: "
 + args.get_message() + "</div>"));
 }
 }
}

c13.indd 336c13.indd 336 19/01/13 11:26 AM19/01/13 11:26 AM

Building a BCS-enabled Business Solution ❘ 337

function getEmployees() {
 $.ajax({
 url: appWebURL +
 "/_api/lists/getbytitle('Employees')/items?" +
 "$select=BdcIdentity,EmployeeID,LastName,FirstName,Title,HomePhone",
 headers: {
 "accept": "application/json;odata=verbose",
 "X-RequestDigest": $("#__REQUESTDIGEST").val()
 },
 success: showEmployees
 });

 function showEmployees(data) {
 var items = [];
 // Build table for showing Employees
 items.push("<table>");
 items.push("<tr><td>Emp ID</td>" +
 "<td>Last Name</td>" +
 "<td>First Name</td>" +
 "<td>Phone Number</td></tr>");
 // Make each row and cell uniquely identifiable
 $.each(data.d.results, function (key, val) {
 items.push('<tr class="dataRow" id="' + val.BdcIdentity + '">' +
 '<td class="employeeId" data-identity="'
 + val.BdcIdentity + '">' + val.EmployeeID + '</td>' +
 '<td class="LastName" data-identity="'
 + val.BdcIdentity + '">' + val.LastName + '</td>' +
 '<td class="FirstName" data-identity="'
 + val.BdcIdentity + '">' + val.FirstName + '</td>' +
 '<td class="HomePhone" data-identity="'
 + val.BdcIdentity + '">' + val.HomePhone + '</td></tr>');
 });

 items.push("</table>");

 $("#showEmployeeInfo").html(items.join(''));
 }

}

 29. Press F5 to start debugging.

 30. Log in to the site when the browser opens. Above the ribbon, click Files ➪ New Document and
select EmployeeReferralLibraryContentType.

 31. When Word opens, your document template and TaskpaneApp will load. Notice the document
has already fi lled in your login employee information.

 32. Click the Retrieve Employee BCS Data from SharePoint button. When the employee data loads
in the task pane, click any employee in the list to see his data load into the template, as shown in
Figure 13-7.

c13.indd 337c13.indd 337 19/01/13 11:26 AM19/01/13 11:26 AM

338 ❘ CHAPTER 13 BUILDING LINE-OF-BUSINESS SOLUTIONS USING BUSINESS CONNECTIVITY SERVICES

 33. Save the document into the document library if you want to view it in the Word Web app or open
it again in Word. Close Word.

 34. In the browser, refresh the document library to see your newly saved fi le. View it if you choose to,
and then close the browser to stop debugging.

How It Works

In this exercise you worked a number of components into an integrated solution. Along with know-
ing how to stitch a solution like this together, the key part is seeing how to write the JavaScript
code to retrieve data from SharePoint from an app for Offi ce when its HTML page is also hosted on
SharePoint. Because the document template is opened in Word from within the context of a logged-in
Offi ce 365 user, you don’t need to be concerned about authentication to SharePoint. Therefore, after
the TaskpaneApp HTML page is loaded, you can construct the URL for $.getScript() to reach
into the /_layouts/15/ directory in your SharePoint site to load and execute the SP.Runtime
.js. Upon its success, you load and execute the SP.js. With these loaded, the stage is set for both
JavaScript client-side object (CSOM) calls and REST-based calls to retrieve the desired data from
SharePoint. First, the Web and user information are retrieved via CSOM and loaded into variables
for later use. Then, when the user clicks the button in the TaskpaneApp to load the employee data, a
REST call is made to retrieve and display the employee information.

Because the table to display the employee data is being added to the DOM after the DOM has been
loaded, you need a way to late-bind a click event to the table so when the users click a row in the

FIGURE 13-7

c13.indd 338c13.indd 338 19/01/13 11:26 AM19/01/13 11:26 AM

Summary ❘ 339

table, the appropriate data can be inserted into the desired document content control. To accom-
plish this you added a class named datarow to the <tr> element and an id attribute with the unique
BdcIdentity value from the external list data item. Then for each cell in the row, you added a class
for the name of the <td> element and a custom data- attribute so the cell data value can be retrieved
directly.

These steps all come together in the $(document).on() function. This function essentially late-binds
a click event to the data row (identifi ed by the datarow class) so when any row is clicked, the data
values are retrieved and can be appropriately loaded into the document content controls. To do this,
you use the Office.select() method passing in the binding name for the content control and then
use .setDataAsync() passing in the data retrieved from the data row — and that’s it. The user has
a form automatically populated with data based on her user login retrieved via CSOM and employee
data from an OData source retrieved via REST from the SharePoint external list and presented in a
clickable table.

Although this exercise focuses on an app for Offi ce reading data from an app-level external list,
the pattern for loading the SP.Runtime.js and SP.js is one you can use extensively when build-
ing your SharePoint-hosted apps. By defi nition, if a user is using your SharePoint-hosted solution,
you have an authenticated context and your code has permissions to access any artifacts that you
installed into the appWeb, lists, libraries, app-level BCS ECTs, and so on. However, sometimes you
want your app to reach up a level and read/write data in the host Web. This, too, is easy enough
to do: simply open the AppManifest.xml fi le in the Manifest Designer and under the Permissions
tab select a scope of Web and the permission level you desire. On the install of your app, you then
receive the “Trust It” prompt to verify that you will allow this app for SharePoint to have the level
of access it is requesting. After the app is trusted, your CSOM or REST calls will have access to the
SharePoint site within the scope designated.

SUMMARY

The Business Connectivity Services capabilities in SharePoint 2010 on-premises and then in
SharePoint (2010) Online remain consistent in SharePoint 2013. At the heart of BCS is the external
content type, which has supported connectivity across a variety of external data sources, such as
Web services, SQL Server databases, and custom business objects. Some of the gains for developers
in this version of SharePoint include the OData connector as the basis for the ECT, REST access to
external lists, broader and deeper capabilities in CSOM, and with the advent of the new cloud app
model, the ability for app-level ECTs to bring LOB data into your app for SharePoint solutions —
whether the app is Provider hosted, Autohosted or SharePoint hosted.

In SharePoint 2013, BCS becomes a fi rst-class citizen in the SharePoint event infrastructure. Alerts
on external lists are now available as with any other SharePoint list. Also, events can fi re on external
lists given that the LOB external system has a mechanism in place to detect underlying data changes
and can support the ECT notifi cation infrastructure via the exchange of information between the
external system and SharePoint during the subscribe process. Given that external system notifi ca-
tions are in place, you can now write remote event receiver code for these external list events as
described in Chapter 12.

c13.indd 339c13.indd 339 19/01/13 11:26 AM19/01/13 11:26 AM

340 ❘ CHAPTER 13 BUILDING LINE-OF-BUSINESS SOLUTIONS USING BUSINESS CONNECTIVITY SERVICES

EXERCISES

You can fi nd answers to exercises in Appendix A.

 1. What is the new connector that has been added to BCS?

 2. To interact with data in an external list, what two technologies might you use in your code?

 3. What are the new stereotypes added to the BDC Model schema that enable notifi cation of data

changes in external LOB systems?

 4. With the advent of the cloud app model, what is the new capability for ECTs?

c13.indd 340c13.indd 340 19/01/13 11:26 AM19/01/13 11:26 AM

Recommended Reading ❘ 341

 � WHAT YOU LEARNED IN THIS CHAPTER

ITEM DESCRIPTION

OData Connector External content types can now be based off an OData connection to an LOB

system.

Data Access External lists now support REST and the CSOM capabilities have been broad-

ened and deepened.

App-level ECTs With the advent of the cloud app model, ECTs can be part of an app for

SharePoint solutions whether the app is Provider-hosted, Autohosted, or

SharePoint-hosted.

External List

Events

BCS now participates fully in the SharePoint event infrastructure and can take

advantage of alerts and fi re events on LOB data changes given that notifi ca-

tions are confi gured between the ECT and the LOB External System.

RECOMMENDED READING

External events and alerts in SharePoint 2013 — http://msdn.microsoft.com/en-us/library/
jj164024(v=office.15).aspx

Business Connectivity Services in 2013 — http://msdn.microsoft.com/en-us/library/
jj163782.aspx

c13.indd 341c13.indd 341 19/01/13 11:26 AM19/01/13 11:26 AM

http://msdn.microsoft.com/en-us/library/jj164024(v=office.15).aspx
http://msdn.microsoft.com/en-us/library/jj164024(v=office.15).aspx
http://msdn.microsoft.com/en-us/library/jj163782.aspx
http://msdn.microsoft.com/en-us/library/jj163782.aspx

c13.indd 342c13.indd 342 19/01/13 11:26 AM19/01/13 11:26 AM

Developing Applications
Using Offi ce Services

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ Understanding the role of the new Offi ce Web Apps Server

 ➤ Getting to know what’s new in Offi ce 2013 and SharePoint 2013

application services

 ➤ Creating an app for SharePoint using Access and Access Services 2013

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at http://www.wrox.com/Wiley
CDA/WroxTitle/productCd-1118495845.html on the Download Code tab. The code for this
chapter is divided into the following major examples:

 ➤ C14ExcelInteractive.zip

 ➤ C14ODataAccessSample.zip

 ➤ C14PPTAutomationSvcs.zip

 ➤ C14TranslateSPOM.zip

 ➤ C14WOPI.zip

The Offi ce and SharePoint server-side application services provide a way to have server scale
for automating traditional Offi ce client document manipulation and Web scale for sharing,
collaborating, and viewing documents with those who might not have the Offi ce rich clients
on the desktop. From a developer’s perspective, a number of APIs are available for you to
leverage to call into these services to further enrich your solutions.

14

c14.indd 343c14.indd 343 19/01/13 11:27 AM19/01/13 11:27 AM

http://www.wrox.com/WileyCDA/WroxTitle/productCd-1118495845.html
http://www.wrox.com/WileyCDA/WroxTitle/productCd-1118495845.html
http://WROX.COM
http://wrox.com

344 ❘ CHAPTER 14 DEVELOPING APPLICATIONS USING OFFICE SERVICES

If you are unfamiliar with the application services present in SharePoint 2010, following is a list
with a brief description of each one:

 ➤ Excel Services: Enables viewing of Excel documents in the Excel Web App and Excel Web
Access web parts and provides programmatic access to document content via CSOM,
REST, and OData.

 ➤ Word Automation Services: Provides conversion of document fi les supported by Word into
other formats.

 ➤ Visio Services: Allows viewing of Visio documents in the Visio Web App and Visio Web
Access web parts.

 ➤ Access Services: Provides the ability for Web databases constructed in the Access rich client
to be deployed and hosted on SharePoint independent of the Access client.

The new Offi ce 2013 and SharePoint 2013 application services in this release are as follows:

 ➤ PowerPoint Automation Services: Provides conversion of presentation fi les into other
formats.

 ➤ Machine Translation Service: Synchronous or asynchronous requests are forwarded on to a
cloud-hosted Microsoft service for language translation.

This chapter covers the Offi ce 2013 and SharePoint 2013 application services that are new as well as
some new features for the existing services. A deep look into Access and Access Services is provided
because these products were signifi cantly transformed in this release, providing the ability to gener-
ate an app for SharePoint that has an auto-provisioned Windows Azure SQL Database behind it.
When Access generates the web pages for the app that will be hosted on SharePoint, it does so using
standard web technologies — HTML, JavaScript, CSS, and so on — to be fully compliant with the
new cloud app model. Developers can also submit these apps for SharePoint to the SharePoint Store
on Offi ce.com.

WOPI AND THE NEW OFFICE WEB APPS SERVER

With SharePoint 2013 Microsoft took a new architectural approach with the Offi ce Web Apps and
decoupled the service from SharePoint. With SharePoint 2010 each SharePoint server in the farm
had an instance of the Offi ce Web Apps running to serve up documents for viewing in the browser.
But with this release, Microsoft separated the Offi ce Web Apps into its own server product. Now,
as a standalone service (server farm capable) the Offi ce Web Apps server can provide the singular
function of serving up documents to be viewed in the browser simply by receiving the URL for a
specifi c document. The viewing request, however, can come from any host server: SharePoint, Lync,
Exchange or any other server that is designed to use the Offi ce Web Apps’ REST-based WOPI (Web
application Open Platform Interface) API. What matters to the Offi ce Web Apps server is simply
whether or not it can access the document source location that is passed to it; if it can, it renders
the document in the viewer. All traffi c between the host and the Offi ce Web Apps server is over the
standard HTTP/HTTPS ports.

c14.indd 344c14.indd 344 19/01/13 11:27 AM19/01/13 11:27 AM

http://Office.com

WOPI and the New Offi ce Web Apps Server ❘ 345

For the developer, your SharePoint on-premises environment will no doubt have been confi gured
to use the Offi ce Web Apps server, and those developing against Offi ce 365 SharePoint Online will
have this confi guration as a part of their developer site. Because of this, you can take advantage of
WOPI in your SharePoint applications, for instance if you want to have an Excel, Word, PowerPoint,
or Visio document viewed directly within your Web solution. This allows the user to view the docu-
ment with the context of your Web application and saves him from having to navigate to the fi le’s
location to open it in the Offi ce client application for viewing. The following Try It Out introduces
you to the basics for how to do this by embedding an IFrame in your Web app and relying on the
SharePoint implementation of WOPI to retrieve the document for display.

TRY IT OUT Using WOPI in an App for SharePoint (C14WOPI.zip)

In this exercise you learn the basics for embedding an IFrame in your app for SharePoint to view docu-
ments served by the Offi ce Web App server.

 1. Run Visual Studio 2012 as Administrator. Select New Project.

 2. In the New Project dialog, expand the Templates ➪ Visual C# ➪ Offi ce/SharePoint ➪ Apps nodes.
Select App for SharePoint 2013 and provide the name C14WOPI. Click OK.

 3. In the Specify the app for SharePoint dialog, set the SharePoint site URL you will deploy the app
to and choose SharePoint-hosted as the host for your app for SharePoint. Click Finish.

 4. In the Solution Explorer, expand the Pages node and double-click the Default.aspx fi le
to open it. Add the following HTML immediately after the closing </div> tag inside the
PlaceHolderMain <asp:Content…> element.

<div>
<h3>Enter file name you saved to Shared Documents: (.pptx, .docx, etc.)</h3>

<input type="text" value="ExampleName.pptx" id="fileNameTxt"
 style="margin-top: 10px; width: 210px" />
<input type="button" value="Load IFrame" id="loadIFrameBtn"
 style="padding: 0px; width: 100px;" />
<p>
 <iframe id="myFrame" width='600px' height='400px' frameborder='0'></iframe>
</p>
</div>

 5. In the Solution Explorer, expand the Scripts node, and double-click the App.js fi le to open it.
Delete all the code and add the following:

var context;
var web;
var user;
var hostweburl;
var WOPIbase;
var actionEmbedParms;
// NOTE: You will need to modify the sourcedoc= with your URL equivalent.
var sourcedocParm = 'sourcedoc=/sites/dev/Shared%20Documents/';

c14.indd 345c14.indd 345 19/01/13 11:27 AM19/01/13 11:27 AM

346 ❘ CHAPTER 14 DEVELOPING APPLICATIONS USING OFFICE SERVICES

// This code runs when the DOM is ready and creates a context
// object which is needed to use
// the SharePoint object model
$(document).ready(function () {
 // Parse the URL for the SPHostUrl.
 hostweburl =
 decodeURIComponent(
 getQueryStringParameter("SPHostUrl"));

 // Construct the WOPI URL.
 WOPIbase = hostweburl + "/_layouts/15/WopiFrame.aspx?" + sourcedocParm;
 actionEmbedParms = "&action=embedview&Embed=1"

 context = SP.ClientContext.get_current();
 web = context.get_web();

 getUserName();

 $('#loadIFrameBtn').click(function () { loadIFrame('#fileNameTxt'); });
});

// This function prepares, loads, and then executes a SharePoint query
// to get the current users information
function getUserName() {
 user = web.get_currentUser();
 context.load(user);
 context.executeQueryAsync(onGetUserNameSuccess, onGetUserNameFail);
}

// This function is executed if the above OM call is successful
// It replaces the contents of the 'helloString' element with the user name
function onGetUserNameSuccess() {
 $('#message').text('Hello ' + user.get_title());
}

function loadIFrame(elementId) {
 $('#message').text("WOPIUrl: " + WOPIbase + $(elementId).val()
 + actionEmbedParms);
 $('#myFrame').attr('src', WOPIbase + $(elementId).val()
 + actionEmbedParms);
}

// This function is executed if the above call fails
function onGetUserNameFail(sender, args) {
 alert('Failed to get user name. Error:' + args.get_message());
}

// Boilerplate URL parse code from MSDN
// http://msdn.microsoft.com/en-us/library/office/jj163201.aspx
function getQueryStringParameter(paramToRetrieve) {
 var params =
 document.URL.split("?")[1].split("&");
 var strParams = "";
 for (var i = 0; i < params.length; i = i + 1) {
 var singleParam = params[i].split("=");

c14.indd 346c14.indd 346 19/01/13 11:27 AM19/01/13 11:27 AM

http://msdn.microsoft.com/en-us/library/office/jj163201.aspx

WOPI and the New Offi ce Web Apps Server ❘ 347

 if (singleParam[0] == paramToRetrieve)
 return singleParam[1];
 }
}

 6. Open a browser and navigate to the site where you will be deploying this application. After you’re
in the site, navigate to the Shared Documents library and upload a PowerPoint presentation or any
document that can be viewed in the Offi ce Web Apps.

 7. When the document is in the Shared Documents library, click the ellipsis (…) beside the document
name so the fl y-out menu with the Offi ce Web Apps embedded-viewer loads. On the bottom right
of the viewer click the Menu icon and select Embed Information. Select all the HTML text and
copy/paste it into Notepad.

 8. Examine the pasted URL and copy the parameter sourcedoc=. but do not include the fi lename
of your document — you will enter the document name into a text box at runtime. Your URL
snippet should look something like the following:

sourcedoc=%2Fsites%2Fdev%2FShared%20Documents%2F

 9. Locate in the code from step 5 the variable defi nition for sourcedocParm and replace the entire
literal value with your copied code snippet. Although you are dynamically parsing the URL to get
the SPHostUrl, this sets the path to your specifi c document library.

 10. Press F5 to run the app. When the page loads, in the text box, type the name of the document you
uploaded in step 6 and click the Load IFrame button to view it. Your result should look something
like Figure 14-1.

 FIGURE 14-1

c14.indd 347c14.indd 347 19/01/13 11:27 AM19/01/13 11:27 AM

348 ❘ CHAPTER 14 DEVELOPING APPLICATIONS USING OFFICE SERVICES

How It Works

In this exercise you simply added a button, text box, and an IFrame to the Default.aspx Web page.
You uploaded a document to your site and retrieved the embedded URL. You then worked with the
WOPI URL to see how it is constructed and copied out the path to your document library. You wrote
code that included a combination of hard-coding URL values and dynamic construction at run-
time. Upon execution on the button click, the WOPI URL was fully constructed and passed via the
SharePoint _layouts/15/WopiFrame.aspx page to the Offi ce Apps Server. The Offi ce Web Apps server
rendered the document in the IFrame for viewing.

Certainly the means used for constructing the WOPI URL in this Try It Out can be replaced with
a fully dynamic, run-time URL construction scheme of your own. Following is a method you might
want to incorporate when writing the code depending on whether your solution is based on .NET,
JavaScript or REST.

 ➤ .NET: Microsoft.SharePoint.Client.ListItem. GetWOPIFrameUrl()

 ➤ JavaScript: SP.ListItem.getWOPIFrameUrl()

 ➤ REST: POST, http://[YourSiteCollection]/[site]/_api/web/lists([listid])/
items([itemid])/getWOPIFrameUrl([action])

WHAT’S NEW IN EXCEL SERVICES

One of the most interesting outcomes of decoupling the Offi ce Web Apps from the SharePoint server
is that now Offi ce documents are being served up in consumer-facing scenarios by both Microsoft,
through Hotmail, Outlook and SkyDrive, and by other non-Microsoft websites that have implemented
their own Offi ce Web Apps servers. From the Offi ce client and server perspective, the leader in this
notion of Offi ce documents being available everywhere is Excel. Excel Services has certainly been
one of the innovation leaders over the past two releases of SharePoint and continues to do so with
this release. Because of the ability to have public-facing Offi ce Web App servers rendering Excel
content, Excel is pressing its end-user, business intelligence (BI) dominance forward to Web endpoints
greater than ever before. In doing this, developers can join in by taking advantage of new integration
capabilities and the extensibility points that have been provided.

One intriguing new integration capability is Excel Interactive View. This innovative, Excel Services
rendered viewer lets you render any HTML table on a Web page within the Excel Interactive View
by adding a script element and an HTML anchor tag to the page. Users who do not even have
Excel on their device can click the Excel Interactive View icon above the table, and the HTML will
be retrieved from the Web page and rendered in the Excel Interactive View. Excel Services auto-
matically assesses the best charts to represent the data and determines which Excel slicers to pres-
ent for fi ltering the data. The option to download the HTML table content into Excel for deeper
analysis is available as well.

The best way to understand Excel Interactive View is to experience it. In this Try It Out you create
an Autohosted app for SharePoint that accesses a public-facing OData endpoint and dynamically
builds a table that can be analyzed with Excel Interactive View.

c14.indd 348c14.indd 348 19/01/13 11:27 AM19/01/13 11:27 AM

What’s New in Excel Services ❘ 349

TRY IT OUT Excel Interactive View in an Autohosted App for

 SharePoint (C14ExcelInteractive.zip)

In this exercise, within an Autohosted app for SharePoint, you dynamically create an HTML table in
your Web page from an OData source and wire up the Excel Interactive View for end-user analysis.

 1. Run Visual Studio 2012 as Administrator. Select New Project.

 2. In the New Project dialog, expand the Templates ➪ Visual C# ➪ Offi ce/SharePoint ➪ Apps nodes.
Select App for SharePoint 2013 and provide the name C14ExcelInteractive. Click OK.

 3. In the Specify the app for SharePoint dialog, set the SharePoint site URL you will deploy the app
to (this example used Offi ce 365) and choose Autohosted as the host for your app for SharePoint.
Click Finish.

 4. In the Solution Explorer, expand the Pages node and double-click the Default.aspx fi le to open
it. Delete the <html>...</html> contents and replace them with the following: (Notice the high-
lighted lines below are the only lines needed to invoke the Excel Interactive View.)

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>Excel Interactive Demo</title>

 <script type="text/javascript" src="../Scripts/jquery-1.7.1.min.js"></script>
 <script type="text/javascript" src="../Scripts/App.js"></script>
 <script type="text/javascript"
 src="https://r.office.microsoft.com/r/rlidExcelButton?v=1&kip=1"></script>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <h2>App for SharePoint using Excel Interactive View</h2>
 <div id="Content"></div>
 <div>
 <a href="#" name="MicrosoftExcelButton"
 data-xl-buttonstyle="Small"
 data-xl-tabletitle="Product Sales">
 <table id="showProductCategoryTable">

 </table>
 </div>
 </div>
 </form>
</body> </html>

 5. In the Solution Explorer, under the C14ExcelInteractiveWeb project, right-click the Scripts
folder and select Add ➪ New Item.

 6. In the Add New Item dialog, select JavaScript File, name it App.js, and click Add.

c14.indd 349c14.indd 349 19/01/13 11:27 AM19/01/13 11:27 AM

http://www.w3.org/1999/xhtml
https://r.office.microsoft.com/r/rlidExcelButton?v=1&kip=1

350 ❘ CHAPTER 14 DEVELOPING APPLICATIONS USING OFFICE SERVICES

 7. In the App.js fi le enter the following code lines:

$(document).ready(function () {
 getProducts();
});

function getProducts() {
 //Due to the Web page for the app being HTTPS and the Northwind OData
 //service being HTTP, a proxy page is used to broker the call to
 //keep this code sample simple. You would most likey have your own
 //HTTPS service deployed to broker this call.
 $.ajax({
 url: '/Pages/ProxyHTTPRequest.aspx',
 type: 'GET',
 headers: {
 "accept": "application/json",
 },
 success: showProducts,
 error: function () { alert('Failed!'); }
 });

 function showProducts(data) {
 var items = [];
 // Build table header row for Products
 items.push("<tr><th>Category Name</th>" +
 "<th>Product Name</th>" +
 "<th>Product Sales</th></tr>");
 // Load each row with data
 $.each(data.d.results, function (key, val) {
 items.push('<tr>' +
 '<td>' + val.CategoryName + '</td>' +
 '<td>' + val.ProductName + '</td>' +
 '<td>' + parseFloat(val.ProductSales) + '</td></tr>');
 });
 $("#showProductCategoryTable").append(items.join(''));
 }
}

 8. In the Solution Explorer, under the C14ExcelInteractiveWeb project, right-click the Pages folder
and select Add ➪ New Item.

 9. In the Add New Item dialog, select Web Form File, name it ProxyHTTPRequest.aspx, and click
Add. This Web page is used to proxy the call to the Northwind OData service which is an HTTP
endpoint and your app for SharePoint is HTTPS. It also keeps this code sample simple to imple-
ment. You would most likely use your own HTTPS service to make this call in a production setup.

 10. Right-click the ProxyHTTPRequest.aspx fi le, select View Code, and enter the following code in
the Page_Load method:

// This is Web page is simply to proxy the HTTP request for the HTTPS page
 var url =
"http://services.odata.org/Northwind/Northwind.svc/Sales_by_Categories?
$select=CategoryName,ProductName,ProductSales&$format=json";
 string output = new WebClient().DownloadString(url);
 Response.Clear();

c14.indd 350c14.indd 350 19/01/13 11:27 AM19/01/13 11:27 AM

http://services.odata.org/Northwind/Northwind.svc/Sales_by_Categories?$select=CategoryName,ProductName,ProductSales&$format=json
http://services.odata.org/Northwind/Northwind.svc/Sales_by_Categories?$select=CategoryName,ProductName,ProductSales&$format=json

What’s New in Excel Services ❘ 351

 13. Notice the various sheet formatting and chart options on the right under View. Excel Services auto-
matically assesses (based on the data) and presents the most likely sheet and chart views you would
use with this data. On the left side are the data slicers. By single or multi-selecting one or more
slicers, you can quickly fi lter the data, look for trends and so on. Click your way around the UI to
experience some of the capabilities this interactive tool brings to what would normally have been a
static, fl at HTML table on the Web page. And if you want to work with the raw table data directly,
click the Excel icon and select whether to open the fi le in the Excel Web App or download it.

 14. Close the Excel Interactive View and close the browser.

How It Works

In this Try It Out you brought together the new cloud app model by retrieving data from an OData
source and dynamically building an HTML table in your app for SharePoint. You then coupled
the HTML table with the new Excel Interactive View to bring it to life in a quick analysis and data
 visualization experience for the end user.

 Response.ContentType = "application/json";
 Response.Write(output);
 Response.End();

 11. Excel Interactive View cannot interact with your local host so rather than pressing F5, you need
to deploy your Autohosted app. In the Solution Explorer, right-click the C14ExcelInteractive
node and select Deploy.

 12. As the app deploys, respond appropriately to the prompts. When your Autohosted app Web page
loads, click the Excel Interactive View icon just above your table with its dynamically loaded data.
When the Excel Interactive View loads, it should look something like Figure 14-2.

FIGURE 14-2

c14.indd 351c14.indd 351 19/01/13 11:27 AM19/01/13 11:27 AM

352 ❘ CHAPTER 14 DEVELOPING APPLICATIONS USING OFFICE SERVICES

Notice in this Try It Out that the <script> element src= attribute for the Excel Interactive View uses
HTTPS because that is the requirement for Apps for SharePoint in Offi ce 365. You can toggle this
to HTTP in situations where you do not have an SSL requirement. The src= URL can take one
additional query string parameter for language localization. For example, add the &locale=fr-fr to
the end of the URL to specify French or any other language of choice.

Review the <a> element for the Excel Interactive View to see the data-xl- attributes used. You can
also include other data-xl- attributes to further customize what the end user will see in the UI.
These are data-xl-fileName="MyBookFileName" and data-xl-attribution="Brought to you by
CompanyName", where data-xl-fileName is any arbitrary name you want to set as the default name
for the fi le when downloaded, and data-xl-attribution is any arbitrary phrase you want to use to
identify the provider of the data. The data-xl-tableTitle used in the <a> element in the code and the
data-xl-attribution attributes can be up to 255 characters in length. The data-xl-attribution
value will be included in the downloaded spreadsheet.

The data-xl-buttonstyle attribute used in the <a> element in the code can have either the value of
Standard or Small. Lastly, you can use a data-xl-dataTableID attribute to uniquely identify your
table. However, it’s important to note that none of the <a> element attributes are required for the Excel
Interactive View to render; it will provide an appropriate default value for any data-xl- attribute you
do not specifi cally include.

Although the Excel Interactive View is a great tool you can easily integrate into your Web pages,
you’re going to want to switch gears and leverage the power of Excel Services when it comes time to
build out broad and deep solutions. Excel Services made a signifi cant investment to provide Open
Data Protocol (OData) access to Excel documents in SharePoint libraries. SharePoint 2010 Excel
Services provided REST-based access to these documents, which opened up a host of opportunities
for rich clients and Web applications to essentially have any named range or chart in an Excel docu-
ment as an accessible endpoint for data retrieval. But now the RESTful capability has been extended
to include OData access to any Excel table in a document hosted on SharePoint. Therefore your
favorite OData client can read from Excel tables like other OData sources.

Because the intent for OData is to be a standards-based protocol, visit OData.org to read the details:
The protocol specifi cation is available publicly for anyone to implement and provide OData service
endpoints. Microsoft therefore built its OData service for Excel Services using this specifi cation,
which also outlines the URL syntax that a calling application must implement to retrieve data from
the service. For you to access Excel table data on SharePoint you use a prescribed syntax to con-
struct your URL. You should be aware of the three discrete parts of the URL; these follow the stan-
dard OData protocol URI conventions.

 ➤ Service root URI: This includes the host and service endpoint; for example, https://
YourSharePointHost/SiteIfOne/_vti_bin/ExcelRest.aspx/.

 ➤ Resource path: This includes the name of the document library, name of the Excel fi le, and
the literal value OData to defi ne the protocol request; for example, LibraryName/FileName
.xlsx/OData/.

 ➤ System query options: You can use a number of optional parameters individually or in con-
cert with others to describe specifi cally what you want to retrieve from a document. For

c14.indd 352c14.indd 352 19/01/13 11:27 AM19/01/13 11:27 AM

http://OData.org

What’s New in Excel Services ❘ 353

instance, you might just want to know what tables are available in a given document, so you
would use the system query option, $metadata.

Using the preceding URL snippets the composed URL would be https://YourSharePointHost/
SiteIfOne/_vti_bin/ExcelRest.aspx/LibraryName/FileName.xlsx/OData/$metadata.
Because a number of system query options are available, working with them and getting a feel for
the results they each return is best. In the following Try It Out you exercise several of the system
query options available from Excel Services.

TRY IT OUT Accessing Excel Table Data with OData for Excel Services

 (C14ODataAccessSample.zip)

In this Try It Out you exercise a number of system query options using the new OData protocol for
Excel Services.

 1. Download the code samples for this chapter as described in the introduction. Extract the
ODataAccessSample.xlsx fi le to a location on your machine from the ODataAccessSample.zip fi le.

 2. Log in to SharePoint, whether on-premises or Offi ce 365, and access the site document library
that you can use for this exercise. Upload the ODataAccessSample.xlsx document.

 3. When the document has uploaded, right-click the link and select Copy shortcut, or click the
ellipsis (…) and copy the URL from the fl y-out menu.

 4. You will be doing a number of copy/paste actions in the browser so fi rst construct the service root
and resource path part of the URL you need. For the service root, copy the portion of the URL up
through the ending slash (/) just prior to the name of your document library, and then add _vti_
bin/ExcelRest.aspx/ after it. Your URL should match the following pattern (you should use
HTTP or HTTPS as appropriate for your service host):

https://YourSharePointHost/SiteIfOne/_vti_bin/ExcelRest.aspx/

 5. For the resource path, from your original URL, copy from the beginning of the document library
name through the full fi lename for the Excel document and paste it on the end of your service
root. Add /OData/ following it.

https://YourSharePointHost/SiteIfOne/_vti_bin/ExcelRest.aspx/LibraryName/
ODataAccessSample.xlsx/OData/

 6. With the service root and resource path fully constructed, now you can exercise OData access
using the system query options. But before you do, open the ODataAccessSample.xlsx fi le in
Excel. You can see three worksheets, each with a table on it. These tables could all be on one
sheet, so that is not important, but what is noteworthy is that the document contains three named
ranges, each associated with a table. On the left side of Excel, just under the ribbon, click the
drop-down arrow for the Name box. Here you will see three names that begin with Table_.

 7. Click each of the Table_ names to navigate to each of the tables and get a sense for the data they
contain. Excel Services will expose these three tables to you through its OData service. You can
either close Excel at this point or leave it open for reference.

 8. Return to your browser that is logged on to your SharePoint site. Copy your fully constructed
URL and paste it into the address bar, add $metadata to the end, and press Enter. Excel Services
returns the entity data model for all the named tables within the document. This includes the
property name for each column and its data type.

c14.indd 353c14.indd 353 19/01/13 11:27 AM19/01/13 11:27 AM

354 ❘ CHAPTER 14 DEVELOPING APPLICATIONS USING OFFICE SERVICES

 9. Replace $metadata with Table_Sales_by_Categories and press Enter. By your just entering the
name for the table, Excel Services will return the fi rst 500 rows (0-based count, so from 0–499),
which it considers a page. The maximum number of rows to be delivered at a time is 500. Because
you do not have enough rows you cannot exercise the $skiptoken system query option. However,
with this option you can skip to get rows in pages; for example, $skiptoken=499 starts you at the
second page of data and returns the next 500 rows. The $skiptoken=N is where Excel Services
calculates N+1 for the starting row for the next page. This way you can iteratively retrieve data
from the table in your application if needed. However, you can use $skip on this example. Add
?$skip=5 after Table_Sales_by_Categories and press Enter to skip the fi rst 5 rows.

 10. In the browser address bar, remove ?$skip=5, replace it with ?$orderby=CategoryName, and
press Enter. Now the data is returned sorted by category name.

 11. In the address bar, remove Table_Sales_by_Categories?$orderby=CategoryName and replace
it with Table_Sales_Totals_by_Amounts?$orderby=SaleAmount desc&$top=5. Here the sales
totals table is sorted in descending order and the top 5 rows are returned.

 12. In the address bar, remove Table_Sales_Totals_by_Amounts?$orderby=SaleAmount
desc&$top=5 and replace it with Table_Alphabetical_list_of_products?$filter=Unit
Price gt 200. Here you apply a fi lter to the data to only return rows where the unit price for the
product is greater than 200.

 13. In the address bar, remove Table_Alphabetical_list_of_products?$filter=UnitPrice gt
200 and replace it with Table_Alphabetical_list_of_products?$select=ProductName. Here
you requested to only return the product name column. So in cases where you do not want every
column in the table, you can request the ones you specifi cally want with the $select system
query option. You can string multiple property names together for the selection using a comma as
the delimiter.

 14. In the address bar, remove Table_Alphabetical_list_of_products?$select=ProductName
and replace it with Table_Sales_by_Categories?$inlinecount=allpages. Here you request
a count of the number of rows in the table. This helps when you need to programmatically assess
how many iterations you might need in conjunction with $skiptoken. You’ll see this value
returned on the eighth line of XML.

How It Works

In this Try It Out you learned how to construct an appropriate OData URL for accessing SharePoint
Excel documents according to the service root, resource path, and system query options pattern. You
also exercised all the available system query options currently available for Excel Services except one:
$format. Although this system query option is available, the Atom XML format is the only supported
format that the Excel Services OData service will provide.

As you can see, Excel Services has continued to innovate and provide additional capabilities for
developers to build on. In this section you worked with some of the new capabilities, but don’t for-
get that all the great new Excel Services capabilities that came with SharePoint 2010 are still avail-
able in this new release. Also, some really exceptional resources came online post-SharePoint 2010

c14.indd 354c14.indd 354 19/01/13 11:27 AM19/01/13 11:27 AM

Word Automation Services and the New PowerPoint Automation Services ❘ 355

that can help get you bootstrapped so you can tap into the whole of Excel Services when building
your solutions. One amazingly such resource is http://www.excelmashup.com — it almost writes
the code for you.

WORD AUTOMATION SERVICES AND THE NEW
POWERPOINT AUTOMATION SERVICES

The all-new PowerPoint Automation Services has brought to SharePoint 2013 for PowerPoint
presentations, on-premises, what Word Automation Services brought to Word documents for
SharePoint in 2010: the ability to convert documents, at server scale, into other formats.

NOTE PowerPoint Automation Services runs on-premises only and not in Offi ce

365 SharePoint Online. This was the case for Word Automation Services for

SharePoint 2010 and remains the same for SharePoint 2013.

For Word Automation Services, everything for SharePoint 2010 remains in play for SharePoint 2013.
However, the biggest addition is that the architecture for Word Automation Services was reworked
to allow for synchronous and asynchronous, on-demand, streamed fi le conversion to augment the
traditional timer job conversions. SharePoint 2010 and 2013 enable you to create a document conver-
sion job that runs on the timed interval of Word Automation Service, which works well to support
batch processing of documents. SharePoint administrators can set the time interval for running Word
Automation Services to be as often as every one minute, but sometimes that isn’t soon enough. With
the redesigned architecture, conversion requests can be submitted and processed in real-time. On
demand, streamed requests can be made for one fi le at a time, and whether synchronously or asyn-
chronously requested, the queue manager/scheduler in the new architecture processes the on-demand
request as its highest priority.

PowerPoint Automation Services is the newcomer, so you’ll take a look at it a little more deeply.
Organizations often have thousands of PowerPoint presentations that are in various fi le formats
ranging from the PowerPoint 97–2003 binary formats known as .ppt to the newer fi le formats based
on Open XML known as .pptx. Additionally, sometimes you do not want to provide a presentation
in its native format to others so you need to convert it to a fi xed format such as .pdf or images such
as .jpg or .png. This often is the case for presentations that are used at conferences where you want
attendees to receive a .pdf version. For business cases like these PowerPoint Automation Services can
now provide the server-side performance and scale to move these fi le conversions out of being an
antiquated, laborious, manual process.

Unlike Word Automation Services though, no timer job option exists for PowerPoint Automation
Services. Files are streamed, which you can do in a synchronous or asynchronous pattern. Also, the
solutions you build for PowerPoint Automation Services will be farm-level solutions; the APIs are
only available on the SharePoint server.

You can develop your solution using the Microsoft.Office.Server.PowerPoint.Conversion
namespace. Using the namespace you have the classes you need for the types of conversions

c14.indd 355c14.indd 355 19/01/13 11:27 AM19/01/13 11:27 AM

http://www.excelmashup.com

356 ❘ CHAPTER 14 DEVELOPING APPLICATIONS USING OFFICE SERVICES

available. Using the PresentationRequest class you can input the binary .ppt fi le and output a
new .pptx fi le. For fi xed format fi le conversion, the PdfRequest and XpsRequest classes are used to
input either a .ppt or .pptx fi le and output a .pdf or .xps fi le, respectively. The PictureRequest class
can also take as input a .ppt or .pptx fi le and output either a .jpg or .png depending on your prefer-
ence. For exposure to the coding involved, the following Try It Out shows you how to build a small
console application to exercise PowerPoint Automation Services.

TRY IT OUT Converting PowerPoint Presentation Files to .pdf Files Using

 the New PowerPoint Automation Services (C14PPTAutomationSvcs.zip)

In this exercise you use a simple console application to see the fundamental code pattern to convert .ppt
and .pptx fi les to .pdf using PowerPoint Automation Services. For this Try It Out you need access to a
SharePoint 2013 on-premises server development environment with Visual Studio 2012 installed and
PowerPoint Automation Services running on the SharePoint server.

 1. Either confi rm with your SharePoint Administrator that PowerPoint Automation Services is run-
ning in your on-premises environment, or open the SharePoint Administration Console, click
Application Management, click Manage Service Applications, and confi rm that the PowerPoint
Conversion Service Application and Proxy are started. If not, return to Application Management,
click Manage Services on Server, locate the PowerPoint Conversion Service, and click the
Start link.

 2. Run Visual Studio 2012 as Administrator. Select New Project.

 3. In the New Project dialog, expand the Templates ➪ Visual C# ➪ Windows nodes. Select Console
Application and provide the name C14PPTAutomationSvcs. Click OK.

 4. When the project loads, close the Program.cs fi le.

 5. In the Solution Explorer, right-click the project and select Properties. On the Application tab
confi rm the Target framework is set to .NET Framework 4. If it’s not, set it and confi rm any
prompts and reopen the Properties pane. Click the Build tab, set the Confi guration drop-down list
to All Confi gurations, and close the Properties pane.

 6. In the Solution Explorer, right-click the project and select Add Reference.

 7. In the Reference Manager, under Framework, add System.Web, and under Extensions add
Microsoft.SharePoint. Click Browse and navigate to the following location: C:\Windows\
Microsoft.NET\assembly\GAC_MSIL\Microsoft.Office.Server.PowerPoint\v4.0_15.0.

0.0__71e9bce111e9429c. Click the Microsoft.Office.Server.PowerPoint.dll, click Add
and then click OK.

 8. In the Solution Explorer, double-click the Program.cs fi le to open it. Add the following using
statements:

using System.IO;
using System.Web;
using Microsoft.SharePoint;
using Microsoft.Office.Server.PowerPoint.Conversion;

c14.indd 356c14.indd 356 19/01/13 11:27 AM19/01/13 11:27 AM

Word Automation Services and the New PowerPoint Automation Services ❘ 357

 9. In the Main method, add the following:

 try
 {
 string mySiteURL = "http://YourServerNameHere/YourSiteHere";
 using (SPSite mySite = new SPSite(mySiteURL))
 {
 using (SPWeb myWeb = mySite.OpenWeb())
 {
 Console.WriteLine("Convert to .pdf Start");
 // Identify document library and input file
 SPFolder myDocs = myWeb.Folders[mySiteURL +
 "/YourDocumentLibrary"];
 SPFile myFile = myDocs.Files[mySiteURL +
 "/YourDocumentLibrary/YourPresentationName.pptx"];
 // Create a stream object for the file
 Stream myFileStream = myFile.OpenBinaryStream();
 SPFileStream myStream = new SPFileStream(myWeb, 0x1000);

 // Rrequest conversion to .pdf format.
 PdfRequest myRequest = new PdfRequest(
 myFileStream,
 ".pptx",
 myStream);

 // Rrequest is sent synchronously, when
 // 'null' value is used for the callback parameter.
 // Response is in the result object.
 IAsyncResult result = myRequest.BeginConvert(
 SPServiceContext.GetContext(mySite),
 null,
 null);

 // Use the EndConvert method to get the result.
 myRequest.EndConvert(result);

 // Add the converted file to the document library.
 SPFile myNewPdfFile = myDocs.Files.Add(
 "newConvertedPresentation.pdf",
 myStream,
 true);
 Console.WriteLine("New file name: {0}", myNewPdfFile.Url);
 }
 }
 }
 catch (Exception ex)
 {
 Console.WriteLine("Error Message: " + ex.Message);
 }
 finally
 {
 Console.WriteLine("Conversion to .pdf completed.
Press <Enter> to quit.");
 Console.ReadLine();
 }

c14.indd 357c14.indd 357 19/01/13 11:27 AM19/01/13 11:27 AM

358 ❘ CHAPTER 14 DEVELOPING APPLICATIONS USING OFFICE SERVICES

 10. Open a browser, navigate to a site, and upload any .pptx presentation to test conversion from
.pptx to .pdf.

 11. After the fi le is uploaded:

 ➤ Replace the YourServerNameHere/YourSiteHere literal in the mySiteURL variable with the
URL for your SharePoint site that includes the full path to your document library.

 ➤ Replace the YourDocumentLibrary literal in the myDocs variable in the code with the name
of your document library.

 ➤ Replace the YourDocumentLibrary/YourPresentationName literal in the myFile variable
with the code to the document library and name of your presentation fi le.

 ➤ Optionally, you can replace the newConvertedPresentation literal in the myNewPdfFile
value with the name of your presentation.

 12. Press F5 to run the code. Depending on the hardware speed of your test server, this might take
a minute or two so be patient. The command window will show the name of the fi le converted
when the operation is completed.

 13. When the operation completes, close the command window and look in the document library to
review the new fi le.

How It Works

This Try It Out showed the code pattern for using the PdfRequest class for converting a presenta-
tion in the .pptx fi le format to a .pdf format in a synchronous call to PowerPoint Automation Services.
Similarly, you can use the PresentationRequest, XpsRequest, and the PictureRequest classes to
perform the type of presentation fi le conversion task unique to each. All the classes inherit from the
Request class. Three parameters are required to be passed in: an input stream object for the fi le to
be converted, the dot fi le extension (.ppt, .pptx, and so on) of the fi le to be converted, and an output
SPFileStream object that designates the dot extension for the output fi le where it will be saved on
SharePoint. The output fi le must designate the target dot extension that is consistent with the conver-
sion class you are using. For instance, if you use the XpsRequest class, your output dot fi le extension
must be .xps. The exception to this is the PictureRequest class. This class requires an additional
parameter to designate the format for the picture to be converted to. You use the PictureFormat enu-
meration for this and can choose between Default, Png, and Jpg. Also, when designating the output
stream dot fi le extension, you must use .zip.

PowerPoint Automation Services makes a nice addition to the Offi ce server-side services. In this Try
It Out you used a console application to make your conversion request, but in a production enter-
prise environment, you can drive your conversion requests to PowerPoint Automation Services off a
variety of SharePoint interactions, whether it’s an end user clicking a button on a web part, an event
fi ring on a list item, or a workfl ow action calling out to a service endpoint that has access to the
SharePoint server. Solutions can also include the use of other technologies such as the Open XML
SDK, where you can dynamically augment or generate entire presentations by incorporating data
from external data sources, charts or tables from Excel, content from Word, or other PowerPoint

c14.indd 358c14.indd 358 19/01/13 11:27 AM19/01/13 11:27 AM

The New Machine Translation Services ❘ 359

presentations for that matter. As with Word Automation Services, PowerPoint Automation Services
now joins the ranks for shifting the often manual workload for presentation conversion to other for-
mats into an automated conversion processes on the SharePoint server.

THE NEW MACHINE TRANSLATION SERVICES

Machine Translation Services is also an all-new server-side service with an architecture and runtime
patterned after Word Automation Services. Using this service you can request translation of docu-
ment libraries, folders, and fi les using a timer job, synchronously or asynchronously. The Machine
Translation Service passes your content through to a Microsoft cloud-based translation service and
returns the translated results. If you choose to use the Machine Translation Services, for privacy
concerns, it is your responsibility to inform your users that their content will be sent to Microsoft
and that Microsoft might use the content to improve its translation service. Be sure to see the
Microsoft Translator Privacy statement for more detailed information. The reference is provided in
the “Recommended Reading” section for this chapter.

Like Word Automation Services, Machine Translation Services is available on-premises only and is
confi gured through the SharePoint Central Administration console. The time interval for the trans-
lation service can be set to run as often as every one minute. As a developer you have several ways
you might choose to interact with the service. You are not limited to timer jobs only, but on-demand
synchronous or asynchronous requests are supported. You can use the SharePoint server object
model or you can remotely request translations using the REST API. For the REST API you can
asynchronously translate a document library, folder, or fi le, but synchronously you can only request
a single fi le translation. In the following Try It Out you perform a synchronous fi le conversion on a
document in a document library.

TRY IT OUT Translating a Document Synchronously with Machine

 Translation Services (C14TranslateSPOM.zip)

In this exercise you use a simple console application to see the fundamental code pattern to syn-
chronously convert a Word document in a document library into French using Machine Translation
Services. For this Try It Out you need access to a SharePoint 2013 on-premises server development
environment with Visual Studio 2012 installed and Machine Translation Services running on the
SharePoint server.

 1. Either confi rm with your SharePoint Administrator that Machine Translation Services is run-
ning in your on-premises environment, or open the SharePoint Administration Console, click
Application Management, click Manage Service Applications and confi rm that the Machine
Translation Service and Proxy are started. If they are not, return to Application Management,
click Manage Services on Server, locate the Machine Translation Service and click the Start link.

 2. Run Visual Studio 2012 as Administrator. Select New Project.

 3. In the New Project dialog, expand the Templates ➪ Visual C# ➪ Windows nodes. Select Console
Application and provide the name C14TranslateSPOM. Click OK.

 4. When the project loads, close the Program.cs fi le.

c14.indd 359c14.indd 359 19/01/13 11:27 AM19/01/13 11:27 AM

360 ❘ CHAPTER 14 DEVELOPING APPLICATIONS USING OFFICE SERVICES

 5. In the Solution Explorer, right-click the project and select Properties. On the Application tab con-
fi rm the Target framework is set to .NET Framework 4. If it’s not, set it and confi rm any prompts
and reopen the Properties pane. Click the Build tab, set the Confi guration drop-down list to All
Confi gurations, and close the Properties pane.

 6. In the Solution Explorer, right-click the project and select Add Reference.

 7. In the Reference Manager, under Framework, add System.Web, and under Extensions add
Microsoft.SharePoint. Click Browse and navigate to the following location: c:\Windows\
Microsoft.NET\assembly\GAC_MSIL\Microsoft.Office.TranslationServices\v4.0_15.

0.0.0__71e9bce111e9429c. Click the Microsoft.Office.TranslationServices.dll, click
Add and click OK.

 8. In the Solution Explorer, double-click the Program.cs fi le to open it. Add the following using
statements:

using System.Globalization;
using System.Web;
using System.IO;
using Microsoft.SharePoint;
using Microsoft.Office.TranslationServices;

 9. In the Main method, add the following:

 Console.WriteLine("C14TranslateSPOM Started");

 string myWebSite = "http://YourServerNameHere";
 string myCulture = "fr";
 string myInput =
"http://YourServerNameHere/YourDocumentLibrary/YourDocumentName.docx";
 string myOutput =
"http://YourServerNameHere/YourDocumentLibrary/YourDocumentName-fr.docx";

 serviceContext = SPServiceContext.GetContext(new SPSite(myWebSite));

 // Run synchronous conversion on a single file in doc lib.
 Console.WriteLine("Synchronous Translation Process Starting");
 SyncTranslator job = new SyncTranslator(serviceContext,
 CultureInfo.GetCultureInfo(myCulture));
 Console.WriteLine("File names for processing");
 Console.WriteLine("File input: " + myInput);
 Console.WriteLine("File to be output: " + myOutput);
 TranslationItemInfo itemInfo = job.Translate(myInput, myOutput);
 Console.WriteLine("Translation Language: {0}",
 job.TargetLanguage.Name);
 Console.WriteLine("SaveBehaviorForOutput: {0}",
 job.OutputSaveBehavior.ToString());
 displayTranslationItemInfo(itemInfo);

 Console.ReadLine();
 }

 static void displayTranslationItemInfo(TranslationItemInfo itemInfo)
 {

c14.indd 360c14.indd 360 19/01/13 11:27 AM19/01/13 11:27 AM

The New Machine Translation Services ❘ 361

 Console.WriteLine("\nTranslation completed -- Resulting information:");
 Console.WriteLine("File Input: " + itemInfo.InputFile);
 Console.WriteLine("File Output: " + itemInfo.OutputFile);
 Console.WriteLine("Job Start Time: " + itemInfo.StartTime);
 Console.WriteLine("Job Complete Time: " + itemInfo.CompleteTime);
 Console.WriteLine("Error Message: " + itemInfo.ErrorMessage);
 Console.WriteLine("Translation Id: " + itemInfo.TranslationId);
 Console.WriteLine("\nFinal Job Status");
 Console.WriteLine("Succeeded: " + itemInfo.Succeeded);
 Console.WriteLine("Failed: " + itemInfo.Failed);
 Console.WriteLine("Canceled: " + itemInfo.Canceled);
 Console.WriteLine("In Progress: " + itemInfo.InProgress);
 Console.WriteLine("Not Started: " + itemInfo.NotStarted);
 Console.WriteLine("\nTranslation completed. Press <Enter> to quit.");
 }

 10. Open a browser, navigate to a site, and upload a .docx document to be translated.

 11. After the fi le is uploaded, click the ellipsis (…) by the fi lename and copy the URL for the
 document. Use it to do all of the following tasks:

 ➤ Replace the YourServerNameHere literal in the myWebSite variable with the root URL for
your SharePoint site.

 ➤ Replace the YourServerNameHere/YourDocumentLibrary/YourDocumentName literal
 values in the myInput variable, with the full path to your document.

 ➤ Replace the YourServerNameHere/YourDocumentLibrary/YourDocumentName literal val-
ues in the myOutput variable with the full path to your document. Be sure to leave the -fr
on the fi lename or some other arbitrary value so the output fi le does not overwrite the input
fi le when the translation is completed.

 12. Press F5 to run the code. Depending on the hardware speed of your test server, this might take
several minutes to complete. The command window will show the resulting processing informa-
tion when the translation is completed. Figure 14-3 provides an example of the output results in
the command window.

FIGURE 14-3

c14.indd 361c14.indd 361 19/01/13 11:27 AM19/01/13 11:27 AM

362 ❘ CHAPTER 14 DEVELOPING APPLICATIONS USING OFFICE SERVICES

 13. When the operation completes, close the command window and look in the document library to
review the new translated document.

How It Works

For this Try It Out you performed a synchronous translation on a document in a document library, and
to do this you used the SyncTranslator class. You created an object and passed in the full URL input/
output path to a document. It is possible to use SyncTranslator to input/output fi le stream objects and
byte arrays, yet in all cases, synchronous interactions with the Machine Translation Service is for a sin-
gle fi le translation only. With asynchronous interactions with the service, where you submit timer jobs
into the queue, you have more latitude and for this you use the TranslationJob class. Using this class
you can not only designate a single fi le on a document library to be translated asynchronously, you can
designate SPFolder objects for both input and output to translate the contents of an entire folder, or
you can translate an entire document library by providing an SPDocumentLibrary object for both an
input and output location.

Machine Translation Services is a unique asset in the server-side services. It is important to note that
it does not translate all Offi ce document types. It’s limited primarily to the dot fi le extensions that
Word can read or write such as .docx, .doc, .docm, .rtf, .txt, and some HTML-based fi les. You can
query the server with REST to see which fi le extensions are supported in your environment using
http://SharePointServer/_api/TranslationJob.EnumerateSupportedFileEXtensions. To
see whether a specifi c extension is available use http://serverName/_api/TranslationJob.IsFi
leExtensionSupported('extension'). In any case, Machine Translation Services does not trans-
late Excel or PowerPoint fi les.

Remember to inform the end users of your translation solutions that their document content will be
sent to a Microsoft service for translation.

WHAT’S NEW IN ACCESS SERVICES

Access Services has moved forward signifi cantly on its continuous innovation trajectory with this
release. Access Services has a redesigned architecture around the new cloud app model so with
the Microsoft Access rich client you now create apps for SharePoint. Apps for SharePoint can be
deployed to the on-premises SharePoint or Offi ce 365 SharePoint Online corporate catalog for apps
and can be published to the SharePoint Store on Offi ce.com for worldwide availability.

In SharePoint 2010 you used the Access client to create and publish Web databases to SharePoint.
The publishing process generated native SharePoint artifacts: Access tables became SharePoint lists,
forms became .aspx pages, data macros became workfl ows, UI macros became JavaScript, and so
forth. This deployment model benefi ted end users in that they could create their point, data-centric
solutions and make them available to their colleagues via SharePoint. Any colleague, located any-
where in the world with access to SharePoint, could use the Web-based solution without needing the
Access client. For updates to the UI and modifi cations to the database structure, the Web database
owner used the Access client to make the changes and then simply republished the Web database to
SharePoint and the updates were immediately available.

With Access and Access Services 2013 and the advent of the new cloud app model come two sig-
nifi cant changes. One change is that SharePoint is no longer the target as the data store. Where in

c14.indd 362c14.indd 362 19/01/13 11:27 AM19/01/13 11:27 AM

http://SharePointServer/_api/TranslationJob.EnumerateSupportedFileEXtensions
http://serverName/_api/TranslationJob.IsFileExtensionSupported
http://serverName/_api/TranslationJob.IsFileExtensionSupported
http://Office.com

What’s New in Access Services ❘ 363

SharePoint 2010 the data for the solution was stored in SharePoint lists, now a SQL database is
automatically generated for the solution and the data is stored there. For on-premises, this means
there is an IT requirement to have a SQL Server environment available for Access Services to use.
A reference link for guidance on Access Services administration is provided in the, “Recommended
Reading,” section at the end of this chapter. However, for Access Apps for SharePoint that target
Offi ce 365 SharePoint Online, when the app for SharePoint is installed, SharePoint Online automati-
cally creates a Windows Azure SQL Database instance to store the app’s data and content. The data
is available for querying and BI reporting by external sources, too, making it an accessible asset for
the enterprise — something not easily done with Access data before. Another change is that the gen-
erated UI artifacts that targeted SharePoint in the 2010 release have also been decoupled. For consis-
tency with the new app model, all generated artifacts by the Access client for the solution’s UI now
use standard Web technologies, HTML, JavaScript, CSS, and so on, and these UI content artifacts
are now stored within the SQL database, too.

Therefore, the Microsoft Access client continues to provide the tooling and Access Services provides
the infrastructure for experts within a specifi c business domain, independent software vendors
(ISVs), or software integrators (SIs) to build a data-centric, Web-based, point solution. But now the
result is an app for SharePoint with the enterprise scale of SQL server behind it that’s distributable
to small and medium businesses and enterprises worldwide through the SharePoint Store. Moreover,
the app for SharePoint is deployable both on-premises and in Offi ce 365 — now this is truly taking
Microsoft Access from the desktop to the cloud!

To see just how easy building an app for SharePoint with Access and Access Services is, walk
through the following example.

TRY IT OUT Creating an App for SharePoint Using Microsoft

 Access and Access Services

In this exercise you experience installing a Microsoft Access–created app for SharePoint from the
SharePoint Store on Offi ce.com and then you build an app for SharePoint using Access and Access
Services.

 1. Log in to Offi ce 365 Developer Site and navigate to the site collection where you will install an
app for SharePoint.

 2. Click Site Contents. On the site Contents page click Add an app.

 3. On the Your Apps page, in the left navigation bar, click SharePoint Store.

 4. On the SharePoint Store page, in the search bar, type business contact and click the search icon.
When the Business Contact Manager app appears, click the tile.

 5. On the Business Contact Manager page, click ADD IT.

 6. On the Confi rm that you wish to add the app page, click Continue.

 7. On the You just got this app for everyone in your organization page, click Return to site.

 8. On the Do you trust Business Contact Manager page, click Trust It. SharePoint adds the app to
your site and will refresh the tile when the app is fully added.

 9. Click the Business Contact Manager tile to open the app.

c14.indd 363c14.indd 363 19/01/13 11:27 AM19/01/13 11:27 AM

http://Office.com

364 ❘ CHAPTER 14 DEVELOPING APPLICATIONS USING OFFICE SERVICES

 10. Click your way around the UI to get a sense for what the app does, but then click the About navi-
gation link and watch the 2:25–minute demo of how to use this app for SharePoint.

 11. Click the Back to Site link in the top navigation bar to return to the SharePoint site. You can
return to the Business Contact Manager app any time by clicking Site Contents.

 12. To build an app for SharePoint using Microsoft Access, open Access 2013.

 13. Access opens and displays a number of templates that you can use as a quick start foundation for
your app. Notice the difference in the graphics used for the template icons. Any graphic that has
the globe on it is a Web App for SharePoint. If you choose the Custom web app template, then you
start building your app from scratch. For this exercise, select the Asset tracking template.

 14. In the Asset tracking dialog, provide C14AssetTracking for the App Name, skip the Available
Locations, and directly enter the full URL to the Offi ce 365 site collection you want to use to
build the app.

 15. Before you make any changes, click the File tab and click Info. Here you can see the server and
database name for the Windows Azure SQL Database that was created for your app. Notice that
you can create a client-only database for reporting that will be a read-only connection to the
Azure database. You can also manage a variety of other types of connections from the Info page,
too, by clicking the Manage button. Return to the Access design page.

 16. In the ribbon, click Launch App. Notice how quickly Access Services renders the app. Return to
the Access client.

 17. In the ribbon, click Navigation Pane; this provides a handy reference to all the Access objects used
in your solution.

 18. In the ribbon, click Table to get the Add Tables page. You have an array of options for creating a
new table. Notice at the bottom of the page these include options such as other Access databases,
Excel tables, SharePoint Lists, and more. A signifi cant feature for this release is the Create a new
table using our templates search bar at the top. This is backed by a Microsoft-provided Web ser-
vice that can continuously be updated with new template table structures. The intent is that you
don’t need to necessarily do the work of laying out table columns and data types, but you can pull
down a table that’s “close” to what you need and then augment it with your own custom columns.
Type person in the search bar and click the search icon.

 19. Select Vendors from the list. Notice in the Navigation Pane that a new Table was added for
Vendors, as well as a Vendors Datasheet and Vendors List.

 20. In the Navigation Pane, right-click the Assets Table and select Design View.

 21. In the Field Name column, after Owned by, enter Vendor; in the Data Type column enter Lookup.

 22. In the Lookup Wizard, select “I want the lookup fi eld to get the values from another table or
query.” Select Table: Vendors, select Company from “Which value do you want to display in
your lookup?”, leave the remaining default values, and click OK.

 23. In the Assets design view, in the Description column, enter Lookup to Vendors table. Close the
design view by clicking the “x” on the right side across from the Assets tab. When prompted to save
changes, click Yes. Notice on your Assets form that the Vendor lookup fi eld was automatically added.

 24. In the ribbon, click Launch App. In the left navigation bar, click Vendors and click the + to add a
new vendor. Fill out any data fi elds you want, but at least enter a Company name because this is the

c14.indd 364c14.indd 364 19/01/13 11:27 AM19/01/13 11:27 AM

What’s New in Access Services ❘ 365

fi eld that you selected to show in the Assets form lookup fi eld. Click the Save icon to save the infor-
mation and then re-edit it to add an asset to the vendor. (Note that the vendor must be saved before
you can associate an asset with it.) At the bottom of the vendor form, click the Add Assets link.

 25. In the Assets form you can provide data values, but notice that your Vendor has already been
selected. Save the form.

 26. You can now explore the UI, and enter Assets using the Assets form or from the Employees form.
Return to Access.

 27. At this point your solution can only be used by you in the specifi c site collection where you are
building the app. To make this into an app for SharePoint that can be deployed to the corporate
app catalog on SharePoint or distributed through the SharePoint Store, click the File tab and click
Save As.

 28. In the Save As dialog, under File Types, click Save Database As if it is not already selected, and
click Save as Package.

 29. In the Create New Package from This App dialog, provide a name of C14AssetTracking for the
Title and do not include data in the package. When prompted, save the fi le to a location on your
disk.

 30. Log in to your Offi ce 365 Developer Portal SharePoint Admin center, click the app’s link and click
the App Catalog link.

 31. On the App Catalog page, click the Apps for SharePoint link.

 32. On the Apps for SharePoint page, click New app and Browse to the fi le you just saved. Select it,
and click Open. Click OK to add the document.

 33. In the Apps for SharePoint C14AssetTracking.app dialog, leave all the defaults and click Save.
You can now navigate to any other site collection within your Offi ce 365 tenancy, click Site
Contents, click Apps from your Organization, and install your C14AssetTracking app
for SharePoint into that site collection. When you install and run the app it should look some-
thing like Figure 14-4.

FIGURE 14-4

c14.indd 365c14.indd 365 19/01/13 11:27 AM19/01/13 11:27 AM

366 ❘ CHAPTER 14 DEVELOPING APPLICATIONS USING OFFICE SERVICES

How It Works

In the fi rst part of this Try It Out you navigated to the SharePoint Store, selected an app, and
SharePoint installed it into the site collection. But the installed app for SharePoint is available across
all the sites in your Offi ce 365 tenancy. So if you navigate to any other site collection and click Site
Contents, you will be able to add this app in this site too. Regarding how it works, at the point you
clicked the Trust It button, SharePoint began installing the app and automatically provisioned a
Windows Azure SQL Database for the app. When the install completed and you clicked the Business
Contact Manager tile to view the app, Access Services was invoked. It then rendered the HTML-based
UI elements, executed any business logic, and managed the connection and calls to the back-end SQL
database.

You then created an app for SharePoint using an existing template as a base. To the base solution you
searched via a Microsoft Web service for a template table that you could simply add in to your solution.
After selecting a table you wired it up to an existing form and Access did all the work to adjust the UI
elements accordingly. You then tested the app for SharePoint by launching it. When the app was com-
plete you generated an app package for distribution through any number of channels you might choose.

As you can see from this Try It Out, Access and Access Services provide a very quick and powerful
way to build data-centric, Web-based business solutions. These solutions can now be broadly dis-
tributed and run at Internet scale.

SUMMARY

The new server-side Offi ce application features for SharePoint 2013 include the SharePoint Offi ce
Web App Server, PowerPoint Automation Services, and Machine Translation Services.

Excel Services includes new capabilities with the notion of Excel everywhere with the innovative
Excel Interactive View that can bring any commonplace HTML table to life with a couple lines
of code. Also, the new OData access to Excel tables stored on SharePoint can extend the uses of
data with Excel spreadsheet to even greater uses. Lastly, you can easily create data-centric Apps for
SharePoint using the redesigned Microsoft Access client tooling and Access Services powered by
Microsoft SQL server for on-premises and Windows Azure SQL Database for Offi ce 365.

For a developer, these Offi ce and SharePoint application services provide the APIs, technologies, and
infrastructure to build innovative and powerful solutions. Your solutions can shape end users’ day-
to-day activities and help them to be more productive in what they do, which is what building Apps
for SharePoint is about.

c14.indd 366c14.indd 366 19/01/13 11:27 AM19/01/13 11:27 AM

Summary ❘ 367

EXERCISES

You can fi nd answers to exercises in Appendix A.

 1. What are the two all-new services in SharePoint 2013?

 2. What service was decoupled from SharePoint to become its own standalone server product?

 3. What is the new RESTful protocol added to Excel Services that provides access to Excel tables?

 4. Access Services was redesigned for SharePoint 2013 — where are the data and content artifacts

stored for the solution?

c14.indd 367c14.indd 367 19/01/13 11:27 AM19/01/13 11:27 AM

368 ❘ CHAPTER 14 DEVELOPING APPLICATIONS USING OFFICE SERVICES

 � WHAT YOU LEARNED IN THIS CHAPTER

ITEM DESCRIPTION

WOPI Web application Open Platform Interface (WOPI) is the REST-based interface

that server applications can use to have documents rendered by the Offi ce

Web App Server.

Excel Interactive

View

This technology enables any standard HTML table to be viewed in an interac-

tive Excel Services viewer by your adding a couple lines of code to the Web

page.

PowerPoint

Automation

Services

This SharePoint 2013 server-side only (not Offi ce 365) service converts .ppt

and .pptx presentation fi les to .pptx (in the case of .ppt), .pdf, .xpx, and .zip

(when the presentation is converted to .jpg and .png).

Machine Translation

Services

A new SharePoint 2013 server-side only (not Offi ce 365) service that submits

documents to a Microsoft cloud translations service for translation into any

supported language. This has privacy concerns to consider for end-user dis-

closure. See the Microsoft Translator Privacy statement for full details.

Access Services Access Services was redesigned for SharePoint 2013 where all data and con-

tent artifacts for the UI are stored in a SQL Server database for on-premises

environments and Window Azure SQL Database in the case of Offi ce 365.

RECOMMENDED READING

The Excel team blog — http://blogs.office.com/b/microsoft-excel
http://www.excelmashup.com

Microsoft Translator Privacy statement — http://msdn.microsoft.com/en-us/library/
hh464486.aspx

Machine Translation Services in SharePoint 2013 on MSDN — http://msdn.microsoft
.com/en-us/library/jj163145.aspx

Machine Translation Services in SharePoint 2013 — http://msdn.microsoft.com/en-us/
library/jj163145.aspx

Administer Access Services in SharePoint Server 2013 — http://technet.microsoft.com/en-us/
library/ee692394.aspx

Develop Access 2013 web apps — http://msdn.microsoft.com/en-us/library/fp179906.aspx

c14.indd 368c14.indd 368 19/01/13 11:27 AM19/01/13 11:27 AM

http://www.excelmashup.com
http://blogs.office.com/b/microsoft-excel
http://msdn.microsoft.com/en-us/library/hh464486.aspx
http://msdn.microsoft.com/en-us/library/hh464486.aspx
http://msdn.microsoft.com/en-us/library/jj163145.aspx
http://msdn.microsoft.com/en-us/library/jj163145.aspx
http://msdn.microsoft.com/en-us/library/jj163145.aspx
http://msdn.microsoft.com/en-us/library/jj163145.aspx
http://technet.microsoft.com/en-us/library/ee692394.aspx
http://technet.microsoft.com/en-us/library/ee692394.aspx
http://msdn.microsoft.com/en-us/library/fp179906.aspx

Developing Workfl ow
Applications for SharePoint 2013

WHAT YOU WILL LEARN IN THIS CHAPTER:

 ➤ Looking at what’s new for workfl ow in SharePoint

 ➤ Understanding the new decoupled and fully declarative nature of

the Workfl ow Manager Service

 ➤ Working with the tools to build workfl ows: Visio Pro, SharePoint

Designer, and Visual Studio

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at: http://www.wrox.com/
WileyCDA/WroxTitle/productCd-1118495845.html on the Download Code tab. The code
for this chapter is divided into the following major examples:

 ➤ C15WFAppForSP.zip

 ➤ CustomActionGetEmployeeInfoFinal.zip

Workfl ow in SharePoint is about enabling workplace effi ciencies through structured,
automated process fl ows that engage human interaction when needed. SharePoint workfl ow
fundamentally provides the mechanisms to notify people when they need to interact with an
automated process via tasks, notifi cations, e-mail, or any other custom means one might desire
to employ. List items, documents, and sites are also valued workfl ow players because interaction
with SharePoint content is central to the beginning, continuation, and ending of many business
processes’ fl ows. SharePoint workfl ow also provides the means for power users and developers
to articulate the business logic needed to direct the process fl ow via declarative logic structures
and a runtime engine for workfl ow execution.

SharePoint 2013 workfl ow builds on these foundational principles and moves them to a
new level. SharePoint 2013 workfl ow is technically different from previous versions in that

15

c15.indd 369c15.indd 369 19/01/13 11:29 AM19/01/13 11:29 AM

http://www.wrox.com/WileyCDA/WroxTitle/productCd-1118495845.html
http://www.wrox.com/WileyCDA/WroxTitle/productCd-1118495845.html
http://WROX.COM
http://wrox.com

370 ❘ CHAPTER 15 DEVELOPING WORKFLOW APPLICATIONS FOR SHAREPOINT 2013

it has been completely redesigned to support the scalability and extensibility requirements of the
new cloud app model for SharePoint. The new workfl ow has been built from the ground up to
have a purely declarative model and is based on Windows Workfl ow Foundation 4. Additionally,
it is no longer hosted in SharePoint but follows the pattern of the cloud app model and is hosted
out of process, in its own server for on-premises deployment or in Windows Azure as a service in
cloud deployments. In the cloud the Workfl ow Service uses the same standard Web technologies of
OAuth for service authentication and REST to call into SharePoint via the _API endpoint. The new
Workfl ow Service is an example of the new cloud app model running at cloud scale!

From the business analyst/process consultant, power user, and developer perspective, the tools
have become richer and easier to use, and the output is Extensible Application Markup Language
(XAML), a declarative markup language. This simply means that your workfl ows have 100 percent
fi delity for execution on-premises and in Offi ce 365 SharePoint Online. For workfl ows written
for SharePoint 2010 against the Windows Workfl ow Foundation 3 engine, an interoperability bridge
is provided so all or part of a workfl ow from this generation can become a part of a new workfl ow.

All of this is good stuff so choose your favorite tool, whether Visio Professional, SharePoint Designer
2013, or Visual Studio and begin developing workfl ows. In this chapter you use each of these tools
in one capacity or another and experience this strategic move of the Workfl ow Service to the cloud.

INTRODUCING WORKFLOW MANAGER

The Workfl ow Manager is the new workfl ow engine that runs on the newest workfl ow technology
from Microsoft, the Workfl ow Framework in .NET 4.5. The Workfl ow Manager also leverages
the Windows Azure Service Bus when running in the cloud or Service Bus for Windows Server
when running on-premises to provide workfl ow state consistency, reliable event delivery, and
brokered messaging with the publisher/subscriber (Pub/Sub) messaging pattern. Workfl ow Manager
and Service Bus working in concert provide a workfl ow service that can work at Internet scale,
independent of SharePoint. This independence enables workfl ow processing to happen in a more
predictable and transparent fashion because it is no longer coupled with the SharePoint server,
competing for resources. Figure 15-1 shows the high-level architecture for the new workfl ow.

FIGURE 15-1

c15.indd 370c15.indd 370 19/01/13 11:29 AM19/01/13 11:29 AM

The Big New Features for SharePoint Designer ❘ 371

The integration layer that connects SharePoint to Workfl ow Manager is through the Workfl ow
Service Application Proxy, and all the new workfl ow capability is exposed in the object model via
the Workfl ow Services Manager. To make the actual connection from SharePoint to Workfl ow
Manager, a workfl ow client is required to be installed on the SharePoint machine.

The workfl ow API has four major components:

 ➤ Deployment Service: This is used to publish workfl ows and create associations.

 ➤ Messaging Service: Events are piped into the workfl ow through the Messaging Service.
When SharePoint sends an event into the workfl ow, the event is saved in the Windows Azure
Service Bus database before it is delivered to Workfl ow Manager. The Workfl ow Manager
takes care of keeping the state of the workfl ow and the state of the message queue in sync.
Messaging Services uses another feature of the Service Bus, which is Pub/Sub. With Pub/
Sub multiple workfl ows can subscribe to one event. For instance, suppose you have 10
workfl ows waiting on a list item. SharePoint will send only one message when an event fi res
on the list and Service Bus takes care of delivering that message to the 10 workfl ows that
subscribe to that list item. In the classic SharePoint 2010 workfl ow model, SharePoint would
have run 10 event receivers, putting a greater load on the workfl ow engine.

 ➤ Instance Service: This is used to query an instance to see information about it and control
workfl ow instances; for example, you can terminate them.

 ➤ Interoperability Service: This is used to invoke or start instances of classic SharePoint 2010
workfl ows.

All workfl ow callbacks into SharePoint take place over the _API endpoint using the REST/OData
protocol. The communication between SharePoint and the Workfl ow Manager is secured using the
OAuth security model, making the new workfl ow infrastructure a premier implementation of the
new cloud app model.

THE BIG NEW FEATURES FOR SHAREPOINT DESIGNER

SharePoint Designer (SPD) has been the mainstay for SharePoint workfl ow creation. In SharePoint 2013
SPD has advanced its feature set for making workfl ow design easier, and in some cases, just more enjoyable
to work with (as you will experience). Also, although you could stitch together workfl ows in SharePoint
2010 to do some very powerful things, a number of features, actions, and programming constructs were
not available to give you the type of control over the “fl ow” in workfl ow that you really wanted and
needed. SPD fi lls these gaps. Following is a list of some of the big new features you’ll experience in
SPD 2013; these were highly requested features from Microsoft partners and customers alike:

 ➤ Visual Designer: For those who prefer a visual design surface with which to build their
workfl ow, SharePoint Designer has a new Visual Designer. However, you must have
Microsoft Visio Professional 2013 installed on your computer to use it.

 ➤ Stages: You no longer need to use just linear workfl ows that go from top to bottom as with
SharePoint 2010. Human business processes are not strictly linear. Typically these processes
have a number of tasks to be performed as a unit of work and processes generally include
one or more units of work. When a unit of work is completed, sometimes there is a pause for
a period of time before the next unit of work is triggered. Other times the business process

c15.indd 371c15.indd 371 19/01/13 11:29 AM19/01/13 11:29 AM

372 ❘ CHAPTER 15 DEVELOPING WORKFLOW APPLICATIONS FOR SHAREPOINT 2013

needs to return to a previously completed unit of work to have its steps performed again,
or it might proceed on to the next unit of work in a linear fashion. In human processes,
business rules and policy guide the transitions between one unit of work being completed
and what the next unit of work to be started should be. SharePoint 2013 workfl ows can now
better parallel these human process patterns by representing a unit of work as a specifi c set
of workfl ow actions within a stage. In your workfl ow, once a stage, (that is, unit of work),
is complete, you can choose the next stage for your workfl ow to transition to, or whether to
pause, return to a stage previously completed for further processing, or continue on to the
next stage in a linear fl ow. Therefore, stages give you the fl exibility to logically determine
your transition from one stage in your workfl ow to the next.

 ➤ Call Web Services: You can now extend your workfl ows to reach data beyond the
boundaries of SharePoint. You can reach out to different systems using HTTP/REST and
bring the external data you need into the context of your workfl ow process.

 ➤ Copy/Paste: In SharePoint’s Text-based Designer and the new Visual Designer, you can now
copy/paste individual lines or complete constructs.

 ➤ Looping: You can loop by using the transition between stages to continue to go to a specifi c
stage unless a specifi c criterion is met. You can also use the two new loop structures — one
describes a determinate loop, the other an indeterminate loop.

 ➤ Dictionary Variable: This new variable data type is suited for storing complex data, such as
a JSON object returned from a REST call or an array of data.

 ➤ Portability: Any workfl ow type can now be packaged as a .wsp fi le for redeploying from
site to site. You can export your SharePoint Designer workfl ow into a Visio .VSDX fi le and
import it into another site as well.

 ➤ App Step: This contains actions that run with app-level permissions in your workfl ow. This
means that these actions can run outside of the users’ permissions if your workfl ow needs to
perform some action on behalf of users where they do not have that level of permission.

 ➤ Interoperability: This provides support for interoperability with classic SharePoint 2010
workfl ows. Sometimes you might need to use a 2010 action inside of a SharePoint 2013 workfl ow,
but these two workfl ow engines are inherently incompatible. Two actions are available in
SharePoint Designer 2013 — Start a List Workfl ow, and Start a Site Workfl ow. With them, you
can pass parameters into a SharePoint 2010 workfl ow, and the 2010 workfl ow can execute its
actions and return data to the 2013 workfl ow that you can use for its processing.

Hopefully these new feature descriptions have whetted your appetite for wanting to get your hands
on the tools, so let’s take a look at them.

VISIO PROFESSIONAL, SHAREPOINT DESIGNER,
AND WORKFLOW

In SharePoint 2010 the ability to do iterative workfl ow development was introduced; for example,
between a business analyst using Microsoft Visio and a SharePoint power user using SharePoint
Designer. Having these two tools (each one more specifi cally suited to a particular role for a process

c15.indd 372c15.indd 372 19/01/13 11:29 AM19/01/13 11:29 AM

Visio Professional, SharePoint Designer, and Workfl ow ❘ 373

design participant) enabled a seamless way to divide the labor when creating automated business
processes for SharePoint. The business analyst, as the process owner, knowing the organic nature of
the process, could use Visio to describe it. The power user, as the SharePoint subject matter expert
(SME), could then import the fl ow, embellish it with the SharePoint-centric nuances and business
logic, publish and test it, and return the Visio fi le for further enhancements by the analyst. This
tool support for synergistic process design continues with SharePoint Designer 2013 and Visio
Professional 2013, but is enhanced.

As with Visio 2010, Visio Professional 2013 sports a Microsoft SharePoint 2013 Workfl ow
template. This template consists of three stencils: Actions, Conditions, and Components, as shown
in Figure 15-2.

FIGURE 15-2

The Visio shapes in each of these stencils essentially match one-for-one with their counterpart
construct in SharePoint Designer 2013. In typical Visio manner you simply drag and drop the
shapes you want on the drawing surface and connect them together. What’s important to note
here is the Stage Outline button under the Process tab on the ribbon in the SharePoint Workfl ow
group. When you click this button, Visio creates an entirely new page and names it Default Stage
Outline. You can see this in your page tabs at the bottom of Visio. The purpose of this view is for
the business analyst or someone not familiar with the SharePoint Action constructs. Therefore, the
Stage Outline lets him model the process fl ow using this higher-level view. With this view he uses the
Simple Stage shape on the Components stencil and any needed shapes from the Conditions stencil to
describe the fl ow. However, the business analyst’s design experience is not simply limited to the use

c15.indd 373c15.indd 373 19/01/13 11:29 AM19/01/13 11:29 AM

374 ❘ CHAPTER 15 DEVELOPING WORKFLOW APPLICATIONS FOR SHAREPOINT 2013

of the SharePoint-related shapes. It is possible to actually use any shape from any Visio stencil that
helps express the intent and requirements of the process. The business analyst therefore uses Visio as
if he were creating any other diagram — selecting and using the shapes that best represent what they
want to visually convey.

When the business analyst has completed his work, he can save the fi le, which is now an XML-
based structure with the fi le extension of .vsdx, to any location where the SharePoint subject matter
expert can retrieve it.

The SharePoint subject matter expert has a couple options upon notifi cation of the available Visio
fi le. She can open it using Visio, make her additions, and save it again, or she can import the fi le
directly into SPD. Notice that the business analyst does not need to “export” the fi le as was the
practice in SharePoint 2010. SPD 2013 can read the new .vsdx fi le format natively so no need exists
for the .vwi intermediate fi le format if the diagram is created with Visio 2013. However, SPD can
still import Visio 2010 .vwi when needed.

When the Visio document is imported into SPD, the subject matter expert can fi rst check for errors.
SharePoint Designer will review the imported fi le and list any issues found so the SME can resolve
them. These can be anything from a line not being connected to a shape, to a Yes or No label
missing from a decision, to a shape being used inside the fl ow that is not a SharePoint workfl ow
shape. The SME can work through each issue until the workfl ow contains no errors.

One of the really nice new features in SharePoint Designer is that SMEs can now choose to work
within two different designer views to build out their workfl ows. They can use the Visual Designer
view, which is Visio embedded in SPD, as shown in Figure 15-3 (Wow!), or using the Views button
in the ribbon, they can toggle to the traditional text-based design view, as shown in Figure 15-4.
This provides maximum fl exibility in the workfl ow design-time experience!

FIGURE 15-3

c15.indd 374c15.indd 374 19/01/13 11:29 AM19/01/13 11:29 AM

Visio Professional, SharePoint Designer, and Workfl ow ❘ 375

Visio and SharePoint Designer are certainly fi rst-class tools to use for collaboratively designing and
building your SharePoint workfl ows. The following Try It Out provides you fi rst-hand practice with
these tools where you will fi rst assume the role of a business analyst using Visio 2013 to design the
workfl ow from the business perspective, and then you will assume the role of the SharePoint subject
matter expert to complete the workfl ow by adding the SharePoint-specifi c confi guration details and
deploying.

TRY IT OUT Employee Time card Approval Workfl ow with Visio
and SharePoint Designer

In this exercise you learn the basics for using Visio Pro and SharePoint Designer by building an
employee time card approval process. When an employee submits a time card indicating her total hours
worked for the week, the workfl ow performs a calculation to determine whether the employee worked
overtime. When overtime hours are present, these hours are updated to a column in the SharePoint
list and must be reviewed by the manager for payment approval. If approved, the hours are paid. If
rejected, the employee total hours worked for the week will be reset to 40, but the overtime hours will
remain recorded on the list, too, and available for Human Resources review. For this Try It Out you
will optionally need Visio Professional 2013 (if you will be using the Visual Designer) and SharePoint
Designer 2013. You can complete this exercise with the SharePoint Designer Text-based Designer alone.

FIGURE 15-4

c15.indd 375c15.indd 375 19/01/13 11:29 AM19/01/13 11:29 AM

376 ❘ CHAPTER 15 DEVELOPING WORKFLOW APPLICATIONS FOR SHAREPOINT 2013

 1. Log in to your Offi ce 365 SharePoint to a site where you can create lists.

 2. Click Site Contents in the left navigation bar and click the Add an app icon.

 3. Click the Custom List tile. In the Adding Custom List dialog, type Employees and click Create.

 4. On the Site Contents page, locate and click the tile for your new Employees list. In the ribbon,
click the List tab and click List Settings.

 5. Under the Columns section, click the Create column link and for:

 ➤ Column name: EmpID

 ➤ Require that this column contains information: Yes

 ➤ Enforce unique values: Yes

 ➤ Number of decimal places: 0

Click OK, and when prompted to create an index, click Yes.

 6. Click the Employees link at the top of the page to return to the Employees list. To add a new
item, click the plus sign (+) and create at least three employees. Use the Title column to enter the
employee’s fi rst and last name for simplicity and provide each with a unique employee ID number.

 7. Click Site Contents in the left navigation bar and click the Add an app icon.

 8. Click the Custom List tile. In the Adding Custom List dialog, type Employee Time Card and
click Create.

 9. On the Site Contents page, locate and click the tile for your new Employee Time Card list. In the
ribbon, click the List tab and click List Settings.

 10. Under the Columns section, click the Create column link and complete the following fi elds as
indicated (leave the default value unless directed to change it):

 ➤ Column name: Employee Name

 ➤ For the column type: Lookup (information already on this site)

 ➤ Require that this column contains information: Yes

 ➤ Enforce unique values: No

 ➤ Get information from: Employees

 ➤ In this column: Title

 ➤ Add a column to show each of these additional fi elds: EmpID

Click OK, and when prompted to create an index, click Yes.

 11. Click the Create column link and complete the following fi elds as indicated:

 ➤ Column name: Total Hours

 ➤ For the column type: Number

 ➤ Require that this column contains information: Yes

Click OK.

c15.indd 376c15.indd 376 19/01/13 11:29 AM19/01/13 11:29 AM

Visio Professional, SharePoint Designer, and Workfl ow ❘ 377

 12. Click the Create column link and enter the following:

 ➤ Column name: Overtime Hours

 ➤ For the column type: Number

Click OK.

 13. Click the Employee Time Card link at the top of the page to return to the Employee Time Card
list. To add a new item, click the plus sign (+) and create at least one employee time card with the
following values:

 ➤ Title: Week of mm/dd-dd/20yy

 ➤ Employee Name: Select an employee from your list

 ➤ Total Hours: 42

 ➤ Overtime Hours: 2

Click Save.

 14. With the lists in place, you will now assume the role of the business analyst who will create the
Visio workfl ow for the employee time card process. Open Visio Professional 2013 and select the
Microsoft SharePoint 2013 Workfl ow template. Click Create.

 15. As a business analyst, you do not work with the specifi c SharePoint shapes that describe Actions; you
work at a higher process fl ow level. Click the Process tab in the ribbon and click the Stage Outline
icon. You can zoom in on the size of the design surface if you want the Stage shape to be bigger.

 16. Visio has placed a default fi rst stage on the design surface; double-click it and type Submit time card.

 17. In the Visio Stencils navigation bar, click Components ➪ SharePoint 2013 Workfl ow. Drag three
Simple Stage shapes onto the design surface, double-click each one individually, and type one of
the following Text labels for each:

 ➤ Manager approval

 ➤ Reset total hours

 ➤ Pay employee

 18. In the Visio Stencils navigation bar, click Conditions ➪ SharePoint 2013 Workfl ow. Drag two “If
any value equals value” shapes onto the design surface, double-click each one individually, and
type one of the following Text labels for each:

 ➤ Is overtime present?

 ➤ Is overtime approved?

 19. Using Figure 15-5 as a guide lay out your shapes accordingly. Click the Home tab in the ribbon
and select the Connector in the Tools groups. To connect one shape to the next, click and hold
inside the shape you want to start with and drag into the shape you want to end with. The
connector snaps automatically in place. When you have all the connectors in place for all the
shapes, you need to label the Yes/No lines exiting the decision shapes. Right-click each line and
select the Yes/No label as appropriate for that line.

c15.indd 377c15.indd 377 19/01/13 11:29 AM19/01/13 11:29 AM

378 ❘ CHAPTER 15 DEVELOPING WORKFLOW APPLICATIONS FOR SHAREPOINT 2013

FIGURE 15-5

 20. Save the fi le to disk with the name, EmployeeTimeCard-BusAnalyst. You will import it into
SharePoint Designer. Close Visio.

 21. Open SharePoint Designer 2013 and click the Open Site tile. In the Open Site dialog, enter the
full URL path to the site collection where you
created the Employees and Employee Time
Card lists. When the site opens, in the left
navigation pane, click Workfl ows under Site
Objects.

 22. In the ribbon, click Import from Visio
and select Import Visio 2013 Diagram. In
the fi le selection dialog, navigate to your
EmployeeTimeCard-BusAnalyst fi le, select
it, and click Open.

 23. In the Create Workfl ow dialog, type
Timecard Approval for the Name, and
select List Workfl ow for the Workfl ow Type
and select Employee Time Card for the
SharePoint list so your confi guration looks
like Figure 15-6. Click OK.

FIGURE 15-6

c15.indd 378c15.indd 378 19/01/13 11:29 AM19/01/13 11:29 AM

Visio Professional, SharePoint Designer, and Workfl ow ❘ 379

 24. By default, when you import a Visio diagram you will be in the Visual Designer. Also notice that
you are still in the high-level view of the business analyst. However, now you are in the role of the
power user/SharePoint subject matter expert, so you’ll want to work at the lower level of actually
adding specifi c SharePoint Actions and steps. In the Visual Designer ribbon, click the Generate
Workfl ow Outline icon in the Manage group.

 25. In the workfl ow outline, you can now build out, within each of the blue stage containers, all
the logic needed to process that stage. This can include any number of actions, steps, loops,
conditions, and so forth. In the SPD Visual Designer view, you do this all just as you would in
Visio.

 26. Before you confi gure your workfl ow, you must fi rst create one variable to hold the overtime hours
that the workfl ow will calculate. In the ribbon, click Local Variables and click Add.

 27. In the Edit Variable dialog, type OvertimeHours for the Name and select Number for the Type.

 28. In the left navigation bar, click Actions - SharePoint 2013 Workfl ows. Locate the Do Calculation
shape, and drag and drop it on the Submit time card Stage. Hover over the Do Calculation shape
and an icon with a gear and curved arrow appears. Hover over it, click the drop-down arrow, and
select LeftOperand. A dialog opens so you can confi gure the calculation.

 29. Click the LeftOperand row in the dialog and click the fx button. In the Defi ne Workfl ow Lookup
dialog select the following options:

 ➤ Data source: Current Item

 ➤ Field from source: Total Hours

Click OK.

 30. Click the Operator row in the dialog, click the list box drop-down on the right, and select Minus.

 31. Click the RightOperand row in the dialog, click the white space on the right side under Minus
and type 40.

 32. Click the To row in the dialog, click the drop-down arrow on the right side, and select Variable:
OvertimeHours. Click OK.

 33. In the left navigation bar locate the Set fi eld in current item shape, and drag and drop it on the
Submit time card Stage following the Do calculation. Here you want to automatically record in
the list the number of overtime hours that were worked by the employee. Hover over the Set fi eld
in current item shape, click the drop-down arrow, and select Field.

 ➤ For Field, select Overtime Hours

 ➤ For Value, click fx and select Workfl ow Variables and Parameters for Data Source

 ➤ For Field from source select Variable: OvertimeHours

Click OK.

 34. Hover over the “Is overtime present?” shape, click the drop-down arrow, and select Value. A
dialog opens so you can confi gure the logic for this condition.

 35. Click the top Value row in the dialog and click the fx button. In the Defi ne Workfl ow Lookup
dialog, complete the following fi elds as indicated:

c15.indd 379c15.indd 379 19/01/13 11:29 AM19/01/13 11:29 AM

380 ❘ CHAPTER 15 DEVELOPING WORKFLOW APPLICATIONS FOR SHAREPOINT 2013

 ➤ Data source: Workfl ow Variables and Parameters

 ➤ Field from source: Variable: OvertimeHours

Click OK.

 36. Click the Operator row in the dialog, click the list box drop-down on the right and select Is
greater than.

 37. Click the bottom Value row in the dialog, click in the white space on the right side under Is
greater than, and type 0. Click OK to close the dialog.

 38. In the left navigation panel, click Actions - SharePoint 2013 Workfl ow. Locate the Start a task
process shape and drag and drop it onto the Manager approval Stage.

 39. Hover over the Start a task process action and click the down arrow to open the SPD properties.
Select Process Settings.

 40. In the Start a Task Process dialog perform the following:

 a. Click the ellipsis (…) beside Participants. In the Select users dialog, select your login name
from the left list. Click the Add>> button to add your name to the left column under
Selected User. For simplicity, your login is being made the only approver for this workfl ow.
Click OK.

 b. In the Task Title, type: Overtime Approval.

 c. In the Description, click the Open editor for body button. In the String Builder dialog, type
Please approve the overtime of and be sure to leave a space following the word of.

 d. Click the Add or Change Lookup at the bottom of the dialog, and in the Lookup for String
dialog, for Data source, select Workfl ow Variables and Parameters and for the Field from
source, select OvertimeHours. Click OK to close the Lookup for String dialog.

 e. In the String Builder dialog, following the value just inserted, add a space and type hours
for (including a space following)
and click the Add or Change Lookup
button.

 f. In the Lookup for String dialog, for
the Data source, select Current Item
and for the Field from source, select
Employee Name. Click OK to close
the Lookup for String dialog.

 g. In the String Builder dialog,
following the value just inserted, type
a period. The fully constructed body
of your task item should look like
Figure 15-7.

 h. Click OK to close the String Builder
dialog.

FIGURE 15-7

c15.indd 380c15.indd 380 19/01/13 11:29 AM19/01/13 11:29 AM

Visio Professional, SharePoint Designer, and Workfl ow ❘ 381

 i. In the Start a Task Process dialog, click to expand the Task Options. For Completion
Criteria select Wait for fi rst response.

 j. In the Start a Task Process dialog, click to expand the Outcome Options. For Default
Outcome, select Rejected. Click OK to close the Start a Task Process dialog.

 41. In the Visual Designer, hover over the “Is overtime approved?” shape, and click the drop-down
menu on the SPD properties.

 42. Click the top Value row in the dialog and click the fx button. In the Defi ne Workfl ow Lookup
dialog select the following options:

 ➤ Data source: Workfl ow Variables and Parameters

 ➤ Field from source: Variable: Outcome

Click OK.

 43. Click the Operator row in the dialog and click the list box drop-down on the right, and select Equals.

 44. Click the bottom Value row and select Approved. Click OK to close the dialog.

 45. The last part of the business rule to implement is that when the overtime hours are rejected, then
the Total Hours submitted need to be automatically set back to 40. In the left navigation bar
locate the Set fi eld in current item shape, and drag and drop it on the Reset total hours Stage.
Hover over the Set fi eld in current item shape, click the drop-down arrow, and select Field.

 ➤ For Field: Total Hours

 ➤ For Value: 40

Click OK. Notice that you are not resetting the overtime hours, because you still want to record
in the list that overtime was worked, even if it was not approved for payment.

 46. To show that you could have done all this in the Text-based Designer, too, in the ribbon click
Views and select Text-based Designer. You can use the View option to toggle between these
designer options and use the one with which you feel the most comfortable.

 47. Look at the top of your designer form and you will see your tab labeled Timecard Approval and
a number of subtabs. Click the Timecard Approval subtab to return to the page where you can
manage the workfl ow settings. Under Start Options, select the fi rst two for starting manually and
automatically when an item is created.

 48. To publish your list workfl ow, click the Publish button. SPD publishes the workfl ow to the list,
where you can check it out.

 49. In Offi ce 365 navigate to your Employee Time Card list. Create a new item using the following
values:

 ➤ Title: Week of mm/dd-dd/20yy

 ➤ Employee Name: Select an employee from your list

 ➤ Total Hours: 40

 ➤ Overtime Hours: This value will automatically be calculated

c15.indd 381c15.indd 381 19/01/13 11:29 AM19/01/13 11:29 AM

382 ❘ CHAPTER 15 DEVELOPING WORKFLOW APPLICATIONS FOR SHAREPOINT 2013

Click Save.

 50. Refresh the browser until you see the Timecard Approval status of Pay Employee. Because there
was no overtime, no manager approval was required.

 51. Create a new item using the following values:

 ➤ Title: Week of mm/dd-dd/20yy

 ➤ Employee Name: Select an employee from your list

 ➤ Total Hours: 44

 ➤ Overtime Hours: This value will automatically be calculated

Click Save.

 52. Refresh the browser until you see the Timecard Approval status of Manager approval. Click the
Manager approval link. Because you designated your login to be the approver, you can approve/
reject the overtime. On the Workfl ow Status: Timecard Approval page, click the Overtime Approval
link in the middle of the page. On the item page for the approval you can see the description text
you confi gured stating the number of hours of overtime calculated and for which employee.

 53. Click the Edit Item button in the ribbon, and click Approved. Return to the Employee Time Card
list and see that the Timecard Approval status has updated to Pay employee.

 54. Create a new item using the following values:

 ➤ Title: Week of mm/dd-dd/20yy

 ➤ Employee Name: Select an employee from your list

 ➤ Total Hours: 48

 ➤ Overtime Hours: This value will automatically be calculated

Click Save.

 55. Refresh the browser until you see the Timecard Approval status of Manager approval. Click the
Manager approval link. Click the Overtime Approval link in the middle of the page. On the item
page for the approval, click the Edit Item button in the ribbon, and click Rejected. Return to the
Employee Time Card list and see that the Timecard Approval status has updated to Reset total
hours. Your outcomes should be comparable to Figure 15-8.

FIGURE 15-8

c15.indd 382c15.indd 382 19/01/13 11:29 AM19/01/13 11:29 AM

Workfl ow and Visual Studio ❘ 383

How It Works

In this Try It Out you played the role of two different personas, a business analyst and a SharePoint
subject matter expert, each with his or her own set of skills and business acumen that they bring to
the workfl ow building processes. Yet in both roles, you experienced the value of having the Visio and
SharePoint Designer tools to design the logic for processing. In Visio you constructed the high-level
stages and decisions in the business fl ow. In SharePoint Designer you drilled down deeper into each
stage, confi guring the Actions to execute in the workfl ow engine. Your completed workfl ow included
a calculation, setting a couple column values in the SharePoint list (Total Hours and Overtime Hours),
and decision logic. You also saw that some tasks, such as the Start a task process, have rich confi gura-
tion capabilities for constructing dynamic, data-driven content for the user to see when the workfl ow
runs and presenting the UI for the workfl ow approver to interact with.

At run time, the workfl ow started automatically upon a new list item being entered. The workfl ow then
sent an e-mail to the approver(s) and the subject and body of the e-mail contained the same information
as the workfl ow approval/rejection form. The e-mail provided a link directly to the workfl ow task on
SharePoint, making it convenient for the approver to follow through and work with it. Alternatively, as you
experienced in the exercise, on the Employee Time Card list page an approver can simply click the link for
manager approval on a list item to navigate to the workfl ow page to approve or reject the overtime hours.

In your business context, whether you will be in the role of both the business analyst and the
SharePoint subject matter expert, or if there is truly a division of labor within your organization
and each role is performed separately, Visio Professional and SharePoint Designer are the tools
of trade for designing and building your business process workfl ows for SharePoint 2013. As you
explore and use these tools more fully you will quickly get a sense for the broad and deep types of
workfl ows these two greatly enhanced tools provide you in this release.

WORKFLOW AND VISUAL STUDIO

Sometimes there is the need to go beyond the out-of-box capabilities of Visio Professional and
SharePoint Designer, and in those cases you can fall back to Visual Studio and create affectively
anything you need. With Visual Studio developers can create custom actions that can be made
available to SharePoint Designer, workfl ow templates that can be used from site to site, and deep
workfl ows irrespective of how complex they may get.

New in this release for Visual Studio is that SharePoint workfl ows are based on Windows Workfl ow
Foundation 4. Therefore, developers use a visual designer to create a XAML-based workfl ow so no
compiled code outputs from the design process. This provides run time consistency for workfl ows
built using either SharePoint Designer or Visual Studio. As with SharePoint Designer, any workfl ow
developed with Visual Studio can execute equally well in the Offi ce 365 environment, which is a huge
win and opens up enterprise-grade, workfl ow solution opportunities to now land in SharePoint Online.

For those new to SharePoint workfl ow, an activity is a Windows Workfl ow Foundation platform
term that describes a fundamental building block of a workfl ow and is a unit of workfl ow
execution. An action is a SharePoint Designer term describing a higher-level, more human-friendly
abstraction that is a fundamental unit used in composition with other actions to build SharePoint

c15.indd 383c15.indd 383 19/01/13 11:29 AM19/01/13 11:29 AM

384 ❘ CHAPTER 15 DEVELOPING WORKFLOW APPLICATIONS FOR SHAREPOINT 2013

workfl ows. Normally, you can assume that one Visual Studio activity maps to one action in
SharePoint Designer. However, sometimes for clarity within the SharePoint Designer UI, a single
activity might sit behind actions with different names in the UI to avoid end-user confusion in which
one to use in a given situation.

With Visual Studio you can create custom activities, and these come in two fl avors: custom
declarative activity and custom code activity. Custom code activities can be built and used in
on-premises SharePoint environments only because they run on the Workfl ow Manager server and
allow full access to .NET. These code-based activities cannot be deployed to Offi ce 365 because the
Workfl ow Manager activity list is locked down for security purposes. A custom declarative activity,
because it is XAML-based, not code-based, can be created using Visual Studio as well but these
custom activities can run in both the on-premises and online environments equally well.

In the following Try It Out you build a custom declarative activity that can be used by SharePoint
Designer and deployed to either SharePoint on-premises or SharePoint Online.

TRY IT OUT Create a Custom Declarative Workfl ow Activity in Visual Studio
(CustomActionGetEmployeeInfoFinal.zip)

In this exercise you create a custom activity that will become available in SharePoint Designer. The
activity will accept an employee number as input and call a REST-based endpoint to retrieve additional
employee information. The retrieved data will be stored in a dictionary object. Note: This Try It Out
can only be developed against a test SharePoint 2013 server on-premises setup. Visual Studio 2012 does
not support remote development of SharePoint solutions. These sandboxed or farm-level solutions can
only be developed against locally installed versions of SharePoint Foundation or SharePoint Server.
Remote development is supported only for Apps for SharePoint 2013.

 1. Run Visual Studio 2012 as Administrator. Select New Project.

 2. In the New Project dialog, expand the Templates ➪ Visual C# ➪ Offi ce/SharePoint ➪
SharePoint Solutions nodes. Select SharePoint 2013 ➪ Empty Project and provide the name
CustomActionGetEmployeeInfo. Click OK.

 3. In the Specify the site and security level for debugging dialog, set the SharePoint site URL to your
local test SharePoint site and select Deploy as a sandboxed solution. Click Finish.

 4. In Solution Explorer, right-click the project, and select Add ➪ New item. In the Add New Item
dialog, select Workfl ow Custom Activity, name it GetEmployeeInfoActivity, and click OK.

 5. The Workfl ow Designer opens with the initial status of your workfl ow and an empty Sequence
activity on the page. To design your custom activity to be generic, where it can be hosted in any
workfl ow at run time, take in any employee number passed in by a host workfl ow, and output a
consumable object for the host workfl ow, you need to defi ne some arguments. At the bottom of
the design canvas are three tabs: Variables, Arguments, and Imports. Click the Arguments tab.

 6. To create the input parameter, click the Create Argument text box, type EmployeeID for the
Name and complete the following fi elds as indicated:

 ➤ Direction: In

 ➤ Argument type: Int32

 ➤ Do not provide a default value.

c15.indd 384c15.indd 384 19/01/13 11:29 AM19/01/13 11:29 AM

Workfl ow and Visual Studio ❘ 385

 7. For the output parameter, click the Create Argument text box, type JsonODataResponse for the
Name and complete the following fi elds as indicated:

 ➤ Direction: Out

 ➤ Argument type: Click the drop-down menu and select Browse for Types. In the Browse
and Select a .NET Type dialog, type DynamicValue. In the selection list, locate
Microsoft.Activities, select DynamicValue.

 ➤ Do not provide a default value.

Click OK.

 8. Using the Visual Studio View menu, make sure the Toolbox is open and pinned for convenience.
In the Toolbox, expand the Messaging node. Select HttpSend in the Toolbox and drag and drop it
inside the Sequence.

 9. Click on HttpSend. In the Properties pane complete the following fi elds as indicated:

 ➤ Request Method: GET

 ➤ Request URI: "http://services.odata.org/Northwind/Northwind.svc/Employees("
+ EmployeeID + ")?$select=EmployeeID,LastName,FirstName,HomePhone,Report
sTo&$format=json" You’ll notice that you are dynamically providing your EmployeeID
argument at run time to retrieve only the information for the employee number that is
passed into this activity.

 ➤ Response: ResponseContent: JsonODataResponse

Figure 15-9 shows what your custom action should look like:

FIGURE 15-9

c15.indd 385c15.indd 385 19/01/13 11:29 AM19/01/13 11:29 AM

386 ❘ CHAPTER 15 DEVELOPING WORKFLOW APPLICATIONS FOR SHAREPOINT 2013

 10. In the Solution Explorer, expand the workfl ow node and double-click the .actions4 fi le. A
designer is not available for confi guring this fi le so you need to build it manually by typing in the
XML. The .actions4 fi le defi nes the visual appearance of your custom action when deployed
to SharePoint. This is what the workfl ow designers will interact with in the Visual and Text-
based Designer views. To construct the action sentence and identify and map the corresponding
input and output arguments to it accordingly, delete the <RuleDesigner>...</RuleDesigner>
elements currently in the fi le and in their place add the following:

 <RuleDesigner Sentence="Get employee data for %1 (output to %2)">
 <FieldBind Field="EmployeeID"
 Text="Employee Number"
 Id="1"
 DesignerType="TextArea"
 DisplayName="Get Employee Info"
 />
 <FieldBind Field="JsonODataResponse"
 Text="JsonODataResponse"
 Id="2"
 DesignerType="ParameterNames"
 DisplayName="JsonODataResponse"
 />
 </RuleDesigner>
 <Parameters>
 <Parameter Name="EmployeeID"
 Type="System.Int32, mscorlib"
 Direction="In"
 DesignerType="TextArea"
 Description="The employee number"
 />
 <Parameter Name="JsonODataResponse"
 Type="Microsoft.Activities.DynamicValue,
Microsoft.Activities,
 Culture=neutral, PublicKeyToken=null"
 Direction="Out"
 DesignerType="ParameterNames"
 Description="Output variable to store the contents
of the HTTP request."
 />
 </Parameters>

 11. Build the project to make sure there are no errors, right-click the project node, and select Deploy
to deploy the .WSP fi le to your test SharePoint site. You will now have a workfl ow action available
in SPD that, when given an employee ID, will make a REST call to the employee data source and
return information about the employee that can be used in workfl ow processing.

 12. After the deployment is complete, in SharePoint, navigate to the site collection to which you
deployed the fi le. Select Site Contents, click the Add an app tile, and click the Custom List tile.
Name the list Employee's Manager.

 13. Click the Employee's Manager tile, click the List tab, and click List Settings in the ribbon.

 14. On the Settings page click Create column link and complete the following fi elds as indicated:

c15.indd 386c15.indd 386 19/01/13 11:29 AM19/01/13 11:29 AM

Workfl ow and Visual Studio ❘ 387

 ➤ Column name: EmpID

 ➤ Type: Number

 ➤ Require: Yes

 ➤ Number of decimal places: 0

Click OK.

 15. Click Create column link and complete the following fi elds as indicated:

 ➤ Column name: EmpFName

 ➤ Type: Single line of text

Click OK.

 16. Click Create column link and complete the following fi elds as indicated:

 ➤ Column name: EmpLName

 ➤ Type: Single line of text

Click OK.

 17. Click Create column link and complete the following fi elds as indicated:

 ➤ Column name: ManagerFName

 ➤ Type: Single line of text

Click OK.

 18. Click Create column link and complete the following fi elds as indicated:

 ➤ Column name: ManagerLName

 ➤ Type: Single line of text

Click OK.

 19. Return to the Employee's Manager list, and click New item. For the Title type Test 1, and for the
EmpID type 1. Leave the other columns empty; the workfl ow will fi ll those in. Click Save.

 20. Start SharePoint Designer 2013 and open the site collection where you deployed the custom
action. When the site opens, in the left navigation pane select Workfl ows.

 21. In the ribbon, click the List Workfl ow drop-down menu and select Employee’s Manager.

 22. In the Create List Workfl ow dialog, for the name, type Get Employee Manager. Click OK.

 23. Here you use the Text-based Designer to build the workfl ow. Click on Stage 1 and type the name
Get Manager Name.

 24. Click directly under the phrase, “Start typing or use the Insert group on the Ribbon.” Type Get
and press Enter. Your new GetEmployeeInfoActivity appears; select it. (This activity is also
available in the Actions in the ribbon.)

c15.indd 387c15.indd 387 19/01/13 11:29 AM19/01/13 11:29 AM

388 ❘ CHAPTER 15 DEVELOPING WORKFLOW APPLICATIONS FOR SHAREPOINT 2013

 25. Click the Employee Number link, and click fx. In the Lookup for Integer dialog, select Current
Item and select EmpID from the fi eld source. Click OK.

You don’t need to change the second link in the sentence; SPD automatically creates a dictionary
variable Variable: JsonODataResponse for you for the returned JSON object from the REST
call. SPD makes this default selection based on the JSON object you built into the custom action.

 26. Click just under your fi rst sentence, type Get, and press Enter. Select Get an Item from a
Dictionary. A number of data values were returned from the REST call and you now need to
select which ones are important to your processing. It’s best to fi rst think about how the data lays
out in the returned object. The following is the returned JSON object for the employee with the
EmployeeID of 1. To identify a specifi c data element, you use the notation object/field, so d/
FirstName will retrieve the value “Nancy” and so on.

{
"d" : {
"__metadata": {
"uri": "http://services.odata.org/Northwind/Northwind.svc/Employees(1)",
"type": "NorthwindModel.Employee"
},
"EmployeeID": 1,
"LastName": "Davolio",
"FirstName": "Nancy",
"HomePhone": "(206) 555-9857",
"ReportsTo": 2
}
}

 27. To confi gure the Get an Item from a Directory action, click the item by name or path link,
type d/FirstName, click the dictionary link, select Variable: JsonODataResponse, click the
item link, and select Create a new variable. In the Edit Variable dialog, type strEmpFN for the
Name and select String for the Type.

 28. Hover over the end of the just confi gured sentence, click the drop-down arrow, and select Copy
Action.

 29. Click right below the sentence and click Paste in the ribbon. Delete d/FirstName and type
d/LastName and create a new String output variable strEmpLN, following the pattern you used
in step 27 for creating a new variable.

 30. Copy and paste the action again, delete d/LastName and type d/ReportsTo, and create a new
output Integer variable intReportsTo, following the pattern you used in step 27 for creating a
new variable.

 31. Now retrieve the employee’s manager information: Copy the fi rst line of the workfl ow, which is
your custom action line, and paste it following the last line you just completed in step 30. Click
the CurrentItem:EmpID link. In the Lookup for Integer dialog, select Workfl ow Variables and
Parameters for the Data source and select, Variable: intReportsTo for the Field source.
Click OK.

c15.indd 388c15.indd 388 19/01/13 11:29 AM19/01/13 11:29 AM

http://services.odata.org/Northwind/Northwind.svc/Employees(1)

Workfl ow and Visual Studio ❘ 389

 32. You can now copy the lines that retrieve the fi rst and last names from the response object and
paste them right after the last line from step 31. However, both of these lines should each create a
new String variable: one for strManagerFN and another for strManagerLN. Follow the pattern
you used in step 27 for creating a new variable for each of these.

 33. The last thing to do is use the data values you have collected in the variables to set the values in
the columns on your list for this employee. Below the last line from step 32, type Set and press
Enter. Select Set Field in Current Item.

 34. Click the field link, and select EmpFName. Click the values link and click fx. In the Defi ne
Workfl ow Lookup, select Workfl ow Variables and Parameters for the Data source and select
Variable: intReportsTo for the fi eld source.

 35. Repeat step 34 for each of the current item columns EmpLName, ManagerFName, and
ManagerLName, and confi gure each of their respective variables as in step 34.

 36. To fi nalize the workfl ow, click the Transition to stage area, type Go, and press Enter. Click a
stage and select End of Workfl ow.

 37. In the ribbon, click Save to save your
workfl ow. You can also click Check for
errors to validate your code. Your completed
workfl ow should look like Figure 15-10.

 38. In the ribbon, click Publish.

 39. In the browser, navigate to your Employee’s
Manager site. On the fi rst item you created
in step 19, click the ellipsis (…) and select
Workfl ows.

 40. On the Start a New Workfl ow page, click
the Get Employee Manager link to start the
workfl ow. When the workfl ow starts you will
be returned to the Employee's Manager list.
You can keep refreshing the page until you
see the additional columns fi lled with data via your custom action!

How It Works

In this Try It Out you saw the pattern for how to create a custom activity that can be surfaced in
SharePoint Designer and reused across any number of workfl ows that you choose. In this case you cre-
ated a reusable activity that, when handed an employee identifi cation number, will retrieve a set of data
about that employee. Although the implementation within this example was elementary, you could
potentially navigate up the ReportsTo hierarchy by adding a looping structure to the workfl ow until
the logical top of the organization structure is reached. You could also use the ReportTo to determine
an employee’s manager to make a manager’s approval process more dynamic because any employee’s
manager can now be retrieved on demand.

In this exercise you also experienced using one of the very useful capabilities within the workfl ow: the
dictionary object. The ability to have a complex data object handled seamlessly for you, so that all you

FIGURE 15-10

c15.indd 389c15.indd 389 19/01/13 11:29 AM19/01/13 11:29 AM

390 ❘ CHAPTER 15 DEVELOPING WORKFLOW APPLICATIONS FOR SHAREPOINT 2013

need to do is know the path to the data elements helps you focus on solving the business problem at
hand and eliminates the need to write the plumbing code, too.

Lastly, this exercise gave you a glimpse into the .action4 fi le. This is the fi le used to confi gure the
design-time presentation of the Action that will be used in SharePoint Designer. Documentation is still
pending at the time of this writing on how exactly a developer can build out the XML for this fi le to
create a compelling user experience for your custom designed actions.

Developing custom declarative activities is a way to provide workfl ow designers the design-
time actions they need to build workfl ows quickly and effi ciently. These actions can consolidate
workfl ow structures into a single action that seems to be repetitively confi gured across workfl ows or
encapsulates business logic for policy enforcement and compliance that can easily be placed on the
design surface and confi gured. After developing them, you deploy SharePoint declarative activities
as a .wsp SharePoint solution package. These can be uploaded to a solutions gallery in any site
collection for use online or on-premises or managed with other farm-level solutions in on-premises
installations.

WORKFLOW IN APPS FOR SHAREPOINT

For developers building Apps for SharePoint, whether SharePoint-hosted, Provider-hosted, or
Autohosted, Visual Studio provides the tooling for including SharePoint workfl ows as a part of your
solution. Therefore, you can augment your Apps for SharePoint with the workfl ow capabilities to
encapsulate the business processes you want to deliver with your solutions.

In this Try It Out you learn to include a workfl ow in your app for SharePoint that shows a pattern
for an expense approval workfl ow structure.

TRY IT OUT App for SharePoint with a Workfl ow (C15WFAppForSP.zip)

This exercise uses Offi ce 365 but you can use your test on-premises SharePoint setup as well.

 1. Run Visual Studio 2012 as Administrator. Select New Project.

 2. In the New Project dialog, expand the Templates ➪ Visual C# ➪ Offi ce/SharePoint ➪ Apps nodes.
Select App for SharePoint 2013 and provide the name C15WFAppForSP. Click OK.

 3. In the Specify the app for SharePoint dialog, set the SharePoint site URL to which you will deploy
the app, and choose SharePoint-hosted as the host for your App for SharePoint. Click Finish.

 4. In the Solution Explorer, right-click the project node, and select Add ➪ New item. In the Add
New Item dialog, select Site Column, name it Manager, and click Add.

 5. In the Solution Explorer, right-click the project node, and select Add ➪ New item. In the Add
New Item dialog, select Site Column, name it Disposition, and click Add.

 6. In the Solution Explorer, right-click the project node, and select Add ➪ New item. In the Add
New Item dialog, select Site Column, name it EmpNum, and click Add.

c15.indd 390c15.indd 390 19/01/13 11:29 AM19/01/13 11:29 AM

Workfl ow in Apps for SharePoint ❘ 391

 7. Open the Elements.xml fi le for EmpNum and modify the following two attributes as follows:

Type="Integer"

Required="TRUE"

 8. In the Solution Explorer, right-click the project node, and select Add ➪ New item. In the Add
New Item dialog, select Site Column, name it ExpenseAmount, and click Add.

 9. Open the Elements.xml fi le for ExpenseAmount and modify the following two attributes as
follows:

Type="Number"

Required="TRUE"

 10. In the Solution Explorer, right-click the project node, and select Add ➪ New item. In the Add
New Item dialog, select List, name it ListToHostWorkflow, and click Add.

 11. In the Choose List Settings dialog, leave the defaults, and click Finish.

 12. In the List Designer, click Title, and type Expense Description. Leave it marked as required.

 13. Additionally, in the List Designer, add the columns Emp Num and Expense Amount (make these
required), and add Disposition and Manager (these two are not marked required; your workfl ow
will populate these with values).

 14. In Solution Explorer, expand the Pages node, and double-click the Default.aspx to open it. Add
the following after the current <p>…</p> element on the page and prior to the </div> tag:

<p>
 1) Create an expense
approval item in the List To Host Workflow
</p>

 15. Click Start to verify that the SharePoint list structure is all set up correctly and that it works up to
this point.

 16. In the Solution Explorer, right-click the project node, and select Add ➪ New item. In the Add
New Item dialog, select Workfl ow, name it AppListWorkflow, and click Add.

 17. In the Specify the workfl ow name for debugging dialog, click Next.

 18. In the “Select the lists you will use when debugging” make the following selections as indicated:

 ➤ The library or list to associate your workfl ow with: ListToHostWorkflow

 ➤ The history and task lists: <Create New>

Click Next.

 19. In the Specify the conditions for how your workfl ow is started, select “A user manually starts the
workfl ow” and “The workfl ow starts automatically when an item is created.” Click Finish.

Figure 15-11 provides the high-level structure for this mock expense approval workfl ow. It shows
in an app for SharePoint the pattern for how to get oriented to the context of the current list and
item, retrieve data from the current item, and then use this data to bootstrap a lookup into an

c15.indd 391c15.indd 391 19/01/13 11:29 AM19/01/13 11:29 AM

392 ❘ CHAPTER 15 DEVELOPING WORKFLOW APPLICATIONS FOR SHAREPOINT 2013

external system to retrieve additional data
for use in the workfl ow process. The work-
fl ow you build here executes end to end,
but the location where you would confi gure
either a SingleTask or ComplexTask activity
is stubbed in for reference; you will not con-
fi gure one of these in this exercise.

 20. In the Workfl ow Designer, click the title
bar for the initial sequence and for its
DisplayName type Expense Approval.

 21. Click the Expense Approval sequence
to select it. Click the Variables tab at the
bottom of the designer and create the
following variables (the scope for all will be
Expense Approval):

 ➤ Name: currentItemGuid Type:
System.Guid

 ➤ Name: currentListId Type:
System.Guid

 ➤ Name: EmployeeId Type: Int32

 ➤ Name: ManagerName Type: String

 ➤ Name: JsonResponse Type:
DynamicValue

 ➤ Name: ReportsToWF Type: Int32

 ➤ Name: ExpenseAmt Type: Double

 22. From the Toolbox, drag a Control Flow,
Sequence into the Expense Approval
sequence, click its name and type, Get current list ID and item.

 23. From the Toolbox, drag an SP - Current Context, GetCurrentItemGuid into the Get current
list ID and item sequence, and for the Result property type currentItemGuid.

 24. From the Toolbox, drag an SP - Current Context, GetCurrentListId into the Get current
list ID and item sequence and place it under GetCurrentItemGuid; and in the Result property
type: currentListId.

 25. From the Toolbox, drag an SP - List Item, LookupSPListItemProperty into the Get current
list ID and item sequence and place it under GetCurrentListId; complete the fi elds for the
following properties:

FIGURE 15-11

c15.indd 392c15.indd 392 19/01/13 11:29 AM19/01/13 11:29 AM

Workfl ow in Apps for SharePoint ❘ 393

 ➤ ItemGuid: currentItemGuid

 ➤ ListId: ListToHostWorkflow

 ➤ PropertyName: Emp Num

 ➤ PropertyType: Int32

 ➤ Result: EmployeeId

 ➤ DisplayName: LookupSP Emp Num

 26. From the Toolbox, drag an SP - List Item, LookupSPListItemProperty into the Get current
list ID and item sequence and place it under LookupSP Emp Num, and complete the fi elds for
the following properties:

 ➤ ItemGuid: currentItemGuid

 ➤ ListId: ListToHostWorkflow

 ➤ PropertyName: Expense Amount

 ➤ PropertyType: Double

 ➤ Result: ExpenseAmt

 ➤ DisplayName: LookupSP Expense Amt

Your Get current list ID and item sequence should look like
Figure 15-12 when completed.

 27. From the Toolbox, drag a Control Flow, Sequence into the Expense
Approval sequence, below the Get current list ID and item
sequence, click its name and type, Retrieve Employee Info.

 28. From the Toolbox, drag a Messaging, HttpSend into the Retrieve Employee Info, and
complete the fi elds for the following properties:

 ➤ Method: GET

 ➤ URI (include quotes): "http://services.odata.org/Northwind/Northwind.svc/
Employees(" + EmployeeId + ")?$select=EmployeeID,LastName,FirstName,HomePho
ne,ReportsTo&$format=json"

 ➤ ResponseContent: JsonResponse

 ➤ DisplayName: HttpSend for Emp Info

 29. From the Toolbox, drag a DynamicValue, GetDynamicValueProperty<T> into the Retrieve
Employee Info, and enter in the fi elds the following properties (when prompted, select String):

 ➤ PropertyName (include quotes): "d/LastName"

 ➤ Result: EmployeeName

 ➤ Source: JsonResponse

 ➤ DisplayName: Get Emp LastName <String>

FIGURE 15-12

c15.indd 393c15.indd 393 19/01/13 11:29 AM19/01/13 11:29 AM

394 ❘ CHAPTER 15 DEVELOPING WORKFLOW APPLICATIONS FOR SHAREPOINT 2013

 30. From the Toolbox, drag a DynamicValue, GetDynamicValueProperty<T> into the Retrieve
Employee Info, and enter in the fi elds for the following properties (when prompted, select
Int32):

 ➤ PropertyName (include quotes): "d/ReportsTo"

 ➤ Result: ReportsToWF

 ➤ Source: JsonResponse

 ➤ DisplayName: Get Emp ReportsTo <Int32>

Your Retrieve Employee Info sequence should look like
Figure 15-13 when completed.

 31. From the Toolbox, drag a Control Flow, If into the Expense Approval
sequence, below the Retrieve Employee Info sequence, click its
name, and type, If block to determine if approval is needed.
For the Condition property type: ExpenseAmt > 50.

 32. Confi gure the THEN block; from the Toolbox, drag a Control Flow, Sequence, click the name
and type, Manager Approval Required.

 33. From the Toolbox, drag a Control Flow, Sequence into the Manager Approval Required
sequence, click its name and type, Retrieve Manager Info.

 34. From the Toolbox, drag a Messaging, HttpSend into the Retrieve Manager Info, and complete
the fi elds with the following properties:

 ➤ Method: GET

 ➤ URI (include quotes): "http://services.odata.org/Northwind/Northwind.svc/
Employees(" + ReportsToWF + ")?$select=EmployeeID,LastName,FirstName,HomePh
one,ReportsTo&$format=json"

 ➤ ResponseContent: JsonResponse

 ➤ DisplayName: HttpSend for Manager Info

 35. From the Toolbox, drag a DynamicValue, GetDynamicValueProperty<T> into the Retrieve
Manager Info, and enter in the fi elds the following properties (when prompted, select String):

 ➤ PropertyName (include quotes): "d/LastName"

 ➤ Result: ManagerName

 ➤ Source: JsonResponse

 ➤ DisplayName: Get Manager LastName <String>

 36. From the Toolbox, drag a Control Flow, If, into the Manager Approval Required sequence,
below the Retrieve Manager Info sequence, click its name, and type Do Full Approval Task
Here. This is just a stub sequence for where you could implement a CompositeTask, SingleTask;
simply send an e-mail; or call out to another service. Implementing the logic to meet the needs of
your App for SharePoint is up to you.

FIGURE 15-13

c15.indd 394c15.indd 394 19/01/13 11:29 AM19/01/13 11:29 AM

Workfl ow in Apps for SharePoint ❘ 395

 37. From the Toolbox, drag a Control Flow, If, into the Manager Approval Required sequence,
below the Do Full Approval Task Here sequence, click its name and type, Update List
Fields.

 38. From the Toolbox, drag an SP - Current Context, SetField, into the Update List Fields
sequence, and complete the fi elds with the following properties:

 ➤ FieldName: Manager

 ➤ FieldValue: ManagerName

 ➤ DisplayName: Set Manager Name

 39. From the Toolbox, drag an SP - Current Context, SetField, into
the Update List Fields sequence, place it under the Update List
Fields, and complete the fi elds with the following properties:

 ➤ FieldName: Disposition

 ➤ FieldValue, type (include quotes): "Manager Approved"

 ➤ DisplayName, type: Set Manager Approved for Sample

When completed, your THEN block containing the Manager
Approval Required sequence should look like Figure 15-14.

 40. Confi gure the ELSE block; from the Toolbox, drag a Control Flow,
Sequence, click its name and type, Automated Approval Process.

 41. From the Toolbox, drag a Control Flow, Sequence, into the Automated
Approval Process sequence, click its name and type, Possibly call
a Web Service. The point is that some expenses might be able to be
automatically approved by an external business process. This is a stub
for where that action could take place. External systems could be notifi ed at this point to send
notifi cations, transactions logged to meet audit and compliance policy,
and so on.

 42. From the Toolbox, drag an SP - Current Context, SetField, into the
Automated Approval Process sequence, and complete the fi elds for
the following properties:

 ➤ FieldName: Disposition

 ➤ FieldValue (include quotes): "Auto Approved"

 ➤ DisplayName: Set Auto Approved

When completed, your ELSE block containing the Automated
Approval Process sequence should look like Figure 15-15.

 43. If you have any other icon showing in your workfl ow other than the
yellow icon with the exclamation point, right-click the project and
select Rebuild. If this doesn’t clean them all up, then double-click each
one in the Error List pane to troubleshoot.

FIGURE 15-14

FIGURE 15-15

c15.indd 395c15.indd 395 19/01/13 11:29 AM19/01/13 11:29 AM

396 ❘ CHAPTER 15 DEVELOPING WORKFLOW APPLICATIONS FOR SHAREPOINT 2013

 44. Right-click the project and select Deploy. If you are using Offi ce 365 to develop this solution, then
the workfl ow debugger cannot run against a remote server. If you press F5, you will be prompted
to turn off the debugger for this solution, which is your choice. In either case, navigate to the site
you developed against, click Site Contents, and click the tile for C15WFAppForSP.

 45. Your app for SharePoint opens on the Default.aspx page with the link to your workfl ow list.
Follow the link.

 46. On the ListToHostWorkfl ow page, click New item and enter the following properties into the
fi elds:

 ➤ Expense Description: Purchased some offi ce supplies

 ➤ Emp Num (must be a valid Northwind EmployeeID) : 1

 ➤ Expense Amount: 10

Click Save. Keep refreshing the browser until the workfl ow completes.

 47. Click to add another new item and enter the following properties into the fi elds:

 ➤ Expense Description: Purchased some software

 ➤ Emp Num (must be a valid Northwind EmployeeID): 3

 ➤ Expense Amount: 250

Click Save. Keep refreshing the browser until the workfl ow completes. Your result should look
similar to Figure 15-16.

FIGURE 15-16

How It Works

This Try It Out showed you how to build in a workfl ow as an integral component in your App for
SharePoint solution. You learned how to get the context of the current list and item being processed
from within the Visual Studio design-time environment. This is one of the foundational principles that
you will continue to use as your expertise broadens. After you have a context, you can look up any of
the properties on the item. You also experienced how to set property values. In building out this work-
fl ow, you’ll have noticed that in the Visual Studio environment you work at a lower level when building

c15.indd 396c15.indd 396 19/01/13 11:29 AM19/01/13 11:29 AM

Summary ❘ 397

the workfl ow than you did in SPD. That’s because the activities in the Visual Studio toolbox are used
to compose the actions exposed in SPD. In Visual Studio you work with the base activities themselves.
However, this is the only way to include a workfl ow in an app for SharePoint. App-level workfl ows
must be built with Visual Studio; SPD cannot build workfl ows against an AppWeb, only a host Web.

Apps for SharePoint developers have the robust capabilities of the Visual Studio Workfl ow Designer
in their toolkit for building business processes, of almost any scope, into their solutions. Developers
can also have confi dence that whatever they develop, their workfl ows can run at scale via the
Workfl ow Manager Service online or the Workfl ow Manager Server on-premises.

SUMMARY

In SharePoint 2013, workfl ow has been decoupled from the SharePoint server and runs as the
Workfl ow Manager Server in on-premises installations and as Workfl ow Manager Service in the
cloud. The new workfl ow engine is written according to the new cloud app model architecture,
leveraging the REST _API to call back into SharePoint via the OAuth protocol and employing
Windows Azure Service Bus to provide its messaging framework and durable event management.

The tools the business analyst, SharePoint subject matter expert, and developer continue to use are
Visio Professional, SharePoint Designer, and Visual Studio, respectively, but these tools sport a host
of new features for building workfl ows. Visual Studio can be used to build custom actions that can
be installed into SPD to provide additional productivity gains for those creating workfl ows.

Lastly, workfl ows fi t very comfortably inside your Apps for SharePoint. Those who are skilled at
developing workfl ows in Visual Studio can build workfl ows around very common business process
scenarios, package them up as an app, and get them into the SharePoint Store on Offi ce.com. Also,
because these workfl ows are XAML-based, they can run equally well both on-premises and on
Offi ce 365.

EXERCISES

Answers to Exercises can be found in Appendix A.

 1. What role does the Windows Azure Service Bus play in the new Workfl ow Manager?

 2. What action is provided in SharePoint Designer that allows the workfl ow to do something within

SharePoint on behalf of the user, where the user would not have the permissions?

 3. What is the new variable type in SPD that allows you to store and process complex data such as

a JSON object?

 4. In an app for SharePoint workfl ow, what activity do you use to retrieve the GUID of the current

item being processed?

c15.indd 397c15.indd 397 19/01/13 11:29 AM19/01/13 11:29 AM

http://Office.com

398 ❘ CHAPTER 15 DEVELOPING WORKFLOW APPLICATIONS FOR SHAREPOINT 2013

 � WHAT YOU LEARNED IN THIS CHAPTER

ITEM DESCRIPTION

Workfl ow

Manager

This is the new workfl ow engine that hosts workfl ows and runs as a server

on-premises and as a service in Windows Azure.

Visio Professional

2013

Visio has a new .VSDX XML-based fi le structure that SharePoint Designer

can natively read. The need no longer exists for the .VWI interchange fi le

between these two products. This provides a new portability option for

exporting full workfl ows out of SPD into the .VSDX fi le, and then importing

them into any other SPD site or back into Visio for further work by a business

analyst.

SharePoint

Designer 2013

A new Visual Designer was added to SPD along with many new actions that

make workfl ow design much more person-process oriented rather than a

linear top-to-bottom fl ow.

Apps for

SharePoint

Workfl ows are also fi rst-class participants in Apps for SharePoint and can be

delivered as a part of a solution into the SharePoint Store.

RECOMMENDED READING

SharePoint 2013 workfl ow fundamentals — http://msdn.microsoft.com/en-us/library/
jj163181%28v=office.15%29.aspx.

c15.indd 398c15.indd 398 19/01/13 11:29 AM19/01/13 11:29 AM

http://msdn.microsoft.com/en-us/library/jj163181%28v=office.15%29.aspx
http://msdn.microsoft.com/en-us/library/jj163181%28v=office.15%29.aspx

Answers To Exercises

CHAPTER 1 ANSWERS TO EXERCISES

Exercise 1 Solution

For the end user and the developer, SharePoint is a Web-based collaboration platform for the
enterprise and Web. As an end user, you will natively leverage SharePoint to manage your col-
laborative tasks. As a developer, you will build apps to enhance the end user’s experience to
help support different types of scenarios.

Exercise 2 Solution

You can use default SharePoint apps, such as document libraries, lists, and so on. And you
can build custom Apps for SharePoint, such as Web parts, event receivers, workfl ow apps,
and so on.

Exercise 3 Solution

Excel Services, Business Connectivity Services, Machine Translation Services, and Access
Services are examples.

Exercise 4 Solution

Server-side object model and client-side object model. You use the server-side object model
when building applications in SharePoint Server or SharePoint Foundation. You can use the
client-side object model for any version of SharePoint.

A

bapp.indd 399bapp.indd 399 19/01/13 11:45 AM19/01/13 11:45 AM

400 ❘ APPENDIX A ANSWERS TO EXERCISES

Exercise 5 Solution

Work through creating a new site collection using the exercises in the chapter to help guide you.
Navigate to your SharePoint administration page and click New ➪ Private Site Collection. Complete
the information in the New Site Collection dialog and as you do, ensure you select the Team Site
template in the Collaboration tab. Click OK to create, and once created you can click Site Contents
to add lists, document libraries, and other apps.

CHAPTER 2 ANSWERS TO EXERCISES

Exercise 1 Solution

SharePoint-hosted, Autohosted, and Provider-hosted.

Exercise 2 Solution

Any Web stack.

Exercise 3 Solution

You can fi nd an example of this in the SharePoint 2013 SDK. See Chapter 2, “Recommended Reading.”

CHAPTER 3 ANSWERS TO EXERCISES

Exercise 1 Solution

Visual Studio, SharePoint Designer, and Napa. You can also use tools like Expression Blend for rich
design and Fiddler for debugging and tracing.

Exercise 2 Solution

You would use Visual Studio for managed code development and development that requires ALM
or source code control. Napa is for rapid development and prototyping — but the code can also be
imported into Visual Studio. You use SharePoint Designer for creating, editing and updating Web
pages, content types, and so on. You can also use SharePoint Designer for creating rules-based
workfl ow.

Exercise 3 Solution

Open Visual Studio, and click File ➪ New Project. Select the Empty SharePoint Project template and
then add a SharePoint site URL and select Farm-Level trust for your project. Then, Add a web part
project to your empty SharePoint project. Add some simple controls to your Web Part, and then add
a breakpoint somewhere in your newly added code. Enter F5 to test and debug the code.

bapp.indd 400bapp.indd 400 19/01/13 11:45 AM19/01/13 11:45 AM

Chapter 5 Answers to Exercises ❘ 401

CHAPTER 4 ANSWERS TO EXERCISES

Exercise 1 Solution

Using Visual Studio 2012, you can create an Empty SharePoint project. Using the Empty SharePoint
project as a shell project, you can then add two items to the project: a Standard Web Part and a
Visual Web Part. After you’ve done this, add the code from this chapter to create the simple Web
Parts. You can hit F6 to build the project, and then deploy the project to your SharePoint site. Both
of your Web Parts will be deployed to your SharePoint site, and you’ll be able to use them separately.

Exercise 2 Solution

You can continue to use the SharePoint project that you used in the fi rst exercise (the project to
which you added the two Web Parts), or you can create a new one. Either way, add a new item
that is an ASPX Page and then add some simple HTML to the page (for example, <DIV>Hello
World!</DIV>). After you’ve completed this, hit F6 to build the project and then deploy to
SharePoint.

Exercise 3 Solution

You can create your own Master Page, or you can download a Minimal Master Page or Starter
Master Page. The Minimal Master Page is the most basic Master Page that you can use with
SharePoint. You can fi nd information about how to create a Minimal Master Page here: http://
msdn.microsoft.com/en-us/library/aa660698(v=office.12).aspx. A Starter Master Page has
some additional elements beyond the Minimal Master Page, and these are typically created by the
SharePoint community. One example is here: http://startermasterpages.codeplex.com/. Once
you’ve downloaded either of these, use SharePoint Designer to create a new Master page, copy and
paste the contents of either the minimal or starter page, and then save to your SharePoint site. You
can then set the new Master page as the default Master Page using SharePoint Designer, and your
new Master page will take effect.

CHAPTER 5 ANSWERS TO EXERCISES

Exercise 1 Solution

IAAS, PAAS, and SAAS.

Exercise 2 Solution

Cloud Services, Media Services, Data Services, Web Sites, Data Sync, Hadoop on Azure.

Exercise 3 Solution

Autohosted and Provider-hosted.

bapp.indd 401bapp.indd 401 19/01/13 11:45 AM19/01/13 11:45 AM

http://msdn.microsoft.com/en-us/library/aa660698(v=office.12).aspx
http://msdn.microsoft.com/en-us/library/aa660698(v=office.12).aspx
http://startermasterpages.codeplex.com/

402 ❘ APPENDIX A ANSWERS TO EXERCISES

Exercise 4 Solution

First, create a new SharePoint project (targeting an Offi ce 365 Developer site) and set the project to
be Autohosted as you create the project. This provides you with the basic plumbing of an ASP.NET
application that you can natively deploy to Offi ce 365 (and of course Windows Azure). After you’ve
created the Autohosted application, you can leverage the REST service project you built at the
beginning of Chapter 5 or recreate it within the same solution you just created. Either way, deploy
the REST service to Windows Azure. After you’ve deployed, you now have a REST endpoint that
you can call to use the data that is returned from that service endpoint. You can now add a simple
Button control and event to call the REST service to show that you can retrieve the data. Keep it
simple to understand the data structure that is returned, such that you can build out the application
to leverage the data.

CHAPTER 6 ANSWERS TO EXERCISES

Exercise 1 Solution

The new SharePoint application model removes code from running within the core SharePoint pro-
cesses and moves it externally to another host. The new model provides the APIs for authenticating
and calling back to SharePoint for data and responding to events.

Exercise 2 Solution

The SharePoint application model provides the following three areas for integration:

 ➤ User Interface

 ➤ Data

 ➤ Events

Exercise 3 Solution

A Web Part’s code is run and rendered by code running in the SharePoint process. An App Part is an
iFrame whose contents are rendered on another server.

Exercise 4 Solution

An application’s permissions are granted when the application is installed. The user installing the
application may accept or decline the invitation to grant the permissions the app is asking for.

Exercise 5 Solution

SharePoint applications can use the provided “Chrome Control” and reference provided style sheets
to adopt the same visual styling as SharePoint sites.

bapp.indd 402bapp.indd 402 19/01/13 11:45 AM19/01/13 11:45 AM

http://ASP.NET

Chapter 9 Answers to Exercises ❘ 403

CHAPTER 7 ANSWERS TO EXERCISES

Exercise 1 Solution

The four main components of an .app package are the manifest fi le, the SharePoint solution, the
Web deploy package and the database package.

Exercise 2 Solution

In a Provider-hosted application the developer of the application is responsible for running the
application code himself. This means the SharePoint application package contains the SharePoint
solution and manifest only. The code portion of the solution runs wherever the developer hosts it,
such as in Azure.

Exercise 3 Solution

Only two types of components are allowed to be deployed to the host Web during installation of an
app: App Parts and Custom UI Actions.

CHAPTER 8 ANSWERS TO EXERCISES

Exercise 1 Solution

Provider-hosted apps need a manually created client ID and secret prior to submission to the store so
that the developer can add them to the application’s back-end code so that the app is running when
it is tested by Microsoft.

Exercise 2 Solution

There are many options for monetizing applications. However, some of the most common are to
make the application a paid for product through the store, add ads to the application, and sell in-app
purchases in the application.

Exercise 3 Solution

An application can catch any of the following application life-cycle events: App Installed, App
Uninstalling, or App Upgraded.

CHAPTER 9 ANSWERS TO EXERCISES

Exercise 1 Solution

The three types of CSOM libraries are: .NET Managed, JavaScript and Windows Phone/Silverlight.

bapp.indd 403bapp.indd 403 19/01/13 11:45 AM19/01/13 11:45 AM

404 ❘ APPENDIX A ANSWERS TO EXERCISES

Exercise 2 Solution

OData adds additional fi lter and query capabilities over and above what is available with the stan-
dard REST capabilities.

Exercise 3 Solution

REST and OData support in SharePoint 2013 provides support for Creating, Reading, Updating,
and Deleting data.

Exercise 4 Solution

By using the provided CSOM libraries, developers can take advantage of the prebuilt batching capa-
bilities to reduce the number and frequency of calls made to SharePoint.

CHAPTER 10 ANSWERS TO EXERCISES

Exercise 1 Solution

Using either SharePoint Online or SharePoint on premises you can create new application identities
using the AppRegNew.aspx page.

Exercise 2 Solution

The three token types used in SharePoint’s OAuth fl ow are the context token, access token and
refresh token.

Exercise 3 Solution

When needed, an application may elevate its permissions to those of just the application by using the
GetAppOnlyAccessToken helper method to generate an app-only access token.

Exercise 4 Solution

The refresh token and access tokens can both be cached. The period for which they can be cached
should be determined by looking at the expiry date and time passed back from SharePoint for each.

CHAPTER 11 ANSWERS TO EXERCISES

Exercise 1 Solution

Apps for Offi ce can be written using standard Web technologies hosted on any platform and written
in any language.

bapp.indd 404bapp.indd 404 19/01/13 11:45 AM19/01/13 11:45 AM

Chapter 13 Answers to Exercises ❘ 405

Exercise 2 Solution

The new JSOM for Offi ce allows the developer’s Web application to interact with the document or
mail item, but does not provide for automation of the Offi ce client.

Exercise 3 Solution

MailApp, TaskPaneApp, and ContentApp.

Exercise 4 Solution

You can use various strategies enabled by a number of methods on the Office.context
.document.bindings object such as .addFromSelectionAsync, .AddFromPromptAsync, and
.AddFromNamedItemAsync.

CHAPTER 12 ANSWERS TO EXERCISES

Exercise 1 Solution

ProcessOneWayEvent

Exercise 2 Solution

Enumeration, .CancelWithError and property, and.ErrorMessage.

Exercise 3 Solution

S2S and OAuth.

Exercise 4 Solution

You can actually look in two places. One is in the manifest fi le, and the other is checking to see
whether any one of the app life-cycle properties of the SharePoint project is set to True.

CHAPTER 13 ANSWERS TO EXERCISES

Exercise 1 Solution

OData.

Exercise 2 Solution

CSOM or REST.

bapp.indd 405bapp.indd 405 19/01/13 11:45 AM19/01/13 11:45 AM

406 ❘ APPENDIX A ANSWERS TO EXERCISES

Exercise 3 Solution

EventSubscriber and EventUnsubscriber.

Exercise 4 Solution

ECTs can now be deployed as part of an app for SharePoint at the app-level whether the app is
Provider-hosted, Autohosted, or SharePoint-hosted.

CHAPTER 14 ANSWERS TO EXERCISES

Exercise 1 Solution

PowerPoint Automation Services and Machine Translation Services.

Exercise 2 Solution

The Offi ce Web App Server.

Exercise 3 Solution

OData.

Exercise 4 Solution

For an on-premises installation of SharePoint, the data and content are stored in a SQL Server
database and for Offi ce 365 they are stored in a Windows Azure SQL Database.

CHAPTER 15 ANSWERS TO EXERCISES

Exercise 1 Solution

The Service Bus provides durability for event delivery and for messaging using its Pub/Sub pattern.

Exercise 2 Solution

The App Step action lets the workfl ow elevate its permissions to perform something on behalf of the
user with its own permissions.

Exercise 3 Solution

The Dictionary type variable.

Exercise 4 Solution

GetCurrentItemGuid.

bapp.indd 406bapp.indd 406 19/01/13 11:45 AM19/01/13 11:45 AM

407

INDEX

Symbols

... (ellipsis), 316, 361

A

<a>, 351
Access Control Services (ACS), 257, 264, 272, 313
Access Services, 17, 344, 399

.APP, 362–366
CSS, 363
HTML, 363
ISVs, 363
JavaScript, 363
new features, 362–366
Offi ce 365, 362, 363
SharePoint Store, 362
SIs, 363
SQL Server, 363
templates, 366
UI, 362
Windows Azure, 363

Access Services 2010, 17
access tokens, 258, 263, 404
accessToken, 48
ACS. See Access Control Services
action, SPD, 383–384
Action menu, UI, 160–164
.actions4, 386
Active Directory (AD)

Group Policy, 285
security, 273
Windows Azure, 125

ActiveX, 284
activity, Windows Workfl ow Foundation, 383
AD. See Active Directory

Add, 94
ADO.NET, 328
All Files, 66
All Site Contents, 164–165
AllowAppOnlyPolicy, 272
ALM. See application lifecycle management
answers to exercises, 399–406
_API, 222, 242, 371
_api, 332
APIs. See application programming interfaces
.APP. See Apps for SharePoint
apps, 8–9, 33–52

anatomy, 176–182
Autohosted, 44–49, 196–199, 400, 401

application identity, 261
Apps for Offi ce, 299–304
upgrades, 215
web deploy package, 176, 182
Windows Azure, 134–140

catalogs, private publishing, 183–184
Central Administration, 29
Cloud-hosted, 90–92

creating, 109
Offi ce 365, 91, 92
REST API, 91, 92

deployment, 175–199
models, 38–52

distribution, 201–216
document-based, 286–291
JavaScript, Napa, 70–73
mailbox-based apps, 292–296
manifest fi les, 176
MVC, 12
Offi ce 2013, building fi rst, 281–284
packages, 177–178
packaging, 182–183

bindex.indd 407bindex.indd 407 19/01/13 11:46 AM19/01/13 11:46 AM

http://ADO.NET

408

apps – app-only policy

apps (continued)
permissions, 170–171
Provider-hosted, 49–52, 188–196, 400, 401

Apps for Offi ce, 299
client ID, 403
secret, 403
SharePoint Store, 204
upgrades, 215
Windows Azure, 134–136

rules, 212
security, Offi ce JSOM, 297–298
SharePoint Store

licensing, 206–208
pricing, 206–208
publishing, 203–212
submissions, 208–211
validation, 211–212

SharePoint-hosted, 38–43, 90–92, 185–188,
400

applications, 279–305
Apps for Offi ce, 299
creating, 101–105
Excel Interactive View, 349–352
JS CSOM, 232–236
Office.select(), 339
SharePoint Store, 204
SP.js, 339
upgrades, 215
Visual Studio, 78–82

upgrading, 214–215
web-based development, 57

App Installed, 403
App Management Service, 17
App Parts, 180, 403

UI, 154–160
Web Part gallery, 154

App Step, 372
App Uninstalling, 403
App Upgraded, 403
AppEventReceiver.svc.cs, 318
App.js, 345
applications

authentication, OAuth, 263–269
authorization, OAuth, 269–272
context token, 266–267

integration, 153–171
monetizing, 403
Offi ce 2013, 279–305, 343–366
permissions, 402
SharePoint-hosted apps, 279–305
workfl ows, 369–397

application development layer, 10
application identity

Autohosted apps, 261
client ID, 261
creating and managing, 258–262
OAuth, 256–257
permissions, 260
SharePoint Online, 261, 404
Visual Studio, 261

application layer, 10
application lifecycle, 212–215, 403, 405
application lifecycle management (ALM), 78, 318
Application Management, 27
application programming interfaces (APIs), 14,

24–26
CAML, 109
ContextToken, 269
CSOM, 169
OAuth, 257
remote, 220
REST, 242

Cloud-hosted app solutions, 91, 92
Machine Translation Services, 359
Windows Azure, 12

Server OM, 220
Windows Azure, 121
workfl ows, 371

Application server role, 16
Application Services, 251
ApplicationIdentity.js, 258–260
app.manifest, 178
AppManifest.xml, 36, 165

InstalledEventEndpoint, 318
Manifest Designer, 339
permissions, 269–270, 303
Provider-hosted apps, 50
Solution Explorer, 311, 334
Visual Studio, 59

app-only policy, 271–272

bindex.indd 408bindex.indd 408 19/01/13 11:46 AM19/01/13 11:46 AM

409

AppPermissionRequests – BI

AppPermissionRequests, 179
AppPrerequisites, 179
Apps for Offi ce, 34

Autohosted apps, 299–304
BCS, 333–339
HTML, 338
integration, 298–305
platforms, 404
Provider-hosted apps, 299
REST, 333
SharePoint Online, 299–300
SharePoint-hosted apps, 299
standalone, 299–300

Apps for SharePoint (.APP), 14, 35–36
Access Services, 362–366
assets, 178–179
BCS, 328–339
cloud, 15, 37–38
ECT, 406
Excel Interactive View, 349–352
manifest fi les, 178–179
Offi ce 365, 390
SharePoint solution package, 179
solutions, 90–92
Solution Explorer, 390–391
Visual Studio, 390
WOPI, 345–348
workfl ows, 390–397

Apps.js, 72
app+user policy, 271–272
ARM, 280
ASCX, 95–96
_ascxPath, 96
ASP.NET, 220

ASPX pages, 112–114
ContextToken, 269
master pages, 114, 115
Offi ce 365, 402
OnClick, 166
Visual Web Part, 95

ASPX pages, 112–114
assets, .APP, 178–179
ATOM

JSON, 244
REST, 25

authentication
applications, 263–269
NTLM, 224, 238, 273
OAuth, 4, 14, 255–275, 405

APIs, 257
applications, 263–272
application identity, 256–257
authentication server, 257
client ID, 204, 258
content owner, 257
content server, 257
interoperability, 5
on-premises app authentication, 272–275
permissions, 269–272
RER, 312
secret, 204, 258
SSL, 274
web deploy package, 180
Windows Azure, 136
Workfl ow Services, 370

RER, 312–313
S2S, 272–275, 405
server, 257

authorization, application, 269–272
Autohosted apps, 44–49, 196–199, 400, 401

application identity, 261
Apps for Offi ce, 299–304
upgrades, 215
web deploy package, 176, 182
Windows Azure, 134–140

AutoHostedTaskPaneApp, 303, 304

B

backup and restore, 29
backward compatibility, 37, 92
BaseTemplate, 249
batching, CSOM, 224, 228
BCS. See Business Connectivity Services
BDC. See Business Data Connectivity
BdcIdentity, 339
BDCM. See Business Data Connectivity Model
.bdcm, 328
BDCMetadata.bdcm, 332
BI. See Business Intelligence

bindex.indd 409bindex.indd 409 19/01/13 11:46 AM19/01/13 11:46 AM

http://ASP.NET

410

bin – Client-side Object Model (CSOM)

bin, 159
binary large objects (BLOBs), 120, 123
bindingDataChanged, 291
BLOBs. See binary large objects
Boolean, 160
branding, 20
Business Connectivity Services (BCS), 10, 399

.APP, 328–339
Apps for Offi ce, 333–339
business solution, 332–339
deployment, 15
document library, 338
ECT, 322–324
external data, 106
external lists, 324
HTML, 332
JavaScript, 332
LOB, 15, 321–339
OData, 324, 328
REST URL, 332
SharePoint Online Offi ce 365, 324–332
Solution Explorer, 329
StartPage, 335
Visual Studio, 322, 329–339

Business Contact Manager, 363–364, 366
Business Data Catalog, 322
Business Data Connectivity (BDC), 17

External Content Types, 326
search, 19

Business Data Connectivity Model (BDCM), 324
SOAP, 328

Business Intelligence (BI), 133

C

.cab, 179
CacheKey, 266
CAML. See Collaborative Application Markup

Language
.CancelWithError, 405
Capabilities, 285
CDN. See content delivery network
Central Administration, 26–29

Application Management, 27

apps, 29
backup and restore, 29
Confi guration Wizard, 29
General Application Settings, 28
Machine Translation Services, 359
Monitoring, 28
reporting, 28
security, 28
System Settings, 28
Upgrade and Migration, 29

ChangedItemProperties, 314
Chrome Control, 156, 402
Client App Web Part, 136–146
client ID

application identity, 261
OAuth, 204, 258
Provider-hosted apps, 403
Seller Dashboard, 204–206
SharePoint Store, 204–206

Client layer, Windows Azure, 122–123
Client Web Part template, 76
ClientContext, 224, 230, 237, 239, 271
$clientid, 275
Client-side Object Model (CSOM), 12, 24,

219–252, 405
APIs, 169
Application Services, 251
basics, 221–222
batching, 224, 228
ClientContext, 271
content, 250
contextToken, 168
core functionality, 250
coverage, 250–251
data storage, 169–171
DisplayName, 164
DLLs, 107, 239, 250
Education, 251
Excel Services, 344
JavaScript, 338
JS CSOM, 228–237

cross-domain calls, 236–237
Fiddler, 236
libraries, 228

bindex.indd 410bindex.indd 410 19/01/13 11:46 AM19/01/13 11:46 AM

411

cloud – Credentials

query, 230–232
security, 236–237
SharePoint-hosted apps, 232–236

JSON, 221
libraries, 403–404
lists, 107, 108
.NET, 222–228
OData, 241–249
query, 224–226, 230–232
REST, 241–249
SDKs, 239
search, 251
Silverlight, Windows Phone, 241
Silverlight Web Part, 101
TokenHelper, 271
TokenHelper.GetClientContextWith

ContextToken, 159–160
User Profi le, 251
Visual Studio, 82
Windows Phone, 237–241

libraries, 240
query, 239–241
Silverlight, 241

Work Management, 251
workfl ows, 251
XML, 221

cloud
.APP, 15, 37–38
Offi ce 365, 18
Windows Azure, 120

Cloud Services, 120, 401
cloud-centric platform, 4, 5, 15
Cloud-hosted apps, 90–92

creating, 109
Offi ce 365, 91, 92
REST API, 91, 92

CoercionType, 290
collaboration, 5
Collaborative Application Markup Language

(CAML)
APIs, 109
content types, 105
query, 231
XML, 82, 105, 109

CommandArgument, 168
CommandUIDefinition, 162
communities, workloads, 18
CompositeOSAutoHosted, 304
composites, workloads, 18
Confi guration Wizard, 29
content

capabilities, 19
CSOM, 250
workloads, 18

Content App template, Visual Studi0, 77
content delivery network (CDN), 123
content owner, OAuth, 257
content server, OAuth, 257
Content Types

SPD Navigation pane, 66
Visual Studio, 76

content types
CAML, 105
ECT

Apps for SharePoint, 406
BCS, 322–324
metadata, 322
OData, 333
permissions, 323, 326

RER, 314–317
SharePoint solution package, 179
SharePoint-hosted apps, 102
Visual Studio, 105

ContentApp, 285, 405
ContentPlaceHolder, 114, 115
ContentType, 286
.context, 287
context token, 258, 263

applications, 266–267
ContextToken, 269
contextToken, 48, 168
Controls, 94
core functionality, CSOM, 250
create, read, update, and delete (CRUD), 107
Create Argument, Visual Studio, 385
Create List Workfl ow, Visual Studio, 387
CreateChildControls, 94
Credentials, 239

bindex.indd 411bindex.indd 411 19/01/13 11:46 AM19/01/13 11:46 AM

412

cross-domain calls – development tools

cross-domain calls, 236–237
cross-site scripting attacks (XSS), 236–237
CRUD. See create, read, update, and delete
CSOM. See Client-side Object Model
CSS

Access Services, 363
Apps for Offi ce, 34
cloud .APP, 38
master pages, 115

custom declarative activity
Visual Studio workfl ows, 384–390
XAML, 384

Custom UI Action, 180, 403
CustomAction, 162
customization, 6–9

application name and tile, 165–166
search, web-based development, 57
WSPs, 14

customization layer, 10

D

DAC. See Data-tier Applications
DACPAC. See database package
data integration, 168–171
Data Layer, Windows Azure, 122–123
Data Services, 25, 324, 401
Data Sources, SPD Navigation pane, 66
data storage, 169–171
Data Sync, 123, 401
database package (DACPAC), 176, 181–182,

403
Database server role, 16
DataBindPeepsData, 140
datarow, 339
Data-tier Applications (DAC), 181
data-xl-, 349, 352
debugging

deployment, 15
Fiddler, 85, 236, 249
Visual Studio, 69
Windows Azure, 131

Deep Zoom, 83–84
default.master, 114, 115
Defi ne Workfl ow Lookup, 379

DELETE HTTP, 242
Deleter, 328
deployment

apps, 175–199
developer needs, 14–15
installation types, 90
Napa, 69
SharePoint-hosted apps, 102

deployment models
Autohosted, 44–49, 196–199, 400, 401

application identity, 261
Apps for Offi ce, 299–304
upgrades, 215
web deploy package, 176, 182
Windows Azure, 134–140

Provider-hosted, 49–52, 188–196, 400,
401

Apps for Offi ce, 299
client ID, 403
secret, 403
SharePoint Store, 204
upgrades, 215
Windows Azure, 134–136

SharePoint-hosted, 38–43, 90–92, 185–188,
400

applications, 279–305
Apps for Offi ce, 299
creating, 101–105
Excel Interactive View, 349–352
JS CSOM, 232–236
Office.select(), 339
SharePoint Store, 204
SP.js, 339
upgrades, 215
Visual Studio, 78–82

Deployment Service, 371
design goal, backward compatibility, 37
designers, 13, 56
developers, 56

needs, 9–15
deployment, 14–15
extendibility, 10–12
levels of development, 13–14

development tools, 55–86. See also Visual Studio;
Windows Azure

bindex.indd 412bindex.indd 412 19/01/13 11:46 AM19/01/13 11:46 AM

413

dictionary, SPD – extendibility

Expression Blend, 13, 83–85, 400
Fiddler, 85, 236, 249
Napa, 69–74, 400

deployment, 69
JavaScript app, 70–73
Offi ce 365, 232–236

Site Settings, 58–64
SPD Navigation pane, 64–69
web-based development, 57–58

dictionary, SPD, 372, 388
DisplayName, 164
DLLs

CSOM, 107, 239, 250
event receivers, 308

.document, 287
document library, 399

BCS, 338
Excel Services, 10
RER, 314–317

document-based apps, Offi ce JSOM, 286–291
$(document).on(), 339
$(document).ready, 228
Duet Enterprise, 322
dynamically signed permissions, 269, 271

E

ECB. See Edit Control Block
ECM. See enterprise content management
ECT. See external content type
Edit Control Block (ECB), 161
Edit mode, 8, 60
Edit Variable, 379
Education, CSOM, 251
Elements.xml, 160, 332
elements.xml, 159
employee timecard, workfl ows, 375–383
Empty Element template, Visual Studio, 76
end users, 8–9, 56, 280
endpoints, 57, 215, 318
enterprise content management (ECM), 5
Entity, 328
Enum, 160
.ErrorMessage, 405
events, 402

application lifecycle, 403
integration, 166–168
JavaScript, script, 73

event receivers, 109–112, 168
GAC, 112
RER, 307–319

ALM, 318
authentication, 312–313
content types, 314–317
document library, 314–317
OAuth, 312
Offi ce 365, 314–317
permissions, 314
SharePoint Online Offi ce 365, 308–311
Solution Explorer, 316, 317
TokenHelper, 312
Visual Studio, 309
Windows Azure, 312

SharePoint solution package, 179
Visual Studio templates, 110

EventSubscriber, 324, 406
EventUnsubscriber, 324, 406
Excel Interactive View, 348

HTTPS, 351
OData, 351
SharePoint-hosted apps, 349–352
Solution Explorer, 349–351

Excel Services, 344, 399
BCS, 10
document library, 10
HTML, 348
new features, 348–355
OData, 351

Excel table data, 353–355
XML, 354

REST, 351
SharePoint Server, 17

Excel Web App, 351
ExecuteQuery(), 24, 225
executeQueryAsync, 231
$expand, 244
ExploreMailApp, 295
Expression Blend, 13, 83–85, 400
Expression Web, 13
extendibility, 10–12

bindex.indd 413bindex.indd 413 19/01/13 11:46 AM19/01/13 11:46 AM

414

Extensible Application Markup Language – IFrame

Extensible Application Markup Language
(XAML), 370

custom declarative activity, 384
Visual Studio workfl ows, 383

external content type (ECT)
Apps for SharePoint, 406
BCS, 322–324
metadata, 322
OData, 333
permissions, 323, 326

External Content Types
BDC, 326
SPD Navigation pane, 66
Visual Studio, 333

external data
BCS, 106
LOB, 14
SharePoint Services, 106

external lists, 57, 324

F

farms
solutions, 90–92
three-tiered structure of, 15–16
WSPs, 14, 15

features, Visual Studio, 106, 180
Fiddler, 85, 236, 249
$filter, 244
FilterDescriptor, 328
FilterName, 296
Finder, 328
fi rewalls, 15
FIS. See SharePoint for Internet Sites
formDigest, 246
FQDN. See fully qualifi ed domain name
full-trust solutions, 152–153, 280

WSPs, 176
fully qualifi ed domain name (FQDN), 228

G

GAC. See global assembly cache
General Application Settings, Central

Administration, 28
Generate Workfl ow Outline, Visual Designer, 379

GET, 107, 242, 394
Get, 131
GetAppOnlyAccessToken, 404
getBookInfo(), 73
get_Current(), 230
GetCurrentItemGuid, 406
GetDynamicValueProperty<T>, 394
getItemById(), 231
getItems(), 231
getScript, 228
global assembly cache (GAC), 24, 112
GUID, 49, 50, 179, 274, 284

H

Hadoop, 123, 401
health status, 28
HTML

Access Services, 363
Apps for Offi ce, 34, 338
BCS, 332
cloud .APP, 38
customization, 6
embedding, 61–63
Excel Services, 348
<iframe>, 159
master pages, 115
onchange, 72
Select, 73
Site Settings, 60
UI, 366

HTML, 291
HTML5

JavaScript object model, 25
Offi ce 2013, 284

HTTPS, 237
Excel Interactive View, 351
JavaScript, 249
Provider-hosted development model, 51
Windows Azure, 135

HttpSend, 385, 394

I

IAAS. See Infrastructure as a Service
IFrame, 347–348

bindex.indd 414bindex.indd 414 19/01/13 11:46 AM19/01/13 11:46 AM

415

iframe – libraries

iframe, 141
<iframe>, 159
IIS. See Internet Information Server
Import Reusable SharePoint Workfl ow template,

75
Import SharePoint Solution Package template, 75
Include, 225
includes, 228
independent software vendors (ISVs), 10–11, 203,

363
InfoPath, 69
Infrastructure as a Service (IAAS), 120, 133, 401
insights

capabilities, 20
workloads, 18

installation types, 16–18
deployment, 90

InstalledEventEndpoint, 215, 318
Instance Service, 371
Int, App Parts, 160
Integer, 388
Integration layer, Windows Azure, 122–124
Internet Information Server (IIS), 37, 49, 180, 273
Interop, 372
Interop Service, 371
interoperability, 5

capabilities, 20
intReportsTo, 388
ISVs. See independent software vendors
ItemAdded, 112
ItemAdding, 312
item.getEntities(), 296
item.getRegExMatches(), 296
ItemHasRegularExpressionMatch, 292

J

JavaScript
Access Services, 363
apps, Napa, 70–73
Apps for Offi ce, 34
Apps.js, 72
BCS, 332
cloud .APP, 38
CSOM, 338
customization, 6

events, script, 73
getBookInfo(), 73
getScript, 228
HTTPS, 249
includes, 228
master pages, 115
Offi ce 2013, 284
Visual Studio, 77

JavaScript Client Object Model (JS CSOM),
228–237

cross-domain calls, 236–237
Fiddler, 236
libraries, 228
query, 230–232
security, 236–237
SharePoint-hosted apps, 232–236

JavaScript Object Model (JSOM), 25
Offi ce JSOM, 281, 286–298, 405

app security, 297–298
document-based apps, 286–291
functional capabilities, 291
LOB, 292, 296
mailbox-based apps, 292–296
permissions, 297–298
SAAS, 292
Visual Studio, 287–291

JavaScript Object Notation (JSON)
ATOM, 244
CSOM, 221
GET, 107
jQuery, 107
POST, 248
REST, 25, 107, 388
SPD, 388
SP.List, 249
Windows Azure, 131, 132

jQuery, 25, 107, 228
JS CSOM. See JavaScript Client Object Model
JSOM. See JavaScript Object Model
JSON. See JavaScript Object Notation

L

Language Integrated Query (LINQ), 109
lblSPLabel, 24
libraries

bindex.indd 415bindex.indd 415 19/01/13 11:46 AM19/01/13 11:46 AM

416

libraries – master pages

libraries (continued)
CSOM, 403–404
data storage, 169
document library, 399

BCS, 338
Excel Services, 10
RER, 314–317

JS CSOM, 228
SharePoint solution package, 179
Windows Phone CSOM, 240

licensing, apps, 206–208
line-of-business (LOB), 5, 6

BCS, 10, 15, 321–339
customization, 6
external data, 14
Offi ce JSOM, 292, 296
Windows Azure, 134
XML, 322

LinkButton, 48
LINQ. See Language Integrated Query
List, 131
lists, 399

CSOM, 107, 108
data storage, 169
external, 57, 324
Offi ce 365, 376
REST, 107
Server Object Model, 108
SharePoint solution package, 179
SharePoint-hosted apps, 102
SPD, 66–69, 105

List Designer, 391
List template, Visual Studio, 76
Listbox, 8
ListCollection, 303
ListData.svc, 222
ListItem, 225
ListItemCreationInformation,

225–226
List<People>, 140
Lists and Libraries, SPD Navigation pane, 66
ListToFireEvents, 311, 312
LiveID, 124, 127, 284
Load, 225
LOB. See line-of-business

LobSystem, 328
LobSystemInstance, 328
logAnAnnouncementEvent, 112
logic integration, 166–168
Lookup for String, 380
LookupSPListItemProperty, 393
looping, SPD, 372

M

Machine Translation Services, 17, 344, 399, 406
Central Administration, 359
new features, 359–362
REST API, 359
Solution Explorer, 360
translating document synchronously, 359–362
Visual Studio, 359

MailApp, 284–286, 405
for Offi ce, 292–296

mailbox-based apps, Offi ce JSOM, 292–296
managed code, .NET, 222–228
Managed Metadata Service, 17
Manifest Designer, 339
manifest fi les, 34, 403, 405

.APP, 178–179
apps, 176
Permissions, 285

marketplace
Offi ce Store, 299
SharePoint Store

Access Services, 362
app licensing, 206–208
app pricing, 206–208
app publishing, 203–212
app submissions, 208–211
app validation, 211–212
application lifecycle, 212–215
client ID, 204–206
Provider-hosted apps, 204
secret, 204
SharePoint-hosted app solutions, 204

Windows Azure, 121
Master Pages, 401

SPD Navigation pane, 66
master pages

bindex.indd 416bindex.indd 416 19/01/13 11:46 AM19/01/13 11:46 AM

417

~masterurl/default.master – Offi ce 365

ASP.NET, 114
creating, 114–116

~masterurl/default.master, 114
matrix, 291
Media Player app, 63–64
Media Services, 123, 401
mediaelement, 64
Messaging Service, workfl ows, 371
metadata

ECT, 322
Fiddler, 85

$metadata, 353–354
Methods, 328
Microsoft Dynamics, 6, 106
Microsoft Offi ce SharePoint Server (MOSS),

321–322
Microsoft SharePoint Foundation Subscription

Settings Service, 17
Microsoft.Office.WebExtension, 286
Microsoft.SharePoint.Client, 303
Microsoft.SharePoint.Client.dll, 107
Microsoft.SharePoint.Client.Runtime

.dll, 107
Minimal Master Page, 401
Mode, 293
Model, View, and Controller (MVC), 12, 129, 131
modules, SharePoint solution package, 179
Module template, Visual Studio, 76
Monitoring, Central Administration, 28
MOSS. See Microsoft Offi ce SharePoint Server
multimedia

Site Settings, 61
web-based development, 57

MVC. See Model, View, and Controller
My Site, 6
MyAppAction, 164
myButton_Click, 94
mySiteCollection, 106

N

Napa, 69–74, 400
deployment, 69
JavaScript app, 70–73
Offi ce 365, 232–236

navigation, UI, 164–166
Navigation pane, SPD Navigation pane, 66
.NET

CSOM, 222–228
Uri.EscapeDataString, 207
Windows Azure, 12, 124
Workfl ow Framework, 370

new app model, Offi ce 2013, 280–286
New Site Collection, 400
newListItem, 108
newsfeeds, 5
nonrelational storage, 123
NTLM. See Windows Authentication

O

OAuth, 4, 14, 255–275, 405
APIs, 257
applications

authentication, 263–269
authorization, 269–272

application identity, 256–257
authentication server, 257
client ID, 204, 258
content owner, 257
content server, 257
interoperability, 5
on-premises app authentication, 272–275
permissions, 269–272
RER, 312
secret, 204, 258
SSL, 274
web deploy package, 180
Windows Azure, 136
Workfl ow Services, 370

OAuthAuthorize, 271
OData. See Open Data Protocol
Office, 286, 287
Offi ce 365, 18

Access Services, 362, 363
Apps for SharePoint, 390
ASP.NET, 402
Cloud-hosted app solutions, 91, 92
installation, 33–34
lists, 376

bindex.indd 417bindex.indd 417 19/01/13 11:46 AM19/01/13 11:46 AM

http://ASP.NET
http://ASP.NET

418

Offi ce – permissions

Offi ce (continued)
Napa, 232–236
RER, 314–317
SharePoint Online

BCS, 324–332
RER, 308–311
workfl ows, 370

Offi ce 2013
ActiveX, 284
applications, 279–305, 343–366
apps, building fi rst, 281–284
Apps for Offi ce, 34

Autohosted apps, 299–304
BCS, 333–339
HTML, 338
integration, 298–305
platforms, 404
Provider-hosted apps, 299
REST, 333
SharePoint Online, 299–300
SharePoint-hosted apps, 299
standalone, 299–300

ARM, 280
HTML5, 284
JavaScript, 284
LiveID, 284
new app model, 280–286
security, 285
VBA, 280–281
VSTO, 280–281

Offi ce JSOM, 286–298, 405
app security, 297–298
document-based apps, 286–291
functional capabilities, 291
LOB, 292, 296
mailbox-based apps, 292–296
permissions, 297–298
SAAS, 292
Visual Studio, 287–291

Offi ce Store, 299
Offi ce Web Apps, 19, 344–348
Offi ce Web App Server, 406
OfficeApp, 284
Office.context.document.bindings, 405

Office.context.mailbox, 293
OfficeDocuments, 334
Office.select(), 291

SharePoint-hosted apps, 339
$(document).on(), 339
onChange, 74
onchange, 72
OnClick, 166
on-premises app authentication, 272–275
OOXML, 291
OPC. See Open Packaging Convention
Open Data Protocol (OData), 14, 25, 405, 406

BCS, 324, 328
cloud .APP, 38
CSOM, 241–249
ECT, 333
Excel Interactive View, 351
Excel Services, 344, 351

Excel table data, 353–355
XML, 354

Fiddler, 249
interoperability, 5
query, 404
REST, 222, 404
URI, 351–352

Open Packaging Convention (OPC), 176
$orderby, 244
Outlook Web App (OWA), 286, 292

P

PAAS. See Platform as a Service
Page_Load, 167, 302

ProxyHTTPRequest.aspx, 350
Pages, UI, 154–160
Parameters, 328
PATCH, 246
.pdf, 356–359
PdfRequest, 356
PeopleSoft, 6, 106
permissions

application identity/principle, 260
applications, 402
AppManifest.xml, 269–270, 303

bindex.indd 418bindex.indd 418 19/01/13 11:46 AM19/01/13 11:46 AM

http://ProxyHTTPRequest.aspx

419

Permissions – remote APIs

AppPermissionRequests, 179
apps, 170–171
ECT, 323, 326
Edit mode, 60
OAuth, 269–272
Offi ce JSOM, 297–298
RER, 314
right, 270
scope, 270
sites, web-based development, 57

Permissions, 285
<Permissions>, 297
PHP, 9
PictureFormat, 358
PictureRequest, 356, 358
PlaceHolderMain, 71
platforms, 5, 15–26

APIs, 24–26
Apps for Offi ce, 404
capabilities, 18–20

deprecation, 38
Windows Azure, 121

installation types, 16–18
Offi ce 365, 18
site collections, 20–23
sites, 20–23
Windows Azure, 122–123

Platform as a Service (PAAS), 120, 133, 401
portability, SPD, 372
POST, 242, 246

ContextToken, 269
JSON, 248

PostUpdate, 215
power users, 13, 56
PowerPoint Automation Services, 355–359,

406
PowerPoint Conversion, 17
PresentationRequest, 356, 358
Private Site Collection, 400
ProcessEvent, 311, 312, 314
ProcessOneWayEvent, 311, 312, 405
Program.cs, Solution Explorer, 356
.project, 287
properties, 314

properties.ItemEventPropertiies

.AfterProperties, 314
Property Values, 332
PropertyOrFieldInitialized

Exception, 225
Provider-hosted apps, 49–52, 188–196, 400, 401

Apps for Offi ce, 299
client ID, 403
secret, 403
SharePoint Store, 204
upgrades, 215
Windows Azure, 134–136

ProxyHTTPRequest.aspx, 350
PUT, 246
PUT/MERGE, 242

Q

query
CAML, 231
CSOM, 224–226, 230–232

Windows Phone, 239–241
JS CSOM, 230–232
OData, 404

Quick Launch, 164–165

R

ReadAllDocument, 298
ReadDocument, 298
readFromSelection, 290
ReadItem, 298
ReadWriteDocument, 297–298
ReadWriteMailbox, 298
$(document).ready, 228
RedirectAccept.aspx, 271
Reference Manager, 356, 360
refresh tokens, 267, 404
RegExFilter, 292
RegExValue, 292
registration hooks, 4
RegistrationId, 162
relational data, 123
remote APIs, 220

bindex.indd 419bindex.indd 419 19/01/13 11:46 AM19/01/13 11:46 AM

http://ProxyHTTPRequest.aspx
http://RedirectAccept.aspx

420

remote event receivers (RER) – Server to Server authentication (S2S)

remote event receivers (RER), 307–319
ALM, 318
authentication, 312–313
content types, 314–317
document library, 314–317
OAuth, 312
Offi ce 365, 314–317
permissions, 314
SharePoint Online Offi ce 365, 308–311
Solution Explorer, 316, 317
TokenHelper, 312
Visual Studio, 309
Windows Azure, 312

Remote Event Receiver template, Visual Studio, 76
remoteAppUrl, 140
RemoteEventProperties, 311
ReportsTo, 389
Representational State Transfer (REST), 14, 25,

405
_api, 332
APIs, 242

Cloud-hosted app solutions, 91, 92
Machine Translation Services, 359
Windows Azure, 12

Apps for Offi ce, 333
cloud .APP, 38
CRUD, 107
CSOM, 241–249
Excel Services, 344, 351
Fiddler, 249
JSON, 107, 388
ListData.svc, 222
lists, 107
OData, 222, 404
SPD, 386
URL, BCS, 332
Windows Azure, 131, 132, 402
Workfl ow Services, 370
XML, 107

RER. See remote event receivers
Response.Redirect(), 271
REST. See Representational State Transfer
Restricted, 297–298
Ribbon, 160–164
Ribbon, 162

rich object model, 15, 102
right, 270
RootWeb, 106
RuleCollection, 293

S

S2S. See Server to Server authentication
SAAS. See Software as a Service
sandbox, WSPs, 14
sandboxed solutions, 90–92

backward compatibility, 92
Windows Azure, 135

SAP, 6, 106
scope, permissions, 270
script, 73
<script>, 351
scriptLoaded, 228
SDKs, 400

CSOM, 239
Windows Azure, 124

search, 17
capabilities, 19
CSOM, 251
customization, web-based development, 57
workloads, 18

secret
OAuth, 204, 258
Provider-hosted apps, 403
SharePoint Store, 204

Secure Store Service, 17
security

AD, 273
apps, Offi ce JSOM, 297–298
Central Administration, 28
JS CSOM, 236–237
Offi ce 2013, 285

Security Token Service (STS), 258, 272
SharePoint Online, 264

Select, 73
$select, 244
Seller Dashboard, 203–206, 212–214
Server OM. See Server-Side Object Model
Server to Server authentication (S2S), 272–275,

405

bindex.indd 420bindex.indd 420 19/01/13 11:46 AM19/01/13 11:46 AM

421

Server-Side Object Model (Server OM) – sites

Server-Side Object Model (Server OM), 24, 108,
220, 399

ServerUnauthorizedAccessException, 170
Service Bus, 370, 406
Service layer, Windows Azure, 122–123
.setDataSync(), 339
Shared Documents, 347
SharePoint Actions, 379
SharePoint Designer (SPD), 13, 64–69, 400

action, 383–384
App Step, 372
ASPX pages, 113–114
copy/past, 372
dictionary, 372, 388
employee timecard, 375–383
InfoPath, 69
Interop, 372
JSON, 388
lists, 66–69, 105
looping, 372
Navigation pane, 66
new features, 371–372
portability, 372
REST, 386
stages, 371–372, 383
UI, 384
Visio Professional, 372–383
Visual Designer, 371, 379, 381
workfl ows, 370, 372–383

SharePoint for Internet Sites (FIS), 133
SharePoint Foundation, 16

farm-level solutions, 92
server object model, 24

SharePoint Online, 34
ACS, 264
application identity, 261, 404
Apps for Offi ce, 299–300
event receivers, 308
Offi ce 365

BCS, 324–332
RER, 308–311
workfl ows, 370

Provider-hosted development model, 51
STS, 264
Visual Studio workfl ows, 383

SharePoint Project template, 75
SharePoint Server, 16–17, 24, 92
SharePoint Services, 106
SharePoint solution package, 176, 179–180, 403
SharePoint Store

Access Services, 362
app licensing, 206–208
app pricing, 206–208
app publishing, 203–212
app submissions, 208–211
app validation, 211–212
application lifecycle, 212–215
client ID, 204–206
Provider-hosted apps, 204
secret, 204
SharePoint-hosted app solutions, 204

SharePoint Visual Web Part template, 75
SharePointAppPackage.Web.zip, 178
SharePointAppPackage.wsp, 178
SharePoint-hosted apps, 38–43, 90–92,

185–188, 400
applications, 279–305
Apps for Offi ce, 299
creating, 101–105
Excel Interactive View, 349–352
JS CSOM, 232–236
Office.select(), 339
SharePoint Store, 204
SP.js, 339
upgrades, 215
Visual Studio, 78–82

sharePointReady(), 247
sharepointUri, 48
Siebel, 6
Silverlight, 241

Expression Blend, 83–84
Web Parts, 64

Silverlight Web Part, 101
SIs. See software integrators
sites, 20–23

capabilities, 19
creating fi rst, 21–23
permissions, web-based development, 57
templates, 20
workloads, 18

bindex.indd 421bindex.indd 421 19/01/13 11:46 AM19/01/13 11:46 AM

422

Site Assets, SPD Navigation pane – Team Foundation Server (TFS)

Site Assets, SPD Navigation pane, 66
site collections, 20–23, 57, 400
Site Column template, Visual Studio, 76
site columns, 102–105, 179
Site Columns, SPD Navigation pane, 66
Site context object, 224–225
Site Features, 59–60
Site Groups, SPD Navigation pane, 66
Site Settings, 58–64

HTML, 60
multimedia, 61
Site Features, 59–60

$skiptoken, 354
SME. See subject matter expert
SOAP, 220, 328
social networking

capabilities, 19
newsfeeds, 5

Software as a Service (SAAS), 120, 133, 292,
296, 401

software integrators (SIs), 363
Solution Explorer

App.js, 345
AppManifest.xml, 311, 334
Apps for SharePoint, 390–391
BCS, 329
Excel Interactive View, 349–351
External Content Types, 333
Machine Translation Services, 360
PowerPoint Automation Services, 356
Program.cs, 356
RER, 316, 317
Visual Studio, 386
WOPI, 345

sourcedoc=, 347
sourcedocParm, 347
SourceLocation, 285
SP.AppContextSite, 236, 237
SPD. See SharePoint Designer
SPDocumentLibrary, 362
SpecificFinder, 328
SPFileStream, 358
SPFolder, 362
SPHostUrl, 228, 347

SP.js, 228, 339
SP.List, 249
SPRemoteEventResult, 311

properties, 314
TokenHelper, 317

SP.RequestExecutor.js, 247
SP.Runtime.js, 228, 338
SPSite, 106
SP.WebRequestInfo, 237
SQL Azure deployment package, 176
SQL Reporting, 123, 133
SQL Server, 16, 20, 69, 123, 363
SqlAzureConnectionString, 182
src=, 351
SSL, 274
stages, SPD, 371–372, 383
Stage Outline, Visio Professional, 373
standalone Apps for Offi ce, 299–300
Standard Web Part, 93–94, 401
StandardTokens, 140
Starter Master Page, 401
StartPage, 315

BCS, 335
State Service, 17
statically assigned permissions, 269
Stream Insight, 123
String, App Parts, 160
String Builder, 380
structural taxonomy, 8–9
STS. See Security Token Service
subject matter expert (SME), 373, 374, 383
Subscribe, 324
subsites, 23, 66
swipe cards, 256
SyncTranslator, 362
System Settings, Central Administration, 28

T

Table, 291
Table_, 353
Task Pane App template, Visual Studio, 77
TaskPaneApp, 284–286, 405
Team Foundation Server (TFS), 78

bindex.indd 422bindex.indd 422 19/01/13 11:46 AM19/01/13 11:46 AM

423

templates – Visual Studio

templates, 8
Access Services, 366
sites, 20
Visual Studio, 75–77

event receivers, 110
Provider-hosted apps, 50
Windows Phone, 238
workfl ows, 76

Text, 24, 291
TFS. See Team Foundation Server
themes, 57
timer jobs, 28
{token}, 207
TokenCache.zip, 267–268
TokenHelper, 48, 264–266, 272, 317

CSOM, 271
RER, 312

TokenHelper

.GetClientContextWithContextToken,
159–160

Toolbox, Visual Studio, 385
$top, 244
<tr>, 339
Traffi c Manager, 123
Trust Center, 285
Trusted App Catalog, 285

U

UI. See user interface
UI Custom Action (Host Web) template, Visual

Studio, 76
UninstallingEventEndpoint, 215
Update, 108
Updater, 328
Upgrade and Migration, Central Administration,

29
UpgradedEventEndpoint, 215
Uri.EscapeDataString, 207
URL

REST, 332
WOPI, 348

Usage and Health Data Collection, 17
users, 5–6. See also end users

user interface (UI), 6–8, 402
Access Services, 362
Action menu, 160–164
App Parts, 154–160
features, 180
HTML, 366
integration, 154–166
navigation, 164–166
Pages, 154–160
Ribbon, 160–164
SharePoint solution package, 179
SPD, 384
Visual Web Part, 95
workfl ows, 383

User Profi le, 17
CSOM, 251

user-only policy, OAuth application authorization,
271

V

ValuesController, 130
Variable: JsonODataResponse, 388
VBA, 280–281
View menu, Visual Studio, 385
virtual machines (VMs), 120, 121
Virtual Private Networks, 123–124
Visio Graphics Service, 17
Visio Professional

employee timecard, 375–383
SPD, 372–383
Stage Outline, 373
workfl ows, 370, 372–383
XML, 374

Visio Services, 344
Visio Web Access, 344
Visio Web App, 344
Visual Designer, 371, 379, 381
Visual Studio, 13, 74–82, 400

ALM, 78
application identity, 261
AppManifest.xml, 59
Apps for SharePoint, 390
BCS, 322, 329–339

bindex.indd 423bindex.indd 423 19/01/13 11:46 AM19/01/13 11:46 AM

424

Visual Studio – Windows Azure

Visual Studio (continued)
content types, 105
Create Argument, 385
Create List Workfl ow, 387
CSOM, 82
custom code activity, 384
debugging, 69
deployment, 15
Expression Blend, 84
External Content Types, 333
features, 106, 180
Machine Translation Services, 359
Offi ce JSOM, 287–291
RER, 309
SharePoint-hosted apps, 78–82
Solution Explorer, 386
templates, 75–77

event receivers, 110
Provider-hosted apps, 50
Windows Phone, 238

Toolbox, HttpSend, 385
View menu, 385
Web Parts, 400
Windows Azure, 124–127
workfl ows, 370, 383–390

custom declarative activity, 384–390
SharePoint Online, 383
XAML, 383

.wsp, 386
XML, 390

Visual Studio Tools for Offi ce (VSTO), 333
Offi ce 2013, 280–281

Visual Web Part, 95–101, 401
VMs. See virtual machines
.vsdx, 374
VSTO. See Visual Studio Tools for Offi ce

W

WCF Data Services, 25
WCM. See Web content management
Web application Open Platform Interface (WOPI),

344–348
URL, 348

Web content management (WCM), 5
Web context object, 224–225

Web Deploy, 180
web deploy package, 180–181, 403

Autohosted apps, 176, 182
IIS, 180
OAuth, 180

Web Extensibility Framework Runtime, 297
Web Parts

App Parts, 160
Visual Studio, 400

web parts. See also specifi c web parts
creating, 93–101
Edit mode, 8
Silverlight, 64

Web Part gallery, 154
Web Part pages, ASPX pages, 113
Web server role, 15–16
Web Sites, 401
Web standards, customization, 9
web-based development, 57–58
web.config, 50, 181
Windows Authentication (NTLM), 224, 238, 273
Windows Azure, 6, 119–146

Access Services, 363
ACS, 313
AD, 125
APIs, 121
application development, 124–133
Apps for Offi ce, 34
Autohosted apps, 44–49, 134–140
Client App Web Part, 136–146
cloud, 120

.APP, 37
creating fi rst application, 127–129
creating model, 129–132
CSOM, 12
customization, 6, 9
debugging, 131
defi ning, 121–122
development environment setup, 125–127
development tools, 121
HTTPS, 135
JSON, 131, 132
LiveID, 124, 127
LOB, 134
marketplace, 121
MVC, 129, 131

bindex.indd 424bindex.indd 424 19/01/13 11:46 AM19/01/13 11:46 AM

425

Windows Phone – ZIP fi les

.NET, 12, 124
OAuth, 136
platforms, 122–123

capabilities, 121
Provider-hosted apps, 134–136
RER, 312
REST, 131, 132, 402

API, 12
sandboxed solutions, 135
SDKs, 124
Visual Studio, 124–127
VMs, 120, 121

Windows Phone
CSOM, 237–241

libraries, 240
query, 239–241
Silverlight, 241

Visual Studio templates, 238
Windows RT, 280
Windows SharePoint Services Solution Packages

(WSPs)
customization, 14
farms, 14, 15
full-trust solutions, 176
sandbox, 14

Windows Workfl ow Foundation, 370, 383
WMVs, 123
WOPI. See Web application Open Platform

Interface
Word Automation Services, 17, 344, 355–359
Work Management, 17, 251
workfl ows

_API, 371
APIs, 371
.APP, 390–397
applications, 369–397
CSOM, 251
Deployment Service, 371
employee timecard, 375–383
Instance Service, 371
Interop Service, 371
Messaging Service, 371
SharePoint Online Offi ce 365, 370
SPD, 370, 372–383
SPD Navigation pane, 66
templates, Visual Studio, 76

UI, 383
Visio Professional, 370, 372–383
Visual Studio, 370, 383–390

custom declarative activity, 384–390
SharePoint Online, 383
XAML, 383

Workfl ow Designer, 392
Workfl ow Framework, 370
Workfl ow Manager, 370, 371
Workfl ow Service Application Proxy, 371
Workfl ow Services, 370
Workfl ow Services Manager, 371
workloads, 18
WriteDocument, 298
writeToDoc, 290
.wsp, 179

Visual Studio, 386
XML, 180

WSPs. See Windows SharePoint Services Solution
Packages

X

XAML. See Extensible Application Markup
Language

XML
.APP, 35–36
CAML, 82, 105, 109
CSOM, 221
Excel Services OData, 354
LOB, 322
REST, 107
SharePoint solution package, 176
SOAP, 220
Visio Professional, 374
Visual Studio, 77, 390
.wsp, 180

XpsRequest, 356, 358
xsi:type

Capabilities, 285
OfficeApp, 284

XSS. See cross-site scripting attacks

Z

ZIP fi les, 35, 176

bindex.indd 425bindex.indd 425 19/01/13 11:46 AM19/01/13 11:46 AM

Try Safari Books Online FREE
for 15 days and take 15% off

for up to 6 Months*
Gain unlimited subscription access to thousands of books and videos.

START YOUR FREE TRIAL TODAY!

Visit: www.safaribooksonline.com/wrox

With Safari Books Online, learn without limits
from thousands of technology, digital media and
professional development books and videos from
hundreds of leading publishers. With a monthly or
annual unlimited access subscription, you get:

• Anytime, anywhere mobile access with Safari
To Go apps for iPad, iPhone and Android

• Hundreds of expert-led instructional videos on
today’s hottest topics

• Sample code to help accelerate a wide variety
of software projects

• Robust organizing features including favorites,
highlights, tags, notes, mash-ups and more

• Rough Cuts pre-published manuscripts

*Discount applies to new Safari Library subscribers

only and is valid for the fi rst 6 consecutive monthly

billing cycles. Safari Library is not available in all

countries.

badvert.indd 426badvert.indd 426 1/19/2013 11:57:06 AM1/19/2013 11:57:06 AM

http://www.safaribooksonline.com/wrox

Related Wrox Books

Beginning SharePoint 2013: Building Business Solutions with SharePoint

Professional SharePoint 2013 Administration

Professional SharePoint 2013 Development

Related Wrox Books

Beginning SharePoint 2013: Building Business Solutions with SharePoint

Professional SharePoint 2013 Administration

Professional SharePoint 2013 Development

	Beginning SharePoint® 2013 Development
	Copyright
	About the Authors
	About the Technical Editor
	Credits
	Acknowledgments
	Contents
	Introduction
	Who This Book Is For
	What This Book Covers
	How This Book Is Structured
	What You Need To Use This Book
	Conventions
	Source Code
	Errata
	P2P.Wrox.Com

	Part I: Getting Started with SharePoint 2013
	Chapter 1: Introduction to SharePoint 2013
	Getting to Know SharePoint
	Defining SharePoint by Function
	Defining SharePoint by User
	Introducing the User Interface
	Introducing the Structure

	Addressing the Needs of the Developer
	Extending SharePoint 2013
	Breaking It Down for Developers

	SharePoint 2013: The Platform
	SharePoint Installation Types
	SharePoint 2013 Capabilities
	Site Collections and Sites
	SharePoint 2013 APIs

	SharePoint Central Administration
	Application Management
	Monitoring
	Security
	General Application Settings
	System Settings
	Backup and Restore
	Upgrade and Migration
	Configuration Wizard
	Apps

	Summary
	Recommended Reading

	Chapter 2: Overview of the SharePoint 2013 App Model
	SharePoint 2013 App Model
	Apps for Office
	Apps for SharePoint

	Moving to the Cloud
	Understanding the Three Apps for SharePoint Deployment Models
	SharePoint-Hosted
	Autohosted
	Provider-Hosted

	Summary
	Recommended Reading

	Chapter 3: Developer Tooling for SharePoint 2013
	SharePoint Development Across Developer Segments
	Web-Based Development in SharePoint
	Site Settings
	Developing SharePoint Applications Using SharePoint Designer
	Developing SharePoint Applications Using Napa
	Developing SharePoint Applications Using Visual Studio 2012
	Other Tools for SharePoint Development
	Developing with Expression Blend
	Debugging Using Fiddler

	Summary
	Recommended Reading

	Chapter 4: Understanding Your Development Options
	Application and Solution Types
	Common Developer Tasks
	Creating Web Parts
	Creating SharePoint-Hosted Apps
	Working with SharePoint Data
	Creating Cloud-hosted Apps
	Creating Event Receivers
	Creating ASPX Pages
	Creating Master Pages

	Summary
	Recommended Reading

	Chapter 5: Overview of Windows Azure for SharePoint
	Defining the Cloud
	Defining Windows Azure
	Windows Azure Platform
	Data Layer
	Services Layer
	Integration Layer

	Developing Windows Azure Applications
	SharePoint and Windows Azure
	Understanding SharePoint Cloud-Hosted Apps and Windows Azure
	Creating a Simple Autohosted SharePoint App

	Summary
	Recommended Reading

	Part II: Fundamental SharePoint 2013 Development Building Blocks
	Chapter 6: Developing, Integrating, and Building Applications in SharePoint 2013
	Development Models Available in SharePoint 2013
	Application Integration Options in SharePoint 2013
	User Interface Integration
	Events and Logic Integration
	Data Integration

	Summary
	Recommended Reading

	Chapter 7: Packaging and Deploying SharePoint 2013 Apps
	Anatomy of an App
	Manifest and Assets
	SharePoint Solution Package
	Web Deploy Package
	Database Package

	Packaging and Publishing an App
	Packaging an App
	Private Publishing in an App Catalog

	Deploying an App
	SharePoint-Hosted App Deployment
	Provider-Hosted App Deployment
	Autohosted App Deployment

	Summary
	Recommended Reading

	Chapter 8: Distributing SharePoint 2013 Apps
	Publishing Apps in the SharePoint Store
	Creating a Client ID and Secret
	Pricing and Licensing Apps
	Submitting Apps
	Getting Apps Validated

	Application Life Cycle
	Using Seller Dashboard Metrics
	Upgrading Apps

	Summary
	Recommended Reading

	Chapter 9: Overview of the Client-Side Object Model and REST APIs
	Introducing Remote APIs in SharePoint 2013
	Client-Side Object Model (CSOM) Basics
	Managed Code (.NET)
	Setup
	Querying

	JavaScript
	Setup
	Querying
	Security and Cross-Domain Calls

	Windows Phone
	Setup
	Querying

	REST and OData
	Getting Started with REST and OData
	Filtering and Selecting
	Creating, Updating, and Deleting

	Client-Side Object Model API Coverage
	Summary
	Recommended Reading

	Chapter 10: Overview of OAuth in SharePoint 2013
	Introduction to OAuth
	OAuth in SharePoint 2013
	Creating and Managing Application Identities
	Application Authentication
	App and User Context in API Calls
	Managing Tokens in Your Application

	Application Authorization
	Requesting Permissions Dynamically
	App-Only Policy

	On-Premises App Authentication with S2S
	Summary
	Recommended Reading

	Part III: Advanced Developer Topics in SharePoint 2013
	Chapter 11: Developing Integrated Apps for Office and SharePoint Solutions
	The New App Model for Office
	The Office JavaScript Object Model
	Document-based Apps
	Functional Capabilities by Office Client
	Mailbox-based Apps
	App Security

	Integrating Apps for Office with SharePoint
	Standalone Apps for Office
	Apps for Office Integrated with an App for SharePoint

	Summary
	Recommended Reading

	Chapter 12: Remote Event Receivers in SharePoint 2013
	Introducing Remote Event Receivers
	App-level Life-cycle Remote Event Receivers
	Summary
	Recommended Reading

	Chapter 13: Building Line-of-Business Solutions Using Business Connectivity Services
	Business Connectivity Services in SharePoint 2013
	BCS in Apps for SharePoint
	Building a BCS-enabled Business Solution
	Summary
	Recommended Reading

	Chapter 14: Developing Applications Using Office Services
	WOPI and the New Office Web Apps Server
	What's New in Excel Services
	Word Automation Services and the New PowerPoint Automation Services
	The New Machine Translation Services
	What's New in Access Services
	Summary
	Recommended Reading

	Chapter 15: Developing Workflow Applications for SharePoint 2013
	Introducing Workflow Manager
	The Big New Features for SharePoint Designer
	Visio Professional, SharePoint Designer, and Workflow
	Workflow and Visual Studio
	Workflow in Apps for SharePoint
	Summary
	Recommended Reading

	Appendix A: Answers to Exercises
	Chapter 1: Answers to Exercises
	Exercise 1: Solution
	Exercise 2: Solution
	Exercise 3: Solution
	Exercise 4: Solution
	Exercise 5: Solution

	Chapter 2: Answers to Exercises
	Exercise 1: Solution
	Exercise 2: Solution
	Exercise 3: Solution

	Chapter 3: Answers to Exercises
	Exercise 1: Solution
	Exercise 2: Solution
	Exercise 3: Solution

	Chapter 4: Answers to Exercises
	Exercise 1: Solution
	Exercise 2: Solution
	Exercise 3: Solution

	Chapter 5: Answers to Exercises
	Exercise 1: Solution
	Exercise 2: Solution
	Exercise 3: Solution
	Exercise 4: Solution

	Chapter 6: Answers to Exercises
	Exercise 1: Solution
	Exercise 2: Solution
	Exercise 3: Solution
	Exercise 4: Solution
	Exercise 5: Solution

	Chapter 7: Answers to Exercises
	Exercise 1: Solution
	Exercise 2: Solution
	Exercise 3: Solution

	Chapter 8: Answers to Exercises
	Exercise 1: Solution
	Exercise 2: Solution
	Exercise 3: Solution

	Chapter 9: Answers to Exercises
	Exercise 1: Solution
	Exercise 2: Solution
	Exercise 3: Solution
	Exercise 4: Solution

	Chapter 10: Answers to Exercises
	Exercise 1: Solution
	Exercise 2: Solution
	Exercise 3: Solution
	Exercise 4: Solution

	Chapter 11: Answers to Exercises
	Exercise 1: Solution
	Exercise 2: Solution
	Exercise 3: Solution
	Exercise 4: Solution

	Chapter 12: Answers to Exercises
	Exercise 1: Solution
	Exercise 2: Solution
	Exercise 3: Solution
	Exercise 4: Solution

	Chapter 13: Answers to Exercises
	Exercise 1: Solution
	Exercise 2: Solution
	Exercise 3: Solution
	Exercise 4: Solution

	Chapter 14: Answers to Exercises
	Exercise 1: Solution
	Exercise 2: Solution
	Exercise 3: Solution
	Exercise 4: Solution

	Chapter 15: Answers to Exercises
	Exercise 1: Solution
	Exercise 2: Solution
	Exercise 3: Solution
	Exercise 4: Solution

	Index
	Advertisement

